

E M B E D D E D S Y S TE M S :

INTRODUCTION TO
ARM®CORTEX � -M

MICROCONTROLLERS

Volume 1
Fifth Edition
June 2014

Jonathan W. Valvano

Fifth edition
2nd printing
June 2014

ARM and uVision are registered trademarks of ARM Limited.
Cortex and Keil are trademarks of ARM Limited.
Stellaris and Tiva are registered trademarks Texas Instruments.
Code Composer Studio is a trademark of Texas Instruments.
All other product or service names mentioned herein are the trademarks of their respective owners.

In order to reduce costs, this college textbook has been self-published. For more
information about my classes, my research, and my books, see
http://users.ece.utexas.edu/~valvano/

For corrections and comments, please contact me at: valvano@mail.utexas.edu. Please
cite this book as: J. W. Valvano, Embedded Systems: Introduction to
ARM ® Cortex � -M Microcontrollers, Volume 1,
http://users.ece.utexas.edu/~valvano/, ISBN: 978-1477508992.

Copyright © 2014 Jonathan W. Valvano
All rights reserved. No part of this work covered by the copyright herein may be
reproduced, transmitted, stored, or used in any form or by any means graphic,
electronic, or mechanical, including but not limited to photocopying, recording,
scanning, digitizing, taping, web distribution, information networks, or information
storage and retrieval, except as permitted under Section 107 or 108 of the 1976 United
States Copyright Act, without the prior written permission of the publisher.
ISBN-13: 978-1477508992
ISBN-10: 1477508996

Table of Contents

Preface to the Fifth Edition
Preface

Acknowledgements
1. Introduction to Computers and Electronics

1.1. Review of Electronics
1.2. Binary Information Implemented with MOS transistors
1.3. Digital Logic
1.4. Digital Information stored in Memory
1.5. Numbers
1.6. Character information
1.7. Computer Architecture
1.8. Flowcharts and Structured Programming
1.9. Concurrent and Parallel Programming
1.10. Exercises

2. Introduction to Embedded Systems
2.1. Embedded Systems
2.2. Applications Involving Embedded Systems
2.3. Product Life Cycle
2.4. Successive Refinement
2.5. Quality Design
2.5.1. Quantitative Performance Measurements
2.5.2. Qualitative Performance Measurements
2.5.3. Attitude

2.6. Debugging Theory
2.7. Switch and LED Interfaces
2.8. Introduction to C
2.9. Exercises

3. Introduction to the ARM � Cortex � -M Processor
3.1. Cortex � -M Architecture
3.1.1. Registers
3.1.2. Reset
3.1.3. Memory
3.1.4. Operating Modes
3.2. The Software Development Process
3.3. ARM Cortex-M Assembly Language
3.3.1. Syntax
3.3.2. Addressing Modes and Operands
3.3.3. Memory Access Instructions
3.3.4. Logical Operations
3.3.5. Shift Operations
3.3.6. Arithmetic Operations
3.3.7. Stack
3.3.8. Functions and Control Flow
3.3.9. Assembler Directives
3.3.10. First Example Project
3.4. Simplified Machine Language Execution
3.5. CISC versus RISC
3.6. Details Not Covered in this Book
3.7. Exercises

4. Introduction to Input/Output

4.1. Texas Instruments Microcontroller I/O pins
4.1.1. Texas Instruments LM3S1968 I/O pins
4.1.2. Texas Instruments TM4C123 LaunchPad I/O pins
4.1.3. Texas Instruments TM4C1294 Connected LaunchPad I/O
pins
4.2. Basic Concepts of Input and Output Ports
4.2.1. I/O Programming and the Direction Register
4.2.2. Switch Inputs and LED Outputs
4.3. Phase-Lock-Loop
4.4. SysTick Timer
4.5. Standard I/O Driver and the printf Function
4.6. Debugging monitor using an LED
4.7. Performance Debugging
4.7.1. Instrumentation
4.7.2. Measurement of Dynamic Efficiency
4.8. Exercises
4.9. Lab Assignments

5. Modular Programming
5.1. C Keywords and Punctuation
5.2. Modular Design using Abstraction
5.2.1. Definition and Goals
5.2.2. Functions, Procedures, Methods, and Subroutines
5.2.3. Dividing a Software Task into Modules
5.2.4. How to Draw a Call Graph
5.2.5. How to Draw a Data Flow Graph
5.2.6. Top-down versus Bottom-up Design
5.3. Making Decisions

5.3.1. Conditional Branch Instructions
5.3.2. Conditional if-then Statements
5.3.3. switch Statements
5.3.4. While Loops
5.3.5. Do-while Loops
5.3.6. For Loops
5.4. *Assembly Macros
5.5. *Recursion
5.6. Writing Quality Software
5.6.1. Style Guidelines
5.6.2. Comments
5.6.3. Inappropriate I/O and Portability
5.7. How Assemblers Work
5.8. Functional debugging
5.8.1. Stabilization
5.8.2. Single Stepping
5.8.3. Breakpoints with Filtering
5.8.4. Instrumentation: Print Statements
5.8.5. Desk checking
5.9. Exercises
5.10. Lab Assignments

6. Pointers and Data Structures
6.1. Indexed Addressing and Pointers
6.2. Arrays
6.3. Strings
6.4. Structures
6.5. Finite State Machines with Linked Structures

6.5.1. Abstraction
6.5.2. Moore Finite State Machines
6.5.3. Mealy Finite State Machines
6.6. *Dynamically Allocated Data Structures
6.6.1. *Fixed Block Memory Manager
6.6.2. *Linked List FIFO
6.7. Matrices and Graphics
6.8. *Tables
6.9. Functional Debugging
6.9.1. Instrumentation: Dump into Array without Filtering
6.9.2. Instrumentation: Dump into Array with Filtering.
6.10. Exercises
6.11. Lab Assignments

7. Variables, Numbers, and Parameter Passing
7.1. Local versus global
7.2. Stack rules
7.3. Local variables allocated on the stack
7.4. Stack frames
7.5. Parameter Passing
7.5.1. Parameter Passing in C
7.5.2. Parameter Passing in Assembly Language
7.5.3. C Compiler Implementation of Local and Global Variables
7.6. Fixed-point Numbers
7.7. Conversions
7.8. *IEEE Floating-point numbers
7.9. Exercises
7.10. Lab Assignments

8. Serial and Parallel Port Interfacing
8.1. General Introduction to Interfacing
8.2. Universal Asynchronous Receiver Transmitter (UART)
8.2.1. Asynchronous Communication
8.2.2. LM3S/TM4C UART Details
8.2.3. UART Device Driver
8.3. Synchronous Serial Interface, SSI
8.4. Nokia 5110 Graphics LCD Interface
8.5. Scanned Keyboards
8.6. Binary actuators
8.6.1. Interface
8.6.2. Electromagnetic and Solid State Relays
8.6.3. Solenoids
8.7. *Pulse-width modulation
8.8. *Stepper motors
8.9. Exercises
8.10. Lab Assignments

9. Interrupt Programming and Real-time Systems
9.1. I/O Synchronization
9.2. Interrupt Concepts
9.3. Interthread Communication and Synchronization
9.4. NVIC on the ARM Cortex-M Processor
9.5. Edge-triggered Interrupts
9.6. SysTick Periodic Interrupts
9.7. Timer Periodic Interrupts
9.8. Hardware debugging tools

9.9. Profiling
9.9.1 Profiling using a software dump to study execution pattern
9.9.2. Profiling using an Output Port
9.9.3. *Thread Profile
9.10. Exercises
9.11. Lab Assignments

10. Analog I/O Interfacing
10.1. Approximating continuous signals in the digital domain
10.2. Digital to Analog Conversion
10.3. Music Generation
10.4. Analog to Digital Conversion
10.4.1. LM3S/TM4C ADC details
10.4.2. ADC Resolution
10.5. Real-time data acquisition
10.6. Exercises
10.7. Lab Assignments

11. Communication Systems
11.1. Introduction
11.2. Reentrant Programming and Critical Sections
11.3. Producer-Consumer using a FIFO Queue
11.3.1. Basic Principles of the FIFO Queue
11.3.2. FIFO Queue Analysis
11.3.3. FIFO Queue Implementation
11.3.4. Double Buffer
11.4. Serial port interface using interrupt synchronization
11.5. *Distributed Systems.

11.6. Exercises
11.7. Lab Assignments
11.8. Best Practices

Appendix 1. Glossary
Appendix 2. Solutions to Checkpoints

Appendix 3. How to Convert Projects from Keil to CCS
Appendix 4. Assembly Reference
Index

Preface to the Fifth Edition
This fifth edition includes the new TM4C1294-based LaunchPad. Most of the code in the book is
specific for the TM4C123-based LaunchPad. However, the book website includes corresponding
example projects for the LM3S811, LM3S1968, LM4F120, and TM4C1294,which are ARM ®
Cortex™-M microcontrollers from Texas Instruments. There are now two lost-cost development
platforms called Tiva LaunchPad. The EK-TM4C123GXL LaunchPad retails for $12.99, and the EK-
TM4C1294XL Connected LaunchPad retails for $19.99. The various LM3S, LM4F and TM4C
microcontrollers are quite similar, so this book along with the example code on the web can be used
for any of these microcontrollers. Compared to the TM4C123, the new TM4C1294 microcontroller
runs faster, has more RAM, has more ROM, includes Ethernet, and has more I/O pins. This fifth
edition switches the syntax from C to the industry-standard C99.

Preface
Embedded systems are a ubiquitous component of our everyday lives. We interact with hundreds of
tiny computers every day that are embedded into our houses, our cars, our toys, and our work. As our
world has become more complex, so have the capabilities of the microcontrollers embedded into our
devices. The ARM ® Cortex™-M family represents a new class of microcontrollers much more
powerful than the devices available ten years ago. The purpose of this book is to present the design
methodology to train young engineers to understand the basic building blocks that comprise devices
like a cell phone, an MP3 player, a pacemaker, antilock brakes, and an engine controller.

This book is the first in a series of three books that teach the fundamentals of embedded systems as
applied to the ARM ® Cortex™-M family of microcontrollers. This first book is an introduction to
computers and interfacing focusing on assembly language and C programming. The second book
Embedded Systems: Real-Time Interfacing to ARM Cortex-M Microcontrollers focuses on
hardware/software interfacing and the design of embedded systems. The third book Embedded
Systems: Real-Time Operating Systems for ARM Cortex-M Microcontrollers is an advanced book
focusing on operating systems, high-speed interfacing, control systems, and robotics. The third
volume could also be used for professionals wishing to design or deploy a real-time operating system
onto an ARM platform. This first book is an introductory book that could be used at the college level
with little or no prerequisites.

An embedded system is a system that performs a specific task and has a computer embedded inside. A
system is comprised of components and interfaces connected together for a common purpose. This
book is an introduction to embedded systems. Specific topics include microcontrollers, fixed-point
numbers, the design of software in assembly language and C, elementary data structures, programming
input/output including interrupts, analog to digital conversion, digital to analog conversion.

In general, the area of embedded systems is an important and growing discipline within electrical and
computer engineering. In the past, the educational market of embedded systems has been dominated by
simple microcontrollers like the PIC, the 9S12, and the 8051. This is because of their market share,
low cost, and historical dominance. However, as problems become more complex, so must the
systems that solve them. A number of embedded system paradigms must shift in order to accommodate
this growth in complexity. First, the number of calculations per second will increase from
millions/sec to billions/sec. Similarly, the number of lines of software code will also increase from
thousands to millions. Thirdly, systems will involve multiple microcontrollers supporting many
simultaneous operations. Lastly, the need for system verification will continue to grow as these
systems are deployed into safety critical applications. These changes are more than a simple growth
in size and bandwidth. These systems must employ parallel programming, high-speed
synchronization, real-time operating systems, fault tolerant design, priority interrupt handling, and
networking. Consequently, it will be important to provide our students with these types of design
experiences. The ARM platform is both low cost and provides the high-performance features
required in future embedded systems. In addition, the ARM market share is large and will continue to
grow. Furthermore, students trained on the ARM will be equipped to design systems across the
complete spectrum from simple to complex. The purpose of writing these three books at this time is to
bring engineering education into the 21st century.

This book employs many approaches to learning. It will not include an exhaustive recapitulation of
the information in data sheets. First, it begins with basic fundamentals, which allows the reader to
solve new problems with new technology. Second, the book presents many detailed design examples.
These examples illustrate the process of design. There are multiple structural components that assist
learning. Checkpoints, with answers in the back, are short easy to answer questions providing
immediate feedback while reading. Simple homework, with answers to the odd questions on the web,
provides more detailed learning opportunities. The book includes an index and a glossary so that
information can be searched. The most important learning experiences in a class like this are of
course the laboratories. Each chapter has suggested lab assignments. More detailed lab descriptions
are available on the web. Specifically for this volume, look at the lab assignments for EE319K. For
Volume 2, refer to the EE445L labs, and for Volume 3, look at the lab assignments for
EE445M/EE380L.6.

There is a web site accompanying this book http://users.ece.utexas.edu/~valvano/arm. Posted here
are ARM Keil™ uVision® and Texas Instruments Code Composer Studio™ projects for each of the
example programs in the book. You will also find data sheets and Excel spreadsheets relevant to the
material in this book.

The book will cover embedded systems for ARM ® Cortex™-M microcontrollers with specific
details on the TM4C123 and TM4C1294. The web site includes corresponding examples for the
LM3S811, LM3S1968, and LM3S8962. In these books the terms LM3S and TM4C will refer to
families of microcontrollers with the Texas Instruments Stellaris ® and Tiva ® lines. Although the
solutions are specific for the LM3S and TM4C families, it will be possible to use these books for
other ARM derivatives.

Acknowledgements
I owe a wonderful debt of gratitude to Daniel Valvano. He wrote and tested most of the software
examples found in these books. Secondly, he created and maintains the example web site,
http://users.ece.utexas.edu/~valvano/arm. Lastly, he meticulously proofread this manuscript.

Many shared experiences contributed to the development of this book. First I would like to
acknowledge the many excellent teaching assistants I have had the pleasure of working with. Some of
these hard-working, underpaid warriors include Pankaj Bishnoi, Rajeev Sethia, Adson da Rocha,
Bao Hua, Raj Randeri, Santosh Jodh, Naresh Bhavaraju, Ashutosh Kulkarni, Bryan Stiles, V.
Krishnamurthy, Paul Johnson, Craig Kochis, Sean Askew, George Panayi, Jeehyun Kim, Vikram
Godbole, Andres Zambrano, Ann Meyer, Hyunjin Shin, Anand Rajan, Anil Kottam, Chia-ling Wei,
Jignesh Shah, Icaro Santos, David Altman, Nachiket Kharalkar, Robin Tsang, Byung Geun Jun, John
Porterfield, Daniel Fernandez, Deepak Panwar, Jacob Egner, Sandy Hermawan, Usman Tariq,
Sterling Wei, Seil Oh, Antonius Keddis, Lev Shuhatovich, Glen Rhodes, Geoffrey Luke, Karthik
Sankar, Tim Van Ruitenbeek, Raffaele Cetrulo, Harshad Desai, Justin Capogna, Arindam Goswami,
Jungho Jo, Mehmet Basoglu, Kathryn Loeffler, Evgeni Krimer, Nachiappan Valliappan, Razik Ahmed,
Sundeep Korrapati, Peter Garatoni, Manan Kathuria, Jae Hong Min, Pratyusha Nidamaluri, Dayo
Lawal, Aditya Srikanth, Kurt Fellows, James Beecham, Austin Blackstone, Brandon Carson, Kin
Hong Mok, Omar Baca, Sam Oyetunji, Zack Lalanne, Nathan Quang Minh Thai, Paul Fagen, Zhuoran
Zhao, Sparsh Singhai, Saugata Bhattacharyya, Chinmaya Dattathri, Emily Ledbetter, Kevin Gilbert,
Siavash Kamali, Yen-Kai Huang, Michael Xing, Katherine Olin, Mitchell Crooks, Prachi Gupta,
Mark Meserve, Sourabh Shirhatti, Dylan Zika, Kelsey Ball, Greg Cerna, Sabine Francis, Ahmad El
Youssef, and Wooseok Lee. These teaching assistants have contributed greatly to the contents of this
book and particularly to its laboratory assignments. Since 1981, I estimate I have taught embedded
systems to over 5000 students. Spring 2014, Professor Yerraballi and I taught a massive open online
class (MOOC) based on this book. We had over 40,000 students register, and over 5,000 students
finished at least one lab on the hardware platform. We plan to rerun this MOOC Spring 2015. My
students have recharged my energy each semester with their enthusiasm, dedication, and quest for
knowledge. I have decided not to acknowledge them all individually. However, they know I feel
privileged to have had this opportunity.

Next, I appreciate the patience and expertise of my fellow faculty members here at the University of
Texas at Austin. From a personal perspective Dr. John Pearce provided much needed encouragement
and support throughout my career. In addition, Drs. John Cogdell, John Pearce, and Francis Bostick
helped me with analog circuit design. The book and accompanying software include many finite state
machines derived from the digital logic examples explained to me by Dr. Charles Roth. The
educational content presented in this book is result of the combined efforts of the entire teaching staff
of EE319K: Drs. Ramesh Yerraballi, Mattan Erez, Andreas Gerstlauer, Nina Telang, William Bard
and I. This team has created an educationally rich lab course that is both engaging and achievable for
the freshman engineer. Each time we teach EE319K, we create a capstone design experience centered
on a class competition. You can see descriptions and photos of our class design competitions at
http://users.ece.utexas.edu/~valvano/.

I have a special appreciation for all those who reviewed the first edition. Joe Bungo passed chapters
around to fellows at ARM. In particular, the suggestions and corrections from Chris Shore and Drew
Barbier were totally awesome. Cathy Wicks and Larissa Swanland from Texas Instruments supported
these books with money, development kits, and chips. Bill Bard and Ramesh Yerraballi gave valuable
feedback on how to make this book an effective teaching tool for freshmen. Austin Blackstone has
been a constant contributor to these books. In particular, he created and debugged the Code Composer
Studio™ versions of the example programs posted on the web.

Sincerely, I appreciate the valuable lessons of character and commitment taught to me by my parents
and grandparents. I recall how hard my parents and grandparents worked to make the world a better
place for the next generation. Most significantly, I acknowledge the love, patience and support of my
wife, Barbara, and my children, Ben Dan and Liz. In particular, Dan designed and tested most of the
LM3S and TM4C software presented in this book.

By the grace of God, I am truly the happiest man on the planet, because I am surrounded by these fine
people.

Jonathan W. Valvano

The true engineering experience occurs not with your eyes and ears, but rather with your
fingers and elbows. In other words, engineering education does not happen by listening in
class or reading a book; rather it happens by designing under the watchful eyes of a patient
mentor. So, go build something today, then show it to someone you respect!

Good luck

1. Introduction to Computers and Electronics
Chapter 1 objectives are to:

• Present brief reviews of electronics and Ohm’s Law
• Present a brief review of computer fundamentals
• Review digital logic and information
• Introduce software design using flowcharts

The overall objective of this book is to teach the fundamentals of embedded systems. It is an effective
approach to learn new techniques by doing them. But, the dilemma in learning a laboratory-based
topic like embedded systems is that there is a tremendous volume of details that first must be learned
before hardware and software systems can be designed. The approach taken in this book is to learn
by doing. One of the advantages of a bottom-up approach to learning is that the student begins by
mastering simple concepts. Once the student truly understands simple concepts, he or she can then
embark on the creative process of design, which involves putting the pieces together to create a more
complex system. True creativity is needed to solve complex problems using effective combinations of
simple components. Embedded systems afford an effective platform to teach new engineers how to
program for three reasons. First, there is no operating system. Thus, in a bottom-up fashion the student
can see, write, and understand all software running on a system that actually does something. Second,
embedded systems involve input/output that is easy for the student to touch, hear, and see. Third,
embedded systems are employed in many every-day products, motivating students by showing them
how electrical and computer engineering processes can be applied in the real world. Rather than
introduce the voluminous details in an encyclopedic fashion, the book is organized by basic concepts,
and the details are introduced as they are needed. We will start with simple systems and
progressively add complexity. The overriding themes for Chapters 1 and 2 will be to present the
organizational framework with which embedded systems will be designed. Chapter 3 explains how
the computer works. Chapter 4 is an introduction to I/O. Chapters 5, 6, and 7 present the details of
software development on an embedded system. Interfacing I/O devices to build embedded systems is
presented in Chapters 8, 9, 10, and 11.

1.1. Review of Electronics
Most readers of this book will have had some prior training in electronics. However, this brief
section will provide an overview of the electronics needed to understand electric circuits in this
book. Current (I) is defined as the movement of electrons. In particular, 1 ampere (A) of current is
6.241×1018 electrons per second, or one coulomb per second. Current is directional and measured at
one point as the number of electrons travelling per second. Current has an amplitude and a direction.
Because electrons are negatively charged, if the electrons are moving to the left, we define current as
flowing to the right. Voltage (V) is an electrical term representing the potential difference between
two points. The units of voltage are volts (V), and it is always measured as a difference. Voltage is
the electromotive force or potential to produce current. We will see two types of conducting media: a
wire and a resistor. Wires, made from copper, will allow current to freely flow, but forcing current
to flow through a resistor will require energy. The electrical property of a resistor is resistance in
ohms (Ω). Ideally, a wire is simply a resistor with a resistance of 0 Ω. The basic relation between
voltage, current, and resistance for a resistor is known as Ohm’s Law, which can be written three
ways:

V = I * R Voltage = Current * Resistance
I = V / R Current = Voltage / Resistance
R = V / I Resistance = Voltage / Current

The left side of Figure 1.1 shows a circuit element representation of a resistor, of resistance R.
Whenever we define voltage, we must clearly specify the two points across which the potential is
defined. Typically we label voltages with + and –, defining the voltage V as the potential to produce
current from the + down to the –. When defining current we draw an arrow signifying the direction of
the current. If the voltage V is positive, then the current I will be positive meaning the current is down
in this figure. However, because electrons have negative charge, the electrons are actually flowing
up. According to the passive sign convention, we define positive current as the direction of the flow
of positive charge (or the opposite direction of the flow of negative charge). The middle of Figure 1.1
shows a circuit with a 1 kΩ resistor placed across a 3.7 V battery. According to Ohm’s Law, 3.7 mA
of current will flow down across the resistor. In this circuit, current flows clockwise from the +
terminal of the battery, down across the resistor, and then back to the – terminal of the battery.

Figure 1.1. The voltage and current definitions; a circuit with a battery; and a
drawing of a resistor.

Checkpoint 1.1: There is 1 V across a resistor, and 2 mA is flowing. What is the resistance?

Checkpoint 1.2: There is 5V across a 100 Ω resistor. How much current is flowing?

Checkpoint 1.3: What happens if you place a wire directly from + terminal to the –terminal of a
battery?

There are two analogous physical scenarios that might help you understand the concept of voltage,
current, and resistance. The first analogy is flowing water through a pipe. We place a large reservoir
of water in a tower, connect the water through a pipe, and attach a faucet at the bottom of the pipe, see
Figure 1.2. In this case pressure is analogous to voltage, water flow is analogous to current, and fluid
resistance of the faucet is analogous to electrical resistance. Notice that water pressure is defined as
the potential to cause water to flow, and it is measured between two places. Pressure has a polarity,
and water flow has a direction. If the faucet is turned all the way off, its resistance is infinite, and no
water flows. If the faucet is turned all the way on, its resistance is not zero, but some finite amount.
As we turn the faucet we are varying the fluid resistance. The fluid resistance will determine the
amount of flow:

Flow = Pressure/Resistance

Figure 1.2. Three analogous physical systems demonstrating Ohm’s Law.

Checkpoint 1.4: If pressure is measured in Newtons/m2 (Pascal) and flow measured in m3/sec, what
are the units of fluid resistance?

A second analogy is heat flow across a solid. If we generate a temperature gradient across a solid,
heat will flow from the hot side to the cold side (right side of Figure 1.2). This solid could be a glass
window on a house or the wall of your coffee cup. In this case temperature gradient is analogous to
voltage, heat flow is analogous to current, and thermal resistance of the solid is analogous to
electrical resistance. Notice that potential is defined as the temperature difference between two
places. Heat flow also has a direction. If the coffee cup is made from metal, its thermal resistance is
low, lots of heat will flow, and the coffee cools off quickly. If the coffee cup is made of Styrofoam, its
resistance is high, little heat will flow, and the coffee remains hot for a long time. The thermal
resistance of the material the amount of flow:

Flow = (T1-T2)/Resistance
Checkpoint 1.5: If heat flow is measured in watts (Joules/sec) and temperature measured in ºC, what
are the units of thermal resistance?

The R-value of insulation put in the walls and ceiling of a house is usually given in units per square
area, e.g., m2∙ºC/W. The amount of heat flow across a wall is:

Flow = Area * (T1-T2)/R-value
Another important parameter occurring when current flows through a resistor is power. The power (P
in watts) dissipated in a resistor can be calculated from voltage (V in volts), current (I in amps), and
resistance (R in ohms). Interestingly, although voltage has a polarity (+ and –) and current has a
direction, power has neither a polarity nor a direction.

P = V * I Power = Voltage * Current
P = V2 / R Power = Voltage2 / Resistance
P = I2 * R Power = Current2 * Resistance

Checkpoint 1.6: There is 1 V across a resistor, and 2 mA is flowing. How much power is being
dissipated?

Checkpoint 1.7: There is 5V across a 100 Ω resistor. How much power is being dissipated?

The energy (E in joules) stored in a battery can be calculated from voltage (V in volts), current (I in
amps), and time (t in seconds). Energy has neither polarity nor direction.

E = V * I * t Energy = Voltage * Current * time
E = P * t Energy = Power * time

A switch is an element used to modify the behavior of the circuit (Figure 1.3). If the switch is
pressed, its resistance is 0, and current can flow across the switch. If the switch is not pressed, its
resistance is infinite, and no current will flow. In reality, the ON-resistance of a switch is less than
0.1Ω, but this is so close to zero, we can assume the ideal value of 0 in most cases. Similarly, the
OFF-resistance is actually greater than 100MΩ, but this is so close to infinity that we can again
assume the ideal value of infinity. The classic electrical circuit involves a battery, a light bulb
(modeled in this circuit as a 100Ω resistor), and a switch.

Figure 1.3. When the switch is open, no current can flow, and the bulb does not
emit light. When the switch is closed, 90 mA of current will flow, and the bulb
emits light.

Checkpoint 1.8: If the switch is on, how much power is being dissipated in the bulb?

There are a few basic rules that allow us to solve for voltages and currents within a circuit comprised
with batteries, switches, and resistors.

Current always flows in a loop. In Figure 1.3 when the switch is pressed, current flows out of the +
side of battery, across the switch, through the light and back to the – side of the battery. When there is
no loop, no current can flow. In Figure 1.3 when the switch is off, the loop is broken, and no current
will flow.

Kirchhoff's Voltage Law (KVL). The sum of the voltages around the loop is zero. For a battery, we
label the + and – sides exactly the way the battery is labeled. For a resistor, we label the current
arrow and the voltage + – like the left side of Figure 1.1. The important step is the direction of the
current arrow must match the polarity of the corresponding voltage. It is common practice to draw
arrows in the direction the currents actually flow, so the voltages will be positive. However,
sometimes we don’t know which way the current will flow, so we can just guess. If we happen to
guess wrong, both the current and voltage will calculate to be negative and the correct behavior will
still be obtained. We can think of the switch as a resistor of either 0 or infinity resistance, so it too
can be labeled with a current arrow and a voltage polarity. Figure 1.4 shows the light circuit redrawn
to show voltages and currents. As we are going around a circle and pass from + to –, we add that
voltage. However, if we pass across an element from – to + we subtract that voltage.

Figure 1.4. The voltages around a loop will sum to zero (KVL).

Kirchhoff's Current Law (KCL). The sum of the currents into a node equal the sum of the currents
leaving a node as shown in Figure 1.5. To solve circuits using KCL and KVL, the current arrow
across a resistor goes from the + voltage to the – voltage. Conversely, the current arrow across a
battery goes from the – voltage to the + voltage. This is the same thing as saying current comes out of
the battery’s + terminal and into the battery’s – terminal. At Node A, there is one incoming current and
one outgoing current. This is a simple but important fact that I1 = I2. At Node B, there is one incoming
current and two outgoing currents. Therefore, I3 = I4+I5. There are two currents into NodeC and two
currents out of NodeC; thus, I6+I7 = I8+I9.

Figure 1.5. The sum of the currents into a node will equal the sum of the
currents leaving (KCL).

Observation: If at all possible, draw the circuit so current flows down across the resistors and
switches. As a secondary rule have currents go left to right across resistors and switches.

Series resistance. If resistor R1 is in series with resistor R2, this combination behaves like one
resistor with a value equal to R1+R2. See Figure 1.6. This means if replace the two series resistors
in a circuit with one resistor at R= R1+R2, the behavior will be the same. The V equals V1+V2. By
KCL, the currents through the two resistors are the same. These two facts can be used to derive the
voltage divider rule
V2 = I*R2 = (V/R)*R2 = V*R2/(R1+R2)

Figure 1.6. The series combination of two resistors, R1 R2, is equivalent to one
resistor at R1+R2.

Checkpoint 1.9: Using Figure 1.6, assume I is 1mA, R1 is 1k Ω and R2 is 2k Ω , what is V?

Checkpoint 1.10: Using Figure 1.6, assume V is 6V, R1 is 1k Ω and R2 is 2k Ω , what is V2?

Parallel resistance. If resistor R1 is in parallel with resistor R2, this combination behaves like one
resistor with a value equal to

See Figure 1.7. This means we can replace the two parallel resistors in a circuit with one resistor at
R= R1*R2/(R1+R2). The voltages across R1 and R2 will be the same because of KVL. Due to KCL,
I=I1+I2. These facts can be used to derive the current divider rule
I1 = V/R1= (I*R)/R1 = I*(R1*R2/(R1+R2))/R1 = I*R2/(R1+R2)

I2 = V/R2= (I*R)/R2 = I*(R1*R2/(R1+R2))/R2 = I*R1/(R1+R2)

I = I1+I2

Figure 1.7. The parallel combination of two resistors, R1 R2, is equivalent to one
resistor at R1*R2/(R1+R2).

Checkpoint 1.11: Using Figure 1.7, assume I is 1mA, R1 is 2k Ω and R2 is 3k Ω , what is V?

Checkpoint 1.12: Using Figure 1.7, assume V is 6V, R1 is 2k Ω and R2 is 3k Ω , what is I2?

1.2. Binary Information Implemented with
MOS transistors
Information is stored on the computer in binary form. A binary bit can exist in one of two possible
states. In positive logic, the presence of a voltage is called the ‘1’, true, asserted, or high state. The
absence of a voltage is called the ‘0’, false, not asserted, or low state. Figure 1.8 shows the output of
a typical complementary metal oxide semiconductor (CMOS) circuit. The left side shows the
condition with a true bit at the output, and the right side shows a false at the output. The output of each
digital circuit consists of a p-type transistor “on top of” an n-type transistor. In digital circuits, each
transistor is essentially on or off. If the transistor is on, it is equivalent to a short circuit between its
two output pins. Conversely, if the transistor is off, it is equivalent to an open circuit between its
outputs pins.

Figure 1.8. A binary bit at the output is true if a voltage is present and false if the
voltage is 0.

Every family of digital logic is a little different, but on the Cortex-M microcontrollers from TI
powered with 3.3 V supply, a voltage between 2 and 5 V is considered high, and a voltage between 0
and 1.3 V is considered low, as drawn in Figure 1.9. Separating the two regions by 0.7 V allows
digital logic to operate reliably at very high speeds. The design of transistor-level digital circuits is
beyond the scope of this book. However, it is important to know that digital data exist as binary bits
and encoded as high and low voltages.

Figure 1.9. Mapping between analog voltage and the corresponding digital
meaning on the LM3S/TM4C.

If the information we wish to store exists in more than two states, we use multiple bits. A collection
of 2 bits has 4 possible states (00, 01, 10, and 11). A collection of 3 bits has 8 possible states (000,
001, 010, 011, 100, 101, 110, and 111). In general, a collection of n bits has 2n states. For example, a

byte contains eight bits, and is built by grouping eight binary bits into one object, as shown in Figure
1.10. Another name for a collection of eight bits is octet (octo is Latin and Greek meaning 8.)
Information can take many forms, e.g., numbers, logical states, text, instructions, sounds, or images.
What the bits mean depends on how the information is organized and more importantly how it is used.
This figure shows one byte in the state representing the binary number 01100111. Again, the output
voltage 3.3V means true or 1, and the output voltage of 0V means false or 0.

Figure 1.10. A byte is comprised of 8 bits, in this case representing the binary
number 01100111.

1.3. Digital Logic
In order to understand how the computer works, we will need some understanding of digital logic.
Transistors made with metal oxide semiconductors are called MOS. In the digital world MOS
transistors can be thought of as voltage controlled switches. Circuits made with p-type and n-type
MOS transistors are called complementary metal oxide semiconductors or CMOS. The 74HC04 is a
high-speed CMOS NOT gate, as shown in Figure 1.11. There are just a few rules one needs to know
for understanding how CMOS transistor-level circuits work. Each transistor acts like a switch
between its source and drain pins. In general, current can flow from source to drain across an active
p-type transistor, and no current will flow if the switch is open. From a first approximation, we can
assume no current flows into or out of the gate. For a p-type transistor, the switch will be closed
(transistor active) if its gate is low. A p-type transistor will be off (its switch is open) if its gate is
high.

Figure 1.11. CMOS implementation of a NOT gate.

The gate on the n-type works in a complementary fashion, hence the name complementary metal oxide
semiconductor. For an n-type transistor, the switch will be closed (transistor active) if its gate is high.
An n-type transistor will be off (its switch is open) if its gate is low. Therefore, consider the two
possibilities for the circuit in Figure 1.11. If the input A is high (+3.3V), then the p-type transistor is
off and the n-type transistor is active. The closed switch across the source-drain of the n-type
transistor will make the output low (0V). Conversely, if A is low (0V), then p-type transistor is active
and the n-type transistor is off. The closed switch across the source-drain of the p-type transistor will
make the output high (+3.3V).

The AND, OR, EOR digital logic takes two inputs and produces one output; see Figure 1.12 and
Table 1.1. We can understand the operation of the AND gate by observing the behavior of its six
transistors. If both inputs A and B are high, both T3 and T4 will be active. Furthermore, if A and B
are both high, T1 and T2 will be off. In this case, the signal labeled ~(A&B) will be low because the
T3–T4 switch combination will short this signal to ground. If A is low, T1 will be active and T3 off.
Similarly, if B is low, T2 will be active and T4 off. Therefore if either A is low or if B is low, the
signal labeled ~(A&B) will be high because one or both of the T1, T2 switches will short this signal
to +3.3V. Transistors T5 and T6 create a logical complement, converting the signal ~(A&B) into the
desired result of A&B. We can use the and operation to extract, or mask, individual bits from a
value.

A B AND NAND OR NOR EOR Ex NOR

0 0 0 1 0 1 0 1
0 1 0 1 1 0 1 0
1 0 0 1 1 0 1 0
1 1 1 0 1 0 0 1
Symbol A&B ~

(A&B)
A|B ~(A|B) A^B ~(A^B)

Table 1.1. Two-input one-output logical operations.
We can understand the operation of the OR gate by observing the behavior of its six transistors. If
both inputs A and B are low, both T1 and T2 will be active. Furthermore, if A and B are both low, T3
and T4 will be off. In this case, the signal labeled ~(A|B) will be high because the T1–T2 switch
combination will short this signal to +3.3V. If A is high, T3 will be active and T1 off. Similarly, if B
is high, T4 will be active and T2 off. Therefore if either A is high or if B is high, the signal labeled ~
(A|B) will be low because one or both of the T3, T4 switches will short this signal to ground.
Transistors T5 and T6 create a logical complement, converting the signal ~(A|B) into the desired
result of A|B. We use the or operation to set individual bits.

When writing software we will have two kinds of logic operations. When operating on numbers
(collection of bits) we will perform logic operations bit by bit. In other words, the operation is
applied independently on each bit. In C, the logic operator for AND is & . For example, if number A
is 01100111 and number B is 11110000 then

A = 01100111
B = 11110000
A & B 01100000

The other type of logic operation occurs when operating on Boolean values. In C, the condition false
is represented by the value 0, and true is any nonzero value. In this case, if the Boolean A is
01100111 and B is 11110000 then both A and B are true. The standard value for true is the value1. In
C, the Boolean operator for AND is && . Performing Boolean operation yields

A = 01100111
B = 11110000
A && B 1

In C, the logic operator for OR is | . The operation is applied independently on each bit . E.g.,

A = 01100111
B = 11110000
A | B 11110111

In C, the Boolean operator for OR is || . Performing Boolean operation of true OR true yields true.
Although 1 is the standard value for a true, any nonzero value is considered as true.

A = 01100111
B = 11110000
A || B 1

Figure 1.12. Logical operations can be implemented with discrete transistors or
digital gates.

Checkpoint 1.13: Using just the 74HC gates shown in Figure 1.12, design a three-input one-output
logic function (called a three-input AND) such that the output is high if and only if all inputs are high.
In other words, the output is low if one or more inputs are low.

Checkpoint 1.14: Using just the 74HC gates shown in Figure 1.12, design a three-input one-output
logic function (called a three-input OR) such that the output is high if one or more inputs are high. In
other words, the output is low if and only if all inputs are low.

Observation: In C, (5&2) will be zero because (0101&0010)=0000. However, (5&&2) will be true,
because 5 means true, 2 means true, and true&&true is true..

Other convenient logical operators are shown as digital gates in Figure 1.13. The NAND operation is
defined by an AND followed by a NOT. If you compare the transistor-level circuits in Figures 1.12
and 1.13, it would be more precise to say AND is defined as a NAND followed by a NOT. Similarly,
the OR operation is a NOR followed by a NOT. The exclusive NOR operation implements the bit-
wise equals operation.

Figure 1.13. Other logical operations can also be implemented with MOS
transistors.

Boolean Algebra is the mathematical framework for designing digital logic. Some fundamental laws
of Boolean Algebra are listed below.

A & B = B & A Commutative Law
A | B = B | A Commutative Law
(A & B) & C = A & (B & C) Associative Law
(A | B) | C = A | (B | C) Associative Law
(A | B) & C = (A & C) | (B & C) Distributive Law
(A & B) | C = (A | C) & (B | C) Distributive Law
A & 0 = 0 Identity of 0
A | 0 = A Identity of 0
A & 1 = A Identity of 1
A | 1 = 1 Identity of 1
A | A = A Property of OR
A | (~A) = 1 Property of OR
A & A = A Property of AND
A & (~A) = 0 Property of AND
~(~A) = A Inverse
~(A | B) = (~A) & (~B) De Morgan’s Theorem
~(A & B) = (~A) | (~B) De Morgan’s Theorem

When multiple operations occur in a single expression, precedence is used to determine the order of
operation. Usually NOT is evaluated first, then AND, and then OR. This order can be altered using
parentheses.

