

Digital Systems
Principles and Applications

Ronald J. Tocci
Monroe Community College

Neal S. Widmer
Purdue University

Gregory L. Moss
Purdue University

TENTH EDITION

Pearson Education International

TOCCMF01_0131739697.QXD 12/22/2005 09:09 PM Page iii

If you purchased this book within the United States or Canada you should be aware that
it has been wrongfully imported without the approval of the Publisher or the Author.

Director of Development: Vern Anthony

Editorial Assistant: Lara Dimmick

Production Editor: Stephen C. Robb

Production Coordination: Peggy Hood, TechBooks/GTS

Design Coordinator: Diane Y. Ernsberger

Cover Designer: Jason Moore

Cover Art: Getty One

Production Manager: Matt Ottenweller

Marketing Manager: Ben Leonard

This book was set in TimesEuropa Roman by TechBooks/GTS York, PA Campus. It was

printed and bound by Courier Kendallville, Inc. The cover was printed by Phoenix

Color Corp.

MultiSIM® is a trademark of Electronics Workbench.

Altera is a trademark and service mark of Altera Corporation in the United States and

other countries. Altera products are the intellectual property of Altera Corporation and

are protected by copyright laws and one or more U.S. and foreign patents and patent ap-

plications.

Copyright © 2007 by Pearson Education, Inc., Upper Saddle River, New Jersey 07458.
Pearson Prentice Hall. All rights reserved. Printed in the United States of America. This

publication is protected by Copyright and permission should be obtained from the pub-

lisher prior to any prohibited reproduction, storage in a retrieval system, or transmission

in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.

For information regarding permission(s), write to: Rights and Permissions Department.

Pearson Prentice Hall™ is a trademark of Pearson Education, Inc.

Pearson® is a registered trademark of Pearson plc

Prentice Hall® is a registered trademark of Pearson Education, Inc.

Pearson Education Ltd. Pearson Education Australia Pty. Limited

Pearson Education Singapore, Pte. Ltd. Pearson Education North Asia Ltd.

Pearson Education Canada, Ltd. Pearson Educación de Mexico, S.A. de C.V.

Pearson Education—Japan Pearson Education Malaysia, Pte. Ltd.

Pearson Education, Upper Saddle River,

New Jersey

10 9 8 7 6 5 4 3 2 1

ISBN: 0-13-173969-7

TOCCMF01_0131739697.QXD 12/23/05 1:45 AM Page iv

Digital Systems
Principles and Applications

TOCCMF01_0131725793.QXD 12/22/2005 09:07 PM Page i

TOCCMF01_0131725793.QXD 12/22/2005 09:07 PM Page ii

To you, Cap, for loving me for so long; and for the million
and one ways you brighten the lives of everyone you touch.

—RJT

To my wife, Kris, and our children, John, Brad, Blake,
Matt, and Katie: the lenders of their rights to my time and
attention that this revision might be accomplished.

—NSW

To my family, Marita, David, and Ryan.
—GLM

TOCCMF01_0131725793.QXD 12/22/2005 09:07 PM Page v

TOCCMF01_0131725793.QXD 12/22/2005 09:07 PM Page vi

vii

P R E FAC E

This book is a comprehensive study of the principles and techniques of mod-

ern digital systems. It teaches the fundamental principles of digital systems

and covers thoroughly both traditional and modern methods of applying dig-

ital design and development techniques, including how to manage a systems-

level project. The book is intended for use in two- and four-year programs in

technology, engineering, and computer science. Although a background in

basic electronics is helpful, most of the material requires no electronics

training. Portions of the text that use electronics concepts can be skipped

without adversely affecting the comprehension of the logic principles.

General Improvements
The tenth edition of Digital Systems reflects the authors’ views of the

direction of modern digital electronics. In industry today, we see the impor-

tance of getting a product to market very quickly.The use of modern design

tools, CPLDs, and FPGAs allows engineers to progress from concept to func-

tional silicon very quickly. Microcontrollers have taken over many applica-

tions that once were implemented by digital circuits, and DSP has been

used to replace many analog circuits. It is amazing that microcontrollers,

DSP, and all the necessary glue logic can now be consolidated onto a single

FPGA using a hardware description language with advanced development

tools. Today’s students must be exposed to these modern tools, even in an

introductory course. It is every educator’s responsibility to find the best

way to prepare graduates for the work they will encounter in their profes-

sional lives.

The standard SSI and MSI parts that have served as “bricks and mortar”

in the building of digital systems for nearly 40 years are now nearing obso-

lescence. Many of the techniques that have been taught over that time have

focused on optimizing circuits that are built from these outmoded devices.

The topics that are uniquely suited to applying the old technology but do not
contribute to an understanding of the new technology must be removed from

TOCCMF01_0131725793.QXD 12/23/05 3:10 AM Page vii

the curriculum. From an educational standpoint, however, these small ICs do

offer a way to study simple digital circuits, and the wiring of circuits using

breadboards is a valuable pedagogic exercise. They help to solidify concepts

such as binary inputs and outputs, physical device operation, and practical

limitations, using a very simple platform. Consequently, we have chosen to

continue to introduce the conceptual descriptions of digital circuits and to

offer examples using conventional standard logic parts. For instructors who

continue to teach the fundamentals using SSI and MSI circuits, this edition

retains those qualities that have made the text so widely accepted in the

past. Many hardware design tools even provide an easy-to-use design entry

technique that will employ the functionality of conventional standard parts

with the flexibility of programmable logic devices. A digital design can be

described using a schematic drawing with pre-created building blocks that

are equivalent to conventional standard parts, which can be compiled and

then programmed directly into a target PLD with the added capability of

easily simulating the design within the same development tool.

We believe that graduates will actually apply the concepts presented in

this book using higher-level description methods and more complex program-

mable devices.The major shift in the field is a greater need to understand the

description methods, rather than focusing on the architecture of an actual de-

vice. Software tools have evolved to the point where there is little need for con-

cern about the inner workings of the hardware but much more need to focus

on what goes in, what comes out, and how the designer can describe what the

device is supposed to do. We also believe that graduates will be involved with

projects using state-of-the-art design tools and hardware solutions.

This book offers a strategic advantage for teaching the vital new topic

of hardware description languages to beginners in the digital field.VHDL is

undisputedly an industry standard language at this time, but it is also very

complex and has a steep learning curve. Beginning students are often dis-

couraged by the rigorous requirements of various data types, and they strug-

gle with understanding edge-triggered events in VHDL. Fortunately, Altera

offers AHDL, a less demanding language that uses the same basic concepts

as VHDL but is much easier for beginners to master. So, instructors can opt

to use AHDL to teach introductory students or VHDL for more advanced

classes. This edition offers more than 40 AHDL examples, more than 40

VHDL examples, and many examples of simulation testing. All of these design

files are available on the enclosed CD-ROM.

Altera’s latest software development system is Quartus II. The MAX�
PLUS II software that has been used for many years is still popular in indus-

try and is supported by Altera. Its main drawback is that it does not program

the latest devices. The material in this text does not attempt to teach a par-

ticular hardware platform or the details of using a software development sys-

tem. New revisions of software tools appear so frequently that a textbook

cannot remain current if it tries to describe all of the details. We have tried

to show what this tool can do, rather than train the reader how to use it. How-

ever, tutorials have been included on the accompanying CD-ROM that make

it easy to learn either software package. The AHDL and VHDL examples are

compatible with either Quartus or MAX�PLUS systems. The timing simula-

tions were developed using MAX�PLUS but can also be done with Quartus.

Many laboratory hardware options are available to users of this book. A

number of CPLD and FPGA development boards are available for students

to use in the laboratory. There are several earlier generation boards similar

to Altera’s UP2 that contain MAX7000 family CPLDs. A more recent example

of an available board is the UP3 board from Altera’s university program (see

Figure P-l), which contains a larger FPGA from the Cyclone family. An even

viii PREFACE

TOCCMF01_0131725793.QXD 12/22/2005 09:07 PM Page viii

PREFACE ix

newer board from Altera is called the DE2 board (see Figure P-2), which has

a powerful new 672-pin Cyclone II FPGA and a number of basic features such

as switches, LEDs, and displays as well as many additional features for more

advanced projects. More development boards are entering the market every

year, and many are becoming very affordable. These boards, along with pow-

erful educational software, offer an excellent way to teach and demonstrate

the practical implementation of the concepts presented in this text.

The most significant improvements in the tenth edition are found in Chap-

ter 7. Although asynchronous (ripple) counters provide a good introduction to

sequential circuits, the real world uses synchronous counter circuits. Chapter

7 and subsequent examples have been rewritten to emphasize synchronous

counter ICs and include techniques for analysis, cascading, and using HDL to

describe them. A section has also been added to improve the coverage of state

machines and the HDL features used to describe them. Other improvements

include analysis techniques for combinational circuits, expanded coverage of

555 timer applications, and better coverage of signed binary numbers.

FIGURE P-1 Altera’s UP3

development board.

FIGURE P-2 Altera’s DE2

development board.

TOCCMF01_0131725793.QXD 12/22/2005 09:07 PM Page ix

x PREFACE

Our approach to HDL and PLDs gives instructors several options:

1. The HDL material can be skipped entirely without affecting the

continuity of the text.

2. HDL can be taught as a separate topic by skipping the material

initially and then going back to the last sections of Chapters 3, 4, 5,

6, 7, and 9 and then covering Chapter 10.

3. HDL and the use of PLDs can be covered as the course unfolds—

chapter by chapter—and woven into the fabric of the lecture/lab

experience.

Among all specific hardware description languages, VHDL is clearly the

industry standard and is most likely to be used by graduates in their careers.

We have always felt that it is a bold proposition, however, to try to teach VHDL

in an introductory course. The nature of the syntax, the subtle distinctions in

object types, and the higher levels of abstraction can pose obstacles for a

beginner. For this reason, we have included Altera’s AHDL as the recom-

mended introductory language for freshman courses. We have also included

VHDL as the recommended language for more advanced classes or introduc-

tory courses offered to more mature students.We do not recommend trying to

cover both languages in the same course. Sections of the text that cover the

specifics of a language are clearly designated with a color bar in the margin.

The HDL code figures are set in a color to match the color-coded text expla-

nation.The reader can focus only on the language of his or her choice and skip

the other. Obviously, we have attempted to appeal to the diverse interests of

our market, but we believe we have created a book that can be used in multi-

ple courses and will serve as an excellent reference after graduation.

Chapter Organization
It is a rare instructor who uses the chapters of a textbook in the sequence in

which they are presented. This book was written so that, for the most part,

each chapter builds on previous material, but it is possible to alter the chap-

ter sequence somewhat. The first part of Chapter 6 (arithmetic operations)

can be covered right after Chapter 2 (number systems), although this will lead

to a long interval before the arithmetic circuits of Chapter 6 are encountered.

Much of the material in Chapter 8 (IC characteristics) can be covered earlier

(e.g., after Chapter 4 or 5) without creating any serious problems.

This book can be used either in a one-term course or in a two-term se-

quence. In a one-term course, limits on available class hours might require

omitting some topics. Obviously, the choice of deletions will depend on fac-

tors such as program or course objectives and student background. A list of

sections and chapters that can be deleted with minimal disruption follows:

■ Chapter 1: All

■ Chapter 2: Section 6

■ Chapter 3: Sections 15–20

■ Chapter 4: Sections 7, 10–13

■ Chapter 5: Sections 3, 23–27

■ Chapter 6: Sections 5–7, 11, 13, 16–23

■ Chapter 7: Sections 9–14, 21–24

■ Chapter 8: Sections 10, 14–19

TOCCMF01_0131725793.QXD 12/22/2005 09:07 PM Page x

PREFACE xi

FIGURE P-3 Letters denote

categories of problems,

and asterisks indicate that

corresponding solutions

are provided at the end of

the text.

■ Chapter 9: Sections 5, 9, 15–20

■ Chapter 10: All

■ Chapter 11: Sections 7, 14–17

■ Chapter 12: Sections 17–21

■ Chapter 13: All

PROBLEM SETS This edition includes six categories of problems: basic

(B), challenging (C), troubleshooting (T), new (N), design (D), and HDL (H).

Undesignated problems are considered to be of intermediate difficulty, be-

tween basic and challenging. Problems for which solutions are printed in the

back of the text or on the enclosed CD-ROM are marked with an asterisk (see

Figure P-3).

PROJECT MANAGEMENT AND SYSTEM-LEVEL DESIGN Several real-

world examples are included in Chapter 10 to describe the techniques used

to manage projects. These applications are generally familiar to most stu-

dents studying electronics, and the primary example of a digital clock is fa-

miliar to everyone. Many texts talk about top-down design, but this text

demonstrates the key features of this approach and how to use the modern

tools to accomplish it.

DATA SHEETS The CD-ROM containing Texas Instruments data sheets

that accompanied the ninth edition has been removed. The information that

was included on this CD-ROM is now readily available online.

SIMULATION FILES This edition also includes simulation files that can be

loaded into Electronics Workbench Multisim®. The circuit schematics of

many of the figures throughout the text have been captured as input files for

this popular simulation tool. Each file has some way of demonstrating the oper-

ation of the circuit or reinforcing a concept. In many cases, instruments are at-

tached to the circuit and input sequences are applied to demonstrate the

concept presented in one of the figures of the text.These circuits can then be

modified as desired to expand on topics or create assignments and tutorials

TOCCMF01_0131725793.QXD 12/22/2005 09:07 PM Page xi

for students. All figures in the text that have a corresponding simulation file

on the CD-ROM are identified by the icon shown in Figure P-4.

IC TECHNOLOGY This new edition continues the practice begun with the

last three editions of giving more prominence to CMOS as the principal IC

technology in small- and medium-scale integration applications. This depth

of coverage has been accomplished while retaining the substantial coverage

of TTL logic.

Specific Changes
The major changes in the topical coverage are listed here.

■ Chapter 1. Many explanations covering digital/analog issues have been

updated and improved.

■ Chapter 2. The octal number system has been removed and the Gray

code has been added. A complete standard ASCII code table has been in-

cluded, along with new examples that relate ASCII characters, hex rep-

resentation, and computer object code transfer files. New material on

framing ASCII characters for asynchronous data transfer has also been

added.

■ Chapter 3. Along with some new practical examples of logic functions,

the major improvement in Chapter 3 is a new analysis technique using

tables that evaluate intermediate points in the logic circuit.

■ Chapter 4.Very few changes were necessary in Chapter 4.

■ Chapter 5. A new section covers digital pulses and associated definitions

such as pulse width, period, rise time, and fall time. The terminology

used for latch circuit inputs has been changed from Clear to Reset in

order to be compatible with Altera component descriptions.The definition

of a master/slave flip-flop has been removed as well. The discussion of

Schmitt trigger applications has been improved to emphasize their role

in eliminating the effects of noise. The inner workings of the 555 timer

are now explained, and some improved timing circuits are proposed that

make the device more versatile. The HDL coverage of SR and D latches

has been rewritten to use a more intuitive behavioral description, and

the coverage of counters has been modified to focus on structural tech-

niques to interconnect flip-flop blocks.

■ Chapter 6. Signed numbers are covered in more detail in this edition,

particularly regarding sign extension in 2’s complement numbers and

arithmetic overflow. A new calculator hint simplifies negation of binary

numbers represented in hex. A number circle model is used to compare

xii PREFACE

FIGURE P-4 The icon

denotes a corresponding

simulation file on the

CD-ROM.

TOCCMF01_0131725793.QXD 12/22/2005 09:07 PM Page xii

signed and unsigned number formats and help students to visualize

add/subtract operation using both.

■ Chapter 7. This chapter has been heavily revised to emphasize synchro-

nous counter circuits. Simple ripple counters are still introduced to pro-

vide a basic understanding of the concept of counting and asynchronous

cascading. After examining the limitations of ripple counters in Section 2,

synchronous counters are introduced in Section 3 and used in all subse-

quent examples throughout the text. The IC counters presented are the

74160, ’161, ’162, and ’163.These common devices offer an excellent assort-

ment of features that teach the difference between synchronous and asyn-

chronous control inputs and cascading techniques.The 74190 and ’191 are

used as an example of a synchronous up/down counter IC, further rein-

forcing the techniques required for synchronous cascading. A new section

is devoted to analysis techniques for synchronous circuits using JK and D

flip-flops. Synchronous design techniques now also include the use of D

flip-flop registers that best represent the way sequential circuits are im-

plemented in modern PLD technology. The HDL sections have been im-

proved to demonstrate the implementation of synchronous/asynchronous

loading, clearing, and cascading. A new emphasis is placed on simulation

and testing of HDL modules. State machines are now presented as a topic,

the traditional Mealy and Moore models are defined, and a new traffic

light control system is presented as an example. Minor improvements have

been made in the second half of Chapter 7 also. All of the problems at the

end of Chapter 7 have been rewritten to reinforce the concepts.

■ Chapter 8. This chapter remains a very technical description of the tech-

nology available in standard logic families and digital components. The

mixed-voltage interfacing sections have been improved to cover low-

voltage technology. The latest Texas Instruments life-cycle curve shows

the history and current position of various logic series between intro-

duction and obsolescence. Low-voltage differential signaling (LVDS) is

introduced as well.

■ Chapter 9. The many different building blocks of digital systems are still

covered in this chapter and demonstrated using HDL. Many other HDL

techniques, such as tristate outputs and various HDL control structures,

are also introduced. A 74ALS148 is described as another example of an

encoder.The examples of systems that use counters have all been updated

to synchronous operation. The serial transmission system using MUX and

DEMUX is particularly improved. The technique of using a MUX to

implement SOP expressions has been explained in a more structured way

as an independent study exercise in the end-of-the-chapter problems.

■ Chapter 10. Chapter 10, which was new to the ninth edition, has re-

mained essentially unchanged.

■ Chapter 11.The material on bipolar DACs has been improved, and an ex-

ample of using DACs as a digital amplitude control for analog waveforms

is presented. The more common A/D converter accuracy specification in

the form of �/� LSB is explained in this edition.

■ Chapter 12. Minor improvements were made to this chapter to consolidate

and compress some of the material on older technologies of memory such

as UV EPROM. Flash technology is still introduced using a first-generation

example, but the more recent improvements, as well as some of the appli-

cations of flash technology in modern consumer devices, are described.

■ Chapter 13. This chapter, which was new to the ninth edition, has been

updated to introduce the new Cyclone family of PLDs.

PREFACE xiii

TOCCMF01_0131725793.QXD 12/23/05 1:51 AM Page xiii

Retained Features
This edition retains all of the features that made the previous editions so

widely accepted. It utilizes a block diagram approach to teach the basic logic

operations without confusing the reader with the details of internal operation.

All but the most basic electrical characteristics of the logic ICs are withheld

until the reader has a firm understanding of logic principles. In Chapter 8, the

reader is introduced to the internal IC circuitry. At that point, the reader can

interpret a logic block’s input and output characteristics and “fit” it properly

into a complete system.

The treatment of each new topic or device typically follows these steps:

the principle of operation is introduced; thoroughly explained examples and

applications are presented, often using actual ICs; short review questions are

posed at the end of the section; and finally, in-depth problems are available

at the end of the chapter. These problems, ranging from simple to complex,

provide instructors with a wide choice of student assignments. These prob-

lems are often intended to reinforce the material without simply repeating

the principles. They require students to demonstrate comprehension of the

principles by applying them to different situations. This approach also helps

students to develop confidence and expand their knowledge of the material.

The material on PLDs and HDLs is distributed throughout the text, with

examples that emphasize key features in each application. These topics ap-

pear at the end of each chapter, making it easy to relate each topic to the gen-

eral discussion earlier in the chapter or to address the general discussion

separately from the PLD/HDL coverage.

The extensive troubleshooting coverage is spread over Chapters 4 through

12 and includes presentation of troubleshooting principles and techniques,

case studies, 25 troubleshooting examples, and 60 real troubleshooting prob-

lems. When supplemented with hands-on lab exercises, this material can help

foster the development of good troubleshooting skills.

The tenth edition offers more than 200 worked-out examples, more than

400 review questions, and more than 450 chapter problems/exercises. Some

of these problems are applications that show how the logic devices presented

in the chapter are used in a typical microcomputer system. Answers to a

majority of the problems immediately follow the Glossary. The Glossary pro-

vides concise definitions of all terms in the text that have been highlighted

in boldface type.

An IC index is provided at the back of the book to help readers locate eas-

ily material on any IC cited or used in the text. The back endsheets provide

tables of the most often used Boolean algebra theorems, logic gate summaries,

and flip-flop truth tables for quick reference when doing problems or work-

ing in the lab.

Supplements
An extensive complement of teaching and learning tools has been developed

to accompany this textbook. Each component provides a unique function,

and each can be used independently or in conjunction with the others.

CD-ROM A CD-ROM is packaged with each copy of the text. It contains the

following material:

■ MAX�PLUS® II Educational Version software from Altera. This is a fully

functional, professional-quality, integrated development environment for

xiv PREFACE

TOCCMF01_0131725793.QXD 12/23/05 1:51 AM Page xiv

digital systems that has been used for many years and is still supported

by Altera. Students can use it to write, compile, and simulate their de-

signs at home before going to the lab. They can use the same software to

program and test an Altera CPLD.

■ Quartus II Web Version software from Altera. This is the latest develop-

ment system software from Altera, which offers more advanced features

and supports new PLD devices such as the Cyclone family of FPGAs,

found on many of the newest educational boards.

■ Tutorials. Gregory Moss has developed tutorials that have been used

successfully for several years to teach introductory students how to use

Altera MAX�PLUS II software. These tutorials are available in PDF

and PPT (Microsoft® PowerPoint® presentation) formats and have been

adapted to teach Quartus II as well. With the help of these tutorials, any-

one can learn to modify and test all the examples presented in this text,

as well as develop his or her own designs.

■ Design files from the textbook figures. More than 40 design files in each

language are presented in figures throughout the text. Students can load

these into the Altera software and test them.

■ Solutions to selected problems: HDL design files. A few of the end-of-

chapter problem solutions are available to students. (All of the HDL

solutions are available to instructors in the Instructor’s Resource Manual.)
Solutions for Chapter 7 problems include some large graphic and HDL

files that are not published in the back of the book but are available on

the enclosed CD-ROM.

■ Circuits from the text rendered in Multisim®. Students can open and

work interactively with approximately 100 circuits to increase their un-

derstanding of concepts and prepare for laboratory activities. The

Multisim circuit files are provided for use by anyone who has Multisim

software. Anyone who does not have Multisim software and wishes to

purchase it in order to use the circuit files may do so by ordering it from

www.prenhall.com/ewb.

■ Supplemental material introducing microprocessors and microcon-
trollers. For the flexibility to serve the diverse needs of the many differ-

ent schools, an introduction to this topic is presented as a convenient

bridge between a digital systems course and an introduction to micro-

processors/microcontrollers course.

STUDENT RESOURCES

■ Lab Manual: A Design Approach. This lab manual, written by Gregory

Moss, contains topical units with lab projects that emphasize simulation

and design. It utilizes the Altera MAX�PLUS II or Quartus II software in

its programmable logic exercises and features both schematic capture

and hardware description language techniques. The new edition con-

tains many new projects and examples. (ISBN 0-13-188138-8)

■ Lab Manual: A Troubleshooting Approach. This manual, written by Jim

DeLoach and Frank Ambrosio, is presented with an analysis and trou-

bleshooting approach and is fully updated for this edition of the text.

(ISBN 0-13-188136-1)

■ Companion Website (www.prenhall.com/tocci). This site offers students a

free online study guide with which they can review the material learned

in the text and check their understanding of key topics.

PREFACE xv

TOCCMF01_0131725793.QXD 12/22/2005 09:07 PM Page xv

INSTRUCTOR RESOURCES

■ Instructor’s Resource Manual. This manual contains worked-out solutions

for all end-of-chapter problems in this textbook. (ISBN 0-13-172665-X)

■ Lab Solutions Manual. Worked-out lab results for both lab manuals are

featured in this manual. (ISBN 0-13-172664-1)

■ PowerPoint® presentations. Figures from the text, in addition to Lecture

Notes for each chapter, are available on CD-ROM. (ISBN 0-13-172667-6)

■ TestGen. A computerized test bank is available on CD-ROM. (ISBN 0-13-

172666-8)

To access supplementary materials online, instructors need to request an

instructor access code. Go to www.prenhall.com, click the Instructor Resource
Center link, and then click Register Today for an instructor access code.Within

48 hours after registering, you will receive a confirming e-mail including an

instructor access code. When you have received your code, go to the site and

log on for full instructions on downloading the materials you wish to use.

ACKNOWLEDGMENTS

We are grateful to all those who evaluated the ninth edition and provided

answers to an extensive questionnaire: Ali Khabari, Wentworth Institute of

Technology; Al Knebel, Monroe Community College; Rex Fisher, Brigham

Young University; Alan Niemi, LeTourneau University; and Roger Sash, Uni-

versity of Nebraska. Their comments, critiques, and suggestions were given

serious consideration and were invaluable in determining the final form of

the tenth edition.

We also are greatly indebted to Professor Frank Ambrosio, Monroe Com-

munity College, for his usual high-quality work on the indexes and the Ins-
tructor’s Resource Manual; and Professor Thomas L. Robertson, Purdue

University, for providing his magnetic levitation system as an example; and

Professors Russ Aubrey and Gene Harding, Purdue University, for their tech-

nical review of topics and many suggestions for improvements. We appreci-

ate the cooperation of Mike Phipps and the Altera Corporation for their

support in granting permission to use their software package and their fig-

ures from technical publications.

A writing project of this magnitude requires conscientious and profes-

sional editorial support, and Prentice Hall came through again in typical

fashion. We thank the staffs at Prentice Hall and TechBooks/GTS for their

help to make this publication a success.

And finally, we want to let our wives and our children know how much we

appreciate their support and their understanding.We hope that we can even-

tually make up for all the hours we spent away from them while we worked

on this revision.

Ronald J. Tocci

Neal S. Widmer

Gregory L. Moss

xvi PREFACE

TOCCMF01_0131725793.QXD 12/23/05 1:51 AM Page xvi

xvii

B R I E F C O N T E N T S

CHAPTER 1 Introductory Concepts 2

CHAPTER 2 Number Systems and Codes 24

CHAPTER 3 Describing Logic Circuits 54

CHAPTER 4 Combinational Logic Circuits 118

CHAPTER 5 Flip-Flops and Related Devices 208

CHAPTER 6 Digital Arithmetic: Operations and Circuits 296

CHAPTER 7 Counters and Registers 360

CHAPTER 8 Integrated-Circuit Logic Families 488

CHAPTER 9 MSI Logic Circuits 576

CHAPTER 10 Digital System Projects Using HDL 676

CHAPTER 11 Interfacing with the Analog World 718

CHAPTER 12 Memory Devices 786

CHAPTER 13 Programmable Logic Device Architectures 868

Glossary 898

Answers to Selected Problems 911

Index of ICs 919

Index 922

TOCCMF01_0131725793.QXD 12/23/05 3:11 AM Page xvii

TOCCMF01_0131725793.QXD 12/22/2005 09:07 PM Page xviii

xix

C O N T E N T S

CHAPTER 1 Introductory Concepts 2

1-1 Numerical Representations 4

1-2 Digital and Analog Systems 5

1-3 Digital Number Systems 10

1-4 Representing Binary Quantities 13

1-5 Digital Circuits/Logic Circuits 15

1-6 Parallel and Serial Transmission 17

1-7 Memory 18

1-8 Digital Computers 19

CHAPTER 2 Number Systems and Codes 24

2-1 Binary-to-Decimal Conversions 26

2-2 Decimal-to-Binary Conversions 26

2-3 Hexadecimal Number System 29

2-4 BCD Code 33

2-5 The Gray Code 35

2-6 Putting It All Together 37

2-7 The Byte, Nibble, and Word 37

2-8 Alphanumeric Codes 39

2-9 Parity Method for Error Detection 41

2-10 Applications 44

TOCCMF01_0131725793.QXD 12/23/05 3:11 AM Page xix

Chapter 3 Describing Logic Circuits 54

3-1 Boolean Constants and Variables 57

3-2 Truth Tables 57

3-3 OR Operation with OR Gates 58

3-4 AND Operation with AND Gates 62

3-5 NOT Operation 65

3-6 Describing Logic Circuits Algebraically 66

3-7 Evaluating Logic-Circuit Outputs 68

3-8 Implementing Circuits from Boolean

Expressions 71

3-9 NOR Gates and NAND Gates 73

3-10 Boolean Theorems 76

3-11 DeMorgan’s Theorems 80

3-12 Universality of NAND Gates and NOR Gates 83

3-13 Alternate Logic-Gate Representations 86

3-14 Which Gate Representation to Use 89

3-15 IEEE/ANSI Standard Logic Symbols 95

3-16 Summary of Methods to Describe Logic Circuits 96

3-17 Description Languages Versus Programming

Languages 98

3-18 Implementing Logic Circuits with PLDs 100

3-19 HDL Format and Syntax 102

3-20 Intermediate Signals 105

Chapter 4 Combinational Logic Circuits 118

4-1 Sum-of-Products Form 120

4-2 Simplifying Logic Circuits 121

4-3 Algebraic Simplification 121

4-4 Designing Combinational Logic Circuits 127

4-5 Karnaugh Map Method 133

4-6 Exclusive-OR and Exclusive-NOR Circuits 144

4-7 Parity Generator and Checker 149

4-8 Enable/Disable Circuits 151

4-9 Basic Characteristics of Digital ICs 153

4-10 Troubleshooting Digital Systems 160

4-11 Internal Digital IC Faults 162

4-12 External Faults 166

4-13 Troubleshooting Case Study 168

4-14 Programmable Logic Devices 170

4-15 Representing Data in HDL 177

4-16 Truth Tables Using HDL 181

4-17 Decision Control Structures in HDL 184

xx CONTENTS

TOCCMF01_0131725793.QXD 12/22/2005 09:07 PM Page xx

Chapter 5 Flip-Flops and Related Devices 208

5-1 NAND Gate Latch 211

5-2 NOR Gate Latch 216

5-3 Troubleshooting Case Study 219

5-4 Digital Pulses 220

5-5 Clock Signals and Clocked Flip-Flops 221

5-6 Clocked S-R Flip-Flop 224

5-7 Clocked J-K Flip-Flop 227

5-8 Clocked D Flip-Flop 230

5-9 D Latch (Transparent Latch) 232

5-10 Asynchronous Inputs 233

5-11 IEEE/ANSI Symbols 236

5-12 Flip-Flop Timing Considerations 238

5-13 Potential Timing Problem in FF Circuits 241

5-14 Flip-Flop Applications 243

5-15 Flip-Flop Synchronization 243

5-16 Detecting an Input Sequence 244

5-17 Data Storage and Transfer 245

5-18 Serial Data Transfer: Shift Registers 247

5-19 Frequency Division and Counting 250

5-20 Microcomputer Application 254

5-21 Schmitt-Trigger Devices 256

5-22 One-Shot (Monostable Multivibrator) 256

5-23 Clock Generator Circuits 260

5-24 Troubleshooting Flip-Flop Circuits 264

5-25 Sequential Circuits Using HDL 268

5-26 Edge-Triggered Devices 272

5-27 HDL Circuits with Multiple Components 277

Chapter 6 Digital Arithmetic:
Operations and Circuits 296

6-1 Binary Addition 298

6-2 Representing Signed Numbers 299

6-3 Addition in the 2’s-Complement System 306

6-4 Subtraction in the 2’s-Complement System 307

6-5 Multiplication of Binary Numbers 310

6-6 Binary Division 311

6-7 BCD Addition 312

6-8 Hexadecimal Arithmetic 314

6-9 Arithmetic Circuits 317

6-10 Parallel Binary Adder 318

6-11 Design of a Full Adder 320

CONTENTS xxi

TOCCMF01_0131725793.QXD 12/22/2005 09:07 PM Page xxi

6-12 Complete Parallel Adder with Registers 323

6-13 Carry Propagation 325

6-14 Integrated-Circuit Parallel Adder 326

6-15 2’s-Complement System 328

6-16 ALU Integrated Circuits 331

6-17 Troubleshooting Case Study 335

6-18 Using TTL Library Functions with HDL 337

6-19 Logical Operations on Bit Arrays 338

6-20 HDL Adders 340

6-21 Expanding the Bit Capacity of a Circuit 343

Chapter 7 Counters and Registers 360

7-1 Asynchronous (Ripple) Counters 362

7-2 Propagation Delay in Ripple Counters 365

7-3 Synchronous (Parallel) Counters 367

7-4 Counters with MOD Numbers <2N 370

7-5 Synchronous Down and Up/Down Counters 377

7-6 Presettable Counters 379

7-7 IC Synchronous Counters 380

7-8 Decoding a Counter 389

7-9 Analyzing Synchronous Counters 393

7-10 Synchronous Counter Design 396

7-11 Basic Counters Using HDLs 405

7-12 Full-Featured Counters in HDL 412

7-13 Wiring HDL Modules Together 417

7-14 State Machines 425

7-15 Integrated-Circuit Registers 437

7-16 Parallel In/Parallel Out—The 74ALS174/74HC174 437

7-17 Serial In/Serial Out—The 74ALS166/74HC166 439

7-18 Parallel In/Serial Out—The 74ALS165/74HC165 441

7-19 Serial In/Parallel Out—The 74ALS164/74HC164 443

7-20 Shift-Register Counters 445

7-21 Troubleshooting 450

7-22 HDL Registers 452

7-23 HDL Ring Counters 459

7-24 HDL One-Shots 461

Chapter 8 Integrated-Circuit Logic Families 488

8-1 Digital IC Terminology 490

8-2 The TTL Logic Family 498

8-3 TTL Data Sheets 502

8-4 TTL Series Characteristics 506

xxii CONTENTS

TOCCMF01_0131725793.QXD 12/22/2005 09:07 PM Page xxii

8-5 TTL Loading and Fan-Out 509

8-6 Other TTL Characteristics 514

8-7 MOS Technology 518

8-8 Complementary MOS Logic 521

8-9 CMOS Series Characteristics 523

8-10 Low-Voltage Technology 530

8-11 Open-Collector/Open-Drain Outputs 533

8-12 Tristate (Three-State) Logic Outputs 538

8-13 High-Speed Bus Interface Logic 541

8-14 The ECL Digital IC Family 543

8-15 CMOS Transmission Gate (Bilateral Switch) 546

8-16 IC Interfacing 548

8-17 Mixed-Voltage Interfacing 553

8-18 Analog Voltage Comparators 554

8-19 Troubleshooting 556

Chapter 9 MSI Logic Circuits 576

9-1 Decoders 577

9-2 BCD-to-7-Segment Decoder/Drivers 584

9-3 Liquid-Crystal Displays 587

9-4 Encoders 591

9-5 Troubleshooting 597

9-6 Multiplexers (Data Selectors) 599

9-7 Multiplexer Applications 604

9-8 Demultiplexers (Data Distributors) 610

9-9 More Troubleshooting 617

9-10 Magnitude Comparator 621

9-11 Code Converters 624

9-12 Data Busing 628

9-13 The 74ALS173/HC173 Tristate Register 629

9-14 Data Bus Operation 632

9-15 Decoders Using HDL 638

9-16 The HDL 7-Segment Decoder/Driver 642

9-17 Encoders Using HDL 645

9-18 HDL Multiplexers and Demultiplexers 648

9-19 HDL Magnitude Comparators 652

9-20 HDL Code Converters 653

Chapter 10 Digital System Projects Using HDL 676

10-1 Small-Project Management 678

10-2 Stepper Motor Driver Project 679

10-3 Keypad Encoder Project 687

CONTENTS xxiii

TOCCMF01_0131725793.QXD 12/22/2005 09:07 PM Page xxiii

10-4 Digital Clock Project 693

10-5 Frequency Counter Project 710

Chapter 11 Interfacing with the Analog World 718

11-1 Review of Digital Versus Analog 719

11-2 Digital-to-Analog Conversion 721

11-3 D/A-Converter Circuitry 728

11-4 DAC Specifications 733

11-5 An Integrated-Circuit DAC 735

11-6 DAC Applications 736

11-7 Troubleshooting DACs 738

11-8 Analog-to-Digital Conversion 739

11-9 Digital-Ramp ADC 740

11-10 Data Acquisition 745

11-11 Successive-Approximation ADC 749

11-12 Flash ADCs 755

11-13 Other A/D Conversion Methods 757

11-14 Sample-and-Hold Circuits 761

11-15 Multiplexing 762

11-16 Digital Storage Oscilloscope 764

11-17 Digital Signal Processing (DSP) 765

Chapter 12 Memory Devices 784

12-1 Memory Terminology 786

12-2 General Memory Operation 790

12-3 CPU–Memory Connections 793

12-4 Read-Only Memories 795

12-5 ROM Architecture 796

12-6 ROM Timing 799

12-7 Types of ROMs 800

12-8 Flash Memory 808

12-9 ROM Applications 811

12-10 Semiconductor RAM 814

12-11 RAM Architecture 815

12-12 Static RAM (SRAM) 818

12-13 Dynamic RAM (DRAM) 823

12-14 Dynamic RAM Structure and Operation 824

12-15 DRAM Read/Write Cycles 829

12-16 DRAM Refreshing 831

12-17 DRAM Technology 834

12-18 Expanding Word Size and Capacity 836

12-19 Special Memory Functions 844

xxiv CONTENTS

TOCCMF01_0131725793.QXD 12/22/2005 09:07 PM Page xxiv

12-20 Troubleshooting RAM Systems 847

12-21 Testing ROM 852

Chapter 13 Programmable Logic Device
Architectures 868

13-1 Digital Systems Family Tree 870

13-2 Fundamentals of PLD Circuitry 875

13-3 PLD Architectures 877

13-4 The GAL 16V8 (Generic Array Logic) 881

13-5 The Altera EPM7128S CPLD 885

13-6 The Altera FLEX10K Family 890

13-7 The Altera Cyclone Family 894

Glossary 898

Answers to Selected Problems 911

Index of ICs 919

Index 922

CONTENTS xxv

TOCCMF01_0131725793.QXD 12/22/2005 09:07 PM Page xxv

TOCCMF01_0131725793.QXD 12/22/2005 09:07 PM Page xxvi

Digital Systems
Principles and Applications

TOCCMF01_0131725793.QXD 12/22/2005 09:07 PM Page 1

1-1 Numerical Representations

1-2 Digital and Analog Systems

1-3 Digital Number Systems

1-4 Representing Binary

Quantities

1-5 Digital Circuits/Logic

Circuits

■ OUTLINE

I N T R O D U C TO R Y

C O N C E P T S

C H A P T E R 1

1-6 Parallel and Serial

Transmission

1-7 Memory

1-8 Digital Computers

TOCCMC01_0131725793.QXD 11/26/05 12:49 AM Page 2

3

■ OBJECTIVES
Upon completion of this chapter, you will be able to:
■ Distinguish between analog and digital representations.

■ Cite the advantages and drawbacks of digital techniques compared

with analog.

■ Understand the need for analog-to-digital converters (ADCs) and

digital-to-analog converters (DACs).

■ Recognize the basic characteristics of the binary number system.

■ Convert a binary number to its decimal equivalent.

■ Count in the binary number system.

■ Identify typical digital signals.

■ Identify a timing diagram.

■ State the differences between parallel and serial transmission.

■ Describe the property of memory.

■ Describe the major parts of a digital computer and understand their

functions.

■ Distinguish among microcomputers, microprocessors, and

microcontrollers.

■ INTRODUCTION
In today’s world, the term digital has become part of our everyday vocabu-

lary because of the dramatic way that digital circuits and digital techniques

have become so widely used in almost all areas of life: computers, automa-

tion, robots, medical science and technology, transportation, telecommuni-

cations, entertainment, space exploration, and on and on. You are about to

begin an exciting educational journey in which you will discover the funda-

mental principles, concepts, and operations that are common to all digital

systems, from the simplest on/off switch to the most complex computer. If

this book is successful, you should gain a deep understanding of how all

digital systems work, and you should be able to apply this understanding to

the analysis and troubleshooting of any digital system.

We start by introducing some underlying concepts that are a vital part

of digital technology; these concepts will be expanded on as they are

needed later in the book. We also introduce some of the terminology that is

necessary when embarking on a new field of study, and add to this list of

important terms in every chapter.

TOCCMC01_0131725793.QXD 11/26/05 12:49 AM Page 3

1-1 NUMERICAL REPRESENTATIONS

In science, technology, business, and, in fact, most other fields of endeavor,

we are constantly dealing with quantities. Quantities are measured, moni-

tored, recorded, manipulated arithmetically, observed, or in some other way

utilized in most physical systems. It is important when dealing with various

quantities that we be able to represent their values efficiently and accu-

rately. There are basically two ways of representing the numerical value of

quantities: analog and digital.

Analog Representations
In analog representation a quantity is represented by a continuously vari-

able, proportional indicator. An example is an automobile speedometer from

the classic muscle cars of the 1960s and 1970s. The deflection of the needle

is proportional to the speed of the car and follows any changes that occur as

the vehicle speeds up or slows down. On older cars, a flexible mechanical

shaft connected the transmission to the speedometer on the dash board. It is

interesting to note that on newer cars, the analog representation is usually

preferred even though speed is now measured digitally.

Thermometers before the digital revolution used analog representation to

measure temperature, and many are still in use today. Mercury thermometers

use a column of mercury whose height is proportional to temperature. These

devices are being phased out of the market because of environmental con-

cerns, but nonetheless they are an excellent example of analog representa-

tion.Another example is an outdoor thermometer on which the position of the

pointer rotates around a dial as a metal coil expands and contracts with tem-

perature changes. The position of the pointer is proportional to the tempera-

ture. Regardless of how small the change in temperature, there will be a

proportional change in the indication.

In these two examples the physical quantities (speed and temperature) are

being coupled to an indicator by purely mechanical means. In electrical analog

systems, the physical quantity that is being measured or processed is converted

to a proportional voltage or current (electrical signal). This voltage or current

is then used by the system for display, processing, or control purposes.

Sound is an example of a physical quantity that can be represented by an

electrical analog signal. A microphone is a device that generates an output

voltage that is proportional to the amplitude of the sound waves that strike

it.Variations in the sound waves will produce variations in the microphone’s

output voltage.Tape recordings can then store sound waves by using the out-

put voltage of the microphone to proportionally change the magnetic field on

the tape.

Analog quantities such as those cited above have an important charac-

teristic, no matter how they are represented: they can vary over a continuous
range of values. The automobile speed can have any value between zero and,

say, 100 mph. Similarly, the microphone output might have any value within

a range of zero to 10 mV (e.g., 1 mV, 2.3724 mV, 9.9999 mV).

Digital Representations
In digital representation the quantities are represented not by continuously

variable indicators but by symbols called digits. As an example, consider the

digital clock, which provides the time of day in the form of decimal digits that

represent hours and minutes (and sometimes seconds). As we know, the time

of day changes continuously, but the digital clock reading does not change

continuously; rather, it changes in steps of one per minute (or per second). In

4 CHAPTER 1/INTRODUCTORY CONCEPTS

TOCCMC01_0131725793.QXD 11/26/05 12:49 AM Page 4

other words, this digital representation of the time of day changes in discrete
steps, as compared with the representation of time provided by an analog ac

line-powered wall clock, where the dial reading changes continuously.

The major difference between analog and digital quantities, then, can be

simply stated as follows:

analog continuous

digital discrete (step by step)

Because of the discrete nature of digital representations, there is no ambiguity

when reading the value of a digital quantity, whereas the value of an analog

quantity is often open to interpretation. In practice, when we take a measure-

ment of an analog quantity, we always “round” to a convenient level of preci-

sion. In other words, we digitize the quantity. The digital representation is the

result of assigning a number of limited precision to a continuously variable

quantity. For example, when you take your temperature with a mercury (ana-

log) thermometer, the mercury column is usually between two graduation lines,

but you would pick the nearest line and assign it a number of, say, 98.6°F.

K

K

SECTION 1-2/DIGITAL AND ANALOG SYSTEMS 5

REVIEW QUESTION * 1. Concisely describe the major difference between analog and digital

quantities.

*Answers to review questions are found at the end of the chapter in which they occur.

1-2 DIGITAL AND ANALOG SYSTEMS

A digital system is a combination of devices designed to manipulate logical

information or physical quantities that are represented in digital form; that

is, the quantities can take on only discrete values. These devices are most

EXAMPLE 1-1 Which of the following involve analog quantities and which involve digital

quantities?

(a) Ten-position switch

(b) Current flowing from an electrical outlet

(c) Temperature of a room

(d) Sand grains on the beach

(e) Automobile fuel gauge

Solution

(a) Digital

(b) Analog

(c) Analog

(d) Digital, since the number of grains can be only certain discrete (integer)

values and not every possible value over a continuous range

(e) Analog, if needle type; digital, if numerical readout or bar graph display

TOCCMC01_0131725793.QXD 11/26/05 12:49 AM Page 5

often electronic, but they can also be mechanical, magnetic, or pneumatic.

Some of the more familiar digital systems include digital computers and cal-

culators, digital audio and video equipment, and the telephone system—the

world’s largest digital system.

An analog system contains devices that manipulate physical quantities

that are represented in analog form. In an analog system, the quantities can

vary over a continuous range of values. For example, the amplitude of the

output signal to the speaker in a radio receiver can have any value between

zero and its maximum limit. Other common analog systems are audio ampli-

fiers, magnetic tape recording and playback equipment, and a simple light

dimmer switch.

Advantages of Digital Techniques
An increasing majority of applications in electronics, as well as in most other

technologies, use digital techniques to perform operations that were once

performed using analog methods. The chief reasons for the shift to digital

technology are:

1. Digital systems are generally easier to design. The circuits used in digital

systems are switching circuits, where exact values of voltage or current

are not important, only the range (HIGH or LOW) in which they fall.

2. Information storage is easy. This is accomplished by special devices and

circuits that can latch onto digital information and hold it for as long as

necessary, and mass storage techniques that can store billions of bits of

information in a relatively small physical space. Analog storage capabil-

ities are, by contrast, extremely limited.

3. Accuracy and precision are easier to maintain throughout the system. Once

a signal is digitized, the information it contains does not deteriorate as it

is processed. In analog systems, the voltage and current signals tend to

be distorted by the effects of temperature, humidity, and component tol-

erance variations in the circuits that process the signal.

4. Operation can be programmed. It is fairly easy to design digital systems

whose operation is controlled by a set of stored instructions called a

program. Analog systems can also be programmed, but the variety and

the complexity of the available operations are severely limited.

5. Digital circuits are less affected by noise. Spurious fluctuations in voltage

(noise) are not as critical in digital systems because the exact value of a

voltage is not important, as long as the noise is not large enough to pre-

vent us from distinguishing a HIGH from a LOW.

6. More digital circuitry can be fabricated on IC chips. It is true that analog

circuitry has also benefited from the tremendous development of IC

technology, but its relative complexity and its use of devices that cannot

be economically integrated (high-value capacitors, precision resistors,

inductors, transformers) have prevented analog systems from achieving

the same high degree of integration.

Limitations of Digital Techniques
There are really very few drawbacks when using digital techniques. The two

biggest problems are:

The real world is analog.
Processing digitized signals takes time.

6 CHAPTER 1/INTRODUCTORY CONCEPTS

TOCCMC01_0131725793.QXD 11/26/05 12:49 AM Page 6

Most physical quantities are analog in nature, and these quantities are often

the inputs and outputs that are being monitored, operated on, and controlled

by a system. Some examples are temperature, pressure, position, velocity, liq-

uid level, flow rate, and so on. We are in the habit of expressing these quan-

tities digitally, such as when we say that the temperature is (when

we want to be more precise), but we are really making a digital approxima-

tion to an inherently analog quantity.

To take advantage of digital techniques when dealing with analog inputs

and outputs, four steps must be followed:

1. Convert the physical variable to an electrical signal (analog).

2. Convert the electrical (analog) signal into digital form.

3. Process (operate on) the digital information.

4. Convert the digital outputs back to real-world analog form.

An entire book could be written about step 1 alone.There are many kinds

of devices that convert various physical variables into electrical analog sig-

nals (sensors). These are used to measure things that are found in our “real”

analog world. On your car alone, there are sensors for fluid level (gas tank),

temperature (climate control and engine), velocity (speedometer), accelera-

tion (airbag collision detection), pressure (oil, manifold), and flow rate (fuel),

to name just a few.

To illustrate a typical system that uses this approach Figure 1-1 describes

a precision temperature regulation system.A user pushes up or down buttons

to set the desired temperature in increments (digital representation). A

temperature sensor in the heated space converts the measured temperature

to a proportional voltage. This analog voltage is converted to a digital quan-

tity by an analog-to-digital converter (ADC). This value is then compared to

the desired value and used to determine a digital value of how much heat is

needed. The digital value is converted to an analog quantity (voltage) by a

digital-to-analog converter (DAC). This voltage is applied to a heating ele-

ment, which will produce heat that is related to the voltage applied and will

affect the temperature of the space.

0.1°

63.8°64°

SECTION 1-2/DIGITAL AND ANALOG SYSTEMS 7

FIGURE 1-1 Block diagram of a precision digital temperature control system.

Temperature controlled
space

Digital input:
Set Desired Temperature

Digital Processor
Digital–Analog

conversion

Analog–Digital
conversion

Heat

Sensor

Analog signal representing
actual temperature

Digital signal representing
actual temperature

Digital signal representing
power (voltage) to heater

+

–

Another good example where conversion between analog and digital

takes place is in the recording of audio. Compact disks (CDs) have replaced

cassette tapes because they provide a much better means for recording and

TOCCMC01_0131725793.QXD 12/19/05 1:44 PM Page 7

playing back music. The process works something like this: (1) sounds from

instruments and human voices produce an analog voltage signal in a micro-

phone; (2) this analog signal is converted to a digital format using an analog-

to-digital conversion process; (3) the digital information is stored on the CD’s

surface; (4) during playback, the CD player takes the digital information

from the CD surface and converts it into an analog signal that is then ampli-

fied and fed to a speaker, where it can be picked up by the human ear.

The second drawback to digital systems is that processing these digitized

signals (lists of numbers) takes time. And we also need to convert between

the analog and digital forms of information, which can add complexity and

expense to a system. The more precise the numbers need to be, the longer it

takes to process them. In many applications, these factors are outweighed by

the numerous advantages of using digital techniques, and so the conversion

between analog and digital quantities has become quite commonplace in the

current technology.

There are situations, however, where use of analog techniques is simpler

or more economical. For example, several years ago, a colleague (Tom

Robertson) decided to create a control system demonstration for tour

groups. He planned to suspend a metallic object in a magnetic field, as shown

in Figure 1-2. An electromagnet was made by winding a coil of wire and con-

trolling the amount of current through the coil. The position of the metal ob-

ject was measured by passing an infrared light beam across the magnetic

field. As the object drew closer to the magnetic coil, it began to block the

light beam. By measuring small changes in the light level, the magnetic field

could be controlled to keep the metal object hovering and stationary, with no

strings attached. All attempts at using a microcomputer to measure these

very small changes, run the control calculations, and drive the magnet

proved to be too slow, even when using the fastest, most powerful PC avail-

able at the time. His final solution used just a couple of op-amps and a few

dollars’ worth of other components: a totally analog approach.Today we have

access to processors fast enough and measurement techniques precise

enough to accomplish this feat, but the simplest solution is still analog.

8 CHAPTER 1/INTRODUCTORY CONCEPTS

It is common to see both digital and analog techniques employed within

the same system to be able to profit from the advantages of each. In these

hybrid systems, one of the most important parts of the design phase involves

FIGURE 1-2 A magnetic levitation system suspending: (a) a globe with a steel

plate inserted and (b) a hammer.

(a) (b)

TOCCMC01_0131725793.QXD 12/16/2005 1:14 PM Page 8

determining what parts of the system are to be analog and what parts are to

be digital. The trend in most systems is to digitize the signal as early as pos-

sible and convert it back to analog as late as possible as the signals flow

through the system.

The Future Is Digital
The advances in digital technology over the past three decades have been

nothing short of phenomenal, and there is every reason to believe that more

is coming.Think of the everyday items that have changed from analog format

to digital in your lifetime. An indoor/outdoor wireless digital thermometer

can be purchased for less then $10.00. Cars have gone from having very few

electronic controls to being predominantly digitally controlled vehicles.

Digital audio has moved us to the compact disk and MP3 player. Digital

video brought the DVD. Digital home video and still cameras; digital record-

ing with systems like TiVo; digital cellular phones; and digital imaging in x-

ray, magnetic resonance imaging (MRI), and ultrasound systems in hospitals

are just a few of the applications that have been taken over by the digital

revolution. As soon as the infrastructure is in place, telephone and television

systems will go digital. The growth rate in the digital realm continues to be

staggering. Maybe your automobile is equipped with a system such as GM’s

On Star, which turns your dashboard into a hub for wireless communication,

information, and navigation. You may already be using voice commands to

send or retrieve e-mail, call for a traffic report, check on the car’s mainte-

nance needs, or just switch radio stations or CDs—all without taking your

hands off the wheel or your eyes off the road. Cars can report their exact lo-

cation in case of emergency or mechanical breakdown. In the coming years

wireless communication will continue to expand coverage to provide con-

nectivity wherever you are. Telephones will be able to receive, sort, and

maybe respond to incoming calls like a well-trained secretary.The digital tel-

evision revolution will provide not only higher definition of the picture, but

also much more flexibility in programming.You will be able to select the pro-

grams that you want to view and load them into your television’s memory, al-

lowing you to pause or replay scenes at your convenience, very much like

viewing a DVD today. As virtual reality continues to improve, you will be

able to interact with the subject matter you are studying.This may not sound

exciting when studying electronics, but imagine studying history from the

standpoint of being a participant, or learning proper techniques for every-

thing from athletics to surgery through simulations based on your actual

performance.

Digital technology will continue its high-speed incursion into current ar-

eas of our lives as well as break new ground in ways we may never have con-

sidered. These applications (and many more) are based on the principles

presented in this text.The software tools to develop complex systems are con-

stantly being upgraded and are available to anyone over the Web. We will

study the technical underpinnings necessary to communicate with any of

these tools, and prepare you for a fascinating and rewarding career.

SECTION 1-2/DIGITAL AND ANALOG SYSTEMS 9

REVIEW QUESTIONS 1. What are the advantages of digital techniques over analog?

2. What is the chief limitation to the use of digital techniques?

TOCCMC01_0131725793.QXD 12/16/2005 1:14 PM Page 9

1-3 DIGITAL NUMBER SYSTEMS

Many number systems are in use in digital technology.The most common are

the decimal, binary, octal, and hexadecimal systems. The decimal system is

clearly the most familiar to us because it is a tool that we use every day.

Examining some of its characteristics will help us to understand the other

systems better.

Decimal System
The decimal system is composed of 10 numerals or symbols.These 10 symbols

are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; using these symbols as digits of a number, we can ex-

press any quantity.The decimal system, also called the base-10 system because

it has 10 digits, has evolved naturally as a result of the fact that people have 10

fingers. In fact, the word digit is derived from the Latin word for “finger.”

The decimal system is a positional-value system in which the value of a

digit depends on its position. For example, consider the decimal number 453.

We know that the digit 4 actually represents 4 hundreds, the 5 represents 5

tens, and the 3 represents 3 units. In essence, the 4 carries the most weight of

the three digits; it is referred to as the most significant digit (MSD). The 3 car-

ries the least weight and is called the least significant digit (LSD).
Consider another example, 27.35. This number is actually equal to 2 tens

plus 7 units plus 3 tenths plus 5 hundredths, or 2 � 10 � 7 � 1 � 3 � 0.1 �
5 � 0.01. The decimal point is used to separate the integer and fractional

parts of the number.

More rigorously, the various positions relative to the decimal point carry

weights that can be expressed as powers of 10.This is illustrated in Figure 1-3,

where the number 2745.214 is represented. The decimal point separates the

positive powers of 10 from the negative powers. The number 2745.214 is thus

equal to

+ (2 * 10-1) + (1 * 10-2) + (4 * 10-3)

(2 * 10+3) + (7 * 10+2) + (4 * 101) + (5 * 100)

10 CHAPTER 1/INTRODUCTORY CONCEPTS

103 102

2 7 4 5 . 2 1 4

101 100 10 –310 –210 –1

Positional values
(weights)

Decimal
point

MSD LSD

FIGURE 1-3 Decimal

position values as powers

of 10.

In general, any number is simply the sum of the products of each digit value

and its positional value.

Decimal Counting
When counting in the decimal system, we start with 0 in the units position

and take each symbol (digit) in progression until we reach 9. Then we add a

1 to the next higher position and start over with 0 in the first position (see

TOCCMC01_0131725793.QXD 11/26/05 12:49 AM Page 10

It is important to note that in decimal counting, the units position (LSD)

changes upward with each step in the count, the tens position changes up-

ward every 10 steps in the count, the hundreds position changes upward

every 100 steps in the count, and so on.

Another characteristic of the decimal system is that using only two deci-

mal places, we can count through different numbers (0 to 99).* With

three places we can count through 1000 numbers (0 to 999), and so on. In gen-

eral, with N places or digits, we can count through 10N different numbers, start-

ing with and including zero. The largest number will always be

Binary System
Unfortunately, the decimal number system does not lend itself to convenient

implementation in digital systems. For example, it is very difficult to design

electronic equipment so that it can work with 10 different voltage levels

(each one representing one decimal character, 0 through 9). On the other

hand, it is very easy to design simple, accurate electronic circuits that oper-

ate with only two voltage levels. For this reason, almost every digital system

uses the binary (base-2) number system as the basic number system of its

operations. Other number systems are often used to interpret or represent

binary quantities for the convenience of the people who work with and use

these digital systems.

In the binary system there are only two symbols or possible digit values, 0

and 1. Even so, this base-2 system can be used to represent any quantity that

can be represented in decimal or other number systems. In general though, it

will take a greater number of binary digits to express a given quantity.

All of the statements made earlier concerning the decimal system are

equally applicable to the binary system.The binary system is also a positional-

value system, wherein each binary digit has its own value or weight expressed

as a power of 2. This is illustrated in Figure 1-5. Here, places to the left of the

10N
- 1.

102
= 100

SECTION 1-3/DIGITAL NUMBER SYSTEMS 11

*Zero is counted as a number.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30

99
100
101
102

103

199
200

999
1000

FIGURE 1-4 Decimal

counting.

Figure 1-4). This process continues until the count of 99 is reached. Then we

add a 1 to the third position and start over with 0s in the first two positions.

The same pattern is followed continuously as high as we wish to count.

TOCCMC01_0131725793.QXD 11/26/05 12:49 AM Page 11

binary point (counterpart of the decimal point) are positive powers of 2, and

places to the right are negative powers of 2.The number 1011.101 is shown rep-

resented in the figure. To find its equivalent in the decimal system, we simply

take the sum of the products of each digit value (0 or 1) and its positional value:

Notice in the preceding operation that subscripts (2 and 10) were used to in-

dicate the base in which the particular number is expressed.This convention

is used to avoid confusion whenever more than one number system is being

employed.

In the binary system, the term binary digit is often abbreviated to the

term bit, which we will use from now on. Thus, in the number expressed in

Figure 1-5 there are four bits to the left of the binary point, representing the

integer part of the number, and three bits to the right of the binary point, rep-

resenting the fractional part. The most significant bit (MSB) is the leftmost

bit (largest weight).The least significant bit (LSB) is the rightmost bit (small-

est weight). These are indicated in Figure 1-5. Here, the MSB has a weight of

23; the LSB has a weight of

Binary Counting
When we deal with binary numbers, we will usually be restricted to a spe-

cific number of bits. This restriction is based on the circuitry used to repre-

sent these binary numbers. Let’s use four-bit binary numbers to illustrate the

method for counting in binary.

The sequence (shown in Figure 1-6) begins with all bits at 0; this is called

the zero count. For each successive count, the units (20) position toggles; that

is, it changes from one binary value to the other. Each time the units bit

changes from a 1 to a 0, the twos (21) position will toggle (change states). Each

time the twos position changes from 1 to 0, the fours (22) position will toggle

(change states). Likewise, each time the fours position goes from 1 to 0, the

eights (23) position toggles. This same process would be continued for the

higher-order bit positions if the binary number had more than four bits.

The binary counting sequence has an important characteristic, as shown in

Figure 1-6. The units bit (LSB) changes either from 0 to 1 or 1 to 0 with each
count.The second bit (twos position) stays at 0 for two counts, then at 1 for two

counts, then at 0 for two counts, and so on. The third bit (fours position) stays

at 0 for four counts, then at 1 for four counts, and so on. The fourth bit (eights

position) stays at 0 for eight counts, then at 1 for eight counts. If we wanted to

2-3.

 = 11.62510

 = 8 + 0 + 2 + 1 + 0.5 + 0 + 0.125

+ (1 * 2-1) + (0 * 2-2) + (1 * 2-3)

 1011.1012 = (1 * 23) + (0 * 22) + (1 * 21) + (1 * 20)

12 CHAPTER 1/INTRODUCTORY CONCEPTS

23 22

1 0 1 1 1 0 1

21 20 2–32–22–1

Positional
values

Binary
point

MSB LSB

FIGURE 1-5 Binary position

values as powers of 2.

TOCCMC01_0131725793.QXD 11/26/05 12:49 AM Page 12

SECTION 1-4/REPRESENTING BINARY QUANTITIES 13

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

Weights Decimal equivalent23 = 8 22 = 4 21 = 2 20 = 1

LSB

FIGURE 1-6 Binary

counting sequence.

REVIEW QUESTIONS 1. What is the decimal equivalent of 11010112?

2. What is the next binary number following 101112 in the counting sequence?

3. What is the largest decimal value that can be represented using 12 bits?

1-4 REPRESENTING BINARY QUANTITIES

In digital systems, the information being processed is usually present in bi-

nary form. Binary quantities can be represented by any device that has only

two operating states or possible conditions. For example, a switch has only

two states: open or closed. We can arbitrarily let an open switch represent

EXAMPLE 1-2 What is the largest number that can be represented using eight bits?

Solution

This has been a brief introduction of the binary number system and its

relation to the decimal system. We will spend much more time on these two

systems and several others in the next chapter.

2N
-1 = 28

-1 = 25510 = 111111112.

count further, we would add more places, and this pattern would continue with

0s and 1s alternating in groups of For example, using a fifth binary place,

the fifth bit would alternate sixteen 0s, then sixteen 1s, and so on.

As we saw for the decimal system, it is also true for the binary system that

by using N bits or places, we can go through 2N counts. For example, with two

bits we can go through counts (002 through 112); with four bits we can

go through counts (00002 through 11112); and so on. The last count

will always be all 1s and is equal to in the decimal system. For exam-

ple, using four bits, the last count is 11112 = 24
-1 = 1510.

2N
-1

24
= 16

22
= 4

2N-1.

TOCCMC01_0131725793.QXD 11/26/05 12:49 AM Page 13

binary 0 and a closed switch represent binary 1. With this assignment we can

now represent any binary number. Figure 1-7(a) shows a binary code number

for a garage door opener. The small switches are set to form the binary num-

ber 1000101010. The door will open only if a matching pattern of bits is set

in the receiver and the transmitter.

14 CHAPTER 1/INTRODUCTORY CONCEPTS

FIGURE 1-7 (a) Binary

code settings for a garage

door opener. (b) Digital

audio on a CD.

Another example is shown in Figure 1-7(b), where binary numbers are

stored on a CD. The inner surface (under a transparent plastic layer) is

coated with a highly reflective aluminum layer. Holes are burned through

this reflective coating to form “pits” that do not reflect light the same as the

unburned areas. The areas where the pits are burned are considered “1” and

the reflective areas are “0.”

There are numerous other devices that have only two operating states or

can be operated in two extreme conditions. Among these are: light bulb

(bright or dark), diode (conducting or nonconducting), electromagnet (ener-

gized or deenergized), transistor (cut off or saturated), photocell (illumi-

nated or dark), thermostat (open or closed), mechanical clutch (engaged or

disengaged), and spot on a magnetic disk (magnetized or demagnetized).

In electronic digital systems, binary information is represented by voltages

(or currents) that are present at the inputs and outputs of the various circuits.

Typically, the binary 0 and 1 are represented by two nominal voltage levels. For

example, zero volts (0 V) might represent binary 0, and �5 V might represent

binary 1. In actuality, because of circuit variations, the 0 and 1 would be rep-

resented by voltage ranges. This is illustrated in Figure 1-8(a), where any volt-

age between 0 and 0.8 V represents a 0 and any voltage between 2 and 5 V

represents a 1. All input and output signals will normally fall within one of

these ranges, except during transitions from one level to another.

We can now see another significant difference between digital and ana-

log systems. In digital systems, the exact value of a voltage is not important;

(a)

(b)

TOCCMC01_0131725793.QXD 12/22/2005 9:11 AM Page 14

SECTION 1-5/DIGITAL CIRCUITS/LOGIC CIRCUITS 15

Not
used

(a)

5 V

2 V

0.8 V

0 V

(b)

Volts

4 V

0 V t

1

0

1

0

Binary 1

Binary 0

t0 t1 t2 t3 t4 t5

Invalid
voltages

FIGURE 1-8 (a) Typical voltage assignments in digital system; (b) typical digital

signal timing diagram.

for example, for the voltage assignments of Figure 1-8(a), a voltage of 3.6 V

means the same as a voltage of 4.3 V. In analog systems, the exact value of a

voltage is important. For instance, if the analog voltage is proportional to the

temperature measured by a transducer, the 3.6 V would represent a different

temperature than would 4.3 V. In other words, the voltage value carries sig-

nificant information. This characteristic means that the design of accurate

analog circuitry is generally more difficult than that of digital circuitry be-

cause of the way in which exact voltage values are affected by variations in

component values, temperature, and noise (random voltage fluctuations).

Digital Signals and Timing Diagrams
Figure 1-8(b) shows a typical digital signal and how it varies over time. It is

actually a graph of voltage versus time (t) and is called a timing diagram.The

horizontal time scale is marked off at regular intervals beginning at t0 and

proceeding to t1, t2, and so on. For the example timing diagram shown here,

the signal starts at 0 V (a binary 0) at time t0 and remains there until time t1.

At t1, the signal makes a rapid transition (jump) up to 4 V (a binary 1). At t2,

it jumps back down to 0 V. Similar transitions occur at t3 and t5. Note that the

signal does not change at t4 but stays at 4 V from t3 to t5.

The transitions on this timing diagram are drawn as vertical lines, and so

they appear to be instantaneous, when in reality they are not. In many situ-

ations, however, the transition times are so short compared to the times be-

tween transitions that we can show them on the diagram as vertical lines. We

will encounter situations later where it will be necessary to show the transi-

tions more accurately on an expanded time scale.

Timing diagrams are used extensively to show how digital signals change

with time, and especially to show the relationship between two or more dig-

ital signals in the same circuit or system. By displaying one or more digital

signals on an oscilloscope or logic analyzer, we can compare the signals to their

expected timing diagrams. This is a very important part of the testing and

troubleshooting procedures used in digital systems.

1-5 DIGITAL CIRCUITS/LOGIC CIRCUITS

Digital circuits are designed to produce output voltages that fall within the

prescribed 0 and 1 voltage ranges such as those defined in Figure 1-8.

Likewise, digital circuits are designed to respond predictably to input volt-

ages that are within the defined 0 and 1 ranges. What this means is that a

TOCCMC01_0131725793.QXD 11/26/05 12:49 AM Page 15

digital circuit will respond in the same way to all input voltages that fall

within the allowed 0 range; similarly, it will not distinguish between input

voltages that lie within the allowed 1 range.

To illustrate, Figure 1-9 represents a typical digital circuit with input vi
and output vo. The output is shown for two different input signal waveforms.

Note that vo is the same for both cases because the two input waveforms,

while differing in their exact voltage levels, are at the same binary levels.

16 CHAPTER 1/INTRODUCTORY CONCEPTS

Digital
circuit

vi

vo

0 V

0.5 V

4 V

0 V

t

3.7 V

5 V

t

Case I

Case II

4 V

vi vo

vi

vo

0 V

FIGURE 1-9 A digital

circuit responds to an

input’s binary level (0 or 1)

and not to its actual

voltage.

Logic Circuits
The manner in which a digital circuit responds to an input is referred to as

the circuit’s logic. Each type of digital circuit obeys a certain set of logic

rules. For this reason, digital circuits are also called logic circuits. We will

use both terms interchangeably throughout the text. In Chapter 3, we will

see more clearly what is meant by a circuit’s “logic.”

We will be studying all the types of logic circuits that are currently used

in digital systems. Initially, our attention will be focused only on the logical

operation that these circuits perform—that is, the relationship between the

circuit inputs and outputs. We will defer any discussion of the internal cir-

cuit operation of these logic circuits until after we have developed an un-

derstanding of their logical operation.

Digital Integrated Circuits
Almost all of the digital circuits used in modern digital systems are inte-

grated circuits (ICs). The wide variety of available logic ICs has made it pos-

sible to construct complex digital systems that are smaller and more reliable

than their discrete-component counterparts.

Several integrated-circuit fabrication technologies are used to produce dig-

ital ICs, the most common being CMOS, TTL, NMOS, and ECL. Each differs in

the type of circuitry used to provide the desired logic operation. For example,

TTL (transistor-transistor logic) uses the bipolar transistor as its main circuit el-

ement, while CMOS (complementary metal-oxide-semiconductor) uses the en-

hancement-mode MOSFET as its principal circuit element.We will learn about

the various IC technologies, their characteristics, and their relative advantages

and disadvantages after we master the basic logic circuit types.

TOCCMC01_0131725793.QXD 11/26/05 12:49 AM Page 16

1-6 PARALLEL AND SERIAL TRANSMISSION

One of the most common operations that occur in any digital system is the

transmission of information from one place to another. The information can

be transmitted over a distance as small as a fraction of an inch on the same

circuit board, or over a distance of many miles when an operator at a com-

puter terminal is communicating with a computer in another city. The infor-

mation that is transmitted is in binary form and is generally represented as

voltages at the outputs of a sending circuit that are connected to the inputs

of a receiving circuit. Figure 1-10 illustrates the two basic methods for digi-

tal information transmission: parallel and serial.

SECTION 1-6/PARALLEL AND SERIAL TRANSMISSION 17

“H”
MSB

LSB

0
1
0
0
1
0
0
0

“i”

0
1
1
0
1
0
0
1

“H”
00010010

“i”
10010110

LSB MSB LSB MSB

FIGURE 1-10 (a) Parallel

transmission uses one con-

necting line per bit, and all

bits are transmitted simul-

taneously; (b) serial trans-

mission uses only one sig-

nal line, and the individual

bits are transmitted serially

(one at a time).

Figure 1-10(a) demonstrates parallel transmission of data from a com-

puter to a printer using the parallel printer port (LPT1) of the computer. In

this scenario, assume we are trying to print the word “Hi” on the printer.The

REVIEW QUESTIONS 1. True or false:The exact value of an input voltage is critical for a digital circuit.

2. Can a digital circuit produce the same output voltage for different input

voltage values?

3. A digital circuit is also referred to as a ________ circuit.

4. A graph that shows how one or more digital signals change with time is

called a ________.

(a)

(b)

TOCCMC01_0131725793.QXD 11/26/05 12:49 AM Page 17

binary code for “H” is 01001000 and the binary code for “i” is 01101001. Each

character (the “H” and the “i”) are made up of eight bits. Using parallel

transmission, all eight bits are sent simultaneously over eight wires.The “H”

is sent first, followed by the “i.”

Figure 1-10(b) demonstrates serial transmission such as is employed

when using a serial COM port on your computer to send data to a modem, or

when using a USB (Universal Serial Bus) port to send data to a printer. Al-

though the details of the data format and speed of transmission are quite dif-

ferent between a COM port and a USB port, the actual data are sent in the

same way: one bit at a time over a single wire. The bits are shown in the dia-

gram as though they were actually moving down the wire in the order shown.

The least significant bit of “H” is sent first and the most significant bit of “i”

is sent last. Of course, in reality, only one bit can be on the wire at any point in

time and time is usually drawn on a graph starting at the left and advancing

to the right.This produces a graph of logic bits versus time of the serial trans-

mission called a timing diagram. Notice that in this presentation, the least

significant bit is shown on the left because it was sent first.

The principal trade-off between parallel and serial representations is one

of speed versus circuit simplicity. The transmission of binary data from one

part of a digital system to another can be done more quickly using parallel

representation because all the bits are transmitted simultaneously, while se-

rial representation transmits one bit at a time. On the other hand, parallel re-

quires more signal lines connected between the sender and the receiver of

the binary data than does serial. In other words, parallel is faster, and serial

requires fewer signal lines. This comparison between parallel and serial

methods for representing binary information will be encountered many

times in discussions throughout the text.

18 CHAPTER 1/INTRODUCTORY CONCEPTS

Memory
circuit

Nonmemory
circuit

FIGURE 1-11 Comparison

of nonmemory and memory

operation.

1-7 MEMORY

When an input signal is applied to most devices or circuits, the output some-

how changes in response to the input, and when the input signal is removed,

the output returns to its original state. These circuits do not exhibit the prop-

erty of memory because their outputs revert back to normal. In digital

circuitry certain types of devices and circuits do have memory.When an input

is applied to such a circuit, the output will change its state, but it will remain

in the new state even after the input is removed.This property of retaining its

response to a momentary input is called memory. Figure 1-11 illustrates non-

memory and memory operations.

REVIEW QUESTION 1. Describe the relative advantages of parallel and serial transmission of

binary data.

TOCCMC01_0131725793.QXD 11/26/05 12:49 AM Page 18

Memory devices and circuits play an important role in digital systems be-

cause they provide a means for storing binary numbers either temporarily or

permanently, with the ability to change the stored information at any time. As

we shall see, the various memory elements include magnetic and optical types

and those that utilize electronic latching circuits (called latches and flip-flops).

1-8 DIGITAL COMPUTERS

Digital techniques have found their way into innumerable areas of technol-

ogy, but the area of automatic digital computers is by far the most notable

and most extensive. Although digital computers affect some part of all of our

lives, it is doubtful that many of us know exactly what a computer does. In

simplest terms, a computer is a system of hardware that performs arithmetic
operations, manipulates data (usually in binary form), and makes decisions.

For the most part, human beings can do whatever computers can do, but

computers can do it with much greater speed and accuracy, in spite of the fact

that computers perform all their calculations and operations one step at a

time. For example, a human being can take a list of 10 numbers and find their

sum all in one operation by listing the numbers one over the other and adding

them column by column. A computer, on the other hand, can add numbers

only two at a time, so that adding this same list of numbers will take nine ac-

tual addition steps. Of course, the fact that the computer requires only a few

nanoseconds per step makes up for this apparent inefficiency.

A computer is faster and more accurate than people are, but unlike most

of us, it must be given a complete set of instructions that tell it exactly what

to do at each step of its operation. This set of instructions, called a program,

is prepared by one or more persons for each job the computer is to do. Pro-

grams are placed in the computer’s memory unit in binary-coded form, with

each instruction having a unique code.The computer takes these instruction

codes from memory one at a time and performs the operation called for by

the code.

Major Parts of a Computer
There are several types of computer systems, but each can be broken down

into the same functional units. Each unit performs specific functions, and all

units function together to carry out the instructions given in the program.

Figure 1-12 shows the five major functional parts of a digital computer and

SECTION 1-8/DIGITAL COMPUTERS 19

Data,
information

Arithmetic/
logic

Input

Memory

OutputControl
Data,
information

Central Processing
Unit (CPU)

Control signals

Data or information

FIGURE 1-12 Functional diagram of a digital computer.

TOCCMC01_0131725793.QXD 11/26/05 12:49 AM Page 19

their interaction. The solid lines with arrows represent the flow of data

and information. The dashed lines with arrows represent the flow of timing

and control signals.

The major functions of each unit are:

1. Input unit. Through this unit, a complete set of instructions and data is

fed into the computer system and into the memory unit, to be stored un-

til needed. The information typically enters the input unit from a key-

board or a disk.

2. Memory unit. The memory stores the instructions and data received from

the input unit. It stores the results of arithmetic operations received from

the arithmetic unit. It also supplies information to the output unit.

3. Control unit. This unit takes instructions from the memory unit one at a

time and interprets them. It then sends appropriate signals to all the

other units to cause the specific instruction to be executed.

4. Arithmetic/logic unit. All arithmetic calculations and logical decisions

are performed in this unit, which can then send results to the memory

unit to be stored.

5. Output unit. This unit takes data from the memory unit and prints out,

displays, or otherwise presents the information to the operator (or

process, in the case of a process control computer).

Central Processing Unit (CPU)
As the diagram in Figure 1-12 shows, the control and arithmetic/logic units

are often considered as one unit, called the central processing unit (CPU).
The CPU contains all of the circuitry for fetching and interpreting instruc-

tions and for controlling and performing the various operations called for by

the instructions.

TYPES OF COMPUTERS All computers are made up of the basic units de-

scribed above, but they can differ as to physical size, operating speed, mem-

ory capacity, and computational power, as well as other characteristics.

Computer systems are configured in many and various ways today, with many

common characteristics and distinguishing differences. Large computer sys-

tems that are permanently installed in multiple cabinets are used by corpo-

rations and universities for information technology support. Desktop

personal computers are used in our homes and offices to run useful applica-

tion programs that enhance our lives and provide communication with other

computers. Portable computers are found in PDAs and specialized comput-

ers are found in video game systems. The most prevalent form of computers

can be found performing dedicated routine tasks in appliances and systems

all around us.

Today, all but the largest of these systems utilize technology that has

evolved from the invention of the microprocessor. The microprocessor is es-

sentially a central processing unit (CPU) in an integrated circuit that can be

connected to the other blocks of a computer system. Computers that use a

microprocessor as their CPU are usually referred to as microcomputers. The

general-purpose microcomputers (e.g., PCs, PDAs, etc.) perform a variety of

tasks in a wide range of applications depending on the software (programs)

they are running. Contrast these with the dedicated computers that are do-

ing things such as operating your car’s engine, controlling your car’s antilock

braking system, or running your microwave oven. These computers cannot

be programmed by the user, but simply perform their intended control

20 CHAPTER 1/INTRODUCTORY CONCEPTS

TOCCMC01_0131725793.QXD 11/26/05 12:49 AM Page 20

task: they are referred to as microcontrollers. Since these microcontrollers

are an integral part of a bigger system and serve a dedicated purpose, they

also are called embedded controllers. Microcontrollers generally have all the

elements of a complete computer (CPU, memory, and input/output ports), all

contained on a single integrated circuit.You can find them embedded in your

kitchen appliances, entertainment equipment, photocopiers, automatic

teller machines, automated manufacturing equipment, medical instrumen-

tation, and much, much more.

So you see, even people who don’t own a PC or use one at work or school

are using microcomputers every day because so many modern consumer

electronic devices, appliances, office equipment, and much more are built

around embedded microcontrollers. If you work, play, or go to school in this

digital age, there’s no escaping it: you’ll use a microcomputer somewhere.

IMPORTANT TERMS 21

SUMMARY
1. The two basic ways of representing the numerical value of physical quan-

tities are analog (continuous) and digital (discrete).

2. Most quantities in the real world are analog, but digital techniques are

generally superior to analog techniques, and most of the predicted ad-

vances will be in the digital realm.

3. The binary number system (0 and 1) is the basic system used in digital

technology.

4. Digital or logic circuits operate on voltages that fall in prescribed ranges

that represent either a binary 0 or a binary 1.

5. The two basic ways to transfer digital information are parallel—all bits

simultaneously—and serial—one bit at a time.

6. The main parts of all computers are the input, control, memory, arith-

metic/logic, and output units.

7. The combination of the arithmetic/logic unit and the control unit makes

up the CPU (central processing unit).

8. A microcomputer usually has a CPU that is on a single chip called a mic-
roprocessor.

9. A microcontroller is a microcomputer especially designed for dedicated

(not general-purpose) control applications.

IMPORTANT TERMS*
analog representation

digital representation

digital system

analog system

analog-to-digital

converter (ADC)

digital-to-analog

converter (DAC)

decimal system

*These terms can be found in boldface type in the chapter and are defined in the Glossary at the end
of the book. This applies to all chapters.

REVIEW QUESTIONS 1. Explain how a digital circuit that has memory differs from one that does not.

2. Name the five major functional units of a computer.

3. Which two units make up the CPU?

4. An IC chip that contains a CPU is called a _____.

TOCCMC01_0131725793.QXD 12/22/05 4:41 AM Page 21

PROBLEMS
SECTION 1-2

1-1.*Which of the following are analog quantities, and which are digital?

(a) Number of atoms in a sample of material

(b) Altitude of an aircraft

(c) Pressure in a bicycle tire

(d) Current through a speaker

(e) Timer setting on a microwave oven

1-2. Which of the following are analog quantities, and which are digital?

(a) Width of a piece of lumber

(b) The amount of time before the oven buzzer goes off

(c) The time of day displayed on a quartz watch

(d) Altitude above sea level measured on a staircase

(e) Altitude above sea level measured on a ramp

SECTION 1-3

1-3.*Convert the following binary numbers to their equivalent decimal

values.

(a) 110012

(b) 1001.10012

(c) 10011011001.101102

1-4. Convert the following binary numbers to decimal.

(a) 100112

(b) 1100.0101

(c) 10011100100.10010

1-5.*Using three bits, show the binary counting sequence from 000 to 111.

1-6. Using six bits, show the binary counting sequence from 000000 to

111111.

1-7.*What is the maximum number that we can count up to using 10 bits?

1-8. What is the maximum number that we can count up to using 14 bits?

1-9.*How many bits are needed to count up to a maximum of 511?

1-10. How many bits are needed to count up to a maximum of 63?

SECTION 1-4

1-11.*Draw the timing diagram for a digital signal that continuously alter-

nates between 0.2 V (binary 0) for 2 ms and 4.4 V (binary 1) for 4 ms.

22 CHAPTER 1/INTRODUCTORY CONCEPTS

*Answers to problems marked with an asterisk can be found in the back of the text.

binary system

bit

timing diagram

digital circuits/logic

circuits

parallel transmission

serial transmission

memory

digital computer

program

input unit

memory unit

control unit

arithmetic/logic unit

output unit

central processing

unit (CPU)

microprocessor

microcomputer

microcontroller

TOCCMC01_0131725793.QXD 12/22/05 4:41 AM Page 22

1-12. Draw the timing diagram for a signal that alternates between 0.3 V

(binary 0) for 5 ms and 3.9 V (binary 1) for 2 ms.

SECTION 1-6

1-13.*Suppose that the decimal integer values from 0 to 15 are to be trans-

mitted in binary.

(a) How many lines will be needed if parallel representation is used?

(b) How many will be needed if serial representation is used?

SECTIONS 1-7 AND 1-8

1-14. How is a microprocessor different from a microcomputer?

1-15. How is a microcontroller different from a microcomputer?

ANSWERS TO SECTION REVIEW QUESTIONS
SECTION 1-1
1. Analog quantities can take on any value over a continuous range; digital quanti-

ties can take on only discrete values.

SECTION 1-2
1. Easier to design; easier to store information; greater accuracy and precision;

programmability; less affected by noise; higher degree of integration

2. Real-world physical quantities are analog. Digital processing takes time.

SECTION 1-3
1. 10710 2. 110002 3. 409510

SECTION 1-5
1. False 2. Yes, provided that the two input voltages are within the same logic

level range 3. Logic 4. Timing diagram

SECTION 1-6
1. Parallel is faster; serial requires only one signal line.

SECTION 1-8
1. One that has memory will have its output changed and remain changed in

response to a momentary change in the input signal. 2. Input, output, memory,

arithmetic/logic, control 3. Control and arithmetic/logic 4. Microprocessor

ANSWERS TO SECTION REVIEW QUESTIONS 23

TOCCMC01_0131725793.QXD 12/22/05 4:41 AM Page 23

2-1 Binary-to-Decimal

Conversions

2-2 Decimal-to-Binary

Conversions

2-3 Hexadecimal Number

System

2-4 BCD Code

2-5 The Gray Code

■ OUTLINE

2-6 Putting It All Together

2-7 The Byte, Nibble, and Word

2-8 Alphanumeric Codes

2-9 Parity Method for Error

Detection

2-10 Applications

C H A P T E R 2

N U M B E R S YS T E M S

A N D C O D E S

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 24

25

■ OBJECTIVES
Upon completion of this chapter, you will be able to:
■ Convert a number from one number system (decimal, binary, hexadeci-

mal) to its equivalent in one of the other number systems.

■ Cite the advantages of the hexadecimal number system.

■ Count in hexadecimal.

■ Represent decimal numbers using the BCD code; cite the pros and cons

of using BCD.

■ Understand the difference between BCD and straight binary.

■ Understand the purpose of alphanumeric codes such as the ASCII code.

■ Explain the parity method for error detection.

■ Determine the parity bit to be attached to a digital data string.

■ INTRODUCTION
The binary number system is the most important one in digital systems, but

several others are also important. The decimal system is important because

it is universally used to represent quantities outside a digital system. This

means that there will be situations where decimal values must be con-

verted to binary values before they are entered into the digital system. For

example, when you punch a decimal number into your hand calculator (or

computer), the circuitry inside the machine converts the decimal number

to a binary value.

Likewise, there will be situations where the binary values at the out-

puts of a digital system must be converted to decimal values for presenta-

tion to the outside world. For example, your calculator (or computer) uses

binary numbers to calculate answers to a problem and then converts the an-

swers to decimal digits before displaying them.

As you will see, it is not easy to simply look at a large binary number

and convert it to its equivalent decimal value. It is very tedious to enter a

long sequence of 1s and 0s on a keypad, or to write large binary numbers

on a piece of paper. It is especially difficult to try to convey a binary quan-

tity while speaking to someone. The hexadecimal (base-16) number system

has become a very standard way of communicating numeric values in digi-

tal systems. The great advantage is that hexadecimal numbers can be con-

verted easily to and from binary.

Other methods of representing decimal quantities with binary-encoded

digits have been devised that are not truly number systems but offer the

ease of conversion between the binary code and the decimal number sys-

tem. This is referred to as binary-coded decimal. Quantities and patterns of

bits might be represented by any of these methods in any given system and

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 25

throughout the written material that supports the system, so it is very im-

portant that you are able to interpret values in any system and convert be-

tween any of these numeric representations. Other codes that use 1s and 0s

to represent things such as alphanumeric characters will be covered be-

cause they are so common in digital systems.

2-1 BINARY-TO-DECIMAL CONVERSIONS

As explained in Chapter 1, the binary number system is a positional system

where each binary digit (bit) carries a certain weight based on its position

relative to the LSB. Any binary number can be converted to its decimal

equivalent simply by summing together the weights of the various positions

in the binary number that contain a 1. To illustrate, let’s change 110112 to its

decimal equivalent.

Let’s try another example with a greater number of bits:

Note that the procedure is to find the weights (i.e., powers of 2) for each bit

position that contains a 1, and then to add them up. Also note that the MSB

has a weight of 27 even though it is the eighth bit; this is because the LSB is

the first bit and has a weight of 20.

1 0 1 1 0 1 0 12 �

27 � 0 � 25 � 24 � 0 � 22 � 0 � 20 � 18110

1 1 0 1 12

24 � 23 � 0 � 21 � 20 � 16 � 8 � 2 � 1

� 2710

26 CHAPTER 2/NUMBER SYSTEMS AND CODES

2-2 DECIMAL-TO-BINARY CONVERSIONS

There are two ways to convert a decimal whole number to its equivalent

binary-system representation. The first method is the reverse of the process

described in Section 2-1. The decimal number is simply expressed as a sum

of powers of 2, and then 1s and 0s are written in the appropriate bit posi-

tions. To illustrate:

Note that a 0 is placed in the 21 and 24 positions, since all positions must be

accounted for. Another example is the following:

7610 � 64 � 8 � 4 � 26 � 0 � 0 � 23 � 22 � 0 � 0

� 1 0 0 1 1 0 02

4510 � 32 � 8 � 4 � 1 � 25 � 0 � 23 � 22 � 0 � 20

� 1 0 1 1 0 12

REVIEW QUESTIONS 1. Convert 1000110110112 to its decimal equivalent.

2. What is the weight of the MSB of a 16-bit number?

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 26

Repeated Division
Another method for converting decimal integers uses repeated division by 2.

The conversion, illustrated below for 2510, requires repeatedly dividing the

decimal number by 2 and writing down the remainder after each division un-

til a quotient of 0 is obtained. Note that the binary result is obtained by writ-

ing the first remainder as the LSB and the last remainder as the MSB. This

process, diagrammed in the flowchart of Figure 2-1, can also be used to con-

vert from decimal to any other number system, as we shall see.

�
2

2

5
� � � remainder of 1

LSB

� 6 � remainder of 0

�
6

2
� � 3 � remainder of 0

�
3

2
� � 1 � remainder of 1

�
1

2
� � 0 � remainder of 1

MSB

2510 � 1 1 0 0 12

12
�
2

12

↑
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐

↑
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐⏐

↑
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐

↑⏐
⏐
⏐
⏐
⏐
⏐⏐

↑
⏐
⏐⏐

⏐⎯⎯⎯⎯⎯⎯⎯
↓

⏐⎯⎯⎯⎯⎯
↓

⏐⎯⎯⎯⎯⎯
↓

⏐⎯⎯⎯⎯⎯
↓

SECTION 2-2/DECIMAL-TO-BINARY CONVERSIONS 27

Collect R’s into desired
binary number with
first R as LSB and

last R as MSB

Is
Q = 0?

Record quotient (Q)
and remainder (R)

Divide by
2

START

END

NO

YES

FIGURE 2 -1 Flowchart for

repeated-division method

of decimal-to-binary

conversion of integers. The

same process can be used

to convert a decimal

integer to any other

number system.

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 27

28 CHAPTER 2/NUMBER SYSTEMS AND CODES

CALCULATOR HINT:
If you use a calculator to perform the divisions by 2, you can tell whether the

remainder is 0 or 1 by whether or not the result has a fractional part. For in-

stance, 25/2 would produce 12.5. Since there is a fractional part (the .5), the

remainder is a 1. If there were no fractional part, such as 12/2 � 6, then the

remainder would be 0. The following example illustrates this.

Convert 3710 to binary.Try to do it on your own before you look at the solution.

Solution

Thus, 3710 � 1001012.

Counting Range
Recall that using N bits, we can count through 2N different decimal numbers

ranging from 0 to For example, for we can count from 00002 to

11112, which is 010 to 1510, for a total of 16 different numbers. Here, the

largest decimal value is and there are 24 different numbers.

In general, then, we can state:

Using N bits, we can represent decimal numbers ranging from 0 to
a total of 2N different numbers.2N � 1,

24
- 1 = 15,

N = 4,2N
- 1.

�
3

2

7
� � 5 ⎯→ remainder of 1 (LSB)

� 9.0 ⎯→ 0

�
9

2
� � 4.5 ⎯→ 1

�
4

2
� � 2.0 ⎯→ 0

�
2

2
� � 1.0 ⎯→ 0

�
1

2
� � 0.5 ⎯→ 1 (MSB)

18
�
2

18.
↑

EXAMPLE 2-2 (a) What is the total range of decimal values that can be represented in

eight bits?

(b) How many bits are needed to represent decimal values ranging from 0 to

12,500?

Solution

(a) Here we have Thus, we can represent decimal numbers from 0 to

We can verify this by checking to see that 111111112 con-

verts to 25510.

28
- 1 = 255.

N = 8.

EXAMPLE 2-1

TOCCMC02_0131725793.QXD 12/21/05 9:37 AM Page 28

(b) With 13 bits, we can count from decimal 0 to With 14 bits,

we can count from 0 to Clearly, 13 bits aren’t enough, but

14 bits will get us up beyond 12,500.Thus, the required number of bits is 14.

214
- 1 = 16,383.

213
- 1 = 8191.

SECTION 2-3/HEXADECIMAL NUMBER SYSTEM 29

REVIEW QUESTIONS 1. Convert 8310 to binary using both methods.

2. Convert 72910 to binary using both methods. Check your answer by con-

verting back to decimal.

3. How many bits are required to count up to decimal 1 million?

2-3 HEXADECIMAL NUMBER SYSTEM

The hexadecimal number system uses base 16. Thus, it has 16 possible digit

symbols. It uses the digits 0 through 9 plus the letters A, B, C, D, E, and F as

the 16 digit symbols. The digit positions are weighted as powers of 16 as

shown below, rather than as powers of 10 as in the decimal system.

TABLE 2-1
Hexadecimal Decimal Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

164 163 162 161 160

Hexadecimal point

16-416-316-216-1

Hex-to-Decimal Conversion
A hex number can be converted to its decimal equivalent by using the fact

that each hex digit position has a weight that is a power of 16. The LSD has a

Table 2-1 shows the relationships among hexadecimal, decimal, and binary.

Note that each hexadecimal digit represents a group of four binary digits. It

is important to remember that hex (abbreviation for “hexadecimal”) digits A

through F are equivalent to the decimal values 10 through 15.

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 29

weight of the next higher digit position has a weight of

the next has a weight of and so on. The conversion process is

demonstrated in the examples below.

162
= 256;

161
= 16;160

= 1;

30 CHAPTER 2/NUMBER SYSTEMS AND CODES

CALCULATOR HINT:
You can use the yx calculator function to evaluate the powers of 16.

Note that in the second example, the value 10 was substituted for A and the

value 15 for F in the conversion to decimal.

For practice, verify that 1BC216 is equal to 710610.

Decimal-to-Hex Conversion
Recall that we did decimal-to-binary conversion using repeated division by 2.

Likewise, decimal-to-hex conversion can be done using repeated division by 16

(Figure 2-1).The following example contains two illustrations of this conversion.

2AF16 � 2 � 162 � 10 � 161 � 15 � 160

� 512 � 160 � 15

� 68710

35616 � 3 � 162 � 5 � 161 � 6 � 160

� 768 � 80 � 6

� 85410

(a) Convert 42310 to hex.

Solution

(b) Convert 21410 to hex.

Solution

�
2

1

1

6

4
� � 13 � remainder of 6

�
1

1

3

6
� � 0 � remainder of 13

21410 � D616

↑
⏐
⏐
⏐
⏐
⏐

↑
⏐⏐

↑

�
4

1

2

6

3
� � � remainder of 7

� 1 � remainder of 10

�
1

1

6
� � 0 � remainder of 1

42310 � 1A716

26
�
16

26

↑
⏐
⏐
⏐⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐

↑
⏐⏐
⏐
⏐
⏐
⏐

↑
⏐

↑

↑

EXAMPLE 2-3

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 30

Again note that the remainders of the division processes form the digits

of the hex number. Also note that any remainders that are greater than 9 are

represented by the letters A through F.

SECTION 2-3/HEXADECIMAL NUMBER SYSTEM 31

CALCULATOR HINT:
If a calculator is used to perform the divisions in the conversion process, the

results will include a decimal fraction instead of a remainder.The remainder

can be obtained by multiplying the fraction by 16. To illustrate, in Example

2-3(b), the calculator would have produced

The remainder becomes (0.375) * 16 = 6.

214

16
= 13.375

Hex-to-Binary Conversion
The hexadecimal number system is used primarily as a “shorthand” method

for representing binary numbers. It is a relatively simple matter to convert a

hex number to binary. Each hex digit is converted to its four-bit binary equiv-

alent (Table 2-1). This is illustrated below for 9F216.

For practice, verify that BA616 � 1011101001102.

Binary-to-Hex Conversion
Conversion from binary to hex is just the reverse of the process above. The

binary number is grouped into groups of four bits, and each group is con-

verted to its equivalent hex digit. Zeros (shown shaded) are added, as

needed, to complete a four-bit group.

To perform these conversions between hex and binary, it is necessary to

know the four-bit binary numbers (0000 through 1111) and their equivalent

hex digits. Once these are mastered, the conversions can be performed

quickly without the need for any calculations. This is why hex is so useful in

representing large binary numbers.

For practice, verify that 1010111112 � 15F16.

Counting in Hexadecimal
When counting in hex, each digit position can be incremented (increased by 1)

from 0 to F. Once a digit position reaches the value F, it is reset to 0, and the

1 1 1 0 1 0 0 1 1 02 � 1 1 1 0 1 0 0 1 1 0

3 A 6

� 3A616

0 0 ⎫⎪⎬⎪⎭ ⎭⎭ ⎫⎪⎬⎪ ⎫⎪⎬⎪

9F216 � 9 F 2

↓ ↓ ↓
� 1 0 0 1 1 1 1 1 0 0 1 0

� 100111110010 2

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 31

next digit position is incremented. This is illustrated in the following hex

counting sequences:

(a) 38, 39, 3A, 3B, 3C, 3D, 3E, 3F, 40, 41, 42

(b) 6F8, 6F9, 6FA, 6FB, 6FC, 6FD, 6FE, 6FF, 700

Note that when there is a 9 in a digit position, it becomes an A when it is in-

cremented.

With N hex digit positions, we can count from decimal 0 to for a

total of 16N different values. For example, with three hex digits, we can

count from 00016 to FFF16, which is 010 to 409510, for a total of 4096 � 163 dif-

ferent values.

Usefulness of Hex
Hex is often used in a digital system as sort of a “shorthand” way to repre-

sent strings of bits. In computer work, strings as long as 64 bits are not un-

common. These binary strings do not always represent a numerical value,

but—as you will find out—can be some type of code that conveys nonnu-

merical information. When dealing with a large number of bits, it is more

convenient and less error-prone to write the binary numbers in hex and, as

we have seen, it is relatively easy to convert back and forth between binary

and hex.To illustrate the advantage of hex representation of a binary string,

suppose you had in front of you a printout of the contents of 50 memory lo-

cations, each of which was a 16-bit number, and you were checking it against

a list. Would you rather check 50 numbers like this one: 0110111001100111,

or 50 numbers like this one: 6E67? And which one would you be more apt to

read incorrectly? It is important to keep in mind, though, that digital

circuits all work in binary. Hex is simply used as a convenience for the

humans involved. You should memorize the 4-bit binary pattern for each

hexadecimal digit. Only then will you realize the usefulness of this tool in

digital systems.

16N
- 1,

32 CHAPTER 2/NUMBER SYSTEMS AND CODES

Convert decimal 378 to a 16-bit binary number by first converting to hexa-

decimal.

Solution

Thus, 37810 � 17A16. This hex value can be converted easily to binary

000101111010. Finally, we can express 37810 as a 16-bit number by adding

four leading 0s:

37810 = 0000 0001 0111 10102

�
3

1

7

6

8
� � 23 � remainder of 10 � A

�
2

1

3

6
� � 1 � remainder of 7

�
1

1

6
� � 0 � remainder of 1

↑

↑

1610

EXAMPLE 2-4

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 32

Summary of Conversions
Right now, your head is probably spinning as you try to keep straight all of

these different conversions from one number system to another. You proba-

bly realize that many of these conversions can be done automatically on your

calculator just by pressing a key, but it is important for you to master these

conversions so that you understand the process. Besides, what happens if

your calculator battery dies at a crucial time and you have no handy re-

placement? The following summary should help you, but nothing beats prac-

tice, practice, practice!

1. When converting from binary [or hex] to decimal, use the method of tak-

ing the weighted sum of each digit position.

2. When converting from decimal to binary [or hex], use the method of re-

peatedly dividing by 2 [or 16] and collecting remainders (Figure 2-1).

3. When converting from binary to hex, group the bits in groups of four, and

convert each group into the correct hex digit.

4. When converting from hex to binary, convert each digit into its four-bit

equivalent.

SECTION 2-4/BCD CODE 33

2-4 BCD CODE

When numbers, letters, or words are represented by a special group of sym-

bols, we say that they are being encoded, and the group of symbols is called

a code. Probably one of the most familiar codes is the Morse code, where a se-

ries of dots and dashes represents letters of the alphabet.

We have seen that any decimal number can be represented by an equiva-

lent binary number.The group of 0s and 1s in the binary number can be thought

of as a code representing the decimal number. When a decimal number is

represented by its equivalent binary number, we call it straight binary coding.

EXAMPLE 2-5 Convert B2F16 to decimal.

Solution

 = 286310

 = 11 * 256 + 2 * 16 + 15

 B2F16 = B * 162
+ 2 * 161

+ F * 160

REVIEW QUESTIONS 1. Convert 24CE16 to decimal.

2. Convert 311710 to hex, then from hex to binary.

3. Convert 10010111101101012 to hex.

4. Write the next four numbers in this hex counting sequence: E9A, E9B,

E9C, E9D, _____, _____, _____, _____.

5. Convert 3527 to binary16.

6. What range of decimal values can be represented by a four-digit hex

number?

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 33

Digital systems all use some form of binary numbers for their internal

operation, but the external world is decimal in nature. This means that con-

versions between the decimal and binary systems are being performed

often. We have seen that the conversions between decimal and binary can

become long and complicated for large numbers. For this reason, a means of

encoding decimal numbers that combines some features of both the decimal

and the binary systems is used in certain situations.

Binary-Coded-Decimal Code
If each digit of a decimal number is represented by its binary equivalent, the

result is a code called binary-coded-decimal (hereafter abbreviated BCD).

Since a decimal digit can be as large as 9, four bits are required to code each

digit (the binary code for 9 is 1001).

To illustrate the BCD code, take a decimal number such as 874. Each

digit is changed to its binary equivalent as follows:

As another example, let us change 943 to its BCD-code representation:

Once again, each decimal digit is changed to its straight binary equivalent.

Note that four bits are always used for each digit.

The BCD code, then, represents each digit of the decimal number by a

four-bit binary number. Clearly only the four-bit binary numbers from 0000

through 1001 are used. The BCD code does not use the numbers 1010, 1011,

1100, 1101, 1110, and 1111. In other words, only 10 of the 16 possible four-bit

binary code groups are used. If any of the “forbidden” four-bit numbers ever

occurs in a machine using the BCD code, it is usually an indication that an er-

ror has occurred.

9 4 3 (decimal)
↓ ↓ ↓

1001 0100 0011 (BCD)

8 7 4 (decimal)

↓ ↓ ↓
1000 0111 0100 (BCD)

34 CHAPTER 2/NUMBER SYSTEMS AND CODES

EXAMPLE 2-6 Convert 0110100000111001 (BCD) to its decimal equivalent.

Solution

Divide the BCD number into four-bit groups and convert each to decimal.

0110 1000 0011 1001

6 8 3 9

⎫ ⎫⎫⎫⎫⎬ ⎫⎬ ⎫⎬ ⎫⎬

EXAMPLE 2-7 Convert the BCD number 011111000001 to its decimal equivalent.

Solution

0111 1100 0001

7 ↓ 1

The forbidden code group indicates an

error in the BCD number.

⎫⎬ ⎫⎫⎫ ⎬

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 34

Comparison of BCD and Binary
It is important to realize that BCD is not another number system like

binary, decimal, and hexadecimal. In fact, it is the decimal system with

each digit encoded in its binary equivalent. It is also important to under-

stand that a BCD number is not the same as a straight binary number. A

straight binary number takes the complete decimal number and represents

it in binary; the BCD code converts each decimal digit to binary individu-

ally. To illustrate, take the number 137 and compare its straight binary and

BCD codes:

The BCD code requires 12 bits, while the straight binary code requires only

eight bits to represent 137. BCD requires more bits than straight binary to

represent decimal numbers of more than one digit because BCD does not use

all possible four-bit groups, as pointed out earlier, and is therefore somewhat

inefficient.

The main advantage of the BCD code is the relative ease of converting to

and from decimal. Only the four-bit code groups for the decimal digits 0

through 9 need to be remembered. This ease of conversion is especially im-

portant from a hardware standpoint because in a digital system, it is the

logic circuits that perform the conversions to and from decimal.

13710 � 100010012 (binary)

13710 � 0001 0011 0111 (BCD)

SECTION 2-5/THE GRAY CODE 35

2-5 THE GRAY CODE

Digital systems operate at very fast speeds and respond to changes that oc-

cur in the digital inputs. Just as in life, when multiple input conditions are

changing at the same time, the situation can be misinterpreted and cause an

erroneous reaction. When you look at the bits in a binary count sequence, it

is clear that there are often several bits that must change states at the same

time. For example, consider when the three-bit binary number for 3 changes

to 4: all three bits must change state.

In order to reduce the likelihood of a digital circuit misinterpreting a

changing input, the Gray code has been developed as a way to represent a

sequence of numbers.The unique aspect of the Gray code is that only one bit

ever changes between two successive numbers in the sequence. Table 2-2

shows the translation between three-bit binary and Gray code values.To con-

vert binary to Gray, simply start on the most significant bit and use it as the

Gray MSB as shown in Figure 2-2(a). Now compare the MSB binary with the

next binary bit (B1). If they are the same, then G1 � 0. If they are different,

then G1 � 1. G0 can be found by comparing B1 with B0.

REVIEW QUESTIONS 1. Represent the decimal value 178 by its straight binary equivalent. Then

encode the same decimal number using BCD.

2. How many bits are required to represent an eight-digit decimal number

in BCD?

3. What is an advantage of encoding a decimal number in BCD rather than

in straight binary? What is a disadvantage?

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 35

Conversion from Gray code back into binary is shown in Figure 2-2(b).

Note that the MSB in Gray is always the same as the MSB in binary. The

next binary bit is found by comparing the binary bit to the left with the corr-
esponding Gray code bit. Similar bits produce a 0 and differing bits produce

a 1. The most common application of the Gray code is in shaft position

encoders as shown in Figure 2-3. These devices produce a binary value that

represents the position of a rotating mechanical shaft. A practical shaft

encoder would use many more bits than just three and divide the rotation

into many more segments than eight, so that it could detect much smaller

increments of rotation.

36 CHAPTER 2/NUMBER SYSTEMS AND CODES

TABLE 2-2 Three-bit

binary and Gray code

equivalents.

B2 B1 B0 G2 G1 G0

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 1

0 1 1 0 1 0

1 0 0 1 1 0

1 0 1 1 1 1

1 1 0 1 0 1

1 1 1 1 0 0

B2 B1 B0

G2 G1

Gray

(a)

Binary
MSB LSB

G0

Different? Different?

G2 G1 G0

B2 B1

Binary

(b)

Gray
MSB LSB

B0

Different? Different?

FIGURE 2-2 Converting (a) binary to Gray and (b) Gray to binary.

G2
G1
G0

FIGURE 2-3 An eight-

position, three-bit shaft

encoder.

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 36

2-6 PUTTING IT ALL TOGETHER

Table 2-3 gives the representation of the decimal numbers 1 through 15 in

the binary and hex number systems and also in the BCD and Gray codes.

Examine it carefully and make sure you understand how it was obtained.

Especially note how the BCD representation always uses four bits for each

decimal digit.

SECTION 2-7/THE BYTE, NIBBLE, AND WORD 37

TABLE 2-3
Decimal Binary Hexadecimal BCD GRAY

0 0 0 0000 0000

1 1 1 0001 0001

2 10 2 0010 0011

3 11 3 0011 0010

4 100 4 0100 0110

5 101 5 0101 0111

6 110 6 0110 0101

7 111 7 0111 0100

8 1000 8 1000 1100

9 1001 9 1001 1101

10 1010 A 0001 0000 1111

11 1011 B 0001 0001 1110

12 1100 C 0001 0010 1010

13 1101 D 0001 0011 1011

14 1110 E 0001 0100 1001

15 1111 F 0001 0101 1000

2-7 THE BYTE, NIBBLE, AND WORD

Bytes
Most microcomputers handle and store binary data and information in groups

of eight bits, so a special name is given to a string of eight bits: it is called a

byte. A byte always consists of eight bits, and it can represent any of numerous

types of data or information. The following examples will illustrate.

REVIEW QUESTIONS 1. Convert the number 0101 (binary) to its Gray code equivalent.

2. Convert 0101 (Gray code) to its binary number equivalent.

EXAMPLE 2-8 How many bytes are in a 32-bit string (a string of 32 bits)?

Solution

32/8 � 4, so there are four bytes in a 32-bit string.

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 37

38 CHAPTER 2/NUMBER SYSTEMS AND CODES

EXAMPLE 2-9 What is the largest decimal value that can be represented in binary using

two bytes?

Solution

Two bytes is 16 bits, so the largest binary value will be equivalent to decimal

216
- 1 = 65,535.

EXAMPLE 2-10 How many bytes are needed to represent the decimal value 846,569 in BCD?

Solution

Each decimal digit converts to a four-bit BCD code. Thus, a six-digit decimal

number requires 24 bits. These 24 bits are equal to three bytes. This is dia-

grammed below.

8 4 6 5 6 9 (decimal)

1000 0100 0110 0101 0110 1001 (BCD)

byte 1 byte 2 byte 3

⎫⎪ ⎫ ⎪⎫ ⎪⎫ ⎪ ⎫⎪ ⎫⎪⎬ ⎬ ⎬

EXAMPLE 2-11 How many nibbles are in a byte?

Solution

2

EXAMPLE 2-12 What is the hex value of the least significant nibble of the binary number

1001 0101?

Solution

1001 0101

The least significant nibble is 0101 � 5.

Nibbles
Binary numbers are often broken down into groups of four bits, as we have

seen with BCD codes and hexadecimal number conversions. In the early days

of digital systems, a term caught on to describe a group of four bits. Because

it is half as big as a byte, it was named a nibble. The following examples il-

lustrate the use of this term.

Words
Bits, nibbles, and bytes are terms that represent a fixed number of binary

digits. As systems have grown over the years, their capacity (appetite?) for

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 38

2-8 ALPHANUMERIC CODES

In addition to numerical data, a computer must be able to handle nonnu-

merical information. In other words, a computer should recognize codes that

represent letters of the alphabet, punctuation marks, and other special char-

acters as well as numbers. These codes are called alphanumeric codes. A

complete alphanumeric code would include the 26 lowercase letters, 26 up-

percase letters, 10 numeric digits, 7 punctuation marks, and anywhere from

20 to 40 other characters, such as �, /, #, %, *, and so on. We can say that an

alphanumeric code represents all of the various characters and functions

that are found on a computer keyboard.

ASCII Code
The most widely used alphanumeric code is the American Standard Code
for Information Interchange (ASCII). The ASCII (pronounced “askee”)

code is a seven-bit code, and so it has possible code groups. This

is more than enough to represent all of the standard keyboard characters

as well as the control functions such as the (RETURN) and (LINEFEED)

functions. Table 2-4 shows a listing of the standard seven-bit ASCII code.

The table gives the hexadecimal and decimal equivalents. The seven-bit

binary code for each character can be obtained by converting the hex

value to binary.

27
= 128

SECTION 2-8/ALPHANUMERIC CODES 39

handling binary data has also grown. A word is a group of bits that repre-

sents a certain unit of information. The size of the word depends on the size

of the data pathway in the system that uses the information. The word size
can be defined as the number of bits in the binary word that a digital system

operates on. For example, the computer in your microwave oven can proba-

bly handle only one byte at a time. It has a word size of eight bits. On the

other hand, the personal computer on your desk can handle eight bytes at a

time, so it has a word size of 64 bits.

REVIEW QUESTIONS 1. How many bytes are needed to represent 23510 in binary?

2. What is the largest decimal value that can be represented in BCD using

two bytes?

3. How many hex digits can a nibble represent?

4. How many nibbles are in one BCD digit?

EXAMPLE 2-13 Use Table 2-4 to find the seven-bit ASCII code for the backslash character (\).

Solution

The hex value given in Table 2-4 is 5C. Translating each hex digit into four-

bit binary produces 0101 1100. The lower seven bits represent the ASCII

code for \, or 1011100.

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 39

40 CHAPTER 2/NUMBER SYSTEMS AND CODES

TABLE 2-4 Standard ASCII codes.

Character HEX Decimal Character HEX Decimal Character HEX Decimal Character HEX Decimal

NUL (null) 0 0 Space 20 32 @ 40 64 . 60 96

Start Heading 1 1 ! 21 33 A 41 65 a 61 97

Start Text 2 2 “ 22 34 B 42 66 b 62 98

End Text 3 3 # 23 35 C 43 67 c 63 99

End Transmit. 4 4 $ 24 36 D 44 68 d 64 100

Enquiry 5 5 % 25 37 E 45 69 e 65 101

Acknowlege 6 6 & 26 38 F 46 70 f 66 102

Bell 7 7 ` 27 39 G 47 71 g 67 103

Backspace 8 8 (28 40 H 48 72 h 68 104

Horiz. Tab 9 9) 29 41 I 49 73 i 69 105

Line Feed A 10 * 2A 42 J 4A 74 j 6A 106

Vert. Tab B 11 + 2B 43 K 4B 75 k 6B 107

Form Feed C 12 , 2C 44 L 4C 76 l 6C 108

Carriage Return D 13 - 2D 45 M 4D 77 m 6D 109

Shift Out E 14 . 2E 46 N 4E 78 n 6E 110

Shift In F 15 / 2F 47 O 4F 79 o 6F 111

Data Link Esc 10 16 0 30 48 P 50 80 p 70 112

Direct Control 1 11 17 1 31 49 Q 51 81 q 71 113

Direct Control 2 12 18 2 32 50 R 52 82 r 72 114

Direct Control 3 13 19 3 33 51 S 53 83 s 73 115

Direct Control 4 14 20 4 34 52 T 54 84 t 74 116

Negative ACK 15 21 5 35 53 U 55 85 u 75 117

Synch Idle 16 22 6 36 54 V 56 86 v 76 118

End Trans Block 17 23 7 37 55 W 57 87 w 77 119

Cancel 18 24 8 38 56 X 58 88 x 78 120

End of Medium 19 25 9 39 57 Y 59 89 y 79 121

Substitue 1A 26 : 3A 58 Z 5A 90 z 7A 122

Escape 1B 27 ; 3B 59 [5B 91 { 7B 123

Form separator 1C 28 < 3C 60 \ 5C 92 | 7C 124

Group separator 1D 29 = 3D 61] 5D 93 } 7D 125

Record Separator 1E 30 > 3E 62 ^ 5E 94 ~ 7E 126

Unit Separator 1F 31 ? 3F 63 _ 5F 95 Delete 7F 127

The ASCII code is used for the transfer of alphanumeric information be-

tween a computer and the external devices such as a printer or another com-

puter. A computer also uses ASCII internally to store the information that an

operator types in at the computer’s keyboard. The following example illus-

trates this.

EXAMPLE 2-14 An operator is typing in a C language program at the keyboard of a certain

microcomputer. The computer converts each keystroke into its ASCII code

and stores the code as a byte in memory. Determine the binary strings that

will be entered into memory when the operator types in the following C

statement:

if (x>3)

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 40

SECTION 2-9/PARITY METHOD FOR ERROR DETECTION 41

2-9 PARITY METHOD FOR ERROR DETECTION

The movement of binary data and codes from one location to another is the

most frequent operation performed in digital systems. Here are just a few

examples:

■ The transmission of digitized voice over a microwave link

■ The storage of data in and retrieval of data from external memory de-

vices such as magnetic and optical disk

■ The transmission of digital data from a computer to a remote computer

over telephone lines (i.e., using a modem). This is one of the major ways

of sending and receiving information on the Internet.

Whenever information is transmitted from one device (the transmitter)

to another device (the receiver), there is a possibility that errors can occur

such that the receiver does not receive the identical information that was

sent by the transmitter. The major cause of any transmission errors is

electrical noise, which consists of spurious fluctuations in voltage or current

that are present in all electronic systems to varying degrees. Figure 2-4 is a

simple illustration of a type of transmission error.

The transmitter sends a relatively noise-free serial digital signal over a

signal line to a receiver. However, by the time the signal reaches the receiver,

Solution

Locate each character (including the space) in Table 2-4 and record its ASCII

code.

i 69 0110 1001

f 66 0110 0110

space 20 0010 0000

(28 0010 1000

x 78 0111 1000

> 3E 0011 1110

3 33 0011 0011

) 29 0010 1001

Note that a 0 was added to the leftmost bit of each ASCII code because the

codes must be stored as bytes (eight bits). This adding of an extra bit is

called padding with 0s.

REVIEW QUESTIONS 1. Encode the following message in ASCII code using the hex representa-

tion: “COST � $72.”

2. The following padded ASCII-coded message is stored in successive mem-

ory locations in a computer:

What is the message?

01010011 01010100 01001111 01010000

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 41

42 CHAPTER 2/NUMBER SYSTEMS AND CODES

it contains a certain degree of noise superimposed on the original signal.

Occasionally, the noise is large enough in amplitude that it will alter the

logic level of the signal, as it does at point x. When this occurs, the receiver

may incorrectly interpret that bit as a logic 1, which is not what the trans-

mitter has sent.

Most modern digital equipment is designed to be relatively error-free,

and the probability of errors such as the one shown in Figure 2-4 is very

low. However, we must realize that digital systems often transmit thou-

sands, even millions, of bits per second, so that even a very low rate of oc-

currence of errors can produce an occasional error that might prove to be

bothersome, if not disastrous. For this reason, many digital systems em-

ploy some method for detection (and sometimes correction) of errors. One

of the simplest and most widely used schemes for error detection is the

parity method.

Parity Bit
A parity bit is an extra bit that is attached to a code group that is being trans-

ferred from one location to another. The parity bit is made either 0 or 1,

depending on the number of 1s that are contained in the code group. Two

different methods are used.

In the even-parity method, the value of the parity bit is chosen so that the

total number of 1s in the code group (including the parity bit) is an even
number. For example, suppose that the group is 1000011. This is the ASCII

character “C.”The code group has three 1s.Therefore, we will add a parity bit

of 1 to make the total number of 1s an even number.The new code group, inc-
luding the parity bit, thus becomes

If the code group contains an even number of 1s to begin with, the parity

bit is given a value of 0. For example, if the code group were 1000001 (the

ASCII code for “A”), the assigned parity bit would be 0, so that the new code,

including the parity bit, would be 01000001.

The odd-parity method is used in exactly the same way except that the

parity bit is chosen so the total number of 1s (including the parity bit) is an

odd number. For example, for the code group 1000001, the assigned parity bit

would be a 1. For the code group 1000011, the parity bit would be a 0.

Regardless of whether even parity or odd parity is used, the parity bit

becomes an actual part of the code word. For example, adding a parity bit to

1 0 0 0 0 1 1

added parity bit*↑
1

*The parity bit can be placed at either end of the code group, but it is usually placed to the left of the
MSB.

FIGURE 2-4 Example of noise causing an error in the transmission of digital data.

Transmitter Receiver

x

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 42

SECTION 2-9/PARITY METHOD FOR ERROR DETECTION 43

the seven-bit ASCII code produces an eight-bit code. Thus, the parity bit is

treated just like any other bit in the code.

The parity bit is issued to detect any single-bit errors that occur during

the transmission of a code from one location to another. For example, sup-

pose that the character “A” is being transmitted and odd parity is being used.

The transmitted code would be

When the receiver circuit receives this code, it will check that the code con-

tains an odd number of 1s (including the parity bit). If so, the receiver will

assume that the code has been correctly received. Now, suppose that be-

cause of some noise or malfunction the receiver actually receives the fol-

lowing code:

The receiver will find that this code has an even number of 1s. This tells the

receiver that there must be an error in the code because presumably the

transmitter and receiver have agreed to use odd parity. There is no way, how-

ever, that the receiver can tell which bit is in error because it does not know

what the code is supposed to be.

It should be apparent that this parity method would not work if two bits

were in error, because two errors would not change the “oddness” or “even-

ness” of the number of 1s in the code. In practice, the parity method is used

only in situations where the probability of a single error is very low and the

probability of double errors is essentially zero.

When the parity method is being used, the transmitter and the receiver

must have agreement, in advance, as to whether odd or even parity is being

used. There is no advantage of one over the other, although even parity

seems to be used more often. The transmitter must attach an appropriate

parity bit to each unit of information that it transmits. For example, if the

transmitter is sending ASCII-coded data, it will attach a parity bit to each

seven-bit ASCII code group. When the receiver examines the data that it

has received from the transmitter, it checks each code group to see that the

total number of 1s (including the parity bit) is consistent with the agreed-

upon type of parity. This is often called checking the parity of the data. In

the event that it detects an error, the receiver may send a message back to

the transmitter asking it to retransmit the last set of data. The exact proce-

dure that is followed when an error is detected depends on the particular

system.

1 0 0 0 0 0 01

1 0 0 0 0 0 11

EXAMPLE 2-15 Computers often communicate with other remote computers over tele-

phone lines. For example, this is how dial-up communication over the inter-

net takes place. When one computer is transmitting a message to another,

the information is usually encoded in ASCII. What actual bit strings would

a computer transmit to send the message HELLO, using ASCII with even

parity?

Solution

First, look up the ASCII codes for each character in the message. Then for

each code, count the number of 1s. If it is an even number, attach a 0 as the

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 43

44 CHAPTER 2/NUMBER SYSTEMS AND CODES

MSB. If it is an odd number, attach a 1. Thus, the resulting eight-bit codes

(bytes) will all have an even number of 1s (including parity).

attached even-parity bits
↓

H � 0 1 0 0 1 0 0 0

E � 1 1 0 0 0 1 0 1

L � 1 1 0 0 1 1 0 0

L � 1 1 0 0 1 1 0 0

O � 1 1 0 0 1 1 1 1

2-10 APPLICATIONS

Here are several applications that will serve as a review of some of the con-

cepts covered in this chapter. These applications should give a sense of how

the various number systems and codes are used in the digital world. More ap-

plications are presented in the end-of-chapter problems.

A typical CD-ROM can store 650 megabytes of digital data. Since mega � 220,

how many bits of data can a CD-ROM hold?

Solution

Remember that a byte is eight bits. Therefore, 650 megabytes is

.650 * 220
* 8 = 5,452,595,200 bits

APPLICATION 2-1

In order to program many microcontrollers, the binary instructions are

stored in a file on a personal computer in a special way known as Intel Hex

Format. The hexadecimal information is encoded into ASCII characters so it

can be displayed easily on the PC screen, printed, and easily transmitted one

character at a time over a standard PC’s serial COM port. One line of an Intel

Hex Format file is shown below:

:10002000F7CFFFCF1FEF2FEF2A95F1F71A95D9F7EA

The first character sent is the ASCII code for a colon, followed by a 1.

Each has an even parity bit appended as the most significant bit. A test

instrument captures the binary bit pattern as it goes across the cable to the

microcontroller.

(a) What should the binary bit pattern (including parity) look like?

(MSB – LSB)

APPLICATION 2-2

REVIEW QUESTIONS 1. Attach an odd-parity bit to the ASCII code for the $ symbol, and express

the result in hexadecimal.

2. Attach an even-parity bit to the BCD code for decimal 69.

3. Why can’t the parity method detect a double error in transmitted data?

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 44

SECTION 2-10/APPLICATIONS 45

(b) The value 10, following the colon, represents the total hexadecimal num-

ber of bytes that are to be loaded into the micro’s memory. What is the

decimal number of bytes being loaded?

(c) The number 0020 is a four-digit hex value representing the address where

the first byte is to be stored. What is the biggest address possible? How

many bits would it take to represent this address?

(d) The value of the first data byte is F7. What is the value (in binary) of the

least significant nibble of this byte?

FFFF 1111 1111 1111 1111 16 bits

Solution

(a) ASCII codes are 3A (for :) and 31 (for 1) 00111010 10110001

even parity bit

(b)

(c) FFFF is the biggest possible value. Each hex digit is 4 bits, so we need 16

bits.

(d) The least significant nibble (4 bits) is represented by hex 7. In binary this

would be 0111.

10 hex = 1 * 16 + 0 * 1 = 16 decimal bytes

A small process-control computer uses hexadecimal codes to represent its

16-bit memory addresses.

(a) How many hex digits are required?

(b) What is the range of addresses in hex?

(c) How many memory locations are there?

Solution

(a) Since 4 bits convert to a single hex digit, 16/4 � 4 hex digits are needed.

(b) The binary range is 00000000000000002 to 11111111111111112. In hex,

this becomes 000016 to FFFF16.

(c) With 4 hex digits, the total number of addresses is 164 � 65,536.

APPLICATION 2-3

Numbers are entered into a microcontroller-based system in BCD, but stored

in straight binary. As a programmer, you must decide whether you need a

one-byte or two-byte storage location.

(a) How many bytes do you need if the system takes a two-digit decimal entry?

(b) What if you needed to be able to enter three digits?

Solution

(a) With two digits you can enter values up to 99 (1001 1001BCD). In binary

this value is 01100011, which will fit into an eight-bit memory location.

Thus you can use a single byte.

(b) Three digits can represent up to 999 (1001 1001 1001). In binary this

value is 1111100111 (10 bits). Thus you cannot use a single byte; you

need two bytes.

APPLICATION 2-4

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 45

46 CHAPTER 2/NUMBER SYSTEMS AND CODES

When ASCII characters must be transmitted between two independent

systems (such as between a computer and a modem), there must be a way

of telling the receiver when a new character is coming in. There is often a

need to detect errors in the transmission as well. The method of transfer is

called asynchronous data communication. The normal resting state of the

transmission line is logic 1. When the transmitter sends an ASCII charac-

ter, it must be “framed” so the receiver knows where the data begins and

ends. The first bit must always be a start bit (logic 0). Next the ASCII code

is sent LSB first and MSB last. After the MSB, a parity bit is appended to

check for transmission errors. Finally, the transmission is ended by send-

ing a stop bit (logic 1). A typical asynchronous transmission of a seven-bit

ASCII code for the pound sign # (23 Hex) with even parity is shown in

Figure 2-5.

APPLICATION 2-5

S
T
A
R
T

D
1

D
0

L
S
B

D
2

D
3

D
5

D
4

D
6

M
S
B

P
a
r
i
t
y

S
T
O
P

idle idle

FIGURE 2-5 Asynchronous serial data with even parity.

SUMMARY
1. The hexadecimal number system is used in digital systems and comput-

ers as an efficient way of representing binary quantities.

2. In conversions between hex and binary, each hex digit corresponds to

four bits.

3. The repeated-division method is used to convert decimal numbers to

binary or hexadecimal.

4. Using an N-bit binary number, we can represent decimal values from 0 to

5. The BCD code for a decimal number is formed by converting each digit

of the decimal number to its four-bit binary equivalent.

6. The Gray code defines a sequence of bit patterns in which only one bit

changes between successive patterns in the sequence.

7. A byte is a string of eight bits. A nibble is four bits. The word size de-

pends on the system.

8. An alphanumeric code is one that uses groups of bits to represent all of

the various characters and functions that are part of a typical computer’s

keyboard. The ASCII code is the most widely used alphanumeric code.

9. The parity method for error detection attaches a special parity bit to

each transmitted group of bits.

2N
- 1.

TOCCMC02_0131725793.QXD 12/22/05 4:46 AM Page 46

PROBLEMS 47

IMPORTANT TERMS
hexadecimal number

system

straight binary

coding

binary-coded-decimal

(BCD) code

Gray code

byte

nibble

word

word size

alphanumeric code

American Standard

Code for

Information

Interchange

(ASCII)

parity method

parity bit

PROBLEMS
SECTIONS 2-1 AND 2-2

2-1. Convert these binary numbers to decimal.

(a)*10110 (d) 01101011 (g)*1111010111

(b) 10010101 (e)*11111111 (h) 11011111

(c)*100100001001 (f) 01101111

2-2. Convert the following decimal values to binary.

(a)*37 (d) 1000 (g)*205

(b) 13 (e)*77 (h) 2133

(c)*189 (f) 390 (i)* 511

2-3. What is the largest decimal value that can be represented by (a)* an

eight-bit binary number? (b) A 16-bit number?

SECTION 2-4

2-4. Convert each hex number to its decimal equivalent.

(a)*743 (d) 2000 (g)*7FF

(b) 36 (e)*165 (h) 1204

(c)*37FD (f) ABCD

2-5. Convert each of the following decimal numbers to hex.

(a)*59 (d) 1024 (g)*65,536

(b) 372 (e)*771 (h) 255

(c)*919 (f) 2313

2-6. Convert each of the hex values from Problem 2-4 to binary.

2-7. Convert the binary numbers in Problem 2-1 to hex.

2-8. List the hex numbers in sequence from 19516 to 28016.

2-9. When a large decimal number is to be converted to binary, it is some-

times easier to convert it first to hex, and then from hex to binary. Try

this procedure for 213310 and compare it with the procedure used in

Problem 2-2(h).

2-10. How many hex digits are required to represent decimal numbers up to

20,000?

2-11. Convert these hex values to decimal.

(a)*92 (d) ABCD (g)*2C0

(b) 1A6 (e)*000F (h) 7FF

(c)*37FD (f) 55

*Answers to problems marked with an asterisk can be found in the back of the text.

TOCCMC02_0131725793.QXD 12/22/05 4:46 AM Page 47

48 CHAPTER 2/NUMBER SYSTEMS AND CODES

2-12. Convert these decimal values to hex.

(a)*75 (d) 24 (g)*25,619

(b) 314 (e)*7245 (h) 4095

(c)*2048 (f) 498

2-13. Take each four-bit binary number in the order they are written and

write the equivalent hex digit without performing a calculation by

hand or by calculator.

(a) 1001 (e) 1111 (i) 1011 (m) 0001

(b) 1101 (f) 0010 (j) 1100 (n) 0101

(c) 1000 (g) 1010 (k) 0011 (o) 0111

(d) 0000 (h) 1001 (l) 0100 (p) 0110

2-14. Take each hex digit and write its four-bit binary value without per-

forming any calculations by hand or by calculator.

(a) 6 (e) 4 (i) 9 (m) 0

(b) 7 (f) 3 (j) A (n) 8

(c) 5 (g) C (k) 2 (o) D

(d) 1 (h) B (l) F (p) 9

2-15.* Convert the binary numbers in Problem 2-1 to hexadecimal.

2-16.* Convert the hex values in Problem 2-11 to binary.

2-17.* List the hex numbers in sequence from 280 to 2A0.

2-18. How many hex digits are required to represent decimal numbers up to

1 million?

SECTION 2-5

2-19. Encode these decimal numbers in BCD.

(a)*47 (d) 6727 (g)*89,627

(b) 962 (e)*13 (h) 1024

(c)*187 (f) 529

2-20. How many bits are required to represent the decimal numbers in the

range from 0 to 999 using (a) straight binary code? (b) Using BCD

code?

2-21. The following numbers are in BCD. Convert them to decimal.

(a)*1001011101010010 (d) 0111011101110101

(b) 000110000100 (e)*010010010010

(c)*011010010101 (f) 010101010101

SECTION 2-7

2-22.*(a) How many bits are contained in eight bytes?

(b) What is the largest hex number that can be represented in

four bytes?

(c) What is the largest BCD-encoded decimal value that can be

represented in three bytes?

2-23. (a) Refer to Table 2-4. What is the most significant nibble of the

ASCII code for the letter X?

(b) How many nibbles can be stored in a 16-bit word?

(c) How many bytes does it take to make up a 24-bit word?

TOCCMC02_0131725793.QXD 12/22/05 4:46 AM Page 48

PROBLEMS 49

SECTIONS 2-8 AND 2-9

2-24. Represent the statement “ ” in ASCII code. Attach an odd-

parity bit.

2-25.*Attach an even-parity bit to each of the ASCII codes for Problem 2-24,

and give the results in hex.

2-26. The following bytes (shown in hex) represent a person’s name as it

would be stored in a computer’s memory. Each byte is a padded ASCII

code. Determine the name of each person.

(a)*42 45 4E 20 53 4D 49 54 48

(b) 4A 6F 65 20 47 72 65 65 6E

2-27. Convert the following decimal numbers to BCD code and then attach

an odd parity bit.

(a)*74 (c)*8884 (e)*165

(b) 38 (d) 275 (f) 9201

2-28.*In a certain digital system, the decimal numbers from 000 through

999 are represented in BCD code. An odd-parity bit is also included at

the end of each code group. Examine each of the code groups below,

and assume that each one has just been transferred from one location

to another. Some of the groups contain errors. Assume that no more
than two errors have occurred for each group. Determine which of the

code groups have a single error and which of them definitely have a

double error. (Hint: Remember that this is a BCD code.)

(a) 1001010110000

parity bit

(b) 0100011101100

(c) 0111110000011

(d) 1000011000101

2-29. Suppose that the receiver received the following data from the trans-

mitter of Example 2-16:

0 1 0 0 1 0 0 0

1 1 0 0 0 1 0 1

1 1 0 0 1 1 0 0

1 1 0 0 1 0 0 0

1 1 0 0 1 1 0 0

What errors can the receiver determine in these received data?

DRILL QUESTIONS

2-30.*Perform each of the following conversions. For some of them, you may

want to try several methods to see which one works best for you. For

example, a binary-to-decimal conversion may be done directly, or

it may be done as a binary-to-hex conversion followed by a hex-to-

decimal conversion.

(a) 141710 � _____ 2

(b) 25510 � _____ 2

(c) 110100012 � _____ 10

(d) 11101010001001112 � _____ 10

X = 3 * Y

TOCCMC02_0131725793.QXD 12/22/05 4:46 AM Page 49

(e) 249710 � _____ 16

(f) 51110 � _____ (BCD)

(g) 23516 � _____ 10

(h) 431610 � _____ 16

(i) 7A916 � _____ 10

(j) 3E1C16 � _____ 10

(k) 160010 � _____ 16

(l) 38,18710 � _____ 16

(m) 86510 � _____ (BCD)

(n) 100101000111 (BCD) � _____ 10

(o) 46516 � _____ 2

(p) B3416 � _____ 2

(q) 01110100 (BCD) � _____ 2

(r) 1110102 � _____ (BCD)

2-31.*Represent the decimal value 37 in each of the following ways.

(a) straight binary

(b) BCD

(c) hex

(d) ASCII (i.e., treat each digit as a character)

2-32.*Fill in the blanks with the correct word or words.

(a) Conversion from decimal to _____ requires repeated division by

16.

(b) Conversion from decimal to binary requires repeated division by

_____.

(c) In the BCD code, each _____ is converted to its four-bit binary

equivalent.

(d) The _____ code has the characteristic that only one bit changes in

going from one step to the next.

(e) A transmitter attaches a _____ to a code group to allow the re-

ceiver to detect _____.

(f) The _____ code is the most common alphanumeric code used in

computer systems.

(g) _____ is often used as a convenient way to represent large binary

numbers.

(h) A string of eight bits is called a _____.

2-33. Write the binary number that results when each of the following num-

bers is incremented by one.

(a)*0111 (b) 010011 (c) 1011

2-34. Decrement each binary number.

(a)*1110 (b) 101000 (c) 1110

2-35. Write the number that results when each of the following is incre-

mented.

(a)*777916 (c)*OFFF16 (e)*9FF16

(b) 999916 (d) 200016 (f) 100A16

2-36.*Repeat Problem 2-35 for the decrement operation.

50 CHAPTER 2/NUMBER SYSTEMS AND CODES

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 50

CHALLENGING EXERCISES

2-37.*In a microcomputer, the addresses of memory locations are binary

numbers that identify each memory circuit where a byte is stored.The

number of bits that make up an address depends on how many mem-

ory locations there are. Since the number of bits can be very large, the

addresses are often specified in hex instead of binary.

(a) If a microcomputer uses a 20-bit address, how many different

memory locations are there?

(b) How many hex digits are needed to represent the address of a

memory location?

(c) What is the hex address of the 256th memory location? (Note: The

first address is always 0.)

2-38. In an audio CD, the audio voltage signal is typically sampled about

44,000 times per second, and the value of each sample is recorded on

the CD surface as a binary number. In other words, each recorded bi-

nary number represents a single voltage point on the audio signal

waveform.

(a) If the binary numbers are six bits in length, how many different

voltage values can be represented by a single binary number?

Repeat for eight bits and ten bits.

(b) If ten-bit numbers are used, how many bits will be recorded on the

CD in 1 second?

(c) If a CD can typically store 5 billion bits, how many seconds of au-

dio can be recorded when ten-bit numbers are used?

2-39.*A black-and-white digital camera lays a fine grid over an image and

then measures and records a binary number representing the level of

gray it sees in each cell of the grid. For example, if four-bit numbers

are used, the value of black is set to 0000 and the value of white to

1111, and any level of gray is somewhere between 0000 and 1111. If

six-bit numbers are used, black is 000000, white is 111111, and all

grays are between the two.

Suppose we wanted to distinguish among 254 different levels of gray

within each cell of the grid. How many bits would we need to use to

represent these levels?

2-40. A 3-Megapixel digital camera stores an eight-bit number for the

brightness of each of the primary colors (red, green, blue) found in

each picture element (pixel). If every bit is stored (no data compres-

sion), how many pictures can be stored on a 128-Megabyte memory

card? (Note: In digital systems, Mega means 220.)

2-41. Construct a table showing the binary, hex, and BCD representations of

all decimal numbers from 0 to 15. Compare your table with Table 2-3.

ANSWERS TO SECTION REVIEW QUESTIONS
SECTION 2-1
1. 2267 2. 32768

SECTION 2-2
1. 1010011 2. 1011011001 3. 20 bits

ANSWERS TO SECTION REVIEW QUESTIONS 51

TOCCMC02_0131725793.QXD 12/22/05 4:46 AM Page 51

SECTION 2-3
1. 9422 2. C2D; 110000101101 3. 97B5 4. E9E, E9F, EA0, EA1

5. 11010100100111 6. 0 to 65,535

SECTION 2-4
1. 101100102; 000101111000 (BCD) 2. 32 3. Advantage: ease of conversion.

Disadvantage: BCD requires more bits.

SECTION 2-5
1. 0111 2. 0110

SECTION 2-7
1. One 2. 9999 3. One 4. One

SECTION 2-8
1. 43, 4F, 53, 54, 20, 3D, 20, 24, 37, 32 2. STOP

SECTION 2-9
1. A4 2. 001101001 3. Two errors in the data would not change the oddness or

evenness of the number of 1s in the data.

52 CHAPTER 2/NUMBER SYSTEMS AND CODES

TOCCMC02_0131725793.QXD 12/22/05 4:46 AM Page 52

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 53

3-1 Boolean Constants and

Variables

3-2 Truth Tables

3-3 OR Operation with OR

Gates

3-4 AND Operation with AND

Gates

3-5 NOT Operation

3-6 Describing Logic Circuits

Algebraically

3-7 Evaluating Logic-Circuit

Outputs

3-8 Implementing Circuits from

Boolean Expressions

3-9 NOR Gates and NAND

Gates

3-10 Boolean Theorems

3-11 DeMorgan’s Theorems

■ OUTLINE

D E S C R I B I N G L O G I C

C I R C U I T S

C H A P T E R 3

3-12 Universality of NAND Gates

and NOR Gates

3-13 Alternate Logic-Gate

Representations

3-14 Which Gate Representation

to Use

3-15 IEEE/ANSI Standard Logic

Symbols

3-16 Summary of Methods to

Describe Logic Circuits

3-17 Description Languages

Versus Programming

Languages

3-18 Implementing Logic

Circuits with PLDs

3-19 HDL Format and Syntax

3-20 Intermediate Signals

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 54

55

■ OBJECTIVES
Upon completion of this chapter, you will be able to:
■ Perform the three basic logic operations.

■ Describe the operation of and construct the truth tables for the AND,

NAND, OR, and NOR gates, and the NOT (INVERTER) circuit.

■ Draw timing diagrams for the various logic-circuit gates.

■ Write the Boolean expression for the logic gates and combinations of

logic gates.

■ Implement logic circuits using basic AND, OR, and NOT gates.

■ Appreciate the potential of Boolean algebra to simplify complex logic

circuits.

■ Use DeMorgan’s theorems to simplify logic expressions.

■ Use either of the universal gates (NAND or NOR) to implement a

circuit represented by a Boolean expression.

■ Explain the advantages of constructing a logic-circuit diagram using the

alternate gate symbols versus the standard logic-gate symbols.

■ Describe the concept of active-LOW and active-HIGH logic signals.

■ Draw and interpret the IEEE/ANSI standard logic-gate symbols.

■ Use several methods to describe the operation of logic circuits.

■ Interpret simple circuits defined by a hardware description language

(HDL).

■ Explain the difference between an HDL and a computer programming

language.

■ Create an HDL file for a simple logic gate.

■ Create an HDL file for combinational circuits with intermediate

variables.

■ INTRODUCTION
Chapters 1 and 2 introduced the concepts of logic levels and logic circuits.

In logic, only two possible conditions exist for any input or output: true and

false. The binary number system uses only two digits, 1 and 0, so it is perfect

for representing logical relationships. Digital logic circuits use predefined

voltage ranges to represent these binary states. Using these concepts, we

can create circuits made of little more than processed beach sand and wire

that make consistent, intelligent, logical decisions. It is vitally important

that we have a method to describe the logical decisions made by these cir-

cuits. In other words, we must describe how they operate. In this chapter,

we will discover many ways to describe their operation. Each description

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 55

method is important because all these methods commonly appear in techni-

cal literature and system documentation and are used in conjunction with

modern design and development tools.

Life is full of examples of circumstances that are in one state or an-

other. For example, a creature is either alive or dead, a light is either on or

off, a door is locked or unlocked, and it is either raining or it is not. In 1854,

a mathematician named George Boole wrote An Investigation of the Laws of
Thought, in which he described the way we make logical decisions based on

true or false circumstances. The methods he described are referred to today

as Boolean logic, and the system of using symbols and operators to describe

these decisions is called Boolean algebra. In the same way we use symbols

such as x and y to represent unknown numerical values in regular algebra,

Boolean algebra uses symbols to represent a logical expression that has one

of two possible values: true or false. The logical expression might be door is
closed, button is pressed, or fuel is low. Writing these expressions is very te-

dious, and so we tend to substitute symbols such as A, B, and C.

The main purpose of these logical expressions is to describe the rela-

tionship between a logic circuit’s output (the decision) and its inputs (the

circumstances). In this chapter, we will study the most basic logic circuits—

logic gates—which are the fundamental building blocks from which all other

logic circuits and digital systems are constructed. We will see how the oper-

ation of the different logic gates and the more complex circuits formed

from combinations of logic gates can be described and analyzed using

Boolean algebra. We will also get a glimpse of how Boolean algebra can be

used to simplify a circuit’s Boolean expression so that the circuit can be re-

built using fewer logic gates and/or fewer connections. Much more will be

done with circuit simplification in Chapter 4.

Boolean algebra is not only used as a tool for analysis and simplifica-

tion of logic systems. It can also be used as a tool to create a logic circuit

that will produce the desired input/output relationship. This process is

often called synthesis of logic circuits as opposed to analysis. Other tech-

niques have been used in the analysis, synthesis, and documentation of

logic systems and circuits including truth tables, schematic symbols, timing

diagrams, and—last but by no means least—language. To categorize these

methods, we could say that Boolean algebra is a mathematic tool, truth ta-

bles are data organizational tools, schematic symbols are drawing tools,

timing diagrams are graphing tools, and language is the universal descrip-

tion tool.

Today, any of these tools can be used to provide input to computers. The

computers can be used to simplify and translate between these various

forms of description and ultimately provide an output in the form neces-

sary to implement a digital system. To take advantage of the powerful bene-

fits of computer software, we must first fully understand the acceptable

ways for describing these systems in terms the computer can understand.

This chapter will lay the groundwork for further study of these vital tools

for synthesis and analysis of digital systems.

Clearly the tools described here are invaluable tools in describing, ana-

lyzing, designing, and implementing digital circuits. The student who ex-

pects to work in the digital field must work hard at understanding and

becoming comfortable with Boolean algebra (believe us, it’s much, much

easier than conventional algebra) and all the other tools. Do all of the ex-

amples, exercises, and problems, even the ones your instructor doesn’t

assign. When those run out, make up your own. The time you spend will be

well worth it because you will see your skills improve and your confidence

grow.

56 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 56

3-1 BOOLEAN CONSTANTS AND VARIABLES

Boolean algebra differs in a major way from ordinary algebra because

Boolean constants and variables are allowed to have only two possible values,

0 or 1. A Boolean variable is a quantity that may, at different times, be equal

to either 0 or 1. Boolean variables are often used to represent the voltage

level present on a wire or at the input/output terminals of a circuit. For ex-

ample, in a certain digital system, the Boolean value of 0 might be assigned

to any voltage in the range from 0 to 0.8 V, while the Boolean value of 1 might

be assigned to any voltage in the range 2 to 5 V.*

Thus, Boolean 0 and 1 do not represent actual numbers but instead repre-

sent the state of a voltage variable, or what is called its logic level. A voltage

in a digital circuit is said to be at the logic 0 level or the logic 1 level, depend-

ing on its actual numerical value. In digital logic, several other terms are used

synonymously with 0 and 1. Some of the more common ones are shown in

Table 3-1. We will use the 0/1 and LOW/HIGH designations most of the time.

SECTION 3-2/TRUTH TABLES 57

*Voltages between 0.8 and 2 V are undefined (neither 0 nor 1) and should not occur under normal cir-
cumstances.

Logic 0 Logic 1

False True

Off On

Low High

No Yes

Open switch Closed switch

TABLE 3-1

As we said in the introduction, Boolean algebra is a means for expressing

the relationship between a logic circuit’s inputs and outputs. The inputs are

considered logic variables whose logic levels at any time determine the out-

put levels. In all our work to follow, we shall use letter symbols to represent

logic variables. For example, the letter A might represent a certain digital

circuit input or output, and at any time we must have either or

if not one, then the other.

Because only two values are possible, Boolean algebra is relatively easy

to work with compared with ordinary algebra. In Boolean algebra, there are

no fractions, decimals, negative numbers, square roots, cube roots, loga-

rithms, imaginary numbers, and so on. In fact, in Boolean algebra there are

only three basic operations: OR, AND, and NOT.
These basic operations are called logic operations. Digital circuits called

logic gates can be constructed from diodes, transistors, and resistors con-

nected so that the circuit output is the result of a basic logic operation (OR,
AND, NOT) performed on the inputs. We will be using Boolean algebra first

to describe and analyze these basic logic gates, then later to analyze and de-

sign combinations of logic gates connected as logic circuits.

3-2 TRUTH TABLES

A truth table is a means for describing how a logic circuit’s output depends

on the logic levels present at the circuit’s inputs. Figure 3-1(a) illustrates a

truth table for one type of two-input logic circuit. The table lists all possible

A = 1:A = 0

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 57

combinations of logic levels present at inputs A and B, along with the corre-

sponding output level x. The first entry in the table shows that when A and B
are both at the 0 level, the output x is at the 1 level or, equivalently, in the 1

state. The second entry shows that when input B is changed to the 1 state, so

that and the output x becomes a 0. In a similar way, the table

shows what happens to the output state for any set of input conditions.

Figures 3-1(b) and (c) show samples of truth tables for three- and four-

input logic circuits. Again, each table lists all possible combinations of input

logic levels on the left, with the resultant logic level for output x on the right.

Of course, the actual values for x will depend on the type of logic circuit.

Note that there are 4 table entries for the two-input truth table, 8 entries

for a three-input truth table, and 16 entries for the four-input truth table.

The number of input combinations will equal 2N for an N-input truth table.

Also note that the list of all possible input combinations follows the binary

counting sequence, and so it is an easy matter to write down all of the com-

binations without missing any.

B = 1,A = 0

58 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

Inputs

Output

A

B

(a)

(b)

(c)

? x

A
0
0
1
1

B
0
1
0
1

x
1
0
1
0

A
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

B
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

C
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

D
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

x
0
0
0
1
1
0
0
1
0
0
0
1
0
0
0
1

A
0
0
0
0
1
1
1
1

B
0
0
1
1
0
0
1
1

C
0
1
0
1
0
1
0
1

x
0
1
1
0
0
0
0
1

FIGURE 3-1 Example

truth tables for (a) two-

input, (b) three-input, and

(c) four-input circuits.

3-3 OR OPERATION WITH OR GATES

The OR operation is the first of the three basic Boolean operations to be

learned. An example can be found in the kitchen oven. The light inside the

oven should turn on if either the oven light switch is on OR if the door is
opened.The letter A could be used to represent the oven light switch is on and

B could represent door is opened. The letter x could represent the light is on.
The truth table in Figure 3-2(a) shows what happens when two logic inputs,

A and B, are combined using the OR operation to produce the output x. The

table shows that x is a logic 1 for every combination of input levels where one

or more inputs are 1. The only case where x is a 0 is when both inputs are 0.

REVIEW QUESTIONS 1. What is the output state of the four-input circuit represented in Figure

3-1(c) when all inputs except B are 1?

2. Repeat question 1 for the following input conditions:

3. How many table entries are needed for a five-input circuit?

D = 0.

A = 1, B = 0, C = 1,

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 58

The Boolean expression for the OR operation is

In this expression, the � sign does not stand for ordinary addition; it stands

for the OR operation. The OR operation is similar to ordinary addition ex-

cept for the case where A and B are both 1; the OR operation produces

not In Boolean algebra, 1 is as high as we go, so we can

never have a result greater than 1. The same holds true for combining three

inputs using the OR operation. Here we have If we consider

the case where all three inputs are 1, we have

The expression is read as “x equals A OR B,” which means that x
will be 1 when A or B or both are 1. Likewise, the expression

is read as “x equals A OR B OR C,” which means that x will be 1 when A or B
or C or any combination of them are 1. To describe this circuit in the English

language we could say that x is true (1) WHEN A is true (1) OR B is true (1) OR
C is true (1).

OR Gate
In digital circuitry, an OR gate* is a circuit that has two or more inputs and

whose output is equal to the OR combination of the inputs. Figure 3-2(b) is

the logic symbol for a two-input OR gate. The inputs A and B are logic volt-

age levels, and the output x is a logic voltage level whose value is the result

of the OR operation on A and B; that is, In other words, the OR

gate operates so that its output is HIGH (logic 1) if either input A or B or both
are at a logic 1 level. The OR gate output will be LOW (logic 0) only if all its

inputs are at logic 0.

This same idea can be extended to more than two inputs. Figure 3-3 shows

a three-input OR gate and its truth table. Examination of this truth table shows

again that the output will be 1 for every case where one or more inputs are 1.

This general principle is the same for OR gates with any number of inputs.

x = A + B.

x = A + B + C
x = A + B

x = 1 + 1 + 1 = 1

x = A + B + C.

1 + 1 = 2.1 + 1 = 1,

x = A + B

SECTION 3-3/OR OPERATION WITH OR GATES 59

A
0
0
1
1

B
0
1
0
1

x = A + B
0
1
1
1

x = A + B

(a)

A

B

OR Gate

(b)

ORFIGURE 3-2 (a) Truth

table defining the OR oper-

ation; (b) circuit symbol for

a two-input OR gate.

x = A + B + CA

C
B

A
0
0
0
0
1
1
1
1

B
0
0
1
1
0
0
1
1

C
0
1
0
1
0
1
0
1

x = A + B + C
0
1
1
1
1
1
1
1

FIGURE 3-3 Symbol and

truth table for a three-input

OR gate.

*The term gate comes from the inhibit/enable operation discussed in Chapter 4.

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 59

Using the language of Boolean algebra, the output x can be expressed as

where again it must be emphasized that the � represents

the OR operation. The output of any OR gate, then, can be expressed as the

OR combination of its various inputs. We will put this to use when we subse-

quently analyze logic circuits.

Summary of the OR Operation
The important points to remember concerning the OR operation and OR

gates are:

1. The OR operation produces a result (output) of 1 whenever any input is

a 1. Otherwise the output is 0.

2. An OR gate is a logic circuit that performs an OR operation on the cir-

cuit’s inputs.

3. The expression is read as “x equals A OR B.”x = A + B

x = A + B + C,

60 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-4 Example of

the use of an OR gate in an

alarm system.

In many industrial control systems, it is required to activate an output func-

tion whenever any one of several inputs is activated. For example, in a chem-

ical process it may be desired that an alarm be activated whenever the

process temperature exceeds a maximum value or whenever the pressure goes

above a certain limit. Figure 3-4 is a block diagram of this situation.The tem-

perature transducer circuit produces an output voltage proportional to the

process temperature. This voltage, VT, is compared with a temperature ref-

erence voltage, VTR, in a voltage comparator circuit. The comparator output,

TH, is normally a low voltage (logic 0), but it switches to a high voltage (logic

1) when VT exceeds VTR, indicating that the process temperature is too high.

A similar arrangement is used for the pressure measurement, so that its as-

sociated comparator output, PH, goes from LOW to HIGH when the pressure

is too high.

Temperature
transducer

Pressure
transducer

Chemical process

Comparator

Alarm

VT

VTR

VP

VPR

Comparator

TH

PH

Since we want the alarm to be activated when either temperature or
pressure is too high, it should be apparent that the two comparator outputs

can be fed to a two-input OR gate. The OR gate output thus goes HIGH (1)

for either alarm condition and will activate the alarm.This same idea can ob-

viously be extended to situations with more than two process variables.

EXAMPLE 3-1

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 60

Solution

The OR gate output will be HIGH whenever any input is HIGH. Between time

t0 and t1, both inputs are LOW, so OUTPUT � LOW. At t1, input A goes HIGH

while B remains LOW. This causes OUTPUT to go HIGH at t1 and stay HIGH

until t4 because, during this interval, one or both inputs are HIGH. At t4, input

B goes from 1 to 0 so that now both inputs are LOW, and this drives OUTPUT

back to LOW. At t5, A goes HIGH, sending OUTPUT back HIGH, where it stays

for the rest of the shown time span.

SECTION 3-3/OR OPERATION WITH OR GATES 61

Determine the OR gate output in Figure 3-5. The OR gate inputs A and B are

varying according to the timing diagrams shown. For example, A starts out

LOW at time t0, goes HIGH at t1, back to LOW at t3, and so on.

Output = A + BA

t 0

 t 1 t 2 t 3 t 4 t 5 t 6 t 7

Time

A

B 1

0

Output
1

0

0

1

B

FIGURE 3-5 Example 3-2.

FIGURE 3-6 Examples

3-3A and B.

For the situation depicted in Figure 3-6, determine the waveform at the OR

gate output.

 A + B + C

A

C

B

Time

OUT

A

B

C

0
OUT

1

0

1

0

1

0

1

 t1

Solution

The three OR gate inputs A, B, and C are varying, as shown by their waveform

diagrams. The OR gate output is determined by realizing that it will be

EXAMPLE 3-2

EXAMPLE 3-3A

TOCCMC03_0131725793.QXD 12/21/05 11:12 AM Page 61

HIGH whenever any of the three inputs is at a HIGH level. Using this rea-

soning, the OR output waveform is as shown in the figure. Particular atten-

tion should be paid to what occurs at time t1.The diagram shows that, at that

instant of time, input A is going from HIGH to LOW while input B is going

from LOW to HIGH. Since these inputs are making their transitions at ap-

proximately the same time, and since these transitions take a certain amount

of time, there is a short interval when these OR gate inputs are both in the

undefined range between 0 and 1. When this occurs, the OR gate output also

becomes a value in this range, as evidenced by the glitch or spike on the out-

put waveform at t1. The occurrence of this glitch and its size (amplitude and

width) depend on the speed with which the input transitions occur.

62 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

What would happen to the glitch in the output in Figure 3-6 if input C sat in

the HIGH state while A and B were changing at time t1?

Solution

With the C input HIGH at t1, the OR gate output will remain HIGH, regardless

of what is occurring at the other inputs, because any HIGH input will keep an

OR gate output HIGH. Therefore, the glitch will not appear in the output.

3-4 AND OPERATION WITH AND GATES

The AND operation is the second basic Boolean operation. As an example of

the use of AND logic, consider a typical clothes dryer. It is drying clothes

(heating, tumbling) only if the timer is set above zero AND the door is closed.

Let’s assign A to represent timer is set, B to represent door is closed, and x can

represent the heater and motor are on. The truth table in Figure 3-7(a) shows

what happens when two logic inputs, A and B, are combined using the AND

operation to produce output x. The table shows that x is a logic 1 only when

both A and B are at the logic 1 level. For any case where one of the inputs is

0, the output is 0.

The Boolean expression for the AND operation is

In this expression, the sign stands for the Boolean AND operation and

not the multiplication operation. However, the AND operation on Boolean

variables operates the same as ordinary multiplication, as examination of

the truth table shows, so we can think of them as being the same. This char-

acteristic can be helpful when evaluating logic expressions that contain

AND operations.

#

x = A # B

EXAMPLE 3-3B

REVIEW QUESTIONS 1. What is the only set of input conditions that will produce a LOW output

for any OR gate?

2. Write the Boolean expression for a six-input OR gate.

3. If the A input in Figure 3-6 is permanently kept at the 1 level, what will

the resultant output waveform be?

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 62

The expression is read as “x equals A AND B,” which means

that x will be 1 only when A and B are both 1. The sign is usually omitted

so that the expression simply becomes . For the case when three in-

puts are ANDed, we have This is read as “x equals A AND

B AND C,” which means that x will be 1 only when A and B and C are all 1.

AND Gate
The logic symbol for a two-input AND gate is shown in Figure 3-7(b). The

AND gate output is equal to the AND product of the logic inputs; that is,

In other words, the AND gate is a circuit that operates so that its out-

put is HIGH only when all its inputs are HIGH. For all other cases, the AND

gate output is LOW.

This same operation is characteristic of AND gates with more than two

inputs. For example, a three-input AND gate and its accompanying truth

table are shown in Figure 3-8. Once again, note that the gate output is 1 only

for the case where The expression for the output is

For a four-input AND gate, the output is and so on.x = ABCD,

x = ABC.A = B = C = 1.

x = AB.

x = A # B # C = ABC.

x = AB

#

x = A # B

SECTION 3-4/AND OPERATION WITH AND GATES 63

FIGURE 3-7 (a) Truth

table for the AND opera-

tion; (b) AND gate symbol.

FIGURE 3-8 Truth table

and symbol for a three-

input AND gate.

A
0
0
1
1

B
0
1
0
1

x = A • B
0
0
0
1

A

B

(a) (b)

x = AB

AND

AND gate

A
0
0
0
0
1
1
1
1

B
0
0
1
1
0
0
1
1

C
0
1
0
1
0
1
0
1

x = ABC
0
0
0
0
0
0
0
1

A

C
x = ABCB

Note the difference between the symbols for the AND gate and the OR

gate. Whenever you see the AND symbol on a logic-circuit diagram, it tells you

that the output will go HIGH only when all inputs are HIGH. Whenever you

see the OR symbol, it means that the output will go HIGH when any input is

HIGH.

Summary of the AND Operation
1. The AND operation is performed the same as ordinary multiplication of

1s and 0s.

2. An AND gate is a logic circuit that performs the AND operation on the

circuit’s inputs.

3. An AND gate output will be 1 only for the case when all inputs are 1; for

all other cases, the output will be 0.

4. The expression is read as “x equals A AND B.”x = AB

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 63

Solution

The output of an AND gate is determined by realizing that it will be HIGH only

when all inputs are HIGH at the same time. For the input waveforms given, this

condition is met only during intervals and At all other times, one or

more of the inputs are 0, thereby producing a LOW output. Note that input level

changes that occur while the other input is LOW have no effect on the output.

t6-t7.t2-t3

64 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-9 Example 3-4.

Determine the output x from the AND gate in Figure 3-9 for the given input

waveforms.

A

B

x = AB

t 0 t1 t2 t3

0

1

0

1

0

1

A

B

x

 t4 t5 t6 t7

Determine the output waveform for the AND gate shown in Figure 3-10.

What will happen to the x output waveform in Figure 3-10 if the B input is

kept at the 0 level?

Solution

With B kept LOW, the x output will also stay LOW. This can be reasoned in

two different ways. First, with B � 0 we have becausex = A # B = A # 0 = 0

A

B

A

B

x

x

FIGURE 3-10 Examples 3-5A

and B.

Solution

The output x will be at 1 only when A and B are both HIGH at the same time.

Using this fact, we can determine the x waveform as shown in the figure.

Notice that the x waveform is 0 whenever B is 0, regardless of the signal

at A. Also notice that whenever B is 1, the x waveform is the same as A. Thus,

we can think of the B input as a control input whose logic level determines

whether or not the A waveform gets through to the x output. In this situation,

the AND gate is used as an inhibit circuit. We can say that B � 0 is the inhibit

condition producing a 0 output. Conversely, B � 1 is the enable condition,

which enables A to reach the output. This inhibit operation is an important

application of AND gates, which will be encountered later.

EXAMPLE 3-4

EXAMPLE 3-5A

EXAMPLE 3-5B

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 64

anything multiplied (ANDed) by 0 will be 0. Another way to look at it is that

an AND gate requires that all inputs be HIGH for the output to be HIGH, and

this cannot happen if B is kept LOW.

SECTION 3-5/NOT OPERATION 65

3-5 NOT OPERATION

The NOT operation is unlike the OR and AND operations because it can be

performed on a single input variable. For example, if the variable A is sub-

jected to the NOT operation, the result x can be expressed as

where the overbar represents the NOT operation. This expression is read as

“x equals NOT A” or “x equals the inverse of A” or “x equals the complement
of A.” Each of these is in common usage, and all indicate that the logic value

of is opposite to the logic value of A. The truth table in Figure 3-11(a)

clarifies this for the two cases A � 0 and A � 1. That is,

because 0 is not 1

and

because 1 is not 0

The NOT operation is also referred to as inversion or complementation, and

these terms will be used interchangeably throughout the book. Although we

will always use the overbar indicator to represent inversion, it is important to

mention that another indicator for inversion is the prime symbol (). That is,

Both should be recognized as indicating the inversion operation.

A¿ = A

¿

1 = 0

0 = 1

x = A

x = A

FIGURE 3-11 (a) Truth

table; (b) symbol for the

INVERTER (NOT circuit);

(c) sample waveforms.

A
0
1

x = A
1
0

1

0
A

1

0
x

(c)

Presence of small
circle always denotes
inversion

(b)

A x = A

(a)

NOT NOT

REVIEW QUESTIONS 1. What is the only input combination that will produce a HIGH at the out-

put of a five-input AND gate?

2. What logic level should be applied to the second input of a two-input

AND gate if the logic signal at the first input is to be inhibited (pre-

vented) from reaching the output?

3. True or false: An AND gate output will always differ from an OR gate out-

put for the same input conditions.

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 65

NOT Circuit (INVERTER)
Figure 3-11(b) shows the symbol for a NOT circuit, which is more commonly

called an INVERTER. This circuit always has only a single input, and its out-

put logic level is always opposite to the logic level of this input. Figure 3-11(c)

shows how the INVERTER affects an input signal. It inverts (complements)

the input signal at all points on the waveform so that whenever the input

� 0, output � 1, and vice versa.

66 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-12 A NOT gate

indicating a button is not
pressed when its output is

true.

Logic level 1 (true) when pressed
(false when button is not pressed).

Pressed

+5 V

Push
button

NOT Pressed

Logic level 1 (true) when not pressed
(false when button is pressed).

Summary of Boolean Operations
The rules for the OR,AND, and NOT operations may be summarized as follows:

OR AND NOT

1 # 1 = 11 + 1 = 1

1 # 0 = 01 + 0 = 1

1 = 00 # 1 = 00 + 1 = 1

0 = 10 # 0 = 00 + 0 = 0

3-6 DESCRIBING LOGIC CIRCUITS ALGEBRAICALLY

Any logic circuit, no matter how complex, can be described completely using

the three basic Boolean operations because the OR gate, AND gate, and NOT

circuit are the basic building blocks of digital systems. For example, consider

Figure 3-12 shows a typical application of the NOT gate. The push button is

wired to produce a logic 1 (true) when it is pressed. Sometimes we want to

know if the push button is not being pressed, and so this circuit provides an

expression that is true when the button is not pressed.

APPLICATION 3-1

REVIEW QUESTIONS 1. The output of the INVERTER of Figure 3-11 is connected to the input of

a second INVERTER. Determine the output level of the second IN-

VERTER for each level of input A.

2. The output of the AND gate in Figure 3-7 is connected to the input of an

INVERTER. Write the truth table showing the INVERTER output, y, for

each combination of inputs A and B.

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 66

the circuit in Figure 3-13(a). This circuit has three inputs, A, B, and C, and a

single output, x. Utilizing the Boolean expression for each gate, we can eas-

ily determine the expression for the output.

The expression for the AND gate output is written A · B.This AND output

is connected as an input to the OR gate along with C, another input. The OR

gate operates on its inputs so that its output is the OR sum of the inputs.

Thus, we can express the OR output as (This final expression

could also be written as because it does not matter which term

of the OR sum is written first.)

Operator Precedence
Occasionally, there may be confusion about which operation in an expression

is performed first. The expression can be interpreted in two differ-

ent ways: (1) is ORed with C, or (2) A is ANDed with the term To

avoid this confusion, it will be understood that if an expression contains both

AND and OR operations, the AND operations are performed first, unless

there are parentheses in the expression, in which case the operation inside

the parentheses is to be performed first. This is the same rule that is used in

ordinary algebra to determine the order of operations.

To illustrate further, consider the circuit in Figure 3-13(b).The expression

for the OR gate output is simply This output serves as an input to the

AND gate along with another input, C. Thus, we express the output of the

AND gate as Note the use of parentheses here to indicate that

A and B are ORed first, before their OR sum is ANDed with C. Without the

parentheses it would be interpreted incorrectly, because means

that A is ORed with the product

Circuits Containing INVERTERs
Whenever an INVERTER is present in a logic-circuit diagram, its output ex-

pression is simply equal to the input expression with a bar over it. Figure 3-14

shows two examples using INVERTERs. In Figure 3-14(a), input A is fed

through an INVERTER, whose output is therefore .The INVERTER output

is fed to an OR gate together with B, so that the OR output is equal to

Note that the bar is over the A alone, indicating that A is first inverted and

then ORed with B.

A + B.

A

B # C.

A + B # C

x = (A + B) # C.

A + B.

B + C.A # B
A # B + C

x = C + A # B
x = A # B + C.

SECTION 3-6/DESCRIBING LOGIC CIRCUITS ALGEBRAICALLY 67

FIGURE 3-13 (a) Logic

circuit with its Boolean

expression; (b) logic circuit

whose expression requires

parentheses.

A

B x = A • B + C
C

A • B

(a)

A

B x = (A + B) • C
C

A + B

(b)

A

B

A

B x = A + B

A + B

(b)(a)

x = A + B

AFIGURE 3-14 Circuits

using INVERTERs.

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 67

In Figure 3-14(b), the output of the OR gate is equal to A � B and is fed

through an INVERTER.The INVERTER output is therefore equal to

because it inverts the complete input expression. Note that the bar covers the

entire expression (A � B). This is important because, as will be shown later,

the expressions and are not equivalent. The expression

means that A is ORed with B and then their OR sum is inverted,

whereas the expression indicates that A is inverted and B is inverted

and the results are then ORed together.

Figure 3-15 shows two more examples, which should be studied carefully.

Note especially the use of two separate sets of parentheses in Figure 3-15(b).

Also notice in Figure 3-15(a) that the input variable A is connected as an in-

put to two different gates.

(A + B)

(A + B)

(A + B)(A + B)

(A + B)

68 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-15 More examples.

A
B
C

A

D

A

B

C

D

E

A + B

A + D

A
ABC

A + D

(a)

x = ABC (A + D)

(A + B)C (A + B)C

(b)

D + (A + B)C

x = [D + (A + B)C] • E

3-7 EVALUATING LOGIC-CIRCUIT OUTPUTS

Once we have the Boolean expression for a circuit output, we can obtain the

output logic level for any set of input levels. For example, suppose that we

want to know the logic level of the output x for the circuit in Figure 3-15(a)

for the case where and As in ordinary algebra,D = 1.A = 0, B = 1, C = 1,

REVIEW QUESTIONS 1. In Figure 3-15(a), change each AND gate to an OR gate, and change the

OR gate to an AND gate. Then write the expression for output x.

2. In Figure 3-15(b), change each AND gate to an OR gate, and each OR

gate to an AND gate. Then write the expression for x.

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 68

the value of x can be found by “plugging” the values of the variables into the

expression and performing the indicated operations as follows:

As another illustration, let us evaluate the output of the circuit in Figure

3-15(b) for and

In general, the following rules must always be followed when evaluating a

Boolean expression:

1. First, perform all inversions of single terms; that is, or

2. Then perform all operations within parentheses.

3. Perform an AND operation before an OR operation unless parentheses

indicate otherwise.

4. If an expression has a bar over it, perform the operations inside the ex-

pression first and then invert the result.

For practice, determine the outputs of both circuits in Figure 3-15 for the

case where all inputs are 1. The answers are and respectively.

Analysis Using a Table
Whenever you have a combinational logic circuit and you want to know how

it works, the best way to analyze it is to use a truth table. The advantages of

this method are:

It allows you to analyze one gate or logic combination at a time.

It allows you to easily double-check your work.

When you are done, you have a table that is of tremendous benefit in

troubleshooting the logic circuit.

Recall that a truth table lists all the possible input combinations in nu-

merical order. For each possible input combination, we can determine the logic

state at every point (node) in the logic circuit including the output. For exam-

ple refer to Figure 3-16(a). There are several intermediate nodes in this circuit

that are neither inputs nor outputs to the circuit. They are simply connections

between one gate’s output and another gate’s input. In this diagram they have

been labeled u, v, and w. The first step after listing all the input combinations

is to create a column in the truth table for each intermediate signal (node) as

shown in Figure 3-16(b). Node u has been filled in as the complement of A.

x = 1,x = 0

1 = 0.0 = 1

 = 1

 = 1 # 1

 = [1 + 1] # 1

 = [1 + 0] # 1

 = [1 + 0 # 1] # 1

 = [1 + (0 + 0) # 1] # 1

x = [D + (A + B)C] # E

E = 1.A = 0, B = 0, C = 1, D = 1,

 = 0

 = 1 # 1 # 1 # 0

 = 1 # 1 # 1 # (1)

 = 1 # 1 # 1 # (0 + 1)

 = 0 # 1 # 1 # (0 + 1)

x = ABC(A + D)

SECTION 3-7/EVALUATING LOGIC-CIRCUIT OUTPUTS 69

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 69

The next step is to fill in the values for column v as shown in Figure 3-16(c).

From the diagram we can see that The node v should be HIGH when

(node u) is HIGH AND B is HIGH. This occurs whenever A is LOW AND B
is HIGH. The third step is to predict the values at node w which is the logical

product of BC. This column is HIGH whenever B is HIGH AND C is HIGH as

shown in Figure 3-16(d). The final step is to logically combine columns v and

w to predict the output x. Since the x output will be HIGH when

v is HIGH OR w is HIGH as shown in Figure 3-16(e).

If you built this circuit and it was not producing the correct output for x
under all conditions, this table could be used to find the trouble.The general

procedure is to test the circuit under each combination of inputs. If any in-

put combination produces an incorrect output (i.e., a fault), compare the

actual logic state of each intermediate node in the circuit with the correct

theoretical value in the table while applying that input condition. If the logic

state for an intermediate node is correct, the problem must be farther to the

right of that node. If the logic state for an intermediate node is incorrect, the

problem must be to the left of that node (or that node is shorted to some-

thing). Detailed troubleshooting procedures and possible circuit faults will

be covered more extensively in Chapter 4.

x = v + w,

A
v = AB.

70 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-16 Analysis of

a logic circuit using truth

tables.
u = A

v = AB
x

A

B

C

w = BC

A B C u=
A

v=
AB

w=
BC

x=
v+w

0 0 1
0 0 1
0 1 1
0 1 1
1 0 0
1 0 0
1 1 0
1 1

0
1
0
1
0
1
0
1 0

(b)

A B C u=
A

v=
AB

w=
BC

x=
v+w

(c)

0 0 0 1 0

0 0 1 1 0

0 1 0 1 1
0 1 1 1 1
1 0 0 0 0

1 0 1 0 0

1 1 0 0 0

1 1 1 0 0

A B C u=
A

v=
AB

w=
BC

x=
v+w

0 0 0 1 0 0

0 0 1 1 0 0

0 1 0 1 1 0

0 1 1 1 1 1
1 0 0 0 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 1 1 0 0 1

(d)

0 0 0 0 0

0 1 0 0 0

0 0 1 0 1
0 1 1 1 1
1 0 0 0 0

1 1 0 0 0

1 0 0 0 0

1

0
0
1
1
0
0
1
1 1

1
1
1
1
0
0
0
0 0 1 1

A B C u=
A

v=
AB

w=
BC

x=
v+w

(e)

(a)

TOCCMC03_0131725793.QXD 12/21/05 11:12 AM Page 70

3-8 IMPLEMENTING CIRCUITS FROM BOOLEAN EXPRESSIONS

When the operation of a circuit is defined by a Boolean expression, we can

draw a logic-circuit diagram directly from that expression. For example, if we

needed a circuit that was defined by , we would immediately

know that all that was needed was a three-input AND gate. If we needed a

circuit that was defined by , we would use a two-input OR gate

with an INVERTER on one of the inputs. The same reasoning used for these

simple cases can be extended to more complex circuits.

x = A + B

x = A # B # C

SECTION 3-8/IMPLEMENTING CIRCUITS FROM BOOLEAN EXPRESSIONS 71

Analyze the operation of Figure 3-15(a) by creating a table showing the logic

state at each node of the circuit.

Solution

Fill in the column for t by entering a 1 for all entries where A � 0 and

B � 1 and C � 1.

Fill in the column for u by entering a 1 for all entries where A � 1 or D � 1.

Fill in the column for v by complementing all entries in column u.

Fill in the column for x by entering a 1 for all entries where t � l and v � 1.

A B C D t � u � A � D v � x � tv

0 0 0 0 0 0 1 0

0 0 0 1 0 1 0 0

0 0 1 0 0 0 1 0

0 0 1 1 0 1 0 0

0 1 0 0 0 0 1 0

0 1 0 1 0 1 0 0

0 1 1 0 1 0 1 1

0 1 1 1 1 1 0 0

1 0 0 0 0 1 0 0

1 0 0 1 0 1 0 0

1 0 1 0 0 1 0 0

1 0 1 1 0 1 0 0

1 1 0 0 0 1 0 0

1 1 0 1 0 1 0 0

1 1 1 0 0 1 0 0

1 1 1 1 0 1 0 0

A � DABC

EXAMPLE 3-6

REVIEW QUESTIONS 1. Use the expression for x to determine the output of the circuit in Figure

3-15(a) for the conditions and

2. Use the expression for x to determine the output of the circuit in Figure

3-15(b) for the conditions

3. Determine the answers to Questions 1 and 2 by finding the logic levels

present at each gate output using a table as in Figure 3-16.

A = B = E = 1, C = D = 0.

D = 0.A = 0, B = 1, C = 1,

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 71

Suppose that we wanted to construct a circuit whose output is

This Boolean expression contains three terms

which are ORed together. This tells us that a three-input OR

gate is required with inputs that are equal to AC, , and This is illus-

trated in Figure 3-17(a), where a three-input OR gate is drawn with inputs la-

beled as AC, , and ABC.BC

ABC.BC
(AC, BC, ABC),

y = AC + BC + ABC.

72 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-17 Constructing

a logic circuit from a

Boolean expression.

AC

ABC
BC y = AC + BC + ABC

(a)

y = AC + BC + ABC

A

B

C
C

A

B

AC

ABC

BC

(b)

C

C

B

Each OR gate input is an AND product term, which means that an AND

gate with appropriate inputs can be used to generate each of these terms.

This is shown in Figure 3-17(b), which is the final circuit diagram. Note the

use of INVERTERs to produce the and terms required in the expression.

This same general approach can always be followed, although we shall

find that there are some clever, more efficient techniques that can be em-

ployed. For now, however, this straightforward method will be used to mini-

mize the number of new items that are to be learned.

CA

Draw the circuit diagram to implement the expression

Solution

This expression shows that the terms A � B and are inputs to an AND

gate, and each of these two terms is generated from a separate OR gate. The

result is drawn in Figure 3-18.

B + C

x = (A + B)(B + C).

A

B

C

A + B

B + C
B

x = (A + B)(B + C)

FIGURE 3-18
Example 3-7.

EXAMPLE 3-7

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 72

3-9 NOR GATES AND NAND GATES

Two other types of logic gates, NOR gates and NAND gates, are widely used

in digital circuits. These gates actually combine the basic AND, OR, and

NOT operations, so it is a relatively simple matter to write their Boolean

expressions.

NOR Gate
The symbol for a two-input NOR gate is shown in Figure 3-19(a). It is the

same as the OR gate symbol except that it has a small circle on the output.

The small circle represents the inversion operation. Thus, the NOR gate op-

erates like an OR gate followed by an INVERTER, so that the circuits in

Figure 3-19(a) and (b) are equivalent, and the output expression for the NOR

gate is x = A + B.

SECTION 3-9/NOR GATES AND NAND GATES 73

FIGURE 3-19 (a) NOR

symbol; (b) equivalent circuit;

(c) truth table.

A
0
0
1
1

B
0
1
0
1

 A + B
0
1
1
1

 A + B
1
0
0
0

A

B
Denotes
inversion

(a)

(b)

OR NOR

(c)

x = A + B

A + BA

B

x = A + B

The truth table in Figure 3-19(c) shows that the NOR gate output is the

exact inverse of the OR gate output for all possible input conditions. An OR

gate output goes HIGH when any input is HIGH; the NOR gate output goes

LOW when any input is HIGH. This same operation can be extended to NOR

gates with more than two inputs.

REVIEW QUESTIONS
1. Draw the circuit diagram that implements the expression

using gates with no more than three inputs.

2. Draw the circuit diagram for the expression

3. Draw the circuit diagram for x = [D + (A + B)C)] # E.

y = AC + BC + ABC.

x = ABC(A + D)

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 73

Solution

One way to determine the NOR output waveform is to find first the OR out-

put waveform and then invert it (change all 1s to 0s, and vice versa). Another

way utilizes the fact that a NOR gate output will be HIGH only when all in-

puts are LOW. Thus, you can examine the input waveforms, find those time

intervals where they are all LOW, and make the NOR output HIGH for those

intervals. The NOR output will be LOW for all other time intervals. The re-

sultant output waveform is shown in the figure.

74 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-20
Example 3-8.

Determine the waveform at the output of a NOR gate for the input wave-

forms shown in Figure 3-20.

Determine the Boolean expression for a three-input NOR gate followed by

an INVERTER.

Solution

Refer to Figure 3-21, where the circuit diagram is shown. The expression at

the NOR output is which is then fed through an INVERTER to

produce

The presence of the double inversion signs indicates that the quantity (A �
B � C) has been inverted and then inverted again. It should be clear that this

simply results in the expression (A � B � C) being unchanged. That is,

Whenever two inversion bars are over the same variable or quantity, they

cancel each other out, as in the example above. However, in cases such as

the inversion bars do not cancel. This is because the smaller inver-

sion bars invert the single variables A and B, while the wide bar inverts the

quantity (). Thus, . Similarly, .A B Z ABA + B Z A + BA + B

A + B

x = (A + B + C) = (A + B + C)

x = (A + B + C)

(A + B + C),

A

B

x = A + B

1

0
A

1

0
B

1

0
x

A

C
B

A + B + C x = A + B + C = A + B + CFIGURE 3-21 Example 3-9.

EXAMPLE 3-8

EXAMPLE 3-9

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 74

NAND Gate
The symbol for a two-input NAND gate is shown in Figure 3-22(a). It is the

same as the AND gate symbol except for the small circle on its output. Once

again, this small circle denotes the inversion operation. Thus, the NAND op-

erates like an AND gate followed by an INVERTER, so that the circuits of

Figure 3-22(a) and (b) are equivalent, and the output expression for the

NAND gate is x = AB.

SECTION 3-9/NOR GATES AND NAND GATES 75

FIGURE 3-22 (a) NAND

symbol; (b) equivalent

circuit; (c) truth table.

A
0
0
1
1

B
0
1
0
1

 AB
0
0
0
1

(c)

 AB
1
1
1
0

AND NAND
A

B
Denotes
inversion

(a)

(b)

x = AB

A

B

AB AB

The truth table in Figure 3-22(c) shows that the NAND gate output is the

exact inverse of the AND gate for all possible input conditions. The AND

output goes HIGH only when all inputs are HIGH, while the NAND output

goes LOW only when all inputs are HIGH. This same characteristic is true of

NAND gates having more than two inputs.

Determine the output waveform of a NAND gate having the inputs shown in

Figure 3-23.

A

B

x

x = ABA

B

FIGURE 3-23
Example 3-10.

Solution

One way is to draw first the output waveform for an AND gate and then in-

vert it. Another way utilizes the fact that a NAND output will be LOW only

when all inputs are HIGH. Thus, you can find those time intervals during

which the inputs are all HIGH, and make the NAND output LOW for those in-

tervals. The output will be HIGH at all other times.

EXAMPLE 3-10

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 75

76 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-24
Examples 3-11 and 3-12.

Implement the logic circuit that has the expression using

only NOR and NAND gates.

Solution

The term is the expression for the output of a NOR gate.This term is

ANDed with A and B, and the result is inverted; this, of course, is the NAND

operation. Thus, the circuit is implemented as shown in Figure 3-24. Note

that the NAND gate first ANDs the A, B, and terms, and then it in-

verts the complete result.

(C + D)

(C + D)

x = AB # (C + D)

C

D

1

0
C + D

x = AB(C + D)1

1

1
0

B

A

Determine the output level in Figure 3-24 for A � B � C � 1 and D � 0.

Solution

In the first method we use the expression for x.

In the second method, we write down the input logic levels on the circuit

diagram (shown in color in Figure 3-24) and follow these levels through

each gate to the final output. The NOR gate has inputs of 1 and 0 to pro-

duce an output of 0 (an OR would have produced an output of 1). The

NAND gate thus has input levels of 0, 1, and 1 to produce an output of 1 (an

AND would have produced an output of 0).

 = 0 = 1

 = 1 # 1 # 0

 = 1 # 1 # (1)

 = 1 # 1 # (1 + 0)

x = AB(C + D)

3-10 BOOLEAN THEOREMS

We have seen how Boolean algebra can be used to help analyze a logic circuit

and express its operation mathematically. We will continue our study of

Boolean algebra by investigating the various Boolean theorems (rules) that

can help us to simplify logic expressions and logic circuits. The first group of

theorems is given in Figure 3-25. In each theorem, x is a logic variable that

EXAMPLE 3-11

EXAMPLE 3-12

REVIEW QUESTIONS 1. What is the only set of input conditions that will produce a HIGH output

from a three-input NOR gate?

2. Determine the output level in Figure 3-24 for A � B � 1, C � D � 0.

3. Change the NOR gate of Figure 3-24 to a NAND gate, and change the

NAND to a NOR. What is the new expression for x?

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 76

can be either a 0 or a 1. Each theorem is accompanied by a logic-circuit dia-

gram that demonstrates its validity.

Theorem (1) states that if any variable is ANDed with 0, the result must

be 0. This is easy to remember because the AND operation is just like ordi-

nary multiplication, where we know that anything multiplied by 0 is 0. We

also know that the output of an AND gate will be 0 whenever any input is 0,

regardless of the level on the other input.

Theorem (2) is also obvious by comparison with ordinary multiplication.

Theorem (3) can be proved by trying each case. If x � 0, then ; if

x � 1, then Thus,

Theorem (4) can be proved in the same manner. However, it can also be

reasoned that at any time either x or its inverse must be at the 0 level, and

so their AND product always must be 0.

Theorem (5) is straightforward, since 0 added to anything does not affect

its value, either in regular addition or in OR addition.

Theorem (6) states that if any variable is ORed with 1, the result will al-

ways be 1. We check this for both values of x: 0 � 1 � 1 and 1 � 1 � 1.

Equivalently, we can remember that an OR gate output will be 1 when any
input is 1, regardless of the value of the other input.

Theorem (7) can be proved by checking for both values of x: 0 � 0 � 0

and 1 � 1 � 1.

Theorem (8) can be proved similarly, or we can just reason that at any

time either x or must be at the 1 level so that we are always ORing a 0 and

a 1, which always results in 1.

Before introducing any more theorems, we should point out that when the-

orems (1) through (8) are applied, the variable x may actually represent an

expression containing more than one variable. For example, if we have

we can invoke theorem (4) by letting Thus, we can say that

The same idea can be applied to the use of any of these theorems.

Multivariable Theorems
The theorems presented below involve more than one variable:

(9) x � y � y � x
(10) x # y = y # x

AB(AB) = 0.

x = AB.AB(AB),

x

x

x # x = x.1 # 1 = 1.

0 # 0 = 0

SECTION 3-10/BOOLEAN THEOREMS 77

FIGURE 3-25 Single-variable theorems.

0

x

x

0

x

1

x

1
x

x

1

x

0

x

x

x

1

x

x

0

(1) x • 0 = 0

(2) x • 1 = x

(3) x • x = x

(4) x • x = 0

(5) x + 0 = x

(6) x + 1 = 1

(7) x + x = x

(8) x + x = 1

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 77

x y xy x � xy

0 0 0 0

0 1 0 0

1 0 0 1

1 1 1 1

(11) x � (y � z) � (x � y) � z � x � y � z
(12) x(yz) � (xy)z � xyz
(13a) x(y � z) � xy � xz
(13b) (w � x)(y � z) � wy � xy � wz � xz
(14) x � xy � x
(15a)

(15b)

Theorems (9) and (10) are called the commutative laws. These laws indi-

cate that the order in which we OR or AND two variables is unimportant; the

result is the same.

Theorems (11) and (12) are the associative laws, which state that we can

group the variables in an AND expression or OR expression any way we want.

Theorem (13) is the distributive law, which states that an expression can be

expanded by multiplying term by term just the same as in ordinary algebra.

This theorem also indicates that we can factor an expression.That is, if we have

a sum of two (or more) terms, each of which contains a common variable, the

common variable can be factored out just as in ordinary algebra. For example,

if we have the expression we can factor out the variable:

As another example, consider the expression ABC � ABD. Here the two

terms have the variables A and B in common, and so can be factored out

of both terms. That is,

ABC � ABD � AB(C � D)

Theorems (9) to (13) are easy to remember and use because they are

identical to those of ordinary algebra. Theorems (14) and (15), on the other

hand, do not have any counterparts in ordinary algebra. Each can be proved

by trying all possible cases for x and y. This is illustrated (for theorem 14) by

creating an analysis table for the equation x � xy as follows:

A # B

ABC + A B C = B(AC + A C)

BABC + A B C,

x + xy = x + y
x + xy = x + y

78 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

Notice that the value of the entire expression (x � xy) is always the same

as x.
Theorem (14) can also be proved by factoring and using theorems (6) and

(2) as follows:

All of these Boolean theorems can be useful in simplifying a logic expres-

sion—that is, in reducing the number of terms in the expression. When this is

done, the reduced expression will produce a circuit that is less complex than

the one that the original expression would have produced. A good portion of

the next chapter will be devoted to the process of circuit simplification. For

 = x [using theorem (2)]

 = x # 1 [using theorem (6)]

x + xy = x(1 + y)

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 78

now, the following examples will serve to illustrate how the Boolean theo-

rems can be applied. Note: You can find all the Boolean theorems on the in-

side back cover.

SECTION 3-10/BOOLEAN THEOREMS 79

Simplify the expression .

Solution

Factor out the common variables using theorem (13):

Using theorem (8), the term in parentheses is equivalent to 1. Thus,

[using theorem (2)]= AB
y = AB # 1

y = AB(D + D)

AB

y = ABD + AB D

Simplify

Solution

The expression can be expanded by multiplying out the terms [theorem (13)]:

Invoking theorem (4), the term Also, [theorem (3)]:

Factoring out the variable B [theorem (13)], we have

Finally, using theorems (2) and (6),

z � B

z = B(A + A + 1)

z = 0 + A # B + B # A + B = AB + AB + B

B # B = BA # A = 0.

z = A # A + A # B + B # A + B # B

z = (A + B)(A + B).

Simplify

Solution

Factoring out the common variables CD, we have

Utilizing theorem (15a), we can replace by A � B, so

 = ACD + BCD
x = CD(A + B)

A + AB

x = CD(A + AB)

x = ACD + ABCD.

EXAMPLE 3-13

EXAMPLE 3-14

EXAMPLE 3-15

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 79

3-11 DEMORGAN’S THEOREMS

Two of the most important theorems of Boolean algebra were contributed by

a great mathematician named DeMorgan. DeMorgan’s theorems are ex-

tremely useful in simplifying expressions in which a product or sum of vari-

ables is inverted. The two theorems are:

(16)

(17)

Theorem (16) says that when the OR sum of two variables is inverted,

this is the same as inverting each variable individually and then ANDing

these inverted variables. Theorem (17) says that when the AND product of

two variables is inverted, this is the same as inverting each variable individ-

ually and then ORing them. Each of DeMorgan’s theorems can readily be

proven by checking for all possible combinations of x and y. This will be left

as an end-of-chapter exercise.

Although these theorems have been stated in terms of single variables x
and y, they are equally valid for situations where x and/or y are expressions

that contain more than one variable. For example, let’s apply them to the ex-

pression as shown below:

Note that we used theorem (16) and treated as x and C as y. The result can

be further simplified because we have a product that is inverted. Using

theorem (17), the expression becomes

Notice that we can replace by B, so that we finally have

This final result contains only inverter signs that invert a single variable.

(A + B) # C = A C + BC

B

AB # C = (A + B) # C

AB
AB

(AB + C) = (AB) # C

(AB + C)

(x # y) = x + y
(x + y) = x # y

80 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

Simplify the expression to one having only single vari-

ables inverted.

Solution

Using theorem (17), and treating () as x and () as y, we have

z = (A + C) + (B + D)

B + DA + C

z = (A + C) # (B + D)

REVIEW QUESTIONS
1. Use theorems (13) and (14) to simplify

2. Use theorems (13) and (8) to simplify

3. Use theorems (13) and (15b) to simplify y = AD + ABD.

y = A BCD + A B C D.

y = AC + ABC.

EXAMPLE 3-16

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 80

We can think of this as breaking the large inverter sign down the middle

and changing the AND sign () to an OR sign (�). Now the term can

be simplified by applying theorem (16). Likewise, can be simpli-

fied:

Here we have broken the larger inverter signs down the middle and replaced

the (�) with a (·). Canceling out the double inversions, we have finally

Example 3-16 points out that when using DeMorgan’s theorems to reduce

an expression, we may break an inverter sign at any point in the expression

and change the operator sign at that point in the expression to its opposite

(� is changed to ·, and vice versa). This procedure is continued until the ex-

pression is reduced to one in which only single variables are inverted. Two

more examples are given below.

Example 1 Example 2

� �

DeMorgan’s theorems are easily extended to more than two variables.

For example, it can be proved that

Here, we see that the large inverter sign is broken at two points in the expres-

sion and the operator sign is changed to its opposite. This can be extended to

any number of variables. Again, realize that the variables can themselves be

expressions rather than single variables. Here is another example.

� AB � CD � EF

Implications of DeMorgan’s Theorems
Let us examine theorems (16) and (17) from the standpoint of logic circuits.

First, consider theorem (16):

The left-hand side of the equation can be viewed as the output of a NOR gate

whose inputs are x and y. The right-hand side of the equation, on the other

x + y = x # y

= AB + CD + EF
x = AB # CD # EF

 x # y # z = x + y + z
 x + y + z = x # y # z

= A B + A C + D E + D F

= [A # (B + C)] + [D # (E + F)]= A # (B + C)

= (A # BC) + (D # EF)= A # (B + C)

= (A + BC) + (D + EF)= A # (B # C)

1A + BC2 � 1D + EF2z = A + B # C

z = AC + BD

 = (A # C) + B # D

z = (A + C) + (B + D)

(B + D)

(A + C)#

SECTION 3-11/DEMORGAN’S THEOREMS 81

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 81

hand, is the result of first inverting both x and y and then putting them through

an AND gate. These two representations are equivalent and are illustrated in

Figure 3-26(a). What this means is that an AND gate with INVERTERs on each

of its inputs is equivalent to a NOR gate. In fact, both representations are used

to represent the NOR function.When the AND gate with inverted inputs is used

to represent the NOR function, it is usually drawn as shown in Figure 3-26(b),

where the small circles on the inputs represent the inversion operation.

Now consider theorem (17):

The left side of the equation can be implemented by a NAND gate with in-

puts x and y. The right side can be implemented by first inverting inputs x
and y and then putting them through an OR gate. These two equivalent rep-

resentations are shown in Figure 3-27(a). The OR gate with INVERTERs on

each of its inputs is equivalent to the NAND gate. In fact, both representa-

tions are used to represent the NAND function. When the OR gate with in-

verted inputs is used to represent the NAND function, it is usually drawn as

shown in Figure 3-27(b), where the circles again represent inversion.

x # y = x + y

82 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-26
(a) Equivalent circuits

implied by theorem (16);

(b) alternative symbol for

the NOR function.

FIGURE 3-27
(a) Equivalent circuits

implied by theorem (17);

(b) alternative symbol for

the NAND function.

(b)

x

y
x • y = x + y

x

y

(a)

x

y

x

yx + y x • y = x + y

Determine the output expression for the circuit of Figure 3-28 and simplify

it using DeMorgan’s theorems.

A
B

C

z = A • B • C = A + B + C = A + B + C

C

(b)

x

y
x + y = xy

x

y
x + y = xy xy

(a)

x

y

x

y

FIGURE 3-28
Example 3-17.

EXAMPLE 3-17

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 82

Solution

The expression for z is Use DeMorgan’s theorem to break the large

inversion sign:

Cancel the double inversions over C to obtain

z = A + B + C

z = A + B + C

z = ABC.

SECTION 3-12/UNIVERSALITY OF NAND GATES AND NOR GATES 83

3-12 UNIVERSALITY OF NAND GATES AND NOR GATES

All Boolean expressions consist of various combinations of the basic opera-

tions of OR, AND, and INVERT. Therefore, any expression can be imple-

mented using combinations of OR gates, AND gates, and INVERTERs. It is

possible, however, to implement any logic expression using only NAND gates

and no other type of gate. This is because NAND gates, in the proper combi-

nation, can be used to perform each of the Boolean operations OR, AND, and

INVERT. This is demonstrated in Figure 3-29.

A

A

B

A

B

A

INVERTER

AND

OR

A

A

B

B
1

2

3

1

2

(a)

(b)

(c)

x = A • A = A

AB

A

B

x = AB

x = A B = A + B

FIGURE 3-29 NAND gates can be used to implement any Boolean function.

REVIEW QUESTIONS
1. Use DeMorgan’s theorems to convert the expression to

one that has only single-variable inversions.

2. Repeat question 1 for the expression

3. Implement a circuit having output expression using only a NOR

gate and an INVERTER.

4. Use DeMorgan’s theorems to convert y � to an expression

containing only single-variable inversions.

A + B + CD

z = A BC

y = RST + Q.

z = (A + B) # C

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 83

First, in Figure 3-29(a), we have a two-input NAND gate whose inputs are

purposely connected together so that the variable A is applied to both. In

this configuration, the NAND simply acts as INVERTER because its output

is

In Figure 3-29(b), we have two NAND gates connected so that the AND

operation is performed. NAND gate 2 is used as an INVERTER to change

to which is the desired AND function.

The OR operation can be implemented using NAND gates connected as

shown in Figure 3-29(c). Here NAND gates 1 and 2 are used as INVERTERs

to invert the inputs, so that the final output is which can be sim-

plified to x � A � B using DeMorgan’s theorem.

In a similar manner, it can be shown that NOR gates can be arranged to

implement any of the Boolean operations. This is illustrated in Figure 3-30.

Part (a) shows that a NOR gate with its inputs connected together behaves

as an INVERTER because the output is x = A + A = A.

x = A # B,

AB = AB,

AB

x = A # A = A.

84 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-30 NOR gates can be used to implement any Boolean operation.

A

INVERTER

A

B

OR

A

B

AND

A

A

A

B

B

(a)

(b)

(c)

A

B

x = A + B = A B

x = A + A = A

A + B A + B
2

3

1

1

2

In Figure 3-30(b), two NOR gates are arranged so that the OR opera-

tion is performed. NOR gate 2 is used as an INVERTER to change

to which is the desired OR function.

The AND operation can be implemented with NOR gates as shown in

Figure 3-30(c). Here, NOR gates 1 and 2 are used as INVERTERs to invert

the inputs, so that the final output is which can be simplified to

by use of DeMorgan’s theorem.

Since any of the Boolean operations can be implemented using only

NAND gates, any logic circuit can be constructed using only NAND gates.

The same is true for NOR gates. This characteristic of NAND and NOR gates

can be very useful in logic-circuit design, as Example 3-18 illustrates.

x = A # B
x = A + B,

A + B = A + B,

A + B

In a certain manufacturing process, a conveyor belt will shut down when-

ever specific conditions occur. These conditions are monitored and reflected

EXAMPLE 3-18

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 84

SECTION 3-12/UNIVERSALITY OF NAND GATES AND NOR GATES 85

7654321

74LS00

14 13 12 11 10 9 8

GND

VCC

7654321

74LS08

14 13 12 11 10 9 8

GND

VCC

7654321

74LS32

14 13 12 11 10 9 8

GND

VCC

FIGURE 3-31 ICs available for Example 3-18.

Solution

The straightforward method for implementing the given expression uses two

AND gates and an OR gate, as shown in Figure 3-32(a). This implementation

uses two gates from the 74LS08 IC and a single gate from the 74LS32 IC.The

numbers in parentheses at each input and output are the pin numbers of the

respective IC. These are always shown on any logic-circuit wiring diagram.

For our purposes, most logic diagrams will not show pin numbers unless they

are needed in the description of circuit operation.

Another implementation can be accomplished by taking the circuit of

Figure 3-32(a) and replacing each AND gate and OR gate by its equivalent

NAND gate implementation from Figure 3-29. The result is shown in Figure

3-32(b).

At first glance, this new circuit looks as if it requires seven NAND

gates. However, NAND gates 3 and 5 are connected as INVERTERs in se-

ries and can be eliminated from the circuit because they perform a double

inversion of the signal out of NAND gate 1. Similarly, NAND gates 4 and 6

can be eliminated.The final circuit, after eliminating the double INVERTERs,

is drawn in Figure 3-32(c).

This final circuit is more efficient than the one in Figure 3-32(a) be-

cause it uses three two-input NAND gates that can be implemented from

one IC, the 74LS00.

by the states of four logic signals as follows: signal A will be HIGH when-

ever the conveyor belt speed is too fast; signal B will be HIGH whenever

the collection bin at the end of the belt is full; signal C will be HIGH when

the belt tension is too high; signal D will be HIGH when the manual over-

ride is off.

A logic circuit is needed to generate a signal x that will go HIGH when-

ever conditions A and B exist simultaneously or whenever conditions C
and D exist simultaneously. Clearly, the logic expression for x will be

x � AB � CD. The circuit is to be implemented with a minimum number

of ICs. The TTL integrated circuits shown in Figure 3-31 are available.

Each IC is a quad, which means that it contains four identical gates on one

chip.

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 85

3-13 ALTERNATE LOGIC-GATE REPRESENTATIONS

We have introduced the five basic logic gates (AND, OR, INVERTER, NAND,

and NOR) and the standard symbols used to represent them on logic-circuit

diagrams. Although you may find that some circuit diagrams still use these

86 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

C

D

A

B

74LS00

74LS00

(8)
x

(9) 74LS00

(10)

(3)

(6)

(1)

(2)

(4)

(5)

(c)

(b)

C

D

A

B

74LS08

74LS08

(3)
x = AB + CD

(1)

(2)

(3)

(6)

(1)

(2)

(4)

(5)

C

D

A

B

x

74LS32

AND

ORAND

After eliminating
double inversions

7

(a)

1

2

3 5

4 6

FIGURE 3-32 Possible

implementations for

Example 3-18.

REVIEW QUESTIONS 1. How many different ways do we now have to implement the inversion op-

eration in a logic circuit?

2. Implement the expression x � (A � B)(C � D) using OR and AND gates.

Then implement the expression using only NOR gates by converting

each OR and AND gate to its NOR implementation from Figure 3-30.

Which circuit is more efficient?

3. Write the output expression for the circuit of Figure 3-32(c), and use

DeMorgan’s theorems to show that it is equivalent to the expression for

the circuit of Figure 3-32(a).

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 86

standard symbols exclusively, it has become increasingly more common to

find circuit diagrams that utilize alternate logic symbols in addition to the

standard symbols.

Before discussing the reasons for using an alternate symbol for a logic

gate, we will present the alternate symbols for each gate and show that they

are equivalent to the standard symbols. Refer to Figure 3-33; the left side of

the illustration shows the standard symbol for each logic gate, and the right

side shows the alternate symbol. The alternate symbol for each gate is ob-

tained from the standard symbol by doing the following:

1. Invert each input and output of the standard symbol. This is done by

adding bubbles (small circles) on input and output lines that do not have

bubbles and by removing bubbles that are already there.

2. Change the operation symbol from AND to OR, or from OR to AND. (In

the special case of the INVERTER, the operation symbol is not changed.)

SECTION 3-13/ALTERNATE LOGIC-GATE REPRESENTATIONS 87

FIGURE 3-33 Standard

and alternate symbols for

various logic gates and

inverter.

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A A

A • B

A + B

AB

A + B

A
A

A • B = A + B

A + B = AB

A + B = AB

A • B = A + B

AND

OR

NAND

NOR

INV

For example, the standard NAND symbol is an AND symbol with a bub-

ble on its output. Following the steps outlined above, remove the bubble

from the output, and add a bubble to each input. Then change the AND sym-

bol to an OR symbol. The result is an OR symbol with bubbles on its inputs.

We can easily prove that this alternate symbol is equivalent to the stan-

dard symbol by using DeMorgan’s theorems and recalling that the bubble

represents an inversion operation. The output expression from the standard

NAND symbol is which is the same as the output expression for

the alternate symbol. This same procedure can be followed for each pair of

symbols in Figure 3-33.

Several points should be stressed regarding the logic symbol equivalences:

1. The equivalences can be extended to gates with any number of inputs.

2. None of the standard symbols have bubbles on their inputs, and all the

alternate symbols do.

AB = A + B,

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 87

3. The standard and alternate symbols for each gate represent the same

physical circuit; there is no difference in the circuits represented by the two
symbols.

4. NAND and NOR gates are inverting gates, and so both the standard and

the alternate symbols for each will have a bubble on either the input or

the output. AND and OR gates are noninverting gates, and so the alter-

nate symbols for each will have bubbles on both inputs and output.

Logic-Symbol Interpretation
Each of the logic-gate symbols of Figure 3-33 provides a unique interpreta-

tion of how the gate operates. Before we can demonstrate these interpreta-

tions, we must first establish the concept of active logic levels.

When an input or output line on a logic circuit symbol has no bubble on

it, that line is said to be active-HIGH. When an input or output line does have

a bubble on it, that line is said to be active-LOW. The presence or absence of

a bubble, then, determines the active-HIGH/active-LOW status of a circuit’s

inputs and output, and is used to interpret the circuit operation.

To illustrate, Figure 3-34(a) shows the standard symbol for a NAND gate.

The standard symbol has a bubble on its output and no bubbles on its inputs.

Thus, it has an active-LOW output and active-HIGH inputs. The logic opera-

tion represented by this symbol can therefore be interpreted as follows:

The output goes LOW only when all of the inputs are HIGH.

Note that this says that the output will go to its active state only when all of

the inputs are in their active states. The word all is used because of the AND

symbol.

88 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-34
Interpretation of the two

NAND gate symbols.

A

B

ABA

B

Active -HIGH
LOW state is
the active state.

(a)

Output goes LOW only
when all inputs are HIGH.

Active -LOW

HIGH state is the
active state.

(b)

Output is HIGH when
any input is LOW.

A + B = AB

The alternate symbol for a NAND gate shown in Figure 3-34(b) has an

active-HIGH output and active-LOW inputs, and so its operation can be stated

as follows:

The output goes HIGH when any input is LOW.

This says that the output will be in its active state whenever any of the in-

puts is in its active state. The word any is used because of the OR symbol.

With a little thought, you can see that the two interpretations for the

NAND symbols in Figure 3-34 are different ways of saying the same thing.

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 88

Summary
At this point you are probably wondering why there is a need to have two dif-

ferent symbols and interpretations for each logic gate. We hope the reasons

will become clear after reading the next section. For now, let us summarize

the important points concerning the logic-gate representations.

1. To obtain the alternate symbol for a logic gate, take the standard symbol

and change its operation symbol (OR to AND, or AND to OR), and change

the bubbles on both inputs and output (i.e., delete bubbles that are pres-

ent, and add bubbles where there are none).

2. To interpret the logic-gate operation, first note which logic state, 0 or 1,

is the active state for the inputs and which is the active state for the out-

put. Then realize that the output’s active state is produced by having all
of the inputs in their active state (if an AND symbol is used) or by having

any of the inputs in its active state (if an OR symbol is used).

SECTION 3-14/WHICH GATE REPRESENTATION TO USE 89

FIGURE 3-35
Interpretation of the two

OR gate symbols.

Give the interpretation of the two OR gate symbols.

Solution

The results are shown in Figure 3-35. Note that the word any is used when the

operation symbol is an OR symbol and the word all is used when it includes

an AND symbol.

A

B

A • B = A + B

A

B

A + B

Active-HIGH

HIGH state is
active state.

(a)

Output goes HIGH when
any input is HIGH.

Output goes LOW only
when all inputs are LOW.

Active-LOW

LOW state is
active state.

(b)

3-14 WHICH GATE REPRESENTATION TO USE

Some logic-circuit designers and some textbooks use only the standard logic-

gate symbols in their circuit schematics. While this practice is not incorrect, it

does nothing to make the circuit operation easier to follow. Proper use of the

alternate gate symbols in the circuit diagram can make the circuit operation

EXAMPLE 3-19

REVIEW QUESTIONS 1. Write the interpretation of the operation performed by the standard

NOR gate symbol in Figure 3-33.

2. Repeat question 1 for the alternate NOR gate symbol.

3. Repeat question 1 for the alternate AND gate symbol.

4. Repeat question 1 for the standard AND gate symbol.

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 89

much clearer. This can be illustrated by considering the example shown in

Figure 3-36.

The circuit in Figure 3-36(a) contains three NAND gates connected to

produce an output Z that depends on inputs A, B, C, and D. The circuit dia-

gram uses the standard symbol for each of the NAND gates. While this dia-

gram is logically correct, it does not facilitate an understanding of how the

circuit functions.The circuit representations given in Figures 3-36(b) and (c),

however, can be analyzed more easily to determine the circuit operation.

The representation of Figure 3-36(b) is obtained from the original circuit

diagram by replacing NAND gate 3 with its alternate symbol. In this dia-

gram, output Z is taken from a NAND gate symbol that has an active-HIGH

output.Thus, we can say that Z will go HIGH when either X or Y is LOW. Now,

since X and Y each appear at the output of NAND symbols having active-LOW

outputs, we can say that X will go LOW only if A � B � 1, and Y will go LOW

only if C � D � 1. Putting this all together, we can describe the circuit oper-

ation as follows:

Output Z will go HIGH whenever either A � B � 1 or C � D � 1
(or both).

This description can be translated to truth-table form by setting Z � 1 for

those cases where A � B � 1 and for those cases where C � D � 1. For all other

cases, Z is made a 0. The resultant truth table is shown in Figure 3-36(d).

The representation of Figure 3-36(c) is obtained from the original circuit

diagram by replacing NAND gates 1 and 2 by their alternate symbols. In this

90 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-36 (a) Original

circuit using standard

NAND symbols; (b) equiva-

lent representation where

output Z is active-HIGH; (c)

equivalent representation

where output Z is active-

LOW; (d) truth table.

(d)

A
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

B
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

C
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

D
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

Z
0
0
0
1
0
0
0
1
0
0
0
1
1
1
1
1

A

B

Z

C

D

A

B

C

D

A

B

C

D

1

2

3

(a)

(b)

(c)

1

2

Z

X

Y
Active-HIGH

Z

Active-LOW

X

Y

3

3

1

2

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 90

equivalent representation, the Z output is taken from a NAND gate that has an

active-LOW output.Thus, we can say that Z will go LOW only when X � Y � 1.

Because X and Y are active-HIGH outputs, we can say that X will be HIGH

when either A or B is LOW, and Y will be HIGH when either C or D is LOW.

Putting this all together, we can describe the circuit operation as follows:

Output Z will go LOW only when A or B is LOW and C or D is LOW.

This description can be translated to truth-table form by making Z � 0 for all

cases where at least one of the A or B inputs is LOW at the same time that at

least one of the C or D inputs is LOW. For all other cases, Z is made a 1. The

resultant truth table is the same as that obtained for the circuit diagram of

Figure 3-36(b).

Which Circuit Diagram Should Be Used?
The answer to this question depends on the particular function being per-

formed by the circuit output. If the circuit is being used to cause some action

(e.g., turn on an LED or activate another logic circuit) when output Z goes to

the 1 state, then we say that Z is to be active-HIGH, and the circuit diagram

of Figure 3-36(b) should be used. On the other hand, if the circuit is being

used to cause some action when Z goes to the 0 state, then Z is to be active-

LOW, and the diagram of Figure 3-36(c) should be used.

Of course, there will be situations where both output states are used to

produce different actions and either one can be considered to be the active

state. For these cases, either circuit representation can be used.

Bubble Placement
Refer to the circuit representation of Figure 3-36(b) and note that the symbols

for NAND gates 1 and 2 were chosen to have active-LOW outputs to match the

active-LOW inputs of NAND gate 3. Refer to the circuit representation of

Figure 3-36(c) and note that the symbols for NAND gates 1 and 2 were chosen

to have active-HIGH outputs to match the active-HIGH inputs of NAND gate 3.

This leads to the following general rule for preparing logic-circuit schematics:

Whenever possible, choose gate symbols so that bubble outputs are
connected to bubble inputs, and nonbubble outputs to nonbubble
inputs.

The following examples will show how this rule can be applied.

SECTION 3-14/WHICH GATE REPRESENTATION TO USE 91

A

B

C

D

2

1

Z
A

B

C

D

2

1

Z

(a) (b)

ALARM ALARM

FIGURE 3-37 Example 3-20.

EXAMPLE 3-20 The logic circuit in Figure 3-37(a) is being used to activate an alarm when its

output Z goes HIGH. Modify the circuit diagram so that it represents the cir-

cuit operation more effectively.

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 91

Solution

Because Z � 1 will activate the alarm, Z is to be active-HIGH. Thus, the AND

gate 2 symbol does not have to be changed. The NOR gate symbol should be

changed to the alternate symbol with a nonbubble (active-HIGH) output to

match the nonbubble input of AND gate 2, as shown in Figure 3-37(b). Note

that the circuit now has nonbubble outputs connected to the nonbubble in-

puts of gate 2.

92 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-38
Example 3-21.

When the output of the logic circuit in Figure 3-38(a) goes LOW, it activates

another logic circuit. Modify the circuit diagram to represent the circuit op-

eration more effectively.

E

D

C

B

A
1

2
Z

(b)

E

D

C

B

A

Z

(a)

1

2

Solution

Because Z is to be active-LOW, the symbol for OR gate 2 must be changed to

its alternate symbol, as shown in Figure 3-38(b). The new OR gate 2 symbol

has bubble inputs, and so the AND gate and OR gate 1 symbols must be

changed to bubbled outputs, as shown in Figure 3-38(b). The INVERTER al-

ready has a bubble output. Now the circuit has all bubble outputs connected

to bubble inputs of gate 2.

Analyzing Circuits
When a logic-circuit schematic is drawn using the rules we followed in these

examples, it is much easier for an engineer or technician (or student) to fol-

low the signal flow through the circuit and to determine the input conditions

that are needed to activate the output. This will be illustrated in the follow-

ing examples—which, incidentally, use circuit diagrams taken from the logic

schematics of an actual microcomputer.

The logic circuit in Figure 3-39 generates an output, MEM, that is used to ac-

tivate the memory ICs in a particular microcomputer. Determine the input

conditions necessary to activate MEM.

EXAMPLE 3-21

EXAMPLE 3-22

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 92

Solution

One way to do this would be to write the expression for MEM in terms of the

inputs RD, ROM-A, ROM-B, and RAM, and to evaluate it for the 16 possible

combinations of these inputs. While this method would work, it would re-

quire a lot more work than is necessary.

A more efficient method is to interpret the circuit diagram using the

ideas we have been developing in the last two sections. These are the steps:

1. MEM is active-LOW, and it will go LOW only when X and Y are HIGH.

2. X will be HIGH only when RD � 0.

3. Y will be HIGH when either W or V is HIGH.

4. V will be HIGH when RAM � 0.

5. W will be HIGH when either ROM-A or ROM-B � 0.

6. Putting this all together, MEM will go LOW only when RD � 0 and at

least one of the three inputs ROM-A, ROM-B, or RAM is LOW.

SECTION 3-14/WHICH GATE REPRESENTATION TO USE 93

FIGURE 3-39
Example 3-22.

FIGURE 3-40
Example 3-23.

MEM

Y

X

V

W

RD

ROM-A

ROM-B

RAM

The logic circuit in Figure 3-40 is used to control the drive spindle motor for

a floppy disk drive when the microcomputer is sending data to or receiving

data from the disk. The circuit will turn on the motor when DRIVE � 1.

Determine the input conditions necessary to turn on the motor.

EXAMPLE 3-23

Note: All gates are CMOS

DRIVE

Y
W

74HC30
74HC32

74HC02

A1

A2

A3

A4

A5

A6

A7

IN

OUT

A0

X
74HC02

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 93

Solution

Once again, we will interpret the diagram in a step-by-step fashion:

1. DRIVE is active-HIGH, and it will go HIGH only when X � Y � 0.

2. X will be LOW when either IN or OUT is HIGH.

3. Y will be LOW only when W � 0 and A0 � 0.

4. W will be LOW only when A1 through A7 are all HIGH.

5. Putting this all together, DRIVE will be HIGH when A1 � A2 � A3 � A4 �
A5 � A6 � A7 � 1 and A0 � 0, and either IN or OUT or both are 1.

Note the strange symbol for the eight-input CMOS NAND gate (74HC30);

also note that signal A7 is connected to two of the NAND inputs.

Asserted Levels
We have been describing logic signals as being active-LOW or active-HIGH.

For example, the output MEM in Figure 3-39 is active-LOW, and the output

DRIVE in Figure 3-40 is active-HIGH because these are the output states that

cause something to happen. Similarly, Figure 3-40 has active-HIGH inputs A1

to A7, and active-LOW input A0.

When a logic signal is in its active state, it can be said to be asserted. For

example, when we say that input A0 is asserted, we are saying that it is in its

active-LOW state. When a logic signal is not in its active state, it is said to be

unasserted. Thus, when we say that DRIVE is unasserted, we mean that it is

in its inactive state (low).

Clearly, the terms asserted and unasserted are synonymous with active
and inactive, respectively:

asserted � active
unasserted � inactive

Both sets of terms are in common use in the digital field, so you should rec-

ognize both ways of describing a logic signal’s active state.

Labeling Active-LOW Logic Signals
It has become common practice to use an overbar to label active-LOW sig-

nals. The overbar serves as another indication that the signal is active-LOW;

of course, the absence of an overbar means that the signal is active-HIGH.

To illustrate, all of the signals in Figure 3-39 are active-LOW, and so they

can be labeled as follows:

, , , ,

Remember, the overbar is simply a way to emphasize that these are active-

LOW signals. We will employ this convention for labeling logic signals when-

ever appropriate.

Labeling Bistate Signals
Very often, an output signal will have two active states; that is, it will have

one important function in the HIGH state and another in the LOW state. It

is customary to label such signals so that both active states are apparent. A

common example is the read/write signal, which is interpreted as

follows: when this signal is HIGH, the read operation (RD) is performed;

when it is LOW, the write operation (WR) is performed.

RD/WR,

MEMRAMROM-BROM-ARD

94 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 94

SECTION 3-15/IEEE/ANSI STANDARD LOGIC SYMBOLS 95

REVIEW QUESTIONS 1. Use the method of Examples 3-22 and 3-23 to determine the input con-

ditions needed to activate the output of the circuit in Figure 3-37(b).

2. Repeat question 1 for the circuit of Figure 3-38(b).

3. How many NAND gates are shown in Figure 3-39?

4. How many NOR gates are shown in Figure 3-40?

5. What will be the output level in Figure 3-38(b) when all of the inputs are

asserted?

6. What inputs are required to assert the alarm output in Figure 3-37(b)?

7. Which of the following signals is active-LOW: ?RD, W, R/W

3-15 IEEE/ANSI STANDARD LOGIC SYMBOLS

The logic symbols we have used so far in this chapter are the traditional stan-

dard symbols used in the digital industry for many, many years. These tradi-

tional symbols use a distinctive shape for each logic gate. A newer standard

for logic symbols was developed in 1984; it is called the IEEE/ANSI Standard

91-1984 for logic symbols.The IEEE/ANSI standard uses rectangular symbols

to represent all logic gates and circuits. A special dependency notation inside

the rectangular symbol indicates how the device outputs depend on the de-

vice inputs. Figure 3-41 shows the IEEE/ANSI symbols alongside the tradi-

tional symbols for the basic logic gates. Note the following points:

1. The rectangular symbols use a small right triangle () in place of the

small bubble of the traditional symbols to indicate the inversion of the

logic level.The presence or absence of the triangle also signifies whether

an input or output is active-LOW or active-HIGH.

x

x

x

x

x
A

B

A

B

A

B

A

B

A

A

B

A

B

A

B

A

B

A

x

x

x

x

x

(b)(a)

NOR

NAND

OR

AND

NOT

1

&

&

≥1

≥1

FIGURE 3-41 Standard

logic symbols: (a) traditional;

(b) IEEE/ANSI.

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 95

2. A special notation inside each rectangular symbol describes the logic re-

lation between inputs and output.The “1” inside the INVERTER symbol

denotes a device with only one input; the triangle on the output indicates

that the output will go to its active-LOW state when that one input is in

its active-HIGH state. The “&” inside the AND symbol means that the

output will go to its active-HIGH state when all of the inputs are in their

active-HIGH state. The “ ” inside the OR gate means that the output

will go to its active state (HIGH) whenever one or more inputs are in their

active state (HIGH).

3. The rectangular symbols for the NAND and the NOR are the same as

those for the AND and the OR, respectively, with the addition of the

small inversion triangle on the output.

Traditional or IEEE/ANSI?
The IEEE/ANSI standard has not yet been widely accepted for use in the dig-

ital field, although you will run across it in some newer equipment schemat-

ics. Most digital IC data books include both the traditional and IEEE/ANSI

symbols, and it is possible that the newer standard might eventually become

more widely used. We will employ the traditional symbols in most of the cir-

cuit diagrams throughout this book.

Ú

96 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

REVIEW QUESTIONS 1. Draw all of the basic logic gates using both the traditional symbols and

the IEEE/ANSI symbols.

2. Draw the IEEE/ANSI symbol for a NOR gate with active-HIGH output.

3-16 SUMMARY OF METHODS TO DESCRIBE LOGIC CIRCUITS

The topics we have covered so far in this chapter have all centered around

just three simple logic functions that we refer to as AND, OR, and NOT. The

concept is not new to anyone because we all use these logical functions every

day as we make decisions. Here are some logical examples. If it is raining OR

the newspaper says that it could rain, then I will take my umbrella. If I get

my paycheck today AND I make it to the bank, then I will have money to

spend this evening. If I have a passing grade in lecture AND I have NOT

failed in lab, then I will pass my digital class. At this point, you may be won-

dering why we have spent so much effort in describing such familiar con-

cepts. The answer can be summed up in two key points:

1. We must be able to represent these logical decisions.

2. We must be able to combine these logic functions and implement a decision-

making system.

We have learned how to represent each of the basic logic functions using:

Logical statements in our own language

Truth tables

Traditional graphic logic symbols

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 96

IEEE/ANSI standard logic symbols

Boolean algebra expressions

Timing diagrams

SECTION 3-16/SUMMARY OF METHODS TO DESCRIBE LOGIC CIRCUITS 97

The following English expression describes the way a logic circuit needs to

operate in order to drive a seatbelt warning indicator in a car.

If the driver is present AND the driver is NOT buckled up AND
the ignition switch is on, THEN turn on the warning light.

Describe the circuit using Boolean algebra, schematic diagrams with logic

symbols, truth tables, and timing diagrams.

Solution

See Figure 3-42.

EXAMPLE 3-24

Boolean expression

warning_light = driver_present • buckled_up • ignition_on

(a)

Schematic diagram

driver_present

buckled_up

ignition_on

(b)

Truth table

driver_present

0

0

0

0

1

1

1

1

buckled_up

0

0

1

1

0

0

1

1

ignition_on

0

1

0

1

0

1

0

1

warning_light

0

0

0

0

0

1

0

0

(c)

Timing diagram

Name

ignition_on

buckled_up

driver_present

warning_light

0

0

1

0

Val 1.0 ms 2.0 ms 3.0 ms 4.0 ms 5.0 ms 6.0 ms 7.0 ms 8.0 ms 9.0 ms 10 ms

(d)

warning_light

FIGURE 3-42 Methods of describing logic circuits: (a) Boolean expression;

(b) schematic diagram; (c) truth table; (d) timing diagram.

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 97

Figure 3-42 shows four different ways of representing the logic circuit

that was described in English as the problem statement of Example 3-24.

There are many other ways in which we could represent the logic of this de-

cision. As an example we could dream up an entirely new set of graphic sym-

bols, or state the logical relationship in French or Japanese. Of course, we

cannot cover all the possible ways of describing a logic circuit, but we must

understand the most common methods to be able to communicate with oth-

ers in this profession. Furthermore, certain situations are easier to describe

using one method over another. In some cases, a picture is worth a thousand

words, and in other cases words are concise enough and are more easily com-

municated to others. The important point here is that we need ways to de-

scribe and communicate the operation of digital systems.

98 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

REVIEW QUESTION 1. Name five ways to describe the operation of logic circuits.

3-17 DESCRIPTION LANGUAGES VERSUS PROGRAMMING
LANGUAGES*

Recent trends in the field of digital systems are favoring text-based language

description of digital circuits. You probably noticed that each description

method in Figure 3-42 offers challenges to computer entry, whether it is due to

overbars, symbols, formatting, or line-drawing issues. In this section, we will

begin to learn some of the more advanced tools that professionals in the digi-

tal field use to describe the circuits that implement their ideas.These tools are

referred to as hardware description languages (HDLs). Even with the powerful

computers we have today, it is not possible to describe a logic circuit in English

prose and expect the computer to understand what you mean. Computers need

a more rigidly defined language. We will focus on two languages in this text:

Altera hardware description language (AHDL) and very high speed integrated
circuit (VHSIC) hardware description language (VHDL).

VHDL and AHDL
VHDL is not a new language. It was developed by the Department of

Defense in the early 1980s as a concise way to document the designs in the

very high speed integrated circuit (VHSIC) program. Appending HDL onto

this acronym was too much, even for the military, and so the language was ab-

breviated to VHDL. Computer programs were developed to take the VHDL

language files and simulate the operation of the circuits. With the growth of

complex programmable logic devices in digital systems, VHDL has evolved

into one of the primary high-level hardware description languages for de-

signing and implementing digital circuits (synthesis).The language has been

standardized by the IEEE, making it universally appealing for engineers as

well as the makers of software tools that translate designs into the bit pat-

terns used to program actual devices.

AHDL is a language that the Altera Corporation developed to provide a

convenient way to configure the logic devices that they offer. Altera was one

of the first companies to introduce logic devices that can be reconfigured

*All sections covering hardware description languages may by skipped without loss of continuity in the
balance of Chapters 1–12.

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 98

electronically. These devices are called programmable logic devices (PLDs).
Unlike VHDL, this language is not intended to be used as a universal lan-

guage for describing any logic circuit. It is intended to be used for program-

ming complex digital systems into Altera PLDs in a language that is generally

perceived to be easier to learn yet very similar to VHDL. It also has features

that take full advantage of the architecture of Altera devices. All of the ex-

amples in this text will use the Altera MAX�PLUS II or Quartus II software

to develop both AHDL and VHDL design files. You will see the advantage of

using Altera’s development system for both languages when you program an

actual device. The Altera system makes circuit development very easy and

contains all the necessary tools to translate from the HDL design file to a file

ready to load into an Altera PLD. It also allows you to develop building

blocks using schematic entry, AHDL,VHDL, and other methods and then in-

terconnect them to form a complete system.

Other HDLs are available that are more suitable for programming simple

programmable logic devices.You will find any of these languages easy to use

after learning the basics of AHDL or VHDL as covered in this text.

Computer Programming Languages
It is important to distinguish between hardware description languages in-

tended to describe the hardware configuration of a circuit and programming

languages that represent a sequence of instructions intended to be carried

out by a computer to accomplish some task. In both cases, we use a language
to program a device. However, computers are complex digital systems that

are made up of logic circuits. Computers operate by following a laundry list

of tasks (i.e., instructions, or “the program”), each of which must be done in

sequential order. The speed of operation is determined by how fast the com-

puter can execute each instruction. For example, if a computer were to respond

to four different inputs, it would require at least four separate instructions

(sequential tasks) to detect and identify which input changed state. A digi-

tal logic circuit, on the other hand, is limited in its speed only by how quickly

the circuitry can change the outputs in response to changes in the inputs. It

is monitoring all inputs concurrently (at the same time) and responding to

any changes.

The following analogy will help you understand the difference between

computer operation and digital logic circuit operation and the role of lan-

guage elements used to describe what the systems do. Consider the chal-

lenge of describing what is done to an Indy 500 car during a pit stop. If a single

person performed all the necessary tasks one at a time, he or she would need

to be very fast at each task. This is the way a computer operates: one task at

a time but very quickly. Of course, at Indy, there is an entire pit crew that

swarms the car, and each member of the crew does his or her task while the

others do theirs. All crew members operate concurrently, like the elements

of a digital circuit. Now consider how you would describe to someone else

what is being done to the Indy car during the pit stop using (1) the individual-

mechanic approach or (2) the pit-crew approach. Wouldn’t the two English

language descriptions of what is being done sound very similar? As we will

see, the languages used to describe digital hardware (HDL) are very similar

to languages that describe computer programs (e.g., BASIC, C, JAVA), even

though the resulting implementation operates quite differently. Knowledge

of any of these computer programming languages is not necessary to under-

stand HDL. The important thing is that when you have learned both an HDL

and a computer language, you must understand their different roles in digi-

tal systems.

SECTION 3-17/DESCRIPTION LANGUAGES VERSUS PROGRAMMING LANGUAGES 99

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 99

3-18 IMPLEMENTING LOGIC CIRCUITS WITH PLDs

Many digital circuits today are implemented using programmable logic de-

vices (PLDs). These devices are not like microcomputers or microcontrollers

that “run” the program of instructions. Instead, they are configured elec-

tronically, and their internal circuits are “wired” together electronically to

form a logic circuit. This programmable wiring can be thought of as thou-

sands of connections that are either connected (1) or not connected (0).

Figure 3-44 shows a small area of programmable connections. Each intersec-

tion between a row (horizontal wire) and a column (vertical wire) is a pro-

grammable connection. You can imagine how difficult it would be to try to

100 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-43 Decision

process of a computer

program.

Compare the operation of a computer and a logic circuit in performing the

simple logical operation of y � AB.

Solution

The logic circuit is a simple AND gate. The output y will be HIGH within ap-

proximately 10 nanoseconds of the point when A and B are HIGH simultane-

ously. Within approximately 10 nanoseconds after either input goes LOW,

the output y will be LOW.

The computer must run a program of instructions that makes decisions.

Suppose each instruction takes 20 ns (that’s pretty fast!). Each shape in the

flowchart shown in Figure 3-43 represents one instruction. Clearly, it will

take a minimum of two or three instructions (40–60 ns) to respond to

changes in the inputs.

EXAMPLE 3-25

REVIEW QUESTIONS 1. What does HDL stand for?

2. What is the purpose of an HDL?

3. What is the purpose of a computer programming language?

4. What is the key difference between HDL and computer programming

languages?

Jump back and repeat

Make y LOWMake y LOW Make y HIGH

Is B HIGH?

Is A HIGH?
No Yes

No Yes

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 100

SECTION 3-18/IMPLEMENTING LOGIC CIRCUITS WITH PLDS 101

FIGURE 3-44 Configuring

hardware connections with

programmable logic

devices.

configure these devices by placing 1s and 0s in a grid manually (which is how

they did it back in the 1970s).

The role of the hardware description language is to provide a concise and

convenient way for the designer to describe the operation of the circuit in a

format that a personal computer can handle and store conveniently. The

computer runs a special software application called a compiler to translate

from the hardware description language into the grid of 1s and 0s that can

be loaded into the PLD. If a person can master the higher-level hardware de-

scription language, it actually makes programming the PLDs much easier

than trying to use Boolean algebra, schematic drawings, or truth tables. In

much the same way that you learned the English language, we will start by

expressing simple things and gradually learn the more complicated aspects

of these languages. Our objective is to learn enough of HDL to be able to

communicate with others and perform simple tasks. A full understanding of

all the details of these languages is beyond the scope of this text and can re-

ally be mastered only by regular use.

In the sections throughout this book that cover the HDLs, we will present

both AHDL and VHDL in a format that allows you to skip over one language

and concentrate on the other without missing important information. Of

course, this setup means there will be some redundant information presented

if you choose to read about both languages. We feel this redundancy is worth

the extra effort to provide you with the flexibility of focusing on either of the

two languages or learning both by comparing and contrasting similar exam-

ples. The recommended way to use the text is to focus on one language. It is

true that the easiest way to become bilingual, and fluent in both languages, is

to be raised in an environment where both languages are spoken routinely. It

is also very easy, however, to confuse details, so we will keep the specific ex-

amples separate and independent. We hope this format provides you with the

opportunity to learn one language now and then use this book as a reference

later in your career should you need to pick up the second language.

A
B
C
D
E
F
G
H

Programmable connections matrix

Logic
circuits

Digital
INPUTS

REVIEW QUESTIONS 1. What does PLD stand for?

2. How are the circuits reconfigured electronically in a PLD?

3. What does a compiler do?

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 101

102 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

3-19 HDL FORMAT AND SYNTAX

Any language has its unique properties, similarities to other languages, and

its proper syntax. When we study grammar in school, we learn conventions

such as the order of words as elements in a sentence and proper punctuation.

This is referred to as the syntax of language. A language designed to be in-

terpreted by a computer must follow strict rules of syntax. A computer is just

an assortment of processed beach sand and wire that has no idea what you

“meant” to say, so you must present the instructions using the exact syntax

that the computer language expects and understands.The basic format of any

hardware circuit description (in any language) involves two vital elements:

1. The definition of what goes into it and what comes out of it (i.e.,

input/output specs)

2. The definition of how the outputs respond to the inputs (i.e., its operation)

A circuit schematic diagram such as Figure 3-45 can be read and under-

stood by a competent engineer or technician because both would under-

stand the meaning of each symbol in the drawing. If you understand how

each element works and how the elements are connected to each other, you

can understand how the circuit operates. On the left side of the diagram is

the set of inputs, and on the right is the set of outputs. The symbols in the

middle define its operation. The text-based language must convey the same

information. All HDLs use the format shown in Figure 3-46.

FIGURE 3-45 A schematic

diagram description.

FIGURE 3-46 Format of

HDL files.

yOUTPUT
a

INPUT

b

AND2

INPUT

Functional description

I/O definitions

Documentation

In a text-based language, the circuit being described must be given a

name. The inputs and outputs (sometimes called ports) must be assigned

names and defined according to the nature of the port. Is it a single bit from

a toggle switch? Or is it a four-bit number coming from a keypad? The text-

based language must somehow convey the nature of these inputs and out-

puts.The mode of a port defines whether it is input, output, or both.The type
refers to the number of bits and how those bits are grouped and interpreted.

If the type of input is a single bit, then it can have only two possible values:

0 and 1. If the type of input is a four-bit binary number from a keypad, it can

have any one of 16 different values The type determines

the range of possible values. The definition of the circuit’s operation in a

(00002-11112).

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 102

SECTION 3-19/HDL FORMAT AND SYNTAX 103

FIGURE 3-47 Essential

elements in AHDL. SUBDESIGN and_gate

(

a, b :INPUT;

y :OUTPUT;

)

BEGIN

y � a & b;

END;

The SUBDESIGN section defines the inputs and outputs of the logic cir-

cuit block. Something must enclose the circuit that we are trying to describe,

much the same way that a block diagram encloses everything that makes up

that part of the design. In AHDL, this input/output definition is enclosed in

parentheses. The list of variables used for inputs to this block are separated

by commas and followed by :INPUT;. In AHDL, the single-bit type is assumed

unless the variable is designated as multiple bits.The single-output bit is de-

clared with the mode :OUTPUT;. We will learn the proper way to describe

other types of inputs, outputs, and variables as we need to use them.

The set of statements that describe the operation of the AHDL circuit

are contained in the logic section between the keywords BEGIN and END. In

this example, the operation of the hardware is described by a very simple

Boolean algebra equation that states that the output (y) is assigned (�) the

logic level produced by a AND b. This Boolean algebra equation is referred

to as a concurrent assignment statement. Any statements (there is only one

in this example) between BEGIN and END are evaluated constantly and con-

currently. The order in which they are listed makes no difference. The basic

Boolean operators are:

& AND

OR

! NOT

$ XOR

REVIEW QUESTIONS 1. What appears inside the parentheses () after SUBDESIGN?

2. What appears between BEGIN and END?

A
H

D
L

text-based language is contained in a set of statements that follow the circuit in-

put/output (I/O) definition.The following two sections describe the very simple

circuit of Figure 3-45 and illustrate the critical elements of AHDL and VHDL.

BOOLEAN DESCRIPTION USING AHDL
Refer to Figure 3-47. The keyword SUBDESIGN gives a name to the circuit

block, which in this case is and_gate. The name of the file must also be

and_gate.tdf. Notice that the keyword SUBDESIGN is capitalized. This is not

required by the software, but use of a consistent style in capitalization makes

the code much easier to read.The style guide that is provided with the Altera

compiler for AHDL suggests the use of capital letters for the keywords in the

language.Variables that are named by the designer should be lowercase.

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 103

BOOLEAN DESCRIPTION USING VHDL
Refer to Figure 3-48. The keyword ENTITY gives a name to the circuit block,

which in this case is and_gate. Notice that the keyword ENTITY is capital-

ized but and_gate is not. This is not required by the software, but use of a

consistent style in capitalization makes the code much easier to read. The

style guide provided with the Altera compiler for VHDL suggests using cap-

ital letters for the keywords in the language.Variables that are named by the

designer should be lowercase.

104 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-48 Essential

elements in VHDL.

REVIEW QUESTIONS 1. What is the role of the ENTITY declaration?

2. Which key section defines the operation of the circuit?

3. What is the assignment operator used to give a value to a logic signal?

ENTITY and_gate IS

PORT (a, b :IN BIT;

y :OUT BIT);

END and_gate;

ARCHITECTURE ckt OF and_gate IS

BEGIN

y <= a AND b;

END ckt;

The ENTITY declaration can be thought of as a block description.

Something must enclose the circuit we are trying to describe, much the same

way a block diagram encloses everything that makes up that part of the de-

sign. In VHDL, the keyword PORT tells the compiler that we are defining in-

puts and outputs to this circuit block. The names used for inputs (separated

by commas) are listed, ending with a colon and a description of the mode and

type of input (:IN BIT;). In VHDL, the BIT description tells the compiler that

each variable in the list is a single bit. We will learn the proper way to de-

scribe other types of inputs, outputs, and variables as we need to use them.

The line containing END and_gate; terminates the ENTITY declaration.

The ARCHITECTURE declaration is used to describe the operation of

everything inside the block. The designer makes up a name for this architec-

tural description of the inner workings of the ENTITY block (ckt in this ex-

ample). Every ENTITY must have at least one ARCHITECTURE associated

with it. The words OF and IS are keywords in this declaration. The body of

the architecture description is enclosed between the BEGIN and END key-

words. END is followed by the name that has been assigned to this architec-

ture. Within the body (between BEGIN and END) is the description of the

block’s operation. In this example, the operation of the hardware is de-

scribed by a very simple Boolean algebra equation that states that the out-

put (y) is assigned () the logic level produced by a AND b.This is referred

to as a concurrent assignment statement, which means that all the state-

ments (there is only one in this example) between BEGIN and END are eval-

uated constantly and concurrently. The order in which they are listed makes

no difference.

6 =

V
H

D
L

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 104

3-20 INTERMEDIATE SIGNALS

In many designs, there is a need to define signal points “inside” the circuit

block. They are points in the circuit that are neither inputs nor outputs for

the block but may be useful as a reference point. It may be a signal that

needs to be connected to many other places within the block. In an analog or

digital schematic diagram, they would be called test points or nodes. In an

HDL, they are referred to as buried nodes or local signals. Figure 3-49 shows

a very simple circuit that uses an intermediate signal named m. In the HDL,

these nodes (signals) are not defined with the inputs and outputs but rather

in the section that describes the operation of the block. The inputs and out-

puts are available to other circuit blocks in the system, but these local sig-

nals are recognized only within this block.

SECTION 3-20/INTERMEDIATE SIGNALS 105

FIGURE 3-49 A logic circuit diagram with an intermediate variable.

a
INPUT

b

yOUTPUT

c

m

Intermediate signal m

INPUT

INPUT

In the example code that follows, notice the information at the top. The

purpose of this information is strictly for documentation purposes. It is ab-

solutely vital that the design is documented thoroughly. At a minimum, it

should describe the project it is being used in, who wrote it, and the date.

This information is often referred to as a header. We are keeping our head-

ers brief to make this book a little lighter to carry to class, but remember:

memory space is cheap and information is valuable. So don’t be afraid to

document thoroughly! There are also comments next to many of the state-

ments in the code.These comments help the designer remember what she or

he was trying to do and to help any other person to understand what was in-

tended.

AHDL BURIED NODES
The AHDL code that describes the circuit in Figure 3-49 is shown in Figure

3-50. The comments in AHDL can be enclosed between % characters, as you

can see in the figure between lines 1 and 4. This section of the code allows

the designer to write many lines of information that will be ignored by com-

puter programs using this file but can be read by any person trying to deci-

pher the code. Notice that the comments at the end of lines 9, 10, 13, 15, and

16 are preceded by two dashes (--). The text following the dashes is for docu-

mentation only. Either type of comment symbol may be used, but percent

signs must be used in pairs to open and close a comment. Double dashes in-

dicate a comment that extends to the end of the line.

In AHDL, local signals are declared in the VARIABLE section, which is

placed between the SUBDESIGN section and the logic section. The interme-

diate signal m is defined on line 11, following the keyword VARIABLE. The

A
H

D
L

TOCCMC03_0131725793.QXD 12/5/05 10:06 PM Page 105

keyword NODE designates the nature of the variable. Notice that a colon

separates the variable name from its node designation. In the hardware de-

scription on line 13, the intermediate variable is assigned (connected to) a

value and then m is used in the second statement on line 14 to

assign (connect) a value to y Remember that the assignment

statements are concurrent and, thus, the order in which they are given does

not matter. For human readability, it may seem more logical to assign values

to intermediate variables before they are used in other assignment state-

ments, as shown here.

(y = m # c;).

(m = a & b;)

106 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-50
Intermediate variables

in AHDL described in

Figure 3-49.

1 % Intermediate variables in AHDL (Figure 3-49)

2 Digital Systems 10th ed

3 NS Widmer

4 MAY 23, 2005 %

5 SUBDESIGN fig3_50

6 (

7 a,b,c :INPUT; -- define inputs to block

8 y :OUTPUT; -- define block output

9)

10 VARIABLE

11 m :NODE; -- name an intermediate signal

12 BEGIN

13 m � a & b; -- generate buried product term

14 y � m # c; -- generate sum on output

15 END;

REVIEW QUESTIONS 1. What is the designation used for intermediate variables?

2. Where are these variables declared?

3. Does it matter whether the m or y equation comes first?

4. What character is used to limit a block of comments?

5. What characters are used to comment a single line?

VHDL LOCAL SIGNALS
The VHDL code that describes the circuit in Figure 3-49 is shown in Figure

3-51. The comments in VHDL follow two dashes (--). Typing two successive

dashes allows the designer to write information from that point to the end of

the line.The information following the two successive dashes will be ignored

by computer programs using this file, but can be read by any person trying to

decipher the code.

The intermediate signal m is defined on line 13 following the keyword

SIGNAL. The keyword BIT designates the type of the signal. Notice that a

colon separates the signal name from its type designation. In the hardware de-

scription on line 16, the intermediate signal is assigned (connected to) a value

V
H

D
L

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 106

and then m is used in the statement on line 17 to assign (con-

nect) a value to y Remember that the assignment statements

are concurrent and, thus, the order in which they are given does not matter.

For human readability, it may seem more logical to assign values to interme-

diate signals before they are used in other assignment statements, as shown

here.

(y 6=m OR c;).

(m 6=a AND b;)

SUMMARY 107

1 -- Intermediate variables in VHDL (Figure 3-49)

2 -- Digital Systems 10th ed

3 -- NS Widmer

4 -- MAY 23, 2005

5

6 ENTITY fig3_51 IS

7 PORT(a, b, c :IN BIT; -- define inputs to block

8 y :OUT BIT); -- define block output

9 END fig3_51;

10

11 ARCHITECTURE ckt OF fig3_51 IS

12

13 SIGNAL m :BIT; -- name an intermediate signal

14

15 BEGIN

16 m <= a AND b; -- generate buried product term

17 y <= m OR c; -- generate sum on output

18 END ckt;

REVIEW QUESTIONS 1. What is the designation used for intermediate signals?

2. Where are these signals declared?

3. Does it matter whether the m or y equation comes first?

4. What characters are used to comment a single line?

SUMMARY
1. Boolean algebra is a mathematical tool used in the analysis and design of

digital circuits.

2. The basic Boolean operations are the OR, AND, and NOT operations.

3. An OR gate produces a HIGH output when any input is HIGH. An AND

gate produces a HIGH output only when all inputs are HIGH. A NOT cir-

cuit (INVERTER) produces an output that is the opposite logic level

compared to the input.

4. A NOR gate is the same as an OR gate with its output connected to an IN-

VERTER. A NAND gate is the same as an AND gate with its output con-

nected to an INVERTER.

FIGURE 3-51 Intermediate signals in VHDL described in Figure 3-49.

TOCCMC03_0131725793.QXD 12/2/05 8:19 PM Page 107

5. Boolean theorems and rules can be used to simplify the expression of a

logic circuit and can lead to a simpler way of implementing the circuit.

6. NAND gates can be used to implement any of the basic Boolean opera-

tions. NOR gates can be used likewise.

7. Either standard or alternate symbols can be used for each logic gate, de-

pending on whether the output is to be active-HIGH or active-LOW.

8. The IEEE/ANSI standard for logic symbols uses rectangular symbols for

each logic device, with special notations inside the rectangles to show

how the outputs depend on the inputs.

9. Hardware description languages have become an important method of

describing digital circuits.

10. HDL code should always contain comments that document its vital char-

acteristics so a person reading it later can understand what it does.

11. Every HDL circuit description contains a definition of the inputs and

outputs, followed by a section that describes the circuit’s operation.

12. In addition to inputs and outputs, intermediate connections that are

buried within the circuit can be defined. These intermediate connec-

tions are called nodes or signals.

108 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

logic level

Boolean algebra

truth table

OR operation

OR gate

AND operation

AND gate

NOT operation

inversion

(complementation)

NOT circuit

(INVERTER)

NOR gate

NAND gate

Boolean theorems

DeMorgan’s theorems

alternate logic

symbols

active logic levels

active-HIGH

active-LOW

asserted

unasserted

IEEE/ANSI

hardware description

languages (HDLs)

Altera hardware

description

language (AHDL)

very high speed

integrated circuit

(VHSIC) hardware

description

language (VHDL)

programmable logic

devices (PLDs)

concurrent

compiler

syntax

mode

type

SUBDESIGN

concurrent

assignment

statement

ENTITY

BIT

ARCHITECTURE

buried nodes (local

signals)

comments

VARIABLE

NODE

IMPORTANT TERMS

PROBLEMS
The color letters preceding some of the problems are used to indicate the na-

ture or type of problem as follows:

B basic problem

T troubleshooting problem

D design or circuit-modification problem

N new concept or technique not covered in text

C challenging problem

H HDL problem

TOCCMC03_0131725793.QXD 12/2/05 8:19 PM Page 108

SECTION 3-3

3-1.*Draw the output waveform for the OR gate of Figure 3-52.

PROBLEMS 109

*Answers to problems marked with an asterisk can be found in the back of the text.

FIGURE 3-52
A

B

C

x

A
B
C

3-2. Suppose that the A input in Figure 3-52 is unintentionally shorted to

ground (i.e., A � 0). Draw the resulting output waveform.

3-3.*Suppose that the A input in Figure 3-52 is unintentionally shorted

to the �5 V supply line (i.e., A � 1). Draw the resulting output wave-

form.

3-4. Read the statements below concerning an OR gate. At first, they may

appear to be valid, but after some thought you should realize that nei-

ther one is always true. Prove this by showing a specific example to re-

fute each statement.

(a) If the output waveform from an OR gate is the same as the wave-

form at one of its inputs, the other input is being held perma-

nently LOW.

(b) If the output waveform from an OR gate is always HIGH, one of its

inputs is being held permanently HIGH.

3-5. How many different sets of input conditions will produce a HIGH out-

put from a five-input OR gate?

SECTION 3-4

3-6. Change the OR gate in Figure 3-52 to an AND gate.

(a)*Draw the output waveform.

(b) Draw the output waveform if the A input is permanently shorted

to ground.

(c) Draw the output waveform if A is permanently shorted to �5 V.

3-7.*Refer to Figure 3-4. Modify the circuit so that the alarm is to be acti-

vated only when the pressure and the temperature exceed their max-

imum limits at the same time.

3-8.*Change the OR gate in Figure 3-6 to an AND gate and draw the output

waveform.

3-9. Suppose that you have an unknown two-input gate that is either an

OR gate or an AND gate. What combination of input levels should you

apply to the gate’s inputs to determine which type of gate it is?

3-10. True or false: No matter how many inputs it has, an AND gate will pro-

duce a HIGH output for only one combination of input levels.

B

B

C

B

B

D

B

B

B

B

TOCCMC03_0131725793.QXD 12/2/05 8:19 PM Page 109

SECTIONS 3-5 TO 3-7

3-11. Apply the A waveform from Figure 3-23 to the input of an INVERTER.

Draw the output waveform. Repeat for waveform B.
3-12. (a)* Write the Boolean expression for output x in Figure 3-53(a).

Determine the value of x for all possible input conditions, and

list the values in a truth table.

(b) Repeat for the circuit in Figure 3-53(b).

110 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-53 A

(a)

x

B

C

(b)

A

B

C

D

x

3-13.*Create a complete analysis table for the circuit of Figure 3-15(b) by

finding the logic levels present at each gate output for each of the 32

possible input combinations.

3-14. (a)*Change each OR to an AND, and each AND to an OR, in Figure

3-15(b). Then write the expression for the output.

(b) Complete an analysis table.

3-15. Create a complete analysis table for the circuit of Figure 3-16 by find-

ing the logic levels present at each gate output for each of the 16 pos-

sible combinations of input levels.

SECTION 3-8

3-16. For each of the following expressions, construct the corresponding

logic circuit, using AND and OR gates and INVERTERs.

(a)*

(b)*

(c) y = (M + N + PQ)

z = A + B + CDE) + BCD

x = AB(C + D)

B

B

B

B

B

B

TOCCMC03_0131725793.QXD 12/2/05 8:19 PM Page 110

(d)

(e)

(f)

SECTION 3-9

3-17.*(a) Apply the input waveforms of Figure 3-54 to a NOR gate, and draw

the output waveform.

(b) Repeat with C held permanently LOW.

(c) Repeat with C held HIGH.

x = (A + B)(A + B)

z = MN(P + N)

x = W + PQ

PROBLEMS 111

FIGURE 3-54
A
B

C

3-18. Repeat Problem 3-17 for a NAND gate.

3-19.*Write the expression for the output of Figure 3-55, and use it to de-

termine the complete truth table.Then apply the waveforms of Figure

3-54 to the circuit inputs, and draw the resulting output waveform.

X
A

B

C

FIGURE 3-55

3-20. Determine the truth table for the circuit of Figure 3-24.

3-21. Modify the circuits that were constructed in Problem 3-16 so that

NAND gates and NOR gates are used wherever appropriate.

SECTION 3-10

3-22. Prove theorems (15a) and (15b) by trying all possible cases.

3-23.*DRILL QUESTION

Complete each expression.

(a) A � 1 � __________ (f) __________

(b) __________ (g) D � 0 � __________

(c) __________ (h) __________

(d) C � C � __________ (i) G � GF � __________

(e) __________ (j) __________y + wy =x # 0 =

C + C =B # B =

A # A =

D # 1 =

B

B

C

B

B

B

C

TOCCMC03_0131725793.QXD 12/2/05 8:19 PM Page 111

3-24. (a)*Simplify the following expression using theorems (13b), (3), and (4):

)

(b) Simplify the following expression using theorems (13a), (8), and (6):

SECTIONS 3-11 AND 3-12

3-25. Prove DeMorgan’s theorems by trying all possible cases.

3-26. Simplify each of the following expressions using DeMorgan’s theo-

rems.

(a)* (d) (g)*

(b) (e)* (h)

(c)* (f) (i)

3-27.*Use DeMorgan’s theorems to simplify the expression for the output of

Figure 3-55.

3-28. Convert the circuit of Figure 3-53(b) to one using only NAND gates.

Then write the output expression for the new circuit, simplify it using

DeMorgan’s theorems, and compare it with the expression for the

original circuit.

3-29. Convert the circuit of Figure 3-53(a) to one using only NOR gates.

Then write the expression for the new circuit, simplify it using

DeMorgan’s theorems, and compare it with the expression for the

original circuit.

3-30. Show how a two-input NAND gate can be constructed from two-input

NOR gates.

3-31. Show how a two-input NOR gate can be constructed from two-input

NAND gates.

3-32. A jet aircraft employs a system for monitoring the rpm, pressure, and

temperature values of its engines using sensors that operate as follows:

Figure 3-56 shows the logic circuit that controls a cockpit warning

light for certain combinations of engine conditions. Assume that a

HIGH at output W activates the warning light.

(a)*Determine what engine conditions will give a warning to the pilot.

(b) Change this circuit to one using all NAND gates.

T sensor output = 0 only when temperature 6 200°F

P sensor output = 0 only when pressure 6 220 psi

RPM sensor output = 0 only when speed 6 4800 rpm

ABCDA + C + DABCD

(M + N)(M + N)ABA + BC

A(B + C)DA + BABC

z = ABC + ABC + BCD

x = (M + N)(M + P)(N + P

112 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-56

Warning
light

W

P

T

R

Temp
sensor

Pressure
sensor

RPM
sensor

C

C

B

B

C

C

B

B

C

TOCCMC03_0131725793.QXD 12/2/05 8:19 PM Page 112

SECTIONS 3-13 AND 3-14

3-33. For each statement below, draw the appropriate logic-gate symbol—

standard or alternate—for the given operation.

(a) A HIGH output occurs only when all three inputs are LOW.

(b) A LOW output occurs when any of the four inputs is LOW.

(c) A LOW output occurs only when all eight inputs are HIGH.

3-34. Draw the standard representations for each of the basic logic gates.

Then draw the alternate representations.

3-35. The circuit of Figure 3-55 is supposed to be a simple digital combina-

tion lock whose output will generate an active-LOW signal

for only one combination of inputs.

(a)*Modify the circuit diagram so that it represents more effectively

the circuit operation.

(b) Use the new circuit diagram to determine the input combination

that will activate the output. Do this by working back from the

output using the information given by the gate symbols, as was

done in Examples 3-22 and 3-23. Compare the results with the

truth table obtained in Problem 3-19.

3-36. (a) Determine the input conditions needed to activate output Z in

Figure 3-37(b). Do this by working back from the output, as was

done in Examples 3-22 and 3-23.

(b) Assume that it is the LOW state of Z that is to activate the alarm.

Change the circuit diagram to reflect this, and then use the re-

vised diagram to determine the input conditions needed to acti-

vate the alarm.

3-37. Modify the circuit of Figure 3-40 so that A1 � 0 is needed to produce

DRIVE � 1 instead of A1 � 1.

3-38.*Determine the input conditions needed to cause the output in Figure

3-57 to go to its active state.

UNLOCK

PROBLEMS 113

FIGURE 3-57

x

A

B

C

D

E

3-39.*What is the asserted state for the output of Figure 3-57? For the out-

put of Figure 3-36(c)?

3-40. Use the results of Problem 3-38 to obtain the complete truth table for

the circuit of Figure 3-57.

3-41.*Figure 3-58 shows an application of logic gates that simulates a two-

way switch like the ones used in our homes to turn a light on or off

B

B

C

C

D

B

B

B

N

TOCCMC03_0131725793.QXD 12/2/05 8:19 PM Page 113

SECTION 3-15

3-42. Redraw the circuits of (a)* Figure 3-57 and (b) Figure 3-58 using the

IEEE/ANSI symbols.

SECTION 3-17
HDL DRILL QUESTIONS

3-43.*True or false:

(a) VHDL is a computer programming language.

(b) VHDL can accomplish the same thing as AHDL.

(c) AHDL is an IEEE standard language.

(d) Each intersection in a switch matrix can be programmed as an

open or short circuit between a row and column wire.

(e) The first item that appears at the top of an HDL listing is the

functional description.

(f) The type of an object indicates if it is an input or an output.

(g) The mode of an object determines if it is an input or an output.

(h) Buried nodes are nodes that have been deleted and will never be

used again.

(i) Local signals are another name for intermediate variables.

(j) The header is a block of comments that document vital informa-

tion about the project.

SECTION 3-18

3-44. Redraw the programmable connection matrix from Figure 3-44. Label

the output signals (horizontal lines) from the connection matrix (from

114 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-58 +5 V

LIGHT

+5 V

+5 V

A

B

from two different switches. Here the light is an LED that will be ON

(conducting) when the NOR gate output is LOW. Note that this output

is labeled to indicate that it is active-LOW. Determine the in-

put conditions needed to turn on the LED.Then verify that the circuit

operates as a two-way switch using switches A and B. (In Chapter 4,

you will learn how to design circuits like this one to produce a given

relationship between inputs and outputs.)

LIGHT

B

H

B

TOCCMC03_0131725793.QXD 12/2/05 8:19 PM Page 114

top row to bottom row) as follows: AAABADHE. Draw an X in the ap-

propriate intersections to short-circuit a row to a column and create

these connections to the logic circuit.

3-45.*Write the HDL code in the language of your choice that will produce

the following output functions:

X � A � B
Y � AB
Z � A � B � C

3-46. Write the HDL code in the language of your choice that will imple-

ment the logic circuit of Figure 3-39.

(a) Use a single Boolean equation.

(b) Use the intermediate variables V, W, X, and Y.

MICROCOMPUTER APPLICATION

3-47.*Refer to Figure 3-40 in Example 3-23. Inputs A7 through A0 are address
inputs that are supplied to this circuit from outputs of the micro-

processor chip in a microcomputer.The eight-bit address code A7 to A0

selects which device the microprocessor wants to activate. In Example

3-23, the required address code to activate the disk drive was A7

through A0 � 111111102 � FE16.

Modify the circuit so that the microprocessor must supply an ad-

dress code of 4A16 to activate the disk drive.

CHALLENGING EXERCISES

3-48. Show how can be implemented with one two-input NOR

and one two-input NAND gate.

3-49.*Implement y � ABCD using only two-input NAND gates.

ANSWERS TO SECTION REVIEW QUESTIONS
SECTION 3-2
1. x � 1 2. x � 0 3. 32

SECTION 3-3
1. All inputs LOW 2. x � A � B � C � D � E � F 3. Constant HIGH

SECTION 3-4
1. All five inputs � 1 2. A LOW input will keep the output LOW. 3. False; see

truth table of each gate.

SECTION 3-5
1. Output of second INVERTER will be the same as input A. 2. y will be LOW

only for A � B � 1.

SECTION 3-6
1. 2. x = D(AB + C) + Ex = A + B + C + AD

x = ABC

ANSWERS TO SECTION REVIEW QUESTIONS 115

H

H

C

C

C

TOCCMC03_0131725793.QXD 12/2/05 8:19 PM Page 115

SECTION 3-7
1. x � 1 2. x � 1 3. x � 1 for both.

SECTION 3-8
1. See Figure 3-15(a). 2. See Figure 3-17(b). 3. See Figure 3-15(b).

SECTION 3-9
1. All inputs LOW. 2. x � 0 3.

SECTION 3-10
1. 2. 3.

SECTION 3-11
1. 2. 3. Same as Figure 3-28 except NAND is

replaced by NOR. 4.

SECTION 3-12
1. Three. 2. NOR circuit is more efficient because it can be implemented with

one 74LS02 IC. 3.

SECTION 3-13
1. Output goes LOW when any input is HIGH. 2. Output goes HIGH only when

all inputs are LOW. 3. Output goes LOW when any input is LOW. 4. Output

goes HIGH only when all inputs are HIGH.

SECTION 3-14
1. Z will go HIGH when A � B � 0 and C � D � 1. 2. Z will go LOW when

A � B � 0, E � 1, and either C or D or both are 0. 3. Two 4. Two 5. LOW

6. A � B � 0, C � D � 1 7.

SECTION 3-15
1. See Figure 3-41. 2. Rectangle with & inside, and triangles on inputs.

SECTION 3-16
1. Boolean equation, truth table, logic diagram, timing diagram, language.

SECTION 3-17
1. Hardware description language 2. To describe a digital circuit and its

operation. 3. To give a computer a sequential list of tasks. 4. HDL describes

concurrent hardware circuits; computer instructions execute one at a time.

SECTION 3-18
1. Programmable logic device 2. By making and breaking connections in a

switching matrix 3. It translates HDL code into a pattern of bits to configure the

switching matix.

SECTION 3-19

AHDL
1. The input and output definitions. 2. The description of how it operates.

W

x = (AB) (CD) = AB + (CD) + AB + CD

y = AB(C + D)

y = (R + S + T)Qz = AB + C

y = AD + BDy = A B Dy = AC

x = A + B + CD

116 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

TOCCMC03_0131725793.QXD 12/2/05 8:19 PM Page 116

VHDL
1. To give a name to the circuit and define its inputs and outputs. 2. The

ARCHITECTURE description. 3.

SECTION 3-20

AHDL
1. NODE 2. After the I/O definition and before BEGIN. 3. No 4. 5. --

VHDL
1. SIGNAL 2. Inside ARCHITECTURE before BEGIN. 3. No 4. --

%

6 =

ANSWERS TO SECTION REVIEW QUESTIONS 117

TOCCMC03_0131725793.QXD 12/2/05 8:19 PM Page 117

4-1 Sum-of-Products Form

4-2 Simplifying Logic Circuits

4-3 Algebraic Simplification

4-4 Designing Combinational

Logic Circuits

4-5 Karnaugh Map Method

4-6 Exclusive-OR and

Exclusive-NOR Circuits

4-7 Parity Generator and

Checker

4-8 Enable/Disable Circuits

4-9 Basic Characteristics of

Digital ICs

■ OUTLINE

C O M B I N AT I O N A L

L O G I C C I R C U I T S

C H A P T E R 4

4-10 Troubleshooting Digital

Systems

4-11 Internal Digital IC Faults

4-12 External Faults

4-13 Troubleshooting Case Study

4-14 Programmable Logic

Devices

4-15 Representing Data in HDL

4-16 Truth Tables Using HDL

4-17 Decision Control Structures

in HDL

TOCCMC04_0131725793.QXD 12/03/2005 12:04 AM Page 118

119

■ OBJECTIVES
Upon completion of this chapter, you will be able to:
■ Convert a logic expression into a sum-of-products expression.

■ Perform the necessary steps to reduce a sum-of-products expression to

its simplest form.

■ Use Boolean algebra and the Karnaugh map as tools to simplify and

design logic circuits.

■ Explain the operation of both exclusive-OR and exclusive-NOR circuits.

■ Design simple logic circuits without the help of a truth table.

■ Implement enable circuits.

■ Cite the basic characteristics of TTL and CMOS digital ICs.

■ Use the basic troubleshooting rules of digital systems.

■ Deduce from observed results the faults of malfunctioning

combinational logic circuits.

■ Describe the fundamental idea of programmable logic devices (PLDs).

■ Outline the steps involved in programming a PLD to perform a simple

combinational logic function.

■ Go to the Altera user manuals to acquire the information needed to do

a simple programming experiment in the lab.

■ Describe hierarchical design methods.

■ Identify proper data types for single-bit, bit array, and numeric value

variables.

■ Describe logic circuits using HDL control structures IF/ELSE, IF/ELSIF,

and CASE.

■ Select the appropriate control structure for a given problem.

■ INTRODUCTION
In Chapter 3, we studied the operation of all the basic logic gates, and we

used Boolean algebra to describe and analyze circuits that were made up of

combinations of logic gates. These circuits can be classified as

combinational logic circuits because, at any time, the logic level at the out-

put depends on the combination of logic levels present at the inputs. A

combinational circuit has no memory characteristic, so its output depends

only on the current value of its inputs.

In this chapter, we will continue our study of combinational circuits. To

start, we will go further into the simplification of logic circuits. Two methods

will be used: one uses Boolean algebra theorems; the other uses a mapping
technique. In addition, we will study simple techniques for designing

TOCCMC04_0131725793.QXD 12/03/2005 12:04 AM Page 119

combinational logic circuits to satisfy a given set of requirements. A com-

plete study of logic-circuit design is not one of our objectives, but the meth-

ods we introduce will provide a good introduction to logic design.

A good portion of the chapter is devoted to the troubleshooting of com-

binational circuits. This first exposure to troubleshooting should begin to

develop the type of analytical skills needed for successful troubleshooting.

To make this material as practical as possible, we will first present some of

the basic characteristics of logic-gate ICs in the TTL and CMOS logic families

along with a description of the most common types of faults encountered in

digital IC circuits.

In the last sections of this chapter, we will extend our knowledge of pro-

grammable logic devices and hardware description languages. The concept

of programmable hardware connections will be reinforced, and we will pro-

vide more details regarding the role of the development system. You will

learn the steps followed in the design and development of digital systems

today. Enough information will be provided to allow you to choose the cor-

rect types of data objects for use in simple projects to be presented later in

this text. Finally, several control structures will be explained, along with

some instruction regarding their appropriate use.

4-1 SUM-OF-PRODUCTS FORM

The methods of logic-circuit simplification and design that we will study

require the logic expression to be in a sum-of-products (SOP) form. Some ex-

amples of this form are:

1.

2.

3.

Each of these sum-of-products expressions consists of two or more AND terms

(products) that are ORed together. Each AND term consists of one or more

variables individually appearing in either complemented or uncomple-

mented form. For example, in the sum-of-products expression

the first AND product contains the variables A, B, and C in their uncomple-

mented (not inverted) form. The second AND term contains A and C in their

complemented (inverted) form. Note that in a sum-of-products expression,

one inversion sign cannot cover more than one variable in a term (e.g., we

cannot have or).

Product-of-Sums
Another general form for logic expressions is sometimes used in logic-

circuit design. Called the product-of-sums (POS) form, it consists of two or

more OR terms (sums) that are ANDed together. Each OR term contains

one or more variables in complemented or uncomplemented form. Here

are some product-of-sum expressions:

1.

2.

3.

The methods of circuit simplification and design that we will be using

are based on the sum-of-products (SOP) form, so we will not be doing much

(A + C)(B + D)(B + C)(A + D + E)

(A + B)(C + D)F

(A + B + C)(A + C)

RSTABC

ABC + ABC,

AB + CD + EF + GK + HL

AB + ABC + C D + D

ABC + ABC

120 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

TOCCMC04_0131725793.QXD 12/03/2005 12:04 AM Page 120

4-2 SIMPLIFYING LOGIC CIRCUITS

Once the expression for a logic circuit has been obtained, we may be able to re-

duce it to a simpler form containing fewer terms or fewer variables in one or

more terms.The new expression can then be used to implement a circuit that is

equivalent to the original circuit but that contains fewer gates and connections.

To illustrate, the circuit of Figure 4-1(a) can be simplified to produce the

circuit of Figure 4-1(b). Both circuits perform the same logic, so it should be ob-

vious that the simpler circuit is more desirable because it contains fewer gates

and will therefore be smaller and cheaper than the original. Furthermore, the

circuit reliability will improve because there are fewer interconnections that

can be potential circuit faults.

SECTION 4-3/ALGEBRAIC SIMPLIFICATION 121

A
B BC

(a)

C
x = A B C

C

A
B

C
(b)

A + BC
x = A B(A + BC)

FIGURE 4-1 It is often

possible to simplify a logic

circuit such as that in part

(a) to produce a more

efficient implementation,

shown in (b).

In subsequent sections, we will study two methods for simplifying logic

circuits. One method will utilize the Boolean algebra theorems and, as we

shall see, is greatly dependent on inspiration and experience. The other

method (Karnaugh mapping) is a systematic, step-by-step approach. Some

instructors may wish to skip over this latter method because it is somewhat

mechanical and probably does not contribute to a better understanding of

Boolean algebra. This can be done without affecting the continuity or clarity

of the rest of the text.

4-3 ALGEBRAIC SIMPLIFICATION

We can use the Boolean algebra theorems that we studied in Chapter 3 to

help us simplify the expression for a logic circuit. Unfortunately, it is not al-

ways obvious which theorems should be applied to produce the simplest

REVIEW QUESTIONS 1. Which of the following expressions is in SOP form?

(a) AB � CD � E

(b) AB(C � D)

(c) (A � B)(C � D � F)

(d)

2. Repeat question 1 for the POS form.

MN + PQ

with the product-of-sums (POS) form. It will, however, occur from time to

time in some logic circuits that have a particular structure.

TOCCMC04_0131725793.QXD 12/17/05 2:39 AM Page 121

result. Furthermore, there is no easy way to tell whether the simplified

expression is in its simplest form or whether it could have been simplified

further. Thus, algebraic simplification often becomes a process of trial and

error. With experience, however, one can become adept at obtaining reason-

ably good results.

The examples that follow will illustrate many of the ways in which the

Boolean theorems can be applied in trying to simplify an expression. You

should notice that these examples contain two essential steps:

1. The original expression is put into SOP form by repeated application of

DeMorgan’s theorems and multiplication of terms.

2. Once the original expression is in SOP form, the product terms are

checked for common factors, and factoring is performed wherever possi-

ble. The factoring should result in the elimination of one or more terms.

122 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

EXAMPLE 4-1 Simplify the logic circuit shown in Figure 4-2(a).

z = ABC + AB(AC)

A

C

B

A

A C

A B C

B

(a)

A
A B(A C)

(b)

z = A(B + C)

B + C

A

B

C

FIGURE 4-2 Example 4-1.

Solution

The first step is to determine the expression for the output using the method

presented in Section 3-6. The result is

Once the expression is determined, it is usually a good idea to break down

all large inverter signs using DeMorgan’s theorems and then multiply out

all terms.

 = ABC + AB + ABC [A � A = A]

 = ABC + ABA + ABC [multiply out]

 = ABC + AB(A + C) [cancel double inversions]

 z = ABC + AB(A + C) [theorem (17)]

z = ABC + AB # (A C)

TOCCMC04_0131725793.QXD 12/03/2005 12:04 AM Page 122

With the expression now in SOP form, we should look for common variables

among the various terms with the intention of factoring. The first and third

terms above have AC in common, which can be factored out:

Since then

We can now factor out A, which results in

This result can be simplified no further. Its circuit implementation is shown

in Figure 4-2(b). It is obvious that the circuit in Figure 4-2(b) is a great deal

simpler than the original circuit in Figure 4-2(a).

z = A(C + B)

 = AC + AB
 z = AC(1) + AB

B + B = 1,

z = AC(B + B) + AB

SECTION 4-3/ALGEBRAIC SIMPLIFICATION 123

EXAMPLE 4-2
Simplify the expression

Solution

The expression is already in SOP form.

Method 1: The first two terms in the expression have the product in

common. Thus,

We can factor the variable A from both terms:

Invoking theorem (15b):

Method 2: The original expression is The first

two terms have in common. The last two terms have AC in common. How

do we know whether to factor from the first two terms or AC from the

last two terms? Actually, we can do both by using the term twice. In

other words, we can rewrite the expression as:

where we have added an extra term This is valid and will not change

the value of the expression because [theorem (7)]. Now

we can factor from the first two terms and AC from the last two terms:

 = AB + AC = A(B + C)
 = AB # 1 + AC # 1

 z = AB(C + C) + AC(B + B)

AB
ABC + ABC = ABC
ABC.

z = AB C + ABC + ABC + ABC

ABC
AB

AB
z = AB C + ABC + ABC.

z = A(B + C)

z = A(B + BC)

 = AB + ABC
 = AB(1) + ABC

 z = AB(C + C) + ABC

AB

z = AB C + ABC + ABC.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 123

Of course, this is the same result obtained with method 1. This trick of using

the same term twice can always be used. In fact, the same term can be used

more than twice if necessary.

124 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

EXAMPLE 4-3
Simplify

Solution

First, use DeMorgan’s theorem on the first term:

(step 1)

Multiplying out yields

(2)

Because the first term is eliminated:

(3)

This is the desired SOP form. Now we must look for common factors among

the various product terms.The idea is to check for the largest common factor

between any two or more product terms. For example, the first and last terms

have the common factor and the second and third terms share the com-

mon factor We can factor these out as follows:

(4)

Now, because and [theorem (15a)], we have

(5)

This same result could have been reached with other choices for the

factoring. For example, we could have factored C from the first, second, and

fourth product terms in step 3 to obtain

The expression inside the parentheses can be factored further:

Because this becomes

Multiplying out yields

z = BC + AC D + ABC D

z = C(B + A D) + ABC D

A + A = 1,

z = C(B[A + A] + A D) + ABC D

z = C(A B + A D + AB) + ABC D

z = BC + A D(B + C)

C + BC = C + BA + A = 1,

z = BC(A + A) + A D(C + BC)

A D.

BC,

z = A BC + ACD + ABC D + ABC

A # A = 0,

z = ACA + ACB + ACD + ABC D + ABC

z = AC(A + B + D) + ABC D + ABC

z = AC(ABD) + ABC D + ABC.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 124

Now we can factor from the second and third terms to get

If we use theorem (15a), the expression in parentheses becomes B � C.Thus,

we finally have

This is the same result that we obtained earlier, but it took us many more

steps. This illustrates why you should look for the largest common factors: it

will generally lead to the final expression in the fewest steps.

Example 4-3 illustrates the frustration often encountered in Boolean

simplification. Because we have arrived at the same equation (which ap-

pears irreducible) by two different methods, it might seem reasonable to

conclude that this final equation is the simplest form. In fact, the simplest

form of this equation is

But there is no apparent way to reduce step (5) to reach this simpler version.

In this case, we missed an operation earlier in the process that could have

led to the simpler form. The question is, “How could we have known that

we missed a step?” Later in this chapter, we will examine a mapping tech-

nique that will always lead to the simplest SOP form.

z = ABD + BC

z = BC + A D(B + C)

z = BC + A D(C + BC)

A D

SECTION 4-3/ALGEBRAIC SIMPLIFICATION 125

EXAMPLE 4-4
Simplify the expression

Solution

The expression can be put into sum-of-products form by multiplying out all

the terms. The result is

The first term can be eliminated because Likewise, the third and

sixth terms can be eliminated because The fifth term can be sim-

plified to because BB � B. This gives us

We can factor from each term to obtain

Clearly, the term inside the parentheses is always 1, so we finally have

x = BD

x = BD(A + A + 1)

BD

x = ABD + ABD + BD

BD
DD = 0.

AA = 0.

x = AAD + ABD + ADD + BAD + BBD + BDD

x = (A + B)(A + B + D)D.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 125

Solution

The expression for output z is

Multiplying out to get the sum-of-products form, we obtain

We can eliminate and to end up with

This expression is implemented in Figure 4-3(b), and if we compare it with

the original circuit, we see that both circuits contain the same number of

gates and connections. In this case, the simplification process produced an

equivalent, but not simpler, circuit.

z = A B + AB

BB = 0AA = 0

z = AA + A B + BA + BB

z = (A + B)(A + B)

126 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

EXAMPLE 4-5 Simplify the circuit of Figure 4-3(a).

FIGURE 4-3 Example 4-5.
A

B

(a)

z

(b)

A

B
z

EXAMPLE 4-6
Simplify

Solution

You can try, but you will not be able to simplify this expression any further.

x = ABC + ABD + C D.

REVIEW QUESTIONS 1. State which of the following expressions are not in the sum-of-products

form:

(a)

(b)

(c)

(d)

2. Simplify the circuit in Figure 4-1(a) to arrive at the circuit of Figure 4-1(b).

3. Change each AND gate in Figure 4-1(a) to a NAND gate. Determine the

new expression for x and simplify it.

AB + ABC + A B C D

MNP + (M + N)P

ADC + ADC

RST + RST + T

TOCCMC04_0131725793.QXD 12/19/05 3:37 PM Page 126

4-4 DESIGNING COMBINATIONAL LOGIC CIRCUITS

When the desired output level of a logic circuit is given for all possible input

conditions, the results can be conveniently displayed in a truth table. The

Boolean expression for the required circuit can then be derived from the

truth table. For example, consider Figure 4-4(a), where a truth table is shown

for a circuit that has two inputs, A and B, and output x. The table shows that

output x is to be at the 1 level only for the case where A � 0 and B � 1. It now

remains to determine what logic circuit will produce this desired operation.

It should be apparent that one possible solution is that shown in Figure

4-4(b). Here an AND gate is used with inputs and B, so that

Obviously x will be 1 only if both inputs to the AND gate are 1, namely,

(which means that A � 0) and B � 1. For all other values of A and B, the out-

put x will be 0.

A = 1

x = A # B.A

SECTION 4-4/DESIGNING COMBINATIONAL LOGIC CIRCUITS 127

A
0
0
1
1

B
0
1
0
1

x
0
1
0
0

(a) (b)

A
x = AB

B

A

FIGURE 4-4 Circuit that

produces a 1 output only for

the A � 0, B � 1 condition.

AB
A

B

AB
A

B

AB
A

B

AB
A

B
HIGH only when A = 0, B = 0

HIGH only when A = 0, B = 1

HIGH only when A = 1, B = 0

HIGH only when A = 1, B = 1

FIGURE 4-5 An AND gate

with appropriate inputs can

be used to produce a 1

output for a specific set of

input levels.

A similar approach can be used for the other input conditions. For in-

stance, if x were to be high only for the A � 1, B � 0 condition, the resulting

circuit would be an AND gate with inputs A and In other words, for any of

the four possible input conditions, we can generate a high x output by using

an AND gate with appropriate inputs to generate the required AND product.

The four different cases are shown in Figure 4-5. Each of the AND gates

shown generates an output that is 1 only for one given input condition and

the output is 0 for all other conditions. It should be noted that the AND in-

puts are inverted or not inverted depending on the values that the variables

have for the given condition. If the variable is 0 for the given condition, it is

inverted before entering the AND gate.

B.

Let us now consider the case shown in Figure 4-6(a), where we have a

truth table that indicates that the output x is to be 1 for two different cases:

A � 0, B � 1 and A � 1, B � 0. How can this be implemented? We know that

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 127

the AND term will generate a 1 only for the A � 0, B � 1 condition, and

the AND term will generate a 1 for the A � 1, B � 0 condition. Because

x must be HIGH for either condition, it should be clear that these terms

should be ORed together to produce the desired output, x. This implementa-

tion is shown in Figure 4-6(b), where the resulting expression for the output

is .x = AB + AB

A # B
A # B

128 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

A
0
0
1
1

B
0
1
0
1

x
0
1
1
0

x = AB + AB

AB

AB

(b)

A

B

A

B

(a)

FIGURE 4-6 Each set of

input conditions that is to

produce a HIGH output is

implemented by a separate

AND gate. The AND outputs

are ORed to produce the

final output.

In this example, an AND term is generated for each case in the table

where the output x is to be a 1.The AND gate outputs are then ORed together

to produce the total output x, which will be 1 when either AND term is 1.This

same procedure can be extended to examples with more than two inputs.

Consider the truth table for a three-input circuit (Table 4-1). Here there are

three cases where the output x is to be 1. The required AND term for each of

these cases is shown. Again, note that for each case where a variable is 0, it

appears inverted in the AND term. The sum-of-products expression for x is

obtained by ORing the three AND terms.

x = ABC + ABC + ABC

TABLE 4-1
A B C x

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1 : ABC

: ABC

: ABC

Complete Design Procedure
Any logic problem can be solved using the following step-by-step procedure.

1. Interpret the problem and set up a truth table to describe its operation.

2. Write the AND (product) term for each case where the output is 1.

3. Write the sum-of-products (SOP) expression for the output.

4. Simplify the output expression if possible.

5. Implement the circuit for the final, simplified expression.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 128

The following example illustrates the complete design procedure.

SECTION 4-4/DESIGNING COMBINATIONAL LOGIC CIRCUITS 129

EXAMPLE 4-7 Design a logic circuit that has three inputs, A, B, and C, and whose output

will be HIGH only when a majority of the inputs are HIGH.

Solution

Step 1. Set up the truth table.

On the basis of the problem statement, the output x should be 1 whenever two

or more inputs are 1; for all other cases, the output should be 0 (Table 4-2).

TABLE 4-2
A B C x

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1 : ABC

: ABC

: ABC

: ABC

Step 2. Write the AND term for each case where the output is a 1.

There are four such cases. The AND terms are shown next to the truth table

(Table 4-2). Again note that each AND term contains each input variable in

either inverted or noninverted form.

Step 3. Write the sum-of-products expression for the output.

Step 4. Simplify the output expression.

This expression can be simplified in several ways. Perhaps the quickest way

is to realize that the last term ABC has two variables in common with each of

the other terms. Thus, we can use the ABC term to factor with each of the

other terms. The expression is rewritten with the ABC term occurring three

times (recall from Example 4-2 that this is legal in Boolean algebra):

Factoring the appropriate pairs of terms, we have

Each term in parentheses is equal to 1, so we have

x = BC + AC + AB

x = BC(A + A) + AC(B + B) + AB(C + C)

x = ABC + ABC + ABC + ABC + ABC + ABC

x = ABC + ABC + ABC + ABC

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 129

Step 5. Implement the circuit for the final expression.

This expression is implemented in Figure 4-7. Since the expression is in SOP

form, the circuit consists of a group of AND gates working into a single OR gate.

130 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

A

B

C
BC

AB

AC

x = BC + AC + AB

FIGURE 4-7 Example 4-7.

EXAMPLE 4-8 Refer to Figure 4-8(a), where an analog-to-digital converter is monitoring the

dc voltage of a 12-V storage battery on an orbiting spaceship.The converter’s

output is a four-bit binary number, ABCD, corresponding to the battery volt-

age in steps of 1 V, with A as the MSB. The converter’s binary outputs are fed

to a logic circuit that is to produce a HIGH output as long as the binary value

is greater than 01102 � 610; that is, the battery voltage is greater than 6 V.

Design this logic circuit.

FIGURE 4-8 Example 4-8.

(b)

A
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

B
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

C
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

D
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12)
(13)
(14)
(15)

A
B
C
D

MSB

LSB

Logic
circuit

(a)

z

z = A + BCD

(c)

A

B
C
D

Analog-
to-

digital
converterVB

A
B
C
D

z
0
0
0
0
0
0
0
1→ ABCD
1→ ABCD
1→ ABCD
1→ ABCD
1→ ABCD
1→ ABCD
1→ ABCD
1→ ABCD
1→ ABCD

Solution

The truth table is shown in Figure 4-8(b). For each case in the truth table, we

have indicated the decimal equivalent of the binary number represented by

the ABCD combination.

The output z is set equal to 1 for all those cases where the binary num-

ber is greater than 0110. For all other cases, z is set equal to 0. This truth

table gives us the following sum-of-products expression:

 + ABCD + ABCD + ABCD
 z = ABCD + AB C D + AB CD + ABCD + ABCD + ABC D

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 130

Simplification of this expression will be a formidable task, but with a little

care it can be accomplished. The step-by-step process involves factoring

and eliminating terms of the form

This can be reduced further by invoking theorem (15a), which says that

In this case x � A and y � BCD. Thus,

This final expression is implemented in Figure 4-8(c).

As this example demonstrates, the algebraic simplification method can

be quite lengthy when the original expression contains a large number of

terms. This is a limitation that is not shared by the Karnaugh mapping

method, as we will see later.

z = ABCD + A = BCD + A

x + xy = x + y.

 = ABCD + A
 = ABCD + A(B + B)

 = ABCD + AB + AB
 = ABCD + AB(C + C) + AB(C + C)

 = ABCD + AB C + ABC + ABC + ABC
 z = ABCD + AB C(D + D) + ABC(D + D) + ABC(D + D) + ABC(D + D)

A + A:

SECTION 4-4/DESIGNING COMBINATIONAL LOGIC CIRCUITS 131

EXAMPLE 4-9 Refer to Figure 4-9(a). In a simple copy machine, a stop signal, S, is to be

generated to stop the machine operation and energize an indicator light

whenever either of the following conditions exists: (1) there is no paper in

the paper feeder tray; or (2) the two microswitches in the paper path are

P

AND

OR

Q

R

S P

Q

R

S = P + QR

(d)(c)

S = P + QRP

Q

R

(b)

Feeder tray
sensor

1 k�

+5 V

P

Q

R

Paper-
sensing
switches

S

(a)

1 k�

Logic
circuit

FIGURE 4-9 Example 4-9.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 131

activated, indicating a jam in the paper path. The presence of paper in the

feeder tray is indicated by a HIGH at logic signal P. Each of the microswitches

produces a logic signal (Q and R) that goes HIGH whenever paper is passing

over the switch to activate it. Design the logic circuit to produce a HIGH at

output signal S for the stated conditions, and implement it using the 74HC00

CMOS quad two-input NAND chip.

Solution

We will use the five-step process used in Example 4-7. The truth table is

shown in Table 4-3. The S output will be a logic 1 whenever P � 0 because

this indicates no paper in the feeder tray. S will also be a 1 for the two cases

where Q and R are both 1, indicating a paper jam. As the table shows, there

are five different input conditions that produce a HIGH output. (Step 1)

132 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

TABLE 4-3
P Q R S

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1 PQR

PQR

PQR

P QR

P Q R

The AND terms for each of these cases are shown. (Step 2)
The sum-of-products expression becomes

(Step 3)

We can begin the simplification by factoring out from terms 1 and 2

and by factoring out from terms 3 and 4:

(Step 4)

Now we can eliminate the terms because they equal 1:

Factoring from terms 1 and 2 allows us to eliminate Q from these terms:

Here we can apply theorem (15b) to obtain

As a double check of this simplified Boolean equation, let’s see if it

matches the truth table that we started out with. This equation says that

the output S will be HIGH whenever P is LOW OR both Q AND R are HIGH.

Look at Table 4-3 and observe that the output is HIGH for all four cases

S = P + QR

(x + xy = x + y)

S = P + PQR

P

S = P Q + PQ + PQR

R + R

S = P Q(R + R) + PQ(R + R) + PQR

PQ
P Q

S = P Q R + P QR + PQR + PQR + PQR

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 132

when P is LOW. S is also HIGH when Q AND R are both HIGH, regardless of

the state of P. This agrees with the equation.

The AND/OR implementation for this circuit is shown in Figure 4-9(b).

(Step 5)
To implement this circuit using the 74HC00 quad two-input NAND

chip, we must convert each gate and the INVERTER by their NAND-gate

equivalents (per Section 3-12). This is shown in Figure 4-9(c). Clearly, we

can eliminate the double inverters to produce the NAND-gate implementa-

tion shown in Figure 4-9(d).

The final wired-up circuit is obtained by connecting two of the NAND

gates on the 74HC00 chip. This CMOS chip has the same gate configuration

and pin numbers as the TTL 74LS00 chip of Figure 3-31. Figure 4-10 shows

the wired-up circuit with pin numbers, including the �5 V and GROUND

pins. It also includes an output driver transistor and LED to indicate the

state of output S.

SECTION 4-5/KARNAUGH MAP METHOD 133

P

Q

R

(e)

1

2
3

4

5
6

7

14

S 33 k�

100 �

+5 V

The other two
gates on the chip
are not connected.

74HC00

74HC00
Note:

FIGURE 4-10 Circuit of

Figure 4-9(d) implemented

using 74HC00 NAND chip.

4-5 KARNAUGH MAP METHOD

The Karnaugh map (K map) is a graphical tool used to simplify a logic equa-

tion or to convert a truth table to its corresponding logic circuit in a simple,

orderly process. Although a K map can be used for problems involving any

number of input variables, its practical usefulness is limited to five or six

variables. The following discussion will be limited to problems with up to

four inputs because even five- and six-input problems are too involved and

are best done by a computer program.

REVIEW QUESTIONS 1. Write the sum-of-products expression for a circuit with four inputs and

an output that is to be HIGH only when input A is LOW at the same time

that exactly two other inputs are LOW.

2. Implement the expression of question 1 using all four-input NAND gates.

How many are required?

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 133

Karnaugh Map Format
The K map, like a truth table, is a means for showing the relationship be-

tween logic inputs and the desired output. Figure 4-11 shows three examples

of K maps for two, three, and four variables, together with the corresponding

truth tables. These examples illustrate the following important points:

1. The truth table gives the value of output X for each combination of input

values. The K map gives the same information in a different format. Each

case in the truth table corresponds to a square in the K map. For example,

in Figure 4-11(a), the A � 0, B � 0 condition in the truth table corresponds

to the square in the K map. Because the truth table shows X � 1
for this case, a 1 is placed in the square in the K map. Similarly, the

A � 1, B � 1 condition in the truth table corresponds to the AB square of

the K map. Because X � 1 for this case, a 1 is placed in the AB square. All

other squares are filled with 0s. This same idea is used in the three- and

four-variable maps shown in the figure.

2. The K-map squares are labeled so that horizontally adjacent squares dif-

fer only in one variable. For example, the upper left-hand square in the

four-variable map is while the square immediately to its right is

(only the D variable is different). Similarly, vertically adjacentA B CD
A B C D,

A B
A B

134 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

A
0
0
1
1

B
0
1
0
1

X
1 → AB
0
0
1 → AB

A
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

B
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

C
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

D
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

X
0
1 → ABCD
0
0
0
1 → ABCD
0
0
0
0
0
0
0
1 → ABCD
0
1 → ABCD

A
0
0
0
0
1
1
1
1

B
0
0
1
1
0
0
1
1

C
0
1
0
1
0
1
0
1

X
1 → ABC
1 → ABC
1 → ABC
0
0
0
1 → ABC
0

X = ABCD + ABCD
 + ABCD + ABCD

X = ABC + ABC
 + ABC + ABC

0 1 0 0

1 1

1 0

1 0

0 0

AB

AB

AB

AB

AB

AB

AB

AB

CD CD CD CD

C C

(c)

(b)

(a)

x = AB + AB
A

10

B

1 0

A

B

0 1 0 0

0 0 0 0

0 1 1 0

FIGURE 4-11 Karnaugh

maps and truth tables for

(a) two, (b) three, and

(c) four variables.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 134

squares differ only in one variable. For example, the upper left-hand

square is while the square directly below it is (only the B
variable is different).

Note that each square in the top row is considered to be adjacent to

a corresponding square in the bottom row. For example, the

square in the top row is adjacent to the square in the bottom row

because they differ only in the A variable.You can think of the top of the

map as being wrapped around to touch the bottom of the map. Similarly,

squares in the leftmost column are adjacent to corresponding squares in

the rightmost column.

3. In order for vertically and horizontally adjacent squares to differ in only

one variable, the top-to-bottom labeling must be done in the order

shown: The same is true of the left-to-right labeling:

4. Once a K map has been filled with 0s and 1s, the sum-of-products expression

for the output X can be obtained by ORing together those squares that con-

tain a 1. In the three-variable map of Figure 4-11(b), the

and squares contain a 1, so that .

Looping
The expression for output X can be simplified by properly combining those

squares in the K map that contain 1s. The process for combining these 1s is

called looping.

Looping Groups of Two (Pairs)
Figure 4-12(a) is the K map for a particular three-variable truth table. This

map contains a pair of 1s that are vertically adjacent to each other; the first

X = A B C + A BC + ABC + ABCABC
A B C, A BC, ABC,

C D, CD, CD, CD.

A B, AB, AB, AB.

ABCD
A BCD

ABC DA B C D,

SECTION 4-5/KARNAUGH MAP METHOD 135

0 0

1 0

1 0

0 0

AB

AB

AB

AB

C C

(a)

X = ABC + ABC
 = BC

1 0

0 0

0 0

1 0

AB

AB

AB

AB

C C

(c)

X = ABC + ABC = BC

0 0 1 1AB

AB

AB

AB

CD CD CD CD

(d)

ABC

ABD

X = ABCD + ABCD
 + ABCD + ABCD
 = ABC + ABD

0 0

1 1

0 0

0 0

AB

AB

AB

AB

C C

(b)

X = ABC + ABC
 = AB

0 0 0 0

1 0 0 1

0 0 0 0

FIGURE 4-12 Examples of

looping pairs of adjacent 1s.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 135

represents and the second represents Note that in these two

terms only the A variable appears in both normal and complemented (in-

verted) form, while B and remain unchanged. These two terms can be

looped (combined) to give a resultant that eliminates the A variable because

it appears in both uncomplemented and complemented forms. This is easily

proved as follows:

This same principle holds true for any pair of vertically or horizontally

adjacent 1s. Figure 4-12(b) shows an example of two horizontally adjacent

1s.These two can be looped and the C variable eliminated because it appears

in both its uncomplemented and complemented forms to give a resultant

of

Another example is shown in Figure 4-12(c). In a K map, the top row and

bottom row of squares are considered to be adjacent. Thus, the two 1s in this

map can be looped to provide a resultant of .

Figure 4-12(d) shows a K map that has two pairs of 1s that can be looped.

The two 1s in the top row are horizontally adjacent. The two 1s in the bot-

tom row are also adjacent because, in a K map, the leftmost column and the

rightmost column of squares are considered to be adjacent. When the top

pair of 1s is looped, the D variable is eliminated (because it appears as both

D and) to give the term Looping the bottom pair eliminates the C
variable to give the term These two terms are ORed to give the final

result for X.
To summarize:

Looping a pair of adjacent 1s in a K map eliminates the variable that
appears in complemented and uncomplemented form.

Looping Groups of Four (Quads)
A K map may contain a group of four 1s that are adjacent to each other. This

group is called a quad. Figure 4-13 shows several examples of quads. In

Figure 4-13(a), the four 1s are vertically adjacent, and in Figure 4-13(b), they

are horizontally adjacent. The K map in Figure 4-13(c) contains four 1s in a

square, and they are considered adjacent to each other.The four 1s in Figure

4-13(d) are also adjacent, as are those in Figure 4-13(e), because, as pointed

out earlier, the top and bottom rows are considered to be adjacent to each

other, as are the leftmost and rightmost columns.

When a quad is looped, the resultant term will contain only the variables

that do not change form for all the squares in the quad. For example, in

Figure 4-13(a), the four squares that contain a 1 are and

Examination of these terms reveals that only the variable C remains

unchanged (both A and B appear in complemented and uncomplemented

form). Thus, the resultant expression for X is simply X � C. This can be

proved as follows:

 = C(A + A) = C
 = AC + AC
 = AC(B + B) + AC(B + B)

 X = A BC + ABC + ABC + ABC

ABC.

A BC, ABC, ABC,

AB D.

A BC.D

A B C + AB C = B C

X = AB.

 = BC(1) = BC
 = BC(A + A)

 X = ABC + ABC

C

ABC.ABC,

136 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 136

As another example, consider Figure 4-13(d), where the four squares con-

taining 1s are and Examination of these terms

indicates that only the variables A and remain unchanged, so that the sim-

plified expression for X is

This can be proved in the same manner that was used above. The reader

should check each of the other cases in Figure 4-13 to verify the indicated ex-

pressions for X.
To summarize:

Looping a quad of adjacent 1s eliminates the two variables that ap-
pear in both complemented and uncomplemented form.

Looping Groups of Eight (Octets)
A group of eight 1s that are adjacent to one another is called an octet.
Several examples of octets are shown in Figure 4-14. When an octet is looped

in a four-variable map, three of the four variables are eliminated because

only one variable remains unchanged. For example, examination of the eight

looped squares in Figure 4-14(a) shows that only the variable B is in the same

form for all eight squares: the other variables appear in complemented and

uncomplemented form. Thus, for this map, X � B. The reader can verify the

results for the other examples in Figure 4-14.

To summarize:

Looping an octet of adjacent 1s eliminates the three variables that
appear in both complemented and uncomplemented form.

X = AD

D
ABCD.ABC D, A B CD, ABCD,

SECTION 4-5/KARNAUGH MAP METHOD 137

0 0 0 0AB

AB

AB

AB

CD CD CD CD

X = AB
(b)

0 1

0 1

0 1

0 1

AB

AB

AB

AB

C C

(a)
X = C

0 0 0 0AB

AB

AB

AB

CD CD CD CD

X = BD
(c)

0 0 0 0

0 0 0 0

1 0 0 1

AB

AB

AB

AB

CD CD CD CD

X = AD
(d)

1 0 0 1

0 0 0 0

AB

AB

AB

AB

CD CD CD CD

(e)

X = BD

1 0 0 1

1 1 1 1

0 1 1 00 0 0 0

0 0 0 0 0 0 0 0

0 1 1 0

0 0 0 0

1 0 0 1

FIGURE 4-13 Examples

of looping groups of four 1s

(quads).

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 137

Complete Simplification Process
We have seen how looping of pairs, quads, and octets on a K map can be used to

obtain a simplified expression.We can summarize the rule for loops of any size:

When a variable appears in both complemented and uncomple-
mented form within a loop, that variable is eliminated from the
expression. Variables that are the same for all squares of the loop
must appear in the final expression.

It should be clear that a larger loop of 1s eliminates more variables. To

be exact, a loop of two eliminates one variable, a loop of four eliminates two

variables, and a loop of eight eliminates three. This principle will now be

used to obtain a simplified logic expression from a K map that contains any

combination of 1s and 0s.

The procedure will first be outlined and then applied to several exam-

ples.The steps below are followed in using the K-map method for simplifying

a Boolean expression:

Step 1 Construct the K map and place 1s in those squares corresponding to

the 1s in the truth table. Place 0s in the other squares.

Step 2 Examine the map for adjacent 1s and loop those 1s that are not
adjacent to any other 1s. These are called isolated 1s.

Step 3 Next, look for those 1s that are adjacent to only one other 1. Loop any
pair containing such a 1.

Step 4 Loop any octet even if it contains some 1s that have already been

looped.

Step 5 Loop any quad that contains one or more 1s that have not already

been looped, making sure to use the minimum number of loops.

138 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

0 0 0 0

1 1 1 1

AB

AB

AB

AB

CD CD CD CD

1 1 0 0

AB

AB

AB

AB

CD CD CD CD

1 1 1 1

0 0 0 0

AB

AB

AB

AB

CD CD CD CD

1 0 0 1

AB

AB

AB

AB

CD CD CD CD

X = B
(a)

X = C
(b)

X = B
(c)

X = D
(d)

1 1 0 0

1 1 0 0

1 1 0 0

1 0 0 1

1 0 0 1

1 0 0 10 0 0 0

1 1 1 1

0 0 0 0

1 1 1 1

FIGURE 4-14 Examples of

looping groups of eight 1s

(octets).

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 138

Step 6 Loop any pairs necessary to include any 1s that have not yet been

looped, making sure to use the minimum number of loops.

Step 7 Form the OR sum of all the terms generated by each loop.

These steps will be followed exactly and referred to in the following ex-

amples. In each case, the resulting logic expression will be in its simplest

sum-of-products form.

SECTION 4-5/KARNAUGH MAP METHOD 139

0 0 0 1

0 1 1 0

0 1 1 0

0 0 1 0

AB

AB

AB

AB

CD CD CD CD

0 0 1 0

1 1 1 1

1 1 0 0

0 0 0 0

AB

AB

AB

AB

CD CD CD CD

0 1 0 0

0 1 1 1

1 1 1 0

0 0 1 0

AB

AB

AB

AB

CD CD CD CD

X = ABCD + ACD + BD

loop 4 loop
11, 15

loop 6,
7, 10, 11

X = AB + BC + ACD

loop 5,
6, 7, 8

loop 5,
6, 9, 10

loop
3,7

X = ABC + ACD + ABC + ACD

9, 10 2, 6 7, 8 11, 15

1 2 3 4

5 6 7 8

9 10 11

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11

13 14 15 16

(c)

(b)

(a)

12

12

FIGURE 4-15 Examples

4-10 to 4-12.

Step 2 Square 4 is the only square containing a 1 that is not adjacent to any

other 1. It is looped and is referred to as loop 4.

Step 3 Square 15 is adjacent only to square 11. This pair is looped and re-

ferred to as loop 11, 15.

Step 4 There are no octets.

Step 5 Squares 6, 7, 10, and 11 form a quad. This quad is looped (loop 6, 7,

10, 11). Note that square 11 is used again, even though it was part of

loop 11, 15.

EXAMPLE 4-10 Figure 4-15(a) shows the K map for a four-variable problem. We will assume

that the map was obtained from the problem truth table (step 1).The squares

are numbered for convenience in identifying each loop.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 139

Step 6 All 1s have already been looped.

Step 7 Each loop generates a term in the expression for X. Loop 4 is simply

Loop 11, 15 is ACD (the B variable is eliminated). Loop 6, 7,

10, 11 is BD (A and C are eliminated).

A BCD.

140 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

EXAMPLE 4-11 Consider the K map in Figure 4-15(b). Once again, we can assume that step 1

has already been performed.

Step 2 There are no isolated 1s.

Step 3 The 1 in square 3 is adjacent only to the 1 in square 7. Looping this

pair (loop 3, 7) produces the term

Step 4 There are no octets.

Step 5 There are two quads. Squares 5, 6, 7, and 8 form one quad. Looping this

quad produces the term The second quad is made up of squares 5,

6, 9, and 10. This quad is looped because it contains two squares that

have not been looped previously. Looping this quad produces

Step 6 All 1s have already been looped.

Step 7 The terms generated by the three loops are ORed together to obtain

the expression for X.

BC.

AB.

ACD.

EXAMPLE 4-12 Consider the K map in Figure 4-15(c).

Step 2 There are no isolated 1s.

Step 3 The 1 in square 2 is adjacent only to the 1 in square 6. This pair is

looped to produce Similarly, square 9 is adjacent only to

square 10. Looping this pair produces Likewise, loop 7, 8 and

loop 11, 15 produce the terms and ACD, respectively.

Step 4 There are no octets.

Step 5 There is one quad formed by squares 6, 7, 10, and 11. This quad, how-

ever, is not looped because all the 1s in the quad have been included

in other loops.

Step 6 All 1s have already been looped.

Step 7 The expression for X is shown in the figure.

ABC
ABC.

A CD.

EXAMPLE 4-13 Consider the K map in Figure 4-16(a).

0 1 0 0

0 1 1 1

0 0 0 1

1 1 0 1

AB

AB

AB

AB

CD CD CD CD

0 1 0 0

0 1 1 1

0 0 0 1

1 1 0 1

AB

AB

AB

AB

CD CD CD CD

X = ABD + BCD + BCD + ABD

(b)

X = ACD + ABC + ABC + ACD

(a)

FIGURE 4-16 The same K

map with two equally good

solutions.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 140

Step 2 There are no isolated 1s.

Step 3 There are no 1s that are adjacent to only one other 1.

Step 4 There are no octets.

Step 5 There are no quads.

Steps 6 and 7 There are many possible pairs. The looping must use the min-

imum number of loops to account for all the 1s. For this map, there are

two possible loopings, which require only four looped pairs. Figure 4-

16(a) shows one solution and its resultant expression. Figure 4-16(b)

shows the other. Note that both expressions are of the same com-

plexity, and so neither is better than the other.

Filling a K Map from an Output Expression
When the desired output is presented as a Boolean expression instead of a

truth table, the K map can be filled by using the following steps:

1. Get the expression into SOP form if it is not already in that form.

2. For each product term in the SOP expression, place a 1 in each K-map

square whose label contains the same combination of input variables.

Place a 0 in all other squares.

The following example illustrates this procedure.

SECTION 4-5/KARNAUGH MAP METHOD 141

Use a K map to simplify

Solution

1. Multiply out the first term to get which is

now in SOP form.

2. For the term, simply put a 1 in the square of the K map

(Figure 4-17). For the term, place a 1 in all squares with in their

labels, that is, For the term, place a 1

in all squares that have an in their labels, that is, For

the term, place a 1 in all squares that have a in their labels, that is,

all squares in the leftmost and rightmost columns.

DD
ABCD, ABCD.ABC

ABCA B CD, ABCD, ABCD, A B CD.

CDCD
A B C DA B C D

y = A B C D + CD + ABC + D,

y = C(A B D + D) + ABC + D.EXAMPLE 4-14

1 1 0 1

1 1 0 1

AB

AB

AB

AB

CD CD CD CD

y = AB + C + D

1 1 0 1

1 1 1 1

FIGURE 4-17 Example

4-14.

The K map is now filled and can be looped for simplification. Verify that

proper looping produces .y = AB + C + D

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 141

Don’t-Care Conditions
Some logic circuits can be designed so that there are certain input condi-

tions for which there are no specified output levels, usually because these

input conditions will never occur. In other words, there will be certain com-

binations of input levels where we “don’t care” whether the output is HIGH

or LOW. This is illustrated in the truth table of Figure 4-18(a).

142 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

Let’s design a logic circuit that controls an elevator door in a three-story

building. The circuit in Figure 4-19(a) has four inputs. M is a logic signal that

indicates when the elevator is moving (M � 1) or stopped (M � 0). F1, F2, and

F3 are floor indicator signals that are normally LOW, and they go HIGH only

when the elevator is positioned at the level of that particular floor. For ex-

ample, when the elevator is lined up level with the second floor, F2 � 1 and

F1 � F3 � 0. The circuit output is the OPEN signal, which is normally LOW

and will go HIGH when the elevator door is to be opened.

We can fill in the truth table for the OPEN output [Figure 4-19(b)] as

follows:

1. Because the elevator cannot be lined up with more than one floor at a

time, only one of the floor inputs can be HIGH at any given time. This

means that all those cases in the truth table where more than one floor

EXAMPLE 4-15

0 0

0 x

1 1

x 1

AB

AB

AB

AB

C C

0 0

0 0

1 1

1 1

AB

AB

AB

AB

C C

A
0
0
0
0
1
1
1
1

B
0
0
1
1
0
0
1
1

C
0
1
0
1
0
1
0
1

z
0
0
0
x
x
1
1
1

''don't
care''

(a) (b) (c)

z = A

FIGURE 4-18 “Don’t-

care” conditions should be

changed to 0 or 1 to pro-

duce K-map looping that

yields the simplest

expression.

Here the output z is not specified as either 0 or 1 for the conditions A, B,

C � 1, 0, 0 and A, B, C � 0, 1, 1. Instead, an x is shown for these conditions.

The x represents the don’t-care condition. A don’t-care condition can come

about for several reasons, the most common being that in some situations

certain input combinations can never occur, and so there is no specified out-

put for these conditions.

A circuit designer is free to make the output for any don’t-care condi-

tion either a 0 or a 1 to produce the simplest output expression. For exam-

ple, the K map for this truth table is shown in Figure 4-18(b) with an x
placed in the and squares. The designer here would be wise to

change the x in the square to a 1 and the x in the square to a 0 be-

cause this would produce a quad that can be looped to produce z � A, as

shown in Figure 4-18(c).

Whenever don’t-care conditions occur, we must decide which x to change

to 0 and which to 1 to produce the best K-map looping (i.e., the simplest ex-

pression). This decision is not always an easy one. Several end-of-chapter

problems will provide practice in dealing with don’t-care cases. Here’s an-

other example.

ABCAB C
ABCAB C

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 142

input is a 1 are don’t-care conditions. We can place an x in the OPEN out-

put column for those eight cases where more than one F input is 1.

2. Looking at the other eight cases, when M � 1 the elevator is moving, so

OPEN must be a 0 because we do not want the elevator door to open.

When M � 0 (elevator stopped) we want OPEN � 1 provided that one of

the floor inputs is 1. When M � 0 and all floor inputs are 0, the elevator is

stopped but is not properly lined up with any floor, so we want OPEN � 0

to keep the door closed.

The truth table is now complete and we can transfer its information to

the K map in Figure 4-19(c).The map has only three 1s, but it has eight don’t-

cares. By changing four of these don’t-care squares to 1s, we can produce

quad loopings that contain the original 1s [Figure 4-19(d)]. This is the best

we can do as far as minimizing the output expression. Verify that the loop-

ings produce the OPEN output expression shown.

Summary
The K-map process has several advantages over the algebraic method. K

mapping is a more orderly process with well-defined steps compared with

the trial-and-error process sometimes used in algebraic simplification. K

mapping usually requires fewer steps, especially for expressions containing

many terms, and it always produces a minimum expression.

SECTION 4-5/KARNAUGH MAP METHOD 143

F2

0 0 X 0

0 X X X

1 X X X

0 1 X 1

F3 F2 F3 F2 F3 F2 F3

M F1

M F1

M F1

M F1

(c)

F2

0 0 0 0

0 0 0 0

0 1 1 1

F3 F2 F3 F2 F3 F2 F3

M F1

M F1

M F1

M F1

(d)

OPEN = M (F1 + F2 + F3)

(b)

M
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

F1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

F2
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

F3
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

OPEN
0
1
1
X
1
X
X
X
0
0
0
X
0
X
X
X

F3F2F1M

OPEN

(a)

1 1 1 1

Elevator
circuit

FIGURE 4-19 Example

4-15.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 143

Nevertheless, some instructors prefer the algebraic method because it

requires a thorough knowledge of Boolean algebra and is not simply a me-

chanical procedure. Each method has its advantages, and although most

logic designers are adept at both, being proficient in one method is all that

is necessary to produce acceptable results.

There are other, more complex techniques that designers use to minimize

logic circuits with more than four inputs. These techniques are especially

suited for circuits with large numbers of inputs where algebraic and K-mapping

methods are not feasible. Most of these techniques can be translated into a

computer program that will perform the minimization from input data that

supply the truth table or the unsimplified expression.

144 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

REVIEW QUESTIONS 1. Use K mapping to obtain the expression of Example 4-7.

2. Use K mapping to obtain the expression of Example 4-8. This should em-

phasize the advantage of K mapping for expressions containing many

terms.

3. Obtain the expression of Example 4-9 using a K map.

4. What is a don’t-care condition?

4-6 EXCLUSIVE-OR AND EXCLUSIVE-NOR CIRCUITS

Two special logic circuits that occur quite often in digital systems are the

exclusive-OR and exclusive-NOR circuits.

Exclusive-OR
Consider the logic circuit of Figure 4-20(a). The output expression of this cir-

cuit is

x = AB + AB

A
0
0
1
1

B
0
1
0
1

x
0
1
1
0

x = A ⊕ B
A

B
= 1

(c)
(b)

x = A ⊕ B
 = AB + ABA

B

A

B

A

B

A

B

AB
x = AB + AB

(a)

AB

XOR gate symbols

FIGURE 4-20
(a) Exclusive-OR circuit

and truth table; (b) tradi-

tional XOR gate symbol;

(c) IEEE/ANSI symbol for

XOR gate.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 144

SECTION 4-6/EXCLUSIVE-OR AND EXCLUSIVE-NOR CIRCUITS 145

The accompanying truth table shows that x � 1 for two cases: A � 0, B � 1

(the term) and A � 1, B � 0 (the term). In other words:

This circuit produces a HIGH output whenever the two inputs are
at opposite levels.

This is the exclusive-OR circuit, which will hereafter be abbreviated XOR.

This particular combination of logic gates occurs quite often and is very

useful in certain applications. In fact, the XOR circuit has been given a sym-

bol of its own, shown in Figure 4-20(b). This symbol is assumed to contain all

of the logic contained in the XOR circuit and therefore has the same logic ex-

pression and truth table. This XOR circuit is commonly referred to as an

XOR gate, and we consider it as another type of logic gate. The IEEE/ANSI

symbol for an XOR gate is shown in Figure 4-20(c).The dependency notation

(� 1) inside the block indicates that the output will be active-HIGH only
when a single input is HIGH.

An XOR gate has only two inputs; there are no three-input or four-input

XOR gates. The two inputs are combined so that A shorthand

way that is sometimes used to indicate the XOR output expression is

where the symbol represents the XOR gate operation.

The characteristics of an XOR gate are summarized as follows:

1. It has only two inputs and its output is

2. Its output is HIGH only when the two inputs are at different levels.

Several ICs are available that contain XOR gates. Those listed below are

quad XOR chips containing four XOR gates.

74LS86 Quad XOR (TTL family)

74C86 Quad XOR (CMOS family)

74HC86 Quad XOR (high-speed CMOS)

Exclusive-NOR
The exclusive-NOR circuit (abbreviated XNOR) operates completely oppo-

site to the XOR circuit. Figure 4-21(a) shows an XNOR circuit and its accom-

panying truth table. The output expression is

which indicates along with the truth table that x will be 1 for two cases: A �
B � 1 (the AB term) and A � B � 0 (the term). In other words:

The XNOR produces a HIGH output whenever the two inputs are at
the same level.

It should be apparent that the output of the XNOR circuit is the exact in-

verse of the output of the XOR circuit. The traditional symbol for an XNOR

A B

x = AB + A B

x = AB + AB = A { B

{

x = A { B

x = AB + AB.

ABAB

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 145

146 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

FIGURE 4-21
(a) Exclusive-NOR circuit;

(b) traditional symbol for

XNOR gate; (c) IEEE/ANSI

symbol.

XNOR gate symbols

A
0
0
1
1

B
0
1
0
1

x
1
0
0
1

x = AB +AB

A B

AB

A

B

B

A

A

B

A

B

(b)

x = A ⊕ B = AB + AB

(c)

x = A ⊕ BA

B
= 1

(a)

gate is obtained by simply adding a small circle at the output of the XOR

symbol [Figure 4-21(b)]. The IEEE/ANSI symbol adds the small triangle on

the output of the XOR symbol. Both symbols indicate an output that goes to

its active-LOW state when only one input is HIGH.

The XNOR gate also has only two inputs, and it combines them so that its

output is

A shorthand way to indicate the output expression of the XNOR is

which is simply the inverse of the XOR operation. The XNOR gate is sum-

marized as follows:

1. It has only two inputs and its output is

2. Its output is HIGH only when the two inputs are at the same level.

Several ICs are available that contain XNOR gates. Those listed below

are quad XNOR chips containing four XNOR gates.

74LS266 Quad XNOR (TTL family)

74C266 Quad XNOR (CMOS)

74HC266 Quad XNOR (high-speed CMOS)

x = AB + A B = A { B

x = A { B

x = AB + A B

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 146

SECTION 4-6/EXCLUSIVE-OR AND EXCLUSIVE-NOR CIRCUITS 147

Determine the output waveform for the input waveforms given in Figure 4-22.EXAMPLE 4-16

Solution

The output waveform is obtained using the fact that the XOR output will go

HIGH only when its inputs are at different levels.The resulting output wave-

form reveals several interesting points:

1. The x waveform matches the A input waveform during those time in-

tervals when B � 0. This occurs during the time intervals t0 to t1 and t2

to t3.

2. The x waveform is the inverse of the A input waveform during those time

intervals when B � 1. This occurs during the interval t1 to t2.

3. These observations show that an XOR gate can be used as a controlled IN-
VERTER; that is, one of its inputs can be used to control whether or not

the signal at the other input will be inverted. This property will be use-

ful in certain applications.

A

B

A

B

x

t0 t1 t2 t3

x

FIGURE 4-22
Example 4-16.

EXAMPLE 4-17 The notation x1x0 represents a two-bit binary number that can have any

value (00, 01, 10, or 11); for example, when x1 � 1 and x0 � 0, the binary num-

ber is 10, and so on. Similarly, y1y0 represents another two-bit binary num-

ber. Design a logic circuit, using x1, x0, y1, and y0 inputs, whose output will be

HIGH only when the two binary numbers x1x0 and y1y0 are equal.

Solution

The first step is to construct a truth table for the 16 input conditions (Table

4-4). The output z must be HIGH whenever the x1x0 values match the y1y0

values; that is, whenever x1 � y1 and x0 � y0. The table shows that there are

four such cases. We could now continue with the normal procedure, which

would be to obtain a sum-of-products expression for z, attempt to simplify it,

and then implement the result. However, the nature of this problem makes it

ideally suited for implementation using XNOR gates, and a little thought

Each of these XNOR chips, however, has special output circuitry that limits

its use to special types of applications. Very often, a logic designer will

obtain the XNOR function simply by connecting the output of an XOR to

an INVERTER.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 147

148 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

FIGURE 4-23 Circuit for

detecting equality of two

two-bit binary numbers.

x1

x0

y1

y0

Binary
number

Binary
number

z

TABLE 4-4
x1 x0 y1 y0 z (Output)

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 1

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1

1 0 1 1 0

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1

When simplifying the expression for the output of a combinational logic cir-

cuit, you may encounter the XOR or XNOR operations as you are factoring.

This will often lead to the use of XOR or XNOR gates in the implementation

of the final circuit. To illustrate, simplify the circuit of Figure 4-24(a).

Solution

The unsimplified expression for the circuit is obtained as

We can factor AD from the first two terms:

z = AD(BC + B C) + A D

z = ABCD + A B C D + A D

EXAMPLE 4-18

will produce a simple solution with minimum work. Refer to Figure 4-23; in

this logic diagram, x1 and y1 are fed to one XNOR gate, and x0 and y0 are fed

to another XNOR gate.The output of each XNOR will be HIGH only when its

inputs are equal. Thus, for x0 � y0 and x1 � y1, both XNOR outputs will be

HIGH. This is the condition we are looking for because it means that the two

two-bit numbers are equal. The AND gate output will be HIGH only for this

case, thereby producing the desired output.

TOCCMC04_0131725793.QXD 12/21/05 11:13 AM Page 148

SECTION 4-7/PARITY GENERATOR AND CHECKER 149

FIGURE 4-24 Example 4-18, showing how an XNOR gate may be used to simplify

circuit implementation.

A

B

C

D

ABCD

ABCD

AD

z = ABCD + ABCD +AD

(a)

B

C

A

D

(b)

A + D = AD

B ⊕ C
AD(B ⊕ C)

z = AD (B ⊕ C) + AD

At first glance, you might think that the expression in parentheses can be

replaced by 1. But that would be true only if it were You should

recognize the expression in parentheses as the XNOR combination of B
and C. This fact can be used to reimplement the circuit as shown in Figure

4-24(b). This circuit is much simpler than the original because it uses gates

with fewer inputs and two INVERTERs have been eliminated.

BC + BC.

REVIEW QUESTIONS 1. Use Boolean algebra to prove that the XNOR output expression is the ex-

act inverse of the XOR output expression.

2. What is the output of an XNOR gate when a logic signal and its exact in-

verse are connected to its inputs?

3. A logic designer needs an INVERTER, and all that is available is one

XOR gate from a 74HC86 chip. Does he need another chip?

4-7 PARITY GENERATOR AND CHECKER

In Chapter 2, we saw that a transmitter can attach a parity bit to a set of data

bits before transmitting the data bits to a receiver.We also saw how this allows

the receiver to detect any single-bit errors that may have occurred during the

TOCCMC04_0131725793.QXD 12/16/2005 3:50 PM Page 149

150 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

D3

D2

D1

D0

Original
 data

D3

D2

D1

D0

P

 From
transmitter

Even-parity checker

Even-parity generator

(a)

(b)

Parity (P)

Transmitted
data with
parity bit

Error (E)
{1 = error
0 = no error}

FIGURE 4-25 XOR gates used to implement (a) the parity generator and (b) the parity

checker for an even-parity system.

transmission. Figure 4-25 shows an example of one type of logic circuitry that

is used for parity generation and parity checking. This particular example

uses a group of four bits as the data to be transmitted, and it uses an even-

parity bit. It can be readily adapted to use odd parity and any number of bits.

In Figure 4-25(a), the set of data to be transmitted is applied to the

parity-generator circuit, which produces the even-parity bit, P, at its output.

This parity bit is transmitted to the receiver along with the original data bits,

making a total of five bits. In Figure 4-25(b), these five bits (data � parity)

enter the receiver’s parity-checker circuit, which produces an error output, E,

that indicates whether or not a single-bit error has occurred.

It should not be too surprising that both of these circuits employ XOR

gates when we consider that a single XOR gate operates so that it produces

a 1 output if an odd number of its inputs are 1, and a 0 output if an even

number of its inputs are 1.

EXAMPLE 4-19 Determine the parity generator’s output for each of the following sets of input

data, D3D2D1D0: (a) 0111; (b) 1001; (c) 0000; (d) 0100. Refer to Figure 4-25(a).

Solution

For each case, apply the data levels to the parity-generator inputs and trace

them through each gate to the P output. The results are: (a) 1; (b) 0; (c) 0; and

(d) 1. Note that P is a 1 only when the original data contain an odd number of

1s.Thus, the total number of 1s sent to the receiver (data � parity) will be even.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 150

SECTION 4-8/ENABLE/DISABLE CIRCUITS 151

Determine the parity checker’s output [see Figure 4-25(b)] for each of the

following sets of data from the transmitter:

P D3 D2 D1 D0

(a) 0 1 0 1 0

(b) 1 1 1 1 0

(c) 1 1 1 1 1

(d) 1 0 0 0 0

Solution

For each case, apply these levels to the parity-checker inputs and trace them

through to the E output. The results are: (a) 0; (b) 0; (c) 1; (d) 1. Note that a 1

is produced at E only when an odd number of 1s appears in the inputs to the

parity checker.This indicates that an error has occurred because even parity

is being used.

4-8 ENABLE/DISABLE CIRCUITS

Each of the basic logic gates can be used to control the passage of an input

logic signal through to the output. This is depicted in Figure 4-26, where a

logic signal, A, is applied to one input of each of the basic logic gates. The

EXAMPLE 4-20

B = 1

A x = A

ENABLE

B = 1

A x = A

B = 0

A x = A

B = 0

A x = A

B = 0

A x = 0

DISABLE

B = 0

A x = 1

B = 1

A x = 1

B = 1

A x = 0

FIGURE 4-26 Four basic gates can either enable or disable the passage of an input signal, A,

under control of the logic level at control input B.

TOCCMC04_0131725793.QXD 12/5/05 8:06 PM Page 151

other input of each gate is the control input, B. The logic level at this control

input will determine whether the input signal is enabled to reach the output

or disabled from reaching the output.This controlling action is why these cir-

cuits came to be called gates.
Examine Figure 4-26 and you should notice that when the noninverting

gates (AND, OR) are enabled, the output will follow the A signal exactly.

Conversely, when the inverting gates (NAND, NOR) are enabled, the output

will be the exact inverse of the A signal.

Also notice in the figure that AND and NOR gates produce a constant

LOW output when they are in the disabled condition. Conversely, the NAND

and OR gates produce a constant HIGH output in the disabled condition.

There will be many situations in digital-circuit design where the passage

of a logic signal is to be enabled or disabled, depending on conditions present

at one or more control inputs. Several are shown in the following examples.

152 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

EXAMPLE 4-21 Design a logic circuit that will allow a signal to pass to the output only when

control inputs B and C are both HIGH; otherwise, the output will stay LOW.

Solution

An AND gate should be used because the signal is to be passed without in-

version, and the disable output condition is a LOW. Because the enable con-

dition must occur only when B � C � 1, a three-input AND gate is used, as

shown in Figure 4-27(a).

B
C

(a)

A

(b)

x

xA

B

C

FIGURE 4-27 Examples

4-21 and 4-22.

EXAMPLE 4-22 Design a logic circuit that allows a signal to pass to the output only when

one, but not both, of the control inputs are HIGH; otherwise, the output will

stay HIGH.

Solution

The result is drawn in Figure 4-27(b). An OR gate is used because we want

the output disable condition to be a HIGH, and we do not want to invert the

signal. Control inputs B and C are combined in an XNOR gate. When B and C
are different, the XNOR sends a LOW to enable the OR gate. When B and C
are the same, the XNOR sends a HIGH to disable the OR gate.

EXAMPLE 4-23 Design a logic circuit with input signal A, control input B, and outputs X and

Y to operate as follows:

1. When B � 1, output X will follow input A, and output Y will be 0.

2. When B � 0, output X will be 0, and output Y will follow input A.

TOCCMC04_0131725793.QXD 12/21/05 11:13 AM Page 152

Solution

The two outputs will be 0 when they are disabled and will follow the input

signal when they are enabled. Thus, an AND gate should be used for each

output. Because X is to be enabled when B � 1, its AND gate must be con-

trolled by B, as shown in Figure 4-28. Because Y is to be enabled when B � 0,

its AND gate is controlled by . The circuit in Figure 4-28 is called a pulse-
steering circuit because it steers the input pulse to one output or the other,

depending on B.

B

SECTION 4-9/BASIC CHARACTERISTICS OF DIGITAL ICs 153

B

A

B

X

Y

0 IF B = 1

0

0

0

IF B = 0

IF B = 1

IF B = 0

FIGURE 4-28 Example

4-23.

REVIEW QUESTIONS 1. Design a logic circuit with three inputs A, B, C and an output that goes

LOW only when A is HIGH while B and C are different.

2. Which logic gates produce a 1 output in the disabled state?

3. Which logic gates pass the inverse of the input signal when they are

enabled?

4-9 BASIC CHARACTERISTICS OF DIGITAL ICs

Digital ICs are a collection of resistors, diodes, and transistors fabricated on

a single piece of semiconductor material (usually silicon) called a substrate,
which is commonly referred to as a chip. The chip is enclosed in a protective

plastic or ceramic package from which pins extend for connecting the IC to

other devices. One of the more common types of package is the dual-in-line
package (DIP), shown in Figure 4-29(a), so called because it contains two

parallel rows of pins. The pins are numbered counterclockwise when viewed

from the top of the package with respect to an identifying notch or dot at one

end of the package [see Figure 4-29(b)].The DIP shown here is a 14-pin pack-

age that measures 0.75 in. by 0.25 in.; 16-, 20-, 24-, 28-, 40-, and 64-pin pack-

ages are also used.

Figure 4-29(c) shows that the actual silicon chip is much smaller than the

DIP; typically, it might be a 0.05-in. square. The silicon chip is connected to

the pins of the DIP by very fine wires (1-mil diameter).

The DIP is probably the most common digital IC package found in older

digital equipment, but other types are becoming more and more popular.

The IC shown in Figure 4-29(d) is only one of the many packages common to

modern digital circuits.This particular package uses J-shaped leads that curl

under the IC. We will take a look at some of these other types of IC packages

in Chapter 8.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 153

Digital ICs are often categorized according to their circuit complexity as

measured by the number of equivalent logic gates on the substrate. There

are currently six levels of complexity that are commonly defined as shown in

Table 4-5.

154 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

Notch

 Chip may have
small dot near pin 1

1 2 3 4 5 6 7

14 13 12 11 10 9 8

(a) (b)

Actual
silicon chip

Pin 1

Pin 8

Pin 14

(c)

1
2

3
4

5
6

7

14

FIGURE 4-29 (a) Dual-in-line package (DIP); (b) top view; (c) actual silicon chip is much smaller

than the protective package; (d) PLCC package.

Beveled corner

Pin 1

(d)

TABLE 4-5
Complexity Gates per Chip

Small-scale integration (SSI) Fewer than 12

Medium-scale integration (MSI) 12 to 99

Large-scale integration (LSI) 100 to 9999

Very large-scale integration (VLSI) 10,000 to 99,999

Ultra large-scale integration (ULSI) 100,000 to 999,999

Giga-scale integration (GSI) 1,000,000 or more

All of the specific ICs referred to in Chapter 3 and this chapter are SSI
chips having a small number of gates. In modern digital systems, medium-

scale integration (MSI) and large-scale integration devices (LSI, VLSI,
ULSI, GSI) perform most of the functions that once required several circuit

boards full of SSI devices. However, SSI chips are still used as the “inter-

face,” or “glue,” between these more complex chips. The small-scale ICs also

offer an excellent way to learn the basic building blocks of digital systems.

Consequently, many laboratory-based courses use these ICs to build and test

small projects.

The industrial world of digital electronics has now turned to program-

mable logic devices (PLDs) to implement a digital system of any significant

size. Some simple PLDs are available in DIP packages, but the more complex

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 154

programmable logic devices require many more pins than are available in

DIPs. Larger integrated circuits that may need to be removed from a circuit

and replaced are typically manufactured in a plastic leaded chip carrier

(PLCC) package. Figure 4-29(d) shows the Altera EPM 7128SLC84 in a PLCC

package, which is a very popular PLD used in many educational laboratories.

The key features of this chip are more pins, closer spacing, and pins around

the entire periphery. Notice that pin 1 is not “on the corner” like the DIP but

rather at the middle of the top of the package.

Bipolar and Unipolar Digital ICs
Digital ICs can also be categorized according to the principal type of electronic

component used in their circuitry. Bipolar ICs are made using the bipolar junc-

tion transistor (NPN and PNP) as their main circuit element. Unipolar ICs use

the unipolar field-effect transistor (P-channel and N-channel MOSFETs) as

their main element.

The transistor-transistor logic (TTL) family has been the major family of

bipolar digital ICs for over 30 years. The standard 74 series was the first se-

ries of TTL ICs. It is no longer used in new designs, having been replaced by

several higher-performance TTL series, but its basic circuit arrangement

forms the foundation for all the TTL series ICs. This circuit arrangement is

shown in Figure 4-30(a) for the standard TTL INVERTER. Notice that the cir-

cuit contains several bipolar transistors as the main circuit element.

SECTION 4-9/BASIC CHARACTERISTICS OF DIGITAL ICs 155

+VCC
(14)

Input A
(1)

Pin
number

Q1

D1

D2

Q2

Q3

Q4

Q1

Q2

Output
 (2)

GND
 (7)

(b)

+VDD
(14)

Input A
 (1)

115 �
R 4

1.6 k�
R 2

3.6 k�
R 1

1 k�
R 3

Output
Y
(2)

GND(7)

(a)

FIGURE 4-30 (a) TTL INVERTER circuit; (b) CMOS INVERTER circuit. Pin numbers are given in

parentheses.

TTL had been the leading IC family in the SSI and MSI categories up un-

til the last 12 or so years. Since then, its leading position has been challenged

by the CMOS family, which has gradually displaced TTL from that position.

The complementary metal-oxide semiconductor (CMOS) family belongs to

the class of unipolar digital ICs because it uses P- and N-channel MOSFETs as

the main circuit elements. Figure 4-30(b) is a standard CMOS INVERTER cir-

cuit. If we compare the TTL and CMOS circuits in Figure 4-30, it is apparent

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 155

that the CMOS version uses fewer components. This is one of the main advan-

tages of CMOS over TTL.

Because of the simplicity and compactness as well as some other superior

attributes of CMOS, the modern large-scale ICs are manufactured primarily us-

ing CMOS technology. Teaching laboratories that use SSI and MSI devices of-

ten use TTL due to its durability, although some use CMOS as well. Chapter 8

will provide a comprehensive study of the circuitry and characteristics of TTL

and CMOS. For now, we need to look at only a few of their basic characteristics

so that we can talk about troubleshooting simple combinational circuits.

TTL Family
The TTL logic family actually consists of several subfamilies or series. Table

4-6 lists the name of each TTL series together with the prefix designation

used to identify different ICs as being part of that series. For example, ICs

that are part of the standard TTL series have an identification number that

starts with 74. The 7402, 7438, and 74123 are all ICs in this series. Likewise,

ICs that are part of the low-power Schottky TTL series have an identification

number that starts with 74LS. The 74LS02, 74LS38, and 74LS123 are exam-

ples of devices in the 74LS series.

156 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

TABLE 4-6 Various series

within the TTL logic family.
TTL Series Prefix Example IC

Standard TTL 74 7404 (hex INVERTER)

Schottky TTL 74S 74S04 (hex INVERTER)

Low-power Schottky TTL 74LS 74LS04 (hex INVERTER)

Advanced Schottky TTL 74AS 74AS04 (hex INVERTER)

Advanced low-power Schottky TTL 74ALS 74ALS04 (hex INVERTER)

The principal differences in the various TTL series have to do with their

electrical characteristics such as power dissipation and switching speed.They

do not differ in the pin layout or logic operations performed by the circuits on

the chip. For example, the 7404, 74S04, 74LS04, 74AS04, and 74ALS04 are all

hex-INVERTER ICs, each containing six INVERTERs on a single chip.

CMOS Family
Several CMOS series are available, and some of these are listed in Table 4-7.

The 4000 series is the oldest CMOS series. This series contains many of the

same logic functions as the TTL family but was not designed to be pin-
compatible with TTL devices. For example, the 4001 quad NOR chip contains

four two-input NOR gates, as does the TTL 7402 chip, but the gate inputs and

outputs on the CMOS chip will not have the same pin numbers as the corre-

sponding signals on the TTL chip.

The 74C, 74HC, 74HCT, 74AC, and 74ACT series are newer CMOS series.

The first three are pin-compatible with correspondingly numbered TTL

devices. For example, the 74C02, 74HC02, and 74HCT02 have the same pin

layout as the 7402, 74LS02, and so on. The 74HC and 74HCT series operate at

a higher speed than 74C devices.The 74HCT series is designed to be electrically
compatible with TTL devices; that is, a 74HCT integrated circuit can be con-

nected directly to TTL devices without any interfacing circuitry.The 74AC and

74ACT series are advanced-performance ICs. Neither is pin-compatible with

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 156

TTL. The 74ACT devices are electrically compatible with TTL. We explore the

various TTL and CMOS series in greater detail in Chapter 8.

Power and Ground
To use digital ICs, it is necessary to make the proper connections to the IC

pins. The most important connections are dc power and ground. These are re-

quired for the circuits on the chip to operate correctly. In Figure 4-30, you can

see that both the TTL and the CMOS circuits have a dc power supply voltage

connected to one of their pins, and ground to another. The power supply pin

is labeled VCC for the TTL circuit, and VDD for the CMOS circuit. Many of the

newer CMOS integrated circuits that are designed to be compatible with TTL

integrated circuits also use the VCC designation as their power pin.

If either the power or the ground connection is not made to the IC, the

logic gates on the chip will not respond properly to the logic inputs, and the

gates will not produce the expected output logic levels.

Logic-Level Voltage Ranges
For TTL devices, VCC is nominally �5 V. For CMOS integrated circuits, VDD
can range from �3 to �18 V, although �5 V is most often used when CMOS

integrated circuits are used in the same circuit with TTL integrated circuits.

For standard TTL devices, the acceptable input voltage ranges for the

logic 0 and logic 1 levels are defined as shown in Figure 4-31(a). A logic 0 is

any voltage in the range from 0 to 0.8 V; a logic 1 is any voltage from 2 to 5 V.

Voltages that are not in either of these ranges are said to be indeterminate
and should not be used as inputs to any TTL device. The IC manufacturers

cannot guarantee how a TTL circuit will respond to input levels that are in

the indeterminate range (between 0.8 and 2.0 V).

The logic input voltage ranges for CMOS integrated circuits operating

with VDD � �5 V are shown in Figure 4-31(b). Voltages between 0 and 1.5 V

are defined as a logic 0, and voltages from 3.5 to 5 V are defined as a logic 1.

The indeterminate range includes voltages between 1.5 and 3.5 V.

Unconnected (Floating) Inputs
What happens when the input to a digital IC is left unconnected? An uncon-

nected input is often called a floating input. The answer to this question will

be different for TTL and CMOS.

SECTION 4-9/BASIC CHARACTERISTICS OF DIGITAL ICs 157

TABLE 4-7 Various series

within the CMOS logic

family.

CMOS Series Prefix Example IC

Metal-gate CMOS 40 4001 (quad NOR gates)

Metal-gate, pin-compatible with TTL 74C 74C02 (quad NOR gates)

Silicon-gate, pin-compatible with TTL, 74HC 74HC02 (quad NOR gates)
high-speed

Silicon-gate, high-speed, pin-compatible 74HCT 74HCT02 (quad NOR gates)
and electrically compatible with TTL

Advanced-performance CMOS, not 74AC 74AC02 (quad NOR)
pin-compatible or electrically
compatible with TTL

Advanced-performance CMOS, not 74ACT 74ACT02 (quad NOR)
pin-compatible with TTL, but
electrically compatible with TTL

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 157

A floating TTL input acts just like a logic 1. In other words, the IC will re-

spond as if the input had a logic HIGH level applied to it.This characteristic is

often used when testing a TTL circuit.A lazy technician might leave certain in-

puts unconnected instead of connecting them to a logic HIGH. Although this

is logically correct, it is not a recommended practice, especially in final circuit

designs, because the floating TTL input is extremely susceptible to picking up

noise signals that will probably adversely affect the device’s operation.

A floating input on some TTL gates will measure a dc level of between

1.4 and 1.8 V when checked with a VOM or an oscilloscope. Even though this

is in the indeterminate range for TTL, it will produce the same response as a

logic 1. Being aware of this characteristic of a floating TTL input can be valu-

able when troubleshooting TTL circuits.

If a CMOS input is left floating, it may have disastrous results. The IC

may become overheated and eventually destroy itself. For this reason all in-

puts to a CMOS integrated circuit must be connected to a LOW or a HIGH

level or to the output of another IC. A floating CMOS input will not measure

as a specific dc voltage but will fluctuate randomly as it picks up noise.Thus,

it does not act as logic 1 or logic 0, and so its effect on the output is unpre-

dictable. Sometimes the output will oscillate as a result of the noise picked

up by the floating input.

Many of the more complex CMOS ICs have circuitry built into the inputs,

which reduces the likelihood of any destructive reaction to an open input.

With this circuitry, it is not necessary to ground each unused pin on these

large ICs when experimenting. It is still good practice, however, to tie unused

inputs to HIGH or LOW (whichever is appropriate) in the final circuit

implementation.

Logic-Circuit Connection Diagrams
A connection diagram shows all electrical connections, pin numbers, IC num-

bers, component values, signal names, and power supply voltages. Figure

4-32 shows a typical connection diagram for a simple logic circuit. Examine

it carefully and note the following important points:

1. The circuit uses logic gates from two different ICs. The two INVERTERs

are part of a 74HC04 chip that has been given the designation Z1. The

74HC04 contains six INVERTERs; two of them are used in this circuit,

and each is labeled as being part of chip Z1. Similarly, the two NAND

gates are part of a 74HC00 chip that contains four NAND gates. All of

158 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

LOGIC 1

LOGIC 0

Indeterminate

LOGIC 1

LOGIC 0

Indeterminate

TTL

(a)

1.5 V . . .

5.0 V . . .

2.0 V . . .

0.8 V . . .

3.5 V . . .

0 V . . .

5.0 V . . .

0 V . . .
*VDD = + 5 V

(b)

CMOS*FIGURE 4-31 Logic-level

input voltage ranges for

(a) TTL and (b) CMOS

digital ICs.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 158

the gates on this chip are designated with the label Z2. By numbering

each gate as Z1, Z2, Z3, and so on, we can keep track of which gate is part

of which chip. This is especially valuable in more complex circuits con-

taining many ICs with several gates per chip.

2. Each gate input and output pin number is indicated on the diagram. These

pin numbers and the IC labels are used to reference easily any point in the

circuit. For example, Z1 pin 2 refers to the output pin of the top INVERTER.

Similarly, we can say that Z1 pin 4 is connected to Z2 pin 9.

3. The power and ground connections to each IC (not each gate) are shown

on the diagram. For example, Z1 pin 14 is connected to �5 V, and Z1 pin

7 is connected to ground. These connections provide power to all of the

six INVERTERs that are part of Z1.

4. For the circuit contained in Figure 4-32, the signals that are inputs are on

the left. The signals that are outputs are on the right. The bar over the

signal name indicates that the signal is active when LOW. The bubbles

are positioned on the diagram symbols also to indicate the active-LOW

state. Each signal in this case is obviously a single bit.

5. Signals are defined graphically in Figure 4-32 as inputs and outputs, and

the relationship between them (the operation of the circuit) is described

graphically using interconnected logic symbols.

Manufacturers of electronic equipment generally supply detailed schemat-

ics that use a format similar to that in Figure 4-32. These connection diagrams

are a virtual necessity when troubleshooting a faulty circuit.We have chosen to

identify individual ICs as Z1, Z2, Z3, and so on. Other designations that are

commonly used are IC1, IC2, IC3, and so on, and U1, U2, U3, and so on.

Personal computers with schematic diagram software can be used to draw

logic circuits. Computer applications that can interpret these graphic sym-

bols and signal connections and can translate them into logical relationships

are often called schematic capture tools. The Altera MAX�PLUS develop-

ment system for programmable logic allows the user to enter graphic design

files (.gdf) using schematic capture techniques. Thus, designing the circuit is

as easy as drawing the schematic diagram on the computer screen. Notice

that in Figure 4-33 there are no pin numbers or chip designations on the logic

symbols. The circuits will not be implemented using actual SSI or MSI chips,

but rather the equivalent logic functionality will be “programmed” into a

PLD. We will explain this further at a later point in this chapter.

SECTION 4-9/BASIC CHARACTERISTICS OF DIGITAL ICs 159

+5 V

14
21

7

CLOCK

+5 V

14

2

1

7

3

CLKOUT

43

SHIFT

9

10

8

SHIFTOUT

Z1

Z1
Z2

Z2

LOAD

IC

Z1
Z2

Type

74HC04 hex inverter
74HC00 quad nand

FIGURE 4-32 Typical

logic-circuit connection

diagram.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 159

160 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

LOAD_BAR
INPUT
VCC7

CLOCK_BAR
INPUT

CLKOUT_BAR
OUTPUT

NAND2

9

3

VCC6

NOT

1

SHIFT
INPUT

SHIFTOUT_BAR
OUTPUT

NAND2

10

4

VCC8

NOT

5

FIGURE 4-33 Logic diagram using schematic capture.

REVIEW QUESTIONS 1. What is the most common type of digital IC package?

2. Name the six common categories of digital ICs according to complexity.

3. True or false: A 74S74 chip will contain the same logic and pin layout as

the 74LS74.

4. True or false: A 74HC74 chip will contain the same logic and pin layout as

the 74AS74.

5. Which CMOS series are not pin-compatible with TTL?

6. What is the acceptable input voltage range of a logic 0 for TTL? What is

it for a logic 1?

7. Repeat question 6 for CMOS operating at VDD � 5 V.

8. How does a TTL integrated circuit respond to a floating input?

9. How does a CMOS integrated circuit respond to a floating input?

10. Which CMOS series can be connected directly to TTL with no interfacing

circuitry?

11. What is the purpose of pin numbers on a logic circuit connection diagram?

12. What are the key similarities of graphic design files used for program-

mable logic and traditional logic circuit connection diagrams?

4-10 TROUBLESHOOTING DIGITAL SYSTEMS

There are three basic steps in fixing a digital circuit or system that has a

fault (failure):

1. Fault detection. Observe the circuit/system operation and compare it with

the expected correct operation.

2. Fault isolation. Perform tests and make measurements to isolate the fault.

3. Fault correction. Replace the faulty component, repair the faulty connec-

tion, remove the short, and so on.

Although these steps may seem relatively apparent and straightforward, the

actual troubleshooting procedure that is followed is highly dependent on the

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 160

type and complexity of the circuitry, and on the kinds of troubleshooting

tools and documentation that are available.

Good troubleshooting techniques can be learned only in a laboratory en-

vironment through experimentation and actual troubleshooting of faulty cir-

cuits and systems. There is absolutely no better way to become an effective

troubleshooter than to do as much troubleshooting as possible, and no amount

of textbook reading can provide that kind of experience. We can, however,

help you to develop the analytical skills that are the most essential part of ef-

fective troubleshooting. We will describe the types of faults that are common

to systems that are made primarily from digital ICs and we will tell you how to

recognize them. We will then present typical case studies to illustrate the ana-

lytical processes involved in troubleshooting. In addition, there will be end-of-

chapter problems to provide you with the opportunity to go through these an-

alytical processes to reach conclusions about faulty digital circuits.

For the troubleshooting discussions and exercises we will be doing in

this book, it will be assumed that the troubleshooting technician has the ba-

sic troubleshooting tools available: logic probe, oscilloscope, logic pulser. Of

course, the most important and effective troubleshooting tool is the techni-

cian’s brain, and that’s the tool we are hoping to develop by presenting trou-

bleshooting principles and techniques, examples and problems, here and in

the following chapters.

In the next three sections on troubleshooting, we will use only our brain

and a logic probe such as the one illustrated in Figure 4-34. The logic probe

has a pointy metal tip that is touched to the specific point you want to test.

Here, it is shown probing (touching) pin 3 of an IC. It can also be touched to

a printed circuit board trace, an uninsulated wire, a connector pin, a lead on

a discrete component such as a transistor, or any other conducting point in a

circuit.The logic level that is present at the probe tip will be indicated by the

status of the indicator LEDs in the probe. The four possibilities are given in

the table of Figure 4-34. Note that an indeterminate logic level produces no

indicator light. This includes the condition where the probe tip is touched to

a point in a circuit that is open or floating—that is, not connected to any

source of voltage. This type of probe also offers a yellow LED to indicate the

presence of a pulse train. Any transitions (LOW to HIGH or HIGH to LOW)

will cause the yellow LED to flash on for a fraction of a second and then turn

off. If the transitions are occurring frequently, the LED will continue to flash

SECTION 4-10/TROUBLESHOOTING DIGITAL SYSTEMS 161

+5 V

Logic
probe

IC

PC Board

GND

To VCC

To GND

Indicator
LEDs

OFF
ON
OFF

X

LOW
HIGH

INDETERMINATE*
PULSING

Red Logic Condition

* Includes open or floating condition

ON
OFF
OFF

X

Green

OFF
OFF
OFF

FLASHING

Yellow
LEDs

FIGURE 4-34 A logic probe is used to monitor the logic level activity at an IC pin or any

other accessible point in a logic circuit.

TOCCMC04_0131725793.QXD 1/17/06 3:44 AM Page 161

at around 3 Hz. By observing the green and red LEDs along with the flashing

yellow, you can tell whether the signal is mostly HIGH or mostly LOW.

4-11 INTERNAL DIGITAL IC FAULTS

The most common internal failures of digital ICs are:

1. Malfunction in the internal circuitry

2. Inputs or outputs shorted to ground or VCC

3. Inputs or outputs open-circuited

4. Short between two pins (other than ground or VCC)

We will now describe each of these types of failure.

Malfunction in Internal Circuitry
This is usually caused by one of the internal components failing com-

pletely or operating outside its specifications. When this happens, the IC

outputs do not respond properly to the IC inputs. There is no way to pre-

dict what the outputs will do because it depends on what internal compo-

nent has failed. Examples of this type of failure would be a base-emitter

short in transistor Q4 or an extremely large resistance value for R2 in the

TTL INVERTER of Figure 4-30(a). This type of internal IC failure is not as

common as the other three.

Input Internally Shorted to Ground or Supply
This type of internal failure will cause an IC input to be stuck in the LOW or

HIGH state. Figure 4-35(a) shows input pin 2 of a NAND gate shorted to

ground within the IC. This will cause pin 2 always to be in the LOW state. If

this input pin is being driven by a logic signal B, it will effectively short B to

ground. Thus, this type of fault will affect the output of the device that is

generating the B signal.

162 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

+5 V

7

14

X3
1

2

A

B

Internal
 short

+5 V

14

X31

2

A

B

Internal
 short

+5 V

7

14

X3
1

2

A

B

Internal
 short

(a) (b)

(c) (d)

+5 V

7

14

X3
1

2

A

B

Internal
 short

FIGURE 4-35 (a) IC input

internally shorted to

ground; (b) IC input inter-

nally shorted to supply volt-

age. These two types of fail-

ures force the input signal

at the shorted pin to stay in

the same state. (c) IC out-

put internally shorted to

ground; (d) output inter-

nally shorted to supply volt-

age. These two failures do

not affect signals at the IC

inputs.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 162

Similarly, an IC input pin could be internally shorted to �5 V, as in

Figure 4-35(b). This would keep that pin stuck in the HIGH state. If this in-

put pin is being driven by a logic signal A, it will effectively short A to �5 V.

Output Internally Shorted to Ground or Supply
This type of internal failure will cause the output pin to be stuck in the LOW

or HIGH state. Figure 4-35(c) shows pin 3 of the NAND gate shorted to ground

within the IC. This output is stuck LOW, and it will not respond to the condi-

tions applied to input pins 1 and 2; in other words, logic inputs A and B will

have no effect on output X.
An IC output pin can also be shorted to �5 V within the IC, as shown in

Figure 4-35(d). This forces the output pin 3 to be stuck HIGH regardless of

the state of the signals at the input pins. Note that this type of failure has no

effect on the logic signals at the IC inputs.

SECTION 4-11/INTERNAL DIGITAL IC FAULTS 163

EXAMPLE 4-24 Refer to the circuit of Figure 4-36. A technician uses a logic probe to deter-

mine the conditions at the various IC pins. The results are recorded in the

figure. Examine these results and determine if the circuit is working prop-

erly. If not, suggest some of the possible faults.

Z1-3
Z1-4
Z2-1
Z2-2
Z2-3

Pulsing
LOW
LOW
HIGH
HIGH

Pin Condition
+5 V

7

14

+5 V

14

Z1

7

X3
1

2

4

B

3
A

Z2

FIGURE 4-36
Example 4-24.

Solution

Output pin 4 of the INVERTER should be pulsing because its input is puls-

ing. The recorded results, however, show that pin 4 is stuck LOW. Because

this is connected to Z2 pin 1, this keeps the NAND output HIGH. From our

preceding discussion, we can list three possible faults that could produce

this operation.

First, there could be an internal component failure in the INVERTER

that prevents it from responding properly to its input. Second, pin 4 of the

INVERTER could be shorted to ground internal to Z1, thereby keeping it

stuck LOW. Third, pin 1 of Z2 could be shorted to ground internal to Z2.

This would prevent the INVERTER output pin from changing.

In addition to these possible faults, there can be external shorts to

ground anywhere in the conducting path between Z1 pin 4 and Z2 pin 1. We

will see how to go about isolating the actual fault in a subsequent example.

Open-Circuited Input or Output
Sometimes the very fine conducting wire that connects an IC pin to the IC’s in-

ternal circuitry will break, producing an open circuit. Figure 4-37 in Example

4-25 shows this for an input (pin 13) and an output (pin 6). If a signal is applied

to pin 13, it will not reach the NAND-1 gate input and so will not have an effect

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 163

on the NAND-1 output. The open gate input will be in the floating state. As

stated earlier,TTL devices will respond as if this floating input is a logic 1, and

CMOS devices will respond erratically and may even become damaged from

overheating.

The open at the NAND-4 output prevents the signal from reaching IC

pin 6, so there will be no stable voltage present at that pin. If this pin is con-

nected to the input of another IC, it will produce a floating condition at that

input.

164 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

7654321

74LS00

14 13 12 11 10 9 8

GND

VCC

1 2

3 4

Open

Open

FIGURE 4-37 An IC with

an internally open input

will not respond to signals

applied to that input pin.

An internally open output

will produce an unpre-

dictable voltage at that

output pin.

EXAMPLE 4-25 What would a logic probe indicate at pin 13 and at pin 6 of Figure 4-37?

EXAMPLE 4-26 Refer to the circuit of Figure 4-38 and the recorded logic probe indications.

What are some of the possible faults that could produce the recorded re-

sults? Assume that the ICs are TTL.

Z1-3
Z1-4
Z2-1
Z2-2
Z2-3

HIGH
LOW
LOW
Pulsing
Pulsing

Pin Condition

Note: VCC and ground
 connections to each
 IC are not shown

X
Z1

Z2
A

B

1

2
3

43
FIGURE 4-38 Example

4-26.

Solution

Examination of the recorded results indicates that the INVERTER appears

to be working properly, but the NAND output is inconsistent with its inputs.

The NAND output should be HIGH because its input pin 1 is LOW.This LOW

should prevent the NAND gate from responding to the pulses at pin 2. It is

probable that this LOW is not reaching the internal NAND gate circuitry

Solution

At pin 13, the logic probe will indicate the logic level of the external signal

that is connected to pin 13 (which is not shown in the diagram). At pin 6, the

logic probe will show no LED lit for an indeterminate logic level because the

NAND output level never makes it to pin 6.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 164

because of an internal open. Because the IC is TTL, this open circuit would

produce the same effect as a logic HIGH at pin 1. If the IC had been CMOS,

the internal open circuit at pin 1 might have produced an indeterminate out-

put and possible overheating and destruction of the chip.

From our earlier statement regarding open TTL inputs, you might have

expected that the voltage of pin 1 of Z2 would be 1.4 to 1.8 V and should have

been registered as indeterminate by the logic probe. This would have been

true if the open circuit had been external to the NAND chip.There is no open

circuit between Z1 pin 4 and Z2 pin 1, and so the voltage at Z1 pin 4 is reach-

ing Z2 pin 1, but it becomes disconnected inside the NAND chip.

Short Between Two Pins
An internal short between two pins of an IC will force the logic signals at

those pins always to be identical. Whenever two signals that are supposed to

be different show the same logic-level variations, there is a good possibility

that the signals are shorted together.

Consider the circuit in Figure 4-39, where pins 5 and 6 of the NOR gate

are internally shorted together. The short causes the two INVERTER output

pins to be connected together so that the signals at Z1 pin 2 and Z1 pin 4

must be identical, even when the two INVERTER input signals are trying to

produce different outputs.To illustrate, consider the input waveforms shown

in the diagram. Even though these input waveforms are different, the wave-

forms at outputs Z1-2 and Z1-4 are the same.

SECTION 4-11/INTERNAL DIGITAL IC FAULTS 165

X
4

1 2

3

Internal
short

5

6

4

Z1A

B

4 V . . .

. . . 4 V

0 V . . .

4 V . . .

0 V . . .

0 V . . .

?

Z1-1

Z1-3

Z1-2
and
Z1-4

t1 t 2 t 3 t 4 t 5

Z1

Z2

FIGURE 4-39 When two input pins are internally shorted, the signals driving these pins

are forced to be identical, and usually a signal with three distinct levels results.

During the interval t1 to t2, both INVERTERs have a HIGH input and

both are trying to produce a LOW output, so that their being shorted to-

gether makes no difference. During the interval t4 to t5, both INVERTERs

have a LOW input and are trying to produce a HIGH output, so that again

their being shorted has no effect. However, during the intervals t2 to t3 and

t3 to t4, one INVERTER is trying to produce a HIGH output while the other

is trying to produce a LOW output. This is called signal contention because

the two signals are “fighting” each other. When this happens, the actual

voltage level that appears at the shorted outputs will depend on the inter-

nal IC circuitry. For TTL devices, it will usually be a voltage in the high end

of the logic 0 range (i.e., close to 0.8 V), although it may also be in the inde-

terminate range. For CMOS devices, it will often be a voltage in the inde-

terminate range.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 165

Whenever you see a waveform like the Z1-2, Z1-4 signal in Figure 4-39

with three different levels, you should suspect that two output signals may

be shorted together.

166 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

REVIEW QUESTIONS 1. List the different internal digital IC faults.

2. Which internal IC fault can produce signals that show three different

voltage levels?

3. What would a logic probe indicate at Z1-2 and Z1-4 of Figure 4-39 if

A � 0 and B � 1?

4. What is signal contention?

4-12 EXTERNAL FAULTS

We have seen how to recognize the effects of various faults internal to digi-

tal ICs. Many more things can go wrong external to the ICs; we will describe

the most common ones in this section.

Open Signal Lines
This category includes any fault that produces a break or discontinuity in

the conducting path such that a voltage level or signal is prevented from go-

ing from one point to another. Some of the causes of open signal lines are:

1. Broken wire

2. Poor solder connection; loose wire-wrap connection

3. Crack or cut trace on a printed circuit board (some of these are hairline

cracks that are difficult to see without a magnifying glass)

4. Bent or broken pin on an IC

5. Faulty IC socket such that the IC pin does not make good contact with

the socket

This type of circuit fault can often be detected by a careful visual inspection

and then verified by disconnecting power from the circuit and checking for

continuity (i.e., a low-resistance path) with an ohmmeter between the two

points in question.

EXAMPLE 4-27 Consider the CMOS circuit of Figure 4-40 and the accompanying logic probe

indications. What is the most probable circuit fault?

Solution

The indeterminate level at the NOR gate output is probably due to the inde-

terminate input at pin 2. Because there is a LOW at Z1-6, this LOW should

also be at Z2-2. Clearly, the LOW from Z1-6 is not reaching Z2-2, and there

must be an open circuit in the signal path between these two points. The lo-

cation of this open circuit can be determined by starting at Z1-6 with the

logic probe and tracing the LOW level along the signal path toward Z2-2 un-

til it changes into an indeterminate level.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 166

Shorted Signal Lines
This type of fault has the same effect as an internal short between IC pins. It

causes two signals to be exactly the same (signal contention). A signal line

may be shorted to ground or VCC rather than to another signal line. In those

cases, the signal will be forced to the LOW or the HIGH state. The main

causes for unexpected shorts between two points in a circuit are as follows:

1. Sloppy wiring. An example of this is stripping too much insulation from

ends of wires that are in close proximity.

2. Solder bridges. These are splashes of solder that short two or more points

together. They commonly occur between points that are very close to-

gether, such as adjacent pins on a chip.

3. Incomplete etching. The copper between adjacent conducting paths on a

printed circuit board is not completely etched away.

Again, a careful visual inspection can very often uncover this type of fault,

and an ohmmeter check can verify that the two points in the circuit are

shorted together.

Faulty Power Supply
All digital systems have one or more dc power supplies that supply the VCC
and VDD voltages required by the chips. A faulty power supply or one that is

overloaded (supplying more than its rated amount of current) will provide

poorly regulated supply voltages to the ICs, and the ICs either will not oper-

ate or will operate erratically.

A power supply may go out of regulation because of a fault in its internal

circuitry, or because the circuits that it is powering are drawing more current

than the supply is designed for.This can happen if a chip or a component has

a fault that causes it to draw much more current than normal.

It is good troubleshooting practice to check the voltage levels at each

power supply in the system to see that they are within their specified ranges.

It is also a good idea to check them on an oscilloscope to verify that there is

no significant amount of ac ripple on the dc levels and to verify that the volt-

age levels stay regulated during the system operation.

One of the most common signs of a faulty power supply is one or more

chips operating erratically or not at all. Some ICs are more tolerant of power

supply variations and may operate properly, while others do not. You should

always check the power and ground levels at each IC that appears to be op-

erating incorrectly.

SECTION 4-12/EXTERNAL FAULTS 167

Z1-1
Z1-2
Z1-3
Z1-4
Z1-5
Z1-6
Z2-3
Z2-2
Z2-1

Pulsing
HIGH
Pulsing
LOW
Pulsing
LOW
Pulsing
Indeterminate
Indeterminate

Pin Condition

X

 All ICs
 are CMOS
Z1: 74HC08
Z2: 74HC02

1
2

3

6

1

2

4

5

A

B

C

D
Z1

Z1
3

Z2

FIGURE 4-40 Example

4-27.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 167

Output Loading
When a digital IC has its output connected to too many IC inputs, its output

current rating will be exceeded, and the output voltage can fall into the in-

determinate range. This effect is called loading the output signal (actually

it’s overloading the output signal) and is usually the result of poor design or

an incorrect connection.

168 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

REVIEW QUESTIONS 1. What are the most common types of external faults?

2. List some of the causes of signal-path open circuits.

3. What symptoms are caused by a faulty power supply?

4. How might loading affect an IC output voltage level?

4-13 TROUBLESHOOTING CASE STUDY

The following example will illustrate the analytical processes involved in

troubleshooting digital circuits. Although the example is a fairly simple com-

binational logic circuit, the reasoning and the troubleshooting procedures

used can be applied to the more complex digital circuits that we encounter

in subsequent chapters.

EXAMPLE 4-28 Consider the circuit of Figure 4-41. Output Y is supposed to go HIGH for ei-

ther of the following conditions:

1. A � 1, B � 0 regardless of the level on C

2. A � 0, B � 1, C � 1

You may wish to verify these results for yourself.

Z1-1
Z1-2
Z1-3
Z2-4
Z2-5
Z2-6,10
Z2-13
Z2-12
Z2-9,11
Z2-8

LOW
LOW
HIGH
LOW
HIGH
HIGH
HIGH
HIGH
LOW
HIGH

Pin Condition

ICs are TTL
 Z1: 74LS86
 Z2: 74LS00

8
Y

6 10

9

11

Z2

Z2

+5 V

12

13
14

3

4

5

7

X

+5 V

14

7

1

2

A

B

C

Z2Z1

FIGURE 4-41 Example

4-28.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 168

When the circuit is tested, the technician observes that output Y goes

HIGH whenever A is HIGH or C is HIGH, regardless of the level at B. She

takes logic probe measurements for the condition where A � B � 0, C � 1 and

comes up with the indications recorded in Figure 4-41.

Examine the recorded levels and list the possible causes for the malfunc-

tion. Then develop a step-by-step procedure to determine the exact fault.

Solution

All of the NAND gate outputs are correct for the levels present at their in-

puts.The XOR gate, however, should be producing a LOW at output pin 3 be-

cause both of its inputs are at the same LOW level. It appears that Z1-3 is

stuck HIGH, even though its inputs should produce a LOW.There are several

possible causes for this:

1. An internal component failure in Z1 that prevents its output from going

LOW

2. An external short to VCC from any point along the conductors connected

to node X (shaded in the diagram of the figure)

3. Pin 3 of Z1 internally shorted to VCC

4. Pin 5 of Z2 internally shorted to VCC

5. Pin 13 of Z2 internally shorted to VCC

All of these possibilities except for the first one will short node X (and

every IC pin connected to it) directly to VCC.
The following procedure can be used to isolate the fault. This proce-

dure is not the only approach that can be used and, as we stated earlier, the

actual troubleshooting procedure that a technician uses is very dependent

on what test equipment is available.

1. Check the VCC and ground levels at the appropriate pins of Z1. Although

it is unlikely that the absence of either of these might cause Z1-3 to stay

HIGH, it is a good idea to make this check on any IC that is producing an

incorrect output.

2. Turn off power to the circuit and use an ohmmeter to check for a short

(resistance less than 1) between node X and any point connected to

VCC (such as Z1-14 or Z2-14). If no short is indicated, the last four possi-

bilities in our list can be eliminated.This means that it is very likely that

Z1 has an internal failure and should be replaced.

3. If step 2 shows that there is a short from node X to VCC, perform a thor-

ough visual examination of the circuit board and look for solder bridges,

unetched copper slivers, uninsulated wires touching each other, and any

other possible cause of an external short to VCC. A likely spot for a solder

bridge would be between adjacent pins 13 and 14 of Z2. Pin 14 is con-

nected to VCC, and pin 13 to node X. If an external short is found, remove

it and perform an ohmmeter check to verify that node X is no longer

shorted to VCC.

4. If step 3 does not reveal an external short, the three possibilities that re-

main are internal shorts to VCC at Z1-3, Z2-13, or Z2-5. One of these is

shorting node X to VCC.

To determine which of these IC pins is the culprit, we should discon-

nect each of them from node X one at a time and recheck for a short to VCC
after each disconnection. When the pin that is internally shorted to VCC is

disconnected, node X will no longer be shorted to VCC.

Æ

SECTION 4-13/TROUBLESHOOTING CASE STUDY 169

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 169

The process of disconnecting each suspected pin from node X can be

easy or difficult depending on how the circuit is constructed. If the ICs are

in sockets, all you need to do is to pull the IC from its socket, bend out the

suspected pin, and reinsert the IC into its socket. If the ICs are soldered into

a printed circuit board, you will have to cut the trace that is connected to the

pin and repair the cut trace when you are finished.

Example 4-28, although fairly simple, shows you the kinds of thinking that

a troubleshooter must employ to isolate a fault.You will have the opportunity

to begin developing your own troubleshooting skills by working on many end-

of-chapter problems that have been designated with a T for troubleshooting.

4-14 PROGRAMMABLE LOGIC DEVICES*
In the previous sections, we briefly considered the class of ICs known as pro-

grammable logic devices. In Chapter 3, we introduced the concept of de-

scribing a circuit’s operation using a hardware description language. In this

section, we will explore these topics further and become prepared to use the

tools of the trade to develop and implement digital systems using PLDs. Of

course, it is impossible to understand all the complex details of how a PLD

works before grasping the fundamentals of digital circuits. As we examine

new fundamental concepts, we will expand our knowledge of the PLDs and

the programming methods. The material is presented in such a way that any-

one who is not interested in PLDs can easily skip over these sections without

loss of continuity in the coverage of the basic principles.

Let’s review the process we covered earlier of designing combinational

digital circuits. The input devices are identified and assigned an algebraic

name like A, B, C, or LOAD, SHIFT, CLOCK. Likewise, output devices are given

names like X, Z, or CLOCK_OUT, SHIFT_OUT. Then a truth table is constructed

that lists all the possible input combinations and identifies the required state

of the outputs under each input condition. The truth table is one way of de-

scribing how the circuit is to operate. Another way to describe the circuit’s op-

eration is the Boolean expression. From this point the designer must find the

simplest algebraic relationship and select digital ICs that can be wired to-

gether to implement the circuit. You have probably experienced that these

last steps are the most tedious, time consuming, and prone to errors.

Programmable logic devices allow most of these tedious steps to be au-

tomated by a computer and PLD development software. Using programmable

logic improves the efficiency of the design and development process.

Consequently, most modern digital systems are implemented in this way.The

job of the circuit designer is to identify inputs and outputs, specify the logi-

cal relationship in the most convenient manner, and select a programmable

device that is capable of implementing the circuit at the lowest cost.The con-

cept behind programmable logic devices is simple: put lots of logic gates in

a single IC and control the interconnection of these gates electronically.

PLD Hardware
Recall from Chapter 3 that many digital circuits today are implemented us-

ing programmable logic devices (PLDs). These devices are configured elec-

tronically and their internal circuits are “wired” together electronically to

170 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

*All sections covering PLDs may be skipped without loss of continuity in the balance of Chapters 1–12.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 170

form a logic circuit. This programmable wiring can be thought of as thou-

sands of connections that are either connected (1) or not connected (0). It is

very tedious to try to configure these devices by manually placing 1s and 0s

in a grid, so the next logical question is, “How do we control the intercon-

nection of gates in a PLD electronically?”

A common method of connecting one of many signals entering a network

to one of many signal lines exiting the network is a switching matrix. Refer

back to Figure 3-44, where this concept was introduced. A matrix is simply a

grid of conductors (wires) arranged in rows and columns. Input signals are

connected to the columns of the matrix, and the outputs are connected to the

rows of the matrix. At each intersection of a row and a column is a switch

that can electrically connect that row to that column. The switches that con-

nect rows to columns can be mechanical switches, fusible links, electromag-

netic switches (relays), or transistors. This is the general structure used in

many applications and will be explored further when we study memory de-

vices in Chapter 12.

PLDs also use a switch matrix that is often referred to as a programma-

ble array. By deciding which intersections are connected and which ones are

not, we can “program” the way the inputs are connected to the outputs of the

array. In Figure 4-42, a programmable array is used to select the inputs for

each AND gate. Notice that in this simple matrix, we can produce any logical

product combination of variables A, B at any of the AND gate outputs. A ma-

trix or programmable array such as the one shown in the figure can also be

used to connect the AND outputs to OR gates. The details of various PLD ar-

chitectures will be covered thoroughly in Chapter 13.

SECTION 4-14/PROGRAMMABLE LOGIC DEVICES 171

A

Product 1

1

2

B

1 2 3 4

B B A A

Product 2

3

4

Product 3

5

6

Product 4

7

8

Column wires

Row wires

FIGURE 4-42 A programmable array for selecting inputs as product terms.

Programming a PLD
There are two ways to “program” a PLD IC. Programming means making the

actual connections in the array. In other words, it means determining which of

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 171

those connections are supposed to be open (0) and which are supposed to be

closed (1).The first method involves removing the PLD IC chip from its circuit

board.The chip is then placed in a special fixture called a programmer, shown

in Figure 4-43. Most modern programmers are connected to a personal com-

puter that is running software containing libraries of information about the

many types of programmable devices available.

172 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

Serial
cable

Programming fixture
(programmer)

Development
software

ZIF
socket

Programming
software

FIGURE 4-43 A PLD

development system.

The programming software is invoked (called up and executed) on the PC

to establish communication with the programmer. This software allows the

user to set up the programmer for the type of device that is to be programmed,

check if the device is blank, read the state of any programmable connection in

the device, and provide instructions for the user to program a chip. Ultimately,

the part is placed into a special socket that allows you to drop the chip in and

then clamp the contacts onto the pins. This is called a zero insertion force
(ZIF) socket. Universal programmers that can program any type of program-

mable device are available from numerous manufacturers.

Fortunately, as programmable parts began to proliferate, manufacturers

saw the need to standardize pin assignments and programming methods. As a

result, the Joint Electronic Device Engineering Council (JEDEC) was formed.

One of the results was JEDEC standard 3, a format for transferring program-

ming data for PLDs, independent of the PLD manufacturer or programming

software. Pin assignments for various IC packages were also standardized,

making universal programmers less complicated. Consequently, program-

ming fixtures can program numerous types of PLDs. The software that allows

the designer to specify a configuration for a PLD simply needs to produce an

output file that conforms to the JEDEC standards. Then this JEDEC file can

be loaded into any JEDEC-compatible PLD programmer that is capable of

programming the desired type of PLD.

The second method is referred to as in system programming (ISP). As its

name implies, the chip does not need to be removed from its circuit for stor-

age of the programming information. A standard interface has been devel-

oped by the Joint Test Action Group (JTAG). The interface was developed to

allow ICs to be tested without actually connecting test equipment to every

pin of the IC. It also allows for internal programming. Four pins on the IC are

used as a portal to store data and retrieve information about the inner con-

dition of the IC. Many ICs, including PLDs and microcontrollers, are manu-

factured today to include the JTAG interface. An interface cable connects

the four JTAG pins on the IC to an output port (like the printer port) of a per-

sonal computer. Software running on the PC establishes contact with the IC

and loads the information in the proper format.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 172

Development Software
We have examined several methods of describing logic circuits now, including

schematic capture, logic equations, truth tables, and HDL. We also described

the fundamental methods of storing 1s and 0s into a PLD IC to connect the

logic circuits in the desired way. The biggest challenge in getting a PLD pro-

grammed is converting from any form of description into the array of 1s and

0s. Fortunately, this task is accomplished quite easily by a computer running

the development software. The development software that we will be refer-

ring to and using for examples is produced by Altera. This software allows

the designer to enter a circuit description in any one of the many ways we

have been discussing: graphic design files (schematics), AHDL, and VHDL. It

also allows the use of another HDL, called Verilog, and the option of de-

scribing the circuit with timing diagrams. Circuit blocks described by any of

these methods can also be “connected” together to implement a much larger

digital system, as shown in Figure 4-44. Any logic diagram found in this text

can be redrawn using the schematic entry tools in the Altera software to cre-

ate a graphic design file. We will not focus on graphic design entry in this

text because it is quite straightforward to pick up these skills in the labora-

tory. We will focus our examples on the methods that allow us to use HDL as

an alternate means of describing a circuit. For more information on the

Altera software, see the accompanying CD as well as user manuals from the

Altera web site (http://www.altera.com).

SECTION 4-14/PROGRAMMABLE LOGIC DEVICES 173

System
inputs

Schematic block

Timing block

VHDL block

ENTITY.........

ARCHITECTURE...

AHDL block

SUBDESIGN

BEGIN

END

Intermediate
signals

System
outputs

FIGURE 4-44 Combining

blocks developed using dif-

ferent description methods.

This concept of using building blocks of circuits is called hierarchical
design. Small, useful logic circuits can be defined in whatever manner is most

convenient (graphic, HDL, timing, etc.) and then combined with other cir-

cuits to form a large section of a project. Sections can be combined and con-

nected with other sections to form the whole system. Figure 4-45 shows the

hierarchical structure of a CD player using a block diagram.The outer box en-

closes the entire system.The dashed lines identify each major subsection, and

each subsection contains individual circuits. Although it is not shown in this

diagram, each circuit may be made up of smaller building blocks of common

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 173

digital circuits. The Altera development software makes this type of modular,

hierarchical design and development easy to accomplish.

Design and Development Process
Another way you might see the hierarchy of a system like the CD player just

described is shown in Figure 4-46.The top level represents the entire system.

It is made up of three subsections, each of which in turn is made up of the

smaller circuits shown. Notice that this diagram does not show how the sig-

nals flow throughout the system but clearly identifies the various levels of

the hierarchical structure of the project.

This type of diagram has led to the name for one of the most common

methods of design: top-down. With this design approach, you start with the

overall description of the entire system, such as the top box in Figure 4-46.

Then you define several subsections that will make up the system. The sub-

sections are further refined into individual circuits connected together.

174 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

FIGURE 4-45 Block diagram of a CD player.

Position control
loop

System control
sectionUser controls

Track decoder

Disk speed
control loop

Motor drive Pulse train
decoding

Skip
detect

Display

Filter/amp

D/A

Digital filter

Skip memory

Parity error
correction

Spindle drive
section

Laser tracking section

Audio section

M

Motor

Laser
pickup

Spindle
drive
motor

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 174

Every one of these hierarchy levels has defined inputs, outputs, and behav-

ior. Each can be tested individually before it is connected to the others.

After defining the blocks from the top down, the system is built from the

bottom up. Each block in this system design has a design file that describes

it. The lowest level blocks must be designed by opening a design file and

writing a description of its operation. The designed block is then compiled

using the development tools. The compiling process determines if you have

made errors in your syntax. Until your syntax is correct, the computer can-

not possibly translate your description into its proper form. After it has been

compiled with no syntax errors, it should be tested to see if it operates cor-

rectly. Development systems offer simulator programs that run on the PC and

simulate the way your circuit responds to inputs. A simulator is a computer

program that calculates the correct output logic states based on a description

of the logic circuit and the current inputs. A set of hypothetical inputs and

their corresponding correct outputs are developed that will prove the block

works as expected. These hypothetical inputs are often called test vectors.

Thorough testing during simulation greatly increases the likelihood of the

final system working reliably. Figure 4-47 shows the simulation file for the

circuit described in Figure 3-13(a) of Chapter 3. Inputs a, b, and c were en-

tered as test vectors, and the simulation produced output y.

SECTION 4-14/PROGRAMMABLE LOGIC DEVICES 175

Disk speed
control
loop

Track
decoding

Spindle drive section

Position
control

Laser tracking section

Motor
drive

Skip
detect

Pulse
train

decoder

CD system

Audio section

Skip
memory

Filter
amp

Digital
filter

D/AParity error
correction

FIGURE 4-46 An organizational hierarchy chart.

Name: Value: 1.0 ms 2.0 ms 3.0 ms 4.0 ms 5.0 ms 6.0 ms 7.0 ms 8.0 ms 9.0 ms 10 ms

c 0

b 0

a 0

y 0

Ref: 0.0 ns

0.0 ns

Time: 0.0 ns Interval: 0.0 ns

FIGURE 4-47 A timing simulation of a circuit described in HDL.

When the designer is satisfied that the design works, the design can be

verified by actually programming a chip and testing. For a complex PLD, the

designer can either let the development system assign pins and then lay out

the final circuit board accordingly, or specify the pins for each signal using

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 175

the software features. If the compiler assigns the pins, the assignments can

be found in the report file or pin-out file, which provides many details about

the implementation of the design. If the designer specifies the pins, it is im-

portant to know the constraints and limitations of the chip’s architecture.

These details will be covered in Chapter 13. The flowchart of Figure 4-48

summarizes the design process for designing each block.

176 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

Identify
design flaw

Y

Simulate

N

Create output file

N

Program PLD

In-circuit test

Y
DONEWorks?

Errors?

Problems?

Edit design file

Y

Troubleshoot

N

Create design file

Compile

Design

STARTFIGURE 4-48 PLD devel-

opment cycle flowchart.

After each circuit in a subsection has been tested, all can be combined and

the subsection can be tested following the same process that was used for the

small circuits. Then the subsections are combined and the system is tested.

This approach lends itself very well to a typical project environment, where a

team of people are working together, each responsible for his or her own cir-

cuits and sections that will ultimately come together to make up the system.

REVIEW QUESTIONS 1. What is actually being “programmed” in a PLD?

2. What bits (column, row) in Figure 4-42 must be connected to make

Product 1 � AB?

3. What bits (column, row) in Figure 4-42 must be connected to make

Product 3 = AB?

TOCCMC04_0131725793.QXD 12/5/05 8:06 PM Page 176

4-15 REPRESENTING DATA IN HDL

Numeric data can be represented in various ways. We have studied the use of

the hexadecimal number system as a convenient way to communicate bit

patterns. We naturally prefer to use the decimal number system for numeric

data, but computers and digital systems can operate only on binary informa-

tion, as we studied in previous chapters. When we write in HDL, we often

need to use these various number formats, and the computer must be able to

understand which number system we are using. So far in this text, we have

used a subscript to indicate the number system. For example, 1012 was bi-

nary, 10116 was hexadecimal, and 10110 was decimal. Every programming

language and HDL has its own unique way of identifying the various number

systems, generally done with a prefix to indicate the number system. In most

languages, a number with no prefix is assumed to be decimal. When we read

one of these number designations, we must think of it as a symbol that rep-

resents a binary bit pattern. These numeric values are referred to as scalars

or literals. Table 4-8 summarizes the methods of specifying values in binary,

hex, and decimal for AHDL and VHDL.

SECTION 4-15/REPRESENTING DATA IN HDL 177

EXAMPLE 4-29 Express the following bit pattern’s numeric value in binary, hex, and decimal

using AHDL and VHDL notation:

11001

Solution

Binary is designated the same in both AHDL and VHDL: B “11001”.

Converting the binary to hex, we have 1916.

In AHDL: H “19”
In VHDL: X “19”
Converting the binary to decimal, we have 2510.

Decimal is designated the same in both AHDL and VHDL: 25.

Bit Arrays/Bit Vectors
In Chapter 3, we declared names for inputs to and outputs of a very simple logic

circuit. These were defined as bits, or single binary digits. What if we want to

represent an input, output, or signal that is made up of several bits? In an HDL,

we must define the type of the signal and its range of acceptable values.

To understand the concepts used in HDLs, let’s first consider some con-

ventions for describing bits of binary words in common digital systems.

Suppose we have an eight-bit number representing the current temperature,

and the number is coming into our digital system through an input port that

we have named P1, as shown in Figure 4-49. We can refer to the individual

bits of this port as P1 bit 0 for the least significant bit, on up to P1 bit 7 for

the most significant bit.

TABLE 4-8 Designating

number systems in HDL.
Bit Decimal

Number System AHDL VHDL Pattern Equivalent

Binary B”101” B”101” 101 5

Hexadecimal H”101” X”101” 100000001 257

Decimal 101 101 1100101 101

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 177

We can also describe this port by saying that it is named P1, with bits

numbered 7 down to 0. The terms bit array and bit vector are often used to

describe this type of data structure. It simply means that the overall data

structure (eight-bit port) has a name (P1) and that each individual element

(bit) has a unique index number (0–7) to describe that bit’s position (and

possibly its numeric weight) in the overall structure. The HDLs and com-

puter programming languages take advantage of this notation. For example,

the third bit from the right is designated as P1[2], and it can be connected to

another signal bit by using an assignment operator.

178 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

A/D converter(MSB) (LSB)

P1[7] P1[6] P1[5] P1[4] P1[3] P1[2] P1[1] P1[0]Input port
P1

FIGURE 4-49 Bit array

notation.

EXAMPLE 4-30 Assume there is an eight-bit array named P1, as shown in Figure 4-49, and an-

other four-bit array is named P5.

(a) Write the bit designation for the most significant bit of P1.

(b) Write the bit designation for the least significant bit of P5.

(c) Write an expression that causes the least significant bit of P5 to drive

the most significant bit of P1.

Solution

(a) The name of the port is P1 and the most significant bit is bit 7. The

proper designation for P1 bit 7 is P1[7].

(b) The name of the port is P5 and the least significant bit is bit 0. The

proper designation for P5 bit 0 is P5[0].

(c) The driving signal is placed on the right side of the assignment operator,

and the driven signal is placed on the left: P1[7] � P5[0];.

A
H

D
L AHDL BIT ARRAY DECLARATIONS

In AHDL, port p1 of Figure 4-49 is defined as an eight-bit input port, and the

value on this port can be referred to using any number system, such as hex,

binary, decimal, etc. The syntax for AHDL uses a name for the bit vector fol-

lowed by the range of index designations, which are enclosed in square

brackets. This declaration is included in the SUBDESIGN section. For exam-

ple, to declare an eight-bit input port called p1, you would write

p1 [7..0] :INPUT; --define an 8-bit input port

EXAMPLE 4-31 Declare a four-bit input named keypad using AHDL.

Solution

keypad [3..0] :INPUT;

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 178

Intermediate variables can also be declared as an array of bits. As with

single bits, they are declared just after the I/O declarations in SUBDESIGN.

As an example, the eight-bit temperature port p1 can be assigned (con-

nected) to a node named temp, as follows:

VARIABLE temp [7..0] :NODE;

BEGIN

temp[] � p1[];

END;

Notice that the input port p1 has the data applied to it, and it is driving

the signal wires named temp. Think of the term on the right of the equals

sign as the source of the data and the term on the left as the destination.

The empty brackets [] mean that each of the correspanding bits in the two

arrays are being connected. Individual bits can also be “connected” by

specifying the bits inside the brackets. For example, to connect only the

least significant bit of p1 to the LSB of temp, the statement would be

temp[0] � p1[0];.

SECTION 4-15/REPRESENTING DATA IN HDL 179

V
H

D
LVHDL BIT VECTOR DECLARATIONS

In VHDL, port p1 of Figure 4-49 is defined as an eight-bit input port, and the

value on this port can be referred to using only binary literals.The syntax for

VHDL uses a name for the bit vector followed by the mode (:IN), the type

(BIT_VECTOR), and the range of index designations, which are enclosed in

parentheses. This declaration is included in the ENTITY section. For exam-

ple, to declare an eight-bit input port called p1, you would write

PORT (p1 :IN BIT_VECTOR (7 DOWNTO 0);

EXAMPLE 4-32 Declare a four-bit input named keypad using VHDL.

Solution

PORT(keypad :IN BIT_VECTOR (3 DOWNTO 0);

Intermediate signals can also be declared as an array of bits. As with sin-

gle bits, they are declared just inside the ARCHITECTURE definition. As an

example, the eight-bit temperature on port p1 can be assigned (connected)

to a signal named temp, as follows:

SIGNAL temp :BIT_VECTOR (7 DOWNTO 0);

BEGIN

temp <� p1;

END;

Notice that the input port p1 has the data applied to it, and it is driving the

signal wires named temp. No elements in the bit vector are specified, which

means that all the bits are being connected. Individual bits can also be “con-

nected” using signal assignments and by specifying the bit numbers inside

parentheses. For example, to connect only the least significant bit of p1 to

the LSB of temp, the statement would be temp(0) <� p1(0);.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 179

VHDL is very particular regarding the definitions of each type of the

data. The type “bit_vector” describes an array of individual bits. This is in-

terpreted differently than an eight-bit binary number (called a scaler quan-

tity), which has the type integer. Unfortunately, VHDL does not allow us to

assign an integer value to a BIT_VECTOR signal directly. Data can be repre-

sented by any of the types shown in Table 4-9, but data assignments and

other operations must be done between objects of the same type. For exam-

ple, the compiler will not allow you to take a number from a keypad declared

as an integer and connect it to four LEDs that are declared as BIT_VECTOR

outputs. Notice in Table 4-9, under Possible Values, that individual BIT and

STD_LOGIC data objects (e.g., signals, variables, inputs, and outputs) are

designated by single quotes, whereas values assigned to BIT_VECTOR and

STD_LOGIC_VECTOR types are strings of valid bit values enclosed in dou-

ble quotes.

180 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

Data Type Sample Declaration Possible Values Use

BIT y :OUT BIT; ‘0’ ‘1’ y <� ‘0’;

STD_LOGIC driver :STD_LOGIC ‘0’ ‘1’ ‘z’ ‘x’ ‘-‘ driver <� ‘z’;

BIT_VECTOR bcd_data :BIT_VECTOR “0101” “1001” digit <� bcd_data;

(3 DOWNTO 0); “0000”

STD_LOGIC_VECTOR dbus :STD_LOGIC_VECTOR “0Z1X” IF rd � ‘0’ THEN
(3 DOWNTO 0); dbus <� “zzzz”;

INTEGER SIGNAL z:INTEGER RANGE IF z > 5 THEN . . .
TO 31;-32

-32..-2,-1,0,1,2 . . . 31

TABLE 4-9 Common VHDL data types.

VHDL also offers some standardized data types that are necessary when

using logic functions that are contained in the libraries. As you might have

guessed, libraries are simply collections of little pieces of VHDL code that

can be used in your hardware descriptions without reinventing the wheel.

These libraries offer convenient functions, called macrofunctions, like

many of the standard TTL devices that are described throughout this text.

Rather than writing a new description of a familiar TTL device, we can sim-

ply pull its macrofunction out of the library and use it in our system. Of

course, you need to get signals into and out of these macrofunctions, and the

types of the signals in your code must match the types in the functions

(which someone else wrote). This means that everyone must use the same

standard data types.

When VHDL was standardized through the IEEE, many data types were

created at the same time. The two that we will use in this text are

STD_LOGIC, which is equivalent to BIT type, and STD_LOGIC_VECTOR,

which is equivalent to BIT_VECTOR. As you recall, BIT type can have val-

ues of only ‘0’ and ‘1’. The standard logic types are defined in the IEEE li-

brary and have a broader range of possible values than their built-in coun-

terparts. The possible values for a STD_LOGIC type or for any element in a

STD_LOGIC_VECTOR are given in Table 4-10. The names of these cate-

gories will make much more sense after we study the characteristics of logic

circuits in Chapter 8. For now, we will show examples using values of only ‘1’

and ‘0’.

TOCCMC04_0131725793.QXD 12/5/05 8:06 PM Page 180

SECTION 4-16/TRUTH TABLES USING HDL 181

TABLE 4-10 STD_LOGIC

values.
‘1’ Logic 1 (just like BIT type)

‘0’ Logic 0 (just like BIT type)

‘z’ High impedance*

‘-’ don’t care (just like you used in your K maps)

‘U’ Uninitialized

‘X’ Unknown

‘W’ Weak unknown

‘L’ Weak ‘0’

‘H’ Weak ‘1’

*We will study tristate logic in Chapter 8.

REVIEW QUESTIONS 1. How would you declare a six-bit input array named push_buttons in (a)

AHDL or (b) VHDL?

2. What statement would you use to take the MSB from the array in ques-

tion 1 and put it on a single-bit output port named z? Use (a) AHDL or

(b) VHDL.

3. In VHDL, what is the IEEE standard type that is equivalent to the BIT

type?

4. In VHDL, what is the IEEE standard type that is equivalent to the

BIT_VECTOR type?

4-16 TRUTH TABLES USING HDL

We have learned that a truth table is another way of expressing the opera-

tion of a circuit block. It relates the output of the circuit to every possible

combination of its inputs. As we saw in Section 4-4, a truth table is the start-

ing point for a designer to define how the circuit should operate. Then a

Boolean expression is derived from the truth table and simplified using K

maps or Boolean algebra. Finally the circuit is implemented from the final

Boolean equation. Wouldn’t it be great if we could go from the truth table di-

rectly to the final circuit without all those steps? We can do exactly that by

entering the truth table using HDL.

A
H

D
LTRUTH TABLES USING AHDL

The code in Figure 4-50 uses AHDL to implement a circuit and uses a truth

table to describe its operation. The truth table for this design was presented

in Example 4-7. The key point of this example is the use of the TABLE key-

word in AHDL. It allows the designer to specify the operation of the circuit

just like you would fill out a truth table. On the first line after TABLE, the in-

put variables (a,b,c) are listed exactly like you would create a column head-

ing on a truth table. By including the three binary variables in parentheses,

we tell the compiler that we want to use these three bits as a group and to re-

fer to them as a three-bit binary number or bit pattern. The specific values

for this bit pattern are listed below the group and are referred to as binary

literals. The special operator (�>) is used in truth tables to separate the in-

puts from the output (y).

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 181

The TABLE in Figure 4-50 is intended to show the relationship between the

HDL code and a truth table.A more common way of representing the input data

heading is to use a variable bit array to represent the value on a, b, c. This

method involves a declaration of the bit array on the line before BEGIN, such as:

VARIABLE in_bits[2..0] :NODE;

Just before the TABLE keyword, the input bits can be assigned to the array,

inbits[]:

in_bits[] � (a,b,c);

Grouping three independent bits in order like this is referred to as concate-
nating, and it is often done to connect individual bits to a bit array. The table

heading on the input bit sets can be represented by in_bits[], in this case.

Note that as we list the possible combinations of the inputs, we have several

options. We can make up a group of 1s and 0s in parentheses, as shown in

Figure 4-50, or we can represent the same bit pattern using the equivalent bi-

nary, hex, or decimal number. It is up to the designer to decide which format

is most appropriate depending on what the input variables represent.

182 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

% Figure 4-7 in AHDL

Digital Systems 10th ed

Neal Widmer

MAY 23, 2005 %

SUBDESIGN FIG4_50

(

a,b,c :INPUT; --define inputs to block

y :OUTPUT; --define block output

)

BEGIN

TABLE

(a,b,c) => y; --column headings

(0,0,0) => 0;

(0,0,1) => 0;

(0,1,0) => 0;

(0,1,1) => 1;

(1,0,0) => 0;

(1,0,1) => 1;

(1,1,0) => 1;

(1,1,1) => 1;

END TABLE;

END;

FIGURE 4-50 AHDL

design file for Figure 4-7

V
H

D
L TRUTH TABLES USING VHDL: SELECTED SIGNAL ASSIGNMENT

The code in Figure 4-51 uses VHDL to implement a circuit using a selected
signal assignment to describe its operation. It allows the designer to specify

the operation of the circuit, just like you would fill out a truth table. The

truth table for this design was presented in Example 4-7. The primary point

of this example is the use of the WITH signal_name SELECT statement in

VHDL. A secondary point presented here shows how to put the data into a

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 182

format that can be used conveniently with the selected signal assignment.

Notice that the inputs are defined in the ENTITY declaration as three inde-

pendent bits a, b, and c. Nothing in this declaration makes one of these more

significant than another. The order in which they are listed does not matter.

We want to compare the current value of these bits with each of the possible

combinations that could be present. If we drew out a truth table, we would

decide which bit to place on the left (MSB) and which to place on the right

(LSB). This is accomplished in VHDL by concatenating (connecting in order)

the bit variables to form a bit vector. The concatenation operator is “&”. A

signal is declared as a BIT_VECTOR to receive the ordered set of input bits

and is used to compare the input’s value with the string literals contained in

quotes. The output (y) is assigned (<�) a bit value (‘0’ or ‘1’) WHEN in_bits
contains the value listed in double quotes.

VHDL is very strict in the way it allows us to assign and compare objects

such as signals, variables, constants, and literals.The output y is a BIT, and so

it must be assigned a value of ‘0’ or ‘1’. The SIGNAL in_bits is a three-bit

BIT_VECTOR, so it must be compared with a three-bit string literal value.

VHDL will not allow in_bits (a BIT_VECTOR) to be compared with a hex

number like X “5” or a decimal number like 3.These scalar quantities would

be valid for assignment or comparison with integers.

SECTION 4-16/TRUTH TABLES USING HDL 183

-- Figure 4-7 in VHDL

-- Digital Systems 10th ed

-- Neal Widmer

-- MAY 23, 2005

ENTITY fig4_51 IS

PORT(

a,b,c :IN BIT; --declare individual input bits

y :OUT BIT);

END fig4_51;

ARCHITECTURE truth OF fig4_51 IS

SIGNAL in_bits :BIT_VECTOR(2 DOWNTO 0);

BEGIN

in_bits <= a & b & c; --concatenate input bits into bit_vector

WITH in_bits SELECT

y <= '0' WHEN "000", --Truth Table

'0' WHEN "001",

'0' WHEN "010",

'1' WHEN "011",

'0' WHEN "100",

'1' WHEN "101",

'1' WHEN "110",

'1' WHEN "111";

END truth;

FIGURE 4-51 VHDL design file for Figure 4-7.

EXAMPLE 4-33 Declare three signals in VHDL that are single bits named too_hot, too_cold,
and just_right. Combine (concatenate) these three bits into a three-bit signal

called temp_status, with hot on the left and cold on the right.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 183

Solution

1. Declare signals first in Architecture.

SIGNAL too_hot, too_cold, just_right :BIT;

SIGNAL temp_status :BIT_VECTOR (2 DOWNTO 0);

2. Write concurrent assignment statements between BEGIN and END.

temp_status <� too_hot & just_right & too_cold;

184 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

REVIEW QUESTIONS 1. How would you concatenate three bits x, y, and z into a three-bit array

named omega? Use AHDL or VHDL.

2. How are truth tables implemented in AHDL?

3. How are truth tables implemented in VHDL?

4-17 DECISION CONTROL STRUCTURES IN HDL

In this section, we will examine methods that allow us to tell the digital sys-

tem how to make “logical” decisions in much the same way that we make de-

cisions every day. In Chapter 3, we learned that concurrent assignment

statements are evaluated such that the order in which they are written has

no effect on the circuit being described. When using decision control struc-
tures, the order in which we ask the questions does matter. To summarize

this concept in the terms used in HDL documentation, statements that can

be written in any sequence are called concurrent, and statements that are

evaluated in the sequence in which they are written are called sequential.
The sequence of sequential statements affects the circuit’s operation.

The examples we have considered so far involve several individual bits.

Many digital systems require inputs that represent a numeric value. Refer

again to Example 4-8, in which the purpose of the logic circuit is to monitor

the battery voltage measured by an A/D converter. The digital value is rep-

resented by a four-bit number coming from the A/D into the logic circuit.

These inputs are not independent binary variables but rather four binary

digits of a number representing battery voltage. We need to give the data the

correct type that will allow us to use it as a number.

IF/ELSE
Truth tables are great for listing all the possible combinations of independent

variables, but there are better ways to handle numeric data. As an example,

when a person leaves for school or work in the morning, she must make a log-

ical decision about wearing a coat. Let’s assume she decides this issue based

only on the current temperature. How many of us would reason as follows?

I will wear a coat if the temperature is 0.

I will wear a coat if the temperature is 1.

I will wear a coat if the temperature is 2. . . .

I will wear a coat if the temperature is 55.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 184

I will not wear a coat if the temperature is 56.

I will not wear a coat if the temperature is 57.

I will not wear a coat if the temperature is 58. . . .

I will not wear a coat if the temperature is 99.

This method is similar to the truth table approach of describing the decision.

For every possible input, she decides what the output should be. Of course,

what she would really do is decide as follows:

I will wear a coat if the temperature is less than 56 degrees.

Otherwise, I will not wear a coat.

An HDL gives us the power to describe logic circuits using this type of

reasoning. First, we must describe the inputs as a number within a given
range, and then we can write statements that decide what to do to the out-

puts based on the value of the incoming number. In most computer program-

ming languages, as well as HDLs, these types of decisions are made using an

IF/THEN/ELSE control structure. Whenever the decision is between doing

something and doing nothing, an IF/THEN construct is used. The keyword

IF is followed by a statement that is true or false. IF it is true, THEN do

whatever is specified. In the event that the statement is false, no action is

taken. Figure 4-52(a) shows graphically how this decision works. The dia-

mond shape represents the decision being made by evaluating the statement

contained within the diamond. Every decision has two possible outcomes:

true or false. In this example, if the statement is false, no action is taken.

SECTION 4-17/DECISION CONTROL STRUCTURES IN HDL 185

THEN
put on a
coat!

It is too
cold

outside

(a)

FALSE

TRUE

THEN
put on a
coat!

It is too
cold

outside

(b)

TRUEFALSE

ELSE
take off your
coat

FIGURE 4-52 Logical flow

of (a) IF/THEN and (b)

IF/THEN/ELSE constructs.

In some cases it is not enough only to decide to act or not to act, but

rather we must choose between two different actions. For example, in our

analogy about the decision to wear a coat, if the person already has her coat

on when making this decision, she will not be taking it off. The use of

IF/THEN logic assumes that she is not wearing her coat initially.

When decisions demand two possible actions, the IF/THEN/ELSE con-

trol structure is used, as shown in Figure 4-52(b). Here again, the statement

is evaluated as true or false. The difference is that, when the statement is

false, a different action is performed. One of the two actions must occur with

this construct. We can state it verbally as, “IF the statement is true,THEN do

this. ELSE do that.” In our coat analogy, this control structure would work,

regardless of whether the person’s coat was on or off initially.

Example 4-8 gave a simple example of a logic circuit that has as its input

a numeric value representing battery voltage from an A/D converter. The in-

puts A, B, C, D are actually binary digits in a four-bit number, with A being

the MSB and D being the LSB. Figure 4-53 shows the same circuit with the

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 185

inputs labeled as a four-bit number called digital_value. The relationship be-

tween bits is as follows:

A digital_value[3] digital value bit 3 (MSB)

B digital_value[2] digital value bit 2

C digital_value[1] digital value bit 1

D digital_value[0] digital value bit 0 (LSB)

The input can be treated as a decimal number between 0 and 15 if we

specify the correct type of the input variable.

186 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

Digital_value3

Logic circuit

z

A/D converter
A
B
C
D

(MSB)

(LSB)

Digital_value2
Digital_value1
Digital_value0

FIGURE 4-53 Logic

circuit similar to

Example 4-8.

A
H

D
L IF/THEN/ELSE USING AHDL

In AHDL, the inputs can be specified as a binary number made up of multi-

ple bits by assigning a variable name followed by a list of the bit positions,

as shown in Figure 4-54. The name is digital_value, and the bit positions

range from 3 down to 0. Notice how simple the code becomes using this

method along with an IF/ELSE construct. The IF is followed by a statement

that refers to the value of the entire four-bit input variable and compares it

with the number 6. Of course, 6 is a decimal form of a scalar quantity and

digital_value[] actually represents a binary number. The compiler can inter-

pret numbers in any system, so it creates a logic circuit that compares the bi-

nary value of digital_value with the binary number for 6 and decides if this

statement is true or false. If it is true, THEN the next statement (z � VCC) is

used to assign z a value. Notice that in AHDL, we must use VCC for a logic 1

and GND for a logic 0 when assigning a logic level to a single bit. When

digital_value is 6 or less, it follows the statement after ELSE (z � GND). The

END IF; terminates the control structure.

FIGURE 4-54 AHDL

version. SUBDESIGN FIG4_54

(

digital_value[3..0] :INPUT; -- define inputs to block

z :OUTPUT; -- define block output

)

BEGIN

IF digital_value[] > 6 THEN

z = VCC; -- output a 1

ELSE z = GND; -- output a 0

END IF;

END;

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 186

IF/THEN/ELSE USING VHDL
In VHDL, the critical issue is the declaration of the type of inputs. Refer to

Figure 4-55. The input is treated as a single variable called digital_value.

Because its type is declared as INTEGER, the compiler knows to treat it as a

number. By specifying a range of 0 to 15, the compiler knows it is a four-bit

number. Notice that RANGE does not specify the index number of a bit vec-

tor but rather the limits of the numeric value of the integer. Integers are

treated differently than bit arrays (BIT_VECTOR) in VHDL. An integer can

be compared with other numbers using inequality operators. A BIT_VECTOR

cannot be used with inequality operators.

SECTION 4-17/DECISION CONTROL STRUCTURES IN HDL 187

V
H

D
L

ENTITY fig4_55 IS

PORT(digital_value :IN INTEGER RANGE 0 TO 15; -- 4-bit input

z :OUT BIT);

END fig4_55;

ARCHITECTURE decision OF fig4_55 IS

BEGIN

PROCESS (digital_value)

BEGIN

IF (digital_value > 6) THEN

z <= '1';

ELSE

z <= '0';

END IF;

END PROCESS ;

END decision;

FIGURE 4-55 VHDL

version.

To use the IF/THEN/ELSE control structure, VHDL requires that the

code be put inside a “PROCESS.”The statements that occur within a process

are sequential, meaning that the order in which they are written affects the

operation of the circuit. The keyword PROCESS is followed by a list of vari-

ables called a sensitivity list, which is a list of variables to which

the process code must respond. Whenever digital_value changes, it causes

the process code to be reevaluated. Even though we know digital_value is

really a four-bit binary number, the compiler will evaluate it as a number

between the equivalent decimal values of 0 and 15. IF the statement in

parentheses is true, THEN the next statement is applied (z is assigned a

value of logic 1). If this statement is not true, the logic follows the ELSE

clause and assigns a value of 0 to z. The END IF; terminates the control

structure, and the END PROCESS; terminates the evaluation of the se-

quential statements.

ELSIF
We often need to choose among many possible actions, depending on the sit-

uation. The IF construct chooses whether to perform a set of actions or not.

The IF/ELSE construct selects one out of two possible actions. By combining

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 187

Notice that as each condition is evaluated, it either performs an action if

true or goes on to evaluate the next condition. Each action is associated with

one condition, and there is no chance to select more than one action. Note

also that the conditions used to decide the appropriate action can be any

expression that evaluates as true or false. This fact allows the designer to

use the inequality operators to choose an action based on a range of input

values. As an example of this application, let’s consider the temperature-

measuring system that uses an A/D converter, as described in Figure 4-57.

Suppose that we want to indicate when the temperature is in a certain range,

which we will refer to as Too Cold, Just Right, and Too Hot.

188 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

Action 1

IF
TF

Action 4

ELSIF
TF

Action 5

Action 2

ELSIF
TF

Action 3

ELSIF
TF

FIGURE 4-56 Flowchart

for multiple decisions using

IF/ELSIF.

Logic circuitA/D converter Too Cold

Just Right

Too Hot

Four-bit
digital
value

Temp

FIGURE 4-57
Temperature range

indicator circuit.

The relationship between the digital values for temperature and the cat-

egories is

Digital Values Category

0000–1000 Too Cold

1001–1010 Just Right

1011–1111 Too Hot

IF and ELSE decisions, we can create a control structure referred to as

ELSIF, which chooses one of many possible outcomes.The decision structure

is shown graphically in Figure 4-56.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 188

We can express the decision-making process for this logic circuit as follows:

IF the digital value is less than or equal to 8, THEN light only the Too

Cold indicator.

ELSE IF the digital value is greater than 8 AND less than 11,THEN light

only the Just Right indicator.

ELSE light only the Too Hot indicator.

ELSIF USING AHDL
The AHDL code in Figure 4-58 defines the inputs as a four-bit binary num-

ber. The outputs are three individual bits that drive the three range indica-

tors.This example uses an intermediate variable (status) that allows us to as-

sign a bit pattern representing the three conditions of too_cold, just_right,
and too_hot. The sequential section of the code uses the IF, ELSIF, ELSE to

identify the range in which the temperature lies and assigns the correct bit

pattern to status. In the last statement, the bits of status are connected to the

actual output port bits. These bits have been ordered in a group that relates

to the bit patterns assigned to status[]. This could also have been written as

three concurrent statements: too_cold � status[2]; just_right � status[1];

too_hot � status[0];.

SECTION 4-17/DECISION CONTROL STRUCTURES IN HDL 189

FIGURE 4-58 Temperature range example in AHDL using ELSIF.

SUBDESIGN fig4_58

(

digital_value[3..0] :INPUT; --define inputs to block

too_cold, just_right, too_hot :OUTPUT;--define outputs

)

VARIABLE

status[2..0] :NODE;--holds state of too_cold, just_right, too_hot

BEGIN

IF digital_value[] <= 8 THEN status[] = b"100";

ELSIF digital_value[] > 8 AND digital_value[] < 11 THEN

status[] = b"010";

ELSE status[] = b"001";

END IF;

(too_cold, just_right, too_hot) = status[]; -- update output bits

END;

ELSIF USING VHDL
The VHDL code in Figure 4-59 defines the inputs as a four-bit integer. The

outputs are three individual bits that drive the three range indicators. This

example uses an intermediate signal (status) that allows us to assign a bit

pattern representing all three conditions of too_cold, just_right, and too_hot.
The process section of the code uses the IF, ELSIF, and ELSE to identify the

range in which the temperature lies and assigns the correct bit pattern to

status. In the last three statements, each bit of status is connected to the cor-

rect output port bit.

V
H

D
L

A
H

D
L

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 189

CASE
One more important control structure is useful for choosing actions based on

current conditions. It is called by various names, depending on the program-

ming language, but it nearly always involves the word CASE. This construct

determines the value of an expression or object and then goes through a list

of possible values (cases) for the expression or object being evaluated. Each

case has a list of actions that should take place. A CASE construct is differ-

ent from an IF/ELSIF because a case correlates one unique value of an ob-

ject with a set of actions. Recall that an IF/ELSIF correlates a set of actions

with a true statement. There can be only one match for a CASE statement.

An IF/ELSIF can have more than one statement that is true, but will THEN

perform the action associated with the first true statement it evaluates.

Another important point in the examples that follow is the need to com-

bine several independent variables into a set of bits, called a bit vector.

Recall that this action of linking several bits in a particular order is called

concatenation. It allows us to consider the bit pattern as an ordered group.

190 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

ENTITY fig4_59 IS

PORT(digital_value:IN INTEGER RANGE 0 TO 15; -- declare 4-bit input

too_cold, just_right, too_hot :OUT BIT);

END fig4_59 ;

ARCHITECTURE howhot OF fig4_59 IS

SIGNAL status :BIT_VECTOR (2 downto 0);

BEGIN

PROCESS (digital_value)

BEGIN

IF (digital_value <= 8) THEN status <= "100";

ELSIF (digital_value > 8 AND digital_value < 11) THEN

status <= "010";

ELSE status <= "001";

END IF;

END PROCESS ;

too_cold <= status(2); -- assign status bits to output

just_right <= status(1);

too_hot <= status(0);

END howhot;

FIGURE 4-59 Temperature range example in VHDL using ELSIF.

CASE USING AHDL
The AHDL example in Figure 4-60 demonstrates a case construct imple-

menting the circuit of Figure 4-9 (see also Table 4-3). It uses individual bits

as its inputs. In the first statement after BEGIN, these bits are concatenated

and assigned to the intermediate variable called status. The CASE state-

ment evaluates the variable status and finds the bit pattern (following the

keyword WHEN) that matches the value of status. It then performs the ac-

tion described following �>. In this example, it simply assigns logic 0 to the

output for each of the three specified cases. All other cases result in a logic

1 on the output.

A
H

D
L

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 190

CASE USING VHDL
The VHDL example in Figure 4-61 demonstrates the case construct imple-

menting the circuit of Figure 4-9 (see also Table 4-3). It uses individual bits

as its inputs. In the first statement after BEGIN, these bits are concatenated

and assigned to the intermediate variable called status using the & operator.

The CASE statement evaluates the variable status and finds the bit pattern

(following the keyword WHEN) that matches the value of status. It then per-

forms the action described following �>. In this simple example, it merely

assigns logic 0 to the output for each of the three specified cases. All other
cases result in a logic 1 on the output.

SECTION 4-17/DECISION CONTROL STRUCTURES IN HDL 191

SUBDESIGN fig4_60

(

p, q, r :INPUT; -- define inputs to block

s :OUTPUT; -- define outputs

)

VARIABLE

status[2..0] :NODE;

BEGIN

status[]= (p, q, r); -- link input bits in order

CASE status[] IS

WHEN b"100" => s = GND;

WHEN b"101" => s = GND;

WHEN b"110" => s = GND;

WHEN OTHERS => s = VCC;

END CASE;

END;

FIGURE 4-60 Figure 4-9

represented in AHDL.

V
H

D
L

FIGURE 4-61 Figure 4-9

represented in VHDL. ENTITY fig4_61 IS

PORT(p, q, r :IN bit; --declare 3 bits input

s :OUT BIT);

END fig4_61;

ARCHITECTURE copy OF fig4_61 IS

SIGNAL status :BIT_VECTOR (2 downto 0);

BEGIN

status <= p & q & r; --link bits in order.

PROCESS (status)

BEGIN

CASE status IS

WHEN "100" => s <= '0';

WHEN "101" => s <= '0';

WHEN "110" => s <= '0';

WHEN OTHERS => s <= '1';

END CASE;

END PROCESS;

END copy;

TOCCMC04_0131725793.QXD 12/5/05 8:06 PM Page 191

192 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

Insert Coin
Logic Circuit

Q

cents[4..0]

Five-bit array
representing coin
valueD

NNickel

Dime

Quarter

FIGURE 4-62 A coin

detector circuit for a

vending machine.

EXAMPLE 4-34 A coin detector in a vending machine accepts quarters, dimes, and nickels

and activates the corresponding digital signal (Q, D, N) only when the correct

coin is present. It is physically impossible for multiple coins to be present at

the same time. A digital circuit must use the Q, D, and N signals as inputs and

produce a binary number representing the value of the coin as shown in

Figure 4-62. Write the AHDL and VHDL code.

Solution

This is an ideal application of the CASE construct to describe the correct op-

eration. The outputs must be declared as five-bit numbers in order to repre-

sent up to 25 cents. Figure 4-63 shows the AHDL solution and Figure 4-64

shows the VHDL solution.

SUBDESIGN fig4_63
(

q, d, n :INPUT; -- define quarter, dime, nickel
cents[4..0] :OUTPUT; -- define binary value of coins

)
BEGIN

CASE (q, d, n) IS -- group coins in an ordered set
WHEN b"001" => cents[] = 5;
WHEN b"010" => cents[] = 10;
WHEN b"100" => cents[] = 25;
WHEN others => cents[] = 0;

END CASE;
END;

ENTITY fig4_64 IS
PORT(q, d, n:IN BIT; -- quarter, dime, nickel

cents :OUT INTEGER RANGE 0 TO 25); -- binary value of coins
END fig4_64;
ARCHITECTURE detector of fig4_64 IS

SIGNAL coins :BIT_VECTOR(2 DOWNTO 0);-- group the coin sensors
BEGIN

coins <= (q & d & n); -- assign sensors to group
PROCESS (coins)

BEGIN
CASE (coins) IS

WHEN "001" => cents <= 5;
WHEN "010" => cents <= 10;
WHEN "100" => cents <= 25;
WHEN others => cents <= 0;

END CASE;
END PROCESS;

END detector;

FIGURE 4-64 A VHDL coin detector.

FIGURE 4-63 An AHDL coin detector.

A
H

D
L

V
H

D
L

TOCCMC04_0131725793.QXD 12/16/2005 3:50 PM Page 192

SUMMARY
1. The two general forms for logic expressions are the sum-of-products form

and the product-of-sums form.

2. One approach to the design of a combinatorial logic circuit is to (1) con-

struct its truth table, (2) convert the truth table to a sum-of-products

expression, (3) simplify the expression using Boolean algebra or K map-

ping, (4) implement the final expression.

3. The K map is a graphical method for representing a circuit’s truth table

and generating a simplified expression for the circuit output.

4. An exclusive-OR circuit has the expression Its output x
will be HIGH only when inputs A and B are at opposite logic levels.

5. An exclusive-NOR circuit has the expression Its output x
will be HIGH only when inputs A and B are at the same logic level.

6. Each of the basic gates (AND, OR, NAND, NOR) can be used to enable or

disable the passage of an input signal to its output.

7. The main digital IC families are the TTL and CMOS families. Digital ICs

are available in a wide range of complexities (gates per chip), from the

basic to the high-complexity logic functions.

8. To perform basic troubleshooting requires—at a minimum—an under-

standing of circuit operation, a knowledge of the types of possible faults,

a complete logic-circuit connection diagram, and a logic probe.

9. A programmable logic device (PLD) is an IC that contains a large num-

ber of logic gates whose interconnections can be programmed by the

user to generate the desired logic relationship between inputs and

outputs.

10. To program a PLD, you need a development system that consists of a

computer, PLD development software, and a programmer fixture that

does the actual programming of the PLD chip.

11. The Altera system allows convenient hierarchical design techniques us-

ing any form of hardware description.

12. The type of data objects must be specified so that the HDL compiler

knows the range of numbers to be represented.

13. Truth tables can be entered directly into the source file using the fea-

tures of HDL.

14. Logical control structures such as IF, ELSE, and CASE can be used to de-

scribe the operation of a logic circuit, making the code and the problem’s

solution much more straightforward.

x = A B + AB.

x = AB + AB.

SUMMARY 193

REVIEW QUESTIONS 1. Which control structure decides to do or not to do?

2. Which control structure decides to do this or to do that?

3. Which control structure(s) decides which one of several different actions

to take?

4. Declare an input named count that can represent a numeric quantity as

big as 205. Use AHDL or VHDL.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 193

IMPORTANT TERMS

194 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

sum-of-products

(SOP)

product-of-sums

(POS)

Karnaugh map

(K map)

looping

don’t-care condition

exclusive-OR (XOR)

exclusive-NOR

(XNOR)

parity generator

parity checker

enable/disable

dual-in-line package

(DIP)

SSI, MSI, LSI,VLSI,

ULSI, GSI

transistor-transistor

logic (TTL)

complementary

metal-oxide-

semiconductor

(CMOS)

indeterminate

floating

logic probe

contention

programmer

ZIF socket

JEDEC

JTAG

hierarchical design

top-down

test vectors

literals

bit array

bit vector

BIT_VECTOR

index

integer

objects

libraries

macrofunction

STD_LOGIC

STD_LOGIC_

VECTOR

concatenate

selected signal

assignment

decision control

structure

concurrent

sequential

IF/THEN

ELSE

PROCESS

sensitivity list

ELSIF

CASE

PROBLEMS
SECTIONS 4-2 AND 4-3

4-1.*Simplify the following expressions using Boolean algebra.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

4-2. Simplify the circuit of Figure 4-65 using Boolean algebra.

x = AB(CD) + ABD + B C D

y = (C + D) + ACD + AB C + A BCD + ACD

z = (B + C)(B + C) + A + B + C

x = A B C + ABC + ABC + A B C + ABC

q = RST(R + S + T)

w = ABC + ABC + A

y = (Q + R)(Q + R)

x = ABC + AC

B

B

*Answers to problems marked with an asterisk can be found in the back of the text.

M

x

N
Q

FIGURE 4-65 Problems

4-2 and 4-3.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 194

4-3.*Change each gate in Problem 4-2 to a NOR gate, and simplify the cir-

cuit using Boolean algebra.

SECTION 4-4

4-4.*Design the logic circuit corresponding to the truth table shown in

Table 4-11.

PROBLEMS 195

B

B, D

B, D

D

D

D

TABLE 4-11
A B C x

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

4-5. Design a logic circuit whose output is HIGH only when a majority of

inputs A, B, and C are LOW.

4-6. A manufacturing plant needs to have a horn sound to signal quitting

time. The horn should be activated when either of the following con-

ditions is met:

1. It’s after 5 o’clock and all machines are shut down.

2. It’s Friday, the production run for the day is complete, and all ma-

chines are shut down.

Design a logic circuit that will control the horn. (Hint: Use four logic

input variables to represent the various conditions; for example, in-

put A will be HIGH only when the time of day is 5 o’clock or later.)

4-7.*A four-bit binary number is represented as A3A2A1A0, where A3, A2,

A1, and A0 represent the individual bits and A0 is equal to the LSB.

Design a logic circuit that will produce a HIGH output whenever the

binary number is greater than 0010 and less than 1000.

4-8. Figure 4-66 shows a diagram for an automobile alarm circuit used to

detect certain undesirable conditions. The three switches are used to

+5 V

+5 V

Door

Ignition

+5 V

LED

Open

Closed

ON

OFF

+5 V

LightsON

OFF

Logic
circuit

Alarm

FIGURE 4-66 Problem

4-8.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 195

indicate the status of the door by the driver’s seat, the ignition, and

the headlights, respectively. Design the logic circuit with these three

switches as inputs so that the alarm will be activated whenever either

of the following conditions exists:

■ The headlights are on while the ignition is off.

■ The door is open while the ignition is on.

4-9.*Implement the circuit of Problem 4-4 using all NAND gates.

4-10. Implement the circuit of Problem 4-5 using all NAND gates.

SECTION 4-5

4-11. Determine the minimum expression for each K map in Figure 4-67.

Pay particular attention to step 5 for the map in (a).

196 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

B

AB

AB

AB

AB

CD CD CD CD

(a)*

AB

AB

AB

AB

CD CD CD CD

(b)

1 1

0 0

1 0

1 X

AB

AB

AB

AB

C C

(c)

1 1 1 1

1 1 0 0

0 0 0 1

0 0 1 1

1 0 1 1

1 0 0 1

0 0 0 0

1 0 1 1

FIGURE 4-67 Problem

4-11.

4-12. For the truth table below, create a K map, group terms, and sim-

plify.Then look at the truth table again to see if the expression is true

for every entry in the table.

A B y

0 0 1

0 1 1

1 0 0

1 1 0

4-13. Starting with the truth table in Table 4-11, use a K map to find the

simplest SOP equation.

4-14. Simplify the expression in (a)* Problem 4-1(e) using a K map.

(b) Problem 4-1(g) using a K map. (c)* Problem 4-1(h) using a K map.

4-15.*Obtain the output expression for Problem 4-7 using a K map.

4-16. Figure 4-68 shows a BCD counter that produces a four-bit output rep-

resenting the BCD code for the number of pulses that have been ap-

plied to the counter input. For example, after four pulses have

occurred, the counter outputs are DCBA � 01002 � 410. The counter

resets to 0000 on the tenth pulse and starts counting over again. In

other words, the DCBA outputs will never represent a number greater

than 10012 � 910.

(a)*Design the logic circuit that produces a HIGH output whenever

the count is 2, 3, or 9. Use K mapping and take advantage of the

don’t-care conditions.

(b) Repeat for x � 1 when DCBA � 3, 4, 5, 8.

2 * 2B

B

B

C, D

B

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 196

4-17.*Figure 4-69 shows four switches that are part of the control circuitry

in a copy machine. The switches are at various points along the path

of the copy paper as the paper passes through the machine. Each

switch is normally open, and as the paper passes over a switch, the

switch closes. It is impossible for switches SW1 and SW4 to be closed

at the same time. Design the logic circuit to produce a HIGH output

whenever two or more switches are closed at the same time. Use K

mapping and take advantage of the don’t-care conditions.

PROBLEMS 197

D (MSB)

C

B

A

X HIGH only when
DCBA = 210 , 310, or 910

BCD
counter

Logic
circuit

FIGURE 4-68 Problem

4-16.

+5 V

SW4

+5 V

SW3

+5 V

SW2

+5 V

SW1

Logic
circuit

x HIGH whenever
two or more switches

are closed*

*SW1 and SW4 will never
be closed at the same time

FIGURE 4-69 Problem

4-17.

B

A

X

1

0

1

0

Time

FIGURE 4-70 Problem

4-20.

D

B

B

C

4-18. Example 4-3 demonstrated algebraic simplification. Step 3 resulted in

the SOP equation Use a K map to

prove that this equation can be simplified further than the answer

shown in the example.

4-19. Use Boolean algebra to arrive at the same result obtained by the K

map method of Problem 4-18.

SECTION 4-6

4-20. (a) Determine the output waveform for the circuit of Figure 4-70.

(b) Repeat with the B input held LOW.

(c) Repeat with B held HIGH.

z = A BC + ACD + ABC D + ABC.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 197

4-21.*Determine the input conditions needed to produce x � 1 in Figure

4-71.

198 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

B

B

B

B

B

C

B

A

X

FIGURE 4-71 Problem

4-21.

y0

LSB
Relative

magnitude
detectorBinary

number
y

Binary
number

x

M { x = y }

N { x > y }

P { x < y }
LSB

y1

y2

x0

x1

x2

FIGURE 4-72 Problem

4-25.

4-22. Design a circuit that produces a HIGH out only when all three inputs

are the same level.

(a) Use a truth table and K map to produce the SOP solution.

(b) Use two-input XOR and other gates to find a solution. (Hint:
Recall the transitive property from algebra. . . if a � b and b � c
then a � c.)

4-23.*A 7486 chip contains four XOR gates. Show how to make an XNOR

gate using only a 7486 chip. Hint: See Example 4-16.

4-24.*Modify the circuit of Figure 4-23 to compare two four-bit numbers and

produce a HIGH output when the two numbers match exactly.

4-25. Figure 4-72 represents a relative-magnitude detector that takes two

three-bit binary numbers, x2x1x0 and y2y1y0, and determines whether

they are equal and, if not, which one is larger.There are three outputs,

defined as follows:

1. M � 1 only if the two input numbers are equal.

2. N � 1 only if x2x1x0 is greater than y2y1y0.

3. P � 1 only if y2y1y0 is greater than x2x1x0.

Design the logic circuitry for this detector. The circuit has six inputs

and three outputs and is therefore much too complex to handle using

the truth-table approach. Refer to Example 4-17 as a hint about how

you might start to solve this problem.

MORE DESIGN PROBLEMS

4-26.*Figure 4-73 represents a multiplier circuit that takes two-bit binary

numbers, x1x0 and y1y0, and produces an output binary number

z3z2z1z0 that is equal to the arithmetic product of the two input num-

bers. Design the logic circuit for the multiplier. (Hint: The logic circuit

will have four inputs and four outputs.)

C, D

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 198

4-27. A BCD code is being transmitted to a remote receiver. The bits are A3,

A2, A1, and A0, with A3 as the MSB. The receiver circuitry includes a

BCD error detector circuit that examines the received code to see if it

is a legal BCD code (i.e., ≤1001). Design this circuit to produce a HIGH

for any error condition.

4-28.*Design a logic circuit whose output is HIGH whenever A and B are

both HIGH as long as C and D are either both LOW or both HIGH. Try

to do this without using a truth table. Then check your result by con-

structing a truth table from your circuit to see if it agrees with the

problem statement.

4-29. Four large tanks at a chemical plant contain different liquids being

heated. Liquid-level sensors are being used to detect whenever the level

in tank A or tank B rises above a predetermined level. Temperature

sensors in tanks C and D detect when the temperature in either of these

tanks drops below a prescribed temperature limit. Assume that the

liquid-level sensor outputs A and B are LOW when the level is satisfac-

tory and HIGH when the level is too high. Also, the temperature-sensor

outputs C and D are LOW when the temperature is satisfactory and

HIGH when the temperature is too low. Design a logic circuit that will

detect whenever the level in tank A or tank B is too high at the same

time that the temperature in either tank C or tank D is too low.

4-30.*Figure 4-74 shows the intersection of a main highway with a second-

ary access road. Vehicle-detection sensors are placed along lanes C
and D (main road) and lanes A and B (access road). These sensor

PROBLEMS 199

D

D

D

C, D

x1

x0

y1

y0 z0

z1

z2

z3

MSB

LSBLSB

LSB Multiplier
 circuit

FIGURE 4-73 Problem

4-26.

D

B

A

C

S

N

W E

FIGURE 4-74 Problem

4-30.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 199

outputs are LOW (0) when no vehicle is present and HIGH (1) when a

vehicle is present. The intersection traffic light is to be controlled ac-

cording to the following logic:

1. The east-west (E-W) traffic light will be green whenever both
lanes C and D are occupied.

2. The E-W light will be green whenever either C or D is occupied

but lanes A and B are not both occupied.

3. The north-south (N-S) light will be green whenever both lanes A
and B are occupied but C and D are not both occupied.

4. The N-S light will also be green when either A or B is occupied

while C and D are both vacant.

5. The E-W light will be green when no vehicles are present.

Using the sensor outputs A, B, C, and D as inputs, design a logic circuit

to control the traffic light. There should be two outputs, N-S and E-W,

that go HIGH when the corresponding light is to be green. Simplify

the circuit as much as possible and show all steps.

SECTION 4-7

4-31. Redesign the parity generator and checker of Figure 4-25 to (a) oper-

ate using odd parity. (Hint: What is the relationship between an odd-

parity bit and an even-parity bit for the same set of data bits?) (b)

Operate on eight data bits.

SECTION 4-8

4-32. (a) Under what conditions will an OR gate allow a logic signal to pass

through to its output unchanged?

(b) Repeat (a) for an AND gate.

(c) Repeat for a NAND gate.

(d) Repeat for a NOR gate.

4-33.*(a) Can an INVERTER be used as an enable/disable circuit?

Explain.

(b) Can an XOR gate be used as an enable/disable circuit? Explain.

4-34. Design a logic circuit that will allow input signal A to pass through to

the output only when control input B is LOW while control input C is

HIGH; otherwise, the output is LOW.

4-35.*Design a circuit that will disable the passage of an input signal only

when control inputs B, C, and D are all HIGH; the output is to be

HIGH in the disabled condition.

4-36. Design a logic circuit that controls the passage of a signal A according

to the following requirements:

1. Output X will equal A when control inputs B and C are the same.

2. X will remain HIGH when B and C are different.

4-37. Design a logic circuit that has two signal inputs, A1 and A0, and a con-

trol input S so that it functions according to the requirements given in

Figure 4-75. (This type of circuit is called a multiplexer and will be cov-

ered in Chapter 9.)

200 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

D

D

D

D

D

B

B

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 200

4-38.*Use K mapping to design a circuit to meet the requirements of

Example 4-17. Compare this circuit with the solution in Figure 4-23.

This points out that the K-map method cannot take advantage of the

XOR and XNOR gate logic. The designer must be able to determine

when these gates are applicable.

SECTIONS 4-9 TO 4-13

4-39. (a) A technician testing a logic circuit sees that the output of a par-

ticular INVERTER is stuck LOW while its input is pulsing. List as

many possible reasons as you can for this faulty operation.

(b) Repeat part (a) for the case where the INVERTER output is stuck

at an indeterminate logic level.

4-40.*The signals shown in Figure 4-76 are applied to the inputs of the circuit

of Figure 4-32. Suppose that there is an internal open circuit at Z1-4.

(a) What will a logic probe indicate at Z1-4?

(b) What dc voltage reading would you expect at Z1-4? (Remember

that the ICs are TTL.)

(c) Sketch what you think the and signals will

look like.

(d) Instead of the open at Z1-4, suppose that pins 9 and 10 of Z2

are internally shorted. Sketch the probable signals at Z2-10,

and SHIFTOUT.CLOCKOUT,

SHIFTOUTCLKOUT

PROBLEMS 201

T*

T

T

T

T

S
0
1

z
= A0
= A1

S

z

A0

Multiplexer

A1

FIGURE 4-75 Problem

4-37.

CLOCK

LOAD

SHIFT

FIGURE 4-76 Problem

4-40.

4-41. Assume that the ICs in Figure 4-32 are CMOS. Describe how the cir-

cuit operation would be affected by an open circuit in the conductor

connecting Z2-2 and Z2-10.

4-42. In Example 4-24, we listed three possible faults for the situation of

Figure 4-36. What procedure would you follow to determine which of

the faults is the actual one?

4-43.*Refer to the circuit of Figure 4-38. Assume that the devices are CMOS.

Also assume that the logic probe indication at Z2-3 is “indeterminate”

*Recall that T indicates a troubleshooting exercise.

D

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 201

rather than “pulsing.” List the possible faults, and write a procedure to

follow to determine the actual fault.

4-44.*Refer to the logic circuit of Figure 4-41. Recall that output Y is sup-

posed to be HIGH for either of the following conditions:

1. A � 1, B � 0, regardless of C

2. A � 0, B � 1, C � 1

When testing the circuit, the technician observes that Y goes HIGH

only for the first condition but stays LOW for all other input condi-

tions. Consider the following list of possible faults. For each one, write

yes or no to indicate whether or not it could be the actual fault.

Explain your reasoning for each no response.

(a) An internal short to ground at Z2-13

(b) An open circuit in the connection to Z2-13

(c) An internal short to VCC at Z2-11

(d) An open circuit in the VCC connection to Z2

(e) An internal open circuit at Z2-9

(f) An open in the connection from Z2-11 to Z2-9

(g) A solder bridge between pins 6 and 7 of Z2

4-45. Develop a procedure for isolating the fault that is causing the mal-

function described in Problem 4-44.

4-46.*Assume that the gates in Figure 4-41 are all CMOS. When the techni-

cian tests the circuit, he finds that it operates correctly except for the

following conditions:

1. A � 1, B � 0, C � 0

2. A � 0, B � 1, C � 1

For these conditions, the logic probe indicates indeterminate levels at

Z2-6, Z2-11, and Z2-8. What do you think is the probable fault in the

circuit? Explain your reasoning.

4-47. Figure 4-77 is a combinational logic circuit that operates an alarm in a

car whenever the driver and/or passenger seats are occupied and the

seatbelts are not fastened when the car is started.The active-HIGH sig-

nals DRIV and PASS indicate the presence of the driver and passenger,

respectively, and are taken from pressure-actuated switches in the

seats.The signal IGN is active-HIGH when the ignition switch is on.The

signal is active-LOW and indicates that the driver’s seatbelt isBELTD

202 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

11
12

13

6
4

521

7

14

+5 V
PASS

BELTP

6
1

243

DRIV

BELTD

IGN

7

14

+5 V

ALARM

9

10
8

Z1: 74LS04
Z2: 74LS00

Z2

Z2

Z2

Z2

FIGURE 4-77 Problems 4-47, 4-48, and 4-49.

T

T

T

T

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 202

unfastened; is the corresponding signal for the passenger seat-

belt.The alarm will be activated (LOW) whenever the car is started and

either of the front seats is occupied and its seatbelt is not fastened.

(a) Verify that the circuit will function as described.

(b) Describe how this alarm system would operate if Z1-2 were inter-

nally shorted to ground.

(c) Describe how it would operate if there were an open connection

from Z2-6 to Z2-10.

4-48.*Suppose that the system of Figure 4-77 is functioning so that the alarm

is activated as soon as the driver and/or passenger are seated and the

car is started, regardless of the status of the seatbelts.What are the pos-

sible faults? What procedure would you follow to find the actual fault?

4-49.*Suppose that the alarm system of Figure 4-77 is operating so that the

alarm goes on continuously as soon as the car is started, regardless of

the state of the other inputs. List the possible faults and write a pro-

cedure to isolate the fault.

DRILL QUESTIONS ON PLDs (50 THROUGH 55)

4-50.*True or false:

(a) Top-down design begins with an overall description of the entire

system and it specifications.

(b) A JEDEC file can be used as the input file for a programmer.

(c) If an input file compiles with no errors, it means the PLD circuit

will work correctly.

(d) A compiler can interpret code in spite of syntax errors.

(e) Test vectors are used to simulate and test a device.

4-51. What are the % characters used for in the AHDL design file?

4-52. How are comments indicated in a VHDL design file?

4-53. What is a ZIF socket?

4-54.*Name three entry modes used to input a circuit description into PLD

development software.

4-55. What do JEDEC and HDL stand for?

SECTION 4-15

4-56. Declare the following data objects in AHDL or VHDL.

(a)*An array of eight output bits named gadgets.

(b) A single-output bit named buzzer.

(c) A 16-bit numeric input port named altitude.

(d) A single, intermediate bit within a hardware description file named

wire2.

4-57. Express the following literal numbers in hex, binary, and decimal us-

ing the syntax of AHDL or VHDL.

(a)*15210

(b) 10010101002

(c) 3C416

4-58.*The following similar I/O definition is given for AHDL and VHDL.

Write four concurrent assignment statements that will connect the in-

puts to the outputs as shown in Figure 4-78.

BELTP

PROBLEMS 203

T

T

B

B

B

H, B

H, B

H, B

H, B

H, B

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 203

SECTION 4-16

4-59. Modify the AHDL truth table of Figure 4-50 to implement

4-60.*Modify the AHDL design in Figure 4-54 so that z � 1 only when the

digital value is less than 10102.

4-61. Modify the VHDL truth table of Figure 4-51 to implement

4-62.*Modify the VHDL design in Figure 4-55 so that z � 1 only when the

digital value is less than 10102.

4-63. Modify the code of (a) Figure 4-54 or (b) Figure 4-55 such that the out-

put z is LOW only when digital_value is between 6 and 11 (inclusive).

4-64. Modify (a) the AHDL design in Figure 4-60 to implement Table 4-1.

(b) the VHDL design in Figure 4-61 to implement Table 4-1.

4-65.*Write the hardware description design file Boolean equation to im-

plement Example 4-9.

4-66. Write the hardware description design file Boolean equation to im-

plement a four-bit parity generator as shown in Figure 4-25(a).

DRILL QUESTION

4-67. Define each of the following terms.

(a) Karnaugh map

(b) Sum-of-products form

(c) Parity generator

(d) Octet

AB + AC + AB.

AB + AC + AB.

204 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

EMPTY_LIMIT

FULL_LIMIT

PWR_ON

MOTOR_ON

1

0

3

2

Inbits

1

0

3

2

Outbits

FULL_LED

MOTOR

EMPTY_LED

POWER_LED

FIGURE 4-78 Problem

4-58.

H, D

H, D

H, D

H, D

H, D

H, D

B

H, B

SUBDESIGN hw
(

inbits[3..0] :INPUT;

outbits[3..0] :OUTPUT;

)

ENTITY hw IS
PORT (

inbits :IN BIT_VECTOR (3 downto 0);
outbits :OUT BIT_VECTOR (3 downto 0)
);

END hw;

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 204

(e) Enable circuit

(f) Don’t-care condition

(g) Floating input

(h) Indeterminate voltage level

(i) Contention

(j) PLD

(k) TTL

(l) CMOS

MICROCOMPUTER APPLICATIONS

4-68. In a microcomputer, the microprocessor unit (MPU) is always commu-

nicating with one of the following: (1) random-access memory (RAM),

which stores programs and data that can be readily changed; (2) read-

only memory (ROM), which stores programs and data that never

change; and (3) external input/output (I/O) devices such as keyboards,

video displays, printers, and disk drives. As it is executing a program,

the MPU will generate an address code that selects which type of de-

vice (RAM, ROM, or I/O) it wants to communicate with. Figure 4-79

shows a typical arrangement where the MPU outputs an eight-bit ad-

dress code A15 through A8. Actually, the MPU outputs a 16-bit address

code, but the low-order bits A7 through A0 are not used in the device

selection process. The address code is applied to a logic circuit that

uses it to generate the device select signals: and I/O.ROM,RAM,

PROBLEMS 205

C

C, D

RAM

I/O

ROM

MPU

A15
A14
A13
A12

A11

A10

A9

A8

FIGURE 4-79 Problem

4-68.

Analyze this circuit and determine the following.

(a)*The range of addresses A15 through A8 that will activate

(b) The range of addresses that activate

(c) The range of addresses that activate

Express the addresses in binary and hexadecimal. For example, the

answer to (a) is A15 to A8 � 000000002 to 111011112 � 0016 to EF16.

4-69. In some microcomputers, the MPU can be disabled for short periods of

time while another device controls the RAM, ROM, and I/O. During

these intervals, a special control signal is activated by the

MPU and is used to disable (deactivate) the device select logic so that

the and are all in their inactive state. Modify the cir-

cuit of Figure 4-79 so that and will be deactivated

whenever the signal is active, regardless of the state of the ad-

dress code.

DMA
I�OROM,RAM,

I�OROM,RAM,

(DMA)

ROM

I/O

RAM

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 205

ANSWERS TO SECTION REVIEW QUESTIONS
SECTION 4-1
1. Only (a) 2. Only (c)

SECTION 4-3
1. Expression (b) is not in sum-of-products form because of the inversion sign over

both the C and D variables (i.e., the term). Expression (c) is not in sum-of-

products form because of the term. 3.

SECTION 4-4
1. 2. Eight

SECTION 4-5
1. x � AB � AC � BC 2. x � A � BCD 3. 4. An input condition

for which there is no specific required output condition; i.e., we are free to make it

0 or 1.

SECTION 4-6
2. A constant LOW 3. No; the available XOR gate can be used as an INVERTER

by connecting one of its inputs to a constant HIGH (see Example 4-16).

SECTION 4-8
1. 2. OR, NAND 3. NAND, NOR

SECTION 4-9
1. DIP 2. SSI, MSI, LSI,VLSI, ULSI, GSI 3. True 4. True 5. 40, 74AC,

74ACT series 6. 0 to 0.8 V; 2.0 to 5.0 V 7. 0 to 1.5 V; 3.5 to 5.0 V 8. As if the

input were HIGH 9. Unpredictably; it may overheat and be destroyed.

10. 74HCT and 74ACT 11. They describe exactly how to interconnect the chips

for laying out the circuit and troubleshooting. 12. Inputs and outputs are

defined, and logical relationships are described.

SECTION 4-11
1. Open inputs or outputs; inputs or outputs shorted to VCC; inputs or outputs

shorted to ground; pins shorted together; internal circuit failures 2. Pins shorted

together 3. For TTL, a LOW; for CMOS, indeterminate 4. Two or more outputs

connected together

SECTION 4-12
1. Open signal lines; shorted signal lines; faulty power supply; output loading

2. Broken wires; poor solder connections; cracks or cuts in PC board; bent or broken

IC pins; faulty IC sockets 3. ICs operating erratically or not at all 4. Logic

level indeterminate

SECTION 4-14
1. Electrically controlled connections are being programmed as open or closed.

2. (4, 1) (2, 2) or (2, 1) (4, 2) 3. (4, 5) (1, 6) or (4, 6) (1, 5)

SECTION 4-15
1. (a) push_buttons[5..0] :INPUT; (b) push_buttons :IN BIT_VECTOR (5 DOWNTO 0),

2. (a) z � push_buttons[5]; (b) z <� push_buttons(5); 3. STD_LOGIC

4. STD_LOGIC_VECTOR

x = A(B { C)

S = P + QR

x = A B CD + A BCD + ABC D

x = A + B + C(M + N)P
ACD

206 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 206

SECTION 4-16
1. (AHDL) omega[] � (x, y, z); (VHDL) omega <� x & y & z; 2. Using the keyword

TABLE 3. Using selected signal assignments

SECTION 4-17
1. IF/THEN 2. IF/THEN/ELSE 3. CASE or IF/ELSIF

4. (AHDL) count[7..0] :INPUT; (VHDL) count :IN INTEGER RANGE 0 TO 205

ANSWERS TO SECTION REVIEW QUESTIONS 207

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 207

5-1 NAND Gate Latch

5-2 NOR Gate Latch

5-3 Troubleshooting Case Study

5-4 Digital Pulses

5-5 Clock Signals and Clocked

Flip-Flops

5-6 Clocked S-R Flip-Flop

5-7 Clocked J-K Flip-Flop

5-8 Clocked D Flip-Flop

5-9 D Latch (Transparent Latch)

5-10 Asynchronous Inputs

5-11 IEEE/ANSI Symbols

5-12 Flip-Flop Timing

Considerations

5-13 Potential Timing Problem in

FF Circuits

5-14 Flip-Flop Applications

5-15 Flip-Flop Synchronization

■ OUTLINE

F L I P - F L O P S A N D

R E L AT E D D E V I C E S

C H A P T E R 5

5-16 Detecting an Input

Sequence

5-17 Data Storage and Transfer

5-18 Serial Data Transfer: Shift

Registers

5-19 Frequency Division and

Counting

5-20 Microcomputer Application

5-21 Schmitt-Trigger Devices

5-22 One-Shot (Monostable

Multivibrator)

5-23 Clock Generator Circuits

5-24 Troubleshooting Flip-Flop

Circuits

5-25 Sequential Circuits Using

HDL

5-26 Edge-Triggered Devices

5-27 HDL Circuits with Multiple

Components

TOCCMC05_0131725793.QXD 12/26/05 7:39 AM Page 208

209

■ OBJECTIVES
Upon completion of this chapter, you will be able to:
■ Construct and analyze the operation of a latch flip-flop made from

NAND or NOR gates.

■ Describe the difference between synchronous and asynchronous systems.

■ Understand the operation of edge-triggered flip-flops.

■ Analyze and apply the various flip-flop timing parameters specified by

the manufacturers.

■ Understand the major differences between parallel and serial data

transfers.

■ Draw the output timing waveforms of several types of flip-flops in

response to a set of input signals.

■ Recognize the various IEEE/ANSI flip-flop symbols.

■ Use state transition diagrams to describe counter operation.

■ Use flip-flops in synchronization circuits.

■ Connect shift registers as data transfer circuits.

■ Employ flip-flops as frequency-division and counting circuits.

■ Understand the typical characteristics of Schmitt triggers.

■ Apply two different types of one-shots in circuit design.

■ Design a free-running oscillator using a 555 timer.

■ Recognize and predict the effects of clock skew on synchronous circuits.

■ Troubleshoot various types of flip-flop circuits.

■ Write HDL code for latches.

■ Use logic primitives, components, and libraries in HDL code.

■ Build structural level circuits from components.

■ INTRODUCTION
The logic circuits considered thus far have been combinational circuits

whose output levels at any instant of time are dependent on the levels pres-

ent at the inputs at that time. Any prior input-level conditions have no ef-

fect on the present outputs because combinational logic circuits have no

memory. Most digital systems consist of both combinational circuits and

memory elements.

Figure 5-1 shows a block diagram of a general digital system that com-

bines combinational logic gates with memory devices. The combinational

portion accepts logic signals from external inputs and from the outputs of

the memory elements. The combinational circuit operates on these inputs

TOCCMC05_0131725793.QXD 12/26/05 7:39 AM Page 209

to produce various outputs, some of which are used to determine the binary

values to be stored in the memory elements. The outputs of some of the

memory elements, in turn, go to the inputs of logic gates in the combina-

tional circuits. This process indicates that the external outputs of a digital

system are functions of both its external inputs and the information stored

in its memory elements.

The most important memory element is the flip-flop, which is made up

of an assembly of logic gates. Even though a logic gate, by itself, has no

storage capability, several can be connected together in ways that permit

information to be stored. Several different gate arrangements are used to

produce these flip-flops (abbreviated FF).

Figure 5-2(a) is the general type of symbol used for a flip-flop. It shows

two outputs, labeled Q and that are the inverse of each other. are the

most common designations used for a FF’s outputs. From time to time, we

will use other designations such as and for convenience in identi-

fying different FFs in a logic circuit.

The Q output is called the normal FF output, and is the inverted FF

output. Whenever we refer to the state of a FF, we are referring to the state

of its normal (Q) output; it is understood that its inverted output is in

the opposite state. For example, if we say that a FF is in the HIGH (1) state,

we mean that if we say that a FF is in the LOW (0) state, we mean

that Of course, the state will always be the inverse of Q.
The two possible operating states for a FF are summarized in Figure

5-2(b). Note that the HIGH or 1 state is also referred to as the

SET state. Whenever the inputs to a FF cause it to go to the state, we

call this setting the FF; the FF has been set. In a similar way, the LOW or

Q = 1

(Q = 1>Q = 0)

QQ = 0.

Q = 1;

(Q)

Q

A>AX>X

Q>QQ,

210 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

Memory
elements

Memory outputs

External inputs

Combinational
outputs

Combinational
logic
gates

FIGURE 5-1 General digi-

tal system diagram.

FIGURE 5-2 General flip-flop symbol and definition of its two possible output states.

Q

Q

.....
Inputs

FF

(a)

Normal
output

Inverted
output

Q = 1, Q = 0:

Q = 0, Q = 1:

called HIGH or 1
state; also called SET state

Output states

called LOW or 0 state;
also called CLEAR or
RESET state

(b)

TOCCMC05_0131725793.QXD 12/26/05 7:39 AM Page 210

0 state is also referred to as the CLEAR or RESET state.

Whenever the inputs to a FF cause it to go to the state, we call this

clearing or resetting the FF; the FF has been cleared (reset). As we shall see,

many FFs will have a SET input and/or a CLEAR (RESET) input that is

used to drive the FF into a specific output state.

As the symbol in Figure 5-2(a) implies, a FF can have one or more inputs.

These inputs are used to cause the FF to switch back and forth (“flip-flop”)

between its possible output states. We will find out that most FF inputs need

only to be momentarily activated (pulsed) in order to cause a change in the

FF output state, and the output will remain in that new state even after the

input pulse is over. This is the FF’s memory characteristic.

The flip-flop is known by other names, including latch and bistable mul-
tivibrator. The term latch is used for certain types of flip-flops that we will

describe. The term bistable multivibrator is the more technical name for a

flip-flop, but it is too much of a mouthful to be used regularly.

Q = 0

(Q = 0>Q = 1)

SECTION 5-1/NAND GATE LATCH 211

FIGURE 5-3 A NAND

latch has two possible

resting states when

SET = RESET = 1.

SET

RESET

Q

Q

1

21
1

1
0 SET

RESET

Q

Q

1

21
0

1
1

(a) (b)

5-1 NAND GATE LATCH

The most basic FF circuit can be constructed from either two NAND gates or

two NOR gates. The NAND gate version, called a NAND gate latch or simply

a latch, is shown in Figure 5-3(a). The two NAND gates are cross-coupled so

that the output of NAND-1 is connected to one of the inputs of NAND-2, and

vice versa. The gate outputs, labeled Q and respectively, are the latch out-

puts. Under normal conditions, these outputs will always be the inverse of

each other. There are two latch inputs: the SET input is the input that sets Q
to the 1 state; the RESET input is the input that resets Q to the 0 state.

The SET and RESET inputs are both normally resting in the HIGH state,

and one of them will be pulsed LOW whenever we want to change the latch

outputs. We begin our analysis by showing that there are two equally likely

output states when One possibility is shown in Figure 5-

3(a), where we have and With , the inputs to NAND-2 are

0 and 1, which produce The 1 from causes NAND-1 to have a 1 at

both inputs to produce a 0 output at Q. In effect, what we have is the LOW at

the NAND-1 output producing a HIGH at the NAND-2 output, which, in turn,

keeps the NAND-1 output LOW.

The second possibility is shown in Figure 5-3(b), where and

The HIGH from NAND-1 produces a LOW at the NAND-2 output, which, in

turn, keeps the NAND-1 output HIGH. Thus, there are two possible output

states when as we shall soon see, the one that actually

exists will depend on what has occurred previously at the inputs.

SET = RESET = 1;

Q = 0.Q = 1

QQ = 1.

Q = 0Q = 1.Q = 0

SET = RESET = 1.

Q,

TOCCMC05_0131725793.QXD 12/26/05 7:39 AM Page 211

Setting the Latch (FF)
Now let’s investigate what happens when the SET input is momentarily

pulsed LOW while RESET is kept HIGH. Figure 5-4(a) shows what happens

when prior to the occurrence of the pulse. As SET is pulsed LOW at

time , Q will go HIGH, and this HIGH will force to go LOW so that

NAND-1 now has two LOW inputs. Thus, when SET returns to the 1 state at

, the NAND-1 output remains HIGH, which, in turn, keeps the NAND-2 out-

put LOW.

t1

Qt0

Q = 0

212 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

FIGURE 5-4 Pulsing the SET input to the 0 state when (a) prior to SET

pulse; (b) prior to SET pulse. Note that, in both cases, Q ends up HIGH.Q = 1

Q = 0

FIGURE 5-5 Pulsing the RESET input to the LOW state when (a) prior to

RESET pulse; (b) prior to RESET pulse. In each case, Q ends up LOW.Q = 1

Q = 0

SET

RESET

Q

Q

1

21

(a)

SET

RESET

Q

Q
21

(b)

t0 t1

1

0

t0 t1

1

0

t0 t1

t0 t1

1

t0 t1

0

1

0

t0 t1

1

0 1

SET

RESET

Q

Q
2

(a)

1

t0 t1

1

0
t0 t1

1

1

t0 t1

0

RESET

Q

Q
2

(b)

t0 t1

1

0

t0 t1

1

0

SET
1

t0 t1

1

0

1

Figure 5-4(b) shows what happens when and prior to the ap-

plication of the SET pulse. Since is already keeping the NAND-1 out-

put HIGH, the LOW pulse at SET will not change anything. Thus, when SET

returns HIGH, the latch outputs are still in the , state.

We can summarize Figure 5-4 by stating that a LOW pulse on the SET in-

put will always cause the latch to end up in the state. This operation is

called setting the latch or FF.

Resetting the Latch (FF)
Now let’s consider what occurs when the RESET input is pulsed LOW while

SET is kept HIGH. Figure 5-5(a) shows what happens when and Q = 1Q = 0

Q = 1

Q = 0Q = 1

Q = 0

Q = 0Q = 1

TOCCMC05_0131725793.QXD 12/26/05 7:39 AM Page 212

prior to the application of the pulse. Since is already keeping the

NAND-2 output HIGH, the LOW pulse at RESET will not have any effect.

When RESET returns HIGH, the latch outputs are still and

Figure 5-5(b) shows the situation where prior to the occurrence of

the RESET pulse. As RESET is pulsed LOW at , will go HIGH, and this

HIGH forces Q to go LOW so that NAND-2 now has two LOW inputs. Thus,

when RESET returns HIGH at , the NAND-2 output remains HIGH, which,

in turn, keeps the NAND-1 output LOW.

Figure 5-5 can be summarized by stating that a LOW pulse on the RESET

input will always cause the latch to end up in the state. This operation

is called clearing or resetting the latch.

Simultaneous Setting and Resetting
The last case to consider is the case where the SET and RESET inputs are si-

multaneously pulsed LOW. This will produce HIGH levels at both NAND out-

puts so that Clearly, this is an undesired condition because the

two outputs are supposed to be inverses of each other. Furthermore, when

the SET and RESET inputs return HIGH, the resulting output state will de-

pend on which input returns HIGH first. Simultaneous transitions back to

the 1 state will produce unpredictable results. For these reasons the

condition is normally not used for the NAND latch.

Summary of NAND Latch
The operation described above can be conveniently placed in a function

table (Figure 5-6) and is summarized as follows:

1. This condition is the normal resting state, and it has

no effect on the output state. The Q and outputs will remain in what-

ever state they were in prior to this input condition.

2. This will always cause the output to go to the

state, where it will remain even after SET returns HIGH. This is

called setting the latch.

3. This will always produce the state, where

the output will remain even after RESET returns HIGH. This is called

clearing or resetting the latch.

4. This condition tries to set and clear the latch at the

same time, and it produces If the inputs are returned to 1 si-

multaneously, the resulting state is unpredictable. This input condition

should not be used.

Q = Q = 1.

SET = RESET = 0.

Q = 0RESET = 0.SET = 1,

Q = 1

RESET = 1.SET = 0,

Q
SET = RESET = 1.

SET = RESET = 0

Q = Q = 1.

Q = 0

t1

Qt0

Q = 1

Q = 1.Q = 0

Q = 0

SECTION 5-1/NAND GATE LATCH 213

SET

RESET

Q

Q

(a)

Set
1
0
1
0

Reset
1
1
0
0

 Output
No change
Q = 1
Q = 0
Invalid*

*Produces Q = Q = 1.

(b)

FIGURE 5-6 (a) NAND

latch; (b) function table.

TOCCMC05_0131725793.QXD 12/26/05 7:39 AM Page 213

Alternate Representations
From the description of the NAND latch operation, it should be clear that

the SET and RESET inputs are active-LOW. The SET input will set

when SET goes LOW; the RESET input will clear when RESET goes

LOW. For this reason, the NAND latch is often drawn using the alternate rep-

resentation for each NAND gate, as shown in Figure 5-7(a). The bubbles on

the inputs, as well as the labeling of the signals as and indicate

the active-LOW status of these inputs. (You may want to review Sections 3-13

and 3-14 on this topic.)

Figure 5-7(b) shows a simplified block representation that we will some-

times use. The S and R labels represent the SET and RESET inputs, and the

bubbles indicate the active-LOW nature of these inputs. Whenever we use

this block symbol, it represents a NAND latch.

RESET,SET

Q = 0

Q = 1

214 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

FIGURE 5-7 (a) NAND

latch equivalent represen-

tation; (b) simplified block

symbol.

FIGURE 5-8 Example 5-1.

RESET

Q

Q

(a)

SET

(b)

LATCH

Q

Q

S

R

Terminology
The action of resetting a FF or a latch is also called clearing, and both terms

are used interchangeably in the digital field. In fact, a RESET input can also

be called a CLEAR input, and a SET-RESET latch can be called a SET-

CLEAR latch.

RESET

SET

T1 T2 T3

1

Q
0

1

T4 T5 T6

EXAMPLE 5-1 The waveforms of Figure 5-8 are applied to the inputs of the latch of Figure

5-7. Assume that initially , and determine the Q waveform.Q = 0

Solution

Initially, so that Q will remain in the 0 state. The LOW

pulse that occurs on the input at time will have no effect because

Q is already in the cleared (0) state.

T1RESET

SET = RESET = 1

TOCCMC05_0131725793.QXD 12/26/05 7:39 AM Page 214

The only way that Q can go to the 1 state is by a LOW pulse on the

input. This occurs at time when first goes LOW. When returns

HIGH at , Q will remain in its new HIGH state.

At time when goes LOW again, there will be no effect on Q be-

cause Q is already set to the 1 state.

The only way to bring Q back to the 0 state is by a LOW pulse on the

input. This occurs at time . When returns to 1 at time ,

Q remains in the LOW state.

Example 5-1 shows that the latch output “remembers” the last input that

was activated and will not change states until the opposite input is activated.

T6RESETT5RESET

SETT4

T3

SETSETT2

SET

SECTION 5-1/NAND GATE LATCH 215

FIGURE 5-9
(a) Mechanical contact

bounce will produce multi-

ple transitions; (b) NAND

latch used to debounce a

mechanical switch.

EXAMPLE 5-2 It is almost impossible to obtain a “clean” voltage transition from a mechan-

ical switch because of the phenomenon of contact bounce. This is illustrated

in Figure 5-9(a), where the action of moving the switch from contact position

1 to 2 produces several output voltage transitions as the switch bounces

(makes and breaks contact with contact 2 several times) before coming to

rest on contact 2.

The multiple transitions on the output signal generally last no longer

than a few milliseconds, but they would be unacceptable in many applica-

tions. A NAND latch can be used to prevent the presence of contact bounce

from affecting the output. Describe the operation of the “switch debounc-

ing” circuit in Figure 5-9(b).

Random ''bouncing''

Switch
comes to rest
in position 2Switch to

position 2

0 V

5 V

Switch back to
position 1

Switch to
position 2

0

1

+5 V

2

1

VOUT

(a)

VOUT

+5 V

S Q

R

2

1

+5 V
(b)

TOCCMC05_0131725793.QXD 12/26/05 7:39 AM Page 215

5-2 NOR GATE LATCH

Two cross-coupled NOR gates can be used as a NOR gate latch. The arrange-

ment, shown in Figure 5-10(a), is similar to the NAND latch except that the Q
and outputs have reversed positions.Q

216 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

Solution

Assume that the switch is resting in position 1 so that the input is

LOW and . When the switch is moved to position 2, will go

HIGH, and a LOW will appear on the input as the switch first makes

contact. This will set within a matter of a few nanoseconds (the re-

sponse time of the NAND gate). Now if the switch bounces off contact 2,

and will both be HIGH, and Q will not be affected; it will stay HIGH.

Thus, nothing will happen at Q as the switch bounces on and off contact 2 be-

fore finally coming to rest in position 2.

Likewise, when the switch is moved from position 2 back to position 1,

it will place a LOW on the input as it first makes contact. This

clears Q to the LOW state, where it will remain even if the switch bounces

on and off contact 1 several times before coming to rest.

Thus, the output at Q will consist of a single transition each time the

switch is moved from one position to the other.

RESET

RESET

SET

Q = 1

SET

RESETQ = 0

RESET

FIGURE 5-10 (a) NOR gate latch; (b) function table; (c) simplified block symbol.

REVIEW QUESTIONS
1. What is the normal resting state of the and inputs? What is

the active state of each input?

2. What will be the states of Q and after a FF has been reset (cleared)?

3. True or false: The input can never be used to make .

4. When power is first applied to any FF circuit, it is impossible to predict

the initial states of Q and What can be done to ensure that a NAND

latch always starts off in the state?Q = 1

Q.

Q = 0SET

Q

RESETSET

Set
0
1
0
1

Reset
0
0
1
1

 Output
No change
Q = 1
Q = 0
Invalid*

*Produces Q = Q = 0.

(b)RESET
Q

Q

(a)

SET

(c)

LATCH

Q

Q

S

R

1

2

The analysis of the operation of the NOR latch can be performed in ex-

actly the same manner as for the NAND latch. The results are given in the

function table in Figure 5-10(b) and are summarized as follows:

1. This is the normal resting state for the NOR latch,

and it has no effect on the output state. Q and will remain in whatever

state they were in prior to the occurrence of this input condition.

Q
SET = RESET = 0.

TOCCMC05_0131725793.QXD 12/26/05 7:39 AM Page 216

2. This will always set , where it will remain

even after SET returns to 0.

3. This will always clear , where it will remain

even after RESET returns to 0.

4. This condition tries to set and reset the latch at

the same time, and it produces If the inputs are returned to 0

simultaneously, the resulting output state is unpredictable. This input

condition should not be used.

The NOR gate latch operates exactly like the NAND latch except that the

SET and RESET inputs are active-HIGH rather than active-LOW, and the

normal resting state is Q will be set HIGH by a HIGH

pulse on the SET input, and it will be cleared LOW by a HIGH pulse on the

RESET input. The simplified block symbol for the NOR latch in Figure 5-

10(c) is shown with no bubbles on the S and R inputs; this indicates that

these inputs are active-HIGH.

SET = RESET = 0.

Q = Q = 0.

RESET = 1.SET = 1,

Q = 0RESET = 1.SET = 0,

Q = 1RESET = 0.SET = 1,

SECTION 5-2/NOR GATE LATCH 217

EXAMPLE 5-3 Assume that initially, and determine the Q waveform for the NOR

latch inputs of Figure 5-11.

Q = 0

RESET

SET

T1 T2 T3

Q

0

0

0

T4 T5 T6

FIGURE 5-11 Example

5-3.

Solution

Initially, which has no effect on Q, and Q stays LOW.

When SET goes HIGH at time , Q will be set to 1 and will remain there

even after SET returns to 0 at .

At the RESET input goes HIGH and clears Q to the 0 state, where it

remains even after RESET returns LOW at .

The RESET pulse at has no effect on Q because Q is already LOW.

The SET pulse at again sets Q back to 1, where it will stay.

Example 5-3 shows that the latch “remembers” the last input that was ac-

tivated, and it will not change states until the opposite input is activated.

T6

T5

T4

T3

T2

T1

SET = RESET = 0,

EXAMPLE 5-4 Figure 5-12 shows a simple circuit that can be used to detect the interruption

of a light beam. The light is focused on a phototransistor that is connected in

the common-emitter configuration to operate as a switch. Assume that the

latch has previously been cleared to the 0 state by momentarily opening switch

SW1, and describe what happens if the light beam is momentarily interrupted.

TOCCMC05_0131725793.QXD 12/26/05 7:39 AM Page 217

Solution

With light on the phototransistor, we can assume that it is fully conducting

so that the resistance between the collector and the emitter is very small.

Thus, will be close to 0 V. This places a LOW on the SET input of the latch

so that

When the light beam is interrupted, the phototransistor turns off, and

its collector-emitter resistance becomes very high (i.e., essentially an open

circuit). This causes to rise to approximately 5 V; this activates the SET

input, which sets Q HIGH and turns on the alarm.

Q will remain HIGH and the alarm will remain on even if returns to

0 V (i.e., the light beam was interrupted only momentarily) because SET

and RESET will both be LOW, which will produce no change in Q.
In this application, the latch’s memory characteristic is used to convert

a momentary occurrence (beam interruption) into a constant output.

Flip-Flop State on Power-Up
When power is applied to a circuit, it is not possible to predict the starting

state of a flip-flop’s output if its SET and RESET inputs are in their inactive

state (e.g., for a NAND latch, for a NOR latch). There is

just as much chance that the starting state will be as . It will de-

pend on factors such as internal propagation delays, parasitic capacitance,

and external loading. If a latch or FF must start off in a particular state to

ensure the proper operation of a circuit, then it must be placed in that state

by momentarily activating the SET or RESET input at the start of the cir-

cuit’s operation. This is often achieved by application of a pulse to the ap-

propriate input.

Q = 1Q = 0

S = R = 0S = R = 1

v0

v0

SET = RESET = 0.

v0

218 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

FIGURE 5-12
Example 5-4.

QS

R

+5 V

SW1

Alarm
+

–

vo
λ

+5 V

REVIEW QUESTIONS 1. What is the normal resting state of the NOR latch inputs? What is the ac-

tive state?

2. When a latch is set, what are the states of Q and

3. What is the only way to cause the Q output of a NOR latch to change from

1 to 0?

4. If the NOR latch in Figure 5-12 were replaced by a NAND latch, why

wouldn’t the circuit work properly?

Q?

TOCCMC05_0131725793.QXD 12/26/05 7:39 AM Page 218

5-3 TROUBLESHOOTING CASE STUDY

The following two examples present an illustration of the kinds of reasoning

used in troubleshooting a circuit containing a latch.

SECTION 5-3/TROUBLESHOOTING CASE STUDY 219

FIGURE 5-13 Examples 5-5 and 5-6.

EXAMPLE 5-5 Analyze and describe the operation of the circuit in Figure 5-13.

Switch
position

A
B

RESET

Q

SET

Z1

XA

Pulses
LOW

XB

LOW
Pulses

Z1

1

2

3

4

5
6

Q

1

2
3

4

5
6

XA

XB

1 kHz
+5 V

BA

Z2

Z2

Solution

The switch is used to set or clear the NAND latch to produce clean, bounce-

free signals at Q and These latch outputs control the passage of the 1-kHz

pulse signal through to the AND outputs and

When the switch moves to position A, the latch is set to . This en-

ables the 1-kHz pulses to pass through to while the LOW at keeps

When the switch moves to position B, the latch is cleared to ,

which keeps while the HIGH at enables the pulses to pass

through to XB.

QXA = 0,

Q = 0XB = 0.

QXA,

Q = 1

XB.XA

Q.

EXAMPLE 5-6 A technician tests the circuit of Figure 5-13 and records the observations

shown in Table 5-1. He notices that when the switch is in position B, the cir-

cuit functions correctly, but in position A the latch does not set to the

state. What are the possible faults that could produce this malfunction?

Solution

There are several possibilities:

1. An internal open connection at Z1-1, which would prevent Q from re-

sponding to the input.SET

Q = 1

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 219

2. An internal component failure in NAND gate Z1 that prevents it from re-

sponding properly.

3. The Q output is stuck LOW, which could be caused by:

(a) Z1-3 internally shorted to ground

(b) Z1-4 internally shorted to ground

(c) Z2-2 internally shorted to ground

(d) The Q node externally shorted to ground

An ohmmeter check from Q to ground will determine if any of these

conditions are present. A visual check should reveal any external

short.

What about internally or externally shorted to ? A little thought

will lead to the conclusion that this could not be the fault. If were shorted

to this would not prevent the Q output from going HIGH when

goes LOW. Because Q does not go HIGH, this cannot be the fault. The reason

that looks as if it is stuck HIGH is that Q is stuck LOW, and that keeps

HIGH through the bottom NAND gate.

5-4 DIGITAL PULSES

As you can see from our discussion of SR latches, there are situations in

digital systems when a signal switches from a normal inactive state to the

opposite (active) state, thus causing something to happen in the circuit.

Then the signal returns to its inactive state while the effect of the re-

cently activated signal remains in the system. These signals are called

pulses, and it is very important to understand the terminology associated

with pulses and pulse waveforms. A pulse that performs its intended func-

tion when it goes HIGH is called a positive pulse, and a pulse that per-

forms its intended function when it goes LOW is called a negative pulse.

In actual circuits it takes time for a pulse waveform to change from one

level to the other. These transition times are called the rise time () and

the fall time () and are defined as the time it takes the voltage to change

between 10% and 90% of the HIGH level voltage as shown on the positive

pulse in Figure 5-14(a). The transition at the beginning of the pulse is

called the leading edge and the transition at the end of the pulse is the

trailing edge. The duration (width) of the pulse () is defined as the time

between the points when the leading and trailing edges are at 50% of the

HIGH level voltage. Figure 5-14(b) shows an active-LOW or negative

pulse.

tw

tf

tr

QQ

SETVCC,

Q
VCCQ

220 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

TABLE 5-1

Switch Q
Position (Z1-1) (Z1-5) (Z1-3) (Z1-6) (Z2-3) (Z2-6)

A LOW HIGH LOW HIGH LOW Pulses

B HIGH LOW LOW HIGH LOW Pulses

XBXAQRESETSET

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 220

SECTION 5-5/CLOCK SIGNALS AND CLOCKED FLIP-FLOPS 221

Time

(a)

(b)

t r

tw

t f

Positive pulse90%

50%

10%

90%

10%

Time

Negative pulse

t f t r

Leading edge Trailing edge

FIGURE 5-14 (a) A posi-

tive pulse and (b) a nega-

tive pulse.

100 50 100
Time (ns)

50 ns

4.5 V
5.0 V

0.5 V

FIGURE 5-15
Example 5-7.

EXAMPLE 5-7 When a microcontroller wants to access data in its external memory, it acti-

vates an active-LOW output pin called (read). The data book says that

the pulse typically has a pulse width of 50 ns, a rise time of 15 ns,

and a fall time of 10 ns. Draw a scaled drawing of the pulse.

Solution

Figure 5-15 shows the drawing of the pulse. The pulse is active-LOW, so

the leading edge is a falling edge measured by and the trailing edge is the

rising edge measured by .tr

tf

RD

RDtf

trtwRD

RD

5-5 CLOCK SIGNALS AND CLOCKED FLIP-FLOPS

Digital systems can operate either asynchronously or synchronously. In asyn-

chronous systems, the outputs of logic circuits can change state any time one

or more of the inputs change. An asynchronous system is generally more dif-

ficult to design and troubleshoot than a synchronous system.

In synchronous systems, the exact times at which any output can change

states are determined by a signal commonly called the clock. This clock sig-

nal is generally a rectangular pulse train or a square wave, as shown in

Figure 5-16. The clock signal is distributed to all parts of the system, and

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 221

most (if not all) of the system outputs can change state only when the clock

makes a transition. The transitions (also called edges) are pointed out in

Figure 5-16. When the clock changes from a 0 to a 1, this is called the

positive-going transition (PGT); when the clock goes from 1 to 0, this is the

negative-going transition (NGT). We will use the abbreviations PGT and

NGT because these terms appear so often throughout the text.

Most digital systems are principally synchronous (although there are al-

ways some asynchronous parts) because synchronous circuits are easier to

design and troubleshoot. They are easier to troubleshoot because the circuit

outputs can change only at specific instants of time. In other words, almost

everything is synchronized to the clock-signal transitions.

The synchronizing action of the clock signals is accomplished through

the use of clocked flip-flops that are designed to change states on one or the

other of the clock’s transitions.

222 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

FIGURE 5-16 Clock

signals.
Positive-going

transition (PGT)
Negative-going
transition (NGT)

Time
(a)

1

0

(b)
T

1

0

The speed at which a synchronous digital system operates is dependent

on how often the clock cycles occur. A clock cycle is measured from one PGT

to the next PGT or from one NGT to the next NGT. The time it takes to com-

plete one cycle (seconds/cycle) is called the period (T), as shown in Figure

5-16(b). The speed of a digital system is normally referred to by the number

of clock cycles that happen in 1 s (cycles/second), which is known as the freq-
uency (F) of the clock. The standard unit for frequency is hertz. One hertz

(1 Hz) cycle/second.

Clocked Flip-Flops
Several types of clocked FFs are used in a wide range of applications. Before

we begin our study of the different clocked FFs, we will describe the princi-

pal ideas that are common to all of them.

1. Clocked FFs have a clock input that is typically labeled CLK, CK, or CP.
We will normally use CLK, as shown in Figure 5-17. In most clocked FFs,

the CLK input is edge-triggered, which means that it is activated by a sig-

nal transition; this is indicated by the presence of a small triangle on the

CLK input. This contrasts with the latches, which are level-triggered.

Figure 5-17(a) is a FF with a small triangle on its CLK input to indi-

cate that this input is activated only when a positive-going transition

(PGT) occurs; no other part of the input pulse will have an effect on the

CLK input. In Figure 5-17(b), the FF symbol has a bubble as well as a tri-

angle on its CLK input.This signifies that the CLK input is activated only
when a negative-going transition occurs; no other part of the input pulse

will have an effect on the CLK input.

= 1

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 222

2. Clocked FFs also have one or more control inputs that can have various

names, depending on their operation. The control inputs will have no ef-

fect on Q until the active clock transition occurs. In other words, their ef-

fect is synchronized with the signal applied to CLK. For this reason they

are called synchronous control inputs.

For example, the control inputs of the FF in Figure 5-17(a) will have

no effect on Q until the PGT of the clock signal occurs. Likewise, the con-

trol inputs in Figure 5-17(b) will have no effect until the NGT of the clock

signal occurs.

3. In summary, we can say that the control inputs get the FF outputs ready

to change, while the active transition at the CLK input actually triggers
the change.The control inputs control the WHAT (i.e., what state the out-

put will go to); the CLK input determines the WHEN.

Setup and Hold Times
Two timing requirements must be met if a clocked FF is to respond reliably

to its control inputs when the active CLK transition occurs. These require-

ments are illustrated in Figure 5-18 for a FF that triggers on a PGT.

The setup time, , is the time interval immediately preceding the active

transition of the CLK signal during which the control input must be main-

tained at the proper level. IC manufacturers usually specify the minimum al-

lowable setup time If this time requirement is not met, the FF may

not respond reliably when the clock edge occurs.

The hold time, , is the time interval immediately following the active

transition of the CLK signal during which the synchronous control input

must be maintained at the proper level. IC manufacturers usually specify the

tH

tS(min).

tS

SECTION 5-5/CLOCK SIGNALS AND CLOCKED FLIP-FLOPS 223

FIGURE 5-17 Clocked

FFs have a clock input

(CLK) that is active on

either (a) the PGT or

(b) the NGT. The control

inputs determine the effect

of the active clock

transition.

CLK is activated
by a PGT

Control
inputs

...

Q

Q

CLK

(a)

CLK is activated
by an NGT

Control
inputs

...

Q

Q

CLK

(b)

Synchronous
control input

Clock
input

tS
Setup time

(a)

tH
Hold time

(b)

FIGURE 5-18 Control in-

puts must be held stable for

(a) a time prior to active

clock transition and for

(b) a time after the

active block transition.

tH

tS

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 223

minimum acceptable value of hold time (min). If this requirement is not

met, the FF will not trigger reliably.

Thus, to ensure that a clocked FF will respond properly when the active

clock transition occurs, the control inputs must be stable (unchanging) for at

least a time interval equal to prior to the clock transition, and for at

least a time interval equal to after the clock transition.

IC flip-flops will have minimum allowable and values in the

nanosecond range. Setup times are usually in the range of 5 to 50 ns, whereas

hold times are generally from 0 to 10 ns. Notice that these times are mea-

sured between the 50 percent points on the transitions.

These timing requirements are very important in synchronous systems

because, as we shall see, there will be many situations where the synchro-

nous control inputs to a FF are changing at approximately the same time as

the CLK input.

tHtS

tH(min)

tS(min)

tH

224 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

REVIEW QUESTIONS 1. What two types of inputs does a clocked FF have?

2. What is meant by the term edge-triggered?

3. True or false: The CLK input will affect the FF output only when the ac-

tive transition of the control input occurs.

4. Define the setup time and hold time requirements of a clocked FF.

5-6 CLOCKED S-R FLIP-FLOP

Figure 5-19(a) shows the logic symbol for a clocked S-R flip-flop that is trig-

gered by the positive-going edge of the clock signal. This means that the FF

can change states only when a signal applied to its clock input makes a tran-

sition from 0 to 1. The S and R inputs control the state of the FF in the same

manner as described earlier for the NOR gate latch, but the FF does not re-

spond to these inputs until the occurrence of the PGT of the clock signal.

The function table in Figure 5-19(b) shows how the FF output will re-

spond to the PGT at the CLK input for the various combinations of S and R
inputs. This function table uses some new nomenclature. The up arrow ()

indicates that a PGT is required at CLK; the label indicates the level at Q
prior to the PGT. This nomenclature is often used by IC manufacturers in

their IC data manuals.

The waveforms in Figure 5-19(c) illustrate the operation of the clocked S-R

flip-flop. If we assume that the setup and hold time requirements are being

met in all cases, we can analyze these waveforms as follows:

1. Initially all inputs are 0 and the Q output is assumed to be 0; that is,

2. When the PGT of the first clock pulse occurs (point a), the S and R inputs

are both 0, so the FF is not affected and remains in the state (i.e.,

).

3. At the occurrence of the PGT of the second clock pulse (point c), the S in-

put is now high, with R still low. Thus, the FF sets to the 1 state at the ris-

ing edge of this clock pulse.

4. When the third clock pulse makes its positive transition (point e), it finds

that and which causes the FF to clear to the 0 state.R = 1,S = 0

Q = Q0

Q = 0

Q0 = 0.

Q0

q

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 224

5. The fourth pulse sets the FF once again to the state (point g) be-

cause and when the positive edge occurs.

6. The fifth pulse also finds that and when it makes its positive-

going transition. However, Q is already high, so it remains in that state.

7. The condition should not be used because it results in an am-

biguous condition.

It should be noted from these waveforms that the FF is not affected by the

negative-going transitions of the clock pulses. Also, note that the S and R lev-

els have no effect on the FF, except upon the occurrence of a positive-going

transition of the clock signal. The S and R inputs are synchronous control in-

puts; they control which state the FF will go to when the clock pulse occurs.

The CLK input is the trigger input that causes the FF to change states accord-

ing to what the S and R inputs are when the active clock transition occurs.

Figure 5-20 shows the symbol and the function table for a clocked S-R

flip-flop that triggers on the negative-going transition at its CLK input. The

small circle and triangle on the CLK input indicates that this FF will trig-

ger only when the CLK input goes from 1 to 0. This FF operates in the same

S = R = 1

R = 0S = 1

R = 0S = 1

Q = 1

SECTION 5-6/CLOCKED S-R FLIP-FLOP 225

FIGURE 5-19 (a) Clocked

S-R flip-flop that responds

only to the positive-going

edge of a clock pulse;

(b) function table;

(c) typical waveforms.

Q

S

CLK

FF triggers
 on positive
transition

R

Q
S
0
1
0
1

R
0
0
1
1

 Q
Q0 (no change)
1
0

Inputs Output

Q0 is output level prior to of CLK.
↓ of CLK produces no change in Q.

(b)
(a)

1

0

1

0

1

0

1

0

a b c d e f g h i j

(c)

Time

S

R

CLK

Q

Ambiguous↓
↓
↓
↓

CLK

↓

ResetNo
change

Set Set Set

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 225

manner as the positive-edge FF except that the output can change states

only on the falling edge of the clock pulses (points b, d, f, h, and j in Figure

5-19). Both positive-edge and negative-edge triggering FFs are used in digi-

tal systems.

Internal Circuitry of the Edge-Triggered S-R Flip-Flop
A detailed analysis of the internal circuitry of a clocked FF is not necessary

because all types are readily available as ICs. Although our main interest is

in the FF’s external operation, our understanding of this external operation

can be aided by taking a look at a simplified version of the FF’s internal cir-

cuitry. Figure 5-21 shows this for an edge-triggered S-R flip-flop.

The circuit contains three sections:

1. A basic NAND gate latch formed by NAND-3 and NAND-4

2. A pulse-steering circuit formed by NAND-1 and NAND-2

3. An edge-detector circuit

226 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

FIGURE 5-20 Clocked S-R

flip-flop that triggers

only on negative-going

transitions.

Q

S

CLK

Triggers on
negative edge

R

Q
1

0

S
0
1
0
1

R
0
0
1
1

CLK
↓
↓
↓
↓

 Q
Q0 (no change)
1
0

Inputs Output

Ambiguous

RESET

Q

SET

3

4

NAND latchPulse-steering
circuit

CLK*CLK

Edge
detector

S

R

Q
1

2

FIGURE 5-21 Simplified

version of the internal cir-

cuitry for an edge-triggered

S-R flip-flop.

As shown in Figure 5-21, the edge detector produces a narrow positive-

going spike (CLK*) that occurs coincident with the active transition of the

CLK input pulse. The pulse-steering circuit “steers” the spike through to the

SET or the RESET input of the latch in accordance with the levels present at

S and R. For example, with and the CLK* signal is inverted and

passed through NAND-1 to produce a LOW pulse at the SET input of the

latch that sets . With the CLK* signal is inverted and

passed through NAND-2 to produce a low pulse at the RESET input of the

latch that resets .

Figure 5-22(a) shows how the CLK* signal is generated for edge-triggered

FFs that trigger on a PGT.The INVERTER produces a delay of a few nanosec-

onds so that the transitions of occur a little bit after those of CLK.The ANDCLK

Q = 0

R = 1,S = 0,Q = 1

R = 0,S = 1

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 226

gate produces an output spike that is HIGH only for the few nanoseconds when

CLK and are both HIGH. The result is a narrow pulse at CLK*, which

occurs on the PGT of CLK. The arrangement of Figure 5-22(b) likewise pro-

duces CLK* on the NGT of CLK for FFs that are to trigger on a NGT.

Because the CLK* signal is HIGH for only a few nanoseconds, Q is af-

fected by the levels at S and R only for a short time during and after the

occurrence of the active edge of CLK. This is what gives the FF its edge-

triggered property.

CLK

SECTION 5-7/CLOCKED J-K FLIP-FLOP 227

FIGURE 5-22 Implementation of edge-detector circuits used in edge-triggered

flip-flops: (a) PGT; (b) NGT. The duration of the CLK* pulses is typically 2–5 ns.

CLK

CLK

CLK *

CLK

CLK

CLK *

CLK *

CLK
CLK

CLK *

CLK
CLK

(a) (b)

REVIEW QUESTIONS 1. Suppose that the waveforms of Figure 5-19(c) are applied to the inputs of

the FF of Figure 5-20. What will happen to Q at point b? At point f? At

point h?

2. Explain why the S and R inputs affect Q only during the active transition

of CLK.

5-7 CLOCKED J-K FLIP-FLOP

Figure 5-23(a) shows a clocked J-K flip-flop that is triggered by the positive-

going edge of the clock signal. The J and K inputs control the state of the FF

in the same ways as the S and R inputs do for the clocked S-R flip-flop except

for one major difference: the condition does not result in an am-
biguous output. For this 1, 1 condition, the FF will always go to its opposite
state upon the positive transition of the clock signal.This is called the toggle
mode of operation. In this mode, if both J and K are left HIGH, the FF will

change states (toggle) for each PGT of the clock.

The function table in Figure 5-23(a) summarizes how the J-K flip-flop re-

sponds to the PGT for each combination of J and K. Notice that the function

table is the same as for the clocked S-R flip-flop (Figure 5-19) except for the

condition. This condition results in which means that the

new value of Q will be the inverse of the value it had prior to the PGT; this is

the toggle operation.

Q = Q0,J = K = 1

J = K = 1

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 227

The operation of this FF is illustrated by the waveforms in Figure 5-

23(b). Once again, we assume that the setup and hold time requirements are

being met.

1. Initially all inputs are 0, and the Q output is assumed to be 1; that is,

2. When the positive-going edge of the first clock pulse occurs (point a), the

condition exists. Thus, the FF will be reset to the

state.

3. The second clock pulse finds when it makes its positive tran-

sition (point c). This causes the FF to toggle to its opposite state, .

4. At point e on the clock waveform, J and K are both 0, so that the FF does

not change states on this transition.

5. At point g, and This is the condition that sets Q to the 1

state. However, it is already 1, and so it will remain there.

6. At point i, and so the FF toggles to its opposite state. The

same thing occurs at point k.

Note from these waveforms that the FF is not affected by the negative-

going edge of the clock pulses. Also, the J and K input levels have no effect

except upon the occurrence of the PGT of the clock signal.The J and K inputs

by themselves cannot cause the FF to change states.

Figure 5-24 shows the symbol for a clocked J-K flip-flop that triggers on

the negative-going clock-signal transitions.The small circle on the CLK input

J = K = 1,

K = 0.J = 1

Q = 1

J = K = 1

Q = 0K = 1J = 0,

Q0 = 1.

228 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

FIGURE 5-23 (a) Clocked J-K flip-flop that responds only to the positive edge of

the clock; (b) waveforms.

Q

J

CLK

K

Q J
0
1
0
1

K
0
0
1
1

CLK Q
Q0 (no change)
1
0
Q 0 (toggles)

(b)

a b c d e f g h i j k

1

0

J

K

CLK

Q

1

0

1

0

0

1

(a)

↓
↓
↓
↓

Reset Toggle No
change

Set

Time

Toggle Toggle

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 228

indicates that this FF will trigger when the CLK input goes from 1 to 0. This

FF operates in the same manner as the positive-edge FF of Figure 5-23 ex-

cept that the output can change states only on negative-going clock-signal

transitions (points b, d, f, h, and j). Both polarities of edge-triggered J-K flip-

flops are in common usage.

The J-K flip-flop is much more versatile than the S-R flip-flop because it

has no ambiguous states. The condition, which produces the tog-

gling operation, finds extensive use in all types of binary counters. In

essence, the J-K flip-flop can do anything the S-R flip-flop can do plus oper-

ate in the toggle mode.

Internal Circuitry of the Edge-Triggered J-K Flip-Flop
A simplified version of the internal circuitry of an edge-triggered J-K flip-

flop is shown in Figure 5-25. It contains the same three sections as the edge-

triggered S-R flip-flop (Figure 5-21). In fact, the only difference between the

two circuits is that the Q and outputs are fed back to the pulse-steering

NAND gates. This feedback connection is what gives the J-K flip-flop its tog-

gle operation for the condition.J = K = 1

Q

J = K = 1

SECTION 5-7/CLOCKED J-K FLIP-FLOP 229

FIGURE 5-24 J-K flip-flop

that triggers only on

negative-going transitions.

Q

J

CLK

K

Q J
0
1
0
1

K
0
0
1
1

CLK
↓
↓
↓
↓

 Q
Q0 (no change)
1
0
Q0 (toggles)

FIGURE 5-25 Internal

circuit of the edge-triggered

J-K flip-flop.

RESET

Q

SET

3

4

NAND latchPulse-steering
circuit

CLK*CLK

Edge
detector

J

K

Q
1

2

Let’s examine this toggle condition more closely by assuming that

and that Q is sitting in the LOW state when a CLK pulse occurs.

With and NAND gate 1 will steer CLK* (inverted) to the in-

put of the NAND latch to produce . If we assume that Q is HIGH when a

CLK pulse occurs, NAND gate 2 will steer CLK* (inverted) to the input

of the latch to produce . Thus, Q always ends up in the opposite state.

In order for the toggle operation to work as described above, the CLK*

pulse must be very narrow. It must return to 0 before the Q and outputs tog-

gle to their new values; otherwise, the new values of Q and will cause the

CLK* pulse to toggle the latch outputs again.

Q
Q

Q = 0

RESET

Q = 1

SETQ = 1,Q = 0

J = K = 1

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 229

5-8 CLOCKED D FLIP-FLOP

Figure 5-26(a) shows the symbol and the function table for a clocked D flip-
flop that triggers on a PGT. Unlike the S-R and J-K flip-flops, this flip-flop

has only one synchronous control input, D, which stands for data. The opera-

tion of the D flip-flop is very simple: Q will go to the same state that is

present on the D input when a PGT occurs at CLK. In other words, the level

present at D will be stored in the flip-flop at the instant the PGT occurs. The

waveforms in Figure 5-26(b) illustrate this operation.

Assume that Q is initially HIGH. When the first PGT occurs at point a,

the D input is LOW; thus, Q will go to the 0 state. Even though the D input

level changes between points a and b, it has no effect on Q; Q is storing the

LOW that was on D at point a. When the PGT at b occurs, Q goes HIGH be-

cause D is HIGH at that time. Q stores this HIGH until the PGT at point c
causes Q to go LOW because D is LOW at that time. In a similar manner, the

Q output takes on the levels present at D when the PGTs occur at points d, e,

f, and g. Note that Q stays HIGH at point e because D is still HIGH.

Again, it is important to remember that Q can change only when a PGT

occurs. The D input has no effect between PGTs.

A negative-edge-triggered D flip-flop operates in the same way just de-

scribed except that Q will take on the value of D when a NGT occurs at CLK.
The symbol for the D flip-flop that triggers on NGTs will have a bubble on

the CLK input.

230 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

REVIEW QUESTIONS 1. True or false: A J-K flip-flop can be used as an S-R flip-flop, but an S-R

flip-flop cannot be used as a J-K flip-flop.

2. Does a J-K flip-flop have any ambiguous input conditions?

3. What J-K input condition will always set Q upon the occurrence of the ac-

tive CLK transition?

Q

D

CLK

Q
D
0
1

CLK Q
0
1

1

0

D

CLK

Q
1

0

1

0
a b c d e f g

(a)

(b)

↓
↓

FIGURE 5-26 (a) D flip-

flop that triggers only on

positive-going transitions;

(b) waveforms.

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 230

Parallel Data Transfer
At this point you may well be wondering about the usefulness of the D flip-

flop because it appears that the Q output is the same as the D input. Not

quite; remember, Q takes on the value of D only at certain time instances,

and so it is not identical to D (e.g., see the waveforms in Figure 5-26).

In most applications of the D flip-flop, the Q output must take on the value

at its D input only at precisely defined times. One example of this is illustrated

in Figure 5-28. Outputs X,Y, Z from a logic circuit are to be transferred to FFs

, , and for storage. Using the D flip-flops, the levels present at X,Y, and

Z will be transferred to , , and , respectively, upon application of a

TRANSFER pulse to the common CLK inputs. The FFs can store these values

for subsequent processing. This is an example of parallel data transfer of bi-

nary data; the three bits X, Y, and Z are all transferred simultaneously.

Q3Q2Q1

Q3Q2Q1

SECTION 5-8/CLOCKED D FLIP-FLOP 231

FIGURE 5-27 Edge-

triggered D flip-flop

implementation from a J-K

flip-flop.

CLK

D Q

Q

(a) (b)

K Q

QJ

CLKCLK

D

CLK

D

CLK

D
Combinational

logic
circuit

X

Y

Z

TRANSFER
0
1

*After occurrence of NGT

Q1 = X*

Q2 = Y*

Q3 = Z*

Q1

Q2

Q2

Q1

CLK

D Q3

Q3

FIGURE 5-28 Parallel

transfer of binary data

using D flip-flops.

Implementation of the D Flip-Flop
An edge-triggered D flip-flop is easily implemented by adding a single

INVERTER to the edge-triggered J-K flip-flop, as shown in Figure 5-27. If you

try both values of D, you should see that Q takes on the level present at D when

a PGT occurs. The same can be done to convert a S-R flip-flop to a D flip-flop.

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 231

5-9 D LATCH (TRANSPARENT LATCH)

The edge-triggered D flip-flop uses an edge-detector circuit to ensure that

the output will respond to the D input only when the active transition of the

clock occurs. If this edge detector is not used, the resultant circuit operates

somewhat differently. It is called a D latch and has the arrangement shown

in Figure 5-29(a).

232 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

REVIEW QUESTIONS 1. What will happen to the Q waveform in Figure 5-26(b) if the D input is

held permanently LOW?

2. True or false: The Q output will equal the level at the D input at all times.

3. Can J-K FFs be used for parallel data transfer?

RESET Q

SET

3

4

D

Q
1

2

EN
0
1
1

D
X
0
1

 Q
Q0 (no change)
0
1

Q

D

EN

Q

(a)

(c)

Inputs Output

''X'' indicates ''don't care.''
Q 0 is state Q just
prior to EN going LOW.

(b)

NAND LATCH

ENABLE
(EN)

FIGURE 5-29 D latch: (a) structure; (b) function table; (c) logic symbol.

The circuit contains the NAND latch and the steering NAND gates 1 and

2 without the edge-detector circuit. The common input to the steering gates

is called an enable input (abbreviated EN) rather than a clock input because

its effect on the Q and outputs is not restricted to occurring only on its

transitions. The operation of the D latch is described as follows:

1. When EN is HIGH, the D input will produce a LOW at either the or

the inputs of the NAND latch to cause Q to become the same

level as D. If D changes while EN is HIGH, Q will follow the changes ex-

actly. In other words, while the Q output will look exactly like D;

in this mode, the D latch is said to be “transparent.”

2. When EN goes LOW, the D input is inhibited from affecting the NAND

latch because the outputs of both steering gates will be held HIGH.Thus,

the Q and outputs will stay at whatever level they had just before EN
went LOW. In other words, the outputs are “latched” to their current

level and cannot change while EN is LOW even if D changes.

Q

EN = 1,

RESET

SET

Q

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 232

This operation is summarized in the function table in Figure 5-29(b). The

logic symbol for the D latch is given in Figure 5-29(c). Note that even though

the EN input operates much like the CLK input of an edge-triggered FF,

there is no small triangle on the EN input. This is because the small triangle

symbol is used strictly for inputs that can cause an output change only when

a transition occurs. The D latch is not edge-triggered.

SECTION 5-10/ASYNCHRONOUS INPUTS 233

EXAMPLE 5-8 Determine the Q waveform for a D latch with the EN and D inputs of Figure

5-30. Assume that initially.Q = 0

FIGURE 5-30 Waveforms

for Example 5-8 showing

the two modes of operation

of the transparent D latch.

T1 T2 T3 T4

''Latched''
at Q = 0

''Transparent''
Q = D

''Latched''
at Q = 1

''Latched''
at Q = 0

''Transparent''
Q = D

EN

D

Q

Solution

Prior to time , EN is LOW, so that Q is “latched” at its current 0 level and can-

not change even though D is changing. During the interval to , EN is

HIGH so that Q will follow the signal present at D.Thus, Q goes HIGH at and

stays there because D is not changing.When EN returns LOW at , Q will latch

at the HIGH level that it has at and will remain there while EN is LOW.

At when EN goes HIGH again, Q will follow the changes in the D input

until when EN returns LOW. During the interval to , the D latch is “trans-

parent” because the variations in D go through to the output Q. At when EN
goes LOW, Q will latch at the 0 level because that is its level at . After the

variations in D will have no effect on Q because it is latched (i.e.,).EN = 0

T4T4

T4

T4T3T4

T3

T2

T2

T1

T2T1

T1

REVIEW QUESTIONS 1. Describe how a D latch operates differently from an edge-triggered D

flip-flop.

2. True or false: A D latch is in its transparent mode when

3. True or false: In a D latch, the D input can affect Q only when EN = 1.

EN = 0.

5-10 ASYNCHRONOUS INPUTS

For the clocked flip-flops that we have been studying, the S, R, J, K, and D in-

puts have been referred to as control inputs.These inputs are also called syn-

chronous inputs because their effect on the FF output is synchronized with

the CLK input. As we have seen, the synchronous control inputs must be used

in conjunction with a clock signal to trigger the FF.

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 233

Most clocked FFs also have one or more asynchronous inputs that operate

independently of the synchronous inputs and clock input.These asynchronous

inputs can be used to set the FF to the 1 state or clear (reset) the FF to the 0

state at any time, regardless of the conditions at the other inputs. Stated in an-

other way, the asynchronous inputs are override inputs, which can be used to

override all the other inputs in order to place the FF in one state or the other.

Figure 5-31 shows a J-K flip-flop with two asynchronous inputs desig-

nated as and These are active-LOW inputs, as indicated by

the bubbles on the FF symbol.The accompanying function table summarizes

how they affect the FF output. Let’s examine the various cases.

CLEAR.PRESET

234 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

FIGURE 5-31 Clocked J-K

flip-flop with asynchronous

inputs.
1
1
1
1
1
1
0
0

1
1
1
1
1
0
1
0

Q
Q (no change)
0 (Synch reset)
1 (Synch set)
Q (Synch toggle)
Q (no change)
0 (asynch clear)
1 (asynch preset)
(Invalid)

PRE CLR

x
x
x
x

Clk
0
1
0
1
x
x
x
x

K
0
0
1
1
x
x
x
x

J

Q

J

CLK

K

Q

PRESET

CLEAR

■ The asynchronous inputs are inactive and the

FF is free to respond to the J, K, and CLK inputs; in other words, the

clocked operation can take place.

■ The is activated and Q is immediately
set to 1 no matter what conditions are present at the J, K, and CLK inputs.

The CLK input cannot affect the FF while

■ The is activated and Q is immediately
cleared to 0 independent of the conditions on the J, K, or CLK inputs.The

CLK input has no effect while

■ This condition should not be used because it

can result in an ambiguous response.

It is important to realize that these asynchronous inputs respond to dc

levels. This means that if a constant 0 is held on the input, the FF

will remain in the state regardless of what is occurring at the other in-

puts. Similarly, a constant LOW on the input holds the FF in the

state. Thus, the asynchronous inputs can be used to hold the FF in a

particular state for any desired interval. Most often, however, the asynchro-

nous inputs are used to set or clear the FF to the desired state by application

of a momentary pulse.

Many clocked FFs that are available as ICs will have both of these asyn-

chronous inputs; some will have only the input. Some FFs will have

asynchronous inputs that are active-HIGH rather than active-LOW. For these

FFs the FF symbol would not have a bubble on the asynchronous inputs.

Designations for Asynchronous Inputs
IC manufacturers do not all agree on the nomenclature to use for these asyn-

chronous inputs.The most common designations are PRE (short for PRESET)

and CLR (short for CLEAR). These labels clearly distinguish them from the

CLEAR

Q = 0

CLEAR

Q = 1

PRESET

PRESET = CLEAR = 0.

CLEAR = 0.

CLEARPRESET = 1; CLEAR = 0.

PRESET = 0.

PRESETPRESET = 0; CLEAR = 1.

PRESET = CLEAR = 1.

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 234

synchronous SET and RESET inputs. Other labels such as (direct SET) and

(direct RESET) are also used. From now on, we will use the labels PRE and

CLR to represent the asynchronous inputs because these seem to be the most

commonly used labels. When these asynchronous inputs are active-LOW, as

they generally are, we will use the overbar to indicate their active-LOW sta-

tus, that is, and

Although most IC flip-flops have at least one or more asynchronous in-

puts, there are some circuit applications where they are not used. In such

cases they are held permanently at their inactive level. Often, in our use of

FFs throughout the remainder of the text, we will not show a FF’s unused

asynchronous inputs; it will be assumed that they are permanently con-

nected to their inactive logic level.

CLR.PRE

RD

SD

SECTION 5-10/ASYNCHRONOUS INPUTS 235

FIGURE 5-32 Waveforms for Example 5-9 showing how a clocked flip-flop

responds to asynchronous inputs.

J

CLK

K

Q

Q

PRE

CLR

(a)

+5 V

a
b
c
d
e
f
g

Synchronous toggle on NGT of CLK
Asynchronous set on PRE = 0
Synchronous toggle
Synchronous toggle
Asynchronous clear on CLR = 0
CLR overrides the NGT of CLK
Synchronous toggle

Point Operation

(b)

a b c d e f g

1

1

0

1

1

0

0

1

0

CLR

Q

PRE

CLK

J,K

CLK

CLR

PRE

EXAMPLE 5-9 Figure 5-32(a) shows the symbol for a J-K FF that responds to a NGT on its

clock input and has active-LOW asynchronous inputs. Before proceeding with

the example, take note of the way the inputs are labeled. First, note that the

clock signal applied to the FF is labeled (the overbar indicates that this

signal is active on the NGT), whereas on the other side of the bubble (inside the

block), it is labeled CLK. Likewise, the external active-LOW asynchronous

CLK

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 235

inputs are labeled and whereas inside the block on the other side of

the bubble, they are labeled PRE and CLR. The important thing to remember is

that the presence of the bubble on an input means that the input responds to a

logic LOW signal.

The J and K inputs are shown tied HIGH for this example. Determine the

Q output in response to the input waveforms shown in Figure 5-32(a). Assume

that Q is initially HIGH.

Solution

Initially, and are in their inactive HIGH state, so that they will have

no effect on Q. Thus, when the first NGT of the signal occurs at point a,

Q will toggle to its opposite state; remember, produces the toggle

operation.

At point b, the input is pulsed to its active-LOW state. This will

immediately set . Note that produces without waiting for a

NGT at The asynchronous inputs operate independently of

At point c, the NGT of will again cause Q to toggle to its opposite

state. Note that has returned to its inactive state prior to point c.
Likewise, the NGT of at point d will toggle Q back HIGH.

At point e, the input is pulsed to its active-LOW state and will imme-
diately clear . Again, it does this independently of

The NGT of at point f will not toggle Q because the input is

still active. The LOW at overrides the input and holds .

When the NGT of occurs at point g, it will toggle Q to the HIGH

state because neither asynchronous input is active at that point.

These steps are summarized in Figure 5-32(b).

CLK
Q = 0CLKCLR

CLRCLK
CLK.Q = 0

CLR
CLK

PRE
CLK

CLK.CLK.

Q = 1PREQ = 1

PRE

J = K = 1

CLK
CLRPRE

CLR,PRE

236 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

REVIEW QUESTIONS 1. How does the operation of an asynchronous input differ from that of a

synchronous input?

2. Can a D flip-flop respond to its D and CLK inputs while

3. List the conditions necessary for a positive-edge-triggered J-K flip-flop

with active-LOW asynchronous inputs to toggle to its opposite state.

PRE = 1?

5-11 IEEE/ANSI SYMBOLS

Figure 5-33(a) shows the IEEE/ANSI symbol for a negative-edge-triggered

J-K flip-flop with asynchronous inputs. Note the right triangle on the CLK in-

put to indicate that it is activated by a NGT. Recall that in the IEEE/ANSI

symbols, a right triangle has the same meanings as the small bubble in the

traditional symbols. Also note that the clock input is labeled “C” inside the

rectangle. IEEE/ANSI always uses a “C” to denote any input that controls
when other inputs will affect the output.The and inputs are active-

LOW, as indicated by the right triangles on these inputs. IEEE/ANSI also

uses the labels “S” and “R” inside the rectangle to denote the asynchronous

SET and RESET operations, which are the same as PRESET and CLEAR,

respectively.

Figure 5-33(b) shows the IEEE/ANSI logic symbol for an IC that is part of

the 74LS series of TTL devices.The 74LS112 is a dual negative-edge-triggered

J-K flip-flop with preset and clear capabilities. It contains two J-K flip-flops,

CLRPRE

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 236

like the one symbolized in Figure 5-33(a). Note how the inputs and outputs

are numbered. Also note that the input labels inside the rectangles are shown

only for the top FF. It is understood that the inputs to the bottom FF are in

the same arrangement as the top one. This same IC symbol applies to the

CMOS 74HC112.

Figure 5-34(a) is the IEEE/ANSI symbol for a positive-edge-triggered D

flip-flop with asynchronous inputs. There is no right triangle on the clock

input because this FF is clocked by PGTs.

SECTION 5-11/IEEE/ANSI SYMBOLS 237

FIGURE 5-33 IEEE/ANSI

symbols for (a) a single

edge-triggered J-K flip-flop

and (b) an actual IC

(74LS112 dual negative-

edge-triggered J-K flip-

flop).

FIGURE 5-34 IEEE/ANSI

symbols for (a) a single

edge-triggered D flip-flop

and (b) an actual IC

(74HC175 quad flip-flop

with common clock and

clear).

J

CLK

K

Q

Q

S

R

C

PRE

CLR

(a)

74LS112

1PRE

1J

1CLK

1K

1CLR

2PRE

2J

2CLK

2K

2CLR

(b)

S

1J

C1

1K

R

1Q

2Q

1Q

2Q

D Q

Q

S

R

PRE

CLR

(a)

CLK C

1D

(b)

2D

3D

4D

1Q

1Q

2Q

2Q

4Q

4Q

3Q

3Q

Common-control block

CLK

CLR

74HC175

R

C

1D

Figure 5-34(b) is the IEEE/ANSI symbol for a 74HC175 IC, which con-

tains four D flip-flops that share a common CLK input and a common

input. The FFs do not have a input. This symbol contains a separate rec-

tangle to represent each FF, and a special common-control block, which is

the notched rectangle on top.The common-control block is used whenever an

PRE
CLR

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 237

IC has one or more inputs that are common to more than one of the circuits

on the chip. For the 74HC175, the CLK and inputs are common to all

four of the D flip-flops on the IC. This means that a PGT on CLK will cause

each Q output to take on the level present at its D input; it also means that a

LOW on will clear all Q outputs to the LOW state.CLR

CLR

238 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

REVIEW QUESTIONS 1. Explain the meaning of the two different triangles that can be part of

the IEEE/ANSI symbology at a clock input.

2. Describe the meaning of the common-control block.

5-12 FLIP-FLOP TIMING CONSIDERATIONS

Manufacturers of IC flip-flops will specify several important timing parame-

ters and characteristics that must be considered before a FF is used in any

circuit application. We will describe the most important of these and then

give some actual examples of specific IC flip-flops from the TTL and CMOS

logic families.

Setup and Hold Times
The setup and hold times have already been discussed, and you may recall

from Section 5-5 that they represent requirements that must be met for reli-

able FF triggering. The manufacturer’s IC data sheet will always specify the

minimum values of and

Propagation Delays
Whenever a signal is to change the state of a FF’s output, there is a delay

from the time the signal is applied to the time when the output makes its

change. Figure 5-35 illustrates the propagation delays that occur in response

to a positive transition on the CLK input. Note that these delays are mea-

sured between the 50 percent points on the input and output waveforms.The

same types of delays occur in response to signals on a FF’s asynchronous in-

puts (PRESET and CLEAR). The manufacturers’ data sheets usually specify

propagation delays in response to all inputs, and they usually specify the

maximum values for and tPHL.tPLH

tH.tS

FIGURE 5-35 FF propaga-

tion delays.
50%

50%

CLK

Q

CLK

Q

t PLH

Delay going from
LOW to HIGH

(a)

t PHL

Delay going from
HIGH to LOW

(b)

50%

50%

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 238

Modern IC flip-flops have propagation delays that range from a few

nanoseconds to around 100 ns. The values of and are generally not

the same, and they increase in direct proportion to the number of loads be-

ing driven by the Q output. FF propagation delays play an important part in

certain situations that we will encounter later.

Maximum Clocking Frequency, fMAX
This is the highest frequency that may be applied to the CLK input of a FF

and still have it trigger reliably. The limit will vary from FF to FF, even

with FFs having the same device number. For example, the manufacturer of

the 7470 J-K flip-flop IC tests many of these FFs and may find that the

values fall in the range of 20 to 35 MHz. He will then specify the minimum
as 20 MHz. This may seem confusing, but a little thought should make

it clear that what the manufacturer is saying is that he cannot guarantee that

the 7470 FF that you put in your circuit will work above 20 MHz; most of

them will, but some of them will not. If you operate them below 20 MHz, how-

ever, he guarantees that they will all work.

Clock Pulse HIGH and LOW Times
The manufacturer will also specify the minimum time duration that the CLK
signal must remain LOW before it goes HIGH, sometimes called and

the minimum time that CLK must be kept HIGH before it returns LOW,

sometimes called These times are defined in Figure 5-36(a). Failure to

meet these minimum time requirements can result in unreliable triggering.

Note that these time values are measured between the halfway points on the

signal transitions.

tW(H).

tW(L),

fMAX

fMAX

fMAX

tPHLtPLH

SECTION 5-12/FLIP-FLOP TIMING CONSIDERATIONS 239

FIGURE 5-36 (a) Clock LOW and HIGH times; (b) asynchronous pulse width.

tW(H)

tW(L)

(a)

1

0

CLOCK

tW(L)

(b)

PRE
or

CLR

1

0

Asynchronous Active Pulse Width
The manufacturer will also specify the minimum time duration that a PRESET

or CLEAR input must be kept in its active state in order to set or clear the FF

reliably. Figure 5-36(b) shows for active-LOW asynchronous inputs.

Clock Transition Times
For reliable triggering, the clock waveform transition times (rise and fall

times) should be kept very short. If the clock signal takes too long to make the

transitions from one level to the other, the FF may trigger erratically or not at

all. Manufacturers usually do not list a maximum transition time requirement

for each FF integrated circuit. Instead, it is usually given as a general re-

quirement for all ICs within a given logic family. For example, the transition

times should generally be ns for TTL devices and ns for CMOS.

These requirements will vary among the different manufacturers and among

the various subfamilies within the broad TTL and CMOS logic families.

…200…50

tW(L)

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 239

Actual ICs
As practical examples of these timing parameters, let’s take a look at several

actual integrated-circuit FFs. In particular, we will look at the following ICs:

7474 Dual edge-triggered D flip-flop (standard TTL)

74LS112 Dual edge-triggered J-K flip-flop (low-power Schottky TTL)

74C74 Dual edge-triggered D flip-flop (metal-gate CMOS)

74HC112 Dual edge-triggered J-K flip-flop (high-speed CMOS)

Table 5-2 lists the various timing values for each of these FFs as they ap-

pear in the manufacturers’ data books. All of the listed values are minimum
values, except for the propagation delays, which are maximum values.

Examination of Table 5-2 reveals two interesting points.

240 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

TABLE 5-2 Flip-flop

timing values (in nanosec-

onds).

TTL CMOS

7474 74LS112 74C74 74HC112

tS 20 20 60 25

tH 5 0 0 0

tPHL from CLK to Q 40 24 200 31

tPLH from CLK to Q 25 16 200 31

tPHL from to Q 40 24 225 41

tPLH from to Q 25 16 225 41

tW(L) CLK LOW time 37 15 100 25

tW(H) CLK HIGH time 30 20 100 25

tW(L) at or 30 15 60 25

fMAX in MHz 15 30 5 20

CLRPRE

PRE

CLR

1. All of the FFs have very low requirements; this is typical of most mod-

ern edge-triggered FFs.

2. The 74HC series of CMOS devices has timing values that are comparable

to those of the TTL devices.The 74C series is much slower than the 74HC

series.

tH

EXAMPLE 5-10 From Table 5-2 determine the following.

(a) Assume that . How long can it take for Q to go HIGH when a PGT

occurs at the CLK input of a 7474?

(b) Assume that . How long can it take for Q to go LOW in response to

the input of a 74HC112?

(c) What is the narrowest pulse that should be applied to the input of

the 74LS112 FF to clear Q reliably?

(d) Which FF in Table 5-2 requires that the control inputs remain stable after
the occurrence of the active clock transition?

(e) For which FFs must the control inputs be held stable for a minimum time

prior to the active clock transition?

CLR

CLR
Q = 1

Q = 0

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 240

Solution

(a) The PGT will cause Q to go from LOW to HIGH. The delay from CLK to Q
is listed as ns for the 7474.

(b) For the 74HC112, the time required for Q to go from HIGH to LOW in re-

sponse to the input is listed as ns.

(c) For the 74LS112, the narrowest pulse at the input is listed as

ns.

(d) The 7474 is the only FF in Table 5-2 that has a nonzero hold time

requirement.

(e) All of the FFs have a nonzero setup time requirement.

tW(L) = 15

CLR

tPHL = 41CLR

tPLH = 25

SECTION 5-13/POTENTIAL TIMING PROBLEM IN FF CIRCUITS 241

REVIEW QUESTIONS 1. Which FF timing parameters indicate the time it takes the Q output to re-

spond to an input?

2. True or false: A FF that has an rating of 25 MHz can be reliably trig-

gered by any CLK pulse waveform with a frequency below 25 MHz.

fMAX

5-13 POTENTIAL TIMING PROBLEM IN FF CIRCUITS

In many digital circuits, the output of one FF is connected either directly or

through logic gates to the input of another FF, and both FFs are triggered

by the same clock signal. This presents a potential timing problem. A typi-

cal situation is illustrated in Figure 5-37, where the output of is con-

nected to the J input of and both FFs are clocked by the same signal at

their CLK inputs.

Q2

Q1

FIGURE 5-37 Q2 will re-
spond properly to the level
present at Q1 prior to the
NGT of CLK, provided that
Q2’s hold time requirement,
tH, is less than Q1’s
propagation delay.

Q1

J1

CLK

K1

Q1

Q2

J2

CLK

K2

Q2

t PLH of Q2

t PHL of Q1

1

0

Q2

Q1
(J2)

1

0

1

0

CLOCK
pulse

1

1

CLOCK

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 241

The potential timing problem is this: because will change on the NGT

of the clock pulse, the input of will be changing as it receives the same

NGT. This could lead to an unpredictable response at .

Let’s assume that initially and Thus, the FF has

and has prior to the NGT of the clock

pulse. When the NGT occurs, will toggle to the LOW state, but it will not

actually go LOW until after its propagation delay, The same NGT will

reliably clock to the HIGH state provided that is greater than ’s

hold time requirement, If this condition is not met, the response of will

be unpredictable.

Fortunately, all modern edge-triggered FFs have hold time requirements

that are 5 ns or less; most have which means that they have no hold

time requirement. For these FFs, situations like that in Figure 5-37 will not

be a problem.

Unless stated otherwise, in all of the FF circuits that we encounter

throughout the text, we will assume that the FF’s hold time requirement is

short enough to respond reliably according to the following rule:

The FF output will go to a state determined by the logic levels pres-
ent at its synchronous control inputs just prior to the active clock
transition.