There are multiple ways to symbolically represent the digital logic functions. For example, ~A A’
!A and ⌐A are five ways to represent NOT(A). One can use the pipe symbol (|) or the plus sign to
represent logical OR: A|B A+B. In this book we will not use the plus sign to represent OR to avoid
confusion with arithmetic addition. One can use the ampersand symbol (&) or a multiplication sign (*
• ×) to represent logical AND: A&B A•B. In this book we will not use the multiplication sign to
represent AND to avoid confusion with arithmetic multiplication. Another symbolic rule is adding a
special character (* n \) to a name to signify the signal is negative logic (0 means true and 1 means
false). These symbols do not signify an operation, but rather are part of the name used to clarify its
meaning. E.g., Enable* is a signal than means enable when the signal is zero.

Digital storage devices are used to make registers and memory. The simplest storage device is the
set-reset latch. One way to build a set-reset latch is shown on the left side of Figure 1.14. If the
inputs are S*=0 and R*=1, then the Q output will be 1. Conversely, if the inputs are S*=1 and R*=0,
then the Q output will be 0. Normally, we leave both the S* and R* inputs high. We make the signal S*
go low, then back high to set the latch, making Q=1. Conversely, we make the signal R* go low, then
back high to reset the latch, making Q=0. If both S* and R* are 1, the value on Q will be remembered
or stored. This latch enters an unpredictable mode when S* and R* are simultaneously low.

The gated D latch is also shown in Figure 1.14. The front-end circuits take a data input, D, and a
control signal, W, and produce the S* and R* commands for the set-reset latch. For example, if W=0,
then the latch is in its quiescent state, remembering the value on Q that was previously written.
However, if W=1, then the data input is stored into the latch. In particular, if D=1 and W=1, then S*=0
and R*=1, making Q=1. Furthermore, if D=0 and W=1, then S*=1 and R*=0, making Q=0. So, to use
the gated latch, we first put the data on the D input, next we make W go high, and then we make W go
low. This causes the data value to be stored at Q. After W goes low, the data does not need to exist at
the D input anymore. If the D input changes while W is high, then the Q output will change
correspondingly. However, the last value on the D input is remembered or latched when the W falls,
as shown in Table 1.2.

The D flip-flop, shown on the right of Figure 1.14, can also be used to store information. D flip-flops
are the basic building block of RAM and registers on the computer. To save information, we first
place the digital value we wish to remember on the D input, and then give a rising edge to the clock
input. After the rising edge of the clock, the value is available at the Q output, and the D input is free
to change. The operation of the clocked D flip-flop is defined on the right side of Table 1.2. The
74HC374 is an 8-bit D flip-flop, such that all 8 bits are stored on the rising edge of a single clock.
The 74HC374 is similar in structure and operation to a register, which is high-speed memory inside
the processor. If the gate (G) input on the 74HC374 is high, its outputs will be HiZ (floating), and if
the gate is low, the outputs will be high or low depending on the stored values on the flip-flop. The D
flip-flops are edge-triggered, meaning that changes in the output occur at the rising edge of the input
clock.

Figure 1.14. Digital storage elements.

D W Q D clock Q
0 0 Qold 0 0 Qold

1 0 Qold 0 1 Qold

0 1 0 1 0 Qold

1 1 1 1 1 Qold

0 ↓ 0 0 ↑ 0
1 ↓ 1 1 ↑ 1

Table 1.2. D flip-flop operation. Qold is the value of the D input at the time of fall of W or rise of
clock.

The tristate driver, shown in Figure 1.15, can be used dynamically control signals within the
computer. It is called tristate because there are three possible outputs: high, low, and HiZ. The tristate
driver is an essential component from which computers are built. To activate the driver, we make its
gate (G*) low. When the driver is active, its output (Y) equals its input (A). To deactivate the driver,
we make its G* high. When the driver is not active, its output Y floats independent of A. We will also
see this floating state with the open collector logic, and it is also called HiZ or high impedance. The
HiZ output means the output is neither driven high nor low. The operation of a tristate driver is
defined in Table 1.3. The 74HC244 is an 8-bit tristate driver, such that all 8 bits are active or not
active controlled by a single gate. The 74HC374 8-bit D flip-flop includes tristate drivers on its
outputs. Normally, we can’t connect two digital outputs together. The tristate driver provides a way to
connect multiple outputs to the same signal, as long as at most one of the gates is active at a time.

Figure 1.15. A 1-bit tristate driver and an 8-bit tristate driver (G* is in negative
logic).

Table 1.3 describes how the tristate driver in Figure 1.15 works. Transistors T1 and T2 create the
logical complement of G*. Similarly, transistors T3 and T4 create the complement of A. An input of
G*=0 causes the driver to be active. In this case, both T5 and T8 will be on. With T5 and T8 on, the
circuit behaves like a cascade of two NOT gates, so the output Y equals the input A. However, if the
input G*=1, both T5 and T8 will be off. Since T5 is in series with the +3.3V, and T8 in series with
the ground, the output Y will be neither high nor low. I.e., it will float.

A G* T1 T2 T3 T4 T5 T6 T7 T8 Y
0 0 on off on off on off on on 0
1 0 on off off on on on off on 1
0 1 off on on off off off on off HiZ
1 1 off on off on off on off off HiZ

Table 1.3. Tristate driver operation. HiZ is the floating state, such that the output is not high or
low.

The output of an open collector gate, drawn with the ‘×’, has two states low (0V) and HiZ (floating)
as shown in Figure 1.16. Consider the operation of the transistor-level circuit for the 74HC05. If A is
high (+3.3V), the transistor is active, and the output is low (0V). If A is low (0V), the transistor is off,
and the output is neither high nor low. In general, we can use an open collector NOT gate to switch
current on and off to a device, such as a relay, a light emitting diode (LED), a solenoid, or a small
motor. The 74HC05, the 74LS05, the 7405, and the 7406 are all open collector NOT gates. 74HC04
is high-speed CMOS and can only sink up to 4 mA when its output is low. Since the 7405 and 7406
are transistor-transistor-logic (TTL) they can sink more current. In particular, the 7405 has a
maximum output low current (IOL) of 16 mA, whereas the 7406 has a maximum IOL of 40 mA.

Figure 1.16. Two transistor implementations of an open collector NOT gate.

In the computer, we can build an 8-bit storage element, shown logically as Figure 1.10, by combining
8 flip-flops. This basic storage element is called a register, as shown in Figure 1.17. A bus is a
collection of wires used to pass data from one place to another. In this circuit, the signals D7–D0
represent the data bus. Registers on the Tiva ® microcontrollers are 32-bits wide, but in this
example we show an 8-bit register. We call it storage because as long the circuit remains powered,
the digital information represented by the eight voltages Q7–Q0 will be remembered. There are two
operations one performs on a register: write and read. To perform a write, one first puts the desired
information on the 8 data bus wires (D7–D0). As you can see from Figure 1.17, these data bus signals
are present on the D inputs of the 8 flip-flops. Next, the system pulses the Write signal high then low.
This Write pulse will latch or store the desired data into the 8 flip-flops. The read operation will
place a copy of the register information onto the data bus. Notice the gate signals of the tristate
drivers are negative logic. This means if the Read* signal is high, the tristate drivers are off, and this
register does not affect signals on the bus. However, the read operation occurs by setting the Read*
signal low, which will place the register data onto the bus.

Figure 1.17. Digital logic implementation of a register.

1.4. Digital Information stored in Memory
Memory is a collection of hardware elements in a computer into which we store information, as
shown in Figure 1.18. For most computers in today’s market, each memory cell contains one byte of
information, and each byte has a unique and sequential address. The memory is called byte-
addressable because each byte has a separate address. The address of a memory cell specifies its
physical location, and its content is the data. When we write to memory, we specify an address and 8,
16, or 32 bits of data, causing that information to be stored into the memory. Typically data flows
from processor into memory during a write cycle. When we read from memory we specify an
address, causing 8, 16, or 32 bits of data to be retrieved from the memory. Typically data flows from
memory into the processor during a read cycle. Read Only Memory, or ROM, is a type of memory
where the information is programmed or burned into the device, and during normal operation it only
allows read accesses. Random Access Memory (RAM) is used to store temporary information, and
during normal operation we can read from or write data into RAM. The information in the ROM is
nonvolatile, meaning the contents are not lost when power is removed. In contrast, the information in
the RAM is volatile, meaning the contents are lost when power is removed. The system can quickly
and conveniently read data from a ROM. It takes a comparatively long time to program or burn data
into a ROM. Writing to Flash ROM is a two-step process. First, the ROM is erased, causing all the
bits to become 1. Second, the system writes zeroes into the ROM as needed. Each of these two steps
requires around 1 ms to complete. In contrast, it is fast and easy to both read data from and write data
into a RAM. Writing to RAM is about 100,000 times faster (on the order of 10 ns). ROM on the other
hand is much denser than RAM. This means we can pack more ROM bits into a chip than we can pack
RAM bits. Most microcontrollers have much more ROM than RAM. The TM4C123 has 32,768 bytes
of RAM and 262,144 bytes of ROM.

Figure 1.18. Memory is a sequential collection of data storage elements.

A great deal of confusion exists over the abbreviations we use for large numbers. In 1998 the
International Electrotechnical Commission (IEC) defined a new set of abbreviations for the powers
of 2, as shown in Table 1.4. These new terms are endorsed by the Institute of Electrical and
Electronics Engineers (IEEE) and International Committee for Weights and Measures (CIPM) in
situations where the use of a binary prefix is appropriate. The confusion arises over the fact that the
mainstream computer industry, such as Microsoft, Apple, and Dell, continues to use the old
terminology. According to the companies that market to consumers, a 1 GHz is 1,000,000,000 Hz but
1 Gbyte of memory is 1,073,741,824 bytes. The correct terminology is to use the SI-decimal
abbreviations to represent powers of 10, and the IEC-binary abbreviations to represent powers of 2.
The scientific meaning of 2 kilovolts is 2000 volts, but 2 kibibytes is the proper way to specify 2048
bytes. The term kibibyte is a contraction of kilo binary byte and is a unit of information or computer
storage, abbreviated KiB.

1 KiB = 210 bytes = 1024 bytes
1 MiB = 220 bytes = 1,048,576 bytes
1 GiB = 230 bytes = 1,073,741,824 bytes

These abbreviations can also be used to specify the number of binary bits. The term kibibit is a
contraction of kilo binary bit, and is a unit of information or computer storage, abbreviated Kibit.

A mebibyte (1 MiB is 1,048,576 bytes) is approximately equal to a megabyte (1 MB is 1,000,000
bytes), but mistaking the two has nonetheless led to confusion and even legal disputes. In the
engineering community, it is appropriate to use terms that have a clear and unambiguous meaning.

Value SI
Decimal

SI
Decimal

 Value IEC
Binary

IEC
Binary

10001 k kilo- 10241 Ki kibi-
10002 M mega- 10242 Mi mebi-
10003 G giga- 10243 Gi gibi-
10004 T tera- 10244 Ti tebi-
10005 P peta- 10245 Pi pebi-
10006 E exa- 10246 Ei exbi-
10007 Z zetta- 10247 Zi zebi-
10008 Y yotta- 10248 Yi yobi-

Table 1.4. Common abbreviations for large numbers.

1.5. Numbers
To solve problems using a computer we need to understand numbers and what they mean. Each digit
in a decimal number has a place and a value. The place is a power of 10 and the value is selected
from the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. A decimal number is simply a combination of its digits
multiplied by powers of 10. For example

1984 = 1 • 103+ 9 • 102+ 8 • 101+ 4 • 100

Fractional values can be represented by using the negative powers of 10. For example,

273.15 = 2 • 102+ 7 • 101+ 3 • 100+ 1 • 10-1+ 5 • 10-2

In a similar manner, each digit in a binary number has a place and a value. In binary numbers, the
place is a power of 2, and the value is selected from the set {0, 1}. A binary number is simply a
combination of its digits multiplied by powers of 2. To eliminate confusion between decimal numbers
and binary numbers, we will put a subscript 2 after the number to mean binary. Because of the way
the microcontroller operates, most of the binary numbers in this book will have 8, 16, or 32 bits. An
8-bit number is called a byte, and a 16-bit number is called a halfword. For example, the 8-bit
binary number for 106 is

011010102 = 0 • 27+ 1 • 26+ 1 • 25+ 0 • 24+ 1 • 23+ 0 • 22+ 1 • 21+ 0 • 20 = 64+32+8+2

Checkpoint 1.15: What is the numerical value of the 8-bit binary number 111111112?

Binary is the natural language of computers but a big nuisance for us humans. To simplify working
with binary numbers, humans use a related number system called hexadecimal, which uses base 16.
Just like decimal and binary, each hexadecimal digit has a place and a value. In this case, the place is
a power of 16 and the value is selected from the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}. As
you can see, hexadecimal numbers have more possibilities for their digits than are available in the
decimal format; so, we add the letters A through F, as shown in Table 1.5. A hexadecimal number is a
combination of its digits multiplied by powers of 16. To eliminate confusion between various
formats, we will put a 0x or a $ before the number to mean hexadecimal. Hexadecimal representation
is a convenient mechanism for us humans to define binary information, because it is extremely simple
for humans to convert back and forth between binary and hexadecimal. Hexadecimal number system
is often abbreviated as “hex”. A nibble is defined as 4 binary bits, or one hexadecimal digit. Each
value of the 4-bit nibble is mapped into a unique hex digit, as shown in Table 1.5.

Hex
Digit

Decimal
Value

Binary
Value

0 0 0000
1 1 0001
2 2 0010

3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A or a 10 1010
B or b 11 1011
C or c 12 1100
D or d 13 1101
E or e 14 1110
F or f 15 1111

Table 1.5. Definition of hexadecimal representation.

For example, the hexadecimal number for the 16-bit binary 0001 0010 1010 1101 is

0x12AD = 1 • 163+ 2 • 162+ 10 • 161+ 13 • 160 = 4096+512+160+13 = 4781

Observation: In order to maintain consistency between assembly and C programs, we will use the 0x
format when writing hexadecimal numbers in this book.

Checkpoint 1.16: What is the numerical value of the 8-bit hexadecimal number 0xFE?

As illustrated in Figure 1.19, to convert from binary to hexadecimal we can:
1) Divide the binary number into right justified nibbles,
2) Convert each nibble into its corresponding hexadecimal digit.

Figure 1.19. Example conversion from binary to hexadecimal.

Checkpoint 1.17: Convert the binary number 010001112 to hexadecimal.

Checkpoint 1.18: Convert the binary number 1101101010112 to hexadecimal.

As illustrated in Figure 1.20, to convert from hexadecimal to binary we can:
1) Convert each hexadecimal digit into its corresponding 4-bit binary nibble,
2) Combine the nibbles into a single binary number.

Figure 1.20. Example conversion from hexadecimal to binary.

Checkpoint 1.19: Convert the hex number 0x49 to binary.

Checkpoint 1.20: Convert the hex number 0xBEEF to binary.

Checkpoint 1.21: How many binary bits does it take to represent 0x12345?

Computer programming environments use a wide variety of symbolic notations to specify the numbers
in hexadecimal. As an example, assume we wish to represent the binary number 011110102. Some
assembly languages use $7A. Some assembly languages use 7AH. The C language uses 0x7A. Patt’s
LC-3 simulator uses x7A. We will use the 0x7A format.

Precision is the number of distinct or different values. We express precision in alternatives, decimal
digits, bytes, or binary bits. Alternatives are defined as the total number of possibilities. For
example, an 8-bit number format can represent 256 different numbers. An 8-bit digital to analog
converter (DAC) can generate 256 different analog outputs. An 8-bit analog to digital converter
(ADC) can measure 256 different analog inputs. Table 1.6illustrates the relationship between
precision in binary bits and precision in alternatives. The operation [[x]] is defined as the greatest
integer of x . E.g., [[2.1]] [[2.9]] and [[3.0]] are all equal to 3. The Bytes column in Table 1.6
specifies how many bytes of memory it would take to store a number with that precision assuming the
data were not packed or compressed in any way.

Binary bits Bytes Alternatives
8 1 256
10 2 1024
12 2 4096
16 2 65536
20 3 1,048,576
24 3 16,777,216
30 4 1,073,741,824
32 4 4,294,967,296
n [[n/8]] 2n

Table 1.6. Relationship between bits, bytes and alternatives as units of precision.

Checkpoint 1.22: How many bytes of memory would it take to store a 60-bit number?

Decimal digits are used to specify precision of measurement systems that display results as numerical
values, as defined in Table 1.7. A full decimal digit can be any value 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. A
digit that can be either 0 or 1 is defined as a ½ decimal digit. The terminology of a ½ decimal digit
did not arise from a mathematical perspective of precision, but rather it arose from the physical width
of the light emitting diode (LED) or liquid crystal display (LCD) module used to display a blank or
’1’as compared to the width of a full digit. Notice in Figure 1.21 that the 7-segment modules capable
of displaying 0 to 9 are about 1 cm wide; however, the corresponding 2-segment modules capable of
being blank or displaying a 1 are about half as wide. Similarly, we define a digit that can be + or -
also as a half decimal digit, because it has 2 choices. A digit that can be 0,1,2,3 is defined as a ¾
decimal digit, because it is wider than a ½ digit but narrower than a full digit. We also define a digit
that can be -1, -0, +0, or +1 as a ¾ decimal digit, because it also has 4 choices. We use the
expression 4½ decimal digits to mean 20,000 alternatives and the expression 4¾ decimal digits to
mean 40,000 alternatives. The use of a ½ decimal digit to mean twice the number of alternatives or
one additional binary bit is widely accepted. On the other hand, the use of ¾ decimal digit to mean
four times the number of alternatives or two additional binary bits is not as commonly accepted. For
example, consider the two ohmmeters shown in Figure 1.21. As illustrated in the figure, both are set
to the 0 to 200 kΩ range. The 3½ digit ohmmeter has a resolution of 0.1 kΩ with measurements
ranging from 0.0 to 199.9 kΩ. On the other hand, the 4½ digit ohmmeter has a resolution of 0.01 kΩ
with measurements ranging from 0.00 to 199.99 kΩ.

Observation: A good rule of thumb to remember is 210 • n ≈ 103 • n.

Decimal
digits

Alternatives

3 1000
3½ 2000
3¾ 4000
4 10000
4½ 20000
4¾ 40000
n 10n

n½ 2•10n

n¾ 4•10n

Table 1.7. Definition of decimal digits as a unit of precision.

Figure 1.21. Two ohmmeters: the one on the left has 3½ decimal digits and the
one on the right has 4½.

Checkpoint 1.23: How many binary bits is equivalent to 3½ decimal digits?

Checkpoint 1.24: About how many decimal digits is 64 binary bits? You can answer this without a
calculator, just using the “rule of thumb”.

A byte contains 8 bits as shown in Figure 1.22, where each bit b7,...,b0 is binary and has the value 1
or 0. We specify b7 as the most significant bit or MSB, and b0 as the least significant bit or LSB. In
C, the specifier char means 8 bits or 1 byte.In C99, the specifiers uint8_t and int8_t mean 8 bits or
1 byte.In this book, we will use char to store ASCII characters and we will use uint8_t and int8_t
to store 8-bit numbers.

Figure 1.22. 8-bit binary format.

If a byte is used to represent an unsigned number, then the value of the number is

N = 128 • b7 + 64 • b6+ 32 • b5+ 16 • b4+ 8 • b3+ 4 • b2+ 2 • b1 + b0

Notice that the significance of bit n is 2n. There are 256 different unsigned 8-bit numbers. The
smallest unsigned 8-bit number is 0 and the largest is 255. For example, 00001010 2 is 8+2 or 10.
Other examples are shown in Table 1.8. The least significant bit can tell us if the number is even or
odd. Furthermore, if the bottom n bits are 0, the number is divisible by 2n.

binary hex Calculation decimal
00000000 2 0x00 0
01000001 2 0x41 64+1 65
00010110 2 0x16 16+4+2 22
10000111 2 0x87 128+4+2+1 135
11111111 2 0xFF 128+64+32+16+8+4+2+1 255

Table 1.8. Example conversions from unsigned 8-bit binary to hexadecimal and to decimal.
Checkpoint 1.25: Convert the binary number 011010112 to unsigned decimal.

Checkpoint 1.26: Convert the hex number 0x46 to unsigned decimal.

The basis of a number system is a subset from which linear combinations of the basis elements can be
used to construct the entire set. The basis represents the “places” in a “place-value” system. For
positive integers, the basis is the infinite set {1, 10, 100, …}, and the “values” can range from 0 to 9.
Each positive integer has a unique set of values such that the dot-product of the value vector times the
basis vector yields that number. For example, 2345 is the dot-product (…, 2,3,4,5) • (…,
1000,100,10,1), which is 2*1000+3*100+4*10+5. For the unsigned 8-bit number system, the basis
elements are

{1, 2, 4, 8, 16, 32, 64, 128}

The values of a binary number system can only be 0 or 1. Even so, each 8-bit unsigned integer has a
unique set of values such that the dot-product of the values times the basis yields that number. For
example, 69=0x45is (0,1,0,0,0,1,0,1) � (128,64,32,16,8,4,2,1), which equals
0*128+1*64+0*32+0*16+0*8+1*4+0*2+1*1. Conveniently, there is no other set of 0’s and 1’s, such
that set of values multiplied by the basis is 69. In other words, each 8-bit unsigned binary
representation of the values 0 to 255 is unique.

One way for us to convert a decimal number into binary is to use the basis elements. The overall
approach is to start with the largest basis element and work towards the smallest. More precisely, we
start with the most significant bit and work towards the least significant bit. One by one, we ask
ourselves whether or not we need that basis element to create our number. If we do, then we set the
corresponding bit in our binary result and subtract the basis element from our number. If we do not
need it, then we clear the corresponding bit in our binary result. We will work through the algorithm
with the example of converting 100 to 8-bit binary, see Table 1.9. We start with the largest basis
element (in this case 128) and ask whether or not we need to include it to make 100? Since our
number is less than 128, we do not need it, so bit 7 is zero. We go the next largest basis element, 64
and ask, “do we need it?” We do need 64 to generate our 100, so bit 6 is one and we subtract 100
minus 64 to get 36. Next, we go the next basis element, 32 and ask, “do we need it?” Again, we do
need 32 to generate our 36, so bit 5 is one and we subtract 36 minus 32 to get 4. Continuing along, we
do not need basis elements 16 or 8, but we do need basis element 4. Once we subtract the 4,
ourworking result is zero, so basis elements 2 and 1 are not needed. Putting it together, we get
01100100 2 , 100 = 64+32+4.

Checkpoint 1.27: In this conversion algorithm, how can we tell if a basis element is needed?

Observation: If the least significant binary bit is zero, then the number is even.

Observation: If the right-most n bits (least sign.) are zero, then the number is divisible by 2n.

Observation: Bit 7 of an 8-bit number determines whether it is greater than or equal to 128.

Number Basis Need it? bit Operation
100 128 no bit 7=0 none
100 64 yes bit 6=1 subtract 100-64
36 32 yes bit 5=1 subtract 36-32
4 16 no bit 4=0 none
4 8 no bit 3=0 none
4 4 yes bit 2=1 subtract 4-4
0 2 no bit 1=0 none
0 1 no bit 0=0 none

Table 1.9. Example conversion from decimal to unsigned 8-bit binary to hexadecimal.

Checkpoint 1.28: Give the representations of the decimal 45 in 8-bit binary and hexadecimal.

Checkpoint 1.29: Give the representations of the decimal 200 in 8-bit binary and hexadecimal.

One of the first schemes to represent signed numbers was called one’s complement. It was called
one’s complement because to negate a number, we complement (logical not) each bit. For example, if
25 equals 00011001 2 in binary, then –25 is 11100110 2 . An 8-bit one’s complement number can vary
from -127 to +127. The most significant bit is a sign bit, which is 1 if and only if the number is
negative. The difficulty with this format is that there are two zeros +0 is 00000000 2 , and –0 is
11111111 2 . Another problem is that one’s complement numbers do not have basis elements. These
limitations led to the use of two’s complement.

The two’s complement number system is the most common approach used to define signed numbers.
It is called two’s complement because to negate a number, we complement each bit (like one’s
complement), andthen add 1. For example, if 25 equals 00011001 2 in binary, then -25 is 11100111 2 .
If a byte is used to represent a signed two’s complement number, then the value of the number is

N = -128 • b7+ 64 • b6+ 32 • b5+ 16 • b4+ 8 • b3+ 4 • b2+ 2 • b1 + b0

Observation: One usually means two’s complement when one refers to signed integers.

There are 256 different signed 8-bit numbers. The smallest signed 8-bit number is -128 and the
largest is 127. For example, 10000010 2 equals -128+2 or -126. Other examples are shown in Table
1.10.

binary Hex Calculation decimal
00000000 2 0x00 0
01000001 2 0x41 64+1 65
00010110 2 0x16 16+4+2 22
10000111 2 0x87 -128+4+2+1 -121
11111111 2 0xFF -128+64+32+16+8+4+2+1 -1

Table 1.10. Example conversions from signed 8-bit binary to hexadecimal and to decimal.

Checkpoint 1.30: Convert the signed binary number 111010102 to signed decimal.

Checkpoint 1.31: Are the signed and unsigned decimal representations of the 8-bit hex number 0x45
the same or different?

For the signed 8-bit number system the basis elements are

{1, 2, 4, 8, 16, 32, 64, -128}

Observation: The most significant bit in a two’s complement signed number will specify the sign.

Notice that the same binary pattern of 11111111 2 could represent either 255 or –1. It is very
important for the software developer to keep track of the number format. The computer cannot
determine whether a number is signed or unsigned. You, as the programmer, will determine whether
the number is signed or unsigned by the specific assembly instructions you select to operate on the
number. Some operations like addition, subtraction, multiplication, and shift left (multiply by 2) use
the same hardware (instructions) for both unsigned and signed operations. On the other hand,
division, and shift right (divide by 2) require separate hardware (instructions) for unsigned and
signed operations.

Similar to the unsigned algorithm, we can use the basis to convert a decimal number into signed
binary. We will work through the algorithm with the example of converting –100 to 8-bit binary, as
shown in Table 1.11. We start with the most significant bit (in this case –128) and decide do we need
to include it to make –100? Yes (without –128, we would be unable to add the other basis elements
together to get any negative result), so we set bit 7 and subtract the basis element from our value. Our
new value equals –100 minus –128, which is 28. We go the next largest basis element, 64 and ask,
“do we need it?” We do not need 64 to generate our 28, so bit 6 is zero. Next we go the next basis
element, 32 and ask, “do we need it?” We do not need 32 to generate our 28, so bit 5 is zero. Now we
need the basis element 16, so we set bit 4, and subtract 16 from our number 28 (28-16=12).
Continuing along, we need basis elements 8 and 4 but not 2,1. Putting it together we get 10011100 2

(which means -128+16+8+4).

Number Basis Need it bit Operation
-100 -128 yes bit 7=1 subtract -100 -

-128
28 64 no bit 6=0 none
28 32 no bit 5=0 none
28 16 yes bit 4=1 subtract 28-16
12 8 yes bit 3=1 subtract 12-8
4 4 yes bit 2=1 subtract 4-4
0 2 no bit 1=0 none
0 1 no bit 0=0 none

Table 1.11. Example conversion from decimal to signed 8-bit binary.

Observation: To take the negative of a two’s complement signed number we first complement (flip)
all the bits, then add 1.

A second way to convert negative numbers into binary is to first convert them into unsigned binary,
then do a two’s complement negate. For example, we earlier found that +100 is 01100100 2 . The
two’s complement negate is a two-step process. First we do a logic complement (flip all bits) to get
10011011 2 . Then add one to the result to get 10011100 2 .

A third way to convert negative numbers into binary is to first add 256 to the number, then convert the
unsigned result to binary using the unsigned method. For example, to find –100, we add 256 plus –
100 to get 156. Then we convert 156 to binary resulting in 10011100 2 . This method works because
in 8-bit binary math adding 256 to number does not change the value. E.g., 256-100 has the same 8-bit
binary value as –100.

Checkpoint 1.32: Give the representations of -45 in 8-bit binary and hexadecimal.

Checkpoint 1.33: Why can’t you represent the number 200 using 8-bit signed binary?

Sign-magnitude representation dedicates one bit as the sign leaving the remaining bits to specify the
magnitude of the number. If b7 is 1 then the number is negative, otherwise the number is positive.

N = (-1)b7 • (64 • b6+ 32 • b5+ 16 • b4+ 8 • b3+ 4 • b2+ 2 • b1 + b0)

Unfortunately, there is no basis set for the sign-magnitude number system. For example, 10000010 2

equals –1•2 or –2. Other examples are shown in Table 1.12.

binary hex Calculation decimal
00000000 2 0x00 0
01000001 2 0x41 64+1 65
00010110 2 0x16 16+4+2 22
10000111 2 0x87 -1•(4+2+1) -7
11111111 2 0xFF -1•(64+32+16+8+4+2+1) -127

Table 1.12. Example conversions from sign-magnitude 8-bit binary to hexadecimal and to
decimal.

Another problem with sign-magnitude is that there are two representations of the number 0:
“00000000” and “10000000”. But, the biggest advantage of two’s complement signed numbers over
sign-magnitude is that the same addition and subtraction hardware can be used for both signed and
unsigned numbers. We also can use the same hardware for shift left. Although the hardware for these
three operations works for both signed and unsigned numbers, the overflow (error) conditions are
distinct. The C bit in the condition code register signifies unsigned overflow, and the V bit means a
signed overflow has occurred. Unfortunately, we must use separate signed and unsigned operations
for divide, and shift right.

Common Error: An error will occur if you use signed operations on unsigned numbers, or use
unsigned operations on signed numbers.

Maintenance Tip: To improve the clarity of our software, always specify the format of your data
(signed versus unsigned) when defining or accessing the data.

When communicating with humans (input or output), computers need to store information in an easy-
to-read decimal format. One such format is binary coded decimal or BCD. The 8-bit BCD format
contains two decimal digits, and each decimal digit is encoded in four-bit binary. For example, the
number 72 is stored as 0x72 or 01110010 2 . We can represent numbers from 0 to 99 using 8-bit BCD.

Checkpoint 1.34: What binary values are used to store the number 25 in 8-bit BCD format?

A halfword or double byte contains 16 bits, where each bit b15,...,b0 is binary and has the value 1 or
0, as shown in Figure 1.23. In C, the specifier short means 16 bits or 2 bytes.In C99, the
specifiers uint16_t and int16_t mean 16 bits or 2 bytes.

Figure 1.23. 16-bit binary format.

If a halfword is used to represent an unsigned number, then the value of the number is

N = 32768 • b15+ 16384 • b14+ 8192 • b13+ 4096 • b12
+ 2048 • b11+ 1024 • b10+ 512 • b9+ 256 • b8
+ 128 • b7 + 64 • b6+ 32 • b5+ 16 • b4+ 8 • b3+ 4 • b2+ 2 • b1 + b0

There are 65536 different unsigned 16-bit numbers. The smallest unsigned 16-bit number is 0 and the
largest is 65535. For example, 0010000110000100 2 or 0x2184 is 8192+256+128+4 or 8580. Other
examples are shown in Table 1.13.

binary hex Calculation decimal
0000000000000000 2 0x0000 0
0000010000000001 2 0x0401 1024+1 1025
0000110010100000 2 0x0CA0 2048+1024+128+32 3232
1000111000000010 2 0x8E02 32768+2048+1024+512+2 36354
1111111111111111 2 0xFFFF 32768+16384+8192+4096+2048+1024

+512+256+128+64+32+16+8+4+2+1
65535

Table 1.13. Example conversions from unsigned 16-bit binary to hexadecimal and to decimal.

Checkpoint 1.35: Convert the 16-bit binary number 00100000011010102 to unsigned decimal.

Checkpoint 1.36: Convert the 16-bit hex number 0x1234 to unsigned decimal.

For the unsigned 16-bit number system the basis elements are

{1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768}

Checkpoint 1.37: Convert the unsigned decimal number 1234 to 16-bit hexadecimal.

Checkpoint 1.38: Convert the unsigned decimal number 10000 to 16-bit binary.

There are also 65536 different signed 16-bit numbers. The smallest two’s complement signed 16-bit
number is –32768 and the largest is 32767. For example, 1101000000000100 2 or 0xD004 is –
32768+16384+4096+4 or –12284. Other examples are shown in Table 1.14.

binary hex Calculation decimal
0000000000000000 2 0x0000 0
0000010000000001 2 0x0401 1024+1 1025
0000110010100000 2 0x0CA0 2048+1024+128+32 3232
1000010000000010 2 0x8402 -32768+1024+2 -31742
1111111111111111 2 0xFFFF -32768+16384+8192+4096+2048+1024

+512+256+128+64+32+16+8+4+2+1
-1

Table 1.14. Example conversions from signed 16-bit binary to hexadecimal and to decimal.

If a halfword is used to represent a signed two’s complement number, then the value of the number is

N = -32768 • b15+ 16384 • b14+ 8192 • b13+ 4096 • b12 + 2048 • b11+ 1024 • b10+
512 • b9
+ 256 • b8 + 128 • b7 + 64 • b6+ 32 • b5+ 16 • b4+ 8 • b3+ 4 • b2+ 2 • b1 + b0

Checkpoint 1.39: Convert the 16-bit hex number 0x1234 to signed decimal.

Checkpoint 1.40: Convert the 16-bit hex number 0xABCD to signed decimal.

For the signed 16-bit number system the basis elements are

{1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, -32768}

Common Error: An error will occur if you use 16-bit operations on 8-bit numbers, or use 8-bit
operations on 16-bit numbers.

Maintenance Tip: To improve the clarity of your software, always specify the precision of your data
when defining or accessing the data.

Checkpoint 1.41: Convert the signed decimal number 1234 to 16-bit hexadecimal.

Checkpoint 1.42: Convert the signed decimal number –10000 to 16-bit binary.

On the ARM, a word is 32 bits wide. In C, the specifier long means 32 bits. In C99, the
specifiers uint32_t and int32_t mean 32 bits. Consider an unsigned number with 32 bits, where each
bit b31,...,b0 is binary and has the value 1 or 0. If a 32-bit number is used to represent an unsigned
integer, then the value of the number is

N = 231 • b31 + 230 • b30+ ... + 2 • b1 + b0 =
There are 232 different unsigned n-bit numbers. The smallest unsigned 32-bit number is 0 and the
largest is 232-1. This range is 0 to about 4 billion. For the unsigned 32-bit number system, the basis
elements are

{1, 2, 4, ... , 229, 230, 231}

If a 32-bit binary number is used to represent a signed two’s complement number, then the value of the
number is

N = -231 • b31 + 230 • b30+ ... + 2 • b1 + b0 = -231 • b31 +

There are also 232 different signed n-bit numbers. The smallest signed n-bit number is -231 and the
largest is 231-1. This range is about -2 billion to +2 billion. For the signed 32-bit number system, the
basis elements are

{1, 2, 4, ... , 229, 230, -231}

Maintenance Tip:When programming in C, we will use data types char short and long when we
wish to explicitly specify the precision as 8-bit, 16-bit or 32-bit. Whereas, we will use the int data
type only when we don’t care about precision, and we wish the compiler to choose the most efficient
way to perform the operation.On most compilers for the ARM, the int data type will be 32 bits.

Observation: When programming in assembly, we will always explicitly specify the precision of our
numbers and calculations.

The C99 programming standard eliminates the confusion, defining these types:

 int8_t signed 8-bit uint8_t unsigned 8-bit
 int16_t signed 16-bit uint16_t unsigned 16-bit
 int32_t signed 32-bit uint32_t unsigned 32-bit
 int64_t signed 64-bit uint64_t unsigned 64-bit
 char 8-bit ASCII characters

We will use fixed-point numbers when we wish to express values in our computer that have
noninteger values. A fixed-point number contains two parts. The first part is a variable integer, called
I. The variable integer will be stored on the computer. The second part of a fixed-point number is a
fixed constant, called the resolution Δ. The fixed constant will NOT be stored on the computer. The
fixed constant is something we keep track of while designing the software operations. The value of
the number is the product of the variable integer times the fixed constant. The integer may be signed
or unsigned. An unsigned fixed-point number is one that has an unsigned variable integer. A signed
fixed-point number is one that has a signed variable integer. The precision of a number system is the
total number of distinguishable values that can be represented. The precision of a fixed-point number
is determined by the number of bits used to store the variable integer. On most microcontrollers, we
can use 8, 16, or 32 bits for the integer. With binary fixed point the fixed constant is a power of 2. An
example is shown in Figure 1.24.

Binary fixed-point value = I • 2n for some constant integer n

Figure 1.24. 16-bit binary fixed-point format with Δ =2-6.

1.6. Character information
We can use bytes to represent characters with the American Standard Code for Information
Interchange (ASCII) code. Standard ASCII is actually only 7 bits, but is stored using 8-bit bytes with
the most significant bit equal to 0. For example, the capital ‘V’ is defined by the 8-bit binary pattern
01010110 2 . Table 1.15 shows the ASCII code for some of the commonly-used nonprinting
characters. In C we will use the char data type to represent characters.

Abbr. ASCII character Binary Hexadecimal Decimal
BS Delete or

Backspace
00001000 2 0x08 8

HT Tab 00001001 2 0x09 9
CR Enter or Return 00001101 2 0x0D 13
LF Line feed 00001010 2 0x0A 10
SP Space 00100000 2 0x20 32

Table 1.15. Common special characters and their ASCII representations.

The 7-bit ASCII code definitions are given in the Table 1.16. For example, the letter ‘V’ is in the
0x50 column and the 6 row. Putting the two together yields hexadecimal 0x56.

 BITS 4 to 6
 0 1 2 3 4 5 6 7
 0 NUL DLE SP 0 @ P ` p
B 1 SOH DC1/XON ! 1 A Q a q
I 2 STX DC2 " 2 B R b r
T 3 ETX DC3/XOFF # 3 C S c s
S 4 EOT DC4 $ 4 D T d t
 5 ENQ NAK % 5 E U e u
0 6 ACKSYN & 6 F V f v
 7 BEL ETB ' 7 G W g w
T 8 BS CAN (8 H X h x
O 9 HT EM) 9 I Y i y
 A LF SUB * : J Z j z
3 B VT ESC + ; K [k {

FF FS , < L \ l |

 C
 D CR GS - = M] m }
 E SO RS . > N ^ n ~
 F SI US / ? O _ o DEL
 Table 1.16. Standard 7-bit ASCII.

Checkpoint 1.43: How is the character ‘0’ represented in ASCII?

Checkpoint 1.44: Assume variable n contains an ASCII code 0 to 9. Write a formula that converts the
ASCII code in n into the corresponding decimal number.

Standard ASCII code uses only 7 bits and thus can only represent 128 different characters. The
ISO/IEC 8859 standard uses the 8th bit of the byte to define additional characters such as graphics
and letters in other alphabets. This standard is jointly published by the International Organization for
Standardization (ISO) and the International Electrotechnical Commission (IEC). Unfortunately, there
can be one character with multiple numerical encodings or one numerical value that could represent
different characters. This ambiguity has led to more complex encoding schemes using multiple bytes
to represent character data such as the Unicode Standard, see http://www.unicode.org/. Unicode is an
active and ongoing consortium with a goal to provide a unique number for every character, no matter
what the platform, no matter what the program, no matter what the language. ISO/IEC 10646 is the
corresponding international standard synchronized with the Unicode Standard. As embedded systems
are asked to communicate with other computers across the world, these standards will be a critical
component for guaranteeing unambiguous communication.