If we apply this rule to Figure 5-37, it says that will go to a state deter-

mined by the condition that is present just prior to the NGT

of the clock pulse. The fact that is changing in response to the same NGT

has no effect.

J2

K2 = 0J2 = 1,

Q2

tH = 0,

Q2tH.

Q2tPHLQ2

tPHL.

Q1

K2 = 0J2 = Q1 = 1,Q2J1 = K1 = 1,

Q1Q2 = 0.Q1 = 1

Q2

Q2J2

Q1

242 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

EXAMPLE 5-11 Determine the Q output for a negative-edge-triggered J-K flip-flop for the input

waveforms shown in Figure 5-38. Assume that and that initially.Q = 0tH = 0

T1 T2 T3 T4 T5 T6 T7 T8

0

J

K

CLK

Q

0

0

FIGURE 5-38 Example

5-11.

Solution

The FF will respond only at times , , , and . At , Q will respond to the

condition present just prior to . At , Q will respond to the

condition present just prior to . At , Q will respond to the

condition present just prior to . At , Q responds to J = K = 1.T8T6K = 1

J = 0,T6T4K = 0

J = 1,T4T2J = K = 0

T2T8T6T4T2

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 242

5-14 FLIP-FLOP APPLICATIONS

Edge-triggered (clocked) flip-flops are versatile devices that can be used in

a wide variety of applications including counting, storing of binary data,

transferring binary data from one location to another, and many more.

Almost all of these applications utilize the FF’s clocked operation. Many of

them fall into the category of sequential circuits. A sequential circuit is one

in which the outputs follow a predetermined sequence of states, with a new

state occurring each time a clock pulse occurs. We will introduce some of the

basic applications in the following sections, and we will expand on them in

subsequent chapters.

5-15 FLIP-FLOP SYNCHRONIZATION

Most digital systems are principally synchronous in their operation because

most of the signals will change states in synchronism with the clock transi-

tions. In many cases, however, there will be an external signal that is not

synchronized to the clock; in other words, it is asynchronous. Asynchronous

signals often occur as a result of a human operator’s actuating an input switch

at some random time relative to the clock signal.This randomness can produce

unpredictable and undesirable results. The following example illustrates how

a FF can be used to synchronize the effect of an asynchronous input.

SECTION 5-15/FLIP-FLOP SYNCHRONIZATION 243

EXAMPLE 5-12 Figure 5-39(a) shows a situation where input signal A is generated from a de-

bounced switch that is actuated by an operator (a debounced switch was first

introduced in Example 5-2). A goes HIGH when the operator actuates the

switch and goes LOW when the operator releases the switch. This A input is

used to control the passage of the clock signal through the AND gate so that

clock pulses appear at output X only as long as A is HIGH.

FIGURE 5-39 Asynchronous signal A can produce partial pulses at X.

Debounced
switch

CLOCK

(a)

A

X

CLOCK

A

X

Partial
pulses

(b)

The problem with this circuit is that A is asynchronous; it can change

states at any time relative to the clock signal because the exact times when

the operator actuates or releases the switch are essentially random. This can

produce partial clock pulses at output X if either transition of A occurs while

the clock signal is HIGH, as shown in the waveforms of Figure 5-39(b).

This type of output is often not acceptable, so a method for preventing

the appearance of partial pulses at X must be developed. One solution is

shown in Figure 5-40(a). Describe how this circuit solves the problem, and

draw the X waveform for the same situation as in Figure 5-39(b).

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 243

Solution

The A signal is connected to the D input of FF Q, which is clocked by the NGT

of the clock signal. Thus, when A goes HIGH, Q will not go HIGH until the

next NGT of the clock at time . This HIGH at Q will enable the AND gate

to pass subsequent complete clock pulses to X, as shown in Figure 5-40(b).

When A returns LOW, Q will not go LOW until the next NGT of the clock

at . Thus, the AND gate will not inhibit clock pulses until the clock pulse

that ends at has been passed through to X. Therefore, output X contains

only complete pulses.

There is a potential problem with this circuit. Since A could go HIGH at

any moment, it may by random chance violate the setup time requirement

of the flip-flop. In other words, the transition of A may occur so close to the

clock edge that it causes an unstable response (glitch) from the Q output.

Preventing this would require a more complex synchronizing circuit.

5-16 DETECTING AN INPUT SEQUENCE

In many situations, an output is to be activated only when the inputs are ac-

tivated in a certain sequence. This cannot be accomplished using pure com-

binational logic but requires the storage characteristic of FFs.

For example, an AND gate can be used to determine when two inputs A
and B are both HIGH, but its output will respond the same regardless of

which input goes HIGH first. But suppose that we want to generate a HIGH

output only if A goes HIGH and then B goes HIGH some time later. One way

to accomplish this is shown in Figure 5-41(a).

The waveforms in Figure 5-41(b) and (c) show that Q will go HIGH only if

A goes HIGH before B goes HIGH. This is because A must be HIGH in order

for Q to go HIGH on the PGT of B.

T2

T2

T1

244 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

FIGURE 5-40 An edge-

triggered D flip-flop is used

to synchronize the enabling

of the AND gate to the

NGTs of the clock.

D

CLK

QDebounced
switch X

CLOCK

CLOCK

A

Q

Complete
 pulses

T1

(b)

T2

(a)

A

X

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 244

In order for this circuit to work properly, A must go HIGH prior to B by at

least an amount of time equal to the setup time requirement of the FF.

5-17 DATA STORAGE AND TRANSFER

By far the most common use of flip-flops is for the storage of data or infor-

mation. The data may represent numerical values (e.g., binary numbers,

BCD-coded decimal numbers) or any of a wide variety of types of data that

have been encoded in binary. These data are generally stored in groups of

FFs called registers.

The operation most often performed on data that are stored in a FF or a

register is the data transfer operation.This involves the transfer of data from

one FF or register to another. Figure 5-42 illustrates how data transfer can be

accomplished between two FFs using clocked S-R, J-K, and D flip-flops. In

each case, the logic value that is currently stored in FF A is transferred to FF

B upon the NGT of the TRANSFER pulse. Thus, after this NGT, the B output

will be the same as the A output.

The transfer operations in Figure 5-42 are examples of synchronous
transfer because the synchronous control and CLK inputs are used to per-

form the transfer. A transfer operation can also be obtained using the asyn-

chronous inputs of a FF. Figure 5-43 shows how an asynchronous transfer can

be accomplished using the PRESET and CLEAR inputs of any type of FF.

SECTION 5-17/DATA STORAGE AND TRANSFER 245

FIGURE 5-41 Clocked D

flip-flop used to respond to

a particular sequence of

inputs.

FIGURE 5-42 Synchronous data transfer operation performed by various types of

clocked FFs.

QD

CLK

A

B

(a)

A

B

Q

A

B

Q

(b) A goes HIGH
before B

(c) B goes HIGH
before A

R

AS

CLK

R

S B

B

CLK

TRANSFER

A K

AJ

CLK

K

J B

B

CLK

TRANSFER

A

AD

CLK

D B

B

TRANSFER

A CLK

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 245

Here, the asynchronous inputs respond to LOW levels. When the TRANSFER

ENABLE line is held LOW, the two NAND outputs are kept HIGH, with no ef-

fect on the FF outputs. When the TRANSFER ENABLE line is made HIGH,

one of the NAND outputs will go LOW, depending on the state of the A and

outputs.This LOW will either set or clear FF B to the same state as FF A. This

asynchronous transfer is done independently of the synchronous and CLK in-

puts of the FF. Asynchronous transfer is also called jam transfer because the

data can be “jammed” into FF B even if its synchronous inputs are active.

Parallel Data Transfer
Figure 5-44 illustrates data transfer from one register to another using D-type

FFs. Register X consists of FFs and register Y consists of FFs

and Upon application of the PGT of the TRANSFER pulse, the level

stored in is transferred to to and to The transfer of theY0.X0Y1,X1Y2,X2

Y0.Y1,

Y2,X0;X1,X2,

A

246 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

AJ

CLK

A

BJ

CLK

B

Transfer
enable

K K

PRE

CLR

• • •

• • •

• • •

• • •

• • •

• • •

FIGURE 5-43
Asynchronous data transfer

operation.

X2

X2

X1

X1

X0

X0

Y2

Y2

Y1

Y1

Y0

Y0

clk

clk

clk

D

D

D
D2

D1

D0

Data
(D2 D1 D0)

SOURCE
Register X

DESTINATION
Register Y

TRANSFER

FIGURE 5-44 Parallel

transfer of contents of reg-

ister X into register Y.

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 246

contents of the X register into the Y register is a synchronous transfer. It is

also referred to as a parallel transfer because the contents of and

are transferred simultaneously into and respectively. If a serial data
transfer were performed, the contents of the X register would be transferred

to the Y register one bit at a time. This will be examined in the next section.

It is important to understand that parallel transfer does not change the

contents of the register that is the source of data. For example, in Figure 5-44,

if and prior to the occurrence of the TRANSFER

pulse, then both registers will be holding 101 after the TRANSFER pulse.

Y2Y1Y0 = 011X2X1X0 = 101

Y0,Y1,Y2,

X0X1,X2,

SECTION 5-18/SERIAL DATA TRANSFER: SHIFT REGISTERS 247

REVIEW QUESTIONS 1. True or false: Asynchronous data transfer uses the CLK input.

2. Which type of FF is best suited for synchronous transfer because it re-

quires the fewest interconnections from one FF to the other?

3. If J-K flip-flops were used in the registers of Figure 5-44, how many total

interconnections would be required from register X to register Y ?

4. True or false: Synchronous data transfer requires less circuitry than asyn-

chronous transfer.

5-18 SERIAL DATA TRANSFER: SHIFT REGISTERS

Before we describe the serial data transfer operation, we must first examine

the basic shift-register arrangement. A shift register is a group of FFs

arranged so that the binary numbers stored in the FFs are shifted from one

FF to the next for every clock pulse. You have undoubtedly seen shift regis-

ters in action in devices such as an electronic calculator, where the digits

shown on the display shift over each time you key in a new digit. This is the

same action taking place in a shift register.

Figure 5-45(a) shows one way to arrange J-K flip-flops to operate as a

four-bit shift register. Note that the FFs are connected so that the output of

transfers into , into , and into . What this means is that upon

the occurrence of the NGT of a shift pulse, each FF takes on the value stored

previously in the FF on its left. Flip-flop takes on a value determined by

the conditions present on its J and K inputs when the NGT occurs. For now,

we will assume that ’s J and K inputs are fed by the DATA IN waveform

shown in Figure 5-45(b). We will also assume that all FFs are in the 0 state

before shift pulses are applied.

The waveforms in Figure 5-45(b) show how the input data are shifted

from left to right from FF to FF as shift pulses are applied. When the first

NGT occurs at , each of the FFs , , and will have the

condition present at its inputs because of the state of the FF on its left. Flip-

flop will have because of DATA IN. Thus, at , only will

go HIGH, while all the other FFs remain LOW. When the second NGT occurs

at , flip-flop will have because of DATA IN. Flip-flop

will have because of the current HIGH at . Flip-flops and

will still have Thus, at , only FF will go HIGH, FF

will go LOW, and FFs and will remain LOW.

Similar reasoning can be used to determine how the waveforms change

at and . Note that on each NGT of the shift pulses, each FF output takes

on the level that was present at the output of the FF on its left just prior to

the NGT. Of course, takes on the level that was present at DATA IN just

prior to the NGT.

X3

T4T3

X0X1

X3X2T2K = 1.J = 0,X0

X1X3K = 0J = 1,

X2K = 1J = 0,X3T2

X3T1K = 0J = 1,X3

K = 1J = 0,X0X1X2T1

X3

X3

X0X1X1X2X2X3

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 247

Hold Time Requirement
In this shift-register arrangement, it is necessary that the FFs have a very

small hold time requirement because there are times when the J, K inputs

are changing at about the same time as the CLK transition. For example, the

output switches from 1 to 0 in response to the NGT at , causing the J, K
inputs of to change while its CLK input is changing. Actually, because of

the propagation delay of , the J, K inputs of won’t change for a short

time after the NGT. For this reason, a shift register should be implemented

using edge-triggered FFs that have a value less than one CLK-to-output

propagation delay.This latter requirement is easily satisfied by most modern

edge-triggered FFs.

Serial Transfer Between Registers
Figure 5-46(a) shows two three-bit shift registers connected so that the con-

tents of the X register will be serially transferred (shifted) into register Y.
We are using D flip-flops for each shift register because this requires fewer

connections than J-K flip-flops. Notice how , the last FF of register X,

is connected to the D input of the first FF of register Y. Thus, as the

shift pulses are applied, the information transfer takes place as follows:

Y2,

X0

tH

X2X3

X2

T2X3

248 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

J

CLK

K

J

CLK

K

J

CLK

K

J

CLK

K

X1

X1

X2

X2

X3

X3

(b)

(a)

DATA
IN

Shift
pulses

DATA
IN

Shift
pulses

1

0

1

0

1

0

1

0

1

0

1

0

T1 T2 T3 T4

X2

X3

X1

X0

X0

X0

FIGURE 5-45 Four-bit shift register.

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 248

The FF will go to a state determined by its

D input. For now, D will be held LOW, so that will go LOW on the first

pulse and will remain there.

To illustrate, let us assume that before any shift pulses are applied, the

contents of the X register are 101 (i.e.,) and the Y reg-

ister is at 000. Refer to the table in Figure 5-46(b), which shows how the

states of each FF change as shift pulses are applied. The following points

should be noted:

1. On the NGT of each pulse, each FF takes on the value that was stored in

the FF on its left prior to the occurrence of the pulse.

2. After three pulses, the 1 that was initially in is in the 0 initially in

is in and the 1 initially in is in In other words, the 101 stored

in the X register has now been shifted into the Y register. The X register

is at 000; it has lost its original data.

3. The complete transfer of the three bits of data requires three shift pulses.

Y0.X0Y1,X1

Y2,X2

X0 = 1X1 = 0,X2 = 1,

X2

X2X2 : X1 : X0 : Y2 : Y1 : Y0.

SECTION 5-18/SERIAL DATA TRANSFER: SHIFT REGISTERS 249

FIGURE 5-46 Serial transfer of information from X register into Y register.

D

CLK

X1D

CLK

X2 D

CLK

X0 D

CLK

Y2 D

CLK

Y1 D

CLK

Y0

Shift pulses

1

0

0

0

0

1

0

0

1

0

1

0

X2 X1 X0 Y2 Y1 Y0

X register Y register

0

(a)

0

1

0

1

0

0

1

0

0

0

0

1

(b)

Before pulses applied

After first pulse

After second pulse

After third pulse

EXAMPLE 5-13 Assume the same initial contents of the X and Y registers in Figure 5-46.What

will be the contents of each FF after the occurrence of the sixth shift pulse?

Solution

If we continue the process shown in Figure 5-46(b) for three more shift

pulses, we will find that all of the FFs will be in the 0 state after the sixth

pulse. Another way to arrive at this result is to reason as follows: the constant

0 level at the D input of shifts in a new 0 with each pulse so that, after six

pulses, the registers are filled up with 0s.

X2

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 249

Shift-Left Operation
The FFs in Figure 5-46 can just as easily be connected so that information

shifts from right to left. There is no general advantage of shifting in one di-

rection over another; the direction chosen by a logic designer will often be

dictated by the nature of the application, as we shall see.

Parallel Versus Serial Transfer
In parallel transfer, all of the information is transferred simultaneously upon

the occurrence of a single transfer command pulse (Figure 5-44), no matter how

many bits are being transferred. In serial transfer, as exemplified by Figure 5-46,

the complete transfer of N bits of information requires N clock pulses (three

bits requires three pulses, four bits requires four pulses, etc.). Parallel transfer,

then, is obviously much faster than serial transfer using shift registers.

In parallel transfer, the output of each FF in register X is connected to a

corresponding FF input in register Y. In serial transfer, only the last FF in

register X is connected to register Y. In general, then, parallel transfer re-

quires more interconnections between the sending register (X) and the re-

ceiving register (Y) than does serial transfer. This difference becomes more

critical when a greater number of bits of information are being transferred.

This is an important consideration when the sending and receiving registers

are remote from each other because it determines how many lines (wires)

are needed for the transmission of the information.

The choice of either parallel or serial transmission depends on the par-

ticular system application and specifications. Often, a combination of the

two types is used to take advantage of the speed of parallel transfer and the

economy and simplicity of serial transfer. More will be said later about infor-

mation transfer.

250 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

REVIEW QUESTIONS 1. True or false: The fastest method for transferring data from one register

to another is parallel transfer.

2. What is the major advantage of serial transfer over parallel transfer?

3. Refer to Figure 5-46. Assume that the initial contents of the registers are

Also assume that the D
input of is held HIGH. Determine the value of each FF output after

the occurrence of the fourth shift pulse.

4. In which form of data transfer does the source of the data not lose its data?

5-19 FREQUENCY DIVISION AND COUNTING

Refer to Figure 5-47(a). Each FF has its J and K inputs at the 1 level, so that

it will change states (toggle) whenever the signal on its CLK input goes from

HIGH to LOW. The clock pulses are applied only to the CLK input of FF

Output is connected to the CLK input of FF , and output is con-

nected to the CLK input of FF . The waveforms in Figure 5-47(b) show how

the FFs change states as the pulses are applied. The following important

points should be noted:

1. Flip-flop toggles on the negative-going transition of each input clock

pulse. Thus, the output waveform has a frequency that is exactly one-

half of the clock pulse frequency.

Q0

Q0

Q2

Q1Q1Q0

Q0.

X2

Y0 = 0.Y1 = 1,Y2 = 1,X0 = 0,X1 = 1,X2 = 0,

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 250

2. Flip-flop toggles each time the output goes from HIGH to LOW.The

waveform has a frequency equal to exactly one-half the frequency of

the output and therefore one-fourth of the clock frequency.

3. Flip-flop toggles each time the output goes from HIGH to LOW.

Thus, the waveform has one-half the frequency of and therefore

one-eighth of the clock frequency.

4. Each FF output is a square wave (50% duty cycle).

As described above, each FF divides the frequency of its input by 2.Thus,

if we were to add a fourth FF to the chain, it would have a frequency equal

to one-sixteenth of the clock frequency, and so on. Using the appropriate

number of FFs, this circuit could divide a frequency by any power of 2.

Specifically, using N flip-flops would produce an output frequency from the

last FF, which is equal to of the input frequency.

This application of flip-flops is referred to as frequency division. Many

applications require a frequency division. For example, your wristwatch is no

doubt a “quartz” watch.The term quartz watch means that a quartz crystal is

used to generate a very stable oscillator frequency. The natural resonant fre-

quency of the quartz crystal in your watch is likely 1 MHz or more. In order

to advance the “seconds” display once every second, the oscillator frequency

is divided by a value that will produce a very stable and accurate 1 Hz output

frequency.

Counting Operation
In addition to functioning as a frequency divider, the circuit of Figure 5-47

also operates as a binary counter. This can be demonstrated by examining

1/2N

Q1Q2

Q1Q2

Q0

Q1

Q0Q1

SECTION 5-19/FREQUENCY DIVISION AND COUNTING 251

J

CLK

K

Q2

Q2

1

1
J

CLK

K

Q1

Q1

1

1
J

CLK

K

Q0

Q0

1

1

Input clock
pulses

*All PRE and CLR
are HIGH

(a)

1
0

1
0

1
0

1
0Q2

Q1

Q0

Clock
pulses

1 2 3 4 5 6 7 8 9 10 11

(b)

. . . .

. . . .

. . . .

. . . .

Count
Q2Q1Q0

000 001 010 011 100 101 110 111 000 001 010 100 . .

TQ2

TQ3

TQ1

TCLK

FIGURE 5-47 J-K flip-

flops wired as a three-bit

binary counter (MOD-8).

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 251

the sequence of states of the FFs after the occurrence of each clock pulse.

Figure 5-48 presents the results in a state table. Let the values repre-

sent a binary number where is in the position, is in the position,

and is in the position. The first eight states in the table should

be recognized as the binary counting sequence from 000 to 111. After the first

NGT, the FFs are in the 001 state (), which represents

(equivalent to decimal 1); after the second NGT, the FFs represent

which is equivalent to after three pulses, after four pulses,

and so on, until after seven pulses, On the eighth

NGT, the FFs return to the 000 state, and the binary sequence repeats itself

for succeeding pulses.

Thus, for the first seven input pulses, the circuit functions as a binary

counter in which the states of the FFs represent a binary number equivalent

to the number of pulses that have occurred. This counter can count as high

as before it returns to 000.

State Transition Diagram
Another way to show how the states of the FFs change with each applied

clock pulse is to use a state transition diagram, as illustrated in Figure 5-49.

1112 = 710

1112 = 710.1002 = 410;

0112 = 310;210;

0102,0012

Q0 = 1Q1 = 0,Q2 = 0,

Q2Q1Q020Q0

21Q122Q2

Q2Q1Q0

252 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

Before applying clock pulses
After pulse #1
After pulse #2
After pulse #3

After pulse #4
After pulse #5
After pulse #6
After pulse #7

After pulse #8 recycles to 000
After pulse #9
After pulse #10
After pulse #11
 . . .
 . . .
 . . .

0
0
0
0

1
1
1
1

0
0
0
0
.
.
.

0
0
1
1

0
0
1
1

0
0
1
1
.
.
.

0
1
0
1

0
1
0
1

0
1
0
1
.
.
.

22 21 20

Q2 Q1 Q0

FIGURE 5-48 Table of

flip-flop states shows binary

counting sequence.

FIGURE 5-49 State transi-

tion diagram shows how the

states of the counter flip-

flops change with each

applied clock pulse. Note: each arrow represents the
occurrence of a clock pulse

000

001

010

111

011

100

101

110

*

*

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 252

Each circle represents one possible state, as indicated by the binary number

inside the circle. For example, the circle containing the number 100 repre-

sents the 100 state (i.e.,).

The arrows connecting one circle to another show how one state changes

to another as a clock pulse is applied. By looking at a particular state circle,

we can see which state precedes it and which state follows it. For example,

looking at the 000 state, we see that this state is reached whenever the

counter is in the 111 state and a clock pulse is applied. Likewise, we see that

the 000 state is always followed by the 001 state.

We will use state transition diagrams to help describe, analyze, and de-

sign counters and other sequential circuits.

MOD Number
The counter of Figure 5-47 has different states (000 through 111). It

would be referred to as a MOD-8 counter, where the MOD number indicates

the number of states in the counting sequence. If a fourth FF were added,

the sequence of states would count in binary from 0000 to 1111, a total of 16

states. This would be called a MOD-16 counter. In general, if N flip-flops are

connected in the arrangement of Figure 5-47, the counter will have dif-

ferent states, and so it is a MOD- counter. It would be capable of counting

up to before returning to its 0 state.

The MOD number of a counter also indicates the frequency division ob-

tained from the last FF. For instance, a four-bit counter has four FFs, each

representing one binary digit (bit), and so it is a counter.

It can therefore count up to It can also be used to divide the

input pulse frequency by a factor of 16 (the MOD number).

We have looked only at the basic FF binary counter. We examine coun-

ters in much more detail in Chapter 7.

15 (= 24
- 1).

MOD-24
= MOD-16

2N
- 1

2N
2N

23
= 8

Q1 = Q0 = 0Q2 = 1,

SECTION 5-19/FREQUENCY DIVISION AND COUNTING 253

EXAMPLE 5-14 Assume that the MOD-8 counter in Figure 5-47 is in the 101 state. What will

be the state (count) after 13 pulses have been applied?

Solution

Locate the 101 state on the state transition diagram. Proceed around the

state diagram through eight state changes, and you should be back in the 101

state. Now continue through five more state changes (for a total of 13), and

you should end up in the 010 state.

Notice that because this is a MOD-8 counter with eight states, it takes

eight state transitions to make one complete excursion around the diagram

back to the starting state.

EXAMPLE 5-15 Consider a counter circuit that contains six FFs wired in the arrangement of

Figure 5-47 (i.e., , , , , , .

(a) Determine the counter’s MOD number.

(b) Determine the frequency at the output of the last FF () when the input

clock frequency is 1 MHz.

(c) What is the range of counting states for this counter?

(d) Assume a starting state (count) of 000000. What will be the counter’s

state after 129 pulses?

Q5

Q0)Q1Q2Q3Q4Q5

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 253

Solution

(a)

(b) The frequency at the last FF will equal the input clock frequency divided

by the MOD number. That is,

(c) The counter will count from to (0 to) for a total of

64 states. Note that the number of states is the same as the MOD number.

(d) Because this is a MOD-64 counter, every 64 clock pulses will bring the

counter back to its starting state. Therefore, after 128 pulses, the count is

back to 000000.The 129th pulse brings the counter to the 000001 counter.

631011111120000002

f(at Q5) =

1 MHz

64
= 15.625 kHz

MOD number = 26
= 64.

254 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

REVIEW QUESTIONS 1. A 20-kHz clock signal is applied to a J-K flip-flop with What is

the frequency of the FF output waveform?

2. How many FFs are required for a counter that will count 0 to ?

3. What is the MOD number of the counter in question 2?

4. What is the frequency of the output of the eighth FF when the input

clock frequency is 512 kHz?

5. If this counter starts at 00000000, what will be its state after 520 pulses?

5-20 MICROCOMPUTER APPLICATION

Your study of digital systems is still in a relatively early stage, and you have

not learned very much about microprocessors and microcomputers.

However, you can get a basic idea of how FFs are employed in a typical

microprocessor-controlled application without being concerned with all of

the details you will need to know later.

Figure 5-50 shows a microprocessor unit (MPU) with its outputs used to

transfer binary data to register X, which consists of four D flip-flops , ,

, . One set of MPU outputs is the address code made up of the eightX0X1

X2X3

25510

J = K = 1.

CLK

D X2

CLK

D X3

CLK

D X1

CLK

D X0

2

1

MPU
WR Timing & control

signal

Data

Detect address

Register

A15
A14
A13
A12
A11
A10
 A9
 A8

D3
D2
D1
D0

FIGURE 5-50 Example of

a microprocessor transfer-

ring binary data to an

external register.

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 254

outputs , , , , , , , . Most MPUs have at least 16 avail-

able address outputs, but they are not always all used. A second set of MPU

outputs consists of the four data lines Most MPUs have at

least eight available data lines. The other MPU output is a timing control

signal which goes LOW when the MPU is ready to write.

Recall that the MPU is the central processing unit of a microcomputer,

and its main function is to execute a program of instructions stored in the

computer’s memory. One of the instructions it might execute could be one

that tells the MPU to transfer a binary number from a storage resister within

the MPU to the external register X. This is called a write cycle. In executing

this instruction, the MPU would perform the following steps:

1. Place the binary number onto its data output lines through .

2. Place the proper address code on its output lines through to select

register X as the recipient of the data.

3. Once the data and address outputs are stabilized, the MPU generates the

write pulse WR to clock the register and complete the parallel transfer

of data into X.

There are many situations where an MPU, under the control of a pro-

gram, will send data to an external register in order to control external

events. For example, the individual FFs in the register can control the

ON/OFF status of electromechanical devices such as solenoids, relays, mo-

tors, and so on (through appropriate interface circuits, of course). The data

sent from the MPU to the register will determine which devices are ON and

which are OFF. Another common example is when the register is used to

hold a binary number for input to a digital-to-analog converter (DAC). The

MPU sends the binary number to the register, and the DAC converts it to an

analog voltage that may be used to control something such as the position of

an electron beam on a CRT screen or the speed of a motor.

A8A15

D0D3

WR,

D0.D1,D2,D3,

A8A9A10A11A12A13A14A15

SECTION 5-20/MICROCOMPUTER APPLICATION 255

EXAMPLE 5-16 (a) What address code must the MPU generate in order for the data to be

transferred into X?

(b) Assume that and

What will be in X after a pulse occurs?

Solution

(a) In order for the data to be transferred into X, the clock pulse must pass

through AND gate 2 into the CLK inputs of the FFs.This will happen only

if the top input of AND gate 2 is HIGH. This means that all of the inputs

to AND gate 1 must be HIGH; that is, through must be 1, and

must be 0. Thus, the presence of address code 11111110 is needed to al-

low data to be transferred into X.

(b) With the LOW from AND gate 1 will inhibit from getting

through AND gate 2, and the FFs will not be clocked. Therefore, the con-

tents of register X will not change from 0110.

WRA8 = 1,

A8A9A15

WR
1011.D3–D0 =A15–A8 = 11111111,X3–X0 = 0110,

REVIEW QUESTION 1. Show how the 74HC175 IC of Figure 5-34 can be used for the X register

of Figure 5-50.

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 255

5-21 SCHMITT-TRIGGER DEVICES

A Schmitt-trigger circuit is not classified as a flip-flop, but it does exhibit a type

of memory characteristic that makes it useful in certain special situations. One

of those situations is shown in Figure 5-51(a). Here a standard INVERTER is

being driven by a logic input that has relatively slow transition times. When

these transition times exceed the maximum allowed values (this depends on

the particular logic family), the outputs of logic gates and INVERTERs may

produce oscillations as the input signal passes through the indeterminate

range.The same input conditions can also produce erratic triggering of FFs.

A device that has a Schmitt-trigger type of input is designed to accept noisy

slow-changing signals and produce an output that has oscillation-free transi-

tions.The output will generally have very rapid transition times (typically 10 ns)

that are independent of the input signal characteristics. Figure 5-51(b) shows a

Schmitt-trigger INVERTER and its response to a slow-changing input.

If you examine the waveforms in Figure 5-51(b), you should note that the

output does not change from HIGH to LOW until the input exceeds the

positive-going threshold voltage, Once the output goes LOW, it will

remain there even when the input drops back below (this is its memory

characteristic) until it drops all the way down below the negative-going
threshold voltage, The values of the two threshold voltages will vary

from logic family to logic family, but will always be less than

The Schmitt-trigger INVERTER, and all other devices with Schmitt-

trigger inputs, uses the distinctive symbol shown in Figure 5-51(b) to indicate

that they can reliably respond to slow-changing input signals. Logic design-

ers use ICs with Schmitt-trigger inputs to convert slow-changing signals to

clean, fast-changing signals that can drive standard IC inputs.

Several ICs are available with Schmitt-trigger inputs. The 7414, 74LS14,

and 74HC14 are hex INVERTER ICs with Schmitt-trigger inputs. The 7413,

74LS13, and 74HC13 are dual four-input NANDs with Schmitt-trigger inputs.

VT+
.VT-

VT-
.

VT+

VT+
.

256 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

REVIEW QUESTIONS 1. What could occur when a slow-changing signal is applied to a standard

logic IC?

2. How does a Schmitt-trigger logic device operate differently from a stan-

dard logic device?

5-22 ONE-SHOT (MONOSTABLE MULTIVIBRATOR)

A digital circuit that is somewhat related to the FF is the one-shot (OS). Like

the FF, the OS has two outputs, Q and which are the inverse of each other.

Unlike the FF, the OS has only one stable output state (normally ,

), where it remains until it is triggered by an input signal. Once trig-

gered, the OS outputs switch to the opposite state (,). It remains

in this quasi-stable state for a fixed period of time, which is usually de-

termined by an RC time constant that results from the values of external

components connected to the OS. After a time the OS outputs return to

their resting state until triggered again.

Figure 5-52(a) shows the logic symbol for a OS.The value of is often in-

dicated somewhere on the OS symbol. In practice, can vary from several

nanoseconds to several tens of seconds. The exact value of is variable and

is determined by the values of external components and CT.RT

tp

tp

tp

tp,

tp,

Q = 0Q = 1

Q = 1

Q = 0

Q,

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 256

SECTION 5-22/ONE-SHOT (MONOSTABLE MULTIVIBRATOR) 257

FIGURE 5-51 (a) Standard inverter response to slow noisy input, and (b) Schmitt-

trigger response to slow noisy input.

Vout

Standard inverter

A X

Vin

Vout

Schmitt-trigger inverter Vin

Input A

HIGH

Input A

HIGH

Single
Threshold

LOW

Output X

HIGH

Invalid

Invalid

Threshold

First point where signal A
rises above threshold

Last point where
signal A rises above
threshold

Produces last falling
edge of x

Produces first
falling edge of x

LOW

LOW

Output X

HIGH

Invalid

Invalid

LOW

� Threshold

� Threshold
VT+

VT–

(a)

(b)

A X

VT+
VT–

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 257

Two types of one-shots are available in IC form: the nonretriggerable OS
and the retriggerable OS.

Nonretriggerable One-Shot
The waveforms in Figure 5-52(b) illustrate the operation of a nonretrigger-

able OS that triggers on positive-going transitions at its trigger (T) input.The

important points to note are:

1. The PGTs at points a, b, c, and e will trigger the OS to its quasi-stable

state for a time , after which it automatically returns to the stable

state.

2. The PGTs at points d and f have no effect on the OS because it has al-

ready been triggered to the quasi-stable state. The OS must return to the

stable state before it can be triggered.

3. The OS output-pulse duration is always the same, regardless of the dura-

tion of the input pulses. As stated above, depends only on and

and the internal OS circuitry. A typical OS may have a given by

.

Retriggerable One-Shot
The retriggerable OS operates much like the nonretriggerable OS except for

one major difference: it can be retriggered while it is in the quasi-stable state,
and it will begin a new interval. Figure 5-53(a) compares the response of

both types of OS using a of 2 ms. Let’s examine these waveforms.tp

tp

tp = 0.693 RTCT

tp

CTRTtp

tp

258 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

FIGURE 5-52 OS symbol

and typical waveforms for

nonretriggerable operation.

Normally low
output

Normally high
output

Trigger
input

RT CT

1

0

1

0

1

0

Q

Q

Q

Q

T

a b c d e f

tptptptp

(b)

Transitions at
d and f have

no effect on Q
since it is already

HIGH

T OS

(a)

t p ∝ RT CT

Stable state

Quasi-stable state

Q = 0, Q = 1

Q = 1, Q = 0

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 258

Both types of OS respond to the first trigger pulse at ms by going

HIGH for 2 ms and then returning LOW.The second trigger pulse at ms

triggers both one-shots to the HIGH state.The third trigger pulse at ms

has no effect on the nonretriggerable OS because it is already in its quasi-

stable state. However, this trigger pulse will retrigger the retriggerable OS to

begin a new ms interval. Thus, it will stay HIGH for 2 ms after this

third trigger pulse.

In effect, then, a retriggerable OS begins a new interval each time a

trigger pulse is applied, regardless of the current state of its Q output. In

fact, trigger pulses can be applied at a rate fast enough that the OS will al-

ways be retriggered before the end of the interval and Q will remain

HIGH. This is shown in Figure 5-53(b), where eight pulses are applied every

1 ms. Q does not return LOW until 2 ms after the last trigger pulse.

Actual Devices
Several one-shot ICs are available in both the retriggerable and the nonre-

triggerable versions. The 74121 is a single nonretriggerable one-shot IC; the

74221, 74LS221, and 74HC221 are dual nonretriggerable one-shot ICs; the

74122 and 74LS122 are single retriggerable one-shot ICs; the 74123,

74LS123, and 74HC123 are dual retriggerable one-shot ICs.

Figure 5-54(a) shows the traditional symbol for the 74121 nonretrigger-

able one-shot IC. Note that it contains internal logic gates to allow inputs

and B to trigger the OS in a variety of ways. The B input is a Schmitt-

trigger type of input that is allowed to have slow transition times and still

reliably trigger the OS.The pins labeled and are used to

connect an external resistor and capacitor to achieve the desired output pulse

duration. Figure 5-54(b) is the IEEE/ANSI symbol for the 74121 nonretrig-

gerable OS. Note how this symbol represents the logic gates. Also notice the

presence of a small pulse with 1 in front of it. This indicates that the device

is a nonretriggerable OS.The IEEE/ANSI symbol for a retriggerable OS would

not have the 1 in front of the pulse.

Monostable Multivibrator
Another name for the one-shot is monostable multivibrator because it has

only one stable state. One-shots find limited application in most sequential

CEXTREXT/CEXT,RINT,

A2,

A1,

tp

tp

tp = 2

t = 6

t = 5

t = 1

SECTION 5-22/ONE-SHOT (MONOSTABLE MULTIVIBRATOR) 259

FIGURE 5-53
(a) Comparison of nonre-

triggerable and retrigger-

able OS responses for

(b) Retriggerable

OS begins a new interval

each time it receives a trig-

ger pulse.

tp

tp = 2 ms.

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9

T

Q

Q

(a)

Nonretriggerable OS

Retriggerable OS

ms

ms

T

Q

(b)

Retriggerable

9 108

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 259

clock-controlled systems, and experienced designers generally avoid using

them because they are prone to false triggering by spurious noise. When

they are used, it is usually in simple timing applications that utilize the pre-

determined interval. Several of the end-of-chapter problems will illustrate

how a OS is used.

tp

260 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

A1

B

A2

CEXT

(a)

REXT /CEXTRINT

Q

Q

T

RINT

CEXT

REXT /CEXT

A1

B

A2

Q

Q

X

X

X

1
&

R1

CX

RX/CX

(b)

(X indicates nonlogic connection)

≥1

74121

74121

FIGURE 5-54 Logic symbols for the 74121 nonretriggerable one-shot: (a) traditional; (b) IEEE/ANSI.

REVIEW QUESTIONS 1. In the absence of a trigger pulse, what will be the state of a OS output?

2. True or false: When a nonretriggerable OS is pulsed while it is in its quasi-

stable state, the output is not affected.

3. What determines the value for a OS?

4. Describe how a retriggerable OS operates differently from a nonretrig-

gerable OS.

tp

5-23 CLOCK GENERATOR CIRCUITS

Flip-flops have two stable states; therefore, we can say that they are bistable
multivibrators. One-shots have one stable state, and so we call them

monostable multivibrators. A third type of multivibrator has no stable states;

it is called an astable or free-running multivibrator. This type of logic circuit

switches back and forth (oscillates) between two unstable output states. It is

useful for generating clock signals for synchronous digital circuits.

Several types of astable multivibrators are in common use. We will pres-

ent three of them without any attempt to analyze their operation. They are

presented here so that you can construct a clock generator circuit if needed

for a project or for testing digital circuits in the lab.

Schmitt-Trigger Oscillator
Figure 5-55 shows how a Schmitt-trigger INVERTER can be connected as an

oscillator.The signal at is an approximate square wave with a frequency

that depends on the R and C values. The relationship between the frequency

VOUT

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 260

and RC values is shown in Figure 5-55 for three different Schmitt-trigger

INVERTERs. Note the maximum limits on the resistance value for each de-

vice. The circuit will fail to oscillate if R is not kept below these limits.

555 Timer Used as an Astable Multivibrator
The 555 timer IC is a TTL-compatible device that can operate in several dif-

ferent modes. Figure 5-56 shows how external components can be connected

to a 555 so that it operates as a free-running oscillator. Its output is a repetitive

SECTION 5-23/CLOCK GENERATOR CIRCUITS 261

FIGURE 5-55 Schmitt-

trigger oscillator using a

7414 INVERTER. A 7413

Schmitt-trigger NAND may

also be used.

14
R

C

2

+5 V

1

7 7414
or equivalent

VOUT

0 V

4 V. . . .

≈ 0.8/RC
≈ 0.8/RC
≈ 1.2/RC

7414
74LS14
74HC14

(R � 500 �)
(R � 2 k�)
(R � 10 M�)

IC Frequency

� 100 pF

FIGURE 5-56 555 timer

IC used as an astable

multivibrator.

Q

R
CLR

S

Q

+
–

+
–

+5 V
+5 V

7

8 4

Discharge

6

5

2

RA

RB
RB

D2

D1

VT+

VT–

Control
voltage

Vcc Reset

O = Open
 I = Closed

R

R

R

1

Voltage
comparators

Out 3
2/3 Vcc
1/3 Vcc

GND

Inset

tL = 0.75 RBC

tH = 0.75 RAC

tL = 0.693 RBC

tH = 0.693 (RA + RB)C

C

RA ≥ 1 k�

RA + RB < 6.6 M�

C ≥ 500 pF

T = tL + tH

F = I
T

tH
T

Duty cycle = x 100%

T

tL tH

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 261

rectangular waveform that switches between two logic levels, with the time in-

tervals at each logic level determined by the R and C values.

The heart of the 555 timer is made up of two voltage comparators and an

SR latch as shown in Figure 5-56. The voltage comparators are devices that

produce a HIGH out whenever the voltage on the input is greater than the

voltage on the input. The external capacitor (C) charges up until its volt-

age exceeds 2⁄3 as determined by the upper voltage comparator moni-

toring When this comparator output goes HIGH, it resets the SR latch,

causing the output pin (3) to go LOW. At the same time, goes HIGH, clos-

ing the discharge switch and causing the capacitor to begin to discharge

through It will continue to discharge until the capacitor voltage drops be-

low 1⁄3 as determined by the lower-voltage comparator monitoring .

When this comparator output goes HIGH, it sets the SR latch, causing the

output pin to go HIGH, opening the discharge switch, and allowing the ca-

pacitor to start charging again as the cycle repeats.

The formulas for these time intervals, and , and the overall period of

the oscillations, T, are given in the figure. The frequency of the oscillations

is, of course, the reciprocal of T. As the formulas in the diagram indicate, the

and intervals cannot be equal unless is made zero. This cannot be

done without producing excess current through the device. This means that

it is impossible to produce a perfect 50 percent duty-cycle square wave out-

put with this circuit. It is possible, however, to get very close to a 50 percent

duty cycle by making (while keeping greater than), so

that .tL L tH

1 kÆRARB 77 RA

RAtHtL

tHtL

VT-
* VCC

RB.

Q
VT+

.

* VCC

-

+

262 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

EXAMPLE 5-17 Calculate the frequency and the duty cycle of the 555 astable multivibrator

output for and

Solution

Note that the duty cycle is close to 50 percent (square wave) because is

much greater than It can be made even closer to 50 percent by making

even larger compared with For instance, you should verify that if we

change to (its minimum allowed value), the results are

and duty percent.

A simple modification can be made to this circuit to allow a duty cycle

of less than 50 percent. The strategy is to allow the capacitor to fill up

(charge) with charged particles that flow only through and empty (dis-

charge) as charged particles flow only through This can be accom-

plished by simply connecting one diode in series with and another

diode in parallel with and as shown in the inset of Figure 5-56.

The inset circuit replaces in the drawing. Diodes are devices that allow

charged particles to flow through them in only one direction, as indicated

by the arrow head. Diode allows all the charging current which has come

through to bypass and ensures that none of the charging current

can flow through All of the discharge current flows through and RBD2RB.

D2RB,RA

D1

RB

D2RB(D1)

RB(D2)

RB.

RA

cycle = 50.3f = 7.18 kHz

1 kÆRA

RA.RB

RA.

RB

 duty cycle = 70.7/140 = 50.5%

 f = 1/140 ms = 7.29 kHz

 T = 69.3 + 70.7 = 140 ms

 tH = 0.693(102.2 kÆ)(0.001 mF) = 70.7 ms

 tL = 0.693(100 kÆ)(0.001 mF) = 69.3 ms

RB = 100 kÆ.RA = 2.2 kÆ,C = 0.001 mF,

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 262

when the discharge switch is closed. The equations for the time high and

time low for this circuit are

Note: The constant 0.75 is correct only for VCC = 5 V.

 tH = 0.75 RA C
 tL = 0.75 RB C

SECTION 5-23/CLOCK GENERATOR CIRCUITS 263

EXAMPLE 5-18 Using the diodes along with as shown in Figure 5-56, calculate the values

of and necessary to get a 1 kHz, 25 percent duty cycle waveform out of

a 555. Assume C is a capacitor.

Solution

Crystal-Controlled Clock Generators
The output frequencies of the signals from the clock-generating circuits de-

scribed above depend on the values of resistors and capacitors, and thus they

are not extremely accurate or stable. Even if variable resistors are used so

that the desired frequency can be adjusted by “tweaking” the resistance val-

ues, changes in the R and C values will occur with changes in ambient tem-

perature and with aging, thereby causing the adjusted frequency to drift. If

frequency accuracy and stability are critical, another method of generating

clock signals can be used: a crystal-controlled clock generator. It employs a

highly stable and accurate component called a quartz crystal. A piece of

quartz crystal can be cut to a specific size and shape to vibrate (resonate) at

a precise frequency that is extremely stable with temperature and aging; fre-

quencies from 10 kHz to 80 MHz are readily achievable. When a crystal is

placed in certain circuit configurations, it can produce oscillations at an ac-

curate and stable frequency equal to the crystal’s resonant frequency.

Crystal oscillators are available as IC packages.

Crystal-controlled clock generator circuits are used in all microprocessor-

based systems and microcomputers, and in any application in which a clock

signal is used to generate accurate timing intervals. We will see this in some

of the applications we encounter in the following chapters.

 RB =

750 ms

0.75 * C
=

750 ms

0.75 * 0.1 mF
= 10 kÆ

 RA =

250 ms

0.75 * C
=

250 ms

0.75 * 0.1 mF
= 3.3 kÆ

 tH = 0.25 * T = 0.25 * 1 ms = 250 ms

 T =

1

F
=

1

1000
= 0.001 s = 1 ms

0.1 mF

RBRA

RB

REVIEW QUESTIONS 1. Determine the approximate frequency of a Schmitt-trigger oscillator

that uses a 74HC14 with and

2. Determine the approximate frequency and duty cycle of the 555 oscilla-

tor for and

3. What is the advantage of crystal-controlled clock generator circuits over

RC-controlled circuits?

C = 2000 pF.RA = RB = 2.2 kÆ

C = 0.005 mF.R = 10 kÆ

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 263

5-24 TROUBLESHOOTING FLIP-FLOP CIRCUITS

Flip-flop ICs are susceptible to the same kinds of internal and external

faults that occur in combinational logic circuits. All of the troubleshooting

ideas that were discussed in Chapter 4 can readily be applied to circuits that

contain FFs as well as logic gates.

Because of their memory characteristic and their clocked operation, FF

circuits are subject to several types of faults and associated symptoms that

do not occur in combinational circuits. In particular, FF circuits are suscep-

tible to timing problems that are generally not a concern in combinational

circuits. The most common types of FF circuit faults are described.

Open Inputs
Unconnected or floating inputs of any logic circuit are particularly suscepti-

ble to picking up spurious voltage fluctuations called noise. If the noise is

large enough in amplitude and long enough in duration, the logic circuit’s

output may change states in response to the noise. In a logic gate, the output

will return to its original state when the noise signal subsides. In a FF, how-

ever, the output will remain in its new state because of its memory charac-

teristic. Thus, the effect of noise pickup at any open input is usually more

critical for a FF or latch than it is for a logic gate.

The most susceptible FF inputs are those that can trigger the FF to a dif-

ferent state—such as the CLK, PRESET, and CLEAR. Whenever you see a FF

output that is changing states erratically, you should consider the possibility

of an open connection at one of these inputs.

264 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

EXAMPLE 5-19 Figure 5-57 shows a three-bit shift register made up of TTL flip-flops.

Initially, all of the FFs are in the LOW state before clock pulses are applied.

CLK

J2

CLK

K2

CLK

0
1
2
3
4
5
6
7
8

0
1
1
1
1
1
1
1
1

0
0
1
1
1
1
1
1
1

0
0
0
1
1
1
1
1
1

0
1
1
1
1
1
1
1
1

0
0
1
1
1
1
1
1
1

0
0
0
1
0
1
0
1
0

''Expected'' ''Actual''

X2 X1 X0 X2 X1 X0

Clock pulse
number

X2

X2

J1

K1

X1

X1

J0

K0

X0

X0
CLOCK

+5 VFIGURE 5-57 Example

5-19.

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 264

As clock pulses are applied, each PGT will cause the information to shift

from each FF to the one on its right. The diagram shows the “expected” se-

quence of FF states after each clock pulse. Since and flip-flop

will go HIGH on clock pulse 1 and will stay there for all subsequent

pulses. This HIGH will shift into , and then on clock pulses 2 and 3, re-

spectively. Thus, after the third pulse, all FFs will be HIGH and should re-

main there as pulses are continually applied.

Now let’s suppose that the “actual” response of the FF states is as shown

in the diagram. Here the FFs change as expected for the first three clock

pulses. From then on, flip-flop , instead of staying HIGH, alternates be-

tween HIGH and LOW.What possible circuit fault can produce this operation?

Solution

On the second pulse, goes HIGH.This should make so that all

subsequent clock pulses should set Instead, we see changing states

(toggling) on all pulses after the second one.This toggle operation would occur

if and were both HIGH.The most probable fault is a break in the connec-

tion between and Recall that a TTL device responds to an open input as

if it were a logic HIGH, so that an open at is the same as a HIGH.

Shorted Outputs
The following example illustrates how a fault in a FF circuit can cause a mis-

leading symptom that may result in a longer time to isolate the fault.

K0

K0.X1

K0J0

X0X0 = 1.

K0 = 0J0 = 1,X1

X0

X0X1

X2

K2 = 0,J2 = 1

SECTION 5-24/TROUBLESHOOTING FLIP-FLOP CIRCUITS 265

Z1-1
Z1-2
Z1-3
Z2-2
Z2-3
Z2-5
Z1-4

HIGH
HIGH
LOW
LOW
Pulses
HIGH
HIGH

Pin Condition

Z1: 74LS00
Z2: 74LS74

5 4

Z1 X
6

5
C

Q

Q

14

6

7

+5 V

4

PRE

Z2

D

CLR

1

+5 V

3

7

2
1

3A
14

+5 V

2
B

Z1

CLK

FIGURE 5-58 Example

5-20.

EXAMPLE 5-20 Consider the circuit in Figure 5-58 and examine the logic probe indications

shown in the accompanying table. There is a LOW at the D input of the FF

when pulses are applied to its CLK input, but the Q output fails to go to the

LOW state.The technician testing this circuit considers each of the following

possible circuit faults:

1. Z2-5 is internally shorted to

2. Z1-4 is internally shorted to VCC.

VCC.

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 265

3. Z2-5 or Z1-4 is externally shorted to

4. Z2-4 is internally or externally shorted to GROUND. This would keep

activated and would override the CLK input.

5. There is an internal failure in Z2 that prevents Q from responding prop-

erly to its inputs.

The technician, after making the necessary ohmmeter checks, rules out

the first four possibilities. He also checks Z2’s and GROUND pins and

finds that they are at the proper voltages. He is reluctant to unsolder Z2

from the circuit until he is certain that it is faulty, and so he decides to look

at the clock signal. He uses an oscilloscope to check its amplitude, frequency,

pulse width, and transition times. He finds that they are all within the spec-

ifications for the 74LS74. Finally, he concludes that Z2 is faulty.

He removes the 74LS74 chip and replaces it with another one. To his dis-

may, the circuit with the new chip behaves in exactly the same way. After

scratching his head, he decides to change the NAND gate chip, although he

doesn’t know why. As expected, he sees no change in the circuit operation.

Becoming more puzzled, he recalls that his electronics lab instructor em-

phasized the value of performing a thorough visual check on the circuit

board, and so he begins to examine it carefully. While he is doing that, he de-

tects a solder bridge between pins 6 and 7 of Z2. He removes it and tests the

circuit, and it functions correctly. Explain how this fault produced the oper-

ation observed.

Solution

The solder bridge was shorting the output to GROUND. This means that

is permanently stuck LOW. Recall that in all latches and FFs, the and Q
outputs are internally cross-coupled so that the level on one will affect the

other. For example, take another look at the internal circuitry for a J-K flip-

flop in Figure 5-25. Note that a constant LOW at would keep a LOW at one

input of NAND gate 3 so that Q would have to stay HIGH, regardless of the

conditions at J, K, and CLK.

The technician learned a valuable lesson about troubleshooting FF cir-

cuits. He learned that both outputs should be checked for faults, even those

that are not connected to other devices.

Clock Skew
One of the most common timing problems in sequential circuits is clock
skew. One type of clock skew occurs when a clock signal, because of propa-

gation delays, arrives at the CLK inputs of different FFs at different times.

In many situations, the skew can cause a FF to go to a wrong state. This is

best illustrated with an example.

Refer to Figure 5-59(a), where the signal CLOCK1 is connected directly to

FF , and indirectly to through a NAND gate and INVERTER. Both FFs

are supposed to be clocked by the occurrence of a NGT of CLOCK1 provided

that X is HIGH. If we assume that initially and the NGT

of CLOCK1 should set and have no effect on . The waveforms in

Figure 5-59(b) show how clock skew can produce incorrect triggering of .

Because of the combined propagation delays of the NAND gate and IN-

VERTER, the transitions of the CLOCK2 signal are delayed with respect to

CLOCK1 by an amount of time . The NGT of CLOCK2 arrives at ’s CLK in-

put later than the NGT of CLOCK1 appears at ’s CLK input. This is thet1Q1t1

Q2t1

Q2

Q2Q1 = 1

X = 1,Q1 = Q2 = 0

Q2Q1

Q

Q
QQ

VCC

PRE

VCC.

266 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 266

clock skew.The NGT of CLOCK1 will cause to go HIGH after a time that

is equal to ’s propagation delay. If is less than the skew , will

be HIGH when the NGT of CLOCK2 occurs, and this may incorrectly set

if its setup time requirement, is met.

For example, assume that the clock skew is 40 ns and the of is 25 ns.

Thus, will go HIGH 15 ns before the NGT of CLOCK2. If ’s setup time

requirement is smaller than 15 ns, will respond to the HIGH at its D input

when the NGT of CLOCK2 occurs, and will go HIGH. This, of course, is not

the expected response of . It is supposed to remain LOW.Q2

Q2

Q2

Q2Q1

Q1tPLH

tS,Q2 = 1

Q1t1t2tPLHQ1

t2Q1

SECTION 5-24/TROUBLESHOOTING FLIP-FLOP CIRCUITS 267

D2

CLK

Q2D1

CLK

Q1

t3

t2

t1t1

skew

t1 = skew = combined delay of NAND gate and INVERTER
t2 = tPLH of Q1
t3 = tPLH of Q2

Q1

CLOCK 2

Q2

CLOCK 1

assume X = HIGH

(b)

Q2 is supposed
to remain LOW

(a)

+5 V

CLOCK 1

CLOCK 2X

total delay = t1

FIGURE 5-59 Clock skew

occurs when two flip-flops

that are supposed to be

clocked simultaneously are

clocked at slightly different

times due to a delay in the

arrival of the clock signal at

the second flip-flop.

(a) Extra gating circuits

that can cause clock skew;

(b) timing showing the later

arrival of CLOCK 2.

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 267

268 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

The effects of clock skew are not always easy to detect because the re-

sponse of the affected FF may be intermittent (sometimes it works correctly,

sometimes it doesn’t). This is because the situation is dependent on circuit

propagation delays and FF timing parameters, which vary with temperature,

length of connections, power supply voltage, and loading. Sometimes just

connecting an oscilloscope probe to a FF or gate output will add enough load

capacitance to increase the device’s propagation delay so that the circuit

functions correctly; then when the probe is removed, the incorrect operation

reappears. This is the kind of situation that explains why some technicians

are prematurely gray.

Problems caused by clock skew can be eliminated by equalizing the de-

lays in the various paths of the clock signal so that the active transition ar-

rives at each FF at approximately the same time. This situation is examined

in Problem 5-52.

REVIEW QUESTION 1. What is clock skew? How can it cause a problem?

5-25 SEQUENTIAL CIRCUITS USING HDL**

In Chapters 3 and 4, we used HDL to program simple combinational logic cir-

cuits. In this chapter, we have studied logic circuits that latch and clocked

flip-flop circuits that sequence through various states in response to a clock

edge. These latching and sequential circuits can also be implemented using

PLDs and described using HDL.

Section 5-1 of this chapter described a NAND gate latch. You will recall

that the unique characteristic of this circuit is the fact that its outputs are

cross coupled back to its gates’ inputs. This causes the circuit to respond dif-

ferently depending on which state its output happens to be in. Describing cir-

cuits that have outputs that feed back to the input with Boolean equations or

HDL involves using the output variables in the conditional portion of the de-

scription. With Boolean equations it means including output terms in the

right-hand side of the equation. Using IF/THEN constructs it means including

output variables in the IF clause. Most PLDs have the ability to feed back the

output signal to the input circuitry in order to accommodate latching action.

When writing equations that use feedback, some languages, such as

VHDL, require a special designation for the output port. In these cases the

port bit is not only an output; it is an output with feedback.The difference is

shown in Figure 5-60.

*As stated in Chapter 3, this section and all sections covering PLDs and HDLs may be skipped if
desired.

OUTPUT with feedback
(BUFFER in VHDL)

Logic
block

INPUT only OUTPUT only

FIGURE 5-60 Three

input/output modes.

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 268

SECTION 5-25/SEQUENTIAL CIRCUITS USING HDL 269

Rather than describing the operation of a latch using Boolean equations,

let’s try to think of a behavioral description of how the latch should operate.

The situations we need to address are when SBAR is activated, when RBAR

is activated, and when neither is activated. Recall that the invalid state occurs

when both inputs are activated simultaneously. If we can describe a circuit

that always recognizes one of the inputs as the winner when both are active,

we can avoid the undesirable results of having an invalid input condition. To

describe such a circuit, let’s ask ourselves under what conditions the latch

should be set Certainly, the latch should be set if the SET input is

active, but what about after SET goes back to its inactive level? How does

the latch know to stay in the SET state? The description needs to use the

condition of the output now to determine the future condition of the output.

The following statement describes the conditions that should make the out-

put HIGH on an SR latch:

IF SET is active, THEN Q should be HIGH.

What conditions should make the output LOW?

IF RESET is active, THEN Q should be LOW.

What if neither input is activated? Then the output should remain the same

and we can express this as This expression provides the feedback of

the output state to be combined with input conditions for the purpose of de-

ciding what happens next to the output.

What if both inputs are activated (i.e., the invalid input combination)? The

structure of the IF/ELSE decision shown graphically in Figure 5-61 makes sure

that the latch never tries to respond to both inputs. If the SET is active,

regardless of what is on RESET, the output will be forced HIGH. The invalid

input will always default to a set condition this way. The ELSIF clause is con-

sidered only when SET is not active. The use of the feedback term

affects the operation (holding action) only when neither input is active.

When you design sequential circuits that feed the output value back to

the inputs, it is possible to create an unstable system. A change in the output

(Q = Q)

Q = Q.

(Q = 1).

No change in latch
Q = Q

Reset the latch
Q = 0

IF
RESET is active

ELSE

ELSE True

True

Set the latch
Q = 1

IF (SET is active) THEN Make Q HIGH

ELSE IF (RESET is active)

ELSE leave Q the same

THEN Make Q LOW

IF
SET is active

FIGURE 5-61 The logic of

a behavioral description of

an SR latch.

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 269

270 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

state might be fed back to the inputs, which changes the output state again,

which feeds back to the inputs, which changes the output back again.This os-

cillation is obviously undesirable and so it is very important to make sure

that no combination of inputs and outputs can make this happen. Careful

analysis, simulation, and testing should be used to ensure that your circuit is

stable under all conditions. For this circuit it is necessary to enable multi-

level synthesis for the MAX 7000 series of components before compiling in

order to avoid oscillation (at least in the simulator) when changing from the

“invalid” input to the “no change” input.

EXAMPLE 5-21 Describe an active-LOW input SR latch with inputs named SBAR, RBAR,

and one output named Q. It should follow the function table of a NAND latch

(see Figure 5-6) and the invalid input combination should produce

(a) Use AHDL.

(b) Use VHDL.

Solution

(a) Figure 5-62 shows a possible AHDL solution. Important items to note are:

1. Q is defined as an OUTPUT, even though it is fed back in the circuit.

AHDL allows outputs to be fed back into the circuit.

2. The clause after IF will determine which output state occurs when

both inputs are active (invalid state). In this code the SET command

rules.

3. To evaluate equality, the double equal sign is used. In other words,

evaluates TRUE when SBAR is active (LOW).SBAR == 0

Q = 1.

SUBDESIGN fig5_62
(

sbar, rbar :INPUT;
q :OUTPUT;

)
BEGIN

IF sbar == 0 THEN q = VCC; -- set or illegal command
ELSIF rbar == 0 THEN q = GND; -- reset
ELSE q = q; -- hold
END IF;

END;

FIGURE 5-62 A NAND latch using AHDL.

(b) Figure 5-63 shows a possible VHDL solution. Important items to note are:

1. Q is defined as a BUFFER rather than an OUTPUT. This allows it to

be fed back in the circuit.

2. A PROCESS describes what happens when the values in the sensi-

tivity list (SBAR, RBAR) change state.

3. The clause after IF will determine which output state occurs when

both inputs are active (invalid state). In this code the SET command

rules.

V
H

D
L

A
H

D
L

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 270

SECTION 5-25/SEQUENTIAL CIRCUITS USING HDL 271

FIGURE 5-63 A NAND latch using VHDL.

The D Latch
The transparent D latch can also be easily implemented with HDLs. Altera’s

software has a library primitive called LATCH that is available. The AHDL

module below illustrates using this LATCH primitive. All that is needed is to

connect the primitive’s enable (.ena) and data (.d) ports to the appropriate

module signals. The VHDL module also shown below is a behavioral descrip-

tion of the D latch function. You can also use the LATCH primitive as a com-

ponent in VHDL.

-- must compile with Multi-Level Synthesis for 7000 enabled
ENTITY fig5_63 IS
PORT (sbar, rbar :IN BIT;

q :BUFFER BIT);
END fig5_63;
ARCHITECTURE behavior OF fig5_63 IS
BEGIN

PROCESS (sbar, rbar)
BEGIN

IF sbar = '0' THEN q <= '1'; -- set or illegal command
ELSIF rbar = '0' THEN q <= '0'; -- reset
ELSE q <= q; -- hold
END IF;

END PROCESS;
END behavior;

REVIEW QUESTIONS 1. What is the distinguishing hardware characteristic of latching logic cir-

cuits?

2. What is the major characteristic of sequential circuits?

SUBDESIGN dlatch_ahdl
(enable, din :INPUT;
 q :OUTPUT;)

VARIABLE
 q :LATCH;
BEGIN
 q.ena = enable;
 q.d = din;
END;

ENTITY dlatch_vhdl IS
PORT (enable, din :IN BIT;
 q :OUT BIT);
END dlatch_vhdl;

ARCHITECTURE v OF dlatch_vhdl IS
BEGIN
 PROCESS (enable, din)
 BEGIN
 IF enable = '1' THEN
 q <= din;
 END IF;
 END PROCESS;
END v;

AHDL D latch VHDL D latch

V
H

D
L

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 271

272 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

5-26 EDGE-TRIGGERED DEVICES

Earlier in this chapter, we introduced edge-triggered devices whose outputs

respond to the inputs when the clock input sees an “edge.” An edge simply

means a transition from HIGH to LOW, or vice versa, and is often referred to

as an event. If we are writing statements in the code that are concurrent, how

can outputs change only when a clock input detects an edge event? The an-

swer to this question differs substantially, depending on the HDL you use. In

this section, we want to concentrate on creating clocked logic circuits

in their simplest form using HDL. We will use JK flip-flops to correlate with

many of the examples found earlier in this chapter.

The JK flip-flop is a standard building block of clocked (sequential) logic

circuits known as a logic primitive. In its most common form, it has five inputs

and one output, as shown in Figure 5-64.The input/output names can be stan-

dardized to allow us to refer to the connections of this primitive or funda-

mental circuit. The actual operation of the primitive circuit is defined in a li-

brary of components that is available to the HDL compiler as it generates

a circuit from our description. AHDL uses logic primitives to describe flip-

flop operation.VHDL offers something similar, but it also allows the designer

to describe the clocked logic circuit’s operation explicitly in the code.

AHDL FLIP-FLOPS
A flip-flop can be used in AHDL by declaring a register (even one flip-flop is

called a register). Several different types of register primitives are available

for use in AHDL, including JKFF, DFF, SRFF, and latch. Each different type

of register primitive has its own official names (according to Altera software)

for the ports of these primitives. These can be found by using the HELP

menu in the ALTERA software and looking under Primitives. Table 5-3 lists

some of these names. Registers that use these primitives are declared in the

VARIABLE section of the code. The register is given an instance name, just

as we have named intermediate variables or buried nodes in previous exam-

ples. Instead of declaring it as a node, however, it is declared by the type of

the register primitive. For example, a JK flip-flop can be declared as:

VARIABLE

ff1 :JKFF;

J

K

Q
PRN

CLRN

JKFF

1

FIGURE 5-64 JK flip-flop

logic primitive.

A
H

D
L

Standard Part Function Primitive Port Name

Clock input clk

Asynchronous preset (active-LOW) prn

Asynchronous clear (active-LOW) clrn

J, K, S, R, D inputs j, k, s, r, d

Level triggered ENABLE input ena

Q output q

TABLE 5-3 Altera primi-

tive port identifiers.

The instance name is ff1 (which you can make up) and the register primitive

type is JKFF (which Altera requires you to use). Once you have declared a

register, it is connected to the other logic in the design using its standard

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 272

SECTION 5-26/EDGE-TRIGGERED DEVICES 273

port names. The ports (or pins) on the flip-flop are referred to using the in-

stance name, with a dot extension that designates the particular input or

output. An example for a JK flip-flop in AHDL is shown in Figure 5-65.

Notice that we have made up our own input/output names for this SUBDE-

SIGN in order to distinguish them from the primitive port names. The single

flip-flop is declared on line 8, as previously described.The J input or port for

this device is then labeled ff1.j, the K input is ff1.k, the clock input is ff1.clk,

and so on. Each of the given port assignment statements will make the

needed wiring connections for this design block. The prn and clrn ports are

both active-LOW, asynchronous controls such as those commonly found on a

standard flip-flop. In fact, these asynchronous controls on an FF primitive

can be used to implement an SR latch more efficiently than the code in

Figure 5-62. The prn and clrn controls are optional in AHDL and will default

to a disabled condition (at a logic 1) if they are omitted from the logic sec-

tion. In other words, if lines 10 and 11 were deleted, the prn and clrn ports of

ff1 would automatically be tied to

VHDL LIBRARY COMPONENTS
The Altera software comes with some extensive libraries of components and

primitives that can be used by a designer. The graphic description of a JKFF

component in the Altera library is shown in Figure 5-66(a). After placing the

component on the worksheet, each of its ports is connected to inputs and

outputs of the module. This same concept can be implemented in VHDL us-

ing a library component.The inputs and outputs of these library components

can be found by looking under the HELP/Primitives menu. Figure 5-66(b)

shows the VHDL COMPONENT declaration for a JK flip-flop primitive. The

key things to notice are the name of the component (JKFF) and the names

of the ports. They are the same names as those used in the graphic symbol of

Figure 5-66(a). Also, notice that the type of each input and output variable is

STD_LOGIC. This is one of the IEEE standard data types defined in the li-

brary and used by many components in the library.

VCC.

% JK flip-flop circuit %

SUBDESIGN fig5_65

(

jin, kin, clkin, preset, clear :INPUT;

qout :OUTPUT;

)

VARIABLE

ff1 :JKFF; -- define this flip-flop as a JKFF type

BEGIN

ff1.prn = preset; -- these are optional and default to vcc

ff1.clrn = clear;

ff1.j = jin; -- connect primitive to the input signal

ff1.k = kin;

ff1.clk = clkin;

qout = ff1.q; -- connect the output pin to the primitive

END;

FIGURE 5-65 Single JK flip-flop using AHDL.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

V
H

D
L

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 273

274 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

Figure 5-67 uses a JKFF component from the library in VHDL to create a

circuit equivalent to the graphic design of Figure 5-66(a). The first two lines

tell the compiler to use the IEEE library to find the definitions of the

std_logic data types. The next two lines tell the compiler that it should look

in the Altera library for any standard library components that are used later

on in the code. The module inputs and outputs are declared as they were in

previous examples, except that the type is now STD_LOGIC rather than BIT.

This is because the module port types must match the component port types.

Within the architecture section, a name (ff1) is given to this instance of the

FIGURE 5-66 (a) Graphic representation using a component. (b) VHDL component declaration.

J

K

Q
PRN

CLRN

JKFF

clkin
Input

kin Input

jin Input

clear
Input

preset
Input

qoutOutput

VHDL Component Declaration:

COMPONENT JKFF

PORT (j : IN STD_LOGIC;

k : IN STD_LOGIC;

clk : IN STD_LOGIC;

clrn: IN STD_LOGIC;

prn : IN STD_LOGIC;

q : OUT STD_LOGIC);

END COMPONENT;

(b)

(a)

LIBRARY ieee;
USE ieee.std_logic_1164.all; --defines std_logic types
LIBRARY altera;
USE altera.maxplus2.all; -- provides standard components

ENTITY fig5_67 IS
PORT(clkin, jin, kin, preset, clear :IN std_logic;
 qout :OUT std_logic);
END fig5_67;

ARCHITECTURE a OF fig5_67 IS
BEGIN
 ff1: JKFF PORT MAP (clk => clkin,
 j => jin,
 k => kin,
 prn => preset,
 clrn => clear,
 q => qout);
end a;

FIGURE 5-67 A JK flip-flop using VHDL.

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 274

SECTION 5-26/EDGE-TRIGGERED DEVICES 275

component JKFF. The keywords PORT MAP are followed by a list of all the

connections that must be made to the component ports. Notice that the com-

ponent ports (e.g., clk) are listed on the left of the symbol and the ob-

jects they are connected to (e.g., clkin) are listed on the right.

VHDL FLIP-FLOPS
Now that we have seen how to use standard components that are available in

the library, let’s look next at how to create our own component that can be

used over and over again. For the sake of comparison we will describe the

VHDL code for a JK flip-flop that is identical to the library component JKFF.

VHDL was created as a very flexible language and it allows us to define

the operation of clocked devices explicitly in the code, without relying on

logic primitives.The key to edge-triggered sequential circuits in VHDL is the

PROCESS. As you recall, this keyword is followed by a sensitivity list in

parentheses. Whenever a variable in the sensitivity list changes state, the

code in the process block determines how the circuit should respond. This is

very much like a flip-flop that does nothing until the clock input changes

state, at which time it evaluates its inputs and updates its outputs. If the flip-

flop needs to respond to inputs other than the clock (e.g., preset and clear),

they can be added to the sensitivity list. The code in Figure 5-68 demon-

strates a JK flip-flop written in VHDL.

On line 9 of the figure, a signal is declared with a name of qstate. Signals

can be thought of as wires that connect two points in the circuit description,

but they also have characteristics of implied “memory.”This means that once

a value is assigned to the signal, it will stay at that value until a different

value is assigned in the code. In VHDL, a VARIABLE is often used to

= 7

-- JK Flip-Flop Circuit

ENTITY jk IS

PORT(

clk, j, k, prn, clrn :IN BIT;

q :OUT BIT);

END jk ;

ARCHITECTURE a OF jk IS

SIGNAL qstate :BIT;

BEGIN

PROCESS(clk, prn, clrn) -- respond to any of these signals

BEGIN

IF prn = '0' THEN qstate <= '1'; -- asynch preset

ELSIF clrn = '0' THEN qstate <= '0';-- asynch clear

ELSIF clk = '1' AND clk'EVENT THEN -- on PGT clock edge

IF j = '1' AND k = '1' THEN qstate <= NOT qstate;

ELSIF j = '1' AND k = '0' THEN qstate <= '1';

ELSIF j = '0' AND k = '1' THEN qstate <= '0';

END IF;

END IF;

END PROCESS;

q <= qstate; -- update output pin

END a;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

FIGURE 5-68 Single JK flip-flop using VHDL.

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 275

implement this feature of “memory,” but variables must be declared and

used within the same description block. In this example, if qstate were

declared as a VARIABLE, it would need to be declared within the PROCESS

(after line 11) and must be assigned to q before the end of the PROCESS

(line 21). Our example uses a SIGNAL that can be declared and used

throughout the architecture description.

Notice that the PROCESS sensitivity list contains the asynchronous pre-

set and clear signals. The flip-flop must respond to these inputs as soon as

they are asserted (LOW), and these inputs should override the J, K, and clock

inputs. To accomplish this, we can use the sequential nature of the IF/ELSE

constructs. First, the PROCESS will describe what happens only when one of

the three signals—clk, prn, or clrn—changes state. The highest priority input

in this example is prn because it is evaluated first in line 13. If it is asserted,

qstate will be set HIGH and the other inputs will not even be evaluated be-

cause they are in the else branch of the decision. If prn is HIGH, clrn will be

evaluated in line 14 to see if it is LOW. If it is, the flip-flop will be cleared and

nothing else will be evaluated in the PROCESS. Line 15 will be evaluated

only if both prn and clrn are HIGH.The term clk’ EVENT in line 15 evaluates

as TRUE only if there has been a transition on clk. Because clk ‘1’ must be

TRUE also, this condition responds only to a rising edge transition on the

clock.The next three conditions of lines 16, 17, and 18 are evaluated only fol-

lowing a rising edge on clk and serve to update the flip-flop’s state. In other

words, they are nested within the ELSIF statement of line 15. Only the JK in-

put commands for toggle, set, and reset are evaluated by the IF/ELSIF on

lines 16–18. Of course, with a JK there is a fourth command, hold. The “miss-

ing” ELSE condition will be interpreted by VHDL as an implied memory

device that will then hold the PRESENT state if none of the given JK condi-

tions is TRUE. Note that each IF/ELSIF structure has its own END IF state-

ment. Line 19 ends the decision structure that decides to set, clear, or toggle.

Line 20 ends the IF/ELSIF structure that decides among the preset, clear,

and clock edge responses. As soon as the PROCESS ends, the flip-flop’s state

is transferred to the output port q.
Regardless of whether you develop your description in AHDL or VHDL,

the circuit’s proper operation can be verified using a simulator. The most im-

portant and challenging part of verification using a simulator is creating a

set of hypothetical input conditions that will prove that the circuit does

everything it is intended to do.There are many ways to do this, and it is up to

the designer to decide which way is best. The simulation used to verify the

operation of the JKFF primitive is shown in Figure 5-69. The preset input is

initially activated and then, at t1, the clear input is activated. These tests en-

sure that preset and clear are operating asynchronously.The jin input is HIGH

at t2 and kin is HIGH at t3. In between these points, the inputs on jin and kin

=

276 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

FIGURE 5-69 Simulation of the JK flip-flop.

Name: Value: 1.0 ms

t1 t2 t3 t4 t5 t6 t7

2.0 ms 3.0 ms 4.0 ms 5.0 ms 6.0 ms 7.0 ms 8.0 ms 9.0 ms 10.0 ms

preset 0

clear 1

jin

kin

clkin

0

qout

0

0

1

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 276

A
H

D
L

are both LOW. This portion of the simulation tests the synchronous modes of

set, hold, and reset. Starting at t4, the toggle command is tested with

Notice at t5, preset is asserted (LOW) to test whether preset
overrides the toggle command. After t6, the output starts toggling again, and

at t7, the clear input is shown overriding the synchronous inputs. Testing of

all modes of operation and the interaction of various controls is very impor-

tant when you are simulating.

jin = kin = 1.

SECTION 5-27/HDL CIRCUITS WITH MULTIPLE COMPONENTS 277

REVIEW QUESTIONS 1. What is a logic primitive?

2. What does the designer need to know in order to use a logic primitive?

3. In the Altera system, where can you find information on primitives and

library functions?

4. What is the key VHDL element that allows the explicit description of

clocked logic circuits?

5. Which library defines the std_logic data types?

6. Which library defines the logic primitives and common components?

5-27 HDL CIRCUITS WITH MULTIPLE COMPONENTS

We began this chapter by studying latches. Latches were used to make flip-

flops and flip-flops were used to make many circuits, including binary coun-

ters. A graphic description (logic diagram) of a simple binary up counter is

shown in Figure 5-70. This circuit is functionally the same as Figure 5-47,

which was drawn with the LSB on the right to make it easier to visualize the

numeric value of the binary count.The circuit has been redrawn here to show

the signal flow in the more conventional format, with inputs on the left and

outputs on the right. Notice that these logic symbols are negative edge-

triggered. These flip-flops also do not have asynchronous inputs prn or clrn.

Our goal is to describe this counter circuit using HDL by interconnecting

three instances of the same JK flip-flop component.

CLK

FF0 FF1 FF2

J

K

Q J Q J Q

K K

QOUT 0 QOUT 1 QOUT 2

Vcc Vcc Vcc

FIGURE 5-70 A three-bit

binary counter.

AHDL RIPPLE-UP COUNTER
A text-based description of this circuit requires three of the same type of

flip-flop, just like the graphic description. Refer to Figure 5-71. On line 8

of the figure, bit array notation is used to declare a register of three JK

flip-flops. The name of this register is q, just like the name of the output

port. AHDL can interpret this to mean that the output of each flip-flop

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 277

V
H

D
L

should be connected to the output port. Each bit of the array q has all the

attributes of a JKFF primitive. AHDL is very flexible in its use of indexed

sets like this. As an example of the use of this set notation, notice how all

the J and K inputs for all the flip-flops are tied to VCC in lines 11 and 12.

If the flip-flops had been named A, B, and C rather than using a bit array,

then individual assignments would be necessary for each J and K input,

making the code much longer. Next, the key interconnections are made

between the flip-flops to make this a ripple-up counter. The clock signal is

inverted and assigned to FF0 clock input (line 13), the Q output of FF0 is

inverted and assigned to FF1 clock input (line 14), and so on, forming a

ripple counter.

VHDL RIPPLE-UP COUNTER
We described in Figure 5-68 the VHDL code for a positive-edge-triggered

JKFF with preset and clear controls. The counter in Figure 5-70 is negative-

edge-triggered and does not require asynchronous preset or clear. Our goal

now is write the VHDL code for one of these flip-flops, represent three in-

stances of the same flip-flop, and interconnect the ports to create the

counter.

We will start by looking at the VHDL description in Figure 5-72, starting

at line 18. This module of VHDL code is describing the operation of a single

JK flip-flop component. The name of the component is neg_jk (line 18) and

it has inputs clk, j, and k (line 19) and output q (line 20). A signal named

qstate is used to hold the state of the flip-flop and connect it to the q output.

On line 25, the PROCESS has only clk in its sensitivity list, so it only re-

sponds to changes in the clk (PGTs and NGTs). The statement that makes

this flip-flop negative-edge-triggered is on line 27. IF (clk’EVENT AND

‘0’) is true, then a clk edge has just occurred and clk is now LOW, mean-

ing it must have been an NGT of clk. The IF/ELSE decisions that follow

implement the four states of a JK flip-flop.

clk =

278 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

FIGURE 5-71 MOD-8 ripple counter in AHDL.

% MOD 8 ripple up counter. %

SUBDESIGN fig5_71

(

clock :INPUT;

q[2..0] :OUTPUT;

)

VARIABLE

q[2..0] :JKFF; -- defines three JK FFs

BEGIN

-- note: prn, clrn default to vcc!

q[2..0].j = VCC; -- toggle mode J=K=1 for all FFs

q[2..0].k = VCC;

q[0].clk = !clock;

q[1].clk = !q[0].q;

q[2].clk = !q[1].q; -- connect clocks in ripple form

END;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 278

Now that we know how one flip-flop named neg_jk works, let’s see how we

can use it three times in a circuit and hook all the ports together. Line 1 de-

fines the ENTITY that will make up the three-bit counter. Lines 2–3 contain

the definitions of the inputs and outputs. Notice that the outputs are in the

form of a three-bit array (bit vector). On line 6 the SIGNAL high can be

thought of as a wire used to connect points in the circuit to Line 7 is very

important because this is where we declare that we plan to use a component

in our design whose name is neg_jk. In this example, the actual code is writ-

ten at the bottom of the page, but it could be in a separate file or even in a

library. This declaration tells the compiler all the important facts about the

component and its port names.

The final part of the description is the concurrent section of lines

12–15. First, the signal high is connected to VCC on line 12. The next three

lines are instantiations of the flip-flop components. The three instances are

named ff0, ff1, and ff2. Each instance is followed by a PORT MAP which

lists each port of the component and describes what it is connected to in

the module.

VCC.

SECTION 5-27/HDL CIRCUITS WITH MULTIPLE COMPONENTS 279

FIGURE 5-72 MOD-8 ripple counter in VHDL.

ENTITY fig5_72 IS
PORT (clock :IN BIT;
 qout :BUFFER BIT_VECTOR (2 DOWNTO 0));
END fig5_72;
ARCHITECTURE counter OF fig5_72 IS
 SIGNAL high :BIT;
 COMPONENT neg_jk
 PORT (clk, j, k :IN BIT;
 q :OUT BIT);
 END COMPONENT;
BEGIN
 high <= '1'; -- connect to Vcc
ff0: neg_jk PORT MAP (j => high, k => high, clk => clock, q => qout(0));
ff1: neg_jk PORT MAP (j => high, k => high, clk => qout(0),q => qout(1));
ff2: neg_jk PORT MAP (j => high, k => high, clk => qout(1),q => qout(2));
END counter;

ENTITY neg_jk IS
PORT (clk, j, k :IN BIT;
 q :OUT BIT);
END neg_jk;
ARCHITECTURE simple of neg_jk IS
 SIGNAL qstate :BIT;
BEGIN
 PROCESS (clk)
 BEGIN
 IF (clk'EVENT AND clk = '0') THEN
 IF j = '1' AND k = '1' THEN qstate <= NOT qstate; -- toggle
 ELSIF j ='1' AND k = '0' THEN qstate <= '1'; -- set
 ELSIF j = '0' AND k = '1' THEN qstate <= '0'; -- reset
 END IF;
 END IF;
 END PROCESS;
 q <= qstate -- connect flip-flop state to output
END simple;;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 279

Connecting components together using HDL is not difficult, but it is

very tedious. As you can see, the file for even a very simple circuit can be

quite long. This method of describing circuits is referred to as the

structural level of abstraction. It requires the designer to account for each

pin of each component and define signals for each wire that is to inter-

connect the components. People who are accustomed to using logic

diagrams to describe circuits generally find it easy to understand the

structural level, but not as easy to read at a glance as the equivalent logic

circuit diagram. In fact, it is safe to say that if the structural level of

description was all that was available, most people would prefer using

graphic descriptions (schematics) rather than HDL. The real advantage of

HDL is found in the use of higher levels of abstraction and the ability to

tailor components to fit the needs of the project exactly. We will explore

the use of these methods, as well as graphical tools to connect modules, in

the following chapters.

280 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

REVIEW QUESTIONS 1. Can the same component be used more than once in the same circuit?

2. In AHDL, where are multiple instances of a component declared?

3. How do you distinguish between multiple instances of a component?

4. In AHDL, what operator is used to “connect” signals?

5. In VHDL, what serves as “wires” that connect components?

6. In VHDL, what keyword identifies the section of code where connections

are specified for instances of components?

SUMMARY
1. A flip-flop is a logic circuit with a memory characteristic such that its Q

and outputs will go to a new state in response to an input pulse and

will remain in that new state after the input pulse is terminated.

2. A NAND latch and a NOR latch are simple FFs that respond to logic lev-

els on their SET and RESET inputs.

3. Clearing (resetting) a FF means that its output ends up in the

state. Setting a FF means that it ends up in the state.

4. Clocked FFs have a clock input (CLK, CP, CK) that is edge-triggered,

meaning that it triggers the FF on a positive-going transition (PGT) or a

negative-going transition (NGT).

5. Edge-triggered (clocked) FFs can be triggered to a new state by the ac-

tive edge of the clock input according to the state of the FF’s synchro-

nous control inputs (S, R or J, K or D).

6. Most clocked FFs also have asynchronous inputs that can set or clear the

FF independently of the clock input.

7. The D latch is a modified NAND latch that operates like a D flip-flop ex-

cept that it is not edge-triggered.

8. Some of the principal uses of FFs include data storage and transfer, data

shifting, counting, and frequency division. They are used in sequential

circuits that follow a predetermined sequence of states.

Q = 1/Q = 0

Q = 0/Q = 1

Q

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 280

9. A one-shot (OS) is a logic circuit that can be triggered from its normal

resting state () to its triggered state (), where it remains for a

time interval proportional to an RC time constant.

10. Circuits that have a Schmitt-trigger type of input will respond reliably

to slow-changing signals and will produce outputs with clean, sharp

edges.

11. A variety of circuits can be used to generate clock signals at a desired fre-

quency, including Schmitt-trigger oscillators, a 555 timer, and a crystal-

controlled oscillator.

12. A complete summary of the various types of FFs can be found inside the

back cover.

13. Programmable logic devices can be programmed to operate as latching

circuits and sequential circuits.

14. Fundamental building blocks called logic primitives are available in the

Altera library to help implement larger systems.

15. Clocked flip-flops are available as logic primitives.

16. VHDL code can be written to describe clocked logic explicitly without

using logic primitives.

17. VHDL allows HDL files to be used as components in larger systems.

Prefabricated components are available in the Altera library.

18. HDL can be used to describe interconnected components in a manner

much like a graphic schematic capture tool.

Q = 1Q = 0

IMPORTANT TERMS 281

flip-flop

SET (states/inputs)

CLEAR

(states/inputs)

RESET

(states/inputs)

NAND gate latch

contact bounce

NOR gate latch

pulses

clock

positive-going

transition (PGT)

negative-going

transition (NGT)

clocked flip-flop

period frequency

edge-triggered

control inputs

synchronous control

inputs

setup time,

hold time,

clocked S-R flip-flop

tH

tS

trigger

pulse-steering circuit

edge-detector circuit

clocked J-K flip-flop

toggle mode

clocked D flip-flop

parallel data transfer

D latch

asynchronous inputs

override inputs

common-control

block

propagation delay

sequential circuits

registers

data transfer

synchronous transfer

asynchronous (jam)

transfer

jam transfer

serial data transfer

shift register

frequency division

binary counter

state table

state transition

diagram

MOD number

Schmitt-trigger

circuit

one-shot (OS)

quasi-stable state

nonretriggerable OS

retriggerable OS

astable or free-

running

multivibrator

555 timer

crystal-controlled

clock generator

clock skew

EVENT

logic primitive

nested

COMPONENT

PORT MAP

structural level of

abstraction

IMPORTANT TERMS

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 281

PROBLEMS
SECTIONS 5-1 TO 5-3

5-1.*Assuming that initially, apply the x and y waveforms of Figure

5-73 to the SET and RESET inputs of a NAND latch, and determine

the Q and waveforms.Q

Q = 0

282 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

B

D

D

B

T

x

y

z

FIGURE 5-73 Problems

5-1 to 5-3.

5-2. Invert the x and y waveforms of Figure 5-73, apply them to the SET

and RESET inputs of a NOR latch, and determine the Q and wave-

forms. Assume that initially.

5-3.*The waveforms of Figure 5-73 are connected to the circuit of Figure

5-74. Assume that initially, and determine the Q waveform.Q = 0

Q = 0

Q

Q

S

R

Q
x

z

y

FIGURE 5-74 Problem

5-3.

5-4. Modify the circuit of Figure 5-9 to use a NOR gate latch.

5-5. Modify the circuit of Figure 5-12 to use a NAND gate latch.

5-6.*Refer to the circuit of Figure 5-13. A technician tests the circuit oper-

ation by observing the outputs with a storage oscilloscope while the

switch is moved from A to B.When the switch is moved from A to B, the

scope display of appears as shown in Figure 5-75.What circuit fault

could produce this result? (Hint: What is the function of the NAND

latch?)

XB

1 ms

XB
FIGURE 5-75 Problem

5-6.

SECTIONS 5-4 THROUGH 5-6

5-7. A certain clocked FF has minimum and How long

must the control inputs be stable prior to the active clock transition?

tH = 5 ns.tS = 20 nsB

*Answers to problems marked with an asterisk can be found in the back of the text.

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 282

5-8. Apply the S, R, and CLK waveforms of Figure 5-19 to the FF of Figure

5-20, and determine the Q waveform.

5-9.*Apply the waveforms of Figure 5-76 to the FF of Figure 5-19 and de-

termine the waveform at Q. Repeat for the FF of Figure 5-20. Assume

initially.Q = 0

PROBLEMS 283

FIGURE 5-76 Problem

5-9.

B

CLK

R

S

5-10. Draw the following digital pulse waveforms. Label and lead-

ing edge, and trailing edge.

(a) A negative TTL pulse with and

(b) A positive TTL pulse with

(c) A positive pulse with whose leading edge occurs every

5 ms. Give the frequency of this waveform.

SECTION 5-7

5-11.*Apply the J, K, and CLK waveforms of Figure 5-23 to the FF of Figure

5-24. Assume that initially, and determine the Q waveform.

5-12. (a)*Show how a J-K flip-flop can operate as a toggle FF (changes states

on each clock pulse). Then apply a 10-kHz clock signal to its CLK
input and determine the waveform at Q.

(b) Connect Q from this FF to the CLK input of a second J-K FF that

also has Determine the frequency of the signal at this

FF’s output.

5-13. The waveforms shown in Figure 5-77 are to be applied to two different

FFs:

(a) positive-edge-triggered J-K

(b) negative-edge-triggered J-K

Draw the Q waveform response for each of these FFs, assuming that

initially. Assume that each FF has tH = 0.Q = 0

J = K = 1.

Q = 1

tw = 1 ms

tW = 25 ns.tf = 1 ns,tr = 5 ns,

tW = 50 ns.tf = 5 ns,tr = 20 ns,

tw,tf,tr,

1 2 3 4 5 6 7 8 9 10 11

Clock

J input

K input

FIGURE 5-77 Problem

5-13.

B

B

D

B

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 283

SECTION 5-8

5-14. A D FF is sometimes used to delay a binary waveform so that the bi-

nary information appears at the output a certain amount of time after

it appears at the D input.

(a)*Determine the Q waveform in Figure 5-78, and compare it with the

input waveform. Note that it is delayed from the input by one

clock period.

(b) How can a delay of two clock periods be obtained?

284 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

FIGURE 5-78 Problem 5-14.

FIGURE 5-79 D flip-flop

connected to toggle

(Problem 5-16).

FIGURE 5-80 Problem

5-18.

D

CLK

Q
Output
data

Assume t H(min) = 0

Input
data

Clock

1

0

1

0

5-15. (a) Apply the S and CLK waveforms of Figure 5-76 to the D and CLK
inputs of a D FF that triggers on PGTs. Then determine the wave-

form at Q.

(b) Repeat using the C waveform of Figure 5-76 for the D input.

5-16.*An edge-triggered D flip-flop can be made to operate in the toggle

mode by connecting it as shown in Figure 5-79. Assume that ini-

tially, and determine the Q waveform.

Q = 0

SECTION 5-9

5-17. (a) Apply the S and CLK waveforms of Figure 5-76 to the D and EN in-

puts of a D latch, respectively, and determine the waveform at Q.

(b) Repeat using the C waveform applied to D.

5-18. Compare the operation of the D latch with a negative-edge-triggered

D flip-flop by applying the waveforms of Figure 5-80 to each and de-

termining the Q waveforms.

Q

D

CLK

Q

1 kHz

0

0

0
D

Q

CLK/EN

N

B

B

B

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 284

5-19. In Problem 5-16, we saw how an edge-triggered D flip-flop can be op-

erated in the toggle mode. Explain why this same idea will not work

for a D latch.

SECTION 5-10

5-20. Determine the Q waveform for the FF in Figure 5-81. Assume that

initially, and remember that the asynchronous inputs override

all other inputs.

Q = 0

PROBLEMS 285

5-21.*Apply the and waveforms of Figure 5-32 to a positive-

edge-triggered D flip-flop with active-LOW asynchronous inputs.

Assume that D is kept HIGH and Q is initially LOW. Determine the Q
waveform.

5-22. Apply the waveforms of Figure 5-81 to a D flip-flop that triggers on

NGTs and has active-LOW asynchronous inputs. Assume that D is kept

LOW and that Q is initially HIGH. Draw the resulting Q waveform.

SECTION 5-12

5-23. Use Table 5-2 in Section 5-12 to determine the following.

(a)*How long can it take for the Q output of a 74C74 to switch from 0

to 1 in response to an active CLK transition?

(b)*Which FF in Table 5-2 requires its control inputs to remain stable

for the longest time after the active CLK transition? Before the

transition?

(c) What is the narrowest pulse that can be applied to the of a

7474 FF?

5-24. Use Table 5-2 to determine the following:

(a) How long does it take to asynchronously clear a 74LS112?

(b) How long does it take to asynchronously set a 74HC112?

(c) What is the shortest acceptable interval between active clock

transitions for a 7474?

(d) The D input of a 74HC112 goes HIGH 15 ns before the active clock

edge. Will the data be stored reliably in the flip-flop?

(e) How long does it take (after the clock edge) to synchronously

store a 1 in a cleared 7474 D flip-flop?

SECTIONS 5-15 AND 5-16

5-25.*Modify the circuit of Figure 5-40 to use a J-K flip-flop.

PRE

CLRCLK, PRE,

FIGURE 5-81 Problem

5-20.

Q

J

CLK

K

Q

1

0

1

0

1

0

CLK

CLR

PRE

PRE1

1

CLR

B

B

B

B

B

D

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 285

5-26. In the circuit of Figure 5-82, inputs A, B, and C are all initially LOW.

Output Y is supposed to go HIGH only when A, B, and C go HIGH in a

certain sequence.

(a) Determine the sequence that will make Y go HIGH.

(b) Explain why the START pulse is needed.

(c) Modify this circuit to use D FFs.

286 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

FIGURE 5-82 Problem

5-26. J

CLK

K

X J

CLK

K

YA

B

C

Start

CLR CLR

SECTIONS 5-17 AND 5-18

5-27.*(a) Draw a circuit diagram for the synchronous parallel transfer of

data from one three-bit register to another using J-K flip-flops.

(b) Repeat for asynchronous parallel transfer.

5-28. A recirculating shift register is a shift register that keeps the binary in-

formation circulating through the register as clock pulses are applied.

The shift register of Figure 5-45 can be made into a circulating register

by connecting to the DATA IN line. No external inputs are used.

Assume that this circulating register starts out with 1011 stored in it

(i.e., and). List the sequence of states

that the register FFs go through as eight shift pulses are applied.

5-29.*Refer to Figure 5-46, where a three-bit number stored in register X is

serially shifted into register Y. How can the circuit be modified so

that, at the end of the transfer operation, the original number stored

in X is present in both registers? (Hint: See Problem 5-28.)

SECTION 5-19

5-30. Refer to the counter circuit of Figure 5-47 and answer the following:

(a)*If the counter starts at 000, what will be the count after 13 clock

pulses? After 99 pulses? After 256 pulses?

(b) If the counter starts at 100, what will be the count after 13 pulses?

After 99 pulses? After 256 pulses?

(c) Connect a fourth J-K FF () to this counter and draw the state

transition diagram for this 4-bit counter. If the input clock fre-

quency is 80 MHz, what will the waveform at look like?

5-31. Refer to the binary counter of Figure 5-47. Change it by connecting

to the CLK of flip-flop , and to the CLK of flip-flop . Start with

all FFs in the 1 state, and draw the various FF output waveforms (,

,) for 16 input pulses. Then list the sequence of FF states as was

done in Figure 5-48. This counter is called a down counter. Why?

5-32. Draw the state transition diagram for this down counter, and compare

it with the diagram of Figure 5-49. How are they different?

X2X1

X0

X2X1X1

X0

X3

X3

X0 = 1X1 = 1,X2 = 0,X3 = 1,

X0

D

D

N, D

D

B

B

B

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 286

5-33.*(a) How many FFs are required to build a binary counter that counts

from 0 to 1023?

(b) Determine the frequency at the output of the last FF of this

counter for an input clock frequency of 2 MHz.

(c) What is the counter’s MOD number?

(d) If the counter is initially at zero, what count will it hold after 2060

pulses?

5-34. A binary counter is being pulsed by a 256-kHz clock signal.The output

frequency from the last FF is 2 kHz.

(a) Determine the MOD number.

(b) Determine the counting range.

5-35. A photodetector circuit is being used to generate a pulse each time a

customer walks into a certain establishment. The pulses are fed to an

eight-bit counter.The counter is used to count these pulses as a means

for determining how many customers have entered the store. After

closing the store, the proprietor checks the counter and finds that it

shows a count of He knows that this is incorrect be-

cause there were many more than nine people in his store. Assuming

that the counter circuit is working properly, what could be the reason

for the discrepancy?

SECTION 5-20

5-36.*Modify the circuit of Figure 5-50 so that only the presence of address

code 10110110 will allow data to be transferred to register X.

5-37. Suppose that the circuit of Figure 5-50 is malfunctioning so that data

are being transferred to X for either of the address codes 11111110 or

11111111. What are some circuit faults that could be causing this?

5-38. Many microcontrollers share the same pins to output the lower ad-

dress and transfer data. In order to hold the address constant while

the data are transferred. The address information is stored in a latch

which is enabled by the control signal ALE (address latch enable) as

shown in Figure 5-83. Connect this latch to the microcontroller such

that it takes what is on the lower address and data lines while ALE is

HIGH and holds it on the lower address only lines when ALE is LOW.

000010012 = 910.

PROBLEMS 287

FIGURE 5-83 Problem

5-38.
A15

D7
D6
D5
D4
D3
D2
D1
D0

EN

Q7
16-bit address

8-bit data

Q6
Q5
Q4
Q3
Q2
Q1
Q0

A14
A13

Upper address only

Lower address
only

Shared low address and data

A12
A11
A10

ALE

AD7
AD6
AD5
AD4
AD3
AD2
AD1
AD0

A9
A8

B

B

B

D

T

N, D

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 287

5-39. Modify the circuit of Figure 5-50 so that the MPU has eight data out-

put lines connected to transfer eight bits of data to an eight-bit reg-

ister made up of two 74HC175 ICs [Figure 5-34(b)]. Show all circuit

connections.

SECTION 5-22

5-40. Refer to the waveforms in Figure 5-53(a). Change the OS pulse dura-

tion to 0.5 ms and determine the Q output for both types of OS. Then

repeat using a OS pulse duration of 1.5 ms.

5-41.*Figure 5-84 shows three nonretriggerable one-shots connected in a

timing chain that produces three sequential output pulses. Note the

“1” in front of the pulse on each OS symbol to indicate nonretrigger-

able operation. Draw a timing diagram showing the relationship be-

tween the input pulse and the three OS outputs. Assume an input

pulse duration of 10 ms.

288 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

FIGURE 5-85 Problem

5-42.

Q

Q

CLK

X
Input pulses

J

K

T OS

t p = 1 ms

+5 V

CLR

SW1
+5 V

OUTPUT

5-42. A retriggerable OS can be used as a pulse-frequency detector that de-

tects when the frequency of a pulse input is below a predetermined

value. A simple example of this application is shown in Figure 5-85.

The operation begins by momentarily closing switch SW1.

(a) Describe how the circuit responds to input frequencies above

1 kHz.

(b) Describe how the circuit responds to input frequencies below

1 kHz.

(c) How would you modify the circuit to detect when the input fre-

quency drops below 50 kHz?

FIGURE 5-84 Problem

5-41.

OS

Q1

t p = 20 ms t p = 10 msQ1

T
OS

Q2

Q2

T
OS

Q3

Q3

T

t p = 5 ms

0
1

1 1 1

5-43. Refer to the logic symbol for a 74121 nonretriggerable one-shot in

Figure 5-54(a).

(a)*What input conditions are necessary for the OS to be triggered by

a signal at the B input?

D

B

N

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 288

(b) What input conditions are necessary for the OS to be triggered by

a signal at the 1 input?

5-44. The output pulse width from a 74121 OS is given by the approximate

formula

where is the resistance connected between the pin and

and is the capacitance connected between the pin and

the pin. The value for can be varied between 2 and

and can be as large as

(a) Show how a 74121 can be connected to produce a negative-going

pulse with a 5-ms duration whenever either of two logic signals (E
or F) makes a NGT. Both E and F are normally in the HIGH state.

(b) Modify the circuit so that a control input signal, G, can disable the

OS output pulse, regardless of what occurs at E or F.

SECTION 5-23

5-45.*Show how to use a 74LS14 Schmitt-trigger INVERTER to produce an

approximate square wave with a frequency of 10 kHz.

5-46. Design a 555 free-running oscillator to produce an approximate square

wave at 40 kHz. C should be kept at 500 pF or greater.

5-47. A 555 oscillator can be combined with a J-K flip-flop to produce a per-

fect (50 percent duty cycle) square wave. Modify the circuit of

Problem 5-46 to include a J-K flip-flop. The final output is still to be a

40-kHz square wave.

5-48. Design a 555 timer circuit that will produce a 10 percent duty-cycle

5-kHz waveform. Choose a capacitor greater than 500 pF and resistors

less than Draw the circuit diagram with pin numbers labeled.

5-49. The circuit in Figure 5-86 can be used to generate two nonoverlapping

clock signals at the same frequency. These clock signals were used in

early microprocessor systems that required four different clock tran-

sitions to synchronize their operations.

(a) Draw the CP1 and CP2 timing waveforms if CLOCK is a 1-MHz

square wave. Assume that and are 20 ns for the FF and

10 ns for the AND gates.

tPHLtPLH

100 kÆ.

1000 mF.CT40 kÆ,

RTREXT/CEXT

CEXTCTVCC,

REXT/CEXTRT

tp L 0.7 RTCT

A

PROBLEMS 289

FIGURE 5-86 Problem

5-49.

Q

CLK

QJ

K

+5 V

CLOCK

CP1

CP2

C, D

B, D

B, D

D

C, N

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 289

(b) This circuit would have a problem if the FF were changed to one

that responds to a PGT at CLK. Draw the CP1 and CP2 waveforms

for that situation. Pay particular attention to conditions that can

produce glitches.

SECTION 5-24

5-50. Refer to the counter circuit in Figure 5-47. Assume that all asynchro-

nous inputs are connected to When tested, the circuit waveforms

appear as shown in Figure 5-87. Consider the following list of possible

faults. For each one, indicate “yes” or “no” as to whether it could

cause the observed results. Explain each response.

(a)*CLR input of is open.

(b)* output’s transition times are too long, possibly due to loading.

(c) output is shorted to ground.

(d) ’s hold time requirement is not being met.X2

X2

X1

X2

VCC.

290 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

FIGURE 5-87 Problem 5-50.

CLOCK

X0

X1

X2

5-51. Consider the situation of Figure 5-59 for each of the following sets of

timing values. For each, indicate whether or not flip-flop will re-

spond correctly.

(a)*Each FF:

NAND gate:

INVERTER:

(b) Each FF:

NAND gate:

INVERTER:

5-52. Show and explain how the clock skew problem in Figure 5-59 can be

eliminated by the appropriate insertion of two INVERTERs.

5-53. Refer to the circuit of Figure 5-88. Assume that the ICs are of the TTL

logic family.The Q waveform was obtained when the circuit was tested

with the input signals shown and with the switch in the “up” position;

it is not correct. Consider the following list of faults, and for each in-

dicate “yes” or “no” as to whether it could be the actual fault. Explain

each response.

(a)*Point X is always LOW due to a faulty switch.

(b)*Z1 pin 1 is internally shorted to .VCC

tPHL = 6 nstPLH = 8 ns;

tPHL = 10 nstPLH = 12 ns;

tH = 0 nstS = 5 ns;tPHL = 8 ns;tPLH = 10 ns;

tPHL = 5 nstPLH = 7 ns;

tPHL = 6 nstPLH = 8 ns;

tH = 0 nstS = 5 ns;tPHL = 8 ns;tPLH = 12 ns;

Q2

T

C, T

D

T

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 290

(c) The connection from Z1-3 to Z2-3 is broken.

(d) There is a solder bridge between pins 6 and 7 of Z1.

5-54. The circuit of Figure 5-89 functions as a sequential combination lock.

To operate the lock, proceed as follows:

1. Momentarily activate the RESET switch.

2. Set the switches SWA, SWB, and SWC to the first part of the combi-

nation.Then momentarily toggle the ENTER switch back and forth.

3. Set the switches to the second part of the combination, and toggle

ENTER again.This should produce a HIGH at to open the lock.

If the incorrect combination is entered in either step, the operator

must start the sequence over. Analyze the circuit and determine the

correct sequence of combinations that will open the lock.

5-55.*When the combination lock of Figure 5-89 is tested, it is found that

entering the correct combination does not open the lock. A logic

probe check shows that entering the correct first combination sets

HIGH, but entering the correct second combination produces only a

momentary pulse at . Consider each of the following faults and in-

dicate which one(s) could produce the observed operation. Explain

each choice.

(a) Switch bounce at SWA, SWB, or SWC.

(b) CLR input of is open.

(c) Connection from NAND gate 4 output to NAND gate 3 input is open.

Q2

Q2

Q1

Q2

PROBLEMS 291

FIGURE 5-88 Problem

5-53.

CLOCK

A

B

Q

(b)

Q

(a)

6 2

13

7

C Z2CLOCK

Q

K

J
3 5

14

+VCC

1
3

14

A
&2

Z1
X

Z1

+VCC

SW1

&
B

4

5

7

Z1: 74LS00
Z2: 74LS114A

6

C

C, T

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 291

DRILL QUESTIONS

5-56. For each statement indicate what type of FF is being described.

(a)*Has a SET and a CLEAR input but does not have a CLK input

(b)*Will toggle on each CLK pulse when its control inputs are both

HIGH

(c)*Has an ENABLE input instead of a CLK input

(d)*Is used to transfer data easily from one FF register to another

(e) Has only one control input

(f) Has two outputs that are complements of each other

(g) Can change states only on the active transition of CLK

(h) Is used in binary counters

5-57. Define the following terms.

(a) Asynchronous inputs

(b) Edge-triggered

(c) Shift register

(d) Frequency division

292 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

FIGURE 5-89 Problems 5-54 and 5-55.

B

B

+VCC

+VCC

+VCC

+VCC

SWA

SWB

SWC

1

3

2

4

5

6

7

ENTER NO

NC

CLK

CLR

D Q2

CLK

CLR

D Q1

RESET

OPEN LOCK

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 292

(e) Asynchronous (jam) transfer

(f) State transition diagram

(g) Parallel data transfer

(h) Serial data transfer

(i) Retriggerable one-shot

(j) Schmitt-trigger inputs

SECTION 5-25

5-58. Simulate the HDL design for a NAND latch given in Figure 5-62

(AHDL) or Figure 5-63 (VHDL). What does this SR latch do if an “in-

valid” input command is applied? Since we know that any SR latch

can have an unusual output result when an invalid input command is

applied, you should simulate that input condition as well as the

latch’s normal set, reset, and hold commands. Some latch designs can

have a tendency for the output to oscillate when an invalid command

is followed by a hold command, so be sure to check for that in your

simulation.

5-59.*Write an HDL design file for an active-HIGH input SR latch.

5-60. Modify the latch description given in Figure 5-62 (AHDL) or Figure 5-63

(VHDL) to make the SR reset if an invalid input is applied. Simulate

the design.

5-61.*Add inverted outputs to the HDL NAND latch designs given in Figure

5-62 or Figure 5-63.Verify correct operation by simulation.

5-62. Simulate the AHDL or VHDL design for a D latch given in Section 5-25.

5-63. Create a four-bit transparent latch with one enable input based on the

AHDL or VHDL design for a single D latch device given in Section 5-25.

Simulate the four-bit latch.

5-64. A toggle (T) flip-flop has a single control input (T). When the

flip-flop is in the no change state, similar to a JKFF with

When the flip-flop is in the toggle mode, similar to a JKFF with

Write the design file in

(a) AHDL

(b) VHDL

5-65. (a) Write an AHDL design file for the shift register shown in Figure

5-45.

(b) Write a VHDL design file for the shift register shown in Figure

5-45.

5-66. (a)*Write an AHDL design file for the shift register shown in Figure

5-46.

(b)*Write a VHDL design file for the shift register shown in Figure 5-46.

5-67. (a) Write an AHDL design file for the FF circuit shown in Figure 5-59.

(b) Write a VHDL design file for the FF circuit shown in Figure 5-59.

5-68. Simulate the operation of either Problem 5-74 or 5-75. (The simula-

tions should be identical and match the results in Figure 5-58.)

5-69. (a) Write an AHDL design file to implement the entire circuit of

Figure 5-89.

(b) Write a VHDL design file to implement the entire circuit of

Figure 5-89.

J = K = 1.

T = 1,

J = K = 0.

T = 0,

PROBLEMS 293

B

B, H

B, H

B, H

B

D, H

D, H, N

H

H

H

H

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 293

ANSWERS TO SECTION REVIEW QUESTIONS
SECTION 5-1
1. HIGH; LOW 2. , 3. True 4. Apply a momentary LOW to

input.

SECTION 5-2
1. LOW, HIGH 2. and 3. Make CLEAR � 1 4. and

would both be normally in their active-LOW state.

SECTION 5-4
1. Synchronous control inputs and clock input 2. The FF output can change only

when the appropriate clock transition occurs. 3. False 4. Setup time is the re-

quired interval immediately prior to the active edge of the CLK signal during which

the control inputs must be held stable. Hold time is the required interval immedi-

ately following the active edge of CLK during which the control inputs must be held

stable.

SECTION 5-5
1. HIGH; LOW; HIGH 2. Because CLK* is HIGH only for a few nanoseconds

SECTION 5-6
1. True 2. No 3.

SECTION 5-7
1. Q will go LOW at point a and remain LOW. 2. False. The D input can change

without affecting Q because Q can change only on the active CLK edge. 3. Yes,

by converting to D FFs (Figure 5-25).

SECTION 5-8
1. In a D latch, the Q output can change while EN is HIGH. In a D flip-flop, the out-

put can change only on the active edge of CLK. 2. False 3. True

SECTION 5-9
1. Asynchronous inputs work independently of the CLK input. 2. Yes, because

is active-LOW 3. and a PGT at CLK

SECTION 5-10
1. The triangle inside the rectangle indicates edge-triggered operation; the right

triangle outside the rectangle indicates triggering on a NGT. 2. It is used to

indicate the function of those inputs that are common to more than one circuit on

the chip.

SECTION 5-11
1. and 2. False; the waveform must also satisfy and

requirements.

SECTION 5-17
1. False 2. D flip-flop 3. Six 4. True

SECTION 5-18
1. True 2. Fewer interconnections between registers 3.

4. ParallelY2Y1Y0 = 101

X2X1X0 = 111;

tW(H)tW(L)tPHLtPLH

PRE = CLR = 1,J = K = 1,PRE

K = 0J = 1,

RESET

SETQ = 0Q = 1

SETQ = 1Q = 0

294 CHAPTER 5/FLIP-FLOPS AND RELATED DEVICES

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 294

SECTION 5-19
1. 10 kHz 2. Eight 3. 256 4. 2 kHz 5.

SECTION 5-21
1. The output may contain oscillations. 2. It will produce clean, fast output sig-

nals even for slow-changing input signals.

SECTION 5-22
1. , 2. True 3. External R and C values 4. For a retriggerable

OS, each new trigger pulse begins a new interval, regardless of the state of the

Q output.

SECTION 5-23
1. 24 kHz 2. 109.3 kHz; 66.7 percent 3. Frequency stability

SECTION 5-24
1. Clock skew is the arrival of a clock signal at the CLK inputs of different FFs at

different times. It can cause a FF to go to an incorrect state.

SECTION 5-25
1. Feedback: The outputs are combined with the inputs to determine the next state

of the outputs. 2. It progresses through a predetermined sequence of states in

response to an input clock signal.

SECTION 5-26
1. A standard building block from a library of components that performs some fun-

damental logic function. 2. The names of each input and output and the primi-

tive name that is recognized by the development system. 3. Under the HELP

menu. 4. The PROCESS allows sequential IF constructs and the EVENT attrib-

ute detects transitions. 5. ieee.std_logic_1164. 6. altera.maxplus2

SECTION 5-27
1. Yes 2. In the VARIABLE section. 3. Each is assigned a variable name.

4. 5. SIGNALs 6. PORT MAP=

tp

Q = 1Q = 0

000010002 = 810

ANSWERS TO SECTION REVIEW QUESTIONS 295

TOCCMC05_0131725793.QXD 12/26/05 7:40 AM Page 295

6-1 Binary Addition

6-2 Representing Signed

Numbers

6-3 Addition in the 2’s-

Complement System

6-4 Subtraction in the 2’s-

Complement System

6-5 Multiplication of Binary

Numbers

6-6 Binary Division

6-7 BCD Addition

6-8 Hexadecimal Arithmetic

6-9 Arithmetic Circuits

6-10 Parallel Binary Adder

6-11 Design of a Full Adder

6-12 Complete Parallel Adder

with Registers

■ OUTLINE

D I G I TA L A R I T H M E T I C :

O P E R AT I O N S A N D

C I R C U I T S

C H A P T E R 6

6-13 Carry Propagation

6-14 Integrated-Circuit Parallel

Adder

6-15 2’s-Complement System

6-16 ALU Integrated Circuits

6-17 Troubleshooting Case Study

6-18 Using TTL Library

Functions with Altera

6-19 Logical Operations on Bit

Arrays

6-20 HDL Adders

6-21 Expanding the Bit Capacity

of a Circuit

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 296

297

■ OBJECTIVES
Upon completion of this chapter, you will be able to:
■ Perform binary addition, subtraction, multiplication, and division on

two binary numbers.

■ Add and subtract hexadecimal numbers.

■ Know the difference between binary addition and OR addition.

■ Compare the advantages and disadvantages among three different

systems of representing signed binary numbers.

■ Manipulate signed binary numbers using the 2’s-complement system.

■ Understand the BCD addition process.

■ Describe the basic operation of an arithmetic/logic unit.

■ Employ full adders in the design of parallel binary adders.

■ Cite the advantages of parallel adders with the look-ahead carry

feature.

■ Explain the operation of a parallel adder/subtractor circuit.

■ Use an ALU integrated circuit to perform various logic and arithmetic

operations on input data.

■ Analyze troubleshooting case studies of adder/subtractor circuits.

■ Use HDL forms of standard TTL parts from libraries to implement more

complicated circuits.

■ Use the Boolean equation form of description to perform operations on

entire sets of bits.

■ Apply software engineering techniques to expand the capacity of a

hardware description.

■ INTRODUCTION
Digital computers and calculators perform the various arithmetic opera-

tions on numbers that are represented in binary form. The subject of digital

arithmetic can be a very complex one if we want to understand all the vari-

ous methods of computation and the theory behind them. Fortunately, this

level of knowledge is not required by most technicians, at least not until

they become experienced computer programmers. Our approach in this

chapter will be to concentrate on those basic principles that are necessary

for understanding how digital machines (i.e., computers) perform the basic

arithmetic operations.

First, we will see how the various arithmetic operations are performed

on binary numbers using “pencil and paper,” and then we will study the

TOCCMC06_0131725793.QXD 12/16/2005 2:05 PM Page 297

actual logic circuits that perform these operations in a digital system.

Finally, we will learn how to describe these simple circuits using HDL

techniques. Several methods of expanding the capacity of these circuits

will also be covered. The focus will be on the fundamentals of HDL, using

arithmetic circuits as an example. The powerful capability of HDL com-

bined with PLD hardware will provide the basis for further study, design,

and experimentation with much more sophisticated arithmetic circuits in

more advanced courses.

6-1 BINARY ADDITION

The addition of two binary numbers is performed in exactly the same

manner as the addition of decimal numbers. In fact, binary addition is sim-

pler because there are fewer cases to learn. Let us first review decimal

addition:

The least-significant-digit (LSD) position is operated on first, producing a

sum of 7. The digits in the second position are then added to produce a sum

of 13, which produces a carry of 1 into the third position.This produces a sum

of 8 in the third position.

The same general steps are followed in binary addition. However, only

four cases can occur in adding the two binary digits (bits) in any position.

They are:

0 � 0 � 0

1 � 0 � 1

1 � 1 � 10 � 0 � carry of 1 into next position

1 � 1 � 1 � 11 � 1 � carry of 1 into next position

The last case occurs when the two bits in a certain position are 1 and there is

a carry from the previous position. Here are several examples of the addition

of two binary numbers (decimal equivalents are in parentheses):

It is not necessary to consider the addition of more than two binary num-

bers at a time because in all digital systems the circuitry that actually per-

forms the addition can handle only two numbers at a time. When more than

two numbers are to be added, the first two are added together and then their

sum is added to the third number, and so on. This is not a serious drawback

because modern digital computers can typically perform an addition opera-

tion in several nanoseconds.

Addition is the most important arithmetic operation in digital systems.

As we shall see, the operations of subtraction, multiplication, and division as

011 (3)

+ 110 (6)

1001 (9)

1001 (9)

+ 1111 (15)

11000 (24)

11.011 (3.375)

+ 10.110 (2.750)

110.001 (6.125)

3 7 6 LSD

�4 6 1

8 3 7

↑ ↑

298 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 298

6-2 REPRESENTING SIGNED NUMBERS

In digital computers, the binary numbers are represented by a set of binary

storage devices (e.g., flip-flops). Each device represents one bit. For example,

a six-bit FF register can store binary numbers ranging from 000000 to 111111

(0 to 63 in decimal). This represents the magnitude of the number. Because

most digital computers and calculators handle negative as well as positive

numbers, some means is required for representing the sign of the number (�
or �).This is usually done by adding to the number another bit called the sign
bit. In general, the common convention is that a 0 in the sign bit represents a

positive number and a 1 in the sign bit represents a negative number. This is

illustrated in Figure 6-1. Register A contains the bits 0110100. The 0 in the

leftmost bit () is the sign bit that represents The other six bits are the

magnitude of the number which is equal to 52 in decimal. Thus, the

number stored in the A register is . Similarly, the number stored in the B
register is because the sign bit is 1, representing �.

The sign bit is used to indicate the positive or negative nature of the

stored binary number. The numbers in Figure 6-1 consist of a sign bit and six

magnitude bits. The magnitude bits are the true binary equivalent of the

decimal value being represented. This is called the sign-magnitude system
for representing signed binary numbers.

Although the sign-magnitude system is straightforward, calculators and

computers do not normally use it because the circuit implementation is more

complex than in other systems. The most commonly used system for repre-

senting signed binary numbers is the 2’s-complement system. Before we see

how this is done, we must first see how to form the 1’s complement and 2’s

complement of a binary number.

-52

+52

1101002,

+ .A6

SECTION 6-2/REPRESENTING SIGNED NUMBERS 299

REVIEW QUESTION 1. Add the following pairs of binary numbers.

(a)

(b)

(c) 10001111 + 00000001

011.101 + 010.010

10110 + 00111

FIGURE 6-1
Representation of signed

numbers in sign-magnitude

form.

01 1 1 1 0 0

00 1 1 1 0 0

A6 A5 A4 A3 A2 A1 A0

B6 B5 B4 B3 B2 B1 B0

Sign bit (+)

Sign bit (–)

Magnitude = 5210

Magnitude = 5210

= +5210

= –5210

they are performed in most modern digital computers and calculators actu-

ally use only addition as their basic operation.

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 299

1’s-Complement Form
The 1’s complement of a binary number is obtained by changing each 0 to a

1 and each 1 to a 0. In other words, change each bit in the number to its com-

plement. The process is shown below.

Thus, we say that the 1’s complement of 101101 is 010010.

2’s Complement Form
The 2’s complement of a binary number is formed by taking the 1’s comple-

ment of the number and adding 1 to the least-significant-bit position. The

process is illustrated below for

Thus, we say that 010011 is the 2’s complement representation of 101101.

Here’s another example of converting a binary number to its 2’s-comple-

ment representation:

Representing Signed Numbers Using 2’s Complement
The 2’s-complement system for representing signed numbers works like this:

■ If the number is positive, the magnitude is represented in its true binary

form, and a sign bit of 0 is placed in front of the MSB. This is shown in

Figure 6-2 for

■ If the number is negative, the magnitude is represented in its 2’s-

complement form, and a sign bit of 1 is placed in front of the MSB. This

is shown in Figure 6-2 for -4510.

+4510.

1 0 1 1 0 0

0 1 0 0 1 1

+ 1

0 1 0 1 0 0

original binary number

1’s complement

add 1

2’s complement of original number

1 0 1 1 0 1

0 1 0 0 1 0

+ 1

0 1 0 0 1 1

binary equivalent of 45

complement each bit to form 1’s complement

add 1 to form 2’s complement

2’s complement of original binary number

1011012 = 4510.

1 0 1 1 0 1 original binary number

↓↓ ↓ ↓↓ ↓
0 1 0 0 1 0 complement each bit to form 1’s complement

300 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

FIGURE 6-2
Representation of signed

numbers in the 2’s-

complement system.

10 1 0 1 0 1

01 0 1 0 1 1

Sign bit (+)

Sign bit (–)

= +4510

= –4510

True binary

2's complement

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 300

The 2’s-complement system is used to represent signed numbers be-

cause, as we shall see, it allows us to perform the operation of subtraction by

actually performing addition. This is significant because it means that a dig-

ital computer can use the same circuitry both to add and to subtract, thereby

realizing a saving in hardware.

SECTION 6-2/REPRESENTING SIGNED NUMBERS 301

EXAMPLE 6-1 Represent each of the following signed decimal numbers as a signed binary

number in the 2’s-complement system. Use a total of five bits, including the

sign bit.

(a) (b) (c) (d) (e)

Solution

(a) The number is positive, so the magnitude (13) will be represented in its

true-magnitude form, that is, . Attaching the sign bit of 0, we

have

(b) The number is negative, so the magnitude (9) must be represented in 2’s-

complement form:

When we attach the sign bit of 1, the complete signed number becomes

The procedure we have just followed required two steps. First, we de-

termined the 2’s complement of the magnitude, and then we attached the

sign bit.This can be accomplished in one step if we include the sign bit in

the 2’s-complement process. For example, to find the representation for

we start with the representation for including the sign bit, and we

take the 2’s complement of it in order to obtain the representation for

The result is, of course, the same as before.

(c) The decimal value 3 can be represented in binary using only two bits.

However, the problem statement requires a four-bit magnitude preceded

by a sign bit. Thus, we have

�310 � 00011

+9 = 01001

10110

+ 1

-9 = 10111

11’s complement of each bit including sign bit2

1add 1 to LSB2

12’s-complement representation of -92

-9.

+9,-9,

�9 � 10111
sign bit ↑

910 = 10012

0110
+ 1

0111

11’s complement2

1add 1 to LSB2

12’s complement2

�13 � 01101
sign bit ↑

13 = 11012

-8-2+3-9+13

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 301

In many situations the number of bits is fixed by the size of the registers

that will be holding the binary numbers, so that 0s may have to be added

in order to fill the required number of bit positions.

(d) Start by writing using five bits:

(e) Start with :

Sign Extension
Example 6-1 required that we use a total of five bits to represent the signed

numbers. The size of a register (number of flip-flops) determines the number

of binary digits that are stored for each number. Most digital systems today

store numbers in registers sized in even multiples of four bits. In other

words, the storage registers will be made up of 4, 8, 12, 16, 32, or 64 bits. In a

system that stores eight-bit numbers, seven bits represent the magnitude

and the MSB represents the sign. If we need to store a positive five-bit num-

ber in an eight-bit register, it makes sense to simply add leading zeros. The

MSB (sign bit) is still 0, indicating a positive value.

What happens when we try to store five-bit negative numbers in an eight-

bit register? In the previous section we found that the five-bit, 2’s-comple-

ment binary representation for is 10111.

If we appended leading 0s, this would no longer be a negative number in

eight-bit format. The proper way to extend a negative number is to append

leading 1’s. Thus, the value stored for negative 9 is

111 1 0111

sign extension to eight-bit format

2’s complement magnitude

sign in five-bit format

1 0111

-9

0000 1001

appended leading 0s binary value for 9

⎫ ⎬ ⎭ ⎫ ⎬ ⎭

+8 = 01000

10111

+ 1

-8 = 11000

1complement each bit2

1add 12

12’s-complement representation of -82

+8

+2 = 00010

11101

+ 1

-2 = 11110

11’s complement2

1add 12

12’s-complement representation of -22

+2

302 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 302

Negation
Negation is the operation of converting a positive number to its negative

equivalent or a negative number to its positive equivalent. When signed bi-

nary numbers are represented in the 2’s-complement system, negation is per-

formed simply by performing the 2’s-complement operation. To illustrate,

let’s start with in eight-bit binary form. Its signed representation is

00001001. If we take its 2’s complement we get 11110111, which represents

the signed value Likewise, we can start with the representation of

which is 11110111, and take its 2’s complement to get 00001001, which rep-

resents These steps are diagrammed below.

Thus, we negate a signed binary number by 2’s-complementing it.

This negation changes the number to its equivalent of opposite sign.We used

negation in steps (d) and (e) of Example 6-1 to convert positive numbers to

their negative equivalents.

Start with 00001001 �9

2’s complement (negate) 11110111 �9

negate again 00001001 �9

+9.

-9,-9.

+9

SECTION 6-2/REPRESENTING SIGNED NUMBERS 303

EXAMPLE 6-2 Each of the following numbers is a five-bit signed binary number in the

2’s-complement system. Determine the decimal value in each case:

(a) 01100 (b) 11010 (c) 10001

Solution

(a) The sign bit is 0, so the number is positive and the other four bits repre-

sent the true magnitude of the number. That is, Thus, the

decimal number is

(b) The sign bit of 11010 is a 1, so we know that the number is negative, but we

can’t tell what the magnitude is. We can find the magnitude by negating

(2’s-complementing) the number to convert it to its positive equivalent.

Because the result of the negation is the original number

11010 must be equivalent to .

(c) Follow the same procedure as in (b):

Thus, 10001 = -15.

10001

01110

+ 1

01111

1original negative number2

11’s complement2

1add 12

1+152

-6

00110 = +6,

11010

00101

+ 1

00110

1original negative number2

11’s complement2

1add 12

1+62

+12.

11002 = 1210.

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 303

Special Case in 2’s-Complement Representation
Whenever a signed number has a 1 in the sign bit and all 0s for the magni-

tude bits, its decimal equivalent is where N is the number of bits in the

magnitude. For example,

1000 � �23 � �8

10000 � �24 � �16

100000 � �25 � �32

and so on. Notice that in this special case, taking the 2’s complement of these

numbers produces the value we started with because we are at the negative

limit of the range of numbers that can be represented by this many bits. If

we extend the sign of these special numbers, the normal negation procedure

works fine. For example, extending the number 1000 () to 11000 (five-bit

negative 8) and taking its 2’s complement we get 01000 (8), which is the

magnitude of the negative number.

Thus, we can state that the complete range of values that can be repre-

sented in the 2’s-complement system having N magnitude bits is

There are a total of different values, including zero.

For example, Table 6-1 lists all signed numbers that can be represented in

four bits using the 2’s-complement system (note there are three magnitude

bits, so). Note that the sequence starts at

and proceeds upward to by adding

0001 at each step as in an up counter.

+(2N
- 1) = +23

- 1 = +710 = 01112

-2N
= -23

= -810 = 10002N = 3

2N+1

-2N
 to +(2N

- 1)

-8

-2N,

304 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

Signed Binary Using
Decimal Value 2’s Complement

+7 = 23 � 1 0111

+6 0110

+5 0101

+4 0100

+3 0011

+2 0010

+1 0001

0 0000

�1 1111

�2 1110

�3 1101

�4 1100

�5 1011

�6 1010

�7 1001

�8 = �23 1000

TABLE 6-1

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 304

SECTION 6-2/REPRESENTING SIGNED NUMBERS 305

EXAMPLE 6-3 What is the range of unsigned decimal values that can be represented in a byte?

Solution

Recall that a byte is eight bits. We are interested in unsigned numbers here,

so there is no sign bit, and all of the eight bits are used for the magnitude.

Therefore, the values will range from

to

This is a total of 256 different values, which we could have predicted be-

cause 28
= 256.

111111112 = 25510

000000002 = 010

EXAMPLE 6-4 What is the range of signed decimal values that can be represented in a byte?

Solution

Because the MSB is to be used as the sign bit, there are seven bits for the

magnitude. The largest negative value is

The largest positive value is

Thus, the range is to this is a total of 256 different values, in-

cluding zero. Alternatively, because there are seven magnitude bits (),

then there are different values.2N+1
= 28

= 256

N = 7

+127;-128

011111112 = +27
- 1 = +12710

100000002 = -27
= -12810

EXAMPLE 6-5 A certain computer is storing the following two signed numbers in its mem-

ory using the 2’s-complement system:

While executing a program, the computer is instructed to convert each num-

ber to its opposite sign; that is, change the to and change the

to How will it do this?

Solution

This is the negation operation whereby a signed number can have its polar-

ity changed simply by performing the 2’s-complement operation on the

complete number, including the sign bit. The computer circuitry will take the

signed number from memory, find its 2’s complement, and put the result

back in memory.

+12.

-12-31+31

 111101002 = -1210

 000111112 = +3110

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 305

6-3 ADDITION IN THE 2’s-COMPLEMENT SYSTEM

We will now investigate how the operations of addition and subtraction are

performed in digital machines that use the 2’s-complement representation

for negative numbers. In the various cases to be considered, it is important

to note that the sign bit of each number is operated on in the same manner

as the magnitude bits.

Case I: Two Positive Numbers. The addition of two positive numbers is

straightforward. Consider the addition of and

Note that the sign bits of the augend and the addend are both 0 and the sign

bit of the sum is 0, indicating that the sum is positive. Also note that the au-

gend and the addend are made to have the same number of bits. This must

always be done in the 2’s-complement system.

Case II: Positive Number and Smaller Negative Number. Consider the ad-

dition of and Remember that the will be in its 2’s-complement

form. Thus, (00100) must be converted to (11100).

In this case, the sign bit of the addend is 1. Note that the sign bits also partic-

ipate in the addition process. In fact, a carry is generated in the last position

sign bits

�9 → 0 1001 (augend)

�4 → 1 1100 (addend)

1� 0 0101

This carry is disregarded; the result is 00101 (sum � �5).↑

↑

-4+4

-4-4.+9

�9 → 0 1001 (augend)

�4 → 0 0100 (addend)

0 1101 (sum � �13)

sign bits ↑

+4:+9

306 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

REVIEW QUESTIONS 1. Represent each of the following values as an eight-bit signed number in

the 2’s-complement system.

(a) (b) (c)

2. Each of the following is a signed binary number in the 2’s-complement

system. Determine the decimal equivalent for each.

(a) 100011 (b) 1000000 (c) 01111110

3. What range of signed decimal values can be represented in 12 bits (in-

cluding the sign bit)?

4. How many bits are required to represent decimal values ranging from

to

5. What is the largest negative decimal value that can be represented by a

two-byte number?

6. Perform the 2’s-complement operation on each of the following.

(a) 10000 (b) 10000000 (c) 1000

7. Define the negation operation.

+50?-50

-128-7+13

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 306

of addition. This carry is always disregarded, so that the final sum is 00101,

which is equivalent to

Case III: Positive Number and Larger Negative Number. Consider the ad-

dition of and

The sum here has a sign bit of 1, indicating a negative number. Because the

sum is negative, it is in 2’s-complement form, so that the last four bits, 1011,

actually represent the 2’s complement of the sum.To find the true magnitude

of the sum, we must negate (2’s-complement) 11011; the result is

Thus, 11011 represents

Case IV: Two Negative Numbers

This final result is again negative and in 2’s-complement form with a sign bit

of 1. Negating (2’s-complementing) this result produces

Case V: Equal and Opposite Numbers

The result is obviously as expected.+0,

�9 → 10111

�9 → 01001

0 1� 00000

Disregard; the result is 00000 (sum � �0).↑

01101 = +13.

�9 → 10111

�4 → 11100

1� 10011

sign bit

This carry is disregarded; the result is 10011 (sum � �13).

↑↑⏐
⏐

-5.

00101 = +5.

�9 → 10111

�4 → 00100

11011 (sum � �5)

negative sign bit↑

+4:-9

+5.

SECTION 6-4/SUBTRACTION IN THE 2’S-COMPLEMENT SYSTEM 307

REVIEW QUESTIONS Assume the 2’s-complement system for both questions.

1. True or false: Whenever the sum of two signed binary numbers has a sign

bit of 1, the magnitude of the sum is in 2’s-complement form.

2. Add the following pairs of signed numbers. Express the sum as a signed

binary number and as a decimal number.

(a) (b) 100111 + 011001100111 + 111011

6-4 SUBTRACTION IN THE 2’s-COMPLEMENT SYSTEM

The subtraction operation using the 2’s-complement system actually involves

the operation of addition and is really no different from the various cases for

addition considered in Section 6-3. When subtracting one binary number

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 307

(the subtrahend) from another binary number (the minuend), use the fol-

lowing procedure:

1. Negate the subtrahend. This will change the subtrahend to its equivalent

value of opposite sign.

2. Add this to the minuend. The result of this addition will represent the diff-
erence between the subtrahend and the minuend.

Once again, as in all 2’s-complement arithmetic operations, it is necessary

that both numbers have the same number of bits in their representations.

Let us consider the case where is to be subtracted from

Negate the subtrahend to produce 11100, which represents Now add this

to the minuend.

When the subtrahend is changed to its 2’s complement, it actually be-

comes , so that we are adding and , which is the same as subtracting

from . This is the same as case II of Section 6-3. Any subtraction oper-

ation, then, actually becomes one of addition when the 2’s-complement sys-

tem is used. This feature of the 2’s-complement system has made it the most

widely used of the methods available because it allows addition and sub-

traction to be performed by the same circuitry.

Here’s another example showing subtracted from :

Negate the subtrahend () to produce 10111 () and add this to the min-

uend ().

The reader should verify the results of using the above procedure for the

following subtractions: (a) (b) (c) (d)

Remember that when the result has a sign bit of 1, it is negative and in

2’s-complement form.

Arithmetic Overflow
In each of the previous addition and subtraction examples, the numbers

that were added consisted of a sign bit and four magnitude bits. The an-

swers also consisted of a sign bit and four magnitude bits. Any carry into

the sixth bit position was disregarded. In all of the cases considered, the

(-4).

+4 --9 - (-4);-9 - (+4);+9 - (-4);

11100 (�4)

� 10111 (�9)

1� 10011 (�13)

Disregard↑

-4

-9+9

- 01001 (+9)

 11100 (-4)

-4+9

+9+4

+9-4-4

01001 (�9)

� 11100 (�4)

1� 00101 (�5)

Disregard, so the result is 00101 � �5.↑

-4.

 subtrahend (+4) : 00100

 minuend (+9) : 01001

+9.+4

308 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 308

magnitude of the answer was small enough to fit into four bits. Let’s look at

the addition of and .

The answer has a negative sign bit, which is obviously incorrect because we

are adding two positive numbers. The answer should be , but the magni-

tude 17 requires more than four bits and therefore overflows into the sign-bit

position. This overflow condition can occur only when two positive or two

negative numbers are being added, and it always produces an incorrect re-

sult. Overflow can be detected by checking to see that the sign bit of the re-

sult is the same as the sign bits of the numbers being added.

Subtraction in the 2’s-complement system is performed by negating the

minuend and adding it to the subtrahend, so overflow can occur only when

the minuend and subtrahend have different signs. For example, if we are

subtracting from , the is negated to become and is added to

just as shown above, and overflow produces an erroneous negative result be-

cause the magnitude is too large.

A computer will have a special circuit to detect any overflow condition

when two numbers are added or subtracted.This detection circuit will signal

the computer’s control unit that overflow has occurred and the result is in-

correct. We will examine such a circuit in an end-of-chapter problem.

Number Circles and Binary Arithmetic
The concept of signed arithmetic and overflow can be illustrated by taking

the numbers from Table 6-1 and “bending” them into a number circle as

shown in Figure 6-3. Notice that there are two ways to look at this circle. It

can be thought of as a circle of unsigned numbers (as shown in the outer

ring) with minimum value 0 and maximum 15, or as signed 2’s-complement

numbers (as shown in the inner ring) with maximum value 7 and minimum

To add using a number circle, simply start at the value of the augend and-8.

+9,+8-8+9-8

+17

�9 → 0 1001

�8 → 0 1000

1 0001

incorrect sign incorrect magnitude↑↑
⎫ ⎬ ⎭

+8+9

SECTION 6-4/SUBTRACTION IN THE 2’S-COMPLEMENT SYSTEM 309

FIGURE 6-3 A four-bit

number circle.

�1
�2

�3

�5

�4

�6

�7
�8

1000 0111
0110

0101

0100

0011

0010

0001
00001111

1110

1101

1100

1011

1010

1001
9

8 7

6

5

4

3

2

1

015

14

13

12

11

10
7

6

5

4

3

2

1
0

UNSIGNED

(MIN)(MAX)

SIGNEDSIGNED
MAXMAXMINMIN

POSITIVEPOSITIVENEGATIVENEGATIVE

TOCCMC06_0131725793.QXD 12/21/05 11:14 AM Page 309

advance around the number circle clockwise by the number of spaces in the

addend. For example, to add start at 2 (0010) and then advance clock-

wise three more spaces to arrive at 5 (0101). Overflow occurs when the sum

is too big to fit into four-bit signed format, meaning we have exceeded the

maximum value of 7. On the number circle this is indicated when adding two

positive values causes us to cross the line between 0111 (max positive) and

1000 (max negative).

The number circle can also illustrate how 2’s-complement subtraction re-

ally works. For example, let’s perform the subtraction of 5 from 3. Of course,

we know the answer is but let’s run the problem through the number cir-

cle. First we start at the number 3 (0011) on the number circle. The most ap-

parent way to subtract is to move counterclockwise around the circle five

spaces, which lands us on the number 1110 (). The less obvious operation

that illustrates 2’s-complement arithmetic is to add to the number 3.

Negative five (the 2’s complement of 0101) is 1011 which, interpreted as an

unsigned binary number, represents the value 11 (eleven) in decimal. Start

at the number 3 (0011) and move clockwise around the circle 11 spaces and

you will once again find yourself arriving at the number 1110 (), which is

the correct result.

Any subtraction operation between four-bit numbers of opposite sign

that produces a result greater than 7 or less than is an overflow of the

four-bit format and results in an incorrect answer. For example, 3 minus

should produce the answer 9, but moving clockwise six spaces from 3 lands

us on the signed number an overflow condition has occurred, giving us

an incorrect answer.

-7:

-6

-8

-2

-5

-2

-2,

2 + 3,

310 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

REVIEW QUESTIONS 1. Perform the subtraction on the following pairs of signed numbers using

the 2’s-complement system. Express the results as signed binary num-

bers and as decimal values.

(a) (b)

2. How can arithmetic overflow be detected when signed numbers are be-

ing added? Subtracted?

10010 - 1001101001 - 11010

6-5 MULTIPLICATION OF BINARY NUMBERS

The multiplication of binary numbers is done in the same manner as the mul-

tiplication of decimal numbers. The process is actually simpler because the

multiplier digits are either 0 or 1 and so we are always multiplying by 0 or 1 and

no other digits.The following example illustrates for unsigned binary numbers:

In this example the multiplicand and the multiplier are in true binary form

and no sign bits are used. The steps followed in the process are exactly the

1001 ← multiplicand � 910

1011 ← multiplier � 1110

1001
1001 partial products

0000
1001
1100011 } final product � 9910

⎫
⎪
⎬
⎪
⎭

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 310

same as in decimal multiplication. First, the LSB of the multiplier is exam-

ined; in our example, it is a 1. This 1 multiplies the multiplicand to produce

1001, which is written down as the first partial product. Next, the second bit

of the multiplier is examined. It is a 1, and so 1001 is written for the second

partial product. Note that this second partial product is shifted one place to

the left relative to the first one. The third bit of the multiplier is 0, and 0000

is written as the third partial product; again, it is shifted one place to the left

relative to the previous partial product. The fourth multiplier bit is 1, and so

the last partial product is 1001 shifted again one position to the left.The four

partial products are then summed to produce the final product.

Most digital machines can add only two binary numbers at a time. For

this reason, the partial products formed during multiplication cannot all be

added together at the same time. Instead, they are added together two at a

time; that is, the first is added to the second, their sum is added to the third,

and so on. This process is now illustrated for the example above:

Multiplication in the 2’s-Complement System
In computers that use the 2’s-complement representation, multiplication is

carried on in the manner described above, provided that both the multipli-

cand and the multiplier are put in true binary form. If the two numbers to be

multiplied are positive, they are already in true binary form and are multi-

plied as they are. The resulting product is, of course, positive and is given a

sign bit of 0. When the two numbers are negative, they will be in 2’s-comple-

ment form. The 2’s complement of each is taken to convert it to a positive

number, and then the two numbers are multiplied. The product is kept as a

positive number and is given a sign bit of 0.

When one of the numbers is positive and the other is negative, the nega-

tive number is first converted to a positive magnitude by taking its 2’s com-

plement. The product will be in true-magnitude form. However, the product

must be negative because the original numbers are of opposite sign.Thus, the

product is then changed to 2’s-complement form and is given a sign bit of 1.

1001 ← first partial product
Add 1001 ← second partial product shifted left

11011 ← sum of first two partial products
Add

0000 ← third partial product shifted left

011011 ← sum of first three partial products
Add

1001 ← fourth partial product shifted left

1100011 ← sum of four partial products, which

equals final total product

⎫
⎬
⎭

⎫
⎬
⎭

⎫
⎬
⎭

SECTION 6-6/BINARY DIVISION 311

REVIEW QUESTION 1. Multiply the unsigned numbers 0111 and 1110.

6-6 BINARY DIVISION

The process for dividing one binary number (the dividend) by another (the div-
isor) is the same as that followed for decimal numbers, that which we usually

refer to as “long division.” The actual process is simpler in binary because

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 311

when we are checking to see how many times the divisor “goes into” the div-

idend, there are only two possibilities, 0 or 1. To illustrate, consider the fol-

lowing simple division examples:

In the first example, we have divided by which is equivalent to

in decimal.The resulting quotient is In the second example,

is divided by or in decimal.The result is

In most modern digital machines, the subtractions that are part of the di-

vision operation are usually carried out using 2’s-complement subtraction,

that is, taking the 2’s complement of the subtrahend and then adding.

The division of signed numbers is handled in the same way as multiplica-

tion. Negative numbers are made positive by complementing, and the division

is then carried out. If the dividend and the divisor are of opposite sign, the re-

sulting quotient is changed to a negative number by taking its 2’s-complement

and is given a sign bit of 1. If the dividend and the divisor are of the same sign,

the quotient is left as a positive number and is given a sign bit of 0.

6-7 BCD ADDITION

In Chapter 2, we stated that many computers and calculators use the BCD

code to represent decimal numbers. Recall that this code takes each decimal

digit and represents it by a four-bit code ranging from 0000 to 1001. The ad-

dition of decimal numbers that are in BCD form can be best understood by

considering the two cases that can occur when two decimal digits are added.

Sum Equals 9 or Less
Consider adding 5 and 4 using BCD to represent each digit:

The addition is carried out as in normal binary addition, and the sum is 1001,

which is the BCD code for 9. As another example, take 45 added to 33:

In this example, the four-bit codes for 5 and 3 are added in binary to produce

1000, which is BCD for 8. Similarly, adding the second-decimal-digit posi-

tions produces 0111, which is BCD for 7. The total is 01111000, which is the

BCD code for 78.

In the examples above, none of the sums of the pairs of decimal digits ex-

ceeded 9; therefore, no decimal carries were produced. For these cases, the BCD

addition process is straightforward and is actually the same as binary addition.

45 0100 0101 ← BCD for 45

�33 � 0011 0011 ← BCD for 33

78 0111 1000 ← BCD for 78

5 0101 ← BCD for 5

�4 � 0100 ← BCD for 4

9 1001 ← BCD for 9

0010.12 = 2.510.10 , 41002,

1010200112 = 310.

9 , 3112,10012

0011 0010.1

11/1001 100/1010.0

011 100

0011 100

11 100

0 0

312 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 312

Sum Greater than 9
Consider the addition of 6 and 7 in BCD:

The sum 1101 does not exist in the BCD code; it is one of the six forbidden or

invalid four-bit code groups. This has occurred because the sum of the two

digits exceeds 9. Whenever this occurs, the sum must be corrected by the ad-

dition of six (0110) to take into account the skipping of the six invalid code

groups:

As shown above, 0110 is added to the invalid sum and produces the correct

BCD result. Note that with the addition of 0110, a carry is produced in the

second decimal position.This addition must be performed whenever the sum

of the two decimal digits is greater than 9.

As another example, take 47 plus 35 in BCD:

The addition of the four-bit codes for the 7 and 5 digits results in an invalid

sum and is corrected by adding 0110. Note that this generates a carry of 1,

which is carried over to be added to the BCD sum of the second-position

digits.

Consider the addition of 59 and 38 in BCD:

Here, the addition of the least significant digits (LSDs) produces a sum of

This generates a carry into the next digit position to be added to

the codes for 5 and 3. Since a correction factor of 6 must be added to17 7 9,

17 = 10001.

1

59 0101 1001 ← BCD for 59

�38 � 0011 1000 ← BCD for 38

97 1001 0001 ← perform addition

0110 ← add 6 to correct

1001 0111 BCD for 97

9 7

⎫ ⎬ ⎭ ⎫ ⎬ ⎭

↓

47 0100 0111 ← BCD for 47

�35 � 0011 0101 ← BCD for 35

82 0111 1100 ← invalid sum in first digit

1 0110 ← add 6 to correct

1000 0010 ← correct BCD sum

8 2

⎫ ⎬ ⎭ ⎫ ⎬ ⎭

↑
⏐

0110 ← BCD for 6

� 0111 ← BCD for 7

1101 ← invalid sum

0110 ← add 6 for correction

0001 0011 ← BCD for 13

1 3

⎫ ⎬ ⎭ ⎫ ⎬ ⎭

6 0110 ← BCD for 6

�7 � 0111 ← BCD for 7

�13 1101 ← invalid code group for BCD

SECTION 6-7/BCD ADDITION 313

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 313

the LSD sum. Addition of this correction does not generate a carry; the carry

was already generated in the original addition.

To summarize the BCD addition procedure:

1. Using ordinary binary addition, add the BCD code groups for each digit

position.

2. For those positions where the sum is 9 or less, no correction is needed.

The sum is in proper BCD form.

3. When the sum of two digits is greater than 9, a correction of 0110 should

be added to that sum to get the proper BCD result. This case always pro-

duces a carry into the next digit position, either from the original addi-

tion (step 1) or from the correction addition.

The procedure for BCD addition is clearly more complicated than

straight binary addition. This is also true of the other BCD arithmetic opera-

tions. Readers should perform the addition of Then check the

correct procedure below.

BCD Subtraction
The process of subtracting BCD numbers is more difficult than addition. It

involves a complement-then-add procedure similar to the 2’s-complement

method. We do not cover it in this book.

275 0010 0111 0101 ← BCD for 275

�641 � 0110 0100 0001 ← BCD for 641

916 1000 1011 0110 ← perform addition

� 0110 ← add 6 to correct second digit

1001 0001 0110 ← BCD for 916

275 + 641.

314 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

REVIEW QUESTIONS 1. How can you tell when a correction is needed in BCD addition?

2. Represent and in BCD and then perform BCD addition.

Check your work by converting the result back to decimal.

2651013510

6-8 HEXADECIMAL ARITHMETIC

Hex numbers are used extensively in machine-language computer program-

ming and in conjunction with computer memories (i.e., addresses). When

working in these areas, you will encounter situations where hex numbers

must be added or subtracted.

Hex Addition
Addition of hexadecimal numbers is done in much the same way as decimal

addition, as long as you remember that the largest hex digit is F instead of 9.

The following procedure is suggested:

1. Add the two hex digits in decimal, mentally inserting the decimal equiv-

alent for those digits larger than 9.

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 314

2. If the sum is 15 or less, it can be directly expressed as a hex digit.

3. If the sum is greater than or equal to 16, subtract 16 and carry a 1 to the

next digit position.

The following examples will illustrate the procedure.

SECTION 6-8/HEXADECIMAL ARITHMETIC 315

EXAMPLE 6-6 Add the hex numbers 58 and 24.

Solution

Adding the LSDs (8 and 4) produces 12, which is C in hex. There is no carry

into the next digit position. Adding 5 and 2 produces 7.

58

+24

7C

EXAMPLE 6-7 Add the hex numbers 58 and 4B.

Solution

Start by adding 8 and B, mentally substituting decimal 11 for B. This pro-

duces a sum of 19. Because 19 is greater than 16, subtract 16 to get 3; write

down the 3 and carry a 1 into the next position. This carry is added to the 5

and 4 to produce a sum of 1010, which is then converted to hexadecimal A.

58

+4B

A3

EXAMPLE 6-8 Add 3AF to 23C.

Solution

The sum of F and C is considered as Because this is greater

than 16, subtract 16 to get which is hexadecimal B, and carry a 1 into

the second position. Add this carry to A and 3 to obtain E. There is no carry

into the MSD position.

Hex Subtraction
Remember that hex numbers are just an efficient way to represent binary

numbers.Thus, we can subtract hex numbers using the same method we used

for binary numbers. The 2’s complement of the hex subtrahend will be taken

and then added to the minuend, and any carry out of the MSD position will

be disregarded.

1110,

15 + 12 = 2710.

3AF

+23C

5EB

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 315

How do we find the 2’s complement of a hex number? One way is to con-

vert it to binary, take the 2’s complement of the binary equivalent, and then

convert it back to hex. This process is illustrated below.

There is a quicker procedure: subtract each hex digit from F; then add 1.

Let’s try this for the same hex number from the example above.

Try either of the procedures above on the hex number E63. The correct

result for the 2’s complement is 19D.

F F F

�7 �3 �A ← subtract each digit from F

8 C 5

�1 ← add 1

8 C 6 ← hex equivalent of 2’s complement

⎫⎪
⎬
⎪⎭

73A ← hex number

0111 0011 1010 ← convert to binary

1000 1100 0110 ← take 2’s complement

8C6 ← convert back to hex

316 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

CALCULATOR HINT
On a hex calculator, you can subtract the hex digits from a string of F’s and

then add one as we just demonstrated, or you can add one to the string of all

F’s and then subtract. For example, adding 1 to yields On the

hex calculator enter:

1000 - 73A = The answer is 8C6

100016.FFF16

EXAMPLE 6-9 Subtract from

Solution

First, convert the subtrahend (3A5) to its 2’s-complement form by using ei-

ther method presented above. The result is C5B. Then add this to the minu-

end (592):

Ignore the carry out of the MSD addition; the result is 1ED.We can prove that

this is correct by adding 1ED to 3A5 and checking to see that it equals

Hex Representation of Signed Numbers
The data stored in a microcomputer’s internal working memory or on a hard

disk or CD ROM are typically stored in bytes (groups of eight bits). The data

59216.

592

� C5B

1�1ED

Disregard carry.↑

59216.3A516

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 316

byte stored in a particular memory location is often expressed in hexadecimal

because it is more efficient and less error-prone than expressing it in binary.

When the data consist of signed numbers, it is helpful to be able to recognize

whether a hex value represents a positive or a negative number. For exam-

ple, Table 6-2 lists the data stored in a small segment of memory starting at

address 4000.

Each memory location stores a single byte (eight bits), which is the bi-

nary equivalent of a signed decimal number. The table also shows the hex

equivalent of each byte. For a negative data value, the sign bit (MSB) of the

binary number will be a 1; this will always make the MSD of the hex num-

ber 8 or greater. When the data value is positive, the sign bit will be a 0, and

the MSD of the hex number will be 7 or less. The same holds true no matter

how many digits are in the hex number. When the MSD is 8 or greater, the
number being represented is negative; when the MSD is 7 or less, the number is
positive.

SECTION 6-9/ARITHMETIC CIRCUITS 317

TABLE 6-2

Hex Address Stored Binary Data Hex Value Decimal Value

4000 00111010 3A

4001 11100101 E5

4002 01010111 57

4003 10000000 80 -128

+87

-29

+58

REVIEW QUESTIONS 1. Add

2. Subtract

3. Which of the following hex numbers represent positive values: 2F, 77EC,

C000, 6D, FFFF?

67F - 2A4.

67F + 2A4.

6-9 ARITHMETIC CIRCUITS

One essential function of most computers and calculators is the performance

of arithmetic operations. These operations are all performed in the arith-

metic/logic unit of a computer, where logic gates and flip-flops are combined

so that they can add, subtract, multiply, and divide binary numbers. These

circuits perform arithmetic operations at speeds that are not humanly possi-

ble. Typically, an addition operation will take less than 100 ns.

We will now study some of the basic arithmetic circuits that are used to

perform the arithmetic operations discussed earlier. In some cases, we will

go through the actual design process, even though the circuits may be com-

mercially available in integrated-circuit form, to provide more practice in

the use of the techniques learned in Chapter 4.

Arithmetic/Logic Unit
All arithmetic operations take place in the arithmetic/logic unit (ALU) of a

computer. Figure 6-4 is a block diagram showing the major elements in-

cluded in a typical ALU. The main purpose of the ALU is to accept binary

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 317

data that are stored in the memory and to execute arithmetic and logic op-

erations on these data according to instructions from the control unit.

The arithmetic/logic unit contains at least two flip-flop registers: the B
register and the accumulator register. It also contains combinational logic,

which performs the arithmetic and logic operations on the binary numbers

that are stored in the B register and the accumulator. A typical sequence of

operations may occur as follows:

1. The control unit receives an instruction (from the memory unit) specify-

ing that a number stored in a particular memory location (address) is to

be added to the number presently stored in the accumulator register.

2. The number to be added is transferred from memory to the B register.

3. The number in the B register and the number in the accumulator regis-

ter are added together in the logic circuits (upon command from the con-

trol unit). The resulting sum is then sent to the accumulator to be stored.

4. The new number in the accumulator can remain there so that another

number can be added to it or, if the particular arithmetic process is fin-

ished, it can be transferred to memory for storage.

These steps should make it apparent how the accumulator register de-

rives its name. This register “accumulates” the sums that occur when per-

forming successive additions between new numbers acquired from memory

and the previously accumulated sum. In fact, for any arithmetic problem

containing several steps, the accumulator usually contains the results of the

intermediate steps as they are completed as well as the final result when the

problem is finished.

6-10 PARALLEL BINARY ADDER

Computers and calculators perform the addition operation on two binary num-

bers at a time, where each binary number can have several binary digits. Figure

6-5 illustrates the addition of two five-bit numbers.The augend is stored in the

accumulator register; that is, the accumulator contains five FFs, storing the val-

ues 10101 in successive FFs. Similarly, the addend, the number that is to be

added to the augend, is stored in the B register (in this case, 00111).

The addition process starts by adding the least significant bits (LSBs) of

the augend and addend.Thus, which means that the sum for that

position is 0, with a carry of 1.

1 + 1 = 10,

318 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

Memory
unit

Accumulator

Logic
circuits

B register

Arithmetic/logic unit

Control
unit

FIGURE 6-4 Functional

parts of an ALU.

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 318

This carry must be added to the next position along with the augend and

addend bits in that position. Thus, in the second position,

which is again a sum of 0 and a carry of 1. This carry is added to the next

position together with the augend and addend bits in that position, and so

on, for the remaining positions, as shown in Figure 6-5.

At each step in this addition process, we are performing the addition of

three bits: the augend bit, the addend bit, and a carry bit from the previous

position. The result of the addition of these three bits produces two bits: a

sum bit, and a carry bit that is to be added to the next position. It should be

clear that the same process is followed for each bit position. Thus, if we can

design a logic circuit that can duplicate this process, then all we have to do

is to use the identical circuit for each of the bit positions. This is illustrated

in Figure 6-6.

In this diagram, variables , , , , and represent the bits of the

augend that are stored in the accumulator (which is also called the A regis-

ter). Variables , , , , and represent the bits of the addend stored

in the B register.Variables , , , , and represent the carry bits into

the corresponding positions. Variables , , , , are the sum output

bits for each position. Corresponding bits of the augend and addend are fed

to a logic circuit called a full adder (FA), along with a carry bit from the

previous position. For example, bits and are fed into full adder 1 alongB1A1

S0S1S2S3S4

C0C1C2C3C4

B0B1B2B3B4

A0A1A2A3A4

1 + 0 + 1 = 10,

SECTION 6-10/PARALLEL BINARY ADDER 319

1 0

0 0 1 1 1

1 0 1

0 0 1 1 1

00 1 1 1

1 1 1 0 0

Augend

Addend

Sum

Carry

Stored in B register

Stored in
accumulator

register

(To be added
to next

position)

FIGURE 6-5 Typical

binary addition process.

FIGURE 6-6 Block diagram of a five-bit parallel adder circuit using full adders.

B4

A4

S4

FA
#4

C5

B3

A3

S3

FA
#3

C4

B2

A2

S2

FA
#2

C3

B1

A1

S1

FA
#1

C2

B0

A0

S0

Full
 adder

#0

C1 C0

Augend bits
from A register

Addend bits
from B register

Sum appears at S4, S3, S2, S1, S0 outputs.

TOCCMC06_0131725793.QXD 12/16/2005 2:05 PM Page 319

with , which is the carry bit produced by the addition of the and

bits. Bits and are fed into full adder 0 along with . and are the

LSBs of the augend and addend, so it appears that would always have to

be 0 because there can be no carry into that position. We shall see, however,

that there will be situations when can also be 1.

The full-adder circuit used in each position has three inputs: an A bit, a

B bit, and a C bit. It also produces two outputs: a sum bit and a carry bit. For

example, full adder 0 has inputs , , and , and it produces outputs

and . Full adder 1 had , , and as inputs and and as outputs,

and so on.This arrangement is repeated for as many positions as there are in

the augend and addend. Although this illustration is for five-bit numbers, in

modern computers the numbers usually range from 8 to 64 bits.

The arrangement in Figure 6-6 is called a parallel adder because all of

the bits of the augend and addend are present and are fed into the adder

circuits simultaneously. This means that the additions in each position are

taking place at the same time. This is different from how we add on paper,

taking each position one at a time starting with the LSB. Clearly, parallel ad-

dition is extremely fast. More will be said about this later.

C2S1C1B1A1C1

S0C0B0A0

C0

C0

B0A0C0B0A0

B0A0C1

320 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

FIGURE 6-7 Truth table

for a full-adder circuit.

REVIEW QUESTIONS 1. How many inputs does a full adder have? How many outputs?

2. Assume the following input levels in Figure 6-6:

(a) What are the logic levels at the outputs of FA #2?

(b) What is the logic level at the output?C5

C0 = 0.B4B3B2B1B0 = 00111;

A4
A3A2A1A0 = 01001;

6-11 DESIGN OF A FULL ADDER

Now that we know the function of the full adder, we can design a logic circuit

that will perform this function. First, we must construct a truth table show-

ing the various input and output values for all possible cases. Figure 6-7

shows the truth table having three inputs, A, B, and and two outputs, S
and There are eight possible cases for the three inputs, and for eachCOUT.

CIN,

Augend
bit

input

A
0
0
0
0
1
1
1
1

Addend
bit

input

B
0
0
1
1
0
0
1
1

Carry
bit

input

CIN
0
1
0
1
0
1
0
1

Sum
bit

output

S
0
1
1
0
1
0
0
1

Carry
bit

output

COUT
0
0
0
1
0
1
1
1

B

S

A

FA

COUT

CIN

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 320

case the desired output values are listed. For example, consider the case

and The full adder (FA) must add these bits to pro-

duce a sum (S) of 0 and a carry () of 1.The reader should check the other

cases to be sure they are understood.

Because there are two outputs, we will design the circuitry for each out-

put individually, starting with the S output. The truth table shows that there

are four cases where S is to be a 1. Using the sum-of-products method, we can

write the expression for S as

(6-1)

We can now try to simplify this expression by factoring. Unfortunately, none

of the terms in the expression has two variables in common with any of the

other terms. However, can be factored from the first two terms, and A can

be factored from the last two terms:

The first term in parentheses should be recognized as the exclusive-OR com-

bination of B and which can be written as The second term in

parentheses should be recognized as the exclusive-NOR of B and which

can be written as Thus, the expression for S becomes

If we let this can be written as

which is simply the exclusive-OR of A and X. Replacing the expression for X,

we have

(6-2)

Consider now the output in the truth table of Figure 6-7. We can

write the sum-of-products expression for as follows:

This expression can be simplified by factoring. We will employ the trick in-

troduced in Chapter 4, whereby we will use the term three times be-

cause it has common factors with each of the other terms. Hence,

(6-3)

This expression cannot be simplified further.

Expressions (6-2) and (6-3) can be implemented as shown in Figure 6-8.

Several other implementations can be used to produce the same expressions

for S and none of which has any particular advantage over those

shown.The complete circuit with inputs A, B, and and outputs S and

represents the full adder. Each of the FAs in Figure 6-6 contains this same

circuitry (or its equivalent).

COUTCIN

COUT,

 = BCIN + ACIN + AB
 COUT = BCIN(A + A) + ACIN(B + B) + AB(CIN + CIN)

ABCIN

COUT = ABCIN + ABCIN + ABCIN + ABCIN

COUT

COUT

S = A { [B { CIN]

S = A # X + A # X = A { X

X = B { CIN,

S = A(B { CIN) + A(B { CIN)

B { CIN.

CIN,

B { CIN.CIN,

S = A(BCIN + BCIN) + A(B CIN + BCIN)

A

S = A BCIN + ABCIN + ABCIN + ABCIN

COUT

CIN = 1.B = 0,A = 1,

SECTION 6-11/DESIGN OF A FULL ADDER 321

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 321

K-Map Simplification
We simplified the expressions for S and using algebraic methods.The K-

map method can also be used. Figure 6-9(a) shows the K map for the S output.

This map has no adjacent 1s, and so there are no pairs or quads to loop.Thus,

the expression for S cannot be simplified using the K map. This points out a

limitation of the K-map method compared with the algebraic method. We

were able to simplify the expression for S through factoring and the use of

XOR and XNOR operations.

The K map for the output is shown in Figure 6-9(b). The three pairs

that are looped will produce the same expression obtained from the alge-

braic method.

Half Adder
The FA operates on three inputs to produce a sum and carry output. In

some cases, a circuit is needed that will add only two input bits, to produce

COUT

COUT

322 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

S

A

B

COUT

FA

CIN

FIGURE 6-9 K mappings

for the full-adder outputs.

FIGURE 6-8 Complete

circuitry for a full adder.

0 1

1 0

0 1

1 0

AB

CIN CIN

AB

AB

AB

0 0

0 1

1

0 1

AB

CIN CIN

AB

AB

AB

K map for S K map for COUT

S = ABCIN + ABCIN + ABCIN + ABCIN

(a) (b)

COUT = BCIN + ACIN + AB

1

TOCCMC06_0131725793.QXD 12/21/05 11:14 AM Page 322

a sum and carry output. An example would be the addition of the LSB po-

sition of two binary numbers where there is no carry input to be added. A

special logic circuit can be designed to take two input bits, A and B, and to

produce sum (S) and carry () outputs.This circuit is called a half adder
(HA). Its operation is similar to that of an FA except that it operates on

only two bits. We shall leave the design of the HA as an exercise at the end

of the chapter.

6-12 COMPLETE PARALLEL ADDER WITH REGISTERS

In a computer, the numbers that are to be added are stored in FF registers.

Figure 6-10 shows the diagram of a four-bit parallel adder, including the

storage registers. The augend bits through are stored in the accumu-

lator (A register); the addend bits through are stored in the B regis-

ter. Each of these registers is made up of D flip-flops for easy transfer of

data.

The contents of the A register (i.e., the binary number stored in

through) is added to the contents of the B register by the four FAs, and

the sum is produced at outputs through . is the carry out of the fourth

FA, and it can be used as the carry input to a fifth FA, or as an overflow bit to

indicate that the sum exceeds 1111.

Note that the sum outputs are connected to the D inputs of the A regis-

ter. This will allow the sum to be parallel-transferred into the A register on

the positive-going transition (PGT) of the TRANSFER pulse. In this way, the

sum can be stored in the A register.

Also note that the D inputs of the B register are coming from the com-

puter’s memory, so that binary numbers from memory will be parallel-

transferred into the B register on the PGT of the LOAD pulse. In most com-

puters, there is also provision for parallel-transferring binary numbers from

memory into the accumulator (A register). For simplicity, the circuitry nec-

essary for performing this transfer is not shown in this diagram; it will be

addressed in an end-of-chapter exercise.

Finally, note that the A register outputs are available for transfer to

other locations such as another computer register or the computer’s memory.

This will make the adder circuit available for a new set of numbers.

Register Notation
Before we go through the complete process of how this circuit adds two

binary numbers, it will be helpful to introduce some notation that makes it

easy to describe the contents of a register and data transfer operations.

Whenever we want to give the levels that are present at each FF in a reg-

ister or at each output of a group of outputs, we will use brackets, as illus-

trated below:

This is the same as saying that In other

words, think of [A] as representing “the contents of register A.”

Whenever we want to indicate the transfer of data to or from a register,

we will use an arrow, as illustrated below:

[B] : [A]

A0 = 1.A1 = 1,A2 = 0,A3 = 1,

[A] = 1011

C4S0S3

A0

A3

B0B3

A0A3

COUT

SECTION 6-12/COMPLETE PARALLEL ADDER WITH REGISTERS 323

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 323

This means that the contents of the B register have been transferred to the

A register.The old contents of the A register will be lost as a result of this op-

eration, and the B register will be unchanged. This type of notation is very

common, especially in data books describing microprocessor and microcon-

troller operations. In many ways, it is very similar to the notation used to re-

fer to bit-array data objects using hardware description languages.

324 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

FIGURE 6-10 (a) Complete four-bit parallel adder with registers; (b) signals used to add

binary numbers from memory and store their sum in the accumulator.

CLEAR

LOAD

TRANSFER

t1 t2 t3 t4 t5
(b)

CLK

CLR

D A3

CLK

CLR

D A2

CLK

CLR

D A1

CLK

CLR

D A0

CLEAR

LOAD

TRANSFER

(a)

FA FA FA FA

C4

S3 S2 S1 S0

C3 C2 C1
C0

CLK
D

B0

CLK
D

B1

CLK
D

B2

CLK
D

B3

From memory

B register

A register

4-bit adder

Accumulator outputs

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 324

Sequence of Operations
We will now describe the process by which the circuit of Figure 6-10 will add

the binary numbers 1001 and 0101. Assume that that is, there is no

carry into the LSB position.

1. A pulse is applied to the asynchronous inputs

of each FF in register A. This occurs at time

2. This first binary number is transferred from memory (M) to

the B register. In this case, the binary number 1001 is loaded into regis-

ter B on the PGT of the LOAD pulse at

3. With and the full adders produce a

sum of 1001; that is, These sum outputs are transferred into

the A register on the PGT of the TRANSFER pulse at This makes

4. The second binary number, 0101, is transferred from memory

into the B register on the PGT of the second LOAD pulse at This

makes

5. With and the FAs produce

These sum outputs are transferred into the A register when the second

TRANSFER pulse occurs at Thus,

6. At this point, the sum of the two binary numbers is present in the accu-

mulator. In most computers, the contents of the accumulator, [A], will

usually be transferred to the computer’s memory so that the adder cir-

cuit can be used for a new set of numbers. The circuitry that performs

this transfer is not shown in Figure 6-10.[A] : [M]

[A] = 1110.t5.

[S] = 1110.[A] = 1001,[B] = 0101[S] : [A].

[B] = 0101.

t4.

[M] : [B].

[A] = 1001.

t3.

[S] = 1001.

[A] = 0000,[B] = 1001[S]* : [A].

t2.

[M] : [B].

t1.

(CLR)CLEAR[A] = 0000.

C0 = 0;

SECTION 6-13/CARRY PROPAGATION 325

REVIEW QUESTIONS 1. Suppose that four different four-bit numbers are to be taken from mem-

ory and added by the circuit of Figure 6-10. How many pulses will

be needed? How many TRANSFER pulses? How many LOAD pulses?

2. Determine the contents of the A register after the following sequence of

operations: [S] : [A].[1110] : [B],[S] : [A],[0110] : [B],[A] = 0000,

CLEAR

6-13 CARRY PROPAGATION

The parallel adder of Figure 6-10 performs additions at a relatively high

speed because it adds the bits from each position simultaneously. However,

its speed is limited by an effect called carry propagation or carry ripple,

which can best be explained by considering the following addition:

Addition of the LSB position produces a carry into the second position. This

carry, when added to the bits of the second position, produces a carry into

0111

+ 0001

1000

*Even though S is not a register, we will use [S] to represent the group of S outputs.

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 325

the third position. The latter carry, when added to the bits of the third posi-

tion, produces a carry into the last position.The key point to notice in this ex-

ample is that the sum bit generated in the last position (MSB) depended on

the carry that was generated by the addition in the first position (LSB).

Looking at this from the viewpoint of the circuit of Figure 6-10, out of

the last full adder depends on out of the first full adder. But the signal

must pass through three FAs before it produces . What this means is that

the output will not reach its correct value until has propagated through

the intermediate FAs. This represents a time delay that depends on the pro-

pagation delay produced in each FA. For example, if each FA has a propaga-

tion delay of 40 ns, then will not reach its correct level until 120 ns after

is generated. This means that the add command pulse cannot be applied

until 160 ns after the augend and addend numbers are present in the FF

registers (the extra 40 ns is due to the delay of the LSB full adder, which

generates).

Obviously, the situation becomes much worse if we extend the adder cir-

cuitry to add a greater number of bits. If the adder were handling 32-bit

numbers, the carry propagation delay could be The add

pulse could not be applied until at least after the numbers were pres-

ent in the registers.

This magnitude of delay is prohibitive for high-speed computers.

Fortunately, logic designers have come up with several ingenious schemes

for reducing this delay. One of the schemes, called look-ahead carry, utilizes

logic gates to look at the lower-order bits of the augend and addend to see if

a higher-order carry is to be generated. For example, it is possible to build a

logic circuit with , , , , , and as inputs and as an output. This

logic circuit would have a shorter delay than is obtained by the carry propa-

gation through the FAs. This scheme requires a large amount of extra cir-

cuitry but is necessary to produce high-speed adders. The extra circuitry is

not a significant consideration with the present use of integrated circuits.

Many high-speed adders available in integrated-circuit form utilize the look-

ahead carry or a similar technique for reducing overall propagation delays.

6-14 INTEGRATED-CIRCUIT PARALLEL ADDER

Several parallel adders are available as ICs. The most common is a four-bit

parallel adder IC that contains four interconnected FAs and the look-ahead

carry circuitry needed for high-speed operation. The 7483A, 74LS83A,

74LS283, and 74HC283 are all four-bit parallel-adder chips.

Figure 6-11(a) shows the functional symbol for the 74HC283 four-bit par-

allel adder (and its equivalents). The inputs to this IC are two four-bit num-

bers, and , and the carry, , into the LSB position. The

outputs are the sum bits and the carry, , out of the MSB position. The sum

bits are labeled , where is the Greek capital letter sigma. The

label is just a common alternative to the S label for a sum bit.

Cascading Parallel Adders
Two or more IC adders can be connected together (cascaded) to accomplish

the addition of larger binary numbers. Figure 6-11(b) shows two 74HC283

adders connected to add two 8-bit numbers and

.The adder on the right adds the lower-order bits of the num-

bers. The adder on the left adds the higher-order bits plus the carry out of

the lower-order adder.The eight sum outputs are the resultant sum of the two

C4

B0B1B2B3B4B5

B6B7A0A1A2A3A4A5A6A7

©©©3©2©1©0

C4

C0B0B1B2B3A0A1A2A3

C3A0A1A2B0B1B2

1.28 ms

1280 ns = 1.28 ms.

C1

C1

S3

C1S3

S3

C1C1

S3

326 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 326

8-bit numbers. is the carry out of the MSB position. It can be used as the

carry input to a third adder stage if larger binary numbers are to be added.

The look-ahead carry feature of the 74HC283 speeds up the operation of

this two-stage adder because the logic level at , the carry out of the lower-

order stage, is generated more rapidly than it would be if there were no look-

ahead carry circuitry on the 74HC283 chip. This allows the higher-order

stage to produce its sum outputs more quickly.

C4

C8

SECTION 6-14/INTEGRATED-CIRCUIT PARALLEL ADDER 327

FIGURE 6-11 (a) Block

symbol for the 74HC283

four-bit parallel adder;

(b) cascading two 74HC283s.

B3 B2 B1 B0

A3 A2 A1 A0

Σ3

4-bit
parallel adder

74HC283
C0

C4

(a)

B7 B6 B5 B4

A7 A6 A5 A4

74HC283
(high-order adder)

C4
C8

B3 B2 B1 B0

A3 A2 A1 A0

C0

8-bit augend

8-bit addend

(b)

74HC283
(low-order adder)

Σ2 Σ1 Σ0

Σ7 Σ6 Σ5 Σ4 Σ3 Σ2 Σ1 Σ0

EXAMPLE 6-10 Determine the logic levels at the inputs and outputs of the eight-bit adder in

Figure 6-11(b) when is added to

Solution

First, convert each number to an eight-bit binary number:

 72 = 01001000

 137 = 10001001

13710.7210

TOCCMC06_0131725793.QXD 12/16/2005 2:05 PM Page 327

These two binary values will be applied to the A and B inputs; that is, the A
inputs will be 10001001 from left to right, and the B inputs will be 01001000

from left to right.The adder will produce the binary sum of the two numbers:

The sum outputs will read 11010001 from left to right. There is no overflow

into the bit, and so it will be a 0.C8

[A] = 10001001

[B] = 01001000

[©] = 11010001

328 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

REVIEW QUESTIONS 1. How many 74HC283 chips are needed to add two 20-bit numbers?

2. If a 74HC283 has a maximum propagation delay of 30 ns from to ,

what will be the total propagation delay of a 32-bit adder constructed

from 74HC283s?

3. What will be the logic level at in Example 6-10?C4

C4C0

6-15 2’s-COMPLEMENT SYSTEM

Most modern computers use the 2’s-complement system to represent nega-

tive numbers and to perform subtraction.The operations of addition and sub-

traction of signed numbers can be performed using only the addition opera-

tion if we use the 2’s-complement form to represent negative numbers.

Addition
Positive and negative numbers, including the sign bits, can be added to-

gether in the basic parallel-adder circuit when the negative numbers are in

2’s-complement form. This is illustrated in Figure 6-12 for the addition of

and . The is represented in its 2’s-complement form as 1101, where the

first 1 is the sign bit; the is represented as 0110, with the first zero as the

sign bit. These numbers are stored in their corresponding registers. The four-

bit parallel adder produces sum outputs of 0011, which represents .The

output is 1, but remember that it is disregarded in the 2’s-complement

method.

Subtraction
When the 2’s-complement system is used, the number to be subtracted (the

subtrahend) is changed to its 2’s complement and then added to the minuend

(the number the subtrahend is being subtracted from). For example, we can

assume that the minuend is already stored in the accumulator (A register).

The subtrahend is then placed in the B register (in a computer it would be

transferred here from memory) and is changed to its 2’s-complement form

before it is added to the number in the A register. The sum outputs of the

adder circuit now represent the difference between the minuend and the sub-

trahend.

The parallel-adder circuit that we have been discussing can be adapted

to perform the subtraction described above if we provide a means for taking

C4+3

+6

-3+6

-3

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 328

the 2’s complement of the B register number.The 2’s complement of a binary

number is obtained by complementing (inverting) each bit and then adding

1 to the LSB. Figure 6-13 shows how this can be accomplished. The inverted
outputs of the B register are used rather than the normal outputs; that is,

and are fed to the adder inputs (remember, is the sign bit).

This takes care of complementing each bit of the B number. Also, is made

a logical 1, so that it adds an extra 1 into the LSB of the adder; this accom-

plishes the same effect as adding 1 to the LSB of the B register for forming

the 2’s complement.

The outputs to represent the results of the subtraction operation.

Of course, is the sign bit of the result and indicates whether the result is

� or �. The carry output is again disregarded.

To help clarify this operation, study the following steps for subtracting

from :

1. is stored in the A register as 0100.

2. is stored in the B register as 0110.

3. The inverted outputs of the B-register FFs (1001) are fed to the adder.

+6

+4

+4+6

C4

©3

©0©3

C0

B3B3B0, B1, B2,

SECTION 6-15/2’S-COMPLEMENT SYSTEM 329

Σ0

B3 B2 B1 B0

4-bit
parallel adder

74LS283
C0

0 0 1 1

0 1 1 0

1 1 0 1

A3 A2 A1 A0

From A register

From B register

+3
(resultant sum)

01

C4

+6
(addend)

2's-complement
representation of –3 (augend)

Σ1Σ2Σ3

FIGURE 6-12 Parallel

adder used to add and sub-

tract numbers in 2’s-com-

plement system.

FIGURE 6-13 Parallel

adder used to perform

subtraction () using

the 2’s-complement system.

The bits of the subtrahend

(B) are inverted, and

to produce the

2’s complement.

C0 = 1

A - B

Σ0Σ1Σ2Σ3

A3 A2 A1 A0

B3 B2 B1 B0

4-bit
parallel adder

74LS283

From A register

C0 = 1

Represents DIFFERENCE
output

Inverted
outputs of
B register

C4
(disregard)

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 329

4. The parallel-adder circuitry adds to along with a

carry, into the LSB. The operation is shown below.

The result at the sum outputs is 1110. This actually represents the result of

the subtraction operation, the difference between the number in the A regis-

ter and the number in the B register, that is, Because the sign bit

� 1, it is a negative result and is in 2’s-complement form. We can verify that

1110 represents by taking its 2’s complement and obtaining :

Combined Addition and Subtraction
It should now be clear that the basic parallel-adder circuit can be used to

perform addition or subtraction depending on whether the B number is left

unchanged or is converted to its 2’s complement. A complete circuit that can

perform both addition and subtraction in the 2’s-complement system is

shown in Figure 6-14.

This adder/subtractor circuit is controlled by the two control signals

ADD and SUB.When the ADD level is HIGH, the circuit performs addition of

the numbers stored in the A and B registers. When the SUB level is HIGH,

the circuit subtracts the B-register number from the A-register number. The

operation is described as follows:

1. Assume that and The disables (inhibits)

AND gates 2, 4, 6, and 8, holding their outputs at 0. The enables
AND gates 1, 3, 5, and 7, allowing their outputs to pass the , , , and

levels, respectively.

2. The levels to pass through the OR gates into the four-bit parallel adder

to be added to the bits to .The sum appears at the outputs to .

3. Note that causes a carry into the adder.

4. Now assume that and The inhibits AND

gates 1, 3, 5, and 7. The enables AND gates 2, 4, 6, and 8, so that

their outputs pass the and levels, respectively.

5. The levels to pass through the OR gates into the adder to be added

to the bits to . Note also that is now 1. Thus, the B-register num-

ber has essentially been converted to its 2’s complement.

6. The difference appears at the outputs to .

Circuits like the adder/subtractor of Figure 6-14 are used in computers be-

cause they provide a relatively simple means for adding and subtracting signed

binary numbers. In most computers, the outputs present at the output lines

are usually transferred into the A register (accumulator), so that the results of

the addition or subtraction always end up stored in the A register. This is ac-

complished by applying a TRANSFER pulse to the CLK inputs of register A.

©

©3©0

C0A3A0

B3B0

B3B0, B1, B2,

SUB = 1

ADD = 0SUB = 1.ADD = 0

C0 = 0SUB = 0

©3©0A3A0

B3B0

B3

B2B1B0

ADD = 1

SUB = 0SUB = 0.ADD = 1

1110

0001

+ 1

0010 = +210

+210-210

[A] - [B].

1 ← C0

0100 ← [A]

� 1001 ← []

1110 ← [�] � [A] � [B]

B

C0 = 1,

[B] = 1001[A] = 0100

330 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 330

SECTION 6-16/ALU INTEGRATED CIRCUITS 331

FIGURE 6-14 Parallel

adder/subtractor using the

2’s-complement system.

74LS283C4

C0

248 6

7 5 3 1

ADD

SUB

D D D D
CLKCLKCLKCLK

Transfer

pulse

12 11 10 9

A3 A2 A1 A0

B3 B2 B1 B0

Σ0Σ1Σ2Σ3

A3 A2 A1 A0

B3 B3 B2 B2 B1 B1 B0 B0

B register

REVIEW QUESTIONS 1. Why does have to be a 1 in order to use the adder circuit in Figure

6-13 as a subtractor?

2. Assume that and in Figure 6-14. If and

determine the logic levels at the OR gate outputs.

3. Repeat question 2 for

4. True or false: When the adder/subtractor circuit is used for subtraction,

the 2’s complement of the subtrahend appears at the input of the adder.

SUB = 1.ADD = 0,

SUB = 0,

ADD = 1[B] = 0010[A] = 0011

C0

6-16 ALU INTEGRATED CIRCUITS

Several integrated circuits are called arithmetic/logic units (ALUs), even

though they do not have the full capabilities of a computer’s arithmetic/logic

unit.These ALU chips are capable of performing several different arithmetic

and logic operations on binary data inputs. The specific operation that an

ALU IC is to perform is determined by a specific binary code applied to its

function-select inputs. Some of the ALU ICs are fairly complex, and it would

require a great amount of time and space to explain and illustrate their op-

eration. In this section, we will use a relatively simple, yet useful, ALU chip

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 331

to show the basic concepts behind all ALU chips. The ideas presented here

can then be extended to the more complex devices.

The 74LS382/HC382 ALU
Figure 6-15(a) shows the block symbol for an ALU that is available as a

74LS382 (TTL) and as a 74HC382 (CMOS). This 20-pin IC operates on two

four-bit input numbers, and , to produce a four-bit output

result . This ALU can perform eight different operations. At any

given time, the operation that it is performing depends on the input code ap-

plied to the function-select inputs . The table in Figure 6-15(b) shows

the eight available operations.We will now describe each of these operations.

CLEAR OPERATION With the ALU will clear all of the

bits of the F output so that

ADD OPERATION With the ALU will add to

to produce their sum at . For this operation, is the

carry into the LSB position, and it must be made a 0. is the carry

output from the MSB position. OVR is the overflow indicator output; it

detects overflow when signed numbers are being used. OVR will be a 1

when an add or a subtract operation produces a result that is too large to

fit into four bits (including the sign bit).

SUBTRACT OPERATIONS With the ALU will subtract

the A input number from the B input number.With the ALU

will subtract B from A. In either case, the difference appears at .

Note that the subtract operations require that the input be a 1.CN

F3F2F1F0

S2S1S0 = 010,

S2S1S0 = 001,

CN+4

CNF3F2F1F0B3B2B1B0

A3A2A1A0S2S1S0 = 011,

F3F2F1F0 = 0000.

S2S1S0 = 000,

S2S1S0

F3F2F1F0

B3B2B1B0A3A2A1A0

332 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

S2

S1

S0

CN

B3

B2

B1

B0

B

A3

A2

A1

A0

F0

F2

F1

F3

F

CN+4

(a)

ALU

A

74LS382/
74HC382

OVR
S

0
0
0
0
1
1
1
1

S2

0
0
1
1
0
0
1
1

S1

0
1
0
1
0
1
0
1

S0

Function Table

(b)

A = 4-bit input number

B = 4-bit input number

CN = carry into LSB position

S = 3-bit operation select inputs

F = 4-bit output number

CN+4 = carry out of MSB position

OVR = overflow indicator

CLEAR
B minus A
A minus B
A plus B
A ⊕ B
A + B
AB
PRESET

F3F2F1F0 = 0000

Needs CN = 0
Exclusive-OR
OR
AND
F3F2F1F0 = 1111

Needs CN = 1

Notes: S inputs select operation.
OVR = 1 for signed-number overflow.

Inputs

Outputs
Operation Comments

FIGURE 6-15 (a) Block symbol for 74LS382/HC382 ALU chip; (b) function table showing

how select inputs (S) determine what operation is to be performed on A and B inputs.

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 332

XOR OPERATION With the ALU will perform a bit-by-

bit XOR operation on the A and B inputs. This is illustrated below for

and

The result is

OR OPERATION With the ALU will perform a bit-by-bit

OR operation on the A and B inputs. For example, with

and the ALU will generate a result of

AND OPERATION With the ALU will perform a bit-by-bit

AND operation on the A and B inputs. For example, with

and the ALU will generate a result of

PRESET OPERATIONS With the ALU will set all of the

bits of the output so that F3F2F1F0 = 1111.

S2S1S0 = 111,

F3F2F1F0 = 0100.B3B2B1B0 = 1100,

A3A2A1A0 = 0110

S2S1S0 = 110,

F3F2F1F0 = 1110.B3B2B1B0 = 1100,

A3A2A1A0 = 0110

S2S1S0 = 101,

F3F2F1F0 = 1010.

 A0 { B0 = 0 { 0 = 0 = F0

 A1 { B1 = 1 { 0 = 1 = F1

 A2 { B2 = 1 { 1 = 0 = F2

 A3 { B3 = 0 { 1 = 1 = F3

B3B2B1B0 = 1100.A3A2A1A0 = 0110

S2S1S0 = 100,

SECTION 6-16/ALU INTEGRATED CIRCUITS 333

EXAMPLE 6-11 (a) Determine the 74HC382 outputs for the following inputs:

and

(b) Change the select code to 011 and repeat.

Solution

(a) From the function table in Figure 6-15(b), 010 selects the () opera-

tion. The ALU will perform the 2’s-complement subtraction by comple-

menting B and adding it to A and . Note that is needed to com-

plete the 2’s complement of B effectively.

As always in 2’s-complement subtraction, the CARRY OUT of the MSB is

discarded. The correct result of the () operation appears at the F
outputs.

The OVR output is determined by considering the input numbers to be

signed numbers. Thus, we have and

The result of the subtract operation is

which is correct. Therefore, no overflow has occurred, and

If the result had been negative, it would have been in 2’s-complement form.

(b) A select code of 011 will produce the sum of the A and B inputs. However,

because there will be a carry of 1 added into the LSB position.

This will produce a result of which is 1 greater than

(). The and OVR outputs will both be 0. For the correct sum to

appear at F, the input must be at 0.CN

CN+4A + B
F3F2F1F0 = 0110,

CN = 1,

OVR = 0.+310,

F3F2F1F0 = 0011 =0001 = +110.

B3B2B1B0 =A3A2A1A0 = 0100 = +410

A - B

1 ← C

F3 F2 F1 F0CN + 4

N

0100 ← A
� 1110 ←

10011

B

CN = 1CN

A - B

CN = 1.B3B2B1B0 = 0001,A3A2A1A0 = 0100,

S2S1S0 = 010,

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 333

Expanding the ALU
A single 74LS382 or 74HC382 operates on four-bit numbers. Two or more of

these chips can be connected together to operate on larger numbers. Figure

6-16 shows how two four-bit ALUs can be combined to add two eight-bit num-

bers, and , to produce the output sum

. Study the circuit diagram and note the following points:

1. Chip Z1 operates on the four lower-order bits of the two input numbers.

Chip Z2 operates on the four higher-order bits.

2. The sum appears at the F outputs of Z1 and Z2. The lower-order bits ap-

pear at Z1, and the higher-order bits appear at Z2.

3. The input of Z1 is the carry into the LSB position. For addition, it is

made a 0.

4. The carry output of Z1 is connected to the carry input [] of Z2.

5. The OVR output of Z2 is the overflow indicator when signed eight-bit

numbers are being used.

6. The corresponding select inputs of the two chips are connected together

so that Z1 and Z2 are always performing the same operation. For addi-

tion, the select inputs are shown as 011.

CN[CN+4]

CN

©7©6©5©4©3©2©1©0

A7A6 A5 A4 A3 A2A1A0B7B6B5B4B3B2B1B0

334 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

EXAMPLE 6-12 How would the arrangement of Figure 6-16 have to be changed in order to

perform the subtraction (B - A)?

74HC382

Z2

74HC382

Z1

0

0
1

1

Notes: Z1 adds lower-order bits.
Z2 adds higher-order bits.
Σ7–Σ0 = 8-bit sum.
OVR of Z2 is 8-bit overflow indicator.

B7 B6 B5 B4

A7 A6 A5 A4

S2 S1 S0 CN B3 B2 B1 B0 A3 A2 A1 A0

OVR F2F3 F1 F0CN+4

Σ7 Σ6 Σ5 Σ4

B3 B2 B1 B0

A3 A2 A1 A0

S2 S1 S0 CN B3 B2 B1 B0 A3 A2 A1 A0

OVR F2 F1 F0CN+4

Σ3 Σ2 Σ1 Σ0

F3

FIGURE 6-16 Two 74HC382 ALU chips connected as an eight-bit adder.

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 334

Solution

The select input code [see the table in Figure 6-15(b)] must be changed to

001, and the input of Z1 must be made a 1.

Other ALUs
The 74LS181/HC181 is another four-bit ALU. It has four select inputs that

can select any of 16 different operations. It also has a mode input bit that can

switch between logic operations and arithmetic operations (add and sub-

tract).This ALU has an output that is used to compare the magnitudes

of the A and B inputs. When the two input numbers are exactly equal, the

output will be a 1; otherwise, it is a 0.

The 74LS881/HC881 is similar to the 181 chip, but it has the capability of

performing some additional logic operations.

A = B

A = B

CN

SECTION 6-17/TROUBLESHOOTING CASE STUDY 335

REVIEW QUESTIONS 1. Apply the following inputs to the ALU of Figure 6-15, and determine the

outputs:

2. Change the select code to 011 and to 0, and repeat review question 1.

3. Change the select code to 110, and repeat review question 1.

4. Apply the following inputs to the circuit of Figure 6-16, and determine

the outputs:

5. Change the select code to 111, and repeat review question 4.

6. How many 74HC382s are needed to add two 32-bit numbers?

A = 00011000.B = 01010011,

CN

CN = 1.B3B2B1B0 = 1001,A3 A2A1A0 = 1110,S2S1S0 = 001,

6-17 TROUBLESHOOTING CASE STUDY

A technician is testing the adder/subtractor redrawn in Figure 6-17 and

records the following test results for the various operating modes:

Mode 1: ADD � 0, SUB � 0. The sum outputs are always equal to the

number in the A register plus one. For example, when the

sum is This is incorrect because the OR outputs and

should all be 0 in this mode to produce

Mode 2: Add � 1, SUB � 0. The sum is always 1 more than it should be.

For example, with and the sum output is 0111 in-

stead of 0110.

Mode 3: Add � 0, SUB � 1. The outputs are always equal to

as expected.

When she examines these test results, the technician sees that the sum out-

puts exceed the expected results by 1 for the first two modes of operation. At

first, she suspects a possible fault in one of the LSB inputs to the adder, but

she dismisses this because such a fault would also affect the subtraction op-

eration, which is working correctly. Eventually, she realizes that there is an-

other fault that could add an extra 1 to the results for the first two modes

without causing an error in the subtraction mode.

Recall that is made a 1 in the subtraction mode as part of the 2’s-com-

plement operation on [B]. For the other modes, is to be a 0.The technicianC0

C0

[A] - [B],©

[B] = 0100,[A] = 0010

[©] = [A].

C0[©] = 0111.

[A] = 0110,

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 335

checks the connection between the SUB signal and the input to the adder

and finds that it is open due to a bad solder connection. This open connec-

tion explains the observed results because the TTL adder responds as if

were a constant logic 1, causing an extra 1 to be added to the result in modes

1 and 2. The open connection would have no effect on mode 3 because is

supposed to be a 1 anyway.

C0

C0

C0

336 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

FIGURE 6-17 Parallel

adder/subtractor circuit.

74LS283
4-bit parallel adderC4

A3 A2 A1 A0
Σ3 Σ2 Σ1 Σ0

C0

B0B1B2B3

12 11 10 9

248 6

7 5 3 1

ADD

SUB

B3 B3 B2 B2 B1 B1 B0 B0

X

EXAMPLE 6-13 Consider again the adder/subtractor circuit. Suppose that there is a break in

the connection path between the SUB input and the AND gates at point X in

Figure 6-17. Describe the effects of this open on the circuit operation for

each mode.

Solution

First, realize that this fault will produce a logic 1 at the affected input of

AND gates 2, 4, 6, and 8, which will permanently enable each of these gates

to pass its input to the following OR gate as shown.

Mode 1: ADD � 0, SUB � 0. The fault will cause the circuit to perform

subtraction—almost. The 1’s complement of [B] will reach the OR gate

outputs and be applied to the adder along with [A]. With the 2’s

complement of [B] will not be complete; it will be short by 1. Thus, the

adder will produce To illustrate, let’s try

and The adder will add as follows:

1’s complement of [B] � 1100

[A] � 0110

result � 1�0010

Disregard carry.↑

[B] = +3 = 0011.

[A] = +6 = 0110[A] - [B] - 1.

C0 = 0,

B

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 336

The result is instead of as it would be for normal

subtraction.

Mode 2: ADD � 1, SUB � 0. With AND gates 1, 3, 5, and 7

will pass the B inputs to the following OR gate. Thus, each OR gate will

have a and a B at its inputs, thereby producing a 1 output. For exam-

ple, the inputs to OR gate 9 will be coming from AND gate 2 (because

of the fault), and coming from AND gate 1 (because). Thus,

OR gate 9 will produce an output of which will always be a

logic 1.

The adder will add the 1111 from the OR gates to the [A] to produce

a sum that is 1 less than [A]. Why? Because

Mode 3: ADD � 0, SUB � 1. This mode will work correctly because

is supposed to enable AND gates 2, 4, 6, and 8 anyway.

6-18 USING TTL LIBRARY FUNCTIONS WITH ALTERA

The adder and ALU ICs that we have looked at in this chapter are just a few

of the many MSI chips that have served as the building blocks of digital

systems for decades. Whenever a technology serves such a long and useful

lifetime, it has a lasting impact on the field and the people who use it. TTL

integrated circuits certainly fall into this category and continue in various

forms today. Experienced engineers and technicians (we want to avoid the

word old) are familiar with the standard parts. Existing designs can be re-

manufactured and upgraded using the same basic circuits if they can be

implemented in a VLSI PLD. Data sheets for these devices are readily avail-

able, and studying these old TTL parts is still an excellent way to learn the

fundamentals of any digital system.

For all of these reasons, the Altera development system offers what they

refer to as old-style macrofunctions. A macrofunction is a self-contained de-

scription of a logic circuit with all its inputs, outputs, and operational charac-

teristics defined. In other words, they have gone to the trouble of writing the

code necessary to get a PLD to emulate the operation of many conventional

TTL MSI devices. All the designer needs to know is how to hook it into the

rest of the system. In this section, we will expand on the concepts of logic

primitives and libraries presented in Chapter 5 to see how we can use stan-

dard MSI parts in our designs.

The 74382 arithmetic logic unit (ALU) is a fairly sophisticated IC. The

task of describing its operation using HDL code is challenging but certainly

within our reach. Refer again to the examples of this IC and its operation,

which were covered in Section 6-16. Specifically, look at Figure 6-16, which

shows how to cascade two four-bit ALU chips to make an eight-bit ALU that

could serve as the heart of a microcontroller’s central processing unit (CPU).

Figure 6-18 shows the graphic method of describing the eight-bit circuit us-

ing Altera’s graphic description file and macrofunction blocks from its li-

brary of components. The 74382 symbols are simply chosen from the list in

the macrofunction library and placed on the screen. Wiring these chips to-

gether is simple and intuitive.

It is possible to connect standard library MSI parts using only HDL. Just

as we demonstrated connecting flip-flop primitives together to make more

complex circuits, we can connect ICs such as the 74382 to other parts. The

names of all the input and output ports on these standard parts are defined

SUB = 1

11112 = -110.

B0 + B0,

ADD = 1B0

B0

B

ADD = 1,

0011 = +3,0010 = +2

SECTION 6-18/USING TTL LIBRARY FUNCTIONS WITH ALTERA 337

TOCCMC06_0131725793.QXD 12/5/05 8:07 PM Page 337

in a function prototype, which can be found in the help menu. The function

prototype given for a 74382 is

AHDL Function Prototype (port name and order also apply to Ver-
ilog HDL):

FUNCTION 74382 (s[2..0], a[3..0], b[3..0], cin)

RETURNS (ovr, cn4, f[3..0]);

338 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

Mode 0

CIN

OVRZ2

ALU 74382

Bin 7

Bin 6

Bin 5

Bin 4

Ain 7

Ain 6

Ain 5

Ain 4

caryout

ovrflo

sumout 7

sumout 6

sumout 5

sumout 4

Ain 3

Ain 2

Ain 1

Ain 0

sumout 3

sumout 2

sumout 1

sumout 0

caryin

Mode 1

Mode 2

Bin 3

Bin 2

Bin 1

Bin 0

S2 S1 S0 A3 B3 A2 B2 A1 B1 A0 B0

CN4 F3 F2 F1 F0

CIN

OVRZ1

ALU 74382

S2 S1 S0 A3 B3 A2 B2 A1 B1 A0 B0

CN4 F3 F2 F1 F0

FIGURE 6-18 An Altera graphic description file of an eight-bit ALU.

REVIEW QUESTIONS 1. Where can you find information about using a 74283 full adder in your

HDL design?

2. What is a macrofunction?

6-19 LOGICAL OPERATIONS ON BIT ARRAYS

In the previous section, we examined the use of macrofunctions to build sys-

tems from standard parts. Now we need to practice writing HDL code rather

than using a macrofunction to make an adder similar to Figure 6-6. In this

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 338

section, we will expand our understanding of the HDL techniques in two

main areas: specifying groups of bits in an array and using logical operations

to combine arrays of bits using Boolean expressions.

In Section 6-12, we discussed register notation, which makes it easy to

describe the contents of registers and signals consisting of multiple bits.The

HDLs use arrays of bits in a similar notation to describe signals, as we dis-

cussed in Chapter 4. For example, in AHDL, the four-bit signal named d is de-

fined as:

VARIABLE d[3..0] :NODE.

In VHDL, the same data format is expressed as:

SIGNAL d :BIT_VECTOR (3 DOWNTO 0).

Each bit in these data types is designated by an element number. In this ex-

ample of a bit array named d, the bits can be referred to as d3, d2, d1, d0. Bits

can also be grouped into sets. For example, if we want to refer to the three

most significant bits of d as a set, we can use the expression d[3..1] in AHDL

and the expression d (3 DOWNTO 1) in VHDL. Once a value is assigned to

the array and the desired set of bits is identified, logical operations can be

performed on the entire set of bits. As long as the sets are the same size (the

same number of bits), two sets can be combined in a logical expression, just

like you would combine single variables in a Boolean equation. Each of the

corresponding pairs of bits in the two sets is combined as stated in the logic

equation. This allows one equation to describe the logical operation per-

formed on each bit in a set.

SECTION 6-19/LOGICAL OPERATIONS ON BIT ARRAYS 339

EXAMPLE 6-14 Assume , , , has the value 1011 and , , , has the value

1100. Let’s define and

Let’s also define where Y is related to Dnum and Gnum

as follows:

What is the value of X after this operation?

Solution

Thus, Y is a set of four bits with value 1000.

D3, D2, D1, D0 1 0 1 1

AND each bit position together

G3, G2, G1, G0 1 1 0 0

Y3, Y2, Y1, Y0 1 0 0 0

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔

Y = Dnum • Gnum;

Y = [Y3, Y2, Y1, Y0]

Gnum = [G3, G2, G1, G0].Dnum = [D3, D2, D1, D0]

G0G1G2G3D0D1D2D3

EXAMPLE 6-15 For the register values described in Example 6-14, declare each d, g, and x.
Then write an expression using your favorite HDL that performs the ANDing

operation on all bits.

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 339

Solution

340 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

SUBDESIGN bitwise_and

(d[3..0], g[3..0] :INPUT;

y[3..0] :OUTPUT;)

BEGIN

y[] = d[] & g[];

END;

ENTITY bitwise_and IS

PORT(d, g :IN BIT_VECTOR (3 DOWNTO 0);

y :OUT BIT_VECTOR (3 DOWNTO 0));

END bitwise_and;

ARCHITECTURE a OF bitwise_and IS

BEGIN

y <= d AND g;

END a;

6-20 HDL ADDERS

In this section, we will see how to create a parallel adder circuit that can be

used to add bit arrays using the logic equation for a single-bit full adder.

Figure 6-19 shows the basic block diagram with signals labeled to create a

four-bit adder. Notice that each bit of the augend [A], addend [B], carry [C],

and sum [S] are bit array variables and have index numbers associated with

them. The equation for the sum using register notation is:

Notice that the carry signals between stages are not inputs or outputs of

this overall circuit, but rather intermediate variables. A strategy must be de-

veloped for labeling the carry bits so that they can be used in an array. We

have chosen to let each carry bit serve as an input to its corresponding adder

stage, as shown in Figure 6-19. For example, C0 is an input to the bit 0 stage,

C1 is the carry input to the bit 1 stage, and so on. The bits of the carry array

can be thought of as the “wires” that connect the adders. This array must

have a carry in for each stage and also a carry out for the most significant

state. In this example, there will be five bits, labeled C4 through C0, in the

carry array. The set of data that represents the carry outputs would be C4

through C1, and the set of data that represents the carry inputs would be C3

through C0.

The HDLs allow us to specify which sets of bits out of the entire array we

want to use in an equation. To ensure that all variables being combined in a

logic equation contain the same number of bits, we can start with the gen-

eral equation for the carry out of a one-bit adder as follows:

Cout = AB + ACin + BCin

 Cout = C[4..1]

 Cin = C[3..0]

[S] = [A] { [B] { [C];

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 340

Substituting our definition of Cin and Cout (above), we have the following

equation for the four-bit adder carry out:

The graphic symbol for this device is shown in Figure 6-20. Notice that it

does not show the carry array. It is a variable or signal inside the block. Altera

allows any SUBDESIGN in AHDL or ENTITY in VHDL, even those that you

create, to be represented by a graphic block diagram symbol such as this.

This is all part of the hierarchical design scheme of the Altera development

system (described in Chapter 4).

To summarize this information, Figure 6-19 shows the “insides” of the

block diagram in Figure 6-20 and summarizes the operation described

by the two equations. Now let’s look at text-based files that can be used

to generate a block symbol like the one in Figure 6-20 using AHDL and

VHDL.

C[4..1] = A[3..0] & B[3..0] + A[3..0] & C[3..0] + B[3..0] & C[3..0]

SECTION 6-20/HDL ADDERS 341

AUGEND A3 A2 A1 A0 A

ADDEND B3 B2 B1 B0 B

CARRYin C3 C2 C1 C0 Cin

SUM S3 S2 S1 S0 S

AUGEND A3 A2 A1 A0 A

ADDEND B3 B2 B1 B0 B

CARRYin C3 C2 C1 C0 Cin

CARRYout C4 C3 C2 C1 Cout

Generate sum
S = A ⊕ [B ⊕ Cin]

Generate carry bits
Cout = A•B + A•Cin + B•Cin

C3

FA
Bit 3

Cout

B3

A3

S3

C2

FA
Bit 2

B2

A2

S2

C1

FA
Bit 1

B1

A1

S1

FA
Bit 0

B0

A0

S0

Cin

C0C4

FIGURE 6-19 Four-bit parallel adder.

A [3 . .0]

B [3 . .0]

CIN S [3 . .0]

COUT

1

X

A [3 . .0]

B [3 . .0]

Cin

X

X

X

X

S [3 . .0]

CoutA [3 . .0]

FIGURE 6-20 Block symbol

generated by Altera

MAX+PLUS.

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 341

A
H

D
L

V
H

D
L

AHDL FOUR-BIT ADDER
In lines 14 and 15 of the AHDL code of Figure 6-21, notice the syntax for re-

ferring to bit arrays in their entirety. The name is given, followed by []. If no

bits are designated inside the square brackets, it means that all the bits that

were declared are included in the operations. Lines 14 and 15 describe fully

all four adder circuits and come up with the sum. In order to choose a spe-

cific set of elements from the array (i.e., a subset of the array), the name is

followed by the range of element numbers in square brackets. For example,

the carry equation (line 15) in AHDL syntax is:

Notice that only four bits of the carry array c[] are being assigned, even

though the array is five bits long. In this way, the carry out of each single-bit

adder is assigned as the carry in of the next stage.

c[4..1] = a[] & b[] # a[] & c[3..0] # b[] & c[3..0];

342 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

SUBDESIGN fig6_21

(

cin :INPUT; -- carry in

a[3..0] :INPUT; -- augend

b[3..0] :INPUT; -- addend

s[3..0] :OUTPUT; -- sum

cout :OUTPUT; -- carry OUT

)

VARIABLE

c[4..0] :NODE; -- carry array is 5 bits long!

BEGIN

c[0] = cin;

s[] = a[] $ b[] $ c[3..0]; -- generate sum

c[4..1] = (a[] & b[]) # (a[] & c[3..0]) # (b[] & c[3..0]);

cout = c[4]; -- carry out

END;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

FIGURE 6-21 AHDL adder.

VHDL FOUR-BIT ADDER
In the VHDL code of Figure 6-22, notice the syntax for referring to bit arrays

in their entirety. The name is simply used with no bit designations. Lines 15

and 16 describe fully all four adder circuits that will come up with the sum.

In order to choose a specific set of elements from the array (i.e., a subset of

the array), the name is followed by the range of element numbers in paren-

theses. The carry equation (line 16) in VHDL syntax is:

c(4 DOWNTO 1) <= (a AND b) OR (a AND c(3 DOWNTO 0)) OR (b

AND c(3 DOWNTO 0));

Notice that only four bits of the carry array c are being assigned, even though

the array is five bits long. In this way, the carry out of each single-bit adder

is assigned as the carry in of the next stage.

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 342

6-21 EXPANDING THE BIT CAPACITY OF A CIRCUIT

One way we have learned to expand the capacity of a circuit is to cascade

stages, like we did with the 74382 ALU chip in the previous section. This can

be done using the Altera graphic design file approach (like Figure 6-18) or

the structural text-based HDL approach. With either of these methods, we

need to specify all the inputs, outputs, and interconnections between blocks.

In the case of this adder circuit, it would be much easier to start with the

HDL file for a four-bit adder and simply increase the size of each operand

variable in the equation. For example, if we wanted an eight-bit adder, we

SECTION 6-21/EXPANDING THE BIT CAPACITY OF A CIRCUIT 343

FIGURE 6-22 VHDL adder.

ENTITY fig6_22 IS

PORT(

cin :IN BIT;

a :IN BIT_VECTOR(3 DOWNTO 0);

b :IN BIT_VECTOR(3 DOWNTO 0);

s :OUT BIT_VECTOR(3 DOWNTO 0);

cout :OUT BIT);

END fig6_22;

ARCHITECTURE a OF fig6_22 IS

SIGNAL c :BIT_VECTOR (4 DOWNTO 0); -- carries require 5 bit array

BEGIN

c(0) <= cin; -- Read the carry in to bit array

s <= a XOR b XOR c(3 DOWNTO 0); -- Generate the sum bits

c(4 DOWNTO 1) <= (a AND b)

OR (a AND c(3 DOWNTO 0))

OR (b AND c(3 DOWNTO 0));

cout <= c(4); -- output the carry of the MSB.

END a;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

REVIEW QUESTIONS 1. If and what is the value of (a) (b)

(Note that means AND; means OR.)

2. If what is the value of (a) (b)

3. In AHDL, the following object is declared: toggles[7..0] :INPUT. Give an

expression for the least significant four bits using AHDL syntax.

4. In VHDL, the following object is declared: toggles :IN BIT_VECTOR (7

DOWNTO 0). Give an expression for the least significant four bits using

VHDL syntax.

5. What would be the result of ORing the two registers of Example 6-14?

6. Write an HDL statement that would OR the two objects d and g together.

Use your favorite HDL.

7. Write an HDL statement that would XOR the two most significant bits of

d with the two least significant bits of g and put the result in the middle

two bits of x.

A[5..2]?A[7..4]?A[7..0] = 1010 1100,

+
#[B]?

[A] +[A] # [B]?[B] = 0011,[A] = 1001

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 343

A
H

D
L

simply need to expand a, b, and s to eight bits.The code would remain almost

identical to the four-bit adder shown above. This is just a glimpse of some of

the efficiency improvements that HDL offers. The way this code is written,

however, the indices of each signal, and each bit array specification in the

equation, would also have to be redefined. In other words, the designer

would need to examine the code carefully and change all the 3s to 7s, all the

4s to 8s, and so on.

An important principle in software engineering is symbolic representa-

tion of the constants that are used throughout the code. Constants are simply

fixed numbers represented by a name (symbol). If we can define a symbol

(i.e., make up a name) at the top of the source code that is assigned the value

for the total number of bits and then use this symbol (name) throughout the

code, it is much easier to modify the circuit. Only one line of code needs to

be changed to expand the capacity of the circuit. The examples that follow

add this feature to the code and also upgrade the code to implement the

adder/subtractor circuit like the one in Figure 6-14. It should be noted here

that expanding the capacity of an adder circuit such as this one will also

reduce the speed of the circuit because of carry propagation (described in

Section 6-13). In order to keep these examples simple, we have not added

any logic to generate a look-ahead carry.

AHDL ADDER/SUBTRACTOR
In AHDL, using constants is very simple, as shown on lines 1 and 2 of Figure

6-23. The keyword CONSTANT is followed by the symbolic name and the

value it is to be assigned. Notice that we can allow the compiler to do some

344 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

CONSTANT number_of_bits = 8; -- set total number of bits

CONSTANT n = number_of_bits - 1; -- n is highest bit index

SUBDESIGN fig6_23

(

add :INPUT; -- add control

sub :INPUT; -- subtract control and LSB Carry in

a[n..0] :INPUT; -- Augend bits

bin[n..0] :INPUT; -- Addend bits

s[n..0] :OUTPUT; -- Sum bits

caryout :OUTPUT; -- MSB carry OUT

)

VARIABLE

c[n+1..0] :NODE; -- intermediate carry vector

b[n..0] :NODE; -- intermediate operand vector

BEGIN

b[] = bin[] & add # NOT bin[] & sub;

c[0] = sub; --Read the carry in to group variable

s[] = a[] $ b[] $ c[n..0]; --Generate the sums

c[n+1..1] = (a[] & b[]) # (a[] & c[n..0]) # (b[] & c[n..0]);

caryout = c[n+1]; -- output the carry of the MSB.

END;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

FIGURE 6-23 An n-bit adder/subtractor description in AHDL.

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 344

simple math calculations to establish a value for one constant based on an-

other. We can also use this feature as we refer to the constant in the code, as

shown on lines 14, 20, and 21. For example, we can refer to c[7] as c[n] and

c[8] as c[n�1]. The size of this adder/subtractor can be expanded by simply

changing the value of number_of_bits to the desired number of bits and then

recompiling.

As mentioned, this code has been upgraded from the previous exam-

ple to make it an adder/subtractor like the one in Figure 6-14. The add and

sub inputs have been included on lines 6 and 7, and a new intermediate

variable named b[] has been included on line 15. The first concurrent

statement on line 17 describes all the SOP logic that drives the b inputs

to the adder in Figure 6-14. First, it describes a logical AND operation be-

tween every bit of bin[] and the logic level on add. This result is ORed (bit

for bit) with the result of ANDing the complement of every bit of bin[]
with sub. In other words, it creates the following Boolean function for

each bit: The signal b[] is then used in the adder

equations instead of bin[], as was used in the adder examples. Notice on

line 18 that sub is also used to connect the carry array LSB (carry into bit 0)

with the value on sub, which needs to be 0 when adding and 1 when sub-

tracting.

VHDL ADDER/SUBTRACTOR
In VHDL, using constants is a little bit more involved. Constants must be in-

cluded in a PACKAGE, as shown in Figure 6-24, lines 1–4. Packages are also

used to contain component definitions and other information that must be

available to all entities in the design file. Notice on line 6 that the keyword

USE tells the compiler to use the definitions in this package throughout

this design file. Inside the package, the keyword CONSTANT is followed by

the symbolic name, its type, and the value it is to be assigned using the :�
operator. Notice on line 3 that we can allow the compiler to do some simple

math calculations to establish a value of one constant based on another. We

can also use this feature as we refer to the constant in the code, as shown

on lines 34 and 37. For example, we can refer to c(7) as c(n) and c(8) as

c(n�1). The size of this adder/subtractor can be expanded by simply chang-

ing the value of number_of_bits to the desired number of bits and then

recompiling.

As mentioned, this code has been upgraded from the previous example

to make it an adder/subtractor like the one in Figure 6-14. The add and sub
inputs have been included on lines 10 and 11, and a new signal named b has

been included on line 20, bnot has been included on line 21, and mode has

been included on line 22. The first concurrent statement on line 24 serves to

create the 1’s complement of bin. The SOP circuits in Figure 6-14 that drive

the b inputs to the adder select the bin inputs if or the 1’s comple-

ment (bnot) if This is an excellent application of the VHDL selected

signal assignment, as shown on lines 27–30. When add is 1, bin is channeled

to b. When sub is 1, bnot is channeled to b. The signal b is then used in the

adder equations instead of bin, as was used in the previous adder examples.

Notice on line 32 that sub is also used to connect the carry array LSB (carry

into bit 0) with the value on sub, which needs to be 0 when adding and 1

when subtracting.

sub = 1.

add = 1

b = bin # add + bin # sub.

SECTION 6-21/EXPANDING THE BIT CAPACITY OF A CIRCUIT 345

V
H

D
L

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 345

346 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

PACKAGE const IS

CONSTANT number_of_bits :INTEGER:=8; -- set total number of bits

CONSTANT n :INTEGER:= number_of_bits � 1; -- MSB index number

END const;

USE work.const.all;

ENTITY fig6_24 IS

PORT(

add :IN BIT; -- add control

sub :IN BIT; -- subtract control and LSB carry in

a :IN BIT_VECTOR(n DOWNTO 0);

bin :IN BIT_VECTOR(n DOWNTO 0);

s :OUT BIT_VECTOR(n DOWNTO 0);

carryout :OUT BIT);

END fig6_24;

ARCHITECTURE a OF fig6_24 IS

SIGNAL c :BIT_VECTOR (n+1 DOWNTO 0); -- define intermediate carries

SIGNAL b :BIT_VECTOR (n DOWNTO 0); -- define intermediate operand

SIGNAL bnot :BIT_VECTOR (n DOWNTO 0);

SIGNAL mode :BIT_VECTOR (1 DOWNTO 0);

BEGIN

bnot <= NOT bin;

mode <= add & sub;

WITH mode SELECT

b <= bin WHEN “10”, -- add

bnot WHEN “01”, -- sub

“0000” WHEN OTHERS;

c(0) <= sub; -- read the carry_in to bit array

s <= a XOR b XOR c(n DOWNTO 0); -- generate the sum bits

c(n+1 DOWNTO 1) <= (a AND b) OR

(a AND c(n DOWNTO 0)) OR

(b AND c(n DOWNTO 0)); --generate carries

carryout <= c(n+1); -- output the carry of the MSB.

END a;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

FIGURE 6-24 An n-bit adder/subtractor description in VHDL.

VHDL GENERATE Statement
Another way to make circuits that handle more bits is the VHDL

GENERATE statement. It is a very concise way of telling the compiler to

replicate several components that are cascaded together. As we have shown,

there are many other ways to accomplish the same thing and if the abstract

nature of this method seems difficult, use another method. The GENERATE

statement is offered here for the sake of completeness.The adder circuits we

have been discussing are cascaded chains of single-bit full adder modules.

The VHDL code for a single-bit full adder module is shown in Figure 6-25.

Multiple instances of this module need to be connected to each other to form

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 346

an n-bit adder circuit. Of course, you can do it using the same component

techniques that we have discussed previously, but it would result in very

lengthy code.

To make the code more concise and easier to modify, a strategy is needed

for the way we label the inputs and outputs for each module. As we men-

tioned previously, the bit-0 adder has inputs that have an index of 0 (e.g., a0,

b0, c0, s0). The carry out of bit 0 is labeled c1, and it becomes the carry input

for the bit 1 adder module. Each time we instantiate another component for

the next bit of the multibit adder, the index number of all connections goes

up by 1 (a1, b1, c1, s1). The GENERATE statement allows us to repeat an in-

stantiation of a component n times, increasing the index number by 1 for

each instantiation up to n. In line 27 of Figure 6-26, the GENERATE keyword

is used in an iterative loop (FOR loop), which means that a set of descriptive

actions (PORT MAP) will be repeated a certain number of times. The vari-

able i represents an index number that starts at 0 (for the first iteration) and

ends at n (the last iteration). The advantages of this method are code com-

pactness and the ease with which the number of bits can be expanded. The

code in Figure 6-26 shows how to use a single-bit adder (Figure 6-25) as a

component to generate an eight-bit adder circuit. Remember that the file for

the single-bit adder (add1.vhd in Figure 6-25) must be saved in the same

folder as the design file that uses it to generate multiple instances of the

adder (fig6_26.vhd).

The single-bit adder component is defined on lines 17–23 of Figure 6-26.

For the first iteration of lines 29 and 30, the value of i is 0, creating an adder

stage for bit 0. The second iteration, i, has been increased to 1 to form adder

stage 1. This continues until i is equal to n, generating each stage of the

()-bit adder. Notice that VHDL allows us the option of placing labels at

the beginning of a line of code to help describe its purpose. For example, on

line 27, the label repeat is used and on line 29, the label casc is used. Labels

are optional but they must always end with a colon.

Libraries of Parameterized Modules
Using HDL techniques clearly makes it easy to alter the bit capacity of a

generic circuit. In this chapter, we can see that it is easy to change from a

n + 1

SECTION 6-21/EXPANDING THE BIT CAPACITY OF A CIRCUIT 347

ENTITY add1 IS

PORT(

cin :IN BIT;

a :IN BIT;

b :IN BIT;

s :OUT BIT;

cout :OUT BIT);

END add1;

ARCHITECTURE a OF add1 IS

BEGIN

s <= a XOR b XOR cin;

cout <= (a AND b) OR (a AND cin) OR (b AND cin);

END a;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FIGURE 6-25 Single-bit

full adder in VHDL.

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 347

four-bit adder to an eight-, 12-, or 16-bit adder. When Altera was creating

its library of useful functions, they also took advantage of these tech-

niques and created what they refer to as megafunctions, which include a

library of parameterized modules (LPMs). These functions do not attempt

to imitate a particular standard IC like the old-style macrofunctions; in-

stead, they offer a generic solution for the various types of logic circuits

that are useful in digital systems. Examples of these generic circuits that

we have covered so far are logic gates (AND, OR, XOR), latches, counters,

shift registers, and adders. The term parameterized means that when you

instantiate a function from the library, you also specify some parameters

that define certain attributes (bit capacity, for example) for the circuit

you are describing. The various LPMs that are available can be found

through the HELP menu under megafunctions/LPM. This documentation

describes the parameters that the user can specify as well as the port fea-

tures of the device.

348 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

FIGURE 6-26 Use of the VHDL GENERATE statement.

PACKAGE const IS

CONSTANT number_of_bits :INTEGER:=8; -- Specify number of bits

CONSTANT n :INTEGER:=number_of_bits - 1; --n is MSB bit number

END const;

USE work.const.all;

ENTITY fig6_26 IS

PORT(

caryin :IN bit;

ain :IN BIT_VECTOR (n DOWNTO 0);

bin :IN BIT_VECTOR (n DOWNTO 0);

sout :OUT BIT_VECTOR (n DOWNTO 0);

carryout :OUT bit);

END fig6_26;

ARCHITECTURE a OF fig6_26 IS

COMPONENT add1 -- declare single bit full adder

PORT (

cin :IN BIT;

a,b :IN BIT;

s :OUT BIT;

cout :OUT BIT);

END COMPONENT;

SIGNAL c :BIT_VECTOR (n+1 DOWNTO 0); -- declare bit array for carries

BEGIN

c(0) <= caryin; -- put LSB in array (carry in)

repeat:FOR i IN 0 TO n GENERATE -- instantiate n+1 adders

-- cascade them

casc:add1 PORT MAP (cin=> c(i), a=> ain(i), b=> bin(i),

s=> sout(i), cout=> c(i+1));

END GENERATE;

carryout <= c(n+1); -- out the carry from nth bit stage

END a;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 348

SUMMARY
1. To represent signed numbers in binary, a sign bit is attached as the MSB.

A sign is a 0, and a sign is a 1.

2. The 2’s complement of a binary number is obtained by complementing

each bit and then adding 1 to the result.

3. In the 2’s-complement method of representing signed binary numbers,

positive numbers are represented by a sign bit of 0 followed by the mag-

nitude in its true binary form. Negative numbers are represented by a

sign bit of 1 followed by the magnitude in 2’s-complement form.

4. A signed binary number is negated (changed to a number of equal value

but opposite sign) by taking the 2’s complement of the number, including

the sign bit.

5. Subtraction can be performed on signed binary numbers by negating (2’s

complementing) the subtrahend and adding it to the minuend.

6. In BCD addition, a special correction step is needed whenever the sum of

a digit position exceeds 9 (1001).

7. When signed binary numbers are represented in hexadecimal, the MSD

of the hex number will be 8 or greater when the number is negative; it

will be 7 or less when the number is positive.

8. The arithmetic/logic unit (ALU) of a computer contains the circuitry

needed to perform arithmetic and logic operations on binary numbers

stored in memory.

9. The accumulator is a register in the ALU. It holds one of the numbers be-

ing operated upon, and it also is where the result of the operation is

stored in the ALU.

10. A full adder performs the addition on two bits plus a carry input. A par-

allel binary adder is made up of cascaded full adders.

11. The problem of excessive delays caused by carry propagation can be re-

duced by a look-ahead carry logic circuit.

12. IC adders such as the 74LS83/HC83 and the 74LS283/HC283 can be used

to construct high-speed parallel adders and subtractors.

13. A BCD adder circuit requires special correction circuitry.

14. Integrated-circuit ALUs are available that can be commanded to perform

a wide range of arithmetic and logic operations on two input numbers.

15. Prefabricated functions are available in the Altera libraries.

16. These library parts and the HDL circuits you create can be intercon-

nected using either graphic or structural HDL techniques.

-+

SUMMARY 349

REVIEW QUESTIONS 1. What keyword is used to assign a symbolic name to a fixed number?

2. In AHDL, where are constants defined? Where are they defined in

VHDL?

3. Why are constants useful?

4. If the constant max_val has a value of 127, how will a compiler interpret

the expression max_val

5. What is the GENERATE statement used for in VHDL?

-5?

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 349

17. Logical operations can be performed on all the bits in a set using

Boolean equations.

18. Practicing good software engineering techniques, specifically the use of

symbols to represent constants, allows for easy code modification and ex-

pansion of the bit capacity of circuits such as full adders.

19. Libraries of parameterized modules (LPMs) offer a flexible, easily mod-

ified or expanded solution for many types of digital circuits.

350 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

IMPORTANT TERMS
carry

sign bit

sign-magnitude

system

2’s-complement

system

negation

augend

addend

subtrahend

minuend

overflow

arithmetic/logic

unit (ALU)

accumulator register

full adder (FA)

parallel adder

half adder (HA)

carry propagation

(carry ripple)

look-ahead carry

adder/subtractor

macrofunction

function prototype

sets

constants

PACKAGE

GENERATE

iterative loop

FOR loop

library of

parameterized

functions (LPMs)

megafunctions

*Answers to problems marked with an asterisk can be found in the back of the text.

PROBLEMS
SECTION 6-1

6-1. Add the following in binary. Check your results by doing the addition

in decimal.

(a)*1010 � 1011 (d) 0.1011 � 0.1111

(b)*1111 � 0011 (e) 10011011 � 10011101

(c)*1011.1101 � 11.1 (f) 1010.01 � 10.111

SECTION 6-2

6-2. Represent each of the following signed decimal numbers in the 2’s-

complement system. Use a total of eight bits, including the sign bit.

(a)*�32 (e)*�127 (i) �1 (m) �84

(b)*�14 (f)*�127 (j) �128 (n) �3

(c)*�63 (g)*�89 (k) �169 (o) �3

(d)*�104 (h)*�55 (l) 0 (p) �190

6-3. Each of the following numbers represents a signed decimal number in

the 2’s-complement system. Determine the decimal value in each

case. (Hint: Use negation to convert negative numbers to positive.)

(a)*01101 (f) 10000000

(b)*11101 (g) 11111111

(c)*01111011 (h) 10000001

(d)*10011001 (i) 01100011

(e)*01111111 (j) 11011001

B

B

B

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 350

6-4. (a) What range of signed decimal values can be represented using 12

bits, including the sign bit?

(b) How many bits would be required to represent decimal numbers

from �32,768 to �32,767?

6-5.*List, in order, all of the signed numbers that can be represented in five

bits using the 2’s-complement system.

6-6. Represent each of the following decimal values as an eight-bit signed

binary value. Then negate each one.

(a)* (b)* (c) (d) (e) (f)

6-7. (a)*What is the range of unsigned decimal values that can be repre-

sented in 10 bits? What is the range of signed decimal values us-

ing the same number of bits?

(b) Repeat both problems using eight bits.

SECTIONS 6-3 AND 6-4

6-8. The reason why the sign-magnitude method for representing signed

numbers is not used in most computers can readily be illustrated by

performing the following.

(a) Represent in eight bits using the sign-magnitude form.

(b) Represent in eight bits using the sign-magnitude form.

(c) Add the two binary numbers and note that the sum does not look

anything like zero.

6-9. Perform the following operations in the 2’s-complement system. Use

eight bits (including the sign bit) for each number. Check your results

by converting the binary result back to decimal.

(a)*Add to (f) Subtract from

(b)*Add to (g) Subtract from

(c)*Add to (h) Subtract from

(d)*Add to (i) Add to

(e)*Subtract from (j) Subtract from

6-10. Repeat Problem 6-9 for the following cases, and show that overflow

occurs in each case.

(a) Add to (c) Add to .

(b) Subtract from (d) Subtract from

SECTIONS 6-5 AND 6-6

6-11. Multiply the following pairs of binary numbers, and check your re-

sults by doing the multiplication in decimal.

(a)*111 � 101 (c) 101.101 � 110.010

(b)*1011 � 1011 (d) .1101 � .1011

6-12. Perform the following divisions. Check your results by doing the divi-

sion in decimal.

(a)* (c)

(b)* (d) 10110.1101 , 1.1111111 , 1001

10111 , 1001100 , 100

+95.-37-95.+37

-95-37+95.+37

-17.-17+17.+16

-17.+17-80.-48

-15.-36-24.+19

+47.+47-17.+14

-13.+21+6.+9

-12

+12

+127-128-1+15-12+73

PROBLEMS 351

B

B

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 351

SECTIONS 6-7 AND 6-8

6-13. Add the following decimal numbers after converting each to its BCD

code.

(a)* (d)

(b)* (e)

(c)* (f)

6-14. Find the sum of each of the following pairs of hex numbers.

(a)* (d)

(b)* (e)

(c)* (f)

6-15. Perform the following subtractions on the pairs of hex numbers.

(a)* (d)

(b)* (e)

(c)* (f)

6-16. The owner’s manual for a small microcomputer states that the com-

puter has usable memory locations at the following hex addresses:

0200 through 03FF, and 4000 through 7FD0. What is the total number

of available memory locations?

6-17. (a)*A certain eight-bit memory location holds the hex data 77. If this

represents an unsigned number, what is its decimal value?

(b)*If this represents a signed number, what is its decimal value?

(c) Repeat (a) and (b) if the data value is E5.

SECTION 6-11

6-18. Convert the FA circuit of Figure 6-8 to all NAND gates.

6-19.*Write the function table for a half adder (inputs A and B; outputs

SUM and CARRY). From the function table, design a logic circuit that

will act as a half adder.

6-20. A full adder can be implemented in many different ways. Figure 6-27

shows how one may be constructed from two half adders. Construct

a function table for this arrangement, and verify that it operates

as a FA.

2F00 - 40000300 - 005A

F000 - EFFF91B - 6F2

0200 - 00033E91 - 2F93

D191 + AAABABC + DEF

FFF + 0FF91B + 6F2

2FFE + 00023E91 + 2F93

623 + 599147 + 380

998 + 00358 + 37

385 + 11874 + 23

352 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

B

B

B

FIGURE 6-27 Problem 6-20.

A

B

HA

CARRY IN

HA

SUM

CARRY

SUM

CARRY

CARRY OUT

Full adder

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 352

SECTION 6-12

6-21.*Refer to Figure 6-10. Determine the contents of the A register after the

following sequence of operations:

6-22. Refer to Figure 6-10. Assume that each FF has and

a setup time of 10 ns, and that each FA has a propagation delay of 40 ns.

What is the minimum time allowed between the PGT of the LOAD

pulse and the PGT of the TRANSFER pulse for proper operation?

6-23. In the adder and subtractor circuits discussed in this chapter, we gave

no consideration to the possibility of overflow. Overflow occurs when

the two numbers being added or subtracted produce a result that con-

tains more bits than the capacity of the accumulator. For example,

using four-bit registers, including a sign bit, numbers ranging from

to (in 2’s complement) can be stored. Therefore, if the result of an

addition or subtraction exceeds or we would say that an over-

flow has occurred. When an overflow occurs, the results are useless

because they cannot be stored correctly in the accumulator register.

To illustrate, add and which results in 1001. This

1001 would be interpreted incorrectly as a negative number because

there is a 1 in the sign-bit position.

In computers and calculators, there are usually circuits that are

used to detect an overflow condition. There are several ways to do

this. One method that can be used for the adder that operates in the

2’s-complement system works as follows:

1. Examine the sign bits of the two numbers being added.

2. Examine the sign bit of the result.

3. Overflow occurs whenever the numbers being added are both pos-
itive and the sign bit of the result is 1 or when the numbers are

both negative and the sign bit of the result is 0.

This method can be verified by trying several examples. Readers

should try the following cases for their own clarification: (2)

(3) Cases 1 and 2 will produce an overflow, and case

3 will not. Thus, by examining the sign bits, one can design a logic cir-

cuit that will produce a 1 output whenever the overflow condition

occurs. Design this overflow circuit for the adder of Figure 6-10.

6-24. Add the necessary logic circuitry to Figure 6-10 to accommodate the

transfer of data from memory into the A register.The data values from

memory are to enter the A register through its D inputs on the PGT of

the first TRANSFER pulse; the data from the sum outputs of the FAs

will be loaded into A on the PGT of the second TRANSFER. In other

words, a LOAD pulse followed by two TRANSFER pulses is required

to perform the complete sequence of loading the B register from

memory, loading the A register from memory, and then transferring

their sum into the A register. (Hint: Use a flip-flop X to control which

source of data gets loaded into the D inputs of the accumulator.)

SECTION 6-13

6-25.*Design a look-ahead carry circuit for the adder of Figure 6-10 that gen-

erates the carry to be fed to the FA of the MSB position based on

the values of , , , , , , and . In other words, derive an ex-

pression for in terms of , , , , , , and . (Hint: Begin by

writing the expression for in terms of , , and .Then write theC0B0A0C1

B2A2B1A1C0B0A0C3

B2A2B1A1C0B0A0

C3

3 + 2.-4 + (-6);

(1) 5 + 4;

+4 (0100),+5 (0101)

-8,+7

-8

+7

tPLH = tPHL = 30 ns

[1011] : [B], [S] : [A].

[A] = 0000, [0100] : [B], [S] : [A],

PROBLEMS 353

C, D

C, D

D

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 353

expression for in terms of , , and . Substitute the expression

for into the expression for . Then write the expression for in

terms of , , and . Substitute the expression for into the ex-

pression for . Simplify the final expression for and put it in sum-

of-products form. Implement the circuit.)

SECTION 6-14

6-26. Show the logic levels at each input and output of Figure 6-11(a) when

is added to

SECTION 6-15

6-27. For the circuit of Figure 6-14, determine the sum outputs for the fol-

lowing cases.

(a)*

(b)

(c) Repeat (b) with

6-28. For the circuit of Figure 6-14 determine the sum outputs for the fol-

lowing cases.

(a)

(b)

(c)

6-29. For each of the calculations of Problem 6-27, determine if overflow

has occurred.

6-30. For each of the calculations of Problem 6-28, determine if overflow

has occurred.

6-31. Show how the gates of Figure 6-14 can be implemented using three

74HC00 chips.

6-32.*Modify the circuit of Figure 6-14 so that a single control input, X, is

used in place of ADD and SUB. The circuit is to function as an adder

when and as a subtractor when Then simplify each set

of gates. (Hint: Note that now each set of gates is functioning as a con-

trolled inverter.)

SECTION 6-16

6-33. Determine the F, and OVR outputs for each of the following sets

of inputs applied to a 74LS382.

(a)*

(b)

(c)

6-34. Show how the 74HC382 can be used to produce (Hint:
Recall that special property of an XOR gate.)

6-35. Determine the outputs in Figure 6-16 for the following sets of inputs.

(a)*

(b) [S] = 100, [A] = 11101110, [B] = 00110010

[S] = 110, [A] = 10101100, [B] = 00001111

g

[F] = [A].

[S] = 010, [A] = 0110, [B] = 0011, CN = 1

[S] = 001, [A] = 0110, [B] = 0011, CN = 1

[S] = 011, [A] = 0110, [B] = 0011, CN = 0

CN+4,

X = 1.X = 0,

SUB = 1, ADD = 0.

A register = 1011 (-5), B register = 0100 (+4),

SUB = 0, ADD = 1.

A register = 1100 (-4), B register = 0010 (+2),

SUB = 1, ADD = 0.

A register = 1101 (-3), B register = 0011 (+3),

ADD = SUB = 0.

SUB = 0, ADD = 1

A register = 1100 (-4), B register = 1110 (-2);

SUB = 1, ADD = 0

A register = 0101 (+5), B register = 1110 (-2);

1038.3548

C3C3

C2C2B2A2

C3C2C1

C1B1A1C2

354 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

D

B

D

D

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 354

6-36. Add the necessary logic to Figure 6-16 to produce a single HIGH out-

put whenever the binary number at A is exactly the same as the bi-

nary number at B. Apply the appropriate select input code (three

codes can be used).

SECTION 6-17

6-37. Consider the circuit of Figure 6-10. Assume that the output is stuck

LOW. Follow the sequence of operations for adding two numbers, and

determine the results that will appear in the A register after the sec-

ond TRANSFER pulse for each of the following cases. Note that the

numbers are given in decimal, and the first number is the one loaded

into B by the first LOAD pulse.

(a)*

(b)*

(c)

(d)

(e)

6-38. A technician breadboards the adder/subtractor of Figure 6-14. During

testing, she finds that whenever an addition is performed, the result

is 1 more than expected, and when a subtraction is performed, the re-

sult is 1 less than expected. What is the likely error that the techni-

cian made in connecting this circuit?

6-39.*Describe the symptoms that would occur at the following points in the

circuit of Figure 6-14 if the ADD and SUB lines were shorted together.

(a) B[3..0] inputs of the 74LS283 IC

(b) C0 input of the 74LS283 IC

(c) SUM () [3..0] outputs

(d)

SECTION 6-19
Problems 6-40 through 6-45 deal with the same two arrays, a and b, which we

will assume have been defined in an HDL source file and have the following

values: [a] [b] Output array [z] is also an eight-

bit array. Answer Problems 6-40 through 6-45 based on this information.

(Assume undefined bits in z are 0.)

6-40. Declare these data objects using your favorite HDL syntax.

6-41. Give the value of z for each expression (identical AHDL and VHDL

expressions are given):

(a)*z[] � a[] & b[]; z <� a AND b;

(b)*z[] � a[] # b[]; z <� a OR b;

(c) z[] � a[] $!b[]; z <� a XOR NOT b;

(d) z[7..4] � a[3..0] & b[3..0]; z(7 DOWNTO 4) <� a(3 DOWNTO 0)

AND b(3 DOWNTO 0);

(e) z[7..1] � a[6..0]; z[0] � GND; z(7 DOWNTO 1) <� a(6 DOWNTO 0);

z(0) <� ‘0’;

6-42. What is the value of each of the following:

(a) a[3..0] a(3 DOWNTO 0)

(b) b[0] b(0)

(c) a[7] b(7)

= [00101100].= [10010111],

C4

g

9 + 3

8 + 3

7 + 3

3 + 7

2 + 3

A2

PROBLEMS 355

B, H

B, H

T

T

T

C, D

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 355

6-43. What is the value of each of the following?

(a)*a[5] a(5)

(b)*b[2] b(2)

(c)*b[7..1] b(7 DOWNTO 1)

6-44.*Write one or more statements in HDL that will shift all the bits in [a]

one position to the right. The LSB should move to the MSB position.

The rotated data should end up in z[].

6-45. Write one or more HDL statements that will take the upper nibble of

b and place it in the lower nibble of z. The upper nibble of z should be

zero.

6-46. Refer to Problem 6-23. Modify the code of Figure 6-21 or Figure 6-22

to add an overflow output.

6-47.*Another way to detect 2’s-complement overflow is to XOR the carry

into the MSB with the carry out of the MSB of an adder/subtractor.

Use the same numbers given in Problem 6-23 to verify this. Modify

Figure 6-21 or Figure 6-22 to detect overflow using this method.

6-48.*Modify Figure 6-21 or Figure 6-22 to implement Figure 6-10.

SECTION 6-20

6-49. Modify Figure 6-21 or Figure 6-22 to make it a 12-bit adder without us-

ing constants.

6-50. Modify Figure 6-21 or Figure 6-22 to make it a versatile n-bit adder

module with a constant defining the number of bits.

6-51. Write an HDL file to create the equivalent of a 74382 ALU without us-

ing a built-in macrofunction.

DRILL QUESTION

6-52. Define each of the following terms.

(a) Full adder (f) Accumulator

(b) 2’s complement (g) Parallel adder

(c) Arithmetic/logic unit (h) Look-ahead carry

(d) Sign bit (i) Negation

(e) Overflow (j) B register

MICROCOMPUTER APPLICATIONS

6-53.*In a typical microprocessor ALU, the results of every arithmetic op-

eration are usually (but not always) transferred to the accumulator

register, as in Figures 6-10, 6-14, and 6-15. In most microprocessor

ALUs, the result of each arithmetic operation is also used to control

the states of several special flip-flops called flags. These flags are

used by the microprocessor when it is making decisions during the

execution of certain types of instructions. The three most common

flags are:

S (sign flag). This FF is always in the same state as the sign of the

last result from the ALU.

Z (zero flag).This flag is set to 1 whenever the result from an ALU

operation is exactly 0. Otherwise, it is cleared to 0.

C (carry flag).This FF is always in the same state as the carry from

the MSB of the ALU.

356 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

C, D

D, C, H

B, H

B, H

D, H

D, H, N

D, H

H

B, H

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 356

Using the adder/subtractor of Figure 6-14 as the ALU, design the logic

circuit that will implement these flags.The sum outputs and output

are to be used to control what state each flag will go to upon the oc-

currence of the TRANSFER pulse. For example, if the sum is exactly

0 (i.e., 0000), the Z flag should be set by the PGT of TRANSFER; oth-

erwise, it should be cleared.

6-54.*In working with microcomputers, it is often necessary to move binary

numbers from an eight-bit register to a 16-bit register. Consider the

numbers 01001001 and 10101110, which represent and re-

spectively, in the 2’s-complement system. Determine the 16-bit repre-

sentations for these decimal numbers.

6-55. Compare the eight- and 16-bit representations for from Problem

6-53. Then compare the two representations for There is a gen-

eral rule that can be used to convert easily from eight-bit to 16-bit rep-

resentations. Can you see what it is? It has something to do with the

sign bit of the eight-bit number.

ANSWERS TO SECTION REVIEW QUESTIONS
SECTION 6-1
1. (a) 11101 (b) 101.111 (c) 10010000

SECTION 6-2
1. (a) 00001101 (b) 11111001 (c) 10000000 2. (a) (b)

(c) 3. to 4. Seven 5. 6. (a) 10000

(b) 10000000 (c) 1000 7. Refer to text.

SECTION 6-3
1. True 2. (a) (b)

SECTION 6-4
1. (a) (b) 2. By comparing the sign bit of

the sum with the sign bits of the numbers being added

SECTION 6-5
1. 1100010

SECTION 6-7
1. The sum of at least one decimal digit position is greater than 1001 (9).

2. The correction factor is added to both the units and the tens digit positions.

SECTION 6-8
1. 923 2. 3DB 3. 2F, 77EC, 6D

SECTION 6-10
1. Three; two 2. (a) (b)

SECTION 6-12
1. One; four; four 2. 0100

SECTION 6-14
1. Five chips 2. 240 ns 3. 1

C5 = 0C3 = 1S2 = 0,

111112 = -110011112 = +1510

0000002 = 0101000102 = -3010

-32768+2047-2048+126
-64-29

-82.

+73

-82,+73

C4

ANSWERS TO SECTION REVIEW QUESTIONS 357

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 357

SECTION 6-15
1. To add the 1 needed to complete the 2’s-complement representation of the

number in the B register 2. 0010 3. 1101 4. False; the 1’s complement

appears there.

SECTION 6-16
1. 2. 3.

4. 5. 6. Eight

SECTION 6-18
1. See the MAX+PLUS HELP menu under old-style macrofunctions/adders.

2. An HDL description of a standard IC that can be used from the library.

SECTION 6-19
1. (a) 0001 (b) 1011 2. (a) 1010 (b) 1011 3. toggles[3..0]

4. toggles(3 DOWNTO 0) 5. 6. AHDL: xx[] d[] # g[];

VHDL: x <= d OR g; 7. AHDL: xx[2..1] = d[3..2] $ g[1..0]; VHDL:

x(2 DOWNTO 1) <= d(3 DOWNTO 2) XOR g(1 DOWNTO 0);

SECTION 6-21
1. CONSTANT. 2. In AHDL, near the top of the source file. In VHDL, in a

PACKAGE near the top of the source file. 3. They allow for global changes of the

value of a symbol used throughout the code. 4. max_val represents the

number 122. 5. GENERATE is used with an iterative FOR statement to

instantiate duplicate code modules that can be connected together or cascaded.

-5

=[X] = [1,1,1,1]

© = 11111111CN+4 = OVR = 0© = 01101011;

F = 1000CN+4 = 1OVR = 1;F = 0111;CN+4 = 0OVR = 0;F = 1011;

358 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 358

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 359

Part 1
7-1 Asynchronous (Ripple)

Counters

7-2 Propagation Delay in

Ripple Counters

7-3 Synchronous (Parallel)

Counters

7-4 Counters with MOD

Numbers

7-5 Synchronous Down and

Up/Down Counters

7-6 Presettable Counters

7-7 IC Synchronous Counters

7-8 Decoding a Counter

7-9 Analyzing Synchronous

Counters

7-10 Synchronous Counter

Design

7-11 Basic Counters Using HDLs

7-12 Full-Featured Counters

in HDL

6 2N

■ OUTLINE

C O U N T E R S A N D

R E G I S T E R S

C H A P T E R 7

7-13 Wiring HDL Modules

Together

7-14 State Machines

Part 2
7-15 Integrated Circuit Registers

7-16 Parallel In/Parallel Out—

The 74ALS174/74HC174

7-17 Serial In/Serial Out—

The 74ALS166/74HC166

7-18 Parallel In/Serial Out—

The 74ALS165/74HC165

7-19 Serial In/Parallel Out—

The 74ALS164/74HC164

7-20 Shift-Register Counters

7-21 Troubleshooting

7-22 HDL Registers

7-23 HDL Ring Counters

7-24 HDL One-Shots

TOCCMC07_0131725793.QXD 12/12/2005 10:49 PM Page 360

361

■ OBJECTIVES
Upon completion of this chapter, you will be able to:
■ Understand the operation and characteristics of synchronous and

asynchronous counters.

■ Construct counters with MOD numbers less than 2N.

■ Construct both up and down counters.

■ Connect multistage counters.

■ Analyze and evaluate various types of counters.

■ Design arbitrary-sequence synchronous counters.

■ Understand several types of schemes used to decode different types of

counters.

■ Describe counter circuits using different levels of abstraction in HDL.

■ Compare the major differences between ring and Johnson counters.

■ Recognize and understand the operation of various types of IC

registers.

■ Describe shift registers and shift register counters using HDL.

■ Apply existing troubleshooting techniques used for combinational logic

systems to troubleshoot sequential logic systems.

■ INTRODUCTION
In Chapter 5, we saw how flip-flops could be connected to function as coun-

ters and registers. At that time we studied only the basic counter and regis-

ter circuits. Digital systems employ many variations of these basic circuits,

mostly in integrated-circuit form. In this chapter, we will look at how FFs

and logic gates can be combined to produce different types of counters and

registers.

Because there are a great number of topics in this chapter, it has been

divided into two parts. In PART 1, we will cover the principles of counter

operation, the various counter circuit arrangements, and representative IC

counters. PART 2 will present several types of IC registers, shift register

counters, and troubleshooting. Each part includes a section containing

HDL descriptions of counters and registers.

As you progress through this chapter, you will find that you are con-

stantly drawing on your understanding of the material we have covered in

the preceding chapters. It is a good idea to go back and review previously

learned material whenever you need to.

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 361

PART 1
7-1 ASYNCHRONOUS (RIPPLE) COUNTERS

Figure 7-1 shows a four-bit binary counter circuit such as the one discussed

in Chapter 5. Recall the following points concerning its operation:

1. The clock pulses are applied only to the CLK input of flip-flop A.Thus, flip-

flop A will toggle (change to its opposite state) each time the clock pulses

make a negative (HIGH-to-LOW) transition. Note that J � K � 1 for all FFs.

2. The normal output of flip-flop A acts as the CLK input for flip-flop B, and

so flip-flop B will toggle each time the A output goes from 1 to 0.

Similarly, flip-flop C will toggle when B goes from 1 to 0, and flip-flop D
will toggle when C goes from 1 to 0.

3. FF outputs D, C, B, and A represent a four-bit binary number, with D as

the MSB. Let’s assume that all FFs have been cleared to the 0 state

(CLEAR inputs are not shown). The waveforms in Figure 7-1 show that a

binary counting sequence from 0000 to 1111 is followed as clock pulses

are continuously applied.

4. After the NGT of the fifteenth clock pulse has occurred, the counter FFs

are in the 1111 condition. On the sixteenth NGT, flip-flop A goes from 1

to 0, which causes flip-flop B to go from 1 to 0, and so on, until the

362 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-1 Four-bit asynchronous (ripple) counter.

D

CLK

K

J

D

C

CLK

K

J

C

B

CLK

K

J

B

A

CLK

K

J

A

*All J and K inputs
assumed to be 1.

*

*

CLOCK

A

B

C

D

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 0000 00100001
DCBA
(count)

Recycle to 0000

TOCCMC07_0131725793.QXD 12/22/2005 8:26 AM Page 362

counter is in the 0000 state. In other words, the counter has gone through

one complete cycle (0000 through 1111) and has recycled back to 0000.

From this point, it will begin a new counting cycle as subsequent clock

pulses are applied.

In this counter, each FF output drives the CLK input of the next FF. This

type of counter arrangement is called an asynchronous counter because the

FFs do not change states in exact synchronism with the applied clock pulses;

only flip-flop A responds to the clock pulses. FF B must wait for FF A to

change states before it can toggle; FF C must wait for FF B, and so on. Thus,

there is a delay between the responses of successive FFs. This delay is

typically 5–20 ns per FF. In some cases, as we shall see, this delay can be

troublesome.This type of counter is also often referred to as a ripple counter
because of the way the FFs respond one after another in a kind of rippling

effect. We will use the terms asynchronous counter and ripple counter inter-

changeably.

Signal Flow
It is conventional in circuit schematics to draw the circuits (wherever possi-

ble) so that the signal flow is from left to right, with inputs on the left and

outputs on the right. In this chapter, we will often break with this conven-

tion, especially in diagrams showing counters. For example, in Figure 7-1, the

CLK inputs of each FF are on the right, the outputs are on the left, and the

input clock signal is shown coming in from the right. We will use this arrange-

ment because it makes the counter operation easier to understand and

follow (because the order of the FFs is the same as the order of the bits in the

binary number that the counter represents). In other words, FF A (which is

the LSB) is the rightmost FF, and FF D (which is the MSB) is the leftmost FF.

If we adhered to the conventional left-to-right signal flow, we would have to

put FF A on the left and FF D on the right, which is opposite to their posi-

tions in the binary number that the counter represents. In some of the

counter diagrams later in the chapter, we will employ the conventional left-

to-right signal flow so that you will get used to seeing it.

SECTION 7-1/ASYNCHRONOUS (RIPPLE) COUNTERS 363

EXAMPLE 7-1 The counter in Figure 7-1 starts off in the 0000 state, and then clock pulses

are applied. Some time later the clock pulses are removed, and the counter

FFs read 0011. How many clock pulses have occurred?

Solution

The apparent answer seems to be 3 because 0011 is the binary equivalent of

3. With the information given, however there is no way to tell whether or not

the counter has recycled. This means that there could have been 19 clock

pulses; the first 16 pulses bring the counter back to 0000, and the last 3 bring

it to 0011. There could have been 35 pulses (two complete cycles and then

three more), or 51 pulses, and so on.

MOD Number
The counter in Figure 7-1 has 16 distinctly different states (0000 through

1111). Thus, it is a MOD-16 ripple counter. Recall that the MOD number is

generally equal to the number of states that the counter goes through in

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 363

each complete cycle before it recycles back to its starting state. The MOD

number can be increased simply by adding more FFs to the counter. That is,

MOD number � 2N (7-1)

where N is the number of FFs connected in the arrangement of Figure 7-1.

364 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-2 Counter waveforms showing frequency division by 2 for each FF.

EXAMPLE 7-2 A counter is needed that will count the number of items passing on a con-

veyor belt. A photocell and light source combination is used to generate a

single pulse each time an item crosses its path. The counter must be able to

count as many as one thousand items. How many FFs are required?

Solution

It is a simple matter to determine what value of N is needed so that

Since 29 � 512, 9 FFs will not be enough. 210 � 1024, so 10 FFs

would produce a counter that could count as high as 11111111112 � 102310.

Therefore, we should use 10 FFs. We could use more than 10, but it would be

a waste of FFs because any FF past the tenth one will not be needed.

Frequency Division
In Chapter 5, we saw that in the basic counter each FF provides an output

waveform that is exactly half the frequency of the waveform at its CLK input.

To illustrate, suppose that the clock signal in Figure 7-1 is 16 kHz. Figure 7-2

shows the FF output waveforms.The waveform at output A is an 8-kHz square
wave, at output B it is 4 kHz, at output C it is 2 kHz, and at output D it is

1 kHz. Notice that the output of flip-flop D has a frequency equal to the orig-

inal clock frequency divided by 16. In general,

In any counter, the signal at the output of the last FF (i.e., the
MSB) will have a frequency equal to the input clock frequency
divided by the MOD number of the counter.

For example, in a MOD-16 counter, the output from the last FF will have a

frequency of 1/16 of the input clock frequency. Thus, it can also be called a

divide-by-16 counter. Likewise, a MOD-8 counter has an output frequency of

the input frequency; it is a divide-by-8 counter.

1
8

2N
Ú 1000.

CLOCK

A

B

C

D

TOCCMC07_0131725793.QXD 12/22/2005 8:26 AM Page 364

Solution

There is no integer power of 2 that will equal 60. The closest is 26 � 64. Thus,

a counter using six FFs would act as a MOD-64 counter. Obviously, this will

not satisfy the requirement. It seems that there is no solution using a counter

of the type shown in Figure 7-1. This is partly true; in Section 7-4, we will see

how to modify basic binary counters so that almost any MOD number can be

obtained and we will not be limited to values of 2N.

SECTION 7-2/PROPAGATION DELAY IN RIPPLE COUNTERS 365

EXAMPLE 7-3 The first step involved in building a digital clock is to take the 60-Hz signal

and feed it into a Schmitt-trigger, pulse-shaping circuit* to produce a square

wave, as illustrated in Figure 7-3. The 60-Hz square wave is then put into a

MOD-60 counter, which is used to divide the 60-Hz frequency by exactly 60

to produce a 1-Hz waveform. This 1-Hz waveform is fed to a series of coun-

ters, which then count seconds, minutes, hours, and so on. How many FFs are

required for the MOD-60 counter?

Pulse
shaper

60 Hz

60 Hz

MOD-60
counter

Counters,
displays,etc.

1 HzFIGURE 7-3 Example 7-3.

REVIEW QUESTIONS 1. True or false: In an asynchronous counter, all FFs change states at the

same time.

2. Assume that the counter in Figure 7-1 is holding the count 0101. What

will be the count after 27 clock pulses?

3. What would be the MOD number of the counter if three more FFs were

added?

7-2 PROPAGATION DELAY IN RIPPLE COUNTERS

Ripple counters are the simplest type of binary counters because they require

the fewest components to produce a given counting operation. They do, how-

ever, have one major drawback, which is caused by their basic principle of op-

eration: each FF is triggered by the transition at the output of the preceding

FF. Because of the inherent propagation delay time (tpd) of each FF, this means

that the second FF will not respond until a time tpd after the first FF receives

an active clock transition; the third FF will not respond until a time equal to

after that clock transition; and so on. In other words, the propagation

delays of the FFs accumulate so that the Nth FF cannot change states until a

time equal to after the clock transition occurs. This is illustrated in

Figure 7-4, where the waveforms for a three-bit ripple counter are shown.

The first set of waveforms in Figure 7-4(a) shows a situation where an in-

put pulse occurs every 1000 ns (the clock period T � 1000 ns) and it is as-

sumed that each FF has a propagation delay of 50 ns (tpd � 50 ns). Notice

N * tpd

2 * tpd

*See Section 5-21.

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 365

that the A flip-flop output toggles 50 ns after the NGT of each input pulse.

Similarly, B toggles 50 ns after A goes from 1 to 0, and C toggles 50 ns after B
goes from 1 to 0. As a result, when the fourth input NGT occurs, the C output

goes HIGH after a delay of 150 ns. In this situation, the counter does operate

properly in the sense that the FFs do eventually get to their correct states,

representing the binary count. However, the situation worsens if the input

pulses are applied at a much higher frequency.

The waveforms in Figure 7-4(b) show what happens if the input pulses

occur once every 100 ns. Again, each FF output responds 50 ns after the 1-to-0

transition at its CLK input (note the change in the relative time scale). Of

particular interest is the situation after the falling edge of the fourth input

pulse, where the C output does not go HIGH until 150 ns later, which is the

same time that the A output goes HIGH in response to the fifth input pulse.

In other words, the condition C � 1, B � A � 0 (count of 100) never appears

because the input frequency is too high. This could cause a serious problem

if this condition were supposed to be used to control some other operation in

a digital system. Problems such as this can be avoided if the period between

366 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-4 Waveforms

of a three-bit ripple counter

illustrating the effects of

FF propagation delays for

different input pulse fre-

quencies.

#1 #2 #3 #4 #5

Input

100 ns

A

B

C

#1 #2 #3 #4 #5

Input

A

B

C

1000 ns

50 ns

100 ns

150 ns(a)

50
ns

50
ns

150 ns

The 100
condition

does not occur.
(b)

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 366

input pulses is made longer than the total propagation delay of the counter.

That is, for proper counter operation we need

(7-2)

where N � the number of FFs. Stated in terms of input-clock frequency, the

maximum frequency that can be used is given by

(7-3)

For example, suppose that a four-bit ripple counter is constructed using the

74LS112 J-K flip-flop. Table 5-2 shows that the 74LS112 has tPLH � 16 ns and

tPHL � 24 ns as the propagation delays from CLK to Q. To calculate fmax, we

will assume the “worst case”; that is, we will use tpd � tPHL � 24 ns, so that

Clearly, as the number of FFs in the counter increases, the total propagation

delay increases and fmax decreases. For example, a ripple counter that uses

six 74LS112 FFs will have

Thus, asynchronous counters are not useful at very high frequencies, es-

pecially for counters with large numbers of bits. Another problem caused by

propagation delays in asynchronous counters occurs when we try to elec-

tronically detect (decode) the counter’s output states. If you look closely at

Figure 7-4(a), for a short period of time (50 ns in our example) right after

state 011, you see that state 010 occurs before 100. This is obviously not the

correct binary counting sequence, and while the human eye is much too slow

to see this temporary state, our digital circuits will be fast enough to detect

it. These erroneous count patterns can generate what are called glitches in

the signals that are produced by digital systems using asynchronous coun-

ters. In spite of their simplicity, these problems limit the usefulness of asyn-

chronous counters in digital applications.

fmax =

1

6 * 24 ns
= 6.9 MHz

fmax =

1

4 * 24 ns
= 10.4 MHz

fmax =

1

N * tpd

Tclock Ú N * tpd

SECTION 7-3/SYNCHRONOUS (PARALLEL) COUNTERS 367

REVIEW QUESTIONS 1. Explain why a ripple counter’s maximum frequency limitation decreases

as more FFs are added to the counter.

2. A certain J-K flip-flop has tpd � 12 ns. What is the largest MOD counter

that can be constructed from these FFs and still operate up to 10 MHz?

7-3 SYNCHRONOUS (PARALLEL) COUNTERS

The problems encountered with ripple counters are caused by the accumu-

lated FF propagation delays; stated another way, the FFs do not all change

states simultaneously in synchronism with the input pulses. These limitations

can be overcome with the use of synchronous or parallel counters in which all

of the FFs are triggered simultaneously (in parallel) by the clock input pulses.

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 367

368 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-5 Synchronous MOD-16 counter. Each FF is clocked by the NGT of the

clock input signal so that all FF transitions occur at the same time.

Because the input pulses are applied to all the FFs, some means must be used

to control when an FF is to toggle and when it is to remain unaffected by a

clock pulse.This is accomplished by using the J and K inputs and is illustrated

in Figure 7-5 for a four-bit, MOD-16 synchronous counter.

If we compare the circuit arrangement for this synchronous counter with

its asynchronous counterpart in Figure 7-1, we can see the following notable

differences:

■ The CLK inputs of all of the FFs are connected together so that the input

clock signal is applied to each FF simultaneously.

■ Only flip-flop A, the LSB, has its J and K inputs permanently at the HIGH

level. The J, K inputs of the other FFs are driven by some combination of

FF outputs.

■ The synchronous counter requires more circuitry than does the asyn-

chronous counter.

(a)

A

CLK

K
CLR

JB

B

CLK

K

JD

K

J

Input

1

A

B

ABA

B

C

ABC

D A

CLK

CLR

C

C

CLK

K

J

CLRCLR

Count
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
0
.
.
.

D
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
.
.
.

C
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
.
.

etc.

B
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
.
.
.

A
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
.
.
.

(b)

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 368

Circuit Operation
For this circuit to count properly, on a given NGT of the clock, only those FFs

that are supposed to toggle on that NGT should have J � K � 1 when that

NGT occurs. Let’s look at the counting sequence in Figure 7-5(b) to see

what this means for each FF.

The counting sequence shows that the A flip-flop must change states at

each NGT. For this reason, its J and K inputs are permanently HIGH so that

it will toggle on each NGT of the clock input.

The counting sequence shows that flip-flop B must change states on each

NGT that occurs while A � 1. For example, when the count is 0001, the next

NGT must toggle B to the 1 state; when the count is 0011, the next NGT must

toggle B to the 0 state; and so on.This operation is accomplished by connecting

output A to the J and K inputs of flip-flop B so that J � K � 1 only when A � 1.

The counting sequence shows that flip-flop C must change states on each

NGT that occurs while A � B � 1. For example, when the count is 0011, the

next NGT must toggle C to the 1 state; when the count is 0111, the next NGT

must toggle C to the 0 state; and so on. By connecting the logic signal AB to

FF C’s J and K inputs, this FF will toggle only when A � B � 1.

In a like manner, we can see that flip-flop D must toggle on each NGT that

occurs while A � B � C � 1.When the count is 0111, the next NGT must toggle

D to the 1 state; when the count is 1111, the next NGT must toggle D to the 0

state. By connecting the logic signal ABC to FF D’s J and K inputs, this FF will

toggle only when A � B � C � 1.

The basic principle for constructing a synchronous counter can therefore

be stated as follows:

Each FF should have its J and K inputs connected so that they are
HIGH only when the outputs of all lower-order FFs are in the HIGH
state.

Advantage of Synchronous Counters over Asynchronous
In a parallel counter, all of the FFs will change states simultaneously; that is,

they are all synchronized to the NGTs of the input clock pulses. Thus, unlike

the asynchronous counters, the propagation delays of the FFs do not add to-

gether to produce the overall delay. Instead, the total response time of a syn-

chronous counter like the one in Figure 7-5 is the time it takes one FF to tog-

gle plus the time for the new logic levels to propagate through a single AND

gate to reach the J, K inputs. That is, for a synchronous counter,

total delay � FF tpd � AND gate tpd

This total delay is the same no matter how many FFs are in the counter, and

it will generally be much lower than with an asynchronous counter with the

same number of FFs. Thus, a synchronous counter can operate at a much

higher input frequency. Of course, the circuitry of the synchronous counter

is more complex than that of the asynchronous counter.

Actual ICs
There are many synchronous IC counters in both the TTL and the CMOS

logic families. Some of the most commonly used devices are:

■ 74ALS160/162, 74HC160/162: synchronous decade counters

■ 74ALS161/163, 74HC161/163: synchronous MOD-16 counters

SECTION 7-3/SYNCHRONOUS (PARALLEL) COUNTERS 369

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 369

7-4 COUNTERS WITH MOD NUMBERS < 2N

The basic synchronous counter of Figure 7-5 is limited to MOD numbers that are

equal to 2N, where N is the number of FFs. This value is actually the maximum

MOD number that can be obtained using N flip-flops. The basic counter can be

modified to produce MOD numbers less than 2N by allowing the counter to skip
states that are normally part of the counting sequence. One of the most common

methods for doing this is illustrated in Figure 7-6, where a three-bit counter is

shown. Disregarding the NAND gate for a moment, we can see that the counter

is a MOD-8 binary counter that will count in sequence from 000 to 111. However,

the presence of the NAND gate will alter this sequence as follows:

1. The NAND output is connected to the asynchronous CLEAR inputs of

each FF. As long as the NAND output is HIGH, it will have no effect on

the counter.When it goes LOW, however, it will clear all of the FFs so that

the counter immediately goes to the 000 state.

370 CHAPTER 7/COUNTERS AND REGISTERS

EXAMPLE 7-4 (a) Determine fmax for the counter of Figure 7-5(a) if tpd for each FF is 50 ns

and tpd for each AND gate is 20 ns. Compare this value with fmax for a

MOD-16 ripple counter.

(b) What must be done to convert this counter to MOD-32?

(c) Determine fmax for the MOD-32 parallel counter.

Solution

(a) The total delay that must be allowed between input clock pulses is equal

to FF tpd � AND gate tpd.Thus, and so the par-

allel counter has

A MOD-16 ripple counter uses four FFs with tpd � 50 ns. Thus, fmax for

the ripple counter is

(b) A fifth FF must be added because 25 � 32. The CLK input of this FF is

also tied to the input pulses. Its J and K inputs are fed by the output of a

four-input AND gate whose inputs are A, B, C, and D.

(c) fmax is still determined as in (a) regardless of the number of FFs in the

parallel counter. Thus, fmax is still 14.3 MHz.

fmax =

1

4 * 50 ns
= 5 MHz (ripple counter)

fmax =

1

70 ns
= 14.3 MHz (parallel counter)

Tclock Ú 50 + 20 = 70 ns,

REVIEW QUESTIONS 1. What is the advantage of a synchronous counter over an asynchronous

counter? What is the disadvantage?

2. How many logic devices are required for a MOD-64 parallel counter?

3. What logic signal drives the J, K inputs of the MSB flip-flop for the

counter of question 2?

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 370

2. The inputs to the NAND gate are the outputs of the B and C flip-flops,

and so the NAND output will go LOW whenever B � C � 1.This condition

will occur when the counter goes from the 101 state to the 110 state on

the NGT of input pulse 6.The LOW at the NAND output will immediately

(generally within a few nanoseconds) clear the counter to the 000 state.

Once the FFs have been cleared, the NAND output goes back HIGH be-

cause the B � C � 1 condition no longer exists.

3. The counting sequence is, therefore,

SECTION 7-4/COUNTERS WITH MOD NUMBERS <2N 371

FIGURE 7-6 MOD-6

counter produced by clear-

ing a MOD-8 counter when

a count of six (110) occurs.

A

CLK

K
CLR

JB

B

CLK

K

J

1

1

A
CLR

C

C

B

C

CLK

K

J

CLR

1 2 3 4 5 6 7 8 9 10 11 12

A

B

C

0

1

Input
pulses

NAND
output

CBA

000

001

010

011

100

101

(temporary state needed to clear counter)

←

→110

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 371

372 CHAPTER 7/COUNTERS AND REGISTERS

Although the counter does go to the 110 state, it remains there for only a

few nanoseconds before it recycles to 000.Thus, we can essentially say that

this counter counts from 000 (zero) to 101 (five) and then recycles to 000.

It essentially skips 110 and 111 so that it goes through only six different

states; thus, it is a MOD-6 counter.

Notice that the waveform at the B output contains a spike or glitch caused

by the momentary occurrence of the 110 state before clearing. This glitch is

very narrow and so would not produce any visible indication on indicator

LEDs or numerical displays. It could, however, cause a problem if the B out-

put were being used to drive other circuitry outside the counter. It should

also be noted that the C output has a frequency equal to one-sixth of the in-

put frequency; in other words, this MOD-6 counter has divided the input

frequency by six. The waveform at C is not a symmetrical square wave (50

percent duty cycle) because it is HIGH for only two clock cycles, whereas it

is LOW for four cycles.

State Transition Diagram
Figure 7-7(a) is the state transition diagram for the MOD-6 counter of Figure

7-6, showing how FFs C, B, and A change states as pulses are applied to the

CLK input of flip-flop A. Recall that each circle represents one of the possi-

ble counter states and that the arrows indicate how one state changes to an-

other in response to an input clock pulse.

If we assume a starting count of 000, the diagram shows that the states of

the counter change normally up until the count of 101. When the next clock

pulse occurs, the counter temporarily goes to the 110 count before going to

the stable 000 count. The dotted lines indicate the temporary nature of the

110 state. As stated earlier, the duration of this temporary state is so short

that for most purposes we can consider that the counter goes directly from

101 to 000 (solid arrow).

Note that there is no arrow into the 111 state because the counter can

never advance to that state. However, the 111 state can occur on power-up

when the FFs come up in random states. If that happens, the 111 condition

will produce a LOW at the NAND gate output and immediately clear the

counter to 000.Thus, the 111 state is also a temporary condition that ends up

at 000.

Displaying Counter States
Sometimes during normal operation, and very often during testing, it is nec-

essary to have a visible display of how a counter is changing states in

response to the input pulses. We will take a detailed look at several ways of

doing this later in the text. For now, Figure 7-7(b) shows one of the simplest

methods using individual indicator LEDs for each FF output. Each FF out-

put is connected to an INVERTER whose output provides the current path

for the LED. For example, when output A is HIGH, the INVERTER output

goes LOW and the LED turns ON. An LED that is turned on indicates A � 1.

When output A is LOW, the INVERTER output is HIGH and the LED turns

OFF. When the LED is turned off, it indicates A � 0.

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 372

SECTION 7-4/COUNTERS WITH MOD NUMBERS <2N 373

C B A

111 000

001

010

011

100

101

110Temporary
 state

(a)

(b)

A

CLK

K
CLR

JB

LED is on
when FF is HIGH.

B

CLK

K

J

1

1

A
CLR

C

C

B

C

CLK

K

J

CLR

�5 V

330 �330 �330 �

FIGURE 7-7 (a) State transition diagram for the MOD-6 counter of Figure

7-6. (b) LEDs are often used to display the states of a counter.

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 373

374 CHAPTER 7/COUNTERS AND REGISTERS

EXAMPLE 7-6 Determine the MOD number of the counter in Figure 7-8(a). Also determine

the frequency at the D output.

Solution

This is a four-bit counter, which would normally count from 0000 through

1111. The NAND inputs are D, C, and B, which means that the counter will

immediately recycle to 0000 when the 1110 (decimal 14) count is reached.

Thus, the counter actually has 14 stable states 0000 through 1101 and is

therefore a MOD-14 counter. Because the input frequency is 30 kHz, the fre-

quency at output D will be

General Procedure
To construct a counter that starts counting from all 0s and has a MOD num-

ber of X:

1. Find the smallest number of FFs such that and connect them as

a counter. If 2N � X, do not do steps 2 and 3.

2. Connect a NAND gate to the asynchronous CLEAR inputs of all the FFs.

3. Determine which FFs will be in the HIGH state at a count � X; then con-

nect the normal outputs of these FFs to the NAND gate inputs.

2N
Ú X,

30 kHz

14
= 2.14 kHz

EXAMPLE 7-5 (a) What will be the status of the LEDs when the counter is holding the

count of five?

(b) What will the LEDs display as the counter is clocked by a 1-kHz input?

(c) Will the 110 state be visible on the LEDs?

Solution

(a) Because 510 � 1012, the 20 and 22 LEDs will be ON, and the 21 LED will

be OFF.

(b) At 1 kHz, the LEDs will be switching ON and OFF so rapidly that they

will appear to the human eye to be ON all the time at about half the

normal brightness.

(c) No; the 110 state will persist for only a few nanoseconds as the counter

recycles to 000.

Changing the MOD Number
The counter of Figures 7-6 and 7-7 is a MOD-6 counter because of the choice

of inputs to the NAND gate. Any desired MOD number can be obtained by

changing these inputs. For example, using a three-input NAND gate with in-

puts A, B, and C, the counter would function normally until the 111 condition

was reached, at which point it would immediately reset to the 000 state.

Ignoring the very temporary excursion into the 111 state, the counter would

go from 000 through 110 and then recycle back to 000, resulting in a MOD-7

counter (seven states).

TOCCMC07_0131725793.QXD 12/13/05 6:12 AM Page 374

SECTION 7-4/COUNTERS WITH MOD NUMBERS <2N 375

FIGURE 7-8 (a) MOD-14 ripple counter; (b) MOD-10 (decade) ripple counter.

A

CLK

K
CLR

JB

B

C

D

B

CLK

K

JD

K

J

30 kHz

1

D A

CLK

CLR

C

C

CLK

K

J

CLRCLR

(a)

(b)

A

CLK

K
CLR

JB

B

D

B

CLK

K

JD

K

J

1 MHz

1

D A

CLK

CLR

C

C

CLK

K

J

CLRCLR

EXAMPLE 7-7 Construct a MOD-10 counter that will count from 0000 (zero) through 1001

(decimal 9).

Solution

and ; thus, four FFs are required. Because the counter is to

have stable operation up to the count of 1001, it must be reset to zero when

the count of 1010 is reached. Therefore, FF outputs D and B must be con-

nected as the NAND gate inputs. Figure 7-8(b) shows the arrangement.

24
= 1623

= 8

Decade Counters/BCD Counters
The MOD-10 counter of Example 7-7 is also referred to as a decade counter. In

fact, a decade counter is any counter that has 10 distinct states, no matter what

TOCCMC07_0131725793.QXD 12/13/05 6:12 AM Page 375

376 CHAPTER 7/COUNTERS AND REGISTERS

60 Hz

Q0

Q2

Q0

Q1Q2Q3Q4 Q0

Q3
Q4
Q5

CLK

K
CLR

J

1

CLK

K
CLR

J

CLK

K
CLR

J

CLK

K
CLR

J

CLK

K
CLR

J

CLK

K
CLR

J

Q1Q2Q3 Q0 Q1Q2 Q0 Q1 Q0

Q1Q2Q3Q4Q5

REVIEW QUESTIONS 1. What FF outputs should be connected to the clearing NAND gate to form

a MOD-13 counter?

2. True or false: All BCD counters are decade counters.

3. What is the output frequency of a decade counter that is clocked from a

50-kHz signal?

the sequence. A decade counter such as the one in Figure 7-8(b), which counts

in sequence from 0000 (zero) through 1001 (decimal 9), is also commonly called

a BCD counter because it uses only the 10 BCD code groups 0000, 0001, . . . ,

1000, and 1001.To reiterate, any MOD-10 counter is a decade counter; and any

decade counter that counts in binary from 0000 to 1001 is a BCD counter.

Decade counters, especially the BCD type, find widespread use in appli-

cations where pulses or events are to be counted and the results displayed on

some type of decimal numerical readout. We shall examine this later in more

detail. A decade counter is also often used for dividing a pulse frequency

exactly by 10.The input pulses are applied to the paralleled clock inputs, and

the output pulses are taken from the output of flip-flop D, which has one-

tenth the frequency of the input signal.

EXAMPLE 7-8 In Example 7-3, a MOD-60 counter was needed to divide the 60-Hz line fre-

quency down to 1 Hz. Construct an appropriate MOD-60 counter.

Solution

and , and so we need six FFs, as shown in Figure 7-9. The

counter is to be cleared when it reaches the count of 60 (111100). Thus, the

outputs of flip-flops and must be connected to the NAND gate.

The output of flip-flop will have a frequency of 1 Hz.Q5

Q2Q5, Q4, Q3,

26
= 6425

= 32

FIGURE 7-9 MOD-60 counter.

TOCCMC07_0131725793.QXD 12/13/05 6:12 AM Page 376

A

CLK

K
CLR

JB

B

CLK

K

JD

K

J

Input

1

ABA

BABC

D A

CLK

CLR

C

C

CLK

K

J
C

CLRCLR

A

B

Input

A

B

C

D

SECTION 7-5/SYNCHRONOUS DOWN AND UP/DOWN COUNTERS 377

FIGURE 7-10 Synchronous, MOD-16, down counter and output waveforms.

7-5 SYNCHRONOUS DOWN AND UP/DOWN COUNTERS

In Section 7-3, we saw that using the output of lower-order FFs to control the tog-

gling of each FF creates a synchronous up counter. A synchronous down counter
is constructed in a similar manner except that we use the inverted FF outputs

to control the higher-order J, K inputs. Comparing the synchronous, MOD-16,

down counter in Figure 7-10 with the up counter in Figure 7-5 shows that we

need only to substitute the corresponding inverted FF output in place of the A,

B, and C outputs. For a down count sequence, the LSB FF (A) still needs to tog-

gle with each NGT of the clock input signal. Flip-flop B must change states on

the next NGT of the clock when A � 0 Flip-flop C changes states when

A � B � 0 and flip-flop D changes states when A � B � C � 0

This circuit configuration will produce the count sequence: 15,

14, 13, 12, . . . , 3, 2, 1, 0, 15, 14, and so on, as shown in the timing diagram.

Figure 7-11(a) shows how to form a parallel up/down counter. The control

input controls whether the normal FF outputs or the inverted FF

outputs are fed to the J and K inputs of the successive FFs. When

is held HIGH, AND gates 1 and 2 are enabled while AND gates 3 and 4 are

disabled (note the inverter). This allows the A and B outputs through gates 1

and 2 to the J and K inputs of FFs B and C. When is held LOW, AND

gates 1 and 2 are disabled while AND gates 3 and 4 are enabled. This allows

the inverted A and B outputs through gates 3 and 4 into the J and K inputs of

FFs B and C. The waveforms in Figure 7-11(b) illustrate the operation. Notice

that for the first five clock pulses, and the counter counts up;

for the last five pulses, and the counter counts down.Up/Down = 0,

Up/Down = 1

Up/Down

Up/Down

Up/Down

(A � B � C = 1).

(A � B = 1),

(A = 1).

TOCCMC07_0131725793.QXD 12/22/2005 8:26 AM Page 377

378 CHAPTER 7/COUNTERS AND REGISTERS

K

A J

K

J

CLR CLR CLR
K

J

1

CLKCLKCLK

CLOCK

A

B

B

C

C

B
A

B
A

2

4

Up/Down

A

A

1

3

(a)

FIGURE 7-11 (a) MOD-8 synchronous up/down counter. (b) The counter counts up

when the control input ; it counts down when the control input

.Up/Down = 0

Up/Down = 1

EXAMPLE 7-9 What problems might be caused if the signal changes levels on the

NGT of the clock?

Solution

The FFs might operate unpredictably because some of them would have their

J and K inputs changing at about the same time that a NGT occurs at their

CLK input. However, the effects of the change in the control signal must prop-

agate through two gates before reaching the J, K inputs, so it is more likely

that the FFs will respond predictably to the levels that are at J, K prior to the

NGT of CLK.

Up/Down

CLOCK

A

B

C

000 001 010 011 100 101 100 011 010 001 000
Count
(CBA)

Up/Down

(b)

Up Down

The nomenclature used for the control signal was chosen to

make it clear how it affects the counter. The count-up operation is active-

HIGH; the count-down operation is active-LOW.

(Up/Down)

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 378

7-6 PRESETTABLE COUNTERS

Many synchronous (parallel) counters that are available as ICs are designed to

be presettable; in other words, they can be preset to any desired starting count

either asynchronously (independent of the clock signal) or synchronously

(on the active transition of the clock signal). This presetting operation is also

referred to as parallel loading the counter.

Figure 7-12 shows the logic circuit for a three-bit presettable parallel up

counter. The J, K, and CLK inputs are wired for operation as a parallel up

counter.The asynchronous PRESET and CLEAR inputs are wired to perform

asynchronous presetting. The counter is loaded with any desired count at

any time by doing the following:

1. Apply the desired count to the parallel data inputs, P2, P1, and P0.

2. Apply a LOW pulse to the PARALLEL LOAD input, .PL

SECTION 7-6/PRESETTABLE COUNTERS 379

REVIEW QUESTIONS 1. What is the difference between the counting sequence of an up counter

and a down counter?

2. What circuit changes will convert a synchronous, binary up counter into

a binary down counter?

FIGURE 7-12 Synchronous counter with asynchronous parallel load.

P2 P1 P0

Q0

CLK

K
CLR

J
PRE

Q1

CLK

K
CLR

J
PRE

Q2

CLK

K
CLR

J
PRE

CLK

PL

Parallel load

Parallel data inputs

1

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 379

This procedure will perform an asynchronous transfer of the P2, P1, and P0

levels into flip-flops Q2, Q1, and Q0, respectively (Section 5-17).This jam transfer
occurs independently of the J, K, and CLK inputs. The effect of the CLK input

will be disabled as long as is in its active-LOW state because each FF will

have one of its asynchronous inputs activated while Once returns

HIGH, the FFs can respond to their CLK inputs and can resume the counting-

up operation starting from the count that was loaded into the counter.

For example, let’s say that , , and . While is HIGH,

these parallel data inputs have no effect. If clock pulses are present, the

counter will perform the normal count-up operation. Now let’s say that is

pulsed LOW when the counter is at the 010 count (i.e., , , and

).This LOW at will produce LOWs at the CLR input of Q1 and at the

PRE inputs of Q2 and Q0 so that the counter will go to the 101 count regardless
of what is occurring at the CLK input. The count will hold at 101 until is de-

activated (returned HIGH); at that time the counter will resume counting up

at each clock pulse from the count of 101.

This asynchronous presetting is used by several IC counters, such as the

TTL 74ALS190, 74ALS191, 74ALS192, and 74ALS193 and the CMOS equiva-

lents, 74HC190, 74HC191, 74HC192, and 74HC193.

Synchronous Presetting
Many IC parallel counters use synchronous presetting whereby the counter is

preset on the active transition of the same clock signal that is used for count-

ing.The logic level on the parallel load control input determines if the counter

is preset with the applied input data at the next active clock transition.

Examples of IC counters that use synchronous presetting include the

TTL 74ALS160, 74ALS161, 74ALS162, and 74ALS163 and their CMOS equiv-

alents, 74HC160, 74HC161, 74HC162, and 74HC163.

PL

PLQ0 = 0

Q1 = 1Q2 = 0

PL

PLP0 = 1P1 = 0P2 = 1

PLPL = 0.

PL

380 CHAPTER 7/COUNTERS AND REGISTERS

REVIEW QUESTIONS 1. What is meant when we say that a counter is presettable?

2. Describe the difference between asynchronous and synchronous presetting.

7-7 IC SYNCHRONOUS COUNTERS

The 74ALS160-163/74HC160-163 Series
Figure 7-13 shows the logic symbol, modulus, and function table for the

74ALS160 through 74ALS163 series of IC counters (and the equivalent

CMOS counterparts, 74HC160 through 74HC163). These recycling, four-bit

counters have outputs labeled QD, QC, QB, QA, where QA is the LSB and QD

is the MSB. They are clocked by a PGT applied to CLK. Each of the four dif-

ferent part numbers has a different combination of two feature variations.

As seen in Figure 7-13(b), two of the counters are MOD-10 counters

(74ALS160 and 74ALS162), while the other two are MOD-16 binary coun-

ters (74ALS161 and 74ALS163). The other variation for these parts is in the

operation of the clear function [as highlighted in Figure 7-13(c)]. The

74ALS160 and 74ALS161 each has an asynchronous clear input. This means

that as soon as goes LOW (is active-LOW for all four parts), the

counter’s output will be reset to 0000. On the other hand, the 74ALS162 and

74ALS163 IC counters are synchronously cleared. For these counters to be

synchronously cleared, the input must be LOW and a PGT must be ap-

plied to the clock input. The clear input has priority over all other functions

CLR

CLRCLR

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 380

for this series of IC counters. Clear will override all other control inputs, as

indicated by the Xs in the Figure 7-13(c) function table.

The second priority function available in this series of IC counters is the

parallel loading of data into the counter’s flip-flops.To preset a data value, make

the clear input inactive (HIGH), apply the desired four-bit value to the data

input pins D, C, B, A (A is LSB and D is MSB), apply a LOW to the input

control, and then clock the chip with a PGT. The load function is therefore syn-

chronous and has priority over counting, so it does not matter what logic levels

are applied to ENT or ENP. To count from the preset state it will be necessary to

disable the load (with a HIGH) and enable the count function. If the load func-

tion is inactive, it does not matter what is applied to the data input pins.

To enable counting, the lowest-priority function, both and con-

trol inputs must be inactive. Additionally, there are two active-HIGH count

enable controls, ENT and ENP. ENT and ENP are essentially ANDed together

to control the count function. If either or both of the count enable controls is

inactive (LOW), the counter will hold the current state. Therefore, to incre-

ment the count with each PGT on CLK, all four of the control inputs must be

HIGH. When counting, the decade counters (74ALS160 and 74ALS162) will

automatically recycle to 0000 after state 1001 (9) and the binary counters

(74ALS161 and 74ALS163) will automatically recycle after 1111 (15).

This series of IC counter chips has one more output pin, RCO. The func-

tion of this active-HIGH output is to detect (decode) the last or terminal state

of the counter. The terminal state for a decade counter is 1001 (9), while the

terminal state for a MOD-16 counter is 1111 (15). ENT, the primary count en-

able input, also controls the operation of RCO. ENT must be HIGH for the

counter to indicate with the RCO output that it has reached its terminal

state. You will see that this feature is very useful in connecting two or more

counter chips together in a multistage arrangement to create larger counters.

LOADCLR

LOAD

SECTION 7-7/IC SYNCHRONOUS COUNTERS 381

FIGURE 7-13 74ALS160-

74ALS163 series synchro-

nous counters: (a) logic

symbol; (b) modules;

(c) function table.

74ALS160-74ALS163 Function Table

ENP ENT CLK Function Part Numbers

74ALS160 & 74ALS161X

X

X

X 74ALS162 & 74ALS163

L

L

H

H

H

H

L

H

H

H

X

X

X

H

L

X

X

H

X

L

X

↑
↑
↑
X

X

Asynch. Clear

Synchr. Clear

Synchr. Load

Count up

No change

No change

All

All

All

All

(c)

LOADCLR

(a)

CLK
ENT
ENP

CLR

LOAD

D

A
B
C

QD

QA
QB
QC

RCO

74ALS160-
74ALS163

Part
Number

Modulus

74ALS160 10
74ALS161 16
74ALS162 10
74ALS163 16

(b)

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 381

382 CHAPTER 7/COUNTERS AND REGISTERS

EXAMPLE 7-10 Refer to Figure 7-14, where a 74HC163 has the input signals given in the tim-

ing diagram applied. The parallel data inputs are permanently connected as

1100. Assume the counter is initially in the 0000 state, and determine the

counter output waveforms.

Solution

Initially (at t0), the counter’s FFs are all LOW. Since this is not the terminal

state for the counter, output RCO will be LOW also.The first PGT on the CLK

input occurs at t1 and, since all control inputs are HIGH, the counter will

increment to 0001.The counter continues to count up with each PGT until t2.

The input is LOW for t2. This will synchronously reset the counter to

0000 at t2. After t2, the input goes inactive (HIGH) so the counter willCLR

CLR

CLK

CLR

LOAD

ENT

ENP

QD

QC

QB

QA

RCO

t0 t1 t2 t3 t4 t6 t7t5

(b)

(a)

CLK
ENT
ENP

CLR

LOAD

D

A
B
C

QD

QA
QB
QC

RCO

QD

QA
QB
QC

RCO

74HC163

ENT
ENP

CLR

LOAD

1

0
0
1

FIGURE 7-14 Example 7-10.

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 382

start counting up again from 0000 with each subsequent PGT. The in-

put is LOW for t3. This will synchronously load the applied data value 1100

(12) into the counter at t3. After t3, the input goes inactive (HIGH), so

the counter will continue counting up from 1100 with each subsequent PGT

until t4. The counter output does not change at t4 or t5, since either ENP or

ENT (the count enable inputs) is LOW. This holds the count at 1110 (14). At

t6, the counter is enabled again and counts up to 1111 (15), its terminal state.

As a result, the RCO output now goes HIGH. At t7, another PGT on CLK will

make the counter recycle to 0000 and RCO returns to a LOW output.

LOAD

LOAD

SECTION 7-7/IC SYNCHRONOUS COUNTERS 383

EXAMPLE 7-11 Refer to Figure 7-15, where a 74HC160 has the input signals given in the tim-

ing diagram applied. The parallel data inputs are permanently connected as

FIGURE 7-15 Example 7-11.

(b)

CLK

CLR

LOAD

ENT

ENP

QD

QC

QB

QA

RCO

t0 t1 t3 t4 t5 t6 t7 t8 t9t10t2

(a)

CLK
ENT
ENP

CLR

LOAD

D

A
B
C

QD

QA
QB
QC

RCO

QD

QA
QB
QC

RCO

74HC160

ENT
ENP

CLR

LOAD

0

1
1
1

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 383

0111. Assume the counter is initially in the 0000 state, and determine the

counter output waveforms.

Solution

Initially (at t0) the counter’s FFs are all LOW. Since this is not the terminal

state for the BCD counter, output RCO will be LOW also.The first PGT on the

CLK input occurs at t1 and, since all control inputs are HIGH, the counter will

increment to 0001. The counter continues to count up with each PGT until t2.

The asynchronous input goes LOW at t2 and will immediately reset the

counter to 0000 at that point. At t3, the input is still active (LOW), so the

PGT of the CLK input will be ignored and the counter will stay at 0000. Later

the input goes inactive again and the counter will count up to 0001 and

then to 0010. At t4, the count enable ENP is LOW, so the count holds at 0010.

For subsequent PGTs of the CLK input, the counter is enabled and counts up

until t5. The input is LOW for t5. This will synchronously load the ap-

plied data value 0111 (7) into the counter at t5. At t6, the count enable ENT is

LOW, so the count holds at 0111. For the two subsequent PGTs after t6, the

counter will continue counting up since it is re-enabled. At t7, the BCD

counter reaches its terminal state 1001 (9) and the RCO output now goes

HIGH. At t8, ENP is LOW and the counter stops counting (remaining at 1001).

At t9, while ENT is LOW, the RCO output will be disabled so that it returns to

a LOW even though the counter is still at its terminal state (1001). Recall that

only ENT controls the RCO output. When ENT returns HIGH during the

counter’s terminal state, RCO goes HIGH again. At t10 the counter is enabled,

and it recycles to 0000 and then counts to 0001 on the last PGT.

The 74ALS190-191/74HC190-191 Series
Figure 7-16 shows the logic symbol, modulus, and function table for the

74ALS190 and 74ALS191 series of IC counters (and the equivalent CMOS

counterparts, 74HC190 and 74HC191).These recycling, four-bit counters have

outputs labeled QD, QC, QB, QA, where QA is the LSB and QD is the MSB.

They are clocked by a PGT applied to CLK. The only difference between the

two part numbers is the counter’s modulus. The 74ALS190 is a MOD-10

counter and the 74ALS191 is a MOD-16 binary counter. Both chips are

up/down counters and have an asynchronous, active-LOW load input. This

LOAD

CLR

CLR

CLR

384 CHAPTER 7/COUNTERS AND REGISTERS

(a)

CLK

CTEN

D/U

LOAD

Max
/Min

D

A
B
C

QD

QA
QB
QC

RCO

74ALS190-
74ALS191

(b)

Part
Number

Modulus

74ALS190 10
74ALS191 16

(c)

74ALS190-74ALS191 Function Table

CLK Function

L

H

H

H

X

L

L

H

X

L

H

X

X

↑
↑
X

Asynch. Load

Count down

Count up

No change

LOAD CTEN D/U

FIGURE 7-16 74ALS190-

74ALS191 series synchro-

nous counters: (a) logic

symbol; (b) modulus;

(c) function table.

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 384

means that as soon as goes LOW, the counter will be preset to the

parallel data on the D, C, B, A (A is LSB and D is MSB) input pins. If the load

function is inactive, it does not matter what is applied to the data input pins.

The load input has priority over the counting function.

To count, the control input must be inactive (HIGH) and the

count enable control must be LOW. The count direction is controlled

by the control input. If is LOW, the count is incremented with

each PGT on CLK, while a HIGH on will decrement the count. Both

counters automatically recycle in either count direction. The decade

counter recycles to 0000 after state 1001 (9) when counting up or to 1001

after state 0000 when counting down. The binary counter will recycle to

0000 after 1111 (15) when counting up or to 1111 after state 0000 when

counting down.

These counter chips have two more output pins, MAX/MIN and RCO.

MAX/MIN is an active-HIGH output that detects (decodes) the terminal state

of the counter. Since they are up/down counters, the terminal state depends on

the direction of the count. The terminal state (MIN) for either counter when

counting down is 0000 (0). However when counting up, the terminal state

(MAX) for a decade counter is 1001 (9), while the terminal state for a MOD-16

counter is 1111 (15). Note that MAX/MIN detects only one state in the count

sequence—it just depends on whether it is counting up or down. The active-

LOW output also detects the appropriate terminal state for the counter,

but it is a bit more complicated. First, it is only enabled when is LOW.

Additionally, will only be LOW while the CLK input is also LOW. So es-

sentially will mimic the CLK waveform only during the terminal state

while the counter is enabled.

RCO

RCO

CTEN

RCO

D/U

D/UD/U

CTEN

LOAD

LOAD

SECTION 7-7/IC SYNCHRONOUS COUNTERS 385

EXAMPLE 7-12 Refer to Figure 7-17, where a 74HC190 has the input signals given in the tim-

ing diagram applied. The parallel data inputs are permanently connected as

0111. Assume the counter is initially in the 0000 state, and determine the

counter output waveforms.

Solution

Initially (at t0), the counter’s FFs are all LOW. Since the counter is enabled

and the count direction control the BCD counter will

start counting up on the first PGT applied to CLK at t1 and continues to

count up with each PGT until t2, where the count has reached 0101. The

asynchronous input goes LOW at t2 and will immediately load 0111

into the counter at that point. At t3, the input is still active (LOW), so

the PGT of the CLK input will be ignored and the counter will stay at 0111.

Later the input goes HIGH again and the counter will count up to

1000 at the next PGT. At t4, the counter increments to 1001, which is the ter-

minal state for a BCD up counter and the MAX/MIN output goes HIGH.

During t5, the counter is at its terminal state and the CLK input is LOW, so

goes LOW. For subsequent PGTs of the CLK input, the counter recycles

to 0000 and continues to count up until t6. Just prior to t6, the control

changes to a HIGH. This will make the counter count down at t6 and again at

t7, where it will be at state 0000, which now is the terminal state since we are

counting down, and MAX/MIN will output a HIGH. During t8, when the CLK

input goes LOW, the output again will be LOW. At t9, the counter is

disabled with and the counter holds at 1001. For the subsequent

CLK pulses, the counter continues to count down.

CTEN = 1

RCO

D/U

RCO

LOAD

LOAD

LOAD

D/U = 0,(CTEN = 0)

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 385

386 CHAPTER 7/COUNTERS AND REGISTERS

EXAMPLE 7-13 Compare the operation of two counters, one with synchronous load and the

other with asynchronous load. Refer to Figure 7-18(a), in which a 74ALS163

and a 74ALS191 have been wired in a similar fashion to count up in binary.

Both chips are driven by the same clock signal and have their QD and QC

outputs NANDed together to control the respective input control.

Assume that both counters are initially in the 0000 state.

(a) Determine the output waveform for each counter.

(b) What is the recycling count sequence and modulus for each counter?

(c) Why do they have different count sequences?

LOAD

(b)

CLK

LOAD

CTEN

QC

QD

QB

QA

MAX/MIN

RCO

t0 t1 t3 t4 t5 t6 t7 t8 t9t2

D/U

(a)

74HC190

LOAD

0

1
1
1

CLK

CTEN

D/U

LOAD

Max
/Min

D

A
B
C

QD

QA
QB
QC

RCOCTEN

D/U

FIGURE 7-17 Example 7-12.

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 386

SECTION 7-7/IC SYNCHRONOUS COUNTERS 387

(b)

(a)

74ALS163

0

0

0

1

0

0

0

1

0

0
1

1

1

S3

S2

S1

S0

T3

T2

T1

T0

S-LD T-LD

S0

S1

S2

S3

T0

T1

T2

T3

S-LD

T-LD

CLK

CLK

ENT

ENP

CLR

LOAD

D

A

B

C

QD

QA

QB

QC

RCO

CLK

Max
/Min

D/U

LOAD

D

A

B

C

QD

QA

QB

QC

74ALS191

CTEN RCO

FIGURE 7-18 Example 7-13.

Solution

(a) Starting at state 0000, each counter will count up until it reaches state 1100

(12) as shown in Figure 7-18(b).The output of each NAND gate will apply a

LOW to the respective input at that time. The 74ALS163 has a syn-

chronous and will wait until the next PGT on CLK to load the dataLOAD

LOAD

TOCCMC07_0131725793.QXD 12/22/2005 8:26 AM Page 387

input 0001 into the counter.The 74ALS191 has an asynchronous and

will immediately load the data input 0001 into the counter. This will make

the 1100 state a temporary or transient state for the 74ALS191. The tran-

sient state will produce some spikes or glitches for some of the counter’s

outputs because of their rapid switching back and forth.

(b) The 74ALS163 circuit has a recycling count sequence of 0001 through

1100 and is a MOD-12 counter. The 74ALS191 circuit has a recycling

count sequence of 0001 through 1011 and is a MOD-11 counter.Transient

states are not included in determining the modulus for a counter.

(c) The counter circuits have different count sequences because one has a

synchronous load and the other has an asynchronous load.

Multistage Arrangement
Many standard IC counters have been designed to make it easy to connect

multiple chips together to create circuits with a higher counting range. All of

the counter chips presented in this section can be simply connected in a

multistage or cascading arrangement. In Figure 7-19, two 74ALS163s are

connected in a two-stage counter arrangement that produces a recycling, bi-

nary sequence from 0 to 255 for a maximum modulus of 256. Applying a LOW

to the input will synchronously clear both counter stages, and applying

a LOW to will synchronously preset the eight-bit counter to the binary

value on inputs D7, D6, D5, D4, D3, D2, D1, D0 (D0 � LSB). The block on the

left (stage 1) is the low-order stage and provides the least-significant counter

outputs Q3, Q2, Q1, Q0 (with Q0 � LSB). Stage 2 on the right provides the

most-significant counter outputs Q7, Q6, Q5, Q4 (with Q7 � MSB).

EN, the enable for the eight-bit counter, is connected to the ENT input on

stage 1. Note that we must use the ENT input and not ENP, since only ENT

controls the RCO output. Using ENT and RCO makes cascading very easy.

Both counter blocks are clocked together synchronously, but the block on the

right (stage 2) is disabled until the least-significant output nibble has reached

its terminal state, which will be indicated by the TC1 output.When Q3, Q2, Q1,

Q0 reaches 1111 and if EN is HIGH, then TC1 will output a HIGH.This will al-

low both counter stages to count up one with the next PGT on the clock. Stage 1

LD

CLR

LOAD

388 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-19 Two 74ALS163s connected in a two-stage arrangement to extend the

maximum counting range.

74ALS163 74ALS163

1 1

Q0 (LSB)

Q1

Q2

Q3

Q4

Q5

Q6

Q7

D0

D1

D2

D3

D4

D5

D6

D7

EN

CLR

LD

To higher-order
counter stages

To higher-order
counter stages

TC1 TC2

least-
significant

nibble

CLK

ENT
ENP

CLR

LOAD

D

A

B

C

QD

QA

QB

QC

RCO

stage 1

CLK

ENT
ENP

CLR

LOAD

D

A

B

C

QD

QA

QB

QC

RCO

stage 2

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 388

will recycle back to 0000 and stage 2 will increment from its previous output

state.TC1 will return to a LOW, since stage 1 is no longer at its terminal state.

With subsequent clock pulses, stage 1 will continue to count up if EN�1 until

it again reaches 1111 and the process repeats. When the eight-bit counter

reaches 11111111, it will recycle back to 00000000 on the next clock pulse.

Additional 74ALS163 counter chips can be cascaded in the same fashion.

TC2 would be connected to the ENT control on the next chip, and so on. TC2

will be HIGH when Q7, Q6, Q5, Q4 is equal to 1111 and TC1 is HIGH, which

in turn means that Q3, Q2, Q1, Q0 is also equal to 1111 and EN is HIGH. This

cascading technique works for all chips (TTL or CMOS families) in this se-

ries, even for the BCD counters. The 74ALS190-191 (or 74HC190-191) series

also can be cascaded similarly using the active-LOW and pins. A

multistage counter using 74ALS190-191 chips connected in this fashion can

count up or down.

RCOCTEN

SECTION 7-8/DECODING A COUNTER 389

REVIEW QUESTIONS 1. Describe the function of the inputs and D, C, B, A.

2. Describe the function of the input.

3. True or false: The 74HC161 cannot be preset while is active.

4. What logic levels must be present on the control inputs in order for the

74ALS162 to count pulses that appear on the CLK?

5. What logic levels must be present on the control inputs in order for the

74HC190 to count down with pulses that appear on the CLK?

6. What would be the maximum counting range for a four-stage counter

made up of 74HC163 ICs? What is the maximum counting range for

74ALS190 ICs?

CLR

CLR

LOAD

7-8 DECODING A COUNTER

Digital counters are often used in applications where the count represented

by the states of the FFs must somehow be determined or displayed. One of

the simplest means for displaying the contents of a counter involves just con-

necting the output of each FF to a small indicator LED [see Figure 7-7(b)]. In

this way the states of the FFs are visibly represented by the LEDs (on � 1,

off � 0), and the count can be mentally determined by decoding the binary

states of the LEDs. For instance, suppose that this method is used for a BCD

counter and the states of the LEDs are off–on–on–off, respectively. This

would represent 0110, which we would mentally decode as decimal 6. Other

combinations of LED states would represent the other possible counts.

The indicator LED method becomes inconvenient as the size (number of

bits) of the counter increases because it is much harder to decode the dis-

played results mentally. For this reason, it is preferable to develop a means for

electronically decoding the contents of a counter and displaying the results in

a form that is immediately recognizable and requires no mental operations.

An even more important reason for electronic decoding of a counter oc-

curs because of the many applications in which counters are used to control

the timing or sequencing of operations automatically without human inter-

vention. For example, a certain system operation might have to be initiated

when a counter reaches the 101100 state (count of 4410). A logic circuit can

be used to decode for or detect when this particular count is present and

then initiate the operation. Many operations may have to be controlled in

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 389

this manner in a digital system. Clearly, human intervention in this process

would be undesirable except in extremely slow systems.

Active-HIGH Decoding
A MOD-X counter has X different states; each state is a particular pattern of 0s

and 1s stored in the counter FFs. A decoding network is a logic circuit that gen-

erates X different outputs, each of which detects (decodes) the presence of one

particular state of the counter. The decoder outputs can be designed to pro-

duce either a HIGH or a LOW level when the detection occurs.An active-HIGH

decoder produces HIGH outputs to indicate detection. Figure 7-20 shows the

complete active-HIGH decoding logic for a MOD-8 counter. The decoder

390 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-20 Using AND gates to decode a MOD-8 counter.

1

000 001 010 011 101 110 111100

CLK

CLK

C B A

C B AC B A

C B A

C B A

0

1

2

3

4

5

6

7

C K

C J

CLK

B K

B J

CLK

A K

A J

CLK

C B A

C B A

C B A

C B A

C B A

C B A

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 390

consists of eight three-input AND gates. Each AND gate produces a HIGH out-

put for one particular state of the counter.

For example, AND gate 0 has at its inputs the FF outputs and

Thus, its output will be LOW at all times except when A � B � C � 0, that is,

on the count of 000 (zero). Similarly, AND gate 5 has as its inputs the FF out-

puts C, and A, so that its output will go HIGH only when C � 1, B � 0, and

A � 1, that is, on the count of 101 (decimal 5). The rest of the AND gates per-

form in the same manner for the other possible counts. At any one time, only

one AND gate output is HIGH: the one that is decoding for the particular

count present in the counter. The waveforms in Figure 7-20 show this clearly.

The eight AND outputs can be used to control eight separate indicator

LEDs, which represent the decimal numbers 0 through 7. Only one LED will

be on at a given time, indicating the proper count.

The AND gate decoder can be extended to counters with any number of

states. The following example illustrates.

B,

A.C, B,

SECTION 7-8/DECODING A COUNTER 391

EXAMPLE 7-14 How many AND gates are required to decode completely all of the states of

a MOD-32 binary counter? What are the inputs to the gate that decodes for

the count of 21?

Solution

A MOD-32 counter has 32 possible states. One AND gate is needed to decode

for each state; therefore, the decoder requires 32 AND gates. Because

, the counter contains five FFs. Thus, each gate will have five inputs,

one from each FF. Decoding for the count of 21 (that is,) requires

AND gate inputs of E, C, and A, where E is the MSB flip-flop.

Active-LOW Decoding
If NAND gates are used in place of AND gates, the decoder outputs produce

a normally HIGH signal, which goes LOW only when the number being de-

coded occurs. Both types of decoders are used, depending on the type of cir-

cuits being driven by the decoder outputs.

B,D,

101012

32 = 25

EXAMPLE 7-15 Figure 7-21 shows a common situation in which a counter is used to generate

a control waveform, which could be used to control devices such as a motor,

solenoid valve, or heater. The MOD-16 counter cycles and recycles through

its counting sequence. Each time it goes to the count of 8 (1000), the upper

NAND gate will produce a LOW output, which sets flip-flop X to the 1 state.

Flip-flop X stays HIGH until the counter reaches the count of 14 (1110), at

which time the lower NAND gate decodes it and produces a LOW output to

clear X to the 0 state. Thus, the X output is HIGH between the counts of 8

and 14 for each cycle of the counter.

BCD Counter Decoding
A BCD counter has 10 states that can be decoded using the techniques de-

scribed previously. BCD decoders provide 10 outputs corresponding to the

decimal digits 0 through 9 and represented by the states of the counter

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 391

FFs. These 10 outputs can be used to control 10 individual indicator LEDs

for a visual display. More often, instead of using 10 separate LEDs, a sin-

gle display device is used to display the decimal numbers 0 through 9. One

class of decimal displays contains seven small segments made of a mate-

rial (usually LEDs or liquid-crystal displays) that either emits light or re-

flects ambient light. The BCD decoder outputs control which segments are

illuminated in order to produce a pattern representing one of the decimal

digits.

We will go into more detail concerning these types of decoders and dis-

plays in Chapter 9. However, because BCD counters and their associated de-

coders and displays are very commonplace, we will use the decoder/display

unit (see Figure 7-22) to represent the complete circuitry used to display vi-

sually the contents of a BCD counter as a decimal digit.

392 CHAPTER 7/COUNTERS AND REGISTERS

1

CLK

D_
C_
B_
A

0

D

_
A

C
B

0

state
1000

state
1110

decodes
1000

decodes
1110

1

D K

D J

CLK

C K

C J

CLK

B K

B J

CLK

A K

A J

CLK

CLR
K

XJ

CLK

PRE

X

FIGURE 7-21 Example 7-15.

D C B A

BCD counter

Decoder/display
unit

Input pulses

FF outputs

7-segment
display

FIGURE 7-22 BCD

counters usually have their

count displayed on a single

display device.

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 392

7-9 ANALYZING SYNCHRONOUS COUNTERS

Synchronous counter circuits can be custom-designed to generate any de-

sired count sequence. We can use just the synchronous inputs that are ap-

plied to the individual flip-flops to produce the counter’s sequence. By not

using asynchronous FF controls, such as the clears, to change the counter’s

sequence, we will never have to deal with transient states and possible

glitches in output waveforms. The process of designing completely synchro-

nous counters will be investigated in the next section. First, let’s see how to

analyze a counter design of this type by predicting the FF control inputs for

each state of the counter. A PRESENT state/NEXT state table is a very use-

ful tool in this analysis process. The first step is to write the logic expression

for each FF control input. Next assume a PRESENT state for the counter and

apply that combination of bits to the control logic expressions. The outputs

from the control expressions will allow us to predict the commands to each

FF and the resulting NEXT state for the counter after clocking. Repeat the

analysis process until the entire count sequence is determined.

Figure 7-23 is a synchronous counter that has slightly different J and K
inputs than we saw in Section 7-3 for a regular binary up counter. These mi-

nor changes to the control circuitry will cause the counter to produce a dif-

ferent count sequence. The control input expressions for this counter are:

Let us assume that the PRESENT state for the counter is CBA � 000.

Applying this combination to the control expressions above will yield JC KC �
0 0, JB KB � 0 0, and JA KA � 1 1. These control inputs will tell FFs C and B to

hold and FF A to toggle on the next NGT on CLK. Our predicted NEXT state is

001 for CBA. This information has been entered in the first line of the PRE-

SENT state/NEXT state table shown in Table 7-1. Next we can use the state 001

 JA = KA = C
 JB = KB = A

 KC = C
 JC = A # B

SECTION 7-9/ANALYZING SYNCHRONOUS COUNTERS 393

REVIEW QUESTIONS 1. How many gates are needed to decode a six-bit counter fully?

2. Describe the decoding gate needed to produce a LOW output when a

MOD-64 counter is at the count of 23.

FIGURE 7-23 Synchronous counter with different control inputs.

CLK

C K

C J

CLK

B K

B J

CLK

A K

A J

CLK

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 393

as our PRESENT state. Analyzing the control expressions with this new combi-

nation will now yield JC KC � 0 0, JB KB � 1 1, and JA KA � 1 1 giving us a hold

command for FF C and toggle commands for FFs B and A. This will produce a

NEXT state of 010 for CBA, which we have listed on the second line of Table 7-1.

Continuing with this process will result in a recycling count sequence of 000,

001, 010, 011, 100, 000.This would be a MOD-5 count sequence.We can also pre-

dict the NEXT states for the remaining three possible state combinations in

the same way. By doing so, we can determine if the counter design is self-
correcting. A self-correcting counter is one in which normally unused states will

all somehow return to the normal count sequence. If any of these unused states

cannot return to the normal sequence, the counter is said to be not self-

correcting. Our NEXT-state predictions for all possible states have been en-

tered into Table 7-1. The highlighted information indicates that this counter

design happens to be self-correcting. The complete state transition diagram

and timing diagram for this counter is shown in Figure 7-24.

We can likewise analyze the operation of counter circuits that use D flip-

flops to store the present state of the counter. The control circuitry for a D-type

will typically be more complex than for an equivalent JK-type counter that

produces the same count sequence, but we will also have half the number of

394 CHAPTER 7/COUNTERS AND REGISTERS

PRESENT State Control Inputs NEXT State

C B A JC KC JB KB JA KA C B A

0 0 0 0 0 0 0 1 1 0 0 1

0 0 1 0 0 1 1 1 1 0 1 0

0 1 0 0 0 0 0 1 1 0 1 1

0 1 1 1 0 1 1 1 1 1 0 0

1 0 0 0 1 0 0 0 0 0 0 0

1 0 1 0 1 1 1 0 0 0 1 1

1 1 0 0 1 0 0 0 0 0 1 0

1 1 1 1 1 1 1 0 0 0 0 1

TABLE 7-1

CLK

A

B

C
C B A

000

001

010

100

011

110

111

101

(b)(a)

FIGURE 7-24 (a) State transition diagram and (b) timing diagram for synchronous

counter in Figure 7-23.

TOCCMC07_0131725793.QXD 12/22/2005 8:26 AM Page 394

SECTION 7-9/ANALYZING SYNCHRONOUS COUNTERS 395

CLOCK

B

B D

CLK

A

A D

CLK

B AC

DC DB DA

C

C D

CLK

FIGURE 7-25
Synchronous counter using

D flip-flops.

synchronous inputs to control. Most PLDs utilize D flip-flops for their memory

elements, so the analysis of this type of counter circuit will give us some in-

sight into how counters are actually programmed inside a PLD.

A synchronous counter designed with D flip-flops is shown in Figure 7-25.

The first step is to write the logic expressions for the D inputs:

Then we will determine the PRESENT state/NEXT state table for the

counter circuit by assuming a state and applying that set of bit values to the

input expressions given above. If we pick CBA � 000 for the initial counter

state, we will find that DC � 0, DB � 0, and DA � 1. With a PGT on CLOCK,

the flip-flops will “load” in the value 001, which becomes the counter’s

NEXT state. Using 001 as a PRESENT state will produce inputs of DC � 0,

DB � 1, and DA � 0 so that 010 will be the NEXT state, and so on. The com-

pleted PRESENT state/NEXT state table, shown in Table 7-2, indicates that

this circuit is a recycling MOD-8 binary counter. By applying a little Boolean

algebra to the input expressions, we can see that there is actually a fairly

simple circuit pattern in creating binary counters from D flip-flops:

 DA = A
 DB = B A + B A = B { A

 = C B A + C (B A) = C { (A B)

 DC = C B + C A + C B A = C (B + A) + C B A

 DA = A
 DB = B A + B A
 DC = C B + C A + C B A

PRESENT State Control Inputs NEXT State

C B A DC DB DA C B A

0 0 0 0 0 1 0 0 1

0 0 1 0 1 0 0 1 0

0 1 0 0 1 1 0 1 1

0 1 1 1 0 0 1 0 0

1 0 0 1 0 1 1 0 1

1 0 1 1 1 0 1 1 0

1 1 0 1 1 1 1 1 1

1 1 1 0 0 0 0 0 0

TABLE 7-2

TOCCMC07_0131725793.QXD 12/22/2005 8:26 AM Page 395

It is important to note that the gating resources for most PLDs actually

consist of sets of AND-OR circuit arrangements and the SOP logic expression

more accurately describes the internal circuit implementation. However, we

can see that the expressions have been greatly simplified by using the XOR

function. This leads us to predict correctly that to create a MOD-16 binary

counter with D flip-flops, we would need a fourth FF with:

DD = D { (A B C)

396 CHAPTER 7/COUNTERS AND REGISTERS

REVIEW QUESTIONS 1. Why is it desirable to avoid having asynchronous controls on counters?

2. What tool is useful in the analysis of synchronous counters?

3. What determines the count sequence for a counter circuit?

4. What counter characteristic is described by saying that it is self-correcting?

7-10 SYNCHRONOUS COUNTER DESIGN*

Many different counter arrangements are available as ICs—asynchronous, syn-

chronous, and combined asynchronous/synchronous. Most of these count in a

normal binary or BCD count sequence, although their counting sequences can

be somewhat altered using the clearing or loading methods we demonstrated

for the 74ALS160-163 and 74ALS190-191 series of ICs. There are situations,

however, where a custom counter is required that follows a sequence that is not

a regular binary count pattern, for example, 000, 010, 101, 001, 110, 000, . . .

Several methods exist for designing counters that follow arbitrary se-

quences. We will present the details for one common method that uses J-K

flip-flops in a synchronous counter configuration. The same method can be

used in designs with D flip-flops. The technique is one of several design pro-

cedures that are part of an area of digital circuit design called sequential cir-
cuit design, which is normally part of an advanced course.

Basic Idea
In synchronous counters, all of the FFs are clocked at the same time. Before

each clock pulse, the J and K input of each FF in the counter must be at the

correct level to ensure that the FF goes to the correct state. For example,

consider the situation where state 101 for counter CBA is to be followed by

state 011. When the next clock pulse occurs, the J and K inputs of the FFs

must be at the correct levels that will cause flip-flop C to change from 1 to 0,

flip-flop B from 0 to 1, and flip-flop A from 1 to 1 (i.e., no change).

The process of designing a synchronous counter thus becomes one of

designing the logic circuits that decode the various states of the counter to

supply the proper logic levels to each J and K input at the correct time. The

inputs to these decoder circuits will come from the outputs of one or more of

the FFs. To illustrate, for the synchronous counter of Figure 7-5, the AND

gate that feeds the J and K inputs of flip-flop C decodes the states of flip-

flops A and B. Likewise, the AND gate that feeds the J and K inputs of flip-

flop D decodes the states of A, B, and C.

*This topic may be omitted without affecting the continuity of the remainder of the book.

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 396

J-K Excitation Table
Before we begin the process of designing the decoder circuits for each J and

K input, we must first review the operation of the J-K flip-flop using a differ-

ent approach, one called an excitation table (Table 7-3). The leftmost column

of this table lists each possible FF output transition. The second and third

columns list the FF’s PRESENT state, symbolized as , and the NEXT state,

symbolized as , for each transition. The last two columns list the J and K
levels required to produce each transition. Let’s examine each case.

0 0 TRANSITION The FF PRESENT state is at 0 and is to remain at

0 when a clock pulse is applied. From our understanding of how a J-K

flip-flop works, this can happen when either J � K � 0 (no-change condi-

tion) or J � 0 and K � 1 (clear condition). Thus, J must be at 0, but K can

be at either level. The table indicates this with a “0” under J and an “x”

under K. Recall that “x” means the don’t-care condition.

0 1 TRANSITION The PRESENT state is 0 and is to change to a 1,

which can happen when either J � 1 and K � 0 (set condition) or J � K �
1 (toggle condition). Thus, J must be a 1, but K can be at either level for

this transition to occur.

1 0 TRANSITION The PRESENT state is 1 and is to change to a 0,

which can happen when either J � 0 and K � 1 or J � K � 1.Thus, K must

be a 1, but J can be at either level.

1 1 TRANSITION The PRESENT state is a 1 and is to remain a 1,

which can happen when either J � K � 0 or J � 1 and K � 0.Thus, K must

be a 0 while J can be at either level.

The use of this J-K excitation table (Table 7-3) is a principal part of the

synchronous counter design procedure.

:

:

:

:

Qn + 1

Qn

SECTION 7-10/SYNCHRONOUS COUNTER DESIGN 397

Transition at PRESENT State NEXT State

FF Output Qn Qn+1 J K

0 0 0 0 0 x

0 1 0 1 1 x

1 0 1 0 x 1

1 1 1 1 x 0:
:
:
:

TABLE 7-3 J-K flip-flop

excitation table.

Design Procedure
We will now go through a complete synchronous counter design procedure.

Although we will do it for a specific counting sequence, the same steps can

be followed for any desired sequence.

Step 1. Determine the desired number of bits (FFs) and the desired count-

ing sequence.

For our example, we will design a three-bit counter that goes through the

sequence shown in Table 7-4. Notice that this sequence does not include the

101, 110, and 111 states. We will refer to these states as undesired states.

Step 2. Draw the state transition diagram showing all possible states, includ-

ing those that are not part of the desired counting sequence.

C B A

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

0 0 0

0 0 1

etc.

TABLE 7-4

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 397

For our example, the state transition diagram appears as shown in Figure

7-26.The 000 through 100 states are connected in the expected sequence. We

have also included a defined NEXT state for each of the undesired states.This

was done in case the counter accidentally gets into one of these states upon

power-up or due to noise.The circuit designer can choose to have each of these

undesired states go to any state upon the application of the next clock pulse.

Alternatively, the designer may choose not to define the counter’s action for

the undesired states at all. In other words, we may not care about the NEXT

state for any undesired state. Using the latter “don’t care” design approach

will generally produce a simpler design but can be a potential problem in the

application where this counter is to be used. For our design example, we will

choose to have all undesired states go to the 000 state. This will make our de-

sign self-correcting but slightly different from the example MOD-5 counter

that was analyzed in Section 7-9.

Step 3. Use the state transition diagram to set up a table that lists all
PRESENT states and their NEXT states.

For our example, the information is shown in Table 7-5.The left-hand portion

of the table lists every possible state,even those that are not part of the sequence.

We label these as the PRESENT states. The right-hand portion lists the NEXT

state for each PRESENT state. These are obtained from the state transition

398 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-26 State transition

diagram for the synchronous

counter design example.

TABLE 7-5
PRESENT State NEXT State

C B A C B A

Line 1 0 0 0 0 0 1

2 0 0 1 0 1 0

3 0 1 0 0 1 1

4 0 1 1 1 0 0

5 1 0 0 0 0 0

6 1 0 1 0 0 0

7 1 1 0 0 0 0

8 1 1 1 0 0 0

101
110

111

000

001

010011

100

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 398

diagram in Figure 7-26. For instance, line 1 shows that the PRESENT state of 000

has the NEXT state of 001, and line 5 shows that the PRESENT state of 100 has

the NEXT state of 000. Lines 6, 7, and 8 show that the undesired PRESENT states

101, 110, and 111 all have the NEXT state of 000.

Step 4. Add a column to this table for each J and K input. For each PRESENT

state, indicate the levels required at each J and K input in order to

produce the transition to the NEXT state.

Our design example uses three FFs—C, B, and A—and each one has a J
and a K input. Therefore, we must add six new columns as shown in Table 7-6.

This completed table is called the circuit excitation table. The six new

columns are the J and K inputs of each FF.The entries under each J and K are

obtained from Table 7-3, the J-K flip-flop excitation table that we developed

earlier. We will demonstrate this for several of the cases, and you can verify

the rest.

Let’s look at line 1 in Table 7-6. The PRESENT state of 000 is to go to the

NEXT state of 001 on the occurrence of a clock pulse. For this state transi-

tion, the C flip-flop goes from 0 to 0. From the J-K excitation table, we see

that JC must be at 0 and KC at “x” for this transition to occur. The B flip-flop

also goes from 0 to 0, and so and . The A flip-flop goes from 0

to 1. Also from Table 7-3, we see that and for this transition.

In line 4 in Table 7-6, the PRESENT state of 011 has a NEXT state of 100.

For this state transition, flip-flop C goes from 0 to 1, which requires

and . Flip-flops B and A are both going from 1 to 0. The J-K excitation

table indicates that these two FFs need J � x and K � 1 for this to occur.

The required J and K levels for all other lines in Table 7-6 can be deter-

mined in the same manner.

Step 5. Design the logic circuits needed to generate the levels required at

each J and K input.

Table 7-6, the circuit excitation table, lists six J, K inputs—JC, KC, JB, KB,

JA, and KA. We must consider each of these as an output from its own logic

circuit with inputs from flip-flops C, B, and A. Then we must design the cir-

cuit for each one. Let’s design the circuit for JA.
To do this, we need to look at the PRESENT states of C, B, and A and the

desired levels at JA for each case. This information has been extracted from

Table 7-6 and presented in Figure 7-27(a). This truth table shows the desired

KC = x
JC = 1

KA = xJA = 1

KB = xJB = 0

SECTION 7-10/SYNCHRONOUS COUNTER DESIGN 399

TABLE 7-6
Circuit excitation table.

PRESENT State NEXT State

C B A C B A JC KC JB KB JA KA

Line 1 0 0 0 0 0 1 0 x 0 x 1 x

2 0 0 1 0 1 0 0 x 1 x x 1

3 0 1 0 0 1 1 0 x x 0 1 x

4 0 1 1 1 0 0 1 x x 1 x 1

5 1 0 0 0 0 0 x 1 0 x 0 x

6 1 0 1 0 0 0 x 1 0 x x 1

7 1 1 0 0 0 0 x 1 x 1 0 x

8 1 1 1 0 0 0 x 1 x 1 x 1

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 399

levels at JA for each PRESENT state. Of course, for some of the cases, JA is a

don’t-care. To develop the logic circuit for JA, we must first determine its

expression in terms of C, B, and A. We will do this by transferring the truth-

table information to a three-variable Karnaugh map and performing the K-

map simplification, as in Figure 7-27(b).

There are only two 1s in this K map, and they can be looped to obtain the

term but if we use the don’t-care conditions at and as 1s, we

can loop a quad to obtain the simpler term Thus, the final expression is

Now let’s consider KA. We can follow the same steps as we did for JA.
However, a look at the entries under KA in the circuit excitation table shows

only 1s and don’t-cares. If we change all the don’t-cares to 1s, then KA is

always a 1. Thus, the final expression is

In a similar manner, we can derive the expressions for JC, KC, JB, and KB.
The K maps for these expressions are given in Figure 7-28. You might want to

confirm their correctness by checking them against the circuit excitation table.

KA = 1

JA = C

C.

ABCA B CA C,

400 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-27 (a) Portion

of circuit excitation table

showing JA for each PRE-

SENT state; (b) K map used

to obtain the simplified

expression for JA.

C
0
0
0
0
1
1
1
1

B
0
0
1
1
0
0
1
1

A
0
1
0
1
0
1
0
1

JA
1
x
1
x
0
x
0
x

PRESENT

(a)

1 X

1 X

0 X

0 X

C B

C B

C B

C B

A A

CJ = A

(b)

(a)

K = 1C

0 0

0 1

X X

X X

C B

C B

C B

C B

A A

J = B AC

X X

X X

1 1

1 1

C B

C B

C B

C B

A A

(b)

0 1

X X

X X

0 0

C B

C B

C B

C B

A A

C AJ = B

X X

0 1

1 1

X X

C B

C B

C B

C B

A A

K = C + A B

FIGURE 7-28 (a) K maps

for the JB and KB logic cir-

cuits; (b) K maps for the JC
and KC logic circuits.

Step 6. Implement the final expressions.

The logic circuits for each J and K input are implemented from the ex-

pressions obtained from the K map. The complete synchronous counter de-

sign is implemented in Figure 7-29. Note that all FFs are clocked in parallel.

You might want to verify that the logic for the J and K inputs agrees with

Figures 7-27 and 7-28.

TOCCMC07_0131725793.QXD 12/13/05 4:51 AM Page 400

Stepper Motor Control
We will now apply this design procedure to a practical situation—driving a

stepper motor. A stepper motor is a motor that rotates in steps, typically

per step, rather than in a continuous motion. Magnetic coils or windings

within the motor must be energized and deenergized in a specific sequence

in order to produce this stepping action. Digital signals are normally used to

control the current in each of the motor’s coils. Stepper motors are used ex-

tensively in situations where precise position control is needed, such as in

positioning of read/write heads on magnetic disks, in controlling print heads

in printers, and in robots.

Figure 7-30(a) is a diagram of a typical stepper motor with four coils. For the

motor to rotate properly, coils 1 and 2 must always be in opposite states; that is,

15°

SECTION 7-10/SYNCHRONOUS COUNTER DESIGN 401

FIGURE 7-29 Final imple-

mentation of the synchro-

nous counter design

example.

AJA

KA

CLK

A

BJB

KB

CLK

B

CJC

KC

CLK

C
11

CLOCK

AB

FIGURE 7-30 (a) A synchronous counter supplies the appropriate sequential

outputs to drive a stepper motor; (b) state transition diagrams for both states of

Direction input, D.

11

10

00

01

(b)

Current
amplifiers

CCW rotation
D = 1

11

10

00

01

CW rotation
D = 0

BABA

Coil 1
2
3
4

Synch
counter

A
A
B
B

D
(Direction

input)

Step
(clock)

Coil 1

2

3

4

Stepper
motor

(a)

TOCCMC07_0131725793.QXD 12/13/05 4:51 AM Page 401

when coil 1 is energized, coil 2 is not, and vice versa. Likewise, coil 3 and coil 4

must always be in opposite states.The outputs of a two-bit synchronous counter

are used to control the current in the four coils; A and control coils 1 and 2,

and B and control coils 3 and 4.The current amplifiers are needed because the

FF outputs cannot supply the amount of current that the coils require.

Because this stepper motor can rotate either clockwise (CW) or counter-

clockwise (CCW), we have a Direction input, D, which is used to control the

direction of rotation. The state diagrams in Figure 7-30(b) show the two

cases. For CW rotation to occur, we must have D � 0, and the state of the

counter, BA, must follow the sequence 11, 10, 00, 01, 11, 10, . . . , and so on, as

it is clocked by the Step input signal. For CCW rotation, D � 1, and the

counter must follow the sequence 11, 01, 00, 10, 11, 01, . . . , and so on.

We are now ready to follow the six steps of the synchronous counter de-

sign procedure. Steps 1 and 2 have already been done, so we can proceed

with steps 3 and 4. Table 7-7 shows each possible PRESENT state of D, B, and

B
A

402 CHAPTER 7/COUNTERS AND REGISTERS

TABLE 7-7
PRESENT State NEXT State Control Inputs

D B A B A JB KB JA KA

0 0 0 0 1 0 x 1 x

0 0 1 1 1 1 x x 0

0 1 0 0 0 x 1 0 x

0 1 1 1 0 x 0 x 1

1 0 0 1 0 1 x 0 x

1 0 1 0 0 0 x x 1

1 1 0 1 1 x 0 1 x

1 1 1 0 1 x 1 x 0

JB = DA + DA

0 1

1 0

x x

x x

BA

BA

BA

BA

D D

x x

x x

0 1

1 0

BA

BA

BA

BA

D D

(a)
= D ⊕ A

KB = DA + DA

= D ⊕ A

1 0

x x

x x

0 1

BA

BA

BA

BA

D D

JA = DB + DB

x x

0 1

1 0

x x

BA

BA

BA

BA

D D

(b)
= D ⊕ B

KA = DB + DB

= D ⊕ B

FIGURE 7-31 (a) K maps

for JB and KB; (b) K maps

for JA and KA.

TOCCMC07_0131725793.QXD 12/13/05 4:51 AM Page 402

SECTION 7-10/SYNCHRONOUS COUNTER DESIGN 403

Synchronous Counter Design with D FF
We have provided a detailed procedure for designing synchronous counters

using J-K flip-flops. Historically, J-K flip-flops have been used to implement

counters because the logic circuits needed for the J and K inputs are usually

simpler than the logic circuits needed to control an equivalent synchronous

counter using D flip-flops. When designing counters that will be imple-

mented in PLDs, where abundant gates are generally available, it makes

sense to use D flip-flops instead of J-Ks. Let us now look at synchronous

counter design using D FFs.

Designing counter circuits using D flip-flops is even easier than using J-K

flip-flops. We will demonstrate by designing a D FF circuit that produces the

same count sequence as is given in Figure 7-26. The first three steps for syn-

chronous D counter design are identical to the J-K technique. Step 4 for D FF

design is trivial since the necessary D inputs are the same as the desired

NEXT state as seen in Table 7-8. Step 5 is to generate the logic expressions

Step

D (Direction)

B

B

CLK

J
B

K
B

A

A

CLK

J
A

K
A

B

B

A

A

To current
amplifiers
(Fig. 7-30)

FIGURE 7-32 Synchronous counter implemented from the J, K equations.

A and the desired NEXT state, along with the levels at each J and K input

needed to achieve the transitions. Note that in all cases, the Direction input,

D, does not change in going from the PRESENT to the NEXT state because

it is an independent input that is held HIGH or LOW as the counter goes

through its sequence.

Step 5 of the design process is presented in Figure 7-31, where the infor-

mation in Table 7-7 has been transferred to the K maps showing how each

J and K signal is related to the PRESENT states of D, B, and A. Using the ap-

propriate looping, the simplified logic expressions for each J and K signal are

obtained.

The final step is shown in Figure 7-32, where the two-bit synchronous

counter is implemented using the J, K expressions obtained from the K

maps.

TOCCMC07_0131725793.QXD 12/22/2005 8:26 AM Page 403

404 CHAPTER 7/COUNTERS AND REGISTERS

from the PRESENT state/NEXT state table for the D inputs. The K maps and

simplified expressions are given in Figure 7-33. Finally, for step 6, the counter

can be implemented with the circuit shown in Figure 7-34.

TABLE 7-8
PRESENT State NEXT State Control Inputs

C B A C B A DC DB DA

0 0 0 0 0 1 0 0 1

0 0 1 0 1 0 0 1 0

0 1 0 0 1 1 0 1 1

0 1 1 1 0 0 1 0 0

1 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0

1 0

1 0

0 0

0 0

C B

C B

C B

C B

A A

0 0

0 1

0 0

0 0

C B

C B

C B

C B

A A

C B AD = C C B A + C B AD = B C AD = A

0 1

1 0

0 0

0 0

C B

C B

C B

C B

A A

CLOCK

C

CD

B

BD

CLK CLK

BC A

DADBDC

A

AD

CLK

FIGURE 7-33 K maps and

simplified logic expressions

for MOD-5 flip-flop counter

design.

FIGURE 7-34 Circuit im-

plementation of MOD-5 D

flip-flop counter design.

REVIEW QUESTIONS 1. List the six steps in the procedure for designing a synchronous counter.

2. What information is contained in a PRESENT state-NEXT state table?

3. What information is contained in the circuit excitation table?

4. True or false:The synchronous counter design procedure can be used for the

following sequence: 0010, 0011, 0100, 0111, 1010, 1110, 1111, and repeat.

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 404

7-11 BASIC COUNTERS USING HDL

In Chapter 5, we studied flip-flops and the methods used with HDLs to rep-

resent flip-flop circuits. The last section in Chapter 5 illustrated how to con-

nect FF components very much like you would wire integrated circuits to one

another. By connecting the Q output of one FF to the clock input of the next

FF, we found that a counter circuit can be created. Using an HDL to describe

component connections is referred to as the structural level of abstraction. It

is obvious that constructing a complicated circuit using the structural meth-

ods would be very tedious and also very difficult to read and interpret. In

this section, we will broaden our use of HDL to describe circuits using meth-

ods that are considered higher levels of abstraction. This term sounds intim-

idating, but it only means that there are much more concise and sensible

ways to describe what we want a counter to do without worrying about all

the details of how to wire flip-flop circuits to do it.

It is still vital that we understand the fundamental principles of flip-flop

operation compared with combinational logic gates. As you recall, flip-flops

have the following unique characteristics. The output is normally updated

according to the condition of the synchronous control inputs when the active
edge of the clock occurs, which means there is a logic state on the Q output

before the clock edge (PRESENT state) and potentially a different state on

the Q output after the clock edge (NEXT state). A flip-flop “remembers,” or

holds its state between clocks, regardless of changes in the synchronous con-

trol inputs (e.g., J and K).

Counter circuits using HDL rely on this basic understanding of a cir-

cuit going through a sequence of states in response to the event of a clock

edge. Ripple counters provide an easy circuit to analyze and understand.

They are also much less complicated to build using flip-flops and logic

gates than their synchronous counterparts. The problem with ripple coun-

ters is the combination of time delay and spurious temporary states that

occur when the counter changes state. When we advance to the next level

of abstraction and plan to use PLDs to implement our design, we are no

longer focusing on wiring issues but rather on describing the circuit’s op-

eration concisely. Consequently, the methods we use to describe counter

circuits using HDL primarily use synchronous techniques, where all flip-

flops update simultaneously in response to the same clock event. All the

bits in a count sequence go from their PRESENT state to their prescribed

NEXT state simultaneously, thereby preventing any intermediate, spuri-

ous states.

State Transition Description Methods
The next method of describing circuits that we need to examine uses tables.

This method is not concerned with connecting ports of components but

rather with assigning values to objects like ports, signals, and variables. In

other words, it describes how the output data relates to the input data

throughout the circuit.We have already used this method in several of the in-

troductory circuits in Chapters 3 and 4, in the form of truth tables. With se-

quential counter circuits, the equivalent of the truth table is the PRESENT

state/NEXT state table, as we saw in the last section. We can use the HDL es-

sentially to describe the PRESENT state/NEXT state table and thus avoid

the tedious details of generating the Boolean equations, as we did in Section

7-10 to design with standard logic devices.

SECTION 7-11/BASIC COUNTERS USING HDL 405

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 405

STATE DESCRIPTIONS IN AHDL
As an example of a simple counter circuit, we will implement the MOD-5

counter of Figure 7-26 in AHDL. The inputs and outputs are defined in the

SUBDESIGN section of Figure 7-35, as always. In the VARIABLE section on

line 7, we have declared (or instantiated) a three-bit array of DFF primitives

that are given the instance name count[]. This array will be treated basically

as a three-bit register in the design and we will essentially define what value

should be stored for each NEXT state. Because this is a synchronous counter,

we need to tie all the DFF clk inputs to the SUBDESIGN’s clock input. This is

accomplished in AHDL by the following statement in the logic section:

count[].clk � clock;

The flip-flop primitives provided in AHDL have standard inputs and out-

puts that are referred to as “ports.” These ports are labeled by a standard

port name that is attached to the instance name of the flip-flops. As seen in

Table 5-3, the clock port name is .clk, a D input is named .d, and the FF’s output

has the name .q. To implement the PRESENT state/NEXT state table, a CASE

construct is used. For each of the possible values of the register count[], we

determine the value that should be placed on the D inputs of the flip-flops,

which will determine the NEXT state of the counter. The statement on line

21 assigns the value on count[] to the output pins. Without this line, the

counter would be “buried” in the SUBDESIGN and would not be visible to

the outside world.

An alternative design solution is given in Figure 7-36.There are two modi-

fications from Figure 7-35. The first is seen on line 7, where the array name

for the D flip-flops is now the same as the output port for the SUBDESIGN.

406 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-35 AHDL MOD-5 counter.

1 SUBDESIGN fig7_35

2 (

3 clock :INPUT;

4 q[2..0] :OUTPUT;

5)

6 VARIABLE

7 count[2..0] :DFF; --create a 3-bit register

8 BEGIN

9 count[].clk = clock; --connect all clocks in parallel

10

11 CASE count[] IS

12 -- Present Next

13 --

14 WHEN 0 => count[].d = 1;

15 WHEN 1 => count[].d = 2;

16 WHEN 2 => count[].d = 3;

17 WHEN 3 => count[].d = 4;

18 WHEN 4 => count[].d = 0;

19 WHEN OTHERS => count[].d = 0;

20 END CASE;

21 q[] = count[]; -- assign register to output pins

22 END;

A
H

D
L

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 406

V
H

D
L

This will automatically connect the flip-flop outputs to the SUBDESIGN out-

puts and eliminate the need to include an assignment statement like line 21

in the first solution. The second modification is the use of an AHDL TABLE

instead of the CASE statement used in Figure 7-35. In line 11, the .q port on

the q[] DFF array represents the PRESENT state side of the table, while the

.d port for q[] represents the NEXT state that will be entered into the array’s

set of D inputs when a PGT is applied to clock.

STATE DESCRIPTIONS IN VHDL
As an example of a simple counter circuit, we will implement the MOD-5

counter of Figure 7-26 in VHDL. Our purpose in this example is to demon-

strate a counter using a control structure similar to a PRESENT state/NEXT

state table. Two key tasks must be accomplished in VHDL: detecting the de-

sired clock edge, and assigning the proper NEXT state to the counter. Recall

from our study of flip-flops that a PROCESS can be used to respond to a tran-

sition of an input signal. Also, we have learned that a CASE construct can

evaluate an expression and, for any valid input value, assign a corresponding

value to another signal.The code in Figure 7-37 uses a PROCESS and a CASE

construct to implement this counter. The inputs and outputs are defined in

the ENTITY declaration, as in the past.

When VHDL is used to describe a counter, we must find a way to “store”

the state of the counter between clock pulses (i.e., the action of a flip-flop).

This is done in one of two ways: using SIGNALs, or using VARIABLEs. We

have used SIGNALs extensively in previous examples that operated con-

currently. A SIGNAL in VHDL holds the last value that was assigned to it,

very much like a flip-flop. Consequently, we can use a SIGNAL as the data

object representing the counter value. This SIGNAL can then be used to

SECTION 7-11/BASIC COUNTERS USING HDL 407

FIGURE 7-36 Another

version of the MOD-5

counter described in Figure

7-26.

1 SUBDESIGN fig7_36

2 (

3 clock :INPUT;

4 q[2..0] :OUTPUT;

5)

6 VARIABLE

7 q[2..0] :DFF; -- create a 3-bit register

8 BEGIN

9 q[].clk = clock; -- connect all clocks in parallel

10 TABLE

11 q[].q => q[].d;

12 0 => 1;

13 1 => 2;

14 2 => 3;

15 3 => 4;

16 4 => 0;

17 5 => 0;

18 6 => 0;

19 7 => 0;

20 END TABLE;

21 END;

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 407

connect the counter value to any other elements in the architecture

description.

In this design, we have chosen to use a VARIABLE instead of a SIGNAL

as the data object that stores the counter value. VARIABLEs are not ex-

actly like SIGNALs because they are not used to connect various parts of

the design. Instead, they are used as a local place to “store” a value.

Variables are considered to be local data objects because they are recog-

nized only within the PROCESS in which they are declared. On line 11 of

Figure 7-37, the variable named count is declared within the PROCESS be-

fore BEGIN. Its type is the same as the output port q. The keyword

PROCESS on line 10 is followed by the sensitivity list containing the input

signal clock. Whenever clock changes state, the PROCESS is invoked, and

the statements within the PROCESS will be evaluated to produce a result.

A ’EVENT (read as “tick-event”) attribute will evaluate as TRUE if the

signal preceding it has just changed states. Line 13 states that if clock has

just changed states and right now it is ‘1’, then we know it was a rising

edge. To implement the PRESENT state/NEXT state table, a CASE con-

struct is used. For each of the possible values of the variable count, we de-

termine the NEXT state of the counter. Notice that the � operator is used

to assign a value to a variable. Line 25 assigns the value stored in count to

the output pins. Because count is a local variable, this assignment must be

done before END PROCESS on line 26.

408 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-37 VHDL MOD-5 counter.

1 ENTITY fig7_37 IS

2 PORT (

3 clock :IN BIT;

4 q :OUT BIT_VECTOR(2 DOWNTO 0)

5);

6 END fig7_37 ;

7

8 ARCHITECTURE a OF fig7_37 IS

9 BEGIN

10 PROCESS (clock) -- respond to clk input

11 VARIABLE count: BIT_VECTOR(2 DOWNTO 0); -- create a 3-bit register

12 BEGIN

13 IF (clock = '1' AND clock'EVENT) THEN -- rising edge trigger

14 CASE count IS

15 -- Present Next

16 ---

17 WHEN "000" => count := "001";

18 WHEN "001" => count := "010";

19 WHEN "010" => count := "011";

20 WHEN "011" => count := "100";

21 WHEN "100" => count := "000";

22 WHEN OTHERS => count := "000";

23 END CASE;

24 END IF;

25 q <= count; -- assign register to output pins

26 END PROCESS;

27 END a;

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 408

A
H

D
L

Behavioral Description
The behavioral level of abstraction is a way to describe a circuit by describing

its behavior in terms very similar to the way you might describe its operation

in English. Think about the way a counter circuit’s operation might be de-

scribed by someone who knows nothing about flip-flops or logic gates. Perhaps

that person’s description would sound something like, “When the counter in-

put changes from LOW to HIGH, the number on the output counts up by 1.”

This level of description deals more with cause-and-effect relationships than

with the path of data flow or wiring details. However, we cannot really use just

any description in English to describe the circuit’s behavior.The proper syntax

must be used within the constraints of the HDL.

AHDL
In AHDL, the first important step in this description method is to declare the

counter output pins properly. They should be declared as a bit array, with in-

dices decreasing left to right and with 0 as the least significant index in the

array, as opposed to individual bits named a, b, c, d, and so on. In this way, the

numeric value associated with the bit array’s name is interpreted as a binary

number upon which certain arithmetic operations can be performed. For ex-

ample, the bit array count shown in Figure 7-38 might contain the bits 1001,

as shown. The AHDL compiler interprets this bit pattern as having the value

of 9 in decimal.

In order to create our MOD-5 counter in AHDL, we will need a three-bit

register that will store the current counter state. This three-bit array, named

count, is declared using D flip-flops on line 7 in Figure 7-39. Recall from

Figure 7-36 that we could name the DFF array the same as the output port

q[2..0] and thereby eliminate line 15, but we would also need to change

count[] to q[] everywhere in the logic section. In other words, the statement

on line 7 can be changed to

q[2..0] :DFF;.

If this were done, all references to count thereafter would be changed to q.
This can make the code shorter, but it does not demonstrate universal HDL

concepts as clearly. In AHDL, all the clocks can be specified as being tied to-

gether and connected to a common clock source using the statement on line

10, count[].clk � clock. In this example, count[].clk refers to the clock input

of each flip-flop in the array called count.
The behavioral description of this counter is very simple. The current

state of the counter is evaluated (count[].q) on line 11, and if it is less than

the highest desired count value, it uses the description count[].d � count.q � 1

(line 12). This means that the current state of the D inputs must be equal to

a value one count greater than the current state of the Q outputs. When the

current state of the counter has reached the highest desired state (or

higher), the IF statement test will be false, resulting in a NEXT-state input

SECTION 7-11/BASIC COUNTERS USING HDL 409

11 0 0

Element 3
count[3]

MSB

Element 2
count[2]

Element 1
count[1]

Element 0
count[0]

LSB

VARIABLE
count[3..0] :DFF;

FIGURE 7-38 The

elements of a D register

storing the number 9.

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 409

V
H

D
L

value of zero (line 13), which recycles the counter. The last statement on line

15 simply connects the counter value to the output pins of the device.

VHDL
In VHDL, the first important step in this description method is to declare

properly the counter output port, as shown in Figure 7-40. The data type of

410 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-39 Behavioral description of a counter in AHDL.

1 SUBDESIGN fig7_39

2 (

3 clock :INPUT;

4 q[2..0] :OUTPUT; -- declare 3-bit array of output bits

5)

6 VARIABLE

7 count[2..0] :DFF; -- declare a register of D flip flops.

8

9 BEGIN

10 count[].clk = clock; -- connect all clocks to synchronous source

11 IF count[].q < 4 THEN -- note; count[] is the same as count[].q

12 count[].d = count[].q + 1; -- increment current value by one

13 ELSE count[].d = 0; -- recycle to zero: force unused states to 0

14 END IF;

15 q[] = count[]; -- transfer register contents to outputs

16 END;

FIGURE 7-40 Behavioral description of a counter in VHDL.

1 ENTITY fig7_40 IS

2 PORT(clock :IN BIT;

3 q :OUT INTEGER RANGE 0 TO 7);

4 END fig7_40;

5

6 ARCHITECTURE a OF fig7_40 IS

7 BEGIN

8 PROCESS (clock)

9 VARIABLE count: INTEGER RANGE 0 to 7; -- define a numeric VARIABLE

10 BEGIN

11 IF (clock = '1' AND clock'EVENT) THEN -- rising edge?

12 IF count < 4 THEN -- less than max?

13 count := count + 1; -- increment value

14 ELSE -- must be at max or bigger

15 count := 0; -- recycle to zero

16 END IF;

17 END IF;

18 q <= count; -- transfer register contents to outputs

19 END PROCESS;

20 END a;

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 410

the output port (line 3) must match the type of the counter variable (line 9),

and it must be a type that allows arithmetic operations. Recall that VHDL

treats BIT_VECTORS as just a string of bits, not as a binary numeric quan-

tity. In order to recognize the signal as a numeric quantity, the data object

must be typed as an INTEGER. The compiler looks at the RANGE 0 TO 7

clause on line 3 and knows that the counter needs three bits. A similar dec-

laration is needed for the register variable on line 9 that will actually be

counting up. This is called count. The first statement after BEGIN in the

PROCESS responds to the rising edge of the clock as in the previous exam-

ples. It then uses behavioral description methods to define the counter’s re-

sponse to the clock edge. If the counter has not reached its maximum (line

12), then it should be incremented (line 13). Otherwise (line 14), it should re-

cycle the counter to zero (line 15). The last statement on line 18 simply con-

nects the counter value to the output pins of the device.

Simulation of Basic Counters
Simulation of any of our MOD-5 counter designs is pretty straightforward.

The counters have only one input bit (clock) and three output bits (q2 q1 q0)

to display in the simulation. The clock frequency has not been specified, so

we can use any frequency that we wish for a functional simulation—although

we probably should avoid a high-frequency clock unless we want to investi-

gate the effects of propagation delays. About the only decision that we must

make is to determine how many clock pulses to apply. Since the counter is a

MOD-5 counter, we should apply at least five clock pulses to verify that the

HDL design has the correct count sequence and that it recycles. The simula-

tion will start with the initial state 000 because the Altera PLDs have a built-

in power-on reset feature. We will not be able to test for any of the unused

states because the HDL designs did not provide for a way to preset the

counter to any of the unused states. Our simulation results for the HDL de-

sign of a MOD-5 counter are shown in Figure 7-41.

SECTION 7-11/BASIC COUNTERS USING HDL 411

2.0 ms 4.0 ms 6.0 ms 8.0 ms 10.0 ms 12.0 ms 14.0 ms

clock 1

0

0

0q0

q1

q2

FIGURE 7-41 Simulation results for HDL design of MOD-5 counter.

REVIEW QUESTIONS 1. What type of table is used to describe a counter’s operation?

2. When designing a counter with D flip-flops, what is applied to the D in-

puts in order to drive it to the NEXT state on the next active clock

edge?

3. How would you write the HDL description to trigger a storage device

(flip-flop) on a falling edge instead of a rising edge of the clock?

4. Which method describes the circuit’s operation using cause-and-effect

relationships?

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 411

A
H

D
L

7-12 FULL-FEATURED COUNTERS IN HDL

The examples we have chosen so far have been very basic counters. All they

do is count up to four and then roll over to zero. The standard IC counters

that we have examined have many other features that make them very use-

ful for numerous digital applications. For example, consider the 74161 and

the 74191 IC counters that were discussed in Section 7-7. These devices have

combinations of various features including count enable, up/down counting,

parallel loading (preset to any count), and clearing. In addition, these coun-

ters have been designed to easily cascade synchronously to create larger

counters. In this section, we will explore the techniques that allow us to in-

clude these features in an HDL counter. We are going to create a counter

that will combine more features than are found in either the 74161 or the

74191. We will use this example to demonstrate the methods of designing a

counter with capabilities that specifically suit our needs. When we use HDLs

to create digital designs, we are not limited to features that happen to be in-

cluded with a certain IC.

Let’s review the specifications for our more complex counter example.

The recycling, MOD-16 binary counter is to change states on the rising edge

of the clock input when the counter is enabled with a HIGH level. A direction

control input will make the counter count up when it is LOW or count down

when it is HIGH.The counter will have an active-HIGH, asynchronous clear to

reset the counter immediately when the control input is activated. The

counter can be synchronously loaded with a number on the data input pins

when the load control is HIGH. The priority of the input control functions,

from highest to lowest, will be clearing, loading, and counting. And finally,

the counter will also include an active-HIGH output that will detect the ter-

minal state of the counter when the count function is enabled. Remember,

the terminal state will be dependent on the count direction. As we will see,

the correct operation of these features is determined by the way we write the

HDL code, so we will have to pay very close attention to the details.

AHDL FULL-FEATURED COUNTER
The code in Figure 7-42 implements all of the features we have discussed.

This is a four-bit counter, but it can easily be expanded in size. Read through

the inputs and outputs on lines 3 and 4 to make sure you understand what

each one is supposed to do. If you do not, reread the previous paragraphs of

this section. Line 7 defines a four-bit register of D flip-flops that will serve as

the counter. It should be noted again here that this register could have been

named the same as the output variable (q). The code is written with different

names to distinguish between ports (inputs and outputs) of the circuit and

the devices that are operating within the circuit.The clock input is connected

to all the clk inputs of all the D flip-flops on line 10. All the active-LOW clear

inputs (clrn) to the DFF primitive are connected to the complement of the

clear input signal on line 11. This clears the flip-flops immediately when the

clear input goes HIGH because the prn and clrn inputs to the DFF primitive

are not dependent on the clock (i.e., they are asynchronous).

In order to make the load function synchronously, the D inputs to the

flip-flops must be controlled so that the input data (din) is present on the D
inputs when the load line is HIGH.This way, when the next active clock edge

comes along, the data will be loaded into the counter. This action must hap-

pen regardless of whether the counter is enabled or not. Consequently, the

first conditional decision (IF) on line 12 evaluates the load input. Recall

412 CHAPTER 7/COUNTERS AND REGISTERS

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 412

from Chapter 4 that the IF/ELSE decision structure gives precedence to the

first condition that is found to be true because, once it finds a condition that

is true, it does not go on to evaluate the conditions in subsequent ELSE

clauses. In this case, it means that if the load line is activated, it does not

matter whether the count is enabled, or it is trying to count up or down. It

will do a parallel load on the next clock edge.

Assuming that the load line is not active, the ELSIF clause on line 13 is

evaluated to see if the count is disabled. In AHDL, it is very important to re-

alize that the Q output must be fed back to the D input so that, on the next

clock edge, the register will hold its previous value. Forgetting to insert this

clause results in the D inputs defaulting to zero, thus resetting the counter.

If the counter is enabled, the ELSIF clause on line 14 is evaluated and either

increments count (line 14) or decrements count (line 15).To summarize these

decisions, first decide if it is time to load, next decide if the count should

hold or change, then decide whether to count up or down.

The next function described is the detecting (or decoding) of the termi-

nal count. Lines 17–20 decide whether the terminal count has been reached

while counting up or down. The double equals (��) operator is the symbol

that tests for equality between the expressions on each side of the operator.

Which counter state is the terminal state depends on the counting direction.

This is determined by ANDing the appropriate terminal state detection of 0

or 15 with the correct expression, down or !down. Term_ct will output a HIGH

if the correct state has been reached, otherwise it will be LOW. Line 21 will

connect the output for count to the output pins for the SUBDESIGN.

One of the key concepts of using HDLs is that it is generally very easy to

expand the size of a logic module. Let us look at the necessary changes to this

AHDL design to increase the binary counter modulus to 256. Since 28 � 256,

SECTION 7-12/FULL-FEATURED COUNTERS IN HDL 413

FIGURE 7-42 Full-featured counter in AHDL.

1 SUBDESIGN fig7_42

2 (

3 clock, clear, load, cntenabl, down, din[3..0] :INPUT;

4 q[3..0], term_ct :OUTPUT; -- declare 4-bit array of output bits

5)

6 VARIABLE

7 count[3..0] :DFF; -- declare a register of D flip flops

8

9 BEGIN

10 count[].clk = clock; -- connect all clocks to synch source

11 count[].clrn= !clear; -- connect for asynch active HIGH clear

12 IF load THEN count[].d = din[]; -- synchronous load

13 ELSIF !cntenabl THEN count[].d = count[].q; -- hold count

14 ELSIF !down THEN count[].d = count[].q + 1; -- increment

15 ELSE count[].d = count[].q - 1; -- decrement

16 END IF;

17 IF ((count[].q == 0) & down # (count[].q == 15) & !down)& cntenabl

18 THEN term_ct = VCC; -- synchronous cascade output signal

19 ELSE term_ct = GND;

20 END IF;

21 q[] = count[]; -- transfer register contents to outputs

22 END;

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 413

V
H

D
L

we will need to increase the number of bits to eight. Only four modifications

to Figure 7-42 will be required to make this change in counter modulus:

Line # Modification

3 din [3 7 . . 0]

4 q [3 7 . . 0]

7 count [3 7 . . 0]

17 (count []. q �� 15 255)

VHDL FULL-FEATURED COUNTER
The code in Figure 7-43 implements all the features we have discussed. This

is a four-bit counter, but it can easily be expanded in size. Read through the

inputs and outputs on lines 2–5 to make sure you understand what each one

is supposed to do. If you do not, reread the previous paragraphs of this sec-

tion. The PROCESS statement on line 10 is the key to all clocked circuits de-

scribed in VHDL, but it also plays an important role in determining whether

the circuit responds synchronously or asynchronously to its inputs. We want

414 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-43 Full-featured counter in VHDL.

1 ENTITY fig7_43 IS

2 PORT(clock, clear, load, cntenabl, down :IN BIT;

3 din :IN INTEGER RANGE 0 TO 15;

4 q :OUT INTEGER RANGE 0 TO 15;

5 term_ct :OUT BIT);

6 END fig7_43;

7

8 ARCHITECTURE a OF fig7_43 IS

9 BEGIN

10 PROCESS (clock, clear, down)

11 VARIABLE count :INTEGER RANGE 0 to 15; -- define a numeric signal

12 BEGIN

13 IF clear = '1' THEN count := 0; -- asynch clear

14 ELSIF (clock = '1' AND clock'EVENT) THEN -- rising edge?

15 IF load = '1' THEN count := din; -- parallel load

16 ELSIF cntenabl = '1' THEN -- enabled?

17 IF down = '0' THEN count := count + 1; -- increment

18 ELSE count := count - 1; -- decrement

19 END IF;

20 END IF;

21 END IF;

22 IF (((count = 0) AND (down = '1')) OR

23 ((count = 15) AND (down = '0'))) AND cntenabl = '1'

24 THEN term_ct <= '1';

25 ELSE term_ct <= '0';

26 END IF;

27 q <= count; -- transfer register contents to outputs

28 END PROCESS;

29 END a;

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 414

this circuit to respond immediately to transitions on the clock, clear, and

down inputs. With these signals in the sensitivity list, we assure that the code

inside the PROCESS will be evaluated as soon as any of these inputs change

states. The variable count is defined on line 11 as an INTEGER so it can

be incremented and decremented easily. Variables are declared within the

PROCESS and can be used within the PROCESS only.

The clear input is given precedence by evaluating it with the first IF

statement on line 13. Recall from Chapter 4 that the IF/ELSE decision struc-

ture gives precedence to the first condition that is found to be true because

it does not go on to evaluate the conditions in subsequent ELSE clauses. In

this case, if the clear is active, the other conditions will not matter. The out-

put will be zero. In order to make the load function operate synchronously, it

must be evaluated after detecting the clock edge. The clock edge is detected

on line 14, and the circuit checks immediately to see if load is active. If load
is active, the count is loaded from din, regardless of whether or not the

counter is enabled. Consequently, the conditional decision (IF) on line 15

evaluates the load input; only if it is inactive does it evaluate line 16 to see if

the counter is enabled. If the counter is enabled, the count will be incre-

mented or decremented (lines 17 and 18, respectively).

The next issue is detecting the terminal count. Lines 22–25 decide

whether the maximum or minimum terminal count has been reached and

drive the output to the appropriate level. The decision-making structure

here is very important because we want to evaluate this situation, regardless

of whether the decision-making process was invoked by clock, clear, or down.
Notice that this decision is not another ELSE branch of the previous IF de-

cisions but is evaluated for each signal in the sensitivity list after the clear-

ing or counting has occurred. After all these decisions are made, count
should have the right value in the register, and line 27 effectively connects

the register to the output pins.

One of the key concepts of using HDLs is that it is generally very easy to

expand the size of a logic module. Let us look at the necessary changes to

this VHDL design to increase the binary counter modulus to 256. Only four

modifications to Figure 7-43 will be required to make this change in counter

modulus:

Line # Modification

3 RANGE 0 TO 15 255

4 RANGE 0 TO 15 255

11 RANGE 0 TO 15 255

23 (count � 15 255)

Simulation of Full-Featured Counter
Simulation of our full-featured counter design will require some planning

to generate appropriate input waveforms. While it may not be necessary to

exhaustively simulate every conceivable input combination, we do need to

test enough of the possible input conditions to be convinced that it works

properly. This is exactly what we should also do to test our prototype design

on the bench. The counter has five different input signals (clock, clear, load,
cntenabl, and din) and two different output signals (q and term_ct) to display

in our simulation. One of the input signals and one of the output signals

actually is four bits wide. We will pick a convenient clock frequency since

none has been specified for our functional simulation of the counter. We will

need to provide enough clock pulses to allow us to look at several operational

SECTION 7-12/FULL-FEATURED COUNTERS IN HDL 415

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 415

conditions. The simulation should test the functions of enabling and dis-

abling the counter, counting up and counting down, clearing the counter,

loading a value into the counter and counting from that value, and terminal

count state detection.

There are some general simulation issues that we should consider in cre-

ating our input waveforms. Since the target PLDs have power-on reset, the

simulation will start with the initial output state at 0000. Therefore, it would

be better to wait until the count has reached another state before applying a

clear input so that we can see a change in the output. Likewise, loading in

the same value as the counter’s NEXT state does not really convince us that

load is working correctly. Changing input control signals at the same time as

the clocking edge occurs may create some setup time problems and produce

questionable results. Asynchronous controls should be applied at a time

other than the proper clocking edge to show clearly that the resultant circuit

action is immediate and not dependent on the clock. In general, we should

apply common sense in creating our input waveforms and consider what

we are trying to verify with the simulation. Simulation will be valuable in the

design process only if we apply appropriate input conditions and evaluate

the results critically.

Some simulation results for the full-featured counter are shown in Figure

7-44. The four-bit input din and the four-bit output q are displayed in hexa-

decimal. The counter is initially enabled (cntenabl � 1) to count up (down �
0), and we see the output is incrementing 0, 1, 2, 3, 4, 5. At t1, the counter syn-

chronously (i.e., on the PGT of clock) responds to the HIGH applied to the

load input. The counter is preset to the parallel data input (din) value of 8.

This also shows that loading has priority over counting, since they are both

active at the same time. After t1, load is LOW again and the counter contin-

ues to count up from 8. A LOW input to cntenabl makes the counter hold at

state 9 for an extra clock cycle. The count is continued when cntenabl goes

HIGH again until t2, when the counter is asynchronously cleared. Notice the

shortened time for the output state A due to the immediate clearing of the

counter. We would have to zoom in to actually see that state A is displayed.

We can also see that the clear function has the highest priority when all

three controls, clear, load, and cntenabl, are simultaneously high. The count-

up sequence continues and recycles to 0 after state F to verify that the

counter is a MOD-16 binary counter. At t3, the counter reaches its terminal

state F when counting up, and term_ct outputs a HIGH. At t4, the counter

starts counting down because down has been switched to a HIGH. Again,

term_ct outputs a HIGH since the counter is now at state 0, which is the ter-

minal state when counting down. Notice that, by the action of term_ct, the

terminal state for the counter depends on its direction of counting, which is

416 CHAPTER 7/COUNTERS AND REGISTERS

t 1 t 2 t 3 t 4 t 5 t 6

1 2 3 4 5 8 9 00 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 0 F E D C B A 9 8 7 6 5 4 3 2 1 0 5 0 F E

clock 0

0

0

H8 8 5

1

0

0

H0

clear

load

din[3..0]

cntenabl

down

term_ct

q[3..0]

100.0us 200.0us 300.0us 400.0us 500.0us 600.0us 700.0us 800.0us 900.0us 1.0ms

FIGURE 7-44 Simulation results for HDL design of full-featured counter.

TOCCMC07_0131725793.QXD 12/13/05 4:51 AM Page 416

A
H

D
L

controlled by the input down. The count holds at state 0 for an extra clock pe-

riod when cntenabl goes LOW. The output term_ct is also disabled while cnt-
enabl � 0.The down count sequence continues correctly when cntenabl again

goes HIGH. At t5, the counter synchronously loads the parallel data value 5.

At t6, the counter is asynchronously cleared. Again the priority of loading or

clearing over a down count is verified at t5 and t6. Did we verify that our de-

sign operates correctly in comparison to the specifications? We did a pretty

good job, but there are a couple of test conditions that could also be added

for completeness. Will the counter clear or load when the cntenabl is LOW?

It appears that we neglected to verify those scenarios. As you can see, com-

plex designs may require a lot of thought to verify their operation ade-

quately by simulation or bench testing. Can you think of any other tests that

we should make?

SECTION 7-13/WIRING HDL MODULES TOGETHER 417

REVIEW QUESTIONS 1. What is the difference between asynchronous clear and synchronous

load?

2. How do you create an asynchronous clear function in an HDL?

3. How do you create functions priority in an HDL description of a counter?

7-13 WIRING HDL MODULES TOGETHER

In the previous two sections we have looked at how to implement common

counter features using an HDL. We should also investigate how we can con-

nect these counter circuits to other digital modules to create larger systems.

Designing large digital systems becomes much easier if the system is subdi-

vided into smaller, more manageable modules that are then interconnected.

This is the essence of the concept of hierarchical design, and we will readily

see its benefits with example projects in Chapter 10. Let us now look at the

basic techniques for wiring modules together.

DECODING THE AHDL MOD-5 COUNTER
We looked briefly at the idea of decoding a counter in Section 7-8. You

should recall that a decoding circuit detects a counter’s state by the unique

bit pattern for that state. Let’s see how to connect a decoder circuit to the

MOD-5 counter design in Figure 7-35 (or Figure 7-36). We will rename the

counter SUBDESIGN mod5 to be a bit more descriptive in the block diagram

for the overall circuit that we will draw later. Since the counter does not pro-

duce all eight possible states for a three-bit counter, our decoder design

shown in Figure 7-45 will only decode the states that are used, 000 through

100.The three input bits (c � MSB) declared on line 3 will be connected later

to the MOD-5 counter’s outputs. The five outputs for the decoder are named

state0 through state4 on line 4. A CASE statement (lines 7–14) describes the

behavior of the decoder by checking the c b a input combination to deter-

mine which one of the decoder outputs should be HIGH. When the c b a in-

put is 000, only the state0 output will be HIGH or, when c b a is 001, only the

state1 output will be HIGH, and so on. Any input value greater than 100,

which is covered by OTHERS and actually should not occur in this applica-

tion, will produce LOWs on all outputs.

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 417

We will instruct the Altera software to create symbols for our two design

files, mod5 and decode5. This will allow us to draw a block diagram (see

Figure 7-46) for our complete circuit that consists of these two modules, in-

put and output ports, and the wiring between them. Each symbol is labeled

with its respective SUBDESIGN name mod5 or decode5. Notice that some of

the wiring is drawn with heavier-weight lines. This is to represent a bus,

which is a collection of signal lines. The lighter-weight lines are individual

signals. The symbols created by Altera will automatically have ports drawn

to indicate whether they represent individual signals or buses. This will be

determined by the signal declarations in the SUBDESIGN section. Ports

with group names will be drawn as buses. Since the counter output port is a

bus but the decoder input ports are individual signals, it will be necessary

to split the bus into individual signal lines to wire the two modules together.

Whenever a bus is split, you must label both the group signal name of the

bus and the individual signals that are being used. Our block diagram has a

bus labeled q[2..0] and the corresponding individual signals q2, q1, and q0.
The simulation results for this counter and decoder circuit are shown in

Figure 7-47.

418 CHAPTER 7/COUNTERS AND REGISTERS

SUBDESIGN decode51
(2

c, b, a : INPUT;3
state[0..4] : OUTPUT;4

)5
BEGIN6

CASE (c,b,a) IS -- decode binary value7
WHEN B"000" => state[] = B"10000";8
WHEN B"001" => state[] = B"01000";9
WHEN B"010" => state[] = B"00100";10
WHEN B"011" => state[] = B"00010";11
WHEN B"100" => state[] = B"00001";12
WHEN OTHERS => state[] = B"00000";13

END CASE;14
END;15

FIGURE 7-45 AHDL MOD-5 counter decoder module.

4
OUTPUT

3
OUTPUT

clk5 q[2..0]
q[2..0]

q2

q1

q0

MOD5

DECODE5

a

b state [0..4] cntr_state [0..4]

q[2..0]

c

INPUT
VCC

OUTPUT
clock

clk

q[2..0]

cntr_state[0..4]

1.0us 2.0us 3.0us 4.0us 5.0us 6.0us 7.0us 8.0us 9.0us 10.0us 11.0us

000100011010001000

0

B 000

B 10000 100000000100010001000100010000

FIGURE 7-46 Block diagram design for the MOD-5 counter and decoder circuit.

FIGURE 7-47 Simulation of MOD-5 counter and decoder circuit.

TOCCMC07_0131725793.QXD 12/22/2005 8:26 AM Page 418

V
H

D
LDECODING THE VHDL MOD-5 COUNTER

We looked briefly at the idea of decoding a counter in Section 7-8.You should

recall that a decoding circuit detects a counter’s state by the unique bit pat-

tern for that state. Let’s see how to connect a decoder circuit to the MOD-5

counter design in Figure 7-37. We will rename the counter ENTITY mod5 to

make it easier to identify the module in our overall circuit. Since the counter

does not produce all eight possible states for a three-bit counter, our decoder

design shown in Figure 7-48 will only decode the states that are used, 000

through 100. The three input bits (c � MSB) declared on line 3 will be con-

nected later to the MOD-5 counter’s outputs.The five outputs for the decoder

are named state, a bit vector, on line 4. An internal bit vector signal named

input is declared on line 9. Then line 11 combines the three input port bits (c
b a) together as a bit vector called input, which then can be evaluated by the

CASE statement on lines 14–21. If any of the input bits changes logic level,

the PROCESS will be invoked to determine the resultant output. The CASE

statement describes the behavior of the decoder by checking the input com-

bination (representing c b a) to determine which one of the decoder outputs

should be HIGH.When the input is 000, only the state(0) output will be HIGH;

when input is 001, only the state(1) output will be HIGH; and so on. Any input
value greater than 100, which is covered by OTHERS and actually should not

occur in this application, will produce LOWs on all outputs.

Since we are using the Altera PLD Development software, we can connect

the two modules graphically.To do this, you will need to instruct the software

to create symbols for our two design files, mod5 and decode5. This will allow

us to draw a block diagram (see Figure 7-46) for our complete circuit that con-

sists of these two modules, input and output ports, and the wiring between

them. Notice that some of the wiring is drawn with heavier-weight lines. This

is to represent a bus, which is a collection of signal lines. The lighter-weight

lines are individual signals. The symbols created by Altera will automatically

have ports drawn to indicate whether they represent individual signals or

SECTION 7-13/WIRING HDL MODULES TOGETHER 419

ENTITY decode5 IS1
PORT (2

c, b, a : IN BIT;3
state : OUT BIT_VECTOR (0 TO 4)4

);5
END decode5;6

7
ARCHITECTURE a OF decode5 IS8
SIGNAL input : BIT_VECTOR (2 DOWNTO 0);9
BEGIN10

input <= (c & b & a); -- combine inputs into bit vector11
PROCESS (c, b, a)12
BEGIN13

CASE input IS14
WHEN "000" => state <= "10000";15
WHEN "001" => state <= "01000";16
WHEN "010" => state <= "00100";17
WHEN "011" => state <= "00010";18
WHEN "100" => state <= "00001";19
WHEN OTHERS => state <= "00000";20

END CASE;21
END PROCESS;22

END a;23

FIGURE 7-48 VHDL MOD-5 counter decoder module.

TOCCMC07_0131725793.QXD 12/13/05 4:51 AM Page 419

buses. This will be determined by the data type declarations for each port of

the ENTITY. BIT_VECTOR ports will be drawn as buses and BIT type ports

will be drawn as individual signal lines. Since the counter output port is a bus

but the decoder input ports are individual signals, it will be necessary to split

the bus into individual signal lines to wire the two modules together.Whenever

a bus is split, you must label both the group signal name of the bus and the

individual signals that are being used. Our block diagram has a bus labeled

q[2..0] and the corresponding individual signals q2, q1, and q0. The simula-

tion results for this counter and decoder circuit are shown in Figure 7-47.

The standard VHDL technique (and an alternative with Altera’s soft-

ware) to connect design modules is to use VHDL to describe the connections

between the modules in a text file. The desired modules are instantiated in

a higher-level design file using COMPONENTs in which the module’s PORTs

are declared. The wiring connections for each instance where the module is

utilized are listed in a PORT MAP. A VHDL file that connects the mod5 and

decode5 modules together is shown in Figure 7-49. Even though q is an out-

put port for our top-level design file, it is typed as a BUFFER on line 4 due

to the fact that it is necessary to “read” the bit vector array for an input to

the decode5 COMPONENT in its PORT MAP (line 25).VHDL does not permit

output ports to be used as inputs. The BUFFER data type declaration pro-

vides a port that can be used for both input and output. The mod5 module is

declared on lines 10–15 and the decode5 module is declared on lines 16–21.

The mod5 and decode5 ENTITY/ARCHITECTURE descriptions may be in-

cluded within the top-level design file, or instead they may be saved in the

same folder as the top-level file as was done here. The PORT MAP for each

instance of the modules is listed on lines 23 and 24–25. The word to the left

of the colon is a unique label for each instance and the module name is on

the right, then the keywords PORT MAP, and finally, in parentheses, are the

named associations between the design signals and ports. The operator

indicates which module ports (on the left side) are connected to which

= 7

420 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-49 Higher-level VHDL file to connect mod5 and decode5 together.

ENTITY mod5decoded1 IS1
PORT (2

clk :IN BIT;3
q :BUFFER BIT_VECTOR (2 DOWNTO 0);4
cntr_state :OUT BIT_VECTOR (0 TO 4)5
);6

END mod5decoded1;7
8

ARCHITECTURE toplevel OF mod5decoded1 IS9
COMPONENT mod510

PORT (11
clock :IN BIT;12
q :OUT BIT_VECTOR (2 DOWNTO 0)13
);14

END COMPONENT;15
COMPONENT decode516
PORT (17

c, b, a :IN BIT;18
state :OUT BIT_VECTOR (0 TO 4)19
);20

END COMPONENT;21
BEGIN22
counter: mod5 PORT MAP (clock => clk, q => q);23
decoder: decode5 PORT MAP24

(c => q(2), b => q(1), a => q(0), state => cntr_state);25
END toplevel;26

TOCCMC07_0131725793.QXD 12/13/05 4:51 AM Page 420

A
H

D
L

higher-level system signals (on the right side). This circuit produces the sim-

ulation results shown in Figure 7-47.

MOD-100 BCD Counter
We wish to design a recycling, MOD-100 BCD counter that has a synchronous

clear. Creating a MOD-10 BCD counter module and synchronously cascading

two of these modules together in a higher-level design file is the easiest way to

do this.The clock inputs to the two MOD-10 modules will both be connected to

the system clock to achieve synchronous cascading of the two counter modules.

Remember, there are significant benefits to using synchronous counter design

rather than asynchronous clocking techniques. Also, if we did not employ

synchronous clocking, the synchronous clear would not work properly. Even

though the design specifications did not require a count enable or terminal

count detection for the MOD-100 counter, it will be necessary to include these

features in our design. In order to synchronously cascade two counters, the en-

able and decoding features will be needed. The count enable input causes the

counter to ignore clock edges unless it is enabled.The terminal count output in-

dicates that the counting sequence has reached its limit and will roll over on

the next clock.To synchronously cascade counter stages together, the terminal

count output is connected to the next higher-order stage’s enable input. By us-

ing the count enable to also control the decoding of the terminal count, our

MOD-10 module can be used to create even larger BCD counters.

CASCADING AHDL BCD COUNTERS
Our MOD-10 BCD counter SUBDESIGN is shown in Figure 7-50. The termi-

nal state for a BCD counter is 9. Lines 10–13 will detect this terminal state

only when the counter is enabled with a HIGH. ANDing the enable control

SECTION 7-13/WIRING HDL MODULES TOGETHER 421

SUBDESIGN mod101
(2

clock, enable, clear :INPUT;3
counter[3..0], tc :OUTPUT;4

)5
VARIABLE6

counter[3..0] :DFF;7
BEGIN8

counter[].clk = clock;9
IF counter[].q == 9 & enable == VCC THEN10

tc = VCC; -- detect terminal count11
ELSE tc = GND;12
END IF;13
IF clear THEN14

counter[].d = B"0000"; -- synchronous clear15
ELSIF enable THEN -- clear has priority16

IF counter[].q == 9 THEN -- check for last state17
counter[].d = B"0000";18

ELSE19
counter[].d = counter[].q + 1; -- increment20

END IF;21
ELSE -- hold count when disabled22

counter[].d = counter[].q;23
END IF;24

END;25

FIGURE 7-50 MOD-10 BCD counter in AHDL.

TOCCMC07_0131725793.QXD 12/13/05 4:51 AM Page 421

in the decoding function will allow more than two counter modules to be

cascaded synchronously if necessary and makes our mod10 design more ver-

satile. The clear function will operate synchronously in AHDL by including

it in the IF statement as shown on lines 14–15. If clear is inactive, we next

check to see if the counter is enabled (line 16). If enable is HIGH, the

counter checks, using a nested IF on lines 17–21, to see if the last state 9 has

been reached. After state 9, the counter synchronously recycles to 0.

Otherwise, the count will be incremented. If the counter is disabled, lines

22–23 will hold the current count value by feeding the current output back

to the counter’s input. This holding action will be necessary in the cascaded

MOD-100 counter for the 10s digit to hold its current state while the 1s digit

progresses through its count sequence. An appropriate design strategy

would be for us to simulate this module to determine if it functions

correctly before we use it in a more complex circuit application. From the

simulation results for mod10, given in Figure 7-51, we see that the count

sequence is correct, the clear is synchronous and has priority, and enable
controls both the count function and the decoding output tc.

422 CHAPTER 7/COUNTERS AND REGISTERS

clock

enable

clear

tc

counter[3..0] B 0000

0

0

1

1

5.0ms 10.0ms 15.0ms 20.0ms 25.0ms 30.0ms 35.0ms

001000100001001100001110110010101000011001000010000001000010000

FIGURE 7-51 MOD-10 simulation results.

FIGURE 7-52 Block diagram design for a MOD-100 BCD counter.

After creating a default symbol for our mod10 counter module, we can

now draw the block diagram for the MOD-100 BCD counter application. The

input ports, output ports, and wiring have also been added to create the de-

sign in Figure 7-52. Notice that the counter outputs representing the 1s and

10s digits are drawn as buses. The mod10 modules are clocked synchro-

nously. They are cascaded by using the terminal count output from the 1s

digit to control the enable input on the 10s digit. The en input port controls

the enabling/disabling of the entire MOD-100 counter circuit. The BCD

counter design can be easily expanded with an additional mod10 stage by

connecting the tc output to the next enable input for each digit needed. A

sample of simulation results can be seen in Figure 7-53. The simulation

shows that the MOD-100 counter has a correct BCD count sequence and can

be synchronously cleared.

mod10 mod10

clock

enable

counter[3..0]

tc

clear

clock

enable

counter[3..0]

tc

clear

clk3

6

7

8

INPUT
VCC

INPUT
VCC

INPUT
VCC

en4

clr5

OUTPUT

tens[3..0]

ones[3..0]

OUTPUT

max
OUTPUT

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 422

V
H

D
LCASCADING VHDL BCD COUNTERS

The ENTITY and ARCHITECTURE for our MOD-10 BCD counter is shown in

lines 26–51 of Figure 7-54. The terminal state for a BCD counter is 9. Lines

38–40 will detect this terminal state only when the counter is enabled with a

HIGH. ANDing the enable control in the decoding function will allow more

than two counter modules to be cascaded synchronously if necessary and

makes our mod10 design more versatile. The clear function will be synchro-

nous in VHDL by placing it in the nested IF statement (line 42) after the

clock edge has been detected in line 41. If clear is inactive, we next check to

see if the counter is enabled (line 43). If enable is HIGH, the counter checks,

using another nested IF on lines 44–46, to see if the last state 9 has been

reached. After state 9, the counter synchronously recycles to 0. Otherwise, the

count will be incremented. If the counter is disabled, VHDL will automati-

cally hold the current count value. This holding action will be necessary in

the cascaded MOD-100 counter for the 10s digit to hold its current state while

the 1s digit progresses through its count sequence. An appropriate design

strategy would be for us to simulate this module as a separate ENTITY to de-

termine if it functions correctly before we use it in a more complex circuit ap-

plication. Simulation results for the mod10 ENTITY, given in Figure 7-51,

show that the count sequence is correct, the clear is synchronous and has pri-

ority, and enable controls both the count function and the decoding output.

We have two choices for implementing the MOD-100 counter. One tech-

nique is to represent the design graphically in a block diagram as seen in

Figure 7-52. The mod10 counter modules, input ports, output ports, and

wiring have also been added to create the MOD-100 counter. Notice that the

counter outputs representing the 1s and 10s digits are drawn as buses. The

mod10 modules are clocked synchronously. They are cascaded by using

the terminal count output from the 1s digit to control the enable input on the

10s digit.The en input port controls the enabling/disabling of the entire MOD-

100 counter circuit. The BCD counter design can be easily expanded with an

additional mod10 stage by connecting the tc output to the next enable input for

each digit needed. A sample of simulation results can be seen in Figure 7-53.

SECTION 7-13/WIRING HDL MODULES TOGETHER 423

10.0msName: Value:

1

1

0

0

D 0

D 0 1

20.0ms 30.0ms 40.0ms 50.0ms 60.0ms 70.0ms 80.0ms 90.0ms 100.0ms

0

0

2 3 4 5 6 7 8 9 0

1 2 0 1 2

1 2 3 4 5 6 7 8 9 0 1 2 10 2 3 4 5 6 7 8 9 0 1 2 3 4 5 76 8 9 0 1 2 3 4

clk

en

clr

max

tens[3..0]

ones[3..0]

180.0ms170.0msName: Value:

0

1

0

0

D 5

D 9 1

190.0ms 200.0ms 210.0ms 220.0ms 230.0ms 240.0ms 250.0ms 260.0ms 270.0ms

0

6

2 3 4 5 6 7 8 9 0

7 8 9 0

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 09 1 2 3 4 5 6 7

clk

en

clr

max

tens[3..0]

ones[3..0]

FIGURE 7-53 Simulation results for MOD-100 BCD counter design.

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 423

The simulation shows that the MOD-100 counter has a correct BCD count se-

quence and can be synchronously cleared.

The second technique for creating the MOD-100 counter is to make the

necessary connections between design modules by describing the circuit

structure with VHDL.The listing for this system design file is given in Figure

7-54. The ENTITY/ARCHITECTURE description for the mod10 sub-block is

contained within the overall mod100 design file (but could be in a separate

file within this project’s folder). The mod100 design file would be the top

424 CHAPTER 7/COUNTERS AND REGISTERS

ENTITY mod100 IS1
PORT (2

clk, en, clr :IN BIT;3
ones :OUT INTEGER RANGE 0 TO 15;4
tens :OUT INTEGER RANGE 0 TO 15;5
max :OUT BIT6

);7
END mod100;8
ARCHITECTURE toplevel OF mod100 IS9
COMPONENT mod1010

PORT (11
clock, enable, clear :IN BIT;12
q :OUT INTEGER RANGE 0 TO 15;13
tc :OUT BIT14
);15

END COMPONENT;16
SIGNAL rco :BIT;17
BEGIN18
digit1: mod10 PORT MAP (clock => clk, enable => en,19

clear => clr, q => ones, tc => rco);20
digit2: mod10 PORT MAP (clock => clk, enable => rco,21

clear => clr, q => tens, tc => max);22
END toplevel;23

24
25

ENTITY mod10 IS26
PORT (27

clock, enable, clear :IN BIT;28
q :OUT INTEGER RANGE 0 TO 15;29
tc :OUT BIT30

);31
END mod10;32
ARCHITECTURE lowerblk OF mod10 IS33
BEGIN34

PROCESS (clock, enable)35
VARIABLE counter :INTEGER RANGE 0 TO 15;36

BEGIN37
IF ((counter = 9) AND (enable = '1')) THEN tc <= '1';38
ELSE tc <= '0';39
END IF;40
IF (clock'EVENT AND clock = '1') THEN41

IF (clear = '1') THEN counter := 0;42
ELSIF (enable = '1') THEN43

IF (counter = 9) THEN counter := 0;44
ELSE counter := counter + 1;45
END IF;46

END IF;47
END IF;48
q <= counter;49

END PROCESS;50
END lowerblk;51

FIGURE 7-54 MOD-100 BCD counter in VHDL.

TOCCMC07_0131725793.QXD 12/13/05 4:51 AM Page 424

level for the hierarchical design of this system. It contains lower-level sub-

blocks, which are actually two copies of the lower-level mod10 counter. The

mod10 COMPONENT is declared in this higher-level design file (lines

10–16). The wiring connections for each instance where the module is uti-

lized are listed in a PORT MAP. Since we need two instances of mod10, there

is a PORT MAP for each instance (lines 19–20 and 21–22). Each instance

must have a unique label (digit1 or digit2) to distinguish them from each

other. The PORT MAPs contain named associations between the lower-level

module ports, given on the left, and the higher-level signals to which they are

connected, given on the right. This circuit produces the same simulation re-

sults shown in Figure 7-53.

SECTION 7-14/STATE MACHINES 425

REVIEW QUESTIONS 1. Describe how to connect HDL modules together to create a digital system.

2. What is a bus and how is it represented in a graphical block diagram de-

sign file in Altera?

3. What counter features must be included to synchronously cascade

counter modules together?

7-14 STATE MACHINES

The term state machine refers to a circuit that sequences through a set of

predetermined states controlled by a clock and other input signals. So the

counter circuits we have been studying so far in Chapter 7 are state ma-

chines. Generally, we use the term counter for sequential circuits that have a

regular numeric count sequence. They may count up or count down, they

may have a full 2N modules or they may have a modulus, or they may re-

cycle or stop automatically at some predetermined state. A counter, as its

name implies, is used to count things. The things that are counted are actu-

ally called clock pulses, but the pulses may represent many kinds of events.

The pulses may be the cycles of a signal for frequency division or they may

be seconds, minutes, and hours of a day for a digital clock.They may indicate

that an item has moved down the conveyer in a factory or that a car has

passed a particular spot on the highway.

The term state machine is more often used to describe other kinds of se-

quential circuits. They may have an irregular counting pattern like our step-

per motor control circuit in Section 7-10.The objective for that design was to

drive a stepper motor so that it would rotate in precise angular steps. The

control circuit had to produce the required specific sequence of states for

that movement, rather than count numerically. There are also many applica-

tions where we do not care about the specific binary value for each state

because we will use appropriate decoding logic to identify specific states of

interest and to generate desired output signals. The general distinction be-

tween the two terms is that a counter is commonly used to count events,

while a state machine is commonly used to control events. The correct de-

scriptive term depends on how we wish to use the sequential circuit.

The block diagram shown in Figure 7-55 may represent a state machine

or a counter. In Section 7-10 we found out that the classic sequential circuit

design process was to figure out how many flip-flops would be needed and

then determine the necessary combinational circuit to produce the desired

sequence. The output produced by a counter or a state machine may come

6 2N

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 425

A
H

D
L

directly from the flip-flop outputs or there may be some gating circuitry

needed, as indicated in the block diagram. The two variations are described

as either a Mealy model for a sequential circuit or a Moore model. In the

Mealy model the output signals are also controlled by additional input sig-

nals, while the Moore model does not have any external controls for the gen-

erated output signals.The Moore output is a function only of the current flip-

flop state. An example of a Moore-type design would be the decoded MOD-5

circuit in Section 7-13. On the other hand, the BCD counter design in the

same section would be a Mealy-type design because of the external input

(enable) that controls the terminal state decoding output (tc). One signifi-

cant consequence of this subtle design variation is that Moore-type circuit

outputs will be completely synchronous to the circuit’s clock, while outputs

produced by a Mealy-type circuit can change asynchronously. The enable in-

put is not synchronized to the system clock in our MOD-10 design.

HDLs, of course, can make state machines easy and intuitive to describe.

As an oversimplified example that everyone can relate to, the following hard-

ware description deals with four states through which a typical washing ma-

chine might progress. Although a real washing machine is more complex

than this example, it will serve to demonstrate the techniques. This washing

machine is idle until the start button is pressed, then it fills with water until

the tub is full, then it runs the agitator until a timer expires, and finally it

spins the tub until the water is spun out, at which time it goes back to idle.

The point of this example focuses on the use of a set of named states for

which no binary values are defined. The name of the counter variable is

wash, which can be in any of the named states: idle, fill, agitate, or spin.

SIMPLE AHDL STATE MACHINE
The AHDL code in Figure 7-56 shows the syntax for declaring a counter with

named states on lines 6 and 7.The name of this counter is cycle. The keyword

MACHINE is used in AHDL to define cycle as a state machine. The number

of bits needed for this counter to produce the named states will be deter-

mined by the compiler. Notice that in line 7 the states are named, but the

binary value for each state is also left for the compiler to determine. The

426 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-55 Block dia-

gram for counters and state

machines.

Combinational circuit
(gates)

Memory
(flip-flops)

Output circuit
[Moore: optional]

Inputs

Clock

Mealy model has
controls for outputs

Outputs

Inputs

Absent in Moore model

feedback

controls

Sequential circuit

Mealy model:
output signals can have
asynchronous changes

Moore model:
output signals are all
synchronous

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 426

designer does not need to worry about this level of detail. The CASE struc-

ture on lines 11–25 and the decoding logic that drives the outputs (lines

27–33) refer to the states by name. This makes the description easy to read

and allows the compiler more freedom to minimize the circuitry. If the de-

sign requires the state machine also to be connected to an output port, then

line 6 can be changed to:

cycle: MACHINE OF BITS (st [1..0])

and the output port st[1..0] can be added to the SUBDESIGN section. A sec-

ond state machine option that is available is the ability for the designer to

define a binary value for each state. This can be accomplished in this exam-

ple by changing line 7 to:

WITH STATES (idle � B”00”, fill � B”01”, agitate � B”11”, spin �

B”10”);

SECTION 7-14/STATE MACHINES 427

FIGURE 7-56 State

machine example using

AHDL.

1 SUBDESIGN fig7_56

2 (clock, start, full, timesup, dry :INPUT;

3 water_valve, ag_mode, sp_mode :OUTPUT;

4)

5 VARIABLE

6 cycle: MACHINE

7 WITH STATES (idle, fill, agitate, spin);

8 BEGIN

9 cycle.clk = clock;

10

11 CASE cycle IS

12 WHEN idle =>IF start THEN cycle = fill;

13 ELSE cycle = idle;

14 END IF;

15 WHEN fill =>IF full THEN cycle = agitate;

16 ELSE cycle = fill;

17 END IF;

18 WHEN agitate=> IF timesup THEN cycle = spin;

19 ELSE cycle = agitate;

20 END IF;

21 WHEN spin => IF dry THEN cycle = idle;

22 ELSE cycle = spin;

23 END IF;

24 WHEN OTHERS => cycle = idle;

25 END CASE;

26

27 TABLE

28 cycle => water_valve, ag_mode, sp_mode;

29 idle => GND, GND, GND;

30 fill => VCC, GND, GND;

31 agitate => GND, VCC, GND;

32 spin => GND, GND, VCC;

33 END TABLE;

34 END;

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 427

SIMPLE VHDL STATE MACHINE
The VHDL code in Figure 7-57 shows the syntax for declaring a counter with

named states. On line 6, a data object is declared named state_machine.
Notice the keyword TYPE. This is called an enumerated type in VHDL, in

which the designer lists by symbolic names all possible values that a signal,

variable, or port that is declared to be of that type is allowed to have. Notice

also that on line 6, the states are named, but the binary value for each state

is left for the compiler to determine. The designer does not need to worry

about this level of detail. The CASE structure on lines 12–29 and the decod-

ing logic that drives the outputs (lines 31–36) refer to the states by name.

This makes the description easy to read and allows the compiler more free-

dom to minimize the circuitry.

Using the simulator to verify our HDL designs produces the results given

in Figure 7-58. The Altera simulator allows us to also simulate intermediate

nodes in our design modules.The “buried” state machine named cycle has been

included in the simulation in order to confirm that it operates correctly. Note

that the results for cycle are given twice, since it will be displayed differently

428 CHAPTER 7/COUNTERS AND REGISTERS

V
H

D
L

ENTITY fig7_57 IS1
PORT (clock, start, full, timesup, dry :IN BIT;2

water_valve, ag_mode, sp_mode :OUT BIT);3
END fig7_57;4
ARCHITECTURE vhdl OF fig7_57 IS5
TYPE state_machine IS (idle, fill, agitate, spin);6
BEGIN7

PROCESS (clock)8
VARIABLE cycle :state_machine;9
BEGIN10
IF (clock'EVENT AND clock = '1') THEN11

CASE cycle IS12
WHEN idle =>13

IF start = '1' THEN cycle := fill;14
ELSE cycle := idle;15
END IF;16

WHEN fill =>17
IF full = '1' THEN cycle := agitate;18
ELSE cycle := fill;19
END IF;20

WHEN agitate =>21
IF timesup = '1' THEN cycle := spin;22
ELSE cycle := agitate;23
END IF;24

WHEN spin =>25
IF dry = '1' THEN cycle := idle;26
ELSE cycle := spin;27
END IF;28

END CASE;29
END IF;30
CASE cycle IS31

WHEN idle => water_valve <= '0'; ag_mode <= '0'; sp_mode <= '0';32
WHEN fill => water_valve <= '1'; ag_mode <= '0'; sp_mode <= '0';33
WHEN agitate => water_valve <= '0'; ag_mode <= '1'; sp_mode <= '0';34
WHEN spin => water_valve <= '0'; ag_mode <= '0'; sp_mode <= '1';35

END CASE;36
END PROCESS;37

END vhdl;38

FIGURE 7-57 State machine example using VHDL.

TOCCMC07_0131725793.QXD 12/13/05 4:51 AM Page 428

for the two HDLs.The simulator cannot actually show the simulations for both

AHDL and VHDL together. The second buried node information has been

merely copied and pasted for a composite figure here. In AHDL the machine

state names are displayed, while in VHDL the compiler-assigned values for the

enumerated state names are displayed instead.

Traffic Light Controller State Machine
Let us investigate a state machine design that is a little more complicated, a

traffic light controller. The block diagram is shown in Figure 7-59. Our simple

controller is designed to control the flow of traffic at the intersection of a

main road with a less busy side road. Traffic will flow uninterrupted on the

main road with a green light, until a car is sensed on the side road (indicated

by the input labeled car). After a time delay that is set by the five-bit binary

input labeled tmaingrn, the main road light will change to yellow. The

tmaingrn time delay ensures that the main road will receive a green light for

SECTION 7-14/STATE MACHINES 429

2.0 ms 4.0 ms 6.0 ms 8.0 ms 10.0 ms 12.0 ms 14.0 ms 16.0 ms 18.0 ms

clock

start

full

timesup

dry

water_valve

ag_mode

sp_mode

cycle_ahdl

cycle_vhdl

1

0

0

0

0

0

0

0

0 1 2 3 0

idle fill agitate spin idleidle

D O

FIGURE 7-58 Simulation of washing machine HDL design example for a state

machine.

FIGURE 7-59 Traffic light controller.

lite[1. . 0]

clock

car

lite[1..0]
reset
tmaingrn[4..0]

tsidegrn[4..0]

change

lite[1 . . 0]

mainyelo

mainred

maingrn

sidered

sideyelo

sidegrn

clock

enable

reset

control

lite_ctrl

delayclock INPUT
VCC

car

3

4 INPUT
VCC

tmaingrn[4..0] INPUT
VCC

tsidegrn[4..0]

14

15 INPUT
VCC

reset13

1

6

2

INPUT
VCC

change
OUTPUT

16

mainred
OUTPUT

7

mainyelo
OUTPUT

8

maingrn
OUTPUT

9

sidered
OUTPUT

10

sideyelo
OUTPUT

11

sidegrn
OUTPUT

12

OUTPUT

lite[1 . . 0]
OUTPUT

5
OUTPUT

TOCCMC07_0131725793.QXD 12/13/05 4:51 AM Page 429

A
H

D
L

at least this length of time during each cycling of the lights. The yellow light

will last for a fixed amount of time that is set in the HDL design and then

transition to red. When the main road light is red, the side road light turns to

green.The side road light will be green for a time that is set by the five-bit bi-

nary input labeled tsidegrn. Again the yellow light will last for the same fixed

length of time and then the side road will return to a red light and the main

road light will be green again.The delay module will control the time periods

for each of the lights. The actual time delays will be the period of the system

clock multiplied times the delay factor. The control module determines the

state of the traffic controller. There are four light combinations—main-

green/side-red, main-yellow/side-red, main-red/side-green, and main-red/side-

yellow—so control will need four states.The traffic light states are translated

into the proper on–off patterns for each of the six pairs of lights by the

lite_ctrl module. The outputs labeled change and lite are provided for diag-

nostic purposes. Reset is used to initialize each of the two sequential circuits.

AHDL TRAFFIC LIGHT CONTROLLER
The three design modules for our AHDL traffic light controller are listed to-

gether in Figure 7-60. They are actually three separate design files that are

interconnected with the block diagram design shown in Figure 7-59. The de-

lay module (lines 1–23) is basically a buried down counter (line 20) named

mach, which waits at zero when the main road has a green light (lite � 0) un-

til it is triggered by the car sensor (line 13) to load the delay factor

on line 14. Since the counter decrements all the way to zero, one

is subtracted from each delay factor to make the delay counter’s modulus

equal to the value of the delay factor. For example, if we wish to have a de-

lay factor of 25, the counter must count from 24 down to 0. The actual length

of time represented by the delay factors depends on the clock frequency.

With a 1-Hz clock frequency, the period would be 1 s, and the delay factors

would then be in seconds. Line 22 defines an output signal called change that

detects when mach is equal to one. Change will be HIGH to indicate that the

test condition is true, which in turn will enable the state machine in the con-

trol module to move to its next state (lite � 1) when clocked to indicate a yel-

low light on the main road. As the delay counter mach counts down and

reaches zero, CASE determines that lite has a new value and the fixed time

delay factor of 5 for a yellow light is loaded (actually loading one less than 5,

as previously discussed) into mach (line 16) on the next clock. The count

down continues from this new delay time, with change again enabling the

control module to move to its next state (lite � 2) when mach is equal to 1, re-

sulting in a green light for the side road. When mach again reaches zero, the

time delay for a green light on the side road will be loaded into

the down counter (line 17). When change again goes active, lite will advance

to state 3 for a yellow light on the side road. Mach will recycle to the value

4 (5–1) on line 18 for the fixed time delay for a yellow light.When change goes

active this time, the control module will return to the lite � 0 state (green

light on main). When mach decrements to its terminal state (zero) this time,

lines 13–15 will determine by the status of the car sensor input whether to

wait for another car or to load in the delay factor for a green light on main

to start the cycle over again. The main road will receive a

green light for at least this length of time, even if there is a continuous

stream of cars on the side road. It is obvious that we could make improve-

ments to this design, but that, of course, would also complicate the design

further.

(tmaingrn-1)

(tsidegrn-1)

tmaingrn-1

430 CHAPTER 7/COUNTERS AND REGISTERS

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 430

SECTION 7-14/STATE MACHINES 431

SUBDESIGN delay1
(clock, car, lite[1..0], reset :INPUT;2

tmaingrn[4..0], tsidegrn[4..0] :INPUT;3
change :OUTPUT;)4

VARIABLE5
mach[4..0] :DFF;6

BEGIN7
mach[].clk = clock; -- with 1 Hz clock, times in seconds8
mach[].clrn = reset;9
IF mach[] == 0 THEN10

CASE lite[] IS -- check state of light controller11
WHEN 0 =>12

IF !car THEN mach[].d = 0; -- wait for car on side road13
ELSE mach[].d = tmaingrn[] - 1; -- set time for main’s green14
END IF;15

WHEN 1 => mach[].d = 5 - 1; -- set time for main's yellow16
WHEN 2 => mach[].d = tsidegrn[] - 1; -- set time for side's green17
WHEN 3 => mach[].d = 5 - 1; -- set time for side's yellow18

END CASE;19
ELSE mach[].d = mach[].q - 1; -- decrement timer counter20
END IF;21
change = mach[] == 1; -- change lights on control module22

END;23
---24
SUBDESIGN control25
(clock, enable, reset :INPUT;26

lite[1..0] :OUTPUT;)27
VARIABLE28

light: MACHINE OF BITS (lite[1..0]) -- need 4 states for light combinations29
WITH STATES (mgrn = B"00", myel = B"01", sgrn = B"10", syel = B"11");30

BEGIN31
light.clk = clock;32
light.reset = !reset; -- MACHINEs have asynchronous, active-high reset33
CASE light IS -- wait for enable to change light states34

WHEN mgrn => IF enable THEN light = myel; ELSE light = mgrn; END IF;35
WHEN myel => IF enable THEN light = sgrn; ELSE light = myel; END IF;36
WHEN sgrn => IF enable THEN light = syel; ELSE light = sgrn; END IF;37
WHEN syel => IF enable THEN light = mgrn; ELSE light = syel; END IF;38

END CASE;39
END;40
---41
SUBDESIGN lite_ctrl42
(lite[1..0] :INPUT;43

mainred, mainyelo, maingrn :OUTPUT;44
sidered, sideyelo, sidegrn :OUTPUT;)45

BEGIN46
CASE lite[] IS -- determine which lights to turn on47

WHEN B"00" => maingrn = VCC; mainyelo = GND; mainred = GND;48
sidegrn = GND; sideyelo = GND; sidered = VCC;49

WHEN B"01" => maingrn = GND; mainyelo = VCC; mainred = GND;50
sidegrn = GND; sideyelo = GND; sidered = VCC;51

WHEN B"10" => maingrn = GND; mainyelo = GND; mainred = VCC;52
sidegrn = VCC; sideyelo = GND; sidered = GND;53

WHEN B"11" => maingrn = GND; mainyelo = GND; mainred = VCC;54
sidegrn = GND; sideyelo = VCC; sidered = GND;55

END CASE;56
END;57

FIGURE 7-60 AHDL design files for traffic light controller.

TOCCMC07_0131725793.QXD 12/13/05 4:51 AM Page 431

V
H

D
L

The control module (lines 25–40) contains a state machine named light
that will sequence through the four states for the traffic light combinations.

The bits for the state machine are named and connected as an output port

for this module (lines 27 and 29). The four states for light are named mgrn,
myel, sgrn, and syel on line 30. Each state represents which road, main or

side, is to receive a green or yellow light. The other road will have a red

light. The values for each state of the control module have also been speci-

fied on line 30 so that we can identify them as inputs to the other two mod-

ules, delay and lite_ctrl. The enable input is connected to the change output

signal produced by the delay module. When enabled, the light state ma-

chine will advance to the next state when clocked as described by the CASE

and nested IF statements on lines 34–39. Otherwise, light will hold at the

current state.

The lite_ctrl module (lines 42–57) inputs lite[1..0], which represents the

state of the light state machine from the control module, and will output the

signals that will turn on the proper combinations of green, yellow, and red

lights for the main and side roads. Each output from the lite_ctrl module will

actually be connected to lamp driver circuits to control the higher voltages

and currents necessary for real lamps in a traffic light. The CASE statement

on lines 47–55 determines which main road/side road light combination to

turn on for each state of light. The function of the lite_ctrl module is very

much like a decoder. It essentially decodes each state combination of lite to

turn on a green or yellow light for one road and a red light for the other road.

A unique output combination is produced for each input state.

VHDL TRAFFIC LIGHT CONTROLLER
The VHDL design for the traffic light controller is listed in Figure 7-61. The

top level of the design is described structurally on lines 1–34.There are three

COMPONENT modules to declare (lines 10–24). The PORT MAPs giving the

wiring interconnects between each module and the top level design are

listed on lines 26–33.

The delay module (lines 36–66) is basically a buried down counter (line

59) created with the integer variable mach that waits at zero when the main

road has a green light (lite � “00”) until it is triggered by the car sensor (line

52) to load the delay factor on line 53. Since the counter decre-

ments all the way to zero, one is subtracted from each delay factor to make

the delay counter’s modulus equal to the value of the delay factor. For

example, if we wish to have a delay factor of 25, the counter must count from

24 down to 0. The actual length of time represented by the delay factors

depends on the clock frequency. With a 1-Hz clock frequency, the period

would be 1 s, and the delay factors would then be in seconds. Lines 62–64

define an output signal called change that detects when mach is equal to one.

Change will be HIGH to indicate that the test condition is true, which in turn

will enable the state machine in the control module to move to its next state

(lite � “01”) when clocked to indicate a yellow light on the main road. When

mach reaches zero now, CASE determines that lite has a new value and the

fixed time delay factor of 5 for a yellow light is loaded (actually loading one

less, as previously discussed) into mach (line 55) on the next clock.The count

down continues from this new delay time, with change again enabling the

control module to move to its next state (lite � “10”), resulting in a green

light for the side road. When mach again reaches zero, the time delay

for a green light on the side road will be loaded into the down(tsidegrn-1)

tmaingrn-1

432 CHAPTER 7/COUNTERS AND REGISTERS

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 432

SECTION 7-14/STATE MACHINES 433

ENTITY traffic IS1
PORT (clock, car, reset :IN BIT;2

tmaingrn, tsidegrn :IN INTEGER RANGE 0 TO 31;3
lite :BUFFER INTEGER RANGE 0 TO 3;4
change :BUFFER BIT;5
mainred, mainyelo, maingrn :OUT BIT;6
sidered, sideyelo, sidegrn :OUT BIT);7

END traffic;8
ARCHITECTURE toplevel OF traffic IS9
COMPONENT delay10

PORT (clock, car, reset :IN BIT;11
lite :IN INTEGER RANGE 0 TO 3;12
tmaingrn, tsidegrn :IN INTEGER RANGE 0 TO 31;13
change :OUT BIT);14

END COMPONENT;15
COMPONENT control16

PORT (clock, enable, reset :IN BIT;17
lite :OUT INTEGER RANGE 0 TO 3);18

END COMPONENT;19
COMPONENT lite_ctrl20

PORT (lite :IN INTEGER RANGE 0 TO 3;21
mainred, mainyelo, maingrn :OUT BIT;22
sidered, sideyelo, sidegrn :OUT BIT);23

END COMPONENT;24
BEGIN25
module1: delay PORT MAP (clock => clock, car => car, reset => reset,26

lite => lite, tmaingrn => tmaingrn, tsidegrn => tsidegrn,27
change => change);28

module2: control PORT MAP (clock => clock, enable => change, reset => reset,29
lite => lite);30

module3: lite_ctrl PORT MAP (lite => lite, mainred => mainred, mainyelo => mainyelo,31
maingrn => maingrn, sidered => sidered, sideyelo => sideyelo,32
sidegrn => sidegrn);33

END toplevel;34
--35
ENTITY delay IS36
PORT (clock, car, reset :IN BIT;37

lite :IN BIT_VECTOR (1 DOWNTO 0);38
tmaingrn, tsidegrn :IN INTEGER RANGE 0 TO 31;39
change :OUT BIT);40

END delay;41
ARCHITECTURE time OF delay IS42
BEGIN43

PROCESS (clock, reset)44
VARIABLE mach :INTEGER RANGE 0 TO 31;45
BEGIN46
IF reset = '0' THEN mach := 0;47
ELSIF (clock = '1' AND clock'EVENT) THEN -- with 1 Hz clock, times in seconds48

IF mach = 0 THEN49
CASE lite IS50

WHEN "00"51
IF car = '0' THEN mach := 0; -- wait for car on side road52
ELSE mach := tmaingrn - 1; -- set time for main's green53
END IF;54

WHEN "01" => mach := 5 - 1; -- set time for main's yellow55
WHEN "10" => mach := tsidegrn - 1; -- set time for side's green56
WHEN "11" => mach := 5 - 1; -- set time for side's yellow57

END CASE;58
ELSE mach := mach - 1; -- decrement timer counter59
END IF;60

END IF;61

FIGURE 7-61 VHDL design for traffic light controller.

TOCCMC07_0131725793.QXD 12/22/2005 9:13 AM Page 433

434 CHAPTER 7/COUNTERS AND REGISTERS

IF mach = 1 THEN change <= '1'; -- change lights on control62
ELSE change <= '0';63
END IF;64
END PROCESS;65

END time;66
--67
ENTITY control IS68
PORT (clock, enable, reset :IN BIT;69

lite :OUT BIT_VECTOR (1 DOWNTO 0));70
END control;71
ARCHITECTURE a OF control IS72
TYPE enumerated IS (mgrn, myel, sgrn, syel); -- need 4 states for light combinations73
BEGIN74

PROCESS (clock, reset)75
VARIABLE lights :enumerated;76
BEGIN77

IF reset = '0' THEN lights := mgrn;78
ELSIF (clock = '1' AND clock'EVENT) THEN79

IF enable = '1' THEN -- wait for enable to change light states80
CASE lights IS81

WHEN mgrn => lights := myel;82
WHEN myel => lights := sgrn;83
WHEN sgrn => lights := syel;84
WHEN syel => lights := mgrn;85

END CASE;86
END IF;87

END IF;88
CASE lights IS -- patterns for light states89

WHEN mgrn=> lite <= "00";90
WHEN myel=> lite <= "01";91
WHEN sgrn=> lite <= "10";92
WHEN syel=> lite <= "11";93

END CASE;94
END PROCESS;95

END a;96
--97
ENTITY lite_ctrl IS98
PORT (lite :IN BIT_VECTOR (1 DOWNTO 0);99

mainred, mainyelo, maingrn :OUT BIT;100
sidered, sideyelo, sidegrn :OUT BIT);101

END lite_ctrl;102
ARCHITECTURE patterns OF lite_ctrl IS103
BEGIN104

PROCESS (lite)105
BEGIN106
CASE lite IS -- control state determines which lights to turn on/off107

WHEN "00" => maingrn <= '1'; mainyelo <= '0'; mainred <= '0';108
sidegrn <= '0'; sideyelo <= '0'; sidered <= '1';109

WHEN "01" => maingrn <= '0'; mainyelo <= '1'; mainred <= '0';110
sidegrn <= '0'; sideyelo <= '0'; sidered <= '1';111

WHEN "10" => maingrn <= '0'; mainyelo <= '0'; mainred <= '1';112
sidegrn <= '1'; sideyelo <= '0'; sidered <= '0';113

WHEN "11" => maingrn <= '0'; mainyelo <= '0'; mainred <= '1';114
sidegrn <= '0'; sideyelo <= '1'; sidered <= '0';115

END CASE;116
END PROCESS;117

END patterns;118

FIGURE 7-61 Continued

TOCCMC07_0131725793.QXD 12/22/05 10:08 PM Page 434

SECTION 7-14/STATE MACHINES 435

counter (line 56). When change again goes active, lite will advance to “11” for

a yellow light on the side road. Mach will recycle to the value 4 (5 – 1) on line

57 for the fixed time delay for a yellow light. When change goes active this

time, the control module will return to lite � “00” (green light on main).When

mach decrements to its terminal state (zero) this time, lines 52–54 will de-

termine by the status of the car sensor input whether to wait for another car

or to load in the delay factor for a green light on main to start

the cycle over again. The main road will receive a green light for at least this

length of time, even if there is a continuous stream of cars on the side road.

It is obvious that we could make improvements to this design, but that, of

course, would also complicate the design further.

The control module (lines 68–96) contains a state machine named lights
that will sequence through four enumerated states for the traffic light com-

binations.The four enumerated states for lights are mgrn, myel, sgrn, and syel
(lines 73 and 76). Each state represents which road, main or side, is to receive

a green or yellow light. The other road will have a red light. The enable input

is connected to the change output signal produced by the delay module.

When enabled, the lights state machine will advance to the next state when

clocked, as described by the nested IF and CASE statements on lines 79–88.

Otherwise, lights will hold at the current state. The bit patterns for output

port lite have been specified for each state of lights with the CASE statement

on lines 89–94 so that we can identify them as inputs to the other two mod-

ules, delay and lite_ctrl.

The lite_ctrl module (lines 98–118) inputs lite, which represents the state

of the lights state machine from the control module, and will output the sig-

nals that will turn on the proper combinations of green, yellow, and red

lights for the main and side roads. Each output from the lite_ctrl module will

actually be connected to lamp driver circuits to control the higher voltages

and currents necessary for real lamps in a traffic light. The CASE statement

on lines 107–116, invoked by the PROCESS when the lite input changes,

determines which main road/side road light combination to turn on for each

state of lights. The function of the lite_ctrl module is very much like a

decoder. It essentially decodes each state combination of lite to turn on a

green or yellow light for one road and a red light for the other road. A unique

output combination is produced for each input state.

By this time, you may be wondering why there are so many ways to

describe logic circuits. If one way is easier than the others, why not just study

that one? The answer, of course, is that each level of abstraction offers

advantages over the others in certain cases. The structural method provides

the most complete control over interconnections. The use of Boolean equa-

tions, truth tables, and PRESENT state/NEXT state tables allows us to

describe the way data flows through the circuit using HDL. Finally, the

behavioral method allows a more abstract description of the circuit’s ope-

ration in terms of cause and effect. In practice, each source file may have

portions that can be categorized under each level of abstraction. Choosing

the right level when writing code is not an issue of right and wrong as much

as it is an issue of style and preference.

There are also several ways to approach any task from a standpoint of

choosing control structures. Should we use selected signal assignments or

Boolean equations, IF/ELSE or CASE, sequential processes or concurrent

statements, macrofunctions or megafunctions? Or should we write our own

code? The answers to these questions ultimately define your personal

strategy in solving the problem. Your preferences and the advantages you

find in using one method over another will be established with practice

and experience.

(tmaingrn-1)

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 435

436 CHAPTER 7/COUNTERS AND REGISTERS

PART 1 SUMMARY
1. In asynchronous (ripple) counters, the clock signal is applied to the LSB

FF, and all other FFs are clocked by the output of the preceding FF.

2. A counter’s MOD number is the number of stable states in its counting

cycle; it is also the maximum frequency-division ratio.

3. The normal (maximum) MOD number of a counter is 2N. One way to mod-

ify a counter’s MOD number is to add circuitry that will cause it to recy-

cle before it reaches its normal last count.

4. Counters can be cascaded (chained together) to produce greater count-

ing ranges and frequency-division ratios.

5. In a synchronous (parallel) counter, all of the FFs are simultaneously

clocked from the input clock signal.

6. The maximum clock frequency for an asynchronous counter, fmax, de-

creases as the number of bits increases. For a synchronous counter, fmax

remains the same, regardless of the number of bits.

7. A decade counter is any MOD-10 counter. A BCD counter is a decade

counter that sequences through the 10 BCD codes (0–9).

8. A presettable counter can be loaded with any desired starting count.

9. An up/down counter can be commanded to count up or count down.

10. Logic gates can be used to decode (detect) any or all states of a counter.

11. The count sequence for a synchronous counter can be easily determined

by using a PRESENT state/NEXT state table that lists all possible states,

the flip-flop input control information, and the resulting NEXT states.

12. Synchronous counters with arbitrary counting sequences can be imple-

mented by following a standard design procedure.

13. Counters can be described in many different ways using HDL, including

structural wiring descriptions, PRESENT state/NEXT state tables, and

behavioral descriptions.

14. All the features available on the various standard IC counter chips, such

as asynchronous or synchronous loading or clearing, count enabling, and

terminal count decoding, can be described using HDL. HDL counters can

be easily modified for higher MOD numbers or changes in the active lev-

els for controls.

15. Digital systems can be subdivided into smaller modules or blocks that

can be interconnected as a hierarchical design.

16. State machines can be represented in HDL using descriptive names for

each state rather than specifying a numeric sequence of states.

REVIEW QUESTIONS 1. What is the fundamental difference between a counter and a state ma-

chine?

2. What is the difference between describing a counter and describing a

state machine in an HDL?

3. If the actual binary states for a state machine are not defined in the HDL

code, how are they assigned?

4. What is the advantage of using state machine description?

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 436

SECTION 7-16/PARALLEL IN/PARALLEL OUT—THE 74ALS174/74HC174 437

PART 2
7-15 INTEGRATED-CIRCUIT REGISTERS

The various types of registers can be classified according to the manner in

which data can be entered into the register for storage and the manner in

which data are outputted from the register. The various classifications are

listed below.

1. Parallel in/parallel out (PIPO)

2. Serial in/serial out (SISO)

3. Parallel in/serial out (PISO)

4. Serial in/parallel out (SIPO)

Each of these types and several variations are available in IC form so

that a logic designer can usually find exactly what is required for a given ap-

plication. In the following sections, we will examine a representative IC from

each of the above categories.

7-16 PARALLEL IN/PARALLEL OUT—THE 74ALS174/74HC174

A group of flip-flops that can store multiple bits simultaneously and in

which all bits of the stored binary value are directly available is referred to

as a parallel in/parallel out register. Figure 7-62(a) shows the logic dia-

gram for the 74ALS174 (also the 74HC174), a six-bit register that has par-

allel inputs D5 through D0 and parallel outputs Q5 through Q0. Parallel data

are loaded into the register on the PGT of the clock input CP. A master re-

set input can be used to reset asynchronously all of the register FFs to

0. The logic symbol for the 74ALS174 is shown in Figure 7-62(b). This sym-

bol is used in circuit diagrams to represent the circuitry of Figure 7-62(a).

The 74ALS174 is normally used for synchronous parallel data transfer

whereby the logic levels present at the D inputs are transferred to the corre-

sponding Q outputs when a PGT occurs at the clock CP. This IC, however, can

be wired for serial data transfer, as the following examples will show.

MR

PART 1 IMPORTANT TERMS
asynchronous (ripple)

counter

MOD number

glitches

synchronous

(parallel) counters

decade counter

BCD counter

up counter

down counter

up/down counters

presettable counters

parallel load

count enable

multistage counters

cascading

decoding

PRESENT

state/NEXT

state table

self-correcting

counter

sequential circuit

design

J-K excitation table

circuit excitation

table

VARIABLE

behavioral level of

abstraction

hierarchical design

state machine

mealy model

Moore model

MACHINE

enumerated type

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 437

438 CHAPTER 7/COUNTERS AND REGISTERS

EXAMPLE 7-16 Show how to connect the 74ALS174 so that it operates as a serial shift regis-

ter with data shifting on each PGT of CP as follows: Serial input

In other words, serial data will enter

at D5 and will output at Q0.

Solution

Looking at Figure 7-62(a), we can see that to connect the six FFs as a serial

shift register, we have to connect the Q output of one to the D input of the

next so that data is transferred in the required manner. Figure 7-63 shows

how this is accomplished. Note that data shifts left to right, with input data

applied at D5 and output data appearing at Q0.

: Q5 : Q4 : Q3 : Q2 : Q1 : Q0.

Q5

D5

Q4

D4

Q3

D3

Q2

D2

Q1

D1

Q0

D0MR CP

MR

CP

(a)

74ALS174

Q5 Q4 Q3 Q2 Q1 Q0

D5 D4 D3 D2 D1 D0

(b)

D Q

CP
CLR

D Q

CP
CLR

D Q

CP
CLR

D Q

CP
CLR

D Q

CP
CLR

D Q

CP
CLR

FIGURE 7-62 (a) Circuit diagram of the 74ALS174; (b) logic symbol.

EXAMPLE 7-17 How would you connect two 74ALS174s to operate as a 12-bit shift register?

Solution

Connect a second 74ALS174 IC as a shift register, and connect Q0 from the

first IC to D5 of the second IC. Connect the CP inputs of both ICs so that they

will be clocked from the same signal. Also connect the MR inputs together if

using the asynchronous reset.

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 438

SECTION 7-17/SERIAL IN/SERIAL OUT—THE 74ALS166/74HC166 439

7-17 SERIAL IN/SERIAL OUT—THE 74ALS166/74HC166

A serial in/serial out shift register will have data loaded into it one bit at a

time.The data will move one bit at a time with each clock pulse through the set

of flip-flops toward the other end of the register. With continued clocking, the

data will then exit the register one bit at a time in the same order as it was orig-

inally loaded. The 74HC166 (and also the 74ALS166) can be used as a serial

in/serial out register.The logic diagram and schematic symbol for the 74HC166

is shown in Figure 7-64. It is an eight-bit shift register of which only FF QH is

accessible.The serial data is input on SER and will be stored in FF QA.The se-

rial output is obtained at the other end of the shift register on As can be

seen from the function table for this shift register in Figure 7-64(c), parallel

data can also be synchronously loaded into it. If the register func-

tion will be serial shifting, while a LOW will instead parallel load data via the

A through H inputs. The synchronous serial shifting and parallel loading func-

tions can be inhibited (disabled) by applying a HIGH to the CLK INH control

input.The register also has an active-LOW, asynchronous clear input (CLR).

SH/LD = 1,

QH.

FIGURE 7-63 Example

7-16: The 74ALS174 wired

as a shift register.

74ALS174

D5 D4 D3 D2 D1 D0

Q5 Q4 Q3 Q2 Q1 Q0

CP

MR

Serial
input

Serial
output

EXAMPLE 7-18 A shift register is often used as a way to delay a digital signal by an integral

number of clock cycles. The digital signal is applied to the shift register’s se-

rial input and is shifted through the shift register by successive clock pulses

until it reaches the end of the shift register, where it appears as the output

signal. This method for delaying the effect of a digital signal is common in

the digital communications field. For instance, the digital signal might be

the digitized version of an audio signal that is to be delayed before it is trans-

mitted. The input waveforms given in Figure 7-65 are applied to a 74HC166.

Determine the resultant output waveform.

Solution

QH starts at a LOW, since all flip-flops are initially cleared by the LOW

applied to the asynchronous CLR input at the beginning of the timing diagram.

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 439

(a
)

C
LK

 IN
H

S
E

R

Q
H

S
H

/L
D

C
LR

C
LK

(b
)

(c
)

C
LK

C
LK

 IN
H

S
H

/L
D

S
E

R
Q

H

Q
H

74
H

C
16

6

S
H

/L
D

C
LR

C
LK

C
LK

C
LK

 IN
H

C
LK

 IN
H

S
E

R

S
E

R

IN
T

E
R

N
A

L

O
U

T
P

U
T

S
IN

P
U

T
S

Q
A

Q
B

Q
H

P
A

R
A

LL
E

L
A

 .
. .

 H

S
H

/L
D

C
LR

C
LR L H H H H H

X X L H H X

X L L L L H

X X X H L X

L Q
A

0

a H L Q
A

0

L Q
B

0

b Q
A

n

Q
A

n

Q
B

0

L
Q

H
0

h
Q

G
n

Q
G

n

Q
H

0

X X
a

. .
 .

h
X X

X

X L ↑ ↑ ↑ ↑

A
B

C
D

E
F

G
H

A
B

C
D

E
F

G
H

RD C

A
B

C
D

E
F

G
H

RD C

RD C

RD C

RD C

RD C

RD C

RD C

F
IG

U
R

E
 7

-6
4

(a
)

C
ir

c
u

it
 d

ia
g

ra
m

 o
f

th
e
 7

4
H

C
1
6
6
;
(b

)
lo

g
ic

 s
y
m

b
o
l;

 (
c
)

fu
n

c
ti

o
n

 t
a
b

le
.

440 CHAPTER 7/COUNTERS AND REGISTERS

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 440

SECTION 7-18/PARALLEL IN/SERIAL OUT—THE 74ALS165/74HC165 441

At t1, the shift register will input the current bit applied to SER. This will be

stored in QA. At t2, the first bit will move to QB and a second bit on SER will

be stored in QA. At t3, the first bit will now move to QC and a third bit on SER
will be stored in QA. The first data input bit will finally show up at the out-

put QH at t8. Each successive input bit on SER will follow at QH delayed by

eight clock cycles.

7-18 PARALLEL IN/SERIAL OUT—THE 74ALS165/74HC165

The logic symbol for the 74HC165 is shown in Figure 7-66(a). This IC is an

eight-bit parallel in/serial out register. It actually has serial data entry via DS

and asynchronous parallel data entry via P0 through P7.The register contains

eight FFs—Q0 through Q7—internally connected as a shift register, but the only

accessible FF outputs are Q7 and CP is the clock input used for the shift-

ing operation. The clock inhibit input, CP INH is used to inhibit the effect of

the CP input. The shift/load input, controls which operation is taking

place—shifting or parallel loading. The function table in Figure 7-66(b)

shows how the various input combinations determine what operation, if any,

is being performed. Parallel loading is asynchronous and serial shifting is

synchronous. Note that the serial shifting function will always be synchro-

nous, since the clock is required to ensure that the input data moves only one

bit at a time with each appropriate clocking edge.

SH/LD,

Q7.

CLK

CLK INH

SH/LD

SER QH

QH

74HC166

CLR

CLK

0

SER

1

CLR

A B C D E F G H

0 0 0 0 0 0 0 0

CLK

SER

QH

CLR

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

FIGURE 7-65 Example 7-18.

EXAMPLE 7-19 Examine the 74HC165 function table and determine (a) the conditions nec-

essary to load the register with parallel data; (b) the conditions necessary for

the shifting operation.

TOCCMC07_0131725793.QXD 16/01/2006 09:04 PM Page 441

442 CHAPTER 7/COUNTERS AND REGISTERS

Solution

(a) The first entry in the table shows that the input has to be LOW for

the parallel load operation. When this input is LOW, the data present at

the P inputs are asynchronously loaded into the register FFs, independ-

ent of the CP and the CP INH inputs. Of course, only the outputs from the

last FF are externally available.

(b) The shifting operation cannot take place unless the input is HIGH

and a PGT occurs at CP while CP INH is LOW [see the fourth table entry

in Figure 7-66(b)]. A HIGH at CP INH will inhibit the effect of any clock

pulses. Note that the roles of the CP and CP INH inputs can be reversed,

as indicated by the last table entry, because these two signals are ORed

together inside the IC.

SH/LD

SH/LD

FIGURE 7-66 (a) Logic

symbol for the 74HC165

parallel in/serial out

register; (b) function table.

74HC165

Q7

DS

P7P6P5P4P3P2P1P0

CP

CP INH

SH/LD

Q7

(a)

(b)

SH/LD

L
H
H
H
H

Operation

Parallel load
No change
No change
Shifting
Shifting

CP

X
H
X

L

CP INH

X
X
H
L

Inputs

H = high level
L = low level
X = immaterial

= PGT

Function Table

EXAMPLE 7-20
Determine the output signal at Q7 if we connect a 74HC165 with DS � 0 and

CP INH � 0 and then apply the input waveforms given in Figure 7-67. P0–P7

represent the parallel data on P0 P1 P2 P3 P4 P5 P6 P7.

Solution

We have drawn the timing diagram for all eight FFs so that we could track

their contents over time even though only Q7 will be accessible. The parallel

load is asynchronous and will occur as soon as SH/LD goes LOW. After SH/LD

returns to a HIGH, the data stored in the register will move one FF to the

right (toward Q7) with each PGT on CP.

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 442

SECTION 7-19/SERIAL IN/PARALLEL OUT—THE 74ALS164/74HC164 443

7-19 SERIAL IN/PARALLEL OUT—THE 74ALS164/74HC164

The logic diagram for the 74ALS164 is shown in Figure 7-68(a). It is an eight-

bit serial in/parallel out shift register with each FF output externally acces-

sible. Instead of a single serial input, an AND gate combines inputs A and B
to produce the serial input to flip-flop Q0.

FIGURE 7-67 Example 7-20.

0101 0011 1001 1010

CP

__
SH/LD

(Q0)

(Q1)

(Q2)

(Q3)

(Q4)

(Q5)

(Q6)

Q7

P0 - P7

8-bit
shift register
74ALS164

MR

(b)

A

B

CP

74ALS164

(a)
Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

MR

A

B

CP

&

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

D Q

CP
CD

D Q

CP
CD

D Q

CP
CD

D Q

CP
CD

D Q

CP
CD

D Q

CP
CD

D Q

CP
CD

D Q

CP
CD

FIGURE 7-68 (a) Logic diagram for the 74ALS164; (b) logic symbol.

TOCCMC07_0131725793.QXD 16/01/2006 09:04 PM Page 443

444 CHAPTER 7/COUNTERS AND REGISTERS

The shift operation occurs on the PGTs of the clock input CP. The in-

put provides asynchronous resetting of all FFs on a LOW level.

The logic symbol for the 74ALS164 is shown in Figure 7-68(b). Note that

the & symbol is used inside the block to indicate that the A and B inputs are

ANDed inside the IC and the result is applied to the D input of Q0.

MR

EXAMPLE 7-21 Assume that the initial contents of the 74ALS164 register in Figure 7-69(a)

are 00000000. Determine the sequence of states as clock pulses are applied.

&

(a)

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

MR

CP

A

B
1

1 74ALS164
&

Q7

0

0

0

0

0

0

0

0

1

Q6

0

0

0

0

0

0

0

1

1

Q5

0

0

0

0

0

0

1

1

1

Q4

0

0

0

0

0

1

1

1

1

Q3

0

0

0

0

1

1

1

1

1

Q2

0

0

0

1

1

1

1

1

1

Q1

0

0

1

1

1

1

1

1

1

Q0

0

1

1

1

1

1

1

1

1

0

1

2

3

4

5

6

7

8

Input
pulse

number

Temporary
state

(b)

Recycles

FIGURE 7-69 Example 7-21.

Solution

The correct sequence is given in Figure 7-69(b). With A � B � 1, the serial in-

put is 1, so that 1s will shift into the register on each PGT of CP. Because Q7

is initially at 0, the input is inactive.

On the eighth pulse, the register tries to go to the 11111111 state as the

1 from Q6 shifts into Q7. This state occurs only momentarily because Q7 � 1

produces a LOW at that immediately resets the register back to

00000000. The sequence is then repeated on the next eight clock pulses.

The following is a list of some other register ICs that are variations on

those already presented:

■ 74194/ALS194/HC194. This is a four-bit bidirectional universal shift-register
IC that can perform shift-left, shift-right, parallel in, and parallel out

operations. These operations are selected by a two-bit mode-select code

applied as inputs to the device. (Problem 7-71 will provide you with a

chance to find out more about this versatile chip.)

■ 74373/ALS373/HC373/HCT373. This is an eight-bit (octal) parallel in/-

parallel out register containing eight D latches with tristate outputs. A

tristate output is a special type of logic circuit output that allows device

outputs to be tied together safely. We will cover the characteristics of

tristate devices such as the 74373 in the next chapter.

■ 74374/ALS374/HC374/HCT374.This is an eight-bit (octal) parallel in/par-

allel out register containing eight edge-triggered D flip-flops with tris-

tate outputs.

MR

MR

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 444

SECTION 7-20/SHIFT-REGISTER COUNTERS 445

The IC registers that have been presented here are representative of the

various types that are commercially available. Although there are many vari-

ations on these basic registers, most of them should now be relatively easy to

understand from the manufacturers’ data sheets.

We will present several register applications in the end-of-chapter prob-

lems and in the material covered in subsequent chapters.

REVIEW QUESTIONS 1. What kind of register can have a complete binary number loaded into it

in one operation, and then have it shifted out one bit at a time?

2. True or false: A serial in/parallel out register can have all of its bits dis-

played at one time.

3. What type of register can have data entered into it only one bit at a time,

but has all data bits available as outputs?

4. In what type of register do we store data one bit at a time and have ac-

cess to only one output bit at a time?

5. How does the parallel data entry differ for the 74165 and the 74174?

6. How does the CP INH input of the 74ALS165 work?

7-20 SHIFT-REGISTER COUNTERS

In Section 5-18, we saw how to connect FFs in a shift-register arrangement to

transfer data left to right, or vice versa, one bit at a time (serially). Shift-

register counters use feedback, which means that the output of the last FF in

the register is connected back to the first FF in some way.

Ring Counter
The simplest shift-register counter is essentially a circulating shift register
connected so that the last FF shifts its value into the first FF. This arrange-

ment is shown in Figure 7-70 using D-type FFs (J-K flip-flops can also be

used).The FFs are connected so that information shifts from left to right and

back around from Q0 to Q3. In most instances, only a single 1 is in the regis-

ter, and it is made to circulate around the register as long as clock pulses are

applied. For this reason, it is called a ring counter.

The waveforms, sequence table, and state diagram in Figure 7-70 show

the various states of the FFs as pulses are applied, assuming a starting state

of Q3 � 1 and Q2 � Q1 � Q0 � 0. After the first pulse, the 1 has shifted from Q3

to Q2 so that the counter is in the 0100 state. The second pulse produces the

0010 state, and the third pulse produces the 0001 state. On the fourth clock

pulse, the 1 from Q0 is transferred to Q3, resulting in the 1000 state, which is,

of course, the initial state. Subsequent pulses cause the sequence to repeat.

This counter functions as a MOD-4 counter because it has four distinct

states before the sequence repeats. Although this circuit does not progress

through the normal binary counting sequence, it is still a counter because

each count corresponds to a unique set of FF states. Note that each FF out-

put waveform has a frequency equal to one-fourth of the clock frequency be-

cause this is a MOD-4 ring counter.

Ring counters can be constructed for any desired MOD number; a MOD-

N ring counter uses N flip-flops connected in the arrangement of Figure 7-70.

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 445

In general, a ring counter requires more FFs than a binary counter for the

same MOD number; for example, a MOD-8 ring counter requires eight FFs,

while a MOD-8 binary counter requires only three.

Despite the fact that it is less efficient in the use of FFs, a ring counter

is still useful because it can be decoded without the use of decoding gates.

The decoding signal for each state is obtained at the output of its correspon-

ding FF. Compare the FF waveforms of the ring counter with the decoding

waveforms in Figure 7-20. In some cases, a ring counter might be a better

choice than a binary counter with its associated decoding gates. This is

especially true in applications where the counter is being used to control the

sequencing of operations in a system.

446 CHAPTER 7/COUNTERS AND REGISTERS

1000

0100

0010

0001

(d)

Q3

1
0
0
0
1
0
0
0
.
.

Q2

0
1
0
0
0
1
0
0
.
.

Q1

0
0
1
0
0
0
1
0
.
.

Q0

0
0
0
1
0
0
0
1
.
.

CLOCK
pulse

0
1
2
3
4
5
6
7
.
.

(c)

CLK

Q2

Q2

D

CLK

Q1

Q1

D

CLK

Q0

Q0

D

CLOCK

CLK

Q3

Q3

D

(a)

(b)

1 2 3 4 5 6 7 8

CLOCK

Q3

Q2

Q1

Q0

FIGURE 7-70 (a) Four-bit ring counter; (b) waveforms; (c) sequence table;

(d) state diagram.

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 446

Starting a Ring Counter
To operate properly, a ring counter must start off with only one FF in the 1

state and all the others in the 0 state. Because the starting states of the FFs

will be unpredictable on power-up, the counter must be preset to the

required starting state before clock pulses are applied. One way to do this is

to apply a momentary pulse to the asynchronous input of one of the FFs

(e.g., Q3 in Figure 7-70) and to the input of all other FFs. Another

method is shown in Figure 7-71. On power-up, the capacitor will charge up

relatively slowly toward �VCC. The output of Schmitt-trigger INVERTER 1

will stay HIGH, and the output of INVERTER 2 will remain LOW until the

capacitor voltage exceeds the positive-going threshold voltage (VT�) of the

INVERTER 1 input (about 1.7 V). This will hold the input of Q3 and the

inputs of Q2, Q1, and Q0 in the LOW state long enough during power-up

to ensure that the counter starts at 1000.

Johnson Counter
The basic ring counter can be modified slightly to produce another type of

shift-register counter, which will have somewhat different properties. The

Johnson or twisted-ring counter is constructed exactly like a normal ring

counter except that the inverted output of the last FF is connected to the

input of the first FF. A three-bit Johnson counter is shown in Figure 7-72.

Note that the output is connected back to the D input of Q2, which

means that the inverse of the level stored in Q0 will be transferred to Q2 on

the clock pulse.

The Johnson-counter operation is easy to analyze if we realize that on

each positive clock-pulse transition, the level at Q2 shifts into Q1, the level at

Q1 shifts into Q0, and the inverse of the level at Q0 shifts into Q2. Using these

ideas and assuming that all FFs are initially 0, the waveforms, sequence

table, and state diagram of Figure 7-72 can be generated.

Examination of the waveforms and sequence table reveals the following

important points:

1. This counter has six distinct states—000, 100, 110, 111, 011, and 001—

before it repeats the sequence.Thus, it is a MOD-6 Johnson counter. Note

that it does not count in a normal binary sequence.

2. The waveform of each FF is a square wave (50 percent duty cycle) at one-

sixth the frequency of the clock. In addition, the FF waveforms are

shifted by one clock period with respect to each other.

The MOD number of a Johnson counter will always be equal to twice the

number of FFs. For example, if we connect five FFs in the arrangement of

Q0

CLR
PRE

CLR
PRE

SECTION 7-20/SHIFT-REGISTER COUNTERS 447

+VCC

1 k�

1000 pF

74ALS14

To PRE of Q3 and CLR of
Q2, Q1, and Q0 of Fig. 7-7021

FIGURE 7-71 Circuit for

ensuring that the ring

counter of Figure 7-70

starts in the 1000 state on

power-up.

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 447

Figure 7-72, the result is a MOD-10 Johnson counter, where each FF output

waveform is a square wave at one-tenth the clock frequency. Thus, it is possi-

ble to construct a MOD-N counter (where N is an even number) by connect-

ing N/2 flip-flops in a Johnson-counter arrangement.

Decoding a Johnson Counter
For a given MOD number, a Johnson counter requires only half the number

of FFs that a ring counter requires. However, a Johnson counter requires de-

coding gates, whereas a ring counter does not. As in the binary counter, the

Johnson counter uses one logic gate to decode for each count, but each gate

requires only two inputs, regardless of the number of FFs in the counter.

Figure 7-73 shows the decoding gates for the six states of the Johnson

counter of Figure 7-72.

448 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-72 (a) MOD-6

Johnson counter; (b) wave-

form; (c) sequence table;

(d) state diagram.

Q2

0
1
1
1
0
0
0
1
1
.
.
.

Q1

0
0
1
1
1
0
0
0
1
.
.
.

Q0

0
0
0
1
1
1
0
0
0
.
.
.

CLOCK
pulse

0
1
2
3
4
5
6
7
8
.
.
.

(c)

000

001 100

011 110

111

(d)

CLK

Q2

Q2

D

CLK

Q1

Q1

D

CLK

Q0

Q0

D

CLOCK

1 2 3 4 5 6 7

(a)

CLOCK

(b)

Q2

Q1

Q0

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 448

Notice that each decoding gate has only two inputs, even though there

are three FFs in the counter, because for each count, two of the three FFs are

in a unique combination of states. For example, the combination Q2 � Q0 �
0 occurs only once in the counting sequence, at the count of 0. Thus, AND

gate 0, with inputs and can be used to decode for this count.This same

characteristic is shared by all of the other states in the sequence, as the

reader can verify. In fact, for any size Johnson counter, the decoding gates

will have only two inputs.

Johnson counters represent a middle ground between ring counters and

binary counters. A Johnson counter requires fewer FFs than a ring counter

but generally more than a binary counter; it has more decoding circuitry

than a ring counter but less than a binary counter. Thus, it sometimes repre-

sents a logical choice for certain applications.

IC Shift-Register Counters
Very few ring counters or Johnson counters are available as ICs because it is

relatively simple to take a shift-register IC and to wire it as either a ring

counter or a Johnson counter. Some of the CMOS Johnson-counter ICs

(74HC4017, 74HC4022) include the complete decoding circuitry on the same

chip as the counter.

Q0,Q2

SECTION 7-20/SHIFT-REGISTER COUNTERS 449

FIGURE 7-73 Decoding logic for a MOD-6 Johnson counter.

Q2
Q2Q0

Q0

Q2
Q2Q1

Q1

Q1
Q1Q0

Q0

Q2
Q2Q0

Q0

Q2
Q2Q1

Q1

Q1
Q1Q0

Q0

Q2

0
1
1
1
0
0

Q1

0
0
1
1
1
0

Q0

0
0
0
1
1
1

Active gate

0
1
2
3
4
5

0

1

2

3

4

5

REVIEW QUESTIONS 1. Which shift-register counter requires the most FFs for a given MOD

number?

2. Which shift-register counter requires the most decoding circuitry?

3. How can a ring counter be converted to a Johnson counter?

4. True or false:

(a) The outputs of a ring counter are always square waves.

(b) The decoding circuitry for a Johnson counter is simpler than for a

binary counter.

(c) Ring and Johnson counters are synchronous counters.

5. How many FFs are needed in a MOD-16 ring counter? How many are

needed in a MOD-16 Johnson counter?

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 449

7-21 TROUBLESHOOTING

Flip-flops, counters, and registers are the major components in sequential
logic systems. A sequential logic system, because of its storage devices, has

the characteristic that its outputs and sequence of operations depend on

both the present inputs and the inputs that occurred earlier. Even though se-

quential logic systems are generally more complex than combinational logic

systems, the essential procedures for troubleshooting apply equally well to

both types of systems. Sequential systems suffer from the same types of fail-

ures (open circuits, shorts, internal IC faults, and the like) as do combina-

tional systems.

Many of the same steps used to isolate faults in a combinational system

can be applied to sequential systems. One of the most effective trou-

bleshooting techniques begins with the troubleshooter observing the system

operation and, by analytical reasoning, determining the possible causes of

the system malfunction. Then he or she uses available test instruments to

isolate the exact fault. The following examples will show the kinds of analyt-

ical reasoning that should be the initial step in troubleshooting sequential

systems. After studying these examples, you should be ready to tackle the

troubleshooting problems at the end of the chapter.

450 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-74 Example

7-22.

EXAMPLE 7-22 Figure 7-74(a) shows a 74ALS161 wired as a MOD-12 counter, but it produces

the count sequence given in Figure 7-74(b). Determine the cause of the in-

correct circuit behavior.

Solution

Outputs QB and QA seem to be operating correctly but QC and QD stay

LOW. Our first choice for the fault is that QC is shorted to ground, but an

ohmmeter check does not confirm this. The 74ALS161 might have an inter-

nal fault that prevents it from counting above 0011. We try removing the

74ALS161

74ALS00

(a)

QA

QB

QC

QD

1
CLK

15

11

12

13

14

6

9

1

7

10

2

5

4

3
0

1
3

2

CLK

ENT
ENP

CLR

LOAD

D

A

B

C

QD

QA

QB

QC

RCO

(c)

CLK

QB

QC

QA

QD

QD QC QB QA

(b)

0001

0011 0010

0000

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 450

7400 NAND chip from its socket and shorting the CLR pin to a HIGH. The

counter now counts a regular MOD-16 sequence, so at least the counter’s

outputs seem to be ok. Next we decide to look at the CLR pin with the

NAND reconnected. Using a logic probe with its “pulse capture” turned on

shows us that the CLR pin is receiving pulses. Connecting a scope to the

outputs, we see that the counter produces the waveforms shown in Figure

7-74(c). A glitch is observed on QC when the counter should be going to state

0100. That indicates that 0100 is a transient state when the transient state

should actually be 1100. The QD connection to the NAND gate is now sus-

pected, so we use the logic probe to check pin 2. There is no logic signal at

all indicated on pin 2, which now leads us to the conclusion that the fault is

an open between the QD output and pin 2 on the NAND. The NAND input is

floating HIGH, causing the circuit to detect state 0100 instead of 1100 as it

should be doing.

SECTION 7-21/TROUBLESHOOTING 451

EXAMPLE 7-23 A technician receives a “trouble ticket” for a circuit board that says the vari-

able frequency divider operates “sometimes.” Sounds like a dreaded inter-

mittent fault problem—often the hardest problems to find! His first thought

is to send it back with the note “Use only when operating correctly!” but he

decides to investigate further since he feels up to a good challenge today.

The schematic for the circuit block is shown in Figure 7-75. The desired

C
D

CLK
DNUP
GN

LDN

B
A

QC

RCON
MXMN

QD

QB
QA

74191

COUNTER

f0 q0

q0

q1

q2

q3

q4

q5

q6

q7

q1
q2
q3

f1
f2
f3

C
D

CLK
DNUP

N
A

N
D

2

BAND8

V
C

C
11

11

GN

LDN

B
A

QC

RCON
MXMN

QD

QB
QA

74191

OUTPUT

GND
15

INPUT
VCC

INPUT
VCC

f[7..0]
3 f[7..0]

in

8

2

4

1

q[7..0]
q[7..0]

OUTPUT

NOT

13

5

12

out

COUNTER

f4 q4
q5
q6
q7

f5
f6
f7

V
C

C
16

FIGURE 7-75 Example 7-23.

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 451

divide-by factor is applied to input f[7..0] in binary. The eight-bit counter

counts down from this number until it reaches zero and then asynchronously

loads in f[] again, making zero a transient state. The resulting modulus will

be equal to the value on f[]. The output frequency signal is obtained by de-

coding state 00000001, making the frequency of out equal to the frequency

of in divided by the binary value f[]. In the application, the frequency of in
is 100 kHz. Change f[] and a new frequency will be output.

Solution

The technician decides that he needs to obtain some test results to look at.

He picks some easy divide-by factors to apply to f and records the results

listed in Table 7-9.

452 CHAPTER 7/COUNTERS AND REGISTERS

f[] (decimal) f[] (binary) Measured fout OK?

255 11111111 398.4 Hz

240 11110000 416.7 Hz ✓

200 11001000 500.0 Hz ✓

100 01100100 1041.7 Hz

50 00110010 2000.0 Hz ✓

25 00011001 4000.0 Hz ✓

15 00001111 9090.9 Hz

TABLE 7-9

He observes that the circuit produces correct results for some test

cases but incorrect results for others. The problem does not seem to be

intermittent after all. Instead, it appears to be dependent on the value

for f. The technician decides to calculate the relationship between input

and output frequencies for the three tests that failed and obtains the

following:

100 kHz/398.4 Hz � 251

100 kHz/1041.7 Hz � 96

100 kHz/9090.9 Hz � 11

Each failure seems to be a divide-by factor that is four less than the

value that was actually applied to the input. After looking again at the

binary representation for f, he notes that every failure occurred when

f2 � 1. The weight for that bit, of course, is four. Eureka! That bit doesn’t

seem to be getting in—time for a logic-probe test on the f2 pin. Sure

enough, the logic probe indicates the pin is LOW regardless of the value

for f2.

7-22 HDL REGISTERS

The various options of serial and parallel data transfer within registers

were described thoroughly in Sections 7-15 through 7-19, and some exam-

ples of ICs that perform these operations have also been described. The

beauty of using HDL to describe a register is in the fact that a circuit can be

given any of these options and as many bits as are needed by simply chang-

ing a few words.

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 452

A
H

D
L

HDL techniques use bit arrays to describe a register’s data and to trans-

fer that data in a parallel or serial format. To understand how data are

shifted in HDL, consider the diagrams in Figure 7-76, which shows four flip-

flops performing transfer operations of parallel load, shift right, shift left,

and hold data. For all of these diagrams, the bits are transferred synchro-

nously, which means that they all move simultaneously on a single clock

edge. In Figure 7-76(a), the data that is to be parallel loaded into the register

is presented to the D inputs, and on the next clock pulse, it will be trans-

ferred to the q outputs. Shifting data right means that each bit is transferred

to the bit location to its immediate right, while a new bit is transferred in on

the left end and the last bit on the right end is lost.This situation is depicted

in Figure 7-76(b). Notice that the data set that we want in the NEXT state is

made up of the new serial input and three of the four bits in the PRESENT

state array. This data simply needs to move over and overwrite the four data

bits of the register.The same operation occurs in Figure 7-76(c), but it is mov-

ing data to the left. The key to shifting the contents of the register to the

right or left is to group the appropriate three PRESENT state data bits in

correct order with the serial input bit so that these four bits can be loaded in

parallel into the register. Concatenation (grouping together in a specific se-

quence) of the desired set of data bits can be used to describe the necessary

data movement for serial shifting in either direction. The last possibility is

called the hold data mode and is shown in Figure 7-76(d). It may seem un-

necessary because registers (flip-flops) hold data by their very nature. We

must consider, however, what must be done to a register in order to hold its

value as it is clocked. The Q outputs must be tied back to the D inputs for

each flip-flop so that the old data is reloaded on each clock. Let’s look at

some example HDL shift register circuits.

AHDL SISO REGISTER
A four-bit serial in/serial out (SISO) register in AHDL is listed in Figure

7-77. An array of four D flip-flops is instantiated in line 7 and the serial out-

put is obtained from the last FF q0 (line 10). If the shift control is HIGH,

serial_in will be shifted into the register and the other bits will move to the

right (lines 11-15). Concatenating serial_in and FF output bits q3, q2, and q1

SECTION 7-22/HDL REGISTERS 453

Q3 Q2 Q1 Q0

New data being loaded

Q3 Q2 Q1 Q0

Q3 Q2 Q1 Q0Ser
IN

Q3 Q2 Q1 Q0

Q3 Q2 Q1 Q0

Q3 Q2 Q1 Q0

Q3 Q2 Q1 Q0 Ser
IN

PRESENT

NEXT

PRESENT

NEXT

(a) Parallel load (b) Shift right

(c) Shift left (d) Hold data

FIGURE 7-76 Data

transfers made in shift

registers: (a) parallel load;

(b) shift right; (c) shift left;

(d) hold data.

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 453

V
H

D
L

together in that order creates the proper shift-right data input bit pattern

(line 12). If the shift control is LOW, the register will hold the current data

(line 14). The simulation results are shown in Figure 7-78.

454 CHAPTER 7/COUNTERS AND REGISTERS

SUBDESIGN fig7_771
(2

clk, shift, serial_in :INPUT;3
serial_out :OUTPUT;4

)5
VARIABLE6

q[3..0] :DFF;7
BEGIN8

q[].clk = clk;9
serial_out = q0.q; -- output last register bit10
IF (shift == VCC) THEN11

q[3..0].d = (serial_in, q[3..1].q); -- concatenates for shift12
ELSE13

q[3..0].d = (q[3..0].q); -- hold data14
END IF;15

END;16

FIGURE 7-77 Serial in/serial out register using AHDL.

FIGURE 7-78 SISO register simulation.

clk 1

1

0

0

0

0

0

0

shift

serial_in

q3.Q

q2.Q

q1.Q

q0.Q

serial_out

5.0us 10.0us 15.0us 20.0us 25.0us 30.0us 35.0us 40.0us 45.us

VHDL SISO REGISTER
A four-bit serial in/serial out (SISO) register in VHDL is listed in Figure 7-79.

A register is created with the declaration of the variable q on line 8 and the

serial output is obtained from the register’s last bit or q(0) (line 10). If the

shift control is HIGH, serial_in will be shifted into the register and the other

bits will move to the right (lines 12–14). Concatenating serial_in and register

bits q(3), q(2), and q(1) together in that order creates the proper shift-right

data input bit pattern (line 13). If the shift control is LOW,VHDL will assume

that the variable stays the same and will therefore hold the current data.

Simulation results are shown in Figure 7-78.

TOCCMC07_0131725793.QXD 12/22/2005 8:26 AM Page 454

AHDL PISO REGISTER
A four-bit parallel in/serial out (PISO) register in AHDL is listed in Figure 7-80.

The register named q is created on line 8 using four D FFs, and the serial

output from q0 is described on line 11.The register has separate parallel load
and serial shift controls. The register’s functions are defined in lines 12–15.

If load is HIGH, the external input data[3..0] will be synchronously loaded.

Load has priority and must be LOW to serial-shift the register’s contents on

each PGT of clk when shift is HIGH.The pattern for shifting data right is cre-

ated by concatenation on line 13. Note that a constant LOW will be the serial

data input for a shift operation. If neither load nor shift is HIGH, the register

will hold the current data value (line 14). Simulation results are shown in

Figure 7-81.

SECTION 7-22/HDL REGISTERS 455

FIGURE 7-80 Parallel in/serial out register using AHDL.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

SUBDESIGN fig7_80
(
 clk, shift, load :INPUT;
 data[3..0] :INPUT;
 serial_out :OUTPUT;
)
VARIABLE
 q[3..0] :DFF;
BEGIN
 q[].clk = clk;
 serial_out = q0.q; -- output last register bit
 IF (load == VCC) THEN q[3..0].d = data[3..0]; -- parallel load
 ELSIF (shift == VCC) THEN q[3..0].d = (GND, q[3..1].q); -- shift
 ELSE q[3..0].d = q[3..0].q; -- hold
 END IF;
END;

A
H

D
L

ENTITY fig7_79 IS1
PORT (clk, shift, serial_in :IN BIT;2

serial_out :OUT BIT);3
END fig 7-79;4
ARCHITECTURE vhdl OF fig 7-79 IS5
BEGIN6
PROCESS (clk)7

VARIABLE q :BIT_VECTOR (3 DOWNTO 0);8
BEGIN9
serial_out <= q(0); -- output last register bit10
IF (clk'EVENT AND clk = '1') THEN11

IF (shift = '1') THEN12
q := (serial_in & q(3 DOWNTO 1)); -- concatenate for shift13

END IF; -- otherwise, hold data14
END IF;15

END PROCESS;16
END vhdl;17

FIGURE 7-79 Serial in/serial out register using VHDL.

TOCCMC07_0131725793.QXD 12/22/2005 8:26 AM Page 455

VHDL PISO REGISTER
A four-bit parallel in/serial out (PISO) register in VHDL is listed in Figure 7-82.

The register is created with the variable declaration for q on line 11, and the

serial output from q(0) is described on line 13.The register has separate par-

allel load and serial shift controls. The register’s functions are defined in

lines 14–18. If load is HIGH, the external input data will be synchronously

loaded. Load has priority and must be LOW to serial-shift the register’s con-

tents on each PGT of clk when shift is HIGH. The pattern for shifting data

right is created by concatenation on line 16. Note that a constant LOW will

be the serial data input for a shift operation. If neither load nor shift is

HIGH, the register will hold the current data value by VHDL’s implied oper-

ation. Simulation results are shown in Figure 7-81.

456 CHAPTER 7/COUNTERS AND REGISTERS

V
H

D
L

ENTITY fig7_82 IS
PORT (
 clk, shift, load :IN BIT;
 data :IN BIT_VECTOR (3 DOWNTO 0);
 serial_out :OUT BIT
);
END fig 7-82;
ARCHITECTURE vhdl OF fig 7-82 IS
BEGIN
PROCESS (clk)
 VARIABLE q :BIT_VECTOR (3 DOWNTO 0);
 BEGIN
 serial_out <= q(0); -- output last register bit
 IF (clk'EVENT AND clk = '1') THEN
 IF (load = '1') THEN q := data; -- parallel load
 ELSIF (shift = '1') THEN q := ('0' & q(3 DOWNTO 1)); -- shift
 END IF; -- otherwise, hold
 END IF;
END PROCESS;
END vhdl;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

FIGURE 7-82 Parallel in/serial out register using VHDL.

EXAMPLE 7-24 Suppose we want to design a universal four-bit shift register, using HDL, that

has four synchronous modes of operation: Hold Data, Shift Left, Shift Right,

and Parallel Load. Two input bits will select the operation that is to be

0 9 4 2 1 0 C 6 3 1 0 7 3 1 0 A 5 2 1 0

clk 1

0

0

B 1001 1001 1100 0111 1010

0

H0

load

shift

data[3..0]

serial_out

q

10.0us 20.0us 30.0us 40.0us 50.0us 60.0us 70.0us 80.0us 90.0us

FIGURE 7-81 PISO register simulation.

TOCCMC07_0131725793.QXD 12/22/2005 8:26 AM Page 456

performed on each rising edge of the clock. To implement a shift register, we

can use structural code to describe a string of flip-flops. Making the shift reg-

ister versatile by allowing it to shift right or left or to parallel load would

make this file quite long and thus hard to read and understand using struc-

tural methods. A much better approach is to use the more abstract and intu-

itive methods available in HDL to describe the circuit concisely. To do this,

we must develop a strategy that will create the shifting action. The concept

is very similar to the one presented in Example 7-16, where a D flip-flop reg-

ister chip (74174) was wired to form a shift register. Rather than thinking of

the shift register as a serial string of flip-flops, we consider it as a parallel

register whose contents are being transferred in parallel to a set of bits that

is offset by one bit position. Figure 7-76 demonstrates the concept of each

transfer needed in this design.

Solution

A very reasonable first step is to define a two-bit input named mode with

which we can specify mode 0, 1, 2, or 3.The next challenge is deciding how to

choose among the four operations using HDL. Several methods can work

here. The CASE structure was chosen because it allows us to choose a differ-

ent set of HDL statements for each and every possible mode value. There is

no priority associated with checking for the existing mode settings or over-

lapping ranges of mode numbers, so we do not need the advantages of the

IF/ELSE construct.The HDL solutions are given in Figures 7-83 and 7-84.The

same inputs and outputs are defined in each approach: a clock, four bits of

parallel load data, a single bit for the serial input to the register, two bits for

the mode selection, and four output bits.

SECTION 7-22/HDL REGISTERS 457

FIGURE 7-83 AHDL universal shift register.

1 SUBDESIGN fig7_83

2 (

3 clock :INPUT;

4 din[3..0] :INPUT; -- parallel data in

5 ser_in :INPUT; -- serial data in from Left or Right

6 mode [1..0] :INPUT; -- MODE Select: 0=hold, 1=right, 2=left, 3=load

7 q[3..0] :OUTPUT;

8)

9 VARIABLE

10 ff[3..0] :DFF; -- define register set

11 BEGIN

12 ff[].clk = clock; -- synchronous clock

13 CASE mode[] IS

14 WHEN 0 => ff[].d = ff[].q; -- hold shift

15 WHEN 1 => ff[2..0].d = ff[3..1].q); -- shift right

16 ff[3].d = ser_in; -- new data from left

17 WHEN 2 => ff[3..1].d = ff[2..0].q; -- shift left

18 ff[0].d = ser_in; -- new data bit from right

19 WHEN 3 => ff[].d = din[]; -- parallel load

20 END CASE;

21 q[] = ff[]; -- update outputs

22 END;

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 457

A
H

D
L AHDL SOLUTION

The AHDL solution of Figure 7-83 uses a register of D flip-flops declared by

the name ff on line 10, representing the current state of the register. Because

the flip-flops all need to be clocked at the same time (synchronously), all the

clock inputs are assigned to clock on line 12. The CASE construct selects a

different transfer configuration for each value of the mode inputs. Mode 0

(hold data) uses a direct parallel transfer from the current state to the same

bit positions on the D inputs to produce the identical NEXT state. Mode 1

(shift right), which is described on lines 15 and 16, transfers bits 3, 2, and 1

to bit positions 2, 1, and 0, respectively, and loads bit 3 from the serial input.

Mode 2 (shift left) performs a similar operation in the opposite direction

(see lines 17 and 18). Mode 3 (parallel load) transfers the value on the par-

allel data inputs to become the NEXT state of the register. The code creates

the circuitry that chooses one of these logical operations on the actual regis-

ter, and the proper data is transferred to the output pins on the next clock.

This code can be shortened by combining lines 15 and 16 into a single state-

ment that concatenates the ser_in with the three data bits and groups them

as a set of four bits. The statement that can replace lines 15 and 16 is:

WHEN 1 �> ff[].d � (ser_in, ff[3..1].q);

Lines 17 and 18 can also be replaced by:

WHEN 2 �> ff[].d � (ff[2..0].q,ser_in);

458 CHAPTER 7/COUNTERS AND REGISTERS

ENTITY fig7_84 IS
PORT (
 clock :IN BIT;
 din :IN BIT_VECTOR (3 DOWNTO 0); -- parallel data in
 ser_in :IN BIT; -- serial data in L or R
 mode :IN INTEGER RANGE 0 TO 3; -- 0=hold 1=rt 2=lt 3=load
 q :OUT BIT_VECTOR (3 DOWNTO 0));
END fig7_84;
ARCHITECTURE a OF fig7_84 IS
BEGIN
 PROCESS (clock) -- respond to clock
 VARIABLE ff :BIT_VECTOR (3 DOWNTO 0);
 BEGIN
 IF (clock'EVENT AND clock = '1') THEN
 CASE mode IS
 WHEN 0 => ff := ff; -- hold data
 WHEN 1 => ff(2 DOWNTO 0) := ff(3 DOWNTO 1); -- shift right
 ff(3) := ser_in;
 WHEN 2 => ff(3 DOWNTO 1) := ff(2 DOWNTO 0); -- shift left
 ff(0) := ser_in;
 WHEN 3 => ff := din; -- parallel load
 END CASE;
 END IF;
 q <= ff; -- update outputs
 END PROCESS;
END a;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

FIGURE 7-84 VHDL universal shift register.

TOCCMC07_0131725793.QXD 12/13/05 4:51 AM Page 458

VHDL SOLUTION
The VHDL solution of Figure 7-84 defines an internal variable by the name

ff on line 12, representing the current state of the register. Because all the

transfer operations need to take place in response to a rising clock edge, a

PROCESS is used, with clock specified in the sensitivity list. The CASE con-

struct selects a different transfer configuration for each value of the mode in-

puts. Mode 0 (hold data) uses a direct parallel transfer from the current state

to the same bit positions to produce the identical NEXT state. Mode 1 (shift

right) transfers bits 3, 2, and 1 to bit positions 2, 1, and 0, respectively (line

17), and loads bit 3 from the serial input (line 18). Mode 2 (shift left) per-

forms a similar operation in the opposite direction. Mode 3 (parallel load)

transfers the value on the parallel data inputs to the NEXT state of the reg-

ister. After choosing one of these operations on the actual register, the data

is transferred to the output pins on line 24. This code can be shortened by

combining lines 17 and 18 into a single statement that concatenates the

ser_in with the three data bits and groups them as a set of four bits. The

statement that can replace lines 17 and 18 is:

WHEN 1 �> ff :� ser_in & ff(3 DOWNTO 1);

Lines 19 and 20 can also be replaced by:

WHEN 2 �> ff :� ff(2 DOWNTO 0) & ser_in;

SECTION 7-23/HDL RING COUNTERS 459

V
H

D
L

REVIEW QUESTIONS 1. Write a HDL expression that can implement a shift left of an eight-bit ar-

ray reg[7..0] with serial input dat.

2. Why is it necessary to reload the current data during the hold data mode

on a shift register?

7-23 HDL RING COUNTERS

In Section 7-20 we used a shift register to make a counter that circulates a

single active logic level through all of its flip-flops. This was referred to as

a ring counter. One characteristic of ring counters is that the modulus

is equal to the number of flip-flops in the register and thus there are

always many unused and invalid states. We have already discussed ways of

describing counters using the CASE construct to specify PRESENT state

and NEXT state transitions. In those examples, we took care of invalid

states by including them under “others.” This method also works for ring

counters. In this section, however, we look at a more intuitive way to de-

scribe shift counters.

These methods use the same techniques described in Section 7-22 in or-

der to make the register shift one position on each clock.The main feature of

this code is the method of completing the “ring” by driving the ser_in line

of the shift register. With a little planning, we should also be able to ensure

that the counter eventually reaches the desired sequence, no matter what

state it is in initially. For this example, we re-create the operation of the ring

counter whose state diagram is shown in Figure 7-70(d). In order to make this

counter self-start without using asynchronous inputs, we control the ser_in line

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 459

V
H

D
L

of the shift register using an IF/ELSE construct. Any time we detect that the

upper three bits are all LOW, we assume the lowest order bit is HIGH, and on

the next clock, we want to shift in a HIGH to ser_in. For all other states (valid

and invalid), we shift in a LOW. Regardless of the state to which the counter

is initialized, it eventually fills with zeros; at which time, our logic shifts in a

HIGH to start the ring sequence.

AHDL RING COUNTER
The AHDL code shown in Figure 7-85 should look familiar by now. Lines 11

and 12 control the serial input using the strategy we just described. Notice

the use of the double equals (��) operator on line 11. This operator evalu-

ates whether the expressions on each side are equal or not. Remember, the

single equals (�) operator assigns (i.e., connects) one object to another. Line

14 implements the shift right action that we described in the previous sec-

tion. Simulation results are shown in Figure 7-86.

460 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-85 AHDL

four-bit ring counter. 1 SUBDESIGN fig7_85

2 (

3 clk :INPUT;

4 q[3..0] :OUTPUT;

5)

6 VARIABLE

7 ff[3..0] :DFF;

8 ser_in :NODE;

9 BEGIN

10 ff[].clk = clk;

11 IF ff[3..1].q == B"000" THEN ser_in = VCC; -- self start

12 ELSE ser_in = GND;

13 END IF;

14 ff[3..0].d = (ser_in, ff[3..1].q); -- shift right

15 q[] = ff[];

16 END;

clk 1

0

0

0

0

q3

q2

q1

q0

2.0us 4.0us 6.0us 8.0us 10.0us 12.0us 14.0us

VHDL RING COUNTER
The VHDL code shown in Figure 7-87 should look familiar by now. Lines 12

and 13 control the serial input using the strategy we just described. Line 16

implements the shift right action that we described in the previous section.

Simulation results are shown in Figure 7-86.

FIGURE 7-86 Simulation

of HDL ring counter.

A
H

D
L

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 460

7-24 HDL ONE-SHOTS

Another important circuit that we have studied is the one-shot. We can ap-

ply the concept of a counter to implement a digital one-shot using HDL.

Recall from Chapter 5 that one-shots were devices that produce a pulse of

a predefined width every time the trigger input is activated. A nonretrigg-
erable one-shot ignores the trigger input as long as the pulse output is still

active. A retriggerable one-shot starts a pulse in response to a trigger and

restarts the internal pulse timer every time a subsequent trigger edge

occurs before the pulse is complete. The first example we investigate is a

nonretriggerable, HIGH-level-triggered digital one-shot. The one-shots

that we studied in Chapter 5 used a resistor and capacitor as the internal

pulse timing mechanism. In order to create a one-shot using HDL tech-

niques, we use a four-bit counter to determine the width of the pulse. The

inputs are a clock signal, trigger, clear, and pulse width value. The only

output is the pulse out, Q. The idea is quite simple. Whenever a trigger

is detected, make the pulse go HIGH and load a down-counter with a num-

ber from the pulse width inputs. The larger this number, the longer it will

take to count down to zero. The advantage of this one-shot is that the pulse

width can be adjusted easily by changing the value loaded into the

counter. As you read the sections below, consider the following question:

“What makes this circuit nonretriggerable and what makes it level-

triggered?”

SECTION 7-24/HDL ONE-SHOTS 461

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

ENTITY fig7_87 IS
PORT (clk :IN BIT;
 q :OUT BIT_VECTOR (3 DOWNTO 0));
END fig7_87;

ARCHITECTURE vhdl OF fig7_87 IS
SIGNAL ser_in :BIT;
BEGIN
PROCESS (clk)
 VARIABLE ff :BIT_VECTOR (3 DOWNTO 0);
 BEGIN
 IF (ff(3 DOWNTO 1) = "000") THEN ser_in <= '1'; -- self-start
 ELSE ser_in <= '0';
 END IF;
 IF (clk'EVENT AND clk = '1') THEN
 ff(3 DOWNTO 0) := (ser_in & ff(3 DOWNTO 1)); -- shift right
 END IF;
 q <= ff;
END PROCESS;
END vhdl;

FIGURE 7-87 VHDL four-bit ring counter.

REVIEW QUESTIONS 1. What does it mean for a ring counter to self-start?

2. Which lines of Figure 7-85 ensure that the ring counter self-starts?

3. Which lines of Figure 7-87 ensure that the ring counter self-starts?

TOCCMC07_0131725793.QXD 12/13/05 4:51 AM Page 461

V
H

D
L

SIMPLE AHDL ONE-SHOTS
A nonretriggerable, level-sensitive, one-shot description in AHDL is shown

in Figure 7-88. A register of four flip-flops is created on line 8, and it serves

as the counter that counts down during the pulse. The clock is connected in

parallel to all the flip-flops on line 10. The reset function is implemented by

connecting the reset control line directly to the asynchronous clear input of

each flip-flop on line 11. After these assignments, the first condition that is

tested is the trigger. If it is activated (HIGH) at any time while the count

value is 0 (i.e., the previous pulse is done), then the delay value is loaded into

the counter. On line 14, it tests to see if the pulse is done by checking to see

if the counter is down to zero. If it is, then the counter should not roll over

but rather stay at zero. If the count is not at zero, then it must be counting, so

line 15 sets up the flip-flops to decrement on the next clock. Finally, line 17

generates the output pulse.This Boolean expression can be thought of as fol-

lows: “Make the pulse (Q) HIGH when the count is anything other than zero.”

462 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-88 AHDL

nonretriggerable one-shot. 1 SUBDESIGN fig7_88

2 (

3 clock, trigger, reset : INPUT;

4 delay[3..0] : INPUT;

5 q : OUTPUT;

6)

7 VARIABLE

8 count[3..0] : DFF;

9 BEGIN

10 count[].clk = clock;

11 count[].clrn = reset;

12 IF trigger & count[].q == b"0000" THEN

13 count[].d = delay[];

14 ELSIF count[].q == B"0000" THEN count[].d = B"0000";

15 ELSE count[].d = count[].q - 1;

16 END IF;

17 q = count[].q != B"0000"; -- make output pulse

18 END;

SIMPLE VHDL ONE-SHOTS
A nonretriggerable, level-sensitive, one-shot description in VHDL is shown in

Figure 7-89. The inputs and outputs are shown on lines 3–5, as previously

described. In the architecture description, a PROCESS is used (line 11) to re-

spond to either of two inputs: the clock, or the reset. Within this PROCESS, a

variable is used to represent the value on the counter. The input that should

have overriding precedence is the reset signal.This is tested first (line 14) and

if it is active, the count is cleared immediately. If the reset is not active, line 15

is evaluated and looks for a rising edge on the clock. Line 16 checks for the

trigger. If it is activated at any time while the count value is 0 (i.e., the previ-

ous pulse is done), then the width value is loaded into the counter. On line 18,

it tests to see if the pulse is done by checking to see if the counter is down to

zero. If it is, then the counter should not roll over but rather stay at zero. If the

A
H

D
L

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 462

count is not at zero, then it must be counting, so line 19 sets up the flip-flops

to decrement on the next clock. Finally, lines 22 and 23 generate the output

pulse. This Boolean expression can be thought of as follows: “Make the pulse

(q) HIGH when the count is anything other than zero.”

Now that we have reviewed the code that describes this one-shot, let’s

evaluate its performance. Converting a traditionally analog circuit to digital

usually offers some advantages and some disadvantages. On a standard one-

shot chip, the output pulse starts immediately after the trigger. For the digi-

tal one-shot described here, the output pulse starts on the next clock edge

and lasts as long as the counter is greater than zero. This situation is shown

in Figure 7-90 within the first ms of the simulation. Notice that the trigger

goes high almost 0.5 ms before the q out responds. If another trigger event

occurs while it is counting down (like the one just before 3 ms), it is ignored.

This is the nonretriggerable characteristic.

Another point to make for this digital one-shot is that the trigger pulse

must be long enough to be seen as a HIGH on the rising clock edge. At about

the 4.5-ms mark, a pulse occurs on the trigger input but goes LOW before the

rising edge of the clock. This circuit does not respond to this input event. At

just past 5 ms, the trigger goes HIGH and stays there. The pulse lasts exactly

6 ms, but because the trigger input remains HIGH, it responds with another

output pulse one clock later. The reason for this situation is that this circuit

is level-triggered rather than edge-triggered, like most of the conventional

one-shot ICs.

SECTION 7-24/HDL ONE-SHOTS 463

FIGURE 7-89 VHDL nonretriggerable one-shot.

1 ENTITY fig7_89 IS

2 PORT (

3 clock, trigger, reset :IN BIT;

4 delay :IN INTEGER RANGE 0 TO 15;

5 q :OUT BIT

6);

7 END fig 7_89;

8

9 ARCHITECTURE vhdl OF fig7_89 IS

10 BEGIN

11 PROCESS (clock, reset)

12 VARIABLE count : INTEGER RANGE 0 TO 15;

13 BEGIN

14 IF reset = '0' THEN count := 0;

15 ELSIF (clock'EVENT AND clock = '1') THEN

16 IF trigger = '1' AND count = 0 THEN

17 count := delay; -- load counter

18 ELSIF count = 0 THEN count := 0;

19 ELSE count := count - 1;

20 END IF;

21 END IF;

22 IF count /= 0 THEN q <= '1';

23 ELSE q <= '0';

24 END IF;

25 END PROCESS;

26 END vhdl;

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 463

Retriggerable, Edge-Triggered One-Shots in HDL
Many applications of one-shots require the circuit to respond to an edge

rather than a level. How can HDL code be used to make the circuit respond

once to each positive transition on its trigger input? The technique described

here is called edge-trapping and has been a very useful tool in programming

microcontrollers for years. As we will see, it is equally useful for describing

edge-triggering for a digital circuit using HDL. This section illustrates an ex-

ample of a retriggerable one-shot while also demonstrating edge-trapping,

which can be useful in many other situations.

The general operation of this retriggerable one-shot requires that it re-

sponds to a rising edge of the trigger input. As soon as the edge is detected,

it should start timing the pulse. In the digital one-shot, this means that it

loads the counter as soon as possible after the trigger edge and starts count-

ing down toward zero. If another trigger event (rising edge) occurs before the

pulse is terminated, the counter is immediately reloaded, and the pulse tim-

ing starts again from the beginning, thus sustaining the pulse. Activating the

clear at any point should force the counter to zero and terminate the pulse.

The minimum output pulse width is simply the number applied to the width

input multiplied by the clock period.

The strategy behind edge-trapping for a one-shot is demonstrated in

Figure 7-91. On each active clock edge are two important pieces of informa-

tion that are needed. The first is the state of the trigger input now and the

second is the state of the trigger input when the last active clock edge oc-

curred. Start with point a on the diagram of Figure 7-91 and determine these

two values, then move to point b, and so on. By completing this task, you

should have concluded that, at point c, a unique result has been obtained.

The trigger is HIGH now but it was LOW on the last active clock edge. This is

the point where we have detected the trigger edge event.

464 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-90 Simulation of the nonretriggerable one-shots.

Name: Value: 1.0 ms 2.0 ms 3.0 ms 4.0 ms 5.0 ms 6.0 ms 7.0 ms 8.0 ms 9.0 ms 10 ms

Trigger 0

Reset 1

Clock 0

q 0

Ref: 0.0 ns

0.0ns

Time: 3.66 ns Interval: 3.66 ns

0

Delay H6

Count H0 0 6 5 4 3 2 1 0 6 5 4 3 2 1 0 6 5 4

6

Do NOT reload counter

a b c d e f

Load counter

Clock

Trigger

FIGURE 7-91 Detecting

edges.

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 464

A
H

D
L

In order to know what the trigger was on the last active clock edge, the

system must remember the last value that the trigger had at that point.
This is done by storing the value of the trigger bit in a flip-flop. Recall

that we discussed a similar concept in Chapter 5 when we talked about us-

ing a flip-flop to detect a sequence. The code for a one-shot is written so

that the counter is loaded only after a rising edge is detected on the

trigger input.

AHDL RETRIGGERABLE, EDGE-TRIGGERED ONE-SHOT
The first five lines of Figure 7-92 are identical to the previous nonretrigger-

able example. In AHDL, the only way to remember a value obtained in the

past is to store the value on a flip-flop. This section uses a flip-flop named

trig_was (line 9) to store the value that was on the trigger on the last active

clock edge.This flip-flop is simply connected so that the trigger is on its D in-

put (line 14) and the clock is connected to its clk input (line 13). The Q out-

put of trig_was remembers the value of the trigger right up to the next clock

edge. At this point, we use line 16 to evaluate if a triggering edge has oc-

curred. If trigger is HIGH (now), but trigger was LOW (last clock), it is time to

load the counter (line 17). Line 18 ensures that, once the count reaches zero,

it will remain at zero until a new trigger comes along. If the decisions allow

line 19 to be evaluated, it means that there is a value loaded into the counter

and it is not zero, so it needs to be decremented. Finally, the output pulse is

made HIGH any time a value other than 0000 is still on the counter, like we

saw previously.

SECTION 7-24/HDL ONE-SHOTS 465

FIGURE 7-92 AHDL

retriggerable one-shot

with edge trigger.

1 SUBDESIGN fig7_92

2 (

3 clock, trigger, reset : INPUT;

4 delay[3..0] : INPUT;

5 q : OUTPUT;

6)

7 VARIABLE

8 count[3..0] : DFF;

9 trig_was : DFF;

10 BEGIN

11 count[].clk = clock;

12 count[].clrn = reset;

13 trig_was.clk = clock;

14 trig_was.d = trigger;

15

16 IF trigger & !trig_was.q THEN

17 count[].d = delay[];

18 ELSIF count[].q == B"0000" THEN count[].d = B"0000";

19 ELSE count[].d = count[].q - 1;

20 END IF;

21 q = count[].q != B"0000";

22 END;

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 465

V
H

D
L VHDL RETRIGGERABLE, EDGE-TRIGGERED ONE-SHOT

The ENTITY description in Figure 7-93 is exactly like the previous nonretrig-

gerable example. In fact, the only differences between this example and the

one shown in Figure 7-89 have to do with the logic of the decision process.

When we want to remember a value in VHDL, it must be stored in a VARI-

ABLE. Recall that we can think of a PROCESS as a description of what hap-

pens each time a signal in the sensitivity list changes state. A VARIABLE

retains the last value assigned to it between the times the process is invoked.

In this sense, it acts like a flip-flop. For the one-shot, we need to store a value

that tells us what the trigger was on the last active clock edge. Line 11

declares a variable bit to serve this purpose. The first decision (line 13) is the

overriding decision that checks and responds to the reset input. Notice that

this is an asynchronous control because it is evaluated before the clock edge is

detected on line 14. Line 14 determines that a rising clock edge has occurred,

and then the main logic of this process is evaluated between lines 15 and 20.

When a clock edge occurs, one of three conditions exists:

1. A trigger edge has occurred and we must load the counter.

2. The counter is zero and we need to keep it at zero.

3. The counter is not zero and we need to count down by one.

466 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-93 VHDL retriggerable one-shot with edge trigger.

1 ENTITY fig7_93 IS

2 PORT (clock, trigger, reset : IN BIT;

3 delay : IN INTEGER RANGE 0 TO 15;

4 q : OUT BIT);

5 END fig7_93;

6

7 ARCHITECTURE vhdl OF fig7_93 IS

8 BEGIN

9 PROCESS (clock, reset)

10 VARIABLE count : INTEGER RANGE 0 TO 15;

11 VARIABLE trig_was : BIT;

12 BEGIN

13 IF reset = '0' THEN count := 0;

14 ELSIF (clock'EVENT AND clock = '1') THEN

15 IF trigger = '1' AND trig_was = '0' THEN

16 count := delay; -- load counter

17 trig_was := '1'; -- "remember" edge detected

18 ELSIF count = 0 THEN count := 0; -- hold @ 0

19 ELSE count := count - 1; -- decrement

20 END IF;

21 IF trigger = '0' THEN trig_was := '0';

22 END IF;

23 END IF;

24 IF count /= 0 THEN q <= '1';

25 ELSE q <= '0';

26 END IF;

27 END PROCESS;

28 END vhdl;

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 466

Recall that it is very important to consider the order in which questions are

asked and assignments are made in VHDL PROCESS statements because

the sequence affects the operation of the circuit we are describing. The code

that updates the trig_was variable must occur after the evaluation of its pre-

vious condition. For this reason, the conditions necessary to detect a rising

edge on trigger are evaluated on line 15. If an edge occurred, then the

counter is loaded (line 16) and the variable is updated (line 17) to remember

this for the next time. If a trigger edge has not occurred, the code either

holds at zero (line 18) or counts down (line 19). Line 21 makes sure that, as

soon as the trigger input goes LOW, the variable trig_was remembers this by

resetting. Finally, lines 24–25 are used to create the output pulse during the

time the counter is not zero.

The two improvements that were made in this one-shot over the last ex-

ample are the edge-triggering and the retriggerable feature. Figure 7-94

evaluates the new performance features. Notice in the first ms of the timing

diagram that a trigger edge is detected, but the response is not immediate.

The output pulse goes high on the next clock edge. This is a drawback to the

digital one-shot. The retriggerable feature is demonstrated at about the 2-

ms mark. Notice that trigger goes high and on the next clock edge, the count
starts again at 5, sustaining the output pulse. Also notice that even after the

q output pulse is complete and the trigger is still HIGH, the one-shot does

not fire another pulse because it is not level-triggered but rather rising

edge-triggered. At the 6-ms mark, a short trigger pulse occurs but is ignored

because it does not stay HIGH until the next clock. On the other hand, an

even shorter trigger pulse occurring just after the 7-ms mark does fire the

one-shot because it is present during the rising clock edge. The resulting

output pulse lasts exactly five clock cycles because no other triggers occur

during this period.

SECTION 7-24/HDL ONE-SHOTS 467

Name: Value: 1.0 ms 2.0 ms 3.0 ms 4.0 ms 5.0 ms 6.0 ms 7.0 ms 8.0 ms 9.0 ms 10 ms

Trig_was.Q 0

Trigger 0

Reset 1

Clock

0.0ns

0

Delay

0

Count

H5

q

H0 4 3 5 4 3 2 1 0 5 4 3 2 1 050

5

FIGURE 7-94 Simulation of the edge-triggered retriggerable one-shot.

To minimize the effects of delayed response to trigger edges and the pos-

sibility of missing trigger edges that are too short, this circuit can be im-

proved quite simply.The clock frequency and the number of bits used to load

the delay value can both be increased to provide the same range of pulse

widths (with more precise control) while reducing the minimum trigger

pulse width. In order to cure this problem completely, the one-shot must re-

spond asynchronously to the trigger input.This is possible in both AHDL and

VHDL, but it will always result in a pulse that fluctuates in width by up to

one clock period.

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 467

PART 2 SUMMARY
1. Numerous IC registers are available and can be classified according to

whether their inputs are parallel (all bits entered simultaneously), serial

(one bit at a time), or both. Likewise, registers can have outputs that are par-

allel (all bits available simultaneously) or serial (one bit available at a time).

2. A sequential logic system uses FFs, counters, and registers, along with

logic gates. Its outputs and sequence of operations depend on present

and past inputs.

3. Troubleshooting a sequential logic system begins with observation of the

system operation, followed by analytical reasoning to determine the pos-

sible causes of any malfunction, and finally test measurements to isolate

the actual fault.

4. A ring counter is actually an N-bit shift register that recirculates a single

1 continuously, thereby acting as a MOD-N counter. A Johnson counter is

a modified ring counter that operates as MOD-2N counter.

5. Shift registers can be implemented with HDL by writing custom de-

scriptions of their operation.

6. An understanding of bit arrays/bit vectors and their notation is very im-

portant in describing shift register operations.

7. Shift register counters such as Johnson and ring counters can be imple-

mented easily in HDL. Decoding and self-starting features are easy to

write into the description.

8. Digital one-shots are implemented with a counter loaded with a delay

value when the trigger input is detected and counts down to zero. During

the countdown time, the output pulse is held HIGH.

9. With strategic placement of the hardware description statements, HDL

one-shots can be made edge- or level-triggered and retriggerable or non-

retriggerable. They produce an output pulse that responds synchro-

nously or asynchronously to the trigger.

468 CHAPTER 7/COUNTERS AND REGISTERS

REVIEW QUESTIONS 1. Which control input signal holds the highest priority for each of the one-

shot descriptions?

2. Name two factors that determine how long a pulse from a digital one-

shot will last.

3. For the one-shots shown in this section, are the counters loaded synchro-

nously or asynchronously?

4. What is the advantage of loading a counter synchronously?

5. What is the advantage of loading the counter asynchronously?

6. What two pieces of information are necessary to detect an edge?

PART 2 IMPORTANT TERMS
parallel in/parallel out

serial in/serial out

parallel in/serial out

serial in/parallel out

circulating shift

register

ring counter

Johnson counter

(twisted ring

counter)

sequential logic

system

concatenation

digital one-shot

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 468

PROBLEMS
PART 1
SECTION 7-1

7-1.*Add another flip-flop, E, to the counter of Figure 7-1. The clock signal

is an 8-MHz square wave.

(a) What will be the frequency at the E output? What will be the duty

cycle of this signal?

(b) Repeat (a) if the clock signal has a 20 percent duty cycle.

(c) What will be the frequency at the C output?

(d) What is the MOD number of this counter?

7-2. Draw a binary counter that will convert a 64-kHz pulse signal into a

1-kHz square wave.

7-3.*Assume that a five-bit binary counter starts in the 00000 state. What

will be the count after 144 input pulses?

7-4. A 10-bit ripple counter has a 256-kHz clock signal applied.

(a) What is the MOD number of this counter?

(b) What will be the frequency at the MSB output?

(c) What will be the duty cycle of the MSB signal?

(d) Assume that the counter starts at zero. What will be the count in

hexadecimal after 1000 input pulses?

SECTION 7-2

7-5.*A four-bit ripple counter is driven by a 20-MHz clock signal. Draw the

waveforms at the output of each FF if each FF has tpd � 20 ns.

Determine which counter states, if any, will not occur because of the

propagation delays.

7-6. (a) What is the maximum clock frequency that can be used with the

counter of Problem 7-5?

(b) What would fmax be if the counter were expanded to six bits?

SECTIONS 7-3 AND 7-4

7-7.*(a) Draw the circuit diagram for a MOD-32 synchronous counter.

(b) Determine fmax for this counter if each FF has tpd � 20 ns and

each gate has tpd � 10 ns.

7-8. (a) Draw the circuit diagram for a MOD-64 synchronous counter.

(b) Determine fmax for this counter if each FF has tpd � 20 ns and

each gate has tpd � 10 ns.

7-9.*Draw the waveforms for all the FFs in the decade counter of Figure

7-8(b) in response to a 1-kHz clock frequency. Show any glitches that

might appear on any of the FF outputs. Determine the frequency at

the D output.

7-10. Repeat Problem 7-9 for the counter of Figure 7-8(a).

7-11.*Change the inputs to the NAND gate of Figure 7-9 so that the counter

divides the input frequency by 50.

7-12. Draw a synchronous counter that will output a 10-kHz signal when a

1-MHz clock is applied.

PROBLEMS 469

*Answers to problems marked with an asterisk can be found in the back of the text.

B

B

B

B

B

B

B

B

D

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 469

SECTIONS 7-5 AND 7-6

7-13.*Draw a synchronous, MOD-32, down counter.

7-14. Draw a synchronous, MOD-16, up/down counter.The count direction is

controlled by dir (dir � 0 to count up).

7-15.*Determine the count sequence of the up/down counter in Figure 7-11

if the INVERTER output were stuck HIGH. Assume the counter starts

at 000.

7-16. Complete the timing diagram in Figure 7-95 for the presettable

counter in Figure 7-12. Note that the initial condition for the counter

is given in the timing diagram.

470 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-95 Problem 7-16 timing diagram.

FIGURE 7-96 Problem 7-17 timing diagram.

CLK

101 010P2P1P0

PL

Q0

Q1

Q2

SECTION 7-7

7-17.*Complete the timing diagram in Figure 7-96 for a 74ALS161 with the

indicated input waveforms applied. Assume the initial state is 0000.

CLK

QD

D C B A 0111 1101

ENP

ENT

QC

QB

QA

RCO

LOAD

CLR

B

B

C, T

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 470

7-18. Complete the timing diagram in Figure 7-97 for a 74ALS162 with the

indicated input waveforms applied. Assume the initial state is 0000.

PROBLEMS 471

CLK

QD

D C B A 0110 0101 0100

ENP

ENT

QC

QB

QA

RCO

LOAD

CLR

FIGURE 7-97 Problem 7-18 timing diagram.

CLK

QC

QD

QB

QA

MAX/MIN

RCO

LOAD

CTEN

D/U

FIGURE 7-98 Problems 7-19 and 7-20 timing diagram.

7-19.*Complete the timing diagram in Figure 7-98 for a 74ALS190 with the

indicated input waveforms applied. The DCBA input is 0101.

7-20. Repeat Problem 7-19 for a 74ALS191 and a DCBA input of 1100.

7-21.*Refer to the IC counter circuit in Figure 7-99(a):

(a) Draw the state transition diagram for the counter’s QD QC QB QA
outputs.

(b) Determine the counter’s modulus.

B

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 471

(c) What is the relationship of the output frequency of the MSB to the

input CLK frequency?

(d) What is the duty cycle of the MSB output waveform?

7-22. Repeat Problem 7-21 for the IC counter circuit in Figure 7-99(b).

7-23.*Refer to the IC counter circuit in Figure 7-100(a).

(a) Draw the timing diagram for outputs QD QC QB QA.

(b) What is the counter’s modulus?

(c) What is the count sequence? Does it count up or down?

(d) Can we produce the same modulus with a 74HC190? Can we

produce the same count sequence with a 74HC190?

472 CHAPTER 7/COUNTERS AND REGISTERS

(b)(a)

74ALS163

QA

QB

QC

QD

1
CLK CLK

ENT
ENP

CLR

LOAD

D

A

B

C

QD

QA

QB

QC

RCO RCO

74ALS161

QA

QB

QC

QD

1
CLK CLK

ENT
ENP

CLR

LOAD

D

A

B

C

QD

QA

QB

QC

RCO RCO

FIGURE 7-99 Problems 7-21 and 7-22.

74HC191

QA

QB

QC

QD1

1

1

0

0

0

CLK CLK

LOAD

D

A

B

C

QD

Max
/Min

QA

QB

QC

CTEN

D/U

RCO
74HC190

QA

QB

QC

QD0

0

0

0

0

CLK CLK

LOAD

D

A

B

C

QD

QA

QB

QC

START

CTEN

D/U

RCO

Max
/Min

(a) (b)

FIGURE 7-100 Problems 7-23 and 7-24.

B

B

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 472

7-24. Refer to the IC counter circuit in Figure 7-100(b):

(a) Describe the counter’s output on QD QC QB QA if is LOW.

(b) Describe the counter’s output on QD QC QB QA if is

momentarily pulsed LOW and then returns to a HIGH.

(c) What is the counter’s modulus? Is this a recycling counter?

7-25.*Draw a schematic to create a recycling, MOD-6 counter that uses:

(a) the clear control on a 74ALS160

(b) the clear control on a 74ALS162

7-26. Draw a schematic to create a recycling, MOD-6 counter that produces

the count sequence:

(a) 1, 2, 3, 4, 5, 6, and repeats with a 74ALS162

(b) 5, 4, 3, 2, 1, 0, and repeats with a 74ALS190

(c) 6, 5, 4, 3, 2, 1, and repeats with a 74ALS190

7-27.*Design a MOD-100, binary counter using either two 74HC161 or two

74HC163 chips and any necessary gates. The IC counter chips are to

be synchronously cascaded together to produce the binary count

sequence for 0 to 99.The MOD-100 is to have two control inputs, an ac-

tive-LOW count enable () and an active-LOW, asynchronous clear

(). Label the counter outputs Q0, Q1, Q2, etc., with Q0 � LSB.

Which output is the MSB?

7-28. Design a MOD-100, BCD counter using either two 74HC160 or two

74HC162 chips and any necessary gates. The IC counter chips are to

be synchronously cascaded together to produce the BCD count se-

quence for 0 to 99. The MOD-100 is to have two control inputs, an

active-HIGH count enable (EN) and an active-HIGH, synchronous

load (LD). Label the counter outputs Q0, Q1, Q2, etc., with Q0 � LSB.

Which set of outputs represents the 10s digit?

7-29.*With a 6-MHz clock input to a 74ALS163 that has all four control in-

puts HIGH, determine the output frequency and duty cycle for each

of the five outputs (including RCO).

7-30. With a 6-MHz clock input to a 74ALS162 that has all four control

inputs HIGH, determine the output frequency and duty cycle for each

of the following outputs: QA, QC, QD, RCO. What is unusual about the

waveform pattern that would be produced by the QB output? This pat-

tern characteristic results in an undefined duty cycle.

7-31.*The frequency of fin is 6 MHz in Figure 7-101.The two IC counter chips

have been cascaded asynchronously so that the output frequency pro-

duced by counter U1 is the input frequency for counter U2.

Determine the output frequency for fout1 and fout2.

7-32. The frequency of fin is 1.5 MHz in Figure 7-102. The two IC counter

chips have been cascaded asynchronously so that the output fre-

quency produced by counter U1 is the input frequency for counter

U2. Determine the output frequency for fout1 and fout2.

7-33.*Design a frequency divider circuit that will produce the following

three output signal frequencies: 1.5 MHz, 150 kHz, and 100 kHz. Use

74HC162 and 74HC163 counter chips and any necessary gates.The in-

put frequency is 12 MHz.

7-34. Design a frequency divider circuit that will produce the following

three output signal frequencies: 1 MHz, 800 kHz, and 100 kHz. Use

74HC160 and 74HC161 counter chips and any necessary gates. The

input frequency is 12 MHz.

CLR
EN

START

START

PROBLEMS 473

D

D

D

D

B

B

B

B

D

D

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 473

SECTION 7-8

7-35.*Draw the gates necessary to decode all of the states of a MOD-16

counter using active-LOW outputs.

7-36. Draw the AND gates necessary to decode the 10 states of the BCD

counter of Figure 7-8(b).

474 CHAPTER 7/COUNTERS AND REGISTERS

74ALS161

fin CLK

ENT
ENP

CLR

LOAD

D

A

B

C

QD

QA

QB

QC

RCO

1

U1

74ALS161

fout1

fout2

CLK

ENT
ENP

CLR

LOAD

D

A

B

C

QD

QA

QB

QC

RCO

1
U2

74ALS161

fin CLK

ENT
ENP

CLR

LOAD

D

A

B

C

QD

QA

QB

QC

RCO

1
U1

74ALS161

fout1

fout2

CLK

ENT
ENP

CLR

LOAD

D

A

B

C

QD

QA

QB

QC

RCO

1

U2

FIGURE 7-101 Problem 7-31.

FIGURE 7-102 Problem 7-32.

B

B

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 474

SECTION 7-9

7-37.*Analyze the synchronous counter in Figure 7-103(a). Draw its timing

diagram and determine the counter’s modulus.

7-38. Repeat Problem 7-37 for Figure 7-103(b).

PROBLEMS 475

FIGURE 7-103 Problems 7-37 and 7-38.

A

CLK

K
CLR

JB

B

CLK

K

JD

K

J

1

D A

CLK

CLK

CLR

C

C

CLK

K

J

CLRCLR

(a)

(b)

A

CLK

K
CLR

JB

B

CLK

K

JD

D
C
B
A

K

J

1

D A

CLK

CLK

CLR

C

C

CLK

K

J

CLRCLR

1

7-39.*Analyze the synchronous counter in Figure 7-104(a). Draw its timing

diagram and determine the counter’s modulus.

7-40. Repeat Problem 7-39 for Figure 7-104(b).

7-41.*Analyze the synchronous counter in Figure 7-105(a). F is a control input.

Draw its state transition diagram and determine the counter’s modulus.

7-42. Analyze the synchronous counter in Figure 7-105(b). Draw its com-

plete state transition diagram and determine the counter’s modulus.

Is the counter self-correcting?

C

C

C

C

C

C

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 475

SECTION 7-10

7-43.*(a) Design a synchronous counter using J-K FFs that has the follow-

ing sequence: 000, 010, 101, 110, and repeat. The undesired (un-

used) states 001, 011, 100, and 111 must always go to 000 on the

next clock pulse.

(b) Redesign the counter of part (a) without any requirement on the

unused states; that is, their NEXT states can be don’t cares.

Compare with the design from (a).

7-44. Design a synchronous, recycling, MOD-5 down counter that produces

the sequence 100, 011, 010, 001, 000, and repeat. Use J-K flip-flops.

(a) Force the unused states to 000 on the next clock pulse.

(b) Use don’t-care NEXT states for the unused states. Is this design

self-correcting?

7-45.*Design a synchronous, recycling, BCD down counter with J-K FFs us-

ing don’t-care NEXT states.

7-46. Design a synchronous, recycling, MOD-7 up/down counter with J-K

FFs. Use the states 000 through 110 in the counter. Control the count

direction with input D (D � 0 to count up and D � 1 to count down).

476 CHAPTER 7/COUNTERS AND REGISTERS

(a)

A

A

CLK

K

JC

K

J

C

CLK

CLK

B

B

CLK

K

J

1

(b)

A

A

CLK

K

JC

K

J

C

CLK

CLK

B

B

CLK

K

J

1

FIGURE 7-104 Problems 7-39 and 7-40.

D

D

D

D

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 476

7-47.*Design a synchronous, recycling, MOD-8, binary down counter with D

flip-flops.

7-48. Design a synchronous, recycling, MOD-12 counter with D FFs. Use the

states 0000 through 1011 in the counter.

SECTIONS 7-11 AND 7-12

7-49.*Design a recycling, MOD-13, up counter using an HDL. The count se-

quence should be 0000 through 1100. Simulate the counter.

PROBLEMS 477

(a)

B

B

CLK

K

JD

K

J

D

A

A

CLK

CLK

C

C

CLK

K

J

CLK

K

J

1

F

A D DADBDC

A

CLK

C D

C

CLK

B D

B

CLK

ABC

(b)

CLOCK

FIGURE 7-105 Problems 7-41 and 7-42.

D

D

H, D

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 477

7-50. Design a recycling, MOD-25, down counter using an HDL. The count

sequence should be 11000 through 00000. Simulate the counter.

7-51.*Design a recycling, MOD-16 Gray code counter using an HDL. The

counter should have an active-HIGH enable (cnt). Simulate the

counter.

7-52. Design a bidirectional, half-step controller for a stepper motor using

an HDL. The direction control input (dir) will produce a clockwise

(CW) pattern when HIGH or counterclockwise when LOW. The se-

quence is given in Figure 7-106. Simulate the sequential circuit.

478 CHAPTER 7/COUNTERS AND REGISTERS

CW

CCW
Q3 Q2 Q1 Q0

0101 0001 1001 1000

0100 0110 0010 1010

FIGURE 7-106 Problem

7-52.

7-53.*Design a frequency divider circuit to output a 100-kHz signal using an

HDL. The input frequency is 5 MHz. Simulate the counter.

7-54. Design a frequency divider circuit that will output either of two spec-

ified frequency signals using an HDL. The output frequency is se-

lected by the control input fselect. The divider will output a frequency

of 5 kHz when fselect � 0 or 12 kHz when fselect � 1. The input fre-

quency is 60 kHz. Simulate the counter.

7-55.*Expand the full-featured HDL counter in Section 7-12 to a MOD-256

counter. Simulate the counter.

7-56. Expand the full-featured HDL counter in Section 7-12 to a MOD-1024

counter. Simulate the counter.

7-57.*Design a recycling, MOD-16, down counter using an HDL.The counter

should have the following controls (from lowest to highest priority):

an active-LOW count enable (), an active-HIGH synchronous clear

(clr), and active-LOW synchronous load (). Decode the terminal

count when enabled by Simulate the counter.

7-58. Design a recycling, MOD-10, up/down counter using an HDL. The

counter will count up when up � 1 and counts down when up � 0. The

counter should also have the following controls (from lowest to highest

priority): an active-HIGH count enable (enable), active-HIGH synchro-

nous load (load), and an active-LOW asynchronous clear (). Decode

the terminal count when enabled by enable. Simulate the counter.

SECTION 7-13

7-59.*Create a MOD-1000 BCD counter by cascading together three of the

HDL BCD counter modules (described in Section 7-13). Simulate the

counter.

7-60. Create a MOD-256 binary counter by cascading together two of the

full-featured, MOD-16, HDL counter modules (described in Section 7-

12). Simulate the counter.

7-61.*Design a synchronous, MOD-50 BCD counter by cascading the HDL

designs for a MOD-10 and a MOD-5 counter together. The MOD-50

clear

en.

ld
en

H, D

H, D

H, D

H, D

H

H

H, D

H, D

H, D

H, B

H, B

H, B

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 478

counter should have an active-HIGH count enable (enable) and an ac-

tive-LOW, synchronous clear (). Be sure to include the terminal

count detection for the 1s digit to cascade with the 10s digit. Simulate

the counter.

7-62. Design a synchronous, MOD-100, BCD down counter by cascading two

MOD-10 HDL down counter modules together. The MOD-100 counter

should have a synchronous parallel load (load). Simulate the counter.

SECTION 7-14

7-63.*Modify the HDL description in Figure 7-56 or Figure 7-57 to add a

rinse sequence after the clothes are washed. The new state machine

sequence should be idle wash_fill wash_agitate wash_spin
rinse_fill rinse_agitate rinse _spin idle. Use hot water to

wash, and cold water to rinse (add output bits to control two water

valves). Simulate the modified HDL design.

7-64. Simulate the HDL traffic light controller design presented in Section

7-14.

PART 2
SECTIONS 7-15 THROUGH 7-19

7-65.*A set of 74ALS174 registers is connected as shown in Figure 7-107.

What type of data transfer is performed with each register?

Determine the output of each register when the is pulsed mo-

mentarily LOW and after each of the indicated clock pulses (CP#) in

Table 7-10. How many clock pulses must be applied before data that

are input on I5–I0 are available at Z5–Z0?

MR

::::
:::

clrn

PROBLEMS 479

CLK

74ALS174

W5 W4 W3 W2 W1 W0
Q5

D4

Q4

D3D5

Q3

D2

Q2

D1

Q1

D0

I4 I3I5 I2 I1 I0

Q0
MR

CP

CP

74ALS174

X5 X4 X3 X2 X1 X0
Q5

D4

Q4

D3D5

Q3

D2

Q2

D1

Q1

D0

Q0
MR

MR

74ALS174

Y5 Y4 Y3 Y2 Y1 Y0
Q5

D4

Q4

D3D5

Q3

D2

Q2

D1

Q1

D0

Q0
MR

CP

CP

74ALS174

Z5 Z4 Z3 Z2 Z1 Z0

Q5

D4

Q4

D3D5

Q3

D2

Q2

D1

Q1

D0

Q0
MR

FIGURE 7-107 Problem 7-65.

H, D

H

H

B

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 479

7-66. Complete the timing diagram in Figure 7-108 for a 74HC174. How

does the timing diagram show that the master reset is asynchronous?

480 CHAPTER 7/COUNTERS AND REGISTERS

CLK I5–I10 W5–W0 X5–X0 Y5–Y0 Z5–Z0

X 0 101010

CP1 1 101010

CP2 1 010101

CP3 1 000111

CP4 1 111000

CP5 1 011011

CP6 1 001101

CP7 1 000000

CP8 1 000000

MRq
TABLE 7-10

110011 010010

CP

D5 - D0

Q5

Q4

Q3

Q2

Q1

Q0

MR

101001 010110 001110 100011

FIGURE 7-108 Problem 7-66.

7-67.*How many clock pulses will be needed to completely load eight bits of

serial data into a 74ALS166? How does this relate to the number of

flip-flops contained in the register?

7-68. Repeat Example 7-18 for the input waveforms given in Figure 7-109.

CLK

SER

QH

CLR

FIGURE 7-109 Problem 7-68.

B

B

B

TOCCMC07_0131725793.QXD 16/01/2006 09:04 PM Page 480

7-69.*Repeat Example 7-20 with DS � 1 and the input waveforms given in

Figure 7-110.

PROBLEMS 481

1100 1010 0011 0101

CP

P0 - P7

(Q0)

(Q1)

(Q2)

(Q3)

(Q4)

(Q5)

(Q6)

Q7

SH/LD

FIGURE 7-110 Problem 7-69.

7-70. Apply the input waveforms given in Figure 7-111 to a 74ALS166 and

determine the output produced.

0101 0011 1001 0010

CLK

SER

(QA)

(QB)

(QC)

(QD)

(QE)

(QF)

(QG)

QH

CLK INH

ABCD EFGH

SH/LD

CLR

FIGURE 7-111 Problem

7-70.

TOCCMC07_0131725793.QXD 16/01/2006 09:04 PM Page 481

7-71.*While examining the schematic for a piece of equipment, a technician

or an engineer will often come across an IC that is unfamiliar. In such

cases, it is often necessary to consult the manufacturer’s data sheets

for specifications on the device. Research the data sheet for the

74AS194 bidirectional universal shift register to answer the following

questions:

(a) Is the input asynchronous or synchronous?

(b) True or false: When CLK is LOW, the S0 and S1 inputs have no effect

on the register.

(c) Assume the following conditions:

QA QB QC QD � 1 0 1 1

A B C D � 0 1 1 0

SR SER � 0

SL SER � 1

If S0 � 0 and S1 � 1, determine the register outputs after one CLK
pulse. After two CLK pulses. After three. After four.

(d) Use the same conditions except S0 � 1 and S1 � 0 and repeat part (c).

(e) Repeat part (c) with S0 � 1 and S1 � 1.

(f) Repeat part (c) with S0 � 0 and S1 � 0.

(g) Use the same conditions as in part (c), except assume that QA is

connected to SL SER. What will be the register outputs after four

CLK pulses?

7-72. Refer to Figure 7-112 to answer the following questions:

(a) Which register function (load or shift) will be performed on the

next clock if in � 1 and out � 0? What data value will be input

when clocked?

(b) Which register function (load or shift) will be performed on the

next clock if in � 0 and out � 1? What data value will be input

when clocked?

(c) Which register function (load or shift) will be performed on the

next clock if in � 0 and out � 0? What data value will be input

when clocked?

(d) Which register function (load or shift) will be performed on the

next clock if in � 1 and out � 1? What data value will be input

when clocked?

(e) What input condition will eventually (after several clock pulses)

cause the output to switch states?

CLR = 1

CLR

482 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-112 Problem

7-72.

CLK

CLK INH

SH/LD

SER QH

74ALS166

CLR

CLK

0

1

A B C D E

IN

OUT

F G H

B

C

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 482

(f) To change the output logic level requires the new input condition

to last for at least how many clock pulses?

(g) If the input signal changes levels and then goes back to its origi-

nal logic level before the number of clock pulses specified in part

(f), what happens to the output signal.

(h) Explain why this circuit can be used to debounce switches.

SECTION 7-20

7-73.*Draw the diagram for a MOD-5 ring counter using J-K flip-flops. Make

sure that the counter will start the proper count sequence when it is

turned on.

7-74. Add one more J-K flip-flop to convert the MOD-5 ring counter in

Problem 7-73 into a MOD-10 counter. Determine the sequence of

states for this counter. This is an example of a decade counter that is

not a BCD counter. Draw the decoding circuit for this counter.

7-75.*Draw the diagram for a MOD-10 Johnson counter using a 74HC164.

Make sure that the counter will start the proper count sequence when

it is turned on. Determine the count sequence for this counter and

draw the decoding circuit needed to decode each of the 10 states.This

is another example of a decade counter that is not a BCD counter.

7-76. The clock input to the Johnson counter in Problem 7-75 is 10 Hz. What

is the frequency and duty cycle for each of the counter outputs?

SECTION 7-21

7-77.*The MOD-10 counter in Figure 7-8(b) produces the count sequence

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, and repeats. Identify

some possible fault conditions that might produce this result.

7-78. The MOD-10 counter in Figure 7-8(b) produces the count sequence

0000, 0101, 0010, 0111, 1000, 1101, 1010, 1111, and repeats. Identify

some possible fault conditions that might produce this result.

SECTIONS 7-22 AND 7-23

7-79.*Create an eight-bit SISO shift register using an HDL. The serial input

is called ser and the serial output is called qout. An active-LOW en-

able () controls the shift register. Simulate the design.

7-80. Create an eight-bit PIPO shift register using an HDL. The data in is

d[7..0] and the outputs are q[7..0]. An active-HIGH enable (ld) con-

trols the shift register. Simulate the design.

7-81.*Create an eight-bit PISO shift register using an HDL. The data in is

d[7..0] and the output is q0. The shift register function is controlled by

sh_ld (sh_ld � 0 to synchronously parallel load and sh_ld � 1 to serial

shift). The register also should have an active-LOW asynchronous

clear (). Simulate the design.

7-82. Create an eight-bit SIPO shift register using an HDL. The data in is

ser_in and the outputs are q[7..0]. The shift register function is en-

abled by an active-HIGH control named shift. The shift register also

has a higher priority active-HIGH synchronous clear (clear). Simulate

the design.

7-83.*Simulate the universal shift register design from Example 7-24.

clrn

en

PROBLEMS 483

B

B

T

T

H

H

H

H

H

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 483

7-84. Create an eight-bit universal shift register by cascading two of the

modules in Example 7-24. Simulate the design.

7-85.*Design a MOD-10, self-starting Johnson counter with an active-HIGH,

asynchronous reset (reset) using an HDL. Simulate the design.

7-86. Sometimes a digital application may need a ring counter that recircu-

lates a single zero instead of a single one.The ring counter would then

have an active-LOW output instead of an active-HIGH. Design a MOD-8,

self-starting ring counter with an active-LOW output using an HDL.

The ring counter should also have an active-HIGH hold control to dis-

able the counting. Simulate the design.

SECTION 7-24

7-87.*Use Altera’s simulator to test the nonretriggerable, level-sensitive,

one-shot design example in either Figure 7-88 (AHDL) or 7-89

(VHDL). Use a 1-kHz clock and create a 10-ms output pulse for the

simulation.Verify that:

(a) The correct pulse width is created when triggered.

(b) The output can be terminated early with the reset input.

(c) The one-shot design is nonretriggerable and cannot be triggered

again until it has timed out.

(d) The trigger signal must last long enough for the clock to catch it.

(e) The pulse width can be changed to a different value.

7-88. Modify the nonretriggerable, level-sensitive, one-shot design exam-

ple from either Figure 7-88 (AHDL) or Figure 7-89 (VHDL) so that

the one-shot is retriggerable but still level-sensitive. Simulate the

design.

DRILL QUESTION

7-89.*For each of the following statements, indicate the type(s) of counter

being described.

(a) Each FF is clocked at the same time.

(b) Each FF divides the frequency at its CLK input by 2.

(c) The counting sequence is 111, 110, 101, 100, 011, 010, 001, 000.

(d) The counter has 10 distinct states.

(e) The total switching delay is the sum of the individual FFs’

delays.

(f) This counter requires no decoding logic.

(g) The MOD number is always twice the number of FFs.