One way to encode a character string is to use null-termination. In this way, the characters of the
string are stored one right after the other, and the end of the string is signified by the NUL character
(0x00). For example, the string “Valvano” is encoded as these 8 bytes 0x56, 0x61, 0x6C, 0x76, 0x61,
0x6E, 0x6F, 0x00. Typically we use a pointer to the first byte to identify the string, as shown in Figure
1.25.

Figure 1.25. Strings are stored as a sequence of ASCII characters, followed by a
null.

Checkpoint 1.45: How is “Hello World” encoded as a null-terminated ASCII string?

Observation: When outputting to some devices we send just a 13 (CR, 0x0D) to go to the next line,
while for other devices we need to send both a 13 and a 10 (LF, 0x0A).

1.7. Computer Architecture
A computer combines a processor, random access memory (RAM), read only memory (ROM), and
input/output (I/O) ports. The common bus in Figure 1.26 defines the von Neumann architecture.
Computers are not intelligent. Rather, you are the true genius. Computers are electronic idiots. They
can store a lot of data, but they will only do exactly what we tell them to do. Fortunately, however,
they can execute our programs quite quickly, and they don’t get bored doing the same tasks over and
over again. Software is an ordered sequence of very specific instructions that are stored in memory,
defining exactly what and when certain tasks are to be performed. It is a set of instructions, stored in
memory, that are executed in a complicated but well-defined manner. The processor executes the
software by retrieving and interpreting these instructions one at a time. A microprocessor is a small
processor, where small refers to size (i.e., it fits in your hand) and not computational ability. For
example, Intel Xeon, AMD FX, and Sun SPARC are microprocessors. An ARM ® Cortex™-M
microcontroller includes a processor together with the bus and some peripherals.

Figure 1.26. The basic components of a von Neumann computer include
processor, memory and I/O.

A microcomputer is a small computer, where again small refers to size (i.e., you can carry it) and not
computational ability. For example, a desktop PC is a microcomputer. Small in this context describes
its size not its computing power. Consequently, there can be great confusion over the term
microcomputer, because it can refer to a very wide range of devices from a PIC12C508, which is an
8-pin chip with 512 words of ROM and 25 bytes RAM, to the most powerful I7-based personal
computer.
A port is a physical connection between the computer and its outside world. Ports allow information
to enter and exit the system. Information enters via the input ports and exits via the output ports. Other
names used to describe ports are I/O ports, I/O devices, interfaces, or sometimes just devices. A bus
is a collection of wires used to pass information between modules.

A very small microcomputer, called a microcontroller, contains all the components of a computer
(processor, memory, I/O) on a single chip. As shown in Figure 1.27, the Atmel ATtiny, the Texas
Instruments MSP430, and the Texas Instruments TM4C123 are examples of microcontrollers. Because
a microcomputer is a small computer, this term can be confusing because it is used to describe a wide
range of systems from a 6-pin ATtiny4 running at 1 MHz with 512 bytes of program memory to a
personal computer with state-of-the-art 64-bit multi-core processor running at multi-GHz speeds
having terabytes of storage.

The computer can store information in RAM by writing to it, or it can retrieve previously stored data
by reading from it. RAMs are volatile; meaning if power is interrupted and restored the information
in the RAM is lost. Most microcontrollers have static RAM (SRAM) using six metal-oxide-
semiconductor field-effect transistors (MOS or MOSFET) to create each memory bit. Four transistors
are used to create two cross-coupled inverters that store the binary information, and the other two are
used to read and write the bit.

Figure 1.27. A microcontroller is a complete computer on a single chip. The
TM4C123 has 43 I/O pins. The TM4C1294 has 1024 kibibytes of Flash ROM, 256
kibibytes of RAM, and 90 I/O pins.

Information is programmed into ROM using techniques more complicated than writing to RAM. From
a programming viewpoint, retrieving data from a ROM is identical to retrieving data from RAM.
ROMs are nonvolatile; meaning if power is interrupted and restored the information in the ROM is
retained. Some ROMs are programmed at the factory and can never be changed. A Programmable
ROM (PROM) can be erased and reprogrammed by the user, but the erase/program sequence is
typically 10000 times slower than the time to write data into a RAM. Some PROMs are erased with
ultraviolet light and programmed with voltages, while electrically erasable PROM (EEPROM) are
both erased and programmed with voltages. We cannot program ones into the ROM. We first erase the
ROM, which puts ones into the entire memory, and then we program the zeros as needed. Flash ROM
is a popular type of EEPROM. Each flash bit requires only two MOSFET transistors. The input (gate)
of one transistor is electrically isolated, so if we trap charge on this input, it will remain there for
years. The other transistor is used to read the bit by sensing whether or not the other transistor has
trapped charge. In regular EEPROM, you can erase and program individual bytes. Flash ROM must
be erased in large blocks. On many of Stellaris/Tiva family of microcontrollers, we can erase the
entire ROM or just a 1024-byte block. Because flash is smaller than regular EEPROM, most
microcontrollers have a large flash into which we store the software. For all the systems in this book,
we will store instructions and constants in flash ROM and place variables and temporary data in
static RAM.

Checkpoint 1.46: What are the differences between a microcomputer, a microprocessor, and a
microcontroller?

Checkpoint 1.47: Which has a higher information density on the chip in bits per mm2: static RAM or
flash ROM? Assume all MOSFETs are approximately the same size in mm2.

The external devices attached to the microcontroller provide functionality for the system. An input
port is hardware on the microcontroller that allows information about the external world to be
entered into the computer. The microcontroller also has hardware called an output port to send
information out to the external world. Most of the pins shown in Figure 1.27 are input/output ports.

An interface is defined as the collection of the I/O port, external electronics, physical devices, and
the software, which combine to allow the computer to communicate with the external world. An
example of an input interface is a switch, where the operator toggles the switch, and the software can
recognize the switch position. An example of an output interface is a light-emitting diode (LED),
where the software can turn the light on and off, and the operator can see whether or not the light is
shining. There is a wide range of possible inputs and outputs, which can exist in either digital or
analog form. In general, we can classify I/O interfaces into four categories

Parallel - binary data are available simultaneously on a group of lines
Serial - binary data are available one bit at a time on a single line
Analog - data are encoded as an electrical voltage, current, or power
Time - data are encoded as a period, frequency, pulse width, or phase shift

1.8. Flowcharts and Structured Programming
The remainder of this chapter will discuss the art and science of designing embedded systems from a
general perspective. If you need to write a paper, you decide on a theme, and then begin with an
outline. In the same manner, if you design an embedded system, you define its specification (what it
does) and begin with an organizational plan. In this chapter, we will present three graphical tools to
describe the organization of an embedded system: flowcharts, data flow graphs, and call graphs. You
should draw all three for every system you design. In this section, we introduce the flowchart syntax
that will be used throughout the book. Programs themselves are written in a linear or one-dimensional
fashion. In other words, we type one line of software after another in a sequential fashion. Writing
programs this way is a natural process, because the computer itself usually executes the program in a
top-to-bottom sequential fashion. This one-dimensional format is fine for simple programs, but
conditional branching and function calls may create complex behaviors that are not easily observed in
a linear fashion. Flowcharts are one way to describe software in a two-dimensional format,
specifically providing convenient mechanisms to visualize conditional branching and function calls.
Flowcharts are very useful in the initial design stage of a software system to define complex
algorithms. Furthermore, flowcharts can be used in the final documentation stage of a project, once
the system is operational, in order to assist in its use or modification.

Figures throughout this section illustrate the syntax used to draw flowcharts (Figure 1.28). The oval
shapes define entry and exit points. The main entry point is the starting point of the software. Each
function, or subroutine, also has an entry point. The exit point returns the flow of control back to the
place from which the function was called. When the software runs continuously, as is typically the
case in an embedded system, there will be no main exit point. We use rectangles to specify process
blocks. In a high-level flowchart, a process block might involve many operations, but in a low-level
flowchart, the exact operation is defined in the rectangle. The parallelogram will be used to define an
input/output operation. Some flowchart artists use rectangles for both processes and input/output.
Since input/output operations are an important part of embedded systems, we will use the
parallelogram format, which will make it easier to identify input/output in our flowcharts. The
diamond-shaped objects define a branch point or conditional block. Inside the diamond we can
define what is being tested. Each arrow out of a condition block must be labeled with the condition
causing flow to go in that direction. There must be at least two arrows out of a condition block, but
there could be more than two. However, the condition for each arrow must be mutually exclusive (you
can’t say “if I’m happy go left and if I’m tall go right” because it is unclear what you want the
software to do if I’m happy and tall). Furthermore, the complete set of conditions must define all
possibilities (you can’t say “if temperature is less than 20 go right and if the temperature is above 40
go left” because you have not defined what to do if the temperature is between 20 and 40). The
rectangle with double lines on the side specifies a call to a predefined function. In this book,
functions, subroutines, and procedures are terms that all refer to a well-defined section of code that
performs a specific operation. Functions usually return a result parameter, while procedures usually
do not. Functions and procedures are terms used when describing a high-level language, while
subroutines are often used when describing assembly language. When a function (or subroutine or
procedure) is called, the software execution path jumps to the function, the specific operation is

performed, and the execution path returns to the point immediately after the function call. Circles are
used as connectors. A connector with an arrow pointing out of the circle defines a label or a spot in
the algorithm. There should be one label connector for each number. Connectors with an arrow
pointing into the circle are jumps or goto commands. When the flow reaches a goto connector, the
execution path jumps to the position specified by the corresponding label connector. It is bad style to
use a lot of connectors.

Figure 1.28. Flowchart symbols.
There are a seemingly unlimited number of tasks one can perform on a computer, and the key to
developing great products is to select the correct ones. Just like hiking through the woods, we need to
develop guidelines (like maps and trails) to keep us from getting lost. One of the fundamentals when
developing software, regardless whether it is a microcontroller with 1000 lines of assembly code or
a large computer system with billions of lines of code, is to maintain a consistent structure. One such
framework is called structured programming. A good high-level language will force the
programmer to write structured programs. Structured programs are built from three basic building
blocks: the sequence, the conditional, and the while-loop. At the lowest level, the process block
contains simple and well-defined commands. I/O functions are also low-level building blocks.
Structured programming involves combining existing blocks into more complex structures, as shown
in Figure 1.29.

Figure 1.29. Flowchart showing the basic building blocks of structured
programming.

Example 1.1: Using a flowchart describe the control algorithm that a toaster might use to cook toast.
There will be a start button the user pushes to activate the machine. There is other input that measures
toast temperature. The desired temperature is preprogrammed into the machine. The output is a heater,
which can be on or off. The toast is automatically lowered into the oven when heat is applied and is
ejected when the heat is turned off.

Solution: This example illustrates a common trait of an embedded system, that is, they perform the
same set of tasks over and over forever. The program starts at main when power is applied, and the
system behaves like a toaster until it is unplugged. Figure 1.30 shows a flowchart for one possible
toaster algorithm. The system initially waits for the operator to push the start button. If the switch is
not pressed, the system loops back reading and checking the switch over and over. After the start
button is pressed, heat is turned on. When the toast temperature reaches the desired value, heat is
turned off, and the process is repeated.

Figure 1.30. Flowchart illustrating the process of making toast.

Safety tip: When dealing with the potential for fire, you may want to add some safety features such as
a time out or an independent check for temperature overflow.

Observation: The predefined functions in this chapter do not communicate any data between the
calling routine and function. Data passed into a function are called input parameters, and data passed
from the function back to the calling routine are called output parameters.

Observation: Notice in Figure 1.30 we defined a function Cook even though it was called from only
one place. You might be tempted to think it would have been better to paste the code for the function
into the one place it was called. There are many reasons it would be better to define the function as a
separate software object: it will be easier to debug because there is a clear beginning and end of the
function, it will make the overall system simpler to understand, and in the future we may wish to reuse
this function for another purpose.

Example 1.2. The system has one input and one output. An event should be recognized when the input
goes from 0 to 1 and back to 0 again. The output is initially 0, but should go 1 after four events are
detected. After this point, the output should remain 1. Design a flowchart to solve this problem.

Solution: This example also illustrates the concept of a subroutine. We break a complex system into
smaller components so that the system is easier to understand and easier to test. In particular, once we
know how to detect an event, we will encapsulate that process into a subroutine, called Event. In this
example, the main program first sets the output to zero, calls the function Event four times, then it sets
the output to one. To detect the 0 to 1 to 0 edges in the input, it first waits for 1, and then it waits for 0
again. See Figure 1.31.

Figure 1.31. Flowchart illustrating the process waiting for four events.

The letters A through H in Figure 1.31 specify the software activities in this simple example. In this
example, execution is sequential and predictable.

1.9. Concurrent and Parallel Programming
Many problems cannot be implemented using the single-threaded execution pattern described in the
previous section. Parallel programming allows the computer to execute multiple threads at the same
time. A computer with a multi-core processor can simultaneously execute a separate program in each
of its cores. Fork and join are the fundamental building blocks of parallel programming. After a fork,
two or more software threads will be run in parallel, i.e., the threads will run simultaneously on
separate processors. Two or more simultaneous software threads can be combined into one using a
join (Figure 1.32). Software execution after the join will wait until all threads above the join are
complete. As an analogy, if I want to dig a big hole in my back yard, I will invite three friends over
and give everyone a shovel. The fork operation changes the situation from me working alone to four
of us ready to dig. The four digging tasks are run in parallel. The four diggers do not have to be
performing the exact same task, but they operate simultaneously and they cooperate towards a
common goal. When the overall task is complete, the join operation causes the friends to go away,
and I am working alone again. A complex system may employ multiple microcontrollers, each running
its own software. We classify this configuration as parallel or distributed programming.

Figure 1.32. Flowchart symbols to describe parallel, distributed, and concurrent
programming.

Concurrent programming allows the computer to execute multiple threads, but only one at a time.
Interrupts are one mechanism to implement concurrency on real-time systems. Interrupts have a
hardware trigger and a software action. An interrupt is a parameter-less subroutine call, triggered by
a hardware event. The flowchart symbols for interrupts are also shown in Figure 1.32. The trigger is
a hardware event signaling it is time to do something. Examples of interrupt triggers we will see in
this book include new input data has arrived, output device is idle, and periodic event. The second
component of an interrupt-driven system is the software action called an interrupt service routine
(ISR). The foreground thread is defined as the execution of the main program, and the background
threads are executions of the ISRs. Consider the analogy of sitting in a comfy chair reading a book.
Reading a book is like executing the main program in the foreground. You start reading at the
beginning of the book and basically read one page at time in a sequential fashion. You might jump to
the back and look something up in the glossary, then jump back to where you were, which is
analogous to a function call. Similarly, you might read the same page a few times, which is analogous
to a program loop. Even though you skip around a little, the order of pages you read follows a logical
and well-defined sequence. Conversely, if the telephone rings, you place a bookmark in the book, and
answer the phone. When you are finished with the phone conversation, you hang up the phone and

continue reading in the book where you left off. The ringing phone is analogous to hardware trigger
and the phone conversation is like executing the ISR.

Example 1.3. Design a flowchart for a system that performs two independent tasks. The first task is to
output a 20 kHz square waveon PORTA in real time (period is 50 µs). The second task is to read a
value from PORTB , divide the value by 4, add 12, and output the result on PORTD . This second
task is repeated over and over.

Solution: In this example, there are two threads: foreground and background, see Figure 1.33. Real
time means the PORTA must change every 25 µs. Therefore, we will use a periodic interrupt to
guarantee this real-time requirement. In particular, the timer system will be configured so that a
hardware trigger will occur every 25 µs, and the software action will toggle PORTA . Toggle means,
if it is 1 make it 0, and if it is 0 make it one. On the computer we will toggle by reading the port,
performing an exclusive or with 1, and then writing it back to the port. The background thread creates
the square wave in real time because the 0-to-1 and 1-to-0 edges occur (almost) exactly every
25 � µs. Tasks that are not time-critical can be performed in the foreground by the main program. In
this example, the foreground thread inputs from PORTB , performs a calculation, and outputs
to PORTD . Because both threads are active at the same time, we say the system is multi-threaded
and the threads are running concurrently. Even though we will learn C later in the book, a simplified
C program is given.

Figure 1.33. Flowchart for a multi-threaded solution of a system performing two
tasks.

The letters (A - E) in Figure 1.33 specify the software activities in this multi-threaded example. In
particular, main isexecuted in the foreground. In the foreground, execution is sequential and
predictable (if C is to occur, it will come after B and before D.) On the other hand, with interrupts,
the hardware trigger causes the interrupt service routine to execute. The symbol < signifies the
hardware halting the main program and launching the ISR. The symbol > signifies the ISR software
executing a return from interrupt instruction, which resumes execution in the main program. The
execution of the ISR is predictable too; in this case it is executed every 25 µs, but ISR execution does
not depend on execution in the foreground. The execution sequence of this two-threaded system might
be something like the following

In a single processor system like the ARM Cortex M processor, the interrupt must suspend foreground
execution, execute the interrupt service routine in the background, and then resume execution of the
foreground. The main program executes the sequence BCD over and over as it searches for prime
numbers. In this example, the periodic timer causes the execution of E every 25 µs. Even
though C will come after B and before D , interrupts may or may not inject a <E> between any two
instructions of the foreground thread. Being able to inject an E exactly every 25 µs is how the real-
time constraint is satisfied.

To illustrate the concept of parallel programming, consider the problem of finding the maximum value
in a buffer, as implemented in Figure 1.34. Finding the maximum value in the first half of the buffer
can be executed in parallel with finding the maximum value in the second half of the buffer. Although
the ARM Cortex M microcontroller cannot execute software tasks in parallel, most experts believe
the market share for multicore processors in the embedded field will increase over time. State-of-the-
art microprocessors found in desktop computers have two or more cores, which do support parallel
program execution. It is important to distinguish parallel programming like Figure 1.34, from multi-
threading like Figure 1.33. Multi-threading, as we will be developing in this book, switches among
multiple software tasks executing one task at a time.

Figure 1.34. Parallel programming solution for finding the maximum value in a
buffer.

1.10. Exercises
1.1 In 16 words or less give definitions of the following terms
a) Voltage b) Current c) Power
d) Energy e) KCL f) KVL

1.2 In 16 words or less give definitions of the following terms
a) Positive logic b) CMOS c) Byte
d) p-type transistor e) n-type transistor f) Exclusive or

1.3 Give two examples of these laws applied to Boolean Logic (one for AND one for OR)
a) Commutative Law b) Associate Law c) Distributive
Law
d) Identity of 0 e) Identity of 1 f) De Morgan’s Theorem

1.4 In 16 words or less give definitions of the following terms
a) Flip-flop b) HiZ c) Open collector
d) Tristate e) Register f) Bus

1.5 In 16 words or less give definitions of the following terms
a) Memory read b) Memory write c) ROM
d) Volatile e) RAM f) Port

1.6 In 16 words or less give definitions of the following terms
a) Interrupt b) Function c) Structured
programming
d) Join e) Fork f) Parallel programming

1.7 Fill in this table with the equivalent resistance (all values are in ohms)

R1 R2 R1 in series
with R2

R1 in parallel with
R2

1000 1000
1000 10000
1000 4000
1000 800
 5000 1200

1.8 Fill in this table with the equivalent resistance (all values are in ohms)

R1 R2 R1 in series
with R2

R1 in parallel with
R2

100 200

100 0
100 700
100 75
 200 50

1.9 10 V is applied across the series combination of a 1000Ω and a 2000Ω resistor. What is the
voltage across the 2000Ω resistor? What is the current through the 2000Ω resistor?

1.10 10 V is applied across the parallel combination of a 1000Ω and a 2000Ω resistor. What is the
voltage across the 2000Ω resistor? What is the current through the 2000Ω resistor?

1.11 What is the fewest number of bits than can represent all the numbers from 0 to 100?

1.12 Assuming we have a 4-bit number system, what numbers can we represent (starting is 0)?

1.13 How many binary bits does it take to represent 10,000,000? How many bytes? Using the fact that
210 is about 103, it is possible to solve this question without a calculator.

1.14 How many binary bits does it take to represent 100,000,000,000? How many bytes? Using the
fact that 210 is about 103, it is possible to solve this question without a calculator.

1.15 In C99, an int8_t is 8 bits, an int16_t is 16-bits, and an int32_t is 32 bits. Assuming each is
signed, give the range of each type of number.

1.16 In C99, an uint8_t is 8 bits, an uint16_t is 16-bits, and an uint32_t is 32 bits. Assuming each is
unsigned, give the range of each type of number.

1.17 How many binary bits is 2¾ decimal digits?

1.18 About how many decimal digits is 20 binary bits?

1.19 Each row of the following table is to contain an equal value expressed in binary, hexadecimal,
and decimal. Complete the missing values. Assume the decimal values are unsigned. The first row
illustrates the process.

binary hexadecimal decimal
01101001 2 0x69 105
 0x46
 47
10001110 2
 0xE5
 95
111001001110 2
 0x02B9
 10000

1.20 Each row of the following table is to contain an equal value expressed in binary, hexadecimal,
and decimal. Complete the missing values. Assume the decimal values are unsigned. The first row
illustrates the process.

binary hexadecimal decimal
10101101 2 0xAD 173
 0x58
 143
11011 2
 0x1554
 26
1000100101111101 2
 0x24A6
 14321

1.21 You know that the 8-bit hexadecimal representation for -1 is 0xFF. Use this fact and count
backwards to quickly find the hexadecimal representations of -2, -3, and -4.

1.22 You know that the 16-bit hexadecimal representation for -1 is 0xFFFF. Use this fact and count
backwards to quickly find the hexadecimal representations of -2, -3, and -4.

1.23 You know that the 32-bit hexadecimal representation for -1 is 0xFFFFFFFF. Use this fact and
count backwards to quickly find the hexadecimal representations of -2, -3, and -4.

1.24 Each row of the following table is to contain an equal value expressed in binary, hexadecimal,
and decimal. Complete the missing values. Assume each value is 8 bits and the decimal numbers are
signed. The first row illustrates the process.

binary hexadecimal decimal
01011110 2 0x5E 94
 0xD2
 -67
11001011 2
 0xE1
 79
00101010 2
 0xC7
 -101

1.25 Each row of the following table is to contain an equal value expressed in binary, hexadecimal,
and decimal. Complete the missing values. Assume each value is 8 bits and the decimal numbers are
signed. The first row illustrates the process.

binary hexadecimal decimal

11111110 2 0xFE -2
 0xFD
 -82
00110011 2
 0xA4
 51
11000000 2
 0x22
 -121

D1.26 Find the currents (I1, I2, I3, I4, and I5) and voltages (V1,V2, V3, V4 and V5). You can give
answer to three significant figures (e.g., 0.0123A, 12.3mA, 1.23V, 1230mV)
a) Battery voltage is 10 V and all resistors are 1 kΩ.
b) Battery voltage is 4 V and R1=1 kΩ R2=4 kΩ � R3=1 kΩ � R4=2 kΩ � and R5=2 kΩ.
c) Battery voltage is 2 V and R1=1 kΩ R2=4 kΩ � R3=1 kΩ � R4=2 kΩ � and R5=2 kΩ.
d) Battery voltage is 5 V and R1=1 kΩ R2=9 kΩ � R3=0 kΩ � R4=2 kΩ � and R5=∞ kΩ.

D1.27 Use Ohm’s Law and KCL to solve for the voltage in the middle of the resistors

D1.28 Consider this 3-bit digital to analog converter. We define the logic state of each switch as 0 or
1, where 0 means not pushed and 1 means pushed. Define a 3-bit number n (0 to 7) which specifies
the three switch positions. n = 0 means none are pushed. n = 1 means Sw0 is pushed. n = 2 means
Sw1 is pushed. n = 3 means Sw1 and Sw0 are pushed. n = 4 means Sw2 is pushed. n = 5 means Sw2
and Sw0 are pushed. n = 6 means Sw2 and Sw1 are pushed. n = 7 means all are pushed. Derive a
relationship between the current I and the number n.

A B C0 C1 C2 C3
0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

D1.29 Build a 2-bit decoder, which has two inputs A, B and four outputs C0, C1, C2, C3. This
decoder has exactly one output which is true. That true output is specified by the binary value
represented by the two inputs. Build it with AND OR and NOT gates as shown in Section 1.2.

D1.30 Build a 3-bit decoder, which has three
inputs A, B, C and eight outputs C0–C7. This
decoder has exactly one output which is true.
That true output is specified by the binary value

represented by the three inputs. Build it with AND OR and NOT gates as shown in Section 1.2.

A B C C0 C1 C2 C3 C4 C5 C6 C7
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1

D1.31 Build a 1-bit selector or multiplexer, which has three inputs A, B, S and one output O. If the S
signal is 0, then the output O equals A. If the S signal is 1, then the output O equals B. Build it with
AND OR and NOT gates as shown in Section 1.2.

S A B O
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

D1.32 In order to reduce power, some microcomputers run on 2.5 V instead of 3.3 V. Redraw Figure
1.1 using 2.5 V power, and define what logic high and logic low would be for this system. Assume
the resistance path from the +3.3V supply to ground for +3.3V logic is approximately equal to the
resistance from the +2.5V supply to ground for +2.5V logic. What is the percentage reduction in
power occurring by switching from +3.3V to +2.5V?

D1.33 Redraw the circuit in D1.28 using just 200 Ω resistors (use as many as you need.)

D1.34 Redesign the circuit in D1.28 using 4 switches. This digital to analog circuit will convert a 4-
bit number n into an output current I.

D1.35 Modify the transistor level circuit in Figure 1.13 to implement a 3-input NAND. The output
will be low if and only if all three inputs are high. I.e., design it with p-type and n-type MOS
transistors.

D1.36 Modify the transistor level circuit in Figure 1.13 to implement a 3-input NOR. The output will
be high if and only if all three inputs are low. I.e., design it with p-type and n-type MOS transistors.

D1.37 Design a two-input AND function using just 2-input NOR gates. You can use as many NOR
gates as you need.

D1.38 Design a two-input OR function using just 2-input NAND gates. You can use as many NAND
gates as you need.

D1.39 Design a transistor level implementation of an exclusive OR gate.

D1.40 Using a flowchart, describe the control algorithm that a thermostat uses to maintain constant
temperature. Assume the inputs are current temperature in F, the desired temperature in F, and an
AC/off/heat three-way switch. The outputs are AC (on/off) and heat (on/off).

D1.41 Using a flowchart, describe the cruise control algorithm that a car uses to maintain constant
speed. Assume the inputs are current speed in mph, brake (on/off), and a cruise on/off momentary
button. The output is accelerator position (0 to 100%). The desired current is the current speed at the
time the cruise control is activated. Touching the brake turns off the system.

D1.42 Draw a flowchart for an incremental motor controller. There is an input that specifies the
motor speed in RPM (range is 0 to 255 RPM). The desired speed is 100 RPM. There is an output that
the software can use to adjust power to the motor. This output must be a number between 0 and 100.
Do not attempt to output numbers less than 0 or more than 100. An incremental controller is a simple
algorithm. If the speed is too slow and the output is less than 100, then increase the output by one. If
the speed is too fast and the output is greater than 0, then decrease the output by one.

D1.43 Draw a flowchart for a stepper motor controller. There is one binary input that is true if the
operator wishes to spin the motor and false if the operator wishes the motor to stop. There is a 4-bit
output connected to the motor. To spin the motor, the sequence 5, 6, 10, 9 is output over and over. To
stop the motor, simply cease to perform outputs (leave the output at which ever number you left off at:
5, 6, 10, or 9).

D1.44 Draw a flowchart for an algorithm to determine which rising edge occurs first. There are two
binary inputs: In1 and In2. Each input can be 0 or 1. There are two binary outputs: Out1 and Out2, one
corresponding to each input. Initially both outputs are 0. If In1 goes from 0 to 1 before In2, then set
Out1 to 1. If In2 goes from 0 to 1 before In1, then set Out2 to 1. Your answer should operate properly
as long as both signals do not rise at the same time or nearly the same time. No matter how
complicated you draw the flowchart it will have a minor flaw. Trying to solve this kind of problem in
software creates a race condition. A race occurs when both signals rise very close to each other, it is
possible in a tiny fraction of the cases for Out2 to be set even when In1rises first. Put A B C …
labels on your flowchart and give one scenario resulting in the improper output.

D1.45 Draw two flowcharts that count the number of rising edges (0 to 1) on an input port. At the
beginning of the algorithm, set the counter to 0. At each rising edge, increment the counter. In the first
flowchart, do not use interrupts (wait for zero, wait for 1). In the second flowchart, assume there is an
input-triggered interrupt that occurs on the rising edge of the input.

D1.46 Draw a flowchart that implements the following 4-bit output sequence. The sequence can spin
a stepper motor. The output changes every 1ms. You may assume there is a periodic interrupt that
triggers every 1 ms. This interrupt rate will determine the speed of the motor, which will be fixed in
this example. Considering the 4-bit output as one number the sequence is 5, 6, 10, 9, 5, 6, 10, 9 …
There are two good solutions. The simple solution uses three decision blocks. The best solution uses
a software variable and the exclusive OR operation. The main program sets the output to 5, and
initializes any variables you wish to use.

D1.47 Draw a flowchart that implements the following 3-bit output sequence. This sequence can spin
a brushless DC motor. In this simplified system, the output changes every 1ms (in a real brushless
DC motor the interrupt times will depend on measurements of shaft position). You may assume there
is a periodic interrupt that triggers every 1 ms. Considering the 3-bit output as one number the output
sequence is 1, 3, 7, 6, 4, 0 repeated over and over. There are a number of good solutions. The simple
solution uses five decision blocks. The main program sets the output to 1, and initializes any
variables you wish to use.

2. Introduction to Embedded Systems
Chapter 2 objectives are to:
• Present an introduction to embedded systems
• Outline the basic steps in design
• Define data flow and call graphs as a design tool
• Present a short introduction to C programming

The objective of this chapter is to present the framework or fundamentals needed for system design in
general, and embedded system design in particular. A system is a collection of components that are
combined together to perform a single complicated task in a coordinated manner. Component is used
here in a very broad sense including software, computer hardware, digital hardware, analog circuits,
mechanical hardware, power supply and distribution, sensors, and actuators. A system is comprised
from components and interfaces. In a recursive manner, we can design a component by connecting
simpler components together with interfaces. Using this model, one can envision top-down design as
the process beginning with one large component, and then subdividing each component into simpler
subcomponents connected together with interfaces. This process completes when each component is
so simple it can be built or purchased. Testing can then proceed in a bottom-up fashion by connecting
actual components together with actual interfaces. Systems have structure defined by the components
and interconnections. Systems have behavior. For an embedded system, behavior is embodied by the
responses of its outputs to changes in its inputs. Both time and state are important factors in
describing the behavior of an embedded system. Systems have interconnectivity. Examples of these
interconnections include mechanical force (bolts and nuts), energy (power flowing out of a battery),
information flow (communication channel), synchronization (if this happens, make that happen), and
integration of information (yaw, pitch, and roll combine to define tilt angle). Systems have rules or
assumptions of expected usage. For example, the designer of an automobile expects you to drive it on
the road. This expected usage is often found as a list of constraints. If you learn two things from
reading this chapter, let them be these: every project needs a well-written requirements document,
and testing is something we must do at every stage of a project (beginning, middle, and end.)

2.1. Embedded Systems
To better understand the expression embedded microcomputer system, consider each word
separately. In this context, the word “embedded” means hidden inside so one can’t see it. The term
“micro” means small, and a “computer” contains a processor, memory, and a means to exchange data
with the external world. The word “system” means multiple components interfaced together for a
common purpose. Systems have structure, behavior, and interconnectivity operating in a framework
bound by rules and regulations. Another name for embedded systems is Cyber-Physical Systems,
introduced in 2006 by Helen Gill of the National Science Foundation, because these systems combine
the intelligence of a computer with the physical objects of our world. In an embedded system, we use
ROM for storing the software and fixed constant data and RAM for storing temporary information.
Many microcomputers employed in embedded systems use Flash EEPROM, which is an electrically-
erasable programmable ROM, because the information can easily be erased and reprogrammed. The
functionality of a digital watch is defined by the software programmed into its ROM. When you
remove the batteries from a watch and insert new batteries, it still behaves like a watch because the
ROM is nonvolatile storage. As shown in Figure 2.1, the term embedded microcomputer system
refers to a device that contains one or more microcomputers inside. Microcontrollers, which are
microcomputers incorporating the processor, RAM, ROM and I/O ports into a single package, are
often employed in an embedded system because of their low cost, small size, and low power
requirements. Microcontrollers like the Texas Instruments TM4C family are available with a large
number and wide variety of I/O devices, such as parallel ports, serial ports, timers, digital to analog
converters (DAC), and analog to digital converters (ADC). The I/O devices are a crucial part of an
embedded system, because they provide necessary functionality. The software together with the I/O
ports and associated interface circuits give an embedded computer system its distinctive
characteristics. Managing time, both as an input and an output, is a critical task. It is not only
important to get the correct output, but to get the correct output at the proper time. The
microcontrollers often must communicate with each other. How the system interacts with humans is
often called the human-computer interface (HCI) or man-machine interface (MMI).

Figure 2.1. An embedded system includes a microcomputer interfaced to external
physical devices.

Checkpoint 2.1: What is an embedded system?

A digital multimeter, as shown in Figure 2.2, is a typical embedded system. This embedded system
has two inputs: the mode selection dial on the front and the red/black test probes. The output is a
liquid crystal display (LCD) showing measured parameters. The large black chip inside the box is a
microcontroller. The software that defines its very specific purpose is programmed into the ROM of
the microcontroller. As you can see, there is not much else inside this box other than the
microcontroller, a fuse, a rotary dial to select the mode, a few interfacing resistors, and a battery.

Figure 2.2. A digital multimeter contains a microcontroller programmed to
measure voltage, current and resistance.

As defined previously, a microcomputer is a small computer. One typically restricts the term
embedded to refer to systems that do not look and behave like a typical computer. Most embedded
systems do not have a keyboard, a graphics display, or secondary storage (disk). There are two ways
to develop embedded systems. The first technique uses a microcontroller, like the ARM Cortex M-
series. In general, there is no operating system, so the entire software system is developed. These
devices are suitable for low-cost, low-performance systems. Volume 3 will describe how to design a
real-time operating system for the Cortex M family of microcontrollers. On the other hand, one can
develop a high-performance embedded system around a more powerful microcontroller such as the
ARM Cortex A-series. These systems typically employ an operating system and are first designed on
a development platform, and then the software and hardware are migrated to a stand-alone embedded
platform.

Checkpoint 2.2: What is a microcomputer?

The external devices attached to the microcontroller allow the system to interact with its environment.
An interface is defined as the hardware and software that combine to allow the computer to
communicate with the external hardware. We must also learn how to interface a wide range of inputs
and outputs that can exist in either digital or analog form. This first volume provides an introduction
to microcomputer programming, hardware interfacing, and the design of embedded systems. Volume 2
of this series will focus on the details of hardware interfacing and system design. Volume 3 describes
real-time operating systems and applies embedded system design to real-time data acquisition, digital
signal processing, high-speed networks, and digital control systems. In general, we can classify I/O
interfaces into parallel, serial, analog or time. Because of low cost, low power, and high
performance, there has been and will continue to be an advantage of using time-encoded inputs and
outputs.

A device driver is a set of software functions that facilitate the use of an I/O port. One of the simplest
I/O ports on the Texas Instruments TM4C family is a parallel port or General Purpose Input/Output
(GPIO). One such parallel port is Port A. The software will refer to this port using the
name GPIO_PORTA_DATA_R . Ports are a collection of pins, usually 8, which can be used for
either input or output. If Port A is an input port, then when the software reads
from GPIO_PORTA_DATA_R , it gets eight bits (each bit is 1 or 0), representing the digital levels
(high or low) that exist at the time of the read. If Port A is an output port, then when the software
writes to GPIO_PORTA_DATA_R , it sets the outputs on the eight pins high (1) or low (0),
depending on the data value the software has written.

The other general concept involved in most embedded systems is they run in real time. In a real-time
computer system, we can put an upper bound on the time required to perform the input-calculation-
output sequence. A real-time system can guarantee a worst case upper bound on the response time
between when the new input information becomes available and when that information is processed.
This response time is called interface latency. Another real-time requirement that exists in many
embedded systems is the execution of periodic tasks. A periodic task is one that must be performed at
equal-time intervals. A real-time system can put a small and bounded limit on the time error between
when a task should be run and when it is actually run. Because of the real-time nature of these
systems, microcontrollers have a rich set of features to handle many aspects of time.

Checkpoint 2.3: An input device allows information to be entered into the computer. List some of the
input devices available on a general purpose computer.

Checkpoint 2.4: An output device allows information to exit the computer. List some of the output
devices available on a general purpose computer.

The embedded computer systems in these three volumes will contain an ARM Cortex M
microcontroller, which will be programmed to perform a specific dedicated application. Software for
embedded systems typically solves only a limited range of problems. The microcomputer is
embedded or hidden inside the device. In an embedded system, the software is usually programmed
into ROM and therefore fixed. Even so, software maintenance (e.g., verification of proper
operation, updates, fixing bugs, adding features, extending to new applications, end user
configurations) is still extremely important. In fact, because microcomputers are employed in many
safety-critical devices, injury or death may result if there are hardware and/or software faults.
Consequently, testing must be considered in the original design, during development of intermediate
components, and in the final product. The role of simulation is becoming increasingly important in
today’s market place as we race to build better and better machines with shorter and shorter design
cycles. An effective approach to building embedded systems is to first design the system using a
hardware/software simulator, then download and test the system on an actual microcontroller.

2.2. Applications Involving Embedded Systems
An embedded computer system includes a microcomputer with mechanical, chemical, and electrical
devices attached to it, programmed for a specific dedicated purpose, and packaged up as a complete
system. Any electrical, mechanical, or chemical system that involves inputs, decisions, calculations,
analyses, and outputs is a candidate for implementation as an embedded system. Electrical,
mechanical, and chemical sensors collect information. Electronic interfaces convert the sensor
signals into a form acceptable for the microcomputer. For example, a tachometer is a sensor that
measures the revolutions per second of a rotating shaft. Microcomputer software performs the
necessary decisions, calculations, and analyses. Additional interface electronics convert the
microcomputer outputs into the necessary form. Actuators can be used to create mechanical or
chemical outputs. For example, an electrical motor converts electrical power into mechanical power.

Checkpoint 2.5: There is a microcomputer embedded in a digital watch. List three operations the
software must perform.

In contrast, a general-purpose computer system typically has a keyboard, disk, and graphics display
and can be programmed for a wide variety of purposes. Typical general-purpose applications include
word processing, electronic mail, business accounting, scientific computing, and data base systems.
The user of a general-purpose computer does have access to the software that controls the machine. In
other words, the user decides which operating system to run and which applications to launch.
Because the general-purpose computer has a removable disk or network interface, new programs can
easily be added to the system. The most common type of general-purpose computer is the personal
computer, e.g., the Apple MacBook, costing less than $3,000. Computers more powerful than the
personal computer can be grouped in the workstation category, ranging from $3,000 to $50,000
range. Supercomputers cost above $50,000. These computers often employ multiple processors and
have much more memory than the typical personal computer. The workstations and supercomputers
are used for handling large amounts of information (business applications) or performing large
calculations (scientific research.) This book will not specifically cover the general-purpose
computer, although many of the basic principles of embedded computers do apply to all types of
computer systems.

Observation: Since the advent of the personal computer in 1983, there have always been three
classes of computer systems: personal, workstation and supercomputer. While the computational
power of each class has grown by orders of magnitude, the price range of each has remained
relatively constant.

A cell phone has five or more microcontrollers. Automobiles employ dozens of microcontrollers. In
fact, upscale homes contain hundreds of microcontrollers, and the average consumer now interacts
with microcontrollers thousands of times each day. Embedded microcomputers impact virtually all
aspects of daily life (Table 2.1):

• Consumer Electronics
• Home

• Communications
• Automotive
• Military
• Industrial
• Business
• Shipping
• Medical
• Computer components

Functions performed by the microcontroller
Consumer/Home:
 Washing machine Controls the water and spin cycles, saving water and
energy
 Exercise equipment Measures speed, distance, acceleration, calories, heart
rate
 Remote controls Accepts key touches, sends infrared pulses, learns how to
interact with user
 Clocks and watches Maintains the time, alarm, and display
 Games and toys Entertains the user, joystick input, video output
 Audio/video Interacts with the operator, enhances performance
with sounds and pictures
 Set-back thermostats Adjusts day/night thresholds saving energy
Communication:
 Answering machines Plays outgoing messages and saves incoming messages
 Telephone system Switches signals and retrieves information
 Cellular phones Interacts with key pad, microphone, and speaker
 Satellites Sends and receives messages
Automotive:
 Automatic braking Optimizes stopping on slippery surfaces
 Noise cancellation Improves sound quality, removing noise
 Theft deterrent devices Allows keyless entry, controls alarm
 Electronic ignition Controls sparks and fuel injectors
 Windows and seats Remembers preferred settings for each driver
 Instrumentation Collects and provides necessary information
Military:
 Smart weapons Recognizes friendly targets
 Missile guidance Directs ordnance at the desired target

 Global positioning Determines where you are on the planet, suggests paths,
coordinates troops
 Surveillance Collects information about enemy activities
Industrial/Business/Shipping:
 Point-of-sale systems Accepts inputs and manages money, keeps credit
information secure
 Temperature control Adjusts heating and cooling to maintain temperature
 Robot systems Inputs from sensors, controls the motors improving
productivity
 Inventory systems Reads and prints labels, maximizing profit, minimizing
shipping delay
 Automatic sprinklers Controls the wetness of the soil maximizing plant
growth
Medical:
 Infant apnea monitors Detects breathing, alarms if stopped
 Cardiac monitors Measures heart function, alarms if problem
 Cancer treatments Controls doses of radiation, drugs, or heat
 Prosthetic devices Increases mobility for the handicapped
 Medical records Collect, organize, and present medical information
Computer Components:
 Mouse Translates hand movements into commands for the
main computer
 USB flash drive Facilitates the storage and retrieval of information
 Keyboard Accepts key strokes, decodes them, and transmits to the
main computer
Table 2.1. Products involving embedded systems.

2.3. Product Life Cycle
In this section, we will introduce the product development process in general. The basic approach is
introduced here, and the details of these concepts will be presented throughout the remaining chapters
of the book. As we learn software/hardware development tools and techniques, we can place them
into the framework presented in this section. As illustrated in Figure 2.3, the development of a
product follows an analysis-design-implementation-testing-deployment cycle. For complex systems
with long life-spans, we transverse multiple times around the life cycle. For simple systems, a one-
time pass may suffice.

Figure 2.3. Product life cycle.

During the analysis phase, we discover the requirements and constraints for our proposed system. We
can hire consultants and interview potential customers in order to gather this critical information. A
requirement is a specific parameter that the system must satisfy. We begin by rewriting the system
requirements, which are usually written in general form, into a list of detailed specifications. In
general, specifications are detailed parameters describing how the system should work. For example,
a requirement may state that the system should fit into a pocket, whereas a specification would give
the exact size and weight of the device. For example, suppose we wish to build a motor controller.
During the analysis phase, we would determine obvious specifications such as range, stability,
accuracy, and response time. There may be less obvious requirements to satisfy, such as weight, size,
battery life, product life, ease of operation, display readability, and reliability. Often, improving the
performance on one parameter can be achieved only by decreasing the performance of another. This
art of compromise defines the tradeoffs an engineer must make when designing a product. A
constraint is a limitation, within which the system must operate. The system may be constrained to
such factors as cost, safety, compatibility with other products, use of specific electronic and
mechanical parts as other devices, interfaces with other instruments and test equipment, and
development schedule. The following measures are often considered during the analysis phase of a
project:

Safety: The risk to humans or the environment
Accuracy: The difference between the expected truth and the actual parameter
Precision: The number of distinguishable measurements
Resolution: The smallest change that can be reliably detected
Response time: The time between a triggering event and the resulting action
Bandwidth: The amount of information processed per time
Maintainability: The flexibility with which the device can be modified
Testability: The ease with which proper operation of the device can be verified
Compatibility: The conformance of the device to existing standards
Mean time between failure: The reliability of the device, the life of a product
Size and weight: The physical space required by the system
Power: The amount of energy it takes to operate the system
Nonrecurring engineering cost (NRE cost): The one-time cost to design and test
Unit cost: The cost required to manufacture one additional product
Time-to-prototype: The time required to design, build, and test an example system
Time-to-market: The time required to deliver the product to the customer
Human factors: The degree to which our customers like/appreciate the product

Checkpoint 2.6: What’s the difference between a requirement and a specification?

The following is one possible outline of a Requirements Document. IEEE publishes a number of
templates that can be used to define a project (IEEE STD 830-1998). A requirements document states
what the system will do. It does not state how the system will do it. The main purpose of a
requirements document is to serve as an agreement between you and your clients describing what the
system will do. This agreement can become a legally binding contract. Write the document so that it is
easy to read and understand by others. It should be unambiguous, complete, verifiable, and
modifiable.

1. Overview
 1.1. Objectives: Why are we doing this project? What is the purpose?
 1.2. Process: How will the project be developed?
 1.3. Roles and Responsibilities: Who will do what? Who are the clients?
 1.4. Interactions with Existing Systems: How will it fit in?
 1.5. Terminology: Define terms used in the document.
 1.6. Security: How will intellectual property be managed?
2. Function Description
 2.1. Functionality: What will the system do precisely?
 2.2. Scope: List the phases and what will be delivered in each phase.
 2.3. Prototypes: How will intermediate progress be demonstrated?
 2.4. Performance: Define the measures and describe how they will be determined.

 2.5. Usability: Describe the interfaces. Be quantitative if possible.
 2.6. Safety: Explain any safety requirements and how they will be measured.
3. Deliverables
 3.1. Reports: How will the system be described?
 3.2. Audits: How will the clients evaluate progress?
 3.3. Outcomes: What are the deliverables? How do we know when it is done?

Observation: To build a system without a requirements document means you are never wrong, but
never done.

During the high-level design phase, we build a conceptual model of the hardware/software system. It
is in this model that we exploit as much abstraction as appropriate. The project is broken into
modules or subcomponents. Modular design will be presented in Chapter 5. During this phase, we
estimate the cost, schedule, and expected performance of the system. At this point we can decide if
the project has a high enough potential for profit. A data flow graph is a block diagram of the system,
showing the flow of information. Arrows point from source to destination. The rectangles represent
hardware components, and the ovals are software modules. We use data flow graphs in the high-level
design, because they describe the overall operation of the system while hiding the details of how it
works. Issues such as safety (e.g., Isaac Asimov’s first Law of Robotics “A robot may not harm a
human being, or, through inaction, allow a human being to come to harm”) and testing (e.g., we need
to verify our system is operational) should be addressed during the high-level design. A data flow
graph for a simple position measurement system is shown in Figure 2.4. The sensor converts position
in an electrical resistance. The analog circuit converts resistance into the 0 to +3.3V voltage range
required by the ADC. The 12-bit ADC converts analog voltage into a digital sample. The ADC
driver, using the ADC and timer hardware, collects samples and calculates voltages. The software
converts voltage to position. Voltage and position data are represented as fixed-point numbers within
the computer. The position data is passed to the LCD driver creating ASCII strings, which will be
sent to the liquid crystal display (LCD) module.

Figure 2.4. A data flow graph showing how the position signal passes through
the system.

The next phase is engineering design. We begin by constructing a preliminary design. This system
includes the overall top-down hierarchical structure, the basic I/O signals, shared data structures, and
overall software scheme. At this stage there should be a simple and direct correlation between the
hardware/software systems and the conceptual model developed in the high-level design. Next, we
finish the top-down hierarchical structure and build mock-ups of the mechanical parts (connectors,
chassis, cables etc.) and user software interface. Sophisticated 3-D CAD systems can create realistic

images of our system. Detailed hardware designs must include mechanical drawings. It is a good idea
to have a second source, which is an alternative supplier that can sell our parts if the first source
can’t deliver on time. Call graphs are a graphical way to define how the software/hardware modules
interconnect. Data structures, which will be presented throughout the book, include both the
organization of information and mechanisms to access the data. Again safety and testing should be
addressed during this low-level design.

A call graph for a simple position measurement system is shown in Figure 2.5. Again, rectangles
represent hardware components, and ovals show software modules. An arrow points from the calling
routine to the module it calls. The I/O ports are organized into groups and placed at the bottom of the
graph. A high-level call graph, like the one shown in Figure 2.5, shows only the high-level
hardware/software modules. A detailed call graph would include each software function and I/O
port. Normally, hardware is passive and the software initiates hardware/software communication, but
as we will learn in this book, it is possible for the hardware to interrupt the software and cause
certain software modules to be run. In this system, the timer hardware will cause the ADC software
to collect a sample. The timer interrupt service routine (ISR) gets the next sample from the ADC
software, converts it to position, and displays the result by calling the LCD interface software. The
double-headed arrow between the ISR and the hardware means the hardware triggers the interrupt
and the software accesses the hardware.

Figure 2.5. A call graph for a simple position measurement system.

Observation: If module A calls module B, and B returns data, then a data flow graph will show an
arrow from B to A, but a call graph will show an arrow from A to B.

The next phase is implementation. We can also call this stage development because we will
develop a possible solution. An advantage of a top-down design is that implementation of
subcomponents can occur simultaneously. During the initial iterations of the life cycle, it is quite
efficient to implement the hardware/software using simulation. One major advantage of simulation is
that it is usually quicker to implement an initial product on a simulator versus constructing a physical
device out of actual components. Rapid prototyping is important in the early stages of product
development. This allows for more loops around the analysis-design-implementation-testing-
deployment cycle, which in turn leads to a more sophisticated product.

Recent software and hardware technological developments have made significant impacts on the
software development for embedded microcomputers. The simplest approach is to use a cross-
assembler or cross-compiler to convert source code into the machine code for the target system. The
machine code can then be loaded into the target machine. Debugging embedded systems with this
simple approach is very difficult for two reasons. First, the embedded system lacks the usual
keyboard and display that assist us when we debug regular software. Second, the nature of embedded
systems involves the complex and real-time interaction between the hardware and software. These
real-time interactions make it impossible to test software with the usual single-stepping and print
statements.

The next technological advancement that has greatly affected the manner in which embedded systems
are developed is simulation. Because of the high cost and long times required to create hardware
prototypes, many preliminary feasibility designs are now performed using hardware/software
simulations. A simulator is a software application that models the behavior of the hardware/software
system. If both the external hardware and software program are simulated together, even though the
simulated time is slower than the clock on the wall, the real-time hardware/software interactions can
be studied.

During the testing phase, we evaluate the performance of our system. First, we debug the system and
validate basic functions. Next, we use careful measurements to optimize performance such as static
efficiency (memory requirements), dynamic efficiency (execution speed), accuracy (difference
between expected truth and measured), and stability (consistent operation.) Debugging techniques
will be presented at the end of most chapters.

Maintenance is the process of correcting mistakes, adding new features, optimizing for execution
speed or program size, porting to new computers or operating systems, and reconfiguring the system
to solve a similar problem. No system is static. Customers may change or add requirements or
constraints. To be profitable, we probably will wish to tailor each system to the individual needs of
each customer. Maintenance is not really a separate phase, but rather involves additional loops
around the life cycle.

Figure 2.3 describes top-down design as a cyclic process, beginning with a problem statement and
ending up with a solution. With a bottom-up design we begin with solutions and build up to a
problem statement. Many innovations begin with an idea, “what if…?” In a bottom-up design, one
begins with designing, building, and testing low-level components. The low-level designs can be
developed in parallel. Bottom-up design may be inefficient because some subsystems may be
designed, built, and tested, but never used. As the design progresses the components are fit together to
make the system more and more complex. Only after the system is completely built and tested does
one define the overall system specifications. The bottom-up design process allows creative ideas to
drive the products a company develops. It also allows one to quickly test the feasibility of an idea. If
one fully understands a problem area and the scope of potential solutions, then a top-down design
will arrive at an effective solution most quickly. On the other hand, if one doesn’t really understand
the problem or the scope of its solutions, a bottom-up approach allows one to start off by learning
about the problem.

2.4. Successive Refinement
Throughout the book in general, we discuss how to solve problems on the computer. In this section,
we discuss the process of converting a problem statement into an algorithm. Later in the book, we
will show how to map algorithms into assembly language. We begin with a set of general
specifications, and then create a list of requirements and constraints. The general specifications
describe the problem statement in an overview fashion, requirements define the specific things the
system must do, and constraints are the specific things the system must not do. These requirements and
constraints will guide us as we develop and test our system.

Observation: Sometimes the specifications are ambiguous, conflicting, or incomplete.

There are two approaches to the situation of ambiguous, conflicting, or incomplete specifications.
The best approach is to resolve the issue with your supervisor or customer. The second approach is
to make a decision and document the decision.

Performance Tip: If you feel a system specification is wrong, discuss it with your supervisor. We
can save a lot of time and money by solving the correct problem in the first place.

Successive refinement, stepwise refinement, and systematic decomposition are three equivalent
terms for a technique to convert a problem statement into a software algorithm. We start with a task
and decompose the task into a set of simpler subtasks. Then, the subtasks are decomposed into even
simpler sub-subtasks. We make progress as long as each subtask is simpler than the task itself. During
the task decomposition we must make design decisions as the details of exactly how the task will be
performed are put into place. Eventually, a subtask is so simple that it can be converted to software
code. We can decompose a task in four ways, as shown in Figure 2.6. The sequence, conditional, and
iteration are the three building blocks of structured programming. Because embedded systems often
have real-time requirements, they employ a fourth building block called interrupts. We will
implement time-critical tasks using interrupts, which are hardware-triggered software functions.
Interrupts will be discussed in more detail in Chapters 9, 10, and 11. When we solve problems on the
computer, we need to answer these questions:

What does being in a state mean? List the parameters of the state
What is the starting state of the system? Define the initial state
What information do we need to collect? List the input data
What information do we need to generate? List the output data
How do we move from one state to another? Specify actions we could perform
What is the desired ending state? Define the ultimate goal

Figure 2.6. We can decompose a task using the building blocks of structured
programming.

We need to recognize these phrases that translate to four basic building blocks:

“do A then do B” → sequential
“do A and B in either order” → sequential
“if A, then do B” → conditional
“for each A, do B” → iterative
“do A until B” → iterative
“repeat A over and over forever” → iterative (condition always true)
“on external event do B” → interrupt
“every t msec do B” → interrupt

Example 2.1. Build a digital door lock using seven switches.

Solution: The system has seven binary inputs from the switches and one binary output to the door
lock. The state of this system is defined as “door locked” and “door unlocked”. Initially, we want the
door to be locked, which we can make happen by turning a solenoid off (make binary output low). If
the 7-bit binary pattern on the switches matches a pre-defined keycode, then we want to unlock the
door (make binary output high). Because the switches might bounce (flicker on and off) when
changed, we will make sure the switches match the pre-defined keycode for at least 1 ms before
unlocking the door. We can change states by writing to the output port for the solenoid. Like most
embedded systems, there is no ending state. Once the switches no longer match the keycode the door
will lock again. The first step in successive refinement is to divide the tasks into those performed
once (Initialization), and those tasks repeated over and over (Execute lock), as shown as the left
flowchart in Figure 2.7.

Figure 2.7. We can decompose a task using the building blocks of structured
programming.

As shown in the middle flow chart, we implement if the switches match the key, then unlock. If the
switches do not match we will lock the door. To verify the user entered the proper keycode the
switches must match, then match again after 1 ms. There are two considerations when designing a
system: security and safety. Notice that the system will lock the door if power is removed, because
power applied to the solenoid will unlock the door. For safety reasons, there should be a mechanical
way to unlock the door from the inside in case of emergency.

2.5. Quality Design
Embedded system development is similar to other engineering tasks. We can choose to follow well-
defined procedures during the development and evaluation phases, or we can meander in a haphazard
way and produce code that is hard to test and harder to change. The ultimate goal of the system is to
satisfy the stated objectives such as accuracy, stability, and input/output relationships. Nevertheless it
is appropriate to separately evaluate the individual components of the system. Therefore in this
section, we will evaluate the quality of our software. There are two categories of performance
criteria with which we evaluate the “goodness” of our software. Quantitative criteria include
dynamic efficiency (speed of execution), static efficiency (memory requirements), and accuracy of the
results. Qualitative criteria center on ease of software maintenance. Another qualitative way to
evaluate software is ease of understanding. If your software is easy to understand then it will be:

Easy to debug (fix mistakes)
Easy to verify (prove correctness)
Easy to maintain (add features)

Common Error: Programmers who sacrifice clarity in favor of execution speed often develop
software that runs fast, but is error-prone and difficult to change.

Golden Rule of Software Development
Write software for others as you wish they would write for you.

2.5.1. Quantitative Performance Measurements
In order to evaluate our software quality, we need performance measures. The simplest approaches to
this issue are quantitative measurements. Dynamic efficiency is a measure of how fast the program
executes. It is measured in seconds or processor bus cycles. Static efficiency is the number of
memory bytes required. Since most embedded computer systems have both RAM and ROM, we
specify memory requirement in global variables, stack space, fixed constants and program. The
global variables plus the stack must fit into the available RAM. Similarly, the fixed constants plus the
program must fit into the available ROM. We can also judge our embedded system according to
whether or not it satisfies given requirements and constraints, like accuracy, cost, power, size,
reliability, and time-table.

2.5.2. Qualitative Performance Measurements

Qualitative performance measurements include those parameters to which we cannot assign a direct
numerical value. Often in life the most important questions are the easiest to ask, but the hardest to
answer. Such is the case with software quality. So therefore we ask the following qualitative
questions. Can we prove our software works? Is our software easy to understand? Is our software
easy to change? Since there is no single approach to writing the best software, we can only hope to
present some techniques that you may wish to integrate into your own software style. In fact, this book
devotes considerable effort to the important issue of developing quality software. In particular, we
will study self-documented code, abstraction, modularity, and layered software. These issues indeed
play a profound effect on the bottom-line financial success of our projects. Although quite real,
because there is often not an immediate and direct relationship between a software’s quality and
profit, we may be mistakenly tempted to dismiss the importance of quality.

To get a benchmark on how good a programmer you are, take the following two challenges. In the first
challenge, find a major piece of software that you have written over 12 months ago, and then see if
you can still understand it enough to make minor changes in its behavior. The second challenge is to
exchange with a peer a major piece of software that you have both recently written (but not written
together), then in the same manner, see if you can make minor changes to each other's software.

Observation: You can tell if you are a good programmer if 1) you can understand your own code 12
months later, and 2) others can make changes to your code.

2.5.3. Attitude
Good engineers employ well-defined design processes when developing complex systems. When we
work within a structured framework, it is easier to prove our system works (verification) and to
modify our system in the future (maintenance.) As our software systems become more complex, it
becomes increasingly important to employ well-defined software design processes. Throughout this
book, a very detailed set of software development rules will be presented. This book focuses on real-
time embedded systems written in assembly language and C, but most of the design processes should
apply to other languages as well. At first, it may seem radical to force such a rigid structure to
software. We might wonder if creativity will be sacrificed in the process. True creativity is more
about good solutions to important problems and not about being sloppy and inconsistent. Because
software maintenance is a critical task, the time spent organizing, documenting, and testing during the
initial development stages will reap huge dividends throughout the life of the software project.

Observation: The easiest way to debug is to write software without any bugs.

We define clients as programmers who will use our software. A client develops software that will
call our functions. We define coworkers as programmers who will debug and upgrade our software.
A coworker, possibly ourselves, develops, tests, and modifies our software.

Writing quality software has a lot to do with attitude. We should be embarrassed to ask our coworkers
to make changes to our poorly written software. Since so much software development effort involves
maintenance, we should create software modules that are easy to change. In other words, we should
expect each piece of our code will be read by another engineer in the future, whose job it will be to
make changes to our code. We might be tempted to quit a software project once the system is running,
but this short time we might save by not organizing, documenting, and testing will be lost many times
over in the future when it is time to update the code.

As project managers, we must reward good behavior and punish bad behavior. A company, in an
effort to improve the quality of their software products, implemented the following policies.

The employees in the customer relations department receive a bonus for every
software bug that they can identify. These bugs are reported to the software
developers, who in turn receive a bonus for every bug they fix.

Checkpoint 2.7: Why did the above policy fail horribly?

We should demand of ourselves that we deliver bug-free software to our clients. Again, we should be
embarrassed when our clients report bugs in our code. We should be mortified when other
programmers find bugs in our code. There are a few steps we can take to facilitate this important
aspect of software design.

Test it now. When we find a bug, fix it immediately. The longer we put off fixing a mistake the more
complicated the system becomes, making it harder to find. Remember that bugs do not go away on
their own, but we can make the system so complex that the bugs will manifest themselves in
mysterious and obscure ways. For the same reason, we should completely test each module
individually, before combining them into a larger system. We should not add new features before we
are convinced the existing system is bug-free. In this way, we start with a working system, add
features, and then debug this system until it is working again. This incremental approach makes it
easier to track progress. It allows us to undo bad decisions, because we can always revert back to a
previously working system. Adding new features before the old ones are debugged is very risky. With
this sloppy approach, we could easily reach the project deadline with 100% of the features
implemented, but have a system that doesn’t run. In addition, once a bug is introduced, the longer we
wait to remove it, the harder it will be to correct. This is particularly true when the bugs interact with
each other. Conversely, with the incremental approach, when the project schedule slips, we can
deliver a working system at the deadline that supports some of the features.

Maintenance Tip: Go from working system to working system.

Plan for testing. How to test each module should be considered at the start of a project. In particular,
testing should be included as part of the design of both hardware and software components. Our
testing and the client's usage go hand in hand. In particular, how we test the module will help the
client understand the context and limitations of how our component is to be used. On the other hand, a
clear understanding of how the client wishes to use our hardware/software component is critical for
both its design and its testing.

Maintenance Tip: It is better to have some parts of the system that run with 100% reliability than to
have the entire system with bugs.

Get help. Use whatever features are available for organization and debugging. Pay attention to
warnings, because they often point to misunderstandings about data or functions. Misunderstanding of
assumptions that can cause bugs when the software is upgraded, or reused in a different context than
originally conceived. Remember that computer time is a lot cheaper than programmer time.

Maintenance Tip: It is better to have a system that runs slowly than to have one that doesn’t run at
all.

Deal with the complexity. In the early days of microcomputer systems, software size could be
measured in 100’s of lines of source code using 1000’s of bytes of memory. These early systems, due
to their small size, were inherently simple. The explosion of hardware technology (both in speed and
size) has led to a similar increase in the size of software systems. Some people forecast that by the
next decade, automobiles will have 10 million lines of code in their embedded systems. The only
hope for success in a large software system will be to break it into simple modules. In most cases, the
complexity of the problem itself cannot be avoided. E.g., there is just no simple way to get to the
moon. Nevertheless, a complex system can be created out of simple components. A real creative
effort is required to orchestrate simple building blocks into larger modules, which themselves are
grouped to create even larger systems. Use your creativity to break a complex problem into simple
components, rather than developing complex solutions to simple problems.

Observation: There are two ways of constructing a software design: one way is to make it so simple
that there are obviously no deficiencies and the other way is make it so complicated that there are no
obvious deficiencies. C.A.R. Hoare, "The Emperor's Old Clothes," CACM Feb. 1981.

2.6. Debugging Theory
The last section of every chapter in this book will address debugging techniques. Every programmer
is faced with the need to debug and verify the correctness of his or her software. A debugging
instrument is hardware or software used for the purpose of debugging. In this book, we will study
hardware-level probes like the logic analyzer, oscilloscope, and Joint Test Action Group (JTAG
standardized as the IEEE 1149.1); software-level tools like simulators, monitors, and profilers; and
manual tools like inspection and print statements. Nonintrusiveness is the characteristic or quality of
a debugger that allows the software/hardware system to operate normally as if the debugger did not
exist. Intrusiveness is used as a measure of the degree of perturbation caused in program performance
by the debugging instrument itself. For example, a print statement added to your source code is very
intrusive because it significantly affects the real-time interaction of the hardware and software. It is
important to quantify the intrusiveness of an instrument. Let t be the average time it takes to run the
software code comprising instrument. This time t is how much less time the system has to perform its
regular duties. Let Δt be the average time between executions of the instrument. A quantitative
measure of intrusiveness is t/Δt, which is the fraction of the time consumed by the process of
debugging itself. A debugging instrument is classified as minimally intrusive if it has a negligible
effect on the system being debugged. In other words, if t/Δt so small that the debugging processes
have a finite but inconsequential effect on the system behavior, we classify it as minimally intrusive.
In a real microcomputer system, breakpoints and single-stepping are intrusive, because the real
hardware continues to change while the software has stopped. When a program interacts with real-
time events, the performance can be significantly altered when using intrusive debugging tools. On the
other hand, we will learn later in this book that dumps, dumps with filter, and monitors are much less
intrusive. Examples of monitors are LEDs or organic LED (OLED) displays. A logic analyzer that
passively monitors the activity of the software is completely nonintrusive. Interestingly, breakpoints
and single-stepping on a mixed hardware/software simulator are often nonintrusive, because the
simulated hardware and the software are affected together.

Checkpoint 2.8: What does it mean for a debugging instrument to be minimally intrusive? Give both
a general answer and a specific criterion.

Research in the area of program monitoring and debugging mirrors the rapid pace of developments in
other areas of computer architecture and software systems. Because of the complexity explosion in
computer systems, effective debugging tools are essential. The critical aspect of debugging an
embedded system is the ability to see what the software is doing, where it is executing, and when it
did do it, without the debugger itself modifying system behavior. Terms such as program testing,
diagnostics, performance debugging, functional debugging, tracing, profiling, instrumentation,
visualization, optimization, verification, performance measurement, and execution measurement have
specialized meanings, but they are also used interchangeably, and they often describe overlapping
functions. For example, the terms profiling, tracing, performance measurement, or execution
measurement may be used to describe the process of examining a program from a time viewpoint.
But, tracing is also a term that may be used to describe the process of monitoring a program state or
history for functional errors, or to describe the process of stepping through a program with a

debugger. Usage of these terms among researchers and users vary.
Furthermore, the meaning and scope of the term debugging itself is not clear. In this book the goal of
debugging is to maintain and improve software, and the role of a debugger is to support this endeavor.
The debugging process is defined as testing, stabilizing, localizing, and correcting errors. Although
testing, stabilizing, and localizing errors are important and essential to debugging, they are auxiliary
processes: the primary goal of debugging is to remedy faults or to correct errors in a program.
Stabilization is process of fixing the inputs so that the system can be run over and over again yielding
repeatable outputs.

Although, a wide variety of program monitoring and debugging tools are available today, in practice
it is found that an overwhelming majority of users either still prefer or rely mainly upon “rough and
ready” manual methods for locating and correcting program errors. These methods include desk-
checking, dumps, and print statements, with print statements being one of the most popular manual
methods. Manual methods are useful because they are readily available, and they are relatively
simple to use. But, the usefulness of manual methods is limited: they tend to be highly intrusive, and
they do not provide adequate control over repeatability, event selection, or event isolation. A real-
time system, where software execution timing is critical, usually cannot be debugged with simple
print statements, because the print statement itself will require too much time to execute.

Black-box testing is simply observing the inputs and outputs without looking inside. Black-box
testing has an important place in debugging a module for its functionality. On the other hand, white-
box testing allows you to control and observe the internal workings of a system. A common mistake
made by new engineers is to just perform black box testing. Effective debugging uses both. One must
always start with black-box testing by subjecting a hardware or software module to appropriate test-
cases. Once we document the failed test-cases, we can use them to aid us in effectively performing
the task of white-box testing.

A debugging instrument is defined as hardware or software that is added to the system for the purpose
of debugging. A print statement is a common example of an instrument. Using the editor, one adds
print statements to the code that either verify proper operation or illustrate the programming errors. If
we test a system, then remove the instruments, the system may actually stop working, because of the
importance of timing in embedded systems. If we leave debugging instruments in the final product, we
can use the instruments to test systems on the production line, or test systems returned for repair. On
the other hand, sometimes we wish to provide for a mechanism to reliably and efficiently remove all
instruments when the debugging is done. Consider the following mechanisms as you develop your
own unique debugging style.

• Place all instruments in a unique column, so you can easily distinguish instruments
from regular programs.
• Define all debugging instruments as functions that all have a specific pattern in their
names. In this way, the find/replace mechanism of the editor can be used to find all
the calls to the instruments.
• Define the instruments so that they test a run time global flag. When this flag is
turned off, the instruments perform no function. Notice that this method leaves a
permanent copy of the debugging code in the final system, causing it to suffer a

runtime overhead, but the debugging code can be activated dynamically without
recompiling. Many commercial software applications utilize this method because it
simplifies “on-site” customer support.
• Use conditional compilation (or conditional assembly) to turn on and off the
instruments when the software is compiled. When the assembler or compiler supports
this feature, it can provide both performance and effectiveness.

The emergence of concurrent languages and the increasing use of embedded real-time systems place
further demands on debuggers. The complexities introduced by the interaction of multiple events or
time dependent processes are much more difficult to debug than errors associated with sequential
programs. The behavior of non-real-time sequential programs is reproducible: for a given set of
inputs their outputs remain the same. In the case of concurrent or real-time programs this does not
hold true. Control over repeatability, event selection, and event isolation is even more important for
concurrent or real-time environments.

Checkpoint 2.9: Consider the difference between a runtime flag that activates a debugging command
versus an assembly/compile-time flag. In both cases it is easy to activate/deactivate the debugging
statements. For each method, list one factor for which that method is superior to the other.

Checkpoint 2.10: What is the advantage of leaving debugging instruments in a final delivered
product?

Observation: There are two important components of debugging: having control over events and
being able to see what is happening. Remember: control and observability!

Common Error: The most common debugging mistake new programmers make is to simply observe
the overall inputs and outputs system without looking inside the device. Then they go to their
professor and say, “My program gives incorrect output. Do you know why?”

2.7. Switch and LED Interfaces
This section is completely out of place. It really belongs back in Chapters 4 or 8 with the other
input/output devices. However, I couldn’t wait to show you how much fun it is to make the
microcontroller interact with real physical devices. So in this section I will take a short side step
from the business of concepts and theories to teach you how to connect switches and LEDs to the
microcontroller. We will use switches to input data and use LEDs to output results.

Input/output devices are critical components of an embedded system. The first input device we will
study is the switch. It allows the human to input binary information into the computer. Typically we
define the asserted state, or logic true, when the switch is pressed. Contact switches can also be used
in machines to detect mechanical contact (e.g., two parts touching, paper present in the printer, or
wheels on the ground etc.) A single pole single throw (SPST) switch has two connections. The
switches are shown as the device between the little open circles in Figure 2.8. In a normally-open
switch (NO), the resistance between the connections is infinite (over 100 MΩ on the B3F tactile
switch) if the switch is not pressed and zero (under 0.1 Ω on the B3F tactile switch) if the switch is
pressed. There are two ways to interface the switch to the microcontroller: positive and negative
logic.

Figure 2.8. Single Pole Single Throw (SPST) Switch interface. The photo is a
B3F tactile switch.

With positive logic the asserted state has a larger voltage than the unasserted state. In other words,
when the switch is pressed, the digital signal will be a logic one (t = 3.3V), and when the switch is
not pressed the digital signal will be a logic zero (t = 0V). Because we wish to have a 3.3V signal
when we press the switch, we connect one side of the switch to +3.3V. Notice in Figure 2.8 the signal
x will be 3.3V when the switch is pressed. However, x will float, which means x has no voltage,
when the switch is not pressed. If we add a pull-down resistor to ground the signal t will be 0V when
the switch is not pressed and 3.3V if the switch is pressed, as desired. Notice that 10 kΩ is 100,000
times larger than the on-resistance of the switch and 10,000 times smaller than its off-resistance.

Another way to choose the pull-down resistor is to consider the input current of the microcontroller
input pin. The current into the microcontroller will be less than 2µA (defined as IIL and IIH in the data
sheet). So, if the current into microcontroller is 2µA, then the voltage drop across the 10 kΩ resistor
will be 0.02 V, which is negligibly small.

With negative logic the asserted state has a smaller voltage than the unasserted state. In other words,
when the switch is not pressed, the digital signal will be a logic one (s = 3.3V), and when the switch
is pressed the digital signal will be a logic zero (s = 0V). With the negative logic interface we want
the pressed state to create a 0V. So, to convert the resistance of the switch into a digital signal, we can
connect one side of the switch to 0V. Notice in Figure 2.8 the signal y will be 0V when the switch is
pressed, but will float when the switch is not pressed. If we add a pull-up resistor to +3.3V the signal
s will be 0V when the switch is pressed and 3.3V if the switch is not pressed, as desired.

One of the complicating issues with mechanical switches is they can bounce (oscillate on and off)
when touched and when released. The contact bounce varies from switch to switch and from time to
time, but usually bouncing is a transient event lasting less than 5 ms. We can eliminate the effect of
bounce if we design software that waits at least 10 ms between times we read the switch values.

A light emitting diode (LED) emits light when an electric current passes through it. LEDs have
polarity, meaning current must pass from anode to cathode to activate. The anode is labeled a or + ,
and cathode is labeled k or -. The cathode is the short lead and there may be a slight flat spot on the
body of round LEDs. Thus, the anode is the longer lead. The brightness of an LED depends on the
applied electrical power (P=I*V). Since the LED voltage is approximately constant in the active
region (see left side of Figure 2.9), we can establish the desired brightness by setting the current.

Figure 2.9. Positive logic LED interface (Lite-On LTL-10223W).

Checkpoint 2.11: What resistor value in Figure 2.9 is needed if the desired LED operating point is
1.7V and 12 mA?

If the LED current is above 8 mA, we cannot connect it directly to the microcontroller because the
high currents may damage the chip. Figure 2.9 shows two possible interface circuits we could use. In
both circuits if the software makes its output high the LED will be on. If the software makes its output
low the LED will be off (shown in Figure 2.9 with italics). When the software writes a logic 1 to the
output port, the input to the 7405/PN2222 becomes high, output from the 7405/PN2222 becomes low,
10 mA travels through the LED, and the LED is on. When the software writes a logic 0 to the output
port, the input to the 7405/PN2222 becomes low, output from the 7405/PN2222 floats (neither high
nor low), no current travels through the LED, and the LED is dark. The value of the resistor is
selected to establish the proper LED current. When active, the LED voltage will be about 2 V, and the
power delivered to the LED will be controlled by its current. If the desired brightness requires an
operating point of 1.9 V at 10 mA, then the resistor value should be

where Vd, Id is the desired LED operating point, and VOL is the output low voltage of the LED driver.
If we use a standard resistor value of 100Ω in place of the 90Ω, then the current will be (3.3-1.9-
0.5V)/100Ω, which is about 9 mA. This slightly lower current is usually acceptable.

Figure 2.10. Low current LED interface (Agilent HLMP-D150).

When the LED current is less than 8 mA, we can interface it directly to an output pin without using a
driver. The LED shown in Figure 2.10 has an operating point of 1.7 V and 1 mA. For the positive
logic interface (Figure 2.10b) we calculate the resistor value based on the desired LED voltage and
current

where VOH is the output high voltage of the microcontroller output pin. Since VOH can vary from 2.4 to
3.3 V, it makes sense to choose a resistor from a measured value of VOH, rather than the minimum
value of 2.4 V. Negative logic means the LED is activated when the software outputs a zero. For the
negative logic interface (Figure 2.10c) we use a similar equation to determine the resistor value

where VOL is the output low voltage of the microcontroller output pin.

If we use a 1.2 kΩ in place of the 1.3 kΩ, then the current will be (3.3-1.6-0.4V)/1.2kΩ, which is
about 1.08 mA. This slightly higher current is usually acceptable. If we use a standard resistor value
of 1.5 kΩ in place of the 1.3 kΩ, then the current will be (3.3-1.6-0.4V)/1.5kΩ, which is about 0.87
mA. This slightly lower current is usually acceptable.

Design for tolerance means making it work for a range of possibilities. Assume the resistor value in
Figure 2.10c is 1.3kΩ, and the diode voltage remains at 1.6V. The VOL could range from 0 to 0.4 V. At
VOL=0V, Id=(3.3-1.6-0.0V)/1.3kΩ, which is about 1.3 mA. At VOL=0.4V, Id=(3.3-1.6-0.4V)/1.3kΩ,
which is about 1.0 mA. So the uncertainty in VOL causes a 1.0 to 1.3 mA uncertainty in Id. This is
usually acceptable. However, it makes sense to measure each of these voltages and currents in the
actual circuit to verify its proper operation.

Checkpoint 2.12: What resistor value in of Figure 2.10 is needed if the desired LED operating point
is 1.7V and 2 mA? Use the negative logic interface.

Observation: Using standard resistor values will make our product less expensive and easier to
obtain parts.

2.8. Introduction to C
This section is a brief introduction to C. C is a general-purpose programming language initially
developed by Dennis Ritchie between 1969 and 1973 while at AT&T Bell Labs. At the time, there
were programming languages called A and another named B, so Ritchie decided to name his language
C. Dennis Ritchie and Brian Kernighan wrote the first book on C, The C Programming Language.
Ritchie was also one of the developers of the UNIX operating system. As C became more popular,
many derivative languages were introduced. C++ was developed by Bjarne Stroustrup 1979-1983
also at Bell Labs. C++ is a language originally called “C plus classes”. In 1999, a professional
standard version of C, called C99, was defined. When you download Tivaware
(http://www.ti.com/tool/sw-tm4c) from Texas Instruments, you will notice TI’s example code for the
TM4C123 has been written in C99. In this book, we will adhere to the C99 standard, because it is
prevalent in industry.