(h) This counter divides the input frequency by its MOD number.

(i) This counter can begin its counting sequence at any desired start-

ing state.

(j) This counter can count in any direction.

(k) This counter can suffer from decoding glitches due to its propa-

gation delays.

(l) This counter only counts from 0 to 9.

(m) This counter can be designed to count through arbitrary se-

quences by determining the logic circuit needed at each flip-flop’s

synchronous control inputs.

484 CHAPTER 7/COUNTERS AND REGISTERS

H

H, D

H, D

H

H

B

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 484

ANSWERS TO SECTION REVIEW QUESTIONS

PART 1
SECTION 7-1

1. False 2. 0000 3. 128

SECTION 7-2

1. Each FF adds its propagation delay to the total counter delay in response to a

clock pulse. 2. MOD-256

SECTION 7-3

1. Can operate at higher clock frequencies and has more complex circuitry

2. Six FFs and four AND gates 3. ABCDE

SECTION 7-4

1. D, C, and A 2. True, because a BCD counter has 10 distinct states 3. 5 kHz

SECTION 7-5

1. In an up counter, the count is increased by 1 with each clock pulse; in a down

counter, the count is decreased by 1 with each pulse. 2. Change connections to

respective inverted outputs instead of Qs.

SECTION 7-6

1. It can be preset to any desired starting count. 2. Asynchronous presetting is

independent of the clock input, while synchronous presetting occurs on the active

edge of the clock signal.

SECTION 7-7

1. is the control that enables the parallel loading of the data inputs D C B A

(A � LSB). 2. is the control that enables the resetting of the counter to

0000. 3. True 4. All control inputs (ENT, and ENP) on the 74162

must be HIGH. 5. � 1, � 0, and to count down.

6. 74HC163: 0 to 65,535; 74ALS190: 0 to 9999 or 9999 to 0.

SECTION 7-8

1. Sixty-four 2. A six-input NAND gate with inputs and

SECTION 7-9

1. We will not have to deal with transient states and possible glitches in output

waveforms. 2. PRESENT state/NEXT state table 3. The gates control the count

sequence. 4. Unused states all lead back to the count sequence of the counter.

SECTION 7-10

1. See text. 2. It associates every possible PRESENT state with its desired NEXT

state. 3. It shows the necessary levels at each flip-flop’s synchronous input to

produce the counter’s state transitions. 4. True

SECTION 7-11

1. PRESENT state/NEXT state tables 2. The desired NEXT state 3. AHDL:

ff[].clk � !clock
VHDL:

IF (clock � ’0’ AND clock’ EVENT) THEN
4. Behavioral description

F.A, B, C, D, E,

D/U = 1CTENLOAD

LOAD,CLR,

CLR

LOAD

ANSWERS TO SECTION REVIEW QUESTIONS 485

TOCCMC07_0131725793.QXD 12/22/2005 8:26 AM Page 485

SECTION 7-12
1. Asynchronous clear causes the counter to clear immediately. Synchronous load

occurs on the next active clock edge. 2. AHDL: Use .clrn port on FFs; VHDL:

Define clear function before checking for clock edge 3. By the order of evalua-

tion in an IF statement.

SECTION 7-13
1. Both HDLs can use a block diagram to connect modules; VHDL can also use a

text file that describes the connections between components. 2. A bus is a col-

lection of signal lines; it is represented graphically by a heavy-weight line

3. Count enable and terminal count decoding

SECTION 7-14
1. A counter is commonly used to count events, while a state machine is commonly

used to control events. 2. A state machine can be described using symbols to de-

scribe its states rather than actual binary states. 3. The compiler assigns the op-

timal values to minimize the circuitry. 4. The description is much easier to write

and understand.

PART 2
SECTION 7-19
1. Parallel in/serial out 2. True 3. Serial in/parallel out 4. Serial in/serial out

5. The 74165 uses asynchronous parallel data transfer; the 74174 uses synchronous

parallel data transfer. 6. A HIGH prevents shifting on CPs.

SECTION 7-20
1. Ring counter 2. Johnson counter 3. The inverted output of the last FF is

connected to the input of the first FF. 4. (a) False (b) True (c) True

5. Sixteen; eight

SECTION 7-22
1. AHDL:

reg [] .d � (reg [6..0], dat)
VHDL:

reg :� reg (6 DOWNTO 0) & dat
2. Because the register may continue to receive clock edges during hold

SECTION 7-23
1. It can start in any state, but it will eventually reach the desired ring sequence.

2. Lines 11 and 12 3. Lines 12 and 13

SECTION 7-24
1. The reset input 2. The clock frequency and the delay value loaded into the

counter 3. Synchronously 4. The output pulse width is very consistent.

5. The output pulse responds to the trigger edge immediately. 6. The state of the

trigger on the current clock edge and its state on the previous edge.

486 CHAPTER 7/COUNTERS AND REGISTERS

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 486

TOCCMC07_0131725793.QXD 12/12/2005 10:50 PM Page 487

8-1 Digital IC Terminology

8-2 The TTL Logic Family

8-3 TTL Data Sheets

8-4 TTL Series Characteristics

8-5 TTL Loading and Fan-Out

8-6 Other TTL Characteristics

8-7 MOS Technology

8-8 Complementary MOS Logic

8-9 CMOS Series

Characteristics

8-10 Low-Voltage Technology

8-11 Open-Collector/Open-Drain

Outputs

■ OUTLINE

I N T E G R AT E D - C I R C U I T

L O G I C FA M I L I E S

C H A P T E R 8

8-12 Tristate (Three-State) Logic

Outputs

8-13 High-Speed Bus Interface

Logic

8-14 The ECL Digital IC Family

8-15 CMOS Transmission Gate

(Bilateral Switch)

8-16 IC Interfacing

8-17 Mixed-Voltage Interfacing

8-18 Analog Voltage

Comparators

8-19 Troubleshooting

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 488

489

■ OBJECTIVES
Upon completion of this chapter, you will be able to:
■ Read and understand digital IC terminology as specified in manufac-

turers’ data sheets.

■ Compare the characteristics of standard TTL and the various TTL series.

■ Determine the fan-out for a particular logic device.

■ Use logic devices with open-collector outputs.

■ Analyze circuits containing tristate devices.

■ Compare the characteristics of the various CMOS series.

■ Analyze circuits that use a CMOS bilateral switch to allow a digital

system to control analog signals.

■ Describe the major characteristics of and differences among TTL, ECL,

MOS, and CMOS logic families.

■ Cite and implement the various considerations that are required when

interfacing digital circuits from different logic families.

■ Use voltage comparators to allow a digital system to be controlled by

analog signals.

■ Use a logic pulser and a logic probe as digital circuit troubleshooting

tools.

■ INTRODUCTION
As we described in Chapter 4, digital IC technology has advanced rapidly

from small-scale integration (SSI), with fewer than 12 gates per chip;

through medium-scale integration (MSI), with 12 to 99 equivalent gates per

chip; on to large-scale and very large scale integration (LSI and VLSI,

respectively), which can have tens of thousands of gates per chip; and, most

recently, to ultra-large-scale integration (ULSI), with over 100,000 gates per

chip, and giga-scale integration (GSI), with 1 million or more gates.

Most of the reasons that modern digital systems use integrated circuits

are obvious. ICs pack a lot more circuitry in a small package, so that the

overall size of almost any digital system is reduced. The cost is dramatically

reduced because of the economies of mass-producing large volumes of simi-

lar devices. Some of the other advantages are not so apparent.

ICs have made digital systems more reliable by reducing the number of

external interconnections from one device to another. Before we had ICs,

every circuit connection was from one discrete component (transistor,

diode, resistor, etc.) to another. Now most of the connections are internal to

the ICs, where they are protected from poor soldering, breaks or shorts in

connecting paths on a circuit board, and other physical problems. ICs have

TOCCMC08_0131725793.QXD 12/19/2005 4:27 PM Page 489

also drastically reduced the amount of electrical power needed to perform

a given function because their miniature circuitry typically requires less

power than their discrete counterparts. In addition to the savings in power-

supply costs, this reduction in power has also meant that a system does not

require as much cooling.

There are some things that ICs cannot do. They cannot handle very

large currents or voltages because the heat generated in such small spaces

would cause temperatures to rise beyond acceptable limits. In addition, ICs

cannot easily implement certain electrical devices such as inductors, trans-

formers, and large capacitors. For these reasons, ICs are principally used to

perform low-power circuit operations that are commonly called information
processing. The operations that require high power levels or devices that

cannot be integrated are still handled by discrete components.

With the widespread use of ICs comes the necessity to know and under-

stand the electrical characteristics of the most common IC logic families.

Remember that the various logic families differ in the major components

that they use in their circuitry. TTL and ECL use bipolar transistors as their

major circuit element; PMOS, NMOS, and CMOS use unipolar MOSFET

transistors as their principal component. In this chapter, we will present

the important characteristics of each of these IC families and their subfam-

ilies. The most important point is understanding the nature of the input cir-

cuitry and output circuitry for each logic family. Once these are under-

stood, you will be much better prepared to do analysis, troubleshooting,

and some design of digital circuits that contain any combination of IC fami-

lies. We will study the inner workings of devices in each family with the

simplest circuitry that conveys the critical characteristics of all members of

the family.

8-1 DIGITAL IC TERMINOLOGY

Although there are many digital IC manufacturers, much of the nomencla-

ture and terminology is fairly standardized. The most useful terms are de-

fined and discussed below.

Current and Voltage Parameters (See Figure 8-1)
■ VIH(min)—High-Level Input Voltage. The minimum voltage level re-

quired for a logical 1 at an input. Any voltage below this level will not be

accepted as a HIGH by the logic circuit.

■ VIL(max)—Low-Level Input Voltage. The maximum voltage level re-

quired for a logic 0 at an input. Any voltage above this level will not be

accepted as a LOW by the logic circuit.

■ VOH(min)—High-Level Output Voltage. The minimum voltage level at a

logic circuit output in the logical 1 state under defined load conditions.

■ VOL(max)—Low-Level Output Voltage. The maximum voltage level at a

logic circuit output in the logical 0 state under defined load conditions.

■ IIH—High-Level Input Current. The current that flows into an input

when a specified high-level voltage is applied to that input.

■ IIL—Low-Level Input Current. The current that flows into an input when

a specified low-level voltage is applied to that input.

■ IOH—High-Level Output Current. The current that flows from an output

in the logical 1 state under specified load conditions.

490 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 490

■ IOL—Low-Level Output Current. The current that flows from an output in

the logical 0 state under specified load conditions.

Note: The actual current directions may be opposite to those shown in Figure

8-1, depending on the logic family. All descriptions of current flow in this

text refer to conventional current flow (from higher potential to lower po-

tential). In keeping with the conventions of most data books, current flowing

into a node or device is considered positive, and current flowing out of a

node or device is considered negative.

Fan-Out
In general, a logic-circuit output is required to drive several logic inputs.

Sometimes all ICs in the digital system are from the same logic family, but

many systems have a mix of various logic families. The fan-out (also called

loading factor) is defined as the maximum number of logic inputs that an out-

put can drive reliably. For example, a logic gate that is specified to have a

fan-out of 10 can drive 10 logic inputs. If this number is exceeded, the output

logic-level voltages cannot be guaranteed. Obviously, fan-out depends on the

nature of the input devices that are connected to an output. Unless a differ-

ent logic family is specified as the load device, fan-out is assumed to refer to

load devices of the same family as the driving output.

Propagation Delays
A logic signal always experiences a delay in going through a circuit. The two

propagation delay times are defined as follows:

■ . Delay time in going from logical 0 to logical 1 state (LOW to HIGH)

■ Delay time in going from logical 1 to logical 0 state (HIGH to LOW)

Figure 8-2 illustrates these propagation delays for an INVERTER. Note that

is the delay in the output’s response as it goes from HIGH to LOW. It is

measured between the 50 percent points on the input and output transitions.

The value is the delay in the output’s response as it goes from LOW to

HIGH.

In some logic circuits, and are not the same value, and both will

vary depending on capacitive loading conditions. The values of propagation

times are used as a measure of the relative speed of logic circuits. For exam-

ple, a logic circuit with values of 10 ns is a faster logic circuit than one with

values of 20 ns under specified load conditions.

tPLHtPHL

tPLH

tPHL

tPHL.

tPLH

SECTION 8-1/DIGITAL IC TERMINOLOGY 491

HIGH LOW

IOH IIH

VOH VIH

(a)

+ +

– –

IOL IIL

VOL VIL

+ +

– –

+5 V

(b)

FIGURE 8-1 Currents and voltages in the two logic states.

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 491

Power Requirements
Every IC requires a certain amount of electrical power to operate. This

power is supplied by one or more power-supply voltages connected to the

power pin(s) on the chip labeled (for TTL) or (for MOS devices).

The amount of power that an IC requires is determined by the current,

(or), that it draws from the (or) supply, and the actual power

is the product For many ICs, the current drawn from the supply

varies depending on the logic states of the circuits on the chip. For example,

Figure 8-3(a) shows a NAND chip where all of the gate outputs are HIGH.The

current drain on the supply for this case is called Likewise, Figure

8-3(b) shows the current when all of the gate outputs are LOW. This current

is called The values are always measured with the outputs open circuit

(no load) because the size of the load will also have an effect on .

In some logic circuits, and will be different values. For these

devices, the average current is computed based on the assumption that gate

outputs are LOW half the time and HIGH half the time.

ICC(avg) =

ICCH + ICCL

2

ICCLICCH

ICCH

ICCL.

ICCH.VCC

ICC * VCC.

VDDVCCIDDICC

VDDVCC

492 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

Input 1

Output 1

0

0

tPHL tPLH

50%

50%

t

FIGURE 8-2 Propagation

delays.

0
1
1

0
1
1

0
1
1

+VCC

ICCH

(a)

1

1

1

(b)

+VCC

ICCL

0

0

0

1
1
1

1
1
1

1
1
1

FIGURE 8-3 and .ICCLICCH

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 492

This equation can be rewritten to calculate average power dissipated:

Noise Immunity
Stray electric and magnetic fields can induce voltages on the connecting

wires between logic circuits. These unwanted, spurious signals are called

noise and can sometimes cause the voltage at the input to a logic circuit to

drop below or rise above), which could produce unpre-

dictable operation. The noise immunity of a logic circuit refers to the

circuit’s ability to tolerate noise without causing spurious changes in the out-

put voltage. A quantitative measure of noise immunity is called noise margin
and is illustrated in Figure 8-4.

Figure 8-4(a) is a diagram showing the range of voltages that can occur at

a logic-circuit output. Any voltages greater than are considered a

logic 1, and any voltages lower than are considered a logic 0.

Voltages in the indeterminate range should not appear at a logic circuit out-

put under normal conditions. Figure 8-4(b) shows the voltage requirements

at a logic circuit input. The logic circuit responds to any input greater than

as a logic 1, and it responds to voltages lower than as a

logic 0. Voltages in the indeterminate range produce an unpredictable re-

sponse and should not be used.

The high-state noise margin is defined as

(8-1)

and is illustrated in Figure 8-4. is the difference between the lowest

possible HIGH output and the minimum input voltage required for a HIGH.

When a HIGH logic output is driving a logic-circuit input, any negative

noise spikes greater than appearing on the signal line can cause the

voltage to drop into the indeterminate range, where unpredictable opera-

tion can occur.

The low-state noise margin is defined as

(8-2)VNL = VIL(max) - VOL(max)

VNL

VNH

VNH

VNH = VOH(min) - VIH(min)

VNH

VIL(max)VIH(min)

VOL(max)

VOH(min)

VIL(maxVIH(min)

PD(avg) = ICC(avg) * VCC

SECTION 8-1/DIGITAL IC TERMINOLOGY 493

FIGURE 8-4 dc noise

margins.

VOH (min)

Logic
1

Logic
0

Output voltage
ranges

(a)

Disallowed range

VOL (max)

V
ol

ta
ge

VNH
VIH (min)

VIL (max)

Input voltage
requirements

(b)

Logic
1

Logic
0

Indeterminate
range V

ol
ta

ge

VNL

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 493

and it is the difference between the largest possible LOW output and the

maximum input voltage required for a LOW. When a LOW logic output is

driving a logic input, any positive noise spikes greater than can cause

the voltage to rise into the indeterminate range.

VNL

494 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

EXAMPLE 8-1 The input/output voltage specifications for the standard TTL family are

listed in Table 8-1. Use these values to determine the following.

(a) The maximum-amplitude noise spike that can be tolerated when a HIGH

output is driving an input.

(b) The maximum-amplitude noise spike that can be tolerated when a LOW

output is driving an input.

TABLE 8-1
Parameter Min (V) Typical (V) Max (V)

VOH 2.4 3.4

VOL 0.2 0.4

VIH 2.0*

VIL 0.8*

*Normally only the minimum VIH and maximum
VIL values are given.

Solution

(a) When an output is HIGH, it may be as low as The min-

imum voltage that an input responds to as a HIGH is A

negative noise spike can drive the actual voltage below 2.0 V if its am-

plitude is greater than

(b) When an output is LOW, it may be as high as The max-

imum voltage that an input responds to as a LOW is A

positive noise spike can drive the actual voltage above the 0.8-V level if

its amplitude is greater than

Invalid Voltage Levels
For proper operation the input voltage levels to a logic circuit must be kept out-

side the indeterminate range shown in Figure 8-4(b); that is, they must be

either lower than or higher than . For the standard TTL spec-

ifications given in Example 8-1, this means that the input voltage must be less

than 0.8 V or greater than 2.0 V. An input voltage between 0.8 and 2.0 V is con-

sidered an invalid voltage that will produce an unpredictable output response,

and so must be avoided. In normal operation, a logic input voltage will not fall

into the invalid region because it comes from a logic output that is within the

stated specifications. However, when this logic output is malfunctioning or is

being overloaded (i.e., its fan-out is being exceeded), then its voltage may be in

VIH(min)VIL(max)

 = 0.8 V - 0.4 V = 0.4 V

 VNL = VIL(max) - VOL(max)

VIL(max) = 0.8 V.

VOL(max) = 0.4 V.

 = 2.4 V - 2.0 V = 0.4 V

 VNH = VOH(min) - VIH(min)

VIH(min) = 2.0 V.

VOH(min) = 2.4 V.

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 494

the invalid region. Invalid voltage levels in a digital circuit can also be caused

by power-supply voltages that are outside the acceptable range. It is important

to know the valid voltage ranges for the logic family being used so that invalid

conditions can be recognized when testing or troubleshooting.

Current-Sourcing and Current-Sinking Action
Logic families can be described according to how current flows between the

output of one logic circuit and the input of another. Figure 8-5(a) illustrates

current-sourcing action.When the output of gate 1 is in the HIGH state, it sup-

plies a current to the input of gate 2, which acts essentially as a resistance

to ground.Thus, the output of gate 1 is acting as a source of current for the gate

2 input. We can think of it as being like a faucet that acts as a source of water.

Current-sinking action is illustrated in Figure 8-5(b). Here the input

circuitry of gate 2 is represented as a resistance tied to the positive

terminal of a power supply. When the gate 1 output goes to its LOW state,

current will flow in the direction shown from the input circuit of gate 2 back

through the output resistance of gate 1 to ground. In other words, in the LOW

state, the circuit output that drives the input of gate 2 must be able to sink a

current, , coming from that input. We can think of this as acting like a sink
into which water is flowing.

The distinction between current sourcing and current sinking is an im-

portant one, which will become more apparent as we examine the various

logic families.

IC Packages
Developments and advancements in integrated circuits continue at a rapid

pace. The same is true of IC packaging. There are various types of packages,

which differ in physical size, the environmental and power-consumption

conditions under which the device can be operated reliably, and the way in

which the IC package is mounted to the circuit board. Figure 8-6 shows five

representative IC packages.

The package in Figure 8-6(a) is the DIP (dual-in-line package), which has

been around for a long time. Its pins (or leads) run down the two long sides of

the rectangular package.The device shown is a 24-pin DIP. Note the presence

IIL

+VCC,

IIH

SECTION 8-1/DIGITAL IC TERMINOLOGY 495

FIGURE 8-5 Comparison

of current-sourcing and

current-sinking actions. LOW

LOW

+VCC

1

Driving gate

VOH

Load gate

2

IIH

(a)

Current sourcing

Driving gate supplies
(sources) current to
load gate in HIGH state.

HIGH

HIGH

+VCC

1

Driving gate

VOL

Load gate

2

IIL

Current sinking

Driving gate receives
(sinks) current from
load gate in LOW state.

(b)

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 495

of the notch on one end, which is used to locate pin 1. Some DIPs use a small

dot on the top surface of the package to locate pin 1. The leads extend

straight out of the DIP package so that the IC can be plugged into an IC

socket or inserted into holes drilled through a printed circuit board.The spac-

ing between pins (lead pitch) is typically 100 mils (a mil is a thousandth of an

inch). DIP packages are still the most popular package for prototyping, bread-

boarding, and educational experimentation.

Nearly all new circuit boards that are produced using automated manufac-

turing equipment have moved away from using DIP packages whose leads are

inserted through holes in the board. New manufacturing methods use surface-
mount technology, which places an IC onto conductive pads on the surface of

the board. They are held in place by a solder paste, and the entire board is

heated to create a soldered connection. The precision of the placement ma-

chine allows for very tight lead spacing. The leads on these surface-mount

packages are bent out from the plastic case, providing adequate surface area

496 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

Pins on all
four sides Chipped

corner

Pin 2

Pin 1

Pin 28
Pin 24

(c)

28-pin PLCC
(J-lead)

socket or surface-mount

Notch

Pin 1

(a)

24-pin DIP

Pin 12

Pins on all
four sides

Pin 1

(d)

48-pin QFP
(gull-wing)

surface-mount

Pin 12

Pin 13

Pin 48

Pin 33

Pin 32

Pin 1

(b)

16-pin SOIC
(gull-wing)

surface-mount

Pin 8

Bevel

Pin 9

Pin 13

6

5

4

3

2

1
A B C D E F G H J K L M N P R T

1

2

3

4

5

6

A B C D E F G H J K L M N P R T

13.5 mm

96-pin LFBGA
surface mount

(e)

5.5 mm

0.8 mm

1.5 mm
max.

FIGURE 8-6 Common IC packages. (Courtesy of Texas Instruments)

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 496

for the solder joint. The shape of these leads has resulted in the nickname of

“gull-wing” package. Many different packages are available for surface-mount

devices. Some of the most common packages used for logic ICs are shown in

Figure 8-6. Table 8-2 gives the definition of each abbreviation along with its di-

mensions.

The need for more and more connections to a complex IC has resulted in

another very popular package that has pins on all four sides of the chip. The

PLCC has J-shaped leads that curl under the IC, as shown in Figure 8-6(c).

These devices can be surface-mounted to a circuit board but can also be

placed in a special PLCC socket. This is commonly used for components that

are likely to need to be replaced for repair or upgrade, such as programma-

ble logic devices or central processing units in computers. The QFP and

TQFP packages have pins on all four sides in a gull-wing surface-mount

package, as shown in Figure 8-6(d). The ball grid array (BGA) shown in

Figure 8-6(e) is a surface-mount package that offers even more density. The

pin grid array (PGA) is a similar package that is used when components must

be in a socket to allow easy removal.The PGA has a long pin instead of a con-

tact ball (BGA) at each position in the grid.

The proliferation of small, handheld consumer equipment such as digi-

tal video cameras, cellular phones, computers (PDAs), portable audio sys-

tems, and other devices has created a need for logic circuits in very small

packages. Logic gates are now available in individual surface-mount pack-

ages containing one, two, or three gates (1G, 2G, 3G, respectively). These de-

vices may have as few as five or six pins (power, ground, two to three inputs,

and an output) and take up less space than an individual letter on this page.

SECTION 8-1/DIGITAL IC TERMINOLOGY 497

TABLE 8-2 IC packages.

Abbreviation Package Name Height Lead Pitch

DIP Dual-in-line package 200 mils (5.1 mm) 100 mils (2.54 mm)

SOIC Small outline integrated circuit 2.65 mm 50 mils (1.27 mm)

SSOP Shrink small outline package 2.0 mm 0.65 mm

TSSOP Thin shrink small outline package 1.1 mm 0.65 mm

TVSOP Thin very small outline package 1.2 mm 0.4 mm

PLCC Plastic leaded chip carrier 4.5 mm 1.27 mm

QFP Quad flat pack 4.5 mm 0.635 mm

TQFP Thin quad flat pack 1.6 mm 0.5 mm

LFBGA Low-profile fine-pitch ball grid array 1.5 mm 0.8 mm

REVIEW QUESTIONS 1. Define each of the following: , , , , , , , .

2. True or false: If a logic circuit has a fan-out of 5, the circuit has five outputs.

3. True or false: The HIGH-stage noise margin is the difference between

and

4. Describe the difference between current sinking and current sourcing.

5. Which IC package can be plugged into sockets?

6. Which package has leads bent under the IC?

7. How do surface-mount packages differ from DIPs?

8. Will a standard TTL device work with an input level of 1.7 V?

VCC.VIH(min)

ICCHICCLtPHLtPLHIIHIOLVILVOH

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 497

498 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

8-2 THE TTL LOGIC FAMILY

At this writing, many small- to medium-scale ICs (SSI and MSI) can still be

obtained in the standard TTL technology series that has been available for

over 30 years. This original series of devices and their descendants in the

TTL family have had a tremendous influence on the characteristics of all

logic devices today. TTL devices are still used as “glue” logic that connects

the more complex devices in digital systems. They are also used as interface

circuits to devices that require high current drive. Even though the bipolar

TTL family as a whole is on the decline, we will begin our discussion of logic

ICs with the devices that shaped digital technology.

The basic TTL logic circuit is the NAND gate, shown in Figure 8-7(a).

Even though the standard TTL family is nearly obsolete, we can learn a great

deal about the more current family members by studying the original cir-

cuitry in its simplest form. The characteristics of TTL inputs come from the

multiple-emitter (diode junction) configuration of transistor . Forward bi-

asing either (or both) of these diode junctions will turn on . Only when all

junctions are reverse biased will the transistor be off. This multiple-emitter
input transistor can have up to eight emitters for an eight-input NAND gate.

Also note that on the output side of the circuit, transistors and are

in a totem-pole arrangement. The totem pole is made up of two transistor

switches, and . The job of is to connect to the output, making a

logic HIGH. The job of is to connect the output to ground, making a logic

LOW. As we will see shortly, in normal operation, either or will be con-

ducting, depending on the logic state of the output.

Circuit Operation—LOW State
Although this circuit looks extremely complex, we can simplify its analysis

somewhat by using the diode equivalent of the multiple-emitter transistor

, as shown in Figure 8-7(b). Diodes and represent the two E–B junc-

tions of , and is the collector-base (C–B) junction. In the following

analysis, we will use this representation for .Q1

D4Q1

D3D2Q1

Q4Q3

Q4

VCCQ3Q4Q3

Q4Q3

Q1

Q1

Totem pole

R4
130 �

R2
1.6 k�

R1
4 k�

Q3

Q2
Q1A

B
Inputs

Multiple-
emitter R3

1 k�

Q4

Output

VCC = +5 V

D1

D3

D2

Q1

D4

B

A Q2

R1
4 k �

+5 V

(b)(a)

X

FIGURE 8-7 (a) Basic TTL

NAND gate; (b) diode

equivalent for .Q1

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 498

First, let’s consider the case where the output is LOW. Figure 8-8(a)

shows this situation with inputs A and B both at The at the cath-

odes of and will turn these diodes off, and they will conduct almost no

current. The supply will push current through and into the base

of , which turns on. Current from ’s emitter will flow into the base of

and turn on. At the same time, the flow of collector current produces a

voltage drop across that reduces ’s collector voltage to a low value that

is insufficient to turn on.

The voltage at ’s collector is shown as approximately 0.8 V. This is be-

cause ’s emitter is at 0.7 V relative to ground due to ’s E–B forward voltage,Q4Q2

Q2

Q3

Q2R2

Q2Q4

Q4Q2Q2

D4R1+5 V

D3D2

+5 V+5 V.

SECTION 8-2/THE TTL LOGIC FAMILY 499

OFF

OFF

ON ON

ON

OFF

LOW output(a)

–

0.7 V
–

+
Q4

VOL � 0.4 V

+

X
D1

Q3

130 �
R4R2

1.6 k�

0.8 V

Q2

+5 V

1 k�
R3

D4Y

4 k�
R1

A = +5 V

B = +5 V

D2

D3

IIH = 10 μA (typical)

Input
conditions

A and B are
both HIGH

(� 2 V)

Input currents
are very low
IIH = 10 Aμ

Output
conditions

Q3 OFF

Q4 ON so
that VX is

LOW (� 0.4 V)

OFF

ON

OFF OFF

OFF

ON

HIGH output(b)

–

Q4

VOH � 2.4 V

+

X
D1

Q3

130 �
R4R2

1.6 k�

Q2

+5 V

1 k�
R3

D4Y

4 k�
R1

A = +5 V

B

D2

D3

IIL = 1.1 mA (typ.)

Input
conditions

A or B or both
are LOW
(� 0.8 V)

Current flows back
to ground through

LOW input terminal.
IIL = 1.1 mA

Output
conditions

Q4 OFF

Q3 acts as
emitter-follower

and VOH � 2.4 V,
typically 3.6 V

– +

FIGURE 8-8 TTL NAND gate in its two output states.

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 499

and ’s collector is at 0.1 V relative to its emitter due to This 0.8 V at

’s base is not enough to forward-bias both ’s E–B junction and diode . In

fact, is needed to keep off in this situation.

With on, the output terminal, X, will be at a very low voltage because

’s ON-state resistance will be low (1 to). Actually, the output voltage,

, will depend on how much collector current conducts. With off,

there is no current coming from the terminal through . As we shall

see, ’s collector current will come from the TTL inputs that terminal X is

connected to.

It is important to note that the HIGH inputs at A and B will have to sup-

ply only a very small diode leakage current. Typically, this current is only

around at room temperature.

Circuit Operation—HIGH State
Figure 8-8(b) shows the situation where the circuit output is HIGH. This situ-

ation can be produced by connecting either or both inputs LOW. Here, input

B is connected to ground. This will forward-bias so that current will flow

from the source terminal, through and , and through terminal B to

ground. The forward voltage across will hold point Y at approximately

0.7V.This voltage is not enough to forward-bias and the E–B junction of

sufficiently for conduction.

With off, there is no base current for , and it turns off. Because

there is no collector current, the voltage at ’s base will be large enough

to forward-bias and , so that will conduct. Actually, acts as an

emitter follower because output terminal X is essentially at its emitter. With

no load connected from point X to ground, will be around 3.4 to 3.8 V be-

cause two 0.7-V diode drops (E–B of , and) subtract from the 5 V applied

to ’s base.This voltage will decrease under load because the load will draw

emitter current from , which draws base current through , thereby in-

creasing the voltage drop across .

It’s important to note that there is a substantial current flowing back

through input terminal B to ground when B is held LOW. This current, , is

determined by the value of resistor , which will vary from series to series.

For standard TTL, it is about 1.1 mA. The LOW B input acts as a sink to

ground for this current.

Current-Sinking Action
A TTL output acts as a current sink in the LOW state because it receives cur-

rent from the input of the gate that it is driving. Figure 8-9 shows one TTL

gate driving the input of another gate (the load) for both output voltage

states. In the output LOW state situation depicted in Figure 8-9(a), transistor

of the driving gate is on and essentially “shorts” point X to ground. This

LOW voltage at X forward-biases the emitter–base junction of , and cur-

rent flows, as shown, back through . Thus, is performing a current-

sinking action that derives its current from the input current () of the load

gate. We will often refer to as the current-sinking transistor or as the pull-
down transistor because it brings the output voltage down to its LOW state.

Current-Sourcing Action
A TTL output acts as a current source in the HIGH state. This is shown in

Figure 8-9(b), where transistor is supplying the input current, , re-

quired by the transistor of the load gate. As stated above, this current is aQ1

IIHQ3

Q4

IIL

Q4Q4

Q1

Q4

R1

IIL

R2

R2Q3

Q3

D1Q3

VOH

Q3Q3D1Q3

Q3Q2

Q4Q2

Q2D4

D3

D3R1+5 V

D3

10 mA

IIH

Q4

R4+5 V

Q3Q4VOL

25 ÆQ4

Q4

Q3D1

D1Q3Q3

VCE(sat).Q2

500 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 500

small reverse-bias leakage current (typically).We will often refer to

as the current-sourcing transistor or pull-up transistor. In some of the more

modern TTL series, the pull-up circuit is made up of two transistors, rather

than a transistor and diode.

Totem-Pole Output Circuit
Several points should be mentioned concerning the totem-pole arrangement

of the TTL output circuit, as shown in Figure 8-9, because it is not readily ap-

parent why it is used. The same logic can be accomplished by eliminating

and and connecting the bottom of to the collector of . But this

arrangement would mean that would conduct a fairly heavy current in its

saturation state With in the circuit, there will be no

current through in the output LOW state. This is important because it

keeps the circuit power dissipation down.

Another advantage of this arrangement occurs in the output HIGH

state. Here is acting as an emitter follower with its associated low output

impedance (typically). This low output impedance provides a short

time constant for charging up any capacitive load on the output. This action

(commonly called active pull-up) provides very fast rise-time waveforms at

TTL outputs.

A disadvantage of the totem-pole output arrangement occurs during the

transition from LOW to HIGH. Unfortunately, turns off more slowly than

turns on, and so there is a period of a few nanoseconds during which both

transistors are conducting and a relatively large current (30 to 40 mA) will

be drawn from the 5-V supply. This can present a problem that will be exam-

ined later.

Q3

Q4

10 Æ

Q3

R4

Q3(5 V/130 Æ L 40 mA).

Q4

Q4R4D1

Q3

Q310 mA

SECTION 8-2/THE TTL LOGIC FAMILY 501

LOW
output

OFF

ON
ON

Output circuit
of driving gate

Input circuit
of load gate

(a)

VOL

Q4

X

+

–

D1

Q3

R4

130 �

+5 V

IIL

Q1

R1

4 k�

+5 V

HIGH
output

ON

OFF
OFF

Output of
 driving gate

Input of
 load gate

(b)

VOH

Q4
+

–

D1

Q3

R4

+5 V

IIH

Q1

R1

4 k�

+5 V

FIGURE 8-9 (a) When the TTL output is in the LOW state, acts as a current

sink, deriving its current from the load. (b) In the output HIGH state, acts as a

current source, providing current to the load gate.

Q3

Q4

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 501

TTL NOR Gate
Figure 8-10 shows the internal circuit for a TTL NOR gate. We will not go

through a detailed analysis of this circuit, but it is important to note how it

compares to the NAND circuit of Figure 8-8. On the input side, we can see

that the NOR circuit does not use a multiple-emitter transistor; instead, each

input is applied to the emitter of a separate transistor. On the output side,

the NOR circuit uses the same totem-pole arrangement as the NAND circuit.

Summary
All TTL circuits have a similar structure. NAND and AND gates use multiple-

emitter transistor or multiple diode junction inputs; NOR and OR gates use sep-

arate input transistors. In either case, the input will be the cathode (N-region) of

a P–N junction, so that a HIGH input voltage will turn off the junction and only

a small leakage current () will flow. Conversely, a LOW input voltage turns on

the junction, and a relatively large current () will flow back through the

signal source. Most, but not all, TTL circuits will have some type of totem-pole

output configuration.There are some exceptions that will be discussed later.

IIL

IIH

502 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

Input A

Input B Q2
Q4 R5

1 k�

Q6

X
Output4 k�

R2

Q1
Q3 Q5

D1

130 k�

R4

1.6 k�

R3

4 k�

R1

+VCCFIGURE 8-10 TTL NOR

gate circuit.

REVIEW QUESTIONS 1. True or false: A TTL output acts as a current sink in the LOW state.

2. In which TTL input state does the largest amount of input current flow?

3. State the advantages and disadvantages of a totem-pole output.

4. Which TTL transistor is the pull-up transistor in the NAND circuit?

5. Which TTL transistor is the pull-down transistor in the NOR circuit?

6. How does the TTL NOR circuit differ from the NAND circuit?

8-3 TTL DATA SHEETS

In 1964, Texas Instruments Corporation introduced the first line of standard

TTL ICs.The 54/74 series, as it is called, has been one of the most widely used

IC logic families. We will simply refer to it as the 74 series because the major

difference between the 54 and 74 versions is that devices in the 54 series can

operate over a wider range of temperatures and power-supply voltages. Many

semiconductor manufacturers still produce TTL ICs. Fortunately, they all use

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 502

the same numbering system, so that the basic IC number is the same from one

manufacturer to another. Each manufacturer, however, usually attaches its

own special prefix to the IC number. For example,Texas Instruments uses the

prefix SN, National Semiconductor uses DM, and Signetics uses S. Thus, de-

pending on the manufacturer, you may see a quad NOR gate chip labeled as

a DM7402, SN7402, S7402, or some other similar designation. The important

part is the number 7402, which is the same for all manufacturers.

As we learned in Chapter 4, there are several series in the TTL family of

logic devices (74, 74LS, 74S, etc.). The original standard series and its imme-

diate descendants (74, 74LS, 74S) are no longer recommended by the manu-

facturers for use in new designs. In spite of this, enough demand in the

market keeps them in production. An understanding of the characteristics

that define the capabilities and limitations of any logic device is vital. This

section will define those characteristics using the advanced low-power

Schottky (ALS) series and help you understand a typical data sheet. Later

we introduce the other TTL series and compare their characteristics.

We can find all of the information we need on any IC by consulting the

manufacturer’s published data sheets for that particular IC family. These

data sheets can be obtained from data books, CD ROMs, or the IC manufac-

turer’s Internet web site. Figure 8-11 is the manufacturer’s data sheet for the

74ALS00 NAND gate IC showing the recommended operating conditions,

electrical characteristics, and switching characteristics. Most of the quanti-

ties discussed in the following paragraphs in this section can be found on

this data sheet. As we discuss each quantity, you should refer to this data

sheet to see where the information came from.

Supply Voltage and Temperature Range
Both the 74ALS series and the 54ALS series use a nominal supply voltage

() of 5 V, but can tolerate a supply variation of 4.5 to 5.5 V. The 74ALS se-

ries is designed to operate properly in ambient temperatures ranging from 0

to while the 54ALS series can handle to Because of its

greater tolerance of voltage and temperature variations, the 54ALS series is

more expensive. It is employed only in applications where reliable operation

must be maintained over an extreme range of conditions. Examples are mil-

itary and space applications.

Voltage Levels
The input and output logic voltage levels for the 74ALS series can be found

on the data sheet of Figure 8-11. Table 8-3 presents them in summary form.

The minimum and maximum values shown are for worst-case conditions of

power supply, temperature, and loading conditions. Inspection of the table re-

veals a guaranteed maximum logical 0 output which is 300 mV

less than the logical 0 voltage needed at the input This means

that the guaranteed LOW-state dc noise margin is 300 mV. That is,

Similarly, the logical 1 output is a guaranteed minimum of 2.5 V, which

is 500 mV greater than the logical 1 voltage needed at the input,

Thus, the HIGH-state dc noise margin is 500 mV.

Thus, the guaranteed worst-case dc noise margin for the 74ALS series is 300 mV.

VNH = VOH(min) - VIH(min) = 2.5 V - 2.0 V = 0.5 V = 500 mV

VIH = 2.0 V.

VOH

VNL = VIL(max) - VOL(max) = 0.8 V - 0.5 V = 0.3 V = 300 mV

VIL = 0.8 V.

VOL = 0.5 V,

+125°C.-5570°C,

VCC

SECTION 8-3/TTL DATA SHEETS 503

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 503

Maximum Voltage Ratings
The voltage values in Table 8-3 do not include the absolute maximum ratings

beyond which the useful life of the IC may be impaired. The absolute maxi-

mum operating conditions are generally given at the top of a data sheet (not

shown in Figure 8-11). The voltages applied to any input of this series IC

504 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

FIGURE 8-11 Data sheet for the 74ALS00 NAND gate IC. (Courtesy of Texas

Instruments)

TABLE 8-3 74ALS series

voltage levels.
Minimum Typical Maximum

VOL — 0.35 0.5

VOH 2.5 3.4 —

VIL — — 0.8

VIH 2.0 — —

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 504

must never exceed A voltage greater than applied to an input

emitter can cause reverse breakdown of the E–B junction of .

There is also a limit on the maximum negative voltage that can be ap-

plied to a TTL input. This limit, is caused by the fact that most TTL

circuits employ protective shunt diodes on each input. These diodes were

purposely left out of our earlier analysis because they do not enter into the

normal circuit operation. They are connected from each input to ground to

limit the negative input voltage excursions that often occur when logic sig-

nals have excessive ringing. With these diodes, we should not apply more

than to an input because the protective diodes would begin to con-

duct and draw substantial current, probably causing the diode to short out,

resulting in a permanently faulty input.

Power Dissipation
An ALS TTL NAND gate draws an average power of 2.4 mW. This is a result

of and which produces and

This 9.65 mW is the total power re-

quired by all four gates on the chip. Thus, one NAND gate requires an aver-

age power of 2.4 mW.

Propagation Delays
The data sheet gives minimum and maximum propagation delays. Assuming

the typical value is midway between gives a and The

typical average propagation delay tpd(avg) = 6 ns.

tPHL = 5 ns.tPLH = 7 ns

PD(avg) = 1.93 mA * 5 V = 9.65 mW.

ICC(avg) = 1.93 mAICCL = 3 mA,ICCH = 0.85 mA

-0.5 V

-0.5 V,

Q1

+7.0 V+7.0 V.

SECTION 8-3/TTL DATA SHEETS 505

EXAMPLE 8-2 Refer to the data sheet for the 74ALS00 quad two-input NAND IC in Figure

8-11. Determine the maximum average power dissipation and the maximum
average propagation delay of a single gate.

Solution

Look under the electrical characteristics for the maximum and val-

ues. The values are 0.85 mA and 3 mA, respectively. The average is there-

fore 1.9 mA. The average power is obtained by multiplying by The data

sheet indicates that these values were obtained when was at its max-

imum value (5.5 V for the 74ALS series). Thus, we have

as the power drawn by the complete IC. We can determine the power drain of

one NAND gate by dividing this by 4:

Because this average power drain was calculated using the maximum cur-

rent and voltage values, it is the maximum average power that a 74ALS00

NAND gate will draw under worst-case conditions. Designers often use

worst-case values to ensure that their circuits will work under all conditions.

The maximum propagation delays for a 74ALS00 NAND gate are listed as

tPLH = 11 ns tPHL = 8 ns

PD(avg) = 2.6 mW per gate

PD(avg) = 1.9 mA * 5.5 V = 10.45 mW

VCCICC

VCC.

ICC

ICCLICCH

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 505

so that the maximum average propagation delay is

Again, this is a worst-case maximum possible average propagation delay.

8-4 TTL SERIES CHARACTERISTICS

The standard 74 series of TTL has evolved into several other series. All of

them offer a wide variety of gates and flip-flops in the small-scale integra-

tion (SSI) line, and counters, registers, multiplexers, decoders/encoders, and

other logic functions in their medium scale integration (MSI) line. The fol-

lowing TTL series—often called “subfamilies”—provide a wide range of

speed and power capabilities.

Standard TTL, 74 Series
The original standard 74 series of TTL logic was described in Section 8-2.

These devices are still readily available, but in most cases they are no longer

a reasonable choice for new designs because other devices are now available

that perform much better at a lower cost.

Schottky TTL, 74S Series
The 7400 series operates using saturated switching in which many of the

transistors, when conducting, will be in the saturated condition. This opera-

tion causes a storage-time delay, when the transistors switch from ON to

OFF, and it limits the circuit’s switching speed.

The 74S series reduces this storage-time delay by not allowing the tran-

sistor to go as deeply into saturation. It accomplishes this by using a Schottky

barrier diode (SBD) connected between the base and the collector of each

transistor, as shown in Figure 8-12(a). The SBD has a forward voltage of only

0.25 V. Thus, when the C–B junction becomes forward-biased at the onset of

saturation, the SBD will conduct and divert some of the input current away

from the base. This reduces the excess base current and decreases the

storage-time delay at turn-off.

As shown in Figure 8-12(a), the transistor/SBD combination is given a spe-

cial symbol. This symbol is used for all of the transistors in the circuit diagram

for the 74S00 NAND gate shown in Figure 8-12(b). This 74S00 NAND gate has

an average propagation delay of only 3 ns, which is six times as fast as the 7400.

Note the presence of shunt diodes and to limit negative input voltages.

Circuits in the 74S series also use smaller resistor values to help improve

switching times. This increases the circuit average power dissipation to

about 20 mW, about two times greater than the 74 series. The 74S circuits

also use a Darlington pair (and) to provide a shorter output rise time

when switching from ON to OFF.

Low-Power Schottky TTL, 74LS Series (LS-TTL)
The 74LS series is a lower-powered, slower-speed version of the 74S series. It

uses the Schottky-clamped transistor, but with larger resistor values than the

74S series. The larger resistor values reduce the circuit power requirement,

but at the expense of an increase in switching times. A NAND gate in the

Q4Q3

D2D1

tS,

tpd(avg) =

11 + 8

2
= 9.5 ns

506 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 506

74LS series will typically have an average propagation delay of 9.5 ns and an

average power dissipation of 2 mW.

Advanced Schottky TTL, 74AS Series (AS-TTL)
Innovations in integrated-circuit design led to the development of two im-

proved TTL series: advanced Schottky (74AS) and advanced low-power

Schottky (74ALS). The 74AS series provides a considerable improvement in

speed over the 74S series at a much lower power requirement. The compari-

son is shown in Table 8-4 for a NAND gate in each series. This comparison

clearly shows the advantage of the 74AS series. It is the fastest TTL series,

and its power dissipation is significantly lower than that of the 74S series.

The 74AS has other improvements, including lower input current require-

ments (,), that result in a greater fan-out than in the 74S series.

Advanced Low-Power Schottky TTL, 74ALS Series
This series offers an improvement over the 74LS series in both speed and

power dissipation, as the numbers in Table 8-5 illustrate. The 74ALS series

has the lowest gate power dissipation of all the TTL series.

IIHIIL

SECTION 8-4/TTL SERIES CHARACTERISTICS 507

Q6

Q5

370 �

3.5 k�

Q4

55 �760 �2.8 k�

VCC

Q3

Q2
Q1

D2D1

Inputs

Schottky
diode

(a) (b)

Output

350 �

FIGURE 8-12 (a) Schottky-clamped transistor; (b) basic NAND gate in S-TTL series.

TABLE 8-5

74LS 74ALS

Propagation delay 9.5 ns 4 ns

Power dissipation 2 mW 1.2 mW

TABLE 8-4

74S 74AS

Propagation delay 3 ns 1.7 ns

Power dissipation 20 mW 8 mW

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 507

74F—Fast TTL
This series uses a new integrated-circuit fabrication technique to reduce in-

terdevice capacitances and thus achieve reduced propagation delays. A typ-

ical NAND gate has an average propagation delay of 3 ns and a power con-

sumption of 6 mW. ICs in this series are designated with the letter F in their

part number. For instance, the 74F04 is a hex-inverter chip.

Comparison of TTL Series Characteristics
Table 8-6 gives the typical values for some of the more important character-

istics of each of the TTL series. All of the performance ratings, except for the

maximum clock rate, are for a NAND gate in each series.The maximum clock

rate is specified as the maximum frequency that can be used to toggle a J-K

flip-flop. This gives a useful measure of the frequency range over which each

IC series can be operated.

508 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

TABLE 8-6 Typical TTL series characteristics.

74 74S 74LS 74AS 74ALS 74F

Performance ratings

Propagation delay (ns) 9 3 9.5 1.7 4 3

Power dissipation (mW) 10 20 2 8 1.2 6

Max. clock rate (MHz) 35 125 45 200 70 100

Fan-out (same series) 10 20 20 40 20 33

Voltage parameters

VOH(min) 2.4 2.7 2.7 2.5 2.5 2.5

VOL(max) 0.4 0.5 0.5 0.5 0.5 0.5

VIH(min) 2.0 2.0 2.0 2.0 2.0 2.0

VIL(max) 0.8 0.8 0.8 0.8 0.8 0.8

EXAMPLE 8-3 Use Table 8-6 to calculate the dc noise margins for a typical 74LS IC. How

does this compare with the standard TTL noise margins?

Solution

74LS 74

= 0.3 V

= 0.4 V= 0.8 V - 0.5 V

VNL = 0.8 V - 0.4 VVNL = VIL(max) - VOL(max)

= 0.7 V

= 0.4 V= 2.7 V - 2.0 V

VNH = 2.4 V - 2.0 VVNH = VOH(min) - VIH(min)

EXAMPLE 8-4 Which TTL series can drive the most device inputs of the same series?

Solution

The 74AS series has the highest fan-out (40), which means that a 74AS00

NAND gate can drive 40 inputs of other 74AS devices. If we want to determine

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 508

the number of inputs of a different TTL series that an output can drive, we will

need to know the input and output currents of the two series.This will be dealt

with in the next section.

SECTION 8-5/TTL LOADING AND FAN-OUT 509

REVIEW QUESTIONS 1. (a) Which TTL series is the best at high frequencies?

(b) Which TTL series has the largest HIGH-state noise margin?

(c) Which series has essentially become obsolete in new designs?

(d) Which series uses a special diode to reduce switching time?

(e) Which series would be best for a battery-powered circuit operating

at 10 MHz?

2. Assuming the same cost for each, why should you choose to use a

74ALS193 counter over a 74LS193 or a 74AS193 in a circuit operating

from a 40-MHz clock?

3. Identify the pull-up and pull-down transistors for the 74S circuit in

Figure 8-12.

8-5 TTL LOADING AND FAN-OUT

It is important to understand what determines the fan-out or load drive capa-

bility of an IC output. Figure 8-13(a) shows a standard TTL output in the LOW

state connected to drive several standard TTL inputs.Transistor is on and is

acting as a current sink for an amount of current that is the sum of the

currents from each input. In its ON state, ’s collector–emitter resistance is

very small, but it is not zero, and so the current will produce a voltage drop

. This voltage must not exceed the limit of the IC, which limits

the maximum value of and thus the number of loads that can be driven.IOL

VOL(max)VOL

IOL

Q4

IILIOL

Q4

(a)

ON

OFF

LOW state
Q4 VOL

–

+

D1

Q3

R2 R4

+5 V +5 V +5 V

IOL

IIL IIL

(b)

Q4 VOH

–

+

D1

Q3

R2 R4

+5 V +5 V +5 V

IOH IIH IIH

OFF

ON

HIGH state

FIGURE 8-13 Currents when a TTL output is driving several inputs.

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 509

To illustrate, suppose that the ICs are in the 74 series and each is

1.6 mA. From Table 8-6, we see that the 74 series has and

Let’s suppose further that can sink up to 16 mA before its

output voltage reaches This means that it can sink the cur-

rent from up to loads. If it is connected to more than 10

loads, its will increase and cause to increase above 0.4 V.This is usually

undesirable because it reduces the noise margin at the IC inputs [remember,

]. In fact, if rises above it

will be in the indeterminate range.

A similar situation occurs in the HIGH state depicted in Figure 8-13(b).

Here, is acting as an emitter follower that is sourcing (supplying) a total

current that is the sum of the currents of the different TTL inputs. If

too many loads are being driven, this current will become large enough

to cause the voltage drops across , ’s emitter–base junction, and to

bring below . This too is undesirable because it reduces the

HIGH-state noise margin and could even cause to go into the indeter-

minate range.

What this all means is that a TTL output has a limit, , on how

much current it can sink in the LOW state. It also has a limit, on

how much current it can source in the HIGH state. These output current lim-

its must not be exceeded if the output voltage levels are to be maintained

within their specified ranges.

Determining the Fan-Out
To determine how many different inputs an IC output can drive, you need to

know the current drive capability of the output [i.e., and]

and the current requirements of each input (i.e., and).This information

is always presented in some form on the manufacturer’s IC data sheet. The

following examples will illustrate one type of situation.

IIHIIL

IOH(max)IOL(max)

IOH(max),

IOL(max)

VOH

VOH(min)VOH

D1Q3R2

IOH

IIHIOH

Q3

VIL(max) = 0.8 V,VOLVNL = VIL(max) - VOL(max)

VOLIOL

16 mA/1.6 mA = 10

VOL(max) = 0.4 V.

Q4VIL(max) = 0.8 V.

VOL(max) = 0.4 V

IIL

510 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

EXAMPLE 8-5 How many 74ALS00 NAND gate inputs can be driven by a 74ALS00 NAND

gate output?

Solution

We will consider the LOW state first as depicted in Figure 8-14. Refer to the

74ALS00 data sheet in Figure 8-11 and find

This says that a 74ALS00 output can sink a maximum of 8 mA and that each

74ALS00 input will source a maximum of 0.1 mA back through the driving

gate’s output.Thus, the number of inputs that can be driven in the LOW state

is obtained as

fan-out

 = 80

 =

8 mA

0.1 mA

(LOW) =

IOL(max)

IIL(max)

 IIL(max) = 0.1 mA

 IOL(max) = 8 mA

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 510

(Note: The entry for is actually The negative sign is used to indi-

cate that this current flows out of the input terminal; we can ignore this sign

for our purposes here.) The HIGH state is analyzed in the same manner.

Refer to the data sheet to find values for and , ignoring any negative

signs.

Thus, the number of inputs that can be driven in the HIGH state is

fan-out

If fan-out (LOW) and fan-out (HIGH) are not the same, as will sometimes oc-

cur, the fan-out is chosen as the smaller of the two.Thus, the 74ALS00 NAND

gate can drive up to 20 other 74ALS00 NAND gates.

 = 20

 =

400 mA

20 mA

(HIGH) =

IOH(max)

IIH(max)

 IIH(max) = 20 mA

 IOH(max) = 0.4 mA = 400 mA

IIHIOH

-0.1 mA.IIL

SECTION 8-5/TTL LOADING AND FAN-OUT 511

FIGURE 8-14 Example 8-5.

IIL
IILIOL

IIL

*All gates are 74ALS00 NAND gates.

EXAMPLE 8-6 Refer to the data sheet on the TI CD ROM (or Table 8-7) and determine how

many 74AS20 NAND gates can be driven by the output of another 74AS20.

Solution

The 74AS20 data sheet gives the following values:

 IIL(max) = 0.5 mA

 IIH(max) = 20 mA

 IOL(max) = 20 mA

 IOH(max) = 2 mA

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 511

Considering the HIGH state first, we have

fan-out

For the LOW state, we have

fan-out

In this case, the overall fan-out is chosen to be 40 because it is the lower of

the two values. Thus, one 74AS20 can drive 40 other 74AS20 inputs.

In older equipment, you will notice that most of the logic ICs were often

chosen from the same logic family. In today’s digital systems, there is much

more likely to be a combination of various logic families. Consequently,

loading and fan-out calculations are not as straightforward as they once

were. A good method for determining the loading of any digital output is as

follows:

Step 1. Add the for all inputs connected to an output. This sum must be

less than the output’s specification.

Step 2. Add the for all inputs connected to an output. This sum must be

less than the output’s specification.

Table 8-7 shows the limiting specifications for input and output currents in

simple logic gates of the various TTL families. Notice that some of the current

values are given as negative numbers. This convention is used to show the

direction of current flow. Positive values indicate current flowing into the spec-

ified node, whether it is an input or an output. Negative values indicate current

flowing out of the specified node. Consequently, all values are negative as

current flows out of the output (sourcing current), and all values are posi-

tive as load current flows into the output pin on its way to ground (sinking cur-

rent). Likewise, is positive, while is negative. When calculating loading

and fan-out as described above, you should ignore these signs.

IILIIH

IOL

IOH

IOL

IIL

IOH

IIH

(LOW) =

20 mA

0.5 mA
= 40

(HIGH) =

2 mA

20 mA
= 100

512 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

TABLE 8-7 Current ratings

of TTL series logic gates.*
Outputs Inputs

TTL Series IOH IOL IIH IIL

74 �0.4 mA 16 mA 40 �A �1.6 mA

74S �1 mA 20 mA 50 �A �2 mA

74LS �0.4 mA 8 mA 20 �A �0.4 mA

74AS �2 mA 20 mA 20 �A �0.5 mA

74ALS �0.4 mA 8 mA 20 �A �0.1 mA

74F �1 mA 20 mA 20 �A �0.6 mA

*Some devices may have different input or output current
ratings. Always consult the data sheet.

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 512

SECTION 8-5/TTL LOADING AND FAN-OUT 513

EXAMPLE 8-7 A 74ALS00 NAND gate output is driving three 74S gate inputs and one 7406

input. Determine if there is a loading problem.

Solution

1. Add all of the values:

The for the 74ALS output is 400 A (max), which is greater than the

sum of the loads (190 A).This poses no problem when the output is HIGH.

2. Add all of the values:

The for the 74ALS output is 8 mA (max), which is greater than the sum

of the loads (7.6 mA). This poses no problem when the output is LOW.

IOH

 Total = 3 # (2 mA) + 1 # (1.6 mA) = 7.6 mA

 3 # (IIL for 74S) + 1 # (IIL for 74)

IIL

m

mIOH

 Total = 3 # (50 mA) + 1 # (40 mA) = 190 mA

 3 # (IIH for 74S) + 1 # (IIH for 74)

IIH

EXAMPLE 8-8 The 74ALS00 NAND gate output in Example 8-7 needs to be used to drive

some 74ALS inputs in addition to the load inputs described in Example 8-7.

How many additional 74ALS inputs could the output drive without being

overloaded?

Solution

From the calculations of Example 8-7, only in the LOW state are we close to

being overloaded. A 74ALS input has an of 0.1 mA. The maximum sink

current () is 8 mA, and the load current is 7.6 mA (as calculated in Example

8-7).The additional current that the output can sink is found by

This output can drive up to four more 74ALS inputs that have an of 0.1 mA.IIL

 = 8 mA - 7.6 mA = 0.4 mA

 Additional current = IOLmax - sum of loads (IIL)

IOL

IIL

EXAMPLE 8-9 The output of a 74AS04 inverter is providing the CLEAR signal to a parallel

register made up of 74AS74 D flip-flops. What is the maximum number of FF

CLR inputs that this gate can drive?

Solution

The input specifications for flip-flop inputs are not always the same as those

for a logic gate input in the same family. Refer to the 74AS74 data sheet on the

TI CD ROM.The clock and D inputs are similar to the gate inputs in Table 8-7.

However, the PRE and CLR inputs have specifications of and

The 74AS04 has specifications of and

We must limit the fan-out to 11 CLR inputs.

 Maximum number of inputs (LOW) = 20 mA/1.8 mA = 11.11

 Maximum number of inputs (HIGH) = 2 mA/40 mA = 50

IOL = 20 mA.IOH = 2 mAIIL = 1.8 mA.

IIH = 40 mA

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 513

8-6 OTHER TTL CHARACTERISTICS

Several other characteristics of TTL logic must be understood if one is to use

TTL intelligently in a digital-system application.

Unconnected Inputs (Floating)
Any input to a TTL circuit that is left disconnected (open) acts exactly like a

logical 1 applied to that input because in either case the emitter–base junc-

tion or diode at the input will not be forward-biased. This means that on any
TTL IC, all of the inputs are 1s if they are not connected to some logic signal

or to ground. When an input is left unconnected, it is said to be floating.

Unused Inputs
Frequently, not all of the inputs on a TTL IC are being used in a particular ap-

plication. A common example is when not all the inputs to a logic gate are

needed for the required logic function. For example, suppose that we needed

the logic operation and we were using a chip that had a three-input NAND

gate. The possible ways of accomplishing this are shown in Figure 8-15.

In Figure 8-15(a), the unused input is left disconnected, which means that

it acts as a logical 1. The NAND gate output is therefore

which is the desired result. Although the logic is correct, it is highly undesir-

able to leave an input disconnected because it will act like an antenna, which

is liable to pick up stray radiated signals that could cause the gate to operate

improperly.A better technique is shown in Figure 8-15(b). Here, the unused in-

put is connected to through a resistor, so that the logic level is a 1.

The resistor is simply for current protection of the emitter–base junc-

tions of the gate inputs in case of spikes on the power-supply line. This same

technique can be used for AND gates because a 1 on an unused input will not

affect the output. As many as 30 unused inputs can share the same resis-

tor tied to

A third possibility is shown in Figure 8-15(c), where the unused input is

tied to a used input. This is satisfactory provided that the circuit driving

VCC.

1-kÆ

1-kÆ

1-kÆ+5 V

x = A # B # 1 = A # B,

AB

514 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

REVIEW QUESTIONS 1. What factors determine the rating of a device?

2. How many 7407 inputs can a 74AS chip drive?

3. What can happen if a TTL output is connected to more gate inputs than

it is rated to handle?

4. How many 74S112 inputs can be driven by a 74LS04 output? By a

74F00 output?

CP

IOL(max)

FIGURE 8-15 Three ways

to handle unused logic in-

puts.

x = AB

Unconnected
(floating)

+5V

(a) (b) (c)

x = AB

1 k�

x = ABA
B

A
B

A
B

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 514

input B is not going to have its fan-out exceeded. This technique can be used

for any type of gate. For OR gates and NOR gates, the unused inputs cannot

be left disconnected or tied to because this would produce a constant-

output logic level (1 for OR, 0 for NOR) regardless of the other inputs.

Instead, for these gates, the unused inputs must either be connected to

ground (0 V) for a logic 0 or be tied to a used input, as in Figure 8-15(c).

Tied-Together Inputs
When two (or more) TTL inputs on the same gate are connected together to

form a common input, as in Figure 8-15(c), the common input will generally

represent a load that is the sum of the load current rating of each individual

input. The only exception is for NAND and AND gates. For these gates, the

LOW-state input load will be the same as a single input no matter how many

inputs are tied together.

To illustrate, assume that each input of the three-input NAND gate in

Figure 8-15(c) is rated at 0.5 mA for and for . The common input

B will therefore represent an input load of in the HIGH state but only

0.5 mA in the LOW state. The same would be true if this were an AND gate.

If it were an OR or a NOR gate, the common B input would present an input

load 40 A in the HIGH state and 1 mA in the LOW state.

The reason for this characteristic can be found by looking back at the cir-

cuit diagram of the TTL NAND gate in Figure 8-8(b).The current is limited

by the resistance . Even if inputs A and B were tied together and grounded,

this current would not change; it would merely divide and flow through the

parallel paths provided by diodes and . The situation is different for OR

and NOR gates because they do not use multiple-emitter transistors but rather

have a separate input transistor for each input, as we saw in Figure 8-10.

D3D2

R1

IIL

m

40 mA

IIH20 mAIIL

+5 V

SECTION 8-6/OTHER TTL CHARACTERISTICS 515

EXAMPLE 8-10 Determine the load that the X output is driving in Figure 8-16. Assume that

each gate is a 74LS series device with and

Solution

The loading on the output of gate 1 is equivalent to six 74LS input loads in

the HIGH state but only five 74LS input loads in the LOW state because the

NAND gate represents only a single input load in the LOW state.

IIL = 0.4 mA.IIH = 20 mA

1 X

2

3

4

Loading on gate 1 output

Load Current
HIGH

40 μA
20 μA
60 μA

120 μA

Gate
2
3
4
Total

Load Current
LOW

0.4 mA
0.4 mA
1.2 mA
2.0 mA

Gate
2
3
4
Total

FIGURE 8-16 Example 8-10.

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 515

Biasing TTL Inputs Low
Occasionally, the situation arises where a TTL input must be held normally

LOW and then caused to go HIGH by the actuation of a mechanical switch.

This situation is illustrated in Figure 8-17 for the input to a one-shot. This

OS triggers on a positive transition that occurs when the switch is momen-

tarily closed. The resistor R serves to keep the T input LOW while the

switch is open. Care must be taken to keep the value of R low enough so

that the voltage developed across it by the current that flows out of the

OS input to ground will not exceed . Thus, the largest value of R is

given by

(8-3)

R must be kept below this value to ensure that the OS input will be at an ac-

ceptable LOW level while the switch is open. The minimum value of R is de-

termined by the current drain on the 5-V supply when the switch is closed. In

practice, this current drain should be minimized by keeping R just slightly

below Rmax.

 Rmax =

VIL(max)

IIL

 IIL * Rmax = VIL(max)

VIL(max)

IIL

516 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

+5 V

R IIL

T

Q

OS

QRmax = –––––––––
VIL (max)

IIL

FIGURE 8-17

EXAMPLE 8-10 Determine an acceptable value for R if the OS is a 74LS TTL IC with an

input rating of 0.4 mA.

Solution

The value of will be a maximum of 0.4 mA.This maximum value should be

used to calculate From Table 8-6, for the 74LS series.

Thus, we have

A good choice here would be a standard resistor value.

Current Transients
TTL logic circuits suffer from internally generated current transients or

spikes because of the totem-pole output structure. When the output is

switching from the LOW state to the HIGH state (see Figure 8-18), the two

output transistors are changing states: OFF to ON, and ON to OFF.

Because is changing from the saturated condition, it will take longer thanQ4

Q4Q3

R = 1.8 kÆ,

Rmax =

0.8 V

0.4 mA
= 2000 Æ

VIL(max) = 0.8 VRmax.

IIL

IIL

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 516

to switch states. Thus, there is a short interval of time (about 2 ns) during

the switching transition when both transistors are conducting and a rela-

tively large surge of current (30 to 50 mA) is drawn from the supply.

The duration of this current transient is extended by the effects of any load

capacitance on the circuit output. This capacitance consists of stray wiring

capacitance and the input capacitance of any load circuits and must be ch-

arged up to the HIGH-state output voltage. This overall effect can be summa-

rized as follows:

Whenever a totem-pole TTL output goes from LOW to HIGH, a
high-amplitude current spike is drawn from the VCC supply.

In a complex digital circuit or system, there may be many TTL outputs

switching states at the same time, each one drawing a narrow spike of cur-

rent from the power supply. The accumulative effect of all of these current

spikes will be to produce a voltage spike on the common line,

mostly due to the distributed inductance on the supply line [remember:

for inductance, and di/dt is very large for a 2-ns current spike].

This voltage spike can cause serious malfunctions during switching transi-

tions unless some type of filtering is used.The most common technique uses

small radio-frequency capacitors connected from to GROUND essen-

tially to “short out” these high-frequency spikes.This is called power-supply
decoupling.

It is standard practice to connect a or low-inductance,

ceramic disk capacitor between and ground near each TTL IC on a cir-

cuit board. The capacitor leads are kept very short to minimize series

inductance.

In addition, it is standard practice to connect a single large capacitor (2

to) between and ground on each board to filter out relatively low-

frequency variations in caused by the large changes in levels as out-

puts switch states.

ICCVCC

VCC20 mF

VCC

0.1-mF0.01-mF

VCC

V = L(di/dt)

VCC

+5 V

Q3

SECTION 8-6/OTHER TTL CHARACTERISTICS 517

FIGURE 8-18 A large current spike is drawn from when a totem-pole output

switches from LOW to HIGH.

VCC

+5 V

130 � ICC

Q3

OFF → ON

ON → OFF

Q4

ICC

VOUT

CLOAD

(a) (b)

t
0

30 to 50 mA

3.6 V

ICC

ICCL

0

ICCH

t

VOUT

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 517

8-7 MOS TECHNOLOGY

MOS (metal-oxide-semiconductor) technology derives its name from the basic

MOS structure of a metal electrode over an oxide insulator over a semicon-

ductor substrate.The transistors of MOS technology are field-effect transistors

called MOSFETs.This means that the electric field on the metal electrode side

of the oxide insulator has an effect on the resistance of the substrate. Most of

the MOS digital ICs are constructed entirely of MOSFETs and no other com-

ponents.

The chief advantages of the MOSFET are that it is relatively simple and

inexpensive to fabricate, it is small, and it consumes very little power. The

fabrication of MOS ICs is approximately one-third as complex as the fabri-

cation of bipolar ICs (TTL, ECL, etc.). In addition, MOS devices occupy much

less space on a chip than do bipolar transistors. More important, MOS digital

ICs normally do not use the IC resistor elements that take up so much of the

chip area of bipolar ICs.

All of this means that MOS ICs can accommodate a much larger number

of circuit elements on a single chip than bipolar ICs. This advantage is il-

lustrated by the fact that MOS ICs have dominated bipolar ICs in the area

of large-scale integration (LSI, VLSI). The high packing density of MOS ICs

makes them especially well suited for complex ICs such as microprocessor

and memory chips. Improvements in MOS IC technology have led to devices

that are faster than 74, 74LS, and 74ALS TTL with comparable current drive

characteristics. Consequently, MOS devices (specifically CMOS) have also

become dominant in the SSI and MSI market. The 74AS TTL family is still

as fast as the best CMOS devices, but at the price of much greater power

dissipation.

The principal disadvantage of MOS devices is their susceptibility to

static-electricity damage. Although this can be minimized by proper han-

dling procedures, TTL is still more durable for laboratory experimentation.

Consequently, you are likely to see TTL devices used in education as long as

they are available.

The MOSFET
There are presently two general types of MOSFETs: depletion and

enhancement. MOS digital ICs use enhancement MOSFETs exclusively, and

so only this type will be considered in the following discussion. Furthermore,

we will concern ourselves only with the operation of these MOSFETs as

on/off switches.

Figure 8-19 shows the schematic symbols for the N-channel and P-channel

enhancement MOSFETs, where the direction of the arrow indicates either

518 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

REVIEW QUESTIONS 1. What will be the logic output of a TTL NAND gate that has all of its in-

puts unconnected?

2. What are two acceptable ways to handle unused inputs to an AND gate?

3. Repeat question 2 for a NOR gate.

4. True or false: When NAND gate inputs are tied together, they are always

treated as a single load on the signal source.

5. What is power-supply decoupling? Why is it used?

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 518

P- or N-channel. The symbols show a broken line between the source and the

drain to indicate that there is normally no conducting channel between these

electrodes.The symbol also shows a separation between the gate and the other

terminals to indicate the very high resistance (typically around) of the

oxide layer between the gate and the channel, which is formed in the sub-

strate.

Basic MOSFET Switch
Figure 8-20 shows the switching operation of an N-channel MOSFET, the basic

element in a family of devices known as N-MOS. For the N-channel device, the

drain is always biased positive relative to the source. The gate-to-source volt-

age is the input voltage, which is used to control the resistance between

drain and source (i.e., the channel resistance) and therefore determines

whether the device is on or off.

When there is no conductive channel between source and drain,

and the device is off, as shown in Figure 8-20(b). Typically the channel resis-

tance in this OFF state is which for most purposes is an open circuit.The

MOSFET will remain off as long as is zero or negative. As is made pos-

itive (gate positive relative to source), a threshold voltage () is reached, atVT

VGSVGS

1010
 Æ,

VGS = 0 V,

VGS

1012
 Æ

SECTION 8-7/MOS TECHNOLOGY 519

FIGURE 8-19 Schematic

symbols for enhancement

MOSFETs.

FIGURE 8-20 N-channel

MOSFET used as a switch:

(a) symbol; (b) circuit

model; (c) N-MOS inverter

operation.

Drain

Gate

Source

N-channel

Drain

Gate

Source

P-channel

OFF

+5 V

+5 V

SYMBOL
CIRCUIT
MODEL

IDS

G

S S

D

0 V 1010 � OFF

R

HIGH

HIGH

G

D

NLOW

LOW

100 k�

+5 V

+5 V

IDS

S

ON ON103 �+5 V

R

G

D

N

100 k�

VDD

VGS

+

–

G

S

D

(a) (b) (c)

TOCCMC08_0131725793.QXD 12/22/05 5:17 PM Page 519

which point a conductive channel begins to form between source and drain.

Typically for an N-MOSFET, and so any will cause

the MOSFET to conduct. Generally, a value of much larger than is used

to turn on the MOSFET more completely. As shown in Figure 8-20(b), when

, the channel resistance between source and drain has dropped to

a value of

In essence, then, the N-MOS will switch from a very high resistance to a

low resistance as the gate voltage switches from a LOW voltage to a HIGH

voltage. It is helpful simply to think of the MOSFET as a switch that is either

opened or closed between source and drain. Figure 8-20(c) shows how an

inverter can be formed using one N-MOS transistor as a switch. The first

N-MOS logic devices were built using this approach.The drawback to this cir-

cuit, as with TTL, is that when the transistor is ON, there will always be cur-

rent flowing from the supply to ground, producing heat.

The P-channel MOSFET, or P-MOS, shown in Figure 8-21(a) operates in

exactly the same manner as the N-channel except that it uses voltages of op-

posite polarity. For P-MOSFETs, the drain is connected to the lower side of

the circuit so that it is biased with a more negative voltage relative to the

source. To turn the P-MOSFET ON, a voltage lower than the source by

must be applied to the gate, meaning the voltage at the gate, relative to the

source, must be negative.

Figure 8-21(b) shows that when the gate is at 5 V with respect to

ground (the same voltage as applied to the source), the transistor is OFF

and has a very high resistance from drain to source. When the gate is at 0 V

(relative to ground), then the gate-to-source voltage and it

turns the transistor ON, lowering its resistance from drain to source. The

circuit of Figure 8-20(c) shows the switching action of an inverter using

P-MOS logic.

Table 8-8 summarizes the P- and N-channel switching characteristics.

VGS = -5 V

VT

RON = 1000 Æ.

VGS = +5 V

VTVGS

VGS Ú 1.5 VVT = +1.5 V

520 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

FIGURE 8-21 P-channel

MOSFET used as a switch:

(a) symbol; (b) circuit

model for OFF and ON;

(c) P-MOS inverter circuit.
OFF OFF

+5
IDS

G

D D

S

1010 � HIGH

HIGH

G

S

P

LOW

R 100 k�

5 V

–

–

(b)(a) (c)

VGS = 0

+

ON ON

+5
IDS

G

D D

S

103 �
G

S

PLOW

R 100 k�

0 V0 V

VGS = – 5 V

+

+ V

VG

+

–

G

D

S

VGS

–

+

+5 V V

 V+5 V

TOCCMC08_0131725793.QXD 12/22/2005 8:30 AM Page 520

8-8 COMPLEMENTARY MOS LOGIC

P-MOS and N-MOS logic circuits use fewer components and are much sim-

pler to manufacture than TTL circuits. As a result, they began to dominate

the LSI and VLSI markets in the 1970s and 1980s. During this era, a new

technology began to emerge that used both P-MOS transistors (as high-side

switches) and N-MOS transistors (as low-side switches) in the same logic cir-

cuit.This is referred to as complementary MOS, or CMOS, technology. CMOS

logic circuits are not quite as simple and easy to manufacture as P-MOS or

N-MOS, but they are faster, use much less power, and are the dominant tech-

nology in the market today.

CMOS Inverter
The circuitry for the basic CMOS INVERTER is shown in Figure 8-22. For

this diagram and those that follow, the standard symbols for the MOSFETs

have been replaced by blocks labeled P and N to denote a P-MOS and an

N-MOS, respectively. This is done simply for convenience in analyzing the cir-

cuits.The CMOS INVERTER has two MOSFETs in series so that the P-channel

device has its source connected to (a positive voltage), and the N-

channel device has its source connected to ground.* The gates of the two

devices are connected together as a common input. The drains of the two

devices are connected together as the common output.

+VDD

SECTION 8-8/COMPLEMENTARY MOS LOGIC 521

Gate-to-Source

Drain-to- Voltage (VGS) Needed

Source Bias for Conduction RON (Ω) ROFF (Ω)

P-channel Negative Typically more 1000 1010

negative than �1.5 V (typical)

N-channel Positive Typically more 1000 1010

positive than +1.5 V (typical)

TABLE 8-8

Q1

Q2N

P
G

+VDD

S

+

G

D

D

VOUT

–
S

VIN Q1 Q2 VOUT

+VDD
(logic 1)

0 V
(logic 0)

OFF
ROFF = 1010 �

ON
RON = 1 k�

ON
RON = 1 k�

OFF
ROFF = 1010 �

0 V

+VDD

VOUT = VIN

VIN

*Most manufacturers label this terminal VSS.

FIGURE 8-22 Basic CMOS

INVERTER.

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 521

The logic levels for CMOS are essentially for logical 1 and 0 V for

logical 0. Consider, first, the case where In this situation, the

gate of (P-channel) is at 0 V relative to the source of . Thus, will be in

the OFF state with The gate of (N-channel) will be at

relative to its source. Thus, will be on with typically The volt-

age divider between ’s and ’s will produce

Next, consider the case where now has its gate at a negative

potential relative to its source, while has Thus, will be on

with and will be off with producing a of

approximately These two operating states are summarized in the table

on Figure 8-22, showing that the circuit does act as a logic INVERTER.

CMOS NAND Gate
Other logic functions can be constructed by modifying the basic INVERTER.

Figure 8-23 shows a NAND gate formed by adding a parallel P-channel

MOSFET and a series N-channel MOSFET to the basic INVERTER. To ana-

lyze this circuit, it helps to realize that a 0-V input turns on its corresponding

P-MOS and turns off its corresponding N-MOS, and vice versa, for a in-

put. Thus, you can see that the only time a LOW output will occur is when

inputs A and B are both HIGH () to turn on both N-MOSFETs, thereby

providing a low resistance from the output terminal to ground. For all other

input conditions, at least one P-MOS will be on while at least one N-MOS will

be off. This produces a HIGH output.

CMOS NOR Gate
A CMOS NOR gate is formed by adding a series P-MOS and a parallel N-MOS

to the basic INVERTER, as shown in Figure 8-24. Once again, this circuit can

be analyzed by realizing that a LOW at any input turns on its corresponding

+VDD

+VDD

+VDD.

VOUTROFF = 1010
 Æ,Q2RON = 1 kÆ,

Q1VGS = 0 V.Q2

Q1VIN = 0 V.

VOUT L 0 V.RONQ2ROFFQ1

RON = 1 kÆ.Q2

+VDDQ2ROFF L 1010
 Æ.

Q1Q1Q1

VIN = +VDD.

+VDD

522 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

A

LOW
LOW
HIGH
HIGH

B

LOW
HIGH
LOW
HIGH

X

HIGH
HIGH
HIGH
LOW

+VDD

S
G

A P

D

P

S

D

G

X = AB

S

D

G

N

S

NB

G

D

FIGURE 8-23 CMOS

NAND gate.

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 522

P-MOS and turns off its corresponding N-MOS, and vice versa, for a HIGH in-

put. It is left to the reader to verify that this circuit operates as a NOR gate.

CMOS AND and OR gates can be formed by combining NANDs and

NORs with INVERTERs.

CMOS SET-RESET FF
Two CMOS NOR gates or NAND gates can be cross-coupled to form a simple

SET-RESET latch. Additional gating circuitry is used to convert the basic

SET-RESET latch to clocked D and J-K flip-flops.

SECTION 8-9/CMOS SERIES CHARACTERISTICS 523

A

LOW
LOW
HIGH
HIGH

B

LOW
HIGH
LOW
HIGH

X

HIGH
LOW
LOW
LOW

+VDD

A
G

P

S

D

G
P

S

D

G
N

S

D

B

S

G
N

D

X = A + B

FIGURE 8-24 CMOS NOR

gate.

REVIEW QUESTIONS 1. How does CMOS internal circuitry differ from N-MOS?

2. How many P-channel MOSFETs are in a CMOS INVERTER?

3. How many MOSFETs are in a three-input CMOS NAND gate?

8-9 CMOS SERIES CHARACTERISTICS

CMOS ICs provide not only all of the same logic functions that are available

in TTL but also several special-purpose functions not provided by TTL.

Several different CMOS series have been developed over time because man-

ufacturers have sought to improve performance characteristics. Before we

look at the various CMOS series, it will be helpful to define a few terms that

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 523

are used when ICs from different families or series are to be used together

or as replacements for one another.

■ Pin-compatible. Two ICs are pin-compatible when their pin configura-

tions are the same. For example, pin 7 on both ICs is GROUND, pin 1 on

both is an input to the first INVERTER, and so on.

■ Functionally equivalent. Two ICs are functionally equivalent when the

logic functions they perform are exactly the same. For example, both

contain four two-input NAND gates, or both contain six D flip-flops with

positive-edge clock triggering.

■ Electrically compatible. Two ICs are electrically compatible when they

can be connected directly to each other without taking any special mea-

sures to ensure proper operation.

4000/14000 Series
The oldest CMOS series is the 4000 series first introduced by RCA, and its

functionally equivalent 14000 series from Motorola. Devices in the

4000/14000 series have very low power dissipation and can operate over a

wide range of power-supply voltages (3 to 15 V). They are very slow com-

pared to TTL and other CMOS series and have very low output current ca-

pabilities. They are not pin-compatible or electrically compatible with any

TTL series. The 4000/14000 series devices are rarely used in new designs

except when a special-purpose IC is available that is not available in other

series.

74HC/HCT (High-Speed CMOS)
The 74HC series has a 10-fold increase in switching speed, comparable to

that of the 74LS devices, and a much higher output current capability than

the first 7400 CMOS series ICs. 74HC/HCT ICs are pin-compatible with and

functionally equivalent to TTL ICs with the same device number. 74HCT de-

vices are electrically compatible with TTL, but 74HC devices are not. This

means, for example, that a 74HCT04 hex-INVERTER chip can replace a

74LS04 chip, and vice versa. It also means that a 74HCT IC can be connected

directly to any TTL IC.

74AC/ACT (Advanced CMOS)
This series is often referred to as ACL for advanced CMOS logic. The series

is functionally equivalent to the various TTL series but is not pin-compatible

with TTL because the pin placements on 74AC or 74ACT chips have been

chosen to improve noise immunity so that the device inputs are less sensitive

to signal changes occurring on other IC pins. 74AC devices are not electri-

cally compatible with TTL; 74ACT devices can be connected directly to TTL.

ACL offers advantages over the HC series in noise immunity, propagation de-

lay, and maximum clock speed.

Device numbering for this series differs slightly from TTL, 74C, and

74HC/HCT numbering. It uses a five-digit device number beginning with the

digits 11. The following examples illustrate:

 74ACT11 293 K 74HCT 293
 74AC11 004 K 74HC 04

524 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 524

74AHC/AHCT (Advanced High-Speed CMOS)
This series of CMOS devices offers a natural migration path from the HC se-

ries to faster, lower-power, low-drive applications. The devices in this series

are three times faster and can be used as direct replacements for HC series

devices. They offer similar noise immunity to HC without the overshoot/un-

dershoot problems often associated with higher drive characteristics re-

quired for comparable speed.

BiCMOS 5-V Logic
Several IC manufacturers have developed logic series that combine the best

features of bipolar and CMOS logic—called BiCMOS logic. The low-power

characteristics of CMOS and the high-speed characteristics of bipolar cir-

cuits are integrated to produce an extremely low-power, high-speed logic

family. BiCMOS ICs are not available in most SSI and MSI functions, but are

limited to functions that are used in microprocessor and bus interfacing ap-

plications such as latches, buffers, drivers, and transceivers. The 74BCT

(BiCMOS bus-interface technology) series offers 75 percent reduction in

power consumption over the 74F family while maintaining similar speed

and drive characteristics. Parts in this series are pin-compatible with indus-

try standard TTL parts and operate on standard 5-V logic levels. The 74ABT

(advanced BiCMOS technology) series is the second generation of BiCMOS

bus-interface devices. Details of bus interface logic will be presented

Section 8-13.

Power-Supply Voltage
The 4000/14000 series and 74C series devices operate with values rang-

ing from 3 to 15 V, which makes them very versatile.They can be used in low-

voltage battery-operated circuits, in standard 5-V circuits, and in circuits

where a higher supply voltage is used to attain the noise margins required

for operation in a high-noise environment. The 74HC/HCT, 74AC/ACT, and

74AHC/AHCT series operate over a much narrower range of supply voltages,

typically between 2 and 6 V.

Logic series that are designed to operate at lower voltages (e.g., 2.5 or

3.3 V) are also available. Whenever devices that use different power supply

voltages are interconnected in the same digital system, special measures

must be taken. The low-voltage devices and the special interfacing tech-

niques will be covered in Section 8-10.

Logic Voltage Levels
The input and output voltage levels will be different for the different CMOS

series. Table 8-9 lists these voltage values for the various CMOS series as

well as those for the TTL series.The values listed in the table assume that all

devices are operating from a supply voltage of 5 V and that all device outputs

are driving inputs of the same logic family.

Examination of this table discloses some important points. First, note

that for the CMOS devices is very close to 0 V, and is very close to

5 V. The reason why is that the CMOS outputs do not have to source or sink

any significant amount of current when they are driving CMOS inputs with

their extremely high input resistance Also note that, except for

74HCT and 74ACT, the required input voltage levels are greater for CMOS

than for TTL. Recall that 74HCT and 74ACT are designed to be electrically

(1012
 Æ).

VOHVOL

VDD

SECTION 8-9/CMOS SERIES CHARACTERISTICS 525

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 525

compatible with TTL, so they must be able to accept the same input voltage

levels as TTL.

Noise Margins
The noise margins for each series are also given in Table 8-9. They are calcu-

lated using

Note that, in general, the CMOS devices have greater noise margins than

TTL. The difference would be even greater if the CMOS devices were oper-

ated at a supply voltage greater than 5 V.

Power Dissipation
When a CMOS logic circuit is in a static state (not changing), its power dissi-

pation is extremely low. We can see the reason by examining each of the cir-

cuits shown in Figures 8-22 to 8-24. Note that, regardless of the state of the

output, there is always a very high resistance between the terminal and

ground because there is always an off MOSFET in the current path. This re-

sults in a typical CMOS dc power dissipation of only 2.5 nW per gate when

even at this power increases to only 10 nW. With

these values for it is easy to see why CMOS is ideally suited for applica-

tions using battery power or battery backup power.

PD Increases with Frequency
The power dissipation of a CMOS IC will be very low as long as it is in a dc

condition. Unfortunately, will increase in proportion to the frequency at

which the circuits are switching states. For example, a CMOS NAND gate

that has under dc conditions will have at a fre-

quency of 100 kpps, and 1 mW at 1 MHz. The reason for this dependence on

frequency is illustrated in Figure 8-25.

Each time a CMOS output switches from LOW to HIGH, a transient

charging current must be supplied to the load capacitance. This capacitance

consists of the combined input capacitances of any loads being driven and

the device’s own output capacitance. These narrow spikes of current are

PD = 0.1 mWPD = 10 nW

PD

PD,

VDD = 10 V,VDD = 5 V;

VDD

 VNL = VIL(max) - VOL(max)

 VNH = VOH(min) - VIH(min)

526 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

TABLE 8-9 Input/output voltage levels (in volts) with VDD � VCC � �5 V.

CMOS TTL

Parameter 4000B 74HC 74HCT 74AC 74ACT 74AHC 74AHCT 74 74LS 74AS 74ALS

VIH(min) 3.5 3.5 2.0 3.5 2.0 3.85 2.0 2.0 2.0 2.0 2.0

VIL(max) 1.5 1.0 0.8 1.5 0.8 1.65 0.8 0.8 0.8 0.8 0.8

VOH(min) 4.95 4.9 4.9 4.9 4.9 4.4 3.15 2.4 2.7 2.7 2.5

VOL(max) 0.05 0.1 0.1 0.1 0.1 0.44 0.1 0.4 0.5 0.5 0.5

VNH 1.45 1.4 2.9 1.4 2.9 0.55 1.15 0.4 0.7 0.7 0.7

VNL 1.45 0.9 0.7 1.4 0.7 1.21 0.7 0.4 0.3 0.3 0.4

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 526

supplied by and can have a typical amplitude of 5 mA and a duration of

20 to 30 ns. Clearly, as the switching frequency increases, there will be more

of these current spikes occurring per second, and the average current drawn

from will increase. Even with very low capacitive loads, there is a brief

point in the transition from LOW to HIGH or HIGH to LOW when the two

output transistors are partially turned on. This effectively lowers the resist-

ance from the supply to ground, causing a current spike as well.

Thus, at higher frequencies, CMOS begins to lose some of its advantage

over other logic families. As a general rule, a CMOS gate will have the same

average as a 74LS gate at frequencies near 2 to 3 MHz. Above these fre-

quencies, TTL power also increases with frequency because of the current

required to reverse the charge on the load capacitance. For MSI chips, the

situation is somewhat more complex than stated here, and a logic designer

must do a detailed analysis to determine whether or not CMOS has a power-

dissipation advantage at a particular frequency of operation.

Fan-Out
Like N-MOS and P-MOS, CMOS inputs have an extremely large resistance

that draws essentially no current from the signal source. Each CMOS

input, however, typically presents a 5-pF load to ground. This input capaci-

tance limits the number of CMOS inputs that one CMOS output can drive

(see Figure 8-26). The CMOS output must charge and discharge the parallel

combination of all of the input capacitances, so that the output switching

(1012
 Æ)

PD

VDD

VDD

SECTION 8-9/CMOS SERIES CHARACTERISTICS 527

P

N

+

VIN

–

ON

OFF

+5 V

ID

VOUT

CLOAD

5 V

0 V

5 V

0 V

VIN

VOUT

ID
0

FIGURE 8-25 Current

spikes are drawn from the

supply each time the

output switches from LOW

to HIGH. This is due mainly

to the charging current of

the load capacitance.

VDD

1 5 pF

5 pF

To other loads

Gate 1 output drives
a total CLOAD of

N X 5 pF

FIGURE 8-26 Each CMOS

input adds to the total load

capacitance seen by the

driving gate’s output.

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 527

time will be increased in proportion to the number of loads being driven.

Typically, each CMOS load increases the driving circuit’s propagation delay

by 3 ns. For example, NAND gate 1 in Figure 8-26 might have a of 25 ns

if it were driving no loads; this would increase to if

it were driving twenty loads.

Thus, CMOS fan-out depends on the permissible maximum propagation

delay. Typically, CMOS outputs are limited to a fan-out of 50 for low-

frequency operation . Of course, for higher-frequency operation,

the fan-out would have to be less.

Switching Speed
Although CMOS, like N-MOS and P-MOS, must drive relatively large load

capacitances, its switching speed is somewhat faster because of its low

output resistance in each state. An N-MOS output must charge the load

capacitance through a relatively large resistance. In the CMOS

circuit, the output resistance in the HIGH state is the of the P-MOS-

FET, which is typically or less. This allows more rapid charging of

load capacitance.

A 4000 series NAND gate will typically have an average of 50 ns at

and 25 ns at The reason for the improvement in as

is increased is that the on the MOSFETs decreases significantly at

higher supply voltages. Thus, it appears that should be made as large as

possible for operation at higher frequencies. However, the larger will

result in increased power dissipation.

A typical NAND gate in the 74HC or 74HCT series has an average of

around 8 ns when operated at A 74AC/ACT NAND gate has an av-

erage of around 4.7 ns. A 74AHC NAND gate has an average of

around 4.3 ns.

Unused Inputs
CMOS inputs should never be left disconnected. All CMOS inputs
must be tied either to a fixed voltage level (0 V or VDD) or to another
input.

This rule applies even to the inputs of extra unused logic gates on a chip. An

unconnected CMOS input is susceptible to noise and static charges that

could easily bias both the P-channel and the N-channel MOSFETs in the

conductive state, resulting in increased power dissipation and possible

overheating.

Static Sensitivity
All electronic devices, to varying degrees, are sensitive to damage by static

electricity. The human body is a great storehouse of electrostatic charges.

For example, when you walk across a carpet, a static charge of over 30,000

V can be built up on your body. If you then touch an electronic device,

some of this sizable charge can be transferred to the device. The MOS logic

families (and all MOSFETs) are especially susceptible to static-charge

damage. All of this potential difference (static charge) applied across the

thin oxide film overcomes the film’s dielectric insulation capability. When

tpdtpd

VDD = 5 V.

tpd

VDD

VDD

RONVDD

tpdVDD = 10 V.VDD = 5 V,

tpd

1 kÆ

RON

(100-kÆ)

(… 1 MHz)

25 ns + 20(3 ns) = 85 ns

tPLH

528 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 528

it breaks down, the resulting flow of current (discharge) is like a lightning

strike, blowing a hole in the oxide layer and permanently damaging the

device.

Electrostatic discharge (ESD) is responsible for billions of dollars of

damage to electronic equipment annually, and equipment manufacturers

have devoted considerable attention to developing special handling proce-

dures for all electronic devices and circuits. Even though most modern ICs

have on-chip resistor–diode networks to protect inputs and outputs from the

effects of ESD, the following precautions are used by most engineering labs,

production facilities, and field service departments:

1. Connect the chassis of all test instruments, soldering-iron tips, and your

workbench (if metal) to earth ground (i.e., the round prong in the 120-VAC

plug). This prevents the buildup of static charge on these devices that

could be transferred to any circuit board or IC that they come in contact

with.

2. Connect yourself to earth ground with a special wrist strap. This will al-

low potentially dangerous charges from your body to be discharged to

ground. The wrist strap contains a resistor that limits current to a

nonlethal value should you accidentally touch a “live” voltage while

working with the equipment.

3. Keep ICs (especially MOS) in conductive foam or aluminum foil.This will

keep all IC pins shorted together so that no dangerous voltages can be

developed between any two pins.

4. Avoid touching IC pins, and insert the IC into the circuit immediately af-

ter removing it from the protective carrier.

5. Place shorting straps across the edge connectors of PC boards when

the boards are being carried or transported. Avoid touching the

edge connectors. Store PC boards in conductive plastic or metallic

envelopes.

6. Do not leave any unused IC inputs unconnected because open inputs

tend to pick up stray static charges.

Latch-Up
Because of the unavoidable existence of parasitic (unwanted) PNP and

NPN transistors embedded in the substrate of CMOS ICs, a condition

known as latch-up can occur under certain circumstances. If these parasitic

transistors on a CMOS chip are triggered into conduction, they will latch-

up (stay ON permanently), and a large current may flow and destroy the IC.

Most modern CMOS ICs are designed with protection circuitry that helps

prevent latch-up, but it can still occur when the device’s maximum voltage

ratings are exceeded. Latch-up can be triggered by high-voltage spikes or

ringing at the device inputs and outputs. Clamping diodes can be con-

nected externally to protect against such transients, especially when the

ICs are used in industrial environments where high-voltage and/or high-

current load switching takes place (motor controllers, relays, etc.). A well-

regulated power supply will minimize spikes on the line; if the supply

also has current limiting, it will limit current should latch-up occur.

Modern CMOS fabrication techniques have greatly reduced ICs’ suscepti-

bility to latch-up.

VDD

1-MÆ

SECTION 8-9/CMOS SERIES CHARACTERISTICS 529

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 529

8-10 LOW-VOLTAGE TECHNOLOGY

IC manufacturers are continually looking for ways to put semiconductor de-

vices (diodes, resistors, transistors, etc.) closer together on a chip, that is, to

increase the chip density.This higher density has at least two major benefits.

First, it allows more circuits to be packed onto the chip; second, with the cir-

cuits closer together, the time for signals to propagate from one circuit to an-

other will decrease, thereby improving overall circuit operating speed.There

are also drawbacks to higher chip density. When circuits are placed closer

together, the insulating material that isolates one circuit from another is nar-

rower. This decreases the amount of voltage that the device can withstand

before dielectric breakdown occurs. Increasing the chip density increases

the overall chip power dissipation, which can raise the chip temperature

above the maximum level allowed for reliable operation.

These drawbacks can be neutralized by operating the chip at lower volt-

age levels, thereby reducing power dissipation. Several series of logic on the

market operate on 3.3 V. The newer series are optimized to run on 2.5 V. This

low-voltage technology may very well signal the beginning of a gradual tran-

sition in the digital equipment field that will eventually find all digital ICs

operating from a new low-voltage standard.

Low-voltage devices are currently designed for applications ranging from

electronic games to engineering workstations. The newer CPUs are 2.5-V

devices, and 3.3-V dynamic RAM chips are used in memory modules for per-

sonal computers.

Several low-voltage logic series are currently available. It is not possible

to cover all of the families and series from all manufacturers, so we will de-

scribe those currently offered by Texas Instruments.

CMOS Family
■ The 74LVC (Low-Voltage CMOS) series contains the widest assortment of

the familiar SSI gates and MSI functions of the 5-V families, along with

530 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

REVIEW QUESTIONS 1. Which CMOS series is pin-compatible with TTL?

2. Which CMOS series is electrically compatible with TTL?

3. Which CMOS series is functionally equivalent to TTL?

4. What logic family combines the best features of CMOS and bipolar logic?

5. What factors determine CMOS fan-out?

6. What precautions should be taken when handling CMOS ICs?

7. Which IC family (CMOS, TTL) is best suited for battery-powered appli-

cations?

8. True or false:

(a) CMOS power drain increases with operating frequency.

(b) Unused CMOS inputs can be left unconnected.

(c) TTL is better suited than CMOS for operation in high-noise environ-

ments.

(d) CMOS switching speed increases with operating frequency.

(e) CMOS switching speed increases with supply voltage.

(f) The latch-up condition is an advantage of CMOS over TTL.

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 530

many bus-interface devices such as buffers, latches, drivers, and so on.

This series can handle 5-V logic levels on its inputs, so it can convert

from 5-V systems to 3-V systems. As long as the current drive is kept low

enough to keep the output voltage within acceptable limits, the 74LVC

can also drive 5-V TTL inputs. The input requirements of 5-V CMOS

parts such as the 74HC/AHC do not allow LVC devices to drive them.

■ The 74ALVC (Advanced Low-Voltage CMOS) series currently offers the

highest performance. The devices in this series are intended primarily

for bus-interface applications that use 3.3-V logic only.

■ The 74LV (Low-Voltage) series offers CMOS technology and many of the

common SSI gates and MSI logic functions, along with some popular oc-

tal buffers, latches, and flip-flops. It is intended to operate only with

other 3.3-V devices.

■ The 74AVC (Advanced Very-Low-Voltage CMOS) series has been intro-

duced with tomorrow’s systems in mind. It is optimized for 2.5-V systems,

but it can operate on supplies as low as 1.2 V or as high as 3.3 V. This

broad range of supply voltage makes it useful in mixed-voltage systems.

It has propagation delays of less than 2 ns, which rivals 74AS bipolar de-

vices. It has many of the bus interface features of the BiCMOS series that

will make it useful in future generations of low-voltage workstations,

PCs, networks, and telecommunications equipment.

■ The 74AUC (Advanced Ultra-Low-Voltage CMOS) series is optimized to op-

erate at 1.8-V logic levels.

■ The 74AUP (Advanced Ultra-low Power) series is the industries lowest-

power logic series and is used in battery-operated portable applications.

■ The 74CBT (Cross Bar Technology) series offers high-speed bus-interface

circuits that can switch quickly when enabled and not load the bus when

they are disabled.

■ The 74CBTLV (Cross Bar Technology Low Voltage) is the 3.3-V complement

to the 74CBT series.

■ The 74GTLP (Gunning Transceiver Logic Plus) series is made for high-

speed parallel backplane applications. This series will be covered in a

later section.

■ The 74SSTV (Stub Series Terminated Logic) is useful in the high-speed ad-

vanced-memory systems of today’s computers.

■ The TS Switch (TI Signal Switch) series is made for mixed-signal appli-

cations and offers some analog and digital switching and multiplexing

solutions.

■ The 74TVC (Translation Voltage Clamp) series is used to protect the inputs

and outputs of sensitive devices from voltage overshoot on the bus lines.

BiCMOS Family
■ The 74LVT (Low-Voltage BiCMOS Technology) contains BiCMOS parts that

are intended for 8- and 16-bit bus-interface applications. As with the LVC

series, the inputs can handle 5-V logic levels and serve as a 5-V to 3-V

translator. Because the output levels [and] are

equivalent to TTL levels, they are fully electrically compatible with TTL.

Table 8-10 compares the various features.

■ The 74ALVT (Advanced Low-Voltage BiCMOS Technology) series is an im-

provement over the LVT series. It offers 3.3-V or 2.5-V operation at 3 ns

and is pin-compatible with existing ABT and LVT series. It is also in-

tended for bus-interface applications.

VOL(max)VOH(min)

VIH

SECTION 8-10/LOW-VOLTAGE TECHNOLOGY 531

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 531

532 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

TABLE 8-10 Low-voltage series characteristics.

LV ALVC AVC ALVT ALB

VCC (recommended) 2.7–3.6 2.3–3.6 1.65–3.6 2.3–2.7 3–3.6

TPD (ns) 18 3 1.9 3.5 2

VIH (V) 2 to VCC + 0.5 2.0 to 4.6 1.2 to 4.6 2 to 7 2.2 to 4.6

VIL (V) 0.8 0.8 0.7 0.8 0.6

IOH (mA) 6 12 8 32 25

IOL (mA) 6 12 8 32 25

Introduction

AUP

TS Switch
AUC

SSTV
Little Logic

TVC

CBTLV

AHC

LVT

ABT

VME

GTLP
AVC

ALVT

ALVC

LVC

LV

CBT

ACL
FCT

HC CD4000

BCT

ALS

F

AS

LS

TTL

S

Growth

2005 1996 1985 1981 1964

Maturity Decline Obsolescence

Bipolar

CMOS

BiCMOS

FIGURE 8-27 Logic product life cycle. (Courtesy of Texas Instruments)

■ The 74ALB (Advanced Low-Voltage BiCMOS) series is designed for 3.3-V

bus-interface applications. It provides 25 mA output drive and propaga-

tion delays of only 2.2 ns.

■ The 74VME (VERSA Module Eurocard) series is designed to operate with

the standard VME bus technology.

Digital technicians and engineers can no longer assume that every IC in

a digital circuit, system, or piece of equipment is operating at 5 V, and they

must be prepared to deal with the necessary interfacing considerations in

mixed-voltage systems. The interfacing skills you learn in this chapter will

allow you to accomplish this, regardless of what develops as low-voltage sys-

tems become more common.

The continued development of low-voltage technology promises to bring

about a complete revolution from the original 5-V system, to mixed-voltage

systems, and finally to pure 3.3-V, 2.5-V, or even lower-voltage digital sys-

tems. To put all of this in perspective, Figure 8-27 shows Texas Instruments’

perception of the life cycle of the various logic families.

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 532

8-11 OPEN-COLLECTOR/OPEN-DRAIN OUTPUTS

Several digital devices must sometimes share the use of a single wire in order

to transmit a signal to some destination device, very much like several neigh-

bors sharing the same street. This means that several devices must have their

outputs connected to the same wire, which essentially connects them all to

each other. For all of the logic devices we have considered so far, this presents

a problem. Each output has two states, HIGH and LOW. When one output is

HIGH while the other is LOW and when they are connected together, we have

a HIGH/LOW conflict.Which one will win? Just like arm wrestling, the stronger

of the two wins. In this case, the transistor circuit whose output transistor has

the lowest “ON” resistance will pull the output voltage in its direction.

Figure 8-28 shows a generic block diagram of two logic devices with their

outputs connected to a common wire. If the two logic devices were CMOS,

then the ON resistance of the pull-up circuit that outputs the HIGH would be

approximately the same as the ON resistance of the pull-down circuit that

outputs the LOW.The voltage on the common wire will be about half the sup-

ply voltage. This voltage is in the indeterminate range for most CMOS series

and is unacceptable for driving a CMOS input. Furthermore, the current

through the two conducting MOSFETs will be much greater than normal, es-

pecially at higher values of and it can damage the ICs.

Conventional CMOS outputs should never be connected together.

If the two devices were TTL totem-pole outputs, as shown in Figure 8-29,

a similar situation would occur but with different results because of the

VDD,

SECTION 8-11/OPEN-COLLECTOR/OPEN-DRAIN OUTPUTS 533

REVIEW QUESTIONS 1. What are the two advantages of higher-density ICs?

2. What are the drawbacks?

3. What is the minimum HIGH voltage at a 74LVT input?

4. Which low-voltage series can work only with other low-voltage series ICs?

5. Which low-voltage series is fully electrically compatible with TTL?

Pull-up
ON

OFF Pull-down
ON

OFF

+V +V

Gate A Gate B

Driving wire
HIGH

Common
wire

Pulling wire
LOW

Lo
gic

 p
ro

be

In
de

te
rm

ina
te

FIGURE 8-28 Two outputs

contending for control of a

wire.

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 533

difference in output circuitry. Suppose that gate A output is in the HIGH

state (ON, OFF) and the gate B output is in the LOW state (OFF,

ON). In this situation, is a very low resistance load on and will

draw a current that is far greater than it is rated to handle.This current might

not damage or immediately, but over a period of time it can cause

overheating and deterioration in performance and eventual device failure.

Another problem caused by this relatively high current flowing through

is that it will produce a larger voltage drop across the transistor collector

emitter, making of between 0.5 and 1 V.This is greater than the allowable

(max). For these reasons:

TTL totem-pole outputs should never be tied together.

Open-Collector/Open-Drain Outputs
One solution to the problem of sharing a common wire among gates is to re-

move the active pull-up transistor from each gate’s output circuit. In this way,

none of the gates will ever try to assert a logic HIGH. TTL outputs that have

been modified in this way are called open-collector outputs. CMOS output

circuits that have been modified in this way are called open-drain outputs.

The output is taken at the drain of the N-channel pull-down MOSFET, which

is an open circuit (i.e., not connected to any other circuitry).

The TTL equivalent is called an open-collector output because the collec-

tor of the bottom transistor in the totem pole is connected directly to the out-

put pin and nowhere else, as shown in Figure 8-30(a). The open-collector

structure eliminates the pull-up transistors , , and . In the output LOW

state, is ON (has base current and is essentially a short between collector

and emitter); in the output HIGH state, is OFF (has no base current and is

essentially an open between collector and emitter). Because this circuit has

no internal way to pull the output HIGH, the circuit designer must connect an

external pull-up resistor to the output, as shown in Figure 8-30(b).

When is ON, it pulls the output voltage down to a LOW.When is OFF,

pulls the output of the gate HIGH. Note that without the pull-up resistor,

the output voltage would be indeterminate (floating).The value of the resistor

RP

Q4Q4

RP

Q4

Q4

R4D1Q3

VOL

VOL

Q4B

Q4BQ3A

Q3AQ4BQ4B

Q3BQ4AQ3A

534 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

FIGURE 8-29 Totem-pole

outputs tied together can

produce harmful current

through .Q4

GATE A

Q4A

Q3A

ON

130 �

+5 V

OFF

OFF

ON

Q4B

Q3B

GATE B

+5 V

X

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 534

is usually chosen to be This value is small enough so that, in the

HIGH state, the voltage dropped across it due to load current will not lower

the output voltage below the minimum . It is large enough so that, in the

LOW state, it will limit the current through to a value below .

When several open-collector or open-drain gates share a common con-

nection, as shown in Figure 8-31, the common wire is HIGH by default due to

the pull-up resistor. When any one (or more) of the gate outputs pulls it LOW,

the 5 V are dropped across and the common connection is in the LOWRP

IOL(max)Q4

VOH

10 kÆ.RP

SECTION 8-11/OPEN-COLLECTOR/OPEN-DRAIN OUTPUTS 535

FIGURE 8-30 (a) Open-collector TTL circuit; (b) with external pull-up resistor.

Output

RP
(external)

+5 V

Q4

–

Output

Q4

Q2

R2

+5 V

R3

Q1

R1

+

Operating states

Q4 ON → VO = VOL � 0.4 V
Q4 OFF → VO = VOH = +5 V

(b)(a)

VO

+5 V

10 k�

A

B

C

Output = A • B • C

A

B

C

Symbolizes the
wired-AND connection

74LS05 (open-collector)
or

74HC05 (open-drain)

FIGURE 8-31 Wired-AND

operation using open-

collector gates.

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 535

state. Because the common output is HIGH only when all the outputs are in

the HIGH state, connecting the outputs in this way essentially implements

the logic AND function.This is called a wired-AND connection.This is shown

symbolically by the dotted AND gate symbol. There is no actual AND gate

there. A wired-AND can be implemented only with open-collector TTL and open-
drain CMOS logic devices.

To summarize, the open-collector/open-drain circuits cannot actively

make their outputs HIGH; they can only pull them LOW. This feature can

be used to allow several devices to share the same wire for transmitting a

logic level to another device or to combine the outputs of the devices

effectively in a logic AND function. As we mentioned before, the purpose

of the active pull-up transistor in the output circuit of conventional gates

is to charge up the load capacitance rapidly and allow for fast switching.

Open-collector and open-drain devices have a much slower switching

speed from LOW to HIGH and consequently are not used in high-speed

applications.

Open-Collector/Open-Drain Buffer/Drivers
The applications of open-collector/drain outputs that we have described

were more prevalent in the early days of logic circuits than they are today. A

more common use of these circuits now is as a buffer/driver. A buffer or a

driver is a logic circuit that is designed to have a greater output current

and/or voltage capability than an ordinary logic circuit. They allow a weaker

output circuit to drive a heavy load. Open-collector/drain circuits offer some

unique flexibility as buffer/drivers.

Due to their high and specifications, the 7406 and 7407 are the

only standard TTL devices that are still being recommended for new designs.

The 7406 is an open-collector buffer/driver IC that contains six INVERTERs

with open-collector outputs that can sink up to 40 mA in the LOW state. In

addition, the 7406 can handle output voltages up to 30 V in the HIGH state.

This means that the output can be connected to a load that operates on a

voltage greater than 5 V. This is illustrated in Figure 8-32, where a 7406 is

used as a buffer between a 74LS112 flip-flop and an incandescent indicator

lamp that is rated at 24 V, 25 mA. The 7406 controls the lamp’s ON/OFF

status to indicate the state of FF output Q. Note that the lamp is powered

from and it acts as the pull-up resistor for the open-collector output.

When the 7406 output goes LOW, its output transistor sinks the

25 mA of lamp current supplied by the 24-V source, and the lamp is on. When

Q = 1,

+24 V,

VOHIOL

536 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

J

CLK

K

Q

Q

74LS112

*Transistor shown for
 illustrative purposes

7406

*

+24 V

24 V, 25 mA

+

–

VO

FIGURE 8-32 An open-

collector buffer/driver

drives a high-current,

high-voltage load.

TOCCMC08_0131725793.QXD 12/19/2005 4:27 PM Page 536

the 7406 output transistor turns off; there is no path for current, and

the lamp turns off. In this state, the full 24 V will appear across the OFF out-

put transistor so that which is lower than the 7406 maximum

rating.

Open-collector outputs are often used to drive indicator LEDs, as shown

in Figure 8-33(a). The resistor is used to limit the current to a safe value.

When the INVERTER output is LOW, its output transistor provides a low-

resistance path to ground for the LED current, so that the LED is on. When

the INVERTER output is HIGH, its output transistor is off, and there is no

path for LED current; in this state, the LED is off.

The 7407 is an open-collector, noninverting buffer with the same voltage

and current ratings as a 7406.

The 74HC05 is an open-drain hex inverter with 25 mA current sink capa-

bility. Figure 8-33(b) shows a way to interface a 74AHC74 D-FF to a control

relay. A control relay is an electromagnetic switch. The contacts close mag-

netically when the rated current flows through the coil. The 74HC05 can

handle the relay’s relatively high voltage and current so that the 74AHC74

output can turn the relay on and off.

VOH

VOH = 24 V,

Q = 0,

SECTION 8-11/OPEN-COLLECTOR/OPEN-DRAIN OUTPUTS 537

FIGURE 8-33 (a) An open-

collector output can be

used to drive an LED indi-

cator; (b) an open-drain

CMOS output.

FIGURE 8-34 IEEE/ANSI notation

for open-collector and open-drain

outputs.

+5 V

RS

7406

QD

Q

74HCT74

(a)

+12 V

74HC05

QD

Q

74AHC74

(b)

12 V
20 mA
Coil

IEEE/ANSI Symbol for Open-Collector/Drain Outputs
The new IEEE/ANSI symbology uses a distinctive notation to identify open-

collector/drain outputs. Figure 8-34 shows the standard IEEE/ANSI designa-

tion for an open-collector/drain output. It is an underlined diamond.

Although we will not normally use the complete IEEE/ANSI symbology in

this book, we will use this underlined diamond to indicate open-collector

and open-drain outputs.

74LS01

7406

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 537

8-12 TRISTATE (THREE-STATE) LOGIC OUTPUTS

The tristate configuration is a third type of output circuitry used in TTL and

CMOS families. It takes advantage of the high-speed operation of the pull-

up/pull-down output arrangement, while allowing outputs to be connected

together to share a common wire. It is called tristate because it allows three

possible output states: HIGH, LOW, and high-impedance (Hi-Z). The Hi-Z

state is a condition in which both the pull-up and the pull-down transistors

are turned OFF so that the output terminal is a high impedance to both

ground and the power supply Figure 8-35 illustrates these three states

for a simple inverter circuit.

Devices with tristate outputs have an enable input. It is often labeled E
for enable or OE for output enable.When as shown in Figures 8-35(a)

and (b), the circuit operates as a normal INVERTER because the HIGH logic

level at OE enables the output. The output will be either HIGH or LOW, de-

pending on the input level. When as shown in Figure 8-35(c), the cir-

cuit’s output is disabled. It goes into its Hi-Z state with both transistors in the

nonconducting state. In this state, the output terminal is essentially an open

circuit (not connected to anything).

OE = 0,

OE = 1,

+V.

538 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

REVIEW QUESTIONS 1. When does a HIGH/LOW conflict occur?

2. Why shouldn’t totem-pole outputs be tied together?

3. How do open-collector outputs differ from totem-pole outputs?

4. Why do open-collector outputs need a pull-up resistor?

5. What is the logic expression for the wired-AND connection of six 7406

outputs?

6. Why are open-collector outputs generally slower than totem-pole outputs?

7. What is the IEEE/ANSI symbol for open-collector outputs?

HIGH

OFF

ON
LOW

+V

OE = 1
enabled

(a)

LOW

ON

OFF
HIGH

OE = 1
enabled

(b)

Hi-Z

OFF

OFF
HIGH

or
LOW

OE = 0
disabled

(c)

+V +V

FIGURE 8-35 Three output conditions of tristate.

Advantage of Tristate
The outputs of tristate ICs can be connected together (share the use of a com-

mon wire) without sacrificing switching speed because a tristate output, when

enabled, operates as a totem pole for TTL or an active pull-up/pull-down

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 538

CMOS output with its associated low-impedance, high-speed characteristics. It

is important to realize, however, that when tristate outputs are connected to-

gether, only one of them should be enabled at one time. Otherwise, two active

outputs could fight for control of the common wire, as we discussed earlier,

causing damaging currents to flow and producing invalid logic levels.

In our discussion of open-collector/open-drain and tristate circuits, we

have referred to cases when the outputs of several devices must share a sin-

gle wire to transmit information to another device. The shared wire is re-

ferred to as a bus wire. An entire bus is made up of several wires that are

used to carry digital information between two or more devices that share the

use of the bus.

Tristate Buffers
A tristate buffer is a circuit used to control the passage of a logic signal from

input to output. Some tristate buffers also invert the signal as it goes

through. The circuits in Figure 8-35 can be called inverting tristate buffers.
Two commonly used tristate buffer ICs are the 74LS125 and the

74LS126. Both contain four noninverting tristate buffers like those shown in

Figure 8-36. The 74LS125 and 74LS126 differ only in the active state of their

ENABLE inputs. The 74LS125 allows the input signal A to reach the output

when while the 74LS126 passes the input when

Tristate buffers have many applications in circuits where several signals

are connected to common lines (buses). We will examine some of these ap-

plications in Chapter 9, but we can get the basic idea from Figure 8-37(a).

Here, we have three logic signals A, B, and C connected to a common bus line

through 74AHC126 tristate buffers.This arrangement permits us to transmit

any one of these signals over the bus line to other circuits by enabling the

appropriate buffer.

For example, consider the situation in Figure 8-37(b), where and

This disables the upper and lower buffers so that their out-

puts are in the Hi-Z state and are essentially disconnected from the bus.

This is symbolized by the X’s on the diagram. The middle buffer is enabled

so that its input, B, is passed through to its output and onto the bus, from

which it is routed to other circuits connected to the bus. When tristate out-

puts are connected together as in Figure 8-37, it is important to remember

that no more than one output should be enabled at one time. Otherwise,

two or more active totem-pole outputs would be connected, which could

EA = EC = 0.

EB = 1

E = 1.E = 0,

SECTION 8-12/TRISTATE (THREE-STATE) LOGIC OUTPUTS 539

xA

E

(a)

74LS125

xA

E

74LS126

E x

0
1

A
Hi-Z

(b)

E x

0
1

Hi-Z
A

FIGURE 8-36 Tristate

noninverting buffers.

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 539

produce damaging currents. Even if damage did not occur, this situation

would produce a signal on the bus that is a combination of more than one

signal. This is commonly referred to as bus contention. Figure 8-38 shows

the effect of enabling outputs A and B simultaneously. In Figure 8-37, when

inputs A and B are in opposite states, they contend for control of the bus.

The resulting voltage on the bus is an invalid logic state. In tristate bus sys-

tems, the designer must make sure that the enable signals do not allow bus

contention to occur.

Tristate ICs
In addition to tristate buffers, many ICs are designed with tristate outputs.

For example, the 74LS374 is an octal D-type FF register IC with tristate out-

puts. This means that it is an eight-bit register made up of D-type FFs whose

outputs are connected to tristate buffers. This type of register can be con-

nected to common bus lines along with the outputs from other, similar de-

vices to allow efficient transfer of data over the bus. We examine this tristate
data bus arrangement in Chapter 9. Other types of logic devices that are

available with tristate outputs include decoders, multiplexers, analog-to-

digital converters, memory chips, and microprocessors.

540 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

To other
circuits

(a)

A

B

C

EC

Common
bus

EB

EA

74AHC126

To other
circuits

(b)

A

B

C

EC

EB

EA

74AHC126

Disabled

Enabled

Disabled

+5 V

FIGURE 8-37 (a) Tristate

buffers used to connect sev-

eral signals to a common

bus; (b) conditions for

transmitting B to the bus.

V DD

0

V DD

0

V DD

V DD

2

0

Input A

Input B

Common
bus

FIGURE 8-38 If two en-

abled CMOS outputs are

connected together, the bus

will be at approximately

when the outputs are

trying to be different.

VDD/2

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 540

IEEE/ANSI Symbol for Tristate Outputs
The traditional logic symbology has no special notation for tristate outputs.

Figure 8-39 shows the notation used in the IEEE/ANSI symbology to indicate

a tristate output. It is a triangle that points downward. Although it is not part

of the traditional symbology, we will use this triangle to designate tristate

outputs throughout the remainder of the book.

SECTION 8-13/HIGH-SPEED BUS INTERFACE LOGIC 541

XA

E

74LS125

XA

E

74LS126FIGURE 8-39 IEEE/ANSI

notation for tristate outputs.

REVIEW QUESTIONS 1. What are the three possible states of a tristate output?

2. What is the state of a tristate output when it is disabled?

3. What is bus contention?

4. What conditions are necessary to transmit signal C onto the bus in

Figure 8-37?

5. What is the IEEE/ANSI designation for tristate outputs?

8-13 HIGH-SPEED BUS INTERFACE LOGIC

Many digital systems use a shared bus to transfer digital signals and data be-

tween the various components of the system. As you can see from our discus-

sion of CMOS technology development, systems are getting faster and faster.

Many of the newer high-speed logic series are designed specifically to inter-

face to a tristate bus system.The components in these series are primarily tri-

state buffers, bidirectional transceivers, latches, and high-current line drivers.

A significant distance often physically separates the components in these

systems. If this distance is more than about 4 inches, the bus wires between

them need to be viewed as a transmission line. Although transmission line

theory could fill up a whole book and is beyond the scope of this text, the gen-

eral idea is simple enough. Wires have inductance, capacitance, and resis-

tance, which means that for changing signals (ac), they have a characteristic

impedance that can affect a signal placed on one end and distort it by the

time it reaches the other end. At the high speeds we are discussing, the travel

time down the wire and the effects of reflected waves (like echoes) and ring-

ing become real concerns. There are several ways to combat the problems as-

sociated with transmission lines. In order to prevent reflected pulse waves,

the end of the bus must be terminated with a resistance that is equal to the

line impedance (about), as shown in Figure 8-40(a). This method is not

feasible because too much current is required to maintain logic level voltages

across such a low resistance. Another technique uses a capacitor to block the

dc current when the line is not changing, but effectively appears as just a re-

sistor to the rising or falling pulse. This method is shown in Figure 8-40(b).

Using a voltage divider, as in Figure 8-40(c), with resistances larger than

the line, impedance helps reduce reflections, but with hundreds of individual

bus lines, it obviously makes a heavy load on the system power supply. The

50 Æ

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 541

diode termination shown in Figure 8-40(d) simply clips off or clamps the over-

shoot/undershoot of the ringing caused by the reactive LC nature of the line.

Series termination at the source, as shown in Figure 8-40(e), slows down the

switching speed, which reduces the frequency limits of the bus but substan-

tially improves the reliability of the bus signals.

As you can see, none of these methods are ideal. IC manufacturers are de-

signing new series of logic circuits that overcome many of these problems.

Texas Instruments’ bus interface logic series offers new output circuits that

dynamically lower the output impedance during signal transition to provide

fast transition times, then raises the impedance during the steady state (like a

series termination) to damp any ringing and reduce reflections on the bus line.

The GTLP (Gunning Transceiver Logic Plus) series of bus interface devices is

specially designed to drive the relatively long buses that connect modules of a

large digital system. The backplane refers to the interconnections between

modules in the back of an industry standard, 19-inch rack mounting system.

Another major player in the high-speed bus-interface arena is known as low-
voltage differential signaling (LVDS). It uses two wires for each signal, and dif-

ferential signaling means it responds to the difference between the two wires.

Unwanted noise signals are usually present on both lines, and have no effect on

the difference between the two. To represent the two logic states, LVDS uses a

low voltage swing but switches polarity to clearly distinguish a 1 from a 0.

542 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

FIGURE 8-40 Bus termi-

nation techniques.
Line impedanceD L

Load

R

(a)

Line impedanceD L

R

(b)

C

Line impedanceD L

+VCC

(c)

Line impedanceD L

(d)

VCC

Line impedanceD L

(e)

R

Driver

R1

R2

REVIEW QUESTIONS 1. How close together do components need to be to ignore “transmission

line” effects?

2. What three characteristics of real wires add up to distort signals that

move through them?

3. What is the purpose of bus terminations?

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 542

8-14 THE ECL DIGITAL IC FAMILY

The TTL family uses transistors operating in the saturated mode. As a result,

their switching speed is limited by the storage delay time associated with a

transistor that is driven into saturation. Another bipolar logic family has

been developed that prevents transistor saturation, thereby increasing over-

all switching speed. This logic family is called emitter-coupled logic (ECL),
and it operates on the principle of current switching whereby a fixed bias

current less than is switched from one transistor’s collector to an-

other. Because of this current-mode operation, this logic form is also referred

to as current-mode logic (CML).

Basic ECL Circuit
The basic circuit for emitter-coupled logic is essentially the differential am-

plifier configuration of Figure 8-41(a).The supply produces an essentially

fixed current which remains around 3 mA during normal operation. This

current is allowed to flow through either or , depending on the voltage

level at In other words, this current switches between ’s collector and

’s collector as switches between its two logic levels of (logical 0

for ECL) and (logical 1 for ECL).The table in Figure 8-41(a) shows the

resulting output voltages for these two conditions at Two important

points should be noted: (1) and are the complements of each other, and

(2) the output voltage levels are not the same as the input logic levels.

The second point noted above is easily taken care of by connecting

and to emitter-follower stages (and), as shown in Figure 8-41(b).

The emitter followers perform two functions: (1) they subtract approximately

0.8 V from and to shift the output levels to the correct ECL logic lev-

els; and (2) they provide a very low output impedance (typically), which

provides for large fan-out and fast charging of load capacitance. This circuit

produces two complementary outputs: which is equal to and

which is equal to

ECL OR/NOR Gate
The basic ECL circuit of Figure 8-41(b) can be used as an INVERTER if the

output is taken at This basic circuit can be expanded to more than

one input by paralleling transistor with other transistors for the other in-

puts, as in Figure 8-42(a). Here, either or can cause the current to be

switched out of , resulting in the two outputs and being the

logical NOR and OR operations, respectively. This OR/NOR gate is symbol-

ized in Figure 8-42(b) and is the fundamental ECL gate.

ECL Characteristics
The latest ECL series by Motorola is called ECLin PS. This stands for ECL in

pico seconds. This logic series boasts a maximum gate propagation delay of

500 ps (that’s half a nanosecond!) and FF toggle rates of 1.4 GHz. Some de-

vices in this series have gate delays of only 100 ps at an average power of

5 mW. The following are the most important characteristics of the ECLin PS

series of Motorola’s MECL family of logic circuits:

1. The transistors never saturate, and so switching speed is very high. Typi-

cal propagation delay time is 360 ps, which makes ECL faster than any

TTL or CMOS family members.

VOUT2VOUT1Q2

Q3Q1

Q1

VOUT1.

VIN.VOUT2,

VIN,VOUT1,

7 Æ

VC2VC1

Q4Q3VC2

VC1

VC2VC1

VIN.

-0.8 V

-1.7 VVINQ2

Q1VIN.

Q2Q1

IE,

VEE

IC(sat)

SECTION 8-14/THE ECL DIGITAL IC FAMILY 543

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 543

2. The logic levels are nominally and for the logical 1 and 0,

respectively. ECLin PS is fully voltage-compatible with former series of

ECL.

3. Worst-case ECL noise margins are approximately 150 mV. These low

noise margins make ECL somewhat unreliable for use in heavy indus-

trial environments.

4. An ECL logic block usually produces an output and its complement. This

eliminates the need for inverters. High current complementary drive

-1.7 V-0.8 V

544 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

R2
300 �

VC2

VBB
(–1.3 V)

Q2

R1
300 �

VC1

VIN Q1

IE ≈ 3 mA R3

1 k�

VEE (–5.2 V)

VIN

–1.7 V
(logic 0)

–0.8 V
(logic 1)

VC1 = 0 V
VC2 = –0.9 V Q2 conducts

VC1 = –0.9 V
VC2 = 0 V Q1 conducts

Outputs

Operating States

300 � 300 �

VC2VC1

VIN
Q2Q1 –1.3 V

Q3

1 k�

–5.2 V

VOUT 1 = VIN

1.5 k�

–5.2 V

Q4

VOUT 2 = VIN

1.5 k�

–5.2 V

Input/output
logic levels
"0" = –1.7 V
"1" = –0.8 V

(a)

(b)

FIGURE 8-41 (a) Basic ECL circuit; (b) with addition of emitter followers.

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 544

also makes ECL an excellent line driver for twisted-pair cable (such as

telephone wires).

5. Fan-out is typically around 25, owing to the low-impedance emitter–

follower outputs.

6. Typical power dissipation is 25 mW, somewhat higher than the 74AS series.

7. The total current flow in an ECL circuit remains relatively constant, re-

gardless of its logic state. This helps to maintain an unvarying current

drain on the power supply even during switching transitions. Thus, no

noise spikes will be generated internally, like those produced by TTL and

CMOS switching.

Table 8-11 shows how ECL compares with the important TTL logic fam-

ilies. The ECL family of ICs does not include a wide range of general-

purpose logic devices, as do the TTL and CMOS families. ECL does include

complex, special-purpose ICs used in applications such as high-speed data

transmission, high-speed memories, and high-speed arithmetic units. The

relatively low noise margins and high power drain of ECL are disadvantages

compared with TTL and CMOS. Another drawback is its negative power-

supply voltage and logic levels, which are not compatible with those of the

other logic families. This makes it difficult to use ECL devices in conjunc-

tion with TTL and/or CMOS ICs; special level-shifting circuits must be con-

nected between ECL devices and the TTL (or CMOS) devices on both input

and output.

SECTION 8-14/THE ECL DIGITAL IC FAMILY 545

FIGURE 8-42 (a) ECL NOR/OR circuit; (b) logic symbol.

Emitter-
follower

Emitter-
follower

A B

(a)

A + B

A + B

Q3 –1.3 V

–5.2 V

VOUT 1 = A + B

Q2Q1

VOUT 2 = A + B

A

B

(b)

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 545

546 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

8-15 CMOS TRANSMISSION GATE (BILATERAL SWITCH)

A special CMOS circuit that has no TTL or ECL counterpart is the trans-
mission gate or bilateral switch, which acts essentially as a single-pole,

single-throw switch controlled by an input logic level. This transmission

gate passes signals in both directions and is useful for digital and analog

applications.

Figure 8-43(a) is the basic arrangement for the bilateral switch. It con-

sists of a P-MOSFET and an N-MOSFET in parallel so that both polarities of

input voltage can be switched. The CONTROL input and its inverse are used

to turn the switch on (closed) and off (open). When the CONTROL is HIGH,

both MOSFETs are turned on and the switch is closed. When CONTROL is

LOW, both MOSFETs are turned off and the switch is open. Ideally, this cir-

cuit operates like an electromechanical relay. In practice, however, it is not a

perfect short circuit when the switch is closed; the switch resistance is

typically In the open state, the switch resistance is very large, typi-

cally which for most purposes is an open circuit.The symbol in Figure

8-43(b) is used to represent the bilateral switch.

This circuit is called a bilateral switch because the input and output ter-

minals can be interchanged. The signals applied to the switch input can be

either digital or analog signals, provided that they stay within the limits of 0

to volts.VDD

1012
 Æ,

200 Æ.

RON

TABLE 8-11 High-speed logic comparison.

Worst-Case Maximum

Logic PD (mW) Noise Margin Clock Rate

Family tpd (ns) 100 kHz (mV) (MHz)

74AS 1.7 8 300 200

74F 3.8 6 300 100

74AHC 3.7 0.006 550 130

74AVC 2 0.006 250 *

74ALVT 2.4 0.33 400 *

74ALB 2.2 1 400 *

ECL 0.3 25 150 1400

*Flip-flops not available in this series.

<

REVIEW QUESTIONS 1. True or false:

(a) ECL obtains high-speed operation by preventing transistor

saturation.

(b) ECL circuits usually have complementary outputs.

(c) The noise margins for ECL circuits are larger than TTL noise

margins.

(d) ECL circuits do not generate noise spikes during state transitions.

(e) ECL devices require less power than standard TTL.

(f) ECL can easily be used with TTL.

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 546

SECTION 8-15/CMOS TRANSMISSION GATE (BILATERAL SWITCH) 547

Figure 8-44(a) shows the traditional logic diagram for a 4016 quad bilat-

eral switch IC, which is also available in the 74HC series as a 74HC4016. The

IC contains four bilateral switches that operate as described above. Each

switch is independently controlled by its own control input. For example, the

ON/OFF status of the top switch is controlled by input Because the

switches are bidirectional, either switch terminal can serve as input or out-

put, as the labeling indicates.

CONTA.

Control

D

Input

D

S

S

G

N

P

G

Output

Control

Input Output

Control input

0 V
+VDD

Switch

Open (OFF)
Closed (ON)

(b)(a)

FIGURE 8-43 CMOS bilateral switch (transmission gate).

FIGURE 8-44 The 4016/74HC4016

quad bilateral switch.
4016/74HC4016

+VDD

D

OUT/INDIN/OUTD

CONTD

C

OUT/INCIN/OUTC

CONTC

B

OUT/INBIN/OUTB

CONTB

A

OUT/INAIN/OUTA

CONTA

VSS

EXAMPLE 8-12 Describe the operation of the circuit in Figure 8-45.

Solution

Here, two of the bilateral switches are connected so that a common analog in-

put signal can be switched to either output X or output Y, depending on the

logic state of the OUTPUT SELECT input. When OUTPUT SELECT is LOW,

the upper switch is closed and the lower one is open so that is connectedVIN

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 547

548 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

to output X. When OUTPUT SELECT is HIGH, the upper switch is open and

the lower one is closed so that is connected to output Y. Figure 8-45(b)

shows some typical waveforms. Note that for proper operation, must be

within the range 0 V to

The 4016/74HC4016 bilateral switch can switch only input voltages that

lie between 0 V and and so it could not be used for signals that were

both positive and negative relative to ground. The 4316 and 74HC4316 ICs

are quad bilateral switches that can switch bipolar analog signals. These

devices have a second power-supply terminal called which can be

made negative with respect to ground. This permits input signals that can

range from to For example, with and the

analog input signal can be anywhere from to +5 V.-5 V

VDD = +5 V,VEE = -5 VVDD.VEE

VEE,

VDD,

+VDD.

VIN

VIN

FIGURE 8-45 Example 8-12: 74HC4016 bilateral switches used to switch an analog

signal to two different outputs.

+5 V

0 V

0 V

+5 V

0 V

5 V

0 V

5 V

(b)(a)

OUTPUT
SELECT

74HC04

74HC4016

OUTPUT
SELECT

+

–

VIN

VIN

X

Y

10 k�

X

Y

10 k�

REVIEW QUESTIONS 1. Describe the operation of a CMOS bilateral switch.

2. True or false: There is no TTL bilateral switch.

8-16 IC INTERFACING

Interfacing means connecting the output(s) of one circuit or system to the in-

put(s) of another circuit or system that has different electrical characteristics.

Often a direct connection cannot be made because of the difference in the

electrical characteristics of the driver circuit that is providing the output sig-

nal and the load circuit that is receiving the signal. An interface circuit is con-

nected between the driver and the load as shown in Figure 8-46. Its function is

to take the driver output signal and condition it so that it is compatible with

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 548

SECTION 8-16/IC INTERFACING 549

the requirements of the load. In digital systems this is pretty simple, because

each device is either on or off. The interface must ensure that when the

driver outputs a HIGH, the load receives a signal it perceives to be HIGH;

and, when the driver outputs a LOW, the load receives a signal it perceives to

be LOW.

The simplest and most desirable interface circuit between a driver and a

load is a direct connection. Of course, devices that are in the same series are

designed to interface directly with each other.Today, however, many systems

involve mixed families, mixed voltages, and mixed series. In these systems

the challenge is to make sure that the driver is able to consistently activate

the load in both the LOW and HIGH states.

For any case such as shown in Figure 8-46(a), where of the driver is

enough greater than the (min) of the load and of the driver is enough
less than the (max) of the load, there is no need for an interface circuit

other than a direct connection. “How much greater?” and “How much less?”

are questions related to how much noise is expected in the system. Recall

that the noise margins (and) are measures of this difference be-

tween output and input characteristics. (Refer back to Figure 8-4.) The min-

imum acceptable noise margin for any system is a judgment call that must

be made by the system designer. Whenever the or is determined to

be too small (or even negative), then an interface circuit is necessary in or-

der to ensure that the driver and load can work together. This situation is

depicted in Figure 8-46(b) To summarize this:

Driver Load

(min)

6 VIL(max)VOL(max) + VNL

7 VIH(min) + VNHVOH

VNLVNH

VNLVNH

VIL

VOLVOH

VOH

DRIVER

DRIVER

INTERFACE LOAD

LOAD

VOHmin
VIHmin

VNH

VNL

VILmax

VOLmax

?

VOHmin

VIHmax

VILmax

VIHmin

?

HIGHS are high enough
 and
LOWS are low enough

NO INTERFACE NEEDED:
DIRECT CONNECT

(ASSUMING CURRENT LOADING
 ACCEPTABLE)

HIGHS not high enough
 or
LOWS not low enough

REQUIRES INTERFACE CIRCUIT

(a)

(b)

FIGURE 8-46 Interfacing

logic ICs: (a) no interface

needed; (b) requires

interface.

TOCCMC08_0131725793.QXD 12/19/2005 4:27 PM Page 549

550 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

We should also note that, especially when using older families, the cur-

rent (as opposed to voltage) characteristics of the driver and load must also

match.The of the driver must be able to source enough current to supply

the necessary of the load, and the of the driver must be able to sink

enough current to accommodate the from the load.This topic was covered

in Section 8-5 when we discussed fan-out. Most modern logic devices have

high enough output drive and low enough input current to make loading a

rare problem. However, this is very important when interfacing to external

input/output devices such as motors, lights, or heaters.To summarize current

loading requirements:

Driver Load

Table 8-12 lists some nominal values for a number of different families

and series of digital devices. Within each family there will be exceptions to

these listed values, and so in practice it is important that you look up the data

sheet values for the specific ICs you are working with. For the sake of con-

venience we will use these values in the examples that follow.

Interfacing 5-V TTL and CMOS
When interfacing different types of ICs, we must check that the driving de-

vice can meet the current and voltage requirements of the load device.

Examination of Table 8-12 indicates that the input current values for

CMOS are extremely low compared with the output current capabilities of

any TTL series. Thus, TTL has no problem meeting the CMOS input current

requirements.

There is a problem, however, when we compare the TTL output voltages

with the CMOS input voltage requirements. Table 8-9 shows that

of every TTL series is too low when compared with the require-

ment of the 4000B, 74HC, and 74AC series. For these situations, something

must be done to raise the TTL output voltage to an acceptable level for

CMOS.

The most common solution to this interface problem is shown in Figure

8-47, where the TTL output is connected to with a pull-up resistor. The

presence of the pull-up resistor causes the TTL output to rise to approxi-

mately 5 V in the HIGH state, thereby providing an adequate CMOS input

voltage level. This pull-up resistor is not required if the CMOS device is a

74HCT or a 74ACT because these series are designed to accept TTL outputs

directly, as Table 8-9 shows.

+5 V

VIH(min)

VOH(min)

7 IIL(total)IOL(max)

7 IIH(total)IOH(max)

IIL

IOLIIH

IOH

TABLE 8-12 Input/output currents for standard devices with a supply voltage of 5 V.

CMOS TTL

Parameter 4000B 74HC/HCT 74AC/ACT 74AHC/AHCT 74 74LS 74AS 74ALS 74F

IIH(max) 1 A 1 A 1 A 1 A 40 A 20 A 20 A 20 A 20 A

IIL(max) 1 A 1 A 1 A 1 A 1.6 mA 0.4 mA 0.5 mA 100 A 0.6 mA

IOH(max) 0.4 mA 4 mA 24 mA 8 mA 0.4 mA 0.4 mA 2 mA 400 mA 1.0 mA

IOL(max) 0.4 mA 4 mA 24 mA 8 mA 16 mA 8 mA 20 mA 8 mA 20 mA

mmmmm

mmmmmmmm

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 550

CMOS Driving TTL
Before we consider the problem of interfacing CMOS outputs to TTL inputs, it

will be helpful to review the CMOS output characteristics for the two logic

states. Figure 8-48(a) shows the equivalent output circuit in the HIGH state.

The of the P-MOSFET connects the output terminal to (remember, the

N-MOSFET is off).Thus, the CMOS output circuit acts like a source with a

source resistance of The value of typically ranges from 100 to

Figure 8-48(b) shows the equivalent output circuit in the LOW state. The

of the N-MOSFET connects the output terminal to ground (remember,

the P-MOSFET is off). Thus, the CMOS output acts as a low resistance to

ground; that is, it acts as a current sink.

RON

1000 Æ.RONRON.

VDD

VDDRON

SECTION 8-16/IC INTERFACING 551

10 k�

TTL CMOS

+5 VFIGURE 8-47 External

pull-up resistor is used

when TTL drives CMOS.

HIGH state LOW state

+VDD

IOH

+

–

RON

(a)

VOH

+VDD

RON
+

–

VOL

IOL

(b)

FIGURE 8-48 Equivalent

CMOS output circuits for

both logic states.

CMOS Driving TTL in the HIGH State
Table 8-9 shows that CMOS outputs can easily supply enough voltage ()

to satisfy the TTL input requirement in the HIGH state (). Table 8-12

shows that CMOS outputs can supply more than enough current () to

meet the TTL input current requirements (). Thus, no special considera-

tion is needed for the HIGH state.

CMOS Driving TTL in the LOW State
Table 8-12 shows that TTL inputs have a relatively high input current in the

LOW state, ranging from to 2 mA. The 74HC and 74HCT series can

sink up to 4 mA, and so they would have no trouble driving a single TTL load

of any series.The 4000B series, however, is much more limited. Its low ca-

pability is not sufficient to drive even one input of the 74 or 74AS series.The

74AHC series has output drive comparable to that of the 74LS series.

IOL

100 mA

IIH

IOH

VIH

VOH

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 551

For the situation in which a driver cannot supply enough current to the

load, the interface solution is to select a buffer that has input specifications

that are compatible with the driver and enough output drive current to supply

the load. Figure 8-49(a) shows an example of this situation. The 4001B’s maxi-

mum output current is not enough to drive five ALS inputs. It is able to drive

the 74HC125 input, which in turn can drive the other inputs. Another possible

solution is shown in Figure 8-49(b), where the load is divided up among multi-

ple 4001 series parts such that no output needs to drive more than three loads.

552 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

4001B

4001

74HC125

5 ALS INPUTS

(a)

74 ALS LOADS

4001

(b)

+5 V

FIGURE 8-49 (a) Using an

HC series interface IC. (b)

Using a similar gate to

share the load.

EXAMPLE 8-13 A 74HC output is driving three 7406 inputs. Is this a good design?

Solution

NO! The 74HC00 can sink 4 mA, but the 7406 input is 1.6 mA. Total load

current when LOW is Too much load current.1.6 mA * 3 = 4.8 mA

IIL

EXAMPLE 8-14 A 4001B output is driving three 74LS inputs. Is this a well-designed circuit?

Solution

NO! The 4001B can sink 0.4 mA, but each 74LS input accounts for

. . . Too much load current.0.4 mA * 3 = 1.2 mA.

REVIEW QUESTIONS 1. What must be done to interface a standard TTL output to a 74AC or a

74HC input? Assume .

2. What is usually the problem with CMOS driving TTL?

VDD = +5 V

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 552

8-17 MIXED-VOLTAGE INTERFACING

As we discussed in Section 8-10, many new logic devices operate on less than

5 V. In many situations, these devices need to communicate with each other.

In this section we will look specifically at how to interface logic devices that

operate on different voltage standards.

Low-Voltage Outputs Driving High-Voltage Loads
In some situations, the of the driver is just slightly lower than the load

requires to recognize it as a HIGH. This situation was discussed when inter-

facing TTL outputs to 5-V CMOS inputs. The only interface component

needed was a pull-up resistor, which will cause the TTL output voltage

to be boosted above the 3.3-V level when the output is HIGH.

When there is a need for a more substantial shift in voltage because the

driver and load operate on different power supply voltages, a voltage-level
translator interface circuit is required. An example of this is a low-voltage

(1.8-V) CMOS device driving a 5-V CMOS input.The driver can put out a max-

imum of only 1.8 V as a HIGH, and the load gate requires 3.33V for a HIGH.

We need an interface that can accept 1.8-V logic levels and translate them to

5-V CMOS levels.The simplest way to accomplish this is with a buffer that has

an open drain, such as the 74LVC07 shown in Figure 8-50(a). Notice that the

pull-up resistor is connected to the 5-V supply, while the power supply for the

interface buffer is 1.8 V. Another solution is to utilize a dual-supply-level

translator circuit such as the 74AVC1T45, as shown in Figure 8-50(b). This

device uses two different power supply voltages, one for the inputs and the

other for the outputs, and translates between the two levels.

10-kÆ

VOH

SECTION 8-17/MIXED-VOLTAGE INTERFACING 553

+5 V

+5 V
+1.8 V

1.8 V

74AVC08
74HC08

74LVC07

Vcc
1.8 V

VccA
1.8 V

VccB
5 V

5 V

74AVC08

74AVC1T45 74HC08

(b)

(a)

DRIVER LOADINTERFACE

FIGURE 8-50 (a) Using an

open drain with pullup to

high voltage. (b) Using a

voltage-level translator.

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 553

High-Voltage Outputs Driving Low-Voltage Loads
When logic circuits that operate on a higher voltage supply must drive other

logic circuits that operate on a lower voltage supply, the output voltage of

the driver often exceeds the safe limits that the load gate can handle. In

these situations, a dual-supply-voltage-level translator can be used just as it

was in Figure 8-50(b). Another common solution to this problem is to inter-

face them using a buffer from a series that can withstand the higher input

voltage. Figure 8-51 demonstrates this with a 5-V CMOS part driving a 1.8-V

AUC series input. The highest voltage the AUC input (load gate) can handle

is 3.6 V. However, a 74LVC07A can handle up to 5.5 V on its input without

damaging it, even though it is operating on 1.8 V. Figure 8-51 shows how we

can use the higher voltage tolerance of the 74LVC07A to translate a 5-V logic

level down to a 1.8-V logic level.

At this point you may be wondering, “Why in the world would anyone

choose to use such an assortment of incompatible parts?” The answer lies in

considering larger systems and trying to balance performance and cost. In a

computer system, for example, you may have a 2.5-V CPU, a 3.3-V memory

module, and a 5-V hard drive controller all working on the same mother

board. The low-voltage components may be necessary to obtain the desired

performance, but the 5-V hard drive may be the least expensive or the only

type available. The driver and load devices may not be standard logic gates

at all, but may be a VLSI component in our system. Using the data sheet for

those devices, we must look up the output characteristics and interface them

using the techniques we have shown. As logic standards continue to evolve,

it is important that we can make systems work using any of the diverse com-

ponents available to us.

554 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

FIGURE 8-51 (a) A low-

voltage series with 5-V

tolerant inputs as an

interface.

1.8 V1.8 V5 V

74HC08 74LVC07A
BUFFER

74AUC08

5-V TOLERANT
INPUT

REVIEW QUESTIONS 1. What is the function of an interface circuit?

2. True or false: All CMOS outputs can drive TTL in the HIGH state.

3. True or false: Any CMOS output can drive any single TTL input.

4. Which CMOS series can TTL drive without a pull-up resistor?

5. How many 7400 inputs can be driven from a 74HCT00 output?

8-18 ANALOG VOLTAGE COMPARATORS

Another very useful device for interfacing to digital systems is the analog
voltage comparator. It is especially useful in systems that contain both ana-

log voltages as well as digital components. An analog voltage comparator

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 554

compares two voltages. If the voltage on the () input is greater than the

voltage on the () input, the output is HIGH. If the voltage on the () input

is greater than the voltage on the () input, the output is LOW. The inputs to

a comparator can be thought of as analog inputs, but the output is digital be-

cause it will always be either HIGH or LOW. For this reason, the comparator

is often referred to as a one-bit analog-to-digital (A/D) converter. We will

examine A/D converters in detail in Chapter 10.

An LM339 is an analog linear IC that contains four voltage comparators.

The output of each comparator is an open-collector transistor just like an

open-collector TTL output. can range from 2 to 36 V but is usually set

slightly greater than the analog input voltages that are being compared. A

pull-up resistor must be connected from the output to the same supply that

the digital circuits use (normally 5 V).

VCC

+

--

+

SECTION 8-18/ANALOG VOLTAGE COMPARATORS 555

EXAMPLE 8-15 Suppose that an incubator must have an emergency alarm to warn if the tem-

perature exceeds a dangerous level.The temperature-measuring device is an

LM34 that puts out a voltage directly proportional to the temperature. The

output voltage goes up 10 mV per degree F. The digital system alarm must

sound when the temperature exceeds Design a circuit to interface the

temperature sensor to the digital circuit.

Solution

We need to compare the voltage from the sensor with a fixed threshold volt-

age. First, we must calculate the proper threshold voltage. We want the com-

parator output to go HIGH when the temperature exceeds The volt-

age out of the LM34 at will be

This means that we must set the () input pin of the comparator to 1.0 V and

connect the LM34 to the () input. In order to create a 1.0-V reference volt-

age, we can use a voltage-divider circuit and choose a bias current of

The LM339 input current will be relatively negligible because it will draw

less than This means that must total In this example,

we can operate everything from a power supply. Figure 8-52 shows the+5 V

10 kÆ.R1 + R21 mA.

100 mA.

+

-

100°F # 10 mV/°F = 1.0 V

100°F

100°F.

100°F.

+5 V

4.0 V

+

–

R1
8 k�

1.0 V
R2

2 k�

LM339

+5 V+5 V

Rp
10 k�

Digital
circuit

Over_Temp

LM34

+5 V

10 mV/ºF

+

–

+

–

FIGURE 8-52 A

temperature-limit detector

using an LM339 analog

voltage comparator.

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 555

complete circuit. The calculations are as follows:

 R1 = 10 kÆ - R2 = 10 kÆ - 2 kÆ = 8 kÆ

 = 1.0 V(10 kÆ)>5 V = 2 kÆ

 R2 = VR2
(R1 + R2)>VCC

 VR2 = VCC
#

R2

R1 + R2

556 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

REVIEW QUESTIONS 1. What causes the output of a comparator to go to the HIGH logic state?

2. What causes the output of a comparator to go to the LOW logic state?

3. Is an LM339 output more similar to a TTL totem-pole or an open-collector

output?

8-19 TROUBLESHOOTING

A logic pulser is a testing and troubleshooting tool that generates a short-

duration pulse when manually actuated, usually by pressing a push button.

The logic pulser shown in Figure 8-53 has a needle-shaped tip that is touched

to the circuit node that is to be pulsed. The logic pulser is designed so that it

senses the existing voltage level at the node and produces a voltage pulse in

the opposite direction. In other words, if the node is LOW, the logic pulser

produces a narrow positive-going pulse; if the node is HIGH, it produces a

narrow negative-going pulse.

The logic pulser is used to change the logic level at a circuit node mo-

mentarily, even though the output of another device may be connected to

that same node. In Figure 8-53, the logic pulser is contacting node X, which

is also connected to the output of the NAND gate.The logic pulser has a very

low output impedance (typically or less), so that it can overcome the

NAND gate’s output and can change the voltage at the node.The logic pulser,

however, cannot produce a voltage pulse at a node that is shorted directly to

ground or (e.g., through a solder bridge).VCC

2 Æ

Logic
pulser

Button

Indicator lights

+5 V

Logic
probe

J

K

Q

CLK

Pulse LED

Logic
probe

Pulse LED flashes

Pulse LED will flash.
Logic levels will change state
each time pulser is activated.

FIGURE 8-53 A logic pulser can inject a pulse at any node that is not shorted

directly to ground or VCC.

TOCCMC08_0131725793.QXD 16/01/2006 09:07 PM Page 556

Using a Logic Pulser and Probe to Test a Circuit
A logic pulser can be used to inject a pulse or a series of pulses manually

into a circuit in order to test the circuit’s response. A logic probe is almost al-

ways used to monitor the circuit’s response to the logic pulser. In Figure 8-53,

the J-K flip-flop’s toggle operation is being tested by applying pulses from

the logic pulser and monitoring Q with the logic probe.This logic pulser/logic

probe combination is very useful for checking the operation of a logic device

while it is wired into a circuit. Note that the logic pulser is applied to the cir-

cuit node without disconnecting the output of the NAND gate that is driving

that node. When the probe is placed on the same node as the pulser, the logic

level indicators appear to remain unchanged (LOW in this example), but the

yellow pulse indicator flashes once each time the pulser button is pressed.

When the probe is placed on the Q output, the pulse LED flashes once (indi-

cating a transition), and the logic level indicators change state each time the

pulser button is pushed.

Finding Shorted Nodes
The logic pulser and logic probe can be used to check for nodes that are

shorted directly to ground or as shown in Figure 8-54. When you touch a

logic pulser and a logic probe to the same node and press the logic pulser

button, the logic probe should indicate the occurrence of a pulse at the node.

If the probe indicates a constant LOW and the pulse LED does not flash, the

node is shorted to ground, as shown in Figure 8-54(a). If the probe indicates

a constant HIGH and the pulse LED does not flash, the node is shorted to

as shown in Figure 8-54(b).

VCC

VCC,

SECTION 8-19/TROUBLESHOOTING 557

Pulser

(a)

(b)

12 2

21

Logic probe

Pulse indicator does not flash

Low indicator lit

Dead short
to GND

VCC

Pulser Logic probe
Pulse indicator does not flash

High indicator lit

Dead short
to VCC

FIGURE 8-54 A logic pulser and a logic probe can be used to trace shorted nodes.

TOCCMC08_0131725793.QXD 16/01/2006 09:07 PM Page 557

SUMMARY
1. All digital logic devices are similar in nature but very much different re-

garding the details of their characteristics. An understanding of the

terms used to describe these characteristics is important and allows us to

compare and contrast the performance of devices. By understanding the

capabilities and limitations of each type of device, we can intelligently

combine devices to take advantage of each device’s strengths in building

reliable digital systems.

2. The TTL family of logic devices has been in use for over 30 years.The cir-

cuitry uses bipolar transistors. This family offers many SSI logic gates,

and MSI devices. Numerous series of similarly numbered devices have

been developed because advances in technology have offered improved

characteristics.

3. When you are connecting devices together, it is vital to know how many

inputs a given output can drive without compromising reliability. This is

referred to as fan-out.

4. Open-collector and open-drain outputs can be wired together to imple-

ment a wired-AND function.Tristate outputs can be wired together to al-

low numerous devices to share a common data path known as a bus. In

such a case, only one device is allowed to assert a logic level on the bus

(i.e., drive the bus) at any one time.

5. The fastest logic devices are from a family that uses emitter-coupled logic

(ECL). This technology also uses bipolar transistors but is not as widely

used as TTL due to inconvenient input/output characteristics.

6. MOSFET transistors can also be used to implement logic functions. The

main advantage of MOS logic is lower power and greater packing density.

7. The use of complementary MOSFETs has produced CMOS logic families.

CMOS technology has captured the market due to its very low power and

competitive speed.

8. The ongoing need to reduce power and size has led to several new series

of devices that operate on 3.3 V and 2.5 V.

9. Logic devices that use various technologies cannot always be directly

connected together and operate reliably. The voltage and current char-

acteristics of inputs and outputs must be considered and precautions

taken to ensure proper operation.

10. CMOS technology allows a digital system to control analog switches

called transmission gates. These devices can pass or block an analog sig-

nal, depending on the digital logic level that controls it.

11. Analog voltage comparators offer another bridge between analog signals

and digital systems.These devices compare analog voltages and output a

digital logic level based on which voltage is greater.They allow an analog

system to control a digital system.

558 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

REVIEW QUESTIONS 1. What is the function of a logic pulser?

2. True or false: A logic pulser will produce a voltage pulse at any node.

3. True or false: A logic pulser can force a node LOW or HIGH for extended

periods of time.

4. How does a logic probe respond to the logic pulser?

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 558

PROBLEMS 559

IMPORTANT TERMS
fan-out

noise immunity

noise margin

current sourcing

current sinking

DIP

lead pitch

surface mount

technology

TTL

totem pole

current-sinking

transistor (pull-

down transistor)

current-sourcing

transistor (pull-up

transistor)

floating inputs

power-supply

decoupling

MOSFETs

N-MOS

P-MOS

CMOS

electrostatic

discharge (ESD)

latch-up

open-collector output

wired-AND

buffer/driver

tristate

bus contention

low-voltage

differential

signaling (LVDS)

emitter-coupled logic

(ECL)

transmission gate

(bilateral switch)

interfacing

voltage-level

translator

analog voltage

comparator

logic pulser

PROBLEMS
SECTIONS 8-1 TO 8-3

8-1.*Two different logic circuits have the characteristics shown in Table 8-13.

(a) Which circuit has the best LOW-state dc noise immunity? The best

HIGH-state dc noise immunity?

(b) Which circuit can operate at higher frequencies?

(c) Which circuit draws the most supply current?

*Answers to problems marked with an asterisk can be found in the back of the text.

TABLE 8-13
Circuit A Circuit B

Vsupply (V) 6 5

VIH(min) (V) 1.6 1.8

VIL(max) (V) 0.9 0.7

VOH(min) (V) 2.2 2.5

VOL(max) (V) 0.4 0.3

tPLH (ns) 10 18

tPHL (ns) 8 14

PD (mW) 16 10

8-2. Look up the IC data sheets, and use maximum values to determine

and for one gate on each of the following TTL ICs.

(See Example 8-2 in Section 8-3.)

(a)*7432

(b)*74S32

(c) 74LS20

(d) 74ALS20

(e) 74AS20

tpd(avg)PD(avg)

B

B

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 559

8-3. A certain logic family has the following voltage parameters:

(a)*What is the largest positive-going noise spike that can be

tolerated?

(b) What is the largest negative-going noise spike that can be

tolerated?

DRILL QUESTION

8-4.*For each statement, indicate the term or parameter being described.

(a) Current at an input when a logic 1 is applied to that input

(b) Current drawn from the source when all outputs are LOW

(c) Time required for an output to switch from the 1 to the 0 state

(d) The size of the voltage spike that can be tolerated on a HIGH in-

put without causing indeterminate operation

(e) An IC package that does not require holes to be drilled in the

printed circuit board

(f) When a LOW output receives current from the input of the circuit

it is driving

(g) Number of different inputs that an output can safely drive

(h) Arrangement of output transistors in a standard TTL circuit

(i) Another term that describes pull-down transistor

(j) Range of values allowed for TTL

(k) and for the 74ALS series

(l) and for the 74ALS series

(m) When a HIGH output supplies current to a load

SECTION 8-4

8-5.*(a) From Table 8-6, determine the noise margins when a 74LS device

is driving a 74ALS input.

(b) Repeat part (a) for a 74ALS driving a 74LS.

(c) What will be the overall noise margin of a logic circuit that uses

74LS and 74ALS circuits in combination?

(d) A certain logic circuit has Which TTL series

can be used with this circuit?

SECTIONS 8-5 AND 8-6

8-6. DRILL QUESTION

(a) Define fan-out.

(b)*In which type of gates do tied-together inputs always count as a

single input load in the LOW state?

(c)*Define “floating” inputs.

(d) What causes current spikes in TTL? What undesirable effect can

they produce? What can be done to reduce this effect?

VIL(max) = 450 mV.

VOL(max)VIL(max)

VIH(min)VOH(min)

VCC

Q4

VCC

 VOH1min2 = 4.9 V VOL1max2 = 0.1 V

 VIH1min2 = 3.5 V VIL1max2 = 1.0 V

560 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

B

B

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 560

(e) When a TTL output drives a TTL input, where does come

from? Where does go?

8-7. Use Table 8-12 to find the fan-out for interfacing the first logic family

to drive the second.

(a)*74AS to 74AS

(b)*74F to 74F

(c) 74AHC to 74AS

(d) 74HC to 74ALS

8-8. Refer to the data sheet for the 74LS112 J-K flip-flop.

(a)*Determine the HIGH and LOW load current at the J and K
inputs.

(b) Determine the HIGH and LOW load current at the clock and clear

inputs.

(c) How many 74LS112 clock inputs can the output of one 74LS112

drive?

8-9.*Figure 8-55(a) shows a 74LS112 J-K flip-flop whose output is required

to drive a total of eight standard TTL inputs. Because this exceeds the

fan-out of the 74LS112, a buffer of some type is needed. Figure

8-55(b) shows one possibility using one of the NAND gates from

the 74LS37 quad NAND buffer, which has a much higher fan-out than

the 74LS112. Note that is used because the NAND is acting as an

INVERTER. Refer to the data sheet for the 74LS37.

(a) Determine its maximum fan-out to standard TTL.

(b) Determine its maximum sink current in the LOW state.

Q

IOH

IOL

PROBLEMS 561

J

K

Q

CLK

Q

J

K

Q

CLK

Q

74LS112

74LS37
buffer

Q
8 74XX

74LS112

(a) (b)

STD TTL

STD TTL
8 74XX

FIGURE 8-55 Problems 8-9 and 8-10.

8-10. Buffer gates are generally more expensive than ordinary gates, and

sometimes there are unused ordinary gates available that can be used

to solve a loading problem such as that in Figure 8-55(a). Show how

74LS00 NAND gates can be used to solve this problem.

8-11.*Refer to the logic diagram of Figure 8-56, where the 74LS86 exclusive-

OR output is driving several 74LS20 inputs. Determine whether the

fan-out of the 74LS86 is being exceeded, and explain. Repeat using all

74AS devices. Use Table 8-7.

B

B

D

B

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 561

8-12. How long does it take for the output of a typical 74LS04 to change

states in response to a positive-going transition at its input?

8-13.*For the circuit of Figure 8-56, determine the longest time it will take

for a change in the A input to be felt at output W. Use all worst-case

conditions and maximum values of gate propagation delays. (Hint:
Remember that NAND gates are inverting gates.) Repeat using all

74ALS devices.

8-14.*(a) Figure 8-57 shows a 74LS193 counter with its active-HIGH master

reset input activated by a push-button switch. Resistor R is used

to hold MR LOW while the switch is open. What is the maximum

value that can be used for R?

(b) Repeat part (a) for the 74ALS193.

562 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

F
W

X

Y

Z

R

All NAND gates
are 74LS20s

H

J
K

L
M

C
D

— 74LS86

A

B

1

4

FIGURE 8-56 Problems 8-11 and 8-13.

FIGURE 8-57 Problem 8-14.

+5 V

R

MR

74LS193

B

C

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 562

8-15. Figure 8-58(a) shows a circuit used to convert a 60-Hz sine wave to a

60-pps signal that can reliably trigger FFs and counters. This type of

circuit might be used in a digital clock.

(a) Explain the circuit operation.

(b)*A technician is testing this circuit and observes that the 74LS14

output stays LOW. He checks the waveform at the INVERTER in-

put, and it appears as shown in Figure 8-58(b). Thinking that the

INVERTER is faulty, he replaces the chip and observes the same

results. What do you think is causing the problem, and how can it

be fixed? (Hint: Examine the waveform carefully.)vx

PROBLEMS 563

FIGURE 8-58 Problem 8-15.

FIGURE 8-59 Problem 8-16.

110 V AC
60 Hz

6.3 V AC

(a)

4.7 k�

4.7 k�

x
74LS14 60 pps

vx

1 V

4 V

(b)

8-16. For each waveform in Figure 8-59, determine why it will not reliably

trigger a 74LS112 flip-flop at its CLK input.

8-17. A technician breadboards a logic circuit for testing. As she tests the

circuit’s operation, she finds that many of the FFs and counters are

triggering erratically. Like any good technician, she checks the

line with a dc meter and reads 4.97 V, which is acceptable for TTL. She

then checks all circuit wiring and replaces each IC one by one, but the

problem persists. Finally she decides to observe on the scope and

sees the waveform shown in Figure 8-60. What is the probable cause of

the noise on ? What did the technician forget to include when she

breadboarded the circuit?

VCC

VCC

VCC

1.6 V

0 V

1 ms

(a) (b)

100 ns

10 ns

4 V

0

4 V

0

35 ns

25 ns
10 ns

(c)

VCC 4.97 V

1.3 V

FIGURE 8-60 Problem 8-17.

C, T

T

T

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 563

SECTIONS 8-7 TO 8-10

8-18. Which type of MOSFET is turned on by placing

(a) 5 V on the gate and 0 V on the source?

(b) 0 V on the gate and 5 V on the source?

8-19.*Which of the following are advantages that CMOS generally has over

TTL?

(a) Greater packing density

(b) Higher speed

(c) Greater fan-out

(d) Lower output impedance

(e) Simpler fabrication process

(f) More suited for LSI

(g) Lower (below 1 MHz)

(h) Transistors as only circuit element

(i) Lower input capacitance

(j) Less susceptible to ESD

8-20. Which of the following operating conditions will probably result in

the lowest average for a CMOS logic system? Explain.

(a) switching frequency

(b)

(c)

8-21.*The output of each INVERTER on a 74LS04 IC is driving two

74HCT08 inputs. The input to each INVERTER is LOW over 99 per-

cent of the time. What is the maximum power that the 74LS04 chip is

dissipating?

8-22. Use the values from Table 8-9 to calculate the HIGH-state noise mar-

gin when a 74HC gate drives a standard 74LS input.

8-23. What will cause latch-up in a CMOS IC? What might happen in this

condition? What precautions should be taken to prevent latch-up?

8-24. Refer to the data sheet for the 74HC20 NAND gate IC. Use maximum

values to calculate and . Compare with the values

calculated in Problem 8-2 for TTL.

SECTIONS 8-11 AND 8-12

8-25. DRILL QUESTION

(a) Define wired-AND.

(b) What is a pull-up resistor? Why is it used?

(c) What types of TTL outputs can safely be tied together?

(d) What is bus contention?

8-26. The 74LS09 TTL IC is a quad two-input AND with open-collector out-

puts. Show how 74LS09s can be used to implement the operation

8-27.*Determine the logic expression for output X in Figure 8-61.

x = A # B # C # D # E # F # G # H # I # J # K # M.

tpd(avg)PD(avg)

fmax = 10 kHzVDD = 10 V,

fmax = 10 kHzVDD = 5 V,

fmax = 1 MHzVDD = 5 V,

PD

PD

564 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

B

B

C

B

D

B

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 564

8-28. Which of the following would be most likely to destroy a TTL totem-

pole output while it is trying to switch from HIGH to LOW?

(a) Tying the output to

(b) Tying the output to ground

(c) Applying an input of 7 V

(d) Tying the output to another TTL totem-pole output

8-29.*Figure 8-62(a) shows a 7406 open-collector inverting buffer used to

control the ON/OFF status of an LED to indicate the state of FF out-

put Q. The LED’s nominal specification is at

and

(a) What voltage will appear at the 7406 output when

(b) Choose an appropriate value for the series resistor for proper

operation.

Q = 0?

IF(max) = 30 mA.

IF = 20 mA,VF = 2.4 V

+5 V

PROBLEMS 565

+5 V

1 k�

+5 V

X

RP

74LS01

A

B

C

D

E

F

FIGURE 8-61 Problem 8-27.

+5 V

74LS112

J

K

Q

Q

(a) (b)

RS7406

+12 V

Relay
coil

7406

Q

FIGURE 8-62 Problems 8-29 and 8-30.

8-30. In Figure 8-62(b), the 7406 output is used to switch current to a relay.

(a)*What voltage will be at the 7406 output when

(b)*What is the largest current relay that can be used?

(c) How can we modify this circuit to use a 7407?

Q = 0?

C

D

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 565

8-31. Figure 8-63 shows how two tristate buffers can be used to construct a

bidirectional transceiver that allows digital data to be transmitted in

either direction (A to B, or B to A). Describe the circuit operation for

the two states of the DIRECTION input.

566 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

FIGURE 8-64 Problem 8-32.

FIGURE 8-63 Problem 8-31.

A B
74LS125

Direction

74LS125

8-32. The circuit of Figure 8-64 is used to provide the enable inputs for the

circuit of Figure 8-37.

(a) Determine which of the data inputs (A, B, or C) will appear on the

bus for each combination of inputs x and y.

(b) Explain why the circuit will not work if the NOR is changed to an

XNOR.

8-33.*What type of counter circuit from Chapter 7 could control the enables

in Figure 8-37 so that only one buffer is on at any time, and the buffers

are enabled sequentially?

SECTION 8-14

8-34. DRILL QUESTIONS

(a) Which logic family must be used if maximum speed is of utmost

importance?

(b) Which logic family uses the most power?

(c) Which TTL series is the fastest?

(d) Which pure CMOS series is the fastest?

(e) Which family has the best speed–power product?

8-35. Name two radical differences between ECL outputs and either TTL or

CMOS outputs.

x

y
To EA

To EB

To EC

N

B

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 566

SECTION 8-15

8-36.*Determine the approximate values of for both states of the

CONTROL input in Figure 8-65.

VOUT

PROBLEMS 567

8-37.*Determine the waveform at output X in Figure 8-66 for the given in-

put waveforms. Assume that for the bilateral switch.RON L 200 Æ

VOUT

22 k�

74HC4016

CONTROL

+5 V

68 k�

74HC4016

74HC4016
10 k�

eIN

RL = 10 k�

X

C

0 V

eIN

5 V

0 V

2 V

C

8-38.*Determine the gain of the op-amp circuit of Figure 8-67 for the two

states of the GAIN SELECT input. This circuit shows the basic princi-

ple of digitally controlled signal amplification.

FIGURE 8-65 Problem 8-36.

FIGURE 8-66 Problem 8-37.

–

+

100 k�

GAIN
SELECT

74HC4016

VOUT

VIN

100 k�

100 k�

FIGURE 8-67 Problem 8-38.

N, D, C

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 567

SECTION 8-16

8-39. DRILL QUESTION

(a) Which CMOS series can have its inputs driven directly from a TTL

output?

(b) What is the function of a level translator? When is it used?

(c) Why is a buffer required between some CMOS outputs and TTL

inputs?

(d) True or false: Most CMOS outputs have trouble supplying the TTL

HIGH-state input current.

8-40. Refer to Figure 8-68(a), where a 74LS TTL output, Q, is driving a

CMOS INVERTER operating at The waveforms at Q and

X appear as shown in Figure 8-68(b). Which of the following is a pos-

sible reason why X stays HIGH?

(a) The 10-V supply is faulty.

(b) The pull-up resistor is too large.

(c) The 74LS112 output breaks down at well below 10 V and main-

tains a 5.5-V level in the HIGH state. This is in the indeterminate

range for the CMOS input.

(d) The CMOS input is loading down the TTL output.

VDD = 10 V.

568 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

FIGURE 8-68 Problem 8-40.

8-41. (a)*Use Table 8-12 to determine how many 74AS inputs can typically

be driven by a 4000B output.

(b) Repeat part (a) for a 74HC output.

8-42. Figure 8-69 is a logic circuit that was poorly designed. It contains at

least eight instances where the characteristics of the ICs have not

been properly taken into account. Find as many of these as you can.

+5 V J Q

+5 V

5.5 V

10 V

0

K

CLK

74LS112

Q

X

(a)

(b)

RP

+10 V

4049B
CMOS

*For 4049B at VDD = 10 V:
VIL(max) = 3 V
VIH(min) = 7 V

X

B

T

T

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 568

8-43. Repeat Problem 8-42 with the following changes in the circuit:

■ Each TTL IC is replaced with its 74LS equivalent.

■ The 4001B is replaced with a 74HCT02.

8-44.*Use Table 8-12 to explain why the circuit of Figure 8-70 will not work

as it is. How can the problem be corrected?

PROBLEMS 569

FIGURE 8-69 Problems 8-42 and 8-43.

FIGURE 8-70 Problem 8-44.

J

KCLR

A

CLK

J

KCLR

B

CLK

J

KCLR

C

CLK

J

KCLR

D

CLK

J

KCLR

E

CLK

J

KCLR

F

CLK

74S112 74S112 74S112

B Q

A2 OS

A1 Q

+5 V

tp = 1 ms

74121

4001B

7486 7400

7400

A

F

B

C

D

E

From
74S112
outputs

Not
used

X

Y

A

B

C

D

E

F

+5 V

To
all
ICs

10
 Fμ

Power
supply

+5 V @ 150 mA

1

2

A

B

C

3

74HC00 7402

7402

2

3

5

6

1

4

X

Y

T

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 569

SECTION 8-18

8-45. The gas tank on your car has a fuel-level sending unit that works like

a potentiometer. A float moves up and down with the gasoline level,

changing the variable resistor setting and producing a voltage pro-

portional to the gas level. A full tank produces 12 V, and an empty

tank produces 0 V. Design a circuit using an LM339 that turns on the

“Fuel Low” indicator lamp when the voltage level from the sending

unit gets below 0.5 V.

8-46.*The over-temperature comparator circuit in Figure 8-52 is modified by

replacing the LM34 temperature sensor with an LM35 that outputs 10

mV per degree Celsius.The alarm must still be activated (HIGH) when

the temperature is over which is equal to approximately

Recalculate the values of and to complete the modification.

SECTION 8-19

8-47. The circuit in Figure 8-71 uses a 74HC05 IC that contains six open-

drain INVERTERs. The INVERTERs are connected in a wired-AND

arrangement. The output of the NAND gate is always HIGH, regard-

less of the inputs A–H. Describe a procedure that uses a logic probe

and pulser to isolate this fault.

R2R1

38°C.100°F,

570 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

FIGURE 8-71 Problem 8-47. 74HC05

+5 V

A

B

C

D

E

F

X

H

74HC00

3.3 k�

D

D

T

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 570

8-48. The circuit of Figure 8-53 has a solder bridge to ground somewhere

between the output of the NAND gate and the input of the FF.

Describe a procedure for a test that could be performed to indicate

that the fault is on the circuit board and probably not in either the

NAND or the FF ICs.

8-49.*In Figure 8-46, a logic probe indicates that the lower end of the pull-

up resistor is stuck in the LOW state.Which of the following is the pos-

sible fault?

(a) The TTL gate’s current-sourcing transistor is open.

(b) The TTL gate’s current-sinking transistor has a collector–emitter

short.

(c) There is a break in the connection from to the CMOS gate.

MICROCOMPUTER APPLICATION

8-50.*In Chapter 5, we saw how a microprocessor (MPU), under software

control, transfers data to an external register. The circuit diagram is

repeated in Figure 8-72. Once the data are in the register, they are

stored there and used for whatever purpose they are needed.

Sometimes, each individual bit in the register has a unique function.

For example, in automobile computers, each bit could represent the

status of a different physical variable being monitored by the MPU.

One bit might indicate when the engine temperature is too high.

Another bit might signal when oil pressure is too low. In other appli-

cations, the bits in the register are used to produce an analog output

that can be used to drive devices requiring analog inputs that have

many different voltage levels.

RP

PROBLEMS 571

A15
A14
A13
A12
A11
A10
A9
A8

D3
D2
D1
D0

WR

1

2

D

CLK

X3

D

CLK

X2

D

CLK

X1

D

CLK

X0

FIGURE 8-72 Problem 8-50.

T

T

C, N

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 571

ANSWERS TO SECTION REVIEW QUESTIONS
SECTION 8-1

1. See text. 2. False 3. False; is the difference between and

. 4. Current sinking: an output actually receives (sinks) current from

the input of the circuit it is driving. Current sourcing: an output supplies (sources)

current to the circuit it is driving. 5. DIP 6. J-lead 7. Its leads are bent.

8. No

VIH(min)

VOH(min)VNH

572 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

+12 V

+12 V

–12 V

74HC4016
quad

bilateral
switch

INA

INB

INC

IND

CONTA
X3

X2

X1

X0

CONTB

CONTC

CONTD

OUTA

OUTB

OUTC

OUTD

20 k�

10 k�

40 k�

80 k�

160 k�

–

+

VOUT

From
register in

Figure 8-72

OP AMP

FIGURE 8-73 Problem 8-50.

TABLE 8-14 Problem 8-50.
Time (�s) MPU Data

0 0000

10 0010

20 0100

30 0111

40 1010

50 1110

60 1111

70 1111

80 1110

90 1100

100 1000

Figure 8-73 shows how we can use the MPU to generate an analog

voltage by taking the register data from Figure 8-72 and using them to

control the inputs to a summing amplifier. Assume that the MPU is ex-

ecuting a program that is transferring a new set of data to the register

every according to Table 8-14. Sketch the resulting waveform at

VOUT.

10 ms

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 572

SECTION 8-2

1. True 2. LOW 3. Fast switching times, low power dissipation; large current

spike during switching from LOW to HIGH 4. 5. 6. No multiple-

emitter transistor

SECTION 8-4

1. (a) 74AS (b) 74S, 74LS (c) standard 74 (d) 74S, 74LS, 74AS, 74ALS

(e) 74ALS 2. All three can operate at 40 MHz, but the 74ALS193 will use less

power. 3. , , respectively

SECTION 8-5

1. ’s ON-state resistance and 2. 12 3. Its output voltages may not

remain in the allowed logic 0 and 1 ranges. 4. Two; five

SECTION 8-6

1. LOW 2. Connect to through a resistor; connect to another used in-

put 3. Connect to ground; connect to another used input 4. False; only in the

LOW state 5. Connecting small RF capacitors between and ground near

each TTL IC to filter out voltage spikes caused by rapid current changes during out-

put transitions from LOW to HIGH

SECTION 8-8

1. CMOS uses both P- and N-channel MOSFETs. 2. One 3. Six

SECTION 8-9

1. 74C, HC, HCT, AHC, AHCT 2. 74ACT, HCT, AHCT 3. 74C, HC/HCT,

AC/ACT, AHC/AHCT 4. BiCMOS 5. Maximum permissible propagation delay;

input capacitance of each load 6. See text. 7. CMOS 8. (a) True (b) False

(c) False (d) False (e) True (f) False

SECTION 8-10

1. More circuits on chip; higher operating speed 2. Can’t handle higher voltages:

increased power dissipation can overheat the chip. 3. Same as standard TTL: 2.0 V

4. 74ALVC, 74LV 5. 74LVT

SECTION 8-11

1. When two or more circuit outputs are connected together 2. Damaging cur-

rent can flow; exceeds . 3. Current-sinking transistor ’s collector

is unconnected (there is no). 4. To produce a level 5.

6. No active pull-up transistor 7. See Figure 8-34.

SECTION 8-12

1. HIGH, LOW, Hi-Z 2. Hi-Z 3. When two or more tristate outputs tied to a

common bus are enabled at the same time 4. 5. See

Figure 8-39.

SECTION 8-13

1. Less than 4 inches 2. Resistance, capacitance, inductance 3. To reduce

reflections and reactive ringing on the line.

SECTION 8-14

1. (a) True (b) True (c) False (d) True (e) False (f) False

EC = 1EA = EB = 0,

A B C D E FVOHQ3

Q4VOL(max)VOL

VCC

1-kÆ+VCC

VOL(max)Q4

Q5Q4

Q6Q3

ANSWERS TO SECTION REVIEW QUESTIONS 573

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 573

SECTION 8-15

1. The logical level at the control input controls the open/closed status of a

bidirectional switch that can pass analog signals in either direction. 2. True

SECTION 8-16

1. A pull-up resistor must be connected to at the TTL output. 2. CMOS

or may be too low.

SECTION 8-17

1. It takes the output from a driver circuit and conditions it so that it is compatible

with the input requirements of the load. 2. True 3. False; for example, the

4000B series cannot sink of a 74 or a 74AS device. 4. 74HCT and ACT

5. Two

SECTION 8-18

1. 2. 3. Open-collector

SECTION 8-19

1. It injects a voltage pulse of selected polarity at a node that is not shorted to

or ground. 2. False 3. False 4. The pulse LED flashes once each time the

pulser is activated.

VCC

V (-)
7 V (+)V (+)

7 V (-)

IIL

IOL

IOH+5 V

574 CHAPTER 8/INTEGRATED-CIRCUIT LOGIC FAMILIES

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 574

TOCCMC08_0131725793.QXD 12/17/2005 3:58 PM Page 575

9-1 Decoders

9-2 BCD-to-7-Segment

Decoder/Drivers

9-3 Liquid-Crystal Displays

9-4 Encoders

9-5 Troubleshooting

9-6 Multiplexers (Data

Selectors)

9-7 Multiplexer Applications

9-8 Demultiplexers (Data

Distributors)

9-9 More Troubleshooting

9-10 Magnitude Comparator

9-11 Code Converters

■ OUTLINE

M S I L O G I C C I R C U I T S

C H A P T E R 9

9-12 Data Busing

9-13 The 74ALS173/HC173

Tristate Register

9-14 Data Bus Operation

9-15 Decoders Using HDL

9-16 The HDL 7-Segment

Decoder/Driver

9-17 Encoders Using HDL

9-18 HDL Multiplexers and

Demultiplexers

9-19 HDL Magnitude

Comparators

9-20 HDL Code Converters

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 576

577

■ OBJECTIVES
Upon completion of this chapter, you will be able to:
■ Analyze and use decoders and encoders in various types of circuit

applications.

■ Compare the advantages and disadvantages of LEDs and LCDs.

■ Utilize the observation/analysis technique for troubleshooting digital

circuits.

■ Understand the operation of multiplexers and demultiplexers by

analyzing several circuit applications.

■ Compare two binary numbers by using the magnitude comparator

circuit.

■ Understand the function and operation of code converters.

■ Cite the precautions that must be considered when connecting digital

circuits using the data bus concept.

■ Use HDL to implement the equivalent of MSI logic circuits.

■ INTRODUCTION
Digital systems obtain binary-coded data and information that are continu-

ously being operated on in some manner. Some of the operations include:

(1) decoding and encoding, (2) multiplexing, (3) demultiplexing, (4) compari-
son, (5) code conversion, and (6) data busing. All of these operations and oth-

ers have been facilitated by the availability of numerous ICs in the MSI

(medium-scale-integration) category.

In this chapter, we will study many of the common types of MSI de-

vices. For each type, we will start with a brief discussion of its basic

operating principle and then introduce specific ICs. We then show how

they can be used alone or in combination with other ICs in various

applications.

9-1 DECODERS

A decoder is a logic circuit that accepts a set of inputs that represents a

binary number and activates only the output that corresponds to that in-

put number. In other words, a decoder circuit looks at its inputs, deter-

mines which binary number is present there, and activates the one output

that corresponds to that number; all other outputs remain inactive. The

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 577

diagram for a general decoder is shown in Figure 9-1 with N inputs and M
outputs. Because each of the N inputs can be 0 or 1, there are possible

input combinations or codes. For each of these input combinations, only

one of the M outputs will be active (HIGH); all the other outputs are LOW.

Many decoders are designed to produce active-LOW outputs, where only

the selected output is LOW while all others are HIGH. This situation is

indicated by the presence of small circles on the output lines in the decoder

diagram.

Some decoders do not utilize all of the possible input codes but only

certain ones. For example, a BCD-to-decimal decoder has a four-bit input

code and ten output lines that correspond to the ten BCD code groups 0000

through 1001. Decoders of this type are often designed so that if any of

the unused codes are applied to the input, none of the outputs will be

activated.

In Chapter 7, we saw how decoders are used in conjunction with counters

to detect the various states of the counter. In that application, the FFs in the

counter provided the binary code inputs for the decoder. The same basic de-

coder circuitry is used no matter where the inputs come from. Figure 9-2

shows the circuitry for a decoder with three inputs and outputs. It uses

all AND gates, and so the outputs are active-HIGH. Note that for a given in-

put code, the only output that is active (HIGH) is the one corresponding to

the decimal equivalent of the binary input code (e.g., output goes HIGH

only when).

This decoder can be referred to in several ways. It can be called a 3-line-
to-8-line decoder because it has three input lines and eight output lines. It can

also be called a binary-to-octal decoder or converter because it takes a three-

bit binary input code and activates one of the eight (octal) outputs corre-

sponding to that code. It is also referred to as a 1-of-8 decoder because only 1

of the 8 outputs is activated at one time.

CBA = 1102 = 610

O6

23
= 8

2N

2N

578 CHAPTER 9/MSI LOGIC CIRCUITS

FIGURE 9-1 General

decoder diagram. O0

O1

O2.
.
.

A0

A1

A2

AN–1

.

.

.

OM–1

Only one output
is HIGH for each
input code

M
outputs

N
inputs

2N

input
codes

Decoder

ENABLE Inputs
Some decoders have one or more ENABLE inputs that are used to control the

operation of the decoder. For example, refer to the decoder in Figure 9-2 and

visualize having a common ENABLE line connected to a fourth input of each

gate. With this ENABLE line held HIGH, the decoder will function normally,

and the A, B, C input code will determine which output is HIGH. With

ENABLE held LOW, however, all of the outputs will be forced to the LOW

state regardless of the levels at the A, B, C inputs.Thus, the decoder is enabled

only if ENABLE is HIGH.

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 578

Figure 9-3(a) shows the logic diagram for the 74ALS138 decoder. By ex-

amining this diagram carefully, we can determine exactly how this decoder

functions. First, notice that it has NAND gate outputs, so its outputs are

active-LOW. Another indication is the labeling of the outputs as ,

and so on; the overbar indicates active-LOW outputs.

The input code is applied at , and , where is the MSB. With

three inputs and eight outputs, this is a 3-to-8 decoder or, equivalently, a 1-of-8

decoder.

Inputs , and are separate enable inputs that are combined in the

AND gate. In order to enable the output NAND gates to respond to the input

code at , this AND gate output must be HIGH.This will occur only when

and . In other words, and are active-LOW, is active-

HIGH, and all three must be in their active states to activate the decoder out-

puts. If one or more of the enable inputs is in its inactive state, the AND output

will be LOW, which will force all NAND outputs to their inactive HIGH state

regardless of the input code. This operation is summarized in the truth table

in Figure 9-3(b). Recall that x represents the don’t-care condition.

The logic symbol for the 74ALS138 is shown in Figure 9-3(c). Note how

the active-LOW outputs are represented and how the enable inputs are rep-

resented. Even though the enable AND gate is shown as external to the

decoder block, it is part of the IC’s internal circuitry. The 74HC138 is the

high-speed CMOS version of this decoder.

E3E2E1E3 = 1E1 = E2 = 0

A2A1A0

E3E1, E2

A2A0A2, A1

O7, O6, O5

SECTION 9-1/DECODERS 579

C

0
0
0
0
1
1
1
1

B

0
0
1
1
0
0
1
1

A

0
1
0
1
0
1
0
1

O0

1
0
0
0
0
0
0
0

O1

0
1
0
0
0
0
0
0

O2

0
0
1
0
0
0
0
0

O3

0
0
0
1
0
0
0
0

O4

0
0
0
0
1
0
0
0

O5

0
0
0
0
0
1
0
0

O6

0
0
0
0
0
0
1
0

O7

0
0
0
0
0
0
0
1

A
(LSB)

B

C
(MSB)

0

1

2

3

4

5

6

7

O0 = CBA

O1 = CBA

O2 = CBA

O3 = CBA

O4 = CBA

O5 = CBA

O6 = CBA

O7 = CBA

FIGURE 9-2 Three-line-to-

8-line (or 1-of-8) decoder.

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 579

580 CHAPTER 9/MSI LOGIC CIRCUITS

FIGURE 9-3 (a) Logic

diagram for the 74ALS138

decoder; (b) truth table;

(c) logic symbol.

O1O2O3O4O5O6O7

(a)

O0

E2E1 E3
A1 A0

(MSB)
A2

E1

0
1
X
X

Outputs

Respond to input code A2A1A0
Disabled – all HIGH
Disabled – all HIGH
Disabled – all HIGH

E2

0
X
1
X

E3

1
X
X
0

(b)

74ALS138
1-of-8 decoder

E

A2 A1 A0

E2E1 E3

O7 O6 O5 O4 O3 O2 O1 O0

(c)

EXAMPLE 9-1 Indicate the states of the 74ALS138 outputs for each of the following sets of

inputs.

(a)

(b)

Solution

(a) With the decoder is disabled and all of its outputs will be in their

inactive HIGH state. This can be determined from the truth table or by

following the input levels through the circuit logic.

(b) All of the enable inputs are activated, so the decoding portion is en-

abled. It will decode the input code to activate output .

Thus, will be LOW and all other outputs will be HIGH.O3

O30112 = 310

E2 = 1,

E3 = 1, E2 = E1 = 0, A2 = 0, A1 = A0 = 1

E3 = E2 = 1, E1 = 0, A2 = A1 = 1, A0 = 0

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 580

Solution

(a) The five-bit code has two distinct portions. The and bits determine

which one of the decoder chips to will be enabled, while de-

termine which output of the enabled chip will be activated. With

only has all of its enable inputs activated. Thus, re-

sponds to the code and activates its output, which has

been renamed .Thus, the input code 01101, which is the binary equiv-

alent of decimal 13, will cause output to go LOW, while all others stay

HIGH.

(b) To enable both and must be HIGH. Thus, all input codes rang-

ing from 11000 () to 11111 () will activate .This corresponds to

outputs to .

BCD-to-Decimal Decoders
Figure 9-5(a) shows the logic diagram for a 7442 BCD-to-decimal decoder. It

is also available as a 74LS42 and a 74HC42. Each output goes LOW only

when its corresponding BCD input is applied. For example, will go LOW

only when inputs ; will go LOW only when .

For input combinations that are invalid for BCD, none of the outputs will be

activated. This decoder can also be referred to as a 4-to-10 decoder or a 1-of-10
decoder. The logic symbol and the truth table for the 7442 are also shown in

DCBA = 1000O8DCBA = 0101

O5

O31O24

Z431102410

A3A4Z4,

O13

O13

O5A2A1A0 = 101

Z2Z2A4A3 = 01,

A2A1A0Z4Z1

A3A4

SECTION 9-1/DECODERS 581

EXAMPLE 9-2 Figure 9-4 shows how four 74ALS138s and an INVERTER can be arranged to

function as a 1-of-32 decoder. The decoders are labeled to for easy ref-

erence, and the eight outputs from each one are combined into 32 outputs.

’s outputs are to ’s outputs to are renamed to re-

spectively; ’s outputs are renamed to ; and ’s are renamed to

. A five-bit input code will activate only one of these 32 out-

puts for each of the 32 possible input codes.

(a) Which output will be activated for ?

(b) What range of input codes will activate the chip?Z4

A4A3A2A1A0 = 01101

A4 A3 A2 A1A0O31

O24Z4O23O16Z3

O15,O8O7O0O7; Z2O0Z1

Z4Z1

+5 V

E

1 2 3

0 1 2 3 4 5 6 7

E

1 2 3

0 1 2 3 4 5 6 7

E

1 2 3

0 1 2 3 4 5 6 7

E

1 2 3

0 1 2 3 4 5 6 7

A4
(MSB)

A3

A0
A1
A2

O7O0

A0 A1

74ALS138
Z1

O15O8

A0 A1

74ALS138
Z2

O23O16

A0 A1

74ALS138
Z3

O31O24

A0 A1

74ALS138
Z4

A2 A2 A2 A2

FIGURE 9-4 Four

74ALS138s forming a

1-of-32 decoder.

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 581

the figure. Note that this decoder does not have an enable input. In Problem

9-7, we will see how the 7442 can be used as a 3-to-8 decoder, with the D in-

put used as an enable input.

BCD-to-Decimal Decoder/Driver
The TTL 7445 is a BCD-to-decimal decoder/driver. The term driver is added

to its description because this IC has open-collector outputs that can operate

at higher current and voltage limits than a normal TTL output. The 7445’s

outputs can sink up to 80 mA in the LOW state, and they can be pulled up to

30 V in the HIGH state. This makes them suitable for directly driving loads

such as indicator LEDs or lamps, relays, or dc motors.

Decoder Applications
Decoders are used whenever an output or a group of outputs is to be acti-

vated only on the occurrence of a specific combination of input levels. These

input levels are often provided by the outputs of a counter or a register.

582 CHAPTER 9/MSI LOGIC CIRCUITS

FIGURE 9-5 (a) Logic diagram for the 7442 BCD-to-decimal decoder; (b) logic

symbol; (c) truth table.

D

L
L
L
L

L
L
L
L

H
H
H
H

H
H
H
H

(c)

C

L
L
L
L

H
H
H
H

L
L
L
L

H
H
H
H

B

L
L
H
H

L
L
H
H

L
L
H
H

L
L
H
H

A

L
H
L
H

L
H
L
H

L
H
L
H

L
H
L
H

O0
O1
O2
O3

O4
O5
O6
O7

O8
O9
None
None

None
None
None
None

Active Output

H = HIGH Voltage Level
L = LOW Voltage Level

Inputs

A

B

C

D

BCD
input
code

(a)

D C B A

7442
1-of-10 decoder

O7 O6 O5 O4 O3 O2 O1 O0O8O9

(b)

O4

O3

O2

O1

O0

O8

O7

O6

O5

O9

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 582

When the decoder inputs come from a counter that is being continually

pulsed, the decoder outputs will be activated sequentially, and they can be

used as timing or sequencing signals to turn devices on or off at specific

times. An example of this operation is shown in Figure 9-6 using the 74ALS163

counter and the 7445 decoder/driver described above.

SECTION 9-1/DECODERS 583

(a)

(b)

Note open-collector symbol

7445
74ALS163

1

1 pps
CLK

ENT RCO

B
C

D
-t

o-
de

ci
m

al
de

co
de

r/
dr

iv
er

ENP

CLR

LOAD

D QD

QC

QB

QA

C

B

A

D

C

B

A

O9

O8

O7

O6

O5

O4

O3

O2

O1

O0

+24 V

+24 VK2

K1

CLOCK

24 V

24 V

0 V

0 V

K1

energized
K2

energized

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

O3

O6

FIGURE 9-6 Example 9-3: counter/decoder combination used to provide timing

and sequencing operations.

EXAMPLE 9-3 Describe the operation of the circuit in Figure 9-6(a).

Solution

The counter is being pulsed by a 1-pps signal so that it will sequence through

the binary counts at the rate of 1 count/s. The counter FF outputs are con-

nected as the inputs to the decoder. The 7445 open-collector outputs and

are used to switch relays and on and off. For instance, when is in

its inactive HIGH state, its output transistor will be off (nonconducting) so

that no current can flow through relay and it will be deenergized.When

is in its active-LOW state, its output transistor is on and acts as a current sink

for current through so that is energized. Note that the relays operateK1K1

O3K1

O3K2K1O6

O3

TOCCMC09_0131725793.QXD 12/20/05 8:14 PM Page 583

from V. Also note the presence of the diodes across the relay coils; these

protect the decoder’s output transistors from the large “inductive kick” volt-

age that would be produced when coil current is stopped abruptly.

The timing diagram in Figure 9-6(b) shows the sequence of events. If we as-

sume that the counter is in the 0000 state at time 0, then both outputs and

are initially in the inactive HIGH state, where their output transistors are

off and both relays are deenergized. As clock pulses are applied, the counter

will be incremented once per second. On the NGT of the third pulse (time 3),

the counter will go to the 0011 (3) state. This will activate decoder output

and thereby energize . On the NGT of the fourth pulse, the counter goes to

the 0100 (4) state.This will deactivate and deenergize relay .

Similarly, at time 6, the counter will go to the 0110 (6) state; this will

make and energize . At time 7, the counter goes to 0111 (7) and

deactivates to deenergize .

The counter will continue counting as pulses are applied. After 16 pulses,

the sequence just described will start over.

Decoders are widely used in the memory system of a computer where they

respond to the address code generated by the central processor to activate a par-

ticular memory location. Each memory IC contains many registers that can store

binary numbers (data). Each register needs to have its own unique address to

distinguish it from all the other registers.A decoder is built into the memory IC’s

circuitry and allows a particular storage register to be activated when a unique

combination of inputs (i.e., its address) is applied. In a system, there are usually

several memory ICs combined to make up the entire storage capacity.A decoder

is used to select a memory chip in response to a range of addresses by decoding

the most significant bits of the system address and enabling (selecting) a par-

ticular chip.We will examine this application in Problem 9-63, and we will study

it in much more depth when we read about memories in Chapter 12.

In more complicated memory systems, the memory chips are arranged in

multiple banks that must be selected individually or simultaneously, de-

pending on whether the microprocessor wants one or more bytes at a time.

This means that under certain circumstances, more than one output of the

decoder must be activated. For systems such as this, a programmable logic

device is often used to implement the decoder because a simple 1-of-8 de-

coder alone is not sufficient. Programmable logic devices can be used easily

for custom decoding applications.

K2O6

K2O6 = 0

K1O3

K1

O3

O6

O3

+24

584 CHAPTER 9/MSI LOGIC CIRCUITS

REVIEW QUESTIONS 1. Can more than one decoder output be activated at one time?

2. What is the function of a decoder’s enable input(s)?

3. How does the 7445 differ from the 7442?

4. The 74154 is a 4-to-16 decoder with two active-LOW enable inputs. How

many pins (including power and ground) does this IC have?

9-2 BCD-TO-7-SEGMENT DECODER/DRIVERS

Most digital equipment has some means for displaying information in a form

that can be understood readily by the user or operator.This information is of-

ten numerical data but can also be alphanumeric (numbers and letters). One

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 584

SECTION 9-2/BCD-TO-7-SEGMENT DECODER/DRIVERS 585

FIGURE 9-7 (a) 7-segment arrangement; (b) active segments for each digit.

a

g

d

f b

e c

(a) (b)

b and c
segments

of the simplest and most popular methods for displaying numerical digits

uses a 7-segment configuration [Figure 9-7(a)] to form the decimal charac-

ters 0 through 9 and sometimes the hex characters A through F. One common

arrangement uses light-emitting diodes (LEDs) for each segment. By con-

trolling the current through each LED, some segments will be light and oth-

ers will be dark so that the desired character pattern will be generated.

Figure 9-7(b) shows the segment patterns that are used to display the various

digits. For example, to display a “6,” the segments a, c, d, e, f, and g are made

bright while segment b is dark.

A BCD-to-7-segment decoder/driver is used to take a four-bit BCD in-

put and provide the outputs that will pass current through the appropriate

segments to display the decimal digit. The logic for this decoder is more

complicated than the logic of decoders that we have looked at previously

because each output is activated for more than one combination of inputs.

For example, the e segment must be activated for any of the digits 0, 2, 6,

and 8, which means whenever any of the codes 0000, 0010, 0110, or 1000

occurs.

Figure 9-8(a) shows a BCD-to-7-segment decoder/driver (TTL 7446 or

7447) being used to drive a 7-segment LED readout. Each segment consists

of an LED (light-emitting diode). Diodes are solid-state devices that allow

current to flow through them in one direction, but block the flow in the

other direction. Whenever the anode of an LED is more positive than the

cathode by approximately 2 V, the LED will light up. The anodes of

the LEDs are all tied to . The cathodes of the LEDs are con-

nected through current-limiting resistors to the appropriate outputs of the

decoder/driver. The decoder/driver has active-LOW outputs that are open-

collector driver transistors and can sink a fairly large current because LED

readouts may require 10 to 40 mA per segment, depending on their type

and size.

To illustrate the operation of this circuit, let us suppose that the BCD in-

put is which is BCD for 5. With these inputs, the

decoder/driver outputs and will be driven LOW (connected to

ground), allowing current to flow through the a, f, g, c, and d LED segments

and thereby displaying the numeral 5. The and outputs will be HIGH

(open), so that LED segments b and e cannot conduct.

The 7446/47 decoder/drivers are designed to activate specific segments

even for non-BCD input codes (greater than 1001). Figure 9-8(b) shows the ac-

tivated segment patterns for all possible input codes from 0000 to 1111. Note

that an input code of 1111 (15) will blank out all the segments.

eb

da, f, g, c,

D = 0, C = 1, B = 0, A = 1,

VCC (+5 V)

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 585

Seven-segment decoder/drivers such as the 7446/47 are exceptions to the

rule that decoder circuits activate only one output for each combination of

inputs. Rather, they activate a unique pattern of outputs for each combina-

tion of inputs.

Common-Anode Versus Common-Cathode LED Displays
The LED display used in Figure 9-8 is a common-anode type because the an-

odes of all of the segments are tied together to . Another type of 7-segment

LED display uses a common-cathode arrangement where the cathodes of all

of the segments are tied together and connected to ground. This type of dis-

play must be driven by a BCD-to-7-segment decoder/driver with active-

HIGH outputs that apply a HIGH voltage to the anodes of those segments

that are to be activated. Because each segment requires 10 to 20 mA of cur-

rent to light it, TTL and CMOS devices are normally not used to drive the

common-cathode display directly. Recall from Chapter 8 that TTL and

CMOS outputs are not able to source large amounts of current. A transistor

interface circuit is often used between decoder chips and the common-cathode

display.

VCC

586 CHAPTER 9/MSI LOGIC CIRCUITS

FIGURE 9-8 (a) BCD-to-7-

segment decoder/driver

driving a common-anode

7-segment LED display;

(b) segment patterns for all

possible input codes.

For current
limiting

BCD-
to-

7-segment
decoder/

driver

D

C

B

A

(a)

7446 or 7447

BCD
input

Common-
Anode

Cathode

anode
connections

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b)

a

f b

g

e c

d

Blanking
controls
LED test

input
LT

RBI

BI/RBO

a

b

c

d

e

f

g

+VCC

EXAMPLE 9-4 Each segment of a typical 7-segment LED display is rated to operate at 10 mA

at 2.7 V for normal brightness. Calculate the value of the current-limiting

resistor needed to produce approximately 10 mA per segment.

Solution

Referring to Figure 9-8(a), we can see that the series resistor must have a

voltage drop equal to the difference between and the segment

voltage of 2.7 V. This 2.3 V across the resistor must produce a current of

about 10 mA. Thus, we have

VCC = 5 V

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 586

A standard resistor value close to this can be used. A resistor

would be a good choice.

220-Æ

RS =

2.3 V

10 mA
= 230 Æ

SECTION 9-3/LIQUID-CRYSTAL DISPLAYS 587

REVIEW QUESTIONS 1. Which LED segments will be on for a decoder/driver input of 1001?

2. True or false: More than one output of a BCD-to-7-segment decoder/driver

can be active at one time.

9-3 LIQUID-CRYSTAL DISPLAYS

An LED display generates or emits light energy as current is passed through

the individual segments. A liquid-crystal display (LCD) controls the reflec-

tion of available light. The available light may simply be ambient (surround-

ing) light such as sunlight or normal room lighting; reflective LCDs use

ambient light. Or the available light might be provided by a small light

source that is part of the display unit; backlit LCDs use this method. In any

case, LCDs have gained wide acceptance because of their very low power

consumption compared to LEDs, especially in battery-operated equipment

such as calculators, digital watches, and portable electronic measuring

instruments. LEDs have the advantage of a much brighter display that,

unlike reflective LCDs, is easily visible in dark or poorly lit areas.

Basically, LCDs operate from a low-voltage (typically 3 to 15 V rms), low-

frequency (25 to 60 Hz) ac signal and draw very little current. They are often

arranged as 7-segment displays for numerical readouts as shown in Figure

9-9(a). The ac voltage needed to turn on a segment is applied between the

segment and the backplane, which is common to all segments. The segment

and the backplane form a capacitor that draws very little current as long as

the ac frequency is kept low. It is generally not lower than 25 Hz because this

would produce visible flicker.

FIGURE 9-9 Liquid-crystal display: (a) basic arrangement; (b) applying a voltage

between the segment and the backplane turns ON the segment. Zero voltage turns

the segment OFF.

LCD display

a
b
c
d
e
f
g

Backplane

(a)

Incident
ambient

light

a
b
c
d
e
f
g

Backplane

(b)

Incident
light

a

g

d

e

f

c

b

a

c

b

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 587

An admittedly simplified explanation of how an LCD operates goes

something like this. When there is no difference in voltage between a seg-

ment and the backplane, the segment is said to be nonactivated (OFF). Seg-

ments d, e, f, and g in Figure 9-9(b) are OFF and will reflect incident light

so that they appear invisible against their background. When an appropri-

ate ac voltage is applied between a segment and the backplane, the seg-

ment is activated (ON). Segments a, b, and c in Figure 9-9(b) are ON and will

not reflect the incident light, and thus they appear dark against their back-

ground.

Driving an LCD
An LCD segment will turn ON when an ac voltage is applied between the

segment and the backplane, and will turn OFF when there is no voltage be-

tween the two. Rather than generating an ac signal, it is common practice to

produce the required ac voltage by applying out-of-phase square waves to

the segment and the backplane. This is illustrated in Figure 9-10(a) for one

segment. A 40-Hz square wave is applied to the backplane and also to the

input of a CMOS 74HC86 XOR. The other input to the XOR is a CONTROL

input that will control whether the segment is ON or OFF.

When the CONTROL input is LOW, the XOR output will be exactly the

same as the 40-Hz square wave, so that the signals applied to the segment and

588 CHAPTER 9/MSI LOGIC CIRCUITS

40 Hz

LCD
a
b
c
d
e
f
g

Backplane

D

C

B

A

All 74HC8674HC4511

BCD-to-
7-segment
decoder/

driver

a

b

c

d

e

f

g

74HC86Control

40 Hz signal 5 V
0 Segment

Backplane

(a)

(b)

Control

LOW
HIGH

Segment

Off
On

FIGURE 9-10 (a) Method

for driving an LCD

segment; (b) driving a

7-segment display.

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 588

the backplane are equal. Because there is no difference in voltage, the seg-

ment will be OFF. When the CONTROL input is HIGH, the XOR output will

be the INVERSE of the 40-Hz square wave, so that the signal applied to the

segment is out of phase with the signal applied to the backplane. As a result,

the segment voltage will alternately be at and at relative to the

backplane. This ac voltage will turn ON the segment.

This same idea can be extended to a complete 7-segment LCD display, as

shown in Figure 9-10(b). Here, the CMOS 74HC4511 BCD-to-7-segment de-

coder/driver supplies the CONTROL signals to each of seven XOR for the

seven segments. The 74HC4511 has active-HIGH outputs because a HIGH is

required to turn on a segment. The decoder/driver and XOR gates of Figure

9-10(b) are available on a single chip. The CMOS 74HC4543 is one such de-

vice. It takes the BCD input code and provides the outputs to drive the LCD

segments directly.

In general, CMOS devices are used to drive LCDs for two reasons: (1) they

require much less power than TTL and are more suited to the battery-

operated applications where LCDs are used; (2) the TTL LOW-state voltage

is not exactly 0 V and can be as much as 0.4 V. This will produce a dc compo-

nent of voltage between the segment and the backplane that considerably

shortens the life of an LCD.

Types of LCDs
Liquid crystals are available as multidigit 7-segment decimal numeric dis-

plays. They come in many sizes and with many special characters such as

colons (:) for clock displays, and indicators for digital voltmeters, deci-

mal points for calculators, and battery-low indicators because many LCD de-

vices are battery-powered.These displays must be driven by a decoder/driver

chip such as the 74HC4543.

A more complicated but readily available LCD display is the alphanumeric

LCD module. These modules are available from many companies in numerous

formats such as 1-line-by-16-characters up to 4-lines-by-40-characters. The

interface to these modules has been standardized so that an LCD module

from any manufacturer will use the same signals and data format. The mod-

ule includes some VLSI chips that make this device simple to use. Eight data

lines are used to send the ASCII code for whatever you wish to display.These

data lines also carry special control codes to the LCD command register.

Three other inputs (Register Select, Read/Write, and Enable) are used to

control the location, direction, and timing of the data transfer. As characters

are sent to the module, it stores them in its own memory and types them

across the display screen.

Other LCD modules allow the user to create a graphical display by con-

trolling individual dots on the screen called pixels. Larger LCD panels can

be scanned at a high rate, producing high-quality video motion pictures. In

these displays, the control lines are arranged in a grid of rows and

columns. At the intersection of each row and column is a pixel that acts

like a “window” or “shutter” that can be electronically opened and closed

to control the amount of light that is transmitted through the cell.The volt-

age from a row to a column determines the brightness of each pixel. In a

laptop computer, a binary number for each pixel is stored in the “video”

memory. These numbers are converted to voltages that are applied to the

display.

Each pixel on a color display is actually made up of three subpixels.

These subpixels control the light that passes through a red, green, or blue

filter to produce the color of each pixel. On a 640-by-480 LCD screen there

-+

-5 V+5 V

SECTION 9-3/LIQUID-CRYSTAL DISPLAYS 589

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 589

would be connections for columns and 480 connections for rows, for

a total of 2400 connections to the LCD. Obviously, the driver circuitry for such

a device is a very complicated VLSI circuit.

The advances in technology for LCD displays have increased the speed

at which the pixels can be turned on and off. The older screens are called

Twisted Nematic (TN) or Super Twisted Nematic (STN). These devices are

referred to as passive LCDs. Instead of using a uniform backplane like the

7-segment LCD displays, they have conducting parallel lines manufactured

onto two pieces of glass. The two glass sheets are used to sandwich the liq-

uid crystal material with the conducting lines at forming a grid of rows

and columns, as shown in Figure 9-11. The intersection of each row and col-

umn forms a pixel. The actual switching of the current on and off is done in

the driver IC that is connected to the rows and columns of the display. Pas-

sive matrix displays are rather slow at turning off. This limits the rate at

which objects can move on the screen without leaving a shadow trail behind

them.

The newer displays are called active matrix TFT LCDs. The active ma-

trix means that an active element on the display is used to switch the pix-

els on and off. The active component is a thin film transistor (TFT) that is

manufactured directly onto one piece of glass. The other piece of glass has

a uniform coating to form a backplane. The control lines for these transis-

tors run in rows and columns between the pixels.The technology that allows

these transistors to be manufactured in a matrix on a thin film the size of a

laptop computer screen has made these displays possible. They provide a

much faster-response, higher-resolution display.The use of polysilicon tech-

nology allows the driver circuits to be integrated into the display unit, re-

ducing connection problems and requiring very little perimeter space

around the LCD.

Other display technologies are being refined, including vacuum fluores-

cent, gas discharge plasma, and electroluminescence. The optical physics

for each of these displays varies, but the means of controlling all of them is

the same. A digital system must activate a row and a column of a matrix in

order to control the amount of light at the pixel located at the row/column

intersection.

90°,

640 * 3

590 CHAPTER 9/MSI LOGIC CIRCUITS

Glass

Glass

Primary color filters:
red, blue, green

Liquid crystal
space

Transparent column
electrodes

Transparent row
electrodes

FIGURE 9-11 A passive

matrix LCD panel.

TOCCMC09_0131725793.QXD 1/17/06 3:29 AM Page 590

9-4 ENCODERS

Most decoders accept an input code and produce a HIGH (or a LOW) at one
and only one output line. In other words, we can say that a decoder identifies,

recognizes, or detects a particular code. The opposite of this decoding

process is called encoding and is performed by a logic circuit called an en-
coder. An encoder has a number of input lines, only one of which is activated

at a given time, and produces an N-bit output code, depending on which in-

put is activated. Figure 9-12 is the general diagram for an encoder with M in-

puts and N outputs. Here, the inputs are active-HIGH, which means that they

are normally LOW.

SECTION 9-4/ENCODERS 591

REVIEW QUESTIONS 1. Indicate which of the following statements refer to LCD displays and

which refer to LED displays.

(a) Emit light

(b) Reflect ambient light

(c) Are best for low-power applications

(d) Require an ac voltage

(e) Use a 7-segment arrangement to produce digits

(f) Require current-limiting resistors

2. What form of data is sent to each of the following?

(a) A 7-segment LCD display with a decoder/driver

(b) An alphanumeric LCD module

(c) An LCD computer display

FIGURE 9-12 General

encoder diagram. O0

Encoder

O1

O2

ON - 1

A0

A1

A2

AM - 1

N-bit
output code

M inputs
only one HIGH

at a time

We saw that a binary-to-octal decoder (3-line-to-8-line decoder) accepts a

three-bit input code and activates one of eight output lines corresponding to

that code. An octal-to-binary encoder (8-line-to-3-line encoder) performs the op-

posite function: it accepts eight input lines and produces a three-bit output

code corresponding to the activated input. Figure 9-13 shows the logic circuit

and the truth table for an octal-to-binary encoder with active-LOW inputs.

By following through the logic, you can verify that a LOW at any single

input will produce the output binary code corresponding to that input. For

instance, a LOW at (while all other inputs are HIGH) will produceA3

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 591

and which is the binary code for 3. Notice that is

not connected to the logic gates because the encoder outputs will normally

be at 000 when none of the inputs to is LOW.A9A1

A0O0 = 1,O2 = 0, O1 = 1,

592 CHAPTER 9/MSI LOGIC CIRCUITS

FIGURE 9-13 Logic circuit for an octal-to-binary (8-line-to-3-line) encoder. For

proper operation, only one input should be active at one time.

8
inputs

A0

X
X
X
X
X
X
X
X

A1

1
0
1
1
1
1
1
1

A2

1
1
0
1
1
1
1
1

A3

1
1
1
0
1
1
1
1

A4

1
1
1
1
0
1
1
1

A5

1
1
1
1
1
0
1
1

A6

1
1
1
1
1
1
0
1

A7

1
1
1
1
1
1
1
0

O2

0
0
0
0
1
1
1
1

O1

0
0
1
1
0
0
1
1

O0

LSB

O1

O2

MSB

A0

A1

A2

A3

A4

A5

A6

A7

*Only one
LOW input
at a time

O0

0
1
0
1
0
1
0
1

Inputs Outputs

EXAMPLE 9-5 Determine the outputs of the encoder in Figure 9-13 when and are si-

multaneously LOW.

Solution

Following through the logic gates, we see that the LOWs at these two inputs

will produce HIGHs at each output, in other words, the binary code 111.

Clearly, this is not the code for either activated input.

Priority Encoders
This last example identifies a drawback of the simple encoder circuit of

Figure 9-13 when more than one input is activated at one time. A modified

version of this circuit, called a priority encoder, includes the necessary logic

to ensure that when two or more inputs are activated, the output code will

correspond to the highest-numbered input. For example, when both and

are LOW, the output code will be 101 (5). Similarly, when and

are all LOW, the output code is 110 (6). The 74148, 74LS148, and 74HC148

are all octal-to-binary priority encoders.

74147 Decimal-to-BCD Priority Encoder
Figure 9-14 shows the logic symbol and the truth table for the 74147

(74LS147, 74HC147), which functions as a decimal-to-BCD priority encoder. It

has nine active-LOW inputs representing the decimal digits 1 through 9, and

it produces the inverted BCD code corresponding to the highest-numbered

activated input.

A0A6, A2,A5

A3

A5A3

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 592

Let’s examine the truth table to see how this IC works. The first line in

the table shows all inputs in their inactive HIGH state. For this condition, the

outputs are 1111, which is the inverse of 0000, the BCD code for 0. The sec-

ond line in the table indicates that a LOW at regardless of the states of

the other inputs, will produce an output code of 0110, which is the inverse of

1001, the BCD code for 9. The third line shows that a LOW at provided

that is HIGH, will produce an output code of 0111, the inverse of 1000, the

BCD code for 8. In a similar manner, the remaining lines in the table show

that a LOW at any input, provided that all higher-numbered inputs are HIGH,

will produce the inverse of the BCD code for that input.

The 74147 outputs will normally be HIGH when none of the inputs are

activated. This corresponds to the decimal 0 input condition. There is no

input because the encoder assumes the decimal 0 input state when all other

inputs are HIGH. The 74147 inverted BCD outputs can be converted to nor-

mal BCD by putting each one through an INVERTER.

A0

A9

A8,

A9,

SECTION 9-4/ENCODERS 593

FIGURE 9-14 74147 decimal-to-BCD priority encoder.

O3

74147
Decimal-
to-BCD
priority

encoder

X = either 0 or 1

O2

O1

O0

MSB
A1

A2

A8

A9

Nine
inputs

Inverted
BCD

A1

1
X
X
X
X
X
X
X
X
0

A2

1
X
X
X
X
X
X
X
0
1

A3

1
X
X
X
X
X
X
0
1
1

A4

1
X
X
X
X
X
0
1
1
1

A5

1
X
X
X
X
0
1
1
1
1

A6

1
X
X
X
0
1
1
1
1
1

A7

1
X
X
0
1
1
1
1
1
1

A8

1
X
0
1
1
1
1
1
1
1

A9

1
0
1
1
1
1
1
1
1
1

O0

1
0
1
0
1
0
1
0
1
0

O1

1
1
1
0
0
1
1
0
0
1

O2

1
1
1
0
0
0
0
1
1
1

O3

1
0
0
1
1
1
1
1
1
1

EXAMPLE 9-6 Determine the states of the outputs in Figure 9-14 when and are

LOW and all other inputs are HIGH.

Solution

The truth table shows that when is LOW, the levels at and do not

matter. Thus, the outputs will each be 1000, the inverse of 0111 (7).

Switch Encoder
Figure 9-15 shows how a 74147 can be used as a switch encoder. The 10 switches

might be the keyboard switches on a calculator representing digits 0 through

9. The switches are of the normally open type, so that the encoder inputs are

all normally HIGH and the BCD output is 0000 (note the INVERTERs). When

a digit key is depressed, the circuit will produce the BCD code for that digit.

Because the 74LS147 is a priority encoder, simultaneous key depressions will

produce the BCD code for the higher-numbered key.

The switch encoder of Figure 9-15 can be used whenever BCD data must

be entered manually into a digital system. A prime example would be in an

electronic calculator, where the operator depresses several keyboard switches

in succession to enter a decimal number. In a simple, basic calculator, the BCD

code for each decimal digit is entered into a four-bit storage register. In other

A3A5A7

A3A5, A7,

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 593

words, when the first key is depressed, the BCD code for that digit is sent to a

four-bit FF register; when the second switch is depressed, the BCD code for

that digit is sent to another four-bit FF register, and so on. Thus, a calculator

that can handle eight digits will have eight four-bit registers to store the BCD

codes for these digits. Each four-bit register drives a decoder/driver and a nu-

merical display so that the eight-digit number can be displayed.

The operation described above can be accomplished with the circuit in

Figure 9-16. This circuit will take three decimal digits entered from the key-

board in sequence, encode them in BCD, and store the BCD in three FF out-

put registers. The 12 D-type flip-flops to are used to receive and store

the BCD codes for the digits. to store the BCD code for the most sig-

nificant digit (MSD), which is the first one entered on the keyboard. to

store the second entered digit, and to store the third entered digit. Flip-

flops X,Y, and Z form a ring counter (Chapter 7) that controls the transfer of

data from the encoder outputs to the appropriate output register. The OR

gate produces a HIGH output any time one of the keys is depressed.This out-

put may be affected by switch contact bounce, which would produce several

pulses before settling down to the HIGH state. The OS is used to neutralize

the switch bounce by triggering on the first positive transition from the OR

gate and remaining HIGH for 20 ms, well past the time duration of the switch

bounce. The OS output clocks the ring counter.

The circuit operation is described as follows for the case where the deci-

mal number 309 is being entered:

1. The CLEAR key is depressed. This clears all storage flip-flops to

to 0. It also clears flip-flops X and Y and presets flip-flop Z to 1, so that

the ring counter begins in the 001 state.

2. The CLEAR key is released and the “3” key is depressed. The encoder

outputs 1100 are inverted to produce 0011, the BCD code for 3. These bi-

nary values are sent to the D inputs of the three four-bit output registers.

3. The OR output goes HIGH (because two of its inputs are HIGH) and trig-

gers the OS output for 20 ms.After 20 ms, Q returns LOW and clocksQ = 1

Q11Q0

Q3Q0

Q7Q4

Q11Q8

Q11Q0

594 CHAPTER 9/MSI LOGIC CIRCUITS

SW9

SW8

SW7

SW6

SW5

SW4

SW3

SW2

SW1

SW0

74LS147
Decimal-
to-BCD
priority

encoder

Pull-up resister
on each encoder

input shown
only for SW9

+5 V

1 k�

Normal
BCD

A9

A8

A7

A6

A5

A4

A3

A2

A1

O3

O2

O1

O0

FIGURE 9-15 Decimal-to-

BCD switch encoder.

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 594

the ring counter to the 100 state (X goes HIGH). The positive transition

at X is fed to the CLK inputs of flip-flops to so that the encoder

outputs are transferred to these FFs. That is,

and . Note that flip-flops to are not affected because their

CLK inputs have not received a positive transition.

Q7Q0Q8 = 1

Q11 = 0, Q10 = 0, Q9 = 1,

Q11,Q8

SECTION 9-4/ENCODERS 595

Digit keys
9

8

7

6

5

4

3

2

1

+5 V

1 k�

Q3

0

MSB

Q2

Q1

Q0

LSB

Pull-up
resistor for
each input

Q11D
CLK

Q10D
CLK

Q9D
CLK

Q8D
CLK

Q7D
CLK

Q6D
CLK

Q5D
CLK

Q4D
CLK

Q3D
CLK

Q2D
CLK

Q1D
CLK

Q0D
CLK

LSD

Second
MSD

BCD
code for

MSD

ZJ

CLK

ZK

PRE
YJ

CLK

YK
CLR

XJ

CLK

XK
CLR

Q

T

Q

tp = 20 ms

+5 V

1 k�

CLEAR
to CLR inputs

of Q0–Q11

OS

For switch
bounce

74LS147
Decimal-
to-BCD
encoder

To
decoder/drivers

and displays

FIGURE 9-16 Circuit for keyboard entry of three-digit number into storage registers.

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 595

4. The “3” key is released and the OR gate output returns LOW.The “0” key

is then depressed. This produces the BCD code of 0000, which is fed to

the inputs of the three registers.

5. The OR output goes HIGH in response to the “0” key (note the IN-

VERTER) and triggers the OS for 20 ms. After 20 ms, the ring counter

shifts to the 010 state (Y goes HIGH). The positive transition at Y is fed to

the CLK inputs of to and transfers the 0000 to these FFs. Note that

flip-flops to and to are not affected by the Y transition.

6. The “0” key is released and the OR output returns LOW. The “9” key is

depressed, producing BCD outputs 1001, which are fed to the storage

registers.

7. The OR output goes HIGH again, triggering the OS, which in turn clocks

the ring counter to the 001 state (Z goes HIGH). The positive transition

at Z is fed to the CLK inputs of to and transfers the 1001 into these

FFs. The other storage FFs are unaffected.

8. At this point, the storage register contains 001100001001, beginning with

. This is the BCD code of 309. These register outputs feed decoder/

drivers that drive appropriate displays for indicating the decimal digits

309.

9. The storage FF outputs are also fed to other circuits in the system. In a

calculator, for example, these outputs would be sent to the arithmetic

section to be processed.

Several problems at the end of the chapter will deal with some other aspects

of this circuit, including troubleshooting exercises.

The 74ALS148 is slightly more sophisticated than the ’147. It has eight

inputs that are encoded into a three-bit binary number. This IC also provides

three control pins as indicated in Table 9-1.The Enable Input () and Enable

Output () can be used to cascade two IC’s producing a hexadecimal-to-

binary encoder. The pin must be LOW in order for any output pin to go

LOW, and the pin will only go LOW when none of the eight inputs is active

and the is active. The output is used to indicate when at least one of

the eight inputs is activated. It should be noted that the outputs through

are inverted, just as in the 74147.A0

A2

GSEI

EO

EI

EO

EI

Q11

Q3Q0

Q11Q8Q3Q0

Q7Q4

596 CHAPTER 9/MSI LOGIC CIRCUITS

TABLE 9-1 74ALS148 function table.

INPUTS OUTPUTS

EI
–—

0
–

1
– –

2
–
3

–
4

–
5

–
6

–
8

–
A2

–
A1

–
A0 GS

–—
EO
–—

H x x x x x x x x H H H H H

L H H H H H H H H H H H H L

L x x x x x x x L L L L L H

L x x x x x x L H L L H L H

L x x x x x L H H L H L L H

L x x x x L H H H L H H L H

L x x x L H H H H H L L L H

L x x L H H H H H H L H L H

L x L H H H H H H H H L L H

L L H H H H H H H H H H L H

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 596

9-5 TROUBLESHOOTING

As circuits and systems become more complex, the number of possible

causes of failure obviously increases. Whereas the procedure for fault isola-

tion and correction remains essentially the same, the application of the ob-
servation/analysis process is more important for complex circuits because it

helps the troubleshooter narrow the location of the fault to a small area of

the circuit. This reduces to a reasonable amount the testing steps and result-

ing data that must be analyzed. By understanding the circuit operation, ob-

serving the symptoms of the failure, and reasoning through the operation,

the troubleshooter can often predict the possible faults before ever picking

up a logic probe or an oscilloscope. This observation/analysis process is one

that inexperienced troubleshooters are hesitant to apply, probably because

of the great variety and capabilities of modern test equipment available to

them. It is easy to become overly reliant on these tools while not adequately

utilizing the human brain’s reasoning and analytical skills.

The following examples illustrate how the observation/analysis process can

be applied. Many of the end-of-chapter troubleshooting problems will provide

you with the opportunity to develop your skill at applying this process.

Another vital strategy in troubleshooting is known as divide-and-conquer.

It is used to identify the location of the problem after observation/analysis has

generated several possibilities. A less efficient method would be to investi-

gate each possible cause, one by one. The divide-and-conquer method finds a

point in the circuit that can be tested, thereby dividing the total possible num-

ber of causes in half. In simple systems, this may seem unnecessary, but as

complexity increases, the total number of possible causes also increases. If

there are eight possible causes, then a test should be performed that elimi-

nates four of them.The next test should eliminate two more, and the third test

should identify the problem.

SECTION 9-5/TROUBLESHOOTING 597

REVIEW QUESTIONS 1. How does an encoder differ from a decoder?

2. How does a priority encoder differ from an ordinary encoder?

3. What will the outputs be in Figure 9-15 when SW6, SW5, and SW2 are all

closed?

4. Describe the functions of each of the following parts of the keyboard en-

try circuit of Figure 9-16.

(a) OR gate (d) Flip-flops X, Y, Z

(b) 74147 encoder (e) Flip-flops to

(c) One-shot

5. What is the purpose of each control input and output on a 74148 encoder?

Q11Q0

EXAMPLE 9-7 A technician tests the circuit of Figure 9-4 by using a set of switches to apply

the input code at through . She runs through each possible input code

and checks the corresponding decoder output to see if it is activated. She ob-

serves that all of the odd-numbered outputs respond correctly, but all of the

even-numbered outputs fail to respond when their code is applied. What are

the most probable faults?

A0A4

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 597

Solution

In a situation where so many outputs are failing, it is unreasonable to expect

that each of these outputs has a fault. It is much more likely that some faulty

input condition is causing the output failures. What do all of the even-

numbered outputs have in common? The input codes for several of them are

listed in Table 9-2.

Clearly, each even-numbered output requires an input code with an

in order to be activated. Thus, the most probable faults would be

those that prevent from going LOW. These include:

1. A faulty switch connected to the input

2. A break in the path between the switch and the line

3. An external short from the line to

4. An internal short to at the inputs of any one of the decoder

chips

Through observation and analysis, the technician has identified sev-

eral possible causes. Potential causes 1 and 2 are in the switches generat-

ing the address. Causes 3 and 4 are in the decoder circuit itself. The

circuit can be divided by opening the connection between the least sig-

nificant switch and the input, as shown in Figure 9-17. A logic probe

can be used to see if the switch can generate a LOW as well as a HIGH.

Regardless of the outcome, two of the four possible causes have been

eliminated.

Thus, the fault is narrowed to a specific area of the circuit. The exact

fault can be traced with the testing and measurement techniques that we

are already familiar with.

A0

A0VCC

VCCA0

A0

A0

A0

A0 = 0

598 CHAPTER 9/MSI LOGIC CIRCUITS

TABLE 9-2

Output Input Code

00000

00100

01110

10010O18

O14

O4

O0

EXAMPLE 9-8 A technician wires the outputs from a BCD counter to the inputs of the de-

coder/driver of Figure 9-8. He applies pulses to the counter at a very slow

rate and observes the LED display, which is shown below, as the counter

counts up from 0000 to 1001. Examine this observed sequence carefully and

try to predict the most probable fault.

VCC

Decoder circuit Fig. 9-4

A0

A1

A2

A3

A4

Same circuitry as
connected to A0

CSwitch

R
74ALS14

Test point

Break circuitFIGURE 9-17
Troubleshooting circuitry in

Example 9-7.

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 598

Solution

Comparing the observed display with the expected display for each count,

we see several important points:

■ For those counts where the observed display is incorrect, the observed

display is not one of the segment patterns that correspond to counts

greater than 1001.

■ This rules out a faulty counter or faulty wiring from the counter to the

decoder/driver.

■ The correct segment patterns (0, 1, 3, 6, 7, and 8) have the common prop-

erty that segments e and f are either both on or both off.

■ The incorrect segment patterns have the common property that seg-

ments e and f are in opposite states, and if we interchange the states of

these two segments, the correct pattern is obtained.

Giving some thought to these points should lead us to conclude that

the technician has probably “crossed” the connections to the e and f
segments.

9-6 MULTIPLEXERS (DATA SELECTORS)

A modern home stereo system may have a switch that selects music from

one of four sources: a cassette tape, a compact disc (CD), a radio tuner, or an

auxilliary input such as audio from a VCR or DVD. The switch selects one of

the electronic signals from one of these four sources and sends it to the

power amplifier and speakers. In simple terms, this is what a multiplexer
(MUX) does: it selects one of several input signals and passes it on to the

output.

A digital multiplexer or data selector is a logic circuit that accepts several

digital data inputs and selects one of them at any given time to pass on to the

output. The routing of the desired data input to the output is controlled by

SELECT inputs (often referred to as ADDRESS inputs). Figure 9-18 shows

the functional diagram of a general digital multiplexer. The inputs and out-

puts are drawn as wide arrows rather than lines; this indicates that they may

actually be more than one signal line.

The multiplexer acts like a digitally controlled multiposition switch

where the digital code applied to the SELECT inputs controls which data in-

puts will be switched to the output. For example, output Z will equal data in-

put for some particular SELECT input code, Z will equal for another

particular SELECT input code, and so on. Stated another way, a multiplexer

selects 1 out of N input data sources and transmits the selected data to a sin-

gle output channel. This is called multiplexing.

I1I0

SECTION 9-6/MULTIPLEXERS (DATA SELECTORS) 599

0COUNT

Observed
display

Expected
display

1 2 3 4 5 6 7 8 9

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 599

Basic Two-Input Multiplexer
Figure 9-19 shows the logic circuitry for a two-input multiplexer with data

inputs and and SELECT input S. The logic level applied to the S input

determines which AND gate is enabled so that its data input passes through

the OR gate to output Z. Looking at it another way, the Boolean expression

for the output is

With this expression becomes

[gate 2 enabled]

which indicates that Z will be identical to input signal which in turn can

be a fixed logic level or a time-varying logic signal. With the expres-

sion becomes

[gate 1 enabled]

showing that output Z will be identical to input signal .

An example of where a two-input MUX could be used is in a digital sys-

tem that uses two different MASTER CLOCK signals: a high-speed clock

(say, 10 MHz) in one mode and a slow-speed clock (say, 4.77 MHz) for the

I1

Z = I0
0 + I1

1 = I1

S = 1,

I0,

 = I0

 Z = I0
1 + I1

0

S = 0,

Z = I0S + I1S

I1I0

600 CHAPTER 9/MSI LOGIC CIRCUITS

FIGURE 9-18 Functional

diagram of a digital

multiplexer (MUX).

FIGURE 9-19 Two-input

multiplexer.

MUX

I0

I1

IN–1

DATA
inputs

Output
Z

SELECT
inputs

SELECT input code
determines which input
is transmitted to output Z.

I1

I0

S
SELECT input

DATA
inputs Z = I0 • S + I1 • S

S

0
1

Output

Z = I0
Z = I1

1

2

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 600

other. Using the circuit of Figure 9-19, the 10-MHz clock would be tied to

and the 4.77-MHz clock would be tied to . A signal from the system’s con-

trol logic section would drive the SELECT input to control which clock sig-

nal appears at output Z for routing to the other parts of the circuit.

Four-Input Multiplexer
The same basic idea can be used to form the four-input multiplexer shown in

Figure 9-20(a). Here, four inputs are selectively transmitted to the output ac-

cording to the four possible combinations of the select inputs. Each data

input is gated with a different combination of select input levels. is gated

with so that will pass through its AND gate to output Z only when

and . The table in the figure gives the outputs for the other

three input-select codes.

Another circuit that performs exactly the same function is shown in

Figure 9-20(b).This approach uses tristate buffers to select one of the signals.

The decoder ensures that only one buffer can be enabled at any time. and

are used to specify which of the input signals is allowed to pass through

its buffer and arrive at the output.

Two-, four-, eight-, and 16-input multiplexers are readily available in the

TTL and CMOS logic families. These basic ICs can be combined for multi-

plexing a larger number of inputs.

S0

S1

S0 = 0S1 = 0

I0S1S0

I0

S1S0

I1

I0,

SECTION 9-6/MULTIPLEXERS (DATA SELECTORS) 601

(b)

Z

S1

0
0
1
1

S0

0
1
0
1

Output

Z = I0
Z = I1
Z = I2
Z = I3

I0

I1

I2

I3

S1 S0

(a)

ZI0

I1

I2

I3

S1 S0

Decoder

Tristate
buffers

1 023

FIGURE 9-20 Four-input multiplexer: (a) using sum of products logic; (b) using

tristate buffers.

Eight-Input Multiplexer
Figure 9-21(a) shows the logic diagram for the 74ALS151 (74HC151) eight-

input multiplexer. This multiplexer has an enable input and provides both

the normal and the inverted outputs. When the select inputs

will select one data input (from through) for passage to output Z. When

the multiplexer is disabled so that regardless of the select

input code. This operation is summarized in Figure 9-21(b), and the 74151

logic symbol is shown in Figure 9-21(c).

Z = 0E = 1,

I7I0

S2S1S0E = 0,

E

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 601

602 CHAPTER 9/MSI LOGIC CIRCUITS

(a)

I0 I1 I2 I3 I4 I5 I6 I7

S2

S1

S0

Z Z

E

E

H
L
L
L
L
L
L
L
L

OutputsInputs

S2

X
L
L
L
L
H
H
H
H

(b)

S1

X
L
L
H
H
L
L
H
H

S0

X
L
H
L
H
L
H
L
H

Z

H
I0
I1
I2
I3
I4
I5
I6
I7

Z

L
I0
I1
I2
I3
I4
I5
I6
I7

74ALS151
8-input MUX

S2

S1

S0

E

I0 I1 I2 I3 I4 I5 I6 I7

ZZ

(c)

FIGURE 9-21 (a) Logic diagram for the 74ALS151 multiplexer; (b) truth table;

(c) logic symbol.

EXAMPLE 9-9 The circuit in Figure 9-22 uses two 74HC151s, an INVERTER, and an OR

gate. Describe this circuit’s operation.

Solution

This circuit has a total of 16 data inputs, eight applied to each multiplexer.

The two multiplexer outputs are combined in the OR gate to produce a sin-

gle output X. The circuit functions as a 16-input multiplexer. The four select

inputs will select one of the 16 inputs to pass through to X.
The input determines which multiplexer is enabled. When

the top multiplexer is enabled, and the inputs determine which of

its data inputs will appear at its output and pass through the OR gate to X.
When the bottom multiplexer is enabled, and the inputs

select one of its data inputs for passage to output X.
S2S1S0S3 = 1,

S2S1S0

S3 = 0,S3

S3S2S1S0

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 602

Quad Two-Input MUX (74ALS157/HC157)
The 74ALS157 is a very useful multiplexer IC that contains four two-input

multiplexers like the one in Figure 9-19. The logic diagram for the 74ALS157

is shown in Figure 9-23(a). Note the manner in which the data inputs and out-

puts are labeled.

SECTION 9-6/MULTIPLEXERS (DATA SELECTORS) 603

Data
in

74HC151
MUX

Z

Data
in

74HC151
MUX

Z

X

S3

S2

S1

S0

I7

I0

E

S2

S1

S0

•
•
•
•
•
•

I7

I0

E

S2

S1

S0

•
•
•
•
•
•

FIGURE 9-22 Example 9-9: two 74HC151s combined to form a 16-input

multiplexer.

EXAMPLE 9-10 Determine the input conditions required for each Z output to take on the

logic level of its corresponding input. Repeat for .

Solution

First of all, the enable input must be active; that is, . In order for to

equal the select input must be LOW. These same conditions will produce

and .

With and the Z outputs will follow the set of inputs; that

is, and .

All of the outputs will be disabled (LOW) when .

It is helpful to think of this multiplexer as being a simple two-input

multiplexer, but one in which each input is four lines and the output is four

lines. The four output lines switch back and forth between the two sets of

four input lines under the control of the select input. This operation is rep-

resented by the 74ALS157’s logic symbol in Figure 9-23(b).

E = 1

Zd = I1dZa = I1a, Zb = I1b, Zc = I1c,

I1S = 1,E = 0

Zd = I0dZb = I0b, Zc = I0c,

I0a,

ZaE = 0

I1I0

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 603

604 CHAPTER 9/MSI LOGIC CIRCUITS

E

H
L
L

S

X
L
H

Za

L
I0a
I1a

Zb

L
I0b
I1b

Zc

L
I0c
I1c

Zd

L
I0d
I1d

(c)

I1a

74ALS157

Za Zb Zc Zd

I0a I1b I0b I1c I0c I1d I0d

S

E

(a)

Zd

S

I1a I1b I1c I1d I0a I0b I0c I0d

E

Za Zb Zc

(b)

74ALS157
MUX

FIGURE 9-23 (a) Logic diagram for the 74ALS157 multiplexer; (b) logic symbol;

(c) truth table.

REVIEW QUESTIONS 1. What is the function of a multiplexer’s select inputs?

2. A certain multiplexer can switch one of 32 data inputs to its output. How

many different inputs does this MUX have?

9-7 MULTIPLEXER APPLICATIONS

Multiplexer circuits find numerous and varied applications in digital sys-

tems of all types.These applications include data selection, data routing, op-

eration sequencing, parallel-to-serial conversion, waveform generation, and

logic-function generation. We shall look at some of these applications here

and several more in the problems at the end of the chapter.

Data Routing
Multiplexers can route data from one of several sources to one destination.

One typical application uses 74ALS157 multiplexers to select and display the

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 604

contents of either of two BCD counters using a single set of decoder/drivers

and LED displays. The circuit arrangement is shown in Figure 9-24.

Each counter consists of two cascaded BCD stages, and each one is driven by

its own clock signal.When the COUNTER SELECT line is HIGH, the outputs of

counter 1 will be allowed to pass through the multiplexers to the decoder/driv-

ers to be displayed on the LED readouts. When the

outputs of counter 2 will pass through the multiplexers to the displays. In this

way, the decimal contents of one counter or the other will be displayed under

the control of the COUNTER SELECT input. A common situation where this

might be used is in a digital watch. The digital watch circuitry contains many

counters and registers that keep track of seconds, minutes, hours, days, months,

alarm settings, and so on. A multiplexing scheme such as this one allows differ-

ent data to be displayed on the limited number of decimal readouts.

The purpose of the multiplexing technique, as it is used here, is to time-
share the decoder/drivers and display circuits between the two counters

rather than have a separate set of decoder/drivers and displays for each

counter. This results in a significant saving in the number of wiring connec-

tions, especially when more BCD stages are added to each counter. Even more

important, it represents a significant decrease in power consumption because

COUNTER SELECT = 0,

SECTION 9-7/MULTIPLEXER APPLICATIONS 605

Tens TensUnits Units

Counter 1

Clock #1 Clock #2

74ALS157
MUX
(tens)

Counter 2

COUNTER
SELECT

74ALS157
MUX

(units)

BCD-to-7-segment
decoder/driver (7447)

LED display

TENS

BCD-to-7-segment
decoder/driver (7447)

LED display

UNITS

S

E

S

E

I1 I0

Zd Zc Zb Za

I1 I0

Zd Zc Zb Za

BCD
counterTC

CLK

EN 1

BCD
counterTC

CLK

EN

BCD
counterTC

CLK

EN

BCD
counterTC

QD QCQB QA QD QCQB QA

CLK

EN 1
QD QCQB QA QD QCQB QA

FIGURE 9-24 System for displaying two multidigit BCD counters one at a time.

TOCCMC09_0131725793.QXD 12/21/2005 05:46 AM Page 605

decoder/drivers and LED readouts typically draw relatively large amounts of

current from the supply. Of course, this technique has the limitation that

only one counter’s contents can be displayed at a time. However, in many ap-

plications, this limitation is not a drawback. A mechanical switching arrange-

ment could have been used to perform the function of switching first one

counter and then the other to the decoder/drivers and displays, but the num-

ber of required switch contacts, the complexity of wiring, and the physical size

could all be disadvantages over the completely logic method of Figure 9-24.

Parallel-to-Serial Conversion
Many digital systems process binary data in parallel form (all bits simulta-

neously) because it is faster. When data are to be transmitted over relatively

long distances, however, the parallel arrangement is undesirable because it

requires a large number of transmission lines. For this reason, binary data or

information in parallel form is often converted to serial form before being

transmitted to a remote destination. One method for performing this

parallel-to-serial conversion uses a multiplexer, as illustrated in Figure 9-25.

VCC

606 CHAPTER 9/MSI LOGIC CIRCUITS

(a)

(b)

Clock

Z
1

1 0 1 0 1 1 0 1
0

X0 X1 X2 X3 X4 X5 X6 X7

Z

E

QC

0

QB QA

CLOCK

MOD-8 up counter

CLK

Storage
register 74HC151

X1

X0

X2

X3

X4

X5

X6

X7

I0

I1

I2

I3

I4

I5

I6

I7

S2 S1 S0

Z

FIGURE 9-25 (a) Parallel-

to-serial converter;

(b) waveforms for

.= 10110101

X7X6X5X4X3X2X1X0

TOCCMC09_0131725793.QXD 12/22/2005 9:42 AM Page 606

SECTION 9-7/MULTIPLEXER APPLICATIONS 607

The data are present in parallel form at the outputs of the X register and

are fed to the eight-input multiplexer. A three-bit (MOD-8) counter is used to

provide the select code bits so that they cycle through from 000 to 111

as clock pulses are applied. In this way, the output of the multiplexer will be

during the first clock period, during the second clock period, and so on.The

output Z is a waveform that is a serial representation of the parallel input data.

The waveforms in the figure are for the case where

.This conversion process takes a total of eight clock cycles. Note that

(the LSB) is transmitted first and the (MSB) is transmitted last.

Operation Sequencing
The circuit of Figure 9-26 uses an eight-input multiplexer as part of a control

sequencer that steps through seven steps, each of which actuates some portion

of the physical process being controlled. This could be, for example, a process

that mixes two liquid ingredients and then cooks the mixture. The circuit also

uses a 3-line-to-8-line decoder and a MOD-8 binary counter. The operation is

described as follows.

1. Initially the counter is reset to the 000 state.The counter outputs are fed

to the select inputs of the multiplexer and to the inputs of the decoder.

Thus, the decoder output and the others are all 1, so that all the

ACTUATOR inputs of the process are LOW. The SENSOR outputs of the

process all start out LOW. The multiplexer output because

the S inputs are 000.

2. The START pulse initiates the sequencing operation by setting flip-flop

HIGH, bringing the counter to the 001 state. This causes decoder out-

put to go LOW, thereby activating actuator 1, which is the first step in

the process (opening fill valve 1).

3. Some time later, SENSOR output 1 goes HIGH, indicating the comple-

tion of the first step (the float switch indicates that the tank is full).

This HIGH is now present at the input of the multiplexer. It is in-

verted and reaches the output because the select code from the

counter is 001.

4. The LOW transition at is fed to the CLK of flip-flop . This negative

transition advances the counter to the 010 state.

5. Decoder output now goes LOW, activating actuator 2, which is the

second step in the process (opening fill valve 2). now equals (the

select code is 010). Because SENSOR output 2 is still LOW, will go

HIGH.

6. When the second process step is complete, SENSOR output 2 goes HIGH,

producing a LOW at and advancing the counter to 011.

7. This same action is repeated for each of the other steps. When the sev-

enth step is completed, SENSOR output 7 goes HIGH, causing the

counter to go from 111 to 000, where it will remain until another START

pulse reinitiates the sequence.

Logic Function Generation
Multiplexers can be used to implement logic functions directly from a truth

table without the need for simplification. When a multiplexer is used for

this purpose, the select inputs are used as the logic variables, and each data

input is connected permanently HIGH or LOW as necessary to satisfy the

truth table.

Z

Z
I2Z

O2

Q0Z

Z
I1

O1

Q0

Z = I0 = 1

O0 = 0

X7X0

10110101

X7X6X5X4X3X2X1X0 =

X1

X0

S2S1S0

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 607

Figure 9-27 illustrates how an eight-input multiplexer can be used to im-

plement the logic circuit that satisfies the given truth table.The input variables

A, B, C are connected to respectively, so that the levels on these inputs

determine which data input appears at output Z. According to the truth table,

Z is supposed to be LOW when .Thus, multiplexer input should beI0CBA = 000

S0, S1, S2,

608 CHAPTER 9/MSI LOGIC CIRCUITS

Fill valve 1

Fill valve 2

Drain valve 1

Drain valve 2

 Mixer

 Heater

 Pump

Tank 1 full

Tank 2 full

Tank 1 empty

Tank 2 empty

Mix time over

Up to temp.

Main tank empty

+5 V

J

CLK

K

Q2 J

CLK

K

Q1

1

J

CLK

K

Q0

1

CLR CLR CLR

Reset

A2 A1 A0

3-line-to-8-line
decoder

74HC138
E

O7 O0

PHYSICAL PROCESS

I0 I1 I2 I3 I4 I5 I6 I7
S0

S1

S2

8-input
multiplexer
74HC151

Inverting amplifiers
for driving actuators.

Normally LOW
sensor outputs will
go HIGH to indicate
completion of step.

Start pulse

Z

PREPREPRE

E

A1

A2

A3

A4

A5

A6

A7

S1

S2

S3

S4

S5

S6

S7

A1

S1

S3

S2

S4

A3 A4

M

Timer

Heater

A6

Temp

S5

S6

S7

P A7

A2

A5

SENSORSACTUATORS

FIGURE 9-26 Seven-step control sequencer.

TOCCMC09_0131725793.QXD 12/22/2005 2:20 AM Page 608

SECTION 9-7/MULTIPLEXER APPLICATIONS 609

A

Z = ABC + ABC + ABC

1 k�

Input
logic

variables

B
C

I0 I1 I2 I3 I4 I5 I6 I7

S0

E

S1

S2

74HC151 MUX

(a)

C

0
0
0
0
1
1
1
1

B

0
0
1
1
0
0
1
1

A

0
1
0
1
0
1
0
1

Z

0
1
1
0
0
0
0
1

(b)

+VCCFIGURE 9-27 Multiplexer

used to implement a logic

function described by the

truth table.

connected LOW. Likewise, Z is supposed to be LOW for 100, 101,

and 110, so that inputs and should also be connected LOW.The other

sets of CBA conditions must produce and so multiplexer inputs and

are connected permanently HIGH.

It is easy to see that any three-variable truth table can be implemented

with this eight-input multiplexer. This method of implementation is often

more efficient than using separate logic gates. For example, if we can write

the sum-of-products expression for the truth table in Figure 9-27, we have

This cannot be simplified either algebraically or by K mapping, and so its

gate implementation would require three INVERTERs and four NAND

gates, for a total of three ICs.

There is an even more efficient method for using multiplexers to implement

logic functions. This method will allow the logic designer to use a multiplexer

with three select inputs (e.g., a 74HC151) to implement a four-variable logic

function. We will present this method in Problem 9-37.

The most important concept to be gained from using a MUX to imple-

ment a sum-of-products expression is the fact that the logic function can be

very easily changed by simply changing the 1s and 0s on the MUX inputs. In

other words, a MUX can very easily be used as a programmable logic device

(PLD). Many PLDs use this strategy in hardware blocks that are generally

referred to as look-up tables (LUTs). We will discuss look-up tables in more

detail in Chapters 12 and 13.

Z = AB C + ABC + ABC

I7

I1, I2,Z = 1,

I6I3, I4, I5,

CBA = 011,

REVIEW QUESTIONS 1. What are some of the major applications of multiplexers?

2. True or false: When a multiplexer is used to implement a logic function,

the logic variables are applied to the multiplexer’s data inputs.

3. What type of circuit provides the select inputs when a MUX is used as a

parallel-to-serial converter?

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 609

1-Line-to-8-Line Demultiplexer
Figure 9-29 shows the logic diagram for a demultiplexer that distributes one

input line to eight output lines.The single data input line I is connected to all

eight AND gates, but only one of these gates will be enabled by the SELECT

input lines. For example, with only AND gate 0 will be enabled,

and data input I will appear at output . Other SELECT codes cause input I
to reach the other outputs. The truth table summarizes the operation.

The demultiplexer circuit of Figure 9-29 is very similar to the 3-line-to-8-

line decoder circuit in Figure 9-2 except that a fourth input (I) has been

added to each gate. It was pointed out earlier that many IC decoders have an

ENABLE input, which is an extra input added to the decoder gates.This type

of decoder chip can therefore be used as a demultiplexer, with the binary

code inputs (e.g., A, B, C in Figure 9-2) serving as the SELECT inputs and the

ENABLE input serving as the data input I. For this reason, IC manufacturers

often call this type of device a decoder/demultiplexer, and it can be used for

either function.

We saw earlier how the 74ALS138 is used as a 1-of-8 decoder. Figure 9-30

shows how it can be used as a demultiplexer. The enable input is used as

the data input I, while the other two enable inputs are held in their active

states. The inputs are used as the select code. To illustrate the opera-

tion, let’s assume that the select inputs are 000.With this input code, the only

output that can be activated is while all other outputs are HIGH. will

go LOW only if goes LOW and will be HIGH if goes HIGH. In other

words, will follow the signal on (i.e., the data input, I) while all other

outputs stay HIGH. In a similar manner, a different select code applied to

will cause the corresponding output to follow the data input, I.A2A1A0

E1O0

E1E1

O0O0,

A2A1A0

E1

O0

S2S1S0 = 000,

610 CHAPTER 9/MSI LOGIC CIRCUITS

O0

DATA
input

SELECT input

DATA input is transmitted
to only one of the outputs
as determined by select input code.

O1

ON–1

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

DEMUXFIGURE 9-28 General

demultiplexer.

9-8 DEMULTIPLEXERS (DATA DISTRIBUTORS)

A multiplexer takes several inputs and transmits one of them to the output.

A demultiplexer (DEMUX) performs the reverse operation: it takes a single

input and distributes it over several outputs. Figure 9-28 shows the func-

tional diagram for a digital demultiplexer. The large arrows for inputs and

outputs can represent one or more lines.The select input code determines to

which output the DATA input will be transmitted. In other words, the de-

multiplexer takes one input data source and selectively distributes it to 1 of

N output channels just like a multiposition switch.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 610

SECTION 9-8/DEMULTIPLEXERS (DATA DISTRIBUTORS) 611

0

1

2

3

4

5

6

7

I
DATA input

S2

0
0
0
0
1
1
1
1

S0

0
1
0
1
0
1
0
1

O7

0
0
0
0
0
0
0
I

SELECT code OUTPUTS

S1

0
0
1
1
0
0
1
1

O6

0
0
0
0
0
0
I
0

O5

0
0
0
0
0
I
0
0

O4

0
0
0
0
I
0
0
0

O3

0
0
0
I
0
0
0
0

O2

0
0
I
0
0
0
0
0

O1

0
I
0
0
0
0
0
0

O0

I
0
0
0
0
0
0
0

Note: I is the
 data input

S2

S1

S0

O7 = I • (S2S1S0)

O6 = I • (S2S1S0)

O5 = I • (S2S1S0)

O4 = I • (S2S1S0)

O3 = I • (S2S1S0)

O2 = I • (S2S1S0)

O1 = I • (S2S1S0)

O0 = I • (S2S1S0)
FIGURE 9-29 A 1-line-to-

8-line demultiplexer.

Select
code

+5 V

Data input
I

74ALS138
decoder/DEMUX

(a) (b)

Waveforms for A2A1A0 = 000

Logic 1

E1 (I)

O0

O1–O7

A2

A1

A0

O7 O6 O5 O4 O3 O2 O1 O0

E1 E2 E3

FIGURE 9-30 (a) The

74ALS138 decoder can

function as a demultiplexer

with used as the data

input; (b) typical waveforms

for a select code of

show that

is identical to the data

input I on E1.

O0A2A1A0 = 000

E1

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 611

612 CHAPTER 9/MSI LOGIC CIRCUITS

+5 V

Door 0

Door 6 Door 7

I0

I1
I2
I3
I4
I5

From
doors
1–5 74HC151

MUX

I6

I7

S2 S1 S0
E

74HC138

DEMUX

A2 A1 A0

Q2 Q1 Q0

MOD-8

CTR

+5 V

3
2
1

Z

+5 V

+5 V

+5 V

O0 0

O1 1

O2 2

O3 3

O4 4

O5 5

O6 6

O7 7

330 �

CLOCK

Monitoring panel

FIGURE 9-31 Security monitoring system.

Figure 9-30(b) shows typical waveforms for the case where A2A1A0 � 000

selects output For this case, the data signal applied to will be trans-

mitted to and all other outputs will remain in their inactive HIGH state.

Security Monitoring System
Consider the case of a security monitoring system in an industrial plant

where the open/closed status of many access doors is to be monitored.

Each door controls the state of a switch, and it is necessary to display the

state of each switch on LEDs that are mounted on a remote monitoring

panel at the security guard’s station. One way to do this would be to run a

separate signal from each door switch to an LED on the monitoring panel.

This setup would require running many wires over a long distance. A bet-

ter approach that would reduce the amount of wiring to the monitoring

panel uses a multiplexer/demultiplexer combination. Figure 9-31 shows a

system that can handle eight doors, but the basic idea can be expanded to

any number.

O0,

E1O0.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 612

SECTION 9-8/DEMULTIPLEXERS (DATA DISTRIBUTORS) 613

EXAMPLE 9-11 Examine Figure 9-31 carefully and describe the complete operation.

Solution

The eight door switches are the data inputs to the MUX; they produce a

HIGH when a door is open and a LOW when it is closed. The MOD-8 counter

provides the select inputs to the MUX and also to the DEMUX on the remote

monitoring panel. Each DEMUX output is connected to an indicator LED

that will be on when the output is LOW. Clock pulses applied to the counter

will cause the select inputs to sequence through all of the possible states 000

through 111. At each number of the counter, the switch status for the door of

the same number will be inverted by the MUX and passed to output From

there, it is transmitted to the DEMUX input, which passes it through to the

output corresponding to the same number.

For example, let’s say that the counter is at the count of 110 (6). While

the counter is in this state, let’s say that door 6 is closed. The LOW at will

pass through the MUX and be inverted to produce a HIGH at This HIGH

will be passed through the DEMUX to output so that LED 6 will be off,

indicating that door 6 is closed. Now let’s say that door 6 is open. A LOW

will appear at and so that LED 6 will be on to signal that door 6 is

open. Of course, all other LEDs will be off during this time because is

the only active output.

As the counter is clocked through its eight states 000 through 111, the

LEDs will sequentially indicate the status of the eight doors. If all the

doors are closed, none of the LEDs will be on even when the correspon-

ding DEMUX output is selected. If a door is open, its LED will turn on only

during the time interval that the counter is at the appropriate count; it

will be off at all other counts. Thus, the LED will be flashing on and off if

its door is open. The flashing rate can be adjusted by changing the fre-

quency of the clock.

Note that there are only four signal lines going from the “door-sensing”

circuitry to the remote monitoring panel: the output and the three select

lines. This is a saving of four lines when compared with the alternative of

having one line per door.The MUX/DEMUX combination is used to transmit

the status of each door to its LED one at a time (serially) instead of all at

once (parallel).

Synchronous Data Transmission System
Figures 9-32 and 9-33 show the logic diagrams for a synchronous data trans-

mission system that is used to transmit four, four-bit words serially from a

transmitter to a remote receiver. To operate this system, four data words are

parallel-loaded into the input registers of the transmitter block and the

transmit signal is activated. The 16 data bits are then sent over a single data

line, one bit at a time, reassembled by the receiver, and stored in output reg-

isters. Let’s look at the transmitter details in Figure 9-32 first.The clock input

is a high-frequency, constantly running, periodic clock signal that synchro-

nizes all activities in the system. The four-bit data words are stored individu-

ally (synchronously) in the PISO registers when enabled by the appropriate

ld_x input. For simplicity, the parallel data inputs to the PISO registers are

not shown in the diagram. These input registers are designed to shift the

data to the right and also recirculate the LSB (rightmost bit) to the MSB

Z

O6

O6Z

O6

Z.

I6

Z.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 613

(leftmost bit). With this arrangement the bits are all shifted to the serial out-

put and also end up back in their proper locations after four clock pulses.

TRANSMITTER OPERATION Initially, let’s assume that all the flip-flops

and the two MOD-4 counters in Figure 9-32 are all cleared. On the next PGT

of clock, FF2 is SET, removing the asynchronous clear command from the

counters and FF1. When the transmit signal goes HIGH, FF1 is SET, putting

all the shift registers in the shift mode. The MUX selects input 0 (register A)

because the MOD-4 Word counter is at 0. At this point the LSB of register A
is on the transmit_data line. The next three clock pulses (counted by the Bit

counter) shift the other bits of register A to the serial output. As a result, the

transmit_data line outputs each of the register A bits, one at a time from the

least to the most significant. On the fourth PGT, the Bit counter rolls over to

zero, the Word counter increments to 1, all of the shift registers have recir-

culated their data back to the original position, and the MUX now selects the

LSB data from register B to output on the transmit_data line. The next three

clocks shift out the contents of register B, followed by registers C and D. On the

16th PGT, FF2 toggles to a zero state, resetting all the counters and disabling

any further counting by also clearing FF1. The next PGT sets FF2 again, and

the system is waiting for new data to be loaded and the next transmit signal.

RECEIVER OPERATION The receiver circuit shown in Figure 9-33 is very

similar in operation to the transmitter. Notice that all flip-flops, counters,

614 CHAPTER 9/MSI LOGIC CIRCUITS

A3 I0

I1

I2

I3

A2

PISO
Registers MUX

transmit_dataZ

4-
in

pu
t

m
ul

tip
le

xe
r

Id_A

Id_B

Id_C

Id_D

Shift_enable

Clock

Transmit

FF2

CLK

Word counter

/sent

K

1J

A1 A0

B3 B2 B1 B0

C3 C2 C1 C0

D3 D2 D1 D0
S1

Bit counter

1DFF1

S0

MOD-4
counter

ENTC

Q1 Q0
CLK

MOD-4
counter

ENTC

Q1 Q0
CLK

CLK

CLR

CLR CLR

FIGURE 9-32 Transmitter block in synchronous data transmission system.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 614

FF2

CLK

K

J 1

A3O0

O3 O2 O1 O0

O1

O2

O3

A2 A1 A0

B3 B2 B1 B0

C3 C2 C1 C0

D3 D2 D1 D0

DEMUX
SIPO

Registers
enable_A

enable_B

enable_D

Decoder
1-out-of-4

B

A

EN

enable_CI

4-
ou

tp
ut

de
m

ul
tip

le
xe

r

S0S1

/received

Bit counterWord counter

transmit_data

Clock

Transmit

MOD-4
counter

ENTC

Q1 Q0
CLK

MOD-4
counter

ENTC

Q1 Q0
CLK

1DFF1

CLK

CLR

CLR CLR

FIGURE 9-33 Receiver block in synchronous data transmission system.

SECTION 9-8/DEMULTIPLEXERS (DATA DISTRIBUTORS) 615

and registers use the same clock as the transmitter. The receiver uses a DE-

MUX to distribute the serial data to the appropriate SIPO register and a de-

coder to enable one register at a time. Let’s begin analyzing this circuit with

all counters and flip-flops at zero.The next clock sets FF2, removing the asyn-

chronous clear command from the counters and FF1. When the transmit line

goes HIGH, FF1 is SET, enabling the Bit counter, Word counter, and also the

decoder. With the Word counter at zero, the decoder enables register A and

the DEMUX connects the serial data line (which currently contains the LSB

of transmit register A) to the serial data input of receive register A. The next

PGT shifts the least significant data bit into register A and advances the Bit

counter.The next three PGTs shift the next three data bits into register A, the

Bit counter rolls over to zero, the Word counter increments to 1, and the de-

coder and DEMUX switch to register B. After the 16th PGT, all four registers

contain the proper data, FF2 has toggled to a zero state, FF1 is cleared and

disables the decoder, which disables all the SIPO registers. On the next PGT,

FF2 is set and the system is waiting for the next transmission of data.

SYSTEM TIMING The timing diagram in Figure 9-34 shows the parallel

data that is loaded into the transmitter, the serial data stream, and the dis-

tribution and storage of the four data values in the receiver registers. At

times the binary data values (shown as hex 3, 5, 6, and D) are loaded into

transmit registers A, B, C, and D, respectively. The system is idle until the

transmit line goes HIGH at . At this point the LSB from register A () is al-

ready on the transmit_data line. Also notice that at the data on outputt5–t8,

A0t5

t1-4,

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 615

t 1
t 2

t 3
t 4

t 5
t 6

t 7
t 8

t 9
t 1

0
t 1

1
t 1

2
t 1

3

tr
an

sm
it

Id
_d

Id
_c

Id
_b

Id
_a

cl
oc

k

da
ta

[3
..0

]

re
ce

iv
ed

o0 a[
3.

.0
]

o1 b[
3.

.0
]

o2 c[
3.

.0
]

o3 d[
3.

.0
]

tr
an

sm
it_

da
ta

A
0

A
0

A
1

A
1

�
�

�

A
2

A
3

A
2

A
3

B
0

B
1

B
2

B
3

B
0

B
1

B
2

B
3

C
0

C
1

C
2

C
3

C
0

C
1

C
2

C
3

D
0

D
1

D
2

D
3

D
0

D
1

D
2

D
3

�
�

�

�
�

�
�

�

01
01

11
01

00
11

0
3

5
6

D

00
00

00
00

00
00

00
00

01
10

F
IG

U
R

E
 9

-3
4

T
im

in
g
 d

ia
g

ra
m

 f
o
r

o
n

e
 c

o
m

p
le

te
 t

ra
n

sm
is

si
o
n

 c
y
c
le

.

616

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 616

SECTION 9-9/MORE TROUBLESHOOTING 617

of the DEMUX is identical to the transmit_data line. This shows that the

DEMUX has distributed the transmit_data to shift register A. At the PGT

of the clock shifts into the MSB of receive register A, all transmit data reg-

isters (not shown in the timing) are shifted, and data bit appears on the

transmit_data line. At times and the other three bits are shifted into

register A such that after receive register A contains the data bits that

were stored in transmit register A. The diagram shows that the DEMUX has

switched to distribute data to register B because the DEMUX output is

now identical to transmit_data from through . Starting at the data

are shifted into receive register B, which at contains the value that was

originally stored in transmit register B. Register C and Register D are sent and

stored from to and from to respectively.t13,t12t12t11

t11

t10,t11t9

O1

t9,

t9,t7, t8,

A1

A0

t6,

O0

REVIEW QUESTIONS 1. Explain the difference between a DEMUX and a MUX.

2. True or false: The circuit for a DEMUX is basically the same as for a de-

coder.

3. For the system of Figure 9-31, what will the security guard see on the

monitoring panel when all of the doors are open?

9-9 MORE TROUBLESHOOTING

Here are three more examples to illustrate the observation/reasoning

process that is such an important initial step when troubleshooting. For each

case, try to determine the circuit fault before looking at the solution.

EXAMPLE 9-12 Consider the circuit of Figure 9-24. A test performed on this circuit yields the

result shown in Table 9-3. What is the probable circuit fault?

TABLE 9-3
Actual Count Displayed Count

Case 1 Counter 1 25 25

Counter 2 37 35

Case 2 Counter 1 49 49

Counter 2 72 79

Case 3 Counter 1 96 96

Counter 2 14 16

Solution

In each of the test cases, the display of counter 1 matches the counter’s actual

count. This indicates that the inputs, all MUX outputs, and both displays

are probably working correctly. On the other hand, each test case shows that

counter 2’s tens digit is displayed correctly but its units digit is displayed

incorrectly. This could mean that there is a fault somewhere between the

I1

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 617

618 CHAPTER 9/MSI LOGIC CIRCUITS

output of the units section of counter 2 and the inputs of the units MUX.

We should compare the bit patterns of the actual and displayed values of the

units for counter 2 (Table 9-4). The idea is to look for things such as a bit that

does not change (stuck LOW or HIGH) or two bits that are reversed (crossed

connections). The data in Table 9-4 reveal no obvious pattern.

I0

TABLE 9-4
Actual Units Displayed Units

Case 1 0111 (7) 0101 (5)

Case 2 0010 (2) 1001 (9)

Case 3 0100 (4) 0110 (6)

EXAMPLE 9-13 The security monitoring system of Figure 9-31 is tested and the results are

recorded in Table 9-5. What are the possible faults that could produce these

results?

TABLE 9-5
Condition LEDs

All doors closed All LEDs off

Door 0 open LED 4 flashing

Door 1 open LED 5 flashing

Door 2 open LED 6 flashing

Door 3 open LED 7 flashing

Door 4 open LED 4 flashing

Door 5 open LED 5 flashing

Door 6 open LED 6 flashing

Door 7 open LED 7 flashing

Solution

Again, the data should be reviewed to see if there is some pattern that could

help to narrow down the search for the fault to a small area of the circuit.

The data in Table 9-5 reveal that the correct LEDs flash for open doors 4

through 7.They also show that for open doors 0 through 3, the number of the

flashing LED is four more than the number of the door, and LEDs 0 through

3 are always off. This is most probably caused by a constant logic HIGH at

the MSB of the select input of the DEMUX, because this would alwaysA2,

If we take another look at the recorded test results, we see that the dis-

played units digit of counter 2 is always the same as the units digit of

counter 1. This symptom is probably the result of a constant logic HIGH at

the select input of the units MUX because that would continually pass the

units digit of counter 1 to the units MUX output. This constant HIGH at the

select input is most likely caused by an open path somewhere between

the select input of the tens MUX and the select input of the units MUX. It

could not be caused by a short to VCC because that would also keep the se-

lect input of the tens MUX at a constant HIGH, and we know that the tens

MUX is working.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 618

SECTION 9-9/MORE TROUBLESHOOTING 619

make the select code 4 or greater, and it would add 4 to the select codes 0

through 3.

Thus, we have two possibilities: is somehow shorted to or there

is an open connection at . A little thought will eliminate the first choice

as a possibility because this would also mean that of the MUX would

also be stuck HIGH. If that were so, then the status of doors 0 through 3

would not get through the MUX and into the DEMUX. We know that this is

not true because the data show that when any of these doors is open, it af-

fects one of the DEMUX outputs.

S2

A2

VCC,A2

EXAMPLE 9-14 An extremely important principle of troubleshooting, called divide-and-
conquer, was introduced in Section 9-5. It is really not about military strategy,

but rather describes the most efficient way to eliminate from consideration

all the parts of the circuit that are working correctly. Assume that data have

been loaded into the four transmit registers of Figure 9-32 and the transmit

pulse has occurred, but after the next 16 clock pulses, no new data have ap-

peared in the receive registers shown in Figure 9-33. How can we most effi-

ciently find the problem?

Solution

In a synchronous digital system that is simply not functioning, it is reason-

able first to check to see if the power supply and clock are working, just as

you might check for a pulse if you found a person lying on the ground.

However, assuming the clock is oscillating, there is a much more efficient

way to isolate the problem than randomly picking points in the circuit and

determining if the correct signal is present. We want to perform a test on this

circuit such that, if we obtain the desired results, we know that half of the

circuit is working correctly and we can eliminate that half from considera-

tion. In this circuit the best place to look is at the transmit_data line. A logic

probe should be placed on the transmit_data line and the transmit signal

should be activated. If a burst of pulses is observed on the logic probe, it

means that the transmit section is functioning. We may not know if the data

are correct, but remember, the receiver is not getting incorrect data but

rather no data at all. However, if no burst of pulses is observed, there is cer-

tainly a problem in the transmit section.

A troubleshooting tree diagram as shown in Figure 9-35 is helpful in

isolating problems in a system. Let’s assume there were no pulses on

transmit_data. Now we need to perform a test on the transmitter to prove

that half of the transmitter is working properly. In this case the circuit does

not divide exactly in half easily. A good choice might be to examine the out-

put of the word counter. A logic probe should be placed on the select inputs

of the MUX and the transmit signal activated. If brief pulses occur imme-

diately after transmit, then the entire control section (made up of two

counters and two flip-flops) is probably functioning properly and we can

look elsewhere. The next place to look is at the outputs of the PISO regis-

ters (or data inputs of the MUX). If data pulses are present on each line af-

ter transmit is activated, the problem must be in the MUX. If not, we can

further break down the PISO section. Each test that is performed should

eliminate the largest possible amount of the remaining circuitry until all

that is left is a small block containing the fault.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 619

P
ro

be
 w

or
d

co
un

te
r

ou
t

T
ra

ns
m

it

P
ul

se
s

?

P
ul

se
s

?

P
ul

se
s

?

P
ul

se
s

?

N
Y

Y

P
ro

be
 P

IS
O

 o
ut

T
ra

ns
m

it

P
ro

be
 T

xD
T

ra
ns

m
it

P
ro

be
 w

or
d

co
un

te
r

ou
t

T
ra

ns
m

it

T
im

in
g

an
d

C
on

tr
ol

P
ro

bl
em

N
N

Y

P
IS

O
P

ro
bl

em

N

M
U

X
P

ro
bl

em

Y

T
im

in
g

an
d

C
on

tr
ol

P
ro

bl
em

P
ul

se
s

?

P
ro

be
 d

ec
od

er
 o

ut
T

ra
ns

m
it

D
ec

od
er

P
ro

bl
em

N

P
ro

be
 d

em
ux

 o
ut

T
ra

ns
m

it

P
ul

se
s

?

Y

Y
N

D
em

ux
P

ro
bl

em
S

IP
O

P
ro

bl
em

F
IG

U
R

E
 9

-3
5

E
x
a
m

p
le

 9
-1

4
:
A

 t
ro

u
b

le
sh

o
o
ti

n
g
 t

re
e
 d

ia
g

ra
m

.

620

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 620

SECTION 9-10/MAGNITUDE COMPARATOR 621

9-10 MAGNITUDE COMPARATOR

Another useful member of the MSI category of ICs is the magnitude com-
parator. It is a combinational logic circuit that compares two input binary

quantities and generates outputs to indicate which one has the greater mag-

nitude. Figure 9-36 shows the logic symbol and the truth table for the 74HC85

four-bit magnitude comparator, which is also available as the 74LS85.

FIGURE 9-36 Logic symbol and truth table for a 74HC85 (7485, 74LS85) four-bit

magnitude comparator.

74HC85
4-bit

magnitude
comparator

IA>B

A3

IA>B

IA<B

IA=B

A2 A1 A0 B3 B2 B1 B0

OA>B OA<B OA=B

Cascading
inputs

Data inputs

Outputs

TRUTH TABLE

COMPARING INPUTS

A3, B3 A2, B2 A1, B1 A0, B0

A3>B3 X X X
A3<B3
A3=B3
A3=B3

X X X
X X
X X

A2>B2
A2<B2

A3=B3 X
A3=B3
A3=B3
A3=B3

X
A2=B2
A2=B2
A2=B2
A2=B2

A1>B1
A1<B1
A1=B1
A1=B1

A0>B0
A0<B0

A3=B3 A2=B2 A1=B1 A0=B0
A3=B3 A2=B2 A1=B1 A0=B0
A3=B3 A2=B2 A1=B1 A0=B0
A3=B3 A2=B2 A1=B1 A0=B0
A3=B3 A2=B2 A1=B1 A0=B0

CASCADING INPUTS

IA >B

X
X
X
X

X
X
X
X

H
L
X
L
H

IA< B

X
X
X
X

X
X
X
X

L
H
X
L
H

IA=B

X
X
X
X

X
X
X
X

L
L
H
L
L

OUTPUTS

OA >B

H
L
H
L

H
L
H
L

H
L
L
H
L

OA< B

L
H
L
H

L
H
L
H

L
H
L
H
L

OA=B

L
L
L
L

L
L
L
L

L
L
H
L
L

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial

Data Inputs
The 74HC85 compares two unsigned four-bit binary numbers. One of them is

which is called word A; the other is which is called word

B. The term word is used in the digital computer field to designate a group of

bits that represents some specific type of information. Here, word A and

word B represent numerical quantities.

B3B2B1B0,A3A2A1A0,

TOCCMC09_0131725793.QXD 12/22/2005 2:06 PM Page 621

622 CHAPTER 9/MSI LOGIC CIRCUITS

Outputs
The 74HC85 has three active-HIGH outputs. Output will be HIGH

when the magnitude of word A is greater than the magnitude of word B.
Output will be HIGH when the magnitude of word A is less than the

magnitude of word B. Output will be HIGH when word A and word B
are identical.

Cascading Inputs
Cascading inputs provide a means for expanding the comparison operation to

more than four bits by cascading two or more four-bit comparators. Note that

the cascading inputs are labeled the same as the outputs. When a four-bit

comparison is being made, as in Figure 9-37(a), the cascading inputs should

be connected as shown in order for the comparator to produce the correct

outputs.

When two comparators are to be cascaded, the outputs of the lower-order

comparator are connected to the corresponding inputs of the higher-order com-

parator.This is shown in Figure 9-37(b), where the comparator on the left is com-

paring the lower-order four bits of the two eight-bit words:

and . Its outputs are fed to the cascade inputs of the com-

parator on the right, which is comparing the high-order bits.The outputs of the

high-order comparator are the final outputs that indicate the result of the eight-

bit comparison.

B7B6B5B4B3B2B1B0

A7A6A5A4A3A2A1A0

OA=B

OA6B

OA7B

4-bit
comparator

74HC85

A3

IA>B

IA<B

IA=B

A2 A1 A0 B3 B2 B1 B0

OA>B OA<B OA=B

(a)

+5 V

74HC85

A3

IA>B

IA<B

IA=B

A2 A1 A0 B3 B2 B1 B0

OA>B OA<B OA=B

(b)

+5 V

Low-order bits

A B

74HC85

A7

IA>B

IA<B

IA=B

A6 A5 A4 B7 B6 B5 B4

OA>B OA<B OA=B

High-order bits

A B

8-bit comparison
outputs

FIGURE 9-37 (a) 74HC85

wired as a four-bit

comparator; (b) two

74HC85s cascaded to

perform an eight-bit

comparison.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 622

SECTION 9-10/MAGNITUDE COMPARATOR 623

EXAMPLE 9-15 Describe the operation of the eight-bit comparison arrangement in Figure

9-37(b) for the following cases:

(a)

(b)

Solution

(a) The high-order comparator compares its inputs and

and produces regardless of what levels are ap-

plied to its cascade inputs from the low-order comparator. In other words,

once the high-order comparator senses a difference in the high-order bits

of the two eight-bit words, it knows which eight-bit word is greater without

having to look at the results of the low-order comparison.

(b) The high-order comparator sees so it must

look at its cascade inputs to see the result of the low-order comparison.

The low-order comparator has and

which produces a 1 at its output and the input of the high-order

comparator.The high-order comparator senses this 1, and because its data

inputs are equal, it produces a HIGH at its to indicate the result of

the eight-bit comparison.

Applications
Magnitude comparators are also useful in control applications where a binary

number representing the physical variable being controlled (e.g., position,

speed, or temperature) is compared with a reference value. The comparator

outputs are used to actuate circuitry to drive the physical variable toward the

reference value. The following example will illustrate one application. We

will examine another comparator application in Problem 9-52.

OA7B

IA7BOA7B

B3B2B1B0 = 1001,A3A2A1A0 = 1111

A7A6A5A4 = B7B6B5B4 = 1010,

OA6B = 1B7B6B5B4 = 1011

A7A6A5A4 = 1010

A7A6A5A4A3A2A1A0 = 10101111; B7B6B5B4B3B2B1B0 = 10101001

A7A6A5A4A3A2A1A0 = 10101111; B7B6B5B4B3B2B1B0 = 10110001

EXAMPLE 9-16 Consider a digital thermostat in which the measured room temperature is

converted to a digital number and applied to the A inputs of a comparator.

The desired room temperature, entered from a keypad, is stored in a register

that is connected to the B inputs. If the furnace should be activated

to heat the room. The furnace should continue to heat while and shut

off when . As the room cools off, the furnace should stay off while

and turn on again when . What digital circuit can be used to in-

terface a magnitude comparator to a furnace to perform the thermostat con-

trol application described above?

Solution

Using the output to drive the furnace directly would cause it to turn off

as soon as the values became equal.This can cause severe on/off cycling of the

furnace when the actual temperature is very close to the boundary between

and . By using a NOR gate SET-CLEAR latch circuit (refer to

Chapter 5) as shown in Figure 9-38, the system will operate as described.

Notice that is connected to the SET input and is connected to the

CLEAR input of the latch. When the temperature is hotter than desired, it

clears the latch, shutting off the furnace. When the temperature is cooler

than desired, it sets the latch, turning the furnace on.

OA7BOA6B

A = BA 6 B

OA6B

A 6 BA = B
A 7 B

A = B
A 6 B,

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 623

624 CHAPTER 9/MSI LOGIC CIRCUITS

9-11 CODE CONVERTERS

A code converter is a logic circuit that changes data presented in one type of

binary code to another type of binary code. The BCD-to-7-segment decoder-

driver that we presented earlier is a code converter because it changes a

BCD input code to the 7-segment code needed by the LED display. A partial

list of some of the more common code conversions is given in Table 9-6.

As an example of a code converter circuit, let’s consider a BCD-to-binary

converter. Before we get started on the circuit implementation, we should re-

view the BCD representation.

Two-digit decimal values ranging from 00 to 99 can be represented in

BCD by two four-bit code groups. For example, is represented as

The straight binary representation for decimal 57 is

The largest two-digit decimal value of 99 has the following representations:

Note that the binary representation requires only seven bits.

Basic Idea
The diagram of Figure 9-39 shows the basic idea for a two-digit BCD-to-binary

converter. The inputs to the converter are the two four-bit code groups

9910 = 10011001 (BCD) = 11000112

5710 = 1110012

5 7

0101 0111 (BCD)

⎫ ⎬ ⎭ ⎫ ⎬ ⎭

5710

74HC85s
(as in Fig. 9-37)

/8

A0
•
•
•

A7

/8

B0
•
•
•

B7

OA>B

OA=B

OA<B

Temp. sensor

Keypad

CLR

SET

Analog-
to-digital
converter

Keypad
encoder

and
registers

Furnace
controller

REVIEW QUESTIONS 1. What is the purpose of the cascading inputs of the 74HC85?

2. What are the outputs of a 74HC85 with the following inputs:

and ?IA=B = 1B3B2B1B0 = 1001, IA7B = IA6B = 0,

A3A2A1A0 =

TABLE 9-6

BCD to 7-segment

BCD to binary

Binary to BCD

Binary to Gray code

Gray code to binary

ASCII to EBCDIC*

EBCDIC to ASCII

*EBCDIC is an alphanumeric
code developed by IBM and is
similar to ASCII.

FIGURE 9-38 Magnitude

comparator used in a

digital thermostat.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 624

SECTION 9-11/CODE CONVERTERS 625

representing the or units digit, and representing

the or tens digit of the decimal value.The outputs from the converter are

the seven bits of the binary equivalent of the same decimal

value. Note the difference in the weights of the BCD bits and those of the

binary bits.

A typical use of a BCD-to-binary converter would be where BCD data

from an instrument such as a DMM (digital multimeter) are being trans-

ferred to a computer for storage or processing. The data must be converted

to binary so that they can be operated on in binary by the computer ALU,

which may not have the capability of performing arithmetic operations on

BCD data. The BCD-to-binary conversion can be accomplished with either

hardware or software. The hardware method (which we will look at momen-

tarily) is generally faster but requires extra circuitry. The software method

uses no extra circuitry, but it takes more time because the software does the

conversion step by step. The method chosen in a particular application de-

pends on whether or not conversion time is an important consideration.

Conversion Process
The bits in a BCD representation have decimal weights that are 8, 4, 2, 1 within

each code group but that differ by a factor of 10 from one code group (decimal

digit) to the next. Figure 9-39 shows the bit weights for the two-digit BCD rep-

resentation.

The decimal weight of each bit in the BCD representation can be converted

to its binary equivalent.The results are given in Table 9-7. Using these weights,

we can perform the BCD-to-binary conversion by simply doing the following:

b6b5b4b3b2b1b0,

101
D1C1B1A1,100D0C0B0A0,

D1BCD

80

C1

40

B1

20

A1

10

101

D0

8

C0

4

B0

2

A0

1

100

64 32 16 8 4 2 1

Two-digit BCD-to-binary converter

b6 b5 b4 b3 b2 b1 b0

Binary equivalent

Decimal weights

Decimal weights

FIGURE 9-39 Basic idea

of a two-digit BCD-to-binary

converter.

TABLE 9-7 Binary

equivalents of decimal

weights of each BCD bit.

Binary Equivalent
Decimal

BCD Bit Weight b6 b5 b4 b3 b2 b1 b0

A0 1 0 0 0 0 0 0 1

B0 2 0 0 0 0 0 1 0

C0 4 0 0 0 0 1 0 0

D0 8 0 0 0 1 0 0 0

A1 10 0 0 0 1 0 1 0

B1 20 0 0 1 0 1 0 0

C1 40 0 1 0 1 0 0 0

D1 80 1 0 1 0 0 0 0

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 625

626 CHAPTER 9/MSI LOGIC CIRCUITS

Compute the binary sum of the binary equivalents of all bits in the
BCD representation that are 1s.

The following example will illustrate.

EXAMPLE 9-17 Convert 01010010 (BCD for decimal 52) to binary. Repeat for 10010101 (dec-

imal 95).

Solution

Write down the binary equivalents for all the 1s in the BCD representation.

Then add them all together in binary.

Circuit Implementation
Clearly, one way to implement the logic circuit that performs this conversion

process is to use binary adder circuits. Figure 9-40 shows how two 74HC83

0 1 0 1 0 0 1 0 (BCD)

0000010 (binary for 2)

0001010 (binary for 10)

� 0101000 (binary for 40)

0110100 (binary for 52)

1 0 0 1 0 1 0 1 (BCD)

0000001 (binary for 1)

0000100 (binary for 4)

0001010 (binary for 10)

� 1010000 (binary for 80)

1011111 (binary for 95)

↑
↑

↑

↑
↑
↑

↑

74HC83

0

BCD representation

Binary equivalent

74HC83C4 C0

Σ3 Σ2 Σ1 Σ0

C4

D1 C1 B1 A1 D0 C0 B0 A0

C0

Σ3 Σ2 Σ1 Σ0

b6 b5 b4 b3 b2 b1 b0

123

0123

3 2 1 0

3 2 1 0

FIGURE 9-40 BCD-to-

binary converter

implemented with 74HC83

four-bit parallel adders.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 626

SECTION 9-11/CODE CONVERTERS 627

four-bit parallel adders can be wired to perform the conversion.This is one of

several possible adder arrangements that will work. You may want to review

the operation of this IC in Section 6-14.

The two adder ICs perform the addition of the BCD bits in the proper

combinations according to Table 9-7. For instance, Table 9-7 shows that is

the only BCD bit that contributes to the LSB, of the binary equivalent. Be-

cause there is no carry into this bit position, is connected directly as out-

put . The table also shows that only BCD bits and contribute to bit

of the binary output. These two bits are combined in the upper adder to pro-

duce output . Likewise, only BCD bits and contribute to bit .

The upper adder combines and to generate which is connected to

the lower adder, where is added to it to produce .b3C1

©2,A1D0

b3C1D0, A1,b1

b1A1B0b0

A0

b0,

A0

EXAMPLE 9-18 The BCD representation for decimal 56 is applied to the converter of

Figure 9-40. Determine the outputs from each adder and the final binary

output.

Solution

Write down the bits of the BCD representation 01010110 on the circuit dia-

gram. Because the bit of the output is 0.

The top inputs to the upper adder are 0011.The bottom inputs are 0101.

This adder adds these to produce

The and bits become binary outputs and respectively. The

and bits are fed to the lower adder. The top inputs to the lower adder

are therefore 0010. The bottom inputs are 0101. This adder adds these to

produce

These bits become respectively.

Thus, we have as the correct binary equiva-

lent for decimal 56.

Other Code Converter Implementations
Whereas all types of code converters can be made by combining logic gates,

adder circuits, or other combinational logic, the circuitry can become quite

complex, requiring many ICs. It is often more efficient to use a read-only

memory (ROM) or programmable logic device (PLD) to function as a code

converter. As we will see in Chapters 12 and 13, these devices contain the

equivalent of hundreds of logic gates, and they can be programmed to pro-

vide a wide range of logic functions.

b6b5b4b3b2b1b0 = 0111000

b6b5b4b3,

0010

+0101

0111 = ©3©2©1©0 outputs of the lower adder

©2

©3b1,b2©0©1

0011

+0101

1000 = ©3©2©1©0 outputs of the upper adder

b0A0 = 0,

©

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 627

628 CHAPTER 9/MSI LOGIC CIRCUITS

9-12 DATA BUSING

In most modern computers, the transfer of data takes place over a common set

of connecting lines called a data bus. In these bus-organized computers, many

different devices can have their outputs and inputs tied to the common data bus

lines. Because of this, the devices that are tied to the data bus will often have

tristate outputs, or they will be tied to the data bus through tristate buffers.

Some of the devices that are commonly connected to a data bus are (1)

microprocessors; (2) semiconductor memory chips, covered in Chapter 12;

and (3) digital-to-analog converters (DACs) and analog-to-digital converters

(ADCs), described in Chapter 11.

Figure 9-41 illustrates a typical situation in which a microprocessor (the

CPU chip in a microcomputer) is connected to several devices over an eight-line

REVIEW QUESTIONS 1. What is a code converter?

2. How many binary outputs would a three-digit BCD-to-binary converter

have?

ENABLE 3

ENABLE 1

Device-1
8-bit counter

Data Bus

Microprocessor
(CPU)

Note:

CLOCK

OE

ENABLE 2

Device-2
keyboard
encoder

OE

Device-3
74HC126

buffers

OE

DIP
switches

Keyboard

indicates
tristate outputs.

FIGURE 9-41 Three different devices can transmit eight-bit data over an eight-

line data bus to a microprocessor; only one device at a time is enabled so that bus

contention is avoided.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 628

SECTION 9-13/THE 74ALS173/HC173 TRISTATE REGISTER 629

data bus.The data bus is simply a collection of conducting paths over which dig-

ital data are transmitted from one device to another. Each device provides an

eight-bit output that is sent to the inputs of the microprocessor over the eight-

line data bus. Clearly, because the outputs of each of the three devices are con-

nected to the same microprocessor inputs over the data bus conducting paths,

we must be aware of bus contention problems (Section 8-12), where two or more

signals tied to the same bus line are active and are essentially fighting each

other. Bus contention is avoided if the devices have tristate outputs or are con-

nected to the bus through tristate buffers (Section 8-12).The output enable in-

puts (OE) to each device (or its buffer) are used to ensure that no more than one

device’s outputs are active at a given time.

EXAMPLE 9-19 (a) For Figure 9-41, describe the conditions necessary to transmit data from

device 3 to the microprocessor.

(b) What will the status of the data bus be when none of the devices is

enabled?

Solution

(a) ENABLE 3 must be activated; ENABLE 1 and ENABLE 2 must be in their

inactive state.This will put the outputs of device 1 and device 2 in the Hi-

Z state and essentially disconnect them from the bus. The outputs of de-

vice 3 will be activated so that their logic levels will appear on the data

bus lines and be transmitted to the inputs of the microprocessor. We can

visualize this by covering up device 1 and device 2 as if they are not even

part of the circuit; then we are left with device 3 alone connected to the

microprocessor over the data bus.

(b) If none of the device enable inputs are activated, all of the device out-

puts are in the Hi-Z state. This disconnects all device outputs from the

bus. Thus, there is no definite logic level on any of the data bus lines;

they are in the indeterminate state. This condition is known as a floating
bus, and each data bus line is said to be in a floating (indeterminate)

state. An oscilloscope display of a floating bus line would be unpre-

dictable. A logic probe would indicate an indeterminate logic level.

REVIEW QUESTIONS 1. What is meant by the term data bus?

2. What is bus contention, and what must be done to prevent it?

3. What is a floating bus?

9-13 THE 74ALS173/HC173 TRISTATE REGISTER

The devices connected to a data bus will contain registers (usually flip-flops)

that hold the device data. The outputs of these registers are usually con-

nected to tristate buffers that allow them to be tied to a data bus. We will

demonstrate the details of data bus operation by using an IC register that in-

cludes the tristate buffers on the same chip: the TTL 74ALS173 (also avail-

able in CMOS 74HC173 versions). Its logic diagram and truth table are

shown in Figure 9-42.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 629

630 CHAPTER 9/MSI LOGIC CIRCUITS

The 74ALS173 is a four-bit register with parallel in/parallel out capabil-

ity. Note that the FF outputs are connected to tristate buffers that provide

outputs through . Also note that the data inputs through are con-

nected to the D inputs of the register FFs through logic circuitry. This logic

allows two modes of operation: (1) load, where the data at inputs to are

transferred into the FFs on the PGT of the clock pulse at CP; and (2) hold,
where the data in the register do not change when the PGT of CP occurs.

D3D0

D3D0O3O0

FIGURE 9-42 Truth table and logic diagram for the 74ALS173 tristate register.

D

Q

IE1Input
Enable IE2

OE1Output
Enable OE2

O0

MR

CP

Q

CP

CD

Q

D0

D

Q

O1

Q

CP

CD

Q

D1

D

Q

O2

Q

CP

CD

Q

D2

D

Q

O3

Q

CP

CD

Q

D3

74ALS173

When either OE1 or OE2 is HIGH, the output is in the OFF
state (high impedance); however, this does not affect the
contents or sequential operating of the register.

H = HIGH voltage level
L = LOW voltage level
X = immaterial

Q0 = output prior to PGT

Logic Diagram

Inputs

MR

H
L
L
L
L
L

CP

X
L

X
X
H
X
L
L

IE1

X
X
X
H
L
L

IE2

X
X
X
X
L
H

Dn

FF Outputs

L
Q0
Q0
Q0
L
H

Q

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 630

SECTION 9-13/THE 74ALS173/HC173 TRISTATE REGISTER 631

EXAMPLE 9-20 (a) What input conditions will produce the load operation?

(b) What input conditions will produce the hold operation?

(c) What input conditions will allow the internal register outputs to appear

at to ?

Solution

(a) The last two entries in the truth table show that each Q output takes on

the value present at its D input when a PGT occurs at CP provided that

MR is LOW and both input-enable inputs, and are LOW.

(b) The third and fourth lines of the truth table state that when either in-

put is HIGH, the D inputs have no effect, and the Q outputs will retain

their current values when the PGT occurs.

(c) The output buffers are enabled when both output-enable inputs, and

are LOW. This will pass the register outputs through to the external

outputs to . If either output-enable input is HIGH, the buffers will

be disabled, and the outputs will be in the Hi-Z state.

Note that the inputs have no effect on the data load operation. They

are used only to control whether or not the register outputs are passed to

the external outputs.

The logic symbol for the 74ALS173/HC173 is given in Figure 9-43. We

have included the IEEE/ANSI “&” notation to indicate the AND relationship

of the two pairs of enable inputs.

OE

O3O0

OE2,

OE1

IE

IE2,IE1

O3O0

REVIEW QUESTIONS 1. Assume that both IE inputs are LOW and that . What

logic levels are present at the FF D inputs?

2. True or false: The register cannot be loaded when the master reset input

(MR) is held HIGH.

3. What will the output levels be when and both OE inputs are

held low?

MR = HIGH

D0D1D2D3 = 1011

OE2

IE2

74ALS173/HC173

IE1

OE1

CP

&
D3 D2 D1 D0

Data inputs

O3 O2 O1 O0

Data outputs

Note:

a tristate
output

indicates

MR

&

FIGURE 9-43 Logic

symbol for the

74ALS173/HC173 IC.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 631

632 CHAPTER 9/MSI LOGIC CIRCUITS

9-14 DATA BUS OPERATION

The data bus is very important in computer systems, and its significance will

not be appreciated until our later studies of memories and microprocessors.

For now, we will illustrate the data bus operation for register-to-register data

transfer. Figure 9-44 shows a bus-organized system for three 74HC173 tri-

state registers. Note that each register has its pair of inputs tied together

as one input, and likewise for the inputs. Also note that the registers

will be referred to as registers A, B, and C from top to bottom. This is indi-

cated by the subscripts on each input and output.

IEOE
OE

74HC173
IEA

OEA

D3A

O3A

MR

CP

Clock

DB3

D2A D1A D0A

O2A O1A O0A

74HC173
IEB

OEB

D3B

O3B

MR

CP

D2B D1B D0B

O2B O1B O0B

74HC173
IEC

OEC

D3C

O3C

MR

CP

D2C D1C D0C

O2C O1C O0C

Only one register's
outputs should be
enabled at one time

DB2 DB1 DB0

Data
bus

Data bus

FIGURE 9-44 Tristate registers connected to a data bus.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 632

SECTION 9-14/DATA BUS OPERATION 633

In this arrangement, the data bus consists of four lines labeled to

. Corresponding outputs of each register are connected to the same data

bus line (e.g., and are connected to). Because the three reg-

isters have their outputs connected together, it is imperative that only one

register have its outputs enabled and that the other two register outputs re-

main in the Hi-Z state. Otherwise, there will be bus contention (two or more

sets of outputs fighting each other), producing uncertain levels on the bus

and possible damage to the register output buffers.

Corresponding register inputs are also tied to the same bus line (e.g.,

and are tied to). Thus, the levels on the bus will always be

ready to be transferred to one or more of the registers depending on the

inputs.

Data Transfer Operation
The contents of any one of the three registers can be parallel-transferred

over the data bus to one of the other registers through the proper application

of logic levels to the register enable inputs. In a typical system, the control

unit of a computer (i.e., the CPU) will generate the signals that select which

register will put its data on the data bus and which one will take the data

from the data bus. The following example will illustrate this.

IE
DB3D3CD3A, D3B,

DB3O3CO3A, O3B,

DB3

DB0

EXAMPLE 9-21 Describe the input signal requirements for transferring .

Solution

First of all, only register A should have its outputs enabled. That is, we need

This will place the contents of register A onto the data bus lines.

Next, only register C should have its inputs enabled. For this, we want

This will allow only register C to accept data from the data bus when the

PGT of the clock signal occurs.

Finally, a clock pulse is required to transfer the data from the bus into

the register C flip-flops.

Bus Signals
The timing diagram in Figure 9-45 shows the various signals involved in the

transfer of the data 1011 from register A to register C. The and lines

that are not shown are assumed to be in their inactive HIGH state. Prior to

time the and lines are also HIGH, so that all of the register out-

puts are disabled, and none of the registers will be placing their data on the

bus lines. In other words, the data bus lines are in the Hi-Z or “floating”

state as represented by the hatched lines on the timing diagram. The Hi-Z
state does not correspond to any particular voltage level.

At the and inputs are activated. The outputs of register A are

enabled, and they start changing the data bus lines through from

the Hi-Z state to the logic levels 1011. After allowing time for the logic levels

DB0DB3

OEAIECt1

OEAIECt1,

OEIE

IEC = 0 IEA = IEB = 1

OEA = 0 OEB = OEC = 1

[A] : [C]

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 633

634 CHAPTER 9/MSI LOGIC CIRCUITS

to stabilize on the bus, the PGT of the clock is applied at . This PGT will

transfer these logic levels into register C because is active. If the PGT oc-

curs before the data bus has valid logic levels, unpredictable data will be

transferred into C.
At the and lines return to the inactive state. As a result, reg-

ister A’s outputs go to the Hi-Z state. This removes the register A output data

from the bus lines, and the bus lines return to the Hi-Z state.

Note that the data bus lines show valid logic levels only during the time

interval when register A’s outputs are enabled. At all other times, the data

bus lines are floating, and there is no way to predict easily what they would

look like if displayed on an oscilloscope. A logic probe would give an “in-

determinate” indication if it were monitoring a floating bus line. Also note

the relatively slow rate at which the signals on the data bus lines are chang-

ing. Although this effect has been somewhat exaggerated in the diagram, it

is a characteristic common to bus systems and is caused by the capacitive

load on each line. This load consists of a combination of parasitic capaci-

tance and the capacitances contributed by each input and output con-

nected to the line.

Simplified Bus Timing Diagram
The timing diagram in Figure 9-45 shows the signals on each of the four data

bus lines. This same kind of signal activity occurs in digital systems that use

the more common data buses of 8, 16, or 32 lines. For these larger buses, the

timing diagrams like Figure 9-45 would get excessively large and cumber-

some.There is a simplified method for showing the signal activity that occurs

on a set of bus lines that uses only a single timing waveform to represent the

complete set of bus lines. This is illustrated in Figure 9-46 for the same data

transfer situation depicted in Figure 9-45. Notice how the data bus activity is

represented. Especially note how the valid data 1011 are indicated on the

diagram during the – interval. We will generally use this simplified bus

timing diagram from now on.

Expanding the Bus
The data transfer operation of the four-line data bus of Figure 9-44 is typical

of the operation of larger data buses found in most computers and other dig-

t3t2

OEAIECt3,

IEC

t2

1

0

1 1

1

NOTES:

t1: Register A outputs are
enabled. Its data are
placed on the data bus lines.

t2: The PGT of the clock
transfers valid data from the
data bus into register C.

t3: Register A outputs are
disabled and the data bus
lines return to Hi-Z state.

= floating (Hi-Z)

1

1

1

1

1

1

IEC

OEA

Clock

DB3

DB2

DB1

DB0

t1 t3t2

0

0

0

0

0

0

0

FIGURE 9-45 Signal activ-

ity during the transfer of

the data 1011 from register

A to register C.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 634

SECTION 9-14/DATA BUS OPERATION 635

ital systems, usually the 8-, 16-, or 32-line data buses. These larger buses gen-

erally have many more than three devices tied to the bus, but the basic data

transfer operation is the same: one device has its outputs enabled so that its
data are placed on the data bus; another device has its inputs enabled so that it
can take these data off the bus and latch them into its internal circuitry on the
appropriate clock edge.

The number of lines on the data bus will depend on the size of the data

word (unit of data) that is to be transferred over the bus. A computer that

has an 8-bit word size will have an eight-line data bus, a computer that has

a 16-bit word size will have a 16-line data bus, and so on. The number of

devices connected to a data bus varies from one computer to another and

depends on factors such as how much memory the computer has and the

number of input and output devices that must communicate with the CPU

over the data bus.

All device outputs must be tied to the bus through tristate buffers. Some

devices, such as the 74173 register, have these buffers on the same chip. Other

devices will need to be connected to the bus through an IC called a bus driver.

A bus driver IC has tristate outputs with a very low output impedance that

can rapidly charge and discharge the bus capacitance. This bus capacitance

represents the cumulative effect of all of the parasitic capacitances of the dif-

ferent inputs and outputs tied to the bus, and it can cause deterioration of the

bus signal transition times if they are not driven from a low-impedance signal

source. Figure 9-47 shows a 74HC541 octal bus driver IC connecting the out-

puts of an eight-bit analog-to-digital converter (ADC) to a data bus. The ADC

has tristate outputs but lacks the drive capability to charge the bus capaci-

tance (shown as capacitors to ground in the drawing). Notice that data bit 0 is

driving the bus directly, without the assistance of the bus driver. If the transi-

tion time is slow enough, the voltage may never reach a HIGH logic level in

the allotted enable time. The bus driver’s two enable inputs are tied together

so that a LOW on the common enable line will allow the ADC’s outputs

through the buffers and onto the data bus, from which they can be transferred

to another device.

Simplified Bus Representation
Usually, many devices are connected to the same data bus. On a circuit

schematic, this can produce a confusing array of lines and connections. For

this reason, a more simplified representation of data bus connections is of-

ten used on block diagrams and in some circuit schematics. One type of sim-

plified representation is shown in Figure 9-48 for an eight-line data bus.

FIGURE 9-46 Simplified

way to show signal activity

on data bus lines.

1

1

1

1
1011

t1

IEC

t3t2

OEA

Clock

DB3–DB0

0

0

0

0

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 635

636 CHAPTER 9/MSI LOGIC CIRCUITS

ENABLE
74HC541

ADC

Data Bus

OE D7

D6

D5

D4

D3

D2

D1

D0

FIGURE 9-47 A 74HC541

octal bus driver connects

the outputs of an analog-to-

digital converter (ADC) to

an eight-line data bus. The

output connects directly

to the bus showing the

capacitive effects.

D0

FIGURE 9-48 Simplified

representation of bus

arrangement.

A

CP [8]

8-wire
bus

[8]

DATA IN

DATA OUT

Clock

[8]

B

CP [8]

[8]

DATA IN

DATA OUT

[8]

C

CP [8]

[8]

DATA IN

DATA OUT

[8]

IEA

OEA

IEB

OEB

IEC

OEC

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 636

SECTION 9-14/DATA BUS OPERATION 637

The connections to and from the data bus are represented by wide

arrows. The numbers in brackets indicate the number of bits that each regis-

ter contains, as well as the number of lines connecting the register inputs and

outputs to the bus.

Another common method for representing buses on a schematic is pre-

sented in Figure 9-49 for an eight-line data bus. It shows the eight individual

output lines from a 74HC541 bus driver labeled bundled (not con-

nected) together and shown as a single line.These bundled data output lines

are then connected to the data bus, which is also shown as one line (i.e., the

eight data bus lines are bundled together). The “/8” notation indicates the

number of lines represented by each bundle. This bundle method is used to

represent the connections from the data bus to the eight microprocessor data

inputs. When the bundle method is used, it is very important to label both

ends of every wire that is in the bundle because the connection cannot be

traced visually on the diagram.

D7–D0

Bidirectional Busing
Each register in Figure 9-44 has both its inputs and its outputs connected

to the data bus, so that corresponding inputs and outputs are shorted to-

gether. For example, each register has output connected to input be-

cause of their common connection to . This, of course, would not be true

if external bus drivers were connected between the register outputs and

the data bus.

Because inputs and outputs are often connected together in bus systems,

IC manufacturers have developed ICs that connect inputs and outputs to-

gether internal to the chip in order to reduce the number of IC pins and the

number of connections to the bus. Figure 9-50 illustrates this for a four-bit

register. The separate data input lines (to) and output lines (to)

have been replaced by input/output lines (to).

Each I/O line will function as either an input or an output depending on

the states of the enable inputs.Thus, they are called bidirectional data lines.

The 74ALS299 is an eight-bit register with common I/O lines. Many memory

ICs and microprocessors have bidirectional transfer of data.

We will return to the important topic of data busing in our comprehen-

sive coverage of memory systems in Chapter 12.

I/O3I/O0

O3O0D3D0

DB2

D2O2

74HC541

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

8

Microprocessor

8

8

Data
Bus

D7 D6 D5 D4 D3 D2 D1 D0

AD7

D0 D1 D2 D3 D4 D5 D6 D7

AD6AD5AD4AD3AD2AD1AD0

FIGURE 9-49 Bundle method for simplified representation of data bus connec-

tions. The “/8” denotes an eight-line data bus.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 637

638 CHAPTER 9/MSI LOGIC CIRCUITS

9-15 DECODERS USING HDL

Section 9-1 introduced the decoder as a device that can recognize a binary

number on its input and activate a corresponding output. Specifically, the

74138 1-of-8 decoder was presented. It uses three binary inputs to activate

one of the eight outputs when the chip is enabled. In order to study HDL

methods for implementing the types of digital devices that are covered in this

chapter, we will focus primarily on conventional MSI parts, which have been

FIGURE 9-50
Bidirectional register

connected to data bus.

(a)

Bidirectional
register

IE

OE

CLOCK CP

I/O3

I/O2

I/O1

I/O0

DB3 DB2 DB1 DB0

Bus

Bidirectional
register

IE

OE

CLOCK CP

I/O

(b)

[4]

[4]
4-wire

bus

Bidirectional
register

I/O3 I/O2 I/O1 I/O0

4

4

Data
Bus

IE

OE

CLOCK

FIGURE 9-51

REVIEW QUESTIONS
1. What will happen if in Figure 9-44?

2. What logic level is on a data bus line when all devices tied to the bus are

disabled?

3. What is the function of a bus driver?

4. What are the reasons for having registers with common I/O lines?

5. Redraw Figure 9-50(a) using the bundled line representation. (The an-

swer is shown in Figure 9-51.)

OEA = OEB = LOW

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 638

discussed earlier. Not only is the operation of these devices already described

in this book, but further reference material is readily available in logic data

books. In all of these cases, it is vital that you understand what the device is

supposed to do before trying to dissect the HDL code that describes it.

In actual practice, we are not recommending, for example, that new code

be written to perform the task of a 74138. After all, there is a macrofunction

already available that works exactly like this standard part. Using these de-

vices as examples and showing the HDL techniques used to create them

opens the door for embellishment of these devices so that a circuit that will

uniquely fit the application at hand can be described. In some instances, we

will add our own embellishments to a circuit that has been described; in

other instances, we will describe a simpler version of a part in order to focus

on the core principle in HDL and avoid other confusing features.

The methods used to define the inputs and outputs should take into consid-

eration the purpose of these signals. In the case of a 1-of-8 decoder such as the

74138 described in Figure 9-3, there are three enable inputs (and)

that should be described as individual inputs to the device. On the other hand,

the binary inputs that are to be decoded () should be described as

three-bit numbers.The outputs can be described as eight individual bits.They

can also be described as an array of eight bits, with output 0 represented by el-

ement 0 in the array, and so on, to output 7 represented by element 7. De-

pending on the way the code is written, one strategy may be easier to write

than the other. Generally, using individual names can make the purpose of

each I/O bit clearer, and using bit arrays makes it easier to write the code.

When an application such as a decoder calls for a unique response from

the circuit corresponding to each combination of its input variables, the two

methods that best serve this purpose are the CASE construct and the truth

TABLE. The interesting aspect of this decoder is that the output response

should happen only when all the enables are activated. If any of the enables

are not in their active state, it should cause all the outputs to go HIGH. Each

of the examples that follow will demonstrate ways to decode the input num-

ber only when all of the enables are activated.

AHDL DECODERS
The first illustration of an AHDL decoder, shown in Figure 9-52, is intended

to demonstrate the use of a CASE construct that is evaluated only under the

condition that all enables are active. The outputs must all revert back to

HIGH as soon as any enable is deactivated. This example also illustrates a

way to accomplish this without explicitly assigning a value to each output for

each case, and it uses individually named output bits.

Line 3 defines the three-bit binary number that will be decoded. Line 4

defines the three enable inputs, and line 5 specifically names each output.

The unique property of this solution is the use of the DEFAULTS keyword in

AHDL (lines 10 to 13) to establish a value for variables that are not specified

elsewhere in the code. This maneuver allows each case to force one bit LOW

without specifically stating that the others must go HIGH.

The next illustration, in Figure 9-53, is intended to demonstrate the same

decoder using the truth table approach. Notice that the outputs are defined as

bit arrays but are still numbered y[7] down to y[0]. The unique aspect of this

code is the use of the don’t-care values in the truth table. Line 11 is used to con-

catenate the six input bits into a single variable (bit array) named inputs[]. No-

tice that in lines 14, 15, and 16 of the table, only one bit value is specified as 1

or 0. The others are all in the don’t-care state (X). Line 14 says, “As long as e3

A2, A1, A0

E3E1, E2,

SECTION 9-15/DECODERS USING HDL 639

A
H

D
L

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 639

640 CHAPTER 9/MSI LOGIC CIRCUITS

FIGURE 9-52 AHDL

equivalent to the

74138 decoder.

1 SUBDESIGN fig9_52
2 (
3 a[2..0] :INPUT; -- binary inputs
4 e3, e2bar, e1bar :INPUT; -- enable inputs
5 y7,y6,y5,y4,y3,y2,y1,y0 :OUTPUT; -- decoded outputs
6)
7 VARIABLE
8 enable :NODE;
9 BEGIN
10 DEFAULTS
11 y7=VCC;y6=VCC;y5=VCC;y4=VCC;
12 y3=VCC;y2=VCC;y1=VCC;y0=VCC; -- defaults all HIGH out
13 END DEFAULTS;
14 enable = e3 & !e2bar & !e1bar; -- all enables activated
15 IF enable THEN
16 CASE a[] IS
17 WHEN 0 => y0 = GND;
18 WHEN 1 => y1 = GND;
19 WHEN 2 => y2 = GND;
20 WHEN 3 => y3 = GND;
21 WHEN 4 => y4 = GND;
22 WHEN 5 => y5 = GND;
23 WHEN 6 => y6 = GND;
24 WHEN 7 => y7 = GND;
25 END CASE;
26 END IF;
27 END;

FIGURE 9-53 AHDL

decoder using a

TABLE.

1 SUBDESIGN fig9_53
2 (
3 a[2..0] :INPUT; -- decoder inputs
4 e3, e2bar, e1bar :INPUT; -- enable inputs
5 y[7..0] :OUTPUT; -- decoded outputs
6)
7 VARIABLE
8 inputs[5..0] :NODE; -- all 6 inputs combined
9
10 BEGIN
11 inputs[] = (e3, e2bar, e1bar, a[]); -- concatenate the inputs
12 TABLE
13 inputs[] => y[];
14 B”0XXXXX” => B”11111111”; -- el not enabled
15 B”X1XXXX” => B”11111111”; -- e2bar disabled
16 B”XX1XXX” => B”11111111”; -- e3bar disabled
17 B”100000” => B”11111110”; -- Y0 active
18 B”100001” => B”11111101”; -- Y1 active
19 B”100010” => B”11111011”; -- Y2 active
20 B”100011” => B”11110111”; -- Y3 active
21 B”100100” => B”11101111”; -- Y4 active
22 B”100101” => B”11011111”; -- Y5 active
23 B”100110” => B”10111111”; -- Y6 active
24 B”100111” => B”01111111”; -- Y7 active
25 END TABLE;
26 END;

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 640

SECTION 9-15/DECODERS USING HDL 641

is not enabled, it does not matter what the other inputs are doing; the outputs

will be HIGH.” Lines 15 and 16 do the same thing, making sure that if e2bar or

e1bar is HIGH (disabled), the outputs will be HIGH. Lines 17 through 24 state

that as long as the first three bits (enables) are “100,” the proper decoder out-

put will be activated to correspond with the lower three bits of inputs[].

VHDL DECODERS
The VHDL solution presented in Figure 9-54 essentially uses a truth table ap-

proach. The key strategy in this solution involves the concatenation of the

three enable bits (e3, e2bar, e1bar) with the binary input a on line 11. The

VHDL selected signal assignment is used to assign a value to a signal when

a specific combination of inputs is present. Line 12 (WITH inputs SELECT)

indicates that we are using the value of the intermediate signal inputs to de-

termine which value is assigned to y. Each of the y outputs is listed on lines

13–20. Notice that only combinations that begin with 100 follow the WHEN

clause on lines 13–20.This combination of e3, e2bar, and e1bar is necessary to

make each of the enables active. Line 21 assigns a disabled state to each out-

put when any combination other than 100 is present on the enable inputs.

FIGURE 9-54 VHDL equivalent to the 74138 decoder.

1 ENTITY fig9_54 IS

2 PORT(

3 a :IN BIT_VECTOR (2 DOWNTO 0);

4 e3, e2bar, e1bar :IN BIT;

5 y :OUT BIT_VECTOR (7 DOWNTO 0)

6);

7 END fig9_54 ;

8 ARCHITECTURE truth OF fig9_54 IS

9 SIGNAL inputs: BIT_VECTOR (5 DOWNTO 0); --combine enables w/ binary in

10 BEGIN

11 inputs <= e3 & e2bar & e1bar & a;

12 WITH inputs SELECT

13 y <= “11111110” WHEN “100000”, --Y0 active

14 “11111101” WHEN “100001”, --Y1 active

15 “11111011” WHEN “100010”, --Y2 active

16 “11110111” WHEN “100011”, --Y3 active

17 “11101111” WHEN “100100”, --Y4 active

18 “11011111” WHEN “100101”, --Y5 active

19 “10111111” WHEN “100110”, --Y6 active

20 “01111111” WHEN “100111”, --Y7 active

21 “11111111” WHEN OTHERS; --disabled

22 END truth;

V
H

D
L

REVIEW QUESTIONS 1. What is the purpose of the three inputs e3, e2bar, and e1bar?

2. Name two AHDL methods to describe a decoder’s operation.

3. Name two VHDL methods to describe a decoder’s operation.

TOCCMC09_0131725793.QXD 12/23/05 4:27 AM Page 641

642 CHAPTER 9/MSI LOGIC CIRCUITS

9-16 THE HDL 7-SEGMENT DECODER/DRIVER

Section 9-2 described a BCD-to-7-segment decoder/driver. The standard part

number for the circuit described is a 7447. In this section, we look into the

HDL code necessary to produce a device that meets the same criteria as the

7447. Recall that the (blanking input) is the overriding control that turns

all segments off regardless of other input levels. The (lamp test) input is

used to test all the segments on the display by lighting them up. The

(ripple blanking output) is designed to go LOW when (ripple blanking

input) is LOW and the BCD input value is 0. Typically, in multiple-digit dis-

play applications, each pin is connected to the pin of the next digit

to the right. This setup creates the feature of blanking all leading zeros in a

display value without blanking zeros in the middle of a number. For exam-

ple, the number 2002 would display as 2002, but the number 0002 would not
display as 0002, but rather _ _ _ 2. One feature of the 7447 that would be dif-

ficult to replicate in HDL is the combination input/output pin named

Rather than complicate the code, we have decided to create a sepa-

rate input and an output on two different pins. This discussion

also makes no attempt to replicate the non-BCD display characters of a 7447

but simply blanks all segments for values greater than 9.

Several decisions must be made when designing a circuit such as this one.

The first involves the type of display we intend to use. If it is a common cath-

ode, then a logic 1 lights the LED segment. If it is a common anode, then a

logic 0 is required to turn on a segment. Next, we must decide on the type of

inputs, outputs, and intermediate variables. We have decided that the out-

puts for each individual segment should be assigned a bit name (a–g) rather

than using a bit array. This arrangement will make it clearer when connect-

ing the display to the IC.These individual bits can be grouped as a set of bits

and assigned binary values, as we have done in AHDL, or an intermediate

variable bit array can be used to make it convenient when assigning all seven

bit levels in a single statement, as we have done in VHDL. The BCD inputs

are treated as a four-bit number, and the blanking controls are individual

bits. The other issue that greatly affects the bit patterns in the HDL code is

the arbitrary decision of the order of the segment names a–g. In this discus-

sion, we have assigned segment a to the leftmost bit in the binary bit pattern,

with the bits moving alphabetically left to right.

Some of the controls must have precedence over other controls. For ex-

ample, the (lamp test) should override any regular digit display, and the

(blanking input) should override even the lamp test input. In these illus-

trations, the IF/ELSE control structure is used to establish precedence. The

first condition that is evaluated as true will determine the resulting output,

regardless of the other input levels. Subsequent ELSE statements will have

no effect, which is why the code tests first for then then and fi-

nally determines the correct segment pattern.

AHDL DECODER/DRIVER
The AHDL code for this circuit is shown in Figure 9-55. AHDL allows output

bits to be grouped in a set by separating the bits with commas and enclosing

them in parentheses. A group of binary states can be assigned directly to

these bit sets, as shown on lines 9, 11, 13, and 15. This convention avoids the

need for an intermediate variable and is much shorter than eight separate

assignment statements. The TABLE feature of AHDL is useful in this appli-

cation to correlate an input BCD value to a 7-segment bit pattern.

RBI,LT,BI,

BI
LT

(RBO)(BI)
BI/RBO.

RBIRBO

RBI
RBO

LT
BI

A
H

D
L

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 642

SECTION 9-16/THE HDL 7-SEGMENT DECODER/DRIVER 643

VHDL DECODER/DRIVER
The VHDL code for this circuit is shown in Figure 9-56.This illustration demon-

strates the use of a VARIABLE as opposed to a SIGNAL. A VARIABLE can be

thought of as a piece of scrap paper used to write down some numbers that will

be needed later. A SIGNAL, on the other hand, is usually thought of as a wire

connecting two points in the circuit. In line 12, the keyword VARIABLE is used

to declare segments as a bit vector with seven bits. Take special note of the or-

der of the indices for this variable. They are declared as 0 TO 6. In VHDL, this

means that element 0 appears on the left end of the binary bit pattern and el-

ement 6 appears on the right end. This is exactly opposite of the way most ex-

amples in this text have presented variables, but it is important to realize the

significance of the declaration statement in VHDL. For this illustration, seg-

ment a is bit 0 (on the left), segment b is bit 1 (moving to the right), and so on.

Notice that on line 3, the BCD input is declared as an INTEGER.This allows

us to refer to it by its numeric value in decimal rather than being limited to bit

pattern references.A PROCESS is employed here in order to allow us to use the

IF/ELSE constructs to establish the precedence of one input over the other.

Notice that the sensitivity list contains all the inputs. The code within the

FIGURE 9-55 AHDL 7-segment BCD display decoder.

1 SUBDESIGN fig9_55

2 (

3 bcd[3..0] :INPUT; -- 4-bit number

4 lt, bi, rbi :INPUT; -- 3 independent controls

5 a,b,c,d,e,f,g,rbo :OUTPUT; -- individual outputs

6)

7 BEGIN

8 IF !bi THEN

9 (a,b,c,d,e,f,g,rbo) = (1,1,1,1,1,1,1,0); % blank all %

10 ELSIF !lt THEN

11 (a,b,c,d,e,f,g,rbo) = (0,0,0,0,0,0,0,1); % test segments %

12 ELSIF !rbi & bcd[] == 0 THEN

13 (a,b,c,d,e,f,g,rbo) = (1,1,1,1,1,1,1,0); % blank leading 0’s %

14 ELSIF bcd[] > 9 THEN

15 (a,b,c,d,e,f,g,rbo) = (1,1,1,1,1,1,1,1); % blank non BCD input %

16 ELSE

17 TABLE % display 7 segment Common Anode pattern %

18 bcd[] => a,b,c,d,e,f,g,rbo;

19 0 => 0,0,0,0,0,0,1,1;

20 1 => 1,0,0,1,1,1,1,1;

21 2 => 0,0,1,0,0,1,0,1;

22 3 => 0,0,0,0,1,1,0,1;

23 4 => 1,0,0,1,1,0,0,1;

24 5 => 0,1,0,0,1,0,0,1;

25 6 => 1,1,0,0,0,0,0,1;

26 7 => 0,0,0,1,1,1,1,1;

27 8 => 0,0,0,0,0,0,0,1;

28 9 => 0,0,0,1,1,0,0,1;

29 END TABLE;

30 END IF;

31 END;

V
H

D
L

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 643

644 CHAPTER 9/MSI LOGIC CIRCUITS

PROCESS describes the behavioral operation of the circuit that is necessary

whenever any of the inputs in the sensitivity list changes state.Another very im-

portant point in this illustration is the assignment operator for variables. Notice

in line 15, for example, the statement segments :� “1111111”. The variable as-

signment operator is used for variables in place of the operator that was

used for signal assignments. In lines 36–42, the individual bits that were

established in the IF/ELSE decisions are assigned to the proper output bits.

6 =:=

FIGURE 9-56 VHDL 7-segment BCD display decoder.

1 ENTITY fig9_56 IS

2 PORT (

3 bcd :IN INTEGER RANGE 0 TO 15;

4 lt, bi, rbi :IN BIT;

5 a,b,c,d,e,f,g,rbo :OUT BIT

6);

7 END fig9_56 ;

8

9 ARCHITECTURE vhdl OF fig9_56 IS

10 BEGIN

11 PROCESS (bcd, lt, bi, rbi)

12 VARIABLE segments :BIT_VECTOR (0 TO 6);

13 BEGIN

14 IF bi = ’0’ THEN

15 segments := “1111111”; rbo <= ’0’; -- blank all

16 ELSIF lt = ’0’ THEN

17 segments := “0000000”; rbo <= ’1’; -- test segments

18 ELSIF (rbi = ’0’ AND bcd = 0) THEN

19 segments := “1111111”; rbo <= ’0’; -- blank leading 0’s

20 ELSE

21 rbo <= ’1’;

22 CASE bcd IS -- display 7 segment Common Anode pattern

23 WHEN 0 => segments := “0000001”;

24 WHEN 1 => segments := “1001111”;

25 WHEN 2 => segments := “0010010”;

26 WHEN 3 => segments := “0000110”;

27 WHEN 4 => segments := “1001100”;

28 WHEN 5 => segments := “0100100”;

29 WHEN 6 => segments := “1100000”;

30 WHEN 7 => segments := “0001111”;

31 WHEN 8 => segments := “0000000”;

32 WHEN 9 => segments := “0001100”;

33 WHEN OTHERS => segments := “1111111”;

34 END CASE;

35 END IF;

36 a <= segments(0); --assign bits of array to output pins

37 b <= segments(1);

38 c <= segments(2);

39 d <= segments(3);

40 e <= segments(4);

41 f <= segments(5);

42 g <= segments(6);

43 END PROCESS;

44 END vhdl;

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 644

SECTION 9-17/ENCODERS USING HDL 645

9-17 ENCODERS USING HDL

In Section 9-4, we discussed encoders and priority encoders. Similarities ex-

ist, of course, between decoders and encoders. Decoders take a binary num-

ber and activate one output that corresponds to that number. An encoder

works in the other direction by monitoring one of its several inputs; when

one of the inputs is activated, it produces a binary number corresponding to

that input. If more than one of its inputs is activated at the same time, a pri-

ority encoder ignores the input of lower significance and produces the bi-

nary value that corresponds to the most significant input. In other words, it

gives more significant inputs priority over less significant inputs. This sec-

tion focuses on the methods that can be used in HDL to describe circuits that

have this characteristic of priority for some inputs over others.

Another very important concept, which was presented in Chapter 8, was

the tristate output circuit. Devices with tristate outputs can produce a logic

HIGH or a logic LOW, just like a normal circuit, when their output is enabled.

However, these devices can have their outputs disabled, which puts them in a

“disconnected” or a high-impedance state. This is very important for devices

connected to common buses, as described in Section 9-12. The next logical

question is, “How do we describe tristate outputs using HDL?” This section

incorporates tristate outputs in the encoder design to address this issue. In or-

der to keep the discussion focused on the essentials, we create a circuit that

emulates the 74147 priority encoder, with one added feature of having active-

HIGH tristate outputs. Other features like cascading inputs and outputs (such

as those found on a 74148) are left for you to try later. A symbol for the circuit

we are describing is shown in Figure 9-57. Because the inputs are all labeled

in a manner very similar to bit array notation, it makes sense to use a bit ar-

ray to describe the encoder inputs. The tristate enable must be a single bit,

and the encoded outputs can be described as an integer numeric value.

REVIEW QUESTIONS 1. What feature of a 7447 is very difficult to duplicate in PLD hardware and

HDL code?

2. Are these illustrations intended to drive common-anode or common-

cathode 7-segment displays?

3. How are certain inputs (e.g., lamp test) given precedence over other in-

puts (e.g., RBI) in the HDL code in this section?

74147

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9

O0 D0

O1 D1

O2 D2

O3 D3

Tristate enable

OE

Encoder
INPUTS

Tristate inverters
FIGURE 9-57 Graphic

description of an encoder

with tristate outputs.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 645

646 CHAPTER 9/MSI LOGIC CIRCUITS

AHDL ENCODER
The most important point to be made from Figure 9-58 is the method of es-

tablishing priority, but also note the I/O assignments. The AHDL input/out-

put descriptions do not provide a separate type for integers but allow a bit

array to be referred to as an integer. Consequently, line 4 describes the out-

puts as a bit array. In this illustration, a TABLE is used that is very similar to

the tables often found in data books describing this circuit’s operation. The

key to this table is the use of the don’t-care state (X) on inputs. The priority

is described by the way we position these don’t-care states in the truth table.

Reading line 15, for instance, we see that as soon as we encounter an active

input (LOW on input a[4]), the lower order input bits do not matter. The out-

put has been determined to be 4. The tristate outputs are made possible by

using the built-in primitive function :TRI on line 6. This line assigns the at-

tributes of a tristate buffer to the variable that has been named buffer.
Recall that this is the same way a flip-flop is described in AHDL. The ports

of a tristate buffer are quite straightforward. They represent the input (in),

the output (out), and the tristate output enable (oe).

FIGURE 9-58 AHDL

priority encoder with

tristate outputs.

1 SUBDESIGN fig9_58

2 (

3 a[9..0], oe :INPUT;

4 d[3..0] :OUTPUT;

5)

6 VARIABLE buffer[3..0] :TRI;

7 BEGIN

8 TABLE

9 a[] => buffer[].in;

10 B”1111111111” => B”1111”; -- no input active

11 B”1111111110” => B”0000”; -- 0

12 B”111111110X” => B”0001”; -- 1

13 B”11111110XX” => B”0010”; -- 2

14 B”1111110XXX” => B”0011”; -- 3

15 B”111110XXXX” => B”0100”; -- 4

16 B”11110XXXXX” => B”0101”; -- 5

17 B”1110XXXXXX” => B”0110”; -- 6

18 B”110XXXXXXX” => B”0111”; -- 7

19 B”10XXXXXXXX” => B”1000”; -- 8

20 B”0XXXXXXXXX” => B”1001”; -- 9

21 END TABLE;

22 buffer[].oe = oe; -- hook up enable line

23 d[] = buffer[].out; -- hook up outputs

24 END;

The next illustration (Figure 9-59) uses the IF/ELSE construct to estab-

lish priority, very much like the method demonstrated in the 7-segment

decoder example.The first IF condition that evaluates TRUE will THEN cause

the corresponding value to be applied to the tristate buffer inputs.The prior-

ity is established by the order in which we list the IF conditions. Notice that

they start with input 9, the highest-order input.This illustration adds another

feature of putting the outputs into the high-impedance state when no input is

being activated. Line 20 shows that the output enables will be activated only

A
H

D
L

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 646

SECTION 9-17/ENCODERS USING HDL 647

when the oe pin is activated and one of the inputs is activated. Another item

of interest in this illustration is the use of bit array notation to describe in-

dividual inputs. For example, line 9 states that IF switch input 9 is activated

(LOW), THEN the inputs to the tristate buffer will be assigned the value 9

(in binary, of course).

VHDL ENCODER
Two very important VHDL techniques are demonstrated in this description

of a priority encoder.The first is the use of tristate outputs in VHDL, and the

second is a new method of describing priority. Figure 9-60 shows the in-

put/output definitions for this encoder circuit. Notice on line 6 that the input

switches are defined as bit vectors with indices from 9 to 0. Also note that the

d output is defined as an IEEE standard bit array (std_logic_vector type).

This definition is necessary to allow the use of high-impedance states (tri-

state) on the outputs and also explains the need for the LIBRARY and USE

statements on lines 1 and 2. As we mentioned, a very important point of this

illustration is the method of describing precedence for the inputs. This code

uses the conditional signal assignment statement starting on line 14 and con-

tinuing through line 24. On line 14, it assigns the value listed to the right of

to the variable d on the left, assuming the condition following WHEN is

true. If this clause is not true, the clauses following ELSE are evaluated one

at a time until one that is true is found.The value preceding WHEN will then

be assigned to d. A very important attribute of the conditional signal assign-

ment statement is the sequential evaluation. The precedence of these state-

ments is established by the order in which they are listed. Notice that in this

illustration, the first condition being tested (line 14) is the enabling of the

tristate outputs. Recall from Chapter 8 that the three states of a tristate out-

6 =

FIGURE 9-59 AHDL priority encoder using IF/ELSE.

1 SUBDESIGN fig9_59

2 (

3 sw[9..0], oe :INPUT;

4 d[3..0] :OUTPUT;

5)

6 VARIABLE

7 buffers[3..0] :TRI;

8 BEGIN

9 IF !sw[9] THEN buffers[].in = 9;

10 ELSIF !sw[8] THEN buffers[].in = 8;

11 ELSIF !sw[7] THEN buffers[].in = 7;

12 ELSIF !sw[6] THEN buffers[].in = 6;

13 ELSIF !sw[5] THEN buffers[].in = 5;

14 ELSIF !sw[4] THEN buffers[].in = 4;

15 ELSIF !sw[3] THEN buffers[].in = 3;

16 ELSIF !sw[2] THEN buffers[].in = 2;

17 ELSIF !sw[1] THEN buffers[].in = 1;

18 ELSE buffers[].in = 0;

19 END IF;

20 buffers[].oe = oe & sw[]!=b”1111111111”; -- enable on any input

21 d[] = buffers[].out; -- connect to outputs

22 END;

V
H

D
L

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 647

648 CHAPTER 9/MSI LOGIC CIRCUITS

put are HIGH, LOW, and high impedance, which is referred to as high Z.

When the value “ZZZZ” is assigned to the output, each output is in the high-

impedance state. If the outputs are to be disabled (high Z), then none of the

other encoding matters. Line 15 tests the highest priority input, which is bit

9 of the sw input array. If it is active (LOW), then a value of 9 is output re-

gardless of whether other inputs are being activated at the same time.

REVIEW QUESTIONS 1. Name two methods in AHDL for giving priority to some inputs over others.

2. Name two methods in VHDL for giving priority to some inputs over others.

3. In AHDL, how are tristate outputs implemented?

4. In VHDL, how are tristate outputs implemented?

9-18 HDL MULTIPLEXERS AND DEMULTIPLEXERS

A multiplexer is a device that acts like a selector switch for digital signals.

The select inputs are used to specify the input channel that is to be “con-

nected” to the output pins. A demultiplexer works in the opposite direction

by taking a digital signal as an input and distributing it to one of its outputs.

Figure 9-61 shows a multiplexer/demultiplexer system with four data input

channels. Each input is a four-bit number. These devices are not exactly like

any of the multiplexers or demultiplexers described earlier in this chapter,

but they operate in the same way. The system in this illustration allows the

four digital signals to share a common “pipeline” in order to get data from

FIGURE 9-60
VHDL priority

encoder using

conditional

signal

assignment.

1 LIBRARY ieee;

2 USE ieee.std_logic_1164.ALL;

3

4 ENTITY fig9_60 IS

5 PORT(

6 sw :IN BIT_VECTOR (9 DOWNTO 0); -- standard logic not needed

7 oe :IN BIT; -- standard logic not needed

8 d :OUT STD_LOGIC_VECTOR (3 DOWNTO 0) -- std logic for hi-Z

9);

10 END fig9_60;

11

12 ARCHITECTURE a OF fig9_60 IS

13 BEGIN

14 d <= “ZZZZ” WHEN ((oe = ’0’) OR (sw = “1111111111”)) ELSE

15 “1001” WHEN sw(9) = ’0’ ELSE

16 “1000” WHEN sw(8) = ’0’ ELSE

17 “0111” WHEN sw(7) = ’0’ ELSE

18 “0110” WHEN sw(6) = ’0’ ELSE

19 “0101” WHEN sw(5) = ’0’ ELSE

20 “0100” WHEN sw(4) = ’0’ ELSE

21 “0011” WHEN sw(3) = ’0’ ELSE

22 “0010” WHEN sw(2) = ’0’ ELSE

23 “0001” WHEN sw(1) = ’0’ ELSE

24 “0000” WHEN sw(0) = ’0’;

25 END a;

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 648

SECTION 9-18/HDL MULTIPLEXERS AND DEMULTIPLEXERS 649

one point to the other.The select inputs are used to decide which signal is go-

ing through the pipeline at any time.

In this section, we examine some code that implements both the multi-

plexer and the demultiplexer. The key HDL issue in both the MUX and DE-

MUX is assigning signals under certain conditions. For the demux, another

issue is assigning a state to whichever outputs are not currently selected to

distribute data. In other words, when an output is not being used for data

(not selected), do we want it to have all bits HIGH, all bits LOW, or the tri-

state disabled? In the following descriptions, we have chosen to make them all

HIGH when not selected, but with the structure shown, it would be a simple

matter to change to one of the other possibilities.

AHDL MUX AND DEMUX
We will implement the multiplexer first. Figure 9-62 describes a multiplexer

with four inputs of four bits each. Each input channel is named in a way that

identifies its channel number. In this figure, each input is described as a

four-bit array. The select input (s[]) requires two bits to specify the four

channel numbers (0–3). A CASE construct is used here to assign an input

channel conditionally to the output pins. Line 9, for example, states that in

the case when the select inputs (s[]) are set to 0 (that is, binary 00), the

/4

/4

/4

/4

/4

CH0

/4

CH1

/4

CH2

/4

CH3

/4

S1 S0

Dout

Pipeline

MUX

S1 S0

Din

DEMUX

CH0

CH1

CH2

CH3

Select

FIGURE 9-61 Four channels of data sharing a common data path.

FIGURE 9-62
Four-bit four-

channel MUX

in AHDL.

* 1 SUBDESIGN fig9_62

2 (

3 ch0[3..0], ch1[3..0], ch2[3..0], ch3[3..0]:INPUT;

4 s[1..0] :INPUT; -- select inputs

5 dout[3..0] :OUTPUT;

6)

7 BEGIN

8 CASE s[] IS

9 WHEN 0 => dout[] = ch0[];

10 WHEN 1 => dout[] = ch1[];

11 WHEN 2 => dout[] = ch2[];

12 WHEN 3 => dout[] = ch3[];

13 END CASE;

14 END;

A
H

D
L

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 649

650 CHAPTER 9/MSI LOGIC CIRCUITS

circuit should connect the channel 0 input to the data output. Notice that

when assigning connections, the destination (output) of the signal is on the

left of the sign and the source (input) is on the right.

The demultiplexer code works in a similar way but has only one input chan-

nel and four output channels. It must also ensure that the outputs are all HIGH

when they are not selected. In Figure 9-63, the inputs and outputs are declared

as usual on lines 3–5. The default condition for each channel is specified after

the keyword DEFAULTS, which tells the compiler to generate a circuit that

will have HIGHs on the outputs unless specifically assigned a value elsewhere

in the code. If this default section is not specified, the output values would de-

fault automatically to all LOW. Notice on lines 16–19 that the input signal is as-

signed conditionally to one of the output channels. Consequently, the output

channel is on the left of the sign and the input signal is on the right.

VHDL MUX AND DEMUX
Figure 9-64 shows the code that creates a four-channel MUX with four bits per

channel. The inputs are declared as bit arrays on line 3. They could have been

declared just as easily as integers ranging from 0 to 15. Whichever way the in-

puts are declared, the outputs must be of the same type. Notice on line 4 that the

select input (s) is declared as a decimal integer from 0 to 3 (equivalent to binary

00 to 11).This allows us to refer to it by its decimal channel number in the code,

making it easier to understand. Lines 11–15 use the selected signal assignment

statement to “connect” the appropriate input to the output, depending on the

value on the select inputs. For example, line 15 states that channel 3 should be

selected to connect to the data outputs when the select inputs are set to 3.

The demultiplexer code works in a similar way but has only one input

channel and four output channels. In Figure 9-65, the inputs and outputs are

declared as usual on lines 3–5. Notice that in line 3, the select input(s) is typed

as an integer, just like the MUX code in Figure 9-64. The operation of a

DEMUX is described most easily using several conditional signal assignment

=

=

FIGURE 9-63 Four-bit

four-channel DEMUX

in AHDL.

*

1 SUBDESIGN fig9_63

2 (

3 ch0[3..0], ch1[3..0], ch2[3..0], ch3[3..0] :OUTPUT;

4 s[1..0] :INPUT;

5 din[3..0] :INPUT;

6)

7 BEGIN

8 DEFAULTS

9 ch0[] = B”1111”;

10 ch1[] = B”1111”;

11 ch2[] = B”1111”;

12 ch3[] = B”1111”;

13 END DEFAULTS;

14

15 CASE S[] IS

16 WHEN 0 => ch0[] = din[];

17 WHEN 1 => ch1[] = din[];

18 WHEN 2 => ch2[] = din[];

19 WHEN 3 => ch3[] = din[];

20 END CASE;

21 END;

V
H

D
L

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 650

SECTION 9-18/HDL MULTIPLEXERS AND DEMULTIPLEXERS 651

statements, as shown in lines 11–14. We decided earlier that the code for this

DEMUX must ensure that the outputs are all HIGH when they are not

selected. This is accomplished with the ELSE clause of each conditional sig-

nal assignment. If the ELSE clause is not used, the output values would de-

fault automatically to all LOW. For example, line 13 states that channel 2 will

be connected to the data inputs whenever the select inputs are set to 2. If s is

set to any other value, then channel 2 will be forced to have all bits HIGH.

REVIEW QUESTIONS 1. For the four-bit by four-channel MUX, name the data inputs, the data

outputs, and the control inputs that choose one channel of the four.

2. For the four-bit by four-channel DEMUX, name the data inputs, the data

outputs, and the control inputs that choose one channel of the four.

3. In the AHDL example, how are the logic states determined for the chan-

nels that are not selected?

4. In the VHDL example, how are the logic states determined for the chan-

nels that are not selected?

FIGURE 9-64 Four-bit

four-channel MUX in

VHDL.

*

1 ENTITY fig9_64 IS

2 PORT (

3 ch0, ch1, ch2, ch3 :IN BIT_VECTOR (3 DOWNTO 0);

4 s :IN INTEGER RANGE 0 TO 3;

5 dout :OUT BIT_VECTOR (3 DOWNTO 0)

6);

7 END fig9_64;

8

9 ARCHITECTURE selecter OF fig9_64 IS

10 BEGIN

11 WITH s SELECT

12 dout <= ch0 WHEN 0, -- switch channel 0 to output

13 ch1 WHEN 1, -- switch channel 1 to output

14 ch2 WHEN 2, -- switch channel 2 to output

15 ch3 WHEN 3; -- switch channel 3 to output

16 END selecter;

FIGURE 9-65 Four-bit

four-channel DEMUX in

VHDL.

*

1 ENTITY fig9_65 IS

2 PORT (

3 s :IN INTEGER RANGE 0 TO 3;

4 din :IN BIT_VECTOR (3 DOWNTO 0);

5 ch0, ch1, ch2, ch3 :OUT BIT_VECTOR(3 DOWNTO 0)

6);

7 END fig9_65;

8

9 ARCHITECTURE selecter OF fig9_65 IS

10 BEGIN

11 ch0 <= din WHEN s = 0 ELSE “1111”;

12 ch1 <= din WHEN s = 1 ELSE “1111”;

13 ch2 <= din WHEN s = 2 ELSE “1111”;

14 ch3 <= din WHEN s = 3 ELSE “1111”;

15 END selecter;

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 651

652 CHAPTER 9/MSI LOGIC CIRCUITS

9-19 HDL MAGNITUDE COMPARATORS

In Section 9-10, we studied a 7485 magnitude comparator chip. As the name

implies, this device compares the magnitude of two binary numbers and in-

dicates the relationship between the two (greater than, less than, equal to).

Control inputs are provided for the purpose of cascading these chips. These

chips are interconnected so that the chip comparing the lower-order bits

has its outputs connected to the control inputs of the next higher-order

chip, as shown in Figure 9-37. When the highest-order stage detects that its

data inputs have equal magnitude, it will look to the next lower stage and

use these control inputs to make the final decision. This gives us a chance

to look at one of the defining differences between using traditional logic

ICs and using HDL to design a circuit. If we need to compare bigger values

using HDL we can simply adjust the size of the comparator input ports to

be whatever we need, rather than trying to cascade several four-bit com-

parators. Consequently, there is no need for cascading input controls in the

HDL version.

There are many possible ways to describe the operation of a comparator.

However, it is best to use an IF/ELSE construct because each IF clause eval-

uates a relationship between two values, as opposed to looking for the sin-

gle value of a variable, like a CASE. The two inputs being compared should

definitely be declared as numerical values. The three comparator outputs

should be declared as individual bits in order to label each bit’s purpose

clearly.

AHDL COMPARATOR
The AHDL code in Figure 9-66 follows the algorithm we have described us-

ing IF/ELSE constructs. Notice in line 3 that the data values are declared as

four-bit numbers. Also note in lines 8, 10, and 11 that several statements can

be used to specify the circuit’s operation when the IF clause is true. Each

statement is used to set the level on one of the outputs. These three state-

ments are considered concurrent, and the order in which they are listed

makes no difference. For example, in line 8, when A is greater than B, the

agtb output will go HIGH at the same time the other two outputs (altb, aeqb)

go LOW.

FIGURE 9-66 Magnitude comparator in AHDL.

A
H

D
L

SUBDESIGN fig9_661
(2

a[3..0], b[3..0] :INPUT;3
agtb, altb, aeqb :OUTPUT;4

)5
BEGIN6

IF a[] > b[] THEN7
agtb = VCC; altb = GND; aeqb = GND;8

ELSIF a[] < b[] THEN9
 agtb = GND; altb = VCC; aeqb = GND;10

ELSE agtb = GND ; altb = GND ; aeqb = VCC;11
END IF;12

END;13

TOCCMC09_0131725793.QXD 12/21/2005 02:15 AM Page 652

SECTION 9-20/HDL CODE CONVERTERS 653

VHDL COMPARATOR
The VHDL code in Figure 9-67 follows the algorithm we have described using

IF/ELSE constructs. Notice in line 2 that the data values are declared as

four-bit integers. Remember, in VHDL, the IF/ELSE constructs can be used

only inside a PROCESS. In this case, we want to evaluate the PROCESS

whenever any of the inputs change state. Consequently, each input is listed

in the sensitivity list within the parentheses. Also note in lines 10, 11, and 12

that several statements can be used to specify the circuit’s operation when

the IF clause is true. Each statement is used to set the level on one of the out-

puts. These three statements are considered concurrent, and the order in

which they are listed makes no difference. For example, on line 11, when A
is greater than B, the agtb output will go HIGH at the same time the other

two outputs (altb, aeqb) go LOW.

V
H

D
L

FIGURE 9-67 Magnitude comparator in VHDL.

9-20 HDL CODE CONVERTERS

Section 9-11 demonstrated some methods using adder circuits in an interesting

but not at all intuitive way to create a BCD-to-binary conversion. In Chapter 6,

we discussed adder circuits, and the circuit of Figure 9-40 can certainly be im-

plemented using HDL and 7483 macrofunctions or adder descriptions that we

know how to write. However, this is an excellent opportunity to point out the

tremendous advantage that HDL can offer because it allows a circuit to be

described in a way that makes the most sense. In the case of BCD-to-binary

REVIEW QUESTIONS 1. What type of data objects must be declared for data inputs to a

comparator?

2. What is the key control structure used to describe a comparator?

3. What are the key operators used?

ENTITY fig9_67 IS1
PORT (a, b : IN INTEGER RANGE 0 TO 15;2

 agtb, altb, aeqb : OUT BIT);3
END fig9_67;4

5
ARCHITECTURE vhdl OF fig9_67 IS6
BEGIN7

PROCESS (a, b)8
BEGIN9

IF a < b THEN altb <= '1'; agtb <= '0'; aeqb <= '0';10
ELSIF a > b THEN altb <= '0'; agtb <= '1'; aeqb <= '0';11
ELSE altb <= '0'; agtb <= '0'; aeqb <= '1';12
END IF;13

END PROCESS;14
END vhdl;15

TOCCMC09_0131725793.QXD 12/21/2005 02:15 AM Page 653

654 CHAPTER 9/MSI LOGIC CIRCUITS

conversion, the sensible method of conversion is to use the concepts that we all

learned in the third grade about the decimal number system. You were once

taught that the number 275 was actually:

Now we have studied the BCD number system and realize that 275 is repre-

sented in BCD as 0010 0111 0101. Each digit is simply represented in binary.

If we could multiply these binary digits by the decimal weight (represented

in binary) and add them, we would have a binary answer that is equivalent to

the BCD quantity. For example, let’s try using the BCD representation for 275:

BCD Decimal Partial

Weight Product

(in binary) (in binary)

11001000

01000110

The solution presented here for our eight-bit (two BCD digits) HDL code con-

verter will use the following strategy:

Take the most significant BCD digit (the tens place) and multiply it by
10. Add this product to the least significant BCD digit (the ones place).

The answer will be a binary number representing the BCD quantity. It is

important to realize that the HDL compiler does not necessarily try to imple-

ment an actual multiplier circuit in its solution. It will create the most efficient

circuit that will do the job, which allows the designer to describe its behavior

in the most sensible way.

AHDL BCD-TO-BINARY CODE CONVERTER
The key to this strategy is in being able to multiply by 10. AHDL does not

offer a multiplication operator, so in order to use this overall strategy, we need

some math tricks. We will use the shifting of bits to perform multiplication

and then employ the distributive property from algebra to multiply by 10. In

the same way that we can shift a decimal number left by one digit, thus mul-

tiplying it by 10, we can likewise shift a binary number one place to the left

and multiply it by 2. Shifting two places multiplies a binary number by 4, and

shifting three places multiplies by 8. The distributive property tells us that:

If we can take the BCD tens digit and shift it left three bit positions (i.e.,

multiply it by 8), then take the same number and shift it left one place (i.e.,

multiply it by 2), and then add them together, the result will be the same as

multiplying the BCD digit by 10. This value is then added to the BCD ones

digit to produce the binary equivalent of the two-digit BCD input.

num * 10 = num * (8 + 2) = (num * 8) + (num * 2)

100010011 = 27510

 01011 =+ 0101 *

1010 =+ 0111 *

1100100 =0010 *

 2 * 100 = 200

+ 7 * 10 = 70

+ 5 * 1 = 5

 275

A
H

D
L

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 654

SECTION 9-20/HDL CODE CONVERTERS 655

The next challenge is to shift the BCD digit left using AHDL. Because

AHDL allows us to make up sets of variables, we can shift the bits by ap-

pending zeros to the right end of the array. For example, if we have the num-

ber 5 in BCD (0101) and we want to shift it three places, we can concatenate

the number 0101 with the number 000 in a set, as follows:

The AHDL code in Figure 9-68 begins by declaring inputs for the BCD ones

and tens digits. The binary output must be able to represent which re-

quires seven bits. We also need a variable to hold the product of the BCD digit

multiplied by 10. Line 5 declares this variable as a seven-bit number. Line 8 per-

forms the shifting of the tens[] array three times and adds it to the tens[] array

shifted one place to the left. Notice that this latter set must have seven bits in

order to be added to the first set, thus the need to concatenate B“00” on the left

end. Finally, in line 10, the result from line 8 is added to the BCD ones digit with

leading zero extensions (to make seven bits) to form the binary output.

9910,

(B“0101”, B“000”) = B“0101000”

FIGURE 9-68 BCD-to-binary code converter in AHDL.

1 SUBDESIGN fig9_68

2 (ones[3..0], tens[3..0] :INPUT;

3 binary[6..0] :OUTPUT;)

4

5 VARIABLE times10[6..0] :NODE; % variable for tens digit times 10%

6

7 BEGIN

8 times10[] = (tens[],B”000”) + (B”00”,tens[],B”0”);

9 % shift left 3X (times 8) + shift left 1X (times 2) %

10 binary[] = times10[] + (B”000”,ones[]);

11 % tens digit times 10 + ones digit %

12 END;

VHDL BCD-TO-BINARY CODE CONVERTER
The VHDL solution in Figure 9-69 is very simple due to the powerful math op-

erations available in the language. The inputs and outputs must be declared

as integers because we intend to perform arithmetic operations on them.

Notice that the range is specified based on the largest valid BCD number

using two digits. In line 9, the tens digit is multiplied by ten, and in line 10,

the ones digit is added to form the binary equivalent of the BCD input.

FIGURE 9-69 BCD-to-

binary code converter in

VHDL.

1 ENTITY fig9_69 IS

2 PORT (ones, tens :IN INTEGER RANGE 0 TO 9;

3 binary :OUT INTEGER RANGE 0 TO 99);

4 END fig9_69;

5

6 ARCHITECTURE vhdl OF fig9_69 IS

7 SIGNAL times10 :INTEGER RANGE 0 TO 90;

8 BEGIN

9 times10 <= tens * 10;

10 binary <= times10 + ones;

11 END vhdl;

V
H

D
L

A
H

D
L

TOCCMC09_0131725793.QXD 12/20/05 8:14 PM Page 655

656 CHAPTER 9/MSI LOGIC CIRCUITS

REVIEW QUESTIONS 1. For a two-digit BCD (eight-bit) number, what is the decimal weight of the

most significant digit?

2. In AHDL, how is multiplication by 10 accomplished?

3. In VHDL, how is multiplication by 10 accomplished?

SUMMARY
1. A decoder is a device whose output is activated only when a unique bi-

nary combination (code) is presented on its inputs. Many MSI decoders

have several outputs, each one corresponding to only one of the many

possible input combinations.

2. Digital systems often need to display decimal numbers. This is done us-

ing 7-segment displays that are driven by special chips that decode the

binary number and translate it into segment patterns that represent dec-

imal numbers to people. The segment elements can be light-emitting

diodes, liquid crystals, or glowing electrodes surrounded by neon gas.

3. Graphical LCDs use a matrix of picture elements called pixels to create an

image on a large screen. Each pixel is controlled by activating the row and

column that have that pixel in common.The brightness level of each pixel

is stored as a binary number in the video memory. A fairly complex digital

circuit must scan through the video memory and all the row/column com-

binations, controlling the amount of light that can pass through each pixel.

4. An encoder is a device that generates a unique binary code in response

to the activation of each individual input.

5. Troubleshooting a digital system involves observation/analysis to identi-

fy the possible causes, and a process of elimination called divide-and-
conquer to isolate and identify the cause.

6. Multiplexers act like digitally controlled switches that select and connect

one logic input at a time to the output pin. By taking turns, many different

data signals can share the same data path using multiplexers. Demultiplex-

ers are used at the other end of the data path to separate the signals that are

sharing a data path and distribute them to their respective destinations.

7. Magnitude comparators serve as an indicator of the relationship be-

tween two binary numbers, with outputs that show and

8. It is often necessary to translate between and among various methods of

representing quantities with binary numbers. Code converters are devices

that take in one form of binary representation and convert it to another

form.

9. In digital systems, many devices must often share the same data path.

This data path is often called a data bus. Even though many devices can

be “riding” on the bus, there can be only one bus “driver” at any one time.

Thus, devices must take turns applying logic signals to the data bus.

10. In order to take turns, the devices must have tristate outputs that can be

disabled when another device is driving the bus. In the disabled state,

the device’s output is essentially electrically disconnected from the bus

by going into a state that offers a high-impedance path to both ground

and the positive power supply. Devices designed to interface to a bus

have outputs that can be HIGH, LOW, or disabled (high impedance).

= .7 , 6 ,

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 656

PROBLEMS 657

11. PLDs offer an alternative to the use of MSI circuits to implement digital

systems. Boolean equations can be used to describe the operation of

these circuits, but HDLs also offer high-level language constructs.

12. HDL macrofunctions are available for many MSI standard parts de-

scribed in this chapter.

13. Custom code can be written in HDL to describe each of the common

logic functions presented in this chapter.

14. Priority and precedence can be established in AHDL using don’t-care en-

tries in truth tables and using IF/ELSE decisions. Priority and prece-

dence can be established in VHDL using conditional signal assignments

or using a PROCESS containing IF/ELSE or CASE decisions.

15. Tristate outputs can be created in HDL. AHDL uses :TRI primitives that

drive the outputs. VHDL assigns Z (high impedance) as a valid state for

STD_LOGIC outputs.

16. The DEFAULTS statement in AHDL can be used to define the proper

level for outputs that are not explicitly defined in the code.

17. The ELSE clause in the conditional signal assignment statement of

VHDL can be used to define the default state of an output.

IMPORTANT TERMS
decoder

BCD-to-decimal

decoder

driver

BCD-to-7-segment

decoder/driver

common anode

common cathode

LCD

backplane

pixel

encoding

encoder

priority encoder

observation/analysis

divide-and-conquer

multiplexer (MUX)

multiplexing

parallel-to-serial

conversion

demultiplexer

(DEMUX)

magnitude comparator

data bus

floating bus

word

bus driver

bidirectional data

lines

DEFAULTS

conditional signal

assignment

statement

PROBLEMS
SECTION 9-1

9-1. Refer to Figure 9-3. Determine the levels at each decoder output for

the following sets of input conditions.

(a)*All inputs LOW

(b)*All inputs LOW except

(c) All inputs HIGH except

(d) All inputs HIGH

9-2.*What is the number of inputs and outputs of a decoder that accepts 64

different input combinations?

E1 = E2 = LOW

E3 = HIGH

B

B

*Answers to problems marked with an asterisk can be found in the back of the text.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 657

9-3. For a 74ALS138, what input conditions will produce the following

outputs:

(a)*LOW at

(b)*LOW at

(c) LOW at

(d) LOW at and simultaneously

9-4. Show how to use 74LS138s to form a 1-of-16 decoder.

9-5.*Figure 9-70 shows how a decoder can be used in the generation of con-

trol signals. Assume that a RESET pulse has occurred at time and

determine the CONTROL waveform for 32 clock pulses.

t0,

O7,O0

O5

O3

O6

658 CHAPTER 9/MSI LOGIC CIRCUITS

FIGURE 9-70 Problems 9-5 and 9-6.

D

CLK

EN
MOD-8
counter

CLOCK

TC

CONTROL

(a) (b)

t0 t1 t2 t3

Q2

O0O1O2O3O4O5O6O7

A2 A1 A0 E3 E2 E1

Q1 Q0

RESET

CLOCK

74LS138

CLK

EN

CLR

MOD-8
counter

TC

Q2 Q1 Q0

CLR

RESET

1

9-6. Modify the circuit of Figure 9-70 to generate a CONTROL waveform

that goes LOW from to . (Hint: The modification does not re-

quire additional logic.)

9-7.*The 7442 decoder of Figure 9-5 does not have an ENABLE input.

However, we can operate it as a 1-of-8 decoder by not using outputs

and and by using the D input as an ENABLE. This is illustrated in

Figure 9-71. Describe how this arrangement works as an enabled 1-of-8

decoder, and state how the level on D either enables or disables the

outputs.

O9

O8

t24t20

D

B

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 658

9-8. Consider the waveforms in Figure 9-72. Apply these signals to the

74LS138 as follows:

Assume that and are tied LOW, and draw the waveforms for out-

puts and O7.O0, O3, O6,

E2E1

A : A0 B : A1 C : A2 D : E3

PROBLEMS 659

FIGURE 9-71 Problem 9-7.

O9 O8 O7 O6 O5 O4 O3 O2

D

7442

Not
used

O1 O0

C B A

Input code

ENABLE

t9

A

t8t7t6t5t4t3 t10 t11 t12 t13 t14 t15 t16t0

B

C

D

t2t1

9-9. Modify the circuit of Figure 9-6 so that relay stays energized from

PGT 3 to 5 and stays energized from PGT 6 to 9. (Hint: This modi-

fication requires no additional circuitry.)

SECTIONS 9-2 AND 9-3

9-10.*Show how to connect BCD-to-7-segment decoder/drivers and

LED 7-segment displays to the counter circuit of Figure 7-22. Assume

that each segment is to operate at approximately 10 mA at 2.5 V.

K2

K1

B, D

D

FIGURE 9-72 Problems

9-8, 9-15, and 9-41.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 659

9-11. (a) Refer to Figure 9-10 and draw the segment and backplane wave-

forms relative to ground for . Then draw the wave-

form of segment voltage relative to backplane voltage.

(b) Repeat part (a) for .

9-12.*The BCD-to-7-segment decoder/driver of Figure 9-8 contains the logic

for activating each segment for the appropriate BCD inputs. Design

the logic for activating the g segment.

SECTION 9-4

9-13.*DRILL QUESTION

For each item, indicate whether it is referring to a decoder or an en-

coder.

(a) Has more inputs than outputs.

(b) Is used to convert key actuations to a binary code.

(c) Only one output can be activated at one time.

(d) Can be used to interface a BCD input to an LED display.

(e) Often has driver-type outputs to handle large I and V.

9-14. Determine the output levels for the 74147 encoder when

and all other inputs are HIGH.

9-15. Apply the signals of Figure 9-72 to the inputs of a 74147 as follows:

Draw the waveforms for the encoder’s outputs.

9-16. Figure 9-73 shows the block diagram of a logic circuit used to control

the number of copies made by a copy machine. The machine operator

selects the number of desired copies by closing one of the selector

switches to . This number is encoded in BCD by the encoder and

is sent to a comparator circuit. The operator then hits a momentary-

contact START switch, which clears the counter and initiates a HIGH

S9S1

A : A7 B : A4 C : A2 D : A1

A8 = A4 = 0

CONTROL = 1

CONTROL = 0

660 CHAPTER 9/MSI LOGIC CIRCUITS

B

C, D

B

+5 V

MSB

4-bit
comparator

BCD
counter

D
MSB

C

B

A

CLK

CLEAR

Copy
pulses

Control
logic

Start

Decimal-
to-BCD
encoder

OPERATE
0 = machine is OFF
1 = machine is ON

S9

S8

S5

S4

S3

S2

S1

O3

S7

S6

O2

O1

O0

X

FIGURE 9-73 Problems

9-16 and 9-52.

C, D

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 660

OPERATE output that is sent to the machine to signal it to make

copies. As the machine makes each copy, a copy pulse is generated

and fed to the BCD counter. The counter outputs are continually com-

pared with the switch encoder outputs by the comparator. When the

two BCD numbers match, indicating that the desired number of

copies has been made, the comparator output goes LOW; this

causes the OPERATE level to return LOW and stop the machine so

that no more copies are made. Activating the START switch will cause

this process to be repeated. Design the complete logic circuitry for the

comparator and control sections of this system.

9-17.*The keyboard circuit of Figure 9-16 is designed to accept a three-digit

decimal number. What would happen if four digit keys were activated

(e.g., 3095)? Design the necessary logic to be added to this circuit so

that after three digits have been entered, any additional digits will be

ignored until the CLEAR key is depressed. In other words, if 3095 is

entered on the keyboard, the output registers will display 309 and will

ignore the 5 and any subsequent digits until the circuit is cleared.

SECTION 9-5

9-18.*A technician breadboards the keyboard entry circuit of Figure 9-16

and tests its operation by trying to enter a series of three-digit num-

bers. He finds that sometimes the digit 0 is entered instead of the

digit he pressed. He also observes that it happens with all of the keys

more or less randomly, although it is worse for some keys than others.

He replaces all of the ICs, and the malfunction persists. Which of the

following circuit faults would explain his observations? Explain each

choice.

(a) The technician forgot to ground the unused inputs of the OR gate.

(b) He has mistakenly used instead of Q from the one-shot.

(c) The switch bounce from the digit keys lasts longer than 20 ms.

(d) The Y and Z outputs are shorted together.

9-19. Repeat Problem 9-18 with the following symptom: the registers and

displays stay at 0 no matter how many times a key is pressed.

9-20.*While testing the circuit of Figure 9-16, a technician finds that every

odd-numbered key results in the correct digit being entered, but

every even-numbered key results in the wrong digit being entered as

follows: the 0 key causes a 1 to be entered, the 2 key causes a 3 to be

entered, the 4 key causes a 5 to be entered, and so on. Consider each

of the following faults as possible causes of the malfunction. For each

one, explain why it can or cannot be the actual cause.

(a) There is an open connection from the output of the LSB inverter

to the D inputs of the FFs.

(b) The D input of flip-flop is internally shorted to .

(c) A solder bridge is shorting to ground.

9-21.*A technician tests the circuit of Figure 9-4 as described in Example 9-7,

and she obtains the following results: all of the outputs work except

to and to which are permanently HIGH. What is the

most probable circuit fault?

9-22. A technician tests the circuit of Figure 9-4 as described in Example 9-7

and finds that the correct output is activated for each possible input

O27,O24O19O16

O0

VCCQ8

Q

X

PROBLEMS 661

C, D

T

T

T

T

T

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 661

code except those listed in Table 9-8. Examine this table and deter-

mine the probable cause of the malfunction.

9-23.*Suppose that a resistor was mistakenly used for the g segment in

Figure 9-8. How would this affect the display? What possible problems

could occur?

9-24. Repeat Example 9-8 with the observed sequence shown below:

9-25.*Repeat Example 9-8 with the observed sequence shown below:

9-26.*To test the circuit of Figure 9-11, a technician connects a BCD counter

to the 74HC4511 inputs and pulses the counter at a very slow rate.

She notices that the f segment works erratically, and no particular

pattern is evident. What are some of the possible causes of the mal-

function? (Hint: Remember, the ICs are CMOS.)

SECTIONS 9-6 AND 9-7

9-27. The timing diagram in Figure 9-74 is applied to Figure 9-19. Draw the

output waveform Z.

22-Æ

662 CHAPTER 9/MSI LOGIC CIRCUITS

T

T

T

T

Input Code

A4 A3 A2 A1 A0 Activated Outputs

1 0 0 0 0 and

1 0 0 0 1 and

1 0 0 1 0 and

1 0 0 1 1 and

1 0 1 0 0 and

1 0 1 0 1 and

1 0 1 1 0 and

1 0 1 1 1 and O31O23

O30O22

O29O21

O28O20

O27O19

O26O18

O25O17

O24O16

TABLE 9-8

0COUNT

Observed
display

1 2 3 4 5 6 7 8 9

0COUNT

Observed
display

1 2 3 4 5 6 7 8 9

B

I1

S

I0

FIGURE 9-74 Problem

9-27.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 662

9-28. Figure 7-68 shows an eight-bit shift register that could be used to delay

a signal by 1 to 8 clock periods. Show how to wire a 74151 to this shift

register in order to select the desired Q output and indicate the logic

level necessary on the select inputs to provide a delay of .

9-29.*The circuit in Figure 9-75 uses three two-input multiplexers (Figure 9-19).

Determine the function performed by this circuit.

6 * Tclk

PROBLEMS 663

D

C, D

9-30. Use the idea from Problem 9-29 to arrange several 74151 1-of-8 multi-

plexers to form a 1-of-64 multiplexer.

9-31.*Show how two 74157s and a 74151 can be arranged to form a 1-of-16

multiplexer with no other required logic. Label the inputs to to

show how they correspond to the select code.

9-32. (a) Expand the circuit of Figure 9-24 to display the contents of two

three-stage BCD counters.

(b)*Count the number of connections in this circuit, and compare it

with the number required if a separate decoder/driver and dis-

play were used for each stage of each counter.

9-33.*Figure 9-76 shows how a multiplexer can be used to generate logic

waveforms with any desirable pattern. The pattern is programmed

I15I0

MUX

I3 I1

I2 I0 S

Z

MUX

I1 I1

I0 I0 S

S1 S0

MUX

I1

I0 S

Z

Z

FIGURE 9-75 Problem

9-29.

D

8-input
multiplexer
74HC151

I7 I6 I5 I4 I3 I2 I1 I0

MOD-8
counter

CLK

S2

S1

S0

E

Z

+VCC

1 k�FIGURE 9-76 Problems

9-33 and 9-34.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 663

using eight SPDT switches, and the waveform is repetitively produced

by pulsing the MOD-8 counter. Draw the waveform at Z for the given

switch positions.

9-34. Change the MOD-8 counter in Figure 9-76 to a MOD-16 counter, and

connect the MSB to the multiplexer input. Draw the Z waveform.

9-35.*Show how a 74151 can be used to generate the logic function

.

9-36. Show how a 16-input multiplexer such as the 74150 is used to gener-

ate the function

9-37.*The circuit of Figure 9-77 shows how an eight-input MUX can be used

to generate a four-variable logic function, even though the MUX has

only three SELECT inputs.Three of the logic variables A, B, and C are

connected to the SELECT inputs. The fourth variable D and its in-

verse are connected to selected data inputs of the MUX as required

by the desired logic function.The other MUX data inputs are tied to a

LOW or a HIGH as required by the function.

D

Z = A B CD + BCD + AB D + ABCD.

+ BC + AC
Z = AB

E

664 CHAPTER 9/MSI LOGIC CIRCUITS

D

D

N

+5 V

74HC151
MUX

I0

S2

Z

A

B

C

D

S1

S0

E
I1 I2 I3 I4 I5 I6 I7

(a) Set up a truth table showing the output Z for the 16 possible com-

binations of input variables.

(b) Write the sum-of-products expression for Z and simplify it to ver-

ify that

9-38. The hardware method used in Figure 9-77 can be used to generate any

four-variable logic function. For example,

is implemented by following these steps:

1. Set up a truth table in two halves, side by side as shown in Table 9-9.

Notice that the left half shows all combinations of CBA when

and the right half shows all combinations of CBA when

2. Write the value of Z for each four-bit combination when

and also when .

3. Make a column on the right side as shown, which describes what

must be connected to each of the eight MUX inputs .In

D = 1

D = 0

D = 1.

D = 0,

+ CBA
Z = D B CA + CBA + DCBA

Z = CBA + DC BA + DCB A

FIGURE 9-77 Problems 9-37 and 9-38.

TOCCMC09_0131725793.QXD 12/20/05 8:14 PM Page 664

4. For each line of this table, compare the value for Z when

with the value for Z when D � 1. Enter the appropriate informa-

tion for as follows:

When regardless of whether or 1, THEN

(GND).

When regardless of whether or 1, THEN

(VCC).

When when AND when THEN

When when AND when THEN

(a) Verify the design of Figure 9-77 using this method.

(b) Use this method to implement a function that will produce a

HIGH only when the four input variables are at the same level

or when the B and C variables are at different levels.

SECTION 9-8

9-39.*DRILL QUESTION

For each item, indicate whether it is referring to a decoder, an en-

coder, a MUX, or a DEMUX.

(a) Has more inputs than outputs.

(b) Uses SELECT inputs.

(c) Can be used in parallel-to-serial conversion.

(d) Produces a binary code at its output.

(e) Only one of its outputs can be active at one time.

(f) Can be used to route an input signal to one of several possible

outputs.

(g) Can be used to generate arbitrary logic functions.

9-40. Show how the 7442 decoder can be used as 1-to-8 demultiplexer.

(Hint: See Problem 9-7.)

9-41.*Apply the waveforms of Figure 9-72 to the inputs of the 74LS138

DEMUX of Figure 9-30(a) as follows:

Draw the waveforms at the DEMUX outputs.

D : A2 C : A1 B : A0 A : E1

In = D.D = 1,Z = 0D = 0Z = 1

In = D.D = 1,Z = 1D = 0Z = 0

In = 1D = 0Z = 1

In = 0D = 0Z = 0

In

D = 0

PROBLEMS 665

D � 0 D � 1

DCBA Z DCBA Z In

0000 0 1000 0

0001 1 1001 0

0010 0 1010 0

0011 1 1011 1

0100 0 1100 0

0101 0 1101 1

0110 1 1110 1

0111 0 1111 0 I7 = 0

I6 = 1

I5 = D

I4 = 0

I3 = 1

I2 = 0

I1 = D

I0 = 0

TABLE 9-9

B

TOCCMC09_0131725793.QXD 12/20/05 8:14 PM Page 665

9-42. Consider the system of Figure 9-31. Assume that the clock frequency

is 10 pps. Describe what the monitoring panel indications will be for

each of the following cases.

(a) All doors closed

(b) All doors open

(c) Doors 2 and 6 open

9-43.*Modify the system of Figure 9-31 to handle 16 doors. Use a 74150 16-

input MUX and two 74LS138 DEMUXes. How many lines are going to

the remote monitoring panel?

9-44. Draw the waveforms at transmit_data, and DEMUX outputs

and in Figure 9-33 for the following register data loaded into the

transmit registers in Figure 9-32:

.

9-45. Figure 9-78 shows an graphic LCD display grid controlled by a

74HC138 configured as a decoder, and a 74HC138 configured as a de-

multiplexer. Draw 48 cycles of the clock and the data input necessary

to activate the pixels shown on the display.

8 * 8

[D] = 0111

[A] = 0011, [B] = 0110, [C] = 1001,

O3

O0, O1, O2,

666 CHAPTER 9/MSI LOGIC CIRCUITS

C, D

E2

0

1

2

3

4

E3

E1

Data

+5

A2

A1

A0

5

6

7

A2

76543210

A1A0

74HC138

Q0 Q1 Q2
MOD-8
counter

EN

CLK

TC
Q0 Q1 Q2

MOD-8
counter

CLOCK

+5

1

74HC138Columns

76543210

0

1

2

3

4

5

6

7

Rows

Pixels
on

E3

E2

E1

EN TC

CLK

SECTION 9-9

9-46. Consider the control sequencer of Figure 9-26. Describe how each of

the following faults will affect the operation.

(a)*The input of the MUX is shorted to ground.

(b) The connections from sensors 3 and 4 to the MUX are reversed.

I3

T

FIGURE 9-78 Problem

9-45.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 666

9-47.*Consider the circuit of Figure 9-24. A test of the circuit yields the re-

sults shown in Table 9-10. What are the possible causes of the mal-

function?

9-48.*A test of the security monitoring system of Figure 9-31 produces the

results recorded in Table 9-11. What are the possible faults that could

cause this operation?

PROBLEMS 667

T

T

T

T

T

TABLE 9-10
Actual Count Displayed Count

Case 1 Counter 1 33 33

Counter 2 47 47

Case 2 Counter 1 82 02

Counter 2 64 64

Case 3 Counter 1 63 63

Counter 2 95 15

9-49.*A test of the security monitoring system of Figure 9-31 produces the re-

sults recorded in Table 9-12. What are the possible faults that could

cause this operation? How can this be verified or eliminated as a fault?

TABLE 9-11
Condition LEDs

All doors closed All LEDs off

Door 0 open LED 0 flashing

Door 1 open LED 2 flashing

Door 2 open LED 1 flashing

Door 3 open LED 3 flashing

Door 4 open LED 4 flashing

Door 5 open LED 6 flashing

Door 6 open LED 5 flashing

Door 7 open LED 7 flashing

TABLE 9-12
Condition LEDs

All doors closed All LEDs off

Door 0 open LED 0 flashing

Door 1 open LED 1 flashing

Door 2 open LED 2 flashing

Door 3 open LED 3 flashing

Door 4 open LED 4 flashing

Door 5 open LED 5 flashing

Door 6 open No LED flashing

Door 7 open No LED flashing

Doors 6 and 7 open LEDs 6 and 7 flashing

9-50.*The synchronous data transmission system of Figure 9-32 and Figure 9-33

is malfunctioning. An oscilloscope is used to monitor the MUX and

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 667

DEMUX outputs during the transmission cycle, with the results shown

in Figure 9-79. What are the possible causes of the malfunction?

9-51. The synchronous data transmission system of Figures 9-32 and 9-33

is not working properly and the troubleshooting tree diagram of

Figure 9-35 has been used to isolate the problem to the timing and

control section of the receiver. Draw a troubleshooting tree diagram

that will isolate the problem further to one of the four blocks in that

section (FF1, Bit counter, Word counter, or FF2). Assume that all wires

are connected as shown, with no wiring errors.

SECTION 9-10

9-52. Redesign the circuit of Problem 9-16 using a 74HC85 magnitude com-

parator. Add a “copy overflow” feature that will activate an ALARM

output if the OPERATE output fails to stop the machine when the re-

quested number of copies is done.

9-53.*Show how to connect 74HC85s to compare two 10-bit numbers.

SECTION 9-11

9-54. Assume a BCD input of 69 to the code converter of Figure 9-40.

Determine the levels at each output and at the final binary output.

9-55.*A technician tests the code converter of Figure 9-40 and observes the

following results:

BCD Input Binary Output

52 0110011

95 1100000

27 0011011

What is the probable circuit fault?

SECTIONS 9-12 TO 9-14

9-56. DRILL QUESTION
True or false:

(a) A device connected to a data bus should have tristate outputs.

(b) Bus contention occurs when more than one device takes data from

the bus.

©

668 CHAPTER 9/MSI LOGIC CIRCUITS

��

��

��

��

��	
�����	�	

������������

�������������� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

�� �� �� � � � � !� !� !� !� �� �� �� ����

��

��
FIGURE 9-79 Problem 9-50.

T

C, D

D

T

B

TOCCMC09_0131725793.QXD 12/21/2005 02:15 AM Page 668

(c) Larger units of data can be transferred over an eight-line data bus

than over a four-line data bus.

(d) A bus driver IC generally has a high output impedance.

(e) Bidirectional registers and buffers have common I/O lines.

9-57.*For the bus arrangement of Figure 9-44, describe the input signal re-

quirements for simultaneously transferring the contents of register C
to both of the other registers.

9-58. Assume that the registers in Figure 9-44 are initially

and . The signals in Figure 9-80 are applied to

the register inputs.

(a) Determine the contents of each register at times and .

(b) Describe what would happen if were LOW when the third

clock pulse occurred.

IEA

t4t1, t2, t3,

[C] = 0111[B] = 1000,

[A] = 1011,

PROBLEMS 669

FIGURE 9-80 Problems 9-58 and 9-59.

0

1

1

1

1

t1 t2 t4t3

IEC

IEB

IEA

OEC

OEB

OEA

CLK

9-59. Assume the same initial conditions of Problem 9-58, and sketch the

signal on for the waveforms of Figure 9-80.

9-60. Figure 9-81 shows two more devices that are to be added to the data

bus of Figure 9-44. One is a set of buffered switches that can be used

to enter data manually into any of the bus registers. The other device

is an output register that is used to latch any data that are on the bus

during a data transfer operation and display them on a set of LEDs.

(a) Assume that all registers contain 0000. Outline the sequence of

operations needed to load the registers with the following data

from the switches: .

(b) What will the state of the LEDs be at the end of this sequence?

9-61. Now that the circuitry of Figure 9-81 has been added to Figure 9-44,

a total of five devices are connected to the data bus. The circuit in

Figure 9-82(a) will now be used to generate the enable signals

needed to perform the different data transfers over the data bus. It

uses a 74HC139 chip that contains two identical independent 1-of-4

decoders with an active-LOW enable. The top decoder is used to se-

lect the device that will put data on the data bus (output select), and

the bottom decoder is used to select the device that is to take the

data from the data bus (input select). Assume that the decoder out-

puts are connected to the corresponding enable inputs of the

devices tied to the data bus. Also assume that all registers initially

[A] = 1011, [B] = 0001, [C] = 1110

DB3

C

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 669

contain 0000 at time and the switches are in the positions shown

in Figure 9-81.

(a)*Determine the contents of each register at times and in re-

sponse to the waveforms in Figure 9-82(b).

(b) Can bus contention ever occur with this circuit? Explain.

9-62. Show how a 74HC541 (Figure 9-47) can be used in the circuit of

Figure 9-81.

MICROCOMPUTER APPLICATIONS

9-63.*Figure 9-83 shows the basic circuitry to interface a microprocessor

(MPU) to a memory module. The memory module will contain one or

t3t1, t2,

t0,

670 CHAPTER 9/MSI LOGIC CIRCUITS

ESW

SW1

DB3 DB2 DB1 DB0

SW2

SW3

SW0

1 k�

+5 V

74HC125

74HC174 7406

+5 V

220 �

CLOCK
(from Fig. 9-44)

Q3D3

Q2

Q1

Q0

D2

D1

D0

CLK

Data bus
from

Fig. 9-44

FIGURE 9-81 Problems

9-60, 9-61, and 9-62.

74HC139

O3A1OS1Output
select A0OS0

ESW

O2 OEC

E O1 OEB

A1IS1 O3

A0IS0 O2 IEC

O1 IEB

O0 IEA

(a)

E

O0 OEA

Input
select

To Figs.
9-44, 9-81

CLOCK

t0 t1 t2 t3

(b)

IS0

IS1

OS0

OS1

C, N

FIGURE 9-82 Problem

9-61.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 670

PROBLEMS 671

more memory ICs (Chapter 12) that can either receive data from the

MPU (a WRITE operation) or send data to the MPU (a READ opera-

tion).The data are transferred over the eight-line data bus.The MPU’s

data lines and the memory’s I/O data lines are connected to this com-

mon bus. For now we will be concerned with how the MPU controls

the selection of the memory module for a READ or WRITE operation.

The steps involved are as follows:

1. The MPU places the memory address on its address output lines

to .

2. The MPU generates the signal to inform the memory module

which operation is to be performed: for READ,

for WRITE.

3. The upper five bits of the MPU address lines are decoded by the

74ALS138, which controls the ENABLE input of the memory mod-

ule. This ENABLE input must be active in order for the memory

module to do a READ or WRITE operation.

4. The other 11 address bits are connected to the memory module,

which uses them to select the specific internal memory location

being accessed by the MPU, provided that ENABLE is active.

R/W = 0R/W = 1

R/W

A0A15

FIGURE 9-83 Basic microprocessor-to-memory interface circuit for Problem 9-63.

74ALS138
decoder

O2

8

E1

Memory
module

D0

ENABLE

From
MPU

R/W

D7D0

A15
A14
A13
A12
A11
A10
A9
A8
A7
A6
A5

R/W

D7

To
memory
module

A2 A1 A0

E2

E3

CPMPU

Data Bus

A4
A3
A2
A1
A0

A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 671

672 CHAPTER 9/MSI LOGIC CIRCUITS

In order to read from or write into the memory module, the MPU must

put the correct address on the address lines to enable the memory,

and then pulse CP to the HIGH state.

(a) Determine which, if any, of these hexadecimal addresses will acti-

vate the memory module: 607F, 57FA, 5F00.

(b) Determine what range of hex addresses will activate the memory.

(Hint: Inputs to to memory can be any combination.)

(c) Assume that a second identical memory module is added to the

circuit with its address, and data I/O lines connected exactly

the same as the first module except that its ENABLE input is tied

to decoder output What range of hex addresses will activate

this second module?

(d) Is it possible for the MPU to read from or write to both modules at

the same time? Explain.

DESIGN PROBLEM

9-64. The keyboard entry circuit of Figure 9-16 is to be used as part of an

electronic digital lock that operates as follows: when activated, an

UNLOCK output goes HIGH.This HIGH is used to energize a solenoid

that retracts a bolt and allows a door to be opened. To activate UN-

LOCK, the operator must press the CLEAR key and then enter the

correct three-key sequence.

(a) Show how 74HC85 comparators and any other needed logic can be

added to the keyboard entry circuit to produce the digital lock op-

eration described above for a key sequence of CLEAR-3-5-8.

(b) Modify the circuit to activate an ALARM output if the operator

enters something other than the correct three-key sequence.

SECTIONS 9-15 TO 9-20

9-65.*Write the HDL code for a BCD-to-decimal decoder (the equivalent of

a 7442).

9-66. Write the HDL code for a HEX decoder/driver for a 7-segment dis-

play. The first 10 characters should appear as shown in Figure 9-7. The

last six characters should appear as shown in Figure 9-84.

O4.

R/W,

A10A0

C, D

H, D, N

H, D, N

B, H, N

H, N

H, N

H, N

FIGURE 9-84 HEX char-

acters for Problem 9-66.

9-67. Write a low-priority ENCODER description that will always encode

the lowest number if two inputs are activated simultaneously.

9-68. Rewrite the code of the four-bit comparator of Figures 9-66 or 9-67 to

make an eight-bit comparator without using macrofunctions.

9-69. Use HDL to describe a four-bit binary number to a two-digit BCD code

converter.

9-70. Use HDL to describe a three-digit BCD code to eight-bit binary num-

ber converter. (Maximum BCD input is 255.)

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 672

ANSWERS TO SECTION REVIEW QUESTIONS
SECTION 9-1

1. No 2. The enable input controls whether or not the decoder logic responds to

the input binary code. 3. The 7445 has open-collector outputs that can handle up

to 30 V and 80 mA. 4. 24 pins: 2 enables, 4 inputs, 16 outputs, and ground

SECTION 9-2

1. a, b, c, f, g 2. True

SECTION 9-3

1. LEDs: (a), (e), (f). LCDs: (b), (c), (d), (e) 2. (a) four-bit BCD, (b) seven- or eight-

bit ASCII, (c) binary value for pixel intensity

SECTION 9-4

1. An encoder produces an output code corresponding to the activated input. A

decoder activates one output corresponding to an applied input code. 2. In a

priority encoder, the output code corresponds to the highest-numbered input that is

activated. 3. Normal 4. (a) produces a PGT when a key is

pressed, (b) converts key actuation to its BCD code, (c) generates bounce-free pulse

to trigger the ring counter, (d) form a ring counter that sequentially clocks output

registers, (e) store BCD codes generated by key actuations 5. and are used

for cascading and GS indicates an active input.

SECTION 9-6

1. The binary number at the select inputs determines which data input will pass

through to the output. 2. Thirty-two data inputs and five select inputs

SECTION 9-7

1. Parallel-to-serial conversion, data routing, logic-function generation, operations

sequencing 2. False; they are applied to the select inputs. 3. Counter

SECTION 9-8

1. A MUX selects one of many input signals to be passed to its output; a DEMUX

selects one of many outputs to receive the input signal. 2. True, provided that

the decoder has an ENABLE input 3. The LEDs will go on and off in sequence.

SECTION 9-10

1. To provide a means for expanding the compare operations to numbers with more

than four bits. 2. other outputs are 0.

SECTION 9-11

1. A code converter takes input data represented in one type of binary code and

converts it to another type of binary code. 2. Three digits can represent decimal

values up to 999. To represent 999 in straight binary requires 10 bits.

SECTION 9-12

1. A set of connecting lines to which the inputs and outputs of many different

devices can be connected 2. Bus contention occurs when the outputs of more

than one device connected to a bus are enabled at the same time. It is prevented by

controlling the device enable inputs so that this cannot happen. 3. A condition

in which all devices connected to a bus are in the Hi-Z state

SECTION 9-13

1. 1011 2. True 3. 0000

OA=B = 1;

E0E1

BCD = 0110

VCC,

ANSWERS TO SECTION REVIEW QUESTIONS 673

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 673

SECTION 9-14

1. Bus contention 2. Floating, Hi-Z 3. Provides tristate low-impedance out-

puts 4. Reduces the number of IC pins and the number of connections to the

data bus 5. See Figure 9-51.

SECTION 9-15

1. They are enable inputs. All must be active for the decoder to work. 2. The CASE

and the TABLE 3. The selected signal assignment statement and the CASE

SECTION 9-16

1. The combination input/output pin BI/RBO 2. Common anode. The outputs

connect to the cathodes and go LOW to light the segments. 3. The IF/ELSE

control structure is evaluated sequentially and gives precedence in the order in

which decisions are listed.

SECTION 9-17

1. The don’t-care entry in a truth table and the IF/ELSE control structure 2. The

IF/ELSE control structure and the conditional signal assignment statement 3. By

use of the :TRI primitive and assigning a value to OE 4. By use of the IEEE

STD_LOGIC data type that has a possible value of Z

SECTION 9-18

1. Inputs: ch0, ch1, ch2, ch3; output: dout; control inputs (Select): s 2. Input din;

outputs: ch0, ch1, ch2, ch3; control inputs (Select): s 3. DEFAULTS 4. ELSE

SECTION 9-19

1. numerical data objects (e.g., INTEGER in VHDL) 2. IF/ ELSE 3. Relational

operators ()

SECTION 9-20

1. 10 2. By multiplying by . Shifting the BCD digit three places left multi-

plies by 8, and shifting the same BCD digit one place left multiplies by 2. Adding

these results produced the BCD digit multiplied by 10. 3. VHDL simply uses the

* operator to multiply.

8 + 2

6 , 7

674 CHAPTER 9/MSI LOGIC CIRCUITS

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 674

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 675

10-1 Small-Project Management

10-2 Stepper Motor Driver

Project

10-3 Keypad Encoder Project

■ OUTLINE

D I G I TA L S YS T E M

P R O J E C T S U S I N G H D L

C H A P T E R 1 0

10-4 Digital Clock Project

10-5 Frequency Counter Project

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 676

677

■ OBJECTIVES
Upon completion of this chapter, you will be able to:
■ Analyze the operation of systems made of several components that

have been covered earlier in this textbook.

■ Describe an entire project with one HDL file.

■ Describe the process of hierarchical project management.

■ Understand how to break a project into manageable pieces.

■ Use or Quartus II software tools to implement a hierar-

chical modular project.

■ Plan ways to test the operation of the circuits you build.

■ INTRODUCTION
Throughout the first nine chapters of this book, we have explained the fun-

damental building blocks of digital systems. Now that we have taken out

each block and looked it over, we do not want to put them all away and for-

get them; it is time to build something with the blocks. Some of the exam-

ples we have used to demonstrate the operation of individual circuits are

really digital systems in their own right, and we have studied how they

work. In this chapter, we want to focus more on the building process.

Surveys of graduates show us that most of the professionals in the elec-

trical and computer engineering and technology field have the responsibil-

ity of project management. Experience with students has also shown us

that the most efficient way to manage a project is not intuitively obvious to

everyone, which explains why so many of us end up attending the school of

hard knocks (learning through trial and error). This chapter is intended to

give you a strategic plan for managing projects while learning about digital

systems and the modern tools used to develop them. The principles here

are not limited to digital or even electronic projects in general. They could

apply to building a house or building your own business. They will defi-

nitely improve your success rate and reduce the frustration factor.

Hardware description languages were really created for the purpose

of managing large digital systems: for documentation, simulation testing,

and the synthesis of working circuits. Likewise, the Altera software tools

are specifically designed to work with managing projects that go far be-

yond the scope of this text. We will describe some of the features of the

Altera software packages as we go through the steps of developing these

small projects. This concept of modular project development, which was

introduced in Chapter 4, will be demonstrated here through a series of

examples.

MAX+PLUS II

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 677

10-1 SMALL-PROJECT MANAGEMENT

The first projects described here are relatively small systems that consist of

a small number of building blocks. These projects can be developed in sep-

arate modules, but this approach would only add to the complexity.They are

small enough that it makes sense to implement the entire project in a sin-

gle HDL design file. This does not mean, however, that a structured process

should not be followed to complete the project. In fact, most of the same

steps that should be employed in a large modular project are also applica-

ble in these examples. The steps that should be followed are (1) overall def-

inition, (2) strategic planning to break the project into small pieces, (3) syn-

thesis and testing of each piece, and (4) system integration and testing.

Definition
The first step in any project is the thorough definition of its scope. In this

step, the following issues should be determined:

■ How many bits of data are needed?

■ How many devices are controlled by the outputs?

■ What are the names of each input and output?

■ Are the inputs and outputs active-HIGH or active-LOW?

■ What are the speed requirements?

■ Do I understand fully how this device should operate?

■ What will define successful completion of this project?

From this step should come a complete and thorough description of the over-

all project’s operation, a definition of its inputs and outputs, and complete

numeric specifications that define its capabilities and limitations.

Strategic Planning
The second step involves developing a strategy for dividing this overall proj-

ect into manageable pieces. The requirements of the pieces are:

■ A way to test each piece must be developed.

■ Each piece must fit together to make up the whole system.

■ We must know the nature of all the signals that connect the pieces.

■ The exact operation of each block must be thoroughly defined and un-

derstood.

■ We must have a clear vision of how to make each block work.

This last requirement might seem obvious, but it is amazing how many proj-

ects are planned around one central block that involves a not-yet-discovered

technical miracle or violates silly little laws like conservation of energy. In

this stage, each subsystem (section block) becomes somewhat of a project in

and of itself, with the possibility of additional subsystems defined within its

boundaries. This is the concept of hierarchical design.

Synthesis and Testing
Each subsystem should be built starting at the simplest level. In the case of

a digital system designed using HDL, it means writing pieces of code. It also

678 CHAPTER 10/DIGITAL SYSTEM PROJECTS USING HDL

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 678

means developing a plan for testing that code to make sure it meets all the

criteria. This is often accomplished through some sort of simulation. When a

circuit is simulated on a computer, the designer must create all the different

scenarios that will be experienced by the actual circuit and must also know

what the proper response to those inputs should be. This testing often takes

a great deal of thought and is not an area that should be overlooked. The

worst mistake you can make is to conclude that a fundamental block works

perfectly, only to find later those few situations where it fails. This predica-

ment often forces you to rethink many of the other blocks, thus nullifying

much of your work.

System Integration and Testing
The last step is to put the blocks together and test them as a unit. Blocks are

added and tested at each stage until the entire project is working. This area

is often trivialized but rarely goes smoothly. Even if you took care of all the

details you thought about, there are always the “gotchas” that nobody

thought about.

Some aspects of project planning and management go beyond the scope

of this text. One is the selection of a hardware platform that will best fit your

application. In Chapter 13, we will explore the broad field of digital systems

and look specifically at the capabilities and limitations of PLDs in various

categories. Another very critical dimension in project management is time.

Your boss will give you only a certain amount of time to complete your proj-

ect, and you must plan your work (and effort) to meet this deadline. We will

not be able to cover time management in this text, but as a general rule you

will find that most facets of the project will actually take two to three times

longer than you think they will when you begin.

SECTION 10-2/STEPPER MOTOR DRIVER PROJECT 679

REVIEW QUESTIONS 1. Name the steps of project management.

2. At what stage should you decide how to measure success?

10-2 STEPPER MOTOR DRIVER PROJECT

The purpose of this section is to demonstrate a typical application of coun-

ters combined with decoding circuits. A digital system often contains a

counter that cycles through a specified sequence and whose output states

are decoded by a combinational logic circuit, which in turn controls the op-

eration of the system. Many applications also have external inputs that are

used to put the system into various modes of operation. This section dis-

cusses all these features to control a stepper motor.

In a real project, the first step of definition often involves some research

on the part of the project manager. In this section (or project), it is vital that

we understand what a stepper motor is and how it works before we try to cre-

ate a circuit that is supposed to control it. In Section 7-10, we showed you

how to design a simple synchronous counter that could be used to drive a

stepper motor. The sequence demonstrated in that section is called the full-
step sequence. As you recall, it involved two flip-flops and their Q and out-

puts driving the four coils of the motor. The full-step sequence always has

two coils of the stepper motor energized in any state of the sequence and

typically causes of shaft rotation per step. Other sequences, however, will15°

Q

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 679

also cause a stepper to rotate. If you look at the full-step sequence, you will

notice that each state transition involves turning off one coil and simultane-

ously turning on another coil. For example, look at the first state (1010) in

the full-step sequence of Table 10-1. When it switches to the second state in

the sequence, coil 1 is turned off and coil 0 is turned on.The half-step sequence
is created by inserting a state with only one coil energized between full

steps, as shown in the middle column of Table 10-1. In this sequence, one coil

is de-energized before the other is energized. The first state is 1010 and the

second state is 1000, meaning that coil 1 is turned off for one state before coil
0 is turned on.This intermediate state causes the stepper shaft to rotate half

as far as it would in the full-step sequence The half-step se-

quence is used when smaller steps are desirable and more steps per revolu-

tion are acceptable. As it turns out, the stepper motor will rotate in a manner

similar to the full-step sequence (per step) if you apply only the sequence

of intermediate states with one coil energized at a time.This sequence, called

the wave-drive sequence, has less torque but operates more smoothly than the

full-step sequence at moderate speeds. The wave-drive sequence is shown in

the right-hand column of Table 10-1.

15°

(15°).(7.5°)

680 CHAPTER 10/DIGITAL SYSTEM PROJECTS USING HDL

TABLE 10-1 Stepper motor

coil drive sequences.
Full-Step Half-Step Wave-Drive

1010 1010

1000 1000

1001 1001

0001 0001

0101 0101

0100 0100

0110 0110

0010 0010

Problem Statement
A microprocessor laboratory needs a universal interface to drive a stepper

motor. In order to experiment with microcontrollers driving stepper motors,

it would be useful to have a single universal interface IC wired to the step-

per motor. This circuit needs to accept any of the typical forms of stepper

drive signals from a microcontroller and activate the windings of the motor

to make it move in the desired manner.The interface needs to operate in one

of four modes: decoded full-step, decoded half-step, decoded wave-drive, or

nondecoded direct drive. The mode is selected by controlling the logic levels

on the M1, M0 input pins. In the first three modes, the interface receives just

two control bits—a step pulse and a direction control bit—from the micro-

controller. Each time it sees a rising edge on the step input, the circuit must

cause the motor to move one increment of motion clockwise or counterclock-

wise, depending on the level present on the direction bit. Depending on the

mode that the IC is in, the outputs will respond to each step pulse by chang-

ing state according to the sequences shown in Table 10-1.The fourth mode of

operation of this circuit must allow the microcontroller to control each wind-

ing of the motor directly. In this mode, the circuit accepts four control bits

from the microcontroller and passes these logic levels directly to its outputs,

which are used to energize the stepper coils.The four modes are summarized

in Table 10-2.

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 680

In modes 0, 1, and 2, the outputs count through the corresponding count

sequence on each rising edge of the step input. The direction input deter-

mines whether the sequence moves forward or backward through the states

in Table 10-1, thus moving the motor clockwise or counterclockwise. From

this description, we can make some decisions about the project.

Inputs

step: rising edge trigger

direction: backward through table, forward through table

cin0, cin1, cin2, cin3, m1, m0: active-HIGH control inputs

Outputs

cout0, cout1, cout2, cout3: active-HIGH control outputs

Strategic Planning
This project has two key requirements. It requires a sequential counter cir-

cuit that will control the outputs in three of the modes. In the last mode, the

output does not follow a counter but rather follows the control inputs. While

there are many ways to divide this project and still fulfill these require-

ments, we will choose to have a simple up/down binary counter that responds

to the step and direction inputs. A separate combinational logic circuit will

translate (decode) the binary count into the appropriate output state, de-

pending on the mode input setting. This circuit will also ignore the counter

inputs and pass the control inputs directly to the outputs when the mode is

set to 3. The circuit diagram is shown in Figure 10-1.

Breaking this problem into manageable pieces is also fairly straightfor-

ward. The first step is to build an up/down counter. This counter should be

tested on a simulator using only the direction and step inputs. Next, try to

make each decoded sequence work individually with the counter. Then try

to get the mode inputs to select one of the decoder sequences and add the

direct-drive option (which is fairly trivial). When the circuit can follow the

states shown in Table 10-1 in either direction, for each mode sequence, and

pass the four cin signals directly to cout in mode 3, we will be successful.

Synthesis and Testing
The code in Figures 10-2 and 10-3 shows the first stage of development: de-

signing and testing an up/down counter. We will use an intermediate integer

variable for the counter value and test it by outputting the count directly to

q. To test this part of the design, we simply need to make sure it can count up

and down through the eight states. Figure 10-4 shows the simulation results.

We only need to provide the clock pulses and make up a direction control sig-

nal, and the simulator demonstrates the counter’s response.

1 =0 =

SECTION 10-2/STEPPER MOTOR DRIVER PROJECT 681

TABLE 10-2
Mode M1 M0 Input Signals Output

0 0 0 Step, direction Full-step count sequence

1 0 1 Step, direction Wave-drive count sequence

2 1 0 Step, direction Half-step count sequence

3 1 1 Four control inputs Direct drive from control inputs

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 681

682 CHAPTER 10/DIGITAL SYSTEM PROJECTS USING HDL

Micro-
controller

Direction

Step Q0

Q1

Q2

Cin3

Cin2

Cin1

Cin0

Cout3

Cout2

Cout1

Cout0

M

+V

Stepper
motor

C
O
U
N
T
E
R

D
E
C
O
D
E
R

D
E
C
O
D
E
R

M1 M0

S1
S0

+5 V

Mode 0, 1, 2
sequencer inputs Interface

MOD-8 counter
outputs

(no external connection)

Current drivers
(for rated coil current)

Mode control inputs

Mode 3
direct drive inputs

1001 0110 1010 1001 0101 0110 1010 0101 1001 1010 0110– 01100101

1 3 4 5 6 7 0 6 5 4 30 72

Name: Value: 1.0 ms 2.0 ms 3.0 ms 4.0 ms 5.0 ms 6.0 ms 7.0 ms 8.0 ms 9.0 ms 10 ms

step 0

dir 0

q[2..0] H0

Cout[3..0] B 0010

FIGURE 10-4 Simulation testing of a basic MOD-8.

FIGURE 10-1 A universal stepper motor interface circuit.

FIGURE 10-2 AHDL MOD-8. FIGURE 10-3 VHDL MOD-8.

SUBDESIGN fig10_2

(

step, dir :INPUT;

q[2..0] :OUTPUT;

)

VARIABLE

count[2..0] : DFF;

BEGIN

count[].clk = step;

IF dir THEN count[].d = count[].q + 1;

ELSE count[].d = count[].q - 1;

END IF;

q[] = count[].q;

END;

ENTITY fig10_3 IS

PORT(step, dir :IN BIT;

q :OUT INTEGER RANGE 0 TO 7);

END fig10_3;

ARCHITECTURE vhdl OF fig10_3 IS

BEGIN

PROCESS (step)

VARIABLE count :INTEGER RANGE 0 TO 7;

BEGIN

IF (step'EVENT AND step = '1') THEN

IF dir = '1' THEN count := count + 1;

ELSE count := count - 1;

END IF;

END IF;

q <= count;

END PROCESS;

END vhdl;

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 682

The next step is to add one of the decoded outputs and test it, which will

require adding the four-bit cout output specification. The q output bits of the

MOD-8 counter are kept for the sake of continuity. Figure 10-5 shows the

AHDL code for this stage of testing, and Figure 10-6 shows the VHDL code for

the same stage of testing. Notice that a CASE construct is used to decode the

counter and drive the outputs. In the VHDL code, the cout outputs have been

declared as bit_vector type because we now want to assign binary bit pat-

terns to them. Figure 10-7 shows the simulated test of its operation with

enough clock cycles included to test an entire counter cycle up and down.

The other count sequences are simply variations of the code we just

tested. It is probably not necessary to test each one independently, so now is

a good time to bring in the mode selector inputs (m) and direct-drive coil

control inputs (cin). Notice that the new inputs have been defined in Figures

10-8 (AHDL) and 10-9 (VHDL). Because the mode control has four possible

states and we want to do something different for each state, another CASE

construct works best. In other words, we have chosen to use a CASE structure

to select the mode and a CASE structure within each mode to select the

SECTION 10-2/STEPPER MOTOR DRIVER PROJECT 683

FIGURE 10-5 AHDL full-step sequence decoder.

SUBDESIGN fig10_5
(

step, dir :INPUT;
q[2..0] :OUTPUT;
cout[3..0] :OUTPUT;

)
VARIABLE

count[2..0] : DFF;

BEGIN
count[].clk = step;
IF dir THEN count[].d = count[].q + 1;
ELSE count[].d = count[].q - 1;
END IF;
q[] = count[].q;
CASE count[] IS

WHEN B"000" => cout[] = B"1010";
WHEN B"001" => cout[] = B"1001";
WHEN B"010" => cout[] = B"0101";
WHEN B"011" => cout[] = B"0110";
WHEN B"100" => cout[] = B"1010";
WHEN B"101" => cout[] = B"1001";
WHEN B"110" => cout[] = B"0101";
WHEN B"111" => cout[] = B"0110";

END CASE;
END;

FIGURE 10-6 VHDL full-step sequence decoder.

ENTITY fig10_6 IS
PORT (step, dir :IN BIT;

q :OUT INTEGER RANGE 0 TO 7;
cout :OUT BIT_VECTOR (3 downto 0));

END fig10_6;

ARCHITECTURE vhdl OF fig10_6 IS
BEGIN

PROCESS (step)
VARIABLE count :INTEGER RANGE 0 TO 7;
BEGIN

IF (step'EVENT AND step = '1') THEN
IF dir = '1' THEN count := count + 1;
ELSE count := count - 1;
END IF;
q <= count;

END IF;
CASE count IS

WHEN 0 => cout <= B"1010";
WHEN 1 => cout <= B"1001";
WHEN 2 => cout <= B"0101";
WHEN 3 => cout <= B"0110";
WHEN 4 => cout <= B"1010";
WHEN 5 => cout <= B"1001";
WHEN 6 => cout <= B"0101";
WHEN 7 => cout <= B"0110";

END CASE;
END PROCESS;

END vhdl;

1001 0110 1010 1001 0101 0110 1010 0101 1001 1010 0110– 01100101

1 3 4 5 6 7 0 6 5 4 30 72

Name: Value: 1.0 ms 2.0 ms 3.0 ms 4.0 ms 5.0 ms 6.0 ms 7.0 ms 8.0 ms 9.0 ms 10 ms

step 0

dir 0

q[2..0] H0

Cout[3..0] B 0010

FIGURE 10-7 Simulation testing of decoded sequence.

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 683

684 CHAPTER 10/DIGITAL SYSTEM PROJECTS USING HDL

FIGURE 10-8 AHDL stepper

driver. SUBDESIGN fig10_8

(

step, dir :INPUT;

m[1..0], cin[3..0] :INPUT;

cout[3..0], q[2..0] :OUTPUT;

)

VARIABLE

count[2..0] : DFF;

BEGIN

count[].clk = step;

IF dir THEN count[].d = count[].q + 1;

ELSE count[].d = count[].q - 1;

END IF;

q[] = count[].q;

CASE m[] IS

WHEN 0 =>

CASE count[] IS -- FULL STEP

WHEN B"000" => cout[] = B"1010";

WHEN B"001" => cout[] = B"1001";

WHEN B"010" => cout[] = B"0101";

WHEN B"011" => cout[] = B"0110";

WHEN B"100" => cout[] = B"1010";

WHEN B"101" => cout[] = B"1001";

WHEN B"110" => cout[] = B"0101";

WHEN B"111" => cout[] = B"0110";

END CASE;

WHEN 1 =>

CASE count[] IS -- WAVE DRIVE

WHEN B"000" => cout[] = B"1000";

WHEN B"001" => cout[] = B"0001";

WHEN B"010" => cout[] = B"0100";

WHEN B"011" => cout[] = B"0010";

WHEN B"100" => cout[] = B"1000";

WHEN B"101" => cout[] = B"0001";

WHEN B"110" => cout[] = B"0100";

WHEN B"111" => cout[] = B"0010";

END CASE;

WHEN 2 =>

CASE count[] IS -- HALF STEP

WHEN B"000" => cout[] = B"1010";

WHEN B"001" => cout[] = B"1000";

WHEN B"010" => cout[] = B"1001";

WHEN B"011" => cout[] = B"0001";

WHEN B"100" => cout[] = B"0101";

WHEN B"101" => cout[] = B"0100";

WHEN B"110" => cout[] = B"0110";

WHEN B"111" => cout[] = B"0010";

END CASE;

WHEN 3 => cout[] = cin[]; -- Direct Drive

END CASE;

END;

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 684

FIGURE 10-9 VHDL

stepper driver. ENTITY fig10_9 IS

PORT (step, dir :IN BIT;

m :IN BIT_VECTOR (1 DOWNTO 0);

cin :IN BIT_VECTOR (3 DOWNTO 0);

q :OUT INTEGER RANGE 0 TO 7;

cout :OUT BIT_VECTOR (3 DOWNTO 0));

END fig10_9;

ARCHITECTURE vhdl OF fig10_9 IS

BEGIN

PROCESS (step)

VARIABLE count :INTEGER RANGE 0 TO 7;

BEGIN

IF (step'EVENT AND step = '1') THEN

IF dir = '1' THEN count := count + 1;

ELSE count := count - 1;

END IF;

END IF;

q <= count;

CASE m IS

WHEN "00" => -- FULL STEP

CASE count IS

WHEN 0 => cout <= "1010";

WHEN 1 => cout <= "1001";

WHEN 2 => cout <= "0101";

WHEN 3 => cout <= "0110";

WHEN 4 => cout <= "1010";

WHEN 5 => cout <= "1001";

WHEN 6 => cout <= "0101";

WHEN 7 => cout <= "0110";

END CASE;

WHEN "01" => -- WAVE DRIVE

CASE count IS

WHEN 0 => cout <= "1000";

WHEN 1 => cout <= "0001";

WHEN 2 => cout <= "0100";

WHEN 3 => cout <= "0010";

WHEN 4 => cout <= "1000";

WHEN 5 => cout <= "0001";

WHEN 6 => cout <= "0100";

WHEN 7 => cout <= "0010";

END CASE;

WHEN "10" => -- HALF STEP

CASE count IS

WHEN 0 => cout <= "1010";

WHEN 1 => cout <= "1000";

WHEN 2 => cout <= "1001";

WHEN 3 => cout <= "0001";

WHEN 4 => cout <= "0101";

WHEN 5 => cout <= "0100";

WHEN 6 => cout <= "0110";

WHEN 7 => cout <= "0010";

END CASE;

WHEN "11" => cout <= cin;--Direct Drive

END CASE;

END PROCESS;

END vhdl;;

685

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 685

proper output. Using one construct inside another is known as nesting. The

use of indentation is very important to show the structure and logic of the

code, especially when nesting is used.

The simulations of Figure 10-10 verify that the circuit seems to be working

properly. Figure 10-10(a) shows each state decoding in mode 0 (full-step) and

completing the cycle in both directions. Notice that after the mode (m) changes

to the output (cout) is decoded as the wave-drive sequence. Figure 10-10(b)

shows the wave-drive (mode 1) sequence in both directions and then changes

the mode to resulting in the half-step sequence being decoded from the

MOD-8 counter. Finally, Figure 10-10(c) shows the half-step mode cycling up and

starting back down. It then switches to mode 3 (direct-drive) at 7.5 ms, showing

that the data on cin is transferred asynchronously to the outputs. Notice that the

values chosen for cin ensure that each bit can go HIGH and LOW.

Final integration and testing should involve more than just simulation. A

real stepper motor and current driver should be connected to the circuit and

tested. In this case, the step rate that the simulation used would probably be

faster than the actual stepper motor could handle and would need to be

slowed down for a real hardware functional test.

102,

012,

686 CHAPTER 10/DIGITAL SYSTEM PROJECTS USING HDL

1001 0110 1010 1001 0101 1001 1010 0100 0001– 01100101

1 3 4 5 6 7 0 6 50 72

Name: Value: 1.0 ms 2.0 ms

step 0

dir 1

m[1..0] B 00

cin[3..0] B XXXX

00

XXXX

01

(a)

q[2..0] D 0

cout[3..0] B 1010

0001 0010 1000 0010 0100 0001 0101 0110 001001000100

5 7 0 7 6 5 4 6 756

Name: Value: 4.0 ms 5.0 ms

step 1

dir 0

m[1..0] B 11

cin[3..0] B 0100

01

XXXX

10

(b)

q[2..0] D 3

cout[3..0] B 0100 1010

0

6.0 ms

0101 0110 0100 0101 0001 1001 1111 1101 101111100100

4 6 5 4 3 2 1 7 005

Name: Value: 6.0 ms 7.0 ms

step 1

dir 1

m[1..0] B 10

cin[3..0] B XXXX

10

XXXX

11

(c)

q[2..0] D 2

cout[3..0] B 1001 0111

1

1111 1110 1101 1011 0111

8.0 ms

FIGURE 10-10 Simulation testing of the complete stepper driver.

REVIEW QUESTIONS 1. What are the four modes of operation for this stepper motor driver?

2. What are the inputs for the direct-drive mode?

3. What are the inputs for the wave-drive mode?

4. How many states are in the half-step sequence?

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 686

10-3 KEYPAD ENCODER PROJECT

Another important skill that we are trying to reinforce is circuit analysis.

That may sound like something out of an analog textbook, but we really

need to be able to analyze and understand how existing digital circuits op-

erate. In this section, we present a circuit and analyze how it operates. Then

we use the skills we have acquired to redesign this circuit and write the code

for it in HDL.

Problem Analysis
To reinforce the encoding concepts of Chapter 9, we present a very useful dig-

ital circuit that encodes a hexadecimal (16-key) keypad into a four-bit binary

output. Encoders such as this generally have a strobe output that indicates

when someone presses and releases a key. Because keypads are often inter-

faced to a microcomputer’s bus system, the encoded outputs should have tri-

state enables. Figure 10-11 shows the block diagram of the keypad encoder.

The priority encoder method shown in Chapter 9, Figure 9-15, is effective

for small keypads. However, large keyboards such as those found on personal

computers must use a different technique. In these keyboards, each key is

not an independent switch to or ground. Instead, each key switch is usedVCC

SECTION 10-3/KEYPAD ENCODER PROJECT 687

D3

Keypad encoder

D2

D1

D0

Ring
counter

Hexadecimal
keypad

+5 V

CLK

En

Row
Encoder

Freeze

OE

D Q

CLK

DAV

NAND

Freeze

Column
Encoder

D3

D2

D1

D0

R3

R2

R1

R0

C3

C2

C1

C0

FIGURE 10-11 Keypad

encoder block diagram.

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 687

to connect a row to a column in the keyboard matrix. When keys are not

pressed, there are no connections between the rows and columns. The trick

of knowing which key is pressed is accomplished by activating (pulling

LOW) one row at a time and then checking to see if any of the columns have

gone LOW. If one of the columns has a LOW on it, then the key being pressed

is at the intersection of the activated row and the column that is currently

LOW. If no columns are LOW, we know that no keys in the activated row are

being pressed and we can check the next row by pulling it LOW. Sequentially

activating rows is called scanning the keyboard. The advantage of this

method is the reduction in connections to the keypad. In this case, 16 keys

can be encoded using eight inputs/outputs.

Each key represents a unique combination of a row number and a col-

umn number. By strategically numbering the rows and columns, we can com-

bine the binary row and column numbers to create the binary value of the

hexadecimal keys as shown in Figure 10-12. In this figure, row 1 is

pulled LOW and the data on the column encoder is so the button at row

1, column 2 is evidently pressed. The NAND gate in Figure 10-11 is used to

determine if any column is LOW, indicating that a key is pressed in the cur-

rently active row. The output of this gate is named FREEZE because when a

key is pressed, we want to freeze the ring counter and quit scanning until the

key is released. As the encoders go through their propagation delay and the

tristate buffers become enabled, the data outputs are in a transient state. On

the next rising edge of the clock, the D flip-flop will transfer a HIGH from

FREEZE to the DAV output, indicating that a key is being pressed and the

valid data is available.

A shift register counter (ring counter), as we studied in Chapter 7, is

used to generate the sequential scan of the four rows. The count sequence

uses four states, each state having a different bit pulled LOW. When a key

press is detected, the ring counter must hold in its current state (freeze) un-

til the key is released. Figure 10-13 shows the state transition diagram. Each

state of this counter must be encoded to generate a two-bit binary row num-

102

(012)

688 CHAPTER 10/DIGITAL SYSTEM PROJECTS USING HDL

(112)

(102)

(012)

(002)

D3

D2

Row
encoder

F

B

7

3

E

A

2

D

9

5

1

C

8

4

0

Binary
row

number

Row timing

(112)

(102)

(012)

(002)

D1

D0

Binary
column
number

Column
encoder

0 1 1 0 6

ColumnRow

Key pressed

6

R3

R2

R1

R0

C3

C2

C1

C0

FIGURE 10-12 Encoder operation when pressing the “6” key.

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 688

A
H

D
LAHDL SOLUTION

The inputs and outputs (see Figure 10-14) are defined on lines 3–8 and follow

the description obtained from analyzing the schematic. The VARIABLE sec-

tion defines several features of this encoder circuit. The freeze bit detects

when a key is pressed. The data node is used to combine the row and column

encoder data. The ts bit array (line 13) represents a tristate buffer, as we

studied in Chapter 9. Recall that each bit of this buffer has an input,

(ts[].IN), an output (ts.OUT), and an output enable (ts[].OE). The data_avail
bit (line 14) represents a D flip-flop with inputs data_avail.CLK, data_avail.D,
and output data_avail.Q.

ber. Each column value must also be encoded to generate a two-bit binary

column number. The system will require the following inputs and outputs.

4 Row drive outputs –

4 Column read inputs –

4 Encoded data outputs –

1 Data available strobe output DAV

1 Tristate enable input OE

1 Clock input CLK

Strategic Planning
This circuit is already structured so that we can easily write pieces of HDL

code to emulate each section of the system. The major blocks are as follows:

A ring counter with active-LOW outputs.

Two encoders for the row and column numbers.

Key-press detection and tristate enable circuits.

Because these circuits have been explored in previous chapters, we will not

show the development and testing of each block here. The solutions that fol-

low jump directly to the integration and testing phase of the project.

D3D0

C3C0

R3R0

SECTION 10-3/KEYPAD ENCODER PROJECT 689

R3

0 1 1 1

1 1 0 1

1 0 1 11 1 1 0

FREEZE = 1

FREEZE = 1

FREEZE = 1FREEZE = 1

FREEZE = 0 FREEZE = 0

FREEZE = 0 FREEZE = 0

R2 R1 R0

All other
states

FIGURE 10-13 Row drive

ring counter state diagram.

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 689

690 CHAPTER 10/DIGITAL SYSTEM PROJECTS USING HDL

FIGURE 10-14 AHDL scanning keypad encoder.

SUBDESIGN fig10_14

(

clk :INPUT;

col[3..0] :INPUT;

oe :INPUT; --tristate output enable

row[3..0] :OUTPUT;

d[3..0] :OUTPUT;

dav :OUTPUT; --data available

)

VARIABLE

freeze :NODE;

data[3..0] :NODE;

ts[3..0] :TRI;

data_avail :DFF;

ring: MACHINE OF BITS (row[3..0])

WITH STATES (s1 = B”1110”, s2 = B”1101”, s3 = B”1011”, s4 = B”0111”,

% s = ring states %

f1 = B”0001”, f2 = B”0010”, f3 = B”0011”, f4 = B”0100”,

f5 = B”0101”, f6 = B”0110”, f7 = B”1000”, f8 = B”1001”,

f9 = B”1010”, fa = B”1100”, fb = B”1111”, fc = B”0000”);

% f = unused states --> self-correcting design %

BEGIN

ring.CLK = clk;

ring.ENA = !freeze;

data_avail.CLK = clk;

data_avail.D = freeze;

dav = data_avail.Q;

ts[].OE = oe & freeze;

ts[].IN = data[];

d[] = ts[].OUT;

CASE ring IS

WHEN s1 => ring = s2; data[3..2] = B”00”;

WHEN s2 => ring = s3; data[3..2] = B”01”;

WHEN s3 => ring = s4; data[3..2] = B”10”;

WHEN s4 => ring = s1; data[3..2] = B”11”;

WHEN OTHERS => ring = s1;

END CASE;

CASE col[] IS

WHEN B”1110” => data[1..0] = B”00”; freeze = VCC;

WHEN B”1101” => data[1..0] = B”01”; freeze = VCC;

WHEN B”1011” => data[1..0] = B”10”; freeze = VCC;

WHEN B”0111” => data[1..0] = B”11”; freeze = VCC;

WHEN OTHERS => data[1..0] = B”00”; freeze = GND;

END CASE;

END;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 690

V
H

D
L

Lines 15–20 demonstrate a powerful feature of AHDL that allows us to

define a state machine, with each state made up of the bit pattern we

need. On line 15, the name ring was given to this state machine because it

acts like a ring counter. The bits that make up this ring counter machine

are the four row bits that were defined on line 6. These states are labeled

s1–s4 and have their bit patterns assigned to them so that one bit of the

four is LOW for each state, like an active-LOW ring counter. The other

twelve states are specified by an arbitrary label that starts with f to indi-

cate they are not valid states. Lines 23 through 30 essentially connect all

the components as shown in the circuit drawing of Figure 10-11. Both the

ring count sequence and the encoding of the row value are described on

lines 32–38. For each PRESENT state value of ring, the NEXT state is de-

fined as well as the proper output of the row encoder (data[3..2]). Line 37

ensures that this counter will self-start by sending it to s1 from any state

other than s1–s4. The encoding of the column value is described on lines

40–46. Notice that the generation of the freeze signal in this design does

not follow the diagram of Figure 10-11 exactly. In this design, rather than

NANDing the columns, the CASE structure activates freeze only when one

(and only one) column is LOW. Thus, if multiple keys in the same row were

pressed, the encoder would not recognize any as a valid key press and

would not activate dav.

SECTION 10-3/KEYPAD ENCODER PROJECT 691

VHDL SOLUTION
Compare the VHDL description in Figure 10-15 with the circuit drawing of

Figure 10-11. The inputs and outputs are defined on lines 5–9 and follow the

description obtained from analyzing the schematic. Two SIGNALs are de-

fined on lines 13 and 14 for this design. The freeze bit detects when a key is

pressed.The data signal is used to combine the row and column encoder data

to make a four-bit value representing the key that was pressed. The ring

counter is implemented using a PROCESS that responds to the clk input.

Line 26 ensures that this counter will self-start by sending it to state “1110”

from any state other than those in the ring sequence. Notice that on line 20,

the status of freeze is checked before a CASE is used to assign a NEXT state

to ring. This is the way the count enable is implemented in this design. On

line 29, the data available output (dav) is updated synchronously with the

value of freeze. It is synchronous because it is within the IF structure (lines

19–30) that detects the active clock edge. The remaining statements (lines

31–52) do not depend on the active clock edge but describe what the circuit

will do on either edge of the clock.

The encoding of the row value is described on lines 33–39. For each

PRESENT state value of ring, the output of the row encoder data(3

DOWNTO 2) is defined. The encoding of the column value is described on

lines 41–47. Notice that the generation of the freeze signal in this design does

not follow the diagram of Figure 10-11 exactly. In this design, rather than

NANDing the columns, the CASE structure activates freeze only when one

(and only one) column is LOW. Thus, if multiple keys in the same row were

pressed, the encoder would not recognize any as a valid key press and would

not activate dav.

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 691

692 CHAPTER 10/DIGITAL SYSTEM PROJECTS USING HDL

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY fig10_15 IS

PORT (clk :IN STD_LOGIC;

col :IN STD_LOGIC_VECTOR (3 DOWNTO 0);

row :OUT STD_LOGIC_VECTOR (3 DOWNTO 0);

d :OUT STD_LOGIC_VECTOR (3 DOWNTO 0);

dav :OUT STD_LOGIC);

END fig10_15;

ARCHITECTURE vhdl OF fig10_15 IS

SIGNAL freeze :STD_LOGIC;

SIGNAL data :STD_LOGIC_VECTOR (3 DOWNTO 0);

BEGIN

PROCESS (clk)

VARIABLE ring :STD_LOGIC_VECTOR (3 DOWNTO 0);

BEGIN

IF (clk’EVENT AND clk = ’1’) THEN

IF freeze = ’0’ THEN

CASE ring IS

WHEN “1110” => ring := “1101”;

WHEN “1101” => ring := “1011”;

WHEN “1011” => ring := “0111”;

WHEN “0111” => ring := “1110”;

WHEN OTHERS => ring := “1110”;

END CASE;

END IF;

dav <= freeze;

END IF;

row <= ring;

CASE ring IS

WHEN “1110” => data(3 DOWNTO 2) <= “00”;

WHEN “1101” => data(3 DOWNTO 2) <= “01”;

WHEN “1011” => data(3 DOWNTO 2) <= “10”;

WHEN “0111” => data(3 DOWNTO 2) <= “11”;

WHEN OTHERS => data(3 DOWNTO 2) <= “00”;

END CASE;

CASE col IS

WHEN “1110” => data(1 DOWNTO 0) <= “00”; freeze <= ’1’;

WHEN “1101” => data(1 DOWNTO 0) <= “01”; freeze <= ’1’;

WHEN “1011” => data(1 DOWNTO 0) <= “10”; freeze <= ’1’;

WHEN “0111” => data(1 DOWNTO 0) <= “11”; freeze <= ’1’;

WHEN OTHERS => data(1 DOWNTO 0) <= “00”; freeze <= ’0’;

END CASE;

IF freeze = ’1’ THEN d <= data;

ELSE d <= “ZZZZ”;

END IF;

END PROCESS;

END vhdl;

FIGURE 10-15
VHDL scanning

keypad encoder.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 692

The simulation of the project is shown in Figure 10-16. The column val-

ues (col) are entered by the designer as a test input that simulates the value

being read from the columns of the keypad as the rows are being scanned. As

long as all columns are HIGH (i.e., the hex value F is on col), the ring counter

is enabled and counting, dav is LOW, and the d outputs are in the Hi-Z state.

Just before the 3.0-ms mark, a 7 is simulated as a col input, which means that

one of the columns went LOW. This simulates a key being detected in the

most significant column (C3) of the keypad matrix. Notice that as a result of

the column going LOW, on the next active (rising) clock edge, the dav line

goes HIGH and the ring counter does not change state. It is disabled from go-

ing to its NEXT state as long as the key is pressed. At this point, the row
value is E hex (), which means that the least significant row (R0) is be-

ing pulled LOW by the ring counter. The row encoder translates this into the

binary row number (00). The key located at the intersection of the least sig-

nificant row and the most significant column is the 3 key (see

Figure 10-12). At this point, the d outputs hold the encoded key value of 3

. Just after the 4-ms mark, the simulation imitates the release of the

key by changing the column value back to F hex, which causes the d output

to go into its Hi-Z state. On the next rising clock edge, the dav line goes LOW

and the ring counter resumes its count sequence.

(00112)

(112)(002)

11102

SECTION 10-4/DIGITAL CLOCK PROJECT 693

Name: Value: 1.0 ms 2.0 ms 3.0 ms 4.0 ms 5.0 ms 6.0 ms 7.0 ms 8.0 ms 9.0 ms 10 ms

clk 0

dav 0

col H F

row H 0

d H Z

ring H D 0 E B 7 E D B 7 E D B 7

F 7 F E F D F B

0 D B 7 E D B 7 E D B 7E

Z 3 Z 8 Z 1 Z E

D

FIGURE 10-16 Simulation of the scanning keypad encoder.

REVIEW QUESTIONS 1. How many rows on the scanned keyboard are activated at any point in

time?

2. If two keys in the same column are pressed simultaneously, which key

will be encoded?

3. What is the purpose of the D flip-flop on the DAV pin?

4. Will the time between the key being pressed and DAV going HIGH

always be the same?

5. When are the data output pins in the Hi-Z state?

10-4 DIGITAL CLOCK PROJECT

One of the most common applications of counters is the digital clock—a time

clock that displays the time of day in hours, minutes, and sometimes seconds.

In order to construct an accurate digital clock, a closely controlled basic

clock frequency is required. For battery-operated digital clocks or watches,

the basic frequency is normally obtained from a quartz-crystal oscillator.

Digital clocks operated from the ac power line can use the 60-Hz power fre-

quency as the basic clock frequency. In either case, the basic frequency must

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 693

be divided to a frequency of 1 Hz or 1 pulse per second (pps). Figure 10-17

shows the basic block diagram for a digital clock operating from 60 Hz.

The 60-Hz signal is sent through a Schmitt-trigger circuit to produce

square pulses at the rate of 60 pps. This 60-pps waveform is fed into a MOD-

60 counter that is used to divide the 60 pps down to 1 pps. The 1-pps signal is

used as a synchronous clock for all of the counter stages, which are synchro-

nously cascaded. The first stage is the SECONDS section, which is used to

count and display seconds from 0 through 9. The BCD counter advances one

count per second. When this stage reaches 9 seconds, the BCD counter acti-

vates its terminal count output (tc), and on the next active clock edge, it re-

cycles to 0. The BCD terminal count enables the MOD-6 counter and causes

it to advance by one count at the same time that the BCD counter recycles.

This process continues for 59 seconds, at which point the MOD-6 counter is

at the 101 (5) count and the BCD counter is at 1001 (9) so that the display

reads 59 s and tc of the MOD-6 is HIGH. The next pulse recycles the BCD

counter and the MOD-6 counter to zero (remember, the MOD-6 counts from

0 through 5).

The tc output of the MOD-6 counter in the SECONDS section has a fre-

quency of 1 pulse per minute (i.e, the MOD-6 recycles every 60 s).This signal

is fed to the MINUTES section, which counts and displays minutes from 0

through 59. The MINUTES section is identical to the SECONDS section and

operates in exactly the same manner.

The tc output of the MOD-6 counter in the MINUTES section has a fre-

quency of 1 pulse per hour (i.e., the MOD-6 recycles every 60 min). This sig-

nal is fed to the HOURS section, which counts and displays hours from 1

through 12. This HOURS section is different from the SECONDS and MIN-

UTES sections because it never goes to the 0 state. The circuitry in this sec-

tion is sufficiently unusual to warrant a closer investigation.

Figure 10-18 shows the detailed circuitry contained in the HOURS sec-

tion. It includes a BCD counter to count units of hours and a single FF (MOD-

2) to count tens of hours. The BCD counter is a 74160, which has two active-

HIGH inputs, ENT and ENP, that are ANDed together internally to enable the

694 CHAPTER 10/DIGITAL SYSTEM PROJECTS USING HDL

Decoder/
display

Decoder/
display

0-5
Tens

0-9
Units

''Seconds'' section

Decoder/
display

Decoder/
display

0-5
Tens

0-9
Units

''Minutes'' section

Decoder/
display

0-9
Units

''Hours'' section

60 Hz
Pulse

shaper

60 pps

CTR
DIV60

1 pps

MOD-2
(one FF)

0-1
Tens

AM/PM
(one FF)

En TC En TC En TC En TC En 1 pps

Display

1 pulse/hr 1 pulse/min
VCC

BCD
counter

BCD
counter

BCD
counter

MOD-6
counter

MOD-6
counter

FIGURE 10-17 Block diagram for a digital clock.

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 694

count. The ENT input also enables the active-HIGH ripple carry out (RCO)

that detects the BCD terminal count of 9.The ENT input and RCO output can

therefore be used for synchronous counter cascading. The ENP input is tied

HIGH so that the counter will increment whenever ENT is HIGH.

The hours counter is enabled by the minutes and seconds stages for only

one clock pulse every hour. When this condition occurs, ENT is HIGH, which

means that the minutes:seconds stages are at 59:59. For example, at 9:59:59, the

tens of hours flip-flop holds a 0, the 74160 holds (9), and the RCO output

is HIGH, putting the tens of hours flip-flop in the SET mode. The two display

digits for the hours show 09. On the next rising clock edge, the BCD counter ad-

vances to its natural NEXT state of , RCO goes LOW, and the tens of hours

flip-flop advances to 1 so that the hours display digits now show 10.

When it is 11:59:59, AND gate 1 detects that the tens of hours is 1 and the

enable input is active (previous stages are at 59:59). AND gate 3 combines

the conditions of AND gate 1 and the condition that the BCD counter is in the

state The output of AND gate 3 will be HIGH only at 11:59:59 in the

hours count sequence. On the next clock pulse, the AM/PM flip-flop toggles,

indicating noon (HIGH) or midnight (LOW). At the same time, the BCD

counter advances to 2 and the minutes:seconds stages roll over to 00:00, re-

sulting in a BCD display of 12:00:00. At 12:59:59, AND gate 1 detects that the

tens digit is 1 and it is time to advance the hours. AND gate 2 detects that the

BCD counter is at 2. The output of AND gate 2 prepares to do two tasks on

the next clock edge: reset the tens of hours flip-flop, and load the 74160

counter with the value After the next clock pulse, it is 01:00:00 o’clock.

The operation of counter circuits should make sense now, and you should

have a good grasp on how you can connect MSI chips to make this digital clock.

00012.

00012.

00002

10012

SECTION 10-4/DIGITAL CLOCK PROJECT 695

QA
QB
QC
QD

Counter

74160

RCO

LDN
A
B
C
D
ENT

CLRN
ENP

CLK

units_hrs[0]

VCC

GND

clock

en_hrs

units_hrs[1]
units_hrs[2]
units_hrs[3]

QJ

K

PRN

CLRN

AM/PM

QJ

K

PRN

CLRN

Tens of Hours

Units of Hours

PM

tens_hrs

3
1

2

tens_hrs

en_hrs

FIGURE 10-18 Detailed circuitry for the HOURS section.

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 695

Notice that it is really made up of several small and relatively simple circuits

that are strategically interconnected to make the clock. Recall that in Chapter

4, we mentioned briefly the concept of modular, hierarchical design and de-

velopment of digital systems. Now it is time to apply these principles to a proj-

ect that is within your scope of understanding using the or

Quartus II development system from Altera. You must understand the opera-

tion of the circuits that have just been described before proceeding with the

design of this clock using HDL. Take some time to review this material.

Top-Down Hierarchical Design
Top-down design means that we want to start at the highest level of com-

plexity in the hierarchy, or that the entire project is considered to exist in a

closed, dark box with inputs and outputs.The details regarding what is in the

box are not yet known. We can only say at this point how we want it to be-

have. The digital clock was chosen because everyone is familiar with the end

result of the operation of this device. An important aspect of this stage of the

design process is establishing the scope of the project. For example, this dig-

ital clock is not going to have a way to set the time, set an alarm time, shut

off the alarm, snooze, or incorporate other features that you may find on the

clock beside your bed.To add all these features now would only clutter the ex-

ample with unnecessary complexity for our immediate purpose. We are also

not going to include the signal conditioning that transforms a 60-Hz sine

wave into a 60-pulse-per-second digital waveform, or the decoder/display cir-

cuits. The project we are tackling has the following specifications:

Inputs: 60 pps CMOS compatible waveform (accuracy dependent on

line frequency)

Outputs: BCD Hours: 1 bit TENS 4 bits UNITS

BCD Minutes: 3 bits TENS 4 bits UNITS

BCD Seconds: 3 bits TENS 4 bits UNITS

PM indicator

Minutes and Seconds sequence: BCD MOD 60

00–59 (decimal representation of BCD)

Hours sequence BCD MOD 12

01–12 (decimal representation of BCD)

Overall range of display

01:00:00–12:59:59

AM/PM indicator toggles at 12:00:00

A hierarchy is a group of objects arranged in rank order of magnitude,

importance, or complexity. A block diagram of the overall project (highest

level of the hierarchy) is shown in Figure 10-19. Notice that there are four

bits for each of the BCD units outputs and only three bits for each of the

MAX+PLUS II

696 CHAPTER 10/DIGITAL SYSTEM PROJECTS USING HDL

SEC_ONES[3 . . 0]
SEC_TENS[2 . . 0]
MIN_ONES[3 . . 0]
MIN_TENS[2 . . 0]
HR_ONES[3 . . 0]

HR_TENS
PM

clock

60_PPS

FIGURE 10-19 The top level

block of the hierarchy.

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 696

minute and second BCD tens outputs. Because the most significant BCD

digit for the tens place is 5 only three bits are needed. Notice also

that the tens place for the hours (HR_TENS) is only one bit. It will never

have a value other than 0 or 1.

The next phase is to break this problem into more manageable sections.

First, we need to take the 60-pps input and transform it into a 1-pulse-per-

second timing signal. A circuit that divides a reference frequency to a rate

required by the system is called a prescaler. Next, it makes sense to have in-

dividual sections for a seconds counter, minutes counter, and hours counter.

So far, the hierarchy diagram looks like Figure 10-20, which shows the proj-

ect broken into four subsections.

The entire purpose of the frequency prescaler section is to divide the 60-

pps input to a frequency of one pulse every second. This requires a MOD-60

counter, and the sequence of the count does not really matter. In this example,

the minutes and seconds sections both require MOD-60 counters that count

from 00–59 in BCD. Looking for similarities like this is very important in the de-

sign process. In this case, we can use the exact same circuit design to imple-

ment the frequency prescaler, the minutes counter, and the seconds counters.

A MOD-60 BCD counter can be made quite easily from a MOD-10

(decade) counter cascaded to a MOD-6 BCD counter, as we saw in the dia-

gram of Figure 10-17. This means that inside each of these MOD-60 blocks,

we would find a diagram similar to Figure 10-21.The hierarchy of the project

now appears as shown in Figure 10-22.

(1012),

SECTION 10-4/DIGITAL CLOCK PROJECT 697

Digital clock

HoursMinutesSecondsFrequency
prescaling

FIGURE 10-20 The

section level of the

hierarchy.

Q[3 . . 0]

CLKMOD10

TC
CLK
ENA

Q[2 . . 0]

CLKMOD6

TC
CLK
ENA

enable

ones[3..0]

tens[2..0]

TC

clk

FIGURE 10-21 The blocks inside the MOD-60 section.

Digital clock

Hours MOD 12MinutesSeconds
Frequency
prescaling

MOD-6 MOD-10 MOD-6 MOD-10 MOD-6 MOD-10

FIGURE 10-22 The complete hierarchy of the clock project.

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 697

The final design decision is whether or not to break down the MOD-12

section for Hours into two stages, as shown in Figure 10-18. One option is to

connect the macrofunctions of these standard parts from the HDL library, as

we have discussed in previous chapters. Because this circuit is rather un-

usual, we have decided instead to describe the MOD-12 hours counter using

a single HDL module. We will also describe the MOD-6 and MOD-10 building

blocks using HDL. The entire clock circuit can then be built using these

three basic circuit descriptions. Of course, even these blocks can be broken

down into smaller flip-flop blocks and designed using the schematic entry,

but it will be much easier using HDL at this level.

Building the Blocks from the Bottom Up
Each of the basic blocks are presented here in both AHDL and VHDL. We

present the MOD-6 as a simple modification of the MOD-5 synchronous

counter descriptions presented earlier in Chapter 7 (see Figures 7-39 and

7-40). Then we modify this code further to create the MOD-10 counter and

finally design the MOD-12 Hours counter from the ground up. We construct

the entire clock from these three basic blocks.

698 CHAPTER 10/DIGITAL SYSTEM PROJECTS USING HDL

FIGURE 10-23 The MOD-6 design in AHDL.

SUBDESIGN fig10_23

(

clock, enable :INPUT; -- synch clock and enable.

q[2..0], tc :OUTPUT; -- 3-bit counter

)

VARIABLE

count[2..0] :DFF; -- declare a register of D flip-flops.

BEGIN

count[].clk = clock; -- connect all clocks to synchronous source

IF enable THEN

IF count[].q < 5 THEN

count[].d = count[].q + 1; -- increment current value by one

ELSE count[].d = 0; -- recycle,force unused states to 0

END IF;

ELSE count[].d = count[].q; -- not enabled: hold at this count

END IF;

tc = enable & count[].q == 5; -- detect maximum count if enabled

q[] = count[].q; -- connect register to outputs

END;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

MOD-6 COUNTER AHDL
The only additional features that this design needs that are not covered in

Figure 7-39 are the count enable input and terminal count (tc) output shown

in Figure 10-23. Notice that the extra input (enable, line 3) and output (tc,

line 4) are included in the I/O definition. A new line (line 11) in the archi-

tecture description tests enable before deciding how to update the value ofA
H

D
L

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 698

count (lines 12–15). If enable is LOW, the same value is held on count at every

clock edge by the ELSE branch (line 16). Remember always to match an IF

with an END IF, as we did on lines 15 and 17. Terminal count (tc, line 18) will

be HIGH when it is true that AND enable is active. Notice the use

of double equal signs to evaluate equality in AHDL.(= =)

count = = 5

SECTION 10-4/DIGITAL CLOCK PROJECT 699

FIGURE 10-24 The MOD-6 design in VHDL.

ENTITY fig10_24 IS

PORT(clock, enable :IN BIT ;

q :OUT INTEGER RANGE 0 TO 5;

tc :OUT BIT

);

END fig10_24;

ARCHITECTURE a OF fig10_24 IS

BEGIN

PROCESS (clock) -- respond to clock

VARIABLE count :INTEGER RANGE 0 TO 5;

BEGIN

IF (clock = ’1’ AND clock’event) THEN

IF enable = ’1’ THEN -- synchronous cascade input

IF count < 5 THEN -- < max (terminal) count?

count := count + 1;

ELSE

count := 0;

END IF;

END IF;

END IF;

IF (count = 5) AND (enable = ’1’) THEN -- synch cascade output

tc <= ’1’; -- indicate terminal ct

ELSE tc <= ’0’;

END IF;

q <= count; -- update outputs

END PROCESS;

END a;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

MOD-6 COUNTER VHDL
The only additional features that this design needs that are not covered in

Figure 7-40 are the count enable input and terminal count (tc) output

shown in Figure 10-24. Notice that the extra input (enable, line 2) and out-

put (tc, line 4) are included in the I/O definition. A new line (line 15) in the

architecture description tests enable before deciding how to update the

value of count (lines 16–20). In the case that enable is LOW, the current

value is held in the variable count and does not count up. Remember al-

ways to match an IF with an END IF, as we did on lines 20–22. The termi-

nal count indicator (tc, lines 23 and 24) will be HIGH when it is true that

AND enable is active.count = 5

V
H

D
L

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 699

The simulation testing of the MOD-6 counter in Figure 10-25 verifies that

it counts 0–5 and that it responds to the count enable input by ignoring the

clock pulses and freezing the count whenever enable is LOW. It also gener-

ates the tc output when it is enabled at its maximum count of 5.

700 CHAPTER 10/DIGITAL SYSTEM PROJECTS USING HDL

1 2 3 4 5 0 1 2 3 4 5 0 10 2

1 2 3 4 5 0 1 2 3 4 5 0 10 2

Name: Value: 1.0 ms 2.0 ms 3.0 ms 4.0 ms 5.0 ms 6.0 ms 7.0 ms 8.0 ms 9.0 ms 10 ms

enable 0

clock 0

tc 0

q[2 . . 0] H0

count[2. . .0] H0

FIGURE 10-25 Simulation of the MOD-6 counter.

A
H

D
L

FIGURE 10-26 The MOD-10 design in AHDL.

SUBDESIGN fig10_26

(

clock, enable :INPUT; -- synch clock and enable.

q[3..0], tc :OUTPUT; -- 4-bit Decade counter

)

VARIABLE

count[3..0] :DFF; -- declare a register of D flip flops.

BEGIN

count[].clk = clock; -- connect all clocks to synchronous source

IF enable THEN

IF count[].q < 9 THEN

count[].d = count[].q + 1; -- increment current value by one

ELSE count[].d = 0; -- recycle,force unused states to 0

END IF;

ELSE count[].d = count[].q; -- not enabled: hold at this count

END IF;

tc = enable & count[].q == 9; -- detect maximum count

q[] = count[].q; -- connect register to outputs

END;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

V
H

D
L MOD-10 COUNTER VHDL

The MOD-10 counter varies only slightly from the MOD-6 counter that was

described in Figure 10-24. The only changes that are necessary involve

changing the number of bits in the output port and the variable count (using

INTEGER RANGE) along with the maximum value that the counter should

reach before rolling over. Figure 10-27 presents the MOD-10 design.

MOD-10 COUNTER AHDL
The MOD-10 counter varies only slightly from the MOD-6 counter that was

described in Figure 10-23. The only changes that are necessary involve

changing the number of bits in the output port and the register (in the

VARIABLE section) along with the maximum value that the counter should

reach before rolling over. Figure 10-26 presents the MOD-10 design.

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 700

MOD 12 Design
We have already decided that the hours counter is to be implemented as a

single design file using HDL. It must be a MOD-12 BCD counter that follows

the hours sequence of a clock (1–12) and provides the AM/PM indicator.

Recall from the initial design step that the BCD outputs need to be a four-bit

array for the low-order digit and a single bit for the high-order digit. To de-

sign this counter circuit, consider how it needs to operate. Its sequence is:

By observing this sequence, we can conclude that there are four critical ar-

eas that define the operations needed to produce the proper NEXT state:

1. When the value is 01 through 08, increment the low digit and keep the

high digit the same.

2. When the value is 09, reset the low digit to 0 and force the high digit to 1.

3. When the value is 10 or 11, increment the low digit and keep the high

digit the same.

4. When the value is 12, reset the low digit to 1 and the high digit to 0.

Because these conditions need to evaluate a range of values, it is most ap-

propriate to use an IF/ELSIF construct rather than a CASE construct. There

01 02 03 04 05 06 07 08 09 10 11 12 01 Á

SECTION 10-4/DIGITAL CLOCK PROJECT 701

FIGURE 10-27 The MOD-10 design in VHDL.

ENTITY fig10_27 IS

PORT(clock, enable :IN BIT ;

q :OUT INTEGER RANGE 0 TO 9;

tc :OUT BIT

);

END fig10_27;

ARCHITECTURE a OF fig10_27 IS

BEGIN

PROCESS (clock) -- respond to clock

VARIABLE count :INTEGER RANGE 0 TO 9;

BEGIN

IF (clock = ’1’ AND clock’event) THEN

IF enable = ’1’ THEN -- synchronous cascade input

IF count < 9 THEN -- decade counter

count := count + 1;

ELSE

count := 0;

END IF;

END IF;

END IF;

IF (count = 9) AND (enable = ’1’) THEN -- synch cascade output

tc <= ’1’;

ELSE tc <= ’0’;

END IF;

q <= count; -- update outputs

END PROCESS;

END a;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 701

is also a need to identify when it is time to toggle the AM/PM indicator. This

time occurs when the hour state is 11 and the enable is HIGH, which means

that the lower-order counters are at their maximum (59:59).

702 CHAPTER 10/DIGITAL SYSTEM PROJECTS USING HDL

A
H

D
L

FIGURE 10-28 The MOD-12 hours counter in AHDL.

SUBDESIGN fig10_28

(

clk, ena :INPUT;

low[3..0], hi, pm :OUTPUT;

)

VARIABLE

low[3..0] :DFF;

hi :DFF;

am_pm :JKFF;

time :NODE;

BEGIN

low[].clk = clk; -- synchronous clocking

hi.clk = clk;

am_pm.clk = clk;

IF ena THEN -- use enable to count

IF low[].q < 9 & hi.q == 0 THEN

low[].d = low[].q + 1; --inc lo digit

hi.d = hi.q; -- hold hi digit

ELSIF low[].q == 9 THEN

low[].d = 0;

hi.d = VCC;

ELSIF hi.q == 1 & low[].q < 2 THEN

low[].d = low[].q + 1;

hi.d = hi.q;

ELSIF hi.q == 1 & low[].q == 2 THEN

low[].d = 1;

hi.d = GND;

END IF;

ELSE

low[].d = low[].q;

hi.d = hi.q;

END IF;

time = hi.q == 1 & low[3..0].q == 1 & ena; -- detect 11:59:59

am_pm.j = time; -- toggle am/pm at noon and midnight

am_pm.k = time;

pm = am_pm.q;

END;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

MOD-12 COUNTER IN AHDL
The AHDL counter needs a bank of four D flip-flops for the low-order BCD

digit and only a single D flip-flop for the high-order BCD digit because its

value will always be 0 or 1. A flip-flop is also needed to keep track of A.M. and

P.M. These primitives are declared on lines 7–9 of Figure 10-28. Also note that

in this design, the same names are used for the output ports. This is a con-

venient feature of AHDL. When the enable input (ena) is active, the circuit

evaluates the IF/ELSE statements of lines 16–28 and performs the proper

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 702

operation on the high and low nibble of the BCD number. Whenever the en-

able input is LOW, the value remains the same, as shown on lines 30 and 31.

Line 33 detects when the count reaches 11 while the counter is enabled.This

signal is applied to the J and K inputs of the am_pm flip-flop to cause it to

toggle at 11:59:59.

SECTION 10-4/DIGITAL CLOCK PROJECT 703

FIGURE 10-29 The MOD-12 hours counter in VHDL.

V
H

D
L

ENTITY fig10_29 IS

PORT(clk, ena :IN BIT ;

low :OUT INTEGER RANGE 0 TO 9;

hi :OUT INTEGER RANGE 0 TO 1;

pm :OUT BIT);

END fig10_29;

ARCHITECTURE a OF fig10_29 IS

BEGIN

PROCESS (clk) -- respond to clock

VARIABLE am_pm :BIT;

VARIABLE ones :INTEGER RANGE 0 TO 9; -- 4-bit units signal

VARIABLE tens :INTEGER RANGE 0 TO 1; -- 1-bit tens signal

BEGIN

IF (clk = '1' AND clk'EVENT) THEN

IF ena = '1' THEN -- synchronous cascade input

IF (ones = 1) AND (tens = 1) THEN -- at 11:59:59

am_pm := NOT am_pm; -- toggle am/pm

END IF;

IF (ones < 9) AND (tens = 0) THEN -- states 00-08

ones := ones + 1; -- increment units

ELSIF ones = 9 THEN -- state 09...set to 10:00

ones := 0; -- units reset to zero

tens := 1; -- tens bump up to 1

ELSIF (tens = 1) AND (ones < 2) THEN-- states 10, 11

ones := ones + 1; -- increment units

ELSIF (tens = 1) AND (ones = 2) THEN -- state 12

ones := 1; -- set to 01:00

tens := 0;

END IF;

-- This space is the alternate location for updating am/pm

END IF;

END IF;

pm <= am_pm;

low <= ones; -- update outputs

hi <= tens;

END PROCESS;

END a;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

MOD-12 COUNTER IN VHDL
The VHDL counter of Figure 10-29 needs a four-bit output for the low-order

BCD digit and a single output bit for the high-order BCD digit because its

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 703

value will always be 0 or 1. These outputs (lines 3 and 4) and also the vari-

ables that will produce the outputs (lines 12 and 13) are declared as integers

because this makes “counting” possible by simply adding 1 to the variable

value. On each active edge of the clock, when the enable input is active, the

circuit needs to decide what to do with the BCD units-of-hours counter, the sin-

gle bit tens-of-hours flip-flop, and also the AM/PM flip-flop.

This example is an excellent opportunity to point out some of the ad-

vanced features of VHDL that allow the designer to describe precisely the

operation of the final hardware circuit. In previous chapters, we discussed

the issue of statements within a PROCESS being evaluated sequentially.

Recall that statements outside the PROCESS are considered concurrent,

and the order in which they are written in the design file has no effect on the

operation of the final circuit. In this example, we must evaluate the current

state to decide whether to toggle the AM/PM indicator and also advance the

counter to the NEXT state. The issues involved include the following:

1. How do we “remember” the current count value in VHDL?

2. Do we evaluate the current count to see if it is 11 (to determine if we

need to toggle the AM/PM flip-flop) and then increment to 12, or do we

increment the counter’s state from 11 to 12 and then evaluate the count

to see if it is 12 (to know we need to toggle the AM/PM flip flop)?

Regarding the first issue, there are two ways to remember the current

state of a counter in VHDL. Both SIGNALs and VARIABLEs hold their value

until they are updated. Generally, SIGNALs are used to connect nodes in

the circuit like wires, and VARIABLEs are used like a register to store data

between updates. Consequently, VARIABLEs are generally used to imple-

ment counters. The major differences are that VARIABLEs are local to the

PROCESS in which they are declared and SIGNALs are global. Also,

VARIABLEs are considered to be updated immediately within a sequence of

statements in a PROCESS, whereas SIGNALs referred to in a PROCESS are

updated when the PROCESS suspends. In this example, we have chosen to

use VARIABLEs, which are local to the PROCESS that describes what should

happen when the active clock edge occurs.

For the second issue, either of these strategies will work, but how do we

describe them using VHDL? If we want the circuit to toggle A.M. and P.M. by

detecting 11 prior to the counter updating (like a synchronous cascade),

then the test must occur in the code before the VARIABLEs are updated.

This test is demonstrated in the design file of Figure 10-29 on lines 17–19. On

the other hand, if we want the circuit to toggle A.M. and P.M. by detecting

when the hour 12 has arrived after the clock edge (more like a ripple cas-

cade), then the VARIABLEs must be updated prior to testing for the value

12. To modify the design in Figure 10-29 to accomplish this task, the IF con-

struct of lines 17–19 can be moved to the blank area of lines 31–33 and edited

as shown in bold below:

704 CHAPTER 10/DIGITAL SYSTEM PROJECTS USING HDL

31 IF (ones = 2) AND (tens = 1) THEN -- at 12:00:00

32 am_pm := NOT am_pm; -- toggle am/pm

33 END IF;

The order of the statements and the value that is decoded makes all the dif-

ference in how the circuit operates. On lines 36–38, the am_pm VARIABLE is

connected to the pm port, the units BCD digit is applied to the lower four bits

of the output (low), and the tens digit (a single-bit variable) is applied to the

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 704

SECTION 10-4/DIGITAL CLOCK PROJECT 705

most significant digit (hi) of the output port. Because all these VARIABLEs are

local, these statements must occur prior to END PROCESS on line 39.

After the design is compiled, it must be simulated to verify its operation,

especially at the critical areas. Figure 10-30 shows an example of a simula-

tion to test this counter. On the left side of the timing diagram, the counter

is disabled and is holding the hour 11 because the hi digit is at 1 and the low[]
digit is at 1. On the rising edge of the clock, after the enable goes HIGH, the

hour goes from 11 to 12 and causes the PM indicator to go HIGH, which

means it is noon. The next active edge causes the count to roll over from 12

to 01. On the right half of the timing, the same sequence is simulated, show-

ing that there would actually be many clock pulses between the times the

hour increments. On the clock cycle before it must increment, the enable is

driven HIGH by the terminal count of the previous stage.

1 2 3 4 5 16 7 9 0 10 2

Name: Value: 2.0 ms 3.0 ms 4.0 ms 5.0 ms 6.0 ms 7.0 ms 8.0 ms

ena 1

clk 0

PM 0

hi 1

low[3. . .0] H 2 12 8

FIGURE 10-30 Simulation of the MOD-12 hours counter.

Q[2 . . 0]

FIG10_24

TC
CLOCK
ENABLE

MOD-6 from VHDL

(a)

Q[3 . . 0]

FIG10_26

TC
CLOCK
ENABLE

MOD-10 from AHDL

(b)

LOW[3 . . 0]

FIG10_29

PM

CLK

MOD-12 from VHDL

(c)

HIENA

FIGURE 10-31 Graphic block symbols generated from HDL design files: (a) MOD-6

from VHDL; (b) MOD-10 from AHDL; (c) MOD-12 from VHDL.

Combining Blocks Graphically
The building blocks of the project have been defined, created, and individu-

ally simulated to verify that they work correctly. Now it is time to combine the

blocks to make sections and to combine the sections to make the final product.

Altera’s software offers several ways to accomplish the integration of all the

pieces of a project. In Chapter 4, we mentioned that all different types of de-

sign files (AHDL,VHDL,VERILOG, Schematic) can be combined graphically.

This technique is made possible by a feature that allows us to create a “sym-

bol” to represent a particular design file. For example, the MOD-6 counter de-

sign file that was written in the VHDL design file fig10_24 can be represented

in the software as the circuit block, as shown in Figure 10-31(a). The

or Quartus II software creates this symbol at the click of a but-

ton. From that point, it will recognize the symbol as operating according to the

design specified in the HDL code. The symbol of Figure 10-31(b) was created

from the AHDL file for the MOD-10 counter of Figure 10-26, and the symbol of

Figure 10-31(c) was created from the VHDL file for the MOD-12 counter of

Figure 10-29. (The reason these blocks are named by figure number is simply

to make it easier to locate the design files on the enclosed CD. In a design en-

vironment [rather than in a textbook], they should be named according to

their purpose, with names like MOD6, MOD10, and CLOCK_HOURS.)

MAX+PLUS II

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 705

Following the design hierarchy that we established, the next step is

to combine the MOD-6 and MOD-10 counters to make a MOD-60 block.

software uses graphic design files (.gdf) to integrate the

block symbols by drawing lines that connect the input ports, symbols, and

output ports. Quartus II software provides the same feature but uses block

design files (.bdf). The result is shown in Figure 10-32, which represents a

GDF file in or a BDF file in Quartus II. This graphic or block

design file can be compiled and used to simulate the operation of the MOD-

60 counter. When the design has been verified as working properly, the

or Quartus II system allows us to take this circuit and create

a block symbol for it, as shown in Figure 10-33.

The MOD-60 symbol can be used repeatedly along with the MOD-12 sym-

bol to create the system-level block symbol diagram shown in Figure 10-34.

Even this system-level diagram can be represented by a block symbol for the

entire project, as shown in Figure 10-35.

MAX+PLUS II

MAX+PLUS II

MAX+PLUS II

706 CHAPTER 10/DIGITAL SYSTEM PROJECTS USING HDL

MOD-10 from AHDL

Q[3 . . 0]

FIG10_26

TC
CLK
ENABLE

Q[2 . . 0]

FIG10_24

TC
CLK
ENABLE

CLK

ENA

units[3..0]

tens[2..0]

TC

MOD-6 from VHDL

FIGURE 10-32 Graphically combining HDL blocks to make a MOD-60.

UNITS[3 . . 0]
TENS[2 . . 0]

TC

mod_60

CLK
ENA

FIGURE 10-33 The

MOD-60 counter.

UNITS[3 . . 0]
TENS[2 . . 0]

TC

MOD_60

CLK
ENA

UNITS[3 . . 0]
TENS[2 . . 0]

TC

MOD_60

CLK
ENA

UNITS[3 . . 0]
TENS[2 . . 0]

TC

MOD_60

CLK
ENA

LOW[3 . . 0]
HI

PM

FIG10_29

CLK
ENA

VCC

hr_ones[3..0]
hr_tens
pm

sec_ones[3..0]
sec_tens[2..0]

min_ones[3..0]
min_tens[2..0]

60_pps

FIGURE 10-34 The complete clock project connected using block symbols.

SEC_ONES[3 . . 0]
SEC_TENS[2 . . 0]
MIN_ONES[3 . . 0]
MIN_TENS[2 . . 0]
HR_ONES[3 . . 0]

HR_TENS
PM

FIG10_34

60_PPS

FIGURE 10-35 The entire clock

represented by one symbol.

Combining Blocks Using Only HDL
The graphic approach works well as long as it is available and adequate

for the purpose at hand. As we mentioned previously, HDL was developed

to provide a convenient way to document complex systems and to store the

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 706

information in a more timeless and software-independent manner. It is reason-

able to assume that with AHDL, the option of graphic integration of subdesigns

will always be available with the tools from Altera; however, this assumption is

not reasonable for users of VHDL. Many VHDL development systems do not

offer any equivalent to the graphic block integration of Altera, which is why

it is important to address the same concept of modular, hierarchical devel-

opment and project integration using only text-based language tools. Our

coverage of AHDL integration will not be as in-depth as our coverage of

VHDL because the graphic method is generally preferred.

SECTION 10-4/DIGITAL CLOCK PROJECT 707

A
H

D
L

FIGURE 10-36 The MOD-60 made from MOD-10 and MOD-6 in AHDL.

INCLUDE “fig10_26.inc”; -- mod-10 counter module

INCLUDE “fig10_23.inc”; -- mod-6 counter module

SUBDESIGN fig10_36

(

clk, ena :INPUT;

ones[3..0], tens[2..0], tc :OUTPUT;

)

VARIABLE

mod10 :fig10_26; -- mod-10 for units

mod6 :fig10_23; -- mod-6 for tens

BEGIN

mod10.clock = clk; -- synchronous clocking

mod6.clock = clk;

mod10.enable = ena;

mod6.enable = mod10.tc; -- cascade

ones[3..0] = mod10.q[3..0]; -- 1s

tens[2..0] = mod6.q[2..0]; -- 10s

tc = mod6.tc; -- Make terminal count at 59

END;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

AHDL MODULE INTEGRATION
Let’s go back to the two AHDL files for the MOD-6 and MOD-10 counters.

How do we combine these files into a MOD-60 counter using only text-based

AHDL? The method is really very similar to that of graphic integration.

Instead of creating a “symbol” representation of the MOD-6 and MOD-10

files, a new kind of file called an “INCLUDE” file is created. It contains all

the important information about the AHDL file it represents. To describe a

MOD-60 counter, a new TDF file, shown in Figure 10-36, is opened.The build-

ing block files are “included” at the top, as shown on lines 1 and 2. Next, the

names that were used for the building blocks are used like library compo-

nents or primitives to define the nature of a variable. On line 10, the variable

mod10 is now used to represent the MOD-10 counter in the other module

(fig10_26). MOD10 now has all the attributes (inputs, outputs, functional op-

eration) described in fig10_26.tdf. Likewise, on line 11, the variable mod6 is

given the attributes of the MOD-6 counter of fig10_23.tdf. Lines 13–19 ac-

complish the exact same task as drawing lines on the GDF or BDF file to con-

nect the components to one another and to the input/output ports.

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 707

This file (FIG10_36.TDF) can be translated into an “include” file (fig10_

36.inc) by the compiler and then used in another tdf file that describes the in-

terconnection of major sections to make up the system. Each level of the hi-

erarchy refers back to the constituent modules of the lower levels.

708 CHAPTER 10/DIGITAL SYSTEM PROJECTS USING HDL

V
H

D
L

FIGURE 10-37 The MOD-60 made from MOD-10 and MOD-6 in VHDL.

ENTITY fig10_37 IS

PORT(clk, ena :IN BIT ;

tens :OUT INTEGER RANGE 0 TO 5;

ones :OUT INTEGER RANGE 0 TO 9;

tc :OUT BIT);

END fig10_37;

ARCHITECTURE a OF fig10_37 IS

SIGNAL cascade_wire :BIT;

COMPONENT fig10_24 -- MOD-6 module

PORT(clock, enable :IN BIT ;

q :OUT INTEGER RANGE 0 TO 5;

tc :OUT BIT);

END COMPONENT;

COMPONENT fig10_27 -- MOD-10 module

PORT(clock, enable :IN BIT ;

q :OUT INTEGER RANGE 0 TO 9;

tc :OUT BIT);

END COMPONENT;

BEGIN

mod10:fig10_27

PORT MAP(clock => clk,

enable => ena,

q => ones,

tc => cascade_wire);

mod6:fig10_24

PORT MAP(clock => clk,

enable => cascade_wire,

q => tens,

tc => tc);

END a;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

VHDL MODULE INTEGRATION
Let’s go back to the two VHDL files for the MOD-6 and MOD-10 counters,

which were shown in Figures 10-24 and 10-27, respectively. How do we com-

bine these files into a MOD-60 counter using only text-based VHDL? The

method is really very similar to that of graphic integration. Instead of creat-

ing a “symbol” representation of the MOD-6 and MOD-10 files, these design

files are described as a COMPONENT, like we studied in Chapter 5. It con-

tains all the important information about the VHDL file it represents. To de-

scribe a MOD-60 counter, a new VHDL file, shown in Figure 10-37, is opened.

The building block files are described as “components,” as shown on lines

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 708

SECTION 10-4/DIGITAL CLOCK PROJECT 709

FIGURE 10-38 The complete clock in VHDL.

ENTITY fig10_38 IS

PORT(pps_60 :IN BIT ;

hour_tens :OUT INTEGER RANGE 0 TO 1;

hour_ones, min_ones, sec_ones :OUT INTEGER RANGE 0 TO 9;

min_tens, sec_tens :OUT INTEGER RANGE 0 to 5;

pm :OUT BIT);

END fig10_38;

ARCHITECTURE a OF fig10_38 IS

SIGNAL cascade_wire1, cascade_wire2, cascade_wire3 :BIT;

SIGNAL enabled :BIT;

COMPONENT fig10_37 -- MOD-60

PORT(clk, ena :IN BIT ;

tens :OUT INTEGER RANGE 0 TO 5;

ones :OUT INTEGER RANGE 0 TO 9;

tc :OUT BIT);

END COMPONENT;

COMPONENT fig10_29 -- MOD-12

PORT(clk, ena :IN BIT ;

low :OUT INTEGER RANGE 0 TO 9;

hi :OUT INTEGER RANGE 0 TO 1;

pm :OUT BIT);

END COMPONENT;

BEGIN

enabled <= ’1’;

prescale:fig10_37 -- MOD-60 prescaler

PORT MAP(clk => pps_60,

ena => enabled,

tc => cascade_wire1);

second:fig10_37 -- MOD-60 seconds counter

PORT MAP(clk => pps_60,

ena => cascade_wire1,

ones => sec_ones,

tens => sec_tens,

tc => cascade_wire2);

minute:fig10_37 -- MOD-60 minutes counter

PORT MAP(clk => pps_60,

ena => cascade_wire2,

ones => min_ones,

tens => min_tens,

tc => cascade_wire3);

hour:fig10_29 -- MOD12 Hours Counter

PORT MAP(clk => pps_60,

ena => cascade_wire3,

low => hour_ones,

hi => hour_tens,

pm => pm);

END a;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 709

10–14 and lines 15–19 in the architecture description. Next, the names that

were used for the building blocks (components) are used along with the

PORT MAP keywords to describe the interconnection of these components.

The information in the PORT MAP sections describes the exact same opera-

tions as drawing wires on a schematic diagram in a GDF file or BDF file.

Finally, the VHDL file that represents the block at the top of the hierarchy

is created using components from Figure 10-37 (MOD-60) and Figure 10-29

(MOD-12). This file is shown in Figure 10-38. Notice that the general form is

as follows:

Define I/O: lines 1–7

Define signals: lines 10–11

Define components: lines 12–23

Instantiate components and connect them together: lines 27–52

710 CHAPTER 10/DIGITAL SYSTEM PROJECTS USING HDL

REVIEW QUESTIONS 1. What is being defined at the top level of a hierarchical design?

2. Where does the design process start?

3. Where does the building process start?

4. At which stage(s) should simulation testing be done?

10-5 FREQUENCY COUNTER PROJECT

The project in this section demonstrates the use of counters and other stan-

dard logic functions to implement a system called a frequency counter,

which is similar to the piece of test equipment that you have probably used

in the laboratory. The theory of operation will be described in terms of con-

ventional MSI logic devices and then related to the building blocks that can

be developed using HDL. As with most projects, this example consists of sev-

eral circuits that we have studied in earlier chapters. They are combined

here to form a digital system with a unique purpose. First, let us define a fre-

quency counter.

A frequency counter is a circuit that can measure and display the fre-

quency of a signal. As you know, the frequency of a periodic waveform is

simply the number of cycles per second. Shaping each cycle of the unknown

frequency into a digital pulse allows us to use a digital circuit to count the

cycles. The general idea behind measuring frequency involves enabling a

counter to count the number of cycles (pulses) of the incoming waveform

during a precisely specified period of time called the sampling interval. The

length of the sampling interval determines the range of frequencies that can

be measured. A longer interval provides improved precision for low frequen-

cies but will overflow the counter at high frequencies. A shorter sample in-

terval provides a less precise measurement of low frequencies but can measure

a much higher maximum frequency without exceeding the upper limit of the

counter.

EXAMPLE 10-1 Assume that a frequency counter uses a four-digit BCD counter. Determine

the maximum frequency that can be measured using each of the following

sample intervals:

(a) 1 second (b) 0.1 second (c) 0.01 second

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 710

Solution

(a) With a sampling interval of 1 second, the four-digit counter can count up

to 9999 pulses. The frequency is 9999 pulses per second or 9.999 kHz.

(b) The counter can count up to 9999 pulses within the sampling interval of

0.1 second. This translates into a frequency of 99,990 pulses per second

or 99.99 kHz.

(c) The counter can count up to 9999 pulses within the sampling interval of

0.01 second. This translates into a frequency of 999,900 pulses per sec-

ond or 999.9 kHz.

SECTION 10-5/FREQUENCY COUNTER PROJECT 711

EXAMPLE 10-2 If a frequency of 3792 pps is applied to the input of the frequency counter,

what will the counter read under each of the following sample intervals?

(a) 1 second (b) 0.1 second (c) 10 ms

Solution

(a) During a sampling interval of 1 second, the counter will count 3792 cy-

cles. The frequency will read 3.792 kpps.

(b) During a sampling interval of 0.1 second, the number of pulses that will

be counted is 379 or 380 cycles, depending on where the sample interval

begins. The frequency will read 03.79 kpps or 03.80 kpps.

(c) During a sampling interval of 0.01 second, the number of pulses that will

be counted is 37 or 38 cycles, depending on where the sample interval

begins. The frequency will read 003.7 kpps or 003.8 kpps.

One of the most straightforward methods for constructing a frequency

counter is shown as a block diagram in Figure 10-39. The major blocks are

the counter, the display register, the decoder/display, and the timing and

control unit. The counter block contains several cascaded BCD counters

that are used to count the number of pulses produced by the unknown sig-

nal applied to the clock input.The counter block has count enable and clear

controls. The time period for counting (sample interval) is controlled by an

enable signal that is produced by the timing and control block. The length

Range
select

Clock
generator

Timing and
control

Decoder and
display

Display
register

Cascaded BCD
counters

Pulse
shaper

System
clock

Unknown signal
(frequency = fx)

fx converted to
digital impulses

Store
Clear
Enable

FIGURE 10-39 Basic

frequency counter block

diagram.

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 711

of time for the BCD counters to be enabled can be selected with the range

select input to the timing and control block. This allows the user to select

the desired frequency range to be measured and effectively determines the

location of the decimal point in the digital readout. The pulse width of the

enable signal (sample interval) is critical for taking an accurate frequency

measurement. The counter must be cleared before it is enabled for a new

frequency measurement of the unknown signal. After a new count has been

taken, the counter is disabled, and the most recent frequency measurement

is stored in the display register.The output of the display register is input to

the decoder and display block, where the BCD values are converted into

decimal for the display readout. Using a separate display register allows the

frequency counter to take a new measurement in the background so that

the user does not watch the counter while it is totaling the number of pulses

for a new reading. The display is instead updated periodically with the last

frequency reading.

The accuracy of this frequency counter depends almost entirely on the

accuracy of the system clock frequency, which is used to create the proper

pulse width for the counter enable signal. A crystal-controlled clock genera-

tor is used in Figure 10-39 to produce an accurate system clock for the tim-

ing and control block.

A pulse shaper block is needed to ensure that the unknown signal whose

frequency is to be measured will be compatible with the clock input for the

counter block. A Schmitt-trigger circuit may be used to convert “nonsquare”

waveforms (sine, triangle, etc.) as long as the unknown input signal is of sat-

isfactory amplitude. If the unknown signal might have a larger or smaller

amplitude than is compatible with a given Schmitt trigger, then additional

analog signal conditioning circuitry, such as an automatic gain control, will

be required for the pulse shaper block.

The timing diagram for the control of the frequency counter is shown in

Figure 10-40. The control clock is derived from the system clock signal by

frequency dividers contained in the control and timing block. The period of

the control clock signal is used to create the desired enable pulse width. A

recycling control counter inside the control and timing block is clocked by the

control clock signal. It has selected states decoded to produce the repeating

712 CHAPTER 10/DIGITAL SYSTEM PROJECTS USING HDL

Unknown
signal

Control
clock

Control
counter

Clear

Enable

Store

Digital
pulses

Control
events

state5 state0 state1 state2 state3 state4 state5

Clear counter Counts pulses during this time interval Store count in display register
Repeats

FIGURE 10-40 Frequency counter timing diagram.

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 712

control signal sequence (clear, enable, and store). The counter (cascaded

BCD stages) is first cleared. Then the counter is enabled for the proper

sample interval to count the digital pulses, which have the same frequency

as the unknown signal. After disabling the counter, the new count is stored

in the display register.

The counter, display register, and decoder/display sections are straight-

forward and are not described any further here.The timing and control block

provides the “brains” for our frequency counter and deserves a little more

discussion to explain its operation. Figure 10-41 shows the sub-blocks within

the timing and control block. For our example design, we will assume that

the clock generator produces a 100-kHz system clock signal. The system

clock frequency is divided by a set of five decade counters (MOD-10). This

gives the user six different frequencies that can be selected by the multi-

plexer for the control clock frequency using the range select control.

Because the period of the control clock is the same as the pulse width of the

counter enable, this setup allows the frequency counter to have six different

frequency measurement ranges.The control counter is a MOD-6 counter that

has three selected states decoded by the control signal generator to produce

the clear, enable, and store control signals.

SECTION 10-5/FREQUENCY COUNTER PROJECT 713

Store

Clear

Decade
counter
DIV10

10 HzDecade
counter
DIV10

100 HzDecade
counter
DIV10

1 kHzDecade
counter
DIV10

10 kHzSystem clock
100kHz

Decade
counter
DIV10

Control
clock

Range select

MUX

1 Hz

1 s

100 ms

10 ms

1 ms

0.1 ms

0.01 ms

Control
counter
MOD-6

Control signal
generator
(decoder)

Enable

FIGURE 10-41 Timing and control block for frequency counter.

EXAMPLE 10-3 Assume that the BCD counter in Figure 10-39 consists of three cascaded BCD

stages and their associated displays. If the unknown frequency is between 1

kpps and 9.99 kpps, which range (sample interval) should be selected using

the MUX of Figure 10-41?

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 713

Solution

With three BCD counters, the total capacity of the counter is 999. A 9.99-kpps

frequency produces a count of 999 if a 0.1-s sample interval were used. Thus,

in order to use the full capacity of the counter, the MUX should select the

0.1-s clock period (10 Hz). If a 1-s sampling interval were used, the counter

capacity would always be exceeded for frequencies in the specified range. If

a shorter sample interval were used, the counter would count only between

1 and 99, which would give a reading to only two significant figures and

would be a waste of the counter’s capacity.

714 CHAPTER 10/DIGITAL SYSTEM PROJECTS USING HDL

REVIEW QUESTIONS 1. What is the purpose of running the unknown signal through a pulse

shaper?

2. What are the units of a frequency measurement?

3. What does the display show during the sample interval?

SUMMARY
1. Successful project management can be accomplished by the following

steps: overall project definition; breaking the project into small, strate-

gic pieces; synthesis and testing of each piece; and system integration.

2. Small projects like the stepper motor driver can be completed in a single

design file, even though these projects are developed modularly.

3. Projects that consist of several simple building blocks, like the keypad

encoder, can produce very useful systems.

4. Larger projects like the digital clock can often take advantage of stan-

dard common modules that can be used repeatedly in the overall design.

5. Projects should be built and tested in modules starting at the lowest lev-

els of hierarchy.

6. Preexisting modules can easily be combined with new custom modules

using both graphical and text-based description methods.

7. Modules can be combined and represented as a single block in the next

higher level of the hierarchy using the Altera design tools.

IMPORTANT TERMS
nesting

hierarchy

prescaler

frequency counter

sampling interval

PROBLEMS
SECTION 10-1

10-1. The security monitoring system of Section 9-8 in Chapter 9 can be de-

veloped as a project.

(a) Write a project definition with specifications for this system.

(b) Define three major blocks of this project.

(c) Identify the signals that interconnect the blocks.

B

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 714

(d)*At what frequency must the oscillator run for a 2.5-Hz flash rate?

(e)*Why is it reasonable to use only one current limiting resistor for

all eight LEDs?

SECTION 10-2

Problems 10-2 through 10-7 refer to stepper motors described in Section 10-2.

10-2.*How many full steps must occur for a complete revolution?

10-3.*How many degrees of rotation result from one compete cycle through

the full-step sequence in Table 10-1?

10-4. How many degrees of rotation result from one complete cycle through

the half-step sequence in Table 10-1?

10-5. The cout lines of Figure 10-1 started at 1010 and have just progressed

through the following sequence: 1010, 1001, 0101, 0110.

(a)*How many degrees has the shaft rotated?

(b) What sequence will reverse the rotation and return the shaft to its

original position?

10-6. Describe a method to test the stepper driver in:

(a) Full-step mode

(b) Half-step mode

(c) Wave-drive mode

(d) Direct-drive mode

10-7. Rewrite the stepper driver design file of Figure 10-8 or 10-9 without

using a CASE statement. Use your favorite HDL.

10-8. Modify the stepper design file of Figure 10-8 or 10-9 to add an enable

input that puts the outputs in the Hi-Z state (tristate) when enable

SECTION 10-3

10-9. Write the state table for the ring counter shown in Figure 10-11 and

described in Figure 10-13.

10-10.*With no keys pressed, what is the value on c[3..0]?

10-11. Assume that the ring counter is in state 0111 when someone presses

the 7 key. Will the ring counter advance to the NEXT state?

10-12. Assume the 9 key is pressed and held until

(a)*What is the value on the ring counter?

(b) What is the value encoded by the row encoder?

(c) What is the value encoded by the column encoder?

(d) What binary number is on the D[3..0] lines?

10-13.*In Problem 10-12, will the data be valid on the falling edge of DAV?

10-14. If you wanted to latch data from the keypad into a 74174 register,

which signal from the keypad would you connect to the clock of the

register? Draw the circuit.

10-15.*The keypad is connected to a 74373 octal transparent latch as shown

in Figure 10-42.The output is correct as long as a key is held. However,

it is unable to latch data between key presses. Why will this circuit not
work correctly?

DAV = 1.

= 0.

PROBLEMS 715

*Answers to problems marked with an asterisk can be found in the back of the text.

B

B

B

B

B

D, H

D, H

B

B

B

B

B

B, D

T

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 715

SECTION 10-4

10-16. Assume a 1-Hz clock is applied to the seconds stage of the clock in

Figure 10–17. The MOD-10 units of seconds counter’s terminal count

(tc) output is shown in Figure 10-43. Draw a similar diagram showing

the number of clock cycles between the tc output pulses of each of the

following:

(a)*Tens of seconds counter

(b) Units of minutes counter

(c) Tens of minutes counter

716 CHAPTER 10/DIGITAL SYSTEM PROJECTS USING HDL

Terminal count (tc)

1 clock cycle (1 s)

10 clock cycles (Tclk = 1 s)

FIGURE 10-43 Problem 10-16.

F

B

7

3

E

A

2

D

9

5

1

C

8

4

0

6

Latch

DAV

D3
D2
D1
D0

Q3
Q2
Q1
Q0

D3
D2
D1
D0

En

Outputs

Encoder
Keypad

FIGURE 10-42 Problem 10-15.

10-17.*How many cycles of the 60-Hz power line will occur in a 24-hour pe-

riod? What problem do you think will result if we attempt to simulate

the operation of the entire clock circuit?

10-18.*Many digital clocks are set by simply making them count faster while

a push button is held down. Modify the design to add this feature.

10-19. Modify the hours stage of Figure 10-18 to keep military time (00–23

hours).

SECTION 10-5

10-20. Draw the hierarchy diagram for the frequency counter project.

10-21. Write the HDL code for the MOD-6 control counter and control signal

generator in Figure 10-41.

10-22.*Write the HDL code for the MUX of Figure 10-41.

10-23. Use graphic design techniques and the BCD counter described in Figure

10-31, the MUX, and the control signal generator design to create the

entire timing and control block for the frequency counter project.

10-24. Write the HDL code for the timing and control section of the fre-

quency counter.

B

B

D

D, H

B

D, H

D, H

D

D, H

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 716

ANSWERS TO SECTION REVIEW QUESTIONS
SECTION 10-1

1. Definition, strategic planning, synthesis and testing, system integration and

testing 2. The definition stage

SECTION 10-2

1. Full-step, half-step, wave-drive, and direct-drive 2. [mode selector

switches set to (1,1)] 3. Step, direction [mode selector switches set to (0,1)]

4. Eight states

SECTION 10-3

1. Only one 2. The first one scanned after being pressed (usually the first one

pressed) 3. To make DAV go HIGH after the data stabilizes 4. No, it goes

HIGH on the next clock after the key is pressed. 5. Whenever OE is LOW or

when no keys are pressed

SECTION 10-4

1. The overall operating specifications and the system inputs and outputs.

2. At the top of the hierarchy 3. At the bottom, building the simplest blocks first

4. At each stage of modular implementation

SECTION 10-5

1. To change the shape of the analog signal into a digital signal of the same

frequency 2. Cycles per second (Hz) or pulses per second (pps) 3. The

display shows the frequency measured during the previous sample interval.

cin0-cin3

ANSWERS TO SECTION REVIEW QUESTIONS 717

TOCCMC10_0131725793.QXD 12/19/2005 2:13 PM Page 717

11-1 Review of Digital Versus

Analog

11-2 Digital-to-Analog Conversion

11-3 D/A-Converter Circuitry

11-4 DAC Specifications

11-5 An Integrated-Circuit DAC

11-6 DAC Applications

11-7 Troubleshooting DACs

11-8 Analog-to-Digital

Conversion

11-9 Digital-Ramp ADC

■ OUTLINE

I N T E R FAC I N G W I T H

T H E A N A L O G W O R L D

C H A P T E R 1 1

11-10 Data Acquisition

11-11 Successive-Approximation

ADC

11-12 Flash ADCs

11-13 Other A/D Conversion

Methods

11-14 Sample-and-Hold Circuits

11-15 Multiplexing

11-16 Digital Storage Oscilloscope

11-17 Digital Signal Processing

(DSP)

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 718

719

■ OBJECTIVES
Upon completion of this chapter, you will be able to:
■ Understand the theory of operation and the circuit limitations of

several types of digital-to-analog converters (DACs).

■ Read and understand the various DAC manufacturer specifications.

■ Use different test procedures to troubleshoot DAC circuits.

■ Compare the advantages and disadvantages among the digital-ramp

analog-to-digital converter (ADC), successive-approximation ADC, and

flash ADC.

■ Analyze the process by which a computer, in conjunction with an ADC,

digitizes an analog signal and then reconstructs that analog signal from

the digital data.

■ Describe the basic operation of a digital voltmeter.

■ Understand the need for using sample-and-hold circuits in conjunction

with ADCs.

■ Describe the operation of an analog multiplexing system.

■ Understand the features and basic operation of a digital storage

oscilloscope.

■ Understand the basic concepts of digital signal processing.

11-1 REVIEW OF DIGITAL VERSUS ANALOG

A digital quantity has a value that is specified as one of two possibilities,

such as 0 or 1, LOW or HIGH, true or false, and so on. In practice, a digital

quantity such as a voltage may actually have a value that is anywhere within

specified ranges, and we define values within a given range to have the same

digital value. For example, for TTL logic, we know that

Any voltage falling in the range from 0 to 0.8 V is given the digital value 0,

and any voltage in the range 2 to 5 V is assigned the digital value 1. The ex-

act voltage values are not significant because the digital circuits respond in

the same way to all voltage values within a given range.

By contrast, an analog quantity can take on any value over a continuous

range of values and, most important, its exact value is significant. For exam-

ple, the output of an analog temperature-to-voltage converter might be

measured as 2.76 V, which may represent a specific temperature of If

the voltage were measured as something different, such as 2.34 V or 3.78 V,

this would represent a completely different temperature. In other words,

27.6°C.

 2 V to 5 V = logic 1

 0 V to 0.8 V = logic 0

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 719

each possible value of an analog quantity has a different meaning. Another

example of this is the output voltage from an audio amplifier into a speaker.

This voltage is an analog quantity because each of its possible values pro-

duces a different response in the speaker.

Most physical variables are analog in nature and can take on any value

within a continuous range of values. Examples include temperature, pres-

sure, light intensity, audio signals, position, rotational speed, and flow rate.

Digital systems perform all of their internal operations using digital circuitry

and digital operations. Any information that must be input to a digital system

must first be put into digital form. Similarly, the outputs from a digital system

are always in digital form. When a digital system such as a computer is to be

used to monitor and/or control a physical process, we must deal with the dif-

ference between the digital nature of the computer and the analog nature of

the process variables. Figure 11-1 illustrates the situation. This diagram

shows the five elements that are involved when a computer is monitoring and

controlling a physical variable that is assumed to be analog:

1. Transducer. The physical variable is normally a nonelectrical quantity. A

transducer is a device that converts the physical variable to an electrical

variable. Some common transducers include thermistors, photocells,

photodiodes, flow meters, pressure transducers, and tachometers. The

electrical output of the transducer is an analog current or voltage that is

proportional to the physical variable that it is monitoring. For example,

the physical variable could be the temperature of water in a large tank

that is being filled from cold and hot water pipes. Let’s say that the

water temperature varies from 80 to and that a thermistor and its

associated circuitry convert this water temperature to a voltage ranging

from 800 to 1500 mV. Note that the transducer’s output is directly pro-

portional to temperature such that each produces a 10-mV output.

This proportionality factor was chosen for convenience.

2. Analog-to-digital converter (ADC). The transducer’s electrical analog out-

put serves as the analog input to the analog-to-digital converter (ADC).
The ADC converts this analog input to a digital output. This digital

output consists of a number of bits that represent the value of the ana-

log input. For example, the ADC might convert the transducer’s 800- to

1500-mV analog values to binary values ranging from 01010000 (80) to

10010110 (150). Note that the binary output from the ADC is proportional

to the analog input voltage so that each unit of the digital output repre-

sents 10 mV.

1°F

150°F

720 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

•
•
•
•

•
•
•
•

Transducer
Physical
variable

1

ADC

Electrical
analog
input

2 3 4

Digital
system

(e.g., computer)

Digital
inputs

DAC

Digital
outputs

5

Actuator
To

control
physical variable

Analog output

FIGURE 11-1 Analog-to-digital converter (ADC) and digital-to-analog converter

(DAC) are used to interface a computer to the analog world so that the computer

can monitor and control a physical variable.

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 720

3. Computer. The digital representation of the process variable is transmit-

ted from the ADC to the digital computer, which stores the digital value

and processes it according to a program of instructions that it is execut-

ing. The program might perform calculations or other operations on this

digital representation of temperature to come up with a digital output

that will eventually be used to control the temperature.

4. Digital-to-analog converter (DAC). This digital output from the computer

is connected to a digital-to-analog converter (DAC), which converts it to

a proportional analog voltage or current. For example, the computer

might produce a digital output ranging from 00000000 to 11111111,

which the DAC converts to a voltage ranging from 0 to 10 V.

5. Actuator. The analog signal from the DAC is often connected to some de-

vice or circuit that serves as an actuator to control the physical variable.

For our water temperature example, the actuator might be an electri-

cally controlled valve that regulates the flow of hot water into the tank

in accordance with the analog voltage from the DAC.The flow rate would

vary in proportion to this analog voltage, with 0 V producing no flow and

10 V producing the maximum flow.

Thus, we see that ADCs and DACs function as interfaces between a com-

pletely digital system, such as a computer, and the analog world.This function

has become increasingly more important as inexpensive microcomputers

have moved into areas of process control where computer control was previ-

ously not feasible.

SECTION 11-2/DIGITAL-TO-ANALOG CONVERSION 721

REVIEW QUESTIONS 1. What is the function of a transducer?

2. What is the function of an ADC?

3. What does a computer often do with the data that it receives from an

ADC?

4. What function does a DAC perform?

5. What is the function of an actuator?

11-2 DIGITAL-TO-ANALOG CONVERSION

We will now begin our study of digital-to-analog (D/A) and analog-to-digital

(A/D) conversion. Many A/D conversion methods utilize the D/A conversion

process, so we will examine D/A conversion first.

Basically, D/A conversion is the process of taking a value represented in

digital code (such as straight binary or BCD) and converting it to a voltage or

current that is proportional to the digital value. Figure 11-2(a) shows the

symbol for a typical four-bit D/A converter. We will not concern ourselves

with the internal circuitry until later. For now, we will examine the various

input/output relationships.

Notice that there is an input for a voltage reference, Vref. This input is

used to determine the full-scale output or maximum value that the D/A con-

verter can produce. The digital inputs D, C, B, and A are usually derived from

the output register of a digital system. The different binary numbers

represented by these four bits are listed in Figure 11-2(b). For each input

number, the D/A converter output voltage is a unique value. In fact, for this

case, the analog output voltage VOUT is equal in volts to the binary number. It

24
= 16

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 721

could also have been twice the binary number or some other proportionality

factor. The same idea would hold true if the D/A output were a current IOUT.

In general,

(11-1)

where K is the proportionality factor and is a constant value for a given DAC

connected to a fixed reference voltage. The analog output can, of course, be

a voltage or a current. When it is a voltage, K will be in voltage units, and

when the output is a current, K will be in current units. For the DAC of

Figure 11-2, K � 1 V, so that

We can use this to calculate VOUT for any value of digital input. For example,

with a digital input of 11002 � 1210, we obtain

VOUT = 1 V * 12 = 12 V

VOUT = (1 V) * digital input

analog output = K * digital input

722 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

A

B

D

C

MSB

LSB

Digital
inputs

D/A
converter

(DAC)

VOUT
analog
output

(a)

(b)

D

0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1

C

0
0
0
0
1
1
1
1

0
0
0
0
1
1
1
1

B

0
0
1
1
0
0
1
1

0
0
1
1
0
0
1
1

A

0
1
0
1
0
1
0
1

0
1
0
1
0
1
0
1

VOUT

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

Volts

Volts

Vref = 16 V

FIGURE 11-2 Four-bit DAC with voltage output.

EXAMPLE 11-1A A five-bit DAC has a current output. For a digital input of 10100, an output

current of 10 mA is produced. What will IOUT be for a digital input of 11101?

Solution

The digital input 101002 is equal to decimal 20. Because IOUT � 10 mA for

this case, the proportionality factor must be 0.5 mA. Thus, we can find IOUT

for any digital input such as 111012 � 2910 as follows:

 = 14.5 mA

 IOUT = (0.5 mA) * 29

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 722

SECTION 11-2/DIGITAL-TO-ANALOG CONVERSION 723

EXAMPLE 11-1B What is the largest value of output voltage from an eight-bit DAC that pro-

duces 1.0 V for a digital input of 00110010?

Solution

Therefore,

K � 20 mV

The largest output will occur for an input of 111111112 � 25510.

Analog Output
The output of a DAC is technically not an analog quantity because it can take

on only specific values, such as the 16 possible voltage levels for VOUT in

Figure 11-2, as long as Vref is constant. Thus, in that sense, it is actually digi-

tal. As we will see, however, the number of different possible output values

can be increased and the difference between successive values decreased by

increasing the number of input bits. This will allow us to produce an output

that is more and more like an analog quantity that varies continuously over

a range of values. In other words, the DAC output is a “pseudo-analog” quan-

tity. We will continue to refer to it as analog, keeping in mind that it is an ap-

proximation to a pure analog quantity.

Input Weights
For the DAC of Figure 11-2, note that each digital input contributes a differ-

ent amount to the analog output. This is easily seen if we examine the cases

where only one input is HIGH (Table 11-1). The contributions of each digital

input are weighted according to their position in the binary number. Thus, A,

which is the LSB, has a weight of 1 V; B has a weight of 2 V; C has a weight of

4 V; and D, the MSB, has the largest weight, 8 V. The weights are successively

doubled for each bit, beginning with the LSB. Thus, we can consider VOUT to

be the weighted sum of the digital inputs. For instance, to find VOUT for the

digital input 0111, we can add the weights of the C, B, and A bits to obtain

4 V � 2 V � 1 V � 7 V.

 = 5.10 V

 VOUT(max) = 20 mV * 255

 1.0 V = K * 50

 001100102 = 5010

D C B A VOUT (V)

0 0 0 1 : 1

0 0 1 0 : 2

0 1 0 0 : 4

1 0 0 0 : 8

TABLE 11-1

Remember, the proportionality factor, K, varies from one DAC to another

and depends on the reference voltage.

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 723

724 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

EXAMPLE 11-2
A five-bit D/A converter produces VOUT � 0.2 V for a digital input of 00001.

Find the value of VOUT for an input of 11111.

Solution

Obviously, 0.2 V is the weight of the LSB. Thus, the weights of the other bits

must be 0.4 V, 0.8 V, 1.6 V, and 3.2 V, respectively. For a digital input of 11111,

then, the value of VOUT will be 3.2 V � 1.6 V � 0.8 V � 0.4 V � 0.2 V � 6.2 V.

Resolution (Step Size)
Resolution of a D/A converter is defined as the smallest change that can oc-

cur in the analog output as a result of a change in the digital input. Referring

to the table in Figure 11-2, we can see that the resolution is 1 V because VOUT

can change by no less than 1 V when the digital input value is changed. The

resolution is always equal to the weight of the LSB and is also referred to as

the step size because it is the amount that VOUT will change as the digital in-

put value is changed from one step to the next. This is illustrated better

in Figure 11-3, where the outputs from a four-bit binary counter provide the

inputs to our DAC. As the counter is being continually cycled through its 16

states by the clock signal, the DAC output is a staircase waveform that goes

up 1 V per step. When the counter is at 1111, the DAC output is at its maxi-

mum value of 15 V; this is its full-scale output. When the counter recycles to

0000, the DAC output returns to 0 V. The resolution (or step size) is the size

of the jumps in the staircase waveform; in this case, each step is 1 V.

Note that the staircase has 16 levels corresponding to the 16 input states,

but there are only 15 steps or jumps between the 0-V level and full-scale. In

general, for an N-bit DAC the number of different levels will be 2N, and the

number of steps will be

You may have already figured out that resolution (step size) is the same

as the proportionality factor in the DAC input/output relationship:

analog output = K * digital input

2N
-1.

4-bit
counter

D/A
converter

D

C

B

A
Resolution

= 1 V

VOUT

Clock
0 V

1 V
2 V

3 V
4 V

5 V

10 V

15 VFull-scale
(input = 1111)

Input
recycled to

0000

Resolution = step size = 1 V

Time

• • •

FIGURE 11-3 Output waveforms of a DAC as inputs are provided by a binary

counter.

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 724

A new interpretation of this expression would be that the digital input is

equal to the number of steps, K is the amount of voltage (or current) per

step, and the analog output is the product of the two. We now have a conven-

ient way of calculating the value of K for the D/A:

(11-2)

where Afs is the analog full-scale output and n is the number of bits.

resolution = K =

Afs

(2n
- 1)

SECTION 11-2/DIGITAL-TO-ANALOG CONVERSION 725

EXAMPLE 11-3A What is the resolution (step size) of the DAC of Example 11-2? Describe the

staircase signal out of this DAC.

Solution

The LSB for this converter has a weight of 0.2 V.This is the resolution or step

size. A staircase waveform can be generated by connecting a five-bit counter

to the DAC inputs.The staircase will have 32 levels, from 0 V up to a full-scale

output of 6.2 V, and 31 steps of 0.2 V each.

EXAMPLE 11-3B For the DAC of Example 11-2, determine VOUT for a digital input of 10001.

Solution

The step size is 0.2 V, which is the proportionality factor K. The digital input

is 10001 � 1710. Thus, we have

Percentage Resolution
Although resolution can be expressed as the amount of voltage or current

per step, it is also useful to express it as a percentage of the full-scale output.
To illustrate, the DAC of Figure 11-3 has a maximum full-scale output of 15 V

(when the digital input is 1111).The step size is 1 V, which gives a percentage

resolution of

(11-3)

 =

1 V

15 V
* 100% = 6.67%

 % resolution =

step size

full scale (F.S.)
* 100%

 = 3.4 V

 VOUT = (0.2 V) * 17

EXAMPLE 11-4 A 10-bit DAC has a step size of 10 mV. Determine the full-scale output volt-

age and the percentage resolution.

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 725

Solution

With 10 bits, there will be steps of 10 mV each. The full-scale

output will therefore be and

Example 11-4 helps to illustrate the fact that the percentage resolution

becomes smaller as the number of input bits is increased. In fact, the per-

centage resolution can also be calculated from

(11-4)

For an N-bit binary input code, the total number of steps is Thus, for

the previous example,

This means that it is only the number of bits that determines the percentage
resolution. Increasing the number of bits increases the number of steps to

reach full scale, so that each step is a smaller part of the full-scale voltage.

Most DAC manufacturers specify resolution as the number of bits.

What Does Resolution Mean?
A DAC cannot produce a continuous range of output values and so, strictly

speaking, its output is not truly analog. A DAC produces a finite set of output

values. In our water temperature example of Section 11-1, the computer

generates a digital output to provide an analog voltage between 0 and 10 V

to an electrically controlled valve. The DAC’s resolution (number of bits) de-

termines how many possible voltage values the computer can send to the

valve. If a six-bit DAC is used, there will be 63 possible steps of 0.159 V be-

tween 0 and 10 V. When an eight-bit DAC is used, there will be 255 possible

steps of 0.039 V between 0 and 10 V.The greater the number of bits, the finer

the resolution (the smaller the step size).

The system designer must decide what resolution is needed on the basis

of the required system performance.The resolution limits how close the DAC

output can come to a given analog value. Generally, the cost of DACs in-

creases with the number of bits, and so the designer will use only as many

bits as necessary.

 L 0.1%

 =

1

1023
* 100%

 % resolution =

1

210
- 1

* 100%

2N
- 1.

% resolution =

1

total number of steps
* 100%

% resolution =

10 mV

10.23 V
* 100% L 0.1%

10 mV * 1023 = 10.23 V,

210
- 1 = 1023

726 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

EXAMPLE 11-5 Figure 11-4 shows a computer controlling the speed of a motor. The 0- to

2-mA analog current from the DAC is amplified to produce motor speeds

from 0 to 1000 rpm (revolutions per minute). How many bits should be used

if the computer is to be able to produce a motor speed that is within 2 rpm

of the desired speed?

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 726

Solution

The motor speed will range from 0 to 1000 rpm as the DAC goes from zero to

full scale. Each step in the DAC output will produce a step in the motor

speed. We want the step size to be no greater than 2 rpm. Thus, we need at

least 500 steps (1000/2). Now we must determine how many bits are required

so that there are at least 500 steps from zero to full scale. We know that the

number of steps is and so we can say

or

Since and the smallest number of bits that will produce

at least 500 steps is nine. We could use more than nine bits, but this might

add to the cost of the DAC.

29
= 512,28

= 256

2N
Ú 501

2N
- 1 Ú 500

2N
- 1,

SECTION 11-2/DIGITAL-TO-ANALOG CONVERSION 727

•
•
•
•

Computer DAC Current
amp.

IOUT

0–2 mA

Motor
0–1000 rpm

FIGURE 11-4 Example 11-5.

EXAMPLE 11-6 Using nine bits, how close to 326 rpm can the motor speed be adjusted?

Solution

With nine bits, there will be 511 steps Thus, the motor speed will go

up in steps of 1000 rpm/511 � 1.957 rpm. The number of steps needed to

reach 326 rpm is 326/1.957 � 166.58.This is not a whole number of steps, and

so we will round it to 167. The actual motor speed on the 167th step will be

rpm. Thus, the computer must output the nine-bit bi-

nary equivalent of 16710 to produce the desired motor speed within the res-

olution of the system.

In all of our examples, we have assumed that the DACs have been per-

fectly accurate in producing an analog output that is directly proportional to

the binary input, and that the resolution is the only thing that limits how

close we can come to a desired analog value.This, of course, is unrealistic be-

cause all devices contain inaccuracies. We will examine the causes and ef-

fects of DAC inaccuracy in Sections 11-3 and 11-4.

167 * 1.957 = 326.8

(29
- 1).

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 727

728 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

Bipolar DACs
Up to this point we have assumed that the binary input to a DAC has been an

unsigned number and the DAC output has been a positive voltage or current.

Many DACs can also produce negative voltages by making slight changes to

the analog circuitry on the output of the DAC. In this case the range of binary

inputs (e.g., 00000000 to 11111111) spans a range of to approximately

�Vref. The value of 10000000 converts to 0 V out. The output of a signed 2’s

complement digital system can drive this type of DAC by inverting the MSB,

which converts the signed binary numbers to the proper values for the DAC

as shown in Table 11-2.

-Vref

Signed 2’s Complement DAC Inputs DAC Vout

Most positive 01111111 11111111

Zero 00000000 10000000 0 V

Most negative 10000000 00000000 -Vref

'
+ Vref

TABLE 11-2

Other DACs may have the extra circuitry built in and accept 2’s comple-

ment signed numbers as inputs. For example, suppose that we have a six-bit

bipolar DAC that uses the 2’s-complement system and has a resolution of

0.2 V. The binary input values range from 100000 to 011111 (�31) to

produce analog outputs in the range from to �6.2 V. There are 63 steps

of 0.2 V between these negative and positive limits.(26
- 1)

-6.4

(-32)

REVIEW QUESTIONS 1. An eight-bit DAC has an output of 3.92 mA for an input of 01100010.

What are the DAC’s resolution and full-scale output?

2. What is the weight of the MSB of the DAC of question 1?

3. What is the percentage resolution of an eight-bit DAC?

4. How many different output voltages can a 12-bit DAC produce?

5. For the system of Figure 11-4, how many bits should be used if the com-

puter is to control the motor speed within 0.4 rpm?

6. True or false: The percentage resolution of a DAC depends only on the

number of bits.

7. What is the advantage of a smaller (finer) resolution?

11-3 D/A-CONVERTER CIRCUITRY

There are several methods and circuits for producing the D/A operation that has

been described. We shall examine several of the basic schemes to gain an in-

sight into the ideas used. It is not important to be familiar with all of the various

circuit schemes because D/A converters are available as ICs or as encapsulated

packages that do not require any circuit knowledge. Instead, it is important to

know the significant performance characteristics of DACs, in general, so that

they can be used intelligently.These will be covered in Section 11-4.

Figure 11-5(a) shows the basic circuit for one type of four-bit DAC.The in-

puts A, B, C, and D are binary inputs that are assumed to have values of ei-

ther 0 or 5 V. The operational amplifier is employed as a summing amplifier,

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 728

which produces the weighted sum of these input voltages. Recall that the

summing amplifier multiplies each input voltage by the ratio of the feed-

back resistor RF to the corresponding input resistor RIN. In this circuit

and the input resistors range from 1 to 8 The D input has

so the summing amplifier passes the voltage at D with no atten-

uation. The C input has so that it will be attenuated by

Similarly, the B input will be attenuated by and the A input by The

amplifier output can thus be expressed as

(11-5)

The negative sign is present because the summing amplifier is a polarity-

inverting amplifier, but it will not concern us here.

Clearly, the summing amplifier output is an analog voltage that represents

a weighted sum of the digital inputs, as shown by the table in Figure 11-5(b).

This table lists all of the possible input conditions and the resultant amplifier

output voltage. The output is evaluated for any input condition by setting the

appropriate inputs to either 0 or 5 V. For example, if the digital input is 1010,

then VD � VB � 5 V and VC � VA � 0 V. Thus, using equation (11-5),

The resolution of this D/A converter is equal to the weighting of the LSB,

which is As shown in the table, the analog output in-

creases by 0.625 V as the binary input number advances one step.

1
8 * 5 V = 0.625 V.

 = -6.25 V

 VOUT = -(5 V + 0 V +
1
4 * 5 V + 0 V)

VOUT = -(VD +
1
2 VC +

1
4 VB +

1
8 VA)

1�8.1�4,

1�2.RIN = 2 kÆ,

RIN = 1 kÆ,

kÆ.RF = 1 kÆ,

SECTION 11-3/D/A-CONVERTER CIRCUITRY 729

Full-
scale

(b)

D

0
0
0
0

0
0
0
0

1
1
1
1

1
1
1
1

C

0
0
0
0

1
1
1
1

0
0
0
0

1
1
1
1

B

0
0
1
1

0
0
1
1

0
0
1
1

0
0
1
1

A

0
1
0
1

0
1
0
1

0
1
0
1

0
1
0
1

VOUT (volts)

0
–0.625
–1.250
–1.875

–2.500
–3.125
–3.750
–4.375

–5.000
–5.625
–6.250
–6.875

–7.500
–8.125
–8.750
–9.375

LSB

Digital inputs:
0 V or 5 V

DD
1 k�

MSB

C

B

A
LSB

Rf = 1 k�

+VS

–VS

–

+

Op
amp VOUT

Input code

(a)

2 k�

4 k�

8 k�

FIGURE 11-5 Simple DAC using an op-amp summing amplifier with binary-

weighted resistors.

EXAMPLE 11-7 (a) Determine the weight of each input bit of Figure 11-5(a).

(b) Change RF to and determine the full-scale output.250 Æ

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 729

Solution

(a) The MSB passes with gain � 1, so its weight in the output is 5 V. Thus,

(b) If RF is reduced by a factor of 4, to each input weight will be four

times smaller than the values above.Thus, the full-scale output will be re-

duced by this same factor and becomes

If we look at the input resistor values in Figure 11-5, it should come as no

surprise that they are binarily weighted. In other words, starting with the

MSB resistor, the resistor values increase by a factor of 2.This, of course, pro-

duces the desired weighting in the voltage output.

Conversion Accuracy
The table in Figure 11-5(b) gives the ideal values of VOUT for the various in-

put cases. How close the circuit comes to producing these values depends

primarily on two factors: (1) the precision of the input and feedback resistors

and (2) the precision of the input voltage levels. The resistors can be made

very accurate (within 0.01 percent of the desired values) by trimming, but

the input voltage levels must be handled differently. It should be clear that

the digital inputs cannot be taken directly from the outputs of FFs or logic

gates because the output logic levels of these devices are not precise values

like 0 V and 5 V but vary within given ranges. For this reason, it is necessary

to add some more circuitry between each digital input and its input resistor

to the summing amplifier, as shown in Figure 11-6.

-9.375/4 = -2.344 V.

250 Æ,

 4th MSB = LSB : 0.625 V

 3rd MSB : 1.25 V

 2nd MSB : 2.5 V

 MSB : 5 V

730 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

D
1 k�

C

2 k�

B

4 k�

A
8 k�

1 k�

–

+
VOUT

MSB

LSB

Logic
inputs

+5 V Precision
reference supply

Note: A 1 at a
logic input
closes its
switch

FIGURE 11-6 Complete

four-bit DAC including a

precision reference supply.

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 730

Each digital input controls a semiconductor switch such as the CMOS

transmission gate we studied in Chapter 8. When the input is HIGH, the

switch closes and connects a precision reference supply to the input resistor;

when the input is LOW, the switch is open. The reference supply produces a

very stable, precise voltage needed to generate an accurate analog output.

DAC with Current Output
Figure 11-7(a) shows one basic scheme for generating an analog output cur-

rent proportional to a binary input. The circuit shown is a four-bit DAC using

binarily weighted resistors. The circuit uses four parallel current paths, each

controlled by a semiconductor switch such as the CMOS transmission gate.

The state of each switch is controlled by logic levels at the binary inputs.The

current through each path is determined by an accurate reference voltage,

VREF, and a precision resistor in the path.The resistors are binarily weighted

so that the various currents will be binarily weighted, and the total current,

IOUT, will be the sum of the individual currents. The MSB path has the small-

est resistor, R; the next path has a resistor of twice the value; and so on. The

output current can be made to flow through a load RL that is much smaller

than R, so that it has no effect on the value of current. Ideally, RL should be

a short to ground.

SECTION 11-3/D/A-CONVERTER CIRCUITRY 731

MSB
B3 B2 B1 B0

LSB

I0 R
I0
2 2 R

I0
4 4 R

I0
8 8 R

+VREF

** switch closed
when input
bit = 1

Binary inputs (0 or 1)

(a)

IOUT

IOUT = B3 × I0 + B2 ×
I0
2

+ B1 × + B0 ×
I0
8

I0
4

where I0 =
VREF

R

RL

RF

–

+

IF = IOUTIOUT

≈ 0 V

–

+

VOUT = –IOUT × RF

(b)

FIGURE 11-7 (a) Basic

current-output DAC;

(b) connected to an op-amp

current-to-voltage con-

verter.

EXAMPLE 11-8 Assume that VREF � 10 V and R � 10 Determine the resolution and the

full-scale output for this DAC. Assume that RL is much smaller than R.
kÆ.

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 731

Solution

IOUT � VREF/R � 1 mA. This is the weight of the MSB. The other three cur-

rents will be 0.5, 0.25, and 0.125 mA. The LSB is 0.125 mA, which is also the

resolution.

The full-scale output will occur when the binary inputs are all HIGH so

that each current switch is closed and

IOUT � 1 � 0.5 � 0.25 � 0.125 � 1.875 mA

Note that the output current is proportional to VREF. If VREF is increased or

decreased, the resolution and the full-scale output will change proportionally.

For IOUT to be accurate, RL should be a short to ground. One common way to

accomplish this is to use an op-amp as a current-to-voltage converter, as shown

in Figure 11-7(b). Here, the IOUT from the DAC is connected to the op-amp’s “�”

input, which is virtually at ground. The op-amp negative feedback forces a cur-

rent equal to IOUT to flow through RF to produce Thus,

VOUT will be an analog voltage that is proportional to the binary input to the

DAC. This analog output can drive a wide range of loads without being loaded

down.

R/2R Ladder
The DAC circuits we have looked at thus far use binary-weighted resistors to

produce the proper weighting of each bit.Whereas this method works in theory,

it has some practical limitations.The biggest problem is the large difference in

resistor values between the LSB and the MSB, especially in high-resolution

DACs (i.e., many bits). For example, if the MSB resistor is 1 in a 12-bit DAC,

the LSB resistor will be over 2 .With the current IC fabrication technology,

it is very difficult to produce resistance values over a wide resistance range

that maintain an accurate ratio, especially with variations in temperature.

For this reason, it is preferable to have a circuit that uses resistances that

are fairly close in value. One of the most widely used DAC circuits that satis-

fies this requirement is the R/2R ladder network, where the resistance values

span a range of only 2 to 1. One such DAC is shown in Figure 11-8.

MÆ

kÆ

-IOUT * RF.VOUT =

732 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

R

–

+
IOUT

VOUT

2 R

B3
(MSB)

2 R

B2

2 R

B1

2 R

B0
(LSB)

2 R R R R

+VREF

VOUT =
–VREF

16
× B

FIGURE 11-8 Basic R/2R ladder DAC.

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 732

Note how the resistors are arranged, and especially note that only two dif-

ferent values are used, R and 2R. The current IOUT depends on the positions

of the four switches, and the binary inputs B3B2B1B0 control the states of the

switches.This current is allowed to flow through an op-amp current-to-voltage

converter to develop VOUT. We will not perform a detailed analysis of this cir-

cuit here, but it can be shown that the value of VOUT is given by the expression

(11-6)

where B is the value of the binary input, which can range from 0000 (0) to

1111 (15).

VOUT =

-VREF

16
* B

SECTION 11-4/DAC SPECIFICATIONS 733

EXAMPLE 11-9 Assume that VREF � 10 V for the DAC in Figure 11-8. What are the resolution

and full-scale output of this converter?

Solution

The resolution is equal to the weight of the LSB, which we can determine by

setting B � 0001 � 1 in equation (11-6):

The full-scale output occurs for B � 1111 � 1510. Again using equation (11-6),

 = -9.375 V

 full-scale =

-10 V * 15

16

 = -0.625 V

 resolution =

-10 V * 1

16

REVIEW QUESTIONS 1. What is the advantage of R/2R ladder DACs over those that use binary-

weighted resistors?

2. A certain six-bit DAC uses binary-weighted resistors. If the MSB resistor

is what is the LSB resistor?

3. What will the resolution be if the value of RF in Figure 11-5 is changed to

800 ?

4. What will happen to both resolution and full-scale output when VREF is

increased by 20 percent?

Æ

20 kÆ,

11-4 DAC SPECIFICATIONS

A wide variety of DACs are currently available as ICs or as self-contained, en-

capsulated packages. One should be familiar with the more important manu-

facturers’ specifications in order to evaluate a DAC for a particular application.

Resolution
As mentioned earlier, the percentage resolution of a DAC depends solely on

the number of bits. For this reason, manufacturers usually specify a DAC

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 733

resolution as the number of bits. A 10-bit DAC has a finer (smaller) resolu-

tion than an eight-bit DAC.

Accuracy
DAC manufacturers have several ways of specifying accuracy. The two most

common are called full-scale error and linearity error, which are normally

expressed as a percentage of the converter’s full-scale output (% F.S.).

Full-scale error is the maximum deviation of the DAC’s output from its

expected (ideal) value, expressed as a percentage of full scale. For example,

assume that the DAC of Figure 11-5 has an accuracy of F.S. Because

this converter has a full-scale output of 9.375 V, this percentage converts to

This means that the output of this DAC can, at any time, be off by as much as

0.9375 mV from its expected value.

Linearity error is the maximum deviation in step size from the ideal step

size. For example, the DAC of Figure 11-5 has an expected step size of 0.625 V.

If this converter has a linearity error of F.S., this would mean that

the actual step size could be off by as much as 0.9375 mV.