A compiler is system software that converts a high-level language program (human readable format)
into object code (machine readable format). It produces software that is fast but to change the
software we need to edit the source code and recompile.

C code (z = x+y;) → Assembly code (ADD R2,R1,R0) → Machine code (0xEB010200)

An assembler is system software that converts an assembly language program (human readable
format) into object code (machine readable format). An interpreter executes directly the high level
language. It is interactive but runs slower than compiled code. Many languages can be compiled or
interpreted. The original BASIC (Beginner's All-purpose Symbolic Instruction Code) was
interpreted. This means the user typed software to the computer, and the interpreter executed the
commands as they were typed. In this book, an example of the interpreter will be the command
window while running the debugger. For more information on this interpreter, run Keil uVision and
execute Help->uVisionHelp. Next, you need to click the Contents tab, open the
uVisionIDEusersGuide, and then click DebugCommands. It will show you a list of debugger
commands you can type into the command window.

A linker builds software system by connecting (linking) software components. In Keil uVision, the
build command (Project->BuildTarget) performs both a compilation and a linking. The example
code in Program 2.1 has three software components that are linked together. These components are
startup.s uart.c and main.c.

In an embedded system, the loader will program object code into flash ROM. We place object code
in ROM because ROM is retains its information if power is removed and restored. In Keil uVision,
the download command (Flash->Download) performs a load operation.

A debugger is a set of hardware and software tools we use to verify system is operating correctly.
The two important aspects of a good debugger are control and observability.

Before we write software, we need to develop a plan. Software development is an iterative process.
Even though we list steps the development process in a 1,2,3,4 order, in reality we cycle through
these steps over and over. I like to begin with step 4), deciding how I will test it even before I decide
what it does.

1) We begin with a list of the inputs and outputs. This usually defines what the overall system will do.
We specify the range of values and their significance.

2) Next, we make a list of the required data. We must decide how the data is structured, what does it
mean, how it is collected, and how it can be changed.

3) Next we develop the software algorithm, which is a sequence of operations we wish to execute.
There are many approaches to describing the plan. Experienced programmers can develop the
algorithm directly in C language. On the other hand, most of us need an abstractive method to
document the desired sequence of actions. Flowcharts and pseudo code are two common descriptive
formats. There are no formal rules regarding pseudo code, rather it is a shorthand for describing what
to do and when to do it. We can place our pseudo code as documentation into the comment fields of
our program. Next we write software to implement the algorithm as define in the flowchart and
pseudo code.

4) The last stage is debugging. Learning debugging skills will greatly improve the quality of your
software and the efficiency at which you can develop code.

Every C program has a main , and execution will begin at the top of this main program. There are four
sections of a C program as shown in Program 2.1. The first section is the documentation section,
which includes the purpose of the software, the authors, the date, and any copyright information.
When the software involves external hardware we will add information about how the external
hardware is connected. The second section is the preprocessor directives. We will use the
preprocessor directive #include to connect this software with other modules. We use diamond braces
to include system libraries, like the standard I/O, and we use quotes to link up with other user code
within the project. In this case, the uartmodule is software we wrote to perform I/O with the
universal asynchronous receiver/transmitter (UART). The details of the UART will be presented later
in Section 8.2. For now, we just need to know when we call printf , information is transmitted out of
the microcontroller and displayed for the operator to see. The third section is global declarations
section. This section will include global variables and function prototypes for functions defined in
this module. The last section will be the functions themselves. In this book we will use the terms
subroutine, procedure, function, and program interchangeably. Every software system in C has exactly
one main program, which defines where it begins execution.
Line 1 defines the start of main, and in this book all our C code will have this line exactly. Lines 2-5
are the body of the main program. Line 2 calls a function in the UART driver to initialize the serial
port. Line 3 will output the message “Hello world” to the serial port. Line 4 will cause line 5 to be
executed over and over. Line 5 doesn’t do anything, so the program will output the message once and
sit there and do nothing forever. Line 6 is the end of the main, but this line will never be reached.C
has a lot of paired symbols. For every (there is a matching) . For every { there is a matching } . For
every " there is a matching " . The <> symbols will be matched only in #include statements. Other
symbols that will be matched are [] and '' .
//**** 0. Documentation Section

// This program demonstrates the sections of a C program
// Author: Ramesh Yerraballi & Jon Valvano
// Date: 5/28/2014
// 1. Pre-processor Directives Section
#include <stdio.h> // Diamond braces for sys lib: Standard I/O
#include <stdint.h> // C99 definitions
#include "uart.h" // Quotes for user lib: UART lib
// 2. Global Declarations section
// 3. Subroutines Section
// MAIN: Mandatory routine for a C program to be executable
int main(void){ // line 1
 UART_Init(); // line 2
 printf("Hello world"); // line 3
 while(1){ // line 4
 } // line 5
} // line 6
Program 2.1. Simple program illustrating the sections of a C program.

If you wish to run a similar program, you can download and run the Printf_LF120example from the
web site. Preprocessor lines begin with # in the first column, like the #include lines in the above
example. All preprocessor lines are invoked first (one pass through the software), and then all the
other lines will be compiled as regular C (second pass).
In assembly language, symbols placed at the beginning of each line have special meaning. On the
contrary, C is a free field language. Except for preprocessor lines, spaces, tabs and line breaks have
the same meaning. This means we can place more than one statement on a single line, or place a
single statement across multiple lines. For example a function could have been written without any
line breaks
uint32_t Random(void){M=1664525*M+1013904223;return(M);}

Since we rarely make hardcopy printouts of our software, it is not necessary to minimize the number
of line breaks. Furthermore, we could have added extra line breaks. I prefer the style of the program
on the right because each line contains one complete thought or action. As you get more experienced,
you will develop a programming style that is easy to understand. Although spaces, tabs, and line
breaks are syntactically equivalent, their proper usage will have a profound impact on the readability
of your software.

uint32_t
Random(void){
 M =
 1664525*M
 +1013904223;
 return(M);
}

uint32_t Random(void){
 M = 1664525*M+1013904223;
 return(M);
}

The variable M , thefunction Random , the operation * , andthe keyword uint32_t are tokensin C
Each token must be contained on a single line. We see in the above example that tokens can be
separated by white spaces, which include space, tab, line break, or by special characters. Special
characters include punctuation marks (Table 2.2) and operations (Table 2.3).

Punctuation Meaning
; End of statement
: Defines a label
, Separates elements of a list
() Start and end of a parameter list
{ } Start and stop of a compound

statement
[] Start and stop of a array index
" " Start and stop of a string
' ' Start and stop of a character constant

Table 2.2. Special characters can be punctuation marks.

Operation Meaning Operation Meaning
= Assignment statement == Equal to

comparison
? Selection <= Less than or

equal to
< Less than >= Greater than or

equal to
> Greater than != Not equal to
! Logical not (true to

false, false to true)
 << Shift left

~ 1’s complement >> Shift right
+ Addition ++ Increment
- Subtraction -- Decrement
* Multiply or pointer

reference
 && Boolean and

/ Divide || Boolean or
% Modulo, division

remainder
 += Add value to

| Logical or -= Subtract value to
& Logical and, or

address of
 *= Multiply value to

^ Logical exclusive or /= Divide value to
. |= Or value to

Used to access parts
of a structure

 &= And value to
 ^= Exclusive or

value to
 <<= Shift value left
 >>= Shift value right
 %= Modulo divide

value to
 -> Pointer to a

structure
Table 2.3. Special characters can be operators; operators can be made from 1, 2, or 3
characters.

Punctuation marks (semicolons, colons, commas, apostrophes, quotation marks, braces, brackets, and
parentheses) are very important in C. It is one of the most frequent sources of errors for both the
beginning and experienced programmers. Another situation where spaces, tabs and line breaks matter
is string constants. We cannot type tabs or line breaks within a string constant. The characters
between the first " and second " define the string constant. A string is a set of ASCII characters
terminated with a 0. For example, the following C code will output my name (see Section 4.5):

 printf("Jonathan Valvano");

Program 2.2illustrates the assignment operator. Notice that in the line x=1; the x is on the left hand
side of the = . This specifies the address of x is the destination of assignment. On the other hand, in
the line z=x; the x is on the right hand side of the = . This specifies the value of x will be assigned
into the variable z . Also remember that the line z=x; creates two copies of the data. The original
value remains in x , while z also contains this value.

int32_t x,y,z; // Three 32-bit signed variables
int main(void){
 x = 1; // set the value of x to 1
 y = 2; // set the value of y to 2
 z = x; // set the value of z to the value of x (both are 1)
 x = y = z = 0; // all all three to zero
 while(1){
 }
}
Program 2.2. Simple program illustrating C arithmetic operators.

Program 2.3 illustrates the arithmetic operations of addition, subtraction, multiplication and division.
In the operation x+4*y , multiplication has precedence over addition.

int32_t x,y,z; // Three 32-bit signed variables
int main(void){

 x=1; y=2; // set the values of x and y
 z = x+4*y; // arithmetic operation
 x++; // same as x=x+1;
 y--; // same as y=y-1;
 x = y<<2; // left shift same as x=4*y;
 z = y>>2; // right shift same as x=y/4;
 y += 2; // same as y=y+2;
 while(1){
 }
}
Program 2.3. Simple program illustrating C arithmetic operators.

Program 2.4 defines a function that we can call from elsewhere in the software. We will introduce a
simple conditional control structure. Assume all of Port A is configured as an output port, and Port B
bit 2 as an input port. The goal is to make Port A equal to 0 if Port B bit 2 is zero, and make Port A
equal to 100 if Port B bit 2 is set. The expression GPIO_PORTB_DATA_R&0x04 will return 0 if
Port B bit 2 is 0 and will return a 4 if Port B bit 2 is 1. The
expression (GPIO_PORTB_DATA_R&0x04)==0 will return true if Port B bit 2 is 0 and will
return a falseif Port B bit 2 is 1. The statement immediately following the if will be executed if the
condition is true. The statement immediately following the else will be executed if the condition is
false.

void CheckPB2(void){
 if((GPIO_PORTB_DATA_R&0x04)==0){ // test bit 2 of Port B
 GPIO_PORTA_DATA_R = 0; // if PB2 is 0, then Port A=0
 }else{
 GPIO_PORTA_DATA_R = 100; // if PB2 is not 0, then Port A=100
 }
}
Program 2.4. Simple program illustrating the C if else control structure.

Program 2.5 also defines a function. Assume that Port A bit 3 is configured as an output pin. The goal
is to make the output pin toggle 100 times. Like the if statement, the while statement has a conditional
test (i.e., returns a true/false). The statement immediately following the while will be executed over
and over until the conditional test becomes false.

void TogglePA3(void){ uint32_t count;
 count = 0;
 while(count < 100){
 GPIO_PORTA_DATA_R = GPIO_PORTA_DATA_R^0x08; // toggle bit 3
 count ++; // increment counter until counter becomes 100,
 }
}
Program 2.5. Simple program illustrating the C while control structure.

The for control structure has three parts and a body.

for(part1;part2;part3){body;}

In Program 2.5, the first part count=0 is executed once at the beginning. Before the body is executed,
the end-condition part 2 is executed. If the condition is true, count<100 then the
body GPIO_PORTA_DATA_R ^= 0x08; is executed. After the body is executed, the third part is
executed, count++ . The second part is always a conditional that results in a true or a false. The body
and third part are repeated until the conditional is false.

void TogglePA3(void){ uint32_t count;
 for(count = 0; count < 100; count++){
 GPIO_PORTA_DATA_R ^= 0x08; // toggle bit 3
 }
}
Program 2.6. A rewrite of Program 2.5 illustrating the C for-loop control
structure.

As with all programming languages the order of the tokens is important. There are two issues to
consider when evaluating complex statements. The precedence of the operator determines which
operations are performed first. In expression z=x+4*y , the 4*y is performed first because * has
higher precedence than + and =. The addition is performed second because + has higher precedence
than =. The assignment = is performed last. Sometimes we use parentheses to clarify the meaning of
the expression, even when they are not needed. Therefore, the line z=x+4*y; could have been written
as z=(x+4*y); z=(x+4*y); or z=(x+(4*y));

The second issue is the associativity. Associativity determines the left to right or right to left order of
evaluation when multiple operations of equal precedence are combined. For example + and - have the
same precedence, so how do we evaluate the following?

z = y-2+x;

We know that + and - associate the left to right, this function is the same as z=(y-2)+x; . Meaning the
subtraction is performed first because it is more to the left than the addition. Most operations
associate left to right, but the following table illustrates that some operators associate right to left.

Precedence Operators Associativity
Highest () []. -> ++ (postfix) -- (postfix) Left to right
 ++ (prefix) -- (prefix) ! ~ sizeof (type)

+(unary)
- (unary) & (address) * (dereference)

Right to left

 * / % Left to right
 + - Left to right
 << >> Left to right
 < <= > >= Left to right
 == != Left to right
 & Left to right

 ^ Left to right
 | Left to right
 && Left to right
 || Left to right
 ? : Right to left
 = += -= *= /= %= <<= >>= |= &=

 ^=
Right to left

Lowest , Left to right
Table 2.4. Precedence and associativity determine the order of operation.

Observation: When confused about precedence (and aren't we all) add parentheses to clarify the
expression.

There are two types of comments. The first type explains how to use the software. These comments
are usually placed at the top of the file, within the header file, or at the start of a function. The reader
of these comments will be writing software that uses or calls these routines. The second type of
comments assists a future programmer (ourselves included) in changing, debugging or extending these
routines. We usually place these comments within the body of the functions. The comments on the right
of each line are examples of the second type.

As mentioned earlier, the preprocessor directives begin with # in the first column. As the name
implies preprocessor commands are processed first. I.e., the compiler passes through the program
handling the preprocessor directives. Although there are many possibilities (assembly language,
conditional compilation, interrupt service routines), I thought I’d mention the two most important ones
early in the book. We create a macro using #define to define constants.

#define SIZE 10

Basically, wherever SIZE is found as a token, it is replaced with the number 10 . A second important
directive is the #include , which allows you to include another entire file at that position within the
program. The #include directive will include the file named tm4c123ge6pm.h at this point in the
program. This file will define all the I/O port names for the TM4C123. There are similar header files
for each of the microcontrollers.

#include "tm4c123ge6pm.h"
It is important for the C programmer to distinguish the two terms declaration and definition. A
function declaration specifies its name, its input parameters and its output parameter. Another name
for a function declaration is prototype. A data structure declaration specifies its type and format. On
the other hand, a function definition specifies the exact sequence of operations to execute when it is
called. A function definition will generate object code, which are machine instructions to be loaded
into memory that perform the intended operations. A data structure definition will reserve space in
memory for it. The confusing part is that the definition will repeat the declaration specifications. The
C compiler performs just one pass through the code, and we must declare data/functions before we
can access/invoke them. To run, of course, all data and functions must be defined. For example the
declaration for the function Random could be written as

uint32_t Random(void);

We can see that the declaration shows us how to use the function, not how the function works.
Because the C compilation is a one-pass process, an object must be declared or defined before it can
be used in a statement. Actually the preprocessor performs the first pass through the program that
handles the preprocessor directives. A top-down approach is to first declare a function, use the
function, and lastly define the function as illustrated in Program 2.7. You see the high-level operations
first.

uint32_t Random(void);
void main(void){uint32_t n;
 while(1){
 n = (Random()>>24)%52; // n varies from 0 to 51
 }
}
uint32_t M=1;
uint32_t Random(void){
 M = 1664525*M+1013904223;
 return(M);
}
Program 2.7. A main program that calls a function. In this case the declaration
occurs first.

A bottom-up approach is to first define a function and then use the function as illustrated in Program
2.8. In the bottom-up approach, the definition both declares its structure and defines what it does. In
bottom-up, you see the low-level operations first.

uint32_t M=1;
uint32_t Random(void){
 M = 1664525*M+1013904223;
 return(M);
}
void main(void){uint32_t n;
 while(1){
 n = (Random()>>24)%52; // n varies from 0 to 51
 }
}
Program 2.8. A main program that calls a function. In this case the definition
occurs before its use.

A function is a sequence of operations that can be invoked from other places within the software. We
can pass zero or more parameters into a function. A function can have zero or one output parameter.
The add function in Program 2.9 has two 32-bit signed input parameters, and one 32-bit signed output
parameter. The numbers in the comments are added to simplify our discussion.

int32_t add(int32_t x, int32_t y){ int32_t z; // 1

 z = x+y; // 2
 if((x>0)&&(y>0)&&(z<0))z= 2147483647; // 3
 if((x<0)&&(y<0)&&(z>0))z=-2147483648; // 4
 return(z); // 5
}
void main(void){ int32_t a,b; // 6
 a = add(2000,2000); // 7
 b = 0; // 8
 while(1){ // 9
 b = add(b,1); // 10
 } // 11
}
Program 2.9. A function with two inputs and one output.

The interesting part is that after the operations within the function are performed, control returns to the
place right after where the function was called. In C, execution begins with the main program. The
execution sequence is shown below (numbers on right are line numbers):

1 void main(void){ int32_t a,b; // 6
2 a = add(2000,2000); // 7
3 int32_t add(long x, long y){ long z; // 1
4 z = x+y; // 2
5 if((x>0)&&(y>0)&&(z<0))z= 2147483647; // 3
6 if((x<0)&&(y<0)&&(z>0))z=-2147483648; // 4
7 return(z); // 5
8 b = 0; // 8
9 while(1){ // 9
10 b = add(b,1); // 10
11 int32_t add(int32_t x, int32_t y){ int32_t z; // 1
12 z = x+y; // 2
13 if((x>0)&&(y>0)&&(z<0))z= 2147483647; // 3
14 if((x<0)&&(y<0)&&(z>0))z=-2147483648; // 4
15 return(z); // 5
16 } // 11
17 while(1){ // 9
18 b = add(b,1); // 10
19 int32_t add(int32_t x, int32_t y){ int32_t z; // 1
20 z = x+y; // 2
21 if((x>0)&&(y>0)&&(z<0))z= 2147483647; // 3
22 if((x<0)&&(y<0)&&(z>0))z=-2147483648; // 4
23 return(z); // 5

Notice that the return from the first call goes to line 8, while all the other returns go to line 11. The
execution sequence repeats lines 9,10,1,2,3,4,5,11 indefinitely. The purpose of line 3 is to detect
overflow, which occurs when two large positive numbers are added such that the sum is too big and
does not fit into the 32-bit result. The purpose of line 4 is to detect underflow, which occurs when
two large negative numbers are added such that the sum is too small and does not fit into the 32-bit
result.

The functions in Programs 2.4, 2.5, and 2.6had neither an input or output parameter. To specify the
absence of a parameter we use the expression void .

The body of a function consists of a statement that performs the work. Normally the body is a
compound statement between a {} pair. If the function has a return parameter, then all exit points must
specify what to return.

Although C is a free field language, notice how the indenting has been added to programs in this book.
The purpose of this indenting is to make the program easier to read. On the other hand since C is a
free field language, the following two statements are quite different

Example A if(n1>100) n2=100; n3=0;
Example B if(n1>100) {n2=100; n3=0;}

In both cases n2=100; is executed only if n1>100. In Example A,the statement n3=0; is always
executed. In Example B, n3=0; is executed only if n1>100.

Variables declared outside of a function, like M in Program 2.8, are properly called external
variables because they are defined outside of any function. While this is the standard term for these
variables, it is confusing because there is another class of external variable, one that exists in a
separately compiled source file. In this document we will refer to variables in the present source file
as globals, and we will refer to variables defined in another file as externals. There are two reasons
to employ global variables. The first reason is data permanence. The other reason is information
sharing. Normally we pass information from one module to another explicitly using input and output
parameters, but there are applications like interrupt programming where this method is unavailable.
For these situations, one module can store data into a global while another module can view it.

Local variables are very important in C programming. They contain temporary information that is
accessible only within a narrow scope. We can define local variables at the start of a compound
statement. We call these local variables since they are known only to the block in which they appear,
and to subordinate blocks. The variables a, b, and z in Program 2.9 are local. In C, local variable
must be declared immediately after a brace { that begins a compound statement. Unlike globals,
which are said to be static, locals are created dynamically when their block is entered, and they cease
to exist when control leaves the block. Furthermore, local names supersede the names of globals and
other locals declared at higher levels of nesting. Therefore, locals may be used freely without regard
to the names of other variables. Although two global variables cannot use the same name, a local
variable of one block can use the same name as a local variable in another block. Programming errors
and confusion can be avoided by understanding these conventions.

2.9. Exercises
2.1 In 16 words or less give definitions of the following terms
a) Embedded b) Device driver c) Top down
d) Call graph e) Data flow graph f) Successive refinement
g) Dynamic efficiency h) Static efficiency i) Real time

2.2 Define the following acronyms
a) HCI b) JTAG c) NRE
d) GPIO e) LED f) MMI
g) LCD h) ADC i) DAC

2.3 Explain the differences between specification, requirement, and constraint.

2.4 In 16 words or less give definitions of the following debugging terms
a) Instrument b) Intrusiveness c) Black-box
d) White-box e) Minimally intrusive f) Stabilization

2.5 There is a microcomputer embedded in a vending machine. List three operations the software
must perform.

2.6 What is the difference between a microcomputer and a microcontroller?

2.7 Consider a system with four modules named A, B, C, and D. Draw the call graph if A calls B, C
calls A and D, and B calls C. Why can’t the four individual modules in this system be tested one at a
time?

2.8 List 3 factors that we can use to evaluate the “goodness” of a program.

D2.9 Draw a data flow graph of the thermostat algorithm developed in Exercise 1.27.

D2.10 Draw a data flow graph of the cruise control algorithm developed in Exercise 1.28.

D2.11 Draw a data flow graph of the incremental controller developed in Exercise 1.42.

D2.12 Draw a data flow graph of the stepper motor controller developed in Exercise 1.43.

D2.13 Consider an MP3 player, which has a memory storage device, an MP3 decoder (converts
compressed data into raw form), buttons, an LCD, a USB link to a PC, dual DACs for stereo output,
and stereo headphones. Draw a possible data flow graph for system.

D2.14 You are given a double-pole switch that has three pins, labeled 1, 2, and 3. If the switch is not
pressed, pins 1 and 2 are connected (0Ω resistance) and pins 2 and 3 are not connected (infinite
resistance). If the switch is pressed, pins 2 and 3 are connected (0Ω resistance) and pins 1 and 2 are
not connected (infinite resistance). Pins 1 and 3 are never connected (it is a break-before-make
switch). Interface this switch to the microcontroller, such that input pin is high (3.3V) if the switch is
pressed and input pin is low (0V) if the switch is not pressed. You do not need to debounce the

switch. Label all chip numbers and resistor values. No software is required. The best solution will
not require any resistors.

D2.15 Interface an LED that requires 1 mA at 2.5 V. A digital output high on the microcontroller turns
on the LED. Assume VOH = 3.2V. I.e., this interface is positive logic.

D2.16 Interface an LED that requires 2 mA at 2.0 V. A digital output low on the microcontroller turns
on the LED. I.e., this interface is negative logic. Because of the direct connection to the
microcontroller, you should use 3.3V to power the LED (and not 5V). Assume VOL = 0.3V.

D2.17 Interface an LED that requires 15 mA at 2.5 V. Use a 7405 driver and a current limiting
resistor. A digital output high on the microcontroller turns on the LED. I.e., this interface is positive
logic. The 7405 output voltage VOL is 0.5V. At this current you can safely use either 3.3V or 5V to
power the LED.

D2.18 Interface an LED that requires 30 mA at 1.5 V. Use a 7406 driver and a current limiting
resistor. A digital output high the microcontroller turns on the LED. I.e., this interface is positive
logic. The 7406 output voltage VOL is 0.5V. At this large current, it is a good idea to replace the 3.3V
connection in Figure 1.9 with 5V. This way the current comes directly from the USB cable (5V) and
does not pass through the 3.3V regulator on the evaluation board.

D2.19 Interface an LED that requires 100 mA at 1.5 V. Use a PN2222 transistor driver and a current
limiting resistor. A digital output high the microcontroller turns on the LED. I.e., this interface is
positive logic. The PN2222 output voltage VCE is 0.3V. At this large current, it is a good idea to
replace the 3.3V connection in Figure 1.9 with 5V. This way the current comes directly from the USB
cable (5V) and does not pass through the 3.3V regulator on the evaluation board.

3. Introduction to the ARM � Cortex � -M Processor
Chapter 3 objectives are to:
• Introduce Cortex � -M processor architecture
• Present a subset of the Cortex � -M core assembly language
• Define the memory-mapped I/O structure of the LM3S/TM4C family
• Describe addressing modes
• Present pseudo-operations
• Describe how software is developed

In this chapter we present a general description of the ARM � Cortex � -M processor. Rather than
reproducing the voluminous details that can be found in the data sheets, we will present general
concepts and give specific examples illustrating these concepts. In particular, we will define a subset
of the instructions, with which the simple systems in this introductory book can be designed. The idea
behind this subset is to provide functional completeness without concern for minimizing code size or
execution speed. After reading this chapter, you should be able to look up and understand detailed
specifics in the Cortex � -M Technical Reference Manual. Data sheets can be found on the web sites
of either ARM or the companies that make the microcontrollers, like Texas Instruments. Some of these
data sheets are also posted on the web site accompanying this book. This web site can be found at
http://users.ece.utexas.edu/~valvano/arm.

There are two reasons we must learn the assembly language of the computer which we are using.
Sometimes, but not often, we wish to optimize our application for maximum execution speed or
minimum memory size, and writing pieces of our code in assembly language is one approach to such
optimizations. The most important reason, however, is that by observing the assembly code generated
by the compiler for our C code we can truly understand what our software is doing. Based on this
understanding, we can evaluate, debug, and optimize our system.

3.1. Cortex � -M Architecture
Figure 3.1 shows a simplified block diagram of a microcontroller based on the ARM ® Cortex™-M
processor. It is a Harvard architecturebecause it has separate data and instruction buses. The
Cortex � -M instruction set combines the high performance typical of a 32-bit processor with high
code density typical of 8-bit and 16-bit microcontrollers. Instructions are fetched from flash ROM
using the ICode bus. Data are exchanged with memory and I/O via the system bus interface. On the
Cortex � -M4 there is a second I/O bus for high-speed devices like USB. There are many
sophisticated debugging features utilizing the DCode bus. The nested vectored interrupt controller
(NVIC) manages interrupts, which are hardware-triggered software functions. Some internal
peripherals, like the NVIC communicate directly with the processor via the private peripheral bus
(PPB). The tight integration of the processor and interrupt controller provides fast execution of
interrupt service routines (ISRs), dramatically reducing the interrupt latency.

Figure 3.1. Harvard architecture of an ARM® Cortex � -M-based microcontroller.

Even though data and instructions are fetched 32-bits at a time, each 8-bit byte has a unique address.
This means memory and I/O ports are byte addressable. The processor can read or write 8-bit, 16-
bit, or 32-bit data. Exactly how many bits are affected depends on the instruction, which we will see
later in this chapter.

3.1.1. Registers
Registers are high-speed storage inside the processor. The registers are depicted in Figure 3.2. R0 to
R12 are general purpose registers and contain either data or addresses. Register R13 (also called the
stack pointer, SP) points to the top element of the stack. Register R14 (also called the link register,
LR) is used to store the return location for functions. The LR is also used in a special way during
exceptions, such as interrupts. Interrupts are covered in Chapter 9. Register R15 (also called the
program counter, PC) points to the next instruction to be fetched from memory. The processor fetches
an instruction using the PC and then increments the PC.

Figure 3.2. Registers on the ARM® Cortex � -M processor.

The ARM Architecture Procedure Call Standard, AAPCS, part of the ARM Application Binary
Interface (ABI), uses registers R0, R1, R2, and R3 to pass input parameters into a C function.
Functions must preserve the values of registers R4–R11. Also according to AAPCS we place the
return parameter in Register R0. AAPCS requires we push and pop an even number of registers to
maintain an 8-byte alignment on the stack. In this book, the SP will always be the main stack pointer
(MSP), not the Process Stack Pointer (PSP).

There are three status registers named Application Program Status Register (APSR), the Interrupt
Program Status Register (IPSR), and the Execution Program Status Register (EPSR) as shown in
Figure 3.3. These registers can be accessed individually or in combination as the Program Status
Register (PSR). The N, Z, V, C, and Q bits give information about the result of a previous ALU
operation. In general, the N bit is set after an arithmetical or logical operation signifying whether or
not the result is negative. Similarly, the Z bit is set if the result is zero. The C bit means carry and is
set on an unsigned overflow, and the V bit signifies signed overflow. The Q bit indicates that
“saturation” has occurred – while you might want to look it up, saturated arithmetic is beyond the
scope of this book.

Figure 3.3. The program status register of the ARM® Cortex � -M processor.

The T bit will always be 1, indicating the ARM ® Cortex™-M processor is executing Thumb ®
instructions. The ISR_NUMBER indicates which interrupt if any the processor is handling. Bit 0 of
the special register PRIMASK is the interrupt mask bit. If this bit is 1, most interrupts and exceptions
are not allowed. If the bit is 0, then interrupts are allowed. Bit 0 of the special register
FAULTMASK is the fault mask bit. If this bit is 1, all interrupts and faults are not allowed. If the bit
is 0, then interrupts and faults are allowed. The nonmaskable interrupt (NMI) is not affected by these
mask bits. The BASEPRI register defines the priority of the executing software. It prevents interrupts
with lower or equal priority but allows higher priority interrupts. For example if BASEPRI equals 3,
then requests with level 0, 1, and 2 can interrupt, while requests at levels 3 and higher will be
postponed. A lower number means a higher priority interrupt. The details of interrupt processing will
be presented in subsequent chapters.

3.1.2. Reset
A reset occurs immediately after power is applied and when the reset signal is asserted – this can
usually be triggered by pushing the reset button available on most boards. After a reset, the processor
is in thread mode, running at a privileged level, and using the MSP stack pointer. The 32-bit value at
flash ROM location 0 is loaded into the SP. All stack accesses are word aligned. Thus, the least
significant two bits of SP must be 0. A reset also loads the 32-bit value at location 4 into the PC. This
value is called the reset vector. All instructions are halfword aligned. Thus, the least significant bit of
PC must be 0. However, the assembler (or linker) will set the least significant bit in the reset vector,
so the processor will properly initialize the Thumb bit (T) in the PSR. On the ARM ® Cortex™-M
processor, the T bit should always be set to 1. On reset, the processor initializes the LR to
0xFFFFFFFF.

3.1.3. Memory
Microcontrollers within the same family differ by the amount of memory and by the types of I/O
modules. All LM3S and TM4Cmicrocontrollers have a Cortex � -M processor. There are hundreds
of members in this family; some of them are listed in Table 3.1.

Part number RAM Flash I/O I/O modules
LM3S811 8 64 32 PWM
LM3S1968 64 256 52 PWM
LM3S6965 64 256 42 PWM, Ethernet
LM3S8962 64 256 42 PWM, CAN, Ethernet,

IEEE1588
TM4C1231C3PM 32 12 43 floating point, CAN,

DMA
TM4C1233H6PM* 32 256 43 floating point, CAN,

DMA, USB
TM4C123GH6PM 32 256 43

floating point, CAN,
DMA, USB, PWM

TM4C123GH6ZRB 32 256 120 floating point, CAN,
DMA, USB, PWM

TM4C1294NCPDT 256 1024 90 floating point, CAN,
DMA, USB, PWM,
Ethernet

 KiB KiB pins

Table 3.1. Memory and I/O modules (all have SysTick, RTC, timers, UART, I2C, SSI, and
ADC). *The TM4C1233H6PM is identical to the LM4F120H5QR, which is on the EK-
LM4F120XL LaunchPad.

The memory map of TM4C123 is illustrated in Figure 3.4. Although specific for the TM4C123, all
ARM ® Cortex™-M microcontrollers have similar memory maps. In general, Flash ROM begins at
address 0x0000.0000, RAM begins at 0x2000.0000, the peripheral I/O space is from 0x4000.0000 to
0x5FFFF.FFFF, and I/O modules on the private peripheral bus (PPB) exist from 0xE000.0000 to
0xE00F.FFFF. In particular, the only differences in the memory map for the various 180 members of
the LM3S/TM4C family are the ending addresses of the flash and RAM. The M4 has an advanced
high-performance bus (AHB). Having multiple buses means the processor can perform multiple tasks
in parallel. The following is some of the tasks that can occur in parallel

ICode bus Fetch opcodes from ROM
DCode bus Read constant data from ROM
System bus Read/write data from RAM or I/O, fetch opcode from RAM
PPB Read/write data from internal peripherals like the NVIC
AHB Read/write data from high-speed I/O and parallel ports (M4 only)

Figure 3.4. Memory maps of the TM4C123 and the TM4C1294.

When we store 16-bit data into memory it requires two bytes. Since the memory systems on most
computers are byte addressable (a unique address for each byte), there are two possible ways to store
in memory the two bytes that constitute the 16-bit data. Freescale microcomputers implement the big
endian approach that stores the most significant byte at the lower address. Intel microcomputers
implement the little endian approach that stores the least significant byte at the lower address. Cortex
M microcontrollers use the little endian format. Many ARM processors are biendian, because they
can be configured to efficiently handle both big and little endian data. Instruction fetches on the ARM
are always little endian. Figure 3.5 shows two ways to store the 16-bit number 1000 (0x03E8) at
locations 0x2000.0850 and 0x2000.0851. Computers must choose to use either the big or little endian
approach when storing 32-bit numbers into memory that is byte (8-bit) addressable. Figure 3.6 shows
the big and little endian formats that could be used to store the 32-bit number 0x12345678 at
locations 0x2000.0850 through 0x2000.0853. Again the Cortex M uses little endian for 32-bit
numbers.

Figure 3.5. Example of big and little endian formats of a 16-bit number.

Figure 3.6. Example of big and little endian formats of a 32-bit number.

In the previous two examples, we normally would not pick out individual bytes (e.g., the 0x12), but
rather capture the entire multiple byte data as one nondivisable piece of information. On the other
hand, if each byte in a multiple byte data structure is individually addressable, then both the big and
little endian schemes store the data in first to last sequence. For example, if we wish to store the four
ASCII characters ‘LM3S’, which is 0x4C4D3353 at locations 0x2000.0850 through 0x2000.0853,
then the ASCII ‘L’=0x4C comes first in both big and little endian schemes, as illustrated in Figure 3.7.

Figure 3.7. Character strings are stored in the same for both big and little endian
formats.

The terms “big and little endian” come from Jonathan Swift’s satire Gulliver’s Travels. In Swift’s
book, a Big Endian refers to a person who cracks their egg on the big end. The Lilliputians were
Little Endians because they insisted that the only proper way is to break an egg on the little end. The
Lilliputians considered the Big Endians as inferiors. The Big and Little Endians fought a long and
senseless war over the best way to crack an egg.

Common Error: An error will occur when data is stored in Big Endian by one computer and read in
Little Endian format on another.

3.1.4. Operating Modes
The processor knows whether it is running in the foreground (i.e., the main program) or in the
background (i.e., an interrupt service routine). ARM processors define the foreground as thread
mode, and the background as handler mode. Switching between thread and handler modes occurs
automatically. The processor begins in thread mode, signified by ISR_NUMBER=0. Whenever it is
servicing an interrupt it switches to handler mode, signified by setting ISR_NUMBER to specify
which interrupt is being processed. All interrupt service routines run using the MSP. For simplicity
all software in this book will use the main stack pointer (MSP).

3.2. The Software Development Process
In this book we will begin with assembly language, and then introduce C. However, the process
described in this section applies to both assembly and C. Either the ARM Keil™ uVision® or the
Texas Instruments Code Composer Studio™ (CCStudio) integrated development environment (IDE)
can be used to develop software for the Cortex M microcontrollers. Both include an editor,
assembler, compiler, and simulator. Furthermore, both can be used to download and debug software
on a real microcontroller. Either way, the entire development process is contained in one application,
as shown in Figure 3.8.

Figure 3.8. Assembly language or C development process.

To develop software, we first use an editor to create our source code. Source code contains specific
set of sequential commands in human-readable-form. Next, we use an assembler or compiler to
translate our source code into object code. On ARM Keil™uVision® we compile/assemble by
executing the command Project->Build Target (short cut F7). Object code or machine instructions
contains these same commands in machine-readable-form. Most assembly source code is one-to-one
with the object code that is executed by the computer. For example, when programming in a high level
language like C or Java, one line of a program can translate into several machine instructions. In
contrast, one line of assembly code usually translates to exactly one machine instruction. The
assembler/compiler may also produce a listing file, which is a human-readable output showing the
addresses and object code that correspond to each line of the source program. The target specifies
the platform on which we will be running the object code. When testing software with the simulator,
we choose the Simulatoras the target. When simulating, there is no need to download, we simply
launch the simulator by executing the Debug->Start Debug Session command. The simulator is an
easy and inexpensive way to get started on a project. However, its usefulness will diminish as the I/O
becomes more complex.

In a real system, we choose the real microcontroller via its JTAG debugger as the target. In this way
the object code is downloaded into the EEPROM of the microcontroller. Most microcontrollers
contain built-in features that assist in programming their EEPROM. In particular, we will use the
JTAG debugger connected via a USB cable to download and debug programs. The JTAG is both a

loader and a debugger. We program the EEPROM by executing the Flash->Download command.
After downloading we can start the system by hitting the reset button on the boardor we can debug it
by executing Debug->Start Debug Session command in the uVision® IDE.

In contrast, the loader on a general purpose computer typically reads the object code from a file on a
hard drive or CD and stores the code in RAM. When the program is run, instructions are fetched from
RAM. Since RAM is volatile, the programs on a general purpose computer must be loaded each time
the system is powered up.

For embedded systems, we typically perform initial testing on a simulator. The process for
developing applications on real hardware is identical except the target is switched from a simulated
microcontroller to the real microcontroller. It is best to have a programming reference manual handy
when writing assembly language. These three reference manuals for the Cortex � M3/M4 processor
are available as pdf files and are posted on the book web site.

CortexM_InstructionSet.pdf Cortex � -M3/M4 Instruction Set Technical User's
Manual
CortexM4_TRM_r0p1.pdf Cortex � -M3/M4 Technical Reference Manual
QuickReferenceCard.pdf ARM® and Thumb-2 Instruction Set Quick Reference
Card

A description of each instruction can also be found by searching the Contents page of the help engine
included with the ARM Keil™ uVision® or TI CCStudio applications. There are a lot of settings
required to create a software project from scratch. I strongly suggest those new to the process first run
lots of existing projects. Next, pick an existing project most like your intended solution, and then
make a copy of that project. Finally, make modifications to the copy a little bit at a time as you morph
the existing project into your solution. After each modification verify that it still runs. If you take a
project that runs, make hundreds of changes to it, and then notice that it no longer runs, you will not
know which of the many changes caused the failure.

The objective of software development is to translate a desired set of actions into an explicit set of
commands that the computer executes. It is simple when the desired actions occur as a sequence of
commands. Most of the time software asks the machine to execute one command after another. We
write software as an ordered list of instructions one after another from the top to the bottom of the
page, and the machine executes them in this order. The complexity occurs when we need to make
decisions (branch), execute subtasks (functions), and perform multiple tasks concurrently or in
parallel (interrupts and distributed systems). To handle these complexities we use instructions that are
exceptions to this “one after another” rule (Figure 3.9). As we will learn in Chapter 9, interrupt are
triggered by hardware events, causing the software interrupt service routine (shown as Clock in
Figure 3.9) to be executed. A bus fault occurs if the software accesses an unimplemented memory
location or accesses an I/O that is not properly configured. Bus faults are usually caused by software
bugs.

Figure 3.9. Flowchart showing examples of execution that breaks the “one after
another rule”.

These exceptions, as numbered in Figure 3.9, include

1) The computer uses the reset vector to decide where to start (reset or power on).
2) There can be an unconditional branch causing the software to always go to a spot.
3) A conditional branch will go to a spot if a certain condition is true.
4) A function call will cause the software to go execute the code for that function.
5) A return from function will return to the place that called the function.
6) An interrupt will suspend execution and begin an interrupt service routine.
7) A return from interrupt will return to the place where it was before the interrupt.
8) A hardware or software mistake will cause a bus fault and stop execution.

3.3. ARM Cortex-M Assembly Language
This section focuses on the ARM ® Cortex™-M assembly language. There are many
ARM ® processors, and this book focuses on Cortex � -M microcontrollers, which executes
Thumb ® instructions extended with Thumb-2 technology. This book will not describe in detail all
the Thumb instructions. Rather, we focus ononly a subset of the Thumb ® instructions. This subset
will be functionally complete without regard to minimizing code size or optimizing for execution
speed. Furthermore, we will show general forms of instructions, but in many cases there are specific
restrictions on which registers can be used and the sizes of the constants. For further details, please
refer to the ARM ® Cortex™-M Technical Reference Manual.

3.3.1. Syntax
Assembly language instructions have four fields separated by spaces or tabs. The label field is
optional and starts in the first column and is used to identify the position in memory of the current
instruction. You must choose a unique name for each label. The opcode field specifies the processor
command to execute. The operand field specifies where to find the data to execute the instruction.
Thumb instructions have 0, 1, 2, 3, or 4 operands, separated by commas. The comment field is also
optional and is ignored by the assembler, but it allows you to describe the software making it easier
to understand. You can add optional spaces between operands in the operand field. However, a
semicolon must separate the operand and comment fields. Good programmers add comments to
explain the software.

Label Opcode Operands Comment
Func MOV R0, #100 ; this sets R0 to 100
BX LR ; this is a function return

Observation: A good comment explains why an operation is being performed, how it is used, how it
can be changed, or how it was debugged. A bad comment explains what the operation does. The
comments in the above two assembly lines are examples of bad comments.

When describing assembly instructions we will use the following list of symbols

Ra Rd Rm Rn Rt and Rt2 represent registers
{Rd,} represents an optional destination register
#imm12 represents a 12-bit constant, 0 to 4095
#imm16 represents a 16-bit constant, 0 to 65535
operand2 represents the flexible second operand as described in Section 3.4.2
{cond} represents an optional logical condition as listed in Table 3.2
{type} encloses an optional data type as listed in Table 3.3
{S} is an optional specification that this instruction sets the condition code bits
Rm {, shift} specifies an optional shift on Rm as described in Section 3.4.2

Rn {, #offset} specifies an optional offset to Rn as described in Section 3.4.2

For example, the general description of the addition instruction
 ADD{cond} {Rd,} Rn, #imm12
could refer to either of the following examples.
 ADD R0,#1 ; R0=R0+1
 ADD R0,R1,#10 ; R0=R1+10

Table 3.2 shows the conditions {cond} that we will use for conditional branching. {cond} used on
other instructions must be part of an if-then (IT) block, explained in Section 3.5.

Suffix Flags Meaning
EQ Z = 1 Equal
NE Z = 0 Not equal
CS or HS C = 1 Higher or same, unsigned ≥
CC or LO C = 0 Lower, unsigned <
MI N = 1 Negative
PL N = 0 Positive or zero
VS V = 1 Overflow
VC V = 0 No overflow
HI C = 1 and Z = 0 Higher, unsigned >
LS C = 0 or Z = 1 Lower or same, unsigned ≤
GE N = V Greater than or equal, signed ≥
LT N ≠ V Less than, signed <
GT Z = 0 and N = V Greater than, signed >
LE Z = 1 or N ≠ V Less than or equal, signed ≤
AL Can have any

value
Always. This is the default when no
suffix specified

Table 3.2. Condition code suffixes used to optionally execution instruction.
It is much better to add comments to explain how or even better why we do the action. Good
comments also describe how the code was tested and identify limitations. But for now we are
learning what the instruction is doing, so in this chapter comments will describe what the instruction
does. The assembly source code is a text file (with Windows file extension .s) containing a list of
instructions. If register R0 is an input parameter, the following is a function that will return in register
R0 the value (100*input+10).

Func MOV R1,#100 ; R1=100
 MUL R0,R0,R1 ; R0=100*input
 ADD R0,#10 ; R0=100*input+10
 BX LR ; return 100*input+10

The assembler translates assembly source code into object code, which are the machine instructions
executed by the processor. All object code is halfword-aligned. This means instructions can be 16 or
32 bits wide, and the program counter bit 0 will always be 0. The listing is a text file containing a
mixture of the object code generated by the assembler together with our original source code.

Address Object code Label Opcode Operand comment
0x000005E2 F04F0164 Func MOV R1,#0x64 ; R1=100
0x000005E6 FB00F001 MUL R0,R0,R1 ; R0=100*input
0x000005EA F100000A ADD R0,R0,#0x0A ; R0=100*input+10
0x000005EE 4770 BX LR ; return 100*input+10

When we build a project all files are assembled or compiled then linked together. The address values
shown in the listing are relative to the particular file being assembled. When the entire project is
built, the files are linked together, and the linker decides exactly where in memory everything will be.
After building the project, it can be downloaded, which programs the object code into flash ROM.
You are allowed to load and execute software out of RAM. But for an embedded system, we typically
place executable instructions into nonvolatile flash ROM. The listing you see in the debugger will
specify the absolute address showing you exactly where in memory your variables and instructions
exist.

3.3.2. Addressing Modes and Operands
A fundamental issue in program development is the differentiation between data and address. When
we put the number 1000 into Register R0, whether this is data or address depends on how the 1000 is
used. To run efficiently, we try to keep frequently accessed information in registers. However, we
need to access memory to fetch parameters or save results. The addressing mode is the format the
instruction uses to specify the memory location to read or write data. The addressing mode is
associated more specifically with the operands, and a single instruction could exercise multiple
addressing modes for each of the operands. When the import is obvious though, we will use the
expression “the addressing mode of the instruction”, rather than “the addressing mode of an operand
in an instruction". All instructions begin by fetching the machine instruction (op code and operand)
pointed to by the PC. When extended with Thumb-2 technology, some machine instructions are 16 bits
wide, while others are 32 bits. Some instructions operate completely within the processor and
require no memory data fetches. For example, the ADD R1,R2 instruction performs R1+R2 and
stores the sum back into R1.If the data is found in the instruction itself, like MOV R0,#1 , the
instruction uses immediate addressing mode. A register that contains the address or the location of
the data is called a pointer or index register. Indexed addressing mode uses a register pointer to
access memory. The addressing mode that uses the PC as the pointer is called PC-relative
addressing mode. It is used for branching, for calling functions, and accessing constant data stored in
ROM. The addressing mode is called PC relative because the machine code contains the address
difference between where the program is now and the address to which the program will access.
The MOV instruction will move data within the processor without accessing memory. The LDR
instruction will read a 32-bit word from memory and place the data in a register. With PC-relative
addressing, the assembler automatically calculates the correct PC offset.

Register. Most instructions operate on the registers. In general, data flows towards the op code (right
to left). In other words, the register closest to the op code gets the result of the operation. In each of
these instructions, the result goes into R2.

 MOV R2,#100 ; R2=100, immediate addressing
 LDR R2,[R1] ; R2= value pointed to by R1
 ADD R2,R0 ; R2= R2+R0
 ADD R2,R0,R1 ; R2= R0+R1

Register list. The stack push and stack pop instructions can operate on one register or on a list of
registers. SP is the same as R13, LR is the same as R14, and PC is the same as R15.

 PUSH {LR} ; save LR on stack
 POP {LR} ; remove from stack and place in LR
 PUSH {R1-R3,LR} ; save R1,R2,R3 and link register
 POP {R1-R3,PC} ; restore R1,R2,R3 and PC

Immediate addressing. With immediate addressing mode, the data itself is contained in the instruction.
Once the instruction is fetched no additional memory access cycles are required to get the data.
Notice the number 100 (0x64) is embedded in the machine code of the instruction shown in Figure
3.10. Immediate addressing is only used to get, load, or read data. It will never be used with an
instruction that stores to memory.

 MOV R0,#100 ; R0=100, immediate addressing

Figure 3.10. An example of immediate addressing mode, data is in the
instruction.

Indexed addressing. With indexed addressing mode, the data is in memory and a register will contain
a pointer to the data. Once the instruction is fetched, one or more additional memory access cycles
are required to read or write the data. In these examples, R1 points to RAM. In this book, we will
focus on just the first two forms of indexed addressing.

 LDR R0,[R1] ; R0= value pointed to by R1
 LDR R0,[R1,#4] ; R0= word pointed to by R1+4
 LDR R0,[R1,#4]! ; first R1=R1+4, then R0= word pointed to by R1
 LDR R0,[R1],#4 ; R0= word pointed to by R1, then R1=R1+4
 LDR R0,[R1,R2] ; R0= word pointed to by R1+R2
 LDR R0,[R1,R2, LSL #2] ; R0= word pointed to by R1+4*R2

In Figure 3.11, R1 points to RAM, the instruction LDR R0,[R1] will read the 32-bit value pointed to
by R1 and place it in R0. R1 could be pointing to any valid object in the memory map (i.e., RAM,
ROM, or I/O), and R1 is not modified by this instruction.

Figure 3.11. An example of indexed addressing mode, data is in memory.

In Figure 3.12, R1 points to RAM, the instruction LDR R0,[R1,#4] will read the 32-bit value
pointed to by R1+4 and place it in R0. Even though the memory address is calculated as R1+4, the
Register R1 itself is not modified by this instruction.

Figure 3.12. An example of indexed addressing mode with offset, data is in
memory.

PC-relative addressing. PC-relative addressing is indexed addressing mode using the PC as the
pointer. The PC always points to the instruction that will be fetched next, so changing the PC will
cause the program to branch. A simple example of PC-relative addressing is the unconditional branch.
In assembly language, we simply specify the label to which we wish to jump, and the assembler
encodes the instruction with the appropriate PC-relative offset.

 B Location ; jump to Location, using PC-relative addressing

The same addressing mode is used for a function call. Upon executing the BL instruction, the return
address is saved in the link register (LR). In assembly language, we simply specify the label defining
the start of the function, and the assembler creates the appropriate PC-relative offset.

 BL Subroutine ; call Subroutine, using PC-relative addressing

Typically, it takes two instructions to access data in RAM or I/O. The first instruction uses PC-
relative addressing to create a pointer to the object, and the second instruction accesses the memory
using the pointer.We can use the =Something operand for any symbol defined by our program. In this
case Count is the label defining a 32-bit variable in RAM.

 LDR R1,=Count ; R1 points to variable Count, using PC-relative
 LDR R0,[R1] ; R0= value pointed to by R1

The operation caused by the abovetwo LDR instructions is illustrated in Figure 3.13. Assume a 32-
bit variable Count is located in the data space at RAM address 0x2000.0000. First, LDR
R1,=Count makes R1 equal to 0x2000.0000. I.e., R1 points to Count . The assembler places a
constant 0x2000.0000 in code spaceand translates the =Count into the correct PC-relative access to
the constant (e.g., LDR R1,[PC,#28]). In this case, the constant 0x2000.0000, the address of Count ,
will be located at PC+28. Second, the LDR R0,[R1] instruction will dereference this pointer,
bringing the 32-bit contents at location 0x2000.0000 into R0. Since Count is located at
0x2000.0000, these two instructionswill read the value of Count into R0.

Figure 3.13. Indexed addressing using R1 as a register pointer to access memory.
Data is moved into R0. Code space is where we place programs and data space is
where we place variables.

Flexible second operand <op2>. Many instructions have a flexible second operand, shown as <op2>
in the descriptions of theinstruction. <op2> can be a constant or a register with optional shift. The
flexible second operand can be a constant in the form #constant

 ADD Rd, Rn, #constant ;Rd = Rn+constant

where constant is calculatedas one of these four, X and Y are hexadecimal digits:
 Constant produced by shifting an unsigned 8-bit value left by any number

of bits
 Constant of the form 0x00XY00XY
 Constant of the form 0xXY00XY00
 Constant of the form 0xXYXYXYXY

We can also specify a flexible second operandin the form Rm {,shift} . If Rd is missing, Rn is also
the destination. For example:

 ADD Rd, Rn, Rm {,shift} ;Rd = Rn+Rm
 ADD Rn, Rm {,shift} ;Rn = Rn+Rm

where Rm is the register holding the data for the second operand, and shift is an optional shift to be
applied to Rm . The optional shift can be one of these five formats:

ASR #n Arithmetic (signed) shift right n bits, 1 ≤ n ≤ 32.
LSL #n Logical (unsigned) shift left n bits, 1 ≤ n ≤ 31.
LSR #n Logical (unsigned) shift right n bits, 1 ≤ n ≤ 32.
ROR #n Rotate right n bits, 1 ≤ n ≤ 31.
RRX Rotate right one bit, with extend.

If we omit the shift, or specify LSL #0 , the value of the flexible second operand is Rm . If we
specify a shift, the shift is applied to the value in Rm , and the resulting 32-bit value is used by the
instruction. However, the contents in the register Rm remain unchanged. For example,

 ADD R0,R1,LSL #4 ; R0 = R0 + R1*16 (R1 unchanged)
 ADD R0,R1,R2,ASR #4 ; signed R0 = R1 + R2/16 (R2 unchanged)

An aligned access is an operation where a word-aligned address is used for a word, dual word, or
multiple word access, or where a halfword-aligned address is used for a halfword access. Byte
accesses are always aligned. The address of an aligned word access will have its bottom two bits
equal to zero. An unaligned word access means we are accessing a 32-bit object (4 bytes) but the
address is not evenly divisible by 4. The address of an aligned halfword access will have its bottom
bit equal to zero. An unaligned halfword access means we are accessing a 16-bit object (2 bytes) but
the address is not evenly divisible by 2. The Cortex � -M processor supports unaligned access only
for the following instructions:
LDR Load 32-bit word
LDRH Load 16-bit unsigned halfword
LDRSH Load 16-bit signed halfword (sign extend bit 15 to bits 31-16)
STR Store 32-bit word
STRH Store 16-bit halfword

Transfers of one byte are allowed for the following instructions:
LDRB Load 8-bit unsigned byte
LDRSB Load 8-bit signed byte (sign extend bit 7 to bits 31-8)
STRB Store 8-bit byte

When loading a 32-bit register with an 8- or 16-bit value, it is important to use the proper load,
depending on whether the number being loaded is signed or unsigned. This determines what is loaded
into the most significant bits of the register to ensure that the number keeps the same value when it is
promoted to 32 bits. When loading an 8-bit unsigned number, the top 24 bits of the register will
become zero. When loading an 8-bit signed number, the top 24 bits of the register will match bit 7 of
the memory data (signed extend). Note that there is no such thing as a signed or unsigned store. For
example, there is no STRSH ; there is only STRH . This is because 8, 16, or all 32 bits of the
register are stored to an 8-, 16-, or 32-bit location, respectively. No promotion occurs. This means
that the value stored to memory can be different from the value located in the register if there is
overflow. When using STRB to store an 8-bit number, be sure that the number in the register is 8 bits
or less.

All other read and write memory operations generate a usage fault exception if they perform an
unaligned access, and therefore their accesses must be address aligned. Also, unaligned accesses are
usually slower than aligned accesses, and some areas of memory do not support unaligned accesses.
But unaligned accesses may allow programs to use memory more efficiently at the cost of
performance. The tradeoff between speed and size is a common motif.

Observation: This book adds a dot in the middle of 32-bit hexadecimal numbers (e.g.,
0x2000.0000). This dot helps the reader visualize the number. However, this dot should not be used
when writing actual software.

Common Error: Since not every instruction supports every addressing mode, it would be a mistake
to use an addressing mode not available for that instruction.

Checkpoint 3.1: What is the addressing mode used for?

Checkpoint 3.2: Assume R3 equals 0x2000.0000 at the time LDR R2,[R3,#8] is executed. What
address will be accessed? If R3 is changed, to what value will R3 become?

Checkpoint 3.3: Assume R3 equals 0x2000.0000 at the time LDR R2,[R3],#8 is executed. What
address will be accessed? If R3 is changed, to what value will R3 become?

3.3.3. Memory Access Instructions
This section presents mechanisms to read from and write to memory. As illustrated in Figure 3.13, to
access memory we first establish a pointer to the object, then use indexed addressing. Usually code
space is in ROM, but it is possible to assign code space to RAM. Data space is where we place
variables. There are four types of memory objects, and typically we use a specific register to access
them.
Memory object type Register Example operand
Constants in code space PC =Constant [PC,#28]
Local variables on the stack SP [SP,#0x04]
Global variables in RAM R0 – R12 [R0]
I/O ports R0 – R12 [R0]

The ADR instruction uses PC-relative addressing and is a handy way to generate a pointer to a
constant in code space or an address within the program. The general form for ADR is
 ADR{cond} Rd, label
where {cond} is an optional condition (see Table 3.2), Rd is the destination register, and label is a
label within the code space within the range of -4095 to +4095 from the address in the PC.In reality,
the assembler will generate an ADD or SUB instruction to calculate the desired address using an
offset to the PC. DCD is an assembler directive that defines a 32-bit constant. We use it to create
constants in code space (ROM). In the following example, after executing the ADR instruction, R5
points to Pi , and after executing the LDR instruction, R6 contains the data at Pi .

Access ADR R5,Pi ;R5 points to Pi
 LDR R6,[R5] ;R6 = 314159
 ...
 BX LR
Pi DCD 314159

We use the LDR instruction to load data from memory into a register. There is a special form
of LDR which instructs the assembler to load a constant or address into a register. This is a “pseudo-
instruction” and the assembler will output suitable instructions to generate the specified value in the
register. This form for LDR is
 LDR{cond} Rd, =number
 LDR{cond} Rd, =label

where {cond} is an optional condition (see Table 3.2), Rd is the destination register, and label is a
label anywhere in memory. Figure 3.13 illustrates how to create a pointer to a variable in RAM. A
similar approach can be used to access I/O ports. On the TM4C family, Port A exists at address
0x4000.43FC. After executing the first LDR instruction, R5 equals 0x4000.43FC, which is a pointer
to Port A, and after executing the second LDR instruction, R6 contains the value at Port A at the time
it was read.

Input LDR R5,=0x400043FC ;R5=0x400043FC, R5 points to PortA
 LDR R6,[R5] ;Input from PortA into R6
; ...
 BX LR
The assembler translated the above assembly into this equivalent(the #16 represents the number of
bytes between the LDR R6,[R5] instruction and the DCD definition).
Input LDR R5,[PC,#16] ;PC+16 is the address of the DCD
 LDR R6,[R5]
; ...
 BX LR
 DCD 0x400043FC

We use the LDR instruction to load data from RAM to a register and the STR instruction to store
data from a register to RAM. In real life, when we move a box to the basement, push a broom across
the floor, load bullets into a gun, store spoons in a drawer, pop a candy into our mouth, or transfer
employees to a new location, there is a physical object and the action changes the location of that
object. Assembly language uses these same verbs, but the action will be different. In most cases, it
creates a copy of the data and places the copy at the new location. In other words, since the original
data still exists in the previous location, there are now two copies of the information. The exception
to this memory-access-creates-two-copies-rule is a stack pop. When we pop data from the stack, it no
longer exists on the stack leaving us just one copy. For example in Figure 3.13, the instruction LDR
R0,[R1] loads the contents of the variable Count into R0. At this point, there are two copies of the
data, the original in RAM and the copy in R0. If we next add 1 to R0, the two copies have different
values. When we learn about interrupts in Chapter 9, we will take special care to handle shared
information stored in global RAM, making sure we access the proper copy.

When accessing memory data, the type of data can be 8, 16, 32, or 64 bits wide. For 8-bit and 16-bit
accesses the type can also be signed or unsigned. To specify the data type we add an optional
modifier, as listed in Table 3.3. When we load an 8-bit or 16-bit unsigned value into a register, the
most significant bits are filled with 0, called zero pad.

When we load an 8-bit or 16-bit signed value into a register, the sign bit of the value is filled into the
most significant bits, called sign extension. This way, if we load an 8-bit -10 (0xF6) into a 32-bit
register, we get the 32-bit -10 (0xFFFF.FFF6). When we store an 8-bit or 16-bit value, only the least
significant bits are used.

{type} Data type Meaning
 32-bit word 0 to 4,294,967,295 or -2,147,483,648

to +2,147,483,647
B Unsigned 8-bit byte 0 to 255, Zero pad to 32

bits on load
SB Signed 8-bit byte -128 to +127, Sign extend to 32

bits on load
H Unsigned 16-bit

halfword
0 to 65535, Zero pad to 32
bits on load

SH Signed 16-bit
halfword

-32768 to +32767, Sign extend to 32
bits on load

D 64-bit data Uses two
registers

Table 3.3. Optional modifier to specify data type when accessing memory.
Most of the addressing modes listed in the previous section can be used with load and store. The
following lists the general form for some of the load and store instructions

 LDR{type}{cond} Rd, [Rn] ; load memory at [Rn] to Rd
 STR{type}{cond} Rt, [Rn] ; store Rt to memory at [Rn]
 LDR{type}{cond} Rd, [Rn, #n] ; load memory at [Rn+n] to Rd
 STR{type}{cond} Rt, [Rn, #n] ; store Rt to memory [Rn+n]

 LDR{type}{cond} Rd, [Rn,Rm,LSL #n] ; load memory at [Rn+Rm<<n] to Rd
 STR{type}{cond} Rt, [Rn,Rm,LSL #n] ; store Rt to memory [Rn+Rm<<n]

The move instructions get their data from the machine instruction or from within the processor and do
not require additional memory access instructions.

 MOV{S}{cond} Rd, <op2> ; set Rd equal to the value specified by op2
 MOV{cond} Rd, #im16 ; set Rd equal to im16, im16 is 0 to 65535
 MVN{S}{cond} Rd, <op2> ; set Rd equal to the -value specified by op2

3.3.4. Logical Operations
Software uses logical and shift operations to combine information, to extract information and to test
information. A unary operation produces its result given a single input parameter. Examples of unary
operations include negate, complement, increment, and decrement. In discrete digital logic, the
complement operation is called a NOT gate; previously shown in Figure 1.11. The complement
function is defined in Table 3.4.

A ~A
0 1
1 0

Table 3.4. Logical complement.

When designing digital logic we use gates, such as NOT AND OR, to convert individual input signals
into individual output signals. However, when writing software using logic functions, we take two
32-bit numbers and perform 32 logic operations at the same time in a bit-wise fashion yielding one
32-bit result.

Boolean Logic has two states: true and false. As mentioned in Chapter 1, the false is 0, and the true
state is any nonzero value.

A binary operation produces a single result given two inputs. The logical and (&) operation yields a
true result if both input parameters are true. The logical or (|) operation yields a true result if either
input parameter is true. The exclusive or ()̂ operation yields a true result if exactly one input
parameter is true. The logical operators are summarized in Table 3.5 and shown as digital gates in
Figure 1.12. The logical instructions on the ARM Cortex-M processor take two inputs, one from a
register and the other from the flexible second operand. These operations are performed in a bit-wise
fashion on two 32-bit input parameters yielding one 32-bit output result. The result is stored into the
destination register. For example, the calculation r=m&n means each bit is calculated separately,
r31=m31&n31, r30=m30&n30, …, r0=m0&n0.

In C, when we write r=m&n; r=m|n; r=m^n; the logical operation occurs in a bit-wise fashion as
described by Table 3.5. However, in C we define the Boolean functions as r=m&&n; r=m||n; For
Booleans,the operation occurs in a word-wise fashion. For example, r=m&&n; means r will become
zero if either m is zero or n is zero. Conversely, r will become 1 if both m is nonzero and n is
nonzero.

A
Rn

B
Operand2

A&B
AND

A|B
ORR

A^B
EOR

A&(~B)
BIC

A|(~B)
ORN

0 0 0 0 0 0 1
0 1 0 1 1 0 0
1 0 0 1 1 1 1
1 1 1 1 0 0 1

Table 3.5. Logical operationsperformed by the Cortex � -M processor.

All instructions place the result into the destination register Rd . If Rd is omitted, the result is placed
into Rn , which is the register holding the first operand. If the optional S suffix is specified, the N
and Z condition code bits are updated on the result of the operation. In the comments next to the
instructions below, we use op2 to representthe 32-bit value generated by the flexible second
operand, <op2> . Some flexible second operands may affect the C bit. These logical instructions will
leave the V bit unchanged.

AND{S}{cond} {Rd,} Rn, <op2> ;Rd=Rn&op2
ORR{S}{cond} {Rd,} Rn, <op2> ;Rd=Rn|op2
EOR{S}{cond} {Rd,} Rn, <op2> ;Rd=Rn^op2
BIC{S}{cond} {Rd,} Rn, <op2> ;Rd=Rn&(~op2)
ORN{S}{cond} {Rd,} Rn, <op2> ;Rd=Rn|(~op2)

For example, assume R1 is 0x12345678 and R2 is 0x87654321. The ORR R0,R1,R2 will perform
this operation, placing the 0x97755779 result in R0.

R1 0001 0010 0011 0100 0101 0110 0111 1000
R2 1000 0111 0110 0101 0100 0011 0010 0001
ORR 1001 0111 0111 0101 0101 0111 0111 1001

Example 3.1: Write code to set bit 0 in a 32-bit variable called N.

Solution: First, we perform a 32-bit read, bringing N into Register R0. Second we perform a logical
OR setting bit 0, and lastly we store the result back into N.

 LDR R1, =N ; R1 = &N (R1 points to
N)
 LDR R0, [R1] ; R0 = N
 ORR R0, R0, #1 ; R0 = N|1
 STR R0, [R1] ; N = N|1

// C implementation
 N = N | 0x00000001;

Program 3.1. Example code showing a logical OR.

Checkpoint 3.4:If R1 is 0x12345678 and R2 is 0x87654321, what would R0 be after the
instruction AND R0,R1,R2 is executed? What would R0be after EORR0,R1,R2 ?

Checkpoint 3.5: Using just the 74HC gates shown in Figures 1.11, 1.12, and 1.13, design one-bit BIC
and ORN circuits as defined in Table 3.5.

Observation: We use the logical OR to make bits become one, and we use the logical AND to make
bits become zero.

3.3.5. Shift Operations
Like programming in C, the assembly shift instructions take two input parameters and yield one output
result. In C, the left shift operator is << and the right shift operator is >>. E.g., to left shift the value in
M by N bits and store the result in R we execute: R = M<<N. Similarly, to right shift the value in M
by N bits and store the result in R we execute: R = M>>N.

The logical shift right (LSR) is similar to an unsigned divide by 2n, where n is the number of bits
shifted as shown in Figure 3.14. A zero is shifted into the most significant position, and the carry flag
will hold the last bit shifted out. The right shift operations do not round. For example, a right shift by
3 bits is similar to divide by 8. However, 15 right-shifted three times (15>>3) is 1, while 15/8 is
much closer to 2. In general, the LSR discards bits shifted out, and the UDIV truncates towards 0.
Thus, when using UDIV to divide unsigned numbers by a power of 2, UDIV and LSR yield identical
results.

The arithmetic shift right (ASR) is similar to a signed divide by 2n. Notice that the sign bit is
preserved, and the carry flag will hold the last bit shifted out. This right shift operation also does not
round. Again, a right shift by 3 bits is similar to divide by 8. However, -9 right-shifted three times
(-9>>3) is -2, while implementing -9 divided by 8 using the SDIV instruction yields -1. In general,
the ASR discards bits shifted out, and the SDIV truncates towards 0.

The logical shift left (LSL) operation works for both unsigned and signed multiply by 2n. A zero is
shifted into the least significant position, and the carry bit will contain the last bit that was shifted out.

The two rotate operations can be used to create multiple-word shift functions. There is no rotate left
instruction, because a rotate left 10 bits is the same as rotate right 22 bits.

All shift instructions place the result into the destination register Rd . Rm is the register holding the
value to be shifted. The number of bits to shift is either in register Rs , or specified as a constant n . If
the optional S suffix is specified, the N and Z condition code bits are updated on the result of the
operation. The C bit is the carry out after the shift as shown in Figure 3.14. These shift instructions
will leave the V bit unchanged.

Observation: Use logic shift for unsigned numbers and arithmetic shifts for signed numbers.

Figure 3.14. Shift operations.

 LSR{S}{cond} Rd, Rm, Rs ; logical shift right Rd=Rm>>Rs (unsigned)
 LSR{S}{cond} Rd, Rm, #n ; logical shift right Rd=Rm>>n (unsigned)
 ASR{S}{cond} Rd, Rm, Rs ; arithmetic shift right Rd=Rm>>Rs (signed)
 ASR{S}{cond} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n (signed)
 LSL{S}{cond} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned)
 LSL{S}{cond} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned)
 ROR{S}{cond} Rd, Rm, Rs ; rotate right
 ROR{S}{cond} Rd, Rm, #n ; rotate right
 RXX{S}{cond} Rd, Rm ; rotate right 1 bit with extension

Example 3.2: Write code that reads from variable N, shifts right twice, and stores the result in
variable M. Both variables are 32-bit unsigned.

Solution: First, we perform a 32-bit read, bringing N into Register R1. Second we divide by 4 using
a shift right operation, and lastly we store the result into M. Since the value gets smaller, no overflow
can occur. If the variables were signed, then the LSR instruction should be replaced with an ASR
instruction. In C, the shift right operator is >>

LDR R3, =N ; R3 = &N (R3 points to
N)
 LDR R1, [R3] ; R1 = N
 LSR R0, R1, #2 ; R0 = N>>2
 LDR R2, =M ; R2 = &M (R2 points
to M)
 STR R0, [R2] ; M = N>>2

// C implementation
 M = N>>2;

Program 3.2. Example code showing a right shift.

Checkpoint 3.6: Let N and M be 16-bit signed locations. Write code to implement M=4*N.

Example 3.3: Assume we have three 8-bit variables named High , Low ,
and Result . High and Low have 4 bits of data; each is a number from 0 to 15. Take these two 4-bit
nibbles and combine them into one 8-bit value, storing the combination in Result .

Solution: The solution uses the shift operation to move the bits into position, then it uses the logical
ORoperation to combine the two parts into one number. We will assume both High and Low are
bounded within the range of 0 to 15. The expression High<<4 will perform four logical shift lefts.
Registers R2, R3, and R4 point to (contain the address of) variables.

 LDR R2, =High ; R2 = &High
 LDR R3, =Low ; R3 = &Low
 LDR R4, =Result ; R4 = &Result
 LDRB R1, [R2] ; R1 = High
 LSL R0, R1, #4 ; R0 = R1<<4 =
High<<4
 LDRB R1, [R3] ; R1 = Low
 ORR R0, R0, R1 ; R0 =
(High<<4)|Low
 STRB R0, [R4] ; Result =
(High<<4)|Low

// C implementation
Result = (High<<4)|Low;

Program 3.3. Example code showing a left shift.

To illustrate how the above program works, let 0 0 0 0 h3 h2 h1 h0be the value of High , and let 0 0 0 0
l3 l2 l1 l0be the value of Low . The LDRB R1,[R2] instruction brings the 8-bit High into Register R1.
The LSL R0,R1,#4 instruction moves the High into bit positions 4-7 of Register R0. The LDRB R1,
[R3] instruction brings the 8-bit Low into Register R1. Finally, the ORR R0,R0,R1 instruction
combines High and Low , and the STRB R0,[R4] instruction stores the combination into Result .

0 0 0 0 h3 h2 h1 h0 value of High
h3 h2 h1 h0 0 0 0 0 after four LSL s
0 0 0 0 l3 l2 l1 l0 value of Low
h3 h2 h1 h0 l3 l2 l1 l0 result of the ORR instruction

3.3.6. Arithmetic Operations

When software executes arithmetic instructions, the operations are performed by digital hardware
inside the processor. Even though the design of such logic is complex, we will present a brief
introduction, in order to provide a little insight as to how the computer performs arithmetic. It is
important to remember that arithmetic operations (addition, subtraction, multiplication, and division)
have constraints when performed with finite precision on a processor. An overflow error occurs
when the result of an arithmetic operation cannot fit into the finite precision of the register into which
the result is to be stored.

For example, consider an 8-bit unsigned number system, where the numbers can range from 0 to 255.
If we add two numbers together the result can range from 0 to 510, which is a 9-bit unsigned number.
These numbers are similar to the numbers 1–12 on a clock, as drawn in Figure 3.15. If it is 11 o’clock
and we wait 3 hours, it becomes 2 o’clock. Shown in the middle of Figure 3.15, if we add 64 to 224,
the result becomes 32. In most cases, we would consider this an error. An unsigned overflow occurs
during addition when we cross the 255-0 barrier (carry set on overflow). If we subtract two 8-bit
unsigned numbers the result can range from -255 to +255, which is a 9-bit signed number. Subtraction
moves in a counter-clockwise direction on the number wheel. As shown on the right side of Figure
3.15, if we subtract 64 from 32 (32-64), we get the incorrect result of 224. An unsigned overflow
occurs during subtraction if we cross the 255-0 barrier in the other direction (carry clear on
overflow).

Figure 3.15. The carry bit is set on addition when crossing the 255-0 boundary.
The carry bit is cleared on subtraction when crossing the 255-0 boundary.

Similarly, when two 32-bit numbers are added or subtracted, the result may not fit back into a 32-bit
register. The same addition and subtraction hardware (instructions) can be used to operate on either
unsigned or signed numbers. Although we use the same instructions, we must use separate overflow
detection for signed and unsigned operations.

Checkpoint 3.7: How many bits does it take to store the result of two unsigned 32-bit numbers added
together?

Checkpoint 3.8: How many bits does it take to store the result of two signed 32-bit numbers added
together?

Checkpoint 3.9: Where is the barrier (discontinuity) on an unsigned 32-bit number wheel?

We begin the design of an adder circuit with a simple subcircuit called a binary full adder, as shown
in Figure 3.16. There are two binary data inputs A, B, and a carry input, Cin. There is one data output,
Sout, and one carry output, Cout. As shown in Table 3.6, Cin, A, and B are three independent binary
inputs each of which could be 0 or 1. These three inputs are added together (the sum could be 0, 1, 2,
or 3), and the result is encoded in the two-bit binary result with Cout as the most significant bit and Sout

as the least significant bit. Cout is true if the sum is 2 or 3, and Sout is true if the sum is 1 or 3.

Figure 3.16. A binary full adder.

A B Cin A+B+Cin Cout Sout

0 0 0 0 0 0
0 0 1 1 0 1
0 1 0 1 0 1
0 1 1 2 1 0
1 0 0 1 0 1
1 0 1 2 1 0
1 1 0 2 1 0
1 1 1 3 1 1

Table 3.6. Input/output response of a binary full adder.

Figure 3.17 shows an 8-bit adder formed by cascading eight binary full adders. Similarly, we build a
32-bit adder by cascading 32 binary full adders together. The carry into the 32-bit adder is zero, and
the carry out will be saved in the carry bit.

For an 8-bit unsigned number, there are only 256 possible values, which are 0 to 255. We can think of
the numbers as positions along a circle, like a clock. There is a discontinuity at the 0|255 interface;
everywhere else adjacent numbers differ by ±1 value. If we add two unsigned numbers, we start at
the position of the first number a move in a clockwise direction the number of steps equal to the
second number. As shown in Figure 3.18, if 96+64 is performed in 8-bit unsigned precision, the
correct result of 160 is obtained. In this case, the carry bit will be 0 signifying the answer is correct.
On the other hand, if 224+64 is performed in 8-bit unsigned precision, the incorrect result of 32 is
obtained. In this case, the carry bit will be 1, signifying the answer is wrong.

Figure 3.17. We make an 8-bit adder cascading eight binary full adders.

Figure 3.18. Number wheel showing 96+64 and 224+64.

To calculate the negative of a two’s complement number, we complement all of the bits and add 1.
For example, the 8-bit binary representation for -100 is 10011100. The complement of this binary
value is 01100011. When we add 1 to 01100011, we get the binary 01100100, which is the proper
representation for 100. Using this fact, we can build an 8-bit subtractor (R=A-B) by first negating B,
then using eight binary full adders to add A plus -B, as shown in Figure 3.19. The carry into the 8-bit
adder is one, and the carry out is saved in the carry bit. After a subtraction on the Cortex™-M
processor the carry is clear if an error occurred, and the carry is set if no error occurred and the
answer is correct.

Figure 3.19. We make an 8-bit subtractor using eight binary full adders. Carry
out is 0 in this case because the unsigned result is incorrect.

For subtraction, we start at the position of the first number a move in a counterclockwise direction the
number of steps equal to the second number. As shown in Figure 3.20, if 160-64 is performed in 8-bit
unsigned precision, the correct result of 96 is obtained (carry bit will be 1.) On the other hand, if 32-
64 is performed in 8-bit unsigned precision, the incorrect result of 224 is obtained (carry bit will be
0.)

Figure 3.20. Number wheel showing 160-64 and 32-64.

In general, we see that the carry bit is set when we cross over from 255 to 0 while adding. The carry
bit is cleared when we cross over from 0 to 255 while subtracting.

Observation: The carry bit, C, is set after an unsigned addition when the result is incorrect. The
carry bit, C, is cleared after an unsigned subtraction when the result is incorrect.

For an 8-bit signed number, the possible values range from -128 to 127. Again there is a
discontinuity, but this time it exists at the -128|127 interface, everywhere else adjacent numbers differ
by ±1. The meanings of the numbers with bit 7=1 are different from unsigned, but we add and subtract
signed numbers on the number wheel in a similar way (e.g., addition of a positive number moves
clockwise.) Therefore, we can use the same hardware (Figures 3.17 and 3.19) to add and subtract
two’s complement signed numbers. The only difference is the carry out generated by the circuits do
not represent an error when adding or subtracting two’s complement signed numbers. Instead a new
bit, called overflow or V, will be calculated to signify errors when operating on signed numbers.
Adding a negative number is the same as subtracting a positive number hence this operation would
cause a counterclockwise motion. As shown in Figure 3.21, if -32+64 is performed, the correct result
of 32 is obtained. In this case, the overflow bit will be 0 signifying the answer is correct. On the other
hand, if 96+64 is performed, the incorrect result of -96 is obtained. In this case, the overflow bit will
be 1 signifying the answer is wrong.