It is important to understand that accuracy and resolution of a DAC must

be compatible. It is illogical to have a resolution of, say, 1 percent and an ac-

curacy of 0.1 percent, or vice versa. To illustrate, a DAC with a resolution of

1 percent and an F.S. output of 10 V can produce an output analog voltage

within 0.1 V of any desired value, assuming perfect accuracy. It makes no

sense to have a costly accuracy of 0.01% F.S. (or 1 mV) if the resolution al-

ready limits the closeness of the desired value to 0.1 V. The same can be said

for having a resolution that is very small (many bits) while the accuracy is

poor; it is a waste of input bits.

�0.01%

�0.01% * 9.375 V = �0.9375 mV

�0.01%

734 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

EXAMPLE 11-10 A certain eight-bit DAC has a full-scale output of 2 mA and a full-scale error

of F.S.What is the range of possible outputs for an input of 10000000?

Solution

The step size is Since 10000000 � 12810, the ideal out-

put should be The error can be as much as

Thus, the actual output can deviate by this amount from the ideal

so the actual output can be anywhere from 994 to

Offset Error
Ideally, the output of a DAC will be zero volts when the binary input is all 0s.

In practice, however, there will be a very small output voltage for this situa-

tion; this is called offset error. This offset error, if not corrected, will be added

to the expected DAC output for all input cases. For example, let’s say that a

four-bit DAC has an offset error of �2 mV and a perfect step size of 100 mV.

Table 11-3 shows the ideal and the actual DAC output for several input cases.

Note that the actual output is 2 mV greater than expected; this is due to the

offset error. Offset error can be negative as well as positive.

1014 mA.

1004 mA,

�0.5% * 2 mA = �10 mA

128 * 7.84 mA = 1004 mA.

2 mA/255 = 7.84 mA.

�0.5%

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 734

Many DACs have an external offset adjustment that allows you to zero

the offset. This is usually accomplished by applying all 0s to the DAC input

and monitoring the output while an offset adjustment potentiometer is ad-

justed until the output is as close to 0 V as required.

Settling Time
The operating speed of a DAC is usually specified by giving its settling time,

which is the time required for the DAC output to go from zero to full scale as

the binary input is changed from all 0s to all 1s. Actually, the settling time

is measured as the time for the DAC output to settle within step size

(resolution) of its final value. For example, if a DAC has a resolution of 10

mV, settling time is measured as the time it takes the output to settle within

5 mV of its full-scale value.

Typical values for settling time range from 50 ns to Generally

speaking, DACs with a current output will have shorter settling times than

those with voltage outputs. The main reason for this difference is the re-

sponse time of the op-amp that is used as the current-to-voltage converter.

Monotonicity
A DAC is monotonic if its output increases as the binary input is incre-

mented from one value to the next. Another way to describe this is that the

staircase output will have no downward steps as the binary input is incre-

mented from zero to full scale.

10 ms.

�1
2

SECTION 11-5/AN INTEGRATED-CIRCUIT DAC 735

Input Code Ideal Output (mV) Actual Output (mV)

0000 0 2

0001 100 102

1000 800 802

1111 1500 1502

TABLE 11-3

REVIEW QUESTIONS 1. Define full-scale error.

2. What is settling time?

3. Describe offset error and its effect on a DAC output.

4. Why are voltage DACs generally slower than current DACs?

11-5 AN INTEGRATED-CIRCUIT DAC

The AD7524, a CMOS IC available from several IC manufacturers, is an

eight-bit D/A converter that uses an R/2R ladder network. Its block symbol is

given in Figure 11-9(a). This DAC has an eight-bit input that can be latched

internally under the control of the Chip Select and WRITE inputs.

When both of these control inputs are LOW, the digital data inputs

produce the analog output current OUT 1 (the OUT 2 terminal is normally

grounded). When either control input goes HIGH, the digital input data are

latched, and the analog output remains at the level corresponding to that

latched digital data. Subsequent changes in the digital inputs will have no

effect on OUT 1 in this latched state.

D7-D0

(WR)(CS)

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 735

The maximum settling time for the AD7524 is typically 100 ns, and its

full-range accuracy is rated at F.S. The VREF can range over both neg-

ative and positive voltages from 0 to 25 V, so that analog output currents of

both polarities can be produced. The output current can be converted to a

voltage using an op-amp connected as in Figure 11-9(b). Note that the op-

amp’s feedback resistor is already on the DAC chip.The op-amp circuit shown

in Figure 11-9(c) can be added to produce a bipolar output that ranges from

(when input � 00000000) to almost �Vref (when input � 11111111).

11-6 DAC APPLICATIONS

DACs are used whenever the output of a digital circuit must provide an ana-

log voltage or current to drive an analog device. Some of the most common

applications are described in the following paragraphs.

Control
The digital output from a computer can be converted to an analog control

signal to adjust the speed of a motor or the temperature of a furnace, or to

control almost any physical variable.

Automatic Testing
Computers can be programmed to generate the analog signals (through a

DAC) needed to test analog circuitry. The test circuit’s analog output re-

sponse will normally be converted to a digital value by an ADC and fed into

the computer to be stored, displayed, and sometimes analyzed.

Signal Reconstruction
In many applications, an analog signal is digitized; that is, successive points

on the signal are converted to their digital equivalents and stored in mem-

ory. This conversion is performed by an analog-to-digital converter (ADC). A

-Vref

�0.2%

736 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

AD7524

OUT 1

R

RFB

VREF

VREF

VDD

+5 V
+10 V

D7

D0

(a) (b) (c)

OUT 2 –

+

–

+

VOUT

IOUT

0 V to ~ –10 V

Bipolar VOUT

10 k�

20 k�
20 k�

+10 V

5 k�

–10 V to ~ 10 VCS

WR

FIGURE 11-9 (a) AD7524 8-bit DAC with latched inputs; (b) op-amp current-

to-voltage converter provides 0 to approximately 10 V out; (c) op-amp circuit to

produce bipolar output from to approximately �10 V.-10 V

TOCCMC11_0131725793.QXD 16/01/2006 08:56 PM Page 736

DAC can then be used to convert the stored digitized data back to analog—

one point at a time—thereby reconstructing the original signal. This combi-

nation of digitizing and reconstructing is used in digital storage oscillo-

scopes, audio compact disk systems, and digital audio and video recording.

We will look at this further after we learn about ADCs.

A/D Conversion
Several types of ADCs use DACs as part of their circuitry, as we shall see in

Section 11-8.

Digital Amplitude Control
DACs can also be used to reduce the amplitude of an analog signal by con-

necting the analog signal to the VREF input as shown in Figure 11-10. The

binary input scales the signal on VREF: . When

the maximum binary input value is applied, the output is nearly the same

as the VREF input. However, when a value that represents about half of the

maximum (e.g., 1000 000 for a unipolar eight-bit converter) is applied to

the inputs, the output is about half of VREF. If VREF is a signal (e.g., a sine

wave) that varies within the range of the reference voltage, the output will

be the same fully analog wave shape whose amplitude depends on the dig-

ital number applied to the DAC. In this way a digital system can control

things such as the volume of an audio system or the amplitude of a function

generator.

VOUT = VREF * binary in/2N

SECTION 11-6/DAC APPLICATIONS 737

Analog signal in

D7

D0

Analog

Smaller analog signal out
VOUT � VREF × binary

DAC

Binary number
determines
scaling factor of
output.

VREF

256

FIGURE 11-10 A DAC

used to control the

amplitude of an analog

signal.

Serial DACs
Many of these DAC applications involve a microprocessor.The main problem

with using the parallel-data DACs that have been described thus far is that

they occupy so many port bits of the microcomputer. In cases where speed of

data transfer is of little concern, a microprocessor can output the digital

value to a DAC over a serial interface. Serial DACs are now readily available

with a built-in serial in/parallel out shift register. Many of these devices have

more than one DAC on the same chip.The digital data, along with a code that

specifies which DAC you want, are sent to the chip, one bit at a time. As each

bit is presented on the DAC input, a pulse is applied to the serial clock input

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 737

to shift the bit in. After the proper number of clock pulses, the data value is

latched and converted to its analog value.

11-7 TROUBLESHOOTING DACs

DACs are both digital and analog. Logic probes and pulsers can be used on

the digital inputs, but a meter or an oscilloscope must be used on the analog

output. There are basically two ways to test a DAC’s operation: a static accu-
racy test and a staircase test.

The static test involves setting the binary input to a fixed value and

measuring the analog output with a high-accuracy meter. This test is used to

check that the output value falls within the expected range consistent with

the DAC’s specified accuracy. If it does not, there can be several possible

causes. Here are some of them:

■ Drift in the DAC’s internal component values (e.g., resistor values)

caused by temperature, aging, or some other factors. This condition can

easily produce output values outside the expected accuracy range.

■ Open connections or shorts in any of the binary inputs. This could either

prevent an input from adding its weight to the analog output or cause its

weight to be permanently present in the output. This situation is espe-

cially hard to detect when the fault is in the less significant inputs.

■ A faulty voltage reference. Because the analog output depends directly

on VREF, this could produce results that are way off. For DACs that use

external reference sources, the reference voltage can be checked easily

with a digital voltmeter. Many DACs have internal reference voltages

that cannot be checked, except on some DACs that bring the reference

voltage out to a pin of the IC.

■ Excessive offset error caused by component aging or temperature. This

would produce outputs that are off by a fixed amount. If the DAC has an

external offset adjustment capability, this type of error can initially be

zeroed out, but changes in operating temperature can cause the offset er-

ror to reappear.

The staircase test is used to check the monotonicity of the DAC; that is,

it checks to see that the output increases step by step as the binary input is

incremented as in Figure 11-3.The steps on the staircase must be of the same

size, and there should be no missing steps or downward steps until full scale

is reached. This test can help detect internal or external faults that cause an

input to have either no contribution or a permanent contribution to the ana-

log output. The following example will illustrate.

738 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

EXAMPLE 11-11 How would the staircase waveform appear if the C input to the DAC of Figure

11-3 is open? Assume that the DAC inputs are TTL-compatible.

Solution

An open connection at C will be interpreted as a constant logic 1 by the DAC.

Thus, this will contribute a constant 4 V to the DAC output so that the DAC

output waveform will appear as shown in Figure 11-11. The dotted lines are

the staircase as it would appear if the DAC were working correctly. Note that

the faulty output waveform matches the correct one during those times

when the bit C input would normally be HIGH.

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 738

11-8 ANALOG-TO-DIGITAL CONVERSION

An analog-to-digital converter takes an analog input voltage and, after a cer-

tain amount of time, produces a digital output code that represents the analog

input. The A/D conversion process is generally more complex and time-

consuming than the D/A process, and many different methods have been de-

veloped and used. We shall examine several of these methods in detail, even

though it may never be necessary to design or construct ADCs (they are avail-

able as completely packaged units). However, the techniques that are used pro-

vide an insight into what factors determine an ADC’s performance.

Several important types of ADCs utilize a DAC as part of their circuitry.

Figure 11-12 is a general block diagram for this class of ADC. The timing for

the operation is provided by the input clock signal. The control unit contains

the logic circuitry for generating the proper sequence of operations in re-

sponse to the START COMMAND, which initiates the conversion process.

The op-amp comparator has two analog inputs and a digital output that

switches states, depending on which analog input is greater.

SECTION 11-8/ANALOG-TO-DIGITAL CONVERSION 739

15
14
13
12
11
10

9
8
7
6
5
4
3
2
1
0

V
ol

ta
ge

Time

FIGURE 11-11
Example 11-11.

–

+

Analog input

VA
Op amp

Comparator

D/A
converter

Register•
•
•
•

VAX

Digital result

Control
unit

Start command

Clock

EOC
(end of conversion)

0
1

FIGURE 11-12 General

diagram of one class of

ADCs.

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 739

The basic operation of ADCs of this type consists of the following steps:

1. The START COMMAND pulse initiates the operation.

2. At a rate determined by the clock, the control unit continually modifies

the binary number that is stored in the register.

3. The binary number in the register is converted to an analog voltage, VAX,

by the DAC.

4. The comparator compares VAX with the analog input VA. As long as

the comparator output stays HIGH. When VAX exceeds VA by

at least an amount equal to VT (threshold voltage), the comparator out-

put goes LOW and stops the process of modifying the register number. At

this point, VAX is a close approximation to VA. The digital number in the

register, which is the digital equivalent of VAX, is also the approximate

digital equivalent of VA, within the resolution and accuracy of the sys-

tem.

5. The control logic activates the end-of-conversion signal, EOC, when the

conversion is complete.

The several variations of this A/D conversion scheme differ mainly in

the manner in which the control section continually modifies the numbers

in the register. Otherwise, the basic idea is the same, with the register hold-

ing the required digital output when the conversion process is complete.

VAX 6 VA,

740 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

REVIEW QUESTIONS 1. What is the function of the comparator in the ADC?

2. Where is the approximate digital equivalent of VA when the conversion

is complete?

3. What is the function of the EOC signal?

11-9 DIGITAL-RAMP ADC

One of the simplest versions of the general ADC of Figure 11-12 uses a binary

counter as the register and allows the clock to increment the counter one step

at a time until It is called a digital-ramp ADC because the wave-

form at VAX is a step-by-step ramp (actually a staircase) like the one shown in

Figure 11-3. It is also referred to as a counter-type ADC.

Figure 11-13 is the diagram for a digital-ramp ADC. It contains a counter,

a DAC, an analog comparator, and a control AND gate. The comparator out-

put serves as the active-LOW end-of-conversion signal If we assume

that VA, the analog voltage to be converted, is positive, the operation pro-

ceeds as follows:

1. A START pulse is applied to reset the counter to 0. The HIGH at START

also inhibits clock pulses from passing through the AND gate into the

counter.

2. With all 0s at its input, the DAC’s output will be VAX � 0 V.

3. Because the comparator output, will be HIGH.

4. When START returns LOW, the AND gate is enabled and clock pulses get

through to the counter.

EOC,VA 7 VAX,

EOC.

VAX Ú VA.

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 740

5. As the counter advances, the DAC output, VAX, increases one step at a

time, as shown in Figure 11-13(b).

6. This process continues until VAX reaches a step that exceeds VA by an

amount equal to or greater than VT (typically 10 to 100). At this point,

will go LOW and inhibit the flow of pulses into the counter, and the

counter will stop counting.

7. The conversion process is now complete, as signaled by the HIGH-to-

LOW transition at and the contents of the counter are the digital

representation of VA.

8. The counter will hold the digital value until the next START pulse initi-

ates a new conversion.

EOC,

EOC
mV

SECTION 11-9/DIGITAL-RAMP ADC 741

–

+VA
Op amp

Comparator

D/A
converter

•
•
•
•
•
•

VAX
Counter

Digital
result Start

(a)

Clock

EOC

RESET

CLOCK

START

VAX

EOC

VA

tC

Conversion
complete-
counter stops
counting

Time
(b)

FIGURE 11-13 Digital-ramp ADC.

EXAMPLE 11-12
Assume the following values for the ADC of Figure 11-13: clock frequency �
1 MHz; VT � 0.1 mV; DAC has F.S. output � 10.23 V and a 10-bit input.

Determine the following values.

(a) The digital equivalent obtained for VA � 3.728 V

(b) The conversion time

(c) The resolution of this converter

Solution

(a) The DAC has a 10-bit input and a 10.23-V F.S. output. Thus, the number

of total possible steps is and so the step size is

10.23 V

1023
= 10 mV

210
- 1 = 1023,

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 741

This means that VAX increases in steps of 10 mV as the counter counts up

from 0. Because VA � 3.728 V and VT � 0.1 mV, VAX must reach 3.7281 V

or more before the comparator switches LOW. This will require

At the end of the conversion, then, the counter will hold the binary

equivalent of 373, which is 0101110101. This is the desired digital equiv-

alent of VA � 3.728 V, as produced by this ADC.

(b) Three hundred seventy-three steps were required to complete the con-

version. Thus, 373 clock pulses occurred at the rate of one per microsec-

ond. This gives a total conversion time of

(c) The resolution of this converter is equal to the step size of the DAC,

which is 10 mV. Expressed as a percentage, it is 1/1023 * 100% L 0.1%.

373 ms.

3.7281 V

10 mV
= 372.81 = 373 steps

742 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

EXAMPLE 11-13 For the same ADC of Example 11-12, determine the approximate range of ana-

log input voltages that will produce the same digital result of 01011101012 �
37310.

Solution

Table 11-4 shows the ideal DAC output voltage, VAX, for several of the steps

on and around the 373rd. If VA is slightly smaller than 3.72 V (by an amount

), then won’t go LOW when VAX reaches the 3.72-V step, but it will

go LOW on the 3.73-V step. If VA is slightly smaller than 3.73 V (by an amount

), then won’t go LOW until VAX reaches the 3.74-V step. Thus, as

long as VA is between approximately 3.72 and 3.73 V, will go LOW when

VAX reaches the 3.73-V step. The exact range of VA values is

but because VT is so small, we can simply say that the range is approximately

3.72 to 3.73 V—a range equal to 10 mV, the DAC’s resolution. This is illus-

trated in Figure 11-14.

3.72 V - VT to 3.73 V - VT

EOC
EOC6 VT

EOC6 VT

Volts

VAX

t

3.71

3.72

3.73

3.74

3.75

Approximate range of VA
values that produce
digital output = 37310.

TABLE 11-4

Step VAX (V)

371 3.71

372 3.72

373 3.73

374 3.74

375 3.75

A/D Resolution and Accuracy
It is very important to understand the errors associated with making any

kind of measurements. An unavoidable source of error in the digital-ramp

FIGURE 11-14
Example 11-13.

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 742

method is that the step size or resolution of the internal DAC is the smallest

unit of measure. Imagine trying to measure basketball players’ heights by

standing them next to a staircase with 12-in steps and assigning them the

height of the first step higher than their head. Anyone over 6 ft would be

measured as 7 ft tall! Likewise, the output voltage VAX is a staircase wave-

form that goes up in discrete steps until it exceeds the input voltage, VA. By

making the step size smaller, we can reduce the potential error, but there

will always be a difference between the actual (analog) quantity and the dig-

ital value assigned to it. This is called quantization error. Thus, VAX is an ap-

proximation to the value of VA, and the best we can expect is that VAX is

within 10 mV of VA if the resolution (step size) is 10 mV.This quantization er-

ror, which can be reduced by increasing the number of bits in the counter

and the DAC, is sometimes specified as an error of �1 LSB, indicating that

the result could be off by as much as the weight of the LSB.

A more common practice is to make the quantization error symmetrical

around an integer multiple of the resolution to make the quantization er-

ror � LSB. This is done by making sure the output changes at resolu-

tion unit below and above the nominal input voltage. For example, if the

resolution is 10 mV, then the A/D output will ideally switch from 0 to 1 at 5

mV and from 1 to 2 at 15 mV. The nominal value (10 mV), which is repre-

sented by the digital value of 1, is ideally always within 5 mV (LSB) of

the actual input voltage. Problem 11-28 explores a method to accomplish

this. In any case, there is a small range of input voltages that will produce

the same digital output.

The accuracy specification reflects the fact that the output of every ADC

does not switch from one binary value to the next at the exact prescribed in-

put voltage. Some change at slightly higher voltage than expected, and some

at slightly lower. The inaccuracy and inconsistency is due to imperfect com-

ponents such as precision resistors, comparators, current switches, and so on.

Accuracy can be expressed as % full-scale, just as for the DAC, but it is more

commonly specified as � , where n is a fractional value or 1. For exam-

ple, if the accuracy is specified as � LSB with a resolution of 10 mV, and

assuming the output should ideally switch from 0 to 1 at 5 mV, then we know

that the output could change from 0 to 1 at any input voltage between 2.5

and 7.5 mV. In this case we would be assured that any voltage between 7.5

and 12.5 mV would definitely produce the value 1. However, in the worst

case, the output of binary 1 could be representing a nominal value of 10 mV

with an actual applied voltage of 2.5 mV, an error of bit which is the sum

of the quantization error and the accuracy.

3�4

1�4

n LSB

1�2

1�2
1�2

SECTION 11-9/DIGITAL-RAMP ADC 743

EXAMPLE 11-14 A certain eight-bit ADC, similar to Figure 11-13, has a full-scale input of 2.55 V

(i.e., VA � 2.55 V produces a digital output of 11111111). It has a specified error

of � LSB. Determine the maximum amount of error in the measurement.

Solution

The step size is which is exactly 10 mV.This means that even

if the DAC has no inaccuracies, the VAX output could be off by as much as

10 mV because VAX can change only in 10-mV steps; this is the quantization

error. The specified error of � LSB is This means

that the VAX value can be off by as much as 2.5 mV because of component in-

accuracies.Thus, the total possible error could be as much as

= 12.5 mV.

10 mV + 2.5 mV

* 10 mV = 2.5 mV.1�4
1�4

2.55 V/(28
- 1),

1�4

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 743

For example, suppose that the analog input was 1.268 V. If the DAC out-

put were perfectly accurate, the staircase would stop at the 127th step

(1.27 V). But let’s say that VAX was off by so it was 1.268 V at the

127th step. This would not be large enough to stop the conversion; it would

stop at the 128th step. Thus, the digital output would be 100000002 � 12810

(representing 12.8 V) for an analog input of 1.268 V, an error of 12 mV.

Conversion Time, tC
The conversion time is shown in Figure 11-13(b) as the time interval between

the end of the START pulse and the activation of the output. The

counter starts counting from 0 and counts up until VAX exceeds VA, at which

point goes LOW to end the conversion process. It should be clear that

the value of the conversion time, tC, depends on VA. A larger value will re-

quire more steps before the staircase voltage exceeds VA.
The maximum conversion time will occur when VA is just below full scale

so that VAX must go to the last step to activate For an N-bit converter,

this will be

For example, the ADC in Example 11-12 would have a maximum conversion

time of

Sometimes, average conversion time is specified; it is half of the maximum

conversion time. For the digital-ramp converter, this would be

The major disadvantage of the digital-ramp method is that conversion

time essentially doubles for each bit that is added to the counter, so that res-

olution can be improved only at the cost of a longer tC. This makes this type

of ADC unsuitable for applications where repetitive A/D conversions of a

fast-changing analog signal must be made. For low-speed applications, how-

ever, the relative simplicity of the digital-ramp converter is an advantage

over the more complex, higher-speed ADCs.

tC(avg) =

tC(max)

2
L 2N-1 clock cycles

tC(max) = (210
- 1) * 1 ms = 1023 ms

tC(max) = (2N
- 1) clock cycles

EOC.

EOC

EOC

-2 mV,

744 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

EXAMPLE 11-15 What will happen to the operation of a digital-ramp ADC if the analog input

VA is greater than the full-scale value?

Solution

From Figure 11-13, it should be clear that the comparator output will never

go LOW because the staircase voltage can never exceed VA. Thus, pulses will

be continually applied to the counter, so that the counter will repetitively

count up from 0 to maximum, recycle back to 0, count up, and so on. This will

produce repetitive staircase waveforms at VAX going from 0 to full scale, and

this will continue until VA is decreased below full scale.

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 744

11-10 DATA ACQUISITION

There are many applications in which analog data must be digitized (con-

verted to digital) and transferred into a computer’s memory. The process by

which the computer acquires these digitized analog data is referred to as data
acquisition. Acquiring a single data point’s value is referred to as sampling
the analog signal, and that data point is often called a sample. The computer

can do several different things with the data, depending on the application.

In a storage application, such as digital audio recording, video recording, or a

digital oscilloscope, the internal microcomputer will store the data and then

transfer them to a DAC at a later time to reproduce the original analog signal.

In a process control application, the computer can examine the data or per-

form computations on them to determine what control outputs to generate.

Figure 11-15(a) shows how a microcomputer is connected to a digital-ramp

ADC for the purpose of data acquisition. The computer generates the START

pulses that initiate each new A/D conversion.The (end-of-conversion) sig-

nal from the ADC is fed to the computer. The computer monitors to find

out when the current A/D conversion is complete; then it transfers the digital

data from the ADC output into its memory.

The waveforms in Figure 11-15(b) illustrate how the computer acquires a

digital version of the analog signal, VA. The VAX staircase waveform that is

generated internal to the ADC is shown superimposed on the VA waveform

for purposes of illustration.The process begins at t0, when the computer gen-

erates a START pulse to start an A/D conversion cycle. The conversion is

completed at t1, when the staircase first exceeds VA, and goes LOW.This

NGT at signals the computer that the ADC has a digital output that now

represents the value of VA at point a, and the computer will load these data

into its memory.

The computer generates a new START pulse shortly after t1 to initiate a

second conversion cycle. Note that this resets the staircase to 0 and

back HIGH because the START pulse resets the counter in the ADC. The

second conversion ends at t2 when the staircase again exceeds VA. The com-

puter then loads the digital data corresponding to point b into its memory.

These steps are repeated at t3, t4, and so on.

The process whereby the computer generates a START pulse, monitors

and loads ADC data into memory is done under the control of a pro-

gram that the computer is executing. This data acquisition program will de-

termine how many data points from the analog signal will be stored in the

computer memory.

EOC,

EOC

EOC
EOC

EOC
EOC

SECTION 11-10/DATA ACQUISITION 745

REVIEW QUESTIONS 1. Describe the basic operation of the digital-ramp ADC.

2. Explain quantization error.

3. Why does conversion time increase with the value of the analog input

voltage?

4. True or false: Everything else being equal, a 10-bit digital-ramp ADC will

have a better resolution, but a longer conversion time, than an eight-bit

ADC.

5. Give one advantage and one disadvantage of a digital-ramp ADC.

6. For the converter of Example 11-12, determine the digital output for

VA � 1.345 V. Repeat for VA � 1.342 V.

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 745

Reconstructing a Digitized Signal
In Figure 11-15(b), the ADC is operating at its maximum speed because a

new START pulse is generated immediately after the computer acquires the

ADC output data from the previous conversion. Note that the conversion

times are not constant because the analog input value is changing. The prob-

lem with this method of storing a waveform is that in order to reconstruct

the waveform, we would need to know the point in time that each data value

is to be plotted. Normally, when storing a digitized waveform, the samples

are taken at fixed intervals at a rate that is at least two times greater than

the highest frequency in the analog signal. The digital system will store the

waveform as a list of sample data values. Table 11-5 shows the list of data

that would be stored if the signal in Figure 11-16(a) were digitized.

746 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

START

EOC

VA

Microcomputer

8-bit
digital ramp

ADC
CLOCK

Digital
output

a

b
c

VA

VAX

START

EOC

t0 t1 t2 t3

Computer loads
data into
memory

(a)

(b)

0.580 V

0.469 V
0.391 V

00001111 00001100 00001010 Digital value

FIGURE 11-15 (a) Typical

computer data acquisition

system; (b) waveforms

showing how the computer

initiates each new

conversion cycle and then

loads the digital data into

memory at the end of

conversion.

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 746

In Figure 11-16(a), we see how the ADC continually performs conver-

sions to digitize the analog signal at points a, b, c, d, and so on. If these dig-

ital data are used to reconstruct the signal, the result will look like that in

Figure 11-16(b).The black line represents the voltage waveform that would ac-

tually come out of the D/A converter. The red line would be the result of pass-

ing the signal through a simple low-pass RC filter. We can see that it is a fairly

good reproduction of the original analog signal because the analog signal does

not make any rapid changes between digitized points. If the analog signal con-

tained higher-frequency variations, the ADC would not be able to follow the

variations, and the reproduced version would be much less accurate.

Aliasing
The obvious goal in signal reconstruction is to make the reconstruction nearly

identical to the original analog signal. In order to avoid loss of information, as

SECTION 11-10/DATA ACQUISITION 747

Point Actual Voltage (V) Digital Equivalent

a 1.22 01111010

b 1.47 10010011

c 1.74 10101110

d 1.70 10101010

e 1.35 10000111

f 1.12 01110000

g 0.91 01011011

h 0.82 01010010

TABLE 11-5 Digitized

data samples.

a

b
c d

e

f

g

h

V
ol

ta
ge

a

b
c d

e

f

g

h

Analog input
signal

Time
(a)

V
ol

ta
ge

Time
(b)

Filtered
digitized reproduction

A/D output

FIGURE 11-16
(a) Digitizing an analog

signal; (b) reconstructing

the signal from the digital

data.

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 747

has been proven by a man named Harry Nyquist, the incoming signal must be

sampled at a rate greater than two times the highest-frequency component in

the incoming signal. For example, if you are pretty sure that the highest fre-

quency in an audio system will be less than 10 kHz, you must sample the audio

signal at 20,000 samples per second in order to be able to reconstruct the sig-

nal. The frequency at which samples are taken is referred to as the sampling
frequency, FS. What do you think would happen if for some reason a 12-kHz

tone is present in the input signal? Unfortunately, the system would not simply

ignore it because it is too high! Rather, a phenomenon called aliasing would

occur. A signal alias is produced by sampling the signal at a rate less than the

minimum rate identified by Nyquist (twice the highest incoming frequency). In

this case, any frequency over 10 kHz will produce an alias frequency. The alias

frequency is always the difference between any integer multiple of the sam-

pling frequency FS (20 kHz) and the incoming frequency that is being digitized

(12 kHz). Instead of hearing a 12-kHz tone in the reconstructed signal, you

would hear an 8-kHz tone that was not in the original signal.

To see how aliasing can happen, consider the sine wave in Figure 11-17.

Its frequency is 1.9 kHz.The dots show where the waveform is sampled every

(FS � 2 kHz). If we connect the dots that make up the sampled wave-

form, we discover that they form a cosine wave that has a period of 10 ms and

a frequency of 100 Hz. This demonstrates that the alias frequency is equal to

the difference between the sample frequency and the incoming frequency. If

we could hear the output that results from this data acquisition, it would not

sound like 1.9 kHz; it would sound like 100 Hz.

500 ms

748 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

Ta = 10 ms

550

1

0.5

0

–0.5

–1

A
m

pl
itu

de

Time

T = 526 μs Ts = 500 μs

Analog input

Alias

FIGURE 11-17 An alias

signal due to undersam-

pling.

The problem with undersampling is that the digital sys-

tem has no idea that there was actually a higher frequency at the input. It sim-

ply samples the input and stores the data. When it reconstructs the signal, the

alias frequency (100 Hz) is present, the original 1.9 kHz is missing, and the re-

constructed signal does not sound the same. This is why a data acquisition sys-

tem must not allow frequencies greater than half of FS to be placed on the input.

(FS 6 2 Fin max)

REVIEW QUESTIONS 1. What is digitizing a signal?

2. Describe the steps in a computer data acquisition process.

3. What is the minimum sample frequency needed to reconstruct an analog

signal?

4. What occurs if the signal is sampled at less than the minimum frequency

determined in question 3?

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 748

11-11 SUCCESSIVE-APPROXIMATION ADC

The successive-approximation converter is one of the most widely used types

of ADC. It has more complex circuitry than the digital-ramp ADC but a much

shorter conversion time. In addition, successive-approximation converters

(SACs) have a fixed value of conversion time that is not dependent on the

value of the analog input.

The basic arrangement, shown in Figure 11-18(a), is similar to that of the

digital-ramp ADC.The SAC, however, does not use a counter to provide the in-

put to the DAC block but uses a register instead.The control logic modifies the

contents of the register bit by bit until the register data are the digital equiv-

alent of the analog input VA within the resolution of the converter. The basic

sequence of operation is given by the flowchart in Figure 11-18(b). We will fol-

low this flowchart as we go through the example illustrated in Figure 11-19.

For this example, we have chosen a simple four-bit converter with a step

size of 1 V. Even though most practical SACs would have more bits and

smaller resolution than our example, the operation will be exactly the same.

At this point, you should be able to determine that the four register bits

feeding the DAC have weights of 8, 4, 2, and 1 V, respectively.

Let’s assume that the analog input is VA � 10.4 V. The operation begins

with the control logic clearing all of the register bits to 0 so that Q3 � Q2 �
Q1 � Q0 � 0. We will express this as [Q] � 0000. This makes the DAC output

VAX � 0 V, as indicated at time t0 on the timing diagram in Figure 11-19. With

the comparator output is HIGH.VAX 6 VA,

SECTION 11-11/SUCCESSIVE-APPROXIMATION ADC 749

Conversion is
complete and

result is in
REGISTER

–

+

••••••••

Control
logic

Clock

START
EOC

Control
register

MSB LSB

DAC

COMP

Analog
input

VA

VAX

VAX

(a)

START

Clear all bits

Start at MSB

Set bit = 1

IS
VAX > VA?

Have
all bits been

checked?

END

(b)

Go to next
lower bit

Clear bit
back to 0

Yes

No

No

Yes

FIGURE 11-18 Successive-approximation ADC: (a) simplified block diagram;

(b) flowchart of operation.

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 749

At the next step (time t1), the control logic sets the MSB of the register

to 1 so that [Q] � 1000. This produces VAX � 8 V. Because the

COMP output is still HIGH. This HIGH tells the control logic that the setting

of the MSB did not make VAX exceed VA, so that the MSB is kept at 1.

The control logic now proceeds to the next lower bit, Q2. It sets Q2 to 1 to

produce [Q] � 1100 and VAX � 12 V at time t2. Because the COMP

output goes LOW. This LOW signals the control logic that the value of VAX is

too large, and the control logic then clears Q2 back to 0 at t3. Thus, at t3, the

register contents are back to 1000 and VAX is back to 8 V.

The next step occurs at t4, where the control logic sets the next lower bit

Q1 so that [Q] � 1010 and VAX � 10 V. With COMP is HIGH and

tells the control logic to keep Q1 set at 1.

The final step occurs at t5, where the control logic sets the next lower bit

Q0 so that [Q] � 1011 and VAX � 11 V. Because COMP goes LOW to

signal that VAX is too large, and the control logic clears Q0 back to 0 at t6.

At this point, all of the register bits have been processed, the conversion

is complete, and the control logic activates its output to signal that the

digital equivalent of VA is now in the register. For this example, digital output

for VA � 10.4 V is [Q] � 1010. Notice that 1010 is actually equivalent to 10 V,

which is less than the analog input; this is a characteristic of the successive-

approximation method. Recall that in the digital-ramp method, the digital

output was always equivalent to a voltage that was on the step above VA.

EOC

VAX 7 VA,

VAX 6 VA,

VAX 7 VA,

VAX 6 VA,

750 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

Volts

Time

–

+COMP VA = 10.4 V

Q3

Q2

Q1

Q0

R
E
G
I
S
T
E
R

MSB

To
Control
Logic

From
Control
Logic

•
•
•
•
•
•
•
•
•
•
•

VAX

DAC
step size

= 1 V

VAX

12
11
10

9
8

0

t0 t1 t2 t3 t4 t5 t6

Conversion
completed

FIGURE 11-19
Illustration of four-bit SAC

operation using a DAC step

size of 1 V and VA � 10.4 V.

EXAMPLE 11-16 An eight-bit SAC has a resolution of 20 mV. What will its digital output be for

an analog input of 2.17 V?

Solution

2.17 V/20 mV � 108.5

so that step 108 would produce VAX � 2.16 V and step 109 would produce 2.18 V.

The SAC always produces a final VAX that is at the step below VA. Therefore,

for the case of VA � 2.17 V, the digital result would be 10810 � 011011002.

Conversion Time
In the operation just described, the control logic goes to each register bit,

sets it to 1, decides whether or not to keep it at 1, and goes on to the next bit.

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 750

The processing of each bit takes one clock cycle, so that the total conversion

time for an N-bit SAC will be N clock cycles. That is,

This conversion time will be the same regardless of the value of VA because the

control logic must process each bit to see whether or not a 1 is needed.

tC for SAC = N * 1 clock cycle

SECTION 11-11/SUCCESSIVE-APPROXIMATION ADC 751

EXAMPLE 11-17 Compare the maximum conversion times of a 10-bit digital-ramp ADC and a

10-bit successive-approximation ADC if both utilize a 500-kHz clock frequency.

Solution

For the digital-ramp converter, the maximum conversion time is

For a 10-bit successive-approximation converter, the conversion time is al-

ways 10 clock periods or

Thus, it is about 100 times faster than the digital-ramp converter.

Because SACs have relatively fast conversion times, their use in data ac-

quisition applications will permit more data values to be acquired in a given

time interval. This feature can be very important when the analog data are

changing at a relatively fast rate.

Because many SACs are available as ICs, it is rarely necessary to design

the control logic circuitry, and so we will not cover it here. For those who are

interested in the details of the control logic, many manufacturers’ data books

should provide sufficient detail.

An Actual IC: The ADC0804
Successive-Approximation ADC
ADCs are available from several IC manufacturers with a wide range of op-

erating characteristics and features. We will take a look at one of the more

popular devices to get an idea of what is actually used in system applica-

tions. Figure 11-20 is the pin layout for the ADC0804, which is a 20-pin CMOS

IC that performs A/D conversion using the successive-approximation method.

Some of its important characteristics are as follows:

■ It has two analog inputs, and to allow differential inputs.
In other words, the actual analog input, VIN, is the difference in the volt-

ages applied to these pins [analog]. In single-

ended measurements, the analog input is applied to while

is connected to analog ground. During normal operation, the con-

verter uses VCC � �5 V as its reference voltage, and the analog input can

range from 0 to 5 V.

■ It converts the differential analog input voltage to an eight-bit tristate

buffered digital output. The internal circuitry is slightly more complex

VIN(-),

VIN(+),

VIN = VIN(+) - VIN(-)

VIN(-),VIN(+)

10 * 2 ms = 20 ms

(2N
- 1) * (1 clock cycle) = 1023 * 2 ms = 2046 ms

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 751

than that described in Figure 11-19 in order to make transitions between

output values occur at the nominal value � LSB. For example, with 10-

mV resolution, the A/D output would switch from 0 to 1 at 5 mV, from 1

to 2 at 15 mV, and so on. For this converter the resolution is calculated as

VREF/256; with VREF � 5.00 V, the resolution is 19.53 mV. The nominal

full-scale input is , which should produce an output

of 11111111.This converter will output 11111111 for any analog input be-

tween approximately 4.971 and 4.990 V.

■ It has an internal clock generator circuit that produces a frequency

of f � 1/(1.1RC), where R and C are values of externally connected

components. A typical clock frequency is 606 kHz using and

C � 150 pF. An external clock signal can be used, if desired, by connect-

ing it to the CLK IN pin.

■ Using a 606-kHz clock frequency, the conversion time is approximately

100

■ It has separate ground connections for digital and analog voltages. Pin 8

is the analog ground that is connected to the common reference point of

the analog circuit that is generating the analog voltage. Pin 10 is the dig-

ital ground that is the one used by all of the digital devices in the system.

(Note the different symbols used for the different grounds.) The digital

ground is inherently noisy because of the rapid current changes that oc-

cur as digital devices change states. Although it is not necessary to use a

separate analog ground, doing so ensures that the noise from digital

ground is prevented from causing premature switching of the analog

comparator inside the ADC.

This IC is designed to be easily interfaced to a microprocessor data bus.

For this reason, the names of some of the ADC0804 inputs and outputs are

based on functions that are common to microprocessor-based systems. The

functions of these inputs and outputs are defined as follows:

■ (Chip Select).This input must be in its active-LOW state for or

inputs to have any effect. With HIGH, the digital outputs are in the

Hi-Z state, and no conversions can take place.

CS
WRRDCS

ms.

R = 10 kÆ

255 * 19.53 = 4.98 V

1�2

752 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

ADC0804
8-bit
SAC

(6)
VIN (+)

(7)
VIN (–)

(8)

(9)
Vref/2

(19)
CLK OUT

(4)

(1)

(2)

(3)

Analog
ground

CLK IN

CS

RD

WR

VCC

+5 V

(11)

(12)

(13)

(15)

(16)

(17)

(14)

(18)

INTR
(5)

(10)

D7

D0

D1

D2

D3

D4

D5

D6

(MSB)

Digital
ground

Digital
outputs

FIGURE 11-20 ADC0804

eight-bit successive-

approximation ADC with

tristate outputs. The

numbers in parentheses

are the IC’s pin numbers.

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 752

■ (READ). This input is used to enable the digital output buffers. With

the digital output pins will have logic levels repre-

senting the results of the last A/D conversion. The microcomputer can

then read (fetch) this digital data value over the system data bus.

■ (WRITE). A LOW pulse is applied to this input to signal the start of

a new conversion. This is actually a start conversion input. It is called a

WRITE input because in a typical application, the microcomputer gen-

erates a WRITE pulse (similar to one used for writing to memory) that

drives this input.

■ (INTERRUPT). This output signal will go HIGH at the start of a

conversion and will return LOW to signal the end of conversion. This is

actually an end-of-conversion output signal, but it is called INTERRUPT

because in a typical situation, it is sent to a microprocessor’s interrupt

input to get the microprocessor’s attention and let it know that the ADC’s

data are ready to be read.

■ Vref/2. This is an optional input that can be used to reduce the internal

reference voltage and thereby change the analog input range that the

converter can handle. When this input is unconnected, it sits at 2.5 V

(VCC/2) because VCC is being used as the reference voltage. By connecting

an external voltage to this pin, the internal reference is changed to twice

that voltage, and the analog input range is changed accordingly (see

Table 11-6).

■ CLK OUT. A resistor is connected to this pin to use the internal clock.

The clock signal appears on this pin.

■ CLK IN. Used for external clock input, or for a capacitor connection

when the internal clock is used.

INTR

WR

CS = RD = LOW,

RD

SECTION 11-11/SUCCESSIVE-APPROXIMATION ADC 753

Vref/2 Analog Input Range (V) Resolution (mV)

Open 0–5 19.5

2.25 0–4.5 17.6

2.0 0–4 15.6

1.5 0–3 11.7

TABLE 11-6

Figure 11-21(a) shows a typical connection of the ADC0804 to a micro-

computer in a data acquisition application. The microcomputer controls

when a conversion is to take place by generating the and signals. It

then acquires the ADC output data by generating the and signals

after detecting an NGT at indicating the end of conversion. The

waveforms in Figure 11-21(b) show the signal activity during the data acqui-

sition process. Note that goes HIGH when and are LOW, but the

conversion process does not begin until returns HIGH. Also note that the

ADC output data lines are in their Hi-Z state until the microcomputer acti-

vates and at that point the ADC’s data buffers are enabled so that the

ADC data are sent to the microcomputer over the data bus. The data lines

return to the Hi-Z state when either or is returned HIGH.

In this application of the ADC0804, the input signal is varying over a range

of 0.5 to 3.5 V. In order to make full use of the eight-bit resolution, the A/D

must be matched to the analog signal specifications. In this case, the full-scale

range is 3.0 V. However, it is offset from ground by 0.5 V. The offset of 0.5 V is

applied to the negative input establishing this as the 0 value refer-

ence.The range of 3.0 V is set by applying 1.5 V to Vref/2, which establishes Vref

VIN(-),

RDCS

RD;CS

WR
WRCSINTR

INTR,

RDCS
WRCS

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 753

as 3.0 V. An input of 0.5 V will produce a digital value of 00000000, and an in-

put of 3.5 V (or any value over 3.482) will produce 11111111.

Another major concern when interfacing digital and analog signals is

noise. Notice that the digital and analog ground paths are separated.The two

grounds are tied together at a point that is very close to the A/D converter. A

very low-resistance path ties this point directly to the negative terminal of

the power supply. It is also wise to route the positive supply lines separately

754 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

Address
bus

C
150 pF

Vin(+)

D7

Vin(–)

Vref/2

Clk out

Clk in

CS

WR

RD A GND D GND

INTR

VCC

D6
D5
D4
D3
D2
D1
D0

ADC0804

AD7

INT0

GND

VCC

AD6
AD5
AD4
AD3
AD2
AD1
AD0

RD

WR

Micro-
processorData bus

VCC

Address
decoding

logic

Digital GND

Vref

Vref

Analog
0.5–3.5 V

+

–

Analog GND

[16]

Vref VCC

+5 V
supply

10 k�

R
10 k�

0.5 V

1.5 V

(a)

CS

WR

RD

Valid
data

100 μs

Hi-Z

INTR

Data
lines

(b)

Start of
conversion

End of
conversion

FIGURE 11-21 (a) An application of an ADC0804; (b) typical timing signals

during data acquisition.

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 754

to digital and analog devices and make extensive use of decoupling capaci-

tors from very near each chip’s supply connection to ground.(0.01 mF)

SECTION 11-12/FLASH ADCS 755

REVIEW QUESTIONS 1. What is the main advantage of a SAC over a digital-ramp ADC?

2. What is its principal disadvantage compared with the digital-ramp

converter?

3. True or false: The conversion time for a SAC increases as the analog volt-

age increases.

4. Answer the following concerning the ADC0804.

(a) What is its resolution in bits?

(b) What is the normal analog input voltage range?

(c) Describe the functions of the and inputs.

(d) What is the function of the output?

(e) Why does it have two separate grounds?

(f) What is the purpose of VIN(-)?

INTR

RDCS, WR,

11-12 FLASH ADCs

The flash converter is the highest-speed ADC available, but it requires much

more circuitry than the other types. For example, a six-bit flash ADC re-

quires 63 analog comparators, while an eight-bit unit requires 255 compara-

tors, and a ten-bit converter requires 1023 comparators. The large number of

comparators has limited the size of flash converters. IC flash converters are

commonly available in two- to eight-bit units, and most manufacturers offer

nine- and ten-bit units as well.

The principle of operation will be described for a three-bit flash con-

verter in order to keep the circuitry at a workable level. Once the three-bit

converter is understood, it should be easy to extend the basic idea to higher-

bit flash converters.

The flash converter in Figure 11-22(a) has a three-bit resolution and a

step size of 1 V. The voltage divider sets up reference levels for each com-

parator so that there are seven levels corresponding to 1 V (weight of LSB),

2V, 3V, . . . , and 7 V (full scale). The analog input, VA, is connected to the

other input of each comparator.

With all of the comparator outputs C1 through C7 will be

HIGH. With one or more of the comparator outputs will be LOW.

The comparator outputs are fed into an active-LOW priority encoder that

generates a binary output corresponding to the highest-numbered comparator

output that is LOW. For example, when VA is between 3 and 4 V, outputs C1, C2,

and C3 will be LOW and all others will be HIGH. The priority encoder will re-

spond only to the LOW at C3 and will produce a binary output CBA � 011,

which represents the digital equivalent of VA, within the resolution of 1 V.

When VA is greater than 7 V, C1 to C7 will all be LOW, and the encoder will pro-

duce CBA � 111 as the digital equivalent of VA. The table in Figure 11-22(b)

shows the responses for all possible values of analog input.

The flash ADC of Figure 11-22 has a resolution of 1 V because the analog

input must change by 1 V in order to bring the digital output to its next step.

To achieve finer resolutions, we would have to increase the number of input

voltage levels (i.e., use more voltage-divider resistors) and the number of

VA 7 1 V,

VA 6 1 V,

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 755

comparators. For example, an eight-bit flash converter would require 28 � 256

voltage levels, including 0 V. This would require 256 resistors and 255 com-

parators (there is no comparator for the 0-V level). The 255 comparator out-

puts would feed a priority encoder circuit that would produce an eight-bit

code corresponding to the highest-order comparator output that is LOW.

In general, an N-bit flash converter would require comparators, 2N

resistors, and the necessary encoder logic.

Conversion Time
The flash converter uses no clock signal because no timing or sequencing is

required. The conversion takes place continuously. When the value of analog

input changes, the comparator outputs will change, thereby causing the

encoder outputs to change.The conversion time is the time it takes for a new

2N
- 1

756 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

–

+

C7

7 V

3 k�

–

+

C6

6 V

–

+

C5

5 V

–

+

C4

4 V

–

+

C3

3 V

–

+

C2

2 V

–

+

C1

1 V

I7

I6

I5

I4

I3

I2

I1

Priority
encoder

+10 V

Analog input
VA

Resolution = 1 V

C

B

A

MSB

Digital
output

(a)

C1

1
0
0
0
0
0
0
0

0–1 V
1–2 V
2–3 V
3–4 V
4–5 V
5–6 V
6–7 V
> 7 V

Analog in Comparator outputs

C2

1
1
0
0
0
0
0
0

C3

1
1
1
0
0
0
0
0

C4

1
1
1
1
0
0
0
0

C5

1
1
1
1
1
0
0
0

C6

1
1
1
1
1
1
0
0

C7

1
1
1
1
1
1
1
0

C

0
0
0
0
1
1
1
1

B

0
0
1
1
0
0
1
1

A

0
1
0
1
0
1
0
1

Digital outputs

(b)

VA

1 k�

1 k�

1 k�

1 k�

1 k�

1 k�

1 k�

FIGURE 11-22 (a) Three-

bit flash ADC; (b) truth

table.

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 756

digital output to appear in response to a change in VA, and it depends only

on the propagation delays of the comparators and encoder logic. For this rea-

son, flash converters have extremely short conversion times. For example,

the Analog Devices AD9020 is a 10-bit flash converter with a conversion time

under 17 ns.

SECTION 11-13/OTHER A/D CONVERSION METHODS 757

REVIEW QUESTIONS 1. True or false: A flash ADC does not contain a DAC.

2. How many comparators would a 12-bit flash converter require? How

many resistors?

3. State the major advantage and disadvantage of a flash converter.

11-13 OTHER A/D CONVERSION METHODS

Several other methods of A/D conversion have been in use for some time,

each with its relative advantages and disadvantages. We will briefly describe

some of them now.

Up/Down Digital-Ramp ADC (Tracking ADC)
As we have seen, the digital-ramp ADC is relatively slow because the counter

is reset to 0 at the start of each new conversion. The staircase always begins

at 0 V and steps its way up to the “switching point” where VAX exceeds VA and

the comparator output switches LOW. The time it takes the staircase to reset

to 0 and step back up to the new switching point is really wasted.The up/down
digital-ramp ADC uses an up/down counter to reduce this wasted time.

The up/down counter replaces the up counter that feeds the DAC. It is

designed to count up whenever the comparator output indicates that

and to count down whenever Thus, the DAC output is al-

ways being stepped in the direction of the VA value. Each time the compara-

tor output switches states, it indicates that VAX has “crossed” the VA value,

the digital equivalent of VA is in the counter, and the conversion is complete.

When a new conversion is to begin, the counter is not reset to 0 but begins

counting either up or down from its last value, depending on the comparator

output. It will count until the staircase crosses VA again to end the conver-

sion. The VAX waveform, then, will contain both positive-going and negative-

going staircase signals that “track” the VA signal. For this reason, this ADC is

often called a tracking ADC.
Clearly, the conversion times will generally be reduced because the

counter does not start over from 0 each time but simply counts up or down

from its previous value. Of course, the value of tC will still depend on the

value of VA, and so it will not be constant.

Dual-Slope Integrating ADC
The dual-slope converter has one of the slowest conversion times (typically 10

to 100 ms) but has the advantage of relatively low cost because it does not

require precision components such as a DAC or a VCO.The basic operation of

this converter involves the linear charging and discharging of a capacitor

using constant currents. First, the capacitor is charged up for a fixed time

interval from a constant current derived from the analog input voltage, VA.
Thus, at the end of this fixed charging interval, the capacitor voltage will be

VAX 7 VA.VAX 6 VA

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 757

proportional to VA. At that point, the capacitor is linearly discharged from a

constant current derived from a precise reference voltage, Vref. When the

capacitor voltage reaches 0, the linear discharging is terminated. During the

discharge interval, a digital reference frequency is fed to a counter and

counted.The duration of the discharge interval will be proportional to the ini-

tial capacitor voltage. Thus, at the end of the discharge interval, the counter

will hold a count proportional to the initial capacitor voltage, which, as we

said, is proportional to VA.
In addition to its low cost, another advantage of the dual-slope ADC is its

low sensitivity to noise and to variations in its component values caused by

temperature changes. Because of its slow conversion times, the dual-slope

ADC is not used in any data acquisition applications. The slow conversion

times, however, are not a problem in applications such as digital voltmeters

or multimeters, and this is where they find their major application.

Voltage-to-Frequency ADC
The voltage-to-frequency ADC is simpler than other ADCs because it does

not use a DAC. Instead it uses a linear voltage-controlled oscillator (VCO) that

produces an output frequency proportional to its input voltage. The analog

voltage that is to be converted is applied to the VCO to generate an output

frequency. This frequency is fed to a counter to be counted for a fixed time

interval. The final count is proportional to the value of the analog voltage.

To illustrate, suppose that the VCO generates a frequency of 10 kHz for

each volt of input (i.e., 1 V produces 10 kHz, 1.5 V produces 15 kHz, 2.73 V

produces 27.3 kHz). If the analog input voltage is 4.54 V, then the VCO out-

put will be a 45.4-kHz signal that clocks a counter for, say, 10 ms. After the

10-ms counting interval, the counter will hold the count of 454, which is the

digital representation of 4.54 V.

Although this is a simple method of conversion, it is difficult to achieve

a high degree of accuracy because of the difficulty in designing VCOs with

accuracies of better than 0.1 percent.

One of the main applications of this type of converter is in noisy indus-

trial environments where small analog signals must be transmitted from

transducer circuits to a control computer. The small analog signals can be

drastically affected by noise if they are directly transmitted to the control

computer. A better approach is to feed the analog signal to a VCO, which gen-

erates a digital signal whose output frequency changes according to the ana-

log input.This digital signal is transmitted to the computer and will be much

less affected by noise. Circuitry in the control computer will count the digi-

tal pulses (i.e., perform a frequency-counting function) to produce a digital

value equivalent to the original analog input.

Sigma/Delta Modulation*

Another approach to representing analog information in digital form is called

sigma/delta modulation. A sigma/delta A/D converter is an oversampling device,

which means that it effectively samples the analog information more often than

the minimum sample rate. The minimum sample rate is two times higher than

the highest frequency in the incoming analog wave. The sigma/delta approach,

like the voltage-to-frequency approach, does not directly produce a multibit

758 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

*An excellent article published on the web by Jim Thompson, University of Washington, served as a ba-
sis for this description. Visit the Digital Systems: Principles and Applications Companion Web Site at
http://www.prenhall.com/Tocci for the link to this article.

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 758

number for each sample. Instead, it represents the analog voltage by varying the

density of logic 1s in a single-bit stream of serial data.To represent the positive

portions of a waveform, a stream of bits with a high density of 1s is generated

by the modulator (e.g., 01111101111110111110111). To represent the negative

portions, a lower density of 1s (i.e., a higher density of 0s) is generated (e.g.,

00010001000010001000).

Sigma/delta modulation is used in A/D as well as D/A conversion. One

form of a sigma/delta modulator circuit is designed to convert a continuous

analog signal into a modulated bit stream (A/D). The other form converts a

sequence of digital samples into the modulated bit stream (D/A). We are

coming from the perspective of digital systems, so it is easiest to understand

the latter of these two circuits because it consists of all digital components

that we have studied. Figure 11-23 shows a circuit that takes a five-bit signed

digital value as its input and converts it into a sigma/delta bit stream.We will

assume that the numbers that can be placed on this circuit’s input range

from to �8. The first component is simply a subtractor (the delta section)

similar to the one studied in Figure 6-14. The subtractor determines how far

the input number is from its maximum or minimum value. This difference is

often called the error signal. The second two components (the adder and the

D register) form an accumulator very similar to the circuit in Figure 6-10 (the

sigma section). For each sample that comes in, the accumulator adds the dif-

ference (error signal) to the running total. When the error is small, this run-

ning total (sigma) changes by small increments. When the error is large, the

sigma changes by large increments. The last component compares the run-

ning total from the accumulator with a fixed threshold, which in this case is

zero. In other words, it is simply determining if the total is positive or nega-

tive.This is accomplished by using the MSB (sign bit) of sigma. As soon as the

total goes positive, the MSB goes LOW and feeds back to the delta section

the maximum positive value (�8). When the MSB of sigma goes negative, it

feeds back the maximum negative value

A spreadsheet is an excellent way to analyze a circuit like this. The tables

in this section are taken from the spreadsheet that is included on the CD at

(-8).

-8

SECTION 11-13/OTHER A/D CONVERSION METHODS 759

4

5-bit
signed binary

0

4

0
D Q

Digital in

Σ/Δ
Clock

4

0

4

0

A

A–B

4
3
2
1
0

1
0
0
0

B

4

0

4

0

A

A+B

4

0
B

4

0

0

D

Q4

+1 V

–1 V

1

0

Data
clock

Q4 (sign)
Analog

out

+/– detect

Bit
stream

Sigma

Adder

Register

Accumulator

Delta

Subtractor

Register

FIGURE 11-23 Sigma/delta modulator in a D/A converter.

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 759

760 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

Sample (n) Digital IN Delta Sigma Bit Stream Out Analog OUT Feedback

1 0 �8 0 1 1 8

2 0 8 �8 0 �1 �8

3 0 �8 0 1 1 8

4 0 8 �8 0 �1 �8

5 0 �8 0 1 1 8

6 0 8 �8 0 �1 �8

7 0 �8 0 1 1 8

8 0 8 �8 0 �1 �8

TABLE 11-7 Sigma/delta

modulator with an input

of 0.

Sample (n) Digital IN Delta Sigma Bit Stream Out Analog OUT Feedback

1 4 �4 4 1 1 8

2 4 �4 0 1 1 8

3 4 12 �4 0 �1 �8

4 4 �4 8 1 1 8

5 4 �4 4 1 1 8

6 4 �4 0 1 1 8

7 4 12 �4 0 �1 �8

8 4 �4 8 1 1 8

TABLE 11-8 Sigma/delta

modulator with an input

of 4.

the back of this book. Table 11-7 shows the operation of the converter when a

value of zero is the input. Notice that the bit stream output alternates between

1 and 0, and the average value of the analog output is 0 volts. Table 11-8 shows

what happens when the digital input is 4. If we assume that 8 is full scale, this

represents The output is HIGH for three samples and LOW for one

sample, a pattern that repeats every four samples. The average value of the

analog output is

As a final example, let’s use an input of which represents

Table 11-9 shows the resulting output. The pattern in the bit stream

is not periodic. From the sigma column, we can see that it takes 16 samples

for the pattern to repeat. If we take the overall bit density, however, and

calculate the average value of the analog output over 16 samples, we will

find that it is equal to Your CD player probably uses a sigma/delta

D/A converter that operates in this fashion. The 16-bit digital numbers

come off the CD serially; then they are formatted into parallel data pat-

terns and clocked into a converter. As the changing numbers come into the

converter, the average value of the analog out changes accordingly. Next,

the analog output goes through a circuit called a low-pass filter that

smoothes out the sudden changes and produces a smoothly changing volt-

age that is the average value of the bit stream. In your headphones, this

changing analog signal sounds just like the original recording. A

sigma/delta A/D converter works in a very similar way but converts the ana-

log voltage into the modulated bit stream. To store the digitized data as a

list of N-bit binary numbers, the average bit density of 2N bit-stream sam-

ples is calculated and stored.

-0.625.

-0.625.

-5/8 =-5,

(1 + 1 + 1 - 1)/4 = 0.5 V.

4
8 = 0.5.

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 760

11-14 SAMPLE-AND-HOLD CIRCUITS

When an analog voltage is connected directly to the input of an ADC, the

conversion process can be adversely affected if the analog voltage is chang-

ing during the conversion time.The stability of the conversion process can be

improved by using a sample-and-hold (S/H) circuit to hold the analog voltage

constant while the A/D conversion is taking place. A simplified diagram of a

sample-and-hold (S/H) circuit is shown in Figure 11-24.

The S/H circuit contains a unity-gain buffer amplifier A1 that presents a

high impedance to the analog signal and has a low output impedance that

can rapidly charge the hold capacitor, Ch. The capacitor will be connected to

the output of A1 when the digitally controlled switch is closed. This is called

the sample operation. The switch will be closed long enough for Ch to charge

to the present value of the analog input. For example, if the switch is closed

at time t0, the A1 output will quickly charge Ch up to a voltage V0. When the

switch opens, Ch will hold this voltage so that the output of A2 will apply this

voltage to the ADC. The unity-gain buffer amplifier A2 presents a high input

impedance that will not discharge the capacitor voltage appreciably during

SECTION 11-14/SAMPLE-AND-HOLD CIRCUITS 761

Sample (n) Digital IN Delta Sigma Bit Stream Out Analog OUT Feedback

1 �5 3 �5 0 �1 �8

2 �5 3 �2 0 �1 �8

3 �5 �13 1 1 1 8

4 �5 3 �12 0 �1 �8

5 �5 3 �9 0 �1 �8

6 �5 3 �6 0 �1 �8

7 �5 3 �3 0 �1 �8

8 �5 �13 0 1 1 8

9 �5 3 �13 0 �1 �8

10 �5 3 �10 0 �1 �8

11 �5 3 �7 0 �1 �8

12 �5 3 �4 0 �1 �8

13 �5 3 �1 0 �1 �8

14 �5 �13 2 1 1 8

15 �5 3 �11 0 �1 �8

16 �5 3 �8 0 �1 �8

17 �5 3 �5 0 �1 �8

18 �5 3 �2 0 �1 �8

TABLE 11-9 Sigma/delta

modulator with an input of

-5.

REVIEW QUESTIONS 1. How does the up/down digital-ramp ADC improve on the digital-ramp

ADC?

2. What is the main element of a voltage-to-frequency ADC?

3. Cite two advantages and one disadvantage of the dual-slope ADC.

4. Name three types of ADCs that do not use a DAC.

5. How many output data bits does a sigma/delta modulator use?

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 761

the conversion time of the ADC, and so the ADC will essentially receive a dc

input voltage V0.

In a computer-controlled data acquisition system such as the one dis-

cussed earlier, the sample-and-hold switch would be controlled by a digital

signal from the computer. The computer signal would close the switch in or-

der to charge Ch to a new sample of the analog voltage; the amount of time

the switch would have to remain closed is called the acquisition time, and it

depends on the value of Ch and the characteristics of the S/H circuit. The

computer signal would then open the switch to allow Ch to hold its value and

provide a relatively constant analog voltage at the A2 output.

The AD1154 is a sample-and-hold integrated circuit that has an internal

hold capacitor with an acquisition time of During the hold time, the

capacitor voltage will droop (discharge) at a rate of only The volt-

age droop within the sampling interval should be less than the weight of the

LSB. For example, a 10-bit converter with a full-scale range of 10 V would

have an LSB weight of approximately 10 mV. It would take 100 ms before the

capacitor droop would equal the weight of the ADC’s LSB. It is not likely,

however, that it would ever be necessary to hold the sample for such a long

time in the conversion process.

0.1 mV/ms.

3.5 ms.

762 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

–

+
Analog
input

–

+
VA

V0

t0

Digital control
input*

A1

Ch

A2
Output

To ADC input

*Control = 1 switch closed sample mode
 Control = 0 switch open hold mode

FIGURE 11-24 Simplified

diagram of a sample-and-

hold circuit.

REVIEW QUESTIONS 1. Describe the function of a sample-and-hold circuit.

2. True or false: The amplifiers in an S/H circuit are used to provide voltage

amplification.

11-15 MULTIPLEXING

When analog inputs from several sources are to be converted, a multiplexing

technique can be used so that one ADC may be time-shared. The basic

scheme is illustrated in Figure 11-25 for a four-channel acquisition system.

Rotary switch S is used to switch each analog signal to the input of the ADC,

one at a time in sequence. The control circuitry controls the switch position

according to the select address bits, A1, A0, from the MOD-4 counter. For

example, with A1A0 � 00, the switch connects VA0 to the ADC input; A1A0 � 01

connects VA1 to the ADC input; and so on. Each input channel has a specific

address code that, when present, connects that channel to the ADC.

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 762

The operation proceeds as follows:

1. With select address � 00, VA0 is connected to the ADC input.

2. The control circuit generates a START pulse to initiate the conversion of

VA0 to its digital equivalent.

3. When the conversion is complete, EOC signals that the ADC output data

are ready. Typically, these data will be transferred to a computer over a

data bus.

4. The multiplexing clock increments the select address to 01, which con-

nects VA1 to the ADC.

5. Steps 2 and 3 are repeated with the digital equivalent of VA1 now present

at the ADC outputs.

6. The multiplexing clock increments the select address to 10, and VA2 is

connected to the ADC.

7. Steps 2 and 3 are repeated with the digital equivalent of VA2 now present

at the ADC outputs.

8. The multiplexing clock increments the select address to 11, and VA3 is

connected to the ADC.

9. Steps 2 and 3 are repeated with the digital equivalent of VA3 now present

at the ADC outputs.

The multiplexing clock controls the rate at which the analog signals are

sequentially switched into the ADC.The maximum rate is determined by the

delay time of the switches and the conversion time of the ADC. The switch

delay time can be minimized by using semiconductor switches such as the

CMOS bilateral switch described in Chapter 8. It may be necessary to con-

nect a sample-and-hold circuit at the input of the ADC if the analog inputs

will change significantly during the ADC conversion time.

Many integrated ADCs contain the multiplexing circuitry on the same

chip as the ADC. The ADC0808, for example, can multiplex eight different

SECTION 11-14/SAMPLE-AND-HOLD CIRCUITS 763

Start

Analog
inputs

Control
circuitry

A1

MOD-4

Select address

Multiplexing clock

A/D
converter

VA

VA0

VA1

VA2

VA3

Digital
outputs

A/D clock

EOC

S

A0

FIGURE 11-25 Conversion

of four analog inputs by

multiplexing through one

ADC.

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 763

analog inputs into one ADC. It uses a three-bit select input code to deter-

mine which analog input is connected to the ADC.

764 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

REVIEW QUESTIONS 1. What is the advantage of this multiplexing scheme?

2. How would the address counter be changed if there were eight analog

inputs?

11-16 DIGITAL STORAGE OSCILLOSCOPE

As a final example of the application of D/A and A/D converters, we will take

a brief look at the digital storage oscilloscope (DSO). The DSO uses both of

these devices to digitize, store, and display analog waveforms.

A block diagram of a DSO is shown in Figure 11-26.The overall operation

is controlled and synchronized by the circuits in the CONTROL block, which

usually contains a microprocessor executing a control program stored in

ROM (read-only memory). The data acquisition portion of the system con-

tains a sample-and-hold (S/H) and an ADC that repetitively samples and dig-

itizes the input signal at a rate determined by the SAMPLE CLOCK and

then sends the digitized data to memory for storage. The CONTROL block

makes sure that successive data points are stored in successive memory

locations by continually updating the memory’s ADDRESS COUNTER.

When memory is full, the next data point from the ADC is stored in the

first memory location, writing over the old data, and so on, for successive

data points. This data acquisition and storage process continues until the

CONTROL block receives a trigger signal from either the input waveform

(INTERNAL trigger) or an EXTERNAL trigger source. When the trigger

• • • •

•
•
•
•

•
•
•
•

•
•
•
•

Signal
inputFrom

vert
amp

External
trigger

SAMPLE
CLOCKFrom

time-base
controls

Buffer
amp

S/H ADC

Control
circuits

INT
TRIG

Memory

ADDRESS
COUNTER

TIME-
BASE

COUNTER

DAC

DAC

Horizontal
amp

Vertical
amp

CRT

Data displayStorageData acquisition

FIGURE 11-26 Block diagram of a digital storage oscilloscope.

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 764

occurs, the system stops acquiring new data and enters the display mode of

operation, in which all or part of the memory data is repetitively displayed

on the CRT.

The display operation uses two DACs to provide the vertical and hori-

zontal deflection voltages for the CRT. Data from memory produce the verti-

cal deflection of the electron beam, while the TIME-BASE COUNTER pro-

vides the horizontal deflection in the form of a staircase sweep signal. The

CONTROL block synchronizes the display operation by incrementing the

memory ADDRESS COUNTER and the TIME-BASE COUNTER at the same

time so that each horizontal step of the electron beam is accompanied by a

new data value from memory to the vertical DAC. The counters are continu-

ously recycled so that the stored data points are repetitively replotted on the

CRT screen. The screen display consists of discrete dots representing the

various data points, but the number of dots is usually so large (typically 1000

or more) that they tend to blend together and appear to be a smooth, con-

tinuous waveform. The display operation is terminated when the operator

presses a front-panel button that commands the DSO to begin a new data

acquisition cycle.

Related Applications
The same sequence of operations performed in a DSO—data acquisition/dig-

itizing/storage/data outputting—is used in other applications of DACs and

ADCs. For example, heart monitors that can be found in any hospital are sim-

ilar to DSOs but are constantly displaying a waveform showing the patient’s

heart activity over the past several seconds. As another example, digital

video cameras digitize an image one picture element (pixel) at a time and

store the information on magnetic tape or DVD. Digital still cameras digitize

each pixel and store the data on a solid-state memory card. The data can

later be transferred digitally and then output to a display device, where the

data is converted to an analog “brightness” signal for each pixel and re-

assembled to form an image on the display.

SECTION 11-17/DIGITAL SIGNAL PROCESSING (DSP) 765

REVIEW QUESTIONS 1. Look at Figure 11-26. How are waveforms “stored” in a DSO?

2. Describe the functions of the ADC and DACs that are part of the DSO.

11-17 DIGITAL SIGNAL PROCESSING (DSP)

One of the most dynamic areas of digital systems today is in the field of

digital signal processing (DSP). A DSP is a very specialized form of micro-

processor that has been optimized to perform repetitive calculations on

streams of digitized data.The digitized data are usually being fed to the DSP

from an A/D converter. It is beyond the scope of this text to explain the math-

ematics that allow a DSP to process these data values, but suffice it to say

that for each new data point that comes in, a calculation is performed (very

quickly). This calculation involves the most recent data point as well as sev-

eral of the preceding data samples. The result of the calculation produces a

new output data point, which is usually sent to a D/A converter. A DSP sys-

tem is similar to the block diagram shown in Figure 11-1. The main differ-

ence is in the specialized hardware contained in the computer section.

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 765

A major application for DSP is in filtering and conditioning of analog

signals. As a very simple example, a DSP can be programmed to take in an

analog waveform, such as the output from an audio preamplifier, and pass to

the output only those frequency components that are below a certain fre-

quency. All higher frequencies are attenuated by the filter. Perhaps you re-

call from your study of analog circuits that the same thing can be accom-

plished by a simple low-pass filter made from a resistor and capacitor. The

advantage of DSP over resistors and capacitors is the flexibility of being

able to change the critical frequency without switching any components.

Instead, numbers are simply changed in the calculations to adapt the dy-

namic response of the filter. Have you ever been in an auditorium when the

PA system started to squeal? This can be prevented if the degenerative

feedback frequency can be filtered out. Unfortunately, the frequency that

causes the squeal changes with the number of people in the room, the

clothes they wear, and many other factors. With a DSP-based audio equal-

izer, the oscillation frequency can be detected and the filters dynamically

adjusted to tune it out.

Digital Filtering
To help you understand digital filtering, imagine you are buying and sell-

ing stock. To decide when to buy and sell, you need to know what the mar-

ket is doing. You want to ignore sudden, short-term (high-frequency)

changes but respond to the overall trends (30-day averages). Every day you

read the newspaper, take a sample of the closing price for your stock, and

write it down. Then you use a formula to calculate the average of the last

30 days’ prices. This average value is plotted as shown in Figure 11-27, and

the resulting graph is used to make decisions. This is a way of filtering the

digital signal (sequence of data samples) that represents the stock market

activity.

Now imagine that instead of sampling stock prices, a digital system is

sampling an audio (analog) signal from a microphone using an A/D con-

verter. Instead of taking a sample once a day, it takes a sample 20,000 times

each second (every). For each sample, a weighted averaging calcula-

tion is performed using the last 256 data samples and produces a single

output data point. A weighted average means that some of the data points

are considered more important than others. Each of the samples is multi-

plied by a fractional number (between 0 and 1) before adding them to-

gether. This averaging calculation is processing (filtering) the audio signal.

50 ms

766 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

Daily stock price

0 50 100
Days

35

30

25

20

15

10

5

0

S
to

ck
 v

al
ue

30-day moving
average

FIGURE 11-27 Digital

filtering of stock market

activity.

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 766

The most difficult part of this form of DSP is determining the correct

weighting constants for the averaging calculation in order to achieve the

desired filter characteristics. Fortunately, there is readily available soft-

ware for PCs that makes this very easy.The special DSP hardware must per-

form the following operations:

Read the newest sample (one new number) from A/D.

Replace the oldest sample (of 256) with the new one from A/D.

Multiply each of the 256 samples by their corresponding weight constant.

Add all of these products.

Output the resulting sum of products (1 number) to the D/A.

Figure 11-28 shows the basic architecture of a DSP. The multiply and

accumulate (MAC) section is central to all DSPs and is used in most appli-

cations. Special hardware, like you will study in Chapter 12, is used to

implement the memory system that stores the data samples and weight

values. The arithmetic logic unit and barrel shifter (shift register) provide

the necessary support to deal with the binary number system while pro-

cessing signals.

Another useful application of DSP is called oversampling or interpolation
filtering. As you recall, the reconstructed waveform is always an approxi-

mation of the original due to quantization error. The sudden step changes

from one data point to the next also introduce high-frequency noise into

the reconstructed signal. A DSP can insert interpolated data points into

the digital signal. Figure 11-29 shows how 4X oversampling interpolation

filtering smoothes out the waveform and makes final filtering possible

SECTION 11-17/DIGITAL SIGNAL PROCESSING (DSP) 767

Arithmetic
logic unit

Barrel
shifter

Cumulative adder

Σ

Digital signal processor

D/A

Multiplier

Filter weight
constants

Program
memory

Oldest
sample

Data
memory

New
sampleA/D

•

•

•

•

•

•

FIGURE 11-28 Digital

signal processor

architecture.

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 767

with simpler analog circuitry. DSP performs this role in your CD player to

provide an excellent audio reproduction. The round dots represent the

digitally recorded data on your CD. The triangles represent the interpo-

lated data points that the digital filter in your CD player inserts before the

final analog output filter.

Many of the important concepts that you need to understand in order to

move on to DSP have been presented in this and previous chapters. A/D and

D/A conversion methods and hardware along with data acquisition and sam-

pling concepts are vital.Topics such as signed binary number representations

(including fractions), signed binary addition and multiplication (covered in

Chapter 6), and shift registers (Chapter 7) are necessary to understand the

hardware and programming of a DSP. Memory system concepts, which will be

presented in the next chapter, will also be important.

DSP is being integrated into many common systems that you are familiar

with. CD players use DSP to filter the digital data being read from the disk to

minimize the quantization noise that is unavoidably caused by digitizing the

music. Telephone systems use DSP to cancel echoes on the phone lines. The

high-speed modems that are standard on PCs have been made possible and

affordable by DSP. Special effects boxes for guitars and other instruments

perform echo, reverb, phasing, and other effects using DSP. Applications of

DSP are growing right now at the same rate that microprocessor applications

grew in the early 1980s. They provide a digital solution to many traditionally

analog problems. Some other examples of applications include speech recog-

nition, telecommunications data encryption, fast Fourier transforms, image

processing in digital television, ultrasonic beam forming in medical electron-

ics, and noise cancellation in industrial controls. As this trend continues, you

can expect to see nearly all electronic systems containing digital signal pro-

cessing circuitry.

768 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

Interpolated data pointsStored data points Original analog signal
FIGURE 11-29 Inserting

an interpolated data point

into a digital signal to

reduce noise.

REVIEW QUESTIONS 1. What is a major application of DSP?

2. What is the typical source of digital data for a DSP to process?

3. What advantage does a DSP filter have over an analog filter circuit?

4. What is the central hardware feature of a DSP?

5. How many interpolated data points are inserted between samples

when performing 4X oversampled digital filtering? How many for 8X

oversampling?

TOCCMC11_0131725793.QXD 16/01/2006 08:56 PM Page 768

SUMMARY
1. Physical variables that we want to measure, such as temperature, pres-

sure, humidity, distance velocity, and so on, are continuously variable

quantities. A transducer can be used to translate these quantities into an

electrical signal of voltage or current that fluctuates in proportion to the

physical variable. These continuously variable voltage or current signals

are called analog signals.

2. To measure a physical variable, a digital system must assign a binary

number to the analog value that is present at that instant. This is accom-

plished by an A/D converter.To generate variable voltages or current val-

ues that can control physical processes, a digital system must translate

binary numbers into a voltage or current magnitude. This is accom-

plished by a D/A converter.

3. A D/A converter with n bits divides a range of analog values (voltage or

current) into pieces. The size or magnitude of each piece is the

analog equivalent weight of the least significant bit. This is called the

resolution or step size.

4. Most D/A converters use resistor networks that can cause weighted

amounts of current to flow when any of its binary inputs are activated.

The amount of current that flows is proportional to the binary weight of

each input bit.These weighted currents are summed to create the analog

signal out.

5. An A/D converter must assign a binary number to an analog (continu-

ously variable) quantity. The precision with which an A/D converter can

perform this conversion depends on how many different numbers it can

assign and how wide the analog range is. The smallest change in analog

value that an A/D can measure is called its resolution, the weight of its

least significant bit.

6. By repeatedly sampling the incoming analog signal, converting it to digi-

tal, and storing the digital values in a memory device, an analog waveform

can be captured. To reconstruct the signal, the digital values are read

from the memory device at the same rate at which they were stored, and

then they are fed into a D/A converter. The output of the D/A is then fil-

tered to smooth the stair steps and re-create the original waveform. The

bandwidth of sampled signals is limited to 1�2 FS. Incoming frequencies

greater than 1�2 FS create an alias that has a frequency equal to the dif-

ference between the nearest integer multiple of FS and the incoming fre-

quency. This difference will always be less than 1�2 FS.

7. A digital-ramp A/D is the simplest to understand but it is not often used

due to its variable conversion time. A successive-approximation con-

verter has a constant conversion time and is probably the most common

general-purpose converter.

8. Flash converters use analog comparators and a priority encoder to assign

a digital value to the analog input. These are the fastest converters be-

cause the only delays involved are propagation delays.

9. Other popular methods of A/D include up/down tracking, integrating,

voltage-to-frequency conversion, and sigma/delta conversion. Each type

of converter has its own niche of applications.

10. Any D/A converter can be used with other circuitry such as analog mul-

tiplexers that select one of several analog signals to be converted, one at

a time. Sample-and-hold circuits can be used to “freeze” a rapidly chang-

ing analog signal while the conversion is taking place.

2n
- 1

SUMMARY 769

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 769

11. Digital signal processing is an exciting new growth field in electronics.

These devices allow calculations to be performed quickly in order to em-

ulate the operation of many analog filter circuits digitally. The primary

architectural feature of a DSP is a hardware multiplier and adder circuit

that can multiply pairs of numbers together and accumulate the running

total (sum) of these products. This circuitry is used to perform efficiently

the weighted moving average calculations that are used to implement

digital filters and other DSP functions. DSP is responsible for many of the

recent advances in high-fidelity audio, high-definition TV, and telecom-

munications.

IMPORTANT TERMS

770 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

digital quantity

analog quantity

transducer

analog-to-digital

converter (ADC)

digital-to-analog

converter (DAC)

full-scale output

resolution

step size

staircase

full-scale error

linearity error

offset error

settling time

monotonicity

digitization

digital-ramp ADC

quantization error

sampling

sampling frequency,

FS

alias

undersampling

successive-

approximation

ADC

differential inputs

WRITE

flash ADC

up/down digital-ramp

ADC

dual-slope ADC

voltage-to-frequency

ADC

sigma/delta

modulation

sample-and-hold

(S/H) circuit

acquisition time

digital signal

processing (DSP)

weighted average

MAC

arithmetic logic unit

barrel shifter

oversampling

interpolation

filtering

PROBLEMS
SECTIONS 11-1 AND 11-2

11-1. DRILL QUESTION

(a) What is the expression relating the output and inputs of a DAC?

(b) Define step size of a DAC.

(c) Define resolution of a DAC.

(d) Define full scale.

(e) Define percentage resolution.

(f)*True or false: A 10-bit DAC will have a smaller resolution than a 12-

bit DAC for the same full-scale output.

(g)*True or false: A 10-bit DAC with full-scale output of 10 V has a

smaller percentage resolution than a 10-bit DAC with 12 V full

scale.

11-2. An eight-bit DAC produces an output voltage of 2.0 V for an input

code of 01100100. What will the value of VOUT be for an input code of

10110011?

11-3.*Determine the weight of each input bit for the DAC of Problem 11-2.

B

B

B

*Answers to problems marked with an asterisk can be found in the back of the text.

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 770

11-4. What is the resolution of the DAC of Problem 11-2? Express it in volts

and as a percentage.

11-5.*What is the resolution in volts of a 10-bit DAC whose F.S. output is 5 V?

11-6. How many bits are required for a DAC so that its F.S. output is 10 mA

and its resolution is less than

11-7.*What is the percentage resolution of the DAC of Figure 11-30? What is

the step size if the top step is 2 V?

40 mA?

PROBLEMS 771

B

D

D

C

B

3-bit
ripple

counter

D/A
converter

VOUT

1 kHz

CLOCK

2 V

Spikes
0 V

FIGURE 11-30 Problems

11-7 and 11-8.

11-8. What is the cause of the negative-going spikes on the VOUT waveform

of Figure 11-30? (Hint: Note that the counter is a ripple counter and

that the spikes occur on every other step.)

11-9.*Assuming a 12-bit DAC with perfect accuracy, how close to 250 rpm

can the motor speed be adjusted in Figure 11-4?

11-10. A 12-bit DAC has a full-scale output of 15.0 V. Determine the step size,

the percentage resolution, and the value of VOUT for an input code of

011010010101.

11-11.*A microcontroller has an eight-bit output port that is to be used to

drive a DAC.The DAC that is available has 10 input bits and has a full-

scale output of 10 V.The application requires a voltage that ranges be-

tween 0 and 10 V in steps of 50 mV or smaller. Which eight bits of the

10-bit DAC will be connected to the output port?

11-12. You need a DAC that can span 12 V with a resolution of 20 mV or less.

How many bits are needed?

SECTION 11-3

11-13.*The step size of the DAC of Figure 11-5 can be changed by changing

the value of RF. Determine the required value of RF for a step size of

0.5 V. Will the new value of RF change the percentage resolution?

11-14. Assume that the output of the DAC in Figure 11-7(a) is connected to

the op-amp of Figure 11-7(b).

(a) With VREF � 5 V, and determine the step

size and the full-scale voltage at VOUT.

(b) Change the value of RF so that the full-scale voltage at VOUT is

(c) Use this new value of RF, and determine the proportionality fac-

tor, K, in the relationship

11-15.*What is the advantage of the DAC of Figure 11-8 over that of Figure

11-7, especially for a larger number of input bits?

VOUT = K(VREF * B).

-2 V.

RF = 10 kÆ,R = 20 kÆ,

B

B

B

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 771

SECTIONS 11-4 TO 11-6

11-16. An eight-bit DAC has a full-scale error of 0.2% F.S. If the DAC has a

full-scale output of 10 mA, what is the most that it can be in error for

any digital input? If the D/A output reads 50 for a digital input of

00000001, is this within the specified range of accuracy? (Assume no

offset error.)

11-17.*The control of a positioning device may be achieved using a servomotor,
which is a motor designed to drive a mechanical device as long as an er-

ror signal exists. Figure 11-31 shows a simple servo-controlled system

that is controlled by a digital input that could be coming directly from a

computer or from an output medium such as magnetic tape. The lever

arm is moved vertically by the servomotor. The motor rotates clockwise

or counterclockwise, depending on whether the voltage from the power

amplifier (P.A.) is positive or negative. The motor stops when the P.A.

output is 0.

The mechanical position of the lever is converted to a dc voltage by

the potentiometer arrangement shown. When the lever is at its 0 refer-

ence point, VP � 0 V. The value of VP increases at the rate of 1 V/inch

until the lever is at its highest point (10 inches) and VP � 10 V. The

desired position of the lever is provided as a digital code from the com-

puter and is then fed to a DAC, producing VA. The difference between VP

and VA (called error) is produced by the differential amplifier and is

amplified by the P.A. to drive the motor in the direction that causes the

error signal to decrease to 0—that is, moves the lever until

(a) If the lever must be positioned within a resolution of 0.1 in, what

is the number of bits needed in the digital input code?

(b) In actual operation, the lever arm might oscillate slightly around

the desired position, especially if a wire-wound potentiometer is

used. Can you explain why?

VP = VA.

mA

772 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

D/A
converter
+10 V F.S.

–

+

Digital
input

VA

VP

Differential
amp

Error signal
VP – VAServomotor

0 in

10 in

+10 V

VP
Lever

P.A.

FIGURE 11-31 Problem

11-17.

C, N

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 772

11-18. DRILL QUESTION

(a) Define binary-weighted resistor network.

(b) Define R/2R ladder network.

(c) Define DAC settling time.

(d) Define full-scale error.

(e) Define offset error.

11-19.*A particular six-bit DAC has a full-scale output rated at 1.260 V. Its ac-

curacy is specified as F.S., and it has an offset error of mV.

Assume that the offset error has not been zeroed out. Consider the

measurements made on this DAC (Table 11-10), and determine which

of them are not within the device’s specifications. (Hint: The offset er-

ror is added to the error caused by component inaccuracies.)

;1�0.1%

PROBLEMS 773

Input Code Output

000010 41.5 mV

000111 140.2 mV

001100 242.5 mV

111111 1.258 V

TABLE 11-10

Input Code Output

00000000 8 mV

00000001 18.2 mV

00000010 28.5 mV

00000100 48.3 mV

00001111 158.3 mV

10000000 1.289 V

TABLE 11-11

Input Code Output

00000000 20.5 mV

00000001 30.5 mV

00000010 20.5 mV

00000100 60.6 mV

00001111 150.6 mV

10000000 1.300 V

TABLE 11-12

SECTION 11-7

11-20. A certain DAC has the following specifications: eight-bit resolution,

full scale � 2.55 V, offset A static

test on this DAC produces the results shown in Table 11-11. What is

the probable cause of the malfunction?

accuracy = �0.1% F.S.… 2 mV;

11-21.*Repeat Problem 11-20 using the measured data given in Table 11-12.

B

T

T

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 773

11-22.*A technician connects a counter to the DAC of Figure 11-3 to perform

a staircase test using a 1-kHz clock.The result is shown in Figure 11-32.

What is the probable cause of the incorrect staircase signal?

774 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

0 1 2 5 10 15
Time (ms)

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

V
ol

ta
ge

s

FIGURE 11-32 Problem 11-22.

SECTIONS 11-8 AND 11-9

11-23. DRILL QUESTION

Fill in the blanks in the following description of the ADC of Figure 11-13.

Each blank may be one or more words.

A START pulse is applied to _____ the counter and to keep _____

from passing through the AND gate into the _____. At this point, the

DAC output, VAX, is _____ and is _____.

When START returns _____, the AND gate is _____, and the

counter is allowed to _____. The VAX signal is increased one _____ at a

time until it _____ VA. At that point, _____ goes LOW to _____ further

pulses from _____. This signals the end of conversion, and the digital

equivalent of VA is present at the _____.

11-24. An eight-bit digital-ramp ADC with a 40-mV resolution uses a clock

frequency of 2.5 MHz and a comparator with VT � 1 mV. Determine

the following values.

(a)*The digital output for

(b) The digital output for 6.035 V

(c) The maximum and average conversion times for this ADC

11-25. Why were the digital outputs the same for parts (a) and (b) of

Problem 11-24?

11-26. What would happen in the ADC of Problem 11-24 if an analog voltage

of VA � 10.853 V were applied to the input? What waveform would ap-

pear at the D/A output? Incorporate the necessary logic in this ADC

VA = 6.000 V

EOC

T

B

B

D

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 774

so that an “overscale” indication will be generated whenever VA is

too large.

11-27.*An ADC has the following characteristics: resolution, 12 bits; full-

scale error, 0.03% F.S.; full scale output, �5 V.

(a) What is the quantization error in volts?

(b) What is the total possible error in volts?

11-28. The quantization error of an ADC such as the one in Figure 11-13 is al-

ways positive because the VAX value must exceed VA in order for the

comparator output to switch states. This means that the value of VAX
could be as much as 1 LSB greater than VA. This quantization error

can be modified so that VAX would be within �1⁄2 LSB of VA. This can

be done by adding a fixed voltage equal to 1⁄2 LSB (1⁄2 step) to the

value of VA. Figure 11-33 shows this symbolically for a converter that

has a resolution of 10 mV/step. A fixed voltage of �5 mV is added to

the D/A output in the summing amplifier, and the result, VAY, is fed to

the comparator, which has VT � 1 mV.

For this modified converter, determine the digital output for the

following VA values.

(a)*VA � 5.022 V

(b) VA � 50.28 V

Determine the quantization error in each case by comparing VAX and

VA. Note that the error is positive in one case and negative in the other.

PROBLEMS 775

B

C, N

–

+
VA

Comp
EOC

CLOCK

RESET

CLOCK

+5 mV

10-bit
counter

D/A
converter

10 mV/step

Sum
amp

VAX

VAY

VAY =
VAX +5 mV

START

FIGURE 11-33 Problems 11-28 and 11-29.

11-29. For the ADC of Figure 11-33, determine the range of analog input val-

ues that will produce a digital output of 0100011100.

C

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 775

776 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

SECTION 11-10

11-30. Assume that the analog signal in Figure 11-34(a) is to be digitized by

performing continuous A/D conversions using an eight-bit digital-

ramp converter whose staircase rises at the rate of 1 V every

Sketch the reconstructed signal using the data obtained during the

digitizing process. Compare it with the original signal, and discuss

what could be done to make it a more accurate representation.

25 ms.

N

0

Time (μs)

4

3

2

1

0

V
ol

ta
ge

(b)

(a)

200 250 300 350 40050 100 150

FIGURE 11-34 Problems 11-30, 11-31, and 11-41.

11-31.*On the sine wave of Figure 11-34(b), mark the points where samples

are taken by a flash A/D converter at intervals of (starting at the

origin). Then draw the reconstructed output from the D/A converter

(connect the sample points with straight lines to show filtering).

Calculate the sample frequency, the sine input frequency, and the dif-

ference between them. Then compare to the resulting reconstructed

waveform frequency.

11-32. A sampled data acquisition system is being used to digitize an audio

signal. Assume the sample frequency FS is 20 kHz. Determine the out-

put frequency that will be heard for each of the following input fre-

quencies.

(a)* Input signal � 5 kHz

(b)* Input signal � 10.1 kHz

(c) Input signal � 10.2 kHz

(d) Input signal � 15 kHz

(e) Input signal � 19.1 kHz

(f) Input signal � 19.2 kHz

SECTION 11-11

11-33.*DRILL QUESTION

Indicate whether each of the following statements refers to the digi-

tal-ramp ADC, the successive-approximation ADC, or both.

75 ms

C

B

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 776

PROBLEMS 777

(a) Produces a staircase signal at its DAC output

(b) Has a constant conversion time independent of VA

(c) Has a shorter average conversion time

(d) Uses an analog comparator

(e) Uses a DAC

(f) Uses a counter

(g) Has complex control logic

(h) Has an output

11-34. Draw the waveform for VAX as the SAC of Figure 11-19 converts VA � 6.7 V.

11-35. Repeat Problem 11-34 for VA � 16 V.

11-36.*A certain eight-bit successive-approximation converter has 2.55 V full

scale. The conversion time for VA � 1 V is What will be the con-

version time for VA � 1.5 V?

11-37. Figure 11-35 shows the waveform at VAX for a six-bit SAC with a step

size of 40 mV during a complete conversion cycle. Examine this wave-

form and describe what is occurring at times t0 to t5. Then determine

the resultant digital output.

80 ms.

EOC

1.92 V

1.28 V

0 V

VAX

t0 t1 t2 t3 t4 t5 t

11-38.*Refer to Figure 11-21. What is the approximate value of the analog in-

put if the microcomputer’s data bus is at 10010111 when is pulsed

LOW?

11-39. Connect a 2.0-V reference source to Vref/2, and repeat Problem 11-38.

11-40.*Design the ADC interface to a digital thermostat using an LM34 tem-

perature sensor and the ADC0804. Your system must measure accu-

rately () from 50 to The LM34 puts out 0.01 V per degree

F

(a) What should the digital value for be for the best resolution?

(b) What voltage must be applied to

(c) What is the full-scale range of voltage that will come in?

(d) What voltage must be applied to Vref/2?

(e) What binary value will represent

(f) What is the resolution in In volts?°F?

72°F?

Vin(-)?

50°F

(0°F = 0 V).

101°F.�0.2°F

RD

FIGURE 11-35 Problem 11-37.

B

B

D

C, D

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 777

SECTION 11-12

11-41. Discuss how a flash ADC with a conversion time of would work

for the situation of Problem 11-30.

11-42. Draw the circuit diagram for a four-bit flash converter with BCD out-

put and a resolution of 0.1 V. Assume that a �5 V precision supply volt-

age is available.

DRILL QUESTION

11-43.For each of the following statements, indicate which type of ADC—dig-

ital-ramp, SAC, or flash—is being described.

(a) Fastest method of conversion

(b) Needs a START pulse

(c) Requires the most circuitry

(d) Does not use a DAC

(e) Generates a staircase signal

(f) Uses an analog comparator

(g) Has a relatively fixed conversion time independent of VA

SECTION 11-13

11-44. DRILL QUESTION

For each statement, indicate what type(s) of ADC is (are) being de-

scribed.

(a) Uses a counter that is never reset to 0

(b) Uses a large number of comparators

(c) Uses a VCO

(d) Is used in noisy industrial environments

(e) Uses a capacitor

(f) Is relatively insensitive to temperature

SECTIONS 11-14 AND 11-15

11-45.*Refer to the sample-and-hold circuit of Figure 11-24. What circuit

fault would result in VOUT looking exactly like VA? What fault would

cause VOUT to be stuck at 0?

11-46. Use the CMOS 4016 IC (Section 8-16) to implement the switching in

Figure 11-25, and design the necessary control logic so that each ana-

log input is converted to its digital equivalent in sequence. The ADC

is a 10-bit, successive-approximation type using a 50-kHz clock signal,

and it requires a start pulse to begin each conversion.

The digital outputs are to remain stable for after the conver-

sion is complete before switching to the next analog input. Choose an

appropriate multiplexing clock frequency.

MICROCOMPUTER APPLICATION

11-47.*Figure 11-21 shows how the ADC0804 is interfaced to a microcom-

puter. It shows three control signals, and that come from

the microcomputer to the ADC. These signals are used to start each

new A/D conversion and to read (transfer) the ADC data output into

the microcomputer over the data bus.

WR,CS, RD,

100 ms

10-ms-duration

1 ms

778 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

B

D

B

B

T

C, D

C, N, D

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 778

Figure 11-36 shows one way the address decoding logic could be

implemented. The signal that activates the ADC0804 is devel-

oped from the eight high-order address lines of the MPU address

bus. Whenever the MPU wants to communicate with the ADC0804, it

places the address of the ADC0804 onto the address bus, and the de-

coding logic drives the signal LOW. Notice that in addition to the

address lines, a timing and control signal (ALE) is connected to the

enable input. Whenever ALE is HIGH, it means that the address

is potentially in transition, so the decoder should be disabled until

ALE goes LOW (at which time the address will be valid and stable).

This serves a purpose for timing but has no effect on the address of

the ADC.

(a) Determine the address of the ADC0804.

(b) Modify the diagram of Figure 11-36 to place the ADC0804 at ad-

dress E8XX hex.

(c) Modify the diagram of Figure 11-36 to place the ADC0804 at ad-

dress FFXX hex.

11-48. You have available a 10-bit SAC A/D converter (AD 573), but your sys-

tem requires only eight bits of resolution and you have only eight port

bits available on your microprocessor. Can you use this A/D converter,

and if so, which of the 10 data lines will you attach to the port?

SECTION 11-17

11-49. The data in Table 11-13 are input samples taken by an A/D converter.

Notice that if the input data were plotted, it would represent a simple

step function like the rising edge of a digital signal. Calculate the sim-

ple average of the four most recent data points, starting with OUT[4]

E2

CS

CS

PROBLEMS 779

Decoding logic

To
ADC 0804

in
Figure 11-20

E1

CS

......

......

......

Not
used

Data bus

74LS138

7

6

5

4

3

2

1

0

E2

E3

A2

A1

A0

A15

A14

A13

A12

A11

A10

A9

A8

A7

D7

D0

......

A0

MPU
......

ALE

WR

RD
WR

RD

FIGURE 11-36 Problem 11-47: MPU interfaced to the ADC0804 of Figure 11-20.

D

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 779

and proceeding through OUT[10]. Plot the values for IN and OUT

against the sample number n as shown in Figure 11-37.

780 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

Sample n 1 2 3 4 5 6 7 8 9 10

IN[n] (V) 0 0 0 0 10 10 10 10 10 10

OUT[n] (V) 0 0 0

FIGURE 11-37 Graph

format for Problems 11-49

and 11-50.

TABLE 11-13

In/Out
(volts)

10

8

6

4

2

0

1 2 3 4 5 6 7 8 9 10 n

Sample calculations:

(Notice that this calculation is equivalent to multiplying each sample

by 1⁄4 and summing.)

11-50. Repeat the previous problem using a weighted average of the last

four samples.The weights in this case are placing greater emphasis on

recent samples and less emphasis on older samples. Use the weights

0.1, 0.2, 0.3, and 0.4.

11-51. What does the term MAC stand for?

11-52.*DRILL QUESTIONS

True or false:

(a) A digital signal is a continuously changing voltage.

(b) A digital signal is a sequence of numbers that represent an analog

signal.

When processing an analog signal, the output may be distorted due to:

(a) Quantization error when converting analog to digital

(b) Not sampling the original signal frequently enough

(c) Temperature variation in the processor components

(d) The high-frequency components associated with sudden changes

in voltage out of the DAC

(e) Electrical noise on the power supply

(f) Alias signals introduced by the digital system

 OUT[5] = 0.1(IN[2]) + 0.2(IN[3] + 0.3(IN[4] + 0.4(IN[5]) = 4

 OUT[n] = 0.1(IN[n - 3]) + 0.2(IN[n - 2]) + 0.3(IN[n - 1]) + 0.4(IN[n])

 OUT[5] = (IN[2] + IN[3] + IN[4] + IN[5])/4 = 2.5

 OUT[4] = (IN[1] + IN[2] + IN[3] + IN[4])/4 = 0

 OUT[n] = (IN[n - 3] + IN[n - 2] + IN[n - 1] + IN[n])/4 = 0

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 780

ANSWERS TO SECTION REVIEW QUESTIONS
SECTION 11-1

1. Converts a nonelectrical physical quantity to an electrical quantity 2. Converts

an analog voltage or current to a digital representation 3. Stores it; performs

calculation or some other operation on it 4. Converts digital data to their

analog representation 5. Controls a physical variable according to an electrical

input signal

SECTION 11-2

1. 10.2 mA 2. 5.12 mA 3. 0.39 percent 4. 4096 5. 12 6. True

7. It produces a greater number of possible analog outputs between 0 and full scale.

SECTION 11-3

1. It uses only two different sizes of resistors. 2. 3. 0.5 V

4. Increases by 20 percent

SECTION 11-4

1. Maximum deviation of DAC output from its ideal value, expressed as percentage

of full scale 2. Time it takes DAC output to settle to within 1�2 step size of its

full-scale value when the digital input changes from 0 to full scale 3. Offset

error adds a small constant positive or negative value to the expected analog output

for any digital input. 4. Because of the response time of the op-amp current-to-

voltage converter

SECTION 11-8

1. Tells control logic when the DAC output exceeds the analog input 2. At out-

puts of register 3. Tells us when conversion is complete and digital equivalent

of VA is at register outputs

SECTION 11-9

1. The digital input to a DAC is incremented until the DAC staircase output exceeds

the analog input. 2. The built-in error caused by the fact that VAX does not con-

tinuously increase but goes up in steps equal to the DAC’s resolution. The final VAX
can be different from VA by as much as one step size. 3. If VA increases, it will

take more steps before VAX can reach the step that first exceeds VA. 4. True

5. Simple circuit; relatively long conversion time that changes with VA
6. 00100001112 � 13510 for both cases

SECTION 11-10

1. Process of converting different points on an analog signal to digital and storing

the digital data for later use 2. Computer generates START signal to begin an

A/D conversion of the analog signal. When EOC goes LOW, it signals the computer

that the conversion is complete. The computer then loads the ADC output into

memory. The process is repeated for the next point on the analog signal.

3. Twice the highest frequency in the input signal 4. An alias frequency will be

present in the output.

SECTION 11-11

1. The SAC has a shorter conversion time that doesn’t change with VA. 2. It has

more complex control logic. 3. False 4. (a) 8 (b) 0–5 V (c) controls the ef-

fect of the and signals; is used to start a new conversion; enables

the output buffers. (d) When LOW, it signals the end of a conversion. (e) It separates

the usually noisy digital ground from the analog ground so as not to contaminate

the analog input signal. (f) All analog voltages on Vin(�) are measured with refer-

ence to this pin. This allows the input range to be offset from ground.

RDWRWRRD
CS

640 kÆ

40 mA;

ANSWERS TO SECTION REVIEW QUESTIONS 781

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 781

SECTION 11-12

1. True 2. 4095 comparators and 4096 resistors 3. Major advantage is its con-

version speed; disadvantage is the number of required circuit components for a

practical resolution.

SECTION 11-13

1. It reduces the conversion time by using an up/down counter that allows VAX to

track VA without starting from 0 for each conversion. 2. A VCO

3. Advantages: low cost, temperature immunity; disadvantage: slow conversion time

4. Flash ADC, voltage-to-frequency ADC, and dual-slope ADC 5. One

SECTION 11-14

1. It takes a sample of an analog voltage signal and stores it on a capacitor.

2. False; they are unity-gain buffers with high input impedance and low output im-

pedance.

SECTION 11-15

1. Uses a single ADC 2. It would become a MOD-8 counter.

SECTION 11-16

1. Digitized waveforms are stored in the memory block. 2. The ADC digitizes the

points on the input waveform for storage in memory; the vertical DAC converts the

stored data points back to analog voltages to produce the vertical deflection of the

electron beam; the horizontal DAC produces a staircase sweep voltage that provides

the horizontal deflection of the electron beam.

SECTION 11-17

1. Filtering analog signals 2. An A/D converter 3. To change their dynamic

response, you simply change the numbers in the software program, not the hardware

components. 4. The Multiply and Accumulate (MAC) unit 5. 3; 7

782 CHAPTER 11/INTERFACING WITH THE ANALOG WORLD

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 782

TOCCMC11_0131725793.QXD 12/20/05 5:35 PM Page 783

12-1 Memory Terminology

12-2 General Memory Operation

12-3 CPU–Memory Connections

12-4 Read-Only Memories

12-5 ROM Architecture

12-6 ROM Timing

12-7 Types of ROMs

12-8 Flash Memory

12-9 ROM Applications

12-10 Semiconductor RAM

12-11 RAM Architecture

12-12 Static RAM (SRAM)

■ OUTLINE

M E M O R Y D E V I C E S

C H A P T E R 1 2

12-13 Dynamic RAM (DRAM)

12-14 Dynamic RAM Structure

and Operation

12-15 DRAM Read/Write Cycles

12-16 DRAM Refreshing

12-17 DRAM Technology

12-18 Expanding Word Size and

Capacity

12-19 Special Memory Functions

12-20 Troubleshooting RAM

Systems

12-21 Testing ROM

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 784

785

■ OBJECTIVES
Upon completion of this chapter, you will be able to:
■ Understand and correctly use the terminology associated with memory

systems.

■ Describe the difference between read/write memory and read-only

memory.

■ Discuss the difference between volatile and nonvolatile memory.

■ Determine the capacity of a memory device from its inputs and

outputs.

■ Outline the steps that occur when the CPU reads from or writes to

memory.

■ Distinguish among the various types of ROMs and cite some common

applications.

■ Understand and describe the organization and operation of static and

dynamic RAMs.

■ Compare the relative advantages and disadvantages of EPROM,

EEPROM, and flash memory.

■ Combine memory ICs to form memory modules with larger word size

and/or capacity.

■ Use the test results on a RAM or ROM system to determine possible

faults in the memory system.

■ INTRODUCTION
A major advantage of digital over analog systems is the ability to store eas-

ily large quantities of digital information and data for short or long peri-

ods. This memory capability is what makes digital systems so versatile and

adaptable to many situations. For example, in a digital computer, the inter-

nal main memory stores instructions that tell the computer what to do un-

der all possible circumstances so that the computer will do its job with a

minimum amount of human intervention.

This chapter is devoted to a study of the most commonly used types

of memory devices and systems. We have already become very familiar

with the flip-flop, which is an electronic memory device. We have also

seen how groups of FFs called registers can be used to store information

and how this information can be transferred to other locations. FF regis-

ters are high-speed memory elements that are used extensively in the

internal operations of a digital computer, where digital information is

continually being moved from one location to another. Advances in LSI

and VLSI technology have made it possible to obtain large numbers of

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 785

FFs on a single chip arranged in various memory-array formats. These

bipolar and MOS semiconductor memories are the fastest memory

devices available, and their cost has been continuously decreasing as LSI

technology improves.

Digital data can also be stored as charges on capacitors, and a very im-

portant type of semiconductor memory uses this principle to obtain high-

density storage at low power-requirement levels.

Semiconductor memories are used as the main memory of a computer

(Figure 12-1), where fast operation is important. A computer’s main memory—

also called its working memory—is in constant communication with the

central processing unit (CPU) as a program of instructions is being

executed. A program and any data used by the program reside in the main

memory while the computer is working on that program. RAM and ROM

(to be defined shortly) make up main memory.

Another form of storage in a computer is performed by auxiliary
memory (Figure 12-1), which is separate from the main working memory.

Auxiliary memory—also called mass storage—has the capacity to store

massive amounts of data without the need for electrical power. Auxiliary

memory operates at a much slower speed than main memory, and it

stores programs and data that are not currently being used by the CPU.

This information is transferred to the main memory when the computer

needs it. Common auxiliary memory devices are magnetic disk and com-

pact disk (CD).

We will take a detailed look at the characteristics of the most common

memory devices used as the internal memory of a computer. First, we de-

fine some of the common terms used in memory systems.

786 CHAPTER 12/MEMORY DEVICES

FIGURE 12-1 A computer

system normally uses high-

speed main memory and

slower external auxiliary

memory.

Auxiliary mass
storage

(magnetic, optical)

Arithmetic
unit

Main
memory

(semiconductor)

Control
unit

Computer

Central processor (CPU)

12-1 MEMORY TERMINOLOGY

The study of memory devices and systems is filled with terminology that can

sometimes be overwhelming to a student. Before we get into any compre-

hensive discussion of memories, it would be helpful if you had the meaning

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 786

of some of the more basic terms under your belt. Other new terms will be de-

fined as they appear in the chapter.

■ Memory Cell. A device or an electrical circuit used to store a single bit

(0 or 1). Examples of memory cells include a flip-flop, a charged capaci-

tor, and a single spot on magnetic tape or disk.

■ Memory Word. A group of bits (cells) in a memory that represents in-

structions or data of some type. For example, a register consisting of

eight FFs can be considered to be a memory that is storing an eight-bit

word. Word sizes in modern computers typically range from 8 to 64 bits,

depending on the size of the computer.

■ Byte. A special term used for a group of eight bits. A byte always consists

of eight bits. Word sizes can be expressed in bytes as well as in bits. For

example, a word size of eight bits is also a word size of one byte, a word

size of 16 bits is two bytes, and so on.

■ Capacity. A way of specifying how many bits can be stored in a particu-

lar memory device or complete memory system. To illustrate, suppose

that we have a memory that can store 4096 20-bit words. This represents

a total capacity of 81,920 bits. We could also express this memory’s ca-

pacity as When expressed this way, the first number (4096) is

the number of words, and the second number (20) is the number of bits

per word (word size). The number of words in a memory is often a multi-

ple of 1024. It is common to use the designation “1K” to represent 1024

� 210 when referring to memory capacity.Thus, a memory that has a stor-

age capacity of is actually a memory. The develop-

ment of larger memories has brought about the designation “1M” or “1

meg” to represent 220 � 1,048,576. Thus, a memory that has a capacity of

is actually one with a capacity of The designation

“giga” refers to 230 � 1,073,741,824.

2,097,152 * 8.2M * 8

4096 * 204K * 20

4096 * 20.

SECTION 12-1/MEMORY TERMINOLOGY 787

EXAMPLE 12-1A A certain semiconductor memory chip is specified as How many

words can be stored on this chip? What is the word size? How many total bits

can this chip store?

Solution

Each word is eight bits (one byte). The total number of bits is therefore

2048 * 8 = 16,384 bits

2K = 2 * 1024 = 2048 words

2 K * 8.

EXAMPLE 12-1B Which memory stores the most bits: a memory or a memory that

stores 1M words at a word size of 16 bits?

Solution

The memory stores more bits.5M * 8

1M * 16 = 1,048,576 * 16 = 16,777,216 bits

5M * 8 = 5 * 1,048,576 * 8 = 41,943,040 bits

5M * 8

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 787

■ Density. Another term for capacity. When we say that one memory device

has a greater density than another, we mean that it can store more bits in

the same amount of space. It is more dense.

■ Address. A number that identifies the location of a word in memory.

Each word stored in a memory device or system has a unique address.

Addresses always exist in a digital system as a binary number, although

octal, hexadecimal, and decimal numbers are often used to represent the

address for convenience. Figure 12-2 illustrates a small memory consist-

ing of eight words. Each of these eight words has a specific address rep-

resented as a three-bit number ranging from 000 to 111. Whenever we re-

fer to a specific word location in memory, we use its address code to

identify it.

■ Read Operation. The operation whereby the binary word stored in a spe-

cific memory location (address) is sensed and then transferred to an-

other device. For example, if we want to use word 4 of the memory of

Figure 12-2 for some purpose, we must perform a read operation on

address 100. The read operation is often called a fetch operation because

a word is being fetched from memory. We will use both terms inter-

changeably.

■ Write Operation. The operation whereby a new word is placed into a par-

ticular memory location. It is also referred to as a store operation.

Whenever a new word is written into a memory location, it replaces the

word that was previously stored there.

■ Access Time. A measure of a memory device’s operating speed. It is the

amount of time required to perform a read operation. More specifically,

it is the time between the memory receiving a new address input and the

data becoming available at the memory output. The symbol tACC is used

for access time.

■ Volatile Memory. Any type of memory that requires the application of

electrical power in order to store information. If the electrical power is

removed, all information stored in the memory will be lost. Many semi-

conductor memories are volatile, while all magnetic memories are non-
volatile, which means that they can store information without electrical

power.

■ Random-Access Memory (RAM). Memory in which the actual physical

location of a memory word has no effect on how long it takes to read

788 CHAPTER 12/MEMORY DEVICES

FIGURE 12-2 Each word

location has a specific

binary address.

Addresses

000

001

010

011

100

101

110

111

Word 0

Word 1

Word 2

Word 3

Word 4

Word 5

Word 6

Word 7

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 788

from or write into that location. In other words, the access time is the

same for any address in memory. Most semiconductor memories are

RAMs.

■ Sequential-Access Memory (SAM). A type of memory in which the ac-

cess time is not constant but varies depending on the address location. A

particular stored word is found by sequencing through all address loca-

tions until the desired address is reached. This produces access times

that are much longer than those of random-access memories. An example

of a sequential-access memory device is a magnetic tape backup. To il-

lustrate the difference between SAM and RAM, consider the situation

where you have recorded 60 minutes of songs on an audio tape cassette.

When you want to get to a particular song, you have to rewind or fast-

forward the tape until you find it. The process is relatively slow, and the

amount of time required depends on where on the tape the desired song

is recorded. This is SAM because you have to sequence through all inter-

vening information until you find what you are looking for. The RAM

counterpart to this would be an audio CD, where you can quickly select

any song by punching in the appropriate code, and it takes approxi-

mately the same time no matter what song you select. Sequential-access

memories are used where the data to be accessed will always come in a

long sequence of successive words.Video memory, for example, must out-

put its contents in the same order over and over again to keep the image

refreshed on the CRT screen.

■ Read/Write Memory (RWM). Any memory that can be read from or writ-

ten into with equal ease.

■ Read-Only Memory (ROM). A broad class of semiconductor memories

designed for applications where the ratio of read operations to write op-

erations is very high. Technically, a ROM can be written into (pro-

grammed) only once, and this operation is normally performed at the

factory.Thereafter, information can only be read from the memory. Other

types of ROM are actually read-mostly memories (RMM), which can be

written into more than once; but the write operation is more complicated

than the read operation, and it is not performed very often. The various

types of ROM will be discussed later. All ROM is nonvolatile and will store

data when electrical power is removed.

■ Static Memory Devices. Semiconductor memory devices in which the

stored data will remain permanently stored as long as power is

applied, without the need for periodically rewriting the data into

memory.

■ Dynamic Memory Devices. Semiconductor memory devices in which the

stored data will not remain permanently stored, even with power ap-

plied, unless the data are periodically rewritten into memory. The latter

operation is called a refresh operation.

■ Main Memory. Also referred to as the computer’s working memory. It

stores instructions and data the CPU is currently working on. It is the

highest-speed memory in the computer and is always a semiconductor

memory.

■ Auxiliary Memory. Also referred to as mass storage because it stores mas-

sive amounts of information external to the main memory. It is slower in

speed than main memory and is always nonvolatile. Magnetic disks and

CDs are common auxiliary memory devices.

SECTION 12-1/MEMORY TERMINOLOGY 789

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 789

12-2 GENERAL MEMORY OPERATION

Although each type of memory is different in its internal operation, certain

basic operating principles are the same for all memory systems. An under-

standing of these basic ideas will help in our study of individual memory

devices.

Every memory system requires several different types of input and out-

put lines to perform the following functions:

1. Select the address in memory that is being accessed for a read or write

operation.

2. Select either a read or a write operation to be performed.

3. Supply the input data to be stored in memory during a write operation.

4. Hold the output data coming from memory during a read operation.

5. Enable (or disable) the memory so that it will (or will not) respond to the

address inputs and read/write command.

Figure 12-3(a) illustrates these basic functions in a simplified diagram of

a memory that stores 32 four-bit words. Because the word size is four

bits, there are four data input lines I0 to I3 and four data output lines O0 to

O3. During a write operation, the data to be stored into memory must be ap-

plied to the data input lines. During a read operation, the word being read

from memory appears at the data output lines.

Address Inputs
Because this memory stores 32 words, it has 32 different storage locations

and therefore 32 different binary addresses ranging from 00000 to 11111 (0

to 31 in decimal). Thus, there are five address inputs, A0 to A4. To access one

32 * 4

790 CHAPTER 12/MEMORY DEVICES

REVIEW QUESTION 1. Define the following terms.

(a) Memory cell

(b) Memory word

(c) Address

(d) Byte

(e) Access time

2. A certain memory has a capacity of How many bits are in each

word? How many words are being stored? How many memory cells does

this memory contain?

3. Explain the difference between the read (fetch) and write (store) opera-

tions.

4. True or false: A volatile memory will lose its stored data when electrical

power is interrupted.

5. Explain the difference between SAM and RAM.

6. Explain the difference between RWM and ROM.

7. True or false: A dynamic memory will hold its data as long as electrical

power is applied.

8K * 16.

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 790

of the memory locations for a read or a write operation, the five-bit address

code for that particular location is applied to the address inputs. In general,

N address inputs are required for a memory that has a capacity of 2N words.

We can visualize the memory of Figure 12-3(a) as an arrangement of 32

registers, with each register holding a four-bit word, as illustrated in Figure

12-3(b). Each address location is shown containing four memory cells that

hold 1s and 0s that make up the data word stored at that location. For exam-

ple, the data word 0110 is stored at address 00000, the data word 1001 is

stored at address 00001, and so on.

The Input
This input controls which memory operation is to take place: read (R) or write

(W).The input is labeled there is no bar over the R, which indicates that

the read operation occurs when The bar over the W indicates that

the write operation takes place when Other labels are often used

for this input.Two of the more common ones are (write) and (write en-

able). Again, the bar indicates that the write operation occurs when the input

is LOW. It is understood that the read operation occurs for a HIGH.

A simplified illustration of the read and write operations is shown in

Figure 12-4. Figure 12-4(a) shows the data word 0100 being written into the

memory register at address location 00011. This data word would have been

applied to the memory’s data input lines, and it replaces the data previously

stored at address 00011. Figure 12-4(b) shows the data word 1101 being read

from address 11110. This data word would appear at the memory’s data out-

put lines.After the read operation, the data word 1101 is still stored in address

11110. In other words, the read operation does not change the stored data.

Memory Enable
Many memory systems have some means for completely disabling all or part

of the memory so that it will not respond to the other inputs. This is repre-

sented in Figure 12-3 as the MEMORY ENABLE input, although it can have

different names in the various memory systems, such as chip enable (CE) or

chip select (CS). Here, it is shown as an active-HIGH input that enables the

memory to operate normally when it is kept HIGH. A LOW on this input dis-

ables the memory so that it will not respond to the address and inputs.R>W

WEW
R>W = 0.

R>W = 1.

R>W;

R/W

SECTION 12-2/GENERAL MEMORY OPERATION 791

0 1 1 0

Read/write command

Data outputs

(a)

Memory enable
Address
inputs

MSB

Data inputs

A4

A3

A2

A1

A0

I3 I2 I1 I0

O3 O2 O1 O0

R/W

ME

32 x 4
Memory

1 0 0 1

1 1 1 1

1 0 0 0

0 0 0 1

0 0 0 0

1 1 0 1

1 1 0 1

0 1 1 1

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 1 0 0

0 0 1 0 1

1 1 1 0 1

1 1 1 1 0

1 1 1 1 1

•••
•••

•••
•••

•••
•••

•••

Addresses
Memory cells

(b)

FIGURE 12-3 (a) Diagram

of a memory;

(b) virtual arrangement of

memory cells into 32

four-bit words.

32 * 4

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 791

This type of input is useful when several memory modules are combined to

form a larger memory. We will examine this idea later.

792 CHAPTER 12/MEMORY DEVICES

FIGURE 12-4 Simplified

illustration of the read and

write operations on the

memory: (a) writing

the data word 0100 into

memory location 00011;

(b) reading the data word

1101 from memory location

11110.

32 * 4

0 1 1 0

1 0 0 1

1 1 1 1

0 1 0 0

0 0 0 1

0 0 0 0

1 1 0 1

1 1 0 1

0 1 1 1

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 1 0 0

0 0 1 0 1

1 1 1 0 1

1 1 1 1 0

1 1 1 1 1

•••
•••

•••
•••

•••
•••

•••

Addresses

0 1 1 0

1 0 0 1

1 1 1 1

0 1 0 0

0 0 0 1

0 0 0 0

1 1 0 1

1 1 0 1

0 1 1 1

•••
•••

•••
•••

•••

0100

1101

(a) WRITING the data
word 0100 into
memory location 00011.

(b) READING the data
word 1101 from
memory location 11110.

EXAMPLE 12-2 Describe the conditions at each input and output when the contents of ad-

dress location 00100 are to be read.

Solution

Address inputs: 00100

Data inputs: xxxx (not used)

HIGH

MEMORY ENABLE: HIGH

Data outputs: 0001

R>W:

EXAMPLE 12-3 Describe the conditions at each input and output when the data word 1110 is

to be written into address location 01101.

Solution

Address inputs: 01101

Data inputs: 1110

LOW

MEMORY ENABLE: HIGH

Data outputs: xxxx (not used; usually Hi-Z)

R>W:

EXAMPLE 12-4 A certain memory has a capacity of

(a) How many data input and data output lines does it have?

(b) How many address lines does it have?

(c) What is its capacity in bytes?

4K * 8.

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 792

Solution

(a) Eight of each because the word size is eight.

(b) The memory stores Thus, there are 4096

memory addresses. Because 4096 � 212, it requires a 12-bit address code

to specify one of 4096 addresses.

(c) A byte is eight bits. This memory has a capacity of 4096 bytes.

The example memory in Figure 12-3 illustrates the important input and

output functions common to most memory systems. Of course, each type of

memory may have other input and output lines that are peculiar to that mem-

ory. These will be described as we discuss the individual memory types.

4K = 4 * 1024 = 4096 words.

SECTION 12-3/CPU–MEMORY CONNECTIONS 793

REVIEW QUESTIONS 1. How many address inputs, data inputs, and data outputs are required for

a memory?

2. What is the function of the input?

3. What is the function of the MEMORY ENABLE input?

R>W

16K * 12

12-3 CPU–MEMORY CONNECTIONS

A major part of this chapter is devoted to semiconductor memory, which, as

pointed out earlier, makes up the main memory of most modern computers.

Remember, this main memory is in constant communication with the central

processing unit (CPU). It is not necessary to be familiar with the detailed op-

eration of a CPU at this point, and so the following simplified treatment of

the CPU–memory interface will provide the perspective needed to make our

study of memory devices more meaningful.

A computer’s main memory is made up of RAM and ROM ICs that are in-

terfaced to the CPU over three groups of signal lines or buses. These are

shown in Figure 12-5 as the address lines or address bus, the data lines or

data bus, and the control lines or control bus. Each of these buses consists of

several lines (note that they are represented by a single line with a slash),

and the number of lines in each bus will vary from one computer to the next.

The three buses play a necessary part in allowing the CPU to write data into

memory and to read data from memory.

Memory
IC

Memory
IC

CPU

Data bus

Address bus

Control bus

FIGURE 12-5 Three

groups of lines (buses)

connect the main memory

ICs to the CPU.

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 793

When a computer is executing a program of instructions, the CPU con-

tinually fetches (reads) information from those locations in memory that

contain (1) the program codes representing the operations to be performed

and (2) the data to be operated upon. The CPU will also store (write) data

into memory locations as dictated by the program instructions.Whenever the

CPU wants to write data to a particular memory location, the following steps

must occur:

Write Operation

1. The CPU supplies the binary address of the memory location where the

data are to be stored. It places this address on the address bus lines.

2. The CPU places the data to be stored on the data bus lines.

3. The CPU activates the appropriate control signal lines for the memory

write operation.

4. The memory ICs decode the binary address to determine which location

is being selected for the store operation.

5. The data on the data bus are transferred to the selected memory location.

Whenever the CPU wants to read data from a specific memory location,

the following steps must occur:

Read Operation

1. The CPU supplies the binary address of the memory location from which

data are to be retrieved. It places this address on the address bus lines.

2. The CPU activates the appropriate control signal lines for the memory

read operation.

3. The memory ICs decode the binary address to determine which location

is being selected for the read operation.

4. The memory ICs place data from the selected memory location onto the

data bus, from which they are transferred to the CPU.

The steps above should make clear the function of each of the system

buses:

■ Address Bus. This unidirectional bus carries the binary address outputs

from the CPU to the memory ICs to select one memory location.

■ Data Bus. This bidirectional bus carries data between the CPU and the

memory ICs.

■ Control Bus. This bus carries control signals (such as the signal)

from the CPU to the memory ICs.

As we get into discussions of actual memory ICs, we will examine the sig-

nal activity that appears on these buses for the read and write operations.

R/W

794 CHAPTER 12/MEMORY DEVICES

REVIEW QUESTIONS 1. Name the three groups of lines that connect the CPU and the internal

memory.

2. Outline the steps that take place when the CPU reads from memory.

3. Outline the steps that occur when the CPU writes to memory.

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 794

12-4 READ-ONLY MEMORIES

The read-only memory is a type of semiconductor memory designed to hold

data that either are permanent or will not change frequently. During normal

operation, no new data can be written into a ROM, but data can be read from

ROM. For some ROMs, the data that are stored must be built-in during the

manufacturing process; for other ROMs, the data can be entered electrically.

The process of entering data is called programming or burning-in the ROM.

Some ROMs cannot have their data changed once they have been pro-

grammed; others can be erased and reprogrammed as often as desired. We

will take a detailed look later at these various types of ROMs. For now, we

will assume that the ROMs have been programmed and are holding data.

ROMs are used to store data and information that are not to change during

the normal operation of a system.A major use for ROMs is in the storage of pro-

grams in microcomputers. Because all ROMs are nonvolatile, these programs

are not lost when electrical power is turned off. When the microcomputer is

turned on, it can immediately begin executing the program stored in ROM.

ROMs are also used for program and data storage in microprocessor-controlled

equipment such as electronic cash registers, appliances, and security systems.

ROM Block Diagram
A typical block diagram for a ROM is shown in Figure 12-6(a). It has three

sets of signals: address inputs, control input(s), and data outputs. From our

previous discussions, we can determine that this ROM is storing 16 words

because it has 24 � 16 possible addresses, and each word contains eight bits

because there are eight data outputs. Thus, this is a Another

way to describe this ROM’s capacity is to say that it stores 16 bytes of data.

The data outputs of most ROM ICs are tristate outputs, to permit the

connection of many ROM chips to the same data bus for memory expansion.

The most common numbers of data outputs for ROMs are four, eight, and 16

bits, with eight-bit words being the most common.

The control input stands for chip select. This is essentially an enable

input that enables or disables the ROM outputs. Some manufacturers use dif-

ferent labels for the control input, such as CE (chip enable) or OE (output en-

able). Many ROMs have two or more control inputs that must be active in

order to enable the data outputs so that data can be read from the selected

address. In some ROM ICs, one of the control inputs (usually the CE) is used

to place the ROM in a low-power standby mode when it is not being used.This

reduces the current drain from the system power supply.

The input shown in Figure 12-6(a) is active-LOW; therefore, it must be

in the LOW state to enable the ROM data to appear at the data outputs. No-

tice that there is no (read/write) input because the ROM cannot be writ-

ten into during normal operation.

The Read Operation
Let’s assume that the ROM has been programmed with the data shown in the

table of Figure 12-6(b). Sixteen different data words are stored at the 16 dif-

ferent address locations. For example, the data word stored at location 0011

is 10101111. Of course, the data are stored in binary inside the ROM, but very

often we use hexadecimal notation to show the programmed data efficiently.

This is done in Figure 12-6(c).

In order to read a data word from ROM, we need to do two things: (1) ap-

ply the appropriate address inputs and then (2) activate the control inputs. For

R>W

CS

CS

16 * 8 ROM.

SECTION 12-4/READ-ONLY MEMORIES 795

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 795

example, if we want to read the data stored at location 0111 of the ROM in

Figure 12-6, we must apply A3A2A1A0 � 0111 to the address inputs and then ap-

ply a LOW to The address inputs will be decoded inside the ROM to select

the correct data word, 11101101, that will appear at outputs D7 to D0. If is

kept HIGH, the ROM outputs will be disabled and will be in the Hi-Z state.

CS
CS.

796 CHAPTER 12/MEMORY DEVICES

D7
D6
D5
D4
D3
D2
D1
D0

16 x 8
ROM

A0

A1

A2

A3

CS (chip select)

Control input
(a)

= tristate

Address
inputs

Data
outputs

(b)

A3

0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1

A2

0
0
0
0
1
1
1
1

0
0
0
0
1
1
1
1

A1

0
0
1
1
0
0
1
1

0
0
1
1
0
0
1
1

A0

0
1
0
1
0
1
0
1

0
1
0
1
0
1
0
1

Word

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

D7

1
0
1
1
0
0
0
1

0
1
1
1
0
0
1
0

D6

1
0
0
0
0
1
0
1

0
1
0
1
0
1
1
1

D5

0
1
0
1
0
1
0
1

1
1
1
0
1
1
0
0

D4

1
1
0
0
1
1
0
0

1
1
1
0
0
0
1
1

D3

1
1
0
1
1
1
0
1

1
1
1
0
0
1
0
1

D2

1
0
1
1
0
0
0
1

1
1
0
1
1
0
0
0

D0

0
0
1
1
1
1
0
1

0
1
0
1
1
0
0
1

D1

1
1
0
1
0
1
0
0

0
1
0
1
1
1
1
1

Address Data

(c)

Word

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Address Data

A3 A2 A1 A0

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

D7 –D0

DE
3A
85
AF
19
7B
00
ED
3C
FF
B8
C7
27
6A
D2
5B

FIGURE 12-6 (a) Typical ROM block symbol; (b) table showing binary data at each

address location; (c) the same table in hex.

REVIEW QUESTIONS 1. True or false: All ROMs are nonvolatile.

2. Describe the procedure for reading from ROM.

3. What is programming or burning-in a ROM?

12-5 ROM ARCHITECTURE

The internal architecture (structure) of a ROM IC is very complex, and we

need not be familiar with all of its detail. It is instructive, however, to look at

a simplified diagram of the internal architecture, such as that shown in

Figure 12-7, for the There are four basic parts: register array,
row decoder, column decoder, and output buffers.

16 * 8 ROM.

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 796

Register Array
The register array stores the data that have been programmed into the ROM.

Each register contains several memory cells equal to the word size. In this

case, each register stores an eight-bit word. The registers are arranged in a

square matrix array that is common to many semiconductor memory chips.

We can specify the position of each register as being in a specific row and a

specific column. For example, register 0 is in row 0, column 0, and register 9

is in row 1, column 2.

The eight data outputs of each register are connected to an internal

data bus that runs through the entire circuit. Each register has two enable

inputs (E); both must be HIGH in order for the register’s data to be placed

on the bus.

Address Decoders
The applied address code A3A2A1A0 determines which register in the array

will be enabled to place its eight-bit data word onto the bus.Address bits A1A0

are fed to a 1-of-4 decoder that activates one row-select line, and address bits

A3A2 are fed to a second 1-of-4 decoder that activates one column-select line.

SECTION 12-5/ROM ARCHITECTURE 797

Register 0
E E

Register 4
E E

Register 8
E E

Register 3
E E

Register 7
E E

Register 11
E E

Register 15
E E

Register 2
E E

Register 6
E E

Register 10
E E

Register 14
E E

Register 1
E E

Register 5
E E

Register 9
E E

Register 13
E E

Register 12
E E

ROW SELECT

A0

A1

1-of-4
decoder

MSB

0

1

2

3

COLUMN SELECT

A2

A3

1-of-4
decoder

MSB

0

1

2

3

Column 0 Column 1 Column 2 Column 3

Row 0

Row 1

Row 2

Row 3

Column 0

Column 1

Column 2

Column 3

[8]

D7 D6 D5 D4 D3 D2 D1 D0

Output
buffers

ECS

FIGURE 12-7 Architecture of a . Each register stores one eight-bit word.16 * 8 ROM

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 797

798 CHAPTER 12/MEMORY DEVICES

EXAMPLE 12-5 Which register will be enabled by input address 1101?

Solution

A3A2 � 11 will cause the column decoder to activate the column 3 select line,

and A1A0 � 01 will cause the row decoder to activate the row 1 select line.

This will place HIGHs at both enable inputs of register 13, thereby causing

its data outputs to be placed on the bus. Note that the other registers in col-

umn 3 will have only one enable input activated; the same is true for the

other row 1 registers.

EXAMPLE 12-6 What input address will enable register 7?

Solution

The enable inputs of this register are connected to the row 3 and column 1

select lines, respectively. To select row 3, the A1A0 inputs must be at 11, and

to select column 1, the A3A2 inputs must be at 01. Thus, the required address

will be A3A2A1A0 � 0111.

Output Buffers
The register that is enabled by the address inputs will place its data on the

data bus. These data feed into the output buffers, which will pass the data to

the external data outputs, provided that is LOW. If is HIGH, the output

buffers are in the Hi-Z state, and D7 through D0 will be floating.

The architecture shown in Figure 12-7 is similar to that of many IC ROMs.

Depending on the number of stored data words, the registers in some ROMs

will not be arranged in a square array. For example, the Intel 27C64 is a

CMOS ROM that stores 8192 eight-bit words. Its 8192 registers are arranged

in an array of ROM capacities range from to

8M * 8.

256 * 4256 rows * 32 registers.

CSCS

EXAMPLE 12-7 Describe the internal architecture of a ROM that stores 4K bytes and uses a

square register array.

Solution

4K is actually and so this ROM holds 4096 eight-bit words.

Each word can be thought of as being stored in an eight-bit register, and

there are 4096 registers connected to a common data bus internal to the

chip. Because 4096 � 642, the registers are arranged in a array; that

is, there are 64 rows and 64 columns.This requires a 1-of-64 decoder to decode

six address inputs for the row select, and a second 1-of-64 decoder to decode

six other address inputs for the column select. Thus, a total of 12 address

inputs is required. This makes sense because 212 � 4096, and there are 4096

different addresses.

64 * 64

4 * 1024 = 4096,

Only one register will be in both the row and the column selected by the ad-

dress inputs, and this one will be enabled.

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 798

12-6 ROM TIMING

There will be a propagation delay between the application of a ROM’s inputs

and the appearance of the data outputs during a read operation. This time

delay, called access time (tACC) is a measure of the ROM’s operating speed.

Access time is described graphically by the waveforms in Figure 12-8.

The top waveform represents the address inputs; the middle waveform is

an active-LOW chip select, and the bottom waveform represents the data

outputs. At time t0 the address inputs are all at some specific level, some

HIGH and some LOW. is HIGH, so that the ROM data outputs are in their

Hi-Z state (represented by the hatched line).

Just prior to t1, the address inputs are changing to a new address for a

new read operation. At t1, the new address is valid; that is, each address in-

put is at a valid logic level. At this point, the internal ROM circuitry begins

to decode the new address inputs to select the register that is to send its data

to the output buffers. At t2, the input is activated to enable the output

buffers. Finally, at t3, the outputs change from the Hi-Z state to the valid data

that represent the data stored at the specified address.

The time delay between t1, when the new address becomes valid, and t3,

when the data outputs become valid, is the access time tACC. Typical bipolar

ROMs will have access times in the range from 30 to 90 ns; access times of

NMOS devices will range from 35 to 500 ns. Improvements to CMOS tech-

nology have brought access times into the 20-to-60-ns range. Consequently,

bipolar and NMOS devices are rarely produced in newer (larger) ROMs.

Another important timing parameter is the output enable time (tOE),

which is the delay between the input and the valid data output. Typical

values for tOE are 10 to 20 ns for bipolar, 25 to 100 ns for NMOS, and 12 to 50

ns for CMOS ROMs. This timing parameter is important in situations where

CS

CS

CS

CS;

SECTION 12-6/ROM TIMING 799

REVIEW QUESTIONS 1. What input address code is required if we want to read the data from reg-

ister 9 in Figure 12-7?

2. Describe the function of the row-select decoder, the column-select de-

coder, and the output buffers in the ROM architecture.

1

0

Address
inputs

Data
outputs

Old
address

New
address valid

tACC

tOE
Hi-Z

Data outputs
valid

1

0

0

1

0

Timet3t2t1t0

CS

FIGURE 12-8 Typical

timing for a ROM read

operation.

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 799

the address inputs are already set to their new values, but the ROM outputs

have not yet been enabled. When goes LOW to enable the outputs, the de-

lay will be tOE.

12-7 TYPES OF ROMs

Now that we have a general understanding of the internal architecture and

external operation of ROM devices, we will look at the various types of

ROMs to see how they differ in the way they are programmed, erased, and

reprogrammed.

Mask-Programmed ROM
The mask-programmed ROM (MROM) has its information stored at the time

the integrated circuit is manufactured. As you can see from Figure 12-9,

ROMs are made up of a rectangular array of transistors. Information is stored

by either connecting or disconnecting the source of a transistor to the output

CS

800 CHAPTER 12/MEMORY DEVICES

Q0

D3 D2 D1 D0

Data outputs

+VddRow 0

Row 1

Row 2

Row 3

Row-
enable
line

A1

A0

EN

1-of-4
decoder

0

1

2

3

Q1 Q2 Q3

Q4 Q5 Q6 Q7

Q8 Q9 Q10 Q11

Q12 Q13 Q14 Q15A1

0
0
1
1

Address

A0

0
1
0
1

D3

1
1
1
0

D2

0
0
1
1

D1

1
0
1
1

D0

0
1
0
1

Data

FIGURE 12-9 Structure of a MOS MROM shows one MOSFET used for each memory

cell. An open source connection stores a “0”; a closed source connection stores a “1.”

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 800

column. The last step in the manufacturing process is to form all these con-

ducting paths or connections.The process uses a “mask” to deposit metals on

the silicon that determine where the connections form in a way similar to us-

ing stencils and spray paint but on a much smaller scale.The mask is very pre-

cise and expensive and must be made specifically for the customer, with the

correct binary information. Consequently, this type of ROM is economical

only when many ROMs are being made with exactly the same information.

Mask-programmed ROMs are commonly referred to as just ROMs, but

this can be confusing because the term ROM actually represents the broad

category of devices that, during normal operation, are only read from.We will

use the abbreviation MROM whenever we refer to mask-programmed ROMs.

Figure 12-9 shows the structure of a small MOS MROM. It consists of 16

memory cells arranged in four rows of four cells. Each cell is an N-channel

MOSFET transistor connected in the common-drain configuration (input at

gate, output at source).The top row of cells (ROW 0) constitutes a four-bit reg-

ister. Note that some of the transistors in this row (Q0 and Q2) have their source

connected to the output column line, while others (Q1 and Q3) do not. The

same is true of the cells in each of the other rows.The presence or absence of

these source connections determines whether a cell is storing a 1 or a 0, re-

spectively. The condition of each source connection is controlled during pro-

duction by the photographic mask based on the customer-supplied data.

Notice that the data outputs are connected to column lines. Referring to

output D3, for instance, any transistor that has a connection from the source

(such as Q0, Q4, and Q8) to the output column can switch Vdd onto the column,

making it a HIGH logic level. If Vdd is not connected to the column line, the

output will be held at a LOW logic level by the pull-down resistor. At any

given time, a maximum of one transistor in a column will ever be turned on

due to the row decoder.

The 1-of-4 decoder is used to decode the address inputs A1A0 to select

which row (register) is to have its data read. The decoder’s active-HIGH out-

puts provide the ROW enable lines that are the gate inputs for the various

rows of cells. If the decoder’s enable input, is held HIGH, all of the de-

coder outputs will be in their inactive LOW state, and all of the transistors in

the array will be off because of the absence of any gate voltage. For this sit-

uation, the data outputs will all be in the LOW state.

When is in its active-LOW state, the conditions at the address inputs

determine which row (register) will be enabled so that its data can be read

at the data outputs. For example, to read ROW 0, the A1A0 inputs are set to

00. This places HIGH at the ROW 0 line; all other row lines are at 0 V. This

HIGH at ROW 0 turns on transistors Q0, Q1, Q2, and Q3. With all of the tran-

sistors in the row conducting, Vdd will be switched on to each transistor’s

source lead. Outputs D3 and D1 will go HIGH because Q0 and Q2 are con-

nected to their respective columns. D2 and D0 will remain LOW because there

is no path from the Q1 and Q3 source leads to their columns. In a similar man-

ner, application of the other address codes will produce data outputs from

the corresponding register. The table in Figure 12-9 shows the data for each

address.You should verify how this correlates with the source connections to

the various cells.

EN

EN,

SECTION 12-7/TYPES OF ROMS 801

EXAMPLE 12-8 MROMs can be used to store tables of mathematical functions. Show how the

MROM in Figure 12-9 can be used to store the function y � x2 � 3, where the

input address supplies the value for x, and the value of the output data is y.

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 801

Solution

The first step is to set up a table showing the desired output for each set

of inputs. The input binary number, x, is represented by the address A1A0.

The output binary number is the desired value of y. For example, when

x � A1A0 � 102 � 210, the output should be 22 � 3 � 710 � 01112. The com-

plete table is shown in Table 12-1. This table is supplied to the MROM

manufacturer for developing the mask that will make the appropriate con-

nections within the memory cells during the fabrication process. For in-

stance, the first row in the table indicates that the connections to the

source of Q0 and Q1 will be left unconnected, while the connections to Q2

and Q3 will be made.

MROMs typically have tristate outputs that allow them to be used in a

bus system, as we discussed in Chapter 9. Consequently, there must be a con-

trol input to enable and disable the tristate outputs.This control input is usu-

ally labeled OE (for output enable). In order to distinguish this tristate

enable input from the address decoder enable input, the latter is usually re-

ferred to as a chip enable (CE). The chip enable performs more than just en-

abling the address decoder. When CE is disabled, all functions of the chip are

disabled, including the tristate outputs, and the entire circuit is placed in a

power-down mode that draws much less current from the power supply.

Figure 12-10 shows a MROM. The 15 address lines (A0–A14) can

identify 215 memory locations (32, 767, or 32K). Each memory location holds

an eight-bit data value that can be placed on the data lines D7–D0 when the

chip is enabled and the outputs are enabled.

32K * 8

802 CHAPTER 12/MEMORY DEVICES

TABLE 12-1
x

A1 A0 D3 D2 D1 D0

0 0 0 0 1 1

0 1 0 1 0 0

1 0 0 1 1 1

1 1 1 1 0 0

y = x2 + 3

FIGURE 12-10 Logic

symbol for a

.32K * 8 MROM

CE
OE

D7
D6
D5
D4
D3
D2
D1
D0

ROM
32K � 8

[PWR DWN]

A14
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 802

Programmable ROMs (PROMs)
A mask-programmable ROM is very expensive and would not be used except

in high-volume applications, where the cost would be spread out over many

units. For lower-volume applications, manufacturers have developed fusible-
link PROMs that are user-programmable; that is, they are not programmed

during the manufacturing process but are custom-programmed by the user.

Once programmed, however, a PROM is like an MROM because it cannot be

erased and reprogrammed. Thus, if the program in the PROM is faulty or

must be changed, the PROM must be thrown away. For this reason, these de-

vices are often referred to as “one-time programmable” (OTP) ROMs.

The fusible-link PROM structure is very similar to the MROM structure

because certain connections either are left intact or are opened in order to

program a memory cell as a 1 or a 0, respectively. A PROM comes from the

manufacturer with a thin, fuse link connection in the source leg of every tran-

sistor. In this condition, every transistor stores a 1. The user can then “blow”

the fuse for any transistor that needs to store a 0. Typically, data can be pro-

grammed or “burned into” a PROM by selecting a row by applying the desired

address to the address inputs, placing the desired data on the data pins, and

then applying a pulse to a special programming pin on the IC. Figure 12-11

shows the inner workings of how this is done.

SECTION 12-7/TYPES OF ROMS 803

Q0

+Vdd/Vpp

Q1

+Vdd/Vpp

Data lines
(columns)

Vdd
“1”

0 V
“0”Stored data

Row 0

High current

Fusible
link

Melting fuse

All of the transistors in the selected row (row 0) are turned on, and Vpp is

applied to their drain leads.Those columns (data lines) that have a logic 0 on

them (e.g., Q1) will provide a high-current path through the fusible link, burn-

ing it open and permanently storing a logic 0.Those columns that have a logic

1 (e.g., Q0) have Vpp on one side of the fuse and Vdd on the other side, draw-

ing much less current and leaving the fuse intact. Once all address locations

have been programmed in this manner, the data are permanently stored in

the PROM and can be read over and over again by accessing the appropriate

address. The data will not change when power is removed from the PROM

chip because nothing will cause an open fuse link to become closed again.

A PROM is programmed using the same equipment and process described

in Chapter 4 for programming a PLD.The TMS27PC256 is a very popular CMOS

PROM with a capacity of and a standby power dissipation of only

1.4 mW. It is available with maximum access times ranging from 100 to 250 ns.

Erasable Programmable ROM (EPROM)
An EPROM can be programmed by the user, and it can also be erased and re-

programmed as often as desired. Once programmed, the EPROM is a nonvolatile

32K * 8

FIGURE 12-11 PROMs

use fusible links that can

be selectively blown open

by the user to program a

logic 0 into a cell.

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 803

memory that will hold its stored data indefinitely. The process for program-

ming an EPROM is the same as that for a PROM.

The storage element of an EPROM is a MOS transistor with a silicon gate

that has no electrical connection (i.e., a floating gate) but is very close to an

electrode. In its normal state there is no charge stored on the floating gate

and the transistor will produce a logic 1 whenever it is selected by the ad-

dress decoder. To program a 0, a high-voltage pulse is used to leave a net

charge on the floating gate.This charge causes the transistor to output a logic

0 when it is selected. Since the charge is trapped on the floating gate and has

no discharge path, the 0 will be stored until it is erased. The data are erased

by restoring all cells to a logic 1. To do this, the charge on the floating elec-

trode is neutralized by exposing the silicon to high-intensity ultraviolet (UV)

light for several minutes.

The 27C64 is an example of a small memory IC that is available

as a “one-time-programmable” (OTP) PROM or as an erasable UV EPROM.The

obvious difference in the two ICs is the EPROM’s clear quartz “window,” shown

in Figure 12-12(b), which allows the UV light to shine on the silicon. Both ver-

sions operate from a single �5-V power source during normal operation.

Figure 12-12(a) is the logic symbol for the 27C64. Note that it shows 13

address inputs (because 213 � 8192) and eight data outputs. It has four con-

trol inputs. is the chip enable input that is used to place the device in a

standby mode where its power consumption is reduced. is the output en-

able and is used to control the device’s data output tristate buffers so that

the device can be connected to a microprocessor data bus without bus con-

tention. VPP is the special programming voltage required during the pro-

gramming process. is the program enable input that is activated to store

data at the selected address.

PGM

OE
CE

8K * 8K

804 CHAPTER 12/MEMORY DEVICES

EPROM
8K x 8A12

OE

CE

A11

A1

A0

•
•
•
•
•

Control
inputs

Address
inputs

+VCC

27C64

D7

D6

D5

D4

D3

D2

D1

D0

Data
outputs

(a)

Window for
UV erasing

(b)

(c)

PGM

Mode

Read

Output
Disable

Standby

Program

CE
0

0

1

0

OE
0

1

X

1

Inputs

PGM
Verify

0 0

D7 – D0

DATAout

High Z

High Z

DATAin

Outputs

DATAout

VPP
0–5V

0–5V

X

12.75
V
12.75
V

PGM
1

1

X

0

1

+VPP

FIGURE 12-12 (a) Logic symbol for 27C64 EPROM; (b) typical EPROM package

showing ultraviolet window; (c) 27C64 operating modes.

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 804

The 27C64 has several operating modes that are controlled by the

VPP, and PGM pins, as presented in Figure 12-12(c). The program mode is

used to write new data into the EPROM cells. This is most often done on a

“clean” EPROM, one that has previously been erased with UV light so that

all cells are 1s. The programming process writes one eight-bit word into one

address location at one time as follows: (1) the address is applied to the ad-

dress pins; (2) the desired data are placed at the data pins, which function as

inputs during the programming process; (3) a higher programming voltage

of 12.75V is applied to VPP; (4) is held LOW; (5) is pulsed LOW for

100 and the data are read back. If the data were not successfully stored,

another pulse is applied to This is repeated at the same address until

the data are successfully stored.

A clean EPROM can be programmed in less than a minute once the de-

sired data have been entered, transferred, or downloaded into the EPROM

programmer. The 27C512 is a common EPROM that operates very

much like the 27C64 but offers more storage capacity.

The major disadvantages of UVEPROMs are that they must be removed

from the circuit to be programmed and erased, the erase operation erases the

entire chip, and the erase operation takes up to 20 minutes.

Electrically Erasable PROM (EEPROM)
The disadvantages of the EPROM were overcome by the development of the

electrically erasable PROM (EEPROM) as an improvement over the EPROM.

The EEPROM retains the same floating-gate structure as the EPROM, but

with the addition of a very thin oxide region above the drain of the MOSFET

memory cell.This modification produces the EEPROM’s major characteristic—

its electrical erasability. By applying a high voltage (21 V) between the

MOSFET’s gate and drain, a charge can be induced onto the floating gate,

where it will remain even when power is removed; reversal of the same volt-

age causes a removal of the trapped charges from the floating gate and erases

the cell. Because this charge-transport mechanism requires very low currents,

the erasing and programming of an EEPROM can be done in circuit (i.e., with-

out a UV light source and a special PROM programmer unit).

Another advantage of the EEPROM over the EPROM is the ability to

erase and rewrite individual bytes (eight-bit words) in the memory array elec-

trically. During a write operation, internal circuitry automatically erases all

of the cells at an address location prior to writing in the new data. This byte

erasability makes it much easier to make changes in the data stored in an

EEPROM.

The early EEPROMs, such as Intel’s 2816, required appropriate support

circuitry external to the memory chips. This support circuitry included the

21-V programming voltage (VPP), usually generated from a �5 V supply

through a dc-to-dc converter, and it included circuitry to control the timing

and sequencing of the erase and programming operations. The newer de-

vices, such as the Intel 2864, have integrated this support circuitry onto the

same chip with the memory array, so that it requires only a single 5-V power

pin.This makes the EEPROM as easy to use as the read/write memory we will

be discussing shortly.

The byte erasability of the EEPROM and its high level of integration

come with two penalties: density and cost. The memory cell complexity and

the on-chip support circuitry place EEPROMs far behind an EPROM in bit

capacity per square millimeter of silicon; a 1-Mbit EEPROM requires about

twice as much silicon as a 1-Mbit EPROM. So despite its operational superi-

ority, the EEPROM’s shortcomings in density and cost-effectiveness have

64K * 8

PGM.

ms

PGMCE

CE, OE,

SECTION 12-7/TYPES OF ROMS 805

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 805

kept it from replacing the EPROM in applications where density and cost are

paramount factors.

The logic symbol for the Intel 2864 is shown in Figure 12-13(a). It is or-

ganized as an array with 13 address inputs (213 � 8192) and eight data

I/O pins.Three control inputs determine the operating mode according to the

8K * 8

806 CHAPTER 12/MEMORY DEVICES

Write Mode

EEPROM
8K x 8
2864

I/O7

I/O6

I/O5

I/O4

I/O3

I/O2

I/O1

I/O0

A12

A11

A1

A0

OE

CE

WE

Control
inputs

Address
inputs

+5 V

Data

(a)

Mode

READ

WRITE

STANDBY

CE OE I/O pins

DATAOUT

DATAIN

High Z

(b)

LOW

LOW

HIGH

LOW

HIGH

X

WE

HIGH

LOW

X

1

0

DATA
VALID

0

ADDRESS STABLE

Standby
Mode Standby

ADDRESS

1

0

1

0

1

0

1

t1 t5t2 t3 t4

typically 200 ns

(c)

Erase and store
operations; typically

5 ms.

CE

OE

WE

DATA
I/O

Inputs

•
•
•
•

FIGURE 12-13 (a) Symbol for the 2864 EEPROM; (b) operating modes; (c) timing

for the write operation.

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 806

SECTION 12-7/TYPES OF ROMS 807

table given in Figure 12-13(b). With the chip is in its low-power

standby mode, in which no operations are being performed on any memory

location and the data pins are in the Hi-Z state.

To read the contents of a memory location, the desired address is applied

to the address pins; is driven LOW; and the output enable pin, is

driven LOW to enable the chip’s output data buffers. The write enable pin,

is held HIGH during a read operation.

To write into (program) a memory location, the output buffers are dis-

abled so that the data to be written can be applied as inputs to the I/O pins.

The timing for the write operation is diagrammed in Figure 12-13(c). Prior to

t1, the device is in the standby mode. A new address is applied at that time.

At t2, the and inputs are driven LOW to begin the write operation;

is HIGH so that the data pins will remain in the Hi-Z state. Data are applied

to the I/O pins at t3 and are written into the address location on the rising

edge of at t4. The data are removed at t5. Actually, the data are first

latched (on the rising edge of) into a FF buffer memory that is part of

the 2864 circuitry. The data are held there while other circuitry on the chip

performs an erase operation on the selected address location in the EEPROM

array, after which the data byte is transferred from the buffer to the

EEPROM array and stored at that location. This erase and store operation

typically takes 5 ms. With returned HIGH at t4, the chip is back in the

standby mode while the internal erase and store operations are completed.

The 2864 has an enhanced write mode that allows the user to write up to

16 bytes of data into the FF buffer memory, where it is held while the

EEPROM circuitry erases the selected address locations.The 16 bytes of data

are then transferred to the EEPROM array for storage at these locations.This

process also takes about 5 ms.

Because the internal process of storing a data value in an EEPROM is

quite slow, the speed of the data transfer operation can also be slower. Con-

sequently, many manufacturers offer EEPROM devices in eight-pin packages

that are interfaced to a two- or three-wire serial bus.This saves physical space

on the system board as opposed to using a 2864 in a 28-pin, wide-DIP package.

It also simplifies the hardware interface between the CPU and the EEPROM.

CD-ROM
A very prominent type of read-only storage used today in computer systems

is the compact disk (CD).The disk technology and the hardware necessary to

retrieve the information are the same as those used in audio systems. Only

the format of the data is different. The disks are manufactured with a highly

reflective surface. To store data on the disks, a very intense laser beam is fo-

cused on a very small point on the disk. This beam burns a light-diffracting

pit at that point on the disk surface. Digital data (1s and 0s) are stored on the

disk one bit at a time by burning or not burning a pit into the reflective coat-

ing. The digital information is arranged on the disk as a continuous spiral of

data points. The precision of the laser beam allows very large quantities of

data (over 550 Mbytes) to be stored on a small, 120-mm disk.

In order to read the data, a much less powerful laser beam is focused onto

the surface of the disk. At any point, the reflected light is sensed as either a 1

or a 0. This optical system is mounted on a mechanical carriage that moves

back and forth along the radius of the disk, following the spiral of data as the

disk rotates.The data retrieved from the optical system come one bit at a time

in a serial data stream. The angular rotation of the disk is controlled to main-

tain a constant rate of incoming data points. If the disk is being used for audio

recording, this stream of data is converted into an analog waveform. If the disk

CE

WE
WE

OEWECE

WE,

OE,CE

CE = HIGH,

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 807

is being used as ROM, the data are decoded into parallel bytes that the com-

puter can use. The CD player technology, although very sophisticated, is rela-

tively inexpensive and is becoming a standard way of loading large amounts of

data into a personal computer. The major improvements that are occurring

now in CD-ROM technology involve quicker access time in retrieving data.

808 CHAPTER 12/MEMORY DEVICES

REVIEW QUESTIONS 1. True or false: An MROM can be programmed by the user.

2. How does a PROM differ from an MROM? Can it be erased and repro-

grammed?

3. True or false: A PROM stores a logic 1 when its fusible link is intact.

4. How is an EPROM erased?

5. True or false: There is no way to erase only a portion of an EPROM’s memory.

6. What function is performed by PROM and EPROM programmers?

7. What EPROM shortcomings are overcome by EEPROMs?

8. What are the major drawbacks of EEPROM?

9. What type of ROM can erase one byte at a time?

10. How many bits are read from a CD-ROM disk at any point in time?

12-8 FLASH MEMORY

EPROMs are nonvolatile, offer fast read access times (typically 120 ns), and

have high density and low cost per bit. They do, however, require removal

from their circuit/system to be erased and reprogrammed. EEPROMs are

nonvolatile, offer fast read access, and allow rapid in-circuit erasure and re-

programming of individual bytes. They suffer from lower density and much

higher cost than EPROMs.

The challenge for semiconductor engineers was to fabricate a nonvolatile

memory with the EEPROM’s in-circuit electrical erasability, but with densi-

ties and costs much closer to those of EPROMs, while retaining the high-speed

read access of both. The response to this challenge was the flash memory.
Structurally, a flash memory cell is like the simple single-transistor

EPROM cell (and unlike the more complex two-transistor EEPROM cell), be-

ing only slightly larger. It has a thinner gate-oxide layer that allows electri-

cal erasability but can be built with much higher densities than EEPROMs.

The cost of flash memory is considerably less than for EEPROM. Figure

12-14 illustrates the trade-offs for the various semiconductor nonvolatile

memories. As erase/programming flexibility increases (from base to apex of

the triangle), so do device complexity and cost. MROM and PROM are the

simplest and cheapest devices, but they cannot be erased and repro-

grammed. EEPROM is the most complex and expensive because it can be

erased and reprogrammed in circuit on a byte-by-byte basis.

Flash memories are so called because of their rapid erase and write

times. Most flash chips use a bulk erase operation in which all cells on the chip

are erased simultaneously; this bulk erase process typically requires hun-

dreds of milliseconds compared to 20 minutes for UV EPROMs. Some newer

flash memories offer a sector erase mode, where specific sectors of the mem-

ory array (e.g., 512 bytes) can be erased at one time. This prevents having to

erase and reprogram all cells when only a portion of the memory needs to be

updated. A typical flash memory has a write time of 10 per byte comparedms

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 808

to 100 for the most advanced EPROM and 5 ms for EEPROM (which in-

cludes automatic byte erase time).

The 28F256A CMOS Flash Memory IC
Figure 12-15(a) shows the logic symbol for Intel Corporation’s 28F256A CMOS

flash memory chip, which has a capacity of 32K � 8.The diagram shows 15 ad-

dress inputs (A0–A14) needed to select the different memory addresses; that is,

215 � 32K � 32,768. The eight data input/output pins (DQ0–DQ7
) are used as

inputs during memory write operations and as outputs during memory read

operations.These data pins float to the Hi-Z state when the chip is deselected

or when the outputs are disabled The write en-

able input is used to control memory write operations. Note that the chip

requires two power-supply voltages: VCC is the standard �5 V used for the logic

circuitry; VPP is the erase/programming power-supply voltage, nominally �12 V,

which is needed for the erase and programming (write) operations. Newer

(WE)

(OE = HIGH)(CE = HIGH)

ms

SECTION 12-8/FLASH MEMORY 809

In-circuit, electrically erasable
byte-by-byte

In-circuit, electrically erasable
by sector or in bulk (all cells)

UV erasable in bulk; erased and
reprogrammed out of circuit

Cannot be erased and
reprogrammed

EEPROM

Flash

EPROM

MROM and PROM

D
ev

ic
e

co
m

pl
ex

ity
 a

nd
 c

os
t

FIGURE 12-14 Trade-offs

for semiconductor

nonvolatile memories show

that complexity and cost

increase as erase and

programming flexibility

increases.

CMOS
32K x 8

DQ0

A0

A14

+VCC

(a)

Mode

READ

STANDBY

WRITE*

CE OE Data pins

DATAOUT

High Z

DATAIN

(b)

LOW

HIGH

LOW

LOW

X

HIGH

WE

HIGH

X

LOW

Inputs

•
•
•
•

WE

CE

OE

+VPP

DQ7

•
•
•
•
•
•
•
•

VSS

28F256A

Flash
Memory

*Note: If VPP ≤ 6.5 V, a write operation
cannot be performed

FIGURE 12-15 (a) Logic symbol for the 28F256A flash memory chip; (b) control

inputs and OE.CE, WE,

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 809

flash chips generate VPP internally and require only a single supply.The latest

low-voltage devices operate on only 1.8 V.

The control inputs (and) control what happens at the data

pins in much the same way as for the 2864 EEPROM, as the table in Figure

12-15(b) shows. These data pins are normally connected to a data bus. Dur-

ing a write operation, data are transferred over the bus—usually from the mi-

croprocessor—and into the chip. During a read operation, data from inside

the chip are transferred over the data bus—usually to the microprocessor.

The operation of this flash memory chip can be better understood by look-

ing at its internal structure. Figure 12-16 is a diagram of the 28F256A show-

ing its major functional blocks. You should refer to this diagram as needed

during the following discussion. The unique feature of this structure is the

command register, which is used to manage all of the chip functions. Command

codes are written into this register to control which operations take place in-

side the chip (e.g., erase, erase-verify, program, program-verify). These com-

mand codes usually come over the data bus from the microprocessor. State

control logic examines the contents of the command register and generates

logic and control signals to the rest of the chip’s circuits to carry out the steps

in the operation. Some examples of the types of commands that can be sent

to the flash are shown here to give you an idea of why they are necessary. Each

command is stored in the command register by using the same write cycle as

described for the EEPROM in Figure 12-13(c).

Read Command. Writing a code of 00 hex into the command register

prepares the memory IC for the read operation. After this, a normal read

cycle can be used to access data stored at any address.

WECE, OE,

810 CHAPTER 12/MEMORY DEVICES

VCC

A0–A14 •

•

•

•

WE

CE

OE

VSS

VPP
Erase voltage

switch

PGM voltage
switch

Data
latch

Input/output
buffers

Y–Gating

262,144 bit
cell matrix

Y–decoder

X–decoder

A
dd

re
ss

 L
at

ch

Chip enable
Output enable

Logic

State
control

Command
Register

Integrated program
/erase stop timer

STB

STB

To array source

DQ0–DQ7

FIGURE 12-16 Functional diagram of the 28F256A flash memory chip. (Courtesy

of Intel Corporation)

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 810

Set-Erase/Erase Command. The code of 20 hex must be written to the

command register twice in a row to begin the internal erase sequence.

Erase Verify Command. This command (FF Hex) causes the memory IC

to check all of its memory locations to verify that all bits are HIGH.

Set-Up Program/Program Command. This command (40 hex) puts the

memory IC in a mode that allows subsequent write cycles to store data at

a specified address, one byte at a time.

Program-Verify Command. This command (C0 hex) is used to verify that

the correct data have been stored in the flash ROM. After this code is

written to the command register, the next read operation will produce

the contents of the last location that was written to, and these data can

be compared with the intended value.

Improved Flash Memory
The core architecture of flash memory today and the basic set of command

codes are very similar to those of the first-generation devices. The newest

flash devices have new features, and new command codes to control these

features, in addition to those common to earlier devices. Of course, the latest

flash devices have much more capacity, run on much less power (and at lower

voltages), come in smaller packages, and cost much less per bit than their

predecessors. They also offer features such as the ability to read/write data

while a block of memory is being erased. The Vpp programming voltage is

generated internally, allowing it to use a single supply. The speed of opera-

tion can be enhanced by using a burst mode. This simply means that several

addresses in a row can be accessed very rapidly, providing a burst of data

transfer. A synchronous clock input is provided to control the burst opera-

tion. A base address is latched into the memory and then the contents of this

location are transferred on the clock edge, which also increments the ad-

dress to the next location. In this way, several sequential memory locations

are accessed as fast as the system clock can oscillate, without the overhead

of generating each address. All of these features have made flash memory

the predominant solid-state nonvolatile memory technology in use today.

SECTION 12-9/ROM APPLICATIONS 811

REVIEW QUESTIONS 1. What is the main advantage of flash memory over EPROMs?

2. What is the main advantage of flash memory over EEPROMs?

3. Where does the word flash come from?

4. What is VPP needed for?

5. What is the function of the 28F256A’s command register?

6. What is the purpose of an erase-verify command?

7. What is the purpose of the program-verify command?

12-9 ROM APPLICATIONS

With the exception of MROM and PROM, most ROM devices can be repro-

grammed, so technically they are not read-only memories. However, the term

ROM can still be used to include EPROMs, EEPROMs, and flash memory be-

cause, during normal operation, the stored contents of these devices is not

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 811

changed nearly as often as it is read. So ROMs are taken to include all semi-

conductor, nonvolatile memory devices, and they are used in applications

where nonvolatile storage of information, data, or program codes is needed

and where the stored data rarely or never change. Here are some of the most

common application areas.

Embedded Microcontroller Program Memory
Microcontrollers are prevalent in most consumer electronic products on the

market today. Your car’s automatic braking system and engine controller,

your cell phone, your digital camcorder, your microwave oven, and many

other products have a microcontroller for a brain. These little computers

have their program instructions stored in nonvolatile memory—in other

words, in a ROM. Most embedded microcontrollers today have flash ROM in-

tegrated into the same IC as the CPU. Many also have an area of EEPROM

that offers the features of byte erasure and nonvolatile storage.

Data Transfer and Portability
The need to store and transfer large sets of binary information is a require-

ment of many low-power battery-operated systems today. Cell phones store

photos and video clips. Digital cameras store many pictures on removable

memory media. Flash drives connect to a computer’s USB port and store giga-

bytes of information. Your MP-3 player is loaded up with music and runs all

day on batteries. A PDA (personal digital assistant) stores appointment infor-

mation, email, addresses, and even entire books.All of these common personal

electronic gadgets require the low-power, low-cost, high-density, nonvolatile

storage with in-circuit write capability that is available in flash memory.

Bootstrap Memory
Many microcomputers and most larger computers do not have their operating

system programs stored in ROM. Instead, these programs are stored in exter-

nal mass memory, usually magnetic disk. How, then, do these computers know

what to do when they are powered on? A relatively small program, called a

bootstrap program, is stored in ROM. (The term bootstrap comes from the idea

of pulling oneself up by one’s own bootstraps.) When the computer is powered

on, it will execute the instructions that are in this bootstrap program.These in-

structions typically cause the CPU to initialize the system hardware.The boot-

strap program then loads the operating system programs from mass storage

(disk) into its main internal memory. At that point, the computer begins exe-

cuting the operating system program and is ready to respond to the user com-

mands. This startup process is often called “booting up the system.”

Many of the digital signal processing chips load their internal program

memory from an external bootstrap ROM when they are powered on. Some of

the more advanced PLDs also load the programming information that config-

ures their logic circuits from an external ROM into a RAM area inside the PLD.

This is also done when power is applied. In this way, the PLD is reprogrammed

by changing the bootstrap ROM, rather than changing the PLD chip itself.

Data Tables
ROMs are often used to store tables of data that do not change. Some exam-

ples are the trigonometric tables (i.e., sine, cosine, etc.) and code-conversion

tables. The digital system can use these data tables to “look up” the correct

812 CHAPTER 12/MEMORY DEVICES

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 812

value. For example, a ROM can be used to store the sine function for angles

from to . It could be organized as a with seven address inputs

and eight data outputs. The address inputs represent the angle in incre-

ments of approximately . For example, address 0000000 is , address

0000001 is , address 0000010 is , and so on, up to address 1111111,

which is . When an address is applied to the ROM, the data outputs will

represent the approximate sine of the angle. For example, with input ad-

dress 1000000 (representing approximately) the data outputs will be

10110101. Because the sine is less than or equal to 1, these data are inter-

preted as a fraction, that is, 0.10110101, which when converted to decimal

equals 0.707 (the sine of). It is vital that the user of this ROM under-

stands the format in which the data are stored.

Standard look-up-table ROMs for functions such as these were at one

time readily available TTL chips. Only a few are still in production. Today,

most systems that need to look up equivalent values involve a microproces-

sor, and the “look-up” table data are stored in the same ROM that holds the

program instructions.

Data Converter
The data-converter circuit takes data expressed in one type of code and pro-

duces an output expressed in another type. Code conversion is needed, for

example, when a computer is outputting data in straight binary code and we

want to convert it to BCD in order to display it on 7-segment LED readouts.

One of the easiest methods of code conversion uses a ROM programmed

so that the application of a particular address (the old code) produces a data

output that represents the equivalent in the new code. The 74185 is a TTL

ROM that stores the binary-to-BCD code conversion for a six-bit binary input.

To illustrate, a binary address input of 100110 (decimal 38) will produce a

data output of 00111000, which is the BCD code for decimal 38.

Function Generator
The function generator is a circuit that produces waveforms such as sine waves,

sawtooth waves, triangle waves, and square waves. Figure 12-17 shows how a

ROM look-up table and a DAC are used to generate a sine-wave output signal.

The ROM stores 256 different eight-bit values, each one corresponding to

a different waveform value (i.e., a different voltage point on the sine wave).

The eight-bit counter is continuously pulsed by a clock signal to provide se-

quential address inputs to the ROM. As the counter cycles through the 256

different addresses, the ROM outputs the 256 data points to the DAC. The

DAC output will be a waveform that steps through the 256 different analog

voltage values corresponding to the data points. The low-pass filter smooths

out the steps in the DAC output to produce a smooth waveform.

45°

45°

89.3°

1.41°0.7°

0°0.7°

128 * 890°0°

SECTION 12-9/ROM APPLICATIONS 813

8-bit
counter

Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0

CLK

ROM
256 x 8

D7
D6
D5
D4
D3
D2
D1
D0

A7
A6
A5
A4
A3
A2
A1
A0

8-bit
DAC

VA

VrefFIGURE 12-17 Function

generator using a ROM and

a DAC.

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 813

814 CHAPTER 12/MEMORY DEVICES

FIGURE 12-18 The

ML2035 programmable

sine-wave generator.

(Courtesy of MicroLinear

Corp.)

Crystal
osc.

÷4

÷N
Phase
counter

Sine
look-up
table

8-bit
D/A

Smoothing
filter

Sine out

EN 16-bit latchLATI

16

D 16-bit
CK shift register

SID

16

SCK

Circuits such as this are used in some commercial function generators.

The same idea is employed in some speech synthesizers, where the digitized

speech waveform values are stored in the ROM. The ML2035, illustrated in

Figure 12-18, is a programmable sine-wave generator chip that incorporates

this basic strategy to generate a sine wave of fixed amplitude and a fre-

quency that can be selected from dc to 50 kHz. The number that is shifted

into the 16-bit shift register is used to determine the clocking frequency for

the counter that drives the address inputs on the ROM look-up table. The

ML2035 is intended for telecommunications applications that require pre-

cise tones of various frequencies to be generated.

Auxiliary Storage
Because of their nonvolatility, high speed, low power requirements, and lack

of moving parts, flash memory modules have become feasible alternatives to

magnetic disk storage. This is especially true for lower capacities (5 Mbytes

or less), where flash is cost-competitive with magnetic disk. The low power

consumption of flash memory makes it particularly attractive for laptop and

notebook computers that use battery power.

REVIEW QUESTIONS 1. Describe how a computer uses a bootstrap program.

2. What is a code converter?

3. What are the main elements of a function generator?

4. Why are flash memory modules a feasible alternative to auxiliary disk

storage?

12-10 SEMICONDUCTOR RAM

Recall that the term RAM stands for random-access memory, meaning that

any memory address location is as easily accessible as any other. Many types

of memory can be classified as having random access, but when the term

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 814

RAM is used with semiconductor memories, it is usually taken to mean

read/write memory (RWM) as opposed to ROM. Because it is common prac-

tice to use RAM to mean semiconductor RWM, we will do so throughout the

following discussions.

RAM is used in computers for the temporary storage of programs and data.

The contents of many RAM address locations will be read from and written to

as the computer executes a program. This requires fast read and write cycle

times for the RAM so as not to slow down the computer operation.

A major disadvantage of RAM is that it is volatile and will lose all stored

information if power is interrupted or turned off. Some CMOS RAMs, how-

ever, use such small amounts of power in the standby mode (no read or write

operations taking place) that they can be powered from batteries whenever

the main power is interrupted. Of course, the main advantage of RAM is that

it can be written into and read from rapidly with equal ease.

The following discussion of RAM will draw on some of the material cov-

ered in our treatment of ROM because many of the basic concepts are com-

mon to both types of memory.

12-11 RAM ARCHITECTURE

As with the ROM, it is helpful to think of the RAM as consisting of a number

of registers, each storing a single data word, and each having a unique ad-

dress. RAMs typically come with word capacities of 1K, 4K, 8K, 16K, 64K,

128K, 256K, and 1024K, and with word sizes of one, four, or eight bits. As we

will see later, the word capacity and the word size can be expanded by com-

bining memory chips.

Figure 12-19 shows the simplified architecture of a RAM that stores 64

words of four bits each (i.e., a memory). These words have addresses64 * 4

SECTION 12-11/RAM ARCHITECTURE 815

Decoder
6-line-to-
64-line

0

1

2

62

63

Output buffers E

Data outputs

Input buffers E

Data inputs

Register 0

Register 1

Register 2

Register 62

Register 63

Selects
one

register

I3 I2 I1 I0

R/W
0 = write
1 = read

Chip select
(CS)

CS = 0 enables
entire chip

for READ or
WRITE.

O3 O2 O1 O0

A5
A4
A3
A2
A1
A0A

dd
re

ss
 in

pu
ts

FIGURE 12-19 Internal

organization of a

.64 * 4 RAM

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 815

ranging from 0 to 6310. In order to select one of the 64 address locations for

reading or writing, a binary address code is applied to a decoder circuit.

Because 64 � 26, the decoder requires a six-bit input code. Each address code

activates one particular decoder output, which in turn enables its corre-

sponding register. For example, assume an applied address code of

A5A4A3A2A1A0 � 011010

Because 0110102 � 2610, decoder output 26 will go high, selecting register 26

for either a read or a write operation.

Read Operation
The address code picks out one register in the memory chip for reading or

writing. In order to read the contents of the selected register, the

READ/WRITE * input must be a 1. In addition, the CHIP SELECT

input must be activated (a 0 in this case). The combination of and

enables the output buffers so that the contents of the selected register

will appear at the four data outputs. also disables the input buffers so

that the data inputs do not affect the memory during a read operation.

Write Operation
To write a new four-bit word into the selected register requires and

. This combination enables the input buffers so that the four-bit word

applied to the data inputs will be loaded into the selected register. The

also disables the output buffers, which are tristate, so that the data

outputs are in their Hi-Z state during a write operation. The write operation,

of course, destroys the word that was previously stored at that address.

Chip Select
Most memory chips have one or more CS inputs that are used to enable the

entire chip or disable it completely. In the disabled mode, all data inputs and

data outputs are disabled (Hi-Z) so that neither a read nor a write operation

can take place. In this mode, the contents of the memory are unaffected.The

reason for having CS inputs will become clear when we combine memory

chips to obtain larger memories. Note that many manufacturers call these in-

puts CHIP ENABLE (CE). When the CS or CE inputs are in their active state,

the memory chip is said to be selected; otherwise, it is said to be deselected.
Many memory ICs are designed to consume much less power when they are

deselected. In large memory systems, for a given memory operation, one or

more memory chips will be selected while all others are deselected. More

will be said on this topic later.

Common Input/Output Pins
In order to conserve pins on an IC package, manufacturers often combine the

data input and data output functions using common input/output pins. The

input controls the function of these I/O pins. During a read operation,

the I/O pins act as data outputs that reproduce the contents of the selected

address location. During a write operation, the I/O pins act as data inputs to

which the data to be written are applied.

R/W

R>W = 0

CS = 0

R>W = 0

R>W = 1

CS = 0

R>W = 1

(CS)(R>W)

816 CHAPTER 12/MEMORY DEVICES

*Some manufacturers use the symbol (write enable) or instead of In any case, the opera-
tion is the same.

R>W.WWE

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 816

We can see why this is done by considering the chip in Figure 12-19. With

separate input and output pins, a total of 18 pins is required (including

ground and power supply). With four common I/O pins, only 14 pins are re-

quired. The pin saving becomes even more significant for chips with larger

word size.

SECTION 12-11/RAM ARCHITECTURE 817

EXAMPLE 12-9 The 2147H is an NMOS RAM that is organized as a with separate

data input and output and a single active-LOW chip select input. Draw the

logic symbol for this chip, showing all pin functions.

Solution

The logic symbol is shown in Figure 12-20(a).

4K * 1

2147H

RAM
4K x 1

Data in

Data out

(a)

MCM
6206C

RAM
32K x 8

(b)

A11

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

CS
R/W

A14

A13

A1
A0

R/W

CE

I/O7

I/O0

I/O1

I/O2

I/O3

I/O4

I/O5

I/O6

OE

•
•
•
•
•
•
•
•
•
•
•

FIGURE 12-20 Logic

symbols for (a) the 2147H

RAM chip; (b) the

MCM6206C RAM.

EXAMPLE 12-10 The MCM6206C is a CMOS RAM with capacity, common I/O pins, an

active-LOW chip enable, and an active-LOW output enable. Draw the logic

symbol.

Solution

The logic symbol is shown in Figure 12-20(b).

In most applications, memory devices are used with a bidirectional data

bus like we studied in Chapter 9. For this type of system, even if the memory

chip had separate input and output pins, they would be connected together

on the same data bus. A RAM having separate input and output pins is re-

ferred to as dual-port RAM. These are used in applications where speed is

very important and the data in comes from a different device than the data

out is going to. A good example is the video RAM on your PC.The RAM must

be read repeatedly by the video card to refresh the screen and constantly

filled with new updated information from the system bus.

32K * 8

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 817

818 CHAPTER 12/MEMORY DEVICES

REVIEW QUESTIONS 1. Describe the input conditions needed to read a word from a specific

RAM address location.

2. Why do some RAM chips have common input/output pins?

3. How many pins are required for the MCM6208C with one

CS input and common I/O?

12-12 STATIC RAM (SRAM)

The RAM operation that we have been discussing up to this point applies to

a static RAM—one that can store data as long as power is applied to the chip.

Static-RAM memory cells are essentially flip-flops that will stay in a given

state (store a bit) indefinitely, provided that power to the circuit is not in-

terrupted. In Section 12-13, we will describe dynamic RAM, which stores

data as charges on capacitors. With dynamic RAMs, the stored data will

gradually disappear because of capacitor discharge, so it is necessary to

refresh the data periodically (i.e., recharge the capacitors).

Static RAMs (SRAMs) are available in bipolar, MOS, and BiCMOS tech-

nologies; the majority of applications use NMOS or CMOS RAMs. As stated

earlier, the bipolars have the advantage in speed (although CMOS is gradu-

ally closing the gap), and MOS devices have much greater capacities and

lower power consumption. Figure 12-21 shows for comparison a typical bipo-

lar static memory cell and a typical NMOS static memory cell. The bipolar

cell contains two bipolar transistors and two resistors, while the NMOS cell

contains four N-channel MOSFETs. The bipolar cell requires more chip area

than the MOS cell because a bipolar transistor is more complex than a

MOSFET, and because the bipolar cell requires separate resistors while the

MOS cell uses MOSFETs as resistors (Q3 and Q4). A CMOS memory cell would

be similar to the NMOS cell except that it would use P-channel MOSFETs in

place of Q3 and Q4.This results in the lowest power consumption but increases

the chip complexity.

Static-RAM Timing
RAM ICs are most often used as the internal memory of a computer. The

CPU (central processing unit) continually performs read and write opera-

tions on this memory at a very fast rate that is determined by the limitations

64K * 4 RAM

VCC VDD

Bipolar cell NMOS cell

Q4

Q2

Q3

Q1

FIGURE 12-21 Typical

bipolar and NMOS static-

RAM cells.

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 818

of the CPU. The memory chips that are interfaced to the CPU must be fast

enough to respond to the CPU read and write commands, and a computer de-

signer must be concerned with the RAM’s various timing characteristics.

Not all RAMs have the same timing characteristics, but most of them are

similar, and so we will use a typical set of characteristics for illustrative pur-

poses. The nomenclature for the different timing parameters will vary from

one manufacturer to another, but the meaning of each parameter is usually

easy to determine from the memory timing diagrams on the RAM data

sheets. Figure 12-22 shows the timing diagrams for a complete read cycle and

a complete write cycle for a typical RAM chip.

SECTION 12-12/STATIC RAM (SRAM) 819

1

0

Data valid

New address valid

t0

CS

tRC

tACC

tOD

Hi-Z Hi-Z

t1 t2 t3 t4

tCO

READ CYCLE

(a)

1

1

R/W

Address
inputs

From
CPU

Data
output

to
bus

1

0

Data valid

New address valid

CS

tWC

tAH

tW

Hi-Z

t0 t2 t3 t4

WRITE cycle

(b)

1

1

R/W

Address
inputs

From
CPU

Data
input
from
bus

tDHtDS

t1

tAS

FIGURE 12-22 Typical

timing for static RAM:

(a) read cycle; (b) write

cycle.

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 819

Read Cycle
The waveforms in Figure 12-22(a) show how the address, and chip se-

lect inputs behave during a memory read cycle. As noted, the CPU supplies

these input signals to the RAM when it wants to read data from a specific

RAM address location. Although a RAM may have many address inputs com-

ing from the CPU’s address bus, for clarity the diagram shows only two. The

RAM’s data output is also shown; we will assume that this particular RAM

has one data output. Recall that the RAM’s data output is connected to the

CPU data bus (Figure 12-5).

The read cycle begins at time t0. Prior to that time, the address inputs will

be whatever address is on the address bus from the preceding operation. Be-

cause the RAM’s chip select is not active, it will not respond to its “old” ad-

dress. Note that the line is HIGH prior to t0 and stays HIGH throughout

the read cycle. In most memory systems, is normally kept in the HIGH

state except when it is driven LOW during a write cycle.The RAM’s data out-

put is in its Hi-Z state because .

At t0, the CPU applies a new address to the RAM inputs; this is the ad-

dress of the location to be read. After allowing time for the address signals

to stabilize, the line is activated. The RAM responds by placing the data

from the addressed location onto the data output line at t1.The time between

t0 and t1 is the RAM’s access time, tACC, and is the time between the appli-

cation of the new address and the appearance of valid output data. The tim-

ing parameter, tCO, is the time it takes for the RAM output to go from Hi-Z to

a valid data level once is activated.

At time t2, the is returned HIGH, and the RAM output returns to its

Hi-Z state after a time interval, tOD. Thus, the RAM data will be on the data

bus between t1 and t3. The CPU can take the data from the data bus at any

point during this interval. In most computers, the CPU will use the PGT of

the signal at t2 to latch these data into one of its internal registers.

The complete read cycle time, tRC, extends from t0 to t4, when the CPU

changes the address inputs to a different address for the next read or write

cycle.

Write Cycle
Figure 12-22(b) shows the signal activity for a write cycle that begins when

the CPU supplies a new address to the RAM at a time t0. The CPU drives the

and lines LOW after waiting for a time interval tAS, called the address
setup time. This gives the RAM’s address decoders time to respond to the new

address. and are held LOW for a time interval tW, called the write

time interval.

During this write time interval, at time t1, the CPU applies valid data to

the data bus to be written into the RAM.These data must be held at the RAM

input for at least a time interval tDS prior to, and for at least a time interval

tDH after, the deactivation of and at t2. The tDS interval is called the

data setup time, and tDH is called the data hold time. Similarly, the address in-

puts must remain stable for the address hold time interval, tAH, after t2. If any

of these setup time or hold time requirements are not met, the write opera-

tion will not take place reliably.

The complete write-cycle time, tWC, extends from t0 to t4, when the CPU

changes the address lines to a new address for the next read or write cycle.

The read-cycle time, tRC, and write-cycle time, tWC, are what essentially

determine how fast a memory chip can operate. For example, in an actual

application, a CPU will often be reading successive data words from memory

CSR>W

CSR>W

CSR>W

CS

CS
CS

CS

CS = 1

R>W
R>W

R>W,

820 CHAPTER 12/MEMORY DEVICES

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 820

one right after the other. If the memory has a tRC of 50 ns, the CPU can

read one word every 50 ns, or 20 million words per second; with tRC � 10 ns,

the CPU can read 100 million words per second. Table 12-2 shows the min-

imum read-cycle and write-cycle times for some representative static-RAM

chips.

SECTION 12-12/STATIC RAM (SRAM) 821

TABLE 12-2
Device tRC(min) (ns) tWC(min) (ns)

CMOS MCM6206C, 32K � 8 15 15

NMOS 2147H, 4K � 1 35 35

BiCMOS MCM6708A, 64K � 4 8 8

Actual SRAM Chip
An example of an actual SRAM IC is the MCM6264C CMOS

with read-cycle and write-cycle times of 12 ns and a standby power con-

sumption of only 100 mW.The logic symbol for this IC is shown in Figure 12-23.

Notice that it has 13 address inputs, because 213 � 8192 � 8K, and eight data

I/O lines. The four control inputs determine the device’s operating mode

according to the accompanying mode table.

The input is the same as the input that we have been using. A

LOW at will write data into the RAM, provided that the device is

selected—both chip select inputs are active. Note that the “&” symbol is used

to denote that both must be active. A HIGH at will produce the read op-

eration, provided that the device is selected and the output buffers are en-

abled by When deselected, the device is in its low-power mode,

and none of the other inputs have any effect.

OE = LOW.

WE

WE
R>WWE

8K * 8 RAM

....

I/O7

I/O6

I/O5

I/O4

I/O3

I/O2

I/O1

I/O0

....

CS1

WE

CS2

OE

A12
A11

A1
A0

SRAM
8K x 8

MCM
6264C

&

Mode

READ

WRITE

Output disable

I/O pins

DATAOUT

DATA IN

High Z

High Z

Inputs

WE

1

0

1

X

X

CS1

0

0

X

1

X

CS2

1

1

X

X

0

OE

0

X

1

X

X

X = don’t care

Not selected
(power down)

FIGURE 12-23 Symbol

and mode table for the

CMOS MCM6264C.

Most of the devices that have been discussed in this chapter are available

from several different manufacturers. Each manufacturer may offer differ-

ent devices of the same dimension (e.g.,) but with different specifi-

cations or features. There are also various types of packaging available such

as DIP, PLCC, and various forms of gull-wing and surface-mount.

As you look at the various memory devices that have been described in this

chapter, you will notice some similarities. For example, look at the chips in

Figure 12-24 and take note of the pin assignments.The fact that the same func-

tion is assigned to the same pins on all of these diverse devices, manufactured

32K * 8

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 821

822 CHAPTER 12/MEMORY DEVICES

FIGURE 12-24 JEDEC

standard memory

packaging.

20
22
27

2
23
21
24
25

3
4
5
6
7
8
9

10

I/O8

CE
OE

I/O7

I/O6

I/O5

I/O4

I/O3

I/O2

I/O1

A7
A6
A5
A4
A3
A2
A1
A0

A12
A11
A10
A9
A8

19

18

17

16

15

13

12

11

2864

U3

WE

27
26
22
20

10
9
8
7
6
5
4
3

25
24
21
23

2

CS2
OE

A5
A6
A7
A8
A9
A10
A11
A12

A0
A1
A2
A3
A4

6264

U2

WE

CS1

I/O5
I/O6
I/O7

I/O0
I/O1
I/O2
I/O3
I/O4

11
12
13
15
16
17
18
19

27
26

2
23
21
24
25

3
4
5
6
7
8
9

10

O7

CE
OE

O6

O5

O4

O3

O2

O1

O0
20
22

A7
A6
A5
A4
A3
A2
A1
A0

A14
A13
A12
A11
A10
A9
A8

19

18

17

16

15

13

12

11

VPP

27256

1U4

1
2

23
21
24
25

3
4
5
6
7
8
9

10

OE
PGM

20
22
27

A7
A6
A5
A4
A3
A2
A1
A0

VPP
A12
A11
A10
A9
A8

2764

CE

O6
O5
O4
O3
O2
O1
O0

O7
19
18
17
16
15
13
12
11

U1

EXAMPLE 12-11 A system is wired for an chip (2764) and two

chips (6264). The entire 8K of ROM space is being used for storage of the

microprocessor’s instructions. You want to upgrade the system to have some

nonvolatile read/write storage. Can the existing circuit be modified to ac-

commodate the new revisions?

Solution

A 2864 EEPROM chip can simply be substituted into one of the RAM sock-

ets. The only functional difference is the much longer write-cycle time re-

quirements of the EEPROM. This can usually be handled by changing the

program of the microcomputer that is using the memory device. Because

there is no room left in the ROM for these changes, we need a larger ROM. A

(27C256) has basically the same pin-out as a 2764. We simply

need to connect two more address lines (A13 and A14) to the ROM socket and

replace the old chip with a 27C256 chip.

Many memory systems take advantage of the versatility that the JEDEC

standards provide. The pins that are common for all of the devices are hard-

wired to the system buses. The few pins that are different among the various

devices are connected to circuitry that can easily be modified to configure the

system for the proper size and type of memory device. This allows the user to

reconfigure the hardware without needing to cut or solder on the board.

The configuration circuitry can be as simple as movable jumpers or DIP

switches that the user sets up and as complicated as an in-circuit program-

mable logic device that the computer can set up or modify to meet the sys-

tem requirements.

32K * 8 ROM

8K * 8 SRAM8K * 8 ROM

by different companies, is no coincidence. Industry standards created by the

Joint Electronic Device Engineering Council (JEDEC) have led to memory de-

vices that are interchangeable.

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 822

12-13 DYNAMIC RAM (DRAM)

Dynamic RAMs are fabricated using MOS technology and are noted for their

high capacity, low power requirement, and moderate operating speed. As we

stated earlier, unlike static RAMs, which store information in FFs, dynamic

RAMs store 1s and 0s as charges on a small MOS capacitor (typically a few

picofarads). Because of the tendency for these charges to leak off after a pe-

riod of time, dynamic RAMs require periodic recharging of the memory

cells; this is called refreshing the dynamic RAM. In modern DRAM chips,

each memory cell must be refreshed typically every 2, 4, or 8 ms, or its data

will be lost.

The need for refreshing is a drawback of dynamic RAM compared to

static RAM because it may require external support circuitry. Some DRAM

chips have built-in refresh control circuitry that does not require extra ex-

ternal hardware but does require special timing of the chip’s input control

signals. Additionally, as we shall see, the address inputs to a DRAM must be

handled in a less straightforward way than SRAM. So, all in all, designing

with and using DRAM in a system is more complex than with SRAM. How-

ever, their much larger capacities and much lower power consumption make

DRAMs the memory of choice in systems where the most important design

considerations are keeping down size, cost, and power.

For applications where speed and reduced complexity are more critical

than cost, space, and power considerations, static RAMs are still the best.

They are generally faster than dynamic RAMs and require no refresh opera-

tion. They are simpler to design with, but they cannot compete with the

higher capacity and lower power requirement of dynamic RAMs.

Because of their simple cell structure, DRAMs typically have four times

the density of SRAMs.This increased density allows four times as much mem-

ory capacity to be placed on a single board; alternatively, it requires one-

fourth as much board space for the same amount of memory. The cost per bit

of dynamic RAM storage is typically one-fifth to one-fourth that of static

RAMs. An additional cost saving is realized because the lower power re-

quirements of a dynamic RAM, typically one-sixth to one-half those of a

static RAM, allow the use of smaller, less expensive power supplies.

The main applications of SRAMs are in areas where only small amounts

of memory are needed or where high speed is required. Many microprocessor-

controlled instruments and appliances have very small memory capacity

requirements. Some instruments, such as digital storage oscilloscopes and

logic analyzers, require very high-speed memory. For applications such as

these, SRAM is normally used.

SECTION 12-13/DYNAMIC RAM (DRAM) 823

REVIEW QUESTIONS 1. How does a static-RAM cell differ from a dynamic-RAM cell?

2. Which memory technology generally uses the least power?

3. What device places data on the data bus during a read cycle?

4. What device places data on the data bus during a write cycle?

5. What RAM timing parameters determine its operating speed?

6. True or false: A LOW at will enable the output buffers of an

MCM6264C provided that both chip select inputs are active.

7. What must be done with pin 26 and pin 27 if a 27256 is replaced with a

2764?

OE

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 823

The main internal memory of most personal microcomputers (e.g.,Windows-

based PCs or Macs) uses DRAM because of its high capacity and low power

consumption.These computers, however, sometimes use some small amounts

of SRAM for functions requiring maximum speed, such as video graphics,

look-up tables, and cache memory.

824 CHAPTER 12/MEMORY DEVICES

REVIEW QUESTIONS 1. What are the main drawbacks of dynamic RAM compared with static?

2. List the advantages of dynamic RAM compared with static RAM.

3. Which type of RAM would you expect to find on the main memory mod-

ules of your PC?

12-14 DYNAMIC RAM STRUCTURE AND OPERATION

The dynamic RAM’s internal architecture can be visualized as an array of

single-bit cells, as illustrated in Figure 12-25. Here, 16,384 cells are arranged

in a array. Each cell occupies a unique row and column position

within the array. Fourteen address inputs are needed to select one of the

cells (214 � 16,384); the lower address bits, A0 to A6, select the column, and

the higher-order bits, A7 to A13, select the row. Each 14-bit address selects a

unique cell to be written into or read from. The structure in Figure 12-25 is a

chip. DRAM chips are currently available in various config-

urations. DRAMs with a four-bit (or greater) word size have a cell arrange-

ment similar to that of Figure 12-25 except that each position in the array

contains four cells, and each applied address selects a group of four cells for

a read or a write operation. As we will see later, larger word sizes can also be

attained by combining several chips in the appropriate arrangement.

Figure 12-26 is a symbolic representation of a dynamic memory cell and

its associated circuitry. Many of the circuit details are not shown, but this

simplified diagram can be used to describe the essential ideas involved in

16K * 1 DRAM

128 * 128

A6 A5 A4 A3 A2 A1 A0

Column address inputs

1-of-128 decoder

A
7

A
8

A
9

A
10

A
11

A
12

A
13

R
ow

 a
dd

re
ss

 in
pu

ts

1-
of

-1
28

 d
ec

od
er

Selects
1-of-128 rows

128 columns

128
rows

Memory cell

Selects 1-of-128 columns

FIGURE 12-25 Cell

arrangement in a

dynamic RAM.

16K * 1

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 824

writing to and reading from a DRAM.The switches SW1 through SW4 are ac-

tually MOSFETs that are controlled by various address decoder outputs and

the signal.The capacitor, of course, is the actual storage cell. One sense

amplifier would serve an entire column of memory cells, but operate only on

the bit in the selected row.

To write data to the cell, signals from the address decoding and

read/write logic will close switches SW1 and SW2, while keeping SW3 and

SW4 open. This connects the input data to C. A logic 1 at the data input

charges C, and a logic 0 discharges it. Then the switches are open so that C is

disconnected from the rest of the circuit. Ideally, C would retain its charge

indefinitely, but there is always some leakage path through the off switches,

so that C will gradually lose its charge.

To read data from the cell, switches SW2, SW3, and SW4 are closed, and

SW1 is kept open. This connects the stored capacitor voltage to the sense
amplifier. The sense amplifier compares the voltage with some reference

value to determine if it is a logic 0 or 1, and it produces a solid 0 V or 5 V

for the data output. This data output is also connected to C (SW2 and SW4

are closed) and refreshes the capacitor voltage by recharging or discharg-

ing. In other words, the data bit in a memory cell is refreshed each time it

is read.

Address Multiplexing
The array depicted in Figure 12-25 is obsolete and nearly un-

available. It has 14 address inputs; a array would have 16 ad-

dress inputs. A needs 20 address inputs; a needs 22

address inputs. High-capacity memory chips such as these would require

many pins if each address input required a separate pin. In order to reduce

the number of pins on their high-capacity DRAM chips, manufacturers uti-

lize address multiplexing whereby each address input pin can accommodate

two different address bits. The saving in pin count translates to a significant

decrease in the size of the IC packages. This is very important in large-

capacity memory boards, where you want to maximize the amount of memory

that can fit on one board.

In the discussions that follow, we will be describing the order in which

the address is multiplexed into the DRAM chips. It should be noted that in

older, small-capacity DRAMs, the convention was to present the low-order

address first specifying the row, followed by the high-order address specify-

ing the column.The newer DRAMs and the controllers that perform the mul-

tiplexing use the opposite convention of applying the high-order bits as the

row address and then the low-order bits as the column address. We will de-

scribe the more recent convention, but you should be aware of this change as

you investigate older systems.

We will use the TMS44100 from Texas Instruments to

illustrate the operation of DRAM chips today.The functional block diagram

of this chip’s internal architecture (shown in Figure 12-27) is typical of

4M * 1 DRAM

4M * 11M * 4 DRAM

64K * 1 DRAM

16K * 1 DRAM

R>W

SECTION 12-14/DYNAMIC RAM STRUCTURE AND OPERATION 825

FIGURE 12-26 Symbolic

representation of a dynamic

memory cell. During a

WRITE operation, semicon-

ductor switches SW1 and

SW2 are closed. During a

read operation, all switches

are closed except SW1.

–

+

Sense
amplifierVREF

SW3SW2

SW4

DATA OUT
DATA IN

SW1

C

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 825

diagrams you will find in data books.The layout of the memory array in this

diagram may appear complicated at first glance, but it can be thought of as

just a bigger version of the in Figure 12-25. Functionally, it

is an array of cells arranged as 2048 rows by 2048 columns. A single row is

selected by address decoder circuitry that can be thought of as a 1-of-2048

decoder. Likewise, a single column is selected by what is effectively a 1-of-

2048 decoder. Because the address lines are multiplexed, the entire 22-bit

address cannot be presented simultaneously. Notice that there are only 11

address lines and that they go to both the row and the column address reg-

isters. Each of the two address registers stores half of the 22-bit address.

The row register stores the upper half, and the column register stores the

16K * 1 DRAM

826 CHAPTER 12/MEMORY DEVICES

FIGURE 12-27 (a) Simplified architecture of the TMS44100 ;

(b) timing. (Reprinted by permission of Texas Instruments)RAS>CAS
4M * 1 DRAM

Column
address
registers

RAS

CAS

Address
inputs

t0 t2

Column addressRow address

tRS

t1

(b)

tCS

t3

Row
address
registers

Column decoder

Sense amplifiers

128K array

128K array

•
•
•

128K array

128K array

128K array

•
•
•

128K array

R
o
w

D
e
c
o
d
e
r

I/O
buffers
1-of-16

selection

Data-
in

reg.

Data-
out
reg.

Timing and control

D

Q
16 16

16

16

3

10

10

3

8
A0/A11
A1/A12

A10/A21

CAS

RAS

•

•

•

•

•

•

RAS CAS W

(a)

FUNCTIONAL BLOCK DIAGRAM

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 826

lower half. Two very important strobe inputs control when the address in-

formation is latched. The row address strobe clocks the 11-bit row

address register. The column address strobe clocks the 11-bit column

address register.

A 22-bit address is applied to this DRAM in two steps using and .

The timing is shown in Figure 12-27(b). Initially, and are both HIGH.

At time t0, the 11-bit row address (A11 to A21) is applied to the address inputs.

After allowing time for the setup time requirement (tRS) of the row address

register, the input is driven LOW at t1.This NGT loads the row address into

the row address register so that A11 to A21 now appear at the row decoder in-

puts. The LOW at also enables this decoder so that it can decode the row

address and select one row of the array.

At time t2, the 11-bit column address (A0 to A10) is applied to the address

inputs. At t3, the input is driven LOW to load the column address into

the column address register. also enables the column decoder so that it

can decode the column address and select one column of the array.

At this point the two parts of the address are in their respective registers,

the decoders have decoded them to select the one cell corresponding to the

row and column address, and a read or a write operation can be performed

on that cell just as in a static RAM.

You may have noticed that this DRAM does not have a chip select (CS)

input. The and signals perform the chip select function because

they must both be LOW for the decoders to select a cell for reading or

writing.

As you can see, there are several operations that must be performed be-

fore the data that is stored in the DRAM can actually appear on the outputs.

The term latency is often used to describe the time required to perform these

operations. Each operation takes a certain amount of time, and this amount

of time determines the maximum rate at which we can access data in the

memory.

CASRAS

CAS
CAS

RAS

RAS

CASRAS
CASRAS

(CAS)
(RAS)

SECTION 12-14/DYNAMIC RAM STRUCTURE AND OPERATION 827

EXAMPLE 12-12 How many pins are saved by using address multiplexing for a

?

Solution

Twelve address inputs are used instead of 24; and are added; no

is required. Thus, there is a net saving of eleven pins.

In a simple computer system, the address inputs to the memory system

come from the central processing unit (CPU). When the CPU wants to ac-

cess a particular memory location, it generates the complete address and

places it on address lines that make up an address bus. Figure 12-28(a)

shows this for a small computer memory that has a capacity of 64K words

and therefore requires a 16-line address bus going directly from the CPU to

the memory.

This arrangement works for ROM or for static RAM, but it must be

modified for DRAM that uses multiplexed addressing. If all 64K of the

memory is DRAM, it will have only eight address inputs. This means

that the 16 address lines from the CPU address bus must be fed into a

CSCASRAS

1 DRAM

16M *

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 827

multiplexer circuit that will transmit eight address bits at a time to the

memory address inputs. This is shown symbolically in Figure 12-28(b). The

multiplexer select input, labeled MUX, controls whether CPU address

lines A0 to A7 or address lines A8 to A15 will be present at the DRAM ad-

dress inputs.

The timing of the MUX signal must be synchronized with the and

signals that clock the addresses into the DRAM. This is shown in Figure

12-29. MUX must be LOW when is pulsed LOW so that address lines A8

to A15 from the CPU will reach the DRAM address inputs to be loaded on the

NGT of Likewise, MUX must be HIGH when is pulsed LOW so that

A0 to A7 from the CPU will be present at the DRAM inputs to be loaded on

the NGT of

The actual multiplexing and timing circuitry will not be shown here but

will be left to the end-of-chapter problems (Problems 12-26 and 12-27).

CAS.

CASRAS.

RAS
CAS

RAS

828 CHAPTER 12/MEMORY DEVICES

(a)

(b)

DATA IN

DATA OUT

*MUX = 0 transmits CPU address
 A8–A15 to DRAM. MUX = 1 transmits
 A0–A7 to DRAM.

Multi-
plexer

A0

A6/A14

A5/A13

A4/A12

A1/A9

A0/A8

A7/A15

RAS CASR/WMUX*

A0

A1

A2

A4

A5

A3

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

A0

A1

A2

A4

A5

A3

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

A11
A10

A2
A1

A3

A4

A5

A6

A7

A8

A9

A13
A12

A15
A14

A3/A11

A2/A10

CPU

CPU 64K
DRAM

ROM or
static
RAM

memory
system
(64K)

Address
bus

FIGURE 12-28 (a) CPU

address bus driving ROM or

static-RAM memory;

(b) CPU addresses driving a

multiplexer that is used to

multiplex the CPU address

lines into the DRAM.

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 828

SECTION 12-15/DRAM READ/WRITE CYCLES 829

RAS

CAS

1

0

1

A8–A15 latched into
DRAM row

address register

A0–A7 latched into
DRAM column

address register

MUXFIGURE 12-29 Timing

required for address

multiplexing.

REVIEW QUESTIONS 1. Describe the array structure of a .

2. What is the benefit of address multiplexing?

3. How many address inputs would there be on a chip?

4. What are the functions of the and signals?

5. What is the function of the MUX signal?

12-15 DRAM READ/WRITE CYCLES

The timing of the read and write operations of a DRAM is much more com-

plex than for a static RAM, and there are many critical timing require-

ments that the DRAM memory designer must consider. At this point, a

detailed discussion of these requirements would probably cause more con-

fusion than enlightenment. We will concentrate on the basic timing

sequence for the read and write operations for a small DRAM system like

that of Figure 12-28(b).

Dram Read Cycle
Figure 12-30 shows typical signal activity during the read operation. It is as-

sumed that is in its HIGH state throughout the operation.The following

is a step-by-step description of the events that occur at the times indicated

on the diagram.

■ t0: MUX is driven LOW to apply the row address bits (A8 to A15) to the

DRAM address inputs.

■ t1: is driven LOW to load the row address into the DRAM.

■ t2: MUX goes HIGH to place the column address (A0 to A7) at the DRAM

address inputs.

■ t3: goes LOW to load the column address into the DRAM.

■ t4: The DRAM responds by placing valid data from the selected memory

cell onto the DATA OUT line.

■ t5: MUX, and DATA OUT return to their initial states.RAS, CAS,

CAS

RAS

R>W

CASRAS

1M * 1 DRAM

64K * 1 DRAM

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 829

Dram Write Cycle
Figure 12-31 shows typical signal activity during a DRAM write operation.

Here is a description of the sequence of events.

■ t0: The LOW at MUX places the row address at the DRAM inputs.

■ t1: The NGT at loads the row address into the DRAM.

■ t2: MUX goes HIGH to place the column address at the DRAM inputs.

■ t3: The NGT at loads the column address into the DRAM.

■ t4: Data to be written are placed on the DATA IN line.

■ t5: is pulsed LOW to write the data into the selected cell.

■ t6: Input data are removed from DATA IN.

■ t7: MUX, and are returned to their initial states.R>WRAS, CAS,

R>W

CAS

RAS

830 CHAPTER 12/MEMORY DEVICES

FIGURE 12-31 Signal

activity for a write

operation on a dynamic

RAM.

DATA
VALID

COLUMNROW

MUX

RAS

CAS

Address

t0 t2 t7t6t3t1

R/W

t5t4

DATA
IN

DATA
VALID

COLUMNROW

MUX

RAS

CAS

Address

t0 t2 t5t4t3t1

DATA
OUT

FIGURE 12-30 Signal

activity for a read opera-

tion on a dynamic RAM.

The input (not shown)

is assumed to be HIGH.

R>W

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 830

12-16 DRAM REFRESHING

A DRAM cell is refreshed each time a read operation is performed on that

cell. Each memory cell must be refreshed periodically (typically, every 4 to

16 ms, depending on the device) or its data will be lost. This requirement

would appear to be extremely difficult, if not impossible, to meet for large-

capacity DRAMs. For example, a has 1020 � 1,048,576 cells.

To ensure that each cell is refreshed within 4 ms, it would require that read

operations be performed on successive addresses at the rate of one every 4 ns

. This is much too fast for any DRAM chip. Fortunately,

manufacturers have designed DRAM chips so that

whenever a read operation is performed on a cell, all of the cells in
that row will be refreshed.

Thus, it is necessary to do a read operation only on each row of a DRAM

array once every 4 ms to guarantee that each cell of the array is refreshed. Re-

ferring to the of Figure 12-27(a), if any address is strobed into

the row address register, all 2048 cells in that row are automatically refreshed.

Clearly, this row-refreshing feature makes it easier to keep all DRAM

cells refreshed. However, during the normal operation of the system in which

a DRAM is functioning, it is unlikely that a read operation will be performed

on each row of the DRAM within the required refresh time limit. Therefore,

some kind of refresh control logic is needed either external to the DRAM

chip or as part of its internal circuitry. In either case, there are two refresh

modes: a burst refresh and a distributed refresh.

In a burst refresh mode, the normal memory operation is suspended, and

each row of the DRAM is refreshed in succession until all rows have been re-

freshed. In a distributed refresh mode, the row refreshing is interspersed

with the normal operations of the memory.

The most universal method for refreshing a DRAM is the -only refresh.
It is performed by strobing in a row address with while and re-

main HIGH. Figure 12-32 illustrates how -only refresh is used for a burst re-

fresh of the TMS44100. Some of the complexity of the memory array in this chip

is there to make refresh operations simpler. Because two banks are lined up in

the same row, both banks can be refreshed at the same time, effectively mak-

ing it the same as if there were only 1024 rows.A refresh counter is used to sup-

ply 10-bit row addresses to the DRAM address inputs starting at 0000000000

(row 0). is pulsed LOW to load this address into the DRAM, and this re-

freshes row 0 in both banks. The counter is incremented and the process is re-

peated up to address 1111111111 (row 1023). For the TMS44100, a burst refresh

can be completed in just over 113 and must be repeated every 16 ms or less.ms

RAS

RAS
R>WCASRAS

RAS

4M * 1 DRAM

(4 ms/1,048,576 L 4 ns)

1M * 1 DRAM

SECTION 12-16/DRAM REFRESHING 831

REVIEW QUESTIONS 1. True or false:

(a) During a read cycle, the signal is activated before the signal.

(b) During a write operation, is activated before

(c) is held LOW for the entire write operation.

(d) The address inputs to a DRAM will change twice during a read or a

write operation.

2. Which signal in Figure 12-28(b) makes sure that the correct portion of the

complete address appears at the DRAM inputs?

R>W
RAS.CAS

CASRAS

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 831

While the refresh counter idea seems easy enough, we must realize that

the row addresses from the refresh counter cannot interfere with the addresses

coming from the CPU during normal read/write operations. For this reason, the

refresh counter addresses must be multiplexed with the CPU addresses, so

that the proper source of DRAM addresses is activated at the proper times.

In order to relieve the computer’s CPU from some of these burdens, a

special chip called a dynamic RAM (DRAM) controller is often used. At a

minimum, this chip will perform address multiplexing and refresh count se-

quence generation, leaving the generation of the timing for and

MUX signals up to some other logic circuitry and the person who programs

the computer. Other DRAM controllers are fully automatic. Their inputs

look very much like a static RAM or ROM. They automatically generate the

refresh sequence often enough to maintain the memory, multiplex the ad-

dress bus, generate the and signals, and arbitrate control of the

DRAM between the CPU read/write cycles and local refresh operations. In

current personal computers, the DRAM controller and other high-level con-

troller circuits are integrated into a set of VLSI circuits that are referred to

as a “chip set.” As newer DRAM technologies are developed, new chip sets

are designed to take advantage of the latest advances. In many cases, the

number of existing (or anticipated) chip sets supporting a certain technol-

ogy in the market determines the DRAM technology in which manufactur-

ers invest.

Most of the DRAM chips in production today have on-chip refreshing capa-

bility that eliminates the need to supply external refresh addresses. One of

these methods, shown in Figure 12-33(a), is called refresh. In

this method, the signal is driven LOW first and is held LOW until after

goes LOW. This sequence will refresh one row of the memory array and incre-

ment an internal counter that generates the row addresses.To perform a burst

refresh using this feature, can be held LOW while is pulsed once for

each row until all are refreshed. During this refresh cycle, all external addresses

are ignored. The TMS44100 also offers “hidden refresh,” which allows a row to

be refreshed while holding data on the output. This is done by holding

LOW after a read cycle and then pulsing as in Figure 12-33(b).

The self-refresh mode of Figure 12-33(c) fully automates the process. By

forcing LOW before and then holding them both LOW for at least

100 , an internal oscillator clocks the row address counter until all cells

are refreshed. The mode that a system designer chooses depends on how

busy the computer’s CPU is. If it can spare 100 without accessing its mem-

ory, and if it can do this every 16 ms, then the self-refresh is the way to go.

ms

ms

RASCAS

RAS
CAS

RASCAS

RASCAS
CAS-before-RAS

CASRAS

RAS, CAS,

832 CHAPTER 12/MEMORY DEVICES

RAS

Address ROW 0 ROW 1 ROW 2 ROW 1023

R/W and CAS lines held HIGH*

FIGURE 12-32 The -only refresh method uses only the signal to load the

row address into the DRAM to refresh all cells in that row. The -only refresh can

be used to perform a burst refresh as shown. A refresh counter supplies the

sequential row addresses from row 0 to row 1023 (for a).4M * 1 DRAM

RAS
RASRAS

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 832

SECTION 12-16/DRAM REFRESHING 833

Refresh all

Hi-Z

RAS

Data
out

Valid data
Hi-Z

Refresh n

Refresh n+1Refresh nMemory read

CAS

RAS

Data
out

CAS

Hi-Z

RAS

Data
out

CAS

100 μs/min

(a) CAS-before-RAS

(b) Hidden refresh

(c) Self–refresh

FIGURE 12-33 TMS44100

refresh modes.

REVIEW QUESTIONS 1. True or false:

(a) In most DRAMs, it is necessary to read only from one cell in each

row in order to refresh all cells in that row.

(b) In the burst refresh mode, the entire array is refreshed by one

pulse.

2. What is the function of a refresh counter?

3. What functions does a DRAM controller perform?

4. True or false:

(a) In the -only refresh method, the signal is held LOW.

(b) -before- refresh can be used only by DRAMs with on-chip

refresh control circuitry.

 RASCAS

CASRAS

RAS

However, if this will slow the program execution down too much, it may re-

quire some distributed refreshing using or hidden refresh

cycles. In any case, all cells must be refreshed within the allotted time or

data will be lost.

CAS-before-RAS

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 833

12-17 DRAM TECHNOLOGY*

In selecting a particular type of RAM device for a system, a designer has some

difficult decisions. The capacity (as large as possible), the speed (as fast as

possible), the power needed (as little as possible), the cost (as low as possible),

and the convenience (as easy to change as possible) must all be kept in a rea-

sonable balance because no single type of RAM can maximize all of these de-

sired features.The semiconductor RAM market is constantly trying to produce

the ideal mix of these characteristics in its products for various applications.

This section explains some of the current terms used regarding RAM technol-

ogy. This is a very dynamic topic, and perhaps some of these terms will be his-

tory before this book is printed, but here is the state of the art today.

Memory Modules
With many companies manufacturing motherboards for personal computer

systems, standard memory interface connectors have been adopted. These

connectors receive a small printed circuit card with contact points on both

sides of the edge of the card. These modular cards allow for easy installation

or replacement of memory components in a computer. The single-in-line

memory module (SIMM) is a circuit card with 72 functionally equivalent con-

tacts on both sides of the card. A redundant contact point on each side of the

board offers some assurance that a good, reliable contact is made. These

modules use 5-V-only DRAM chips that vary in capacity from 1 to 16 Mbits in

surface-mount gull-wing or J-lead packages.The memory modules vary in ca-

pacity from 1 to 32 Mbytes.

The newer, 168-pin, dual-in-line memory module (DIMM) has 84 func-

tionally unique contacts on each side of the card. The extra pins are neces-

sary because DIMMs are connected to 64-bit data buses such as those found

in modern PCs. Both 3.3-V and 5-V versions are available. They also come in

buffered and unbuffered versions. The capacity of the module depends on

the DRAM chips that are mounted on it; and as DRAM capacity increases,

the capacity of the DIMMs will increase. The chip set and motherboard de-

sign that is used in any given system determines which type of DIMM can be

used. For compact applications, such as laptop computers, a small-outline,

dual-in-line memory module is available (SODIMM).

The primary problem in the personal computer industry is providing a

memory system that is fast enough to keep up with the ever-increasing clock

speeds of the microprocessors while keeping the cost at an affordable level.

Special features are being added to the basic DRAM devices to enhance their

total bandwidth. A new type of package called the RIMM has entered the

market. RIMM stands for Rambus In-line Memory Module. Rambus is a com-

pany that has invented some revolutionary new approaches to memory tech-

nology. The RIMM is their proprietary package that holds their proprietary

memory chips called Direct Rambus DRAM (DRDRAM) chips. Although

these methods of improving performance are constantly changing, the tech-

nologies described in the following sections are currently being referred to

extensively in memory-related literature.

FPM DRAM
Fast page mode (FPM) allows quicker access to random memory locations

within the current “page.” A page is simply a range of memory addresses

834 CHAPTER 12/MEMORY DEVICES

*This topic may be omitted without affecting the continuity of the remainder of the book.

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 834

that have identical upper address bit values. In order to access data on the

current page, only the lower address lines must be changed.

EDO DRAM
Extended data output (EDO) DRAMs offer a minor improvement to FPM

DRAMs. For accesses on a given page, the data value at the current memory

location is sensed and latched onto the output pins. In the FPM DRAMs, the

sense amplifier drives the output without a latch, requiring to remain

low until data values become valid. With EDO, while these data are present

on the outputs, can complete its cycle, a new address on the current

page can be decoded, and the data path circuitry can be reset for the next

access. This allows the memory controller to be outputting the next address

at the same time that the current word is being read.

SDRAM
Synchronous DRAM is designed to transfer data in rapid-fire bursts of sev-

eral sequential memory locations. The first location to be accessed is the

slowest due to the overhead (latency) of latching the row and column

address. Thereafter, the data values are clocked out by the bus system clock

(instead of the control line) in bursts of memory locations within the

same page. Internally, SDRAMs are organized in two banks. This allows data

to be read out at a very fast rate by alternately accessing each of the two

banks. In order to provide all of the features and the flexibility needed for

this type of DRAM to work with a wide variety of system requirements, the

circuitry within the SDRAM has become more complex. A command se-

quence is necessary to tell the SDRAM which options are needed, such as

burst length, sequential or interleaved data, and -before- or self-

refresh modes. Self-refresh mode allows the memory device to perform all of

the necessary functions to keep its cells refreshed.

DDRSDRAM
Double Data Rate SDRAM offers an improvement of SDRAM. In order to

speed up the operation of SDRAM, while operating from a synchronous sys-

tem clock, this technology transfers data on the rising and falling edges of the

system clock, effectively doubling the potential rate of data transfer.

SLDRAM
Synchronous-Link DRAM is an evolutionary improvement over DDRS-

DRAM. It can operate at bus speeds up to 200 MHz and clocks data synchro-

nously on the rising and falling edges of the system clock. A consortium of

several DRAM manufacturers is developing it as an open standard. If chip

sets are developed that can take advantage of these memory devices and

enough system designers adopt this technology, it is likely to become a

widely used form of DRAM.

DRDRAM
Direct Rambus DRAM is a proprietary device developed and marketed by

Rambus, Inc. It uses a revolutionary new approach to DRAM system architec-

ture with much more control integrated into the memory device. This tech-

nology is still battling with the other standards to find its niche in the market.

 RASCAS

CAS

CAS

CAS

SECTION 12-17/DRAM TECHNOLOGY 835

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 835

12-18 EXPANDING WORD SIZE AND CAPACITY

In many memory applications, the required RAM or ROM memory capac-

ity or word size cannot be satisfied by one memory chip. Instead, several

memory chips must be combined to provide the capacity and/or the word

size. We will see how this is done through several examples that illustrate

the important ideas that are used when memory chips are interfaced to a

microprocessor. The examples that follow are intended to be instructive,

and the memory chip sizes that are used were chosen to conserve space.

The techniques that are presented can be extended to larger memory

chips.

Expanding Word Size
Suppose that we need a memory that can store 16 eight-bit words and all

we have are RAM chips that are arranged as memories with com-

mon I/O lines. We can combine two of these chips to produce the de-

sired memory. The configuration for doing so is shown in Figure 12-34.

Examine this diagram carefully and see what you can find out from it be-

fore reading on.

Because each chip can store 16 four-bit words and we want to store

16 eight-bit words, we are using each chip to store half of each word. In other

words, RAM-0 stores the four higher-order bits of each of the 16 words, and

RAM-1 stores the four lower-order bits of each of the 16 words. A full eight-

bit word is available at the RAM outputs connected to the data bus.

Any one of the 16 words is selected by applying the appropriate address

code to the four-line address bus (A3, A2, A1, A0). The address lines typically

originate at the CPU. Note that each address bus line is connected to the cor-

responding address input of each chip.This means that once an address code

is placed on the address bus, this same address code is applied to both chips

so that the same location in each chip is accessed at the same time.

Once the address is selected, we can read or write at this address under

control of the common and line. To read, must be high and

must be low. This causes the RAM I/O lines to act as outputs. RAM-0 places

its selected four-bit word on the upper four data bus lines, and RAM-1 places

its selected four-bit word on the lower four data bus lines. The data bus then

contains the full selected eight-bit word, which can now be transmitted to

some other device (usually a register in the CPU).

To write, and causes the RAM I/O lines to act as inputs.
The eight-bit word to be written is placed on the data bus (usually by the

CPU).The higher four bits will be written into the selected location of RAM-0,

and the lower four bits will be written into RAM-1.

CS = 0R>W = 0

CSR>WCSR>W

16 * 4

16 * 4

836 CHAPTER 12/MEMORY DEVICES

REVIEW QUESTIONS 1. Are SIMMs and DIMMs interchangeable?

2. What is a “page” of memory?

3. Why is “page mode” faster?

4. What does EDO stand for?

5. What term is used for accessing several consecutive memory locations?

6. What is an SDRAM synchronized to?

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 836

In essence, the combination of the two RAM chips acts like a single

memory chip. We refer to this combination as a memory module.
The same basic idea for expanding word size will work for many differ-

ent situations. Read the following example and draw a rough diagram for

what the system will look like before looking at the solution.

16 * 8

16 * 8

SECTION 12-18/EXPANDING WORD SIZE AND CAPACITY 837

Address range 0000 to 1111 (16 words)
Word size 8 bits

R/W

CS

RAM-1
16 × 4

A3

I /O3

R/W

CS

I/O2 I /O1 I /O0

A2 A1 A0

A3

A2

A1

A0

D7

D6

D5

D4

D3

D2

D1

D0

RAM-0
16 × 4

A3

I /O3

R/W

CS

I/O2 I /O1 I /O0

A2 A1 A0

Address
bus

Data
bus

The 4 higher-
order bits of

each word are
stored in RAM-0.

The 4 lower-
order bits of

each word are
stored in RAM-1.

EXAMPLE 12-13 The 2125A is a static-RAM IC that has a capacity of , one active-LOW

chip select input, and separate data input and output. Show how to combine

several 2125A ICs to form a module.

Solution

The arrangement is shown in Figure 12-35, where eight 2125A chips are used

for a module. Each chip stores one of the bits of each of the 1024

eight-bit words. Note that all of the and inputs are wired together,

and the 10-line address bus is connected to the address inputs of each chip.

Also note that because the 2125A has separate data in and data out pins,

both of these pins of each chip are tied to the same data bus line.

CSR>W
1K * 8

1K * 8

1K * 1

FIGURE 12-34 Combining two for a module.16 * 816 * 4 RAMs

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 837

Expanding Capacity
Suppose that we need a memory that can store 32 four-bit words and all we

have are the chips. By combining two chips as shown in Figure

12-36, we can produce the desired memory. Once again, examine this dia-

gram and see what you can determine from it before reading on.

Each RAM is used to store 16 four-bit words. The four data I/O pins of

each RAM are connected to a common four-line data bus. Only one of the

RAM chips can be selected (enabled) at one time so that there will be no bus-

contention problems.This is ensured by driving the respective inputs from

different logic signals.

The total capacity of this memory module is , so there must be 32

different addresses. This requires five address bus lines. The upper address

line A4 is used to select one RAM or the other (via the inputs) as the one

that will be read from or written into.The other four address lines A0 to A3 are

used to select the one memory location out of 16 from the selected RAM chip.

To illustrate, when A4 � 0, the of RAM-0 enables this chip for read or

write. Then any address location in RAM-0 can be accessed by A3 through A0.

The latter four address lines can range from 0000 to 1111 to select the desired

location. Thus, the range of addresses representing locations in RAM-0 is

A4A3A2A1A0 � 00000 to 01111

Note that when A4 � 0, the of RAM-1 is high, so that its I/O lines are dis-

abled (Hi-Z) and cannot communicate with (give data to or take data from)

the data bus.

It should be clear that when A4 � 1, the roles of RAM-0 and RAM-1 are

reversed. RAM-1 is now enabled, and the lines A3 to A0 select one of its loca-

tions. Thus, the range of addresses located in RAM-1 is

A4A3A2A1A0 � 10000 to 11111

CS

CS

CS

32 * 4

CS

16 * 416 * 4

838 CHAPTER 12/MEMORY DEVICES

CS

A9

A0

•
•
•
•
•

1K × 1

In Out

R/ W

*

CS

1K × 1

In Out

R/ W

*

CS

1K × 1

In Out

R/ W

*

CS

1K × 1

In Out

R/ W

*

CS

1K × 1

In Out

R/ W

*

CS

1K × 1

In Out

R/ W

*

CS

1K × 1

In Out

R/ W

*

CS

1K × 1

In Out

R/ W

*

D7

D6

D5

D4

D3

D2

D1

D0

10-line address bus

All R/W inputs and CS
inputs are connected
in common

* Data
bus

FIGURE 12-35 Eight 2125A chips arranged as a memory.1K * 81K * 1

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 838

SECTION 12-18/EXPANDING WORD SIZE AND CAPACITY 839

Address ranges:

R/W

RAM-1
16 × 4

A3

I /O3

R/W

I/O2 I /O1 I /O0

A2 A1 A0

A4

A3

A2

A1

A0

D3

D2

D1

D0

RAM-0
16 × 4

A3

I /O3

R/W

I/O2 I /O1 I /O0

A2 A1 A0

Address
bus

Data
bus

CSCS

00000 to 01111 – RAM-0
10000 to 11111 – RAM-1

Total 00000 to 11111 – (32 words)

FIGURE 12-36 Combining

two chips for a

memory.32 * 4

16 * 4

EXAMPLE 12-14 We want to combine several PROMs to produce a total capacity of

. How many PROM chips are needed? How many address bus lines are

required?

Solution

Four PROM chips are required, with each one storing 2K of the 8K words.

Because , thirteen address lines are needed.

The configuration for the memory of Example 12-14 is similar to the

memory of Figure 12-36. It is slightly more complex, however, because

it requires a decoder circuit for generating the input signals. The com-

plete diagram for this memory is shown in Figure 12-37(a).

The total capacity of the block of ROM is 8192 bytes. This system con-

taining the block of memory has an address bus of 16 bits, which is typical of

a small microcontroller-based system. The decoder in this system can only be

enabled when A15 and A14 are LOW and E is HIGH.This means that it can only

decode addresses less than 4000 hex. It is easier to understand this by look-

ing at the memory map of Figure 12-37(b).You can see that the top two MSBs

(in red) are always LOW for addresses under 4000 hex. Address lines A13–A11

(blue font) are connected to decoder inputs C–A, respectively.These three bits

are decoded and used to select one of the memory ICs. Notice in the bit map

of Figure 12-37(b) that all the addresses that are contained in PROM-0 have

A13, A12, A11 � 0, 0, 0; PROM-1 is selected when these bits have a value of 0, 0, 1;

PROM-2 when 0, 1, 0; and PROM-3 when 0, 1, 1. When any PROM is selected,

the address lines A10–A0 can range from all 0s to all 1s. To summarize the ad-

dress scheme of this system, the top two bits are used to select this decoder,

8192 * 8

CS
32 * 4

8K = 8 * 1024 = 8192 = 213

8K * 8

2K * 8

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 839

(a)

A10

A0

D7

D0

•
•
•
•

•

••
•
•
•

Data bus [8]

A12

A13

A14

A15

74ALS138
1-of-8

decoder

Address bus [16]

B

E2

C

A

E1

E3
Control bus

E

3-line-to-8-line
decoder 0

PROM-0
2K × 8

A0–A10

CS

O7–O0

[8]

[11]

A11

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•••••••

PROM-1
2K × 8

A0–A10

CS

O7–O0

[8]

[11]

•••••••

PROM-2
2K × 8

A0–A10

CS

O7–O0

[8]

[11]

•••••••

PROM-3
2K × 8

A0–A10

CS

O7–O0

[8]

[11]

•••••••

Decoder selects
one PROM chip

determined by A11 and A12.

1
2
3
4
5
6
7

K0 K1 K2 K3

(b)

Address System Map

PROM-0 2K

2K

2K

2K

8K

48K

PROM-1

PROM-2

PROM-3

Decoded

Expansion

A0A1A2A3A4A5A6A7A8A9A10A11A12A13A14A15

0 0000000000000000000

0 1800000000000011000

0 2000 O4

O5

O6

O7

0000000000001

101

011

00

0 4000000000000000010

0 1000000000000001000

0 0800000000000010000

1 07FF111111111100000

1 0FFF111111111110000

1 17FF111111111101000

1 1FFF111111111111000

1 3FFF111111111111100

1 FFFF

Available

111111111111111

FIGURE 12-37 (a) Four arranged to form a total capacity of .

(b) Memory map of the full system.

8K * 82K * 8 PROMs

840

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 840

the next three bits (A13–A11) are used to select one out of four PROM chips,

and the lower 11 address lines are used to select one out of 2048 byte-sized

memory locations in the enabled PROM.

When the system address of 4000 or more is on the address bus, none of

the PROMs will be enabled. However, decoder outputs 4–7 can be used to en-

able more memory chips if we wish to expand the capacity of the memory sys-

tem. The memory map on the right side of Figure 12-37(b) shows a 48K area

of the system’s space that is not occupied by this memory block. In order to

expand into this area of the memory map, more decoding logic would be

needed.

SECTION 12-18/EXPANDING WORD SIZE AND CAPACITY 841

EXAMPLE 12-15 What would be needed to expand the memory of Figure 12-37 to ?

Describe what address lines are used.

Solution

A 32K capacity will require 16 of the 2K PROM chips. Four are already

shown and four more can be connected to the O4–O7 of the existing decoder

outputs. This accounts for half of the system. The other eight PROM chips

can be selected by adding another 74ALS138 decoder and enabling it only

when A15 � 0 and A14 � 1. This can be accomplished by connecting an in-

verter between A14 and while connecting A15 directly to The other

connections are the same as in the existing decoder.

Incomplete Address Decoding
In many instances, it is necessary to use various memory devices in the same

memory system. For example, consider the requirements of a digital dash-

board system on an automobile. Such a system is typically implemented us-

ing a microprocessor. Consequently, we need some nonvolatile ROM to store

the program instructions. We need some read/write memory to store the dig-

its that represent the speed, RPM, gallons of fuel, and so on. Other digitized

values must be stored to represent oil pressure, engine temperature, battery

voltage, and so on. We also need some nonvolatile read/write storage (EE-

PROM) for the odometer readout because it would not be good to have this

number reset to 0 or assume a random value whenever the car battery is dis-

connected.

Figure 12-38 shows a memory system that could be used in a microcom-

puter system. Notice that the ROM portion is made up of two devices

(PROM-0 and PROM-1). The RAM section requires a single device.

The EEPROM available is only a device.The memory system requires

a decoder to select only one device at a time. This decoder divides the entire

memory space (assuming 16 address bits) into 8K address blocks. In other

words, each decoder output is activated by 8192 (8K) different addresses. No-

tice that the upper three address lines control the decoder. The 13 lower-

order address lines are tied directly to the address inputs on the memory

chips. The only exception to this is the EEPROM, which has only 11 address

lines for its 2-Kbyte capacity. If the address (in hex) of this EEPROM is

intended to range from 6000 to 67FF, it will respond to these addresses as in-

tended. However, the two address lines, A11 and A12, are not involved in the

decoding scheme for this chip. The decoder output (K3) is active for 8K ad-

dresses, but the chip that it is connected to contains only 2K locations. As a

result, the EEPROM will also respond to the other 6K of addresses in this

2K * 8

8K * 8

8K * 8

E2.E1

32K * 8

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 841

decoded block of memory. The same contents of the EEPROM will also ap-

pear at addresses 6800–6FFF, 7000–77FF, and 7800–7FFF. These areas of

memory that are redundantly occupied by a device due to incomplete ad-

dress decoding are referred to as memory foldback areas. This occurs fre-

quently in systems where there is an abundance of address space and a need

to minimize decoding logic. A memory map of this system (see Figure 12-39)

842 CHAPTER 12/MEMORY DEVICES

A15
A14
A13
A12
A10

A0

PROM-0
8K × 8

K0

A0–A12

O7–O0

CS

[8]

[13]

PROM-1
8K × 8

K1

A0–A12

O7–O0

CS

[8]

[13]

RAM
8K × 8

K2

A0–A12

I/O7–I/O0

CS

[13]

EEPROM
2K × 8

K3

A0–A10

CS

[11]

74ALS138
1-of-8

decoder

C

B

A

E3

E2

E1

3-line-to-8-line
decoder 0

1
2
3
4
5
6
7

Address bus [16]

Decoder selects
one memory chip

determined by A13–A15.

D7

D0

•••••
Data bus [8]

Address ranges (hex)
0000 to 1FFF — PROM-0
2000 to 3FFF — PROM-1
4000 to 5FFF — RAM
6000 to 67FF — EEPROM

Control bus
E

R/W [8] [8]

I/O7–I/O0

WE WE

•
•
•
•
•
•

FIGURE 12-38 A system with incomplete address decoding.

0000

1FFF
2000

3FFF
4000

5FFF
6000

67FF
6800

6FFF
7000

77FF
7800

7FFF

PROM-0

PROM-1

RAM

EEPROM

EEPROM foldback

EEPROM foldback

EEPROM foldback

8000

FFFF

Available
FIGURE 12-39 A memory

map of a digital dashboard

system.

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 842

clearly shows the addresses that each device is assigned to as well as the

memory space that is available for expansion.

Combining DRAM Chips
DRAM ICs often come with word sizes of one or four bits, so it is necessary

to combine several of them to form larger word size modules. Figure 12-40

shows how to combine eight TMS44100 DRAM chips to form a mod-

ule. Each chip has a 1 capacity.4M *

4M * 8

SECTION 12-18/EXPANDING WORD SIZE AND CAPACITY 843

FIGURE 12-40 Eight chips combined to form a memory

module.

4M * 84M * 1 DRAM

CAS

RAS

WE

MUX

Multiplexed address bus
[11]

A21

Address
Multiplexer

A0

•
•
•
•
•

CPU
address

bus

[22]

A0

IN OUT

A0

IN OUT

A0

IN OUT

A0

IN OUT

A0

IN OUT

A0

IN OUT

A0

IN OUT

A0

IN OUT

D7

D6

D5

D4

D3

D2

D1

D0

From
CPU

data bus

A10• • • • •

44100

A10• • • • •

44100

A10• • • • •
44100

A10• • • • •

44100

A10• • • • •

44100

A10• • • • •

44100

A10• • • • •

4410044100
4M × 1

A10• • • • •

DRAM
control
circuitry

CPU
timing/
control

bus

Select

There are several important points to note. First, because 4M � 222, the

TMS44100 chip has eleven address inputs; remember, DRAMs use multi-

plexed address inputs. The address multiplexer takes the 22-line CPU

address bus and changes it to an 11-line address bus for the DRAM chips. Sec-

ond, the and inputs of all eight chips are connected together

so that all chips are activated simultaneously for each memory operation.

Finally, recall that the TMS44100 has on-chip refresh control circuitry, so

there is no need for an external refresh counter.

WERAS, CAS,

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 843

12-19 SPECIAL MEMORY FUNCTIONS

We have seen that RAM and ROM devices are used as a computer’s high-

speed internal memory that communicates directly with the CPU (e.g.,

microprocessor). In this section, we briefly describe some of the special func-

tions that semiconductor memory devices perform in computers and other dig-

ital equipment and systems.The discussion is not intended to provide details of

how these functions are implemented but to introduce the basic ideas.

Power-Down Storage
In many applications, the volatility of semiconductor RAM can mean the

loss of critical data when system power is shut down—either purposely or as

the result of an unplanned power interruption. Just two of many examples of

this are:

1. Critical operating parameters for graphics terminals, intelligent termi-

nals, and printers. These changeable parameters determine the operat-

ing modes and attributes that will be in effect upon power-up.

2. Industrial process control systems that must never “lose their place” in

the middle of a task when power unexpectedly fails.

There are several approaches to providing storage of critical data in

power-down situations. In one method, all critical data during normal system

operation are stored in RAM that can be powered from backup batteries

whenever power is interrupted. Some CMOS RAM chips have very low

standby power requirements (as low as 0.5 mW) and are particularly well

suited for this task. Some CMOS SRAMs actually include a small lithium bat-

tery right on the chip. Of course, even with their low power consumption,

these CMOS RAMs will eventually drain the batteries if power is out for pro-

longed periods, and data will be lost.

Another approach stores all critical system data in nonvolatile flash

memory. This approach has the advantage of not requiring backup battery

power, and so it presents no risk of data loss even for long power outages.

Flash memory, however, cannot have its data changed as easily as static RAM.

Recall that with a flash chip, we cannot erase and write to one or two bytes;

it must be erased a sector at a time. This requires the CPU to have to rewrite

a large block of data even when only a few bytes need to be changed.

In a third approach, the CPU stores all data in high-speed, volatile RAM

during normal system operation. On power-down, the CPU executes a short

power-down program (from ROM) that transfers critical data from the system

844 CHAPTER 12/MEMORY DEVICES

REVIEW QUESTIONS 1. The MCM6209C is a static-RAM chip. How many of these chips

are needed to form a module?

2. How many are needed for a module?

3. True or false: When memory chips are combined to form a module with a

larger word size or capacity, the CS inputs of each chip are always con-

nected together.

4. True or false: When memory chips are combined for a larger capacity,

each chip is connected to the same data bus lines.

64K * 16

1M * 4

64K * 4

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 844

SECTION 12-19/SPECIAL MEMORY FUNCTIONS 845

RAM into either battery-backup CMOS RAM or nonvolatile flash memory.This

requires a special circuit that senses the onset of a power interruption and

sends a signal to the CPU to tell it to begin executing the power-down sequence.

In any case, when power is turned back on, the CPU executes a power-up

program (from ROM) that transfers the critical data from the backup storage

memory to the system RAM so that the system can resume operation where

it left off when power was interrupted.

Cache Memory
Computers and other digital systems may have thousands or millions of

bytes of internal memory (RAM and ROM) that store programs and data that

the CPU needs during normal operation. Normally, this would require that

all of the internal memory have an operating speed comparable to that of the

CPU in order to achieve maximum system operation. In many systems, it is

not economical to use high-speed memory devices for all of the internal

memory. Instead, system designers use a block of high-speed cache memory.

This cache memory block is the only block that communicates directly with

the CPU at high speed; program instructions and data are transferred from

the slower, cheaper internal memory to the cache memory when they are

needed by the CPU.The success of cache memory depends on many complex

factors, and some systems will not benefit from using cache memory.

Modern PC CPUs have a small (8–64 Kbytes) internal memory cache.This is

referred to as a level 1 or L1 cache.The chip set of most computer systems also

controls an external bank of static RAM (SRAM) that implements a level 2 or

L2 cache (64 Kbytes to 2 Mbytes). The cache memory is filled with a sequence

of instruction words from the system memory.The CPU (many operating at over

2 GHZ clock rates) can access the cache contents at very high speed. However,

when the CPU needs a piece of information that is not currently in either the L1

or the L2 cache (i.e., a cache miss), it must go out to the slow system DRAM to

get it. This transfer must occur at the much slower bus clock rate, which may be

from 66 MHz to 800 MHz depending on your system. In addition to the slower

clock rate, the DRAM access time (latency) is much greater.

The specification of 7-2-2-2 or 5-1-1-1 for a memory system refers to the

number of bus clock cycles necessary to transfer a burst of four 64-bit words

from DRAM to the L2 cache. The first access takes the most time due to la-

tency associated with RAS/CAS cycles. Subsequent data are clocked out in

a burst that takes much less time. For example, the 7-2-2-2 system would re-

quire 7 clocks to obtain the first 64-bit word, and each of the next three 64-

bit words would require 2 clock cycles each. A total of 13 clock cycles are

necessary to get the four words out of memory.

First-In, First-Out Memory (FIFO)
In FIFO memory systems, data that are written into the RAM storage area are

read out in the same order that they were written in. In other words, the first

word written into the memory block is the first word that is read out of the

memory block: hence the name FIFO. This idea is illustrated in Figure 12-41.

Figure 12-41(a) shows the sequence of writing three data bytes into the

memory block. Note that as each new byte is written into location 1, the other

bytes move to the next location. Figure 12-41(b) shows the sequence of read-

ing the data out of the FIFO block.The first byte read is the same as the first

byte that was written, and so on. The FIFO operation is controlled by special

address pointer registers that keep track of where data are to be written and

the location from which they are to be read.

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 845

846 CHAPTER 12/MEMORY DEVICES

FIGURE 12-41 In FIFO,

data values are read out of

memory (b) in the same

order that they were

written into memory (a).

0

1

0

1

0

1

0

0

0

0

0

1

0

1

1

0

0 1 1 0 1 1 1 0

1

2

3

4

5

6

Third data byte
read = 00000001

0

1

0

1

0

1

0

0

0

0

0

1

0

1

1

0

0 1 1 0 1 1 1 0

1

2

3

4

5

6

Second data byte
read = 11100110

0

1

0

1

0

1

0

0

0

0

0

1

0

1

1

0

0 1 1 0 1 1 1 0

1

2

3

4

5

6

First data byte
read = 01101110

(b)

0

1

0

1

0

1

0

0

0

0

0

1

0

1

1

0

0 1 1 0 1 1 1 0

1

2

3

4

5

6

Third data byte
written

1

0

1

1

1

1

0

0

0

1

1

1

1

1

0

0

1

2

3

4

5

6

Second data byte
written

0 1 1 0 1 1 1 01

2

3

4

5

6

First data byte
written

(a)

A FIFO is useful as a data-rate buffer between systems that transfer data

at widely different rates. One example is the transfer of data from a com-

puter to a printer.The computer sends character data to the printer at a very

high rate, say, one byte every . These data fill up a FIFO memory in the

printer. The printer then reads out the data from the FIFO at a much slower

rate, say, one byte every 5 ms, and prints out the corresponding characters in

the same order as sent by the computer.

A FIFO can also be used as a data-rate buffer between a slow device, such

as a keyboard, and a high-speed computer. Here, the FIFO accepts keyboard

data at the slow and asynchronous rate of human fingers and stores them.

The computer can then read all of the recently stored keystrokes very quickly

at a convenient point in its program. In this way, the computer can perform

other tasks while the FIFO is slowly being filled with data.

Circular Buffers
Data rate buffers (FIFOs) are often referred to as linear buffers. As soon as

all the locations in the buffer are full, no more entries are made until the

buffer is emptied. This way, none of the “old” information is lost. A similar

memory system is called a circular buffer. These memory systems are used

to store the last n values entered, where n is the number of memory loca-

tions in the buffer. Each time a new value is written to a circular buffer, it

overwrites (replaces) the oldest value. Circular buffers are addressed by a

MOD-n address counter. Consequently, when the highest address is reached,

the address counter will “wrap around” and the next location will be the

lowest address. As you recall from Chapter 11, digital filtering and other

DSP operations perform calculations using a group of recent samples.

Special hardware included in a DSP allows easy implementation of circular

buffers in memory.

10 ms

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 846

SECTION 12-20/TROUBLESHOOTING RAM SYSTEMS 847

12-20 TROUBLESHOOTING RAM SYSTEMS

All computers use RAM. Many general-purpose computers and most special-

purpose computers (such as microprocessor-based controllers and process-

control computers) also use some form of ROM. Each RAM and ROM IC that

is part of a computer’s internal memory typically contains thousands of

memory cells. A single faulty memory cell can cause a complete system fail-

ure (commonly referred to as a “system crash”) or, at the least, unreliable

system operation. The testing and troubleshooting of memory systems

involves the use of techniques that are not often used on other parts of the

digital system. Because memory consists of thousands of identical circuits

acting as storage locations, any tests of its operation must involve checking

to see exactly which locations are working and which are not. Then, by look-

ing at the pattern of good and bad locations along with the organization of

the memory circuitry, one can determine the possible causes of the memory

malfunction. The problem typically can be traced to a bad memory IC; a bad

decoder IC, logic gate, or signal buffer; or a problem in the circuit connec-

tions (i.e., shorts or open connections).

Because RAM must be written to and read from, testing RAM is gener-

ally more complex than testing ROM. In this section, we will look at some

common procedures for testing the RAM portion of memory and interpret-

ing the test results. We will examine ROM testing in the next section.

Know the Operation
The RAM memory system shown in Figure 12-42 will be used in our exam-

ples. As we emphasized in earlier discussions, successful troubleshooting of

a relatively complex circuit or system begins with a thorough knowledge of

its operation. Before we can discuss the testing of this RAM system, we

should first analyze it carefully so that we fully understand its operation.

The total capacity is and is made up of four RAM mod-

ules. A module may be just a single IC, or it may consist of several ICs (e.g.,

two chips). Each module is connected to the CPU through the address

and data buses and through the control line.The modules have common

I/O data lines. During a read operation, these lines become data output lines

through which the selected module places its data on the bus for the CPU to

read. During a write operation, these lines act as input lines for the memory

to accept CPU-generated data from the data bus for writing into the selected

location.

The 74ALS138 decoder and the four-input OR gate combine to decode the

six high-order address lines to generate the chip select signals and

These signals enable a specific RAM module for a read or a write opera-

tion. The INVERTER is used to invert the CPU-generated Enable signal (E)

K3.

K0, K1, K2,

R>W
1K * 4

1K * 84K * 8

REVIEW QUESTIONS 1. What are the various ways to handle the possible loss of critical data

when power is interrupted?

2. What is the principal reason for using a cache memory?

3. What does FIFO mean?

4. What is a data-rate buffer?

5. How does a circular buffer differ from a linear buffer?

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 847

A
9

A
0

C
P

U

A
15

A
10

A
14

A
13

1K
 ×

8

R
A

M
m

od
ul

e-
2

C
S

74
A

LS
13

8
A

7
E

1

B
C

6
5

4
3

2
1

0E
2

+
5

V

R
/W

E
3

D
7

D
0

1K
 ×

8

R
A

M
m

od
ul

e-
3

C
S

D
A

TA
 I

/O
R

/W

1K
 ×

8

R
A

M
m

od
ul

e-
1

C
S

R
/W

1K
 ×

8

R
A

M
m

od
ul

e-
0

C
S

R
/W

R
/WA
12

A
11

K
3

K
2

K
1K

0

E
E

F
IG

U
R

E
 1

2-
42

m
e
m

o
ry

 c
o
n

n
e
c
te

d
 t

o
 a

 C
P

U
.

4
K

*

 8
 R

A
M

848

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 848

SECTION 12-20/TROUBLESHOOTING RAM SYSTEMS 849

so that the decoder is enabled only while E is HIGH. The E pulse occurs only

after allowing enough time for the address lines to stabilize following the ap-

plication of a new address on the address bus. E will be LOW while the ad-

dress and lines are changing; this prevents the occurrence of decoder

output glitches that could erroneously activate a memory chip and possibly

cause invalid data to be stored.

Each RAM module has its address inputs connected to the CPU address

bus lines A0 through A9.The high-order address lines A10 through A15 select one

of the RAM modules. The selected module decodes address lines A0 through

A9 to find the word location that is being addressed. The following examples

will show how to determine the addresses that correspond to each module.

R/W

EXAMPLE 12-16 Assume that the CPU is performing a read operation from address 06A3

(hex). Which RAM module, if any, is being read from?

Solution

First write out the address in binary.

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

0 0 0 0 0 1 1 0 1 0 1 0 0 0 1 1

You should be able to verify that levels A15 to A10 will activate decoder

output to select RAM module-1. This module internally decodes the ad-

dress lines A9 to A0 to select the location whose data are to be placed on the

data bus.

K1

EXAMPLE 12-17 Which RAM module will have data written into it when the CPU executes a

write operation to address 1C65?

Solution

Writing out the address in binary, we can see that A12 � 1. This produces a

HIGH out of the OR gate and at the C input of the decoder. With A11 � A10 � 1,

the decoder inputs are 111, which activates output 7. Outputs to will

be inactive, and so none of the RAM modules will be enabled. In other

words, the data placed on the data bus by the CPU will not be accepted by

any of the RAMs.

K3K0

EXAMPLE 12-18 Determine the range of addresses for each module in Figure 12-42.

Solution

Each module stores 1024 eight-bit words. To determine the addresses of the

words stored in any module, we start by determining the address bus conditions

that activate that module’s chip select input. For example, module-3 will be

selected when decoder input is LOW (Figure 12-43). will be LOW for CBA
� 011. Working back to the CPU address lines A15 to A10, we see that module-3

will be enabled when the following address is placed on the address bus:

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

0 0 0 0 1 1 x x x x x x x x x x

K3K3

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 849

850 CHAPTER 12/MEMORY DEVICES

The x’s under A9 through A0 indicate don’t care because these address

lines are not used by the decoder to select module-3. A9 to A0 can be any

combination ranging from 0000000000 to 1111111111, depending on which

word in module-3 is being accessed. Thus, the complete range of addresses

for module-3 is determined by using all 0s, and then all 1s for the x’s.

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 → 0C0016

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 → 0FFF16

Finally, this gives us 0C00 to 0FFF as the range of hex addresses stored in

module-3. When the CPU places any address in this range onto the address

bus, only module-3 will be enabled for either a read or a write, depending

on the state of

A similar analysis can be used to determine the address ranges for each

of the other RAM modules. The results are as follows:

■ Module-0: 0000–03FF

■ Module-1: 0400–07FF

■ Module-2: 0800–0BFF

■ Module-3: 0C00–0FFF

Note that the four modules combine for a total address range of 0000 to 0FFF.

Testing the Decoding Logic
In some situations, the decoding logic portion of the RAM circuit (Figure 12-43)

can be tested using the various techniques that we have applied to combina-

torial circuits. It can be tested by applying signals to the six most significant

address lines and E and by monitoring the decoder outputs.To do this, it must

be possible to disconnect the CPU easily from these signal lines. If the CPU is

a microprocessor chip in a socket, it can simply be removed from its socket.

Once the CPU is disconnected, you can supply the A10–A15 and E signals

from an external test circuit to perform a static test, using manually operated

switches for each signal, or a dynamic test, using some type of counter to cycle

through the various address codes.With these test signals applied, the decoder

output lines can be checked for the proper response. Standard signal-tracing

techniques can be used to isolate any faults in the decoding logic.

R>W.

+5 V

74ALS138

A

E1

E3

E2
0

K0

1

K1

23

K2

K3

0

RAM
module-3 CS

B C

A15
0

1

1

0

A14
A13
A12

A11

A10

0
0
0
0

1

1

1
E

E

FIGURE 12-43 Example

12-18, showing address bus

conditions needed to select

RAM module-3.

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 850

SECTION 12-20/TROUBLESHOOTING RAM SYSTEMS 851

If you do not have access to the system address lines or do not have a con-

venient way of generating the static logic signals, it is often possible to force

the system to generate a sequence of addresses. Most computer systems used

for development have a program stored in a ROM that allows the user to dis-

play and change the contents of any memory location. Whenever the com-

puter accesses a memory location, the proper address must be placed on the

bus, which should cause the decoder output to go low, even if it is for a short

time. Enter the following command to the computer:

Display from 0400 to 07FF

Then place the logic probe on the output. The logic probe should show

pulses during the time the data values are being displayed.

K1

EXAMPLE 12-19 A dynamic test is performed on the decoding logic of Figure 12-43 by keep-

ing E � 1 and connecting the outputs of a six-bit counter to the address in-

puts A10 through A15. The decoder outputs are monitored as the counter

repetitively cycles through all six-bit codes. A logic probe check on the de-

coder outputs shows pulses at and but shows and remaining

HIGH. What are the most probable faults?

Solution

It is possible, but highly unlikely, that and could both be stuck HIGH

due to either an internal or an external short to VCC. A more likely fault is an

open between A10 and the A input of the decoder because this would act as a

logic HIGH and prevent any even-numbered decoder output from being ac-

tivated. It is also possible that the decoder’s A input is shorted to VCC, but

this is also unlikely because this short would have probably affected the op-

eration of the counter that is supplying the address inputs.

Testing the Complete RAM System
Testing and troubleshooting the decoding logic will not reveal problems with

the memory chips and their connections to the CPU buses.The most common

methods for testing the operation of the complete RAM system involve writ-

ing known patterns of 1s and 0s to each memory location and reading them

back to verify that the location has stored the pattern properly. While many

different patterns can be used, one of the most widely used is the “checker-

board pattern.” In this pattern, 1s and 0s are alternated as in 01010101. Once

all locations have been tested using this pattern, the pattern is reversed (i.e.,

10101010), and each location is tested again. Note that this sequence of tests

will check each cell for the ability to store and read both a 1 and a 0. Because

it alternates 1s and 0s, the checkerboard pattern will also detect any inter-

actions or shorts between adjacent cells. Many other patterns can be used to

detect various failure modes within RAM chips.

No memory test can catch all possible RAM faults with 100 percent ac-

curacy, even though it may show that each cell can store and read a 0 or a 1.

Some faulty RAMs can be pattern-sensitive. For instance, a RAM may be able

to store and read 01010101 and 10101010, but it may fail when 11100011 is

stored. Even for a small RAM system, it would take a prohibitively long time

to try storing and reading every possible pattern in each location. For this

K2K0

K2K0K3,K1

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 851

852 CHAPTER 12/MEMORY DEVICES

reason, if a RAM system passes the checkerboard test, you can conclude that

it is probably good; if it fails the test, then it definitely contains a fault.

Manually testing thousands of RAM locations by storing and reading

checkerboard patterns would take hundreds of hours and is obviously not

feasible. RAM pattern testing is usually done automatically either by having

the CPU run a memory test program or by connecting a special test instru-

ment to the RAM system buses in place of the CPU. In fact, in many com-

puters and microprocessor-based equipment, the CPU will automatically run

a memory test program every time it is powered up; this is called a power-up
self-test. The self-test routine (we will call it SELF-TEST) is stored in ROM,

and it is executed whenever the system is turned on or when the operator re-

quests it from the keyboard. As the CPU executes SELF-TEST, it will write

test patterns to and read test patterns from each RAM location and will dis-

play some type of message to the user. It may be something as simple as an

LED to indicate faulty memory, or it may be a descriptive message printed

on the screen or printer. Typical messages might be:

RAM module-3 test OK

ALL RAM working properly

Location 027F faulty in bit positions 6 and 7

With messages like these and a knowledge of the RAM system operation,

the troubleshooter can determine what additional action is needed to isolate

the fault.

REVIEW QUESTIONS 1. What is E’s function in the RAM circuit of Figure 12-42?

2. What is the checkerboard test? Why is it used?

3. What is a power-up self-test?

12-21 TESTING ROM

The ROM circuitry in a computer is very similar to the RAM circuitry (com-

pare Figures 12-37 and 12-42). The ROM decoding logic can be tested in the

same manner described in the preceding section for the RAM system. The

ROM chips, however, must be tested differently from RAM chips because we

cannot write patterns into ROM and read them back as we can for RAM.

Several methods are used to check the contents of a ROM IC.

In one approach, the ROM is placed in a socket in a special test instru-

ment that is typically microprocessor-controlled. The special test instrument

can be programmed to read every location in the test ROM and print out a

listing of the contents of each location.The listing can then be compared with

what the ROM is supposed to contain. Except for low-capacity ROM chips,

this process can be very time-consuming.

In a more efficient approach, the test instrument has the correct data

stored in its own reference ROM chip.The test instrument is then programmed

to read the contents of each location of the test ROM and compare it with the

contents of the reference ROM. This approach, of course, requires the avail-

ability of a preprogrammed reference ROM.

A third approach uses a checksum, a special code placed in the last one or

two locations of the ROM chip when it is programmed. This code is derived by

adding up the data words to be stored in all of the ROM locations (excluding

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 852

SUMMARY 853

those containing the checksum). As the test instrument reads the data from

each test ROM location, it will add them up and develop its own checksum. It

then compares its calculated checksum with that stored in the last ROM loca-

tions, and they should agree. If so, there is a high probability that the ROM is

good (there is a very small chance that a combination of errors in the test ROM

data could still produce the same checksum value). If they do not agree, then

there is a definite problem in the test ROM.

The checksum idea is illustrated in Figure 12-44(a) for a very small ROM.

The data word stored in the last address is the eight-bit sum of the other

seven data words (ignoring carries from the MSB). When this ROM is pro-

grammed, the checksum is placed in the last location. Figure 12-44(b) shows

the data that might actually be read from a faulty ROM that was originally

programmed with the data in Figure 12-44(a). Note the error in the word at

address 011. As the test instrument reads the data from each location of the

faulty ROM, it calculates its own checksum from those data. Because of the

error, the calculated checksum will be 10010011. When the test instrument

compares this with the checksum value stored at ROM location 111, it sees

that they disagree, and a ROM error is indicated. Of course, the exact loca-

tion of the error cannot be determined.

The checksum method can also be used by a computer or microprocessor-

based equipment during an automatic power-up self-test to check out the

contents of the system ROMs. Again, as in the self-test used for RAM, the

CPU would execute a program on power-up that would do a checksum test on

each ROM chip and would print out some type of status message. The self-

test program itself will be located in a ROM, and so any error in that ROM

could prevent the successful execution of the checksum tests.

00000110

10010111

00110001

11111111

00000000

10000001

01000110

10010100

Data

000

001

010

011

100

101

110

111

Address

Checksum

(a)

00000110

10010111

00110001

11111110

00000000

10000001

01000110

10010100

Data

000

001

010

011

100

101

110

111

Address

Checksum

(b)

Error

FIGURE 12-44 Checksum

method for an :

(a) ROM with correct data;

(b) ROM with error in its

data.

8 * 8 ROM

REVIEW QUESTIONS 1. What is a checksum? What is its purpose?

SUMMARY
1. All memory devices store binary logic levels (1s and 0s) in an array

structure. The size of each binary word (number of bits) that is stored

varies depending on the memory device. These binary values are re-

ferred to as data.

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 853

854 CHAPTER 12/MEMORY DEVICES

2. The place (location) in the memory device where any data value is stored

is identified by another binary number referred to as an address. Each

memory location has a unique address.

3. All memory devices operate in the same general way. To write data in

memory, the address to be accessed is placed on the address input, the

data value to be stored is applied to the data inputs, and the control sig-

nals are manipulated to store the data.To read data from memory, the ad-

dress is applied, the control signals are manipulated, and the data value

appears on the output pins.

4. Memory devices are often used along with a microprocessor CPU that

generates the addresses and control signals and either provides the data

to be stored or uses the data from the memory. Reading and writing are

always done from the CPU’s perspective.Writing puts data into the mem-

ory, and reading gets data out of the memory.

5. Most read-only memories (ROMs) have data entered one time, and from

then on their contents do not change. This storage process is called prog-
ramming. They do not lose their data when power is removed from the

device. MROMs are programmed during the manufacturing process.

PROMs are programmed one time by the user. EPROMs are just like

PROMs but can be erased using UV light. EEPROMs and flash memory

devices are electrically erasable and can have their contents altered

after programming. CD ROMs are used for mass storage of information

that does not need to change.

6. Random access memory (RAM) is a generic term given to devices that

can have data easily stored and retrieved. Data are retained in a RAM

device only as long as power is applied.

7. Static RAM (SRAM) uses storage elements that are basically latch cir-

cuits. Once the data are stored, they will remain unchanged as long as

power is applied to the chip. Static RAM is easier to use but more ex-

pensive per bit and consumes more power than dynamic RAM.

8. Dynamic RAM (DRAM) uses capacitors to store data by charging or dis-

charging them. The simplicity of the storage cell allows DRAMs to store

a great deal of data. Because the charge on the capacitors must be re-

freshed regularly, DRAMs are more complicated to use than SRAMs.

Extra circuitry is often added to DRAM systems to control the reading,

writing, and refreshing cycles. On many new devices, these features are

being integrated into the DRAM chip itself. The goal of DRAM technol-

ogy is to put more bits on a smaller piece of silicon so that it consumes

less power and responds faster.

9. Memory systems require a wide variety of different configurations.

Memory chips can be combined to implement any desired configuration,

whether your system needs more bits per location or more total word

capacity. All of the various types of ROM and RAM can be combined

within the same memory system.

IMPORTANT TERMS
main memory

auxiliary memory

memory cell

memory word

byte

capacity

density

address

read operation

write operation

access time

volatile memory

random-access

memory

(RAM)

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 854

PROBLEMS 855

PROBLEMS
SECTIONS 12-1 TO 12-3

12-1.*A certain memory has a capacity of . How many words does

it store? What is the number of bits per word? How many memory

cells does it contain?

12-2. How many different addresses are required by the memory of

Problem 12-1?

12-3.*What is the capacity of a memory that has 16 address inputs, four data

inputs, and four data outputs?

12-4. A certain memory stores 8K 16-bit words. How many data input and

data output lines does it have? How many address lines does it have?

What is its capacity in bytes?

DRILL QUESTIONS

12-5. Define each of the following terms.

(a) RAM

(b) RWM

(c) ROM

(d) Internal memory

(e) Auxiliary memory

(f) Capacity

(g) Volatile

(h) Density

(i) Read

(j) Write

12-6. (a) What are the three buses in a computer memory system?

(b) Which bus is used by the CPU to select the memory location?

(c) Which bus is used to carry data from memory to the CPU during a

read operation?

(d) What is the source of data on the data bus during a write

operation?

16K * 32

sequential-access

memory (SAM)

read/write memory

(RWM)

read-only memory

(ROM)

static RAM (SRAM)

dynamic RAM

address bus

data bus

control bus

programming

chip select

power-down

fusible link

electrically erasable

PROM (EEPROM)

flash memory

bootstrap program

refresh

JEDEC

address multiplexing

strobing

row address strobe

(RAS)

column address

strobe (CAS)

latency

-only refresh

refresh counter

DRAM controller

memory foldback

memory map

cache

FIFO

data-rate buffer

linear buffer

circular buffer

power-up self-test

checksum

RAS

B

B

B

B

B

B

*Answers to problems marked with an asterisk can be found in the back of the text.

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 855

856 CHAPTER 12/MEMORY DEVICES

SECTIONS 12-4 AND 12-5

12-7.*Refer to Figure 12-6. Determine the data outputs for each of the fol-

lowing input conditions.

(a) [A] � 1011; CS � 1

(b) [A] � 0111; CS � 0

12-8. Refer to Figure 12-7.

(a) What register is enabled by input address 1011?

(b) What input address code selects register 4?

12-9.*A certain ROM has a capacity of and an internal structure

like that shown in Figure 12-7.

(a) How many registers are in the array?

(b) How many bits are there per register?

(c) What size decoders does it require?

DRILL QUESTION

12-10. (a) True or false: ROMs cannot be erased.

(b) What is meant by programming or burning a ROM?

(c) Define a ROM’s access time.

(d) How many data inputs, data outputs, and address inputs are

needed for a ROM?

(e) What is the function of the decoders on a ROM chip?

SECTION 12-6

12-11.*Figure 12-45 shows how data from a ROM can be transferred to an ex-

ternal register. The ROM has the following timing parameters: tACC �
250 ns and tOE � 120 ns. Assume that the new address inputs have

been applied to the ROM 500 ns before the occurrence of the TRANS-

FER pulse. Determine the minimum duration of the TRANSFER

pulse for reliable transfer of data.

1024 * 4

16K * 4

1
Transfer

0

ROM
256 × 8

8-bit
register

74ALS273

CLKCS

A7

A6
A5

A4

A3

A2

A1

A0

D7

D6
D5

D4

D3

D2

D1

D0

D7

D6
D5

D4

D3

D2

D1

D0

Q7

Q6

Q5

Q4

Q3

Q2

Q1

Q0

FIGURE 12-45 Problem

12-11.

12-12. Repeat Problem 12-11 if the address inputs are changed 70 ns prior to

the TRANSFER pulse.

B

B

B

B

C, D

C, D

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 856

PROBLEMS 857

SECTIONS 12-7 AND 12-8

12-13. DRILL QUESTION

For each item below, indicate the type of memory being described:

MROM, PROM, EPROM, EEPROM, flash. Some items will correspond

to more than one memory type.

(a) Can be programmed by the user but cannot be erased.

(b) Is programmed by the manufacturer.

(c) Is volatile.

(d) Can be erased and reprogrammed over and over.

(e) Individual words can be erased and rewritten.

(f) Is erased with UV light.

(g) Is erased electrically.

(h) Uses fusible links.

(i) Can be erased in bulk or in sectors of 512 bytes.

(j) Does not have to be removed from the system to be erased and re-

programmed.

(k) Requires a special supply voltage for reprogramming.

(l) Erase time is about 15 to 20 min.

12-14. Which transistors in Figure 12-9 will be conducting when A1 � A0 � 1
and

12-15.*Change the MROM connections in Figure 12-9 so that the MROM

stores the function y � 3x � 5.

12-16. Figure 12-46 shows a simple circuit for manually programming a 2732

EPROM. Each EPROM data pin is connected to a switch that can be

set at a 1 or a 0 level. The address inputs are driven by a 12-bit

counter. The 50-ms programming pulse comes from a one-shot each

time the PROGRAM push button is actuated.

(a) Explain how this circuit can be used to program the EPROM mem-

ory locations sequentially with the desired data.

EN = 0?

*

D7

D6

D5

D4

D3

D2

D1

D0

2732
4K × 8

EPROMCLK

12-bit
counter

A11

A10

A1

A0

RESET

+5 V

+5 V

SW7 *

SW0

OE/ VPP

CE

+21 V

PROGRAM
PULSEOne-shot

50 ms

PROGRAM

+5 V

** Same switch arrangement
for each data pin

FIGURE 12-46 Problem

12-16.

B

B

D

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 857

858 CHAPTER 12/MEMORY DEVICES

(b) Show how 74293s and a 74121 can be used to implement this circuit.

(c) Should switch bounce have any effect on the circuit operation?

12-17.*Figure 12-47 shows a 28F256A flash memory chip connected to a CPU

over a data bus and an address bus.The CPU can write to or read from

the flash memory array by sending the desired memory address and

generating the appropriate control signals to the chip [Figure 12-

15(b)].The CPU can also write to the chip’s command register (Figure

12-16) by generating the appropriate control signals and sending the

desired command code over the data bus. For this latter operation,

the CPU does not have to send a specific memory address to the chip;

in other words, the address lines are don’t-cares.

(a) Consider the following sequence of CPU operations. Determine

what will have happened to the flash memory at the completion of

the sequence. Assume that the command register is holding 0016.

1. The CPU places 2016 on the data bus and pulses and

LOW while holding HIGH. The address bus is at 000016.

2. The CPU repeats step 1.

(b) After the sequence above has been executed, the CPU executes

the following sequence. Determine what this does to the flash

memory chip.

1. The CPU places 4016 on the data bus and pulses and

LOW while holding HIGH. The address bus is at 000016.

2. The CPU places 3C16 on the data bus and 230016 onto the ad-

dress bus, and it pulses and LOW while holding

HIGH.

OEWECE

OE
WECE

OE
WECE

FIGURE 12-47 Problem 12-17.

A0

A14

8

CPU

D0

D7

CE

OE

WE

32K × 8
FLASH

MEMORY

28F256A

CONTROL
LOGIC

D0

D7

Data bus

15

Address bus

A0

A14

SECTION 12-9

12-18. Another ROM application is the generation of timing and control sig-

nals. Figure 12-48 shows a ROM with its address inputs driven

by a MOD-16 counter so that the ROM addresses are incremented with

16 * 8

N

N

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 858

PROBLEMS 859

each input pulse. Assume that the ROM is programmed as in Figure 12-

6, and sketch the waveforms at each ROM output as the pulses are ap-

plied. Ignore ROM delay times. Assume that the counter starts at 0000.

12-19.*Change the program stored in the ROM of Problem 12-18 to generate

the D7 waveform of Figure 12-49.

FIGURE 12-48 Problem

12-18.

FIGURE 12-49 Problem

12-19.

100-kHz

16 × 8
ROM

CLK

MOD-16
counter

+5 V

D7

D6

D5

D4

D3

D2

D1

D0

A3

A2

A1

A0

CS

D7

10 µs

12-20.*Refer to the function generator of Figure 12-17.

(a) What clock frequency will result in a 100-Hz sine wave at the

output?

(b) What method could be used to vary the peak-to-peak amplitude of

the sine wave?

12-21. For the ML2035 of Figure 12-18, assume that a value of 038E (hex) in

the latch will produce the desired frequency. Draw the timing dia-

gram for the LATI, SID, and SCK inputs, and assume that the LSB is

shifted in first.

12-22.*The system shown in Figure 12-50 is a waveform (function) generator.

It uses four 256-point look-up tables in a 1-Kbyte ROM to store one cy-

cle each of a sine wave (address 000–0FF), a positive slope ramp (ad-

dress 100–1FF), a negative slope ramp (200–2FF), and a triangle wave

(300–3FF). The phase relationship among the three output channels is

controlled by the values initially loaded into the three counters. The

critical timing parameters are counters � 10 ns,

latches � 5 ns, and tACC ROM � 20 ns. Study the diagram until you

understand how it operates and then answer the following:

(a) If counter A is initially loaded with 0, what values must be loaded

into counters B and C so that A lags B by and A lags C by ?

(b) If counter A is initially loaded with 0, what values must be loaded

into counters B and C to generate a three-phase sine wave with

shift between each output?

(c) What must the frequency of pulses on DAC_OUT be in order to

generate a 60-Hz sine wave output?

(d) What is the maximum frequency of the CLK input?

(e) What is the maximum frequency of the output waveforms?

(f) What is the purpose of the function select counter?

120°

180°90°

tpd(ck-Q and OE-Q max),

D

D

C

N, C

TOCCMC12_0131725793.QXD 12/22/05 9:55 PM Page 859

860 CHAPTER 12/MEMORY DEVICES

SECTION 12-11

12-23. (a) Draw the logic symbol for an MCM101514, a CMOS static RAM or-

ganized as a with separate data in and data out, and an

active-LOW chip enable.

(b) Draw the logic symbol for an MCM6249, a CMOS static RAM or-

ganized as a with common I/O, an active-LOW chip enable,

and an active-LOW output enable.

SECTION 12-12

12-24.*A certain static RAM has the following timing parameters (in

nanoseconds):

 tWC = 100 tDH = 20

 tOD = 30 tDS = 10

 tCO = 70 tW = 40

 tACC = 100 tAH = not given

 tRC = 100 tAS = 20

1M * 4

256K * 4

[8]

[8]

[8]

Q7D7

Q0D0

OE

[8]

A

Phase
A

Load

Q7D7

Q0D0

OE

[8]

B

Phase
B

Load

Q7D7

Q0D0

OE

[8]

C

Phase
C

Load

D7A0

D0

OE

A7
A8
A9

CS

1K � 8
ROM

MOD-4
Function

select

[8]

[8]

[8]

[8]

[8]
A

[8]
Q7D7

Q0D0

Octal
latches

[8]
Q7D7

Q0D0

En

Octal
latches

D7

D0
DAC

A

8-bit
DACs

Out A

En

B

[8]
Q7D7

Q0D0

[8]
Q7D7

Q0D0

En

D7

D0
DAC

B

Out B

En

[8]
Q7D7

Q0D0

[8]
Q7D7

Q0D0

En

D7

D0
DAC

C

Out C

En

QD

CLR

A

QD

B

QD

C

QD
CLK

VCC

DAC-Out

CLR CLR PRE

8-bit binary counters
asynchronous load
tristate outputs

FIGURE 12-50 Problem 12-22.

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 860

PROBLEMS 861

(a) How long after the address lines stabilize will valid data appear at

the outputs during a read cycle?

(b) How long will output data remain valid after returns HIGH?

(c) How many read operations can be performed per second?

(d) How long should and be kept HIGH after the new address

stabilizes during a write cycle?

(e) What is the minimum time that input data must remain valid for

a reliable write operation to occur?

(f) How long must the address inputs remain stable after and

return HIGH?

(g) How many write operations can be performed per second?

SECTIONS 12-13 TO 12-17

12-25. Draw the logic symbol for the TMS4256, which is a

How many pins are saved by using address multiplexing for this

DRAM?

12-26. Figure 12-51(a) shows a circuit that generates the and MUX
signals needed for proper operation of the circuit of Figure 12-28(b).

The 10-MHz master clock signal provides the basic timing for the com-

puter.The memory request signal (MEMR) is generated by the CPU in

synchronism with the master clock, as shown in part (b) of the figure.

MEMR is normally LOW and is driven HIGH whenever the CPU wants

to access memory for a read or a write operation. Determine the

waveforms at Q0, and Q2, and compare them with the desired wave-

forms of Figure 12-29.

Q1,

RAS, CAS,

256K * 1 DRAM.

CS
R>W

CSR>W

CS

D CAS

CLK

Q2
SET

Q2

MEMR
(from CPU)

D

CLK

Q1
SET

Q1

D

CLK

Q0
SET

Q0

MUXRAS

10-MHz
master
CLOCK

(a)

Master
CLOCK

MEMR

(b)

FIGURE 12-51 Problem 12-26.

12-27. Show how to connect two 74157 multiplexers (Section 9-6) to provide

the multiplexing function required in Figure 12-28(b).

D

D

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 861

862 CHAPTER 12/MEMORY DEVICES

12-28. Refer to the signals in Figure 12-30. Describe what occurs at each of

the labeled time points.

12-29. Repeat Problem 12-28 for Figure 12-31.

12-30.*The 21256 is a DRAM that consists of a array of

cells. The cells must be refreshed within 4 ms for data to be retained.

Figure 12-33(a) shows the signals used to execute a -before-

refresh cycle. Each time a cycle such as this occurs, the on-chip refresh

circuitry will refresh a row of the array at the row address specified by

a refresh counter. The counter is incremented after each refresh. How

often should -before- cycles be applied in order for all of the

data to be retained?

12-31.*Study the functional block diagram of the TMS44100 DRAM in

Figure 12-27.

(a) What are the actual dimensions of the DRAM cell array?

(b) If the cell array were actually square, how many rows would there

be?

(c) How would this affect the refresh time?

SECTION 12-18

12-32. Show how to combine two 6206 RAM chips (Figure 12-20) to produce

a module.

12-33. Show how to connect two of the 6264 RAM chips symbolized in Figure

12-23 to produce a RAM module. The circuit should not re-

quire any additional logic. Draw a memory map showing the address

range of each RAM chip.

12-34.*Describe how to modify the circuit of Figure 12-37 so that it has a to-

tal capacity of . Use the same type of PROM chips.

12-35. Modify the decoding circuit of Figure 12-37 to operate from a 16-line

address bus (i.e., add A13, A14, and A15). The four PROMs are to main-

tain the same hex address ranges.

12-36. For the memory system of Figure 12-38, assume that the CPU is stor-

ing one byte of data at system address 4000 (hex).

(a) Which chip is the byte stored in?

(b) Is there any other address in this system that can access this data

byte?

(c) Answer parts (a) and (b) by assuming that the CPU has stored a

byte at address 6007. (Hint: Remember that the EEPROM is not

completely decoded.)

(d) Assume that the program is storing a sequence of data bytes in

the EEPROM and that it has just completed the 2048th byte at ad-

dress 67FF. If the programmer allows it to store one more byte at

address 6800, what will be the effect on the first 2048 bytes?

12-37. Draw the complete diagram for a memory that uses RAM

chips with the following specifications: capacity, common in-

put/output line, and two active-LOW chip select inputs. [Hint: The cir-

cuit can be designed using only two inverters (plus memory chips).]

SECTION 12-20

12-38.*Modify the RAM circuit of Figure 12-42 as follows: change the OR

gate to an AND gate and disconnect its output from C; connect the

64K * 4

256K * 8

16K * 8

16K * 8

32K * 16

 RASCAS

 RASCAS

512 * 512256K * 1C

D

D

D

D

C

D

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 862

PROBLEMS 863

AND output to E3; connect C to ground. Determine the address range

for each RAM module.

12-39. Show how to expand the system of Figure 12-42 to an with ad-

dresses ranging from 0000 to 1FFF. (Hint: This can be done by adding

the necessary memory modules and modifying the existing decoding

logic.)

12-40.*A dynamic test is performed on the decoding logic of Figure 12-42 by

keeping E � 1 and connecting the outputs of a six-bit counter to ad-

dress inputs A10 to A15.The decoder outputs are monitored with an os-

cilloscope (or a logic analyzer) as the counter is continuously pulsed

by a 1-MHz clock. Figure 12-52(a) shows the displayed signals. What

are the most probable faults?

8K * 8

K0

4 μs

1 μs

(b)

60 μs

K2 1

K3 1

0

0

K0

1 μs

K1 1

1

(a)

K1

K2

K3

12-41. Repeat Problem 12-40 for the decoder outputs shown in Figure 12-52(b).

12-42.*Consider the RAM system of Figure 12-42. The checkerboard pattern

test will not be able to detect certain types of faults. For instance,

assume that there is a break in the connection to the A input to the

decoder. If a checkerboard pattern SELF-TEST is performed on this

circuit, the displayed messages will state that the memory is OK.

(a) Explain why the circuit fault was not detected.

(b) How would you modify the SELF-TEST so that faults such as this

will be detected?

FIGURE 12-52 Problems 12-40 and 12-41.

C, D

T

C, T

C, D

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 863

864 CHAPTER 12/MEMORY DEVICES

12-43.*Assume that the modules used in Figure 12-42 are formed

from two RAM chips. The following messages are printed out

when the power-up self-test is performed on this RAM system:

module-0 test OK
module-1 test OK
address 0800 faulty at bits 4–7
address 0801 faulty at bits 4–7
address 0802 faulty at bits 4–7

.

.

.
address 0BFE faulty at bits 4–7
address 0BFF faulty at bits 4–7

module-3 test OK

Examine these messages and list the possible faults.

12-44.*The following messages are printed out when the power-up self-test is

performed on the RAM system of Figure 12-42.

module-0 test OK
module-1 test OK
module-2 test OK
address 0C00 faulty at bit 7
address 0C01 faulty at bit 7
address 0C02 faulty at bit 7
.
.
.

address 0FFE faulty at bit 7

address 0FFF faulty at bit 7

Examine these messages and list the possible faults.

12-45. What messages would be printed out when a power-up self-test is per-

formed on the RAM system of Figure 12-42 if there is a short between

the decoder’s and outputs?

SECTION 12-21

12-46.*Consider the ROM in Figure 12-6. Replace the data word

stored at address location 1111 with a checksum calculated from the

other 15 data words.

ANSWERS TO SECTION REVIEW QUESTIONS
SECTION 12-1

1. See text. 2. 16 bits per word; 8192 words; 131,072 bits or cells 3. In a read

operation, a word is taken from a memory location and is transferred to another

device. In a write operation, a new word is placed in a memory location and

replaces the one previously stored there. 4. True 5. SAM: Access time is not

constant but depends on the physical location of the word being accessed. RAM:

Access time is the same for any address location. 6. RWM is memory that can be

read from or written to with equal ease. ROM is memory that is mainly read from

and is written into very infrequently. 7. False; its data must be periodically

refreshed.

16 * 8

K3K2

1K * 4

1K * 8T

T

T

T

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 864

ANSWERS TO SECTION REVIEW QUESTIONS 865

SECTION 12-2

1. 14, 12, 12 2. Commands the memory to perform either a read operation or a

write operation 3. When in its active state, this input enables the memory to

perform the read or the write operation selected by the input. When in its

inactive state, this input disables the memory so that it cannot perform the read or

the write function.

SECTION 12-3

1. Address lines, data lines, control lines 2. See text. 3. See text.

SECTION 12-4

1. True 2. Apply desired address inputs; activate control input(s); data appear at

data outputs. 3. Process of entering data into ROM

SECTION 12-5

1. A3A2A1A0 � 1001 2. The row-select decoder activates one of the enable inputs

of all registers in the selected row. The column-select decoder activates one of the

enable inputs of all registers in the selected column. The output buffers pass the

data from the internal data bus to the ROM output pins when the CS input is

activated.

SECTION 12-7

1. False; by the manufacturer 2. A PROM can be programmed once by the user.

It cannot be erased and reprogrammed. 3. True 4. By exposure to UV light

5. True 6. Automatically programs data into memory cells one address at a time

7. An EEPROM can be electrically erased and reprogrammed without removal from

its circuit, and it is byte erasable. 8. Low density; high cost 9. EEPROM

10. One

SECTION 12-8

1. Electrically erasable and programmable in circuit 2. Higher density; lower

cost 3. Short erase and programming times 4. For the erase and programming

operations 5. The contents of this register control all internal chip functions.

6. To confirm that a memory address has been successfully erased (i.e., data � all 1s)

7. To confirm that a memory address has been programmed with the correct data

SECTION 12-9

1. On power-up, the computer executes a small bootstrap program from ROM to

initialize the system hardware and to load the operating system from mass storage

(disk). 2. Circuit that takes data represented in one type of code and converts

it to another type of code 3. Counter, ROM, DAC, low-pass filter 4. They are

nonvolatile, fast, reliable, small, and low-power.

SECTION 12-11

1. Desired address applied to address inputs; CS or CE activated

2. To reduce pin count 3. 24, including VCC and ground

SECTION 12-12

1. SRAM cells are flip-flops; DRAM cells use capacitors. 2. CMOS 3. Memory

4. CPU 5. Read- and write-cycle times 6. False; when is LOW, the I/O pins

act as data inputs regardless of the state of (second entry in mode table).

7. A13 can remain connected to pin 26. A14 must be removed, and pin 27 must be

connected to �5 V.

OE
WE

R>W = 1;

R>W

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 865

866 CHAPTER 12/MEMORY DEVICES

SECTION 12-13

1. Generally slower speed; need to be refreshed 2. Low power; high capacity;

lower cost per bit 3. DRAM

SECTION 12-14

1. columns 2. It saves pins on the chip. 3.

. Thus, there are 1024 rows by 1024 columns. Because 1024 � 210, the

chip needs 10 address inputs. 4. is used to latch the row address into the

DRAM’s row address register. is used to latch the column address into the

column address register. 5. MUX multiplexes the full address into the row and

column addresses for input to the DRAM.

SECTION 12-15

1. (a) True (b) False (c) False (d) True 2. MUX

SECTION 12-16

1. (a) True (b) False 2. It provides row addresses to the DRAM during refresh

cycles. 3. Address multiplexing and the refresh operation 4. (a) False (b) True

SECTION 12-17

1. No 2. Memory locations with same upper address (same row) 3. Only the

column address must be latched. 4. Extended data output 5. Burst 6. The

system clock

SECTION 12-18

1. Sixteen 2. Four 3. False; when expanding memory capacity, each chip is

selected by a different decoder output (see Figure 12-43). 4. True

SECTION 12-19

1. Battery backup for CMOS RAM; flash memory 2. Economics 3. Data are

read out of memory in the same order they were written in. 4. A FIFO used to

transfer data between devices with widely different operating speeds 5. Circular

buffers “wrap around” from the highest address to the lowest, and the newest

datum always overwrites the oldest.

SECTION 12-20

1. Prevents decoding glitches by disabling the decoder while the address lines are

changing 2. A way to test RAM by writing a checkerboard pattern (first

01010101, then 10101010) into each memory location and then reading it. It is used

because it will detect any shorts or interactions between adjacent cells. 3. An

automatic test of RAM performed by a computer on power-up

SECTION 12-21

1. A code placed in the last one or two ROM locations that represents the sum of the

expected ROM data from all other locations. It is used as a means to test for errors

in one or more ROM locations.

CAS
RAS

1024 * 1024

1M = 1024K =256 rows * 256

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 866

TOCCMC12_0131725793.QXD 12/20/05 5:37 PM Page 867

13-1 Digital Systems Family Tree

13-2 Fundamentals of PLD

Circuitry

13-3 PLD Architectures

13-4 The GAL 16V8 (Generic

Array Logic)

■ OUTLINE

P R O G R A M M A B L E

L O G I C D E V I C E

A R C H I T E C T U R E S* †

C H A P T E R 1 3

13-5 The Altera EPM7128S

CPLD

13-6 The Altera FLEX10K

Family

13-7 The Altera Cyclone Family

*Diagrams of the GAL 16V8 device presented in this chapter have been reproduced through the cour-
tesy of Lattice Semiconductor Corporation, Hillsboro, Oregon.

†Diagrams of the MAX7000S and FLEX10K family devices presented in this chapter have been repro-
duced through the courtesy of Altera Corporation, San Jose, California.

TOCCMC13_0131725793.QXD 12/20/05 6:51 PM Page 868

869

■ OBJECTIVES
Upon completion of this chapter, you will be able to:
■ Describe the different categories of digital system devices.

■ Describe the different types of PLDs.

■ Interpret PLD data book information.

■ Define PLD terminology.

■ Compare the different programming technologies used in PLDs.

■ Compare the architectures of different types of PLDs.

■ Compare the features of the Altera MAX7000S and FLEX10K families

of PLDs.

■ INTRODUCTION
Throughout the chapters of this book you have been introduced to a wide

variety of digital circuits. You now know how the building blocks of digital

systems work and can combine them to solve a wide variety of digital

problems. More complicated digital systems, such as microcomputers and

digital signal processors, have also been briefly described. The defining

difference between microcomputer/DSP systems and other digital systems

is that the former follow a programmed sequence of instructions that the

designer specifies. Many applications require faster response than a

microcomputer/DSP architecture can accommodate and in these cases, a

conventional digital circuit must be used. In today’s rapidly advancing

technology market, most conventional digital systems are not being

implemented with standard logic device chips containing only simple gates

or MSI-type functions. Instead, programmable logic devices, which contain

the circuitry necessary to create logic functions, are being used to imple-

ment digital systems. These devices are not programmed with a list of

instructions, like a computer or DSP. Instead, their internal hardware is

configured by electronically connecting and disconnecting points in the

circuit.

Why have PLDs taken over so much of the market? With programmable

devices, the same functionality can be obtained with one IC rather than

using several individual logic chips. This characteristic means less board

space, less power required, greater reliability, less inventory, and overall

lower cost in manufacturing.

In the previous chapters you have become familiar with the process of

programming a PLD using either AHDL or VHDL. At the same time, you

have learned about all the building blocks of digital systems. The PLD

implementations of digital circuits up to this point have been presented as

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 869

a “black box.” We have not been concerned with what was going on inside

the PLD to make it work. Now that you understand all the circuitry inside

the black box, it is time to turn the lights on in there and look at how it

works. This will allow you to make the best decisions when selecting and

applying a PLD to solve a problem. This chapter will take a look at the

various types of hardware available to design digital systems. We will then

introduce you to the architectures of various families of PLDs.

13-1 DIGITAL SYSTEMS FAMILY TREE

While the major goal of this chapter is to investigate PLD architectures, it is

also useful to look at the various hardware choices available to digital system

designers because it should give us a little better perception of today’s digital

hardware alternatives. The desired circuit functionality can generally be

achieved by using several different types of digital hardware. Throughout this

book, we have described both standard logic devices as well as how program-

mable logic devices can be used to create the same functional blocks.

Microcomputers and DSP systems can also often be applied with the neces-

sary sequence of instructions (i.e., the application’s program) to produce the

desired circuit function. The design engineering decisions must take into ac-

count many factors, including the necessary speed of operation for the circuit,

cost of manufacturing, system power consumption, system size, amount of

time available to design the product, etc. In fact, most complex digital designs

include a mix of different hardware categories. Many trade-offs between the

various types of hardware have to be weighed to design a digital system.

A digital system family tree (see Figure 13-1) showing most of the hard-

ware choices that are currently available can be useful in sorting out the

many categories of digital devices. The graphical representation in the figure

does not show all the details—some of the more complex device types have

many additional subcategories, and older, obsolete device types have been

omitted for clarity. The major digital system categories include standard

logic, application-specific integrated circuits (ASICs) and microprocessor/

digital signal processing (DSP) devices.

870 CHAPTER 13/PROGRAMMABLE LOGIC DEVICE ARCHITECTURES

FIGURE 13-1 Digital system family tree.

Microprocessors
and DSPASICs

Standard
logic

Digital
systems

PLDsECLCMOSTTL Gate
arrays

Standard
cell

Full
custom

CPLDs HCPLDsSPLDs

EPROMFuse EEPROM EPROM EEPROM Flash SRAM Flash Antifuse

FPGAs

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 870

The first category of standard logic devices refers to the basic functional

digital components (gates, flip-flops, decoders, multiplexers, registers, coun-

ters, etc.) that are available as SSI and MSI chips.These devices have been used

for many years (some more than 30 years) to design complex digital systems.

An obvious drawback is that the system may literally consist of hundreds of

such chips. These inexpensive devices can still be useful if our design is not

very complex.As discussed in Chapter 8, there are three major families of stan-

dard logic devices: TTL, CMOS, and ECL. TTL is a mature technology consist-

ing of numerous subfamilies that have been developed over many years of use.

Very few new designs apply TTL logic, but many, many digital systems still con-

tain TTL devices. CMOS is the most popular standard logic device family today,

primarily due to its low power consumption. ECL technology, of course, is ap-

plied for higher-speed designs. Standard logic devices are still available to the

digital designer, but if the application is very complex, a lot of SSI/MSI chips

will be needed.That solution is not very attractive for our design needs today.

The microprocessor/digital signal processing (DSP) category is a much dif-

ferent approach to digital system design. These devices actually contain the

various types of functional blocks that have been discussed throughout this

text. With microcomputer/DSP systems, devices can be controlled electroni-

cally, and data can be manipulated by executing a program of instructions that

has been written for the application. A great deal of flexibility can be

achieved with microcomputer/DSP systems because all you have to do is

change the program. The major downfall with this digital system category is

speed. Using a hardware solution for your digital system design is always faster
than a software solution.

The third major digital system category is called application-specific
integrated circuits (ASICs). This broad category represents the modern

hardware design solution for digital systems. As the acronym implies, an in-

tegrated circuit is designed to implement a specific desired application.

Four subcategories of ASIC devices are available to create digital systems:

programmable logic devices, gate arrays, standard-cell, and full-custom.

Programmable logic devices (PLDs), sometimes referred to as field-

programmable logic devices (FPLDs), can be custom-configured to create any

desired digital circuit, from simple logic gates to complex digital systems.

Many examples of PLD designs have been given in earlier chapters. This ASIC

choice for the designer is very different from the other three subcategories.

With a relatively small capital investment, any company can purchase the nec-

essary development software and hardware to program PLDs for their digital

designs. On the other hand, to obtain a gate array, standard-cell or full-custom

ASIC requires that most companies contract with an IC foundry to fabricate

the desired IC chip. This option can be extremely expensive and usually re-

quires that your company purchase a large volume of parts to be cost effective.

Gate arrays are ULSI circuits that offer hundreds of thousands of gates.The

desired logic functions are created by the interconnections of these prefabri-

cated gates. A custom-designed mask for the specific application determines

the gate interconnections, much like the stored data in a mask-programmed

ROM. For this reason, they are often referred to as mask-programmed gate

arrays (MPGAs). Individually, these devices are less expensive than PLDs of

comparable gate count, but the custom programming process by the chip

manufacturer is very expensive and requires a great deal of lead time.

Standard-cell ASICs use predefined logic function building blocks called

cells to create the desired digital system. The IC layout of each cell has been

designed previously, and a library of available cells is stored in a computer

database. The needed cells are laid out for the desired application, and

the interconnections between the cells are determined. Design costs for

SECTION 13-1/DIGITAL SYSTEMS FAMILY TREE 871

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 871

standard-cell ASICs are even higher than for MPGAs because all IC fabrica-

tion masks that define the components and interconnections must be custom

designed. Greater lead time is also needed for the creation of the additional

masks. Standard cells do have a significant advantage over gate arrays. The

cell-based functions have been designed to be much smaller than equivalent

functions in gate arrays, which allows for generally higher-speed operation

and cheaper manufacturing costs.

Full-custom ASICs are considered the ultimate ASIC choice. As the name

implies, all components (transistors, resistors, and capacitors) and the inter-

connections between them are custom-designed by the IC designer. This

design effort requires a significant amount of time and expense, but it can

result in ICs that can operate at the highest possible speed and require the

smallest die (individual IC chip) area. Smaller IC die sizes allow for many

more die to fit on a silicon wafer, which significantly lowers the manufactur-

ing cost for each IC.

More on PLDs
This chapter is mainly about PLDs, so we will look a little further down that

branch of the family tree. The development of PLD technology has advanced

continuously since the first PLDs appeared more than 30 years ago.The early

devices contained the equivalent of a few hundred gates, and now we have

parts available that contain a few million gates. The old devices could han-

dle a few inputs and a few outputs with limited logic capabilities. Now there

are PLDs that can handle hundreds of inputs and outputs. Original devices

could be programmed only once and, if the design changed, the old PLD

would have to be removed from the circuit and a new one, programmed with

the updated design, would have to be inserted in its place. With newer de-

vices, the internal logic design can be changed on the fly, while the chip is

still connected to a printed circuit board in an electronic system.

Generally, PLDs can be described as being one of three different types:

simple programmable logic devices (SPLDs), complex programmable logic
devices (CPLDs), or field programmable gate arrays (FPGAs). There are sev-

eral manufacturers with many different families of PLD devices, so there are

many variations in architecture. We will attempt to discuss the general char-

acteristics for each of the types, but be forewarned: the differences are not

always clear-cut. The distinction between CPLDs and FPGAs is often a little

fuzzy, with the manufacturers constantly designing new, improved architec-

tures and frequently muddying the waters for marketing purposes. Together,

CPLDs and FPGAs are often referred to as high-capacity programmable logic
devices (HCPLDs). The programming technologies for PLD devices are actu-

ally based on the various types of semiconductor memory. As new types of

memory have been developed, the same technology has been applied to the

creation of new types of PLD devices.

The amount of logic resources available is the major distinguishing feature

between SPLDs and HCPLDs. Today, SPLDs are devices that typically contain

the equivalent of 600 or fewer gates, while HCPLDs have thousands and hun-

dreds of thousands of gates available. Internal programmable signal intercon-

nect resources are much more limited with SPLDs. SPLDs are generally much

less complicated and much cheaper than HCPLDs. Many small digital applica-

tions need only the resources of an SPLD. On the other hand, HCPLDs are ca-

pable of providing the circuit resources for complete complex digital systems,

and larger, more sophisticated HCPLD devices are designed every year.

The SPLD classification includes the earliest PLD devices.The amount of

logic resources contained in the early PLDs may be relatively small by today’s

872 CHAPTER 13/PROGRAMMABLE LOGIC DEVICE ARCHITECTURES

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 872

standards, but they represented a significant technological step in their abil-

ity to create easily a custom IC that can replace several standard logic

devices. Over the years, numerous semiconductor advances have created dif-

ferent SPLD types.The first PLD type to gain the interest of circuit designers

was programmed by literally burning open selected fuses in the programming

matrix.The fuses that were left intact in these one-time programmable (OTP)
devices provided the electrical connections for the AND/OR circuits to pro-

duce the desired functions. This logic device was based on the fuse links in

PROM memory technology (see Section 12-7) and was most commonly re-

ferred to as a programmable logic array (PLA). PLDs didn’t really gain wide-

spread acceptance with digital designers until the late 1970s, when a device

called a programmable array logic (PAL) was introduced. The programmable

fuse links in a PAL are used to determine the input connections to a set of

AND gates that are wired to fixed OR gates. With the development of the

ultraviolet erasable PROM came the EPROM-based PLDs in the mid 1980s,

followed soon by PLDs using electrically erasable (EEPROM) technology.

CPLDs are devices that typically combine an array of PAL-type devices

on the same chip. The logic blocks themselves are programmable AND/fixed-

OR logic circuits with fewer product terms available than most PAL devices.

Each logic block (often called a macrocell) can typically handle many input

variables, and the internal programmable logic signal routing resources tend

to be very uniform throughout the chip, producing consistent signal delays.

When more product terms are needed, gates may be shared between logic

blocks, or several logic blocks can be combined to implement the expression.

The flip-flop used to implement the register in the macrocell can often be

configured for D, JK, T (toggle), or SR operation. Input and output pins for

some CPLD architectures are associated with a specific macrocell, and typi-

cally additional macrocells are buried (that is, not connected to a pin). Other

CPLD architectures may have independent I/O blocks with built-in registers

that can be used to latch incoming or outgoing data. The programming tech-

nologies used in CPLD devices are all nonvolatile and include EPROM,

EEPROM, and flash, with EEPROM being the most common. All three tech-

nologies are erasable and reprogrammable.

FPGAs also have a few fundamental characteristics that are shared.They

typically consist of many relatively small and independent programmable

logic modules that can be interconnected to create larger functions. Each

module can usually handle only up to four or five input variables. Most

FPGA logic modules utilize a look-up table (LUT) approach to create the de-

sired logic functions. A look-up table functions just like a truth table in

which the output can be programmed to create the desired combinational

function by storing the appropriate 0 or 1 for each input combination. The

programmable signal routing resources within the chip tend to be quite var-

ied, with many different path lengths available. The signal delays produced

for a design depend on the actual signal routing selected by the program-

ming software. The logic modules also contain programmable registers. The

logic modules are not associated with any I/O pin. Instead, each I/O pin is

connected to a programmable input/output block that, in turn, is connected

to the logic modules with selected routing lines. The I/O blocks can be con-

figured to provide input, output, or bidirectional capability, and built-in reg-

isters can be used to latch incoming or outgoing data. A general architecture

of FPGAs is shown in Figure 13-2. All of the logic blocks and input/output

blocks can be programmed to implement almost any logic circuit. The pro-

grammable interconnections are accomplished via lines that run through the

rows and columns in the channels between the logic blocks. Some FPGAs

include large blocks of RAM memory; others do not.

SECTION 13-1/DIGITAL SYSTEMS FAMILY TREE 873

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 873

The programming technologies used in FPGA devices include SRAM,

flash, and antifuse, with SRAM being the most common. SRAM-based de-

vices are volatile and therefore require the FPGA to be reconfigured (pro-

grammed) when it is powered-up.The programming information that defines

how each logic block functions, which I/O blocks are inputs and outputs, and

how the blocks are interconnected is stored in some type of external memory

that is downloaded to the SRAM-based FPGA when power is applied.Antifuse

devices are one-time programmable and are therefore nonvolatile. Antifuse

memory technology is not currently used for memory devices but, as its

name implies, it is the opposite of fuse technology. Instead of opening a fuse

link to prevent a signal connection, an insulator layer between interconnects

has an electrical short created to produce a signal connection. Antifuse de-

vices are programmed in a device programmer either by the end-user or by

the factory or distributor.

Differences in architecture between CPLDs and FPGAs, among different

HCPLD manufacturers, and among different families of devices from a single

manufacturer can affect the efficiency of design implementation for a par-

ticular application. You may ask, “Does the architecture of this PLD family

provide the best fit for my application?” It is very difficult, however, to pre-

dict which architecture may be the best choice to use for a complex digital

system. Only a portion of the available gates can be utilized. Who knows how

874 CHAPTER 13/PROGRAMMABLE LOGIC DEVICE ARCHITECTURES

FIGURE 13-2 FPGA

architecture.

Logic
block

clk

Logic
block

clk

Logic
block

clk

Logic
block

clk

Logic
block

clk

Logic
block

clk

I/O I/O I/O I/O

I/O

I/O

I/O

I/O

I/O

Logic
block

clk

Logic
block

clk

Logic
block

clk

Programmable interconnect
Connecting segment
Interconnect path

NOTE: Clock inputs may
have special low-skew
interconnect paths.

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 874

many equivalent gates will be needed for a large design? The basic design of

the signal routing resources can affect how much of the PLD’s logic resources

can be utilized. The segmented interconnects often found in FPGAs can pro-

duce shorter delays between adjacent logic blocks, but they may also produce

longer delays between the blocks that are further apart than would be pro-

duced by the continuous type of interconnect found in most CPLDs. There is

no easy answer to your question, but every HCPLD manufacturer will give

you an answer anyway: their product is best!

As you can see, the field of PLDs is quite diverse and it is constantly chang-

ing. You should now have the basic knowledge of the various types and tech-

nologies necessary to interpret PLD data sheets and learn more about them.

SECTION 13-2/FUNDAMENTALS OF PLD CIRCUITRY 875

REVIEW QUESTIONS 1. What are the three major categories of digital systems?

2. What is the major disadvantage of a microprocessor/DSP design?

3. What does ASIC stand for?

4. What are the four types of ASICs?

5. What are HCPLDs?

6. What are two major differences between CPLDs and FPGAs?

7. What does volatility refer to?

13-2 FUNDAMENTALS OF PLD CIRCUITRY

A simple PLD device is shown in Figure 13-3. Each of the four OR gates can

produce an output that is a function of the two input variables, A and B. Each

output function is programmed with the fuses located between the AND

gates and each of the OR gates.

A B

1 4

A BA B AND array

AB

AB

AB

AB

AB

AB

Product
lines

AB

OR
array

O1 O2 O3 O4

Sum of product outputs

AB

Fuses

Input lines 1 2 3 4

FIGURE 13-3 Example of

a programmable logic

device.

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 875

Each of the inputs A and B feed both a noninverting buffer and an in-

verting buffer to produce the true and inverted forms of each variable.These

are the input lines to the AND gate array. Each AND gate is connected to two

different input lines to generate a unique product of the input variables.The

AND outputs are called the product lines.
Each of the product lines is connected to one of the four inputs of each

OR gate through a fusible link. With all of the links initially intact, each OR

output will be a constant 1. Here’s the proof:

Each of the four outputs O1, O2, O3, and O4 can be programmed to be any func-

tion of A and B by selectively blowing the appropriate fuses. PLDs are

designed so that a blown OR input acts as a logic 0. For example, if we blow

fuses 1 and 4 at OR gate 1, the O1 output becomes

We can program each of the OR outputs to any desired function in a sim-

ilar manner. Once all of the outputs have been programmed, the device will

permanently generate the selected output functions.

PLD Symbology
The example in Figure 13-3 has only two input variables and the circuit dia-

gram is already quite cluttered. You can imagine how messy the diagram

would be for PLDs with many more inputs. For this reason, PLD manufac-

turers have adopted a simplified symbolic representation of the internal cir-

cuitry of these devices.

Figure 13-4 shows the same PLD circuit as Figure 13-3 using the simpli-

fied symbols. First, notice that the input buffers are represented as a single

buffer with two outputs, one inverted and one noninverted. Next, note that a

single line is shown going into the AND gate to represent all four inputs. Each

time the row line crosses a column represents a separate input to the AND

gate. The connections from the input variable lines to the AND gate inputs

are indicated as dots. A dot means that this connection to the AND gate in-

put is hard-wired (i.e., one that cannot be changed). At first glance, it looks

like the input variables are connected to each other. It is important to real-

ize that this is not the case because the single row line represents multiple
inputs to the AND gate.

The inputs to each of the OR gates are also designated by a single line

representing all four inputs. An X represents an intact fuse connecting a

product line to one input of the OR gate. The absence of an X (or a dot) at

any intersection represents a blown fuse. For OR gate inputs, blown fuses

(unconnected inputs) are assumed to be LOW, and for AND gate inputs,

blown fuses are HIGH. In this example, the outputs are programmed as

 O4 = 1

 O3 = 0

 O2 = AB
 O1 = A B + AB

O1 = 0 + A B + AB + 0 = A B + AB

 = A + A = 1

 = A(B + B) + A(B + B)

 O1 = A B + A B + AB + AB

876 CHAPTER 13/PROGRAMMABLE LOGIC DEVICE ARCHITECTURES

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 876

SECTION 13-3/PLD ARCHITECTURES 877

FIGURE 13-4 Simplified

PLD symbology.

AB

AB

AB

AB

O1 O2 O3 O4

AB

AB

AB

AB

B

BB

A

AA

Intact
fuse

Blown
fuse

Hard-wired
connection

No
connection

REVIEW QUESTIONS 1. What is a PLD?

2. What would output O1 be in Figure 13-3 if fuses 1 and 2 were blown?

3. What does an X represent on a PLD diagram?

4. What does a dot represent on a PLD diagram?

13-3 PLD ARCHITECTURES

The concept of PLDs has led to many different architectural designs of the

inner circuitry of these devices. In this section, we will explore some of the

basic differences in architecture.

PROMs
The architecture of the programmable circuits in the previous section in-

volves programming the connections to the OR gate. The AND gates are

used to decode all the possible combinations of the input variables, as

shown in Figure 13-5(a). For any given input combination, the correspon-

ding row is activated (goes HIGH). If the OR input is connected to that

row, a HIGH appears at the OR output. If the input is not connected, a

LOW appears at the OR output. Does this sound familiar? Refer back to

Figure 12-9. If you think of the input variables as address inputs and the

intact/blown fuses as stored 1s and 0s, you should recognize the architec-

ture of a PROM.

Figure 13-5(b) shows how the PROM would be programmed to generate four

specified logic functions. Let’s follow the procedure for output O3 = AB + C D.

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 877

The first step is to construct a truth table showing the desired O3 output level

for all possible input combinations (Table 13-1).

Next, write down the AND products for those cases where the output is to

be a 1.The O3 output is to be the OR sum of these products.Thus, only the fuses

that connect these product terms to the inputs of OR gate 3 are to be left intact.

All others are to be blown, as indicated in Figure 13-5(b). This same procedure

is followed to determine the status of the fuses at the other OR gate inputs.

The PROM can generate any possible logic function of the input vari-

ables because it generates every possible AND product term. In general, any

application that requires every input combination to be available is a good

candidate for a PROM. However, PROMs become impractical when a large

878 CHAPTER 13/PROGRAMMABLE LOGIC DEVICE ARCHITECTURES

FIGURE 13-5 (a) PROM architecture makes it suitable for PLDs; (b) fuses are

blown to program outputs for given functions.

D C B A

1

0

2

3

4

5

6

7

8

9

10

11

12

13

14

15

3

O3

2

O2

1

O1

0

O0

Outputs

AND array
(hard-wired)

(a)

Inputs

OR array
(programmable)

D C B A

1

0

2

3

4

5

6

7

8

9

10

11

12

13

14

15

3

O3

2

O2

1

O1

0

O0

(b)

DCBA

DCBA

DCBA

DCBA

DCBA

DCBA

DCBA

DCBA

DCBA

DCBA

DCBA

DCBA

DCBA

DCBA

DCBA

DCBA

O3 = AB + CD; O2 = ABC
O1 = ABCD + ABCD;
O0 = A + BD + CD

All fuses
intact

Blown
fuse

Fuse
left

intact

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 878

number of input variables must be accommodated because the number of

fuses doubles for each added input variable.

Calling a PROM a PLD is really just a semantics issue. You already knew

that a PROM is programmable and it is a logic device. This is just a way of us-

ing a PROM and thinking of its purpose as implementing SOP logic expres-

sions rather than storing data values in memory locations.The real problem is

translating the logic equations into the fuse map for a given PROM. A general-

purpose logic compiler designed to program SPLDs has a list of PROM de-

vices that it can support. If you choose to use any old scavenged EPROM as

a PLD, you may need to generate your own bit map (like they used to do it),

which is very tedious.

Programmable Array Logic (PAL)
The PROM architecture is well suited for those applications where every pos-

sible input combination is required to generate the output functions. Examples

are code converters and data storage (look-up) tables that we examined in

Chapter 12. When implementing SOP expressions, however, they do not make

very efficient use of circuitry. Each combination of address inputs must be

fully decoded, and each expanded product term has an associated fuse that is

used to OR them together. For example, notice how many fuses were required

in Figure 13-5 to program the simple SOP expressions and how many product

terms are often not used. This has led to the development of a class of PLDs

called programmable array logic (PAL). The architecture of a PAL differs

slightly from that of a PROM, as shown in Figure 13-6(a).

The PAL has an AND and OR structure similar to a PROM but in the

PAL, inputs to the AND gates are programmable, whereas the inputs to the

OR gates are hard-wired. This means that every AND gate can be pro-

grammed to generate any desired product of the four input variables and

their complements. Each OR gate is hard-wired to only four AND outputs.

This limits each output function to four product terms. If a function requires

SECTION 13-3/PLD ARCHITECTURES 879

TABLE 13-1
D C B A O3

0 0 0 0 1 →
0 0 0 1 1 →
0 0 1 0 1 →
0 0 1 1 1 →

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 1 →

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1 →

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1 → DCBA

DC BA

D CBA

D C BA

D C BA

D C B A

D C B A

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 879

more than four product terms, it cannot be implemented with this PAL; one

having more OR inputs would have to be used. If fewer than four product

terms are required, the unneeded ones can be made 0.

Figure 13-6(b) shows how this PAL is programmed to generate four spec-

ified logic functions. Let’s follow the procedure for output

First, we must express this output as the OR sum of four terms because the

OR gates have four inputs. We do this by putting in 0s. Thus, we have

Next, we must determine how to program the inputs to AND gates 1, 2, 3, and

4 so that they provide the correct product terms to OR gate 3. We do this term

by term. The first term, AB, is obtained by leaving intact the fuses that con-

nect inputs A and B to AND gate 1 and by blowing all other fuses on that line.

O3 = AB + C D + 0 + 0

O3 = AB + C D.

880 CHAPTER 13/PROGRAMMABLE LOGIC DEVICE ARCHITECTURES

FIGURE 13-6 (a) Typical PAL architecture; (b) the same PAL programmed for the

given functions.

D C B A

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

O3

23

O2

1

O1

0

O0

Outputs

AND array
(programmable)

(a)

OR array
(hard-wired)

D C B A

2

3

4

5

6

7

8

9

10

11

12

13

14

15

3

O3

2

O2

1

O1

0

O0

O3 = AB + CD; O2 = ABC
O1 = ABCD + ABCD;
O0 = A + BD + CD

(b)

AB

CD

0

0

ABC

0

0

0

ABCD

ABCD

0

0

A

BD

CD

016 16

1 1

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 880

SECTION 13-4/THE GAL 16V8 (GENERIC ARRAY LOGIC) 881

REVIEW QUESTIONS 1. Verify that the correct fuses are blown for the O2, O1, and O0 functions in

Figure 13-5(b).

2. A PAL has a hard-wired _____ array and a programmable _____ array.

3. A PROM has a hard-wired _____ array and a programmable _____ array.

4. How would the equation for the output of O1 in Figure 13-5(b) change if

all the fuses from AND gate 14 were left intact?

13-4 THE GAL 16V8 (GENERIC ARRAY LOGIC)

The GAL 16V8, introduced by Lattice Semiconductor, has an architecture

that is very similar to the PAL devices described in the previous section.

Standard, low-density PALs are one-time programmable. The GAL chip, on

the other hand, uses an EEPROM array (located at row and column intersec-

tions in Figure 13-7) to control the programmable connections to the AND

matrix, allowing them to be erased and reprogrammed at least 100 times. In

addition to the AND and OR gates used to produce the sum of product func-

tions, the GAL 16V8 contains optional flip-flops for register and counter

applications, tristate buffers for the outputs, and control multiplexers used

Likewise, the second term, is obtained by leaving intact only the fuses

that connect inputs and to AND gate 2. The third term is a 0. A constant

0 is produced at the output of AND gate 3 by leaving all of its input fuses in-

tact.This would produce an output of which, as we know, is 0.The

fourth term is also 0, so the input fuses to AND gate 4 are also left intact.

The inputs to the other AND gates are programmed similarly to generate

the other output functions. Note especially that many of the AND gates have

all of their input fuses intact because they need to generate 0s.

An example of an actual PAL integrated circuit is the PAL16L8, which

has 10 logic inputs and eight output functions. Each output OR gate is hard-

wired to seven AND gate outputs, and so it can generate functions that in-

clude up to seven terms. An added feature of this particular PAL is that six

of the eight outputs are fed back into the AND array, where they can be con-

nected as inputs to any AND gate. This makes it very useful in generating all

sorts of combinational logic.

The PAL family also contains devices with variations of the basic SOP cir-

cuitry we have described. For example, most PAL devices have a tristate buffer

driving the output pin. Others channel the SOP logic circuit to a D FF input and

use one of the pins as a clock input to clock all of the output flip-flops synchro-

nously. These devices are referred to as registered PLDs because the outputs

pass through a register. An example is the PAL16R8, which has up to eight reg-

istered outputs (which can also serve as inputs) plus eight dedicated inputs.

Field Programmable Logic Array (FPLA)
The field programmable logic array (FPLA) was developed in the mid-1970s

as the first nonmemory programmable logic device. It used a programmable

AND array as well as a programmable OR array. Although the FPLA is more

flexible than the PAL architecture, it has not been as widely accepted by en-

gineers. FPLAs are used mostly in state-machine design where a large num-

ber of product terms are needed in each SOP expression.

AABBCCDD,

DC
C D,

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 881

882 CHAPTER 13/PROGRAMMABLE LOGIC DEVICE ARCHITECTURES

FIGURE 13-7 GAL 16V8 logic diagram. (Reprinted with permission of Lattice

Semiconductor.)

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 882

to select the various modes of operation. Consequently, it can be used as a

generic, pin-compatible replacement for most PAL devices. Specific loca-

tions in the memory array are designated to control the various programma-

ble connections in the chip. Fortunately, it is not necessary to delve into the

addresses of each bit location in the matrix.The programming software takes

care of these details in a user-friendly manner.

The complete logic diagram of the GAL 16V8 is shown in Figure 13-7.This

device has eight dedicated input pins (pins 2–9), two special function inputs

(pins 1 and 11), and eight pins (12–19) that can be used as inputs or outputs.

The major components of the GAL devices are the input term matrix; the

AND gates, which generate the products of input terms; and the output logic

macrocells (OLMCs). Notice that the eight inputs (pins 2–9) are each con-

nected directly to a column of the input term matrix.The complement of each

of these inputs is also connected to a column of the matrix. These pins must

always be specified as inputs when programming the 16V8. A logic level and

its complement are also fed from each OLMC back to a column of the input

matrix.This accounts for the 32 input variables (columns in the input matrix)

that can be programmed as connections to the 64 multiple-input AND gates.

The flexibility of the GAL 16V8 lies in its programmable output logic

macrocell. Eight different products (outputs of AND gates) are applied as in-

puts to each of the eight output logic macrocells. Within each OLMC, the

products are ORed together to generate the sum of products (SOP). Recall

from Chapter 4 that any logic function can be expressed in SOP form. Within

the OLMC, the SOP output may be routed to the output pin to implement a

combinational circuit, or it may be clocked into a D flip-flop to implement a

registered output circuit.

To understand the detailed operation of the OLMC, refer to Figure 13-8.

The figure shows the structure of OLMC(n), where n is a number from 12 to 19.

Notice that seven of the products are unconditionally connected to the OR

SECTION 13-4/THE GAL 16V8 (GENERIC ARRAY LOGIC) 883

FIGURE 13-8 Output logic macrocell for the GAL 16V8. (Reprinted with permis-

sion of Lattice Semiconductor.)

OE

T
S
M
U
X

11
10
01
00VCC

AC0
AC1 (n)

O
M
U
X

0

To
adjacent
OLMC
FMUX in

I/O (n)1Q

D Q

F
M
U
X

10
11
0X

AC1 (n)AC0 From
adjacent
OLMC
output

CLK

XOR =1

P
T
M
U
X1

0

From
AND
array

Feedback

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 883

gate inputs.The eighth product term is connected to a two-input product term

multiplexer (PTMUX), which drives the eighth input to the OR gate. The

eighth product term also connects to one input of a four-input multiplexer

(TSMUX). The output of TSMUX enables the tristate inverter that drives the

output pin [I/O(n)]. The output multiplexer (OMUX) is a two-input MUX that

selects between the combinational output (OR gate) and the registered output

(the D flip-flop). A fourth MUX selects the logic signal that is fed back to the

input matrix. This is called the feedback multiplexer (FMUX).

Each of these multiplexers is controlled by programmable bits (AC1 and

AC0) in the EEPROM matrix. This is the way that the OLMC configuration

can be altered by the programmer. Another programmable bit is the input to

the XOR gate. This provides the programmable output polarity feature.

Recall that an XOR gate can be used to complement a logic signal selec-

tively, as shown in Figure 13-9. When the control line is a logic 0, the XOR

will pass the logic level at input A with no inversion. When the control bit is

a logic 1, the XOR will invert the signal so that In Figure 13-8, the pro-

grammable bit (labeled XOR) is a logic 1 under normal positive logic condi-

tions. This inverts the output of the OR gate, which is inverted again when it

passes through the tristate inverting buffer on the output.

We can understand the various configuration options by studying the

possible inputs to each multiplexer.The TSMUX controls the tristate buffer’s

enable input. If the VCC input is selected, the output is always enabled, like

a standard combinational logic gate. If the grounded input is selected, the

tristate output of the inverter is always in its high-impedance state (allowing

the I/O pin to be used as an input). Another input to the MUX that may be

selected comes from the OE input, which is pin 11. This allows the output to

be enabled or disabled by an external logic signal applied to pin 11. The last

possible input selection is a product term from the eighth AND gate. This

allows an AND combination of terms from the input matrix to enable or dis-

able the output.

The FMUX selects the signal that is fed back into the input matrix. In

this case, there are three possible selections. Selecting the MUX input that is

connected to an adjacent stage or the MUX input connected to its own

OLMC I/O pin allows an existing output state to be fed back to the input ma-

trix in some of the modes of operation. This feature gives the GAL 16V8 the

ability to implement sequential circuits such as the cross-coupled NAND

gate latch circuit described in Chapter 5.This feedback option also allows an

I/O pin to be used as a dedicated input as opposed to an output. One of these

two feedback paths is chosen, depending on the MODE that the chip is pro-

grammed for. The third option, selecting the output from the D flip-flop, al-

lows the present state of the flip-flop (which can be used to determine the

next state) to be fed back to the input matrix. This allows synchronous se-

quential circuits, such as counters and shift registers, to be implemented.

X = A.

884 CHAPTER 13/PROGRAMMABLE LOGIC DEVICE ARCHITECTURES

CONTROL
INPUT

A
OUTPUT

X

0

1

0

1

0

1

1

0

0

0

1

1

OUTPUT
X

INPUT
A

CONTROL
Buffer/Invert

Exclusive-OR

Inverted

Not inverted
(buffered)

FIGURE 13-9 Using XOR to complement selectively.

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 884

SECTION 13-5/THE ALTERA EPM7128S CPLD 885

REVIEW QUESTIONS 1. Name two advantages of GAL devices over PAL devices.

2. Name the three modes of operation for a GAL 16V8.

13-5 THE ALTERA EPM7128S CPLD

We will investigate the architecture of the EPM7128S, an EEPROM-based

device in the Altera MAX7000S CPLD family. This device is found on several

educational development boards, including the Altera UP2, DeVry eSOC, and

RSR PLDT-2. The block diagram for this family is shown in Figure 13-10. The

major structures in the MAX7000S are the logic array blocks (LABs) and the

programmable interconnect array (PIA). A LAB contains a set of 16 macro-

cells and looks very similar to a single SPLD device. Each macrocell consists

of a programmable AND/OR circuit and a programmable register (flip-flop).

The macrocells in a single LAB can share logic resources such as common

product terms or unused AND gates. The number of macrocells contained

in one of the MAX7000S family devices depends on the part number. As

shown in Table 13-2, the EPM7128S has 128 macrocells arranged in eight LABs.

Logic signals are routed between LABs via the PIA. The PIA is a global

bus that connects any signal source to any destination within the device. All

inputs to the MAX7000S device and all macrocell outputs feed the PIA. Up

to 36 signals can feed each LAB from the PIA. Only signals needed to pro-

duce the required functions for any LAB are fed into that LAB.

With all of these options, it would seem that there must be a long list of

possible configurations. In actual practice, all these configuration decisions

are made by the software. Actually, the GAL 16V8 has only three different

modes: (1) simple mode, which is used to implement simple SOP combina-

tional logic without tristate outputs; (2) complex mode, which implements

SOP combinational logic with tristate outputs that are enabled by an AND

product expression; and (3) registered mode, which allows individual OLMCs

to operate in a combinational configuration with tristate outputs (similar to

the complex mode) or in a synchronous mode with clocked D FFs synchro-

nized to a common clock signal.

The GAL 16V8 is an inexpensive and versatile PLD chip, but what if a de-

sign requires more hardware resources than is contained in the 16V8? It may

be possible to split the design into smaller blocks that can be implemented in

several 16V8 chips. Fortunately, there are other members of the GAL family

to choose from. Another popular, general-purpose PLD is the GAL 22V10.

This device has 10 output pins and 12 input pins in an architecture that is sim-

ilar but not identical to the GAL 16V8. Groups of product terms are logically

summed with an OR gate, which feeds an OLMC. Unlike the 16V8, however,

each OR gate in the 22V10 does not combine the same number of product

terms. The number of terms ranges from eight all the way up to 16. To take

advantage of the extra terms, you must assign the larger Boolean expressions

to the correct output pin. The D flip-flops contained in the OLMCs also have

asynchronous reset and synchronous preset capabilities. A newer version of

the 22V10—the ispGAL 22V10—is now available. This device is said to be in-

system programmable (ISP). Instead of requiring a programmer, as is needed

to program PALs and standard GAL chips, a cable from the PC is connected

directly to a special set of pins on the ISP device to do the programming.

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 885

I/O pins in the MAX7000S family are connected to specific macrocells.The

number of I/O pins available to the user depends on the device package. An

EPM7128S in a 160-pin PQFP package has 12 I/Os per LAB plus four additional

input-only pins, for a total of 100 pins. On the other hand, in an 84-pin PLCC

package, which is included on the above-mentioned development boards, there

are eight I/Os per LAB plus the four extras, for a total of 68 I/O pins. The

EPM7128S is an in-system programmable (ISP) device.The ISP feature utilizes

a joint test action group (JTAG) interface that requires four specific pins to be

dedicated to the programming interface and are therefore not available for

general user I/O. The target PLD can be programmed in-system via the JTAG

pins by connecting them to the parallel port of a PC with driver gates, as shown

886 CHAPTER 13/PROGRAMMABLE LOGIC DEVICE ARCHITECTURES

•
•
•

6 to16

LAB D

Macrocells
49 to 64

36

16

6 to16 6

I/O
control
block

6 to16

•
•
•

6 to16

LAB B

Macrocells
17 to 32

36

16

6 to16 6

I/O
control
block

6 to16

•
•
•

•
•
•

6 to16

LAB C

Macrocells
33 to 48

36

16

6 to166

I/O
control
block

6 to16

•
•
•

INPUT/OE2/GCLK2

6 to16

LAB A

Macrocells
1 to 16

36

16

6 to166

I/O
control
block

6 to16 I/O pins

6 to16

6 to16 I/O pins

•
•
•

6 to16 I/O pins

6 to16 I/O pins

6 output enables6 output enables

INPUT/GCLK1

INPUT/OE1

INPUT/GCLRn

PIA

FIGURE 13-10 MAX7000S family block diagram. (Courtesy of Altera Corporation.)

TABLE 13-2 Altera MAX7000S family device features.

Feature EPM7032S EPM7064S EPM7128S EPM7160S EPM7192S EPM7256S

Usable gates 600 1250 2500 3200 3750 5000

Macrocells 32 64 128 160 192 256

LABs 2 4 8 10 12 16

Maximum number
of user I/O pins 36 68 100 104 124 164

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 886

in Figure 13-11. The JTAG signals are named TDI (test data in), TDO (test data

out), TMS (test mode select), and TCK (test clock). This brings the user I/O pin

total for an EPM7128SLC84 (an EPM7128S in an 84-pin PLCC package) down

to 64 pins. All 68 pins, however, can be used for user I/O if the EPM7128SLC84

is programmed in a PLD programmer instead of in-system. When the design is

compiled, you must indicate whether or not the device will use a JTAG inter-

face. In either case, you can see that some macrocells will not be connected

directly to user I/O pins. These macrocells can be utilized by the compiler for

internal (buried) logic.

The four input-only pins found on devices in the MAX7000S family can

be configured as specific high-speed control signals or as general user in-

puts. GCLK1 is the primary global clock input for all macrocells in the de-

vice. It is used to clock all registers synchronously in a design. It is located on

pin 83 on an EPM7128SLC84 (see Figure 13-12). Pin 2 on this device is GCLK2

(secondary global clock). As an alternative, this pin may be used as a sec-

ondary global output enable (OE2) for any macrocells designated to have a

tristate output. The primary tristate enable, OE1, is located on pin 84. The

last of the four global control signals is GCLRn on pin 1. This active-LOW in-

put can control the asynchronous clear on any macrocell register. How these

pins are to be used for a specific application is assigned in MAX�PLUS II or

Quartus II either automatically by the compiler or manually by the designer

during the design process.

The I/O control blocks (see Figure 13-10) configure each I/O pin for input,

output, or bidirectional operation. All I/O pins in the MAX7000S family have

a tristate output buffer that is (1) permanently enabled or disabled, (2) con-

trolled by one of the two global output enable pins, or (3) controlled by other

inputs or functions generated by other macrocells. When an I/O pin is con-

figured as an input, the associated macrocell can be used for buried logic.

During in-system programming, the I/O pins will be made tristate and inter-

nally pulled up to eliminate board conflicts.

SECTION 13-5/THE ALTERA EPM7128S CPLD 887

EPM7128SLC84
(device to be
programmed)

13
25
12
24
11
23
10
22

9
21

8
20

7
19

6
18

5
17

4
16

3
15

2
14

1

D1
S3
D0
/C1

S4

S5

/S7

S6

D7

D6

D5

1
8
6
4
2

19
17
15
13
11

1G
1A4
1A3
1A2
1A1
2G
2A4
2A3
2A2
2A1

1Y4
1Y3
1Y2
1Y1

2Y4
2Y3
2Y2
2Y1

12
14
16
18

3
5
7
9

14
23
62

TDI
TMS
TCK

74LS244

VCC GND

20 10

VCC

VCC

GND

7, 19, 32, 42
47, 59, 72, 82

VCC

3, 13, 26, 38
43, 53, 66, 78

71
VCC

TDO

All pull-up R = 2.2 k�
All series R = 100 �DB25

FIGURE 13-11 JTAG interface between PC parallel port and EPM7128SLC84.

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 887

Figure 13-13 shows the block diagram for a MAX7000S macrocell. Each

macrocell can produce either a combinational or a registered output. The

register (flip-flop) contained in a macrocell will be bypassed to produce a

combinational output. The programmable sum of product circuit looks very

much like that found in a GAL chip. Each macrocell can produce five prod-

uct terms. While this is fewer than was found in the simpler GAL chips dis-

cussed earlier, it is often sufficient for most logic functions. If more product

terms are needed, the compiler will automatically program a macrocell to

borrow up to five product terms from each of three adjacent macrocells in

the same LAB. This parallel logic expander option can provide a total of

20 product terms. The borrowed gates are no longer usable by the macrocell

from which they are borrowed. Another expansion option, available in each

LAB, is called shared logic expanders. Instead of adding more product terms,

this option allows a common product term to be produced once and then

used by several macrocells within the LAB. Only one product term per

macrocell can be used in this fashion, but with 16 macrocells per LAB, this

makes up to 16 common product terms available.The compiler automatically

optimizes the allocation of available product terms within a LAB according

to the logic requirements of the design. Using either expander option does

incur a small amount of additional propagation delay.

888 CHAPTER 13/PROGRAMMABLE LOGIC DEVICE ARCHITECTURES

FIGURE 13-12 Pin-out for

EPM7128SLC84.

I/O I/O I/O I/O G
N

D
I/O I/O I/O V

C
C

IN
T

IN
P

U
T

/O
E

2/
G

C
LK

2
IN

P
U

T
/G

C
LR

n
IN

P
U

T
/O

E
1

IN
P

U
T

/G
C

LK
1

G
N

D
I/O I/O I/O V

C
C

IO
I/O I/O I/O

I/O
I/O
GND
I/O(TDO)
I/O
I/O

I/O
I/O

VCCIO
I/O
I/O
I/O
I/O(TCK)
I/O

GND
I/O

I/O
I/O
I/O

I/O
I/O

I/O 12
VCCIO 13

I/O(TDI) 14
I/O 15
I/O 16
I/O 17

GND 19
I/O 18

I/O 20
I/O 21
I/O 22

I/O(TMS) 23
I/O 24
I/O 25

I/O 27
VCCIO 26

I/O 28
I/O 29
I/O 30

GND 32
I/O 31

I/O

33

I/O

34

I/O

35

I/O

36

I/O

37

V
C

C
IO

38

I/O

39

I/O

40

I/O

41

G
N

D

42

V
C

C
IN

T

43

I/O

44

I/O

45

I/O

46

G
N

D

47
I/O

48
I/O

49

I/O

50

I/O

51

I/O

52

V
C

C
IO

53

EPM7128SLC84

ALTERA

11 10 9 8 7 6 5 4 3 2 1 84 83 82 81 80 79 78 77 76 75
74
73
72
71
70
69

67
68

66
65
64
63
62
61

59
60

58
57
56

54
55

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 888

For registered functions, each macrocell flip-flop can be programmed

individually to implement D, T, JK, or SR operation. Each programmable

register can be clocked in three different modes: (1) with a global clock signal,

(2) with a global clock signal when the flip-flop is enabled, or (3) with an array

clock signal produced by a buried macrocell or a (nonglobal) input pin. In the

EPM7128S, either of the two global clock pins (GCLK1 or GCLK2) can be used

to produce the fastest clock-to-Q performance. Either clock edge can be pro-

grammed to trigger the flip-flops. Each register can be preset asynchronously

or cleared with an active-HIGH or active-LOW product term. Each register

may also be cleared with the active-LOW global clear pin (GCLRn).A fast data

input path from an I/O pin to the registers, bypassing the PIA, is also available.

All registers in the device will be reset automatically at power-up.

MAX7000S devices have a power-saving option that allows the designer

to program each individual macrocell for either high-speed (turbo bit turned

on) or low-power (turbo bit turned off) operation. Because most logic appli-

cations require only a small fraction of all gates to operate at maximum fre-

quency, this feature may produce a significant savings in total system power

consumption. Speed-critical paths in the design can run at maximum speed,

while the remaining signal paths can operate at reduced power.

SECTION 13-5/THE ALTERA EPM7128S CPLD 889

FIGURE 13-13 MAX7000S family macrocell. (Courtesy of Altera Corporation.)

Clock/
enable
select

• • •• • •

•
•

•

16 expander
product terms

36 signals
from PIA

Logic array

Parallel logic
expanders
(from other
macrocells)

•
•

•
Clear
select

VCC

CLRN
ENA

D/T
PRN

Q

to PIA

To I/O
control
block

From
I/O pin

Global
clear

Global
clocks

2

Fast input
select

Programmable
register

Register
bypass

Shared logic
expanders

Product-
term

select
matrix

REVIEW QUESTIONS 1. What is a macrocell?

2. What is an ISP device?

3. What special control functions are provided with the four input-only pins

on a MAX7000S device?

4. What system advantage is achieved by slowing down selected macrocells

in a MAX7000S device?

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 889

13-6 THE ALTERA FLEX10K FAMILY

The Altera FLEX10K family of programmable logic devices has a very dif-

ferent architecture. Instead of the programmable AND/fixed-OR gate array

used in the MAX7000S devices, this family is based on a look-up table (LUT)

architecture. The look-up table produces logic functions by storing the func-

tion’s output results in an SRAM-based memory. It functions essentially like

the truth table for the logic function. SRAM technology for PLDs programs

much faster than EEPROM-based devices, and it also results in a very high

density of storage cells that are used to program the larger PLDs. SRAM-

based PLDs that use the LUT architecture are generally classified in the in-

dustry as field programmable gate arrays. Unlike most FPGAs, however,

Altera has chosen to utilize a programmable signal routing design for the

FLEX10K family that looks more like an enhanced version of the PIA found

in the CPLD MAX7000S family. As a result, the FLEX10K family has archi-

tectural characteristics that are a combination of the two HCPLD classifica-

tions. Based on the high-density architecture of the logic cells, the FLEX10K

devices are generally classified as FPGAs.

Let us examine the concept of a look-up table. The LUT is the portion of

the programmable logic block that produces a combinational function (see

Figure 13-14). This function can be used as the output of the logic block or

it may be registered (controlled by the internal MUX). The look-up table it-

self consists of a set of flip-flops that store the desired truth table for our

function. LUTs are usually rather small, typically handling four input vari-

ables, and so our truth table would have a total of 16 combinations. We will

need a flip-flop to store each of the 16 function values (see Figure 13-15). Up

to four input variables in our example LUT will be connected to the data in-

puts on the decoder block using programmable interconnects. The input

combination that is applied will determine which of the 16 flip-flops will be

selected to feed the output via the tristate buffers. The look-up table is

basically a SRAM memory block. All we have to do to create any

desired function (of up to four input variables) is to store the appropriate

set of 0s and 1s in the LUT’s flip-flops.That is essentially what is done to pro-

gram this type of PLD. Because the flip-flops are volatile (they are SRAM),

we need to load the LUT memory for the desired functions whenever the

PLD is powered-up. This process is called configuring the PLD. Other por-

tions of the device are also programmed in the same fashion using other

SRAM memory bits to store the programming information. This is the basic

programming technique for the logic blocks, called logic elements (LEs),
found in the FLEX10K devices.

16 * 1

890 CHAPTER 13/PROGRAMMABLE LOGIC DEVICE ARCHITECTURES

FIGURE 13-14 Simplified

logic block diagram for

FLEX10K device.

Logic block

D0

D1

Y

MUX

SEL

SET
D Q

Q
CLR

Data1

Data2

Data3

Data4

Out

LUT

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 890

SECTION 13-6/THE ALTERA FLEX10K FAMILY 891

Figure 13-16 shows the block diagram for a FLEX10K logic element. It

contains the LUT and programmable register, as well as cascade- and carry-

expansion circuitry, programmable control functions, and local and global

bus interconnections. The programmable flip-flop can be configured for D, T,

JK, or SR operation and will be bypassed for combinational functions. The

flip-flop control signals (clock, clear, and preset) can be driven selectively by

global inputs, general-purpose I/O pins, or any internally created functions.

The LE can produce two outputs to drive local (LAB) and global (FastTrack)

interconnects on the chip. This allows the LUT and the register in one LE to

be used for unrelated functions. Two types of high-speed data paths—

cascade chains and carry chains—connect adjacent LEs without using local

interconnects. The cascade-chain expansion allows the FLEX10K architec-

ture to create functions with more than four input variables. Adjacent LUTs

can be paralleled together, with each additional LUT providing four more in-

put variables.The carry chain provides a fast carry-forward function between

FIGURE 13-15 Functional block diagram for an LUT.

Address

D Q

D Q
Q12

D Q
Q13

Address 13

D Q
Q14

Address 14

D Q
Q15

Address 15

D Q
Q8

Address 8

D Q
Q9

Address 9

Q10

Address 10

D Q
Q11

Address 11

D Q
Q4

Address 4

D Q
Q5

Address 5

D Q
Q6

Address 6

D Q
Q7

7

D Q
Q0

Address 0

D Q
Q1

Address 1

D Q
Q2

Address 2

D Q
Q3

Address 3

Out

Decoder

A Y0Data1 Address 0
B Y1Data2 Address 1
C Y2Data3 Address 2
D Y3Data4 Address 3

Y4 Address 4
Y5 Address 5
Y6 Address 6
Y7 Address 7
Y8 Address 8
Y9 Address 9

Y10 Address 10
Y11 Address 11
Y12 Address 12
Y13 Address 13
Y14 Address 14
Y15 Address 15

Address 12

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 891

Look-up
table
(LUT)

Chip-wide
reset

To fast track
interconnect

To LAB local
interconnect

CLRN
ENA

D
PRN

Q
Carry
chain

Cascade
chain

Data1
Data2
Data3
Data4

Carry-in

Carry-out

Cascade-in

Cascade-out

Clear/
preset
logic

Labctrl1
Labctrl2

Clock
select

Labctrl3
Labctrl4

Register bypass Programmable
register

FIGURE 13-16 FLEX10K logic element. (Courtesy of Altera Corporation.)

FIGURE 13-17 FLEX10K logic array block. (Courtesy of Altera Corporation.)

Column-to-row
interconnect

LE1

LAB local
interconnect (2)

LE2

LE3

LE4

LE5

LE6

LE7

LE8

4

4

4

4

4

4

4

4

4

4

6(1)

8 2

8
16

16 4

LAB control
signals

Row interconnect

Column
interconnect

Carry-in and
Cascade-in

2

Carry-out and
Cascade-out

248

Dedicated inputs and
global signals

892

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 892

SECTION 13-6/THE ALTERA FLEX10K FAMILY 893

LEs, which allows for efficient implementation of functions that build on

other functions such as those found in counters, adders, and comparators. In

these functions, the upper bits depend on the lower bits. Without an expan-

sion feature like the carry chain, the propagation delays can become quite

long for larger circuits. Cascade-chain and carry-chain logic can be created

automatically by the compiler software or manually by the designer during

design entry. Propagation delays will increase by a small amount when using

the expansion options.The MAX�PLUS II or Quartus II Timing Analyzer cal-

culates these added delays for a given design. Intensive use of carry and cas-

cade chains can reduce routing flexibility and should therefore be limited to

speed-critical portions of a design.

The logic array block for the FLEX10K family contains eight logic ele-

ments and the local interconnect for that LAB (see Figure 13-17). Signals

from one LE to another within an LAB are routed with the local intercon-

nect.The row and column interconnects, which Altera has named a FastTrack

interconnect, provide the signal pathways between LABs. Each LAB has four

control signals available to all eight LEs. Two can be used for register clocks

and the other two are for preset or clear.

The overall block diagram for a FLEX10K device is shown in Figure 13-18.

In addition to the logic array blocks and FastTrack interconnects that we have

already described, the devices contain I/O elements (IOEs) and embedded

array blocks (EABs). The IOEs each contain a bidirectional I/O buffer and a

register that can be used for either input or output data storage. Each EAB

FIGURE 13-18 FLEX10K device block diagram. (Courtesy of Altera Corporation.)

IOE IOE

IOE IOE

IOE IOE

IOE IOE

IOE IOE

IOE IOE

IOE IOE

IOE IOE

IOE IOE

IOE IOE

IOE

IOE

•••

IOE

IOE

•••

IOE

IOE

•••

IOE

IOE

•••

EAB

EAB

I/O element
(IOE)

Column
interconnect

Logic
array

Row
interconnect

Embedded array block (EAB)

Embedded array

Local interconnect

Logic element (LE)

Logic array

Logic array
block (LAB)

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 893

13-7 THE ALTERA CYCLONE FAMILY

New families of HCPLD devices are continually being developed. The archi-

tectures of these new families provide various combinations of enhance-

ments in logic and signal routing resources, in density (higher number of

logic elements), in the amount of embedded memory, in the number of avail-

able user I/O pins, higher speeds, and lower costs. Another Altera family that

may be of interest to us is the Cyclone family. The UP3 educational develop-

ment board from Altera contains a Cyclone EP1C6 device. In a Cyclone de-

vice, logic functions are implemented in LEs (logic elements) that contain a

four-input LUT (look-up table) and a programmable register (D flip-flop) sim-

ilar to those found in FLEX10K devices. The Cyclone LE contains advanced

features to provide more efficient logic utilization than with the FLEX10K.

The Cyclone LE, for example, has been enhanced to more efficiently create

894 CHAPTER 13/PROGRAMMABLE LOGIC DEVICE ARCHITECTURES

REVIEW QUESTIONS 1. What is a look-up table?

2. What advantage does SRAM programming technology have over EEPROM?

3. What disadvantage does SRAM programming technology have compared

to EEPROM?

4. What are EABs? What can they be used for?

TABLE 13-3 Altera FLEX10K family device features.

Feature EPF10K10 EPF10K20 EPF10K30 EPF10K40 EPF10K50 EPF10K70 EPF10K100 EPF10K120 EPF10K250

Typical
number
of gates 10,000 20,000 30,000 40,000 50,000 70,000 100,000 120,000 250,000

Maximum
number
of gates 31,000 63,000 69,000 93,000 116,000 118,000 158,000 211,000 310,000

LEs 576 1,152 1,728 2,304 2,880 3,744 4,992 6,656 12,160

LABs 72 144 216 288 360 468 624 832 1,520

EABs 3 6 6 8 10 9 12 16 20

Maximum
number
of I/O pins 150 189 246 189 310 358 406 470 470

provides a flexible block of 2048 bits of RAM storage for various internal

memory applications. Combining multiple EABs on one chip can create larger

blocks of RAM. An EAB can also be used to create large combinational func-

tions by implementing an LUT.

The FLEX10K family contains several different sizes of parts, as shown

in Table 13-3. The Altera UP2 educational development board also contains

an EPF10K70 device in a 240-pin package. As you can see in the table, this

device has a lot of logic resources available!

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 894

digital applications that use adder/subtractors, asynchronous loading of the

programmable register, and shift registers. The logic array blocks in Cyclone

devices consist of 10 LEs and a local interconnect. This family also contains

blocks of 4K bits of RAM memory that can be configured as dual-port or single-

port memory with words up to 36 bits wide. A global clock network with eight

global clock lines provides clocks for all I/O elements, LEs, and memory

blocks. Internal phase-lock loops (PLLs) provide clock frequency multiplica-

tion and division and clock signal phase shifting. The features of the Cyclone

family devices are compared in Table 13-4. Cyclone devices have the capabil-

ity to interface with other digital circuits using multiple I/O standards, but

they do not support 5-V I/O. Cyclone family devices are not supported by

MAX�PLUS II design software.

SUMMARY
1. Programmable logic devices (PLDs) are the key technology in the future

of digital systems.

2. PLDs can reduce parts inventory, simplify prototype circuitry, shorten

the development cycle, reduce the size and power requirements of the

product, and allow the hardware of a circuit to be upgraded easily.

3. The major digital system categories are standard logic, application-

specific integrated circuits (ASICs), and microprocessor/digital signal

processing (DSP) devices.

4. ASIC devices may be programmable logic devices (PLDs), gate arrays,

standard cells, or full-custom devices.

5. PLDs are the least expensive type of ASIC to develop.

6. Simple PLDs (SPLDs) contain the equivalent of 600 or fewer gates and

are programmed with fuse, EPROM, or EEPROM technology.

7. High-capacity PLDs (HCPLDs) have two major architectural categories:

complex programmable logic devices (CPLDs) and field programmable

gate arrays (FPGAs).

8. The most common CPLD programming technologies are EEPROM and

flash, both of which are nonvolatile.

9. The most common FPGA programming technology is SRAM, which is

volatile.

10. The GAL 16V8 is one of the simplest PLDs available but is still widely

used and demonstrates the basic principles behind all PLDs.

11. The Altera EPM7128S CPLD contains 128 macrocells, each of which con-

tains a programmable AND/OR circuit and a programmable register.

12. The EPM7128SLC84 can have up to 68 inputs and outputs.

SUMMARY 895

TABLE 13-4 Altera

Cyclone family device

features.

Feature EP1C3 EP1C4 EP1C6 EP1C12 EP1C20

LEs 2,910 4,000 5,980 12,060 20,060

M4K RAM blocks 13 17 20 52 64

Total RAM bits 59,904 78,336 92,160 239,616 294,912

PLLs 1 2 2 2 2

Maximum number
of I/O pins 104 301 185 249 301

TOCCMC13_0131725793.QXD 12/22/2005 9:19 AM Page 895

13. The MAX7000S family of CPLDs is in-system programmable (ISP).

14. The Altera FLEX10K and Cyclone families of devices use a look-up table

(LUT) architecture in an SRAM technology.

15. SRAM programming technology is volatile, meaning that the devices

must be reconfigured at power-up.

896 CHAPTER 13/PROGRAMMABLE LOGIC DEVICE ARCHITECTURES

standard logic

microprocessor

digital signal

processing

(DSP)

application-specific

integrated circuit

(ASIC)

programmable logic

device (PLD)

gate array

standard-cell ASIC

full-custom ASIC

simple PLD (SPLD)

complex PLD (CPLD)

field programmable

gate array (FPGA)

high-capacity PLD

(HCPLD)

one-time

programmable

(OTP)

programmable array

logic (PAL)

macrocell

look-up table (LUT)

logic array block

(LAB)

programmable

interconnect array

(PIA)

logic element (LE)

PROBLEMS
SECTION 13-1

13-1. Describe each of the following major digital system categories:

(a) Standard logic

(b) ASICs

(c) Microprocessor/DSP

13-2.*Name three factors that are generally considered when making de-

sign engineering decisions.

13-3. Why is a microprocessor/DSP system called a software solution for a

design?

13-4.*What major advantage does a hardware design solution have over a

software solution?

13-5. Describe each of the following four ASIC subcategories:

(a) PLDs

(b) Gate arrays

(c) Standard-cell

(d) Full-custom

13-6.*What are the major advantages and disadvantages of a full-custom

ASIC?

13-7. Name the six PLD programming technologies. Which is one-time pro-

grammable? Which is volatile?

13-8.*How is the programming of SRAM-based PLDs different from other

programming technologies?

SECTION 13-5

13-9. Describe the functions of each of the following architectural struc-

tures found in the Altera MAX7000S family:

IMPORTANT TERMS

*Answers to problems marked with an asterisk can be found in the back of the text.

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 896

(a) LAB

(b) PIA

(c) Macrocell

13-10.*What two ways can be used to program the MAX7000S family devices?

13-11. What standard device interface is used for in-system programming in

the MAX7000S family?

13-12.*What are the four input-only pins on the EPM7128SLC84 (by pin

number and function)?

13-13. What is the advantage of using one of the global clock inputs for reg-

istered operation?

SECTION 13-6

13-14.*What is the fundamental architectural difference between the

MAX 7000S and FLEX10K families? What is the programming tech-

nology used by each family? Which family is nonvolatile? Which family

contains more logic resources?

ANSWERS TO SECTION REVIEW QUESTIONS
SECTION 13-1

1. Standard logic, ASICs, microprocessor 2. Speed 3. Application-specific

integrated circuit 4. Programmable logic devices, gate arrays, standard cells, full

custom 5. High-capacity programmable logic device 6. (1) Logic blocks:

programmable AND/fixed-OR CPLD versus look-up table FPGA (2) Signal routing

resources: uniform CPLD versus varied FPGA 7. Volatility refers to whether a

PLD (or memory device) loses stored information when it is powered-down.

SECTION 13-2

1. An IC that contains a large number of gates whose interconnections can be modi-

fied by the user to perform a specific function. 2. O1 � A 3. An intact fuse

4. A hard-wired connection

SECTION 13-3

2. Hard-wired OR; programmable AND 3. Hard-wired AND; programmable OR

4.

SECTION 13-4

1. Erasable and reprogrammable; has an OLMC 2. Simple, complex, registered

SECTION 13-5

1. A macrocell is the programmable logic block in MAX7000S CPLDs consisting of a

programmable AND/OR circuit and a programmable register (flip-flop). 2. An

ISP PLD device is in-system programmable, which means that it can be

programmed while connected in the circuit. 3. Global clocks, tristate output

enables, asynchronous clear 4. Power consumption may be decreased by slowing

down macrocells.

SECTION 13-6

1. A look-up table is typically a 16-word by 1-bit SRAM array used to store the

desired output logic levels for a simple logic function. 2. SRAM programs faster

and has a higher logic cell density than EEPROM. 3. SRAM is volatile and must

be reconfigured upon power-up of the device. 4. Embedded array blocks provide

RAM storage on the PLD.

O1 = ABC D + A B CD + A BCD = ABC D + ACD

ANSWERS TO SECTION REVIEW QUESTIONS 897

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 897

898

G L O S S A R Y

Access Time Time between the memory’s receiving a

new input address and the output data’s becoming

available in a read operation.

Accumulator Principal register of an arithmetic/logic

unit (ALU).

Acquisition Time Time required for a sample-and-

hold circuit to capture the analog value that is pres-

ent on its input.

Active-HIGH (LOW) Decoder Decoder that produces

a logic HIGH (LOW) at the output when detection oc-

curs.

Active Logic Level Logic level at which a circuit is

considered active. If the symbol for the circuit in-

cludes a bubble, the circuit is active-LOW. On the

other hand, if it doesn’t have a bubble, then the cir-

cuit is active-HIGH.

Actuator Electrically controlled device that controls

a physical variable.

Addend Number to be added to another.

Adder/Subtractor An adder circuit that can subtract

by complementing (negating) one of the operands.

See also Parallel/Adder.

Address Number that uniquely identifies the location

of a word in memory.

Address Bus Unidirectional lines that carry the ad-

dress code from the CPU to memory and I/O devices.

Address Multiplexing Multiplexing used in dynamic

RAMs to save IC pins. It involves latching the two

halves of a complete address into the IC in separate

steps.

Alias A digital signal that results from sampling an

incoming signal at a rate less than twice the highest

frequency contained in the incoming signal.

Alphanumeric Codes Codes that represent numbers,

letters, punctuation marks, and special characters.

Altera Hardware Description Language (AHDL) A

proprietary HDL developed by Altera Corporation

for programming their programmable logic devices.

Alternate Logic Symbol A logically equivalent sym-

bol that indicates the active level of the inputs and

outputs.

Analog Representation Representation of a quantity

that varies over a continuous range of values.

Analog System Combination of devices designed to

manipulate physical quantities that are represented

in analog form.

Analog-to-Digital Converter (ADC) Circuit that con-

verts an analog input to a corresponding digital

output.

Analog Voltage Comparator Circuit that compares

two analog input voltages and produces an output

that indicates which input is greater.

& When used inside an IEEE/ANSI symbol, an indica-

tion of an AND gate or AND function.

AND Gate Digital circuit that implements the AND

operation. The output of this circuit is HIGH (logic

level 1) only if all of its inputs are HIGH.

AND Operation Boolean algebra operation in which

the symbol is used to indicate the ANDing of two or

more logic variables.The result of the AND operation

will be HIGH (logic level 1) only if all variables are

HIGH.

Application-Specific Integrated Circuit (ASIC) An IC

that has been specifically designed to meet the re-

quirements of an application. Subcategories include

PLDs, gate arrays, standard cells, and full-custom ICs.

TOCCMG01.0131725793.QXD 12/20/05 4:18 PM Page 898

ARCHITECTURE Keyword in VHDL used to begin a

section of code that defines the operation of a circuit

block (ENTITY).

Arithmetic/Logic Unit (ALU) Digital circuit used in

computers to perform various arithmetic and logic

operations.

ASCII Code (American Standard Code for Information
Interchange) Seven-bit alphanumeric code used by

most computer manufacturers.

Asserted Term used to describe the state of a logic

signal; synonymous with “active.”

Astable Multivibrator Digital circuit that oscillates

between two unstable output states.

Asynchronous Counter Type of counter in which each

flip-flop output serves as the clock input signal for

the next flip-flop in the chain.

Asynchronous Inputs Flip-flop inputs that can affect

the operation of the flip-flop independent of the syn-

chronous and clock inputs.

Asynchronous Transfer Data transfer performed

without the aid of the clock.

Augend Number to which an addend is added.

Auxiliary Memory The part of a computer’s memory

that is separate from the computer’s main working

memory. Generally has high density and high capac-

ity, such as magnetic disk.

Backplane Electrical connection common to all seg-

ments of an LCD.

Barrel Shifter A shift register that can very effi-

ciently shift a binary number left or right by any

number of bit positions.

BCD Counter Binary counter that counts from 00002

to 10012 before it recycles.

BCD-to-Decimal Decoder Decoder that converts a

BCD input into a single decimal output equivalence.

BCD-to-7-Segment Decoder/Driver Digital circuit

that takes a four-bit BCD input and activates the re-

quired outputs to display the equivalent decimal

digit on a 7-segment display.

Behavioral Level of Abstraction A technique of de-

scribing a digital circuit that focuses on how the cir-

cuit reacts to its inputs.

Bidirectional Data Line Term used when a data line

functions as either an input or an output line de-

pending on the states of the enable inputs.

Bilateral Switch CMOS circuit that acts like a single-

pole, single-throw (SPST) switch controlled by an in-

put logic level.

Binary-Coded-Decimal Code (BCD Code) Four-bit

code used to represent each digit of a decimal num-

ber by its four-bit binary equivalent.

Binary Counter Group of flip-flops connected in a spe-

cial arrangement in which the states of the flip-flops

represent the binary number equivalent to the num-

ber of pulses that have occurred at the input of the

counter.

Binary Digit Bit.

Binary Point Mark that separates the integer from

the fractional portion of a binary quantity.

Binary System Number system in which there are

only two possible digit values, 0 and 1.

Bipolar DAC Digital-to-analog converter that accepts

signed binary numbers as input and produces the

corresponding positive or negative analog output

value.

Bipolar ICs Integrated digital circuits in which NPN

and PNP transistors are the main circuit elements.

BIT In VHDL, the data object type representing a

single binary digit (bit).

Bit Digit in the binary system.

Bit Array A way to represent a group of bits by giving

it a name and assigning an element number to each

bit’s position. This same structure is sometimes

called a bit vector.

BIT_VECTOR In VHDL, the data object type repre-

senting a bit array. See also Bit Array.

Boolean Algebra Algebraic process used as a tool in

the design and analysis of digital systems. In Boolean

algebra only two values are possible, 0 and 1.

Boolean Theorems Rules that can be applied to

Boolean algebra to simplify logic expressions.

Bootstrap Program Program, stored in ROM, that a

computer executes on power-up.

Bubbles Small circles on the input or output lines of

logic-circuit symbols that represent inversion of a

particular signal. If a bubble is present, the input or

output is said to be active-LOW.

Buffer/Driver Circuit designed to have a greater

output current and/or voltage capability than an ordi-

nary logic circuit.

Buffer Register Register that holds digital data tem-

porarily.

Buried Node A defined point in a circuit that is not

accessible from outside that circuit.

Bus Group of wires that carry related bits of informa-

tion.

Bus Contention Situation in which the outputs of two

or more active devices are placed on the same bus

line at the same time.

Bus Drivers Circuits that buffer the outputs of de-

vices connected to a common bus; used when a large

number of devices share a common bus.

Byte Group of eight bits.

Cache A high-speed memory system that can be

loaded from the slower system DRAM and accessed

quickly by the high-speed CPU.

Capacity Amount of storage space in a memory ex-

pressed as the number of bits or number of words.

Carry Digit or bit that is generated when two num-

bers are added and the result is greater than the base

for the number system being used.

Carry Propagation Intrinsic circuit delay of some par-

allel adders that prevents the carry bit (COUT) and

the result of the addition from appearing at the out-

put simultaneously.

Carry Ripple See Carry Propagation.

CAS (Column Address Strobe) Signal used to latch

the column address into a DRAM.

GLOSSARY 899

TOCCMG01.0131725793.QXD 12/20/05 4:18 PM Page 899

CAS-before-RAS Method for refreshing DRAMs that

have built-in refresh counters. When the CAS input is

driven LOW and held there as RAS is pulsed LOW, an

internal refresh operation is performed at the row

address given by the on-chip refresh counter.

Cascading Connecting logic circuits in a serial fash-

ion with the output of one circuit driving the input of

the next, and so on.

CASE A control structure that selects one of several

options when describing a circuit’s operation based

on the value of a data object.

Central Processing Unit (CPU) Part of a computer

that is composed of the arithmetic/logic unit (ALU)

and the control unit.

Checksum Special data word stored in the last ROM

location. It is derived from the addition of all other

data words in the ROM, and it is used for error-

checking purposes.

Chip Select Input to a digital device that controls

whether or not the device will perform its function.

Also called chip enable.
Circuit Excitation Table Table showing a circuit’s pos-

sible PRESENT-to-NEXT state transitions and the re-

quired J and K levels at each flip-flop.

Circular Buffer A memory system that always con-

tains the last n data values that have been written.

Whenever a new data value is stored, it overwrites

the oldest value in the buffer.

Circulating Shift Register Shift register in which one

of the outputs of the last flip-flop is connected to the

input of the first flip-flop.

CLEAR An input to a latch or FF used to make Q � 0.

CLEAR State The Q � 0 state of a flip-flop.

Clock Digital signal in the form of a rectangular pulse

train or a square wave.

Clock Skew Arrival of a clock signal at the clock

inputs of different flip-flops at different times as a

result of propagation delays.

Clock Transition Times Minimum rise and fall times

for the clock signal transitions used by a particular

IC, specified by the IC manufacturer.

Clocked D Flip-Flop Type of flip-flop in which the D
(data) input is the synchronous input.

Clocked Flip-Flops Flip-flops that have a clock input.

Clocked J-K FLip-Flop Type of flip-flop in which in-

puts J and K are the synchronous inputs.

Clocked S-R Flip-Flop Type of flip-flop in which the

inputs SET and RESET are the synchronous inputs.

CMOS (Complementary Metal-Oxide-Semiconductor)
Integrated-circuit technology that uses MOSFETs as

the principal circuit element. This logic family be-

longs to the category of unipolar digital ICs.

Combinational Logic Circuits Circuits made up of

combinations of logic gates, with no feedback from

outputs to inputs.

Comments Text added to any HDL design file or com-

puter program to describe the purpose and operation

of the code in general or of individual statements in

the code. Documentation regarding author, date, re-

vision, etc., may also be contained in the comments.

Common Anode LED display that has the anodes of

all of the segment LEDs tied together.

Common Cathode LED display that has the cathodes

of all of the segment LEDs tied together.

Common-Control Block Symbol used by the IEEE/

ANSI standard to describe when one or more inputs

are common to more than one of the circuits in an IC.

Compiler A program that translates a text file written

in a high-level language into a binary file that can be

loaded into a programmable device such as a PLD or

a computer’s memory.

Complement See Invert.

Complex PLD (CPLD) Class of PLDs that contain an

array of PAL-type blocks that can be interconnected.

COMPONENT A VHDL keyword used at the top of a

design file to provide information about a library

component.

Computer Word Group of binary bits that form the

primary unit of information in a computer.

Concatenate A term used to describe the arrange-

ment or linking of two or more data objects into or-

dered sets.

Concurrent Events that occur simultaneously (at the

same time). In HDL, the circuits generated by con-

current statements are not affected by the order or

sequence of the statements in the code.

Concurrent Assignment Statement A statement in

AHDL or VHDL that describes a circuit that works

concurrently with all other circuits that are de-

scribed by concurrent statements.

Conditional Signal Assignment A VHDL concurrent

construct that evaluates a series of conditions

sequentially to determine the appropriate value to

assign to a signal. The first true condition evaluated

determines the assigned value.

Constants Symbolic names that can be used to repre-

sent fixed numeric (scalar) values.

Contact Bounce The tendency of all mechanical

switches to vibrate when forced to a new position.

The vibrations cause the circuit to make contact and

break contact repeatedly until the vibrations settle

out.

Contention Two (or more) output signals connected

together trying to drive a common point to different

voltage levels. See also Bus Contention.

Control Bus Set of signal lines that are used to syn-

chronize the activities of the CPU and the separate

elements.

Control Inputs Input signals synchronized with the

active clock transition that determine the output

state of a flip-flop.

Control Unit Part of a computer that provides decoding

of program instructions and the necessary timing and

control signals for the execution of such instructions.

Count Enable An input on a synchronous counter that

controls whether the outputs respond to or ignore an

active clock transition.

Crystal-Controlled Clock Generator Circuit that uses

a quartz crystal to generate a clock signal at a precise

frequency.

mC

900 GLOSSARY

TOCCMG01.0131725793.QXD 12/20/05 4:18 PM Page 900

Current-Sinking Logic Logic family in which the

output of a logic circuit sinks current from the input

of the logic circuit that it is driving.

Current-Sinking Transistor Name given to the output

transistor (Q4) of a TTL circuit. This transistor is

turned on when the output logic level is LOW.

Current-Sourcing Logic Logic family in which the

output of a logic circuit sources, or supplies, current

to the input of the logic circuit that it is driving.

Current-Sourcing Transistor Name given to the output

transistor (Q3) of most TTL circuits. This transistor is

conducting when the output logic level is HIGH.

Current Transients Current spikes generated by the

totem-pole output structure of a TTL circuit and caused

when both transistors are simultaneously turned on.

D Flip-Flop See Clocked D Flip-Flop.

D Latch Circuit that contains a NAND gate latch and

two steering NAND gates.

Data Binary representations of numerical values or

nonnumerical information in a digital system. Data

are used and often modified by a computer program.

Data Acquisition Process by which a computer ac-

quires digitized analog data.

Data Bus Bidirectional lines that carry data between

the CPU and the memory, or between the CPU and

the I/O devices.

Data Distributors See Demultiplexer.

Data-Rate Buffer Application of FIFOs in which se-

quential data are written into the FIFO at one rate

and read out at a different rate.

Data Selectors See Multiplexer.

Data Transfer See Parallel Data Transfer or Serial

Data Transfer.

Decade Counter Any counter capable of going

through 10 different logic states.

Decimal System Number system that uses 10 differ-

ent digits or symbols to represent a quantity.

Decision Control Structures The statements and syn-

tax that describe how to choose between two or more

options in the code.

Decoder Digital circuit that converts an input binary

code into a corresponding single active output.

Decoding Act of identifying a particular binary com-

bination (code) in order to display its value or recog-

nize its presence.

DEFAULTS An AHDL keyword used to establish a de-

fault value for a combinational signal for instances

when the code does not explicitly specify a value.

DeMorgan’s Theorems (1) Theorem stating that the

complement of a sum (OR operation) equals the

product (AND operation) of the complements, and

(2) theorem stating that the complement of a product

(AND operation) equals the sum (OR operation) of

the complements.

Demultiplexer (DEMUX) Logic circuit that, depend-

ing on the status of its select inputs, will channel its

data input to one of several data outputs.

Density A relative measure of capacity to store bits in

a given amount of space.

Dependency Notation Method used to represent sym-

bolically the relationship between inputs and out-

puts of logic circuits. This method employs the use of

qualifying symbols embedded near the top center or

geometric center of a symbol element.

Differential Inputs Method of connecting an analog

signal to an analog circuit’s � and inputs, neither

of which is ground, such that the analog circuit acts

upon the voltage difference between the two inputs.

Digital Computer System of hardware that performs

arithmetic and logic operations, manipulates data,

and makes decisions.

Digital Integrated Circuits Self-contained digital cir-

cuits made by using one of several integrated-circuit

fabrication technologies.

Digital One-Shot A one-shot that uses a counter and

clock rather than an RC circuit as a time base.

Digital-Ramp ADC Type of analog-to-digital con-

verter in which an internal staircase waveform is

generated and utilized for the purpose of accom-

plishing the conversion. The conversion time for this

type of analog-to-digital converter varies depending

on the value of the input analog signal.

Digital Representation Representation of a quantity

that varies in discrete steps over a range of values.

Digital Signal Processing (DSP) Method of perform-

ing repetitive calculations on an incoming stream of

digital data words to accomplish some form of signal

conditioning. The data are typically digitized sam-

ples of an analog signal.

Digital Storage Oscilloscope Instrument that sam-

ples, digitizes, stores, and displays analog voltage

waveforms.

Digital System Combination of devices designed to

manipulate physical quantities that are represented

in digital form.

Digital-to-Analog Converter (DAC) Circuit that con-

verts a digital input to a corresponding analog output.

Digitization Process by which an analog signal is con-

verted to digital data.

Disable Action in which a circuit is prevented from

performing its normal function, such as passing an

input signal through to its output.

Divide-and-Conquer Troubleshooting technique where-

by tests are performed that will eliminate half of all

possible remaining causes of the malfunction.

Don’t-Care Situation when a circuit’s output level for

a given set of input conditions can be assigned as ei-

ther a 1 or a 0.

Down Counter Counter that counts from a maximum

count downward to 0.

Downloading Process of transferring output files to a

programming fixture.

DRAM Controller IC used to handle refresh and ad-

dress multiplexing operations needed by DRAM sys-

tems.

Driver Technical term sometimes added to an IC’s de-

scription to indicate that the IC’s outputs can operate

at higher current and/or voltage limits than a normal

standard IC.

-

GLOSSARY 901

TOCCMG01.0131725793.QXD 12/20/05 4:18 PM Page 901

Dual-in-Line Package (DIP) A very common IC pack-

age with two parallel rows of pins intended to be in-

serted into a socket or through holes drilled in a

printed circuit board.

Dual-Slope Analog-to-Digital Converter Type of

analog-to-digital converter that linearly charges a

capacitor from a current proportional to VA for a

fixed time interval and then increments a counter as

the capacitor is linearly discharged to 0.

Dynamic RAM (DRAM) Type of semiconductor mem-

ory that stores data as capacitor charges that need to

be refreshed periodically.

ECL Emitter-coupled logic; also referred to as

current-mode logic.
Edge-Detector Circuit Circuit that produces a narrow

positive spike that occurs coincident with the active

transition of a clock input pulse.

Edge-Triggered Manner in which a flip-flop is acti-

vated by a signal transition. A flip-flop may be either

a positive- or a negative-edge-triggered flip-flop.

Electrically Compatible When two ICs from different

logic series can be connected directly without any

special measures taken to ensure proper operation.

Electrically Erasable Programmable ROM (EEPROM)
ROM that can be electrically programmed, erased,

and reprogrammed.

Electrostatic Discharge (ESD) The often detrimental

act of the transfer of static electricity (i.e., an elec-

trostatic charge) from one surface to another. This

impulse of current can destroy electronic devices.

ELSE A control structure used in conjunction with

IF/THEN to perform an alternate action in the case

that the condition is false. An IF/THEN/ELSE always

performs one of two actions.

ELSIF A control structure that can be used multiple

times following an IF statement to select one of several

options in describing a circuit’s operation based on

whether the associated expressions are true or false.

Embedded Microcontroller Microcontroller that is

embedded in a marketable product such as a VCR or

an appliance.

Emitter-Coupled Logic See ECL.

Enable Action in which a circuit is allowed to perform

its normal function, such as passing an input signal

through to its output.

Encoder Digital circuit that produces an output code

depending on which of its inputs is activated.

Encoding Use of a group of symbols to represent

numbers, letters, or words.

ENTITY Keyword in VHDL used to define the basic

block structure of a circuit.This word is followed by a

name for the block and the definitions of its

input/output ports.

Enumerated Type A VHDL user-defined type for a

signal or variable.

Erasable Programmable ROM (EPROM) ROM that

can be electrically programmed by the user. It can be

erased (usually with ultraviolet light) and repro-

grammed as often as desired.

EVENT A VHDL keyword used as an attribute at-

tached to a signal to detect a transition of that signal.

Generally, an event means a signal changed state.

Exclusive-NOR (XNOR) Circuit Two-input logic cir-

cuit that produces a HIGH output only when the in-

puts are equal.

Exclusive-OR (XOR) Circuit Two-input logic circuit

that produces a HIGH output only when the inputs

are different.

Fan-Out Maximum number of standard logic inputs

that the output of a digital circuit can reliably drive.

Field Programmable Gate Array (FPGA) Class of

PLDs that contain an array of more complex logic

cells that can be very flexibly interconnected to im-

plement high-level logic circuits.

Field Programmable Logic Array (FPLA) A PLD that

uses both a programmable AND array and a pro-

grammable OR array.

Firmware Computer programs stored in ROM.

First-In, First-Out (FIFO) Memory Semiconductor

sequential-access memory in which data words are read

out in the same order in which they were written in.

555 Timer TTL-compatible IC that can be wired to op-

erate in several different modes, such as a one-shot

and an astable multivibrator.

Flash ADC Type of analog-to-digital converter that

has the highest operating speed available.

Flash Memory Nonvolatile memory IC that has the high-

speed access and in-circuit erasability of EEPROMs but

with higher densities and lower cost.

Flip-Flop Memory device capable of storing a logic

level.

Floating Bus When all outputs connected to a data

bus are in the Hi-Z state.

Floating Input Input signal that is left disconnected

in a logic circuit.

FOR Loop See Iterative Loop.

4-to-10 Decoder See BCD-to-Decimal Decoder.

Frequency The number of cycles per unit time of a

periodic waveform.

Frequency Counter Circuit that can measure and dis-

play a signal’s frequency.

Frequency Division The use of flip-flop circuits to

produce an output waveform whose frequency is

equal to the input clock frequency divided by some

integer value.

Full Adder Logic circuit with three inputs and two

outputs.The inputs are a carry bit (CIN) from a previous

stage, a bit from the augend, and a bit from the ad-

dend, respectively.The outputs are the sum bit and the

carry-out bit (COUT) produced by the addition of the bit

from the addend with the bit from the augend and CIN.

Full-Custom An application-specific integrated circuit

(ASIC) that is completely designed and fabricated

from fundamental elements of electronic devices

such as transistors, diodes, resistors, and capacitors.

Full-Scale Error Term used by some digital-to-analog

converter manufacturers to specify the accuracy of

a digital-to-analog converter. It is defined as the

902 GLOSSARY

TOCCMG01.0131725793.QXD 12/20/05 4:18 PM Page 902

maximum deviation of a digital-to-analog converter’s

output from its expected ideal value.

Full-Scale Output Maximum possible output value of

a digital-to-analog converter.

Function Generator Circuit that produces different

waveforms. It can be constructed using a ROM, a

DAC, and a counter.

Function Prototype A text description that contains

all the essential defining attributes of a library func-

tion or module.

Functionally Equivalent When the logic functions

performed by two different ICs are exactly the same.

Fusible Link Conducting material that can be made

nonconducting (i.e., open) by passing too much cur-

rent through it.

Gate Array An application-specific integrated circuit

(ASIC) made up of hundreds of thousands of prefab-

ricated basic gates that can be custom intercon-

nected in the last stages of manufacture to form the

desired digital circuit.

GENERATE A VHDL keyword used with the FOR

construct to iteratively define multiple similar com-

ponents and to interconnect them.

Glitch Momentary, narrow, spurious, and sharply de-

fined change in voltage.

Gray Code A code that never has more than one bit

changing when going from one state to another,

GSI Giga-scale integration (1,000,000 gates or more).

Half Adder Logic circuit with two inputs and two out-

puts. The inputs are a bit from the augend and a bit

from the addend. The outputs are the sum bit pro-

duced by the addition of the bit from the addend

with the bit from the augend and the resulting carry

(COUT) bit, which will be added to the next stage.

Hard Disk Rigid metal magnetic disk used for mass

storage.

Hardware Description Language (HDL) A text-based

method of describing digital hardware that follows a

rigid syntax for representing data objects and con-

trol structures.

Hexadecimal Number System Number system that has

a base of 16. Digits 0 through 9 plus letters A through

F are used to express a hexadecimal number.

Hierarchical Design A method of designing a project

by breaking it into constituent modules, each of

which can be broken further into simpler constituent

modules.

Hierarchy A group of tasks arranged in rank order of

magnitude, importance, or complexity.

High-Capacity PLD (HCPLD) A PLD with thousands

of logic gates and many programmable macrocell re-

sources, along with very flexible interconnection re-

sources.

Hold Time (tH) Time interval immediately following the

active transition of the clock signal during which the

control input must be maintained at the proper level.

Hybrid System System that employs both analog and

digital techniques.

IEEE/ANSI Institute of Electrical and Electronics

Engineers/American National Standards Institute,

both professional organizations that establish stan-

dards.

IF/THEN A control structure that evaluates a condi-

tion and performs an action if the condition is true or

bypasses the action and continues on if the condition

is false.

Indeterminate Of a logic voltage level, outside the re-

quired range of voltages for either logic 0 or logic 1.

Index Another name for the element number of any

given bit in a bit array.

Inhibit Circuits Logic circuits that control the pas-

sage of an input signal through to the output.

Input Term Matrix Part of a programmable logic de-

vice that allows inputs to be selectively connected to

or disconnected from internal logic circuitry.

Input Unit Part of a computer that facilitates the

feeding of information into the computer’s memory

unit or ALU.

Instructions Binary codes that tell a computer what

operation to perform. A program is made up of an or-

derly sequence of instructions.

INTEGER In VHDL, the data object type represent-

ing a numeric value.

Interfacing Joining of dissimilar devices in such a

way that they are able to function in a compatible

and coordinated manner; connection of the output of

a system to the input of a different system with dif-

ferent electrical characteristics.

Interpolation Filtering Another name for oversam-

pling. Interpolation refers to intermediate values in-

serted into the digital signal to smooth out the wave-

form.

Invert Cause a logic level to go to the opposite state.

INVERTER Also referred to as the NOT circuit; logic

circuit that implements the NOT operation. An

INVERTER has only one input, and its output logic

level is always the opposite of this input’s logic level.

Iterative Loop A control structure that implies a repet-

itive operation and a stated number of iterations.

Jam Transfer See Asynchronous Transfer.

JEDEC Joint Electronic Device Engineering Council,

which established standards for IC pin assignments

and PLD file format.

J-K Excitation Table Table showing the required J and

K input conditions for each possible state transition

for a single J-K flip-flop.

Johnson Counter Shift register in which the inverted

output of the last flip-flop is connected to the input

of the first flip-flop.

JTAG Joint Test Action Group, which created a stan-

dard interface that allows access to the inner work-

ings of an IC for testing, controlling, and program-

ming purposes.

Karnaugh Map (K Map) Two-dimensional form of a

truth table used to simplify a sum-of-products ex-

pression.

GLOSSARY 903

TOCCMG01.0131725793.QXD 12/20/05 4:18 PM Page 903

Latch Type of flip-flop; also, the action by which a

logic circuit output captures and holds the value of

an input.

Latch-Up Condition of dangerously high current in a

CMOS IC caused by high-voltage spikes or ringing at

device input and output pins.

Latency The inherent delay associated with reading

data from a DRAM. It is caused by the timing re-

quirements of supplying the row and column ad-

dresses, and the time for the data outputs to settle.

LCD Liquid-crystal display.

Lead Pitch The distance between the centers of adja-

cent pins on an IC.

Least Significant Bit (LSB) Rightmost bit (smallest

weight) of a binary expressed quantity.

Least Significant Digit (LSD) Digit that carries the

least weight in a particular number.

LED Light-emitting diode.

Libraries A collection of descriptions of commonly

used hardware circuits that can be used as modules

in a design file.

Library of Parameterized Modules (LPM) A set of

generic library functions designed to be very flexible

in allowing the user to specify the number of bits,

mod number, control options, etc.

Linear Buffer A first-in, first-out memory system that

fills at one rate and empties at another rate. After it

is full, no data can be stored until data is read from

the buffer. See also First In, First-Out (FIFO)

Memory.

Linearity Error Term used by some digital-to-analog

converter manufacturers to specify the device’s accu-

racy. It is defined as the maximum deviation in step

size from the ideal step size.

Literals In VHDL, a scalar value or bit pattern that is

to be assigned to a data object.

Load Operation Transfer of data into a flip-flop, a reg-

ister, a counter, or a memory location.

Local Signal See Buried Node.

Logic Array Block (LAB) A term Altera Corporation

uses to describe building blocks of their CPLDs.

Each LAB is similar in complexity to an SPLD.

Logic Circuit Any circuit that behaves according to a

set of logic rules.

Logic Elements A term Altera Corporation uses to de-

scribe the building blocks of their FLEX10K family

of PLDs. The logic elements are programmed as a

ram-based look-up table.

Logic Function Generation Implementation of a logic

function directly from a truth table by means of a

digital IC such as a multiplexer.

Logic Level State of a voltage variable. The states 1

(HIGH) and 0 (LOW) correspond to the two usable

voltage ranges of a digital device.

Logic Primitive A circuit description of a fundamen-

tal component that is built into the MAX�PLUS II

system of libraries.

Logic Probe Digital troubleshooting tool that senses

and indicates the logic level at a particular point in a

circuit.

Logic Pulser Testing tool that generates a short-

duration pulse when actuated manually.

Look-Ahead Carry Ability of some parallel adders to

predict, without having to wait for the carry to prop-

agate through the full adders, whether or not a carry

bit (COUT) will be generated as a result of the addi-

tion, thus reducing the overall propagation delays.

Look-Up Table (LUT) A way to implement a single

logic function by storing the correct output logic

state in a memory location that corresponds to each

particular combination of input variables.

Looping Combining of adjacent squares in a

Karnaugh map containing 1s for the purpose of sim-

plification of a sum-of-products expression.

Low-Power Schottky TTL (LS-TTL) TTL subfamily

that uses the identical Schottky TTL circuit but with

larger resistor values.

Low-Voltage Differential Signaling (LVDS) A tech-

nology for driving high-speed data lines in low-

voltage systems that uses two conductors and reverses

the polarity to distinguish between HIGH and LOW.

Low-Voltage Technology New line of logic devices that

operate from a nominal supply voltage of 3.3V or less.

LSI Large-scale integration (100 to 9999 gates).

MAC An abbreviation for Multiply Accumulate Unit,

the hardware section of a DSP that multiplies a sam-

ple with a coefficient and then accumulates (sums) a

running total of these products.

MACHINE An AHDL keyword used to create a state

machine in a design file.

Macrocell A circuit made up of a group of basic digi-

tal components such as AND gates, OR gates, regis-

ters, and tristate control circuits that can be inter-

connected within a PLD via a program.

Macrofunctions A term used by Altera Corporation to

describe the predefined hardware descriptions in

their libraries that represent standard IC parts.

Magnetic Disk Memory Mass storage memory that

stores data as magnetized spots on a rotating, flat

disk surface.

Magnetic Tape Memory Mass storage memory that

stores data as magnetized spots on a magnetically

coated plastic tape.

Magnitude Comparator Digital circuit that compares

two input binary quantities and generates outputs to

indicate whether the inputs are equal or, if not,

which is greater.

Main Memory High-speed portion of a computer’s

memory that holds the program and data the computer

is currently working on. Also called working memory.
Mask-Programmed ROM (MROM) ROM that is pro-

grammed by the manufacturer according to the cus-

tomer’s specifications. It cannot be erased or repro-

grammed.

Mass Storage Storage of large amounts of data; not

part of a computer’s internal memory.

Maximum Clocking Frequency (fMAX) Highest fre-

quency that may be applied to the clock input of a

flip-flop and still have it trigger reliably.

904 GLOSSARY

TOCCMG01.0131725793.QXD 12/20/05 4:18 PM Page 904

Mealy Model A state-machine model in which the

output signals are controlled by combinational in-

puts as well as the state of the sequential circuit.

Megafunctions A complex or high-level building

block available in the Altera library.

Memory Ability of a circuit’s output to remain at one

state even after the input condition that caused that

state is removed.

Memory Cell Device that stores a single bit.

Memory Foldback Redundant enabling of a memory

device at more than one address range as a result of

incomplete address decoding.

Memory Map Diagram of a memory system that shows

the address range of all existing memory devices as

well as available memory space for expansion.

Memory Unit Part of a computer that stores instruc-

tions and data received from the input unit, as well as

results from the arithmetic/logic unit.

Memory Word Group of bits in memory that repre-

sents instructions or data of some type.

Microcomputer Newest member of the computer

family, consisting of microprocessor chip, memory

chips, and I/O interface chips. In some cases, all of

the aforementioned are in one single IC.

Microcontroller Small microcomputer used as a dedi-

cated controller for a machine, a piece of equipment,

or a process.

Microprocessor (MPU) LSI chip that contains the

central processing unit (CPU).

Minuend Number from which the subtrahend is to be

subtracted.

MOD Number Number of different states that a

counter can sequence through; the counter’s fre-

quency division ratio.

Mode The attribute of a port in a digital circuit that

defines it as input, output, or bidirectional.

Monostable Multivibrator See One-Shot.

Monotonicity Property whereby the output of a digi-

tal-to-analog converter increases as the binary input

is increased.

Moore Model A state-machine model in which the

output signals are controlled only by the sequential

circuit outputs.

MOSFET Metal-oxide-semiconductor field-effect tran-

sistor.

Most Significant Bit (MSB) Leftmost binary bit

(largest weight) of a binary expressed quantity.

Most Significant Digit (MSD) Digit that carries the

most weight in a particular number.

MSI Medium-scale integration (12 to 99 gates).

Multiplexer (MUX) Logic circuit that, depending on

the status of its select inputs, will channel one of

several data inputs to its output.

Multiplexing Process of selecting one of several input

data sources and transmitting the selected data to a

single output channel.

Multistage Counter Counter in which several counter

stages are connected so that the output of one stage

serves as the clock input of the next stage to achieve

greater counting range or frequency division.

NAND Gate Logic circuit that operates like an AND

gate followed by an INVERTER. The output of a

NAND gate is LOW (logic level 0) only if all inputs

are HIGH (logic level 1).

NAND Gate Latch Flip-flop constructed from two

cross-coupled NAND gates.

Negation Operation of converting a positive number

to its negative equivalent, or vice versa. A signed bi-

nary number is negated by the 2’s-complement oper-

ation.

Negative-Going Transition When a clock goes from 1

to 0.

Nested To have one control structure embedded

within another control structure.

Nibble A group of four bits.

N-MOS (N-Channel Metal-Oxide-Semiconductor)
Integrated-circuit technology that uses N-channel

MOSFETs as the principal circuit element.

NODE A keyword in AHDL used to declare an inter-

mediate variable (data object) that is local to that

subdesign.

Noise Spurious voltage fluctuations that may be pres-

ent in the environment and cause digital circuits to

malfunction.

Noise Immunity Circuit’s ability to tolerate noise

voltages on its inputs.

Noise Margin Quantitative measure of noise immunity.

Nonretriggerable One-Shot Type of one-shot that will

not respond to a trigger input signal while in its

quasi-stable state.

Nonvolatile Memory Memory that will keep storing

its information without the need for electrical power.

Nonvolatile RAM Combination of a RAM array and

an EEPROM or flash on the same IC. The EEPROM

serves as a nonvolatile backup to the RAM.

NOR Gate Logic circuit that operates like an OR gate

followed by an INVERTER.The output of a NOR gate

is LOW (logic level 0) when any or all inputs

are HIGH (logic level 1).

NOR Gate Latch Flip-flop constructed from two cross-

coupled NOR gates.

NOT Circuit See INVERTER.

NOT Operation Boolean algebra operation in which

the overbar (
–
) or the prime () symbol is used to in-

dicate the inversion of one or more logic variables.

Objects Various ways of representing data in the code

of any HDL.

Observation/Analysis Process used to troubleshoot

circuits or systems in order to predict the possible

faults before ever picking up a troubleshooting in-

strument. When this process is used, the trou-

bleshooter must understand the circuit operation,

observe the symptoms of the failure, and then reason

through the operation.

Octal Number System Number system that has a base

of 8; digits from 0 to 7 are used to express an octal

number.

Octets Groups of eight 1s that are adjacent to each

other within a Karnaugh map.

¿

GLOSSARY 905

TOCCMG01.0131725793.QXD 12/20/05 4:18 PM Page 905

Offset Error Deviation from the ideal 0 V at the

output of a digital-to-analog converter when the

input is all 0s. In reality, there is a very small output

voltage for this situation.

1-of-10 Decoder See BCD-to-Decimal Decoder.

1’s-Complement Form Result obtained when each bit

of a binary number is complemented.

One-Shot Circuit that belongs to the flip-flop family

but that has only one stable state (normally Q � 0).

One-Time Programmable (OTP) A broad category of

programmable components that are programmed by

permanently altering the connections (e.g., melting a

fuse element).

Open-Collector Output Type of output structure of

some TTL circuits in which only one transistor with a

floating collector is used.

Optical Disk Memory Class of mass memory devices

that uses a laser beam to write onto and read from a

specially coated disk.

OR Gate Digital circuit that implements the OR oper-

ation. The output of this circuit is HIGH (logic level

1) if any or all of its inputs are HIGH.

OR Operation Boolean algebra operation in which the

symbol + is used to indicate the ORing of two or more

logic variables. The result of the OR operation will be

HIGH (logic level 1) if one or more variables are HIGH.

Output Logic Macrocell (OLMC) A group of logic ele-

ments (gates, multiplexers, flip-flops, buffers) in a

PLD that can be configured in various ways.

Output Unit Part of a computer that receives data

from the memory unit or ALU and presents it to the

outside world.

Overflow When in the process of adding signed bi-

nary numbers, a carry of 1 is generated from the MSB

position of the number into the sign bit position.

Override Inputs Synonymous with “asynchronous in-

puts.”

Oversampling Inserting data points between sampled

data in a digital signal to make it easier to filter out the

rough edges of the waveform coming out of the DAC.

PACKAGE A VHDL keyword used to define a set of

global elements that are available to other modules.

Parallel Adder Digital circuit made from full adders

and used to add all of the bits from the addend and

the augend together simultaneously.

Parallel Counter See Synchronous Counter.

Parallel Data Transfer Operation by which several

bits of data are transferred simultaneously into a

counter or a register.

Parallel In/Parallel Out Register Type of register that

can be loaded with parallel data and has parallel

outputs available.

Parallel In/Serial Out Register Type of register that

can be loaded with parallel data and has only one se-

rial output.

Parallel Load See Parallel Data Transfer.

Parallel-to-Serial Conversion Process by which all data

bits are presented simultaneously to a circuit’s input

and then transmitted one bit at a time to its output.

Parallel Transmission Simultaneous transfer of all

bits of a binary number from one place to another.

Parity Bit Additional bit that is attached to each code

group so that the total number of 1s being transmit-

ted is always even (or always odd).

Parity Checker Circuit that takes a set of data bits

(including the parity bit) and checks to see if it has

the correct parity.

Parity Generator Circuit that takes a set of data bits

and produces the correct parity bit for the data.

Parity Method Scheme used for error detection dur-

ing the transmission of data.

Percentage Resolution Ratio of the step size to the

full-scale value of a digital-to-analog converter.

Percentage resolution can also be defined as the

reciprocal of the maximum number of steps of a

digital-to-analog converter.

Period The amount of time required for one complete

cycle of a periodic event or waveform.

Periodic A cycle that repreats itself regularly in time

and form.

Pin-Compatible When the corresponding pins on two

different ICs have the same functions.

Pixel Small dots of light that make up a graphical im-

age on a display.

P-MOS (P-channel Metal Oxide Semiconductor)
Integrated-circuit technology that uses P-channel

MOSFETs as the principal circuit element.

PORT MAP A VHDL keyword that precedes the list of

connections specified between components.

Positional-Value System System in which the value of

a digit depends on its relative position.

Positive-Going Transition (PGT) When a clock signal

changes from a logic 0 to a logic 1.

Power-Down Operating mode in which a chip is

disabled and draws much less power than when it is

fully enabled.

Power-Supply Decoupling Connection of a small RF

capacitor between ground and VCC near each TTL in-

tegrated circuit on a circuit board.

Power-Up Self-Test Program stored in ROM and exe-

cuted by the CPU on power-up to test RAM and/or

ROM portions of the computer circuitry.

Preprocessor Commands Compiler commands that

are processed before the main program code in order

to control how the code is interpreted.

Prescaler A counter circuit that takes base reference

frequency and scales it by dividing the frequency

down to a rate required by the system.

Present State–Next State Table A table which lists

each possible present state of a sequential (counter)

circuit and identifies the corresponding next state.

PRESET Asynchronous input used to set Q � 1 imme-

diately.

Presettable Counter Counter that can be preset to any

starting count either synchronously or asynchronously.

Priority Encoder Special type of encoder that senses

when two or more inputs are activated simultane-

ously and then generates a code corresponding to the

highest-numbered input.

906 GLOSSARY

TOCCMG01.0131725793.QXD 12/20/05 4:18 PM Page 906

PROCESS A VHDL keyword that defines the begin-

ning of a block of code that describes a circuit that

must respond whenever certain signals (in the sensi-

tivity list) change state. All sequential statements

must occur inside a process.

Product-of-Sums Form Logic expression consisting of

two or more OR terms (sums) that are ANDed together.

Program Sequence of binary-coded instructions de-

signed to accomplish a particular task by a computer.

Programmable Array Logic (PAL) Class of program-

mable logic devices. Its AND array is programmable,

whereas its OR array is hard-wired.

Programmable Interconnect Array (PIA) A term

Altera Corporation uses to describe the resources

used to connect the LABs with each other and also

with the input/output modules.

Programmable Logic Array (PLA) Class of program-

mable logic devices. Both its AND and its OR arrays

are programmable. Also called a field programmable
logic array (FPLA).

Programmable Logic Device (PLD) IC that contains

a large number of interconnected logic functions.

The user can program the IC for a specific function

by selectively breaking the appropriate intercon-

nections.

Programmable Output Polarity Feature of many

PLDs whereby an XOR gate with a polarity fuse gives

the designer the option of inverting or not inverting

a device output.

Programmable ROM (PROM) ROM that can be elec-

trically programmed by the user. It cannot be erased

and reprogrammed.

Programmer A fixture used to apply the proper volt-

ages to PLD and PROM chips in order to program

them.

Programming The act of storing 1s and 0s in a pro-

grammable logic device to configure its behavioral

characteristics.

Propagation Delays (tPLH/tPHL) Delay from the time a

signal is applied to the time when the output makes

its change.

Pull-Down Transistor See Current-Sinking Transistor.

Pull-Up Transistor See Current-Sourcing Transistor.

Pulse A momentary change of logic state that repre-

sents an event to a digital system.

Pulse-Steering Circuit A logic circuit that can be

used to select the destination of an input pulse,

depending on the logic levels present at the circuit’s

inputs.

Quantization Error Error caused by the nonzero reso-

lution of an analog-to-digital converter. It is an inher-

ent error of the device.

Quasi-Stable State State to which a one-shot is tem-

porarily triggered (normally Q � 1) before returning

to its stable state (normally Q � 0).

R/2R Ladder DAC Type of digital-to-analog converter

whose internal resistance values span a range of only

2 to 1.

Random-Access Memory (RAM) Memory in which

the access time is the same for any location.

RAS (Row Address Strobe) Signal used to latch the

row address into a DRAM chip.

RAS-Only Refresh Method for refreshing DRAM in

which only row addresses are strobed into the DRAM

using the RAS input.

Read Term used to describe the condition when the

CPU is receiving data from another element.

Read-Only Memory (ROM) Memory device designed

for applications where the ratio of read operations to

write operations is very high.

Read Operation Operation in which a word in a spe-

cific memory location is sensed and possibly trans-

ferred to another device.

Read/Write Memory (RWM) Any memory that can be

read from and written into with equal ease.

Refresh Counter Counter that keeps track of row ad-

dresses during a DRAM refresh operation.

Refreshing Process of recharging the cells of a dy-

namic memory.

Register Group of flip-flops capable of storing data.

RESET Term synonymous with “CLEAR.”

RESET State The Q � 0 state of a flip-flop.

Resolution In a digital-to-analog converter, smallest

change that can occur in the output for a change in dig-

ital input; also called step size. In an analog-to-digital

converter, smallest amount by which the analog input

must change to produce a change in the digital output.

Retriggerable One-Shot Type of one-shot that will

respond to a trigger input signal while in its quasi-

stable state.

Ring Counter Shift register in which the output of the

last flip-flop is connected to the input of the first flip-

flop.

Ripple Counter See Asynchronous Counter.

Sample-and-Hold Circuit Type of circuit that utilizes

a unity-gain buffer amplifier in conjunction with a

capacitor to keep the input stable during an analog-to-

digital conversion process.

Sampling Acquiring and digitizing a data point from

an analog signal at a given instant of time.

Sampling Frequency The rate at which an analog sig-

nal is digitized (samples per second).

Sampling Interval Time window during which a fre-

quency counter samples and thereby determines the

unknown frequency of a signal.

SBD Schottky barrier diode used in all Schottky TTL

series.

Schematic Capture A computer program that can in-

terpret graphic symbols and signal connections and

translate them into logical relationships.

Schmitt Trigger Digital circuit that accepts a slow-

changing input signal and produces a rapid, oscilla-

tion-free transition at the output.

Schottky TTL TTL subfamily that uses the basic TTL

standard circuit except that it uses a Schottky bar-

rier diode (SBD) connected between the base and

the collector of each transistor for faster switching.

GLOSSARY 907

TOCCMG01.0131725793.QXD 12/20/05 4:18 PM Page 907

Selected Signal Assignment A VHDL statement that

allows a data object to be assigned a value from one

of several signal sources depending on the value of

an expression.

Self-Correcting Counter A counter that always pro-

gresses to its intended sequence, regardless of its ini-

tial state.

Sensitivity List The list of signals used to invoke the

sequence of statements in a PROCESS.

Sequential Occuring one at a time in a certain order.

In HDL, the circuits that are generated by sequential

statements behave differently, depending on the or-

der of the statements in the code.

Sequential-Access Memory (SAM) Memory in which

the access time will vary depending on the storage lo-

cation of the data.

Sequential Circuit A logic circuit whose outputs can

change states in synchronism with a periodic clock

signal. The new state of an output may depend on its

current state as well as the current states of other

outputs.

Serial Data Transfer Transfer of data from one place

to another one bit at a time.

Serial In/Parallel Out Type of register that can be

loaded with data serially and has parallel outputs

available.

Serial In/Serial Out Type of register that can be loaded

with data serially and has only one serial output.

Serial Transmission Transfer of binary information

from one place to another a bit at a time.

SET An input to a latch or FF used to make Q � 1.

Set A grouping of concatenated variables or signals.

SET State The Q � 1 state of a flip-flop.

Settling Time Amount of time that it takes for the

output of a digital-to-analog converter to go from 0 to

within one-half step size of its full-scale value as the

input is changed from all 0s to all 1s.

Setup Time (tS) Time interval immediately preceding

the active transition of the clock signal during which

the control input must be maintained at the proper

level.

Shift Register Digital circuit that accepts binary data

from some input source and then shifts these data

through a chain of flip-flops one bit at a time.

Sigma Greek letter that represents addition and

is often used to label the sum output bits of a paral-

lel adder.

Sigma/Delta Modulation Method of sampling ananalog

signal and converting its data points into a bit stream

of serial data.

Sign Bit Binary bit that is added to the leftmost

position of a binary number to indicate whether

that number represents a positive or a negative

quantity.

Sign-Magnitude System A system for representing

signed binary numbers where the most significant

bit represents the sign of the number and the

remaining bits represent the true binary value (mag-

nitude).

(π)

Simple PLD (SPLD) A PLD with a few hundred logic

gates and possibly a few programmable macrocells

available.

Simulator Computer program that calculates the cor-

rect output states of a logic circuit based on a descrip-

tion of the logic circuit and on the current inputs.

Spike See Glitch.

SSI Small-scale integration (fewer than 12 gates).

Staircase Test Process by which a digital-to-analog con-

verter’s digital input is incremented and its output

monitored to determine whether or not it exhibits a

staircase format.

Staircase Waveform Type of waveform generated at

the output of a digital-to-analog converter as its digi-

tal input signal is incrementally changed.

Standard Cell An application-specific integrated cir-

cuit (ASIC) made of predesigned logic blocks from a

library of standard cell designs that are intercon-

nected during the system design stage and then fab-

ricated on a single IC.

Standard Logic The large assortment of basic digital

IC components available in various technologies as

MSI, SSI chips.

State Machines A sequential circuit that advances

through several defined states.

State Table A table whose entries represent the se-

quence of individual FF states (i.e., 0 or 1) for a se-

quential binary circuit.

State Transition Diagram A graphic representation

of the operation of a sequential binary circuit, show-

ing the sequence of individual FF states and condi-

tions needed for transitions from one state to the

next.

Static Accuracy Test Test in which a fixed binary

value is applied to the input of a digital-to-analog

converter and the analog output is accurately mea-

sured. The measured result should fall within the

expected range specified by the digital-to-analog

converter’s manufacturer.

Static RAM (SRAM) Semiconductor RAM that stores

information in flip-flop cells that do not have to be

periodically refreshed.

STD_LOGIC In VHDL, a data type defined as an IEEE

standard. It is similar to the BIT type, but it offers

more possible values than just 1 or 0.

STD_LOGIC_VECTOR In VHDL, a data type defined

as an IEEE standard. It is similar to the BIT_VECTOR

type, but it offers more possible values than just 1 or

0 for each element.

Step Size See Resolution.

Straight Binary Coding Representation of a decimal

number by its equivalent binary number.

Strobe Another name for an enable input usually

used to latch a value into a register.

Strobing Technique often used to eliminate decoding

spikes.

Structural Level of Abstraction A technique for de-

scribing a digital circuit that focuses on connecting

ports of modules with signals.

908 GLOSSARY

TOCCMG01.0131725793.QXD 12/20/05 4:18 PM Page 908

SUBDESIGN Keyword in AHDL used to begin a cir-

cuit description.

Substrate Piece of semiconductor material that is

part of the building block of any digital IC.

Subtrahend Number that is to be subtracted from a

minuend.

Successive-Approximation ADC Type of analog-to-

digital converter in which an internal parallel regis-

ter and complex control logic are used to perform the

conversion. The conversion time for this type of

analog-to-digital converter is always the same regard-

less of the value of the input analog signal.

Sum-of-Products Form Logic expression consisting of

two or more AND terms (products) that are ORed

together.

Supercomputers Computers with the greatest speed

and computational power.

Surface Mount A method of manufacturing circuit

boards whereby ICs are soldered to conductive pads

on the surface of the board.

Synchronous Control Inputs See Control Inputs.

Synchronous Counter Counter in which all of the flip-

flops are clocked simultaneously.

Synchronous Systems Systems in which the circuit

outputs can change states only on the transitions of a

clock.

Synchronous Transfer Data transfer performed by

using the synchronous and clock inputs of a flip-

flop.

Syntax The rules defining keywords and their

arrangement, usage, punctuation, and format for a

given language.

Test Vector Sets of inputs used to test a PLD design

before the PLD is programmed.

Timing Diagram Depiction of logic levels as related to

time.

Toggle Mode Mode in which a flip-flop changes states

for each clock pulse.

Toggling Process of changing from one binary state to

the other.

Top-Down A design method that starts at the overall

system level and then defines a hierarchy of mod-

ules.

Totem-Pole Output Term used to describe the way in

which two bipolar transistors are arranged at the out-

put of most TTL circuits.

Transducer Device that converts a physical variable

to an electrical variable (for example, a photocell or

a thermocouple).

Transmission Gate See Bilateral Switch.

Transparent Of a D latch, operating so that the Q
output follows the D input.

Trigger Input signal to a flip-flop or one-shot that

causes the output to change states depending on the

conditions of the control signals.

Tristate Type of output structure that allows three types

of output states: HIGH, LOW, and high-impedance

(Hi-Z).

Truth Table Logic table that depicts a circuit’s output

response to the various combinations of the logic lev-

els at its inputs.

TTL (Transistor/Transistor Logic) Integrated-circuit

technology that uses the bipolar transistor as the

principal circuit element.

2’s-Complement Form Result obtained when a 1 is

added to the least significant bit position of a binary

number in the 1’s-complement form.

Type The attribute of a variable in a computer-based

language that defines its size and how it can be used.

ULSI Ultra-large-scale integration (100,000 or more

gates).

Unasserted Term used to describe the state of a logic

signal; synonymous with “inactive.”

Undersampling Acquiring samples of a signal at a

rate less than twice the highest frequency contained

in the signal.

Unipolar ICs Integrated digital circuits in which

unipolar field-effect transistors (MOSFETs) are the

main circuit elements.

Up Counter Counter that counts upward from 0 to a

maximum count.

Up/Down Counter Counter that can count up or down

depending on how its inputs are activated.

Up/Down Digital-Ramp ADC Type of analog-to-digital

converter that uses an up/down counter to step up or

step down the voltage from a digital-to-analog con-

verter until it intersects the analog input.

VARIABLE A keyword in AHDL used to begin a sec-

tion of the code that defines the names and types of

data objects and library primitives. A keyword used

in VHDL to declare a local data object within a

PROCESS.

Very High Speed Integrated Circuit (VHSIC) Hardware
Description Language (VHDL) A hardware descrip-

tion language developed by the Department of

Defense to document, simulate, and synthesize com-

plex digital systems.

VLSI Very large-scale integration (10,000 to 99,999

gates).

Volatile Memory Memory requiring electrical power

to keep information stored.

Voltage-Controlled Oscillator (VCO) Circuit that pro-

duces an output signal with a frequency proportional

to the voltage applied to its input.

Voltage-Level Translator Circuit that takes one set of

input voltage levels and translates it to a different

set of output levels.

Voltage-to-Frequency ADC Type of analog-to-digital

converter that converts the analog voltage to a pulse

frequency that is then counted to produce a digital

output.

Weighted Average An average calculation of a group

of samples that assigns a different weight (between

0.0 and 1.0) to each sample.

GLOSSARY 909

TOCCMG01.0131725793.QXD 12/20/05 4:18 PM Page 909

Wired-AND Term used to describe the logic function

created when open-collector outputs are tied to-

gether.

Word Group of bits that represent a certain unit of in-

formation.

Word Size Number of bits in the binary words that a

digital system operates on.

WRITE Term used to describe the condition when

the CPU is sending data to another element.

Write Operation Operation in which a new word is

placed into a specific memory location.

ZIF Zero-insertion-force IC socket.

910 GLOSSARY

TOCCMG01.0131725793.QXD 12/20/05 4:18 PM Page 910

911

A N S W E R S TO

S E L E C T E D P R O B L E M S

CHAPTER 1

1-1. (a) and (e) are digital; (b), (c) and (d) are analog

1-3. (a) 25 (b) 9.5625 (c) 1241.6875

1-5. 000, 001, 010, 011, 100, 101, 110, 111

1-7. 1023

1-9. Nine bits

1-11.

2-15. (a) 16 (c) 909 (e) FF (g) 3D7

2-16. (a) 10010010 (c) 0011011111111101 (e) 1111

(g) 1011000000

2-17. 280, 281, 282, 283, 284, 285, 286, 287, 288,

289, 28A, 28B, 28C, 28D, 28E, 28F, 290, 291, 292,

293, 294, 295, 296, 297, 298, 299, 29A, 29B, 29C, 29D,

29E, 29F, 2A0

2-19. (a) 01000111 (c) 000110000111 (e) 00010011

(g) 10001001011000100111

2-21. (a) 9752 (c) 695 (e) 492

2-22. (a) 64 (b) FFFFFFFF (c) 999,999

2-25. 78, A0, BD, A0, 33, AA, F9

2-26. (a) BEN SMITH

2-27. (a) 101110100 (parity bit on the left)

(c) 11000100010000100 (e) 0000101100101

2-28. (a) No single-bit error (b) Single-bit error

(c) Double error (d) No single-bit error

2-30. (a) 10110001001 (b) 11111111 (c) 209

(d) 59,943 (e) 9C1 (f) 010100010001 (g) 565

(h) 10DC (i) 1961 (j) 15,900 (k) 640 (l) 952B

(m) 100001100101 (n) 947 (o) 10001100101

(p) 101100110100 (q) 1001010 (r) 01011000 (BCD)

2-31. (a) 100101 (b) 00110111 (c) 25 (d) 0110011

0110111 (e) 45

2-32. (a) Hex (b) 2 (c) Digit (d) Gray (e) Parity;

single-bit errors (f) ASCII (g) Hex (h) byte

2-33. (a) 1000

2-34. (a) 0110

2-35. (a) 777A (c) 1000 (e) A00

2-36. (a) 7778 (c) OFFE (e) 9FE

2-37. (a) 1,048,576 (b) Five (c) 000FF

2-39. Eight

1-13. (a) and N � 4; therefore, four lines

are required for parallel transmission. (b) Only one

line is required for serial transmission.

CHAPTER 2

2-1. (a) 22 (c) 2313 (e) 255 (g) 983

2-2. (a) 100101 (c) 10111101 (e) 1001101

(g) 11001101 (i) 111111111

2-3. (a) 255

2-4. (a) 1859 (c) 14333 (e) 357 (g) 2047

2-5. (a) 3B (c) 397 (e) 303 (g) 10000

2-6. (a) 11101000011 (c) 11011111111101

(e) 101100101 (g) 011111111111

2-7. (a) 16 (c) 909 (e) FF (g) 3D7

2-9. 213310 � 85516 � 1000010101012

2-11. (a) 146 (c) 14,333 (e) 15 (g) 704

2-12. (a) 4B (c) 800 (e) 1C4D (g) 6413

2N
- 1 = 15

4.4 V

0.2 V
2 ms 4 ms 2 ms

TOCCMN01_0131725793.QXD 12/20/05 4:45 PM Page 911

912 ANSWERS TO SELECTED PROBLEMS

CHAPTER 3

3-1.

3-3. x will be a constant HIGH.

3-6. (a) x is HIGH only when A, B, and C are all HIGH.

3-7. Change the OR gate to an AND gate.

3-8. OUT is always LOW.

3-12. (a) . x is HIGH only when

ABC � 111

3-13. X is HIGH for all cases where E � 1 except for

EDCBA � 10101, 10110, and 10111.

3-14. (a)

3-16.

x = D # 1AB + C) + E

x = (A + B)BC

3-17.–3-18. 3-19.

x � 0 only when A � B � 0, C � 1.

3-23. (a) 1 (b) A (c) 0 (d) C (e) 0 (f) D
(g) D (h) 1 (i) G (j) y
3-24. (a)

3-26. (a) (c) (e) A � B
(g)

3-27.

3-32. (a) W � 1 when T � 1 and either P � 1 or R � 0.

3-33. (a) NOR (b) AND (c) NAND

3-35. (a)

X

A

B

C

A + B + C
A + B + C + D

A + B + CDA + B + C
MPN + M PN

x = (A + B) # 1B + C)

A

B

C

X

A
B

C

D

x

(a)

E

D

A

C

B

Z

(b)

A

B

C

3-17(a)

3-17(b)
C = 0

3-17(c)
C = 1

0

TOCCMN01_0131725793.QXD 12/20/05 4:45 PM Page 912

ANSWERS TO SELECTED PROBLEMS 913

3-38. X will go HIGH when E � 1, or D � 0,

or B � C � 0, or when B � 1 and A � 0.

3-39. (a) HIGH (b) LOW

3-41. when A � B � 0 or A � B � 1.

3-42. (a)

3-43. (a) False (b) True (c) False (d) True

(e) False (f) False (g) True (h) False (i) True

(j) True

3-45. AHDL and VHDL solutions are on the

enclosed CD.

3-47. Put INVERTERs on the A7, A5, A4, A2 inputs to

the 74HC30.

3-49. Requires six 2-input NAND gates.

CHAPTER 4

4-1. (a) (b) (c) (d)

(e)

(f)

(g)

(h)

4-3. MN � Q
4-4. One solution: Another:

Another:

4-7.

4-9.

C

A

B

X

x = A3(A2 + A1A0)

BC + B C + A Cx = AB + B C + BC.

x = BC + ABC.

x = ABC + ABD + ABD + B C D
D + AB C + A BC
BC + B(C + A) or BC + B C + AC
BC + B(C + A)

R S TC + AQR + QRCA + CB

A

B

C

D

E

1

1

&

&
≥1

X

LIGHT = 0

4-11. (a)

4-14. (a)

(c) One possible looping:

another one is:

4-15.

4-16. (a) Best solution:

4-17.

4-18.

4-21. A � 0, B � C � 1
4-23. One possibility is shown below.

4-24. Four XNORs feeding an AND gate

4-26. Four outputs where z3 is the MSB

4-28.

4-30.

4-33. (a) No (b) No

4-35. x � A � BCD
4-38.

No pairs, quads, or octets

4-40. (a) Indeterminate (b) 1.4–1.8 V (c) See below.

4-43. Possible faults: faulty VCC or ground on Z2; Z2-1 or

Z2-2 open internally or externally; Z2-3 internally open

CLOCK

LOAD

SHIFT

CLK OUT

SHFT OUT

z = x1x0y1y0 + x1x0y1y0 + x1x0y1y0 + x1x0y1y0

N-S = C D(A + B) + AB(C + D); E-W = N-S

x = AB(C { D)

z0 = y0x0

z1 = y0x1(y1 + x0) + y1x0(y0 + x1)

z2 = y1x1(y0 + x0)

z3 = y1y0x1x0

X = A ⊕ B

A

B

+VCC

z = BC + ABD
x = S1S2 + S1S3 + S3S4 + S2S3 + S2S4

x = BC + AD
x = A3A2 + A3A1A0

x = ABC + ABD + AC D + B C D
x = ABD + ABC + ABD + BC D;

x = BC + B C + AC; or x = BC + B C + AB

1

1

AB

AB

1

1

1

1

AB

AB

CD CD CD CD

1

1

1

x = A C + BC + ACD

TOCCMN01_0131725793.QXD 12/20/05 4:45 PM Page 913

914 ANSWERS TO SELECTED PROBLEMS

5-3.

5-6. Z1-4 stuck HIGH

5-9. Assume Q � 0 initially.

For PGT FF: Q will go HIGH on first PGT of CLK.

For NGT FF: Q will go HIGH on first NGT of CLK,

LOW on second NGT, and HIGH again on fourth NGT.

5-11.

5-12. (a) 5-kHz square wave

5-14.

5-16. 500-Hz square wave

5-21.

5-23. (a) 200 ns (b) 7474; 74C74

5-25. Connect A to J, to K.
5-27. (a) Connect X to J, to K. (b) Use arrangement

of Figure 5-41.

5-29. Connect X0 to D input of X2.

5-30. (a) 101;011;000

5-33. (a) 10 (b) 1953 Hz (c) 1024 (d) 12

5-36. Put INVERTERs on A8, A11, and A14.

5-41.

Q1
5 ms

Q2
20 ms

Q3
10 ms

X
A

CLK

PRE

CLR

Q

CLK

Input
data

Q

b f h j

x

y

z

Q

4-44. Yes: (c), (e), (f). No: (a), (b), (d), (g).

4-46. Z2-6 and Z2-11 shorted together

4-48. Most likely faults:

faulty ground or VCC on Z1;

Z1 plugged in backwards;

Z1 internally damaged

4-49. Possible faults:

Z2-13 shorted to VCC;

Z2-8 shorted to VCC;

broken connection to Z2-13;

Z2-3, Z2-6, Z2-9, or Z2-10 shorted to ground

4-50. (a) T, (b) T, (c) F, (d) F, (e) T

4-54. Boolean equation; truth table; schematic diagram

4-56. (a) AHDL: gadgets[7..0] :OUTPUT;

VHDL: gadgets :OUT BIT_VECTOR

(7 DOWNTO 0);

4-57. (a) AHDL: H”98” B”10011000” 152

VHDL: X”98” B”10011000” 152

4-58. AHDL: outbits[3] � inbits[1];

outbits[2] � inbits[3];

outbits[1] � inbits[0];

outbits[0] � inbits[2];

VHDL: outbits(3) �� inbits(1);

outbits(2) �� inbits(3);

outbits(1) �� inbits(0);

outbits(0) �� inbits(2);

4-60.

BEGIN
IF digital_value[] 10 THEN

z � VCC; --output a 1
ELSE z � GND; --output a 0
END IF;

END;
4-62.

PROCESS (digital_value)
BEGIN

IF (digital_value 10) THEN
z ‘1’;

ELSE
z ‘0’;

END IF;

END PROCESS
4-65. S=!P#Q&R

4-68. (a) 00 to EF

CHAPTER 5

5-1.

x

Q

y

6 =

6 =

6

6

TOCCMN01_0131725793.QXD 12/20/05 4:45 PM Page 914

ANSWERS TO SELECTED PROBLEMS 915

5-43. (a) A1 or A2 must be LOW when a PGT occurs at B.
5-45. One possibility is and C � 80 nF.

5-50. (a) No (b) Yes

5-51. (a) Yes

5-53. (a) No (b) No

5-55. (a) No (b) No (c) Yes

5-56. (a) NAND and NOR latch (b) J-K (c) D latch

(d) D flip-flop

5-59. See Prob5_59.tdf and prob5_59.vhd on the

enclosed CD.

5-61. See Prob5_61.tdf and prob5_61.vhd on the

enclosed CD.

5-66. (a) See Prob5_66a.tdf on the enclosed CD.

(b) See Prob5_66b.vhd on the enclosed CD.

CHAPTER 6

6-1. (a) 10101 (b) 10010 (c) 1111.0101

6-2. (a) 00100000 (including sign bit) (b) 11110010

(c) 00111111 (d) 10011000 (e) 01111111

(f) 10000001 (g) 01011001 (h) 11001001

6-3. (a) �13 (b) (c) �123 (d)

(e) �127

6-5. to 1510

6-6. (a) 01001001; 10110111 (b) 11110100; 00001100

6-7. 0 to 1023; to �511

6-9. (a) 00001111 (b) 11111101 (c) 11111011

(d) 10000000 (e) 00000001

6-11. (a) 100011 (b) 1111001

6-12. (a) 11 (b) 111

6-13. (a) 10010111 (BCD) (b) 10010101 (BCD)

(c) 010100100111 (BCD)

6-14. (a) 6E24 (b) 100D (c) 18AB

6-15. (a) 0EFE (b) 229 (c) 02A6

6-17. (a) 119 (b) �119

6-19. SUM � ; CARRY � AB
6-21. [A] � 1111, or [A] � 000 (if C0 � 1)

6-25. C3 � A2B2 � (A2 � B2) {A1B1 � (A1 � B1)[A0B0 �
A0C0 � B0C0]}

6-27. (a) SUM � 0111

6-32.

Adder

B0

X

A { B

-512

-1610

-103-3

R = 1 kÆ
[F] CN�4 OVR

(a) 1001 0 1

6-35. (a) 00001100

6-37. (a) 0001 (b) 1010

6-39. (a) 1111 (b) HIGH (c) No change (d) HIGH

6-41. (a) 00000100 (b) 10111111

6-43. (a) 0 (b) 1 (c) 0010110

6-44. AHDL
z[6..0] � a[7..1];

z[7] � a[0];

VHDL
z(6..0) � � a(7..1);

z(7) � � a(0);

6-47. AHDL: ovr �� c[4] $ c[3)];

VHDL: ovr �� c(4) XOR c(3);

6-48. See Prob6_48.tdf and Prob6_48.vhd on the

enclosed CD.

6-53. Use D flip-flops. Connect to

the D input of the 0 FF; C4 to the D input of the carry

FF; and S3 to the D input of the sign FF.

6-54. 0000000001001001; 1111111110101110

CHAPTER 7

Note: Solutions to some problems in Chapter 7 are

provided in a document file (Chapter 7 solutions.doc)

on the enclosed CD. Please see this file as indicated

below.

7-1. (a) 250 kHz; 50% (b) Same as (a) (c) 1 MHz

(d) 32

7-3. 100002

7-5. 1000 and 0000 states never occur

7-7. (a) See schematic on CD. (b) 33 MHz

7-9. Frequency at D � 100 Hz (see diagram on CD)

7-11. Replace four-input NAND with a three-input

NAND driving all FF CLRs whose inputs are Q5, Q4,

and Q1

7-13. See diagram on CD.

7-15. Counter switches states between 000 and 111 on

each clock pulse

7-17. See timing on CD.

7-19. See timing on CD.

7-21. (a) 0000, 0001, 0010, 0011, 0100, 0101, 0110,

0111, 1000, 1001, 1010, 1011, & repeat (b) MOD-12

(c) Frequency at QD (MSB) is 1�12 of CLDK frequency

(d) 33.3%

7-23. (a) see timing on CD (b) MOD-10

(c) 10 down to 1 (d) Can produce MOD-10, but not

same sequence

7-25. (a), (b) See diagrams on CD.

7-27. See diagrams on CD.

7-29.

(S3 + S2 + S1 + S0)

Output: QA QB QC QD RCO
Frequency: 3 MHz 1.5 MHz 750 kHz 375 kHz 375 kHz
Duty cycle: 50% 50% 50% 50% 6.25%

6-33.

TOCCMN01_0131725793.QXD 12/20/05 4:45 PM Page 915

916 ANSWERS TO SELECTED PROBLEMS

7-31. Frequency at fout1 � 500 kHz, at fout2 � 100 kHz

7-33. 12M/8 � 1.5M 1.5M 10 � 150k 1.5M 15 �
100k See diagram on CD

7-35. See gate symbols on CD.

7-37. See simulation on CD.

7-39. See simulation on CD.

7-41. See diagram on CD.

7-43. (a)

(b)

7-45.

7-47.

7-49. See HDL files on CD. mod13_ahdl mod13_vhdl
7-51. See HDL files on CD. gray_ahdl gray_vhdl
7-53. See HDL files on CD. divide_by50_ahdl
divide_by50_vhdl
7-55. See HDL files on CD. mod256_ahdl
mod256_vhdl
7-57. See HDL files on CD. mod16_ahdl mod16_vhdl
7-59. See diagram on CD.

7-61. See HDL files on CD. mod10_ahdl mod5_ahdl
mod50_vhdl mod10_vhdl mod5_vhdl
7-63. See HDL files on CD.

wash_mach_delux wash_mach_delux
7-65. See table on CD.

7-67. Eight clock pulses are needed to serially load a

74166, since there are eight FFs in the chip.

7-69. See timing on CD.

7-71. See answer on CD.

7-73. See diagram on CD.

7-75. See diagram on CD.

7-77. Output of 3-in AND or J, K inputs to FF D

shorted to ground, FF D output shorted to ground,

CLK input on FF D open, B input to NAND is open

7-79. See HDL files on CD. siso8_ahdl siso8_vhdl
7-81. See HDL files on CD. piso8_ahdl piso8_vhdl
7-83. See simulation on CD.

7-85. See HDL files on CD. johnson_ahdl
johnson_vhdl
7-87. See simulation on CD.

7-89. (a) Parallel (b) Binary (c) MOD-8 down

(d) MOD-10, BCD, decade (e) Asynchronous, ripple

(f) Ring (g) Johnson (h) All (i) Presettable

(j) Up/down (k) Asynchronous, ripple (l) MOD-10,

BCD, decade (m) Synchronous, parallel

CHAPTER 8

8-1. (a) A; B (b) A (c) A
8-2. (a) 39.4 mW, 18.5 ns (b) 65.6 mW, 7.0 ns

8-3. (a) 0.9 V

8-4. (a) IIH (b) ICCL (c) tPHL (d) VNH

(e) Surface-mount (f) Current sinking (g) Fan-out

(h) Totem-pole (i) Sinking transistor (j) 4.75 to

5.25 V (k) 2.5 V; 2.0 V (l) 0.8 V; 0.5 V

(m) Sourcing

8-5. (a) 0.7 V; 0.3 V (b) 0.5 V; 0.4 V (c) 0.5 V; 0.3 V

8-6. (b) AND, NAND (c) Unconnected inputs

C B + C B A

DA = A, DB = B A + B A, DC = C A +

KC = B A, JD = C B A, KD = A
JA = KA = 1, JB = C A + D A, KB = A, JC = D A,

JA = B C, KA = 1, JB = KB = 1, JC = KC = B
KB = 1, JC = B A, KC = B + A

JA = B C, KA = 1, JB = C A + C A,

>>

8-7. (a) 40 (b) 33

8-8. (a) 20

8-9. (a) 30/15 (b) 24 mA

8-11. Fan-out is not exceeded in either case.

8-13. 60 ns; 38 ns

8-14. (a) 2

8-15. (b) 4.7- resistor is too large.

8-19. a, c, e, f, g, h
8-21. 12.6 mW

8-27. AB � CD � FG
8-29. (a) 5 V (b) RS � 110 for LED current of 20 mA

8-30. (a) 12 V (b) 40 mA

8-33. Ring counter

8-36. 1.22 V; 0 V

8-37.

8-38. and

8-39. (a) 74HCT (b) Converts logic voltages

(c) CMOS cannot sink TTL current. (d) False

8-41. (a) None

8-44. Fan-out of 74HC00 is exceeded; disconnect pin 3

of 7402 and tie it to ground.

8-46.

8-49. (b) is a possible fault.

8-50. 0 V to and back up to

CHAPTER 9

9-1. (a) All HIGH (b)

9-2. Six inputs, 64 outputs

9-3. (a) E3E2E1 � 100; [A] � 110 (b) E3E2E1 � 100;

[A] � 011

9-5.

9-7. Enabled when D � 0
9-10. Resistors are 250 .

9-12.

D

1-of-10
decoder

C

B

A

2
3
4
5
6
8
9

g

Æ

t30t28

O3

O0 = LOW

-6 V-11.25 V

R2 = 1.5 kÆ, R1 = 18 kÆ

-2-1

C

e in

Vx

Æ

kÆ

kÆ

mA/0.4 mA

TOCCMN01_0131725793.QXD 12/20/05 4:45 PM Page 916

ANSWERS TO SELECTED PROBLEMS 917

9-13. (a), (b) Encoder (c), (d), (e) Decoder

9-17. The fourth key actuation would be entered into

the MSD register.

9-18. Choice (b)

9-20. (a) Yes (b) No (c) No

9-21. A2 bus line is open between Z2 and Z3.

9-23. g segment or decoder output transistor would

burn out.

9-25. Decoder outputs: a and b are shorted together.

9-26. Connection ‘f’ from decoder/driver to XOR gate

is open.

9-29. A 4-to-1 MUX

9-31.

I7 • • • I4

S
74157

S3

E

I15 • • • I12 I3 • • • I0

S
74157E

I11 • • • I8

S2

74151

S2

Z

S1S1

S0S0

E

A B C

0 0 0
0 0 1
0 1 0
0 1 1

1 0 0
1 0 1
1 1 0
1 1 1 1 Q l7

1 Q l6
1 Q l5
0 Q l4

1 Q l3
0 Q l2
0 Q l1
0 Q l0

9-32. (b) The total number of connections in the

circuit using MUXes is 63, not including VCC and GND,

and not including the connections to counter clock

inputs. The total number for the circuit using separate

decoder/drivers is 66.

9-33.

1 cycle

9-37. Z � HIGH for DCBA � 0010, 0100, 1001, 1010.

9-39. (a) Encoder, MUX (b) MUX, DEMUX

(c) MUX (d) Encoder (e) Decoder, DEMUX

(f) DEMUX (g) MUX

9-41. Each DEMUX output goes LOW, one at a time in

sequence.

9-43. Five lines

9-46. (a) Sequencing stops after actuator 3 is

activated.

9-47. Probable fault is short to ground at MSB of tens

MUX.

9-48. Q0 and Q1 are probably reversed.

9-49. Inputs 6 and 7 of MUX are probably shorted

together.

9-50. S1 stuck LOW

9-53. Use three 74HC85s

9-55. A0 and B0 are probably reversed.

9-57.

apply a clock pulse.

9-61. (a) At t3, each register holds 1001.

9-63. (a) 57FA (b) 5000 to 57FF (c) 9000 to 97FF

(d) no

9-65. See Prob9_65.tdf and Prob9_65.vhd on the

enclosed CD.

CHAPTER 10

10-1. (d) 20 Hz (e) Only one LED will be lit at any

time.

10-2. 24

10-3. Four states � four steps * 15°/step � 60° of

rotation

10-5. Three state transitions * 15°/step � 45° of rotation

10-10. 1111

10-12. (a) 1011

10-13. No

10-15. The data go away (hi-Z) before the DAV goes

LOW. The hi-Z state is latched.

10-16.

OEC = 0, IEC = 1; OEB = OEA = 1; IEB = IEA = 0;

9-35.

Terminal count (tc)

1 clock cycle (1sec)

(a) 60 clock cycles

TOCCMN01_0131725793.QXD 12/20/05 4:45 PM Page 917

918 ANSWERS TO SELECTED PROBLEMS

10-17. 60 cycles/sec * 60 sec/min * 60 min/hr * 24

hr/day � 5,184,000 cycles/day. This takes a long time to

generate a simulation file.

10-18. When the set input is active, bypass the

prescaler and feed the 60-Hz clock directly into the

units of seconds counter.

10-22. See Prob10_22.tdf and Prob10_22.vhd on the

enclosed CD.

CHAPTER 11

11-1. (f), (g) False

11-3. LSB � 20 mV

11-5. Approximately 5 mV

11-7. 14.3 percent, 0.286 V

11-9. 250.06 rpm

11-11. The eight MSBs:

11-13.

11-15. Uses fewer different R values

11-17. (a) Seven

11-19. 242.5 mV is not within specifications.

11-21. Bit 1 of DAC is open or stuck HIGH.

11-22. Bits 0 and 1 are reversed.

11-24. (a) 10010111

11-27. (a) 1.2 mV (b) 2.7 mV

11-28. (a) 0111110110

11-31. Reconstructed waveform frequency is 3.33 kHz.

11-32. (a) 5 kHz (b) 9.9 kHz

11-33. Digital ramp: a, d, e, f, h. SAC: b, c, d, e, g, h
11-36. 80

11-38. 2.276 V

11-40. (a) 00000000 (b) 500 mV (c) 510 mV

(d) 255 mV (e) 01101110 (f)

11-45. Switch is stuck closed; switch is stuck open, or

capacitor is shorted.

11-47. (a) Address is EAxx.
11-52. False: a, e, g; True: b, c, d, f, h

CHAPTER 12

12-1. 16,384; 32; 524,288

12-3.

12-7. (a) Hi-Z (b) 11101101

12-9. (a) 16,384 (b) Four (c) Two 1-of-128 decoders

12-11. 120 ns

12-15. The following transistors will have open source

connections: Q0, Q2, Q5, Q6, Q7, Q9, Q15.

12-17. (a) Erases all memory locations to hold FF16

(b) Writes 3C16 into address 230016

12-19. Hex data: 5E, BA, 05, 2F, 99, FB, 00, ED, 3C, FF,

B8, C7, 27, EA, 52, 5B

12-20. (a) 25.6 kHz (b) Adjust Vref.

64K * 4

0.2°F; 2 mV

ms

800 Æ; no

PORT[7..0] Q DAC[9..2]

12-22. (a) [B] � 40 (hex); [C] � 80 (hex) (b) [B] � 55

(hex); [C] � AA (hex) (c) 15,360 Hz (d) 28.6 MHz

(e) 27.9 kHz

12-24. (a) 100 ns (b) 30 ns (c) 10 million (d) 20 ns

(e) 30 ns (f) 40 ns (g) 10 million

12-30. Every 7.8

12-31. (a) 4096 columns, 1024 rows (b) 2048 (c) It

would double.

12-34. Add four more PROMs (PROM-4 through

PROM-7) to the circuit. Connect their data outputs

and address inputs to data and address bus,

respectively. Connect AB13 to C input of decoder, and

connect decoder outputs 4 through 7 to CS inputs of

PROMs 4 through 7, respectively.

12-38. F000–F3FF; F400–F7FF; F800–FBFF;

FC00–FFFF

12-40. B input of decoder is open or stuck HIGH.

12-42. Only RAM modules 1 and 3 are getting tested.

12-43. The RAM chip with data outputs 4 through 7 in

module 2 is not functioning properly.

12-44. RAM module 3, output 7 is open or stuck

HIGH.

12-46. Checksum � 11101010.

CHAPTER 13

13-2. The necessary speed of operation for the circuit,

cost of manufacturing, system power consumption,

system size, amount of time available to design the

product, etc.

13-4. Speed of operation

13-6. Advantages: highest speed and smallest die

area; Disadvantages: design/development time and

expense

13-8. SRAM-based PLDs must be configured

(programmed) upon power-up.

13-10. In a PLD programmer or in-system (via JTAG

interface)

13-12. pin 1—GCLRn (Global Clear)

pin 2—OE2/GCLK2 (Output Enable 2/Global Clock 2)

pin 83—GCLK1 (Global Clock 1)

pin 84—OE1 (Output Enable 1)

13-14. Logic cell in MAX7000S is AND/OR circuit

versus look-up table in FLEX10K; EEPROM

(MAX7000S) and SRAM (FLEX10K); MAX7000S is

nonvolatile; FLEX10K has greater logic resources.

ms

TOCCMN01_0131725793.QXD 12/20/05 4:45 PM Page 918

919

I N D E X O F I C s

7400 Quad 2-input NAND gates, 569

7402 Quad 2-input NOR gates, 569

7404 Hex inverters, 156

7406 Hex inverters buffer/driver (with pen-

collector high-voltage output),

536–537, 552, 565, 670

7407 Hex buffer/driver (with open-collector

high-voltage output), 537

7413 Dual 4-input NAND gates with

Schmitt-trigger inputs, 256

7414 Hex Schmitt-trigger inverters, 256, 261

7442 BCD-to-decimal decoder, 581–582, 659

7445 BCD-to-decimal decoder/driver, 582–583

7446 BCD-to-seven-segment decoder/

driver, 586

7447 BCD-to-seven-segment decoder/driver,

586, 605, 642

7474 Dual edge-triggered D flip-flop, 240–241

7483 4-bit full adder, 326, 653

7486 Quad 2-input EX-OR gates, 569

7485 4-bit magnitude comparator, 621, 652

74121 Single nonretriggerable one-shot,

259–260, 569

74122 Single retriggerable one-shot, 259

74123 Dual retriggerable one-shot, 259

74138 1-of-8 decoder/demultiplexer, 638–639

74147 Decimal-to-BCD priority encoder,

592–593, 645

74148 Octal-to-binary priority encoder, 592

74160 BCD counter, 694–695

74173 4-bit D-type registers with 3-state

outputs, 635

74185 6-bit binary-to-BCD code converter,

813

74191 4-bit synchronous up/down counter, 451

74194 4-bit bidirectional universal shift

register, 444

74221 Dual nonretriggerable one-shot, 259

74373 Octal latch with 3-state outputs, 444

74374 Octal D flip-flop with 3-state outputs,

444

74382 ALU, 337–338, 343

74AC02 Quad 2-input NOR gates, 157

74AC11004 Hex inverters, 524

74ACT02 Quad 2-input NOR gates, 157

74ACT11293 4-bit binary counter, 524

74AHC74 Dual edge-triggered D flip-flop, 537

74AHC126 Quad noninverting tristate buffers,

539–540

74ALS00 Quad 2-input NAND gates, 450, 504,

510–511, 513

74ALS04 Hex inverters, 156

74ALS14 Hex Schmitt-trigger Inverters, 447

74ALS138 1-of-8 decoder/demultiplexer, 579–581,

610–611, 671, 840, 842, 848, 850

74ALS151 8-input multiplexer, 601–602

74ALS157 Quadruple 2-line to 1-line data

selectors/multiplexers, 603–605

74ALS160 Synchronous decade counter, 369,

380–384, 396

74ALS161 Synchronous MOD-16 counter, 369,

380–384, 396, 450, 472, 474

74ALS162 Synchronous decade counter, 369,

380–384, 396

74ALS163 Synchronous MOD-16 counter, 369,

380–384, 387–388, 396, 472, 583

74ALS164 8-bit serial-in/parallel-out shift register,

443–445

74ALS165 8-bit parallel-in/serial out shift register,

441–443

74ALS166 8-bit serial-in/serial out shift register,

439–441, 482

74ALS173 4-bit D-type registers with 3-state

outputs, 629–631

TOCCMI01_0131725793.QXD 12/20/05 7:39 PM Page 919

920 INDEX OF ICS

74ALS174 6-bit parallel in/parallel out register

437–439, 479

74ALS190 4-bit synchronous up/down counter, 380,

384–389, 396

74ALS191 4-bit synchronous up/down counter,

380, 384–389, 396

74ALS192 4-bit synchronous up/down counter,

380, 396

74ALS193 4-bit synchronous up/down counter,

380, 396

74ALS194 4-bit bidirectional universal shift

register, 444

74ALS273 8-bit register, 856

74ALS299 8-bit register w/common I/O lines, 637

74ALS373 Octal latch with 3-state outputs, 444

74ALS374 Octal D flip-flop with 3-state outputs, 444

74AS04 Hex inverters, 156, 513

74AS20 Dual 4-input positive-NAND gates,

511–512

74AS74 Dual edge-triggered D flip-flop, 513

74AUC08 Quad 2-input AND gate, 554

74AVC08 Quad 2-input AND gate, 553

74AVC1T45 Dual-supply-level translator, 553

74C02 Quad 2-input NOR gates, 157

74C74 Dual edge-triggered D flip-flop, 240

74C86 Quad 2-input EX-OR gates, 145

74C266 Quad EX-NOR, 146

74F04 Hex inverters, 508

74HC00 Quad 2-input NAND gates, 132, 159,

552, 569–570

74HC02 Quad 2-input NOR gates, 157, 167

74HC04 Hex inverters, 159, 524, 548

74HC05 Hex inverters with open-drain, 535,

537, 570

74HC08 Quad 2-input AND gate, 167, 553–554

74HC13 Dual 4-input NAND gates with

Schmitt-trigger inputs, 256

74HC14 Hex Schmitt-trigger Inverters, 256, 261

74HC42 BCD-to-decimal decoder, 581

74HC83 4-bit full adder, 626

74HC85 4-bit magnitude comparator, 621–624

74HC86 Quad 2-input EX-OR gates, 145, 588

74HC112 Dual edge-triggered J-K flip-flop, 237,

240–241

74HC123 Dual retriggerable one-shot, 259

74HC125 Quad noninverting tristate buffers,

552, 670

74HC126 Quad noninverting tristate buffers, 628

74HC138 1-of-8 decoder/demultiplexer, 608,

612, 666

74HC139 Dual 1-of-4 decoder w/active LOW

enable, 670

74HC147 Decimal-to-BCD priority encoder, 592

74HC148 Octal-to-binary priority encoder, 592

74HC151 8-input multiplexer, 601–603, 608, 612,

663–664

74HC157 Quadruple 2-line to 1-line data

selectors/multiplexers, 603–609

74HC160 Synchronous decade counter, 369,

380–384

74HC161 Synchronous MOD-16 counter, 369,

380–384

74HC162 Synchronous decade counter, 369,

380–384

74HC163 Synchronous MOD-16 counter, 369,

380–384

74HC164 8-bit serial-in/parallel-out shift register,

443–445

74HC165 8-bit parallel-in/serial out shift register,

441–443

74HC166 8-bit serial-in/serial out shift register,

439–441

74HC173 4-bit D-type registers with 3-state

outputs, 629–632

74HC174 6-bit parallel in/parallel out register,

437–439, 670

74HC175 Quad D flip-flop, 237–238

74HC181 ALU (Arithmetic Logic Unit), 335

74HC190 4-bit synchronous up/down counter, 377,

380, 387–389, 472

74HC191 4-bit synchronous up/down counter, 377,

380, 387–389, 472

74HC192 4-bit synchronous up/down counter, 380

74HC193 4-bit synchronous up/down counter, 380

74HC194 4-bit bidirectional universal shift

register, 444

74HC221 Dual nonretriggerable one-shot, 259

74HC266 Quad EX-NOR, 146

74HC283 4-bit full adder, 326–327
74HC373 Octal latch with 3-state outputs, 444

74HC374 Octal D flip-flop with 3-state

outputs, 444

74HC382 ALU (Arithmetic Logic Unit), 332–334

74HC541 Octal bus driver, 635–637

74HC881 ALU (Arithmetic Logic Unit), 335

74HC4016 Quad bilateral switch, 547–548, 567, 572

74HC4017 Johnson-counter, 449

74HC4022 Johnson-counter, 449

74HC4316 Quad bilateral switch, 548

74HC4511 BCD-to-7-segment decoder/driver,

588–589

74HC4543 LCD numerical display decoder/

driver, 589

74HCT02 Quad 2-input NOR gates, 157

74HCT04 Hex Inverters, 524

74HCT74 Dual edge-triggered D flip-flop, 537

74HCT293 4-bit binary counter, 524

74HCT373 Octal latch with 3-state outputs, 444

74HCT374 Octal D flip-flop with 3-state

outputs, 444

74LS00 Quad 2-input NAND gates, 85–86, 164,

168, 202, 265, 291

74LS01 Quad 2-input NAND gates open-

collector, 537, 565

74LS04 Hex inverters, 156, 202, 524

74LS05 Hex inverters with open-drain, 535

74LS08 Quad 2-input AND gate, 85–86

74LS13 Dual 4-input NAND gates with

Schmitt-trigger inputs, 256

74LS14 Hex Schmitt-trigger Inverters, 256, 261,

563, 598

74LS20 Dual 4-input positive-NAND gates, 562

74LS32 Quad 2-input OR gate, 85

74LS37 Quad 2-input NAND gates (buffer), 561

74LS42 BCD-to-decimal decoder, 581

74LS74 Dual edge-triggered D flip-flop, 265

74LS83A 4-bit full adder, 326

74LS85 4-bit magnitude comparator, 621

74LS86 Quad 2-input EX-OR gates, 145, 168, 562

74LS112 Dual edge-triggered J-K flip-flop,

236–237, 240–241, 536, 561, 565, 568

74LS114 Dual edge-triggered J-K flip-flop, 291

TOCCMI01_0131725793.QXD 12/20/05 7:39 PM Page 920

INDEX OF ICS 921

74LS122 Single retriggerable one-shot, 259

74LS123 Dual retriggerable one-shot, 259

74LS125 Quad noninverting tristate buffers, 539,

541, 566

74LS126 Quad noninverting tristate buffers,

539, 541

74LS138 1-of-8 decoder/demultiplexer, 658, 779

74LS147 Decimal-to-BCD priority encoder,

592–594

74LS148 Octal-to-binary priority encoder,

592, 596

74LS181 ALU (Arithmetic Logic Unit), 335

74LS193 4-bit synchronous up/down counter, 562

74LS221 Dual nonretriggerable one-shot, 259

74LS244 Octal buffers and line drivers w/tristate

outputs, 887

74LS266 Quad EX-NOR, 146

74LS283 4-bit full adder, 326, 329, 331, 336

74LS374 Octal D-type FF register, 540

74LS382 ALU (Arithmetic Logic Unit), 332–334

74LS881 ALU (Arithmetic Logic Unit), 335

74LVC07 Hex buffer/driver (with open-collector),

553–554

74S00 Quad 2-input NAND gates, 506–507

74S04 Hex Inverters 156

74S112 Dual edge-triggered J-K flip-flop, 569

OTHER ICs
555 Timer, 261–262

2125A 1K � 1 SRAM, 837–838

2147H 4K � 1 NMOS RAM, 817, 821

27C64 8K � 8 MOS ROM, 798, 804–805

2732 4K � 8 EPROM, 857

2764 8K � 8 MOS ROM, 822

21256 256K � 1 DRAM, 862

27256 32K � 8 ROM, 822

27C256 32K � 8 ROM, 822

27C512 64K � 8 EPROM, 805

28F256A 32K � 8 CMOS flash memory,

809–811, 858

2816 2K � 8 EEPROM, 805

2864 8K � 8 EEPROM, 805–806, 810, 822

4001B Quad 2-input NOR gates, 157, 552, 569

4016 Quad bilateral switch, 547–548

4049B Hex inverters, 568

4316 Quad bilateral switch, 548

6264 8K � 8 SRAM, 822

AD1154 Integrated sample-and-hold circuit, 762

AD7524 8-bit DAC, 736

AD9020 10-bit flash ADC, 757

ADC0804 Successive-approximation ADC,

751–754

ADC0808 Successive-approximation ADC, 763

EMP7128S ALTERA CPLD, 885–889

EMP7128SLC84 ALTERA PLD, 155, 887–888

FLEX10K ALTERA CPLD family, 890–894

GAL16V8A Generic Array Logic, 881–883

GAL22V10 Generic Array Logic, 885

LM34 Temperature measuring device, 555

LM339 Quad analog voltage comparator, 555

MAX7000S ALTERA CPLD family, 270, 885–889

MCM101514 256K � 4 CMOS SRAM, 860

MCM6206C 32K � 8 CMOS RAM, 817, 821

MCM6208C 64K � 4 CMOS RAM, 818, 821

MCM6209C 64K � 4 SRAM, 844

MCM6249 1M � 4 CMOS SRAM, 860

MCM6264C 8K � 8 CMOS SRAM, 821

MCM6708A 64K � 4 BiCMOS SRAM, 821

ML2035 Programmable sine-wave

generator, 814

TMS27PC256 32K � 8 CMOS PROM, 803

TMS44100 4M � 1 DRAM, 825–826, 831–833, 843

TOCCMI01_0131725793.QXD 12/20/05 7:39 PM Page 921

922

I N D E X

A
Access time

defined, 788

ROM, 799

Accumulator register, 318

Acquisition time, sample-and-hold circuits, 762

Active. (See also Asserted levels)

HIGH decoding, 390–391

logic levels, 88–89

LOW decoding, 391

Actuator, 721

Addend, 306, 318

Adders

full, 319

parallel, 318–320

Addition in

BCD, 312–314

binary, 298–299

hexadecimal, 314–315

OR, 58–62

2’s-complement system, 306–307, 328

addition

equal and opposite numbers, 307

positive number and larger negative number, 307

positive number and smaller negative number, 306

two negative numbers, 307

two positive numbers, 306

Address, 788

bus, 794, 836

code, 254

decoders, ROM, 797–798

incomplete decoding, 841–843

inputs, 599, 790–791

multiplexing (in DRAM), 825–829

pointer registers, 845

setup time, 820

unidirectional, 794

Advanced

CMOS, 74AC/ACT, 524

high speed CMOS, 74AHC, 525

low power Schottky TTL, 74ALS Series (ALS-TTL), 507

low voltage BiCMOS (74ALVT/ALB), 531–532

low voltage CMOS (74ALVC), 531

Schottky TTL, 74AS Series (AS-TTL), 507

ultra-low-power (74AUP), 531

ultra-low-voltage CMOS (74AUC), 531

very-low-voltage CMOS (AVC), 531

Advantages of digital techniques, 6

AHDL, 98–99, 409–410

adder, 342

adder/subtractor, 344–345

BCD-to-binary code converter, 654–655

BEGIN, 103

behavioral description of a counter in, 410

bit array declarations, 178–179

Boolean description using, 103

buried nodes, 105–106

cascading BCD counters, 421–423

CASE, 190, 417, 458–459, 639, 649

code converter, 654–655

comments, 105–106

comparator, 652

concurrent assignment statement, 103

CONSTANT, 344

converter, 654–655

counter, 277–278, 409–410, 459–461

decoder(s), 639–641

driver, 642–643

full-step sequence, 683

decoding the MOD-5 counter, 417–418

D latch, 271

DEFAULTS, 639, 650

demultiplexers, 649–650

design file, 182

TOCCMI02_0131725793.QXD 12/21/05 10:27 PM Page 922

digital clock project (HDL), 693–710 (see also HDL)

ELSE, 413

ELSIF, 189, 413

Encoder, 646–647

END, 103

essential elements in, 103

flip-flops, 272–273

four-bit adder, 342

frequency counter project, 710–714 (see also HDL)

full-featured counter, 412–414

function prototype, 338

IF/THEN/ELSE, 186, 646–647, 702

INCLUDE, 707

INPUT, 103

intermediate variables in, 107

JK flip-flop, 273

keypad encoder project, 687–693 (see also HDL)

simulation, 693

solution, 689–691

literals, 181

MACHINE, 426–427

magnitude comparator, 652

multiplexers, 649–650

MOD-5 counter, 406–407, 418

MOD-6 counter, 698–699, 707

MOD-8 counter, 682

MOD-10 counter, 421–422, 700, 707

graphic block symbols, 705

MOD-12 counter, 702–703

MOD-60 counter, 707

MOD-100 BCD counter, 421–423

module integration, 707–708

NAND latch, 270

NODE, AHDL, 106, 339

nonretriggerable one-shot, 462

one-shots, simple, 462

OUTPUT, 103

PISO register, 455–456

primitive port identifiers, 272

retriggerable, edge-triggered one-shot, 465

ring counter, 460

ripple-up counter (MOD-8), 277–278

SISO register, 453–454

state descriptions in, 406–407

state machines, simple 426–427

stepper driver, 684

simulation testing, 686

stepper motor driver project, 679–686 (see also HDL)

SUBDESIGN, 103, 105–106, 178, 273, 341, 406, 413,

417–418

TABLE, 640, 642–643, 646

traffic light controller, 430–432

truth tables, 181–182

VARIABLE, 105, 272, 339, 406, 689

Aliasing, 747–748

Alphanumeric codes, 39–41

ALTERA

cyclone family, 894–895

EPM7128S CPLD, 885–889

FLEX10K family, 890–894

function prototype, 338

graphic description file of an 8-bit ALU, 338

hardware description language, 98–99

logic array blocks (LABs), 885

logic elements (LEs), 890

macrofunction, 337

MAX+PLUS II, 99

MAX7000S, 885–889

primitive port identifiers, 272

programmable interconnect array (PIA), 885

using TTL library functions with, 337–338

Alternate logic-gate representation, 86–89

ALU integrated circuits, 317–318, 331–335, 767

expanding the ALU, 334

Operations

add, 332

AND, 333

clear, 332

EX-OR, 333

OR, 333

PRESET, 333

subtract, 332

other ALUs, 335

American Standard Code for Information Interchange

(ASCII), 39–41

Analyzing synchronous counters, 393–396

Analog

quantity, 719

representation, 4

systems, 5–6

Analog-to-digital (ADC)

accuracy, 742–744

conversion, 737, 739–740

conversion time, 744, 750–751

converter (ADC), 7, 720

data acquisition, 745–748

digital amplitude control, 737

digital-ramp, 740–745

dual-slope, 757–758

flash, 755–757

IC, 8-bit successive approximation (ADC0804), 751–755

an application, 754

Chip Select (), 752

Clk In, 753

Clk Out, 753

differential inputs, 751

Interrupt (), 753

READ (), 753

Vref/2, 753

WRITE (), 753

multiplexing, 762–764

other conversion methods, 757–761

quantization error, 743

resolution, 742–744

sample-and-hold circuit, 761–762

sigma/delta modulation, 758–761

successive approximation, 749–755 (see also Digital to

analog converter)

tracking, 757

up/down digital-ramp, 757

voltage-to-frequency, 758

Analog voltage comparators, 554–556

AND gate, 62–65 (see also Combinational logic circuits)

alternate logic-gate representation, 86–89

Boolean description, 62

Boolean theorems, 76–80

counter decoding, 389–393

defined, 63

implementing from Boolean expressions, 71–73

summary of operation, 63

symbol, 63

which representation to use, 89–95

WR

RD

INTR

CS

INDEX 923

TOCCMI02_0131725793.QXD 12/21/05 10:27 PM Page 923

AND operation, 57, 62–65

summary, 63

Answers to selected problems, 911–918

Application-specific integrated circuits (ASICs),

870–871

ARCHITECTURE, 104, 179

Arithmetic circuits, 317–318

Arithmetic/logic unit (ALU), 20, 317–318,

331–335

functional parts of an, 318

Arithmetic overflow, 308–309

Array, register, 796–797

ASCII code, 39–41

ASICs, 870–871

Asserted levels, 94

Associative laws, 78

Astable multivibrators, 260–262

555 timer used as, 261–263

Asynchronous active pulse width, 239

Asynchronous inputs, 233–236

designations for, 234–235

Asynchronous (ripple) counters, 362–365

MOD number, 363–364

propagation delay, 365–367

Asynchronous systems, 221

Asynchronous transfer, 245

Augend, 306, 318

Automatic circuit testing (using DACs), 736

Auxiliary memory, 786

Auxiliary storage, 814

B
B register, 318

Back-lit LCDs, 587

Backplane, LCD, 587

Barrell shifter, 767

Base-10 system, 10

Basic characteristics of digital ICs, 153–160

Basic counters using HDL, 405–411

BCD

to decimal decoder, 581–582

to decimal decoder/driver, 582

to 7 segment decoder/driver, 584–587

subtraction, 314

BCD addition, 312–314

sum equals 9 or less, 312

sum greater than 9, 313–314

BCD (binary-coded-decimal) code, 33–35

advantage, 35

comparison with binary, 35

forbidden codes, 34

BCD counters, 375–376

decoding, 391–392

displaying two multidigit, 605

Behavioral

description, 409

level of abstraction, 409

BiCMOS 5-volt logic, 525, 531–532

Bidirectional

busing, 637–638

data lines, 637

Bilateral switch, 546–548

Binary

addition, 298–299

arithmetic and number circles, 309

BCD, 33–35

coded decimal (see also BCD code)

counter, 251

counting sequence, 13

digit, 12

division, 311–312

multiplication, 310–311

parity method for error detection, 41–44

point, 12

quantities, representation of, 13–15

Binarily weighted, 730

Binary system, 11–13

binary to decimal conversion, 26

binary to gray conversion, 36

binary to hex conversion, 31

conversions, summary, 33

decimal to binary conversion, 26–29

gray to binary conversion, 36

hex to binary conversion, 31

negation, 303

parallel and serial transmission, 17–18

representing quantities, 13–15

signed numbers, representing, 299–306

Bipolar DACs, 728

Bipolar digital ICs, 155–156

ECL, 543–546

Bistable multivibrators, 211, 260–263

(see also Flip-flops)

Bit, 12

arrays, 177–178, 344

carry, 319

vectors, 177–178

Block diagram (digital clock using HDL), 694

Boolean

algebra, 57

alternate logic-gate representation, 86–89

AND operation, 62–65

constants and variables, 57

DeMorgan’s theorems, 80–83

description of logic circuits, 66–68

evaluation of logic-circuit outputs, 68–71

implementing circuits from expressions, 71–73

NAND gate, 73–76

NOR gate, 73–76

NOT operation, 57, 65–66

summary, 66

OR operation, 57–62

summary, 60

simplifying logic circuits, 121

theorems, 76–80

truth tables, 57–58

which representation to use, 89–95

Bootstrap

memory, 812

program, 812

Bubbles, 88–89

placement of, 91

Buffer(s)/

circular, 846

driver, 536–537

inverting, 539

linear, 846

noninverting, 539

open collector, 536–537

output, ROM, 796–797

tristate, 539–540

924 INDEX

TOCCMI02_0131725793.QXD 12/22/2005 11:34 AM Page 924

Building the blocks from the bottom up

(digital clock using HDL), 698

Bulk erase, 809

Bundle method, 637

Buried nodes, AHDL, 105–106

Bus

address, 794

clock cycles, 845

clock rate, 845

contention, 540

control, 794

data, 794

drivers, 635

expanding, 634–635

high speed interface logic, 541–542

representation, simplified, 635–637

signals, 633–634

termination techniques, 542

Busing, bidirectional, 637–638, 794

Byte, 37–39, 787

C
Cache memory, 845

Capacity, memory

defined, 787

expansion, 838–841

Carry, 298, 318

bit, 319

look–ahead, 326

propagation, 325–326

ripple, 325

Cascading parallel adders, 326–328

CASE using

AHDL, 190–191

VHDL, 191–192

CD player, block diagram, 174

Central processing unit (CPU), 20 (see also
Microprocessor)

Checker, parity, 149–151

Checksum, 852

Chip, 153

Chip select, 795, 816

Circuit excitation table, 399

Circuits, digital, 15–17 (see also Logic circuits)

clock generator, 263

enable/disable, 151–153

Circular buffers, 846

Circulating shift register, 445

CLEAR, 234–235

Cleared State, 213

Clock

crystal-controlled, 263

defined, 221

edges, 222

frequency, 222

generator circuits, 260–263

period, 222

pulse HIGH tw(H), 239

pulse LOW tw(L), 239

signals, 221–224

skew, 266–268

transition times, 239

Clocked flip-flops, 221–224

asynchronous inputs, 233–236

D, 230–231

D latch (transparent latch), 232–233, 271

J-K, 227–229

S-R, 224–227

CML (current-mode logic), 543

CMOS logic family, 16, 155–158, 521–530

4000/14000 series, 156–157, 524

74AC series, 156–157, 524

74ACT series, 156, 524

74AHC series, 525

74AHCT series, 525

74ALB, 532

74ALVC series, 531

74ALVT series, 531

74AUP series, 531

74AVC series, 531

74C series, 156

74HC series, 156, 524

74HCT series, 156, 524

74LV series, 531

74LVC series, 530–531

74LVT series, 531

74VME series, 532

advanced low-voltage, 531

BiCMOS 5-Volt, 525

bilateral switch, 546–548

characteristics, 523–530

driving TTL, 551

in the HIGH state, 551

in the LOW state, 551–552

electrically compatible, 156, 524

electrostatic discharge (ESD),529

fan-out, 527–528

flash memory (28F256A), 809–811

functionally equivalent, 524

ground, 157

input voltages, 526

INVERTER circuit, 155, 521–522

latch up, 529

logic level voltage ranges, 157

low voltage BiCMOS, 531

low voltage levels, 525–526

NAND gate, 522

noise margins, 526

NOR gate, 522–523

open-drain outputs, 533–538

output voltages, 526

outputs shorted together, 533

PD increases with frequency, 526–527

pin compatible, 524

power dissipation, 526

power supply voltage, 157, 525

series characteristics, 523–530

SET-RESET FF, 523

static sensitivity, 528–529

switching speed, 528

transmission gate, 546–548

tristate outputs, 538–541

TS switch, 531

unconnected inputs, 157–158

unused inputs, 528

voltage levels, 525–526

Code

alphanumeric, 39–41

BCD, 33–35

defined, 33

gray, 35–36

putting it all together, 37

INDEX 925

TOCCMI02_0131725793.QXD 12/21/05 10:27 PM Page 925

Code converters, 624–627, 653–655

basic idea, 624–625

circuit implementation, 626–627

conversion process, 625–626

other implementations, 627

Column address strobe (), 827

Combinational logic circuits, 118–207

algebraic simplification, 121–126

complete design procedure, 128–133

complete simplification process, 138–141

designing, 127–133

exclusive-NOR, 144–149

exclusive-OR, 144–149

Karnaugh map method, 133–144, 322

parity generator and checker, 149–151

product-of-sums, 120–121

simplifying, 121–126

sum of products form, 120–121

summary, 193

Combining DRAM chips, 843

Command register, 810

Common

control block, 237

input/output pins (in RAM), 816–817

Commutative laws, 78

Complementation, 65. (see also NOT operation)

Complete hierarchy of the project (digital clock

using HDL), 697

Complex programmable logic devices (CPLDs), 872

Computer

data acquisition system, 746

decision process of a program, 100

dedicated, 21

digital, 19–21, 721

embedded controller, 21

functional diagram of, 19

major parts of, 19–21

microcomputer, 20

microcontroller, 21

programming languages, 99

types of, 20–21

Concatenating, 182–183, 453

Conditional signal assignment statement, 647

Constants, 344

Contact bounce, 215

Control

bus, 794

inputs, 223, 233

synchronous, 223

unit, 20

Controlled inverter, 147

Conversion time, ADC, 744, 750–751

Converter, data, 813

Counters, 360–486

and registers, 360–486

asynchronous (ripple), 362–365

propagation delay, 365–367

basic idea, 396

BCD, decoding, 391–392

cascading, 388–389

decade, 375–376

decoding, 381, 389–393, 448–449

design procedure, 397–400

displaying states, 372

feedback, with, 445

glitches, 367, 372

CAS

HDL, basic, 405–411

integrated circuit registers, 437

J-K excitation table, 397, 399

Johnson, 447–449

with MOD numbers <2N, 370–377

multistage arrangement, 388–389

NEXT state, 393–404

parallel in/parallel out-the 74ALS174/74HC174,

437–439

parallel in/serial out-the 74ALS165/74HC165, 441–443

PRESENT state, 393–404

presettable, 379–380

recycle, 363

ring, 445–447, 594–596

ripple, 277–280, 362–365

self-correcting, 394

serial in/parallel out-The 74ALS164/74HC164,

443–445

serial in/serial out-The 74ALS166/74HC166, 439–441

the 74ALS160–163/74HC160–163 series, 380–384

the 74ALS190–191/74HC190–191 series, 384–388

shift register, 445–449

spike, 372

summary, 436–437, 468

synchronous, analyzing, 393–396

synchronous design, 396–404

synchronous design with D FFs, 402–404

synchronous (parallel), 367–370, 380–389

synchronous (parallel) down and up/down, 377–379

troubleshooting, 450–452

undesired states, 397

Count enable, 381

Counters and registers, 360–486

Counting

binary, 12–13

decimal, 10–11

hexadecimal, 31–32

operation, 251–252

CPU (central processing unit), 20

Cross Bar Technology (74CBT), 531

low voltage (74CBTLV), 531

Crystal controlled clock generators, 263

Current

mode logic, 543

parameters for digital ICs, 490–491

sinking action, TTL, 495, 500

sinking transistor, TTL, 500

sourcing action, 495, 500–501

sourcing transistor, TTL, 501

transients, TTL, 516–517

D
D latch (see also Flip-flops)

DAC (see also Digital-to-analog converter)

Data

acquisition, 745–748

bus, 628, 794

bundle method, 637

defined, 628

floating, 629

operation, 632–638

converter, 813

distributors, 610–617

hold time, 820

lines, 255

rate buffer, 846

926 INDEX

TOCCMI02_0131725793.QXD 12/22/2005 11:34 AM Page 926

routing, by MUXs, 604–606

sampling, 745

selectors, 599–604

setup time, 820

storage and transfer, 245–247

tables, 812–813

word, 635

Data transfer, 245–247

asynchronous, 245

data busing, 628–629

demultiplexers, 610–617

hold time requirement, 248

operation, 633

parallel, 231, 246–247

parallel versus serial transfer, 250

economy and simplicity of, 250

speed, 250

and portability, 812

registers, between, 633

serial, 247–250

shift registers, 247–250

simultaneous, 247

and storage, 245–247

synchronous, 245

Decade counters, 375–376

Decimal

counting, 10–11

point, 10

Decimal system, 10–11

binary-to-decimal conversion, 26

conversions, summary, 33

decimal to binary conversion, 22–29

counting range, 28

decimal to hex conversion, 30–31

hex to decimal conversion, 29–30

Decimal-to-BCD priority encoder (74147), 592–593

Decision control structures in HDL, 184–192

Decoders, 577–584

1-of-10, 581–582

1-of-8, 578–580

3-line-to-8-line, 578–580

4-to-10, 581–582

address, 797–798

applications, 582–584

BCD to decimal, 581–582

BCD to 7 segment drivers, 584–587

binary to octal, 578–580

column, 796–797

demultiplexer, 610–617

ENABLE inputs, 578

liquid crystal displays (LCDs), 587–591

row, 796–797

simulation (HDL), 683

using HDL, 638–641

Decoding

counters, 389–393

Johnson, counter, 448–449

Decoupling, power-supply TTL, 517

DeMorgan’s theorems, 80–83

implications of, 81–83

Demultiplexers (DEMUXs), 610–617, 648–651

1-line-to-8-line, 610–612

security monitoring system, applications, 612–613

Dependency notation, 95–96

&, 95–96, 631

C, 236–237

≥ , 95–96

1, 95–96

R, 236–237

S, 236–237

∑ (Sigma), 334

, 537

, 541

, 95

Depletion MOSFET, 518–519

Describing logic circuits, 54–117

Description languages versus programming

languages, 98–100

Designing combinational logic circuits, 127–133

Detecting an input sequence, 244–245

Development

software (for PLDs), 172–174

system (for PLD programming), 172

Diagrams

logic circuit connections, 158–160

simplified bus timing, 634

state transition, 252–253, 372–373, 394

timing, 394

Differential inputs, 751

Digital

amplitude control, 737

circuits, 15–17 (see also Logic circuits)

clock project (HDL), 693–710 (see also HDL)

computers, 19–21 (see also Microcomputer)

integrated circuits, 16

multiplexer, 599

number systems, 10–13

one-shots, HDL, 461–467

pulses, 220–221

quantity, 719

ramp ADC, 740–745

up/down, 757

representation, 4–5

storage oscilloscope (DSO), 767–765

related applications, 765

Digital and analog systems, 5–9

Digital arithmetic, 296–358

BCD addition, 312–314

binary addition, 298–299

binary division, 311–312

binary multiplication, 310–311

carry propagation, 325–326

circuits, 317–318

circuits and operations, 296–358

full adder, 319

hexadecimal addition, 314–315

hexadecimal representation of signed

numbers, 316–317

hexadecimal subtraction, 315–316

integrated circuit parallel adder, 326–328

number circles and binary arithmetic, 309

operations and circuits, 296–358

parallel binary adder, 318–320

signed number representation, 299–306

summary, 349–350

2’s complement system, addition, 306–307, 328

2’s complement system, multiplication, 311

2’s complement system, subtraction, 307–310,

328–331

Digital signal processing (DSP), 764–768

architecture, 767

arithmetic logic unit (ALU), 767

§

�

INDEX 927

TOCCMI02_0131725793.QXD 12/22/2005 11:34 AM Page 927

Barrell shifter, 767

filtering, 766

interpolation filtering, 767

multiply and accumulate section (MAC), 767

oversampling, 767

weighted average, 766

Digital signals and timing diagrams, 15

Digital system projects using HDL, 676–717

summary, 714

Digital systems, 5–6

family tree, 870–875

introductory concepts, 2–23

summary, 21

input internally shorted to ground or supply,

162–163

malfunction in internal circuitry, 162

open signal lines, 166–167

open-circuited input or output, 163–165

output internally shorted to ground or supply, 163

output loading, 168

power supply, faulty, 167

short between two pins, 165–166

shorted signal lines, 167

troubleshooting, 160–162, 556–557, 597–599,

617–620

case study, 168–170

tree diagram, 620

typical signal, 15

typical voltage assignments, 15

Digital techniques

advantages, 6

limitations, 6–9

Digital-to-analog converter (DAC), 7, 720–721

accuracy, 734

analog output, 723

analog-to-digital conversion, used in, 740–745

applications, 736–738

bipolar, 728

circuitry, 728–733

control, used in, 736

conversion, 721–728

conversion accuracy, 730–731

current output, with, 731–732

digitizing a signal, 736

full-scale output, 721, 724

input weights, 723

integrated circuit (AD7524), 735–736

monotonicity, 735

offset error, 734–735

output waveform, 724

percentage resolution, 725–726

R/2R ladder, 732–733

resolution, 724

what does it mean, 726

serial, 737–738

settling time, 735

signal reconstruction, 736–737

specifications, 733–735

staircase, 724

staircase test, 738

static accuracy test, 738

step size, 724

troubleshooting, 738–739

Digital vs. analog, review, 719–721

Digitize

reconstructing a signal, 746–748

signal, 736–737, 745–748

Digits, 4, 10

DIMM (dual-in-line memory module), 834

Diode, Schottky barrier (SBD), 506

DIP (dual-in-line package), 153

Direct Rambus DRAM (DRDRAM), 835

Discrete steps, 4

Displaying counter states, 372

Displays

LCD, 587–591

back-lit, 587

passive matrix panel, 590

reflective, 587

Super Twisted Nematic (STN), 590

TFT (Thin Film Transistor), 590

Twisted Nematic (TN), 590

LED, 586–587

common-anode, 586

common-cathode, 586

D latch (transparent latch), 232–233, 271

Distributive law, 78

Divide and conquer, troubleshooting process, 597

Dividend, 311

Division, binary, 311–312

Divisor, 311

Don’t care conditions, 142–143

Double Data Rate SDRAM (DDRSDRAM), 835

Driver, decoder, 582

DSP (Digital Signal Processing), 765–768

Dual

in-line package (DIP), 153, 497

slope ADC, 757–758

Dynamic RAM (DRAM), 823–824

address multiplexing, 825–829

combining chips, 843

controller, 832

DDRSDRAM, 835

DIMM, 834

DRDRAM, 835

EDO, 835

FPM (Fast Page Mode), 834–835

memory modules, 834

Read/Write cycles, DRAM, 829–831

Read cycle, 829–830

Write cycle, 830

refresh counter, 831

refreshing, 823, 831–833

methods,

burst, 831

-before- refresh, 832, 835

distributed, 831

-only refresh, 831

SDRAM (Synchronous DRAM), 835

SIMM, 834

SLDRAM, 835

SODIMM, 834

structure and operation, 824–829

technology, 834–835

E
ECL integrated circuit family, 16, 543–546 (see also

Emitter coupled logic)

Edge triggered devices, 272–277

event, 272

logic primitive, 272

RAS

RASCAS

928 INDEX

Digital signal processing (DSP) (continued)

TOCCMI02_0131725793.QXD 12/22/2005 11:34 AM Page 928

bistable multivibrator, 211

clearing, 211

clock signals, 221–224

clocked, 221–224

clocked D, 230–231

implementation of, 231

clocked J-K, 227–229

clocked S-R, 224–227

D (data), 230–231

implementation of, 231

D latch (transparent latch), 232–233, 271

defined, 210–211

edge triggered, 222

frequency division and counting, 250–254

input sequence detection, 244–245

latches, 19

memory characteristics, 211

NAND gate latch, 211–216, 226

alternate representations, 214

summary of, 213

troubleshooting case study, 219–220

using AHDL, 270

NOR gate latch, 216–218

override inputs, 234

propagation delays, 238–239

related devices, 208–295

resetting, 211

setup and hold times, 223–224

shift registers, 247–250

state on power-up, 218

summary, 280–281

synchronization, 243–244

terminology, 214–215

timing considerations, 238–241

timing problems, 241–242

troubleshooting circuits, 264–268

Floating

bus, 629

gate, EPROMs, 804

inputs (see also Unconnected inputs),

157–158, 514

Four-input multiplexers, 601

Free-running multivibrator, 260–263

Frequency, 222

counter project (HDL), 710–714 (see also HDL)

division, 250–254, 364–365

and counting, 250–254

Full adder, 319

design of, 320–323

K-map simplification, 322

Full-custom ASICs, 872

Full-featured counters in HDL, 412–417

Full-scale error (of a DAC), 734

Full-scale output (of a DAC), 721, 724

Full-step sequence (HDL stepper-motor), 679

Function generator, 813–814

Function prototype, ALTERA, 338

Fusible-link, PROMs, 803

Future, digital, 8

G
GAL16V8 (Generic Array Logic), 881–885

complex mode, 895

feedback multiplexer (FMUX), 884

output logic macro cells (OLMCs), 883–885

output multiplexer (OMUX), 884

INDEX 929

Edge-detector circuit, 226–227

Edges, of a clock signal, 221–222

EDO (Extended Data Output) DRAM, 835

EEPROMs (electrically erasable PROMs), 805–807

Eight input multiplexers, 601–602

Electrical noise, 41

Electrically Erasable PROMs (EEPROMs), 805–807

Electrostatic discharge (ESD), 529

ELSIF, 187–189

using AHDL, 189

using VHDL, 189

Embedded

controller, 21

microcontroller program memory, 812

Emitter coupled logic (ECL), 16, 543–546

basic circuit, 543–544

characteristics, 543–546

OR/NOR gate, 543, 545

ENABLE inputs, decoders, 578

Enable/Disable circuits, 151–153

Encoders, 591–597

decimal to BCD priority, 592–593

8-line-to-3-line, 591

octal to binary, 591

priority, 592–593

switch, 593–596

Encoding, 591

Enhancement MOSFET, 518–519

EPROMs (erasable programmable ROMs), 803–805

Erasable Programmable ROMs (EPROMs),

803–805

Erase

command, 811

verify command, 811

Error detection, parity method for, 41–44

Etching, incomplete, 167

Even-parity method, 42

Event, 272

Excitation table, J-K, 397

Exclusive

NOR circuit, 145–147

OR circuit, 144–145

Expanding the bit capacity of a circuit, 343–348

Extension, sign, 302

External faults, 166–168

F
Fan-out, 491

CMOS, 527–528

determining, 510–513

TTL, 509–514

Fast page mode (FPM) DRAM, 834–835

Fast TTL (74F), 508

Feedback multiplexer (FMUX), 884

Field programmable gate arrays (FPGA), 872,

Filling K map from output expression, 141

First-in, first-out memory (FIFO), 845–846

Flash

ADC, 755–757

conversion time of, 756–757

memory, 808–811

Flip-flops, 19, 2208–295

actual ICs, 240

ambiguous output, 227

applications, 243

asynchronous inputs, 233–236

TOCCMI02_0131725793.QXD 12/22/2005 11:34 AM Page 929

product term multiplexer (PTMUX), 884

registered mode, 885

simple mode, 885

GAL22V10 (Generic Array Logic), 885

Gate(s)

AND, 63

arrays, 871

NAND, 73–76

NOR, 73–76

OR, 58–62

which representation to use, 89–95

Generator

function, 813–814

parity, 149–151

Giga-scale integration (GSI), 154–155

Glitches, 367, 372

Glossary, 898–910

Gray Code, 35–36

Gunning Transceivers Logic Plus, 542

Plus (74GTLP1394), 531

H
Half adder (HA), 322–323

Half-step sequence (HDL stepper-motor), 680

Hardware description language (HDL), 98, 173

HDL, 98, 173

adders, 340–343

basic counters using, 405–411

behavioral description, 409

behavioral level of abstraction, 409

bit arrays, 177–178

bit vectors, 177–178

CASE, 459, 639, 683, 701

circuits with multiple components, 277–280

code converters, 653–655

combining blocks using only, 706–707

comparator, 652–653

concatenation, 453

decision control structures, 184–192

concurrent, 184

sequential, 184

decoder/driver, 7-segment, 642–645

decoders, using, 638–641

demultiplexers, 648–651

designing number systems, 177

digital clock project, 693–710

block diagram, 694

building the blocks from the bottom up, 698

combining blocks graphically, 705–706

complete hierarchy of the project, 697

hours section circuit, 695

MOD-6 counter simulation, 700

MOD-60 section, 697

prescaler, 697

top-down hierarchical design, 696–698

encoders, 645–648

format, 102–104

frequency counter project, 710–714

block diagram, 711

sampling interval, 710

timing and control block, 713

timing diagram, 712

full-featured counters in, 412–417

function prototype, 338

hierarchical design, 417

930 INDEX

IF/ELSE, 184–185, 460

IF/ELSIF, 701

IF/THEN, 185

index, 178

keypad encoder project, 687–693

block diagram, 687

problem analysis, 687

simulation, 693

strategic planning, 689

literals, 177

magnitude comparator, 652–653

MOD 12 design, 701–702

MOD 60 graphic block symbol, 706

mode, 102

multiplexers, 648–651

nesting, 686

NEXT, 459

one-shots, 461–467

PRESENT, 459

projects using, 676–717

registers, 452–459

representing data, 177–181

retriggerable, edge-triggered one-shots in, 464–465

ring counters, 459–461

scalars, 177

schematic diagram, 102

sequential circuits using, 268–271

D latch, 271

NAND latch, 270

simulation of basic counter, 411

simulation of full-featured counter, 416

small-project management, 678–679

definition, 678

strategic planning, 678

synthesis and testing, 678–679

system integration and testing, 679

state transition description methods, 405

stepper motor driver project, 679–686

full-step sequence, 679

half-step sequence, 680

problem statement, 680–681

strategic planning, 681

synthesis and testing, 681

wave-drive sequence, 680

structural level of abstraction, 280

syntax, 102–104

TABLE, 639

timing simulation, 175

truth tables, 181–184

type, 102

wiring modules together, 417

Hertz, 222

Hexadecimal

addition, 314–315

arithmetic, 314–317

number system, 29–33

representation of signed numbers, 316–317

subtraction , 315–316

Hierarchical design, 173

Hierarchy, 696

High capacity programmable logic devices

(HCPLDs), 872

High speed

bus interface logic, 541–542

CMOS, 74HC/HCT, 524

logic comparison, 546

GAL16V8 (continued)

TOCCMI02_0131725793.QXD 12/22/2005 11:34 AM Page 930

High-state noise margin (VNH), 493

Hold time (tH), 223–224, 238, 248

Hours section circuit (digital clock using HDL), 695

Hybrid systems, 8

I
IC synchronous counters, 380–389

IEEE/ANSI standard logic symbols, 95–96, 236–237,

537, 541

AND, 95

common control block, 237

D Flip-flop, 237

definition, 95–96

dependency notation (see also dependency notation)

exclusive-NOR, 145–147

exclusive-OR, 144–145

flip-flops, 236–238

for logic-gate ICs, 95

inverter, 95

J-K flip-flop, 237

monostable multivibrator, 256–260

NAND, 95

NOR, 95

one-shot, 256–260

open-collector output, 537

open-drain output, 537

OR, 95

traditional, 95–96

tristate outputs, 541

IF/ELSE, 184–185

IF/THEN, 185

IF/THEN/ELSE using AHDL, 186

Implementing logic circuits with PLDs, 100–101

Implications of DeMorgan’s theorems, 81–83

Improved flash memory, 811

Incomplete address decoding, 841–843

Indeterminate

logic level, 161

voltages, 157

Inhibit circuits, 64

Input

currents for standard devices, 550

sequence detection, 244–245

unit, 20

Integrated-circuit logic families, 488–574

ALU(s), 331–335

add operation, 332

AND operation, 333

clear operation, 332

EX-OR operation, 333

expanding, 334

OR operation, 333

other, 335

PRESET operation, 333

subtract operation, 332

basic characteristics, 153–160

bipolar, 155–156, 543–546

defined, 489–490

ECL, 543–546

interfacing, 548–552

MOS (see also MOS logic family)

summary, 558

terminology, 490–497

unipolar, 155–156

Integrated-circuit packages, 495–497

common, 496

dual-in-line (DIP), 495–496, 497

gull-wing, 497

J-shaped leads, 497

lead pitch, 496

low-profile five-pitch ball grid array (LFBGA), 497

plastic leaded chip carrier (PLCC), 497

quad flat pack (QFP), 497

shrink small outline package (SSOP), 497

small outline IC (SOIC), 497

surface-mount technology, 496

thin quad flat pack (TQFP), 497

thin shrink small outline package (TSSOP), 497

thin very small outline package (TVSOP), 497

Integrated circuit parallel adder, 326–328

Integrated circuit registers, 437

parallel in/parallel out-the 74ALS174/74HC174,

437–439

parallel in/serial out-the 74ALS165/74HC165,

441–443

serial in/parallel out-the 74ALS164/74HC164,

443–445

serial in/serial out-the 74ALS166/74HC166,

439–441

Integrated circuit shift-register counters, 449

Interfacing

5-V TTL and CMOS, 550

high-voltage outputs driving low-voltage loads, 554

integrated circuit, 548–552

logic ICs, 549

low-voltage outputs driving high-voltage loads, 553

mixed-voltage, 553–554

not needed, 549

required, 549

with the analog world, 718–782

summary, 769–770

Intermediate signals, 105–108

Interpolation filtering, 767

Invalid voltage levels, 494–495

Inversion (see also NOT operation), 57, 65–66

Inverter, 65–66

circuits containing, 67–68

controlled inverter, 147

response to slow noisy inverter, 257

Inverted flip-flop output, 210

Inverting tristate buffer, 539

J
Jam transfer, 246, 380

JEDEC

standard, 172

standard memory packaging (JEDEC), 822

J-K excitation table, 397, 399

Johnson counter, 447–449

decoding, 448–449

K
Karnaugh map

complete simplification process, 138–141

don’t-care conditions, 142–143

filling from output expression, 141

format, 134–135

looping, 135–138

method, 133–144

simplification, 322

summary, 143–144

Keypad encoder project (HDL), 687–693 (see also HDL)

INDEX 931

TOCCMI02_0131725793.QXD 12/21/05 10:27 PM Page 931

L
Labeling

active-LOW signals, 94

bistate signals, 94

Ladder, R/2R, 732–733

Large scale integration (LSI), 154–155, 489

Latches, 18, 2111–218, 232–233, 268–271

(see also Flip-flops)

resetting, 212

setting, 212

Latch-up, 529

Latency, 827

Least significant bit (LSB), 12

Least significant digit (LSD), 10

Libraries of parameterized modules, 347–348

Light-emitting diodes (LEDs), 586–587

common-anode vs. common-cathode, 586

Limitations of digital techniques, 6–9

Linear buffers, 846

Linearity error (of a DAC), 734

Liquid crystal displays (LCDs), 587–591

backplane, 587

driving an, 588–589

types, 589–590

Loading

factor, 491

TTL, 509–514

Local signals, 105

Logic

diagram using schematic capture, 160

function generation, 607–609

level, 57

primitive, 272

probe, how to use, 161, 556–557

product life cycle, 532

pulser, how to use, 161, 556–557

standard, 871

Logic circuits

analysis using a table, 69–71

analyzing, 92–94

arithmetic, 317–318

combinational (see also Combinational logic circuits)

connection diagrams, 158–160

defined, 16

describing, 54–117

describing algebraically, 66–68

disabled, 151–153

enabled, 151–153

evaluation of outputs, 68–71

implementing from Boolean expressions, 71–73

implementing with PLDs, 100–101

interface, 548–552

pulse-shaping circuit, 365

pulse-steering, 153

Logic gates, 57–117

alternate representation, 86–89

AND, 63

Boolean theorems, 76–80

DeMorgan’s theorems, 80–83

evaluation of outputs, 68–71

IEEE/ANSI representations, 95–96

NAND, 73–76

NOR, 73–76

NOT circuit (INVERTER), 65–66

OR, 58–62

summary of methods to describe, 96–98

truth tables, 57–58

which representation to use, 89–95

Logic operations, 57

on bit arrays, 338–340

Logic signals

labeling active-LOW, 94

labeling bistate, 94

Logic symbol interpretation, 88–89

summary, 89

Logical complementation or inversion (NOT operation),

65–66

Look ahead carry, 326

Look up table (LUT), 873

Looping, 135–138

octets, 137–138

pairs, 135–136

quads, 136–137

Low-power Schottky TTL, 74LS Series (LS-TTL), 506–507

Low-state noise margin (VNL), 493

Low voltage (74LV), 531

BiCMOS technology (74LVT), 531

CMOS (74LVC), 530–531

series characteristics, 532

voltage technology, 530–532

LPMs (library of parameterized modules), 348

LSI. See Large-scale integration

LUT (look up table), 873

functional block diagram, 891

LVDS (Low Voltage Differential Signaling, 542

M
Machines, state, 425–437

Mealy model, 426

Moore model, 426

traffic light controller, 429–435

Macrofunction, 337

Magnitude comparator, 621–624, 652–653

applications, 623

cascading inputs, 622–623

data inputs, 621

outputs, 622

Magnitude of binary numbers, 299

Major parts of a computer, 19–21

Mask-programmed

gate arrays (MPGAs), 871

ROM (MROM), 800–802

storage devices, 786

Maximum clocking frequency (fMAX), 239

Mealy model, 426

Medium-scale integration (MSI), 154–155, 489

Megafunctions, 348

Memory, 18–19, 784–866

auxiliary, 786, 789

bipolar static RAM cell, 818

bootstrap, 812

capacity, 787

CD ROM, 807–808

cell, 787

compact disk, 786

connections, CPU, 793–794

density, 788

devices, 784–866

dynamic, devices, 789

embedded microcontroller program, 812

enable, 791–792

932 INDEX

TOCCMI02_0131725793.QXD 12/22/2005 11:34 AM Page 932

expanding

capacity, 838–841

word size, 836–838

fetch operation, 788

first-in, first-out (FIFO), 845–846

flash, 808–811

bulk erase, 808

command register, 810

erase command, 811

erase verify command, 811

IC (28F256A), 809–811

improved, 811

program command, 811

program-verify command, 811

Read command, 810

sector erase, 808

set-erase, 811

set-up program, 811

tradeoffs, 809

fold-back, 842

general operation, 790–793

main, 786, 789

map, 842

mass, 789

modules, 834, 837

NMOS static RAM cell, 818

nonvolatile, 788–789, 795

random-access, 788–789

read-only, 789

Read/Write, 789

sequential-access, 789

special functions, 844–846

cache memory, 845

first-in, first-out, 845–846

power-down storage, 844–845

static, devices, 789

store operation, 788

summary, 853–854

terminology, 786–789

unit, 20

volatile, 788

word, 787

working, 786, 789

Microcomputer

application, 254–255

defined, 20

input unit, 20

memory unit, 20

output unit, 20

Microcontroller, 21

Microprocessor, 20

digital signal processing (DSP), 871

READ operation, 794

WRITE operation, 794

Minuend, 308

Mixed-voltage interfacing, 553–554

high-voltage outputs driving low-voltage loads, 554

low-voltage outputs driving high-voltage loads, 553

voltage-level translator, 553

MOD number, 253, 363–364

changing, 374

general procedure, 374–375

Johnson counter, 447–449

ring counter, 445–447

Monostable multivibrator, 256–260. See also One-shot

Monotonicity (of a DAC), 735

Moore model, 426

MOS

electrostatic discharge (ESD), 529

FETs, 518–521

logic family, 518–521

NMOS, 519–520

static sensitivity, 528–529

technology, 518–521

MOSFET, 16, 518–521

basic switch, 519–521

CMOS, 521–523

digital circuits, 519–520

N-MOS, 519

P-MOS, 520

Most significant bit (MSB), 12

Most significant digit (MSD), 10

MSI. See Medium-scale integration

MSI logic circuits, 576–673

BCD to decimal decoder, 581–582

BCD to 7 segment decoder/drivers, 584–587

data busing, 628–629

decoders, 577–584

demultiplexers (DEMUXs), 610–617

encoders, 591–597

liquid crystal displays (LCDs), 587–591

multiplexers (MUX), 599–604

summary, 656–657

tristate registers, 629–631

Multiple-emitter input transistor, 498

Multiplexers (MUX), 599–604, 648–651

applications, 604–609, 612–617, 828

control sequence, seven-step, 608

eight-input, 601–602

four-input, 601

operation sequencing, using, 607

quad two-input, 603–604

two-input, basic, 600–601

Multiplexing, 599

ADC, 762–764

address (in DRAM), 825–829

Multiplication

AND, 62

of binary numbers, 310–311

in the 2’s-complement system, 311

N
NAND gate, 73–76

alternate representation, 86–89

CMOS, 522

counter decoding, 389–393

defined, 75

internal circuitry of the edge-triggered J-K FF, 229

internal circuitry of the edge-triggered S-R FF, 226–227

latch flip-flop, 211–216

summary of, 213

TTL, 498

universality of, 83–86

which representation to use, 89–95

Negation, 303

Negative-going threshold voltage (VT-), 256

Negative-going transition (NGT), 222

NEXT state, 393–404

Nibble, 37–39

NMOS logic family, 16

logic circuits, 519

NMOS static RAM cell, 818

INDEX 933

TOCCMI02_0131725793.QXD 12/22/2005 11:34 AM Page 933

Noise, 6, 264

immunity, 493

Noise margin, 493

CMOS, 526

DC, 493

Nonretriggerable one-shot, 258

Nonvolatile memory, 788–789, 795, 803

NOR gate, 73–76

alternate representation, 86–89

CMOS, 522–523

defined, 73

ECL, 543, 545

latch, 216–218

universality of, 83–86

which gate representation to use, 89–95

Normal flip-flop output, 210

NOT circuit (INVERTER), 65–66

alternate representation, 86–89

circuits containing, 67–68

controlled inverter, 147

defined, 66

DeMorgan’s theorems, 80–83

implementing from Boolean expressions,

71–73

NMOS, 519

symbol, 65

which representation to use, 89–95

NOT operation, 57, 65–66

Number circles and binary arithmetic, 309

Number systems, 10–13

and codes, 24–52

applications, 44–46

binary, 11–12 (see also Binary system)

decimal, 10 (see also Decimal system)

digital, 10–13

hexadecimal, 29–33

putting it all together, 37

summary, 46

Numerical representations, 4–5

O
Observation/analysis, troubleshooting process, 597

Octal to-binary encoders, 591

Octets, looping, 137–139

Odd-parity method, 42

Offset error, 734–735

One-shot (monostable multivibrator), 256–260

actual devices, 259

AHDL, 462, 465

HDL, 461–467

retriggerable, edge-triggered in HDL, 464–465

VHDL, 462–464, 466–467

1’s complement form, 300

One-time programmable ROM (OTP), 803, 873

Open-collector buffer/drivers, 536–537

Open-collector outputs, 533–538

Open-drain buffer/drivers, 536–537

Open-drain outputs, 533–538

Operation

fetch, 788

refresh, 789

Operational amplifier (in a DAC), 728

OR gate, 58–62

alternate logic-gate representation, 86–89

Boolean theorems, 76–80

defined, 59

ECL, 543, 545

implementing from Boolean expressions, 71–73

symbol, 59

OR operation, 57–62

summary, 60

which representation to use, 89–95

Organizational hierarchical chart, 175

Oscillator, Schmitt-trigger, 260–261

OTP (One-Time Programmable ROM), 803, 873

Output

buffers, ROM, 798

currents for standard devices, 550

enable time (tOE), 799

loading, 168

unit, 20

Overflow bit, 323

Override inputs, 234

P
Pairs, looping, 135–136

Parallel

in/parallel out-the 74ALS174/74HC174, 437–439

parallel in/serial out-the 74ALS165/74HC165,

441–443

loading, 379

transmission, 17–18

parallel-to-serial conversion, 606–607

Parallel and serial transmission, 17–18

trade-offs between, 18

Parallel binary adder, 318–320

carry propagation, 325–326

complete, with registers, 323–325

integrated circuits, 326–328

troubleshooting case study, 335–337

2’s-complement system, 328–331

Parallel data transfer, 231, 246–247

vs. serial transfer, 250

Parasitic, 529

Parity

bit, 42–44

checker, 149–151

checking, 150

checking the, 43

errors

single-bit, 43

two-bit, 43

generator, 149–151

method for error detection, 41–44

Percentage resolution, 725–726

Period, 222

PIPO (parallel in/parallel out), 437

PISO (parallel in/serial out), 437

PISO register, AHDL, 455–456

PISO register,VHDL, 456

Pixels, 589

Plastic leaded chip carrier (PLCC), 497

Positional-value system, 10

Positive-going

threshold voltage (VT+), 256

transition (PGT), 222

Power

down (in MROM), 802

down storage, 844–845

requirements for digital ICs, 492–493

supply decoupling, TTL, 517

up self-test, RAM, 852

934 INDEX

TOCCMI02_0131725793.QXD 12/22/2005 11:34 AM Page 934

Precision reference supply, 731

Prescaler (digital clock using HDL), 697

PRESENT state, 393–404

PRESET, 234

Presettable counters, 379–380

Priority encoders, 592–593, 756

Product-of-sums, 120–121

Program

command, 811

defined, 6, 19

verify command, 811

Programmable Logic Device/s (PLDs), 99, 170–176, 871

Architecture/s, 868–918, 877–881

FPGA (field programmable gate array), 874

FPLA (field programmable logic array), 881

programmable array logic (PAL), 873, 879–881

PROMs, 877–879

summary, 895–896

CPLD, 872

design and development process, 174–175

test vectors, 175

top-down, 174

development cycle flowchart, 176

development software, 173–174

AHDL, 173

compilers, 101

timing simulation, 175

VHDL, 173

FPGA, 872

fundamentals of PLD circuitry, 875–877

generic array logic (GAL16V8), 881–885

hardware, 170–171

HCPLD, 872

hierarchical design, 173

look up table (LUT), 873

macrocell, 873

mask programmed gate arrays (MPGAs), 871

more on, 872–875

one-time programmable (OTP), 873

organizational hierarchical chart, 175

programmable array logic (PAL), 873

programmer, 172

universal, 172

programming, 171–172

development system, 172

JEDEC standard 172

JTAG, 172

zero insertion force (ZIF) socket, 172

SPLD, 872

standard JEDEC memory packaging, 822

symbology, 876–877

Programmable ROMs (PROMs), 803

Programmer, 172

Programming languages, 99

Projects, using HDL, 676–717

digital clock, 693–710

frequency counter, 710–714

keypad encoder, 687–693

management, 678–679

stepper motor driver, 679–686

PROMs (programmable ROMs), 803

Propagation delays (tPLH/tPHL),

in asynchronous counters, 365–367

flip-flop, 238–241

integrated circuits, 491

TTL NAND gate, 505

Pull-down transistor, TTL, 500

Pull-up transistor, TTL, 501

Pulse(s), 220

leading edge, 221

negative, 220–221

positive, 220–221

shaping circuit, 365

steering circuit, 153, 226

trailing edge, 221

Q
Quad

flat pack (QFP), 497

looping, 136–137

two-input multiplexers, 603–604

Quantization error, 743

Quartz

crystal, 263

watch, 251

Quasi-stable state, 256

R
R/2R ladder digital-to-analog converters, 732–733

RAMs (random-access memories),

architecture, 815–817

capacity expansion, 838–841

defined, 788–789

dynamic devices, 789

power-up self-test, 852

semiconductor, 814–815

static (SRAM), 818–822

troubleshooting, 847–852

know the operation, 847–850

testing the complete system, 851–852

testing the decoding logic, 850–851

word size expansion, 836–838

Read command, 810

Read operation

CPU, 794

defined, 788

RAM, 816

Read/write

input (), 791

memory (RWM), 789

Reconstructing a digitized signal, 746–748

Reflective LCDs, 587

Refresh counter, 831

Refreshing, DRAM, 789, 818, 823, 831–833

Register array, 797

Registers, 245, 360–486

accumulator, 318

address pointer, 845

and counters, 360–486

B, 318

complete parallel adder with, 323–325

HDL, 452–459

notation, 323–325

sequence of operations, 325

shift left operation, 250

tristate (74ALS173/HC173), 629–631

Repeated division method, 27–29

Representing

binary quantities, 13–15

data in HDL, 177–181

signed numbers, 299–306

using 2’s complement, 300–306

R/W

INDEX 935

TOCCMI02_0131725793.QXD 12/22/2005 11:34 AM Page 935

RESET, 235

Resetting a flip-flop,

and setting simultaneously, 213

defined, 212

latch, 212

Resolution

ADC, 742–744

DAC, 724, 733–734

what does it mean, 726

Resolution, percentage, 725–726

Retriggerable one-shot, 258–259

Ring counter, 445–447, 594–596

in circuit, 595

starting a, 447

state diagram, of, 446, 689

ROM (read-only memory), 795–796

applications, 811–814

architecture, 796–798

output buffers, 798

block diagram, 795

burning-in, 795

CD, 807–808

column decoder, 796–797

defined, 789

erased, 795

mask-programmed, 800–802

one-time programmable (OTP), 803

output buffer, 796–797

programming, 795

READ operation, the, 795–796

row decoder, 796–797

testing, 852–853

timing, 799–800

types of, 800–808

Row address strobe (), 827

S
74 TTL series, 156, 506, 508

74AC series, 156–157, 524

74ACT series, 156–157, 524

74AHC series, 525

74AHCT series, 525

74ALB series, 532

74ALS TTL series, 507–508

74ALVC series, 531

74ALVT series, 531

74AS TTL series, 507–508

74AUC series, 531

74AVC series, 531

74C series, 156–157

74CBT series, 531

74CBTLV series, 531

74F-Fast TTL series, 508

74GTLP series, 531

74HC series, 156–157, 524

74HCT series, 156–157, 524

74LV series, 531

74LVC series, 530–531

74LVT series, 531

74LS TTL series, 156, 506–508

74S TTL series, 506, 508

74SSTV series, 531

74TVC series, 531

S, 236–237

SAM (sequential-access memory), 789

Sample-and-hold circuits, 761–762

RAS

Sampling, 745

frequency, 748

SBD (Schottky Barrier Diode), 506

Schmitt-trigger

devices, 256

oscillator, 260–261

response to slow noisy input, 257

Schottky

barrier diode (SBD), 506

TTL, 74S Series, 506

SDRA (synchronous DRAM), 835

Sector erase, 808

Security monitoring system, 612–613

Select inputs, (in MUXs), 599–600

Sense amplifier (in DRAM), 825

Sequential-access memory (SAM), 789

Sequential circuits, 243

design, 396–404

using HDL, 268–271

Sequential logic systems, troubleshooting, 450

Serial

in/serial out-the 74ALS166/74HC166, 439–441

transmission, 17–18

Serial data transfer, 247–250

between registers, 248–249

Set up program/program control, 811

Set-erase, 811

Sets, 339

Setting the flip-flop

latch, 212

and resetting simultaneously, 213

Settling time, of a DAC, 735

Setup time (tS), 223–224, 238

Shift register counters, 445–449

Shift registers, 247–250

bidirectional universal, 444

left, 250

octal (8-bit), 444

parallel in/parallel out—the 74ALS174/74HC174,

437–439

serial in/serial out—the 74ALS166/74HC166,

439–441

Shrink small outline package (SSOP), 497

Sigma (∑), 326

delta modulation (ADC) 758–761

Sign

bit, 299

extension, 302

magnitude system, 299

Signal

alias, 748

contention, 165

flow, 363

Signed numbers

representing, 299–306

In sign-magnitude form, 299

SIMM (single-line memory module), 834

Simple programmable logic devices (SPLDs), 872

SIPO (serial in/parallel out register), 437

SISO register, AHDL, 453–454

SISO register,VHDL, 454–455

SISO (serial in/serial out register), 437

Skew, clock, 266–268

Sloppy wiring, 167

Small outline integrated circuit (SOIC), 497

Small scale integration (SSI), 154–155, 489

936 INDEX

TOCCMI02_0131725793.QXD 12/21/05 10:27 PM Page 936

Small-project management (using HDL), 678–679

definition, 678

strategic planning, 678

synthesis and testing, 681

system integration and testing, 679

SODIMM (small-outline, dual-in-line memory

module), 834

Solder bridges, 167

Special memory functions, 844–846

Spike, 372

SPLDs (simple programmable logic devices), 872

Staircase

test, of a DAC, 738

waveform, of a DAC, 724

Standard

cell ASICs, 871–872

logic, 871

State

descriptions in AHDL, 406–407

descriptions in VHDL, 407–408

machines, 425–437

traffic light controller, 429–435

table, 252

transition description methods, 405

transition diagram, 252–253, 372–373

Mod-6 counter, 373

synchronous counter, 398

Static accuracy test, of a DAC, 738

Static RAM (SRAM), 818–822

actual chip (MCM6264C), 821–822

read cycle, 820

timing, 818–819

write cycle, 820–821

Stepper motor

control, 401–402

driver project (HDL), 679–686 (see also HDL)

universal, interface circuit, 682

Step-size, 724

Storage, auxiliary, 814

Straight binary coding, 33

Strategic planning (using HDL), 678, 681

Strobe inputs (in DRAM), 827

Stub Series Terminated Logic (74SSTV), 531

SUBDESIGN, 103, 178

Subpixels, 589

Subtraction

BCD, 315–316

hexadecimal, 315–316

2’s-complement system, 307–310, 328–331

Substrate, 153

Subtrahend, 308

Successive-approximation ADC, 749–755

Sum bit, 319

Sum-of-products form, 120–121

Switch

bilateral, 546–548

debouncing, 215

encoders, 593–596

Synchronization, flip-flop, 243–244

Synchronous

control inputs, 223, 233

counter design with D FF, 403

Link DRAM (SLDRAM), 835

presetting, 380

systems, 221

transfer, 245

Synchronous data transmission system, 613–617

receiver operation, 614–615

system timing, 615–616

transmitter operation, 614

Synchronous (parallel) counters, 367–370

actual ICs, 369–370

advantages over asynchronous, 369

design, 396–404

stepper motor control, 402

down and up/down, 377–379

operation, 369

presettable, 379–380

Synthesis and testing (using HDL), 681, 681

System integration and testing (using HDL), 679

T
Table

analysis using, 69

circuit excitation, 397, 399

J-K excitation, 397, 399

look up (LUT), 873

state, 252

Temporary storage, RAM, 815

Test vectors, 175

Theorems

Boolean, 76–80

DeMorgan’s, 80–83

multivariable, 77–78

Thin Film Transistor (TFT) LCD, 590

Thin quad flat pack (TQFP), 497

Thin shrink small outline package (TSSOP), 497

Thin very small outline package (TVSOP), 497

3 line to 8 line decoder, 578–580

TI signal switch (TS switch), 531

Tied-together inputs, TTL, 515

Timer, 555 used as an astable multivibrator, 261–263.

(see also Astable multivibrator)

Timing diagrams, 15, 394

simplified bus, 634

Timing problems in Flip-flop circuits, 241–242

Toggle mode, 227

Toggles, 12

Top-down hierarchical design (digital clock using HDL),

696–698

Totem-pole output circuit, 501

Tracking ADC, 757

Tradeoffs (for nonvolatile memories), 809

Traditional or IEEE/ANSI, 96

Transducer, 720

Transfer operation, data, 245

Transition diagram, state, 252–253

Translation Voltage Clamp (74TVC), 531

Transmission gate, CMOS, 546–548

Transparent latch (D latch) 232–233. (see also Flip-flops)

Trigger input, 225

Tristate

buffers, 539–540

data bus, 540

ICs, 540

outputs, 538–541

registers (74ALS173/HC173), 629–631

connected to data bus, 632

Tristate TTL, 538–541

advantages of, 538–539

buffers, 539–540

ICs, 540

INDEX 937

TOCCMI02_0131725793.QXD 12/22/2005 3:35 PM Page 937

Troubleshooting

basic steps, 160–162

case study

gates, 168–170

parallel binary adder/subtractor, 335–337

counters, 450–452

decoders, circuit with, 597–599

digital systems, 160–162, 556–557 (see also Digital

systems)

digital-to-analog converters, 738–739

divide-and-conquer, 597

fault

external IC, 166–168

correction, 160

dectection, 160

isolation, 160

finding shorted nodes, 557

flip-flop circuits, 264–268

open inputs, 264–265

shorted outputs, 265–266

internal IC faults, 162–166

observation/analysis, 597

parallel binary adder/subtractor, 335–337

RAM systems, 847–852

know the operation, 847–850

testing the complete system, 851–852

testing the decoding logic, 850–851

security monitoring system, 612–613

sequential logic systems, 450

synchronous data transmission system, 613–617

tools used in, 161, 556–557

tree diagram, 620

Truth tables, 57–58

using AHDL, 181–182

using HDL, 181–184

using VHDL, 182–183

TTL logic family, 155–156, 498–502

active pull-up action, 501

ALS series, 156

AS series, 156

biasing inputs LOW, 516

characteristics, 506–509

circuit operation-HIGH state, 500

circuit operation-LOW state, 498–500

comparison of series characteristics, 508

current ratings, 512

current transients, TTL, 516–517

current-sinking action, TTL, 500

data sheets, 502–506

defined, 16

fan-out, 509–514

fast series (74F), 508

ground, 157

input voltages, 526

interfacing w/CMOS, 550

INVERTER circuit, 155

loading, 509–514

logic-level voltage ranges, 157

low-power Schottky, 74LS series (LS-TTL), 506–507

LS series, 156

maximum voltage ratings, 504–505

NAND gate, basic, 499

NOR gate, basic, 502

open-collector outputs, 533–538

other characteristics, 514–518

output voltages, 526

power, 157

power dissipation, 505

propagation delays, 505

S series, 156

Schottky, 74S series, 506

series characteristics, 506–509

standard, 74 series, 506

subfamilies, 156, 506–509

summary, 502

supply (power) voltage, 157, 503

temperature range, 503

tied-together inputs, 515

totem-pole output circuit, 498, 501

tristate, 538–541

unconnected inputs (floating), 157–158, 514

unused inputs, 514–515

voltage levels, 503–505

Twisted-ring counters, 447

Two-input multiplexer, basic, 600–601

2’s complement

addition, 306–307

form, 300

special case representation , 304–305

subtraction, 307–310

system, 299, 328–331

addition and subtraction, combined, 330–331

addition, 328

multiplication, 310–311

subtraction, 328–331

Types of computers, 20–21

dedicated, 21

embedded controller, 21

microcomputer, 20

microcontroller, 21

microprocessor, 20

Types of LCDs, 589–590

U
Ultralarge-scale integration (ULSI), 154–155

Unasserted levels, 94

Unconnected inputs

TTL, 157–158, 514

CMOS, 157–158, 528

Undersampling, 748

Unipolar digital ICs, 155–156. See also CMOS logic family

Universal programmers, 172

Universality of NAND gates and NOR gates, 83–86

Unused inputs

TTL, 157–158, 514–515

CMOS, 157–159, 528

Up/down digital-ramp ADC, 757

Usefulness of hex and octal, 32

Using TTL library functions with ALTERA, 337–338

UV light, EPROMs, 804

V
VERSA Module Eurocard (74VME), 532

VHDL (very high-speed integrated circuit hardware

description language), 98–99, 410–411

Adder, 343, 347

Adder/subtractor. 345–346

AND, 342

ARCHITECTURE, 104, 179, 420, 424

BCD-to-binary code converter, 655

BEGIN, 104, 408, 411

behavioral description of a counter in, 410

938 INDEX

TOCCMI02_0131725793.QXD 12/22/2005 11:34 AM Page 938

BIT, 104, 180, 274

BIT_VECTOR declarations, 179–181, 184, 339,

411, 420

Boolean description using, 104

BUFFER, 420

Cascading BCD counters, 423–425

CASE, 190–192, 407–408, 419, 428, 432, 435,

458–459, 691

code converter, 655

comments, 106–107

comparator, 653

complete clock, 709

COMPONENT(s), 273–274, 420, 425, 432, 708–709

declarion, 274

graphic representation using, 274

HDL circuits with multiple, 277–280

library, 273–275

concurrent assignment statement, 104

conditional signal assignment statement, 647

CONSTANT, 345

converter, 655

D latch, 271

Decoder(s), 641

driver, 643–644

full-step sequence, 683

decoding the MOD-5 counter, 419

data types, common, 180

demultiplexers, 650–651

design file, 183

digital clock project, 693–710 (see also HDL)

DOWNTO, 339, 342, 691

ELSIF, 187–190

encoder, 647–648

END, 104, 408

ENTITY, 104, 179, 183, 278, 341, 407–408, 419–420,

423–424

enumerated type, 428

essential elements in, 104

EVENT, 276, 278, 408

flip-flops, 275–277

JK flip-flop, 274–275

MOD-8 ripple counter, 278–279

simulation, 276

FOR loop, 347

four-bit adder, 342–343

frequency counter project, 710–714 (see also HDL)

full adder, single-bit, 347

full-featured counter, 414–415

GENERATE statement, 346–348

IF/THEN/ELSE, 187, 428, 435, 644, 653

IN, 179

INTEGER, 180, 187, 411, 415, 643–644

intermediate signals in, 117

iterative loop, 347

JK flip-flop, 275

simulation, 276

keypad encoder project (HDL), 687–693

(see also HDL)

simulation, 693

solution, 691–693

LIBRARY, 647–648

components, 273–275

libraries, 180

libraries of parameterized modules, 347–348

local signals, 106–107

LPMs, 348

macrofunctions, 180

magnitude comparator, 653

megafunctions, 348

multiplexers, 650–651

MOD-5 counter, 408

MOD-6 counter, 699, 708

graphic block symbols, 705

simulation, 700

MOD-8 counter, 682

simulation, 682

MOD-10 counter, 700–701, 708

MOD-12 counter, 703–705

graphic block symbols, 705

simulation, 705

MOD-60 counter, 708

MOD-100 BCD counter, 424

module integration, 708–710

NAND latch, 271

nonretriggerable one-shot, 463

objects, 180

one-shots, 462–464

simulation, 464, 467

OR, 342

PACKAGE, 345

PISO register, 456

PORT, 104

MAP, 275, 280, 420, 425, 432, 710

PROCESS, 187, 275–276, 278, 407–408, 411,

414–415, 419, 435, 459, 466, 643–644, 653, 691,

703–704

RANGE, 187, 411

retriggerable, edge-triggered one-shot, 466–467

ring counter, 460–461

ripple-up counter (MOD-8), 278–279

SELECT, 182

sensitivity list, 187

SIGNAL, 106, 184, 276, 279, 339, 407–408,

643–644, 704

simulation of full-featured counter, 415

single-bit full adder, 347

SISO register, 454–455

stepper driver, 685

simulation testing, 686

stepper motor driver project, 679–686 (see also HDL)

state descriptions in, 407–408

state machine, simple, 428–429

STD_LOGIC, 180, 274

values, 181

STD_LOGIC_VECTOR, 180

traffic light controller, 432–435

truth tables, 182–184

concatenating, 182–183

selected signal assignments, 182–184

TYPE, 428

VARIABLE, 275–276, 407–408, 466, 643–644, 703–704

WHEN, 641, 647–648

WITH, 182

VLSI (very large scale integration), 154–155, 489

Volatile memory, 788

Voltage

comparators, 554–556

controlled oscillator, linear (VCO), 758

to frequency ADC, 758

level translator, 553

levels, invalid, 494–495

parameters for digital ICs, 490–491

INDEX 939

TOCCMI02_0131725793.QXD 12/21/05 10:27 PM Page 939

940 INDEX

W
Wave-drive sequence (HDL stepper-motor), 680

Wired-AND connection, 535–536

Word, 37–39

size, 39

Write cycle, 255

address setup time, 820

data hold time, 820

data setup time, 820

time, 820

Write operation

CPU, 794

defined, 788

RAM, 816

Z
Zero

count, 12

insertion force socket (ZIF), 172

TOCCMI02_0131725793.QXD 12/21/05 10:27 PM Page 940

x = A + BA

B

OR Gate

A

B

x = AB

x = A ⊕ B
 = AB + ABA

B

A

B

x = A ⊕ B = AB + AB

x = AB
A

B

x = A + BA

B

AND Gate

XOR

NOR Gate

NAND Gate

XNOR

LOGIC GATE SYMBOLS

A
0
0
1
1

B
0
1
0
1

0
1
1
1

OR
A + B

NOR
A + B

1
0
0
0

AND
A · B

0
0
0
1

NAND
A · B

1
1
1
0

 A ⊕ B
XOR

 A ⊕ B
XNOR

0
1
1
0

1
0
0
1

LOGIC GATE TRUTH TABLES

BOOLEAN THEOREMS

 1.

 4.

 7.

 10.

13a.

15a.

17.

x · 0 = 0

x · x = 0

x + x = x

x · y = y · x

x(y + z) = xy + xz

x + xy = x + y

xy = x + y

 x · 1 = x

 x + 0 = x

 x + x = 1

 x + (y + z) = (x + y) + z = x + y + z

 (w + x) (y + z) = wy + xy + wz + xz

 x + xy = x + y

 x · x = x

 x + 1 = 1

 x + y = y + x

 x(yz) = (xy)z = xyz

 x + xy = x

 x + y = x y

 3.

 6.

 9.

12.

14.

16.

 2.

 5.

 8.

 11.

13b.

15b.

TOCCME01_0131725793.QXD 12/22/2005 09:06 PM Page 2

CLEAR
Q

Q

Q

S

C

Q

(Alternate symbol)

SET

Normally
low

S
0
1
0
1

C
0
0
1
1

 Q
No change
Q = 1
Q = 0
Invalid

Q

S

C

Q

(Alternate symbol)

CLEAR
Q

Q
SET

Normally
high

S
0
1
0
1

C
0
0
1
1

 Q
Invalid
Q = 0
Q = 1
No change

Q

S

CLK

C

Q
S
0
1
0
1

C
0
0
1
1

CLK Q
Q0 (no change)
1
0
Ambiguous

↓ of CLK has no effect on Q

Q

J

CLK

K

Q
J
0
1
0
1

K
0
0
1
1

CLK Q
Q0 (no change)
1
0
Q0 (toggles)

↓ of CLK has no effect on Q

Q

D

CLK

Q

↓ of CLK has no effect on Q

D
0
1

Q
0
1

CLK

⎯Q

D

EN

Q EN
0
1
1

D
X
0
1

 Q*
No change
0
1

*Q follows D input
while EN is HIGH

Q

J

CLK

K

Q

CLR

PRE

PRE
1
1
0
0

CLR
1
0
1
0

 Q*
No effect; FF can respond to J, K and CLK
Q = 0 independent of J, K, CLK
Q = 1 independent of J, K, CLK
Ambiguous (not used)

*CLK can be in any state

FLIP-FLOPS

NOR Latch

NAND Latch

Clocked J-K

Clocked D

D Latch

Clocked S-C

Asynchronous
Inputs

↓
↓
↓
↓

↓
↓
↓
↓

↓
↓

TOCCME01_0131725793.QXD 12/22/2005 09:06 PM Page 3

	Front Cover
	Title Page
	Copyright Page
	Dedication Page
	Preface
	Brief Contents
	CONTENTS
	ch01
	ch02
	ch03
	ch04
	ch05
	ch06
	ch07
	ch08
	ch09
	ch10
	ch11
	ch12
	ch13

	CHAPTER 01 Introductory Concepts
	CHAPTER 02 Number Systems and Codes
	CHAPTER 03 Describing Logic Circuits
	CHAPTER 04 Combinational Logic Circuits
	CHAPTER 05 Flip-Flops and Related Devices
	CHAPTER 06 Digital Arithmetic:Operations and Circuits
	CHAPTER 07 Counters and Registers
	CHAPTER 08 Integrated-Circuit Logic Families
	CHAPTER 09 MSI Logic Circuits
	CHAPTER 10 Digital System Projects Using HDL
	CHAPTER 11 Interfacing with the Analog World
	CHAPTER 12 Memory Devices
	CHAPTER 13 Programmable Logic DeviceArchitectures
	Glossary
	ANSWERS to Selected Problems
	ch01-02
	ch03
	ch04
	ch05
	ch06-07
	ch08-09
	ch10
	ch11
	ch12-13

	Index of ICs
	INDEX
	A
	B
	C
	D
	E
	F-G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U-V
	W-Z

	Quick Reference Pages