Figure 3.21. Number wheel showing –32+64 and 96+64.

For subtracting signed numbers, we again move in a counterclockwise direction. Subtracting a
negative number is the same as adding a positive number; hence this operation would cause a
clockwise motion. As shown in Figure 3.22, if 32-64 is performed, the correct result of -32 is
obtained (overflow bit will be 0.) On the other hand, if -96-64 is performed, the incorrect result of
96 is obtained (overflow bit will be 1.)

Figure 3.22. Number wheel showing 32-64 and -96-64.

In general, we see that the overflow bit, V, is set when we cross over from 127 to -128 while adding
or cross over from -128 to 127 while subtracting.

Observation: The overflow bit, V, is set after a signed addition or subtraction when the result is
incorrect.

In the arithmetic operations below, the 32-bit value can be specified by the #im12 constant or
generated by the flexible second operand, <op2> . When Rd is absent, the result is placed back
in Rn .

ADD{S}{cond} {Rd,} Rn, <op2> ;Rd = Rn + op2
ADD{S}{cond} {Rd,} Rn, #im12 ;Rd = Rn + im12
SUB{S}{cond} {Rd,} Rn, <op2> ;Rd = Rn - op2
SUB{S}{cond} {Rd,} Rn, #im12 ;Rd = Rn - im12
RSB{S}{cond} {Rd,} Rn, <op2> ;Rd = op2 - Rn
RSB{S}{cond} {Rd,} Rn, #im12 ;Rd = im12 - Rn
CMP{cond} Rn, <op2> ;Rn - op2
CMN{cond} Rn, <op2> ;Rn - (-op2)

The compare instructions CMP and CMN do not save the result of the subtraction or addition but
always set the condition code. The compare instructions are used to create conditional execution,
such as if-then, for loops, and while loops. The compiler may use RSB or CMN to optimize
execution speed.

If the optional S suffix is present, addition and subtraction set the condition code bits as shown in
Table 3.7. The addition and subtraction instructions work for both signed and unsigned values. As
designers, we must know in advance whether we have signed or unsigned numbers. The computer
cannot tell from the binary which type it is, so it sets both C and V. Our job as programmers is to look
at the C bit if the values are unsigned and look at the V bit if the values are signed.

Bit Name Meaning after addition or
subtraction

N Negative Result is negative
Z Zero Result is zero
V Overflow Signed overflow
C Carry Unsigned overflow

Table 3.7. Condition code bits contain the status of the previous arithmetic operation.
If the two inputs to an addition operation are considered as unsigned, then the C bit (carry) will be set
if the result does not fit. In other words, after an unsigned addition, the C bit is set if the answer is
wrong. If the two inputs to a subtraction operation are considered as unsigned, then the C bit (carry)
will be clear if the result does not fit. If the two inputs to an addition or subtraction operation are
considered as signed, then the V bit (overflow) will be set if the result does not fit. In other words,
after a signed addition, the V bit is set if the answer is wrong. If the result is unsigned, the N=1 means
the result is greater than or equal to 231. Conversely, if the result is signed, the N=1 means the result is
negative.

Assuming the optional S suffix is present, condition code bits are set after the addition R=X+M,
where X is initial register value, M is the flexible second operand or the #im12 constant, and R is the
final register value. The N bit is set if the unsigned result is above 2147483647 (231-1) or if the
signed result is negative. The Z bit is set if the result is zero. The Z bit will be clear if any of the
result bits are set.

N: result is negative N = R31

Z: result is zero

If the V bit is set after a signed addition, then the result is incorrect because a signed overflow
occurred. The first term of the following equation is true if you add two negative numbers together
and get a positive result. The second term is true if you add two positive numbers together and get a
negative result.

V: signed overflow

If the C bit is set after an unsigned addition (R=X+M), then the result is incorrect because an unsigned
overflow occurred. The first term of the following equation is true if you add two numbers both
above 2147483647. The second term is true if the M input is above 2147483647, but the result is less
than or equal to 2147483647. The third term is true if the X input is above 2147483647, but the result
is less than or equal to 2147483647.

C: unsigned overflow

Checkpoint 3.10: Assume Register R0 is initially 0x7000.0000 and R1 is initially 0x2000.0000.
After executing adds R0,R0,R1 what is the value in Register R0, and the NZVC bits?

Checkpoint 3.11: Assume Register R0 is initially 1 and R1 is initially 0xFFFF.FFFF. After
executing adds R0,R0,R1 what is the value in Register R0, and the NZVC bits?

If the optional S suffix is present, condition code bits are set after the subtraction R=X-M, where X
is initial register value, M is the flexible second operand or the #im12 constant, and R is the final
register value.

N: result is negative N = R31

Z: result is zero

If the V bit is set after a signed subtraction (R=X-M), then the result is incorrect because a signed
overflow occurred. The first term of the following equation is true if you subtract a negative number
minus a positive number and get a positive result (a negative number minus a positive number should
still be negative). The second term is true if you subtract a positive number minus a negative number
and get a negative result (a positive number minus a negative number should still be positive).

V: signed overflow

If the C bit is clear after an unsigned subtraction (R=X-M), then the result is incorrect because an
unsigned overflow occurred. The first term of the following equation is true if you subtracted a big
number (M >2147483647) from a little number (X <2147483647). The second term is true if the M
input is above 2147483647, but the result is greater than 2147483647. The third term is true if the X
input is less than or equal to 2147483647, but the result is greater than 2147483647.

C: unsigned overflow

Checkpoint 3.12:Assume Register R0 is initially 100 and R1 is initially 200. After executing the
instruction subs R0,R0,R1 what is the value in Register R0, and the NZVC bits?

Checkpoint 3.13:Assume Register R0 is initially 100 and R1 is initially -200. After executing the
instruction subs R0,R0,R1 what is the value in Register R0, and the NZVC bits?

Common Error: Ignoring overflow (signed or unsigned) can result in significant errors.

Observation: Microcomputers have two sets of conditional branch instructions (if statements) that
make program decisions based on either the C or V bit.

Example 3.4: Write code that reads from variable N adds 10 and stores the result in variable M.
Both variables are 32-bit.

Solution: First, we perform a 32-bit read, bringing N into Register R1. Second we add 10, and lastly
we store the result into M. Since the value gets larger, no overflow could occur. This solution ignores
the overflow error.

LDR R3, =N ; R3 = &N (R3 points to
N)
 LDR R1, [R3] ; R1 = N
 ADD R0, R1, #10 ; R0 = N+10
 LDR R2, =M ; R2 = &M (R2 points
to M)
 STR R0, [R2] ; M = N+10

// C implementation
 M = N+10;

Program 3.4. Example code showing a 32-bit add.

Example 3.5: Write code that reads from variable N, adds 10, and stores the result in variable M.
Both variables are 8-bit unsigned.

Solution: First, we perform an 8-bit read, bringing N into Register R1. Since the register is 32 bits
and the data 8 bits, the LDRB instruction will pad bits 32-8 to be zeros. Second we add 10, and
lastly we store the result into M. Overflow cannot occur on the addition. However since the value
gets larger, an error could occur when the 9-bit result is written back to an 8-bit variable. This
solution ignores this error.

 LDR R3, =N ; R3 = &N (R3 points to
N)
 LDRB R1, [R3] ; R1 = N
 ADD R0, R1, #10 ; R0 = N+10
 LDR R2, =M ; R2 = &M (R2 points
to M)

// C implementation
 M = N+10;

 STRB R0, [R2] ; M = N+10
Program 3.5. Example code showing an addition of 8-bit variables.

Checkpoint 3.14: Modify Program 3.5 so it operates on unsigned 16-bit variables.

Checkpoint 3.15: Modify Program 3.5 so it operates on signed 8-bit variables.

Observation: Notice the C compiler uses the same + operator for 8-bit, 16-bit or 32-bit variables.
Similarly, it will implement the appropriate operations for signed or unsigned numbers.

There are some instructions that operate only on signed numbers and others that work only for
unsigned numbers. An error will occur if you use unsigned instructions after operating on signed
numbers, and vice-versa. There are some applications where arithmetic errors are not possible. For
example if we had two 8-bit unsigned numbers that we knew were in the range of 0 to 100, then no
overflow is possible when they are added together.

Typically the numbers we are processing are either signed or unsigned (but not both), so we need only
consider the corresponding C or V bit (but not both the C and V bits at the same time.) In other words,
if the two numbers are unsigned, then we look at the C bit and ignore the V bit. Conversely, if the two
numbers are signed, then we look at the V bit and ignore the C bit. There are two appropriate
mechanisms to deal with the potential for arithmetic errors when adding and subtracting. The first
mechanism, used by most compilers, is called promotion. Promotion involves increasing the
precision of the input numbers, and performing the operation at that higher precision. An error can
still occur if the result is stored back into the smaller precision. Fortunately, the program has the
ability to test the intermediate result to see if it will fit into the smaller precision. To promote an
unsigned number we add zeros to the left side. In a previous example, we added the unsigned 8-bit
224 to 64, and got the wrong result of 32. With promotion we first convert the two 8-bit numbers to
32 bits, then add

 Decimal 8-bit 32-bit
 224 1110,0000 0000,0000,0000,0000,0000,0000,1110,0000
 + 64 +0100,0000 +0000,0000,0000,0000,0000,0000,0100,0000
 288 0010,0000 0000,0000,0000,0000,0000,0001,0010,0000

We can check the 32-bit intermediate result (e.g., 288) to see if the answer will fit back into the 8-bit
result. In Figure 3.23, A and B are 8-bit unsigned inputs, A32, B32, and R32 are 32-bit intermediate
values, and R is an 8-bit unsigned output.

Figure 3.23. Flowcharts showing how to use promotion to detect and correct
unsigned arithmetic errors.

In C, if we load a lower precision number into a higher precision variable, it will automatically
promote. Unsigned promotion occurs moving an uint8_t value into an uint_32 register or variable,
and signed promotion occurs when moving from int8_t to int_32 . No error occurs on promotion.
However, if we load a higher precision number into a lower precision variable, it will automatically
demote. For example writing a 32-bit uint32_t value into an 8-bit uint_8 variable will discard the
top 24 bits. Error can occur on demotion if the result does not fit. The C code in Program 3.6 adds
and subtracts two 8-bit values, using promotion to detect for errors.

uint8_t A,B,R;
void add(void){ uint32_t result;
 result = A+B; // promote and perform 32-bit addition
 if(result>255){ // check for overflow
 result = 255; // yes, overflow occurred
 }
 R = result; // demote back to 8 bits
}
void sub(void){ int32_t result;
 result = A-B; // promote and perform 32-bit subtraction
 if(result<0){ // check for underflow
 result = 0; // yes, underflow occurred
 }
 R = result; // demote back to 8 bits
}
Program 3.6. Using promotion to detect and compensate for unsigned overflow
errors.

Observation: When performing calculations on 8-bit or 16-bit numbers, most C compilers for the
Cortex-M processor will first promote to 32 bits, perform the operations using 32-bit operations, and
then demote the result back to the original precision.

Common Error: Even though most C compilers automatically promote to a higher precision during
the intermediate calculations, they do not check for overflow when demoting the result back to the
original format.

To promote a signed number, we duplicate the sign bit (called sign extension) as we add binary digits
to the left side. Earlier, we performed the 8-bit signed operation -96-64 and got a signed overflow.
With promotion we first convert the two numbers to 32 bits, then subtract

 Decimal 8-bit 32-bit
 -96 1010,0000 1111,1111,1111,1111,1111,1111,1010,0000
 -64 -0100,0000 -0000,0000,0000,0000,0000,0000,0100,0000
 -160 0110,0000 1111,1111,1111,1111,1111,1111,0110,0000

We can check the 32-bit intermediate result (e.g., -160) to see if the answer will fit back into the 8-bit
result. In Figure 3.24, A and B are 8-bit signed inputs, A32, B32, and R32 are 32-bit signed intermediate
values, and R is an 8-bit signed output.

Figure 3.24. Flowcharts showing how to use promotion to detect and correct
signed arithmetic errors.

The C code in Program 3.7 adds and subtracts two 8-bit signed numbers. The compiler will
automatically promote A and B to signed 32-bit values before the addition.

int8_t A,B,R;
void add(void){ int32_t result;
 result = A+B; // promote and perform 32-bit addition
 if(result>127){ // check for overflow
 result = 127; // yes, overflow occurred, set to ceiling
 }
 if(result<-128){ // check for underflow
 result = -128; // yes, underflow occurred, set to floor
 }
 R = result; // demote back to 8 bits

}
void sub(void){ int32_t result;
 result = A-B; // promote and perform 32-bit subtraction
 if(result>127){ // check for overflow
 result = 127; // yes, overflow occurred, set to ceiling
 }
 if(result<-128){ // check for underflow
 result = -128; // yes, underflow occurred, set to floor
 }
 R = result; // demote back to 8 bits
}
Program 3.7. Using promotion to detect and compensate for signed overflow
errors.

Notice in Program 3.7, when the result was too big the software set the result to maximum, and when
the answer was too small the software set the result to minimum. We call this error handling technique
ceiling and floor. ARM calls this mechanism saturationand is implemented with
the SSAT and USAT instructions. Rather than discuss these two instructions, this section will focus
on fundamental principles. It is analogous to movements inside a room. If we try to move up (add a
positive number or subtract a negative number) the ceiling will prevent us from exceeding the bounds
of the room. Similarly, if we try to move down (subtract a positive number or add a negative number)
the floor will prevent us from going too low. The ceiling and floor prevent us from leaving the room.
For our 32-bit addition and subtraction, we will prevent the 0 to 4294967295 and 4294967295 to 0
crossovers for unsigned operations and -2147483648 to +2147483647 and +2147483647 to
-2147483648 crossovers for signed operations. These operations are described by the flowcharts in
Figure 3.25. If the carry bit is set after an unsigned addition the result is adjusted to the largest
possible unsigned number (ceiling). If the carry bit is clear after an unsigned subtraction, the result is
adjusted to the smallest possible unsigned number (floor.)

Figure 3.25. Flowcharts showing how to use overflow bits to detect and correct
unsigned arithmetic errors.

There are no mechanisms in C to access the condition code bits of the processor. So, implementation
of this approach must be performed in assembly language. Assume A , B ,and R are three 32-bit (4-
byte) global variables defined in RAM. The following assembly language adds two unsigned 8-bit
numbers, using the algorithm presented in Figure 3.25.

 LDR R2, =A ; R2 = &A (pointer to A)
 LDR R3, =B ; R3 = &B (pointer to B)
 LDR R4, =R ; R4 = &R (pointer to R)
 LDR R0, [R2] ; R0 = A
 LDR R1, [R3] ; R1 = B
 ADDS R0, R0, R1 ; R0 = A+B
 BCC ok1 ; if C==0, no error
err1 MOV R0, #0xFFFFFFFF ; ceiling, R0 = 4,294,967,295
ok1 STR R0, [R4] ; R = A+B

The following assembly language subtracts two unsigned 32-bit numbers.

 LDR R2, =A ; R2 = &A (pointer to A)
 LDR R3, =B ; R3 = &B (pointer to B)
 LDR R4, =R ; R4 = &R (pointer to R)
 LDR R0, [R2] ; R0 = A
 LDR R1, [R3] ; R1 = B
 SUBS R0, R0, R1 ; R0 = A-B
 BCS ok2 ; if C==1, no error
err2 MOV R0, #0 ; floor, R0 = 0
ok2 STR R0, [R4] ; R = A-B

Signed addition and subtraction are described by the flowcharts in Figure 3.26. If the overflow bit is
set after a signed operation the result is adjusted to the largest (ceiling) or smallest (floor) possible
signed number depending on whether it was a -2147483648 to 2147483647 cross over (N=0) or
2147483647 to -2147483648 cross over (N=1). Notice that after a signed overflow, the sign bit of the
result is always wrong because there was a cross over.

The following assembly language adds two signed 32-bit numbers, using the ceiling and floor
algorithm presented in Figure 3.26.

 LDR R2, =A ; R2 = &A (pointer to A)
 LDR R3, =B ; R3 = &B (pointer to B)
 LDR R4, =R ; R4 = &R (pointer to R)
 LDR R0, [R2] ; R0 = A
 LDR R1, [R3] ; R1 = B
 ADDS R0, R0, R1 ; R0 = A+B
 BVC ok3 ; if V==0, skip to the end
err3 MOV R0, #0x7FFFFFFF ; R0 = 2,147,483,647
 BMI ok3 ; if N==1, it was overflow
under3 MOV R0, #0x80000000 ; R0 = -2,147,483,648

ok3 STR R0, [R4] ; R = A+B

Figure 3.26. Flowcharts showing how to use overflow bits to detect and correct
signed arithmetic errors.

Checkpoint 3.16: Write assembly to implement 32-bit subtraction with ceiling and floor.

Multiplication and division occurring in computers utilize a variety of complex algorithms to reduce
power and minimize execution time. These algorithms are beyond the scope of this book. However, to
illustrate binary multiplication we will present a very simple 8-bit unsigned algorithm, which uses a
combination of shift and addition operations. Let A and B be two unsigned 8-bit numbers. The goal is
to make R=A•B. Simple calculations of 0•0=0 and 255•255=65025 illustrate the fact that the
multiplication of two 8-bit numbers will fit into a 16-bit product. In general, an n-bit number
multiplied by an m-bit number yields an (n+m)-bit product. First, we define one of the multiplicands
in terms of its basis representation.

B = 128•b7 + 64•b6 + 32•b5 + 16•b4 + 8•b3 + 4•b2 + 2•b1 + b0
Next, we distribute multiplication over addition

R = A•128•b7 + A•64•b6 + A•32•b5 + A•16•b4 + A•8•b3 + A•4•b2 + A•2•b1 + A•b0

We can simplify the equation leaving only one-bit shifts

R = 2•(2•(2•(2•(2•(2•(2• A•b7+ A•b6)+ A•b5)+ A•b4)+ A•b3)+ A•b2)+ A•b1)+ A•b0

The multiplication by a power of 2 is a logical shift left, and the multiplication by a binary bit (0 or
1) is an add or no-add conditional. For an 8-bit multiply, we will use 16-bit shifts and additions,
yielding a 16-bit product. Since the product, R, is a 16-bit unsigned number, there can be no overflow
error in this 8 by 8 into 16-bit multiply.

Checkpoint 3.17: How many bits does it take to store the result of two unsigned 32-bit numbers
multiplied together?

Checkpoint 3.18: How many bits does it take to store the result of two signed 32-bit numbers
multiplied together?

Multiply(MUL), multiply with accumulate(MLA), and multiply with subtract(MLS) use 32-bit
operands and produce a 32-bit result. These three multiply instructions only save the bottom 32 bits
of the result. They can be used for either signed or unsigned numbers, but no overflow flags are
generated. If the Rd register is omitted, the Rn register is the destination. If the S suffix is added
to MUL , then the Z and N bits are set according to the result. The division instructions do not set
condition code flags and will round towards zero if the division does not evenly divide into an
integer quotient.

MUL{S}{cond} {Rd,} Rn, Rm ;Rd = Rn * Rm
MLA{cond} Rd, Rn, Rm, Ra ;Rd = Ra + Rn*Rm
MLS{cond} Rd, Rn, Rm, Ra ;Rd = Ra - Rn*Rm
UDIV{cond} {Rd,} Rn, Rm ;Rd = Rn/Rm unsigned
SDIV{cond} {Rd,} Rn, Rm ;Rd = Rn/Rm signed

The following four multiply instructions use 32-bit operands and produce a 64-bitresult. The two
registers RdLo and RdHi contain the least significant and most significant parts respectively of the
64-bit result, signified as Rd . These multiply instructions do not set condition code flags.
UMULL{cond} RdLo, RdHi, Rn, Rm ;Rd = Rn * Rm
SMULL{cond} RdLo, RdHi, Rn, Rm ;Rd = Rn * Rm
UMLAL{cond} RdLo, RdHi, Rn, Rm ;Rd = Rd + Rn*Rm
SMLAL{cond} RdLo, RdHi, Rn, Rm ;Rd = Rd + Rn*Rm

Checkpoint 3.19: Can the 32 by 32 bit multiply instructions UMULL or SMULL overflow?

Observation: There is no overflow detection available for 32-bit multiplication.

Example 3.6: Write code that reads from variable N multiplies by 5, adds 25, and stores the result in
variable M. Both variables are 32-bit.

Solution: First, we perform a 32-bit read, bringing N into Register R1. Second we multiply by 5 and
add 10, and lastly we store the result into M. Since the value gets larger, overflow could occur. This
solution ignores the overflow error.

 LDR R3, =N ; R3 = &N (R3 points to
N)
 LDR R1, [R3] ; R1 = N
 MOV R0, #5 ; R0 = 5
 MUL R1, R0, R1 ; R1 = 5*N
 MOV R0, #25 ; R0 = 25
 ADD R0, R0, R1 ; R0 = 25+5*N
 LDR R2, =M ; R2 = &M (R2 points
to M)
 STR R0, [R2] ; M = 25+5*N

// C implementation
 M = 5*N+25;

Program 3.8. Example code showing a 32-bit multiply and addition.

Example 3.7: Write code to convert a variable N ranging from 0 to 1023 into a variable M, which
ranges from 0 to 3000. Essentially compute M = 2.93255* N. Both variables are 32-bit.

Solution: First, we perform a 32-bit read, bringing N into Register R1. Second we multiply by 3000
and divide by 1023, and lastly we store the result into M. Since the input range is bounded
(3000*1023 < 232) no overflow error can occur.

 LDR R3, =N ; R3 = &N (R3 points to
N)
 LDR R1, [R3] ; R1 = N
 MOV R0, #3000 ; R0 = 3000
 MUL R1, R0, R1 ; 3000*N (0 to
3069000)
 MOV R0, #1023 ; R0 = 1023
 UDIV R0, R1, R0 ; R0 = R1/R0 =
3000*N/1023
 LDR R2, =M ; R2 = &M (R2 points
to M)
 STR R0, [R2] ; M = (3000*N)/1023

// C implementation
 M = (3000*N)/1023;

When dividing by an unsigned number, we can implement rounding by adding half the divisor prior to
the division.

 LDR R3, =N ; R3 = &N (R3 points to
N)
 LDR R1, [R3] ; R1 = N
 MOV R0, #3000 ; R0 = 3000
 MUL R1, R0, R1 ; 3000*N (0 to
3069000)
 ADD R1, R1, #512; 3000*N + 512
 MOV R0, #1023 ; R0 = 1023
 UDIV R0, R1, R0 ; R0 = R1/R0 =
3000*N/1023
 LDR R2, =M ; R2 = &M (R2 points
to M)
 STR R0, [R2] ; M =
(3000*N+512)/1023

// C implementation
 M =
(3000*N+512)/1023;

To improve execution speed we can replace the division with a right shift. Notice that 3003/1024 is
approximately equal to 3000/1023. For example if N is 1023, the M will be (1023*3003+512)>>10,
which equals exactly 3000. Again we add half the effective divisor to implement rounding.

 LDR R3, =N ; R3 = &N (R3 points to
N)
 LDR R1, [R3] ; R1 = N
 MOV R0, #3003 ; R0 = 3003
 MUL R1, R0, R1 ; 3003*N
 ADD R1, R1, #512; 3003*N + 512
 LSR R0, R1, #10 ; (3003*N + 512)>>10
 LDR R2, =M ; R2 = &M (R2 points
to M)
 STR R0, [R2] ; M =
(3003*N+512)>>10

// C implementation
 M =
(3003*N+512)>>10;

Checkpoint 3.20: Give a single mathematical equation relating the dividend, divisor, quotient, and
remainder. This equation gives a unique solution as long as you assume the remainder is strictly less
than the divisor. Assume the sign of the remainder matches the sign of the dividend.

3.3.7. Stack
The stack is a last-in-first-out temporary storage. To create a stack, a block of RAM is allocated for
this temporary storage. On the ARM ® Cortex™-M processor, the stack always operates on 32-bit
data. The stack pointer (SP) points to the 32-bit data on the top of the stack. The stack grows
downwards in memory as we push data on to it so, although we refer to the most recent item as the
“top of the stack” it is actually the item stored at the lowest address! To push data on the stack, the
stack pointer is first decremented by 4, and then the 32-bit information is stored at the address
specified by SP. To pop data from the stack, the 32-bit information pointed to by SP is first retrieved,
and then the stack pointer is incremented by 4. SP points to the last item pushed, which will also be
the next item to be popped. The boxes in Figure 3.27 represent 32-bit storage elements in RAM. The
grey boxes in the figure refer to actual data stored on the stack, and the white boxes refer to locations
in memory that do not contain stack data. This figure illustrates how the stack is used to push the
contents of Registers R0, R1, and R2 in that order. Assume Register R0 initially contains the value 1,
R1 contains 2, and R2 contains 3. The drawing on the left shows the initial stack. The software
executes these six instructions in this order:
PUSH {R0}
PUSH {R1}
PUSH {R2}
POP {R3}
POP {R4}
POP {R5}

Figure 3.27. Stack picture showing three numbers first being pushed, then three
numbers being popped. You are allowed to draw stack pictures so that the lowest
address is on the top (like this one) or so that lowest address is on the bottom.
The important matter is to be clear, accurate, and consistent.

The instruction PUSH {R0} saves the value of R0 on the stack. It first decrements SP by 4, and then
it stores the contents of R0 into the memory location pointed to by SP. The right-most drawing shows
the stack after the push occurs three times. The stack contains the numbers 1, 2,and 3, with 3 on top.
The instruction POP{R3} retrieves data from the stack. It first moves the value from memory pointed
to by SP into R3, and then it increments SP by 4. After the pop occurs three times the stack reverts to
its original state and registers R3, R4, and R5 contain 3 2 1 respectively. We define the 32-bit word
pointed to by SP as the top entry of the stack. If it exists, we define the 32-bit data immediately below
the top, at SP+4, as next to top. Here are the rules one has to follow when using the stack:

1. Functions should have an equal number of pushes and pops
2. Stack accesses (push or pop) should not be performed outside the allocated area
3. Stack reads and writes should not be performed within the free area
4. Stack push should first decrement SP, then store the data
5. Stack pop should first read the data, and then increment SP

Functions that violate rule number 1 will probably crash when incorrect data are popped off at a later
time. Violations of rule number 2 can be caused by a stack underflow or overflow. Overflow occurs
when the number of elements becomes larger than the allocated space. Stack underflow is caused
when there are more pops than pushes, and it is always the result of a software bug. A stack overflow
can be caused by two reasons. If the software mistakenly pushes more than it pops, then the stack
pointer will eventually overflow its bounds. Even when there is exactly one pop for each push, a
stack overflow can occur if the stack is not allocated large enough. The processor will generate a bus
fault when the software tries read from or write to an address that doesn’t exist. If valid RAM exists
below the stack then further stack operations will corrupt data in this memory.

Executing an interrupt service routine will automatically push information on the stack. Since
interrupts are triggered by hardware events, exactly when they occur is not under software control.
Therefore, violations of rules 3, 4, and 5 will cause erratic behavior when operating with interrupts.
Rules 4 and 5 are followed automatically by the PUSH and POP instructions.

First, we will consider the situation where the allocated stack area is placed at the beginning of
RAM. For example, assume we allocate 4096 bytes for the stack from 0x2000.0000 to 0x2000.0FFF,
see the left side of Figure 3.28. The SP is initialized to 0x2000.1000, and the stack is considered
empty. If the SP becomes less than 0x2000.0000 a stack overflow has occurred. The stack overflow
will cause a bus fault because there is nothing at address 0x1FFF.FFFC. If the software tries to read
from or write to any location greater than or equal to 0x2000.1000 then a stack underflow has
occurred. At this point the stack and global variables may exist at overlapping addresses. Stack
underflow is a very difficult bug to recognize, because the first consequence will be unexplained
changes to data stored in global variables.

Figure 3.28. Drawings showing two possible ways to allocate the stack area in
RAM.

Next, we will consider the situation where the allocated stack area is placed at the end of RAM. The
TM4C123 has 32 KiB of RAM from 0x2000.0000 to 0x2000.7FFF. So in this case we allocate the
4096 bytes for the stack from 0x2000.7000 to 0x2000.7FFF, shown on the right side of Figure 3.28.
The SP is initialized to 0x2000.8000, and the stack is considered empty. If the SP becomes less than
0x2000.7000 a stack overflow has occurred. The stack overflow will not cause a bus fault because
there is memory at address 0x2000.6FFC. Stack overflow in this case is a very difficult bug to
recognize, because the first consequence will be unexplained changes to data stored below the stack
region. If the software tries to read from or write to any location greater than or equal to 0x2001.0000
then a stack underflow has occurred. In this case, stack underflow will cause a bus fault. We will also
use the stack to save program state during interrupt processing.

3.3.8. Functions and Control Flow
Normally the computer executes one instruction after another in a linear fashion. In particular, the next
instruction to execute is found immediately following the current instruction. Figure 3.9 illustrates
exceptions to the one after another rule. More specifically, we use branch instructions to deviate from
this straight line path. Table 3.2 lists the conditional execution available on the ARM ® Cortex™-M
processor. In this section, we will use the conditional branch instruction to implement if-then, while-
loop, and for-loop control structures.

B{cond} label ;branch to label
BX{cond} Rm ;branch indirect to location specified by Rm
BL{cond} label ;branch to subroutine at label
BLX{cond} Rm ;branch to subroutine indirect specified by Rm

Subroutines, procedures, and functions are code sequences that can be called to perform specific
tasks. They are important conceptual tools because they allow us to develop modular software. The
programming languages Pascal, FORTRAN, and Ada distinguish between functions, which return
values, and procedures, which do not. On the other hand, the programming languages C, C++, Java,
and Lisp do not make this distinction and treat functions and procedures as synonymous. Object-
oriented programming languages use the term method to describe subprograms that are part of
objects; it is also used in conjunction with type classes. In assembly language, we use the term
subroutine for all subprograms whether or not they return a value. Modular programming allows us to
build complex systems using simple components. In this section we present a short introduction on the
syntax for defining subroutines. We define a subroutine by giving it a name in the label field, followed
by instructions, which when executed, perform the desired effect. The last instruction in a subroutine
will be BX LR , which we use to return from the subroutine. In Program 3.9, we define the subroutine
named Change , which adds 25 to the variable Num . The flowchart for this example is drawn in
Figure 3.29.In assembly language, we will use the BL instruction to call this subroutine. At run time,
the BL instruction will save the return address in the LR register. The return address is the location
of the instruction immediately after the BL instruction. At the end of the subroutine, the BX LR
instruction will retrieve the return address from the LR register, returning the program to the place
from which the subroutine was called. More precisely, it returns to the instruction immediately after
the instruction that performed the subroutine call. The comments specify the order of execution. The
while-loop causes instructions 4–10 to be repeated over and over.

Figure 3.29. A flowchart of a simple function that generates a pseudo random
number.

In C, input parameters, if any, are passed in R0–R3. If there are more than 4 input parameters, they are
pushed on the stack. The output parameter, if needed, is returned in R0.

Change LDR R1,=Num ; 5) R1 =
&Num
 LDR R0,[R1] ; 6) R0 = Num
 ADD R0,R0,#25 ; 7) R0 = Num+25
 STR R0,[R1] ; 8) Num = Num+25
 BX LR ; 9) return
main LDR R1,=Num ; 1) R1 = &Num
 MOV R0,#0 ; 2) R0 = 0
 STR R0,[R1] ; 3) Num = 0
loop BL Change ; 4) function call

uint32_t Num;
void Change(void){
 Num = Num+25;
}
void main(void){
 Num = 0;
 while(1){
 Change();
 }
}

 B loop ; 10) repeat
Program 3.9. Assembly and C versions that define a simple function. The 1-
2-...-10 show the execution sequence.

Recall that all object code is halfword aligned, meaning bit 0 of the PC is always clear. When
the BL instruction is executed, bits 31–1 of register LR are loaded with the address of the instruction
after the BL , and bit 0 is set to one. When the BX LR instruction is executed, bits 31–1 of register
LR are put back into the PC, and bit 0 of LR goes into the T bit. On the ARM ® Cortex™-M
processor, the T bit should always be 1, meaning the processor is always in the Thumb state.
Normally, the proper value of bit 0 of the LR is assigned automaticallyby the BL instruction.

Decision making is an important aspect of software programming. Two values are compared and
certain blocks of program are executed or skipped depending on the results of the comparison. In
assembly language it is important to know the precision (e.g., 16-bit, 32-bit) and the format of the two
values (e.g., unsigned, signed). It takes three steps to perform a comparison. We begin by reading the
first value into a register. The second step is to compare the first value with the second value. We can
use either a subtract instruction (SUBS) or a compare instruction (CMP). These instructions set the
condition code bits. The last step is a conditional branch. The available conditions are listed in Table
3.2. The branch will occur if the condition is true.

Program 3.10illustrates an if-then structure involving testing for unsigned greater than or equal to. It
will increment Num if it is less than 25600. Since the variable is unsigned, we use an unsigned
conditional. Furthermore, we want to execute the increment if Num is less than 25600, so we
perform the opposite conditional branch (greater than or equal to) to skip over.

Change LDR R1,=Num ; R1 = &Num
 LDR R0,[R1] ; R0 = Num
 CMP R0,#25600
 BHS skip
 ADD R0,R0,#1 ; R0 = Num+1
 STR R0,[R1] ; Num = Num+1
skip BX LR ; return

uint32_t Num;
void Change(void){
 if(Num < 25600){
 Num = Num+1;
 }
}

Program 3.10. Software showing an if-then control structure (BHS used because
it is unsigned).

Program 3.11illustrates an if-then-else structure involving signed numbers. It will increment Num if
it is less than 100, otherwise it will set it to -100. Since the variable is signed, we use asigned
conditional. Again, we want to execute the increment if Num is less than 100, so we perform the
opposite conditional branch (greater than or equal to) to skip over.

Change LDR R1,=Num ; R1 = &Num
 LDR R0,[R1] ; R0 = Num
 CMP R0,#100
 BGE else
 ADD R0,R0,#1 ; R0 = Num+1
 B skip

int32_t Num;
void Change(void){
 if(Num < 100){
 Num = Num+1;
 }
 else{

else MOV R0,#-100 ; -100
skip STR R0,[R1] ; update Num
 BX LR ; return

 Num = -100;
 }
}

Program 3.11. Software showing an if-then-else control structure (BGE used
because it is signed).

3.3.9. Assembler Directives
We use assembler directives to assist and control the assembly process. Directives or pseudo-ops are
not part of the instruction set. These directives change the way the code is assembled.The first batch
defines where and how the objects (code and variables) are placed in memory. CODE is the place
for machine instructions, typically ROM. DATA is the place for global variables, typically
RAM. STACK is the place for the stack, also in RAM. The ALIGN=n modifier starts the area
aligned to 2n bytes. |.text| is used for code sections produced by the C compiler, or for code sections
otherwise associated with the C library. Using |.text| makes this assembly code callable from
C.Normally RAM areas are initialized to zero, but NOINIT defines a RAM area that is not
initialized. The fact that ROM begins at 0x0000.0000 and RAM begins at 0x2000.0000 is specified in
the Project->Options, Linker tab.

AREA RESET,CODE,READONLY ;reset vectors in flash ROM
AREA DATA ;places objects in data memory (RAM)
AREA |.text|,CODE,READONLY,ALIGN=2 ;code in flash ROM
AREA STACK,NOINIT,READWRITE,ALIGN=3 ;stack area

The next two directives are used to link between files. Normally labels in one file are not
accessiblein another file. If we have a global object (function or variable) we add
an EXPORT directive in the file where the object is defined and an IMPORT directive in the file
wishing to access the object. We can EXPORT a function in an assembly file, and call that function
from a C file. Similarly, we can define a function in a C file, and IMPORT the function into an
assembly file. GLOBAL is a synonym for EXPORT .
IMPORT name ;imports function “name” from other file
EXPORT name ;exports public function “name” for use elsewhere

The ALIGN directiveis used to ensure the next object is aligned properly. For example, machine
instructions must be half-word aligned, 32-bit data accessed with LDR STR must be word-aligned.
Nice programmers place an ALIGN at the end of each file so the start of every file is automatically
aligned.
ALIGN ;skips 0 to 3 bytes to make next word aligned
ALIGN 2 ;skips 0 or 1 byte to make next halfword aligned
ALIGN 4 ;skips 0 to 3 bytes to make next word aligned

The THUMB directive is placed at the top of the file to specify code is generated with Thumb
instructions. We place an END directive at the end of each file.

THUMB ;uses Thumb instructions
END

The following directives can add variables and constants.
DCB expr{,expr} ;places 8-bit byte(s) into memory
DCW expr{,expr} ;places 16-bit halfword(s) into memory
DCD expr{,expr} ;places 32-bit word(s) into memory
SPACE size ;reserves size bytes, unitialized

The EQU directive gives a symbolic name to a numeric constant, a register-relative value or a
program-relative value. We will use EQU to define I/O port addresses. For example,

GPIO_PORTD_DATA_R EQU 0x400073FC
GPIO_PORTD_DIR_R EQU 0x40007400
GPIO_PORTD_DEN_R EQU 0x4000751C

3.3.10. First Example Project
We begin the example by writing a Requirements document.
1. Overview
 1.1. Objectives: Why are we doing this project? What is the purpose?
The objectives of this project are to design, build and test a random number generator.

 1.2. Process: How will the project be developed?
The project will be developed using a Tiva board, and written in Keil uVision.

 1.3. Roles and Responsibilities: Who will do what? Who are the clients?
Valvano will write the code, and the readers of this book are the clients.

 1.4. Interactions with Existing Systems: How will it fit in?
The random number generator will be callable from other existing Cortex M systems.

 1.5. Terminology: Define terms used in the document.
Pseudo random number, linear congruential generator, seed

 1.6. Security: How will intellectual property be managed?
The solution will be posted on the internet, and free for others to use.

2. Function Description
 2.1. Functionality: What will the system do precisely?
The system will have two operations. 1) The generator can be initialized by setting the seed to any
32-bit number. 2) When the user calls Random a 32-bit random number will be returned.

 2.2. Scope: List the phases and what will be delivered in each phase.
Phase 1 is the design; phase 2 is the implementation; and phase 3 is the testing.

 2.3. Prototypes: How will intermediate progress be demonstrated?
A prototype system can be run on the simulator or on a real LaunchPad board.

 2.4. Performance: Define the measures and describe how they will be determined.
It generates a pseudo random sequence of numbers. This means the generator will return a unique 32-
bit number for the first 232 calls. After that it will loop through that sequence over and over. Let N be
any constant less than 256, and we create n = (random ()>>24)%N, which will be a random number
from 0 to N-1, like Program 2.8. The random number generator is fair: for every calculation of n, the
chances it is 0 to N-1 are equally likely. The random number generator is random: if I know prior
determinations of n, the chances of the next generator of n is still equally likely to be 0 to N-1.

 2.5. Usability: Describe the interfaces. Be quantitative if possible.
To initialize the system, we write a number into the seed variable, M . To generate a new random
number we call Random , and the number is returned in R0.

Solution: Every ARM Keil™uVision® project will have a file named Startup.s . CCStudio projects
will have a similar file. There will be small differences between the file we use for assembly and the
one we use for C, but basically this file will contain the following components:

Defines the size of the stack
Defines the size of the heap (which we will not use)
Defines the reset vector and all the interrupt vectors
The reset handler that jumps to your code
Default interrupt service routines that do nothing
Defines some functions for enabling and disabling interrupts

The reset handler is code that is run when the reset button is pushed or on power up. The reset
handler initializes global variables by branching to the __main function, which in turn, calls
your main() function. If you are writing C code, you will not need to edit the Startup.sfile. For
assembly, you will have to replace the branch to __main with a branch to your application code. The
assembly examples with this book all use Start as the user code to be run on reset. This means if you
name your program Start , you can use one of the Startup.s files from the book examples without
editing it.

Program 3.12 implements a pseudo random number generator using a linear congruential generator
(LCG). M0 is the seed which is first number in the sequence, 1. a is the multiplier, 1664525. c is the
increment, 1013904223 and m = 232. The pseudo random sequence is generated using this formula,
which calculates the next number from the previous one:

Mn+1 = (a * Mn + c) mod m

The AREA DATA directive specifies the following lines are placed in data space (typically RAM).
The MSPACE 4 allocates four uninitialized bytes, which is one 32-bit word. The AREA CODE
directive specifies the following lines are placed in code space (typically ROM). The |.text|
connects this program to the C code generated by the compiler, which we need if linking assembly
code to C code. ALIGN=2 will force the machine code to be word-aligned as required. In assembly,
the registers are used for storing temporary information. The LDR R4,=M instruction establishes R4
as a pointer to the variable M . When the function is called the return address is saved in LR. Register
R0 has the return parameter, which is a new random number. The BX LR is the return from subroutine
instruction (moves LR back to PC) making the PC point to the B loop instruction.

 THUMB
 AREA DATA, ALIGN=2
 EXPORT M [DATA,SIZE=4]
M SPACE 4
 AREA
|.text|,CODE,READONLY,ALIGN=2
 EXPORT Start
Start LDR R2,=M ; R2 = &M
 MOV R0,#1 ; Initial seed
 STR R0,[R2] ; M=1
loop BL Random
 B loop
; Return R0= random number generator
; Linear congruential generator
Random LDR R2,=M ; R2 = &M
 LDR R0,[R2] ; R0 = M
 LDR R1,=1664525
 MUL R0,R0,R1 ; R0 = 1664525*M
 LDR R1,=1013904223
 ADD R0,R0,R1 ;
1664525*M+1013904223
 STR R0,[R2] ; store M
 BX LR
 ALIGN
 END

// C implementation
uint32_t M;

// Random number
generator
// from Numerical
Recipes
// by Press et al.
uint32_t Random(void){
 M = 1664525*M
 +1013904223;
 return(M);
}

void main(void){
 uint32_t n;
 M = 1; // seed
 while(1){
 n = Random();
 }
}

Program 3.12. Assembly and C projects that implement a random number
generator.

If we are in the main program, we can use any register we need. However, by AAPCS convention
functions only freely modify registers R0–R3 and R12. If a function needs to use R4 through R11, it is
best to push the current register value onto the stack, use the register, and then pop the old value off
the stack before returning. In order to preserve an 8-byte stack alignment, AAPCS requires us to push
and pop an even number of registers. If function calls are nested (one subroutine calls another
subroutine) then the LR must be saved on the stack.

Sometimes we wish to write functions in assembly and call them from C. In Program 3.13,
the Random function is written in assembly, and it is called from C. By the AAPCS convention, the
first parameter is passed in Register R0. We export the function name in the assembly file, and create
a prototype for the function in the C file. For C to access an assembly variable, we export it in the
assembly file, and add an extern statement it in the C file

 THUMB
 AREA DATA, ALIGN=2
M SPACE 4
 AREA
|.text|,CODE,READONLY,ALIGN=2
 EXPORT Random
 EXPORT M
; Return R0= random number generator
; Linear congruential generator
Random LDR R2,=M ; R2 = &M
 LDR R0,[R2] ; R0 = M
 LDR R1,=1664525
 MUL R0,R0,R1 ; R0 = 1664525*M
 LDR R1,=1013904223
 ADD R0,R0,R1 ;
1664525*M+1013904223
 STR R0,[R2] ; store M
 BX LR
 ALIGN
 END

// C calls assembly
uint32_t Random(void);
extern uint32_t M;

void main(void){
 uint32_t n;
 M = 1; // seed
 while(1){
 n = Random();
 }
}

Program 3.13. Assembly function and assembly variable is accessed from C.

Conversely, sometimes we wish to write functions in C and access them from assembly. Again, the
first parameter is passed in Register R0. We import the function name and import the variable in the
assembly file. Notice that C functions and variables have explicitly defined types, whereas the type
for assembly functions and variables is specified in how it is used.

 THUMB
 IMPORT Random
 IMPORT M
 AREA
|.text|,CODE,READONLY,ALIGN=2
 EXPORT Start
Start LDR R2,=M ; R2 = &M
 MOV R0,#1 ; Initial seed
 STR R0,[R2] ; M=1
loop BL Random
 B loop

uint32_t M;

// Random number
generator
// from Numerical
Recipes
// by Press et al.
uint32_t Random(void){
 M = 1664525*M
 +1013904223;
 return(M);

 ALIGN
 END

}

Program 3.14. C function and variable accessed from assembly.

The problem with LCG functions is the least significant bits go through very short cycles. For
example, bit 0 of M has a cycle length of 2, repeating the pattern 0,1,... Similarly,
bit i has a cycle length of only 2i+1. E.g., bit 1 repeats 0,0,1,1,... For this reason, we use the top 8 bits
when generating a random number from 0 to N-1, n= (random ()>>24)%N (N≤256.)

3.4. Simplified Machine Language Execution
In this section, we present a cycle-by-cycle analysis for a simple processor. The purpose of
considering a simplified version is to understand in general how a computer executes instructions
without being burdened with the extreme complexities that exist in today’s high-speed processors.
The major differences between the real ARM ® Cortex™-M processor and the simplified processor
are shown in Table 3.8.

Actual ARM® Cortex™-M
processor

Simplified processor

Sometimes 8-, 16-, 32-bit access All opcode accesses are
aligned 16-bit

Special case for unaligned access All data accesses are aligned
32-bit

Instruction queue enhances speed Simple fetch-execute sequence
Fetches op codes for later
execution

Fetches op codes for
immediate execution

Fetches op codes that are never
executed

Fetched op codes are always
executed

Five buses with simultaneous
accessing

One shared bus

Harvard architecture Von Neumann architecture
Table 3.8. Differences between a real and simplified bus cycles.

This simple processor has four major components, as illustrated in Figure 3.30. The control unit
(CU) orchestrates the sequence of operations in the processor. The CU issues commands to the other
three components. The instruction register (IR) contains the op code for the current instruction. Most
op codes on the Cortex™-M processor are 32 bits wide, but some are 16 bits. On this simple
processor op codes are 16 or 32 bits. The arithmetic logic unit (ALU) performs arithmetic
operations such as addition, subtraction, multiplication and division. The ALU also performs logical
operations such as and, or, and shift. The program counter (PC) points to the memory containing the
instruction to execute next. The bus interface unit (BIU) reads data from the bus during a read cycle,
and writes data onto the bus during a write cycle. The effective address register (EAR) contains the
data address corresponding to an operand in the current instruction. This address could be a source or
destination address depending on whether the operation is a read or write respectively.

Figure 3.30. Block diagram of a simplified microcontroller.

This simplified bus contains 32 address lines, 32 data lines, and an R/W signal. There are two types
of bus cycles that the processor uses to communicate with memory. For both types of cycles, the
processor drives the address bus and the R/W signal, see Figure 3.30. The 32-bit address bus selects
which memory location (or I/O device) to access. The R/W signal specifies read or write. During a
read cycle (R/W=1), the memory at the specified address puts the information on the data bus, and the
processor transfers the information (32 bits in this simplified simulation) into the appropriate place
within the processor. The processor has three types of read cycles:

Instruction fetch. The address is the PC and the 32-bit data is loaded into the
instruction register, IR. The PC is incremented by 2 or by 4.
Data fetch. The address is the EAR, and the 32-bit data is loaded into a register or
sent to the ALU.
Stack pop. First, the 32-bit data is read from memory pointed to by SP and stored in a
register, then the stack pointer is incremented SP=SP+4.

During a write cycle (R/W=0), the processor puts the 32-bit information on the data bus, and the
memory transfers the information into the specified location. The write cycles can be grouped into
two types:

Data write. The 32-bit data from a register is stored in memory at the address
specified by the EAR.
Stack push. First, the stack pointer is decremented SP=SP-4, then the 32-bit data
from a register is stored in memory at the address specified by the SP.

The terms read and write cycle are used from the perspective of the processor. During a read cycle
(or memory LOAD) data flows from memory or input device into the processor. Assume Register R0
equals 0x2000.0000 and memory location 0x2000.0000 contains a 0x12345678. Whenthe processor
executes LDR R1,[R0] , the instruction is first fetched, then there is a memory read cycle that copies
the data from memory into Register R1 (Figure 3.31).

Figure 3.31. A read cycle copies data from RAM, ROM or input device into the
processor.

During a write cycle (or memory STORE) data flows from the processor into memory or output
device. Assume R2 is 0x2000.0004 and R3 is 0x11223344. When the processor executes STR R3,
[R2] , the processor will first fetch the instruction, but there is a memory write cycle that copies the
data from the Register R3 into memory (Figure 3.32).

Figure 3.32. A write cycle copies data from the processor into RAM, or output
device.

In general, the execution of an instruction goes through many phases. First, the computer fetches the
machine code for the instruction by reading the value in memory pointed to by the program counter
(PC). After each word of the instruction is fetched, the PC is incremented by 2 or 4 (depending on the
size of the instruction). During phases 2 and 3, the instruction is decoded, and the effective address is
determined (EAR). The load and pop instructions require additional data, and during phase 4 the data
is retrieved from memory at the effective address. During phase 5, the actual function for this
instruction is performed. Sometimes the computer bus is idle at this time, because no additional data
is required. The store and push instructions require date to be written back to memory. A simple
instruction like ADD R0,R1,R2 takes only one cycle to complete: one cycle to fetch the op code, and
no bus cycles are required to perform the addition because arithmetic and logic operations occur
inside the processor. A load or store instruction like LDR R0,[R1] takes two cycles to complete:
one cycle to fetch the op code, and a second cycle to access the memory contents. The simplified
execution has six phases, but in this discussion we will focus only on those phases that generate bus
cycles (shown in bold):

Phase Function R/W Address Comment
 1 Op code fetch read PC Put op code into IR
 2 Decode instruction none Increment PC by 2 or by 4
 3 Evaluation address none Determine EAR
 4 Data read read SP,EAR Data passes through ALU,
 5 Free cycle ALU operations
 6 Data store write SP,EAR Results stored in memory

The Cortex™-M processor does not have both a memory read and a memory write cycle in the same
instruction. All instructions have a phase 1, but the other phases may or may not occur for any specific
instruction. Phase 1 will fetch the entire machine code for the instruction. The op code is placed in the
IR, and the operand either contains data itself or is used to determine the memory address of the data.
The subsequent phases may require 0 or 1 bus cycle to complete. Each bus cycle reads or writes one
piece of data. On the real Cortex™-M processor, read and write cycles can transfer 8-bit, 16-bit or
32-bit data, but for this simplified analysis all cycles are 32-bit.

Phase 1. Opcode fetch. The execution begins with fetching the entire op code and putting it in the IR.
Additional phase 1 cycles will occur until the entire machine code (op code and operand) are
fetched. The PC is incremented by 2 or 4 after fetching the op code.

Phase 2. Decode instruction. The op code will tell the control unit exactly what steps need to be
performed to execute the instruction. This phase happens so quickly that bus cycles are not needed.

Phase 3. Evaluate address. During this phase, the processor will set the EAR to point to the address
where memory is to be accessed. Usually, this phase does not require any bus cycles.

Phase 4. Data read. The load and pop instructions require data from memory. These instructions will
use the EAR to read data from memory as needed. It takes a bus cycle to read data from memory, but
since registers are inside the processor, no bus cycles occur as data is saved into a register.
Remember registers do not have addresses, and see in Figure 3.30 that registers are not attached to
the bus.

Phase 5. Free cycles. Any ALU functions occur next. On a real microcontroller the ALU requires
time to execute, but the simplified cycle-by-cycle simulation does not account for these do-nothing
cycles.

Phase 6. Data write. The store and push instructions require writing data to memory. The address of
these writes is determined by the EAR.

The goal of this simplified execution is to visualize bus activity during execution. The right side of
Program 3.15 shows the assembly source code, and the left side shows the assembly listing created
by the assembler. We will begin execution at Start . After each opcode fetch, the PC is incremented
by 2 or 4 depending on whether the instruction was 2 or 4 bytes. The BL instruction will call the
subroutine by saving the return address in LR. Notice bit 0 is set; this signifies LR points to Thumb
code. When the return from subroutine instruction BX LR is executed, the least significant bit of LR is
moved to the T-bit (Thumb mode).

One of the interesting observations of this simple analysis is that the processor uses different buses to
fetch op codes than it uses to fetch data from memory and I/O. Because they are different buses, there
is the opportunity to perform these fetches in parallel. Unfortunately, sometimes parallel operation
can occur and sometimes it cannot. For this reason, it is almost impossible to predetermine the time it
will take to execute an instruction, In other words, counting bus cycles to determine how long it will
take a program to execute will only be approximate. For more information on counting bus cycles see
pages 32-39 of the technical reference manual CortexM4_TRM_r0p1.pdf

0x000001BA 4906 LDR r1,
[pc,#24]
0x000001BC 6808 LDR r0,
[r1,#0x00]
0x000001BE F1000019 ADD
r0,r0,#0x19
0x000001C2 6008 STR r0,
[r1,#0x00]
0x000001C4 4770 BX lr
0x000001C6 4903 LDR r1,
[pc,#12]
0x000001C8 F04F0000 MOV
r0,#0x00
0x000001CC 6008 STR r0,
[r1,#0x00]
0x000001CE F7FFFFF4 BL.W
0x000001BA

 AREA DATA, ALIGN=2
Num SPACE 4
 AREA
CODE,READONLY,ALIGN=2
 THUMB
 EXPORT Start
Change LDR R1,=Num ; 5)
 LDR R0,[R1] ; 6)
 ADD R0,R0,#25 ; 7)
 STR R0,[R1] ; 8)
 BX LR ; 9)
Start LDR R1,=Num ; 1)
 MOV R0,#0 ; 2)
 STR R0,[R1] ; 3)
loop BL Change ; 4)
 B loop ; 10)

0x000001D2 E7FC B
0x000001CE
0x000001D4 20000000
Program 3.15. Assembly version of Program 3.9. The 1-2-...-10 show the
execution sequence.

R/W Address Data Operations Instruction
Read 0x000001C6 0x4903 1) PC=0x000001C8 LDR R1,=Num
Read 0x000001D4 0x20000000 R1=0x20000000
Read 0x000001C8 0xF04F0000 2) PC=0x000001CC,R0=0 MOV R0,#0
Read 0x000001CC 0x6008 3) PC=0x000001CE STR R0,[R1]
Write 0x20000000 0x00000000 Num=0
Read 0x000001CE 0xF7FFFFF4 4) LR=0x000001D3,PC=0x000001BA BL Change
Read 0x000001BA 0x4906 5) PC=0x000001BC LDR R1,=Num
Read 0x000001D4 0x20000000 R1=0x20000000
Read 0x000001BC 0x6808 6) PC=0x000001BE LDR R0,[R1]
Read 0x20000000 0x00000000 R0=0
Read 0x000001BE 0xF1000019 7) PC=0x000001C2,R0=25 ADD R0,R0,#25
Read 0x000001C2 0x6008 8) PC=0x000001C4 STR R0,[R1]
Write 0x20000000 0x00000019 Num=25
Read 0x000001C4 0x4770 9) LR=0x000001D2 BX LR
Read 0x000001D2 0xE7FC 10) PC=0x000001CE B Loop

3.5. CISC versus RISC
There are two classifications of processors: complex instruction set computer (CISC) and reduced
instruction set computer (RISC). Table 3.9 lists general observations when deciding whether to call a
computer CISC or RISC. In reality, there are a wide range of architectures and these architectures
exist in the spectrum ranging from completely CISC to completely RISC. Examples of CISC include
Intel x86 and Freescale 9S12. Examples of RISC include LC3, MIPS, AVR (Atmel) , PowerPC
(IBM), SPARC (Sun), MSP430 (TI), and ARM. The ARM company name originally began as Acorn
RISC Machine, changed to A RISC Machine, and now the ARM company name is not an acronym at
all, it just is ARM.

CISC RISC
Many instructions Few instructions
Instructions have varying lengths Instructions have fixed lengths
Instructions execute in varying times Instructions execute in 1 or 2 bus cycles
Many instructions can access memory Few instructions (e.g., load and store)

can access memory
In one instruction, the processor can
both read and write memory

No one instruction can both read and
write memory in the same instruction

Fewer and more specialized registers.
E.g., some registers contain data, others
contain addresses

Many identical general purpose
registers

Many different types of addressing
modes

Limited number of addressing modes.
E.g., Thumb has register, immediate, and
indexed.

Table 3.9. General characteristics of CISC and RISC architectures.

In a CISC computer, the complexity is embedded in the processor. In a RISC computer, the complexity
exists in the assembly code generated by the programmer or the compiler. RISC computers can be
designed for low power because of the simplicity of the architecture (e.g., MSP430). Which
architecture is best is beyond the scope of this book, but it is important to recognize the terminology.
It is very difficult to compare the execution speed of two computers, especially between a CISC and a
RISC. One way to compare is to run a benchmark program on both, and measure the time it takes to
execute.

Time to execute benchmark = Instructions/program * Average cycles/instruction *
Seconds/cycle

For example, the 80 MHz ARM Cortex M has one bus cycle every 12.5 ns. On average it may require
1.5 cycles per instruction. If the benchmark program executes 10,000,000 assembly instructions, then
the time to execute the benchmark will be 0.1875 seconds.

3.6. Details Not Covered in this Book
A first time reader can skip this section. Actually, there are two stack pointers: the main stack pointer
(MSP) and the process stack pointer (PSP). Only one stack pointer is active at a time. In a high-
reliability operating system, we could activate the PSP for user software and the MSP for operating
system software. This way the user program could crash without disturbing the operating system.
Because of the simple and dedicated nature of the embedded systems developed in this book, we will
exclusively use the main stack pointer.

The ARM ® Cortex™-M processor has two privilege levels called privileged and unprivileged. Bit
0 of the CONTROL register is the thread mode privilege level (TPL). If TPL is 1 the processor
level is privileged. If the bit is 0, then processor level is unprivileged. Running at the unprivileged
level prevents access to various features, including the system timer and the interrupt controller. Bit 1
of the CONTROL register is the active stack pointer selection (ASPSEL). If ASPSEL is 1, the
processor uses the PSP for its stack pointer. If ASPSEL is 0, the MSP is used. When designing a high-
reliability operating system, we will run the user code at an unprivileged level using the PSP and the
OS code at the privileged level using the MSP.

In this book we will not consider the Q bit, which isthe sticky saturation flag and is set by
the SSAT and USAT instructions. The ICI/IT bits are used by interrupts and by the IF-THEN
instructions.

The ARM ® Cortex™-M processor uses bit-banding to allow read/write access to individual bits in
RAM and some bits in the I/O space. For more information on bit-banding, refer to Chapter 2 of
Volume 2. We will see an alternative way to access GPIO pins on the Texas Instruments
microcontrollers in the next chapter called bit-specific addressing.

If-then-else control structures are commonly found in computer software. If the BHI in Program
3.10or the BGE in Program 3.11 were to branch, the instruction pipeline would have to be flushed
and refilled. In order to optimize execution speed for short if-then and if-then-else control structures,
the ARM ® Cortex™-M processor employs conditional execution. There can be between one and
four conditionally executed instructions following an IT instruction. The syntax is

IT{x{y{z}}} cond

where x y and z specify the existence of the optional second, third, or fourth conditional instruction
respectively. For example IT has one conditional instruction, ITT has two conditional instructions,
ITTT has three conditional instructions, and ITTTT has four conditional instructions. We can
specify x y and z as T for execute if true or E for else. The cond field choices are listed in Table
3.2. The conditional suffixes for the instructionsmust match the conditional field of the IT instruction.
In particular, the conditional for the true instructions exactly match the conditional for the IT
instruction. Furthermore, the else instructions must have the logical complement conditional. If the
condition is true, the instruction is executed. If the condition is false, the instruction is fetched but not
executed. For example, Program 3.10could have been written as follows. The two T’s in ITT means
there are two true instructions.

Change LDR R1,=Num ; R1 = &Num (R1 points to Num)
 LDR R0,[R1] ; R0 = Num
 CMP R0,#25600
 ITT LO
 ADDLO R0,R0,#1 ; if(R0<25600) R0 = Num+1
 STRLO R0,[R1] ; if(R0<25600) Num = Num+1
 BX LR ; return
Program 3.11could have been written as follows. The one T and one E in ITE means there is one
true and one else instruction.

Change LDR R1,=Num ; R1 = &Num (R1 points to Num)
 LDR R0,[R1] ; R0 = Num
 CMP R0,#100
 ITE LT
 ADDLT R0,R0,#1 ; if(R0< 100) R0 = Num+1
 MOVGE R0,#-100 ; if(R0>=100) R0 = -100
 STR R0,[R1] ; update Num
 BX LR ; return
The following assembly converts one hex digit (0–15) in register R0 to ASCII in register R1. The one
T and one E in ITE means there is one true and one else instruction.

 CMP R0,#9 ; Convert R0 (0 to 15) into ASCII
 ITE GT ; Next 2 are conditional
 ADDGT R1,R0,#55 ; Convert 0xA -> 'A'
 ADDLE R1,R0,#48 ; Convert 0x0 -> '0'

By themselves, the conditional branch instructions do not require a preceding IT instruction.
However, a conditional branch can be used as the last instruction of an IT block. There are a lot of
restrictions on IT. For more details, refer to the programming reference manual.

3.7. Exercises
3.1 What is special about Register 13? Register 14? Register 15?

3.2 In 20 words or less describe the differences between von Neumann and Harvard architectures.

3.3 What happens when you load a value into Register 15 with bit 0 set?

3.4 How much RAM and ROM are in TM4C123? What are the specific address ranges of these
memory components?

3.5 How much RAM and ROM are in TM4C1294? What are the specific address ranges of these
memory components?

3.6 What are the bits in the Program Status Register (PSR) of Cortex™-M processor?

3.7 What does the effective address register contain?

3.8 What is the purpose of the following registers PSR SP PC IR EAR?

3.9 What happens if you execute these four assembly instructions?
PUSH {R1}
PUSH {R2}
POP {R1}
POP {R2}

3.10 Write assembly code that pushes registers R1 R3 and R5 onto the stack.

3.11 How do you initialize the stack?

3.12 How do you specify where to begin execution after a reset?

3.13 What does word-aligned mean?

3.14 When does the LR have to be pushed on the stack?

3.15 What is the difference between big and little endian?

3.16 What are the differences between the following three instructions?
LDR R0,[R1] LDRH R0,[R1] LDRB R0,[R1]

3.17 What are the differences between the following pairs of instructions?

LDRH R0,[R1] and LDRSH R0,[R1]
LDR R0,[R1] and STR R0,[R1]

3.18 What are the addressing modes used in each of the following instructions?
LDR R0,[R1]
PUSH {R0}
MOV R0,#1

BL Function
LDR R0,=1234567

3.19 Explain how does the return from subroutine work in these two functions?
Function PUSH {R4,LR}
 ;stuff
 POP {R4,PC}

Function2
 ;stuff
 BX LR

3.20Does the associative principle hold for signed integer multiply and divide? Assume Out1 Out2
A B C are all the same precision (e.g., 32 bits). In particular do these two C calculations always
achieve identical outputs? If not, give an example.
Out1 = (A*B)/C; Out2 = A*(B/C);

3.21Does the associative principle hold for signed integer addition and subtraction? Assume Out3
Out4 A B C are all the same precision (e.g., 32 bits). In particular do these two C calculations
always achieve identical outputs? If not, give an example.
Out3 = (A+B)-C; Out4 = A+(B-C);

3.22 Consider the addition of two signed 32-bit numbers. If a positive number is added to a negative
number, under what conditions will a signed overflow occur?

3.23 Consider the subtraction of two signed 32-bit numbers. If a positive number is subtracted from
another positive number, under what conditions will a signed overflow occur?

3.24 Let A and B be two 8-bit inputs to an 8-bit binary adder. Fill in the table showing R=A+B and
the four PSR bits after each addition. The first row illustrates the process.

A B R NZVC
10 100 110 0000
0x40 0xA2
0xC3 0x6F
100 -100
110 146
50 0101

3.25 Let A and B be two 8-bit inputs to an 8-bit binary subtractor. Fill in the table showing R=A-B
and the four PSR bits after each subtraction. The first row illustrates the process. Calculate the carry
bit in a similar way as the Cortex M does.

A B R NZVC
100 10 90 0001
0x51 0x93
0xDF 0x9F
-70 -70

 97 0101

3.26 Let A be an 8-bit input. Fill in the table showing the promotion to 16-bit unsigned and 16-bit
signed. Give all answers in 16-bit hexadecimal. The first row illustrates the process.

A Unsigned
16-bit

Signed 16-
bit

0x80 0x0080 0xFF80
0x51
0xED
0x00
0xBF

3.27 Assume the PC is 0x00000134. The variable M is located in RAM at address 0x2000.0000. The
first three lines of Program 3.12 are
Start LDR R2,=M ; R4 = &M
 MOV R0,#1 ; Initial seed
 STR R0,[R2] ; M=1
When assembled and linked it creates this object code
0x00000134 4A07 LDR r2,[pc,#28] ; @0x00000154
0x00000136 F04F0001 MOV r0,#0x01
0x0000013A 6010 STR r0,[r2,#0x00]
with this code at the end
0x00000154 0000
0x00000156 2000
Show the simplified bus cycles occurring when the three instructions are executed. Specify which
registers get modified during each cycle, and the corresponding new values. Just show the three
instructions.

3.28 Assume the PC is 0x0000013C and the SP is 0x20000408. The fourth line of Program 3.12 is a
function call
loop BL Random
 B loop
Random LDR R2,=M ; R2 = &M
When assembled and linked it creates this object code
0x0000013C F000F801 BL.W 0x00000142
0x00000140 E7FC B 0x0000013C
0x00000142 4A04 LDR r2,[pc,#16] ; @0x00000154
Show the simplified bus cycles occurring when the BL instruction is executed. Specify which
registers get modified during each cycle, and the corresponding new values. Just show the one
instruction.

4. Introduction to Input/Output
Chapter 4 objectives are to:
• Describe the parallel ports on the LM3S/TM4C family
• Present the SysTick timer
• Describe the system clocks
• Write software to input from switches and output to LEDs
• Present some practical tips for debugging

Our first input/output interfaces will use the parallel ports or GPIO, allowing us to exchange digital
information with the external world. Specifically, we will learn how to connect switches and LEDs to
the microcontroller. The second technique we will learn is to control time. We can select the
execution speed of the microcontroller using the phase-lock-loop, and we can perform time delays
using the SysTick timer.

Even though we will design systems based specifically on the LM3S/TM4C family, these solutions
can, with little effort, be implemented on other versions of the Cortex™-M family. We present
examples with binary inputs and binary outputs. The liquid crystal display is a low-cost, low-power,
and simple interface used in many embedded applications.

From the very beginning of a project, we must consider how the system will be tested. In this chapter
we present some debugging techniques that will be very useful for verifying proper operation of our
system. Effective debugging tools are designed into the system becoming part of the system, rather
than attached onto the system after it is built.

4.1. Texas Instruments Microcontroller I/O
pins
Table 3.1 listed the memory configuration for some of the LM3S/TM4C microcontrollers. In this
section, we present the I/O pin configurations for the LM3S1968, TM4C123 and TM4C1294
microcontrollers. The regular function of a pin is to perform parallel I/O, described later in Section
4.4. Most pins, however, have one or more alternative functions. For example, port pins PA1 and PA0
can be either regular parallel port pins or an asynchronous serial port called universal asynchronous
receiver/transmitter (UART). The ability to manage time, as an input measurement and an output
parameter, has made a significant impact on the market share growth of microcontrollers. Joint Test
Action Group (JTAG), standardized as the IEEE 1149.1, is a standard test access port used to
program and debug the microcontroller board. Each microcontroller uses Port C pins 3,2,1,0 for the
JTAG interface.

Common Error: Even though it is possible to use the four JTAG pins as general I/O, debugging most
microcontroller boards will be more stable if these four pins are left dedicated to the JTAG debugger.

I/O pins on Cortex-M microcontrollers have a wide range of alternative functions:

• UART Universal asynchronous receiver/transmitter
• SSI Synchronous serial interface
• I2C Inter-integrated circuit
• Timer Periodic interrupts, input capture, and output
compare
• PWM Pulse width modulation
• ADC Analog to digital converter, measure analog
signals
• Analog Comparator Compare two analog signals
• QEI Quadrature encoder interface
• USB Universal serial bus
• Ethernet High-speed network
• CAN Controller area network

The UART can be used for serial communication between computers. It is asynchronous and allows
for simultaneous communication in both directions. The SSI is alternately called serial peripheral
interface (SPI). It is used to interface medium-speed I/O devices. In this book, we will use it to
interface a graphics display. In Volume 2 we use SSI to interface a digital to analog converter (DAC).
In Volume 3 we use it with a secure digital card (SDC). I2C is a simple I/O bus that we will use to
interface low speed peripheral devices. Input capture and output compare will be used to create
periodic interrupts and measure period, pulse width, phase, and frequency. PWM outputs will be
used to apply variable power to motor interfaces. In a typical motor controller, input capture
measures rotational speed, and PWM controls power. A PWM output can also be used to create a
DAC. The ADC will be used to measure the amplitude of analog signals and will be important in data
acquisition systems. The analog comparator takes two analog inputs and produces a digital output
depending on which analog input is greater. The QEI can be used to interface a brushless DC motor.
USB is a high-speed serial communication channel. The Ethernet port can be used to bridge the
microcontroller to the Internet or a local area network. The CAN creates a high-speed communication
channel between microcontrollers and is commonly found in automotive and other distributed control
applications. The advanced topics of USB Ethernet and CAN are covered in Volume 3.

Observation: The expression mixed-signal refers to a system with both analog and digital
components. Notice how many I/O ports perform this analog↔digital bridge: ADC, DAC, analog
comparator, PWM, QEI, input capture, and output compare.

4.1.1. Texas Instruments LM3S1968 I/O pins
Figure 4.1 draws the I/O port structure for the LM3S1968 microcontroller. Most pins have two
names: the port pin (PA0) and the alternate function name (U0Rx). However, pins PF5, PF7, PG3,
PG5, and PH2 have no alternate function. Because the I/O ports are connected to the system bus
interface, the microcontroller can perform I/O bus cycles simultaneous with instruction fetches from
flash ROM. The LM3S1968 has 3 UART ports, 2 SSI ports, 2 I2C ports, a 10-bit ADC, 6 PWM
outputs, 4 timer input capture/output compare pins, 2 quadrature encoder interfaces, and three analog
comparators. The ADC can sample up to 1 million times per second. There are 52 digital I/O lines
and 8 ADC inputs. Table 4.1 lists the regular and alternate names of the port pins.

Regular Alternate Pin Name Alternate Function
PA0 – PA1 U0RX, U0TX Universal Asynchronous

Receiver/Transmit, UART0
PA2 – PA5 S0CLK, S0FS,

S0RX, S0TX
Synchronous Serial Interface, SSI0

PA6 – PA7 SCL1, SDA1 Inter-Integrated Circuit, I2C1
PB0 CCP0 Timer 0A Capture/Compare
PB1 CCP2 Timer 1A Capture/Compare
PB2 – PB3 SCL0, SDA0 Inter-Integrated Circuit, I2C0
PB4, PB6,
PF4

C0-, C0+, C0o Analog Comparator 0

PB5, PC5 C1-, C1+ Analog Comparator 1
PB7, PC0 –
PC3

TRST, TCLK, TMS,
TDI, TDO

JTAG Debugger

PC4, PF0,
PD0

PHA0, PHB0, IDX0 Quadrature Encoder Interface,
QEI0

PC6, PC7 C2+, C2- Analog Comparator 2
PD2 – PD3 U1RX, U1TX Universal Asynchronous

Receiver/Transmit, UART1
PE0 – PE3 S1CLK, S1FS,

S1RX, S1TX
Synchronous Serial Interface, SSI1

PF2, PF3 PWM4, PWM5 Pulse Width Modulator 2
PF6 CCP1 Timer 0B Capture/Compare
PG0 – PG1 U2RX, U2TX Universal Asynchronous

Receiver/Transmit, UART2
PG2, PD1 PWM0, PWM1 Pulse Width Modulator 0
PG4 CCP3 Timer 1B Capture/Compare
PG6, PG7,
PF1

PHA1, PHB1, IDX1 Quadrature Encoder Interface,
QEI1

PH0, PH1 PWM2, PWM3 Pulse Width Modulator 1
PH3 Fault Hold all PWM outputs in safe state
Table 4.1. LM3S1968 I/O pins that have alternate functions.

Figure 4.2 shows a Texas Instruments evaluation kit for the LM3S1968. There are five switches and
one LED on the board, see Figure 4.3. The part numbers for these kits are EKK-LM3S1968, EKI-
LM3S1968, EKC-LM3S1968, EKT-LM3S1968, and EKS-LM3S1968. The different versions specify
which compiler is included on the CD in the kit.

Observation:To use the switches on the LM3S1968 board you need to activate the internal pull-up
resistors for the port, set bits 3 – 7 in GPIO_PORTG_PUR_R.

Figure 4.1. I/O port pins for the LM3S1968 microcontroller.

Observation: The switches on the LM3S1968 board are negative logic.

There are a number of possibilities for designing prototype systems using evaluation kits. One option
is to solder individual wires to pins as needed. This approach is simple and reliable. It is appropriate
if the kit is being used for one application and the choice of pins is unlikely to change. The
disadvantage is changing pins requires unsoldering and resoldering.

A second approach is to solder a female socket onto the evaluation kit. To connect a pin to your
external circuit, you place a solid wire into the socket. This method is convenient if you plan to move
wires as the design changes. After a long period, the female socket can wear out or the ends of wires
may break off inside the socket. Changing the socket is very difficult.

A third approach is illustrated in Figure 4.2. The breadboard interface was built using Samtec TSW-
133-09-L-S-RE and TSW-133-08-L-S-RA connectors. Right-angle male-male headers are soldered
to the board in such a way that the male pins can be inserted into a standard solderless breadboard.
This approach is convenient if you are prototyping on a solderless breadboard. This configuration is
extremely robust and can withstand multiple insertions and extractions. Push straight down to insert
the board into the breadboard. To remove the board, use two small screwdrivers and wedge between
the board and the breadboard on each side a little at a time. To assemble this interface, it may be
helpful to separately insert each unsoldered header into the breadboard to hold it in place while it is
being soldered. If the spacing between the headers and the development board is not correct, then it

will not fit into the breadboard. Notice how the development board fits into the slit in the middle of
the breadboard. See details at
http://users.ece.utexas.edu/~valvano/EE345L/Labs/Fall2011/LM3S1968soldering.pdf

Figure 4.2. Evaluation kit for the LM3S1968 microcontroller.

Figure 4.3. Switch and LED interfaces on the LM3S1968 evaluation board.

A fourth approach is to solder male headers onto the evaluation kit. To connect a pin to your external
circuit, you use female to male single-wire jumper cables. This method is also convenient if you plan
to move wires as the design changes. After a long period, the female end of the cable will wear out
and need to be replaced. One option for building this female to male jumper cable is to crimp a 24-
gauge solid wire into a Molex 16-02-0103 female socket.

Table 4.2 lists the physical devices attached to pins on the kit. These connections can be broken by
removing a jumper on the board. By removing the jumper the pin is available for your circuits. You
must enable internal pull-ups to use the switches on the board.

Pin Function To Isolate,
Remove...

PG3 SW3 Up Momentary Negative
Logic Push Button

JP1

PG2/PWM0 User LED JP2
PH3/Fault OLED Display Power Enable JP3
PA0/U0RX Virtual COM Port Receive JP4
PA3/S0FS OLED Display Chip Select JP5

PG6/PHA1 SW6 Right Momentary
Negative Logic Push Button

JP6

PG7/PHB1 Select Momentary Negative
Logic Push Button

JP7

PG5 SW5 Left Momentary Negative
Logic Push Button

JP8

PG4 SW4 Down Momentary
Negative Logic Push Button

JP9

PA5/S0TX OLED Display Data In JP10
PA2/S0CLK OLED Display Clock JP11
PH2 OLED Display Data/Control

Select
JP12

PA1/U0TX Virtual COM Port Transmit JP13
PH0/PWM2 Sound + JP14
PH1/PWM3 Sound - JP15
PC0/TCK/SWCLK JTAG Debugger Clock Do Not Use
PC1/TMS/SWDIO JTAG Debugger Mode Select Do Not Use
PC2/TDI JTAG Debugger Data In Do Not Use
PC3/TDO/SWO JTAG Debugger Data Out Do Not Use
PB7/TRST JTAG Debugger Test Reset Do Not Use

Table 4.2. Port pins connected to physical devices on the LM3S1968 evaluation kit.

4.1.2. Texas Instruments TM4C123 LaunchPad I/O pins
Figure 4.4 draws the I/O port structure for the LM4F120H5QR and TM4C123GH6PM. These
microcontrollers are used on the EK-LM4F120XL and EK-TM4C123GXL LaunchPads. Pins on the
LM3S family have two possibilities: digital I/O or an alternative function. However, pins on the
TM4C family can be assigned to as many as eight different I/O functions. Pins can be configured for
digital I/O, analog input, timer I/O, or serial I/O. For example PA0 can be digital I/O, serial input, or
CAN. There are two buses used for I/O. The digital I/O ports are connected to both the advanced
peripheral bus (like the LM3S family) and the advanced high-performance bus (runs faster). Because
of the multiple buses, the microcontroller can perform I/O bus cycles simultaneous with instruction
fetches from flash ROM. The LM4F120H5QR has eight UART ports, four SSI ports, four I2C ports,
two 12-bit ADCs, twelve timers, a CAN port, and a USB interface. The TM4C123GH6PM adds up
to 16 PWM outputs. There are 43 I/O lines. There are twelve ADC inputs; each ADC can convert up
to 1 million samples per second. Table 4.3 lists the regular and alternate names of the port pins.

Figure 4.4. I/O port pins for the LM4F120H5QR / TM4C123GH6PM
microcontrollers.

Each pin has one configuration bit in the AMSEL register. We set this bit to connect the port pin to the
ADC or analog comparator. For digital functions, each pin also has four bits in the PCTL register,
which we set to specify the alternative function for that pin (0 means regular I/O port). Table 4.3
shows the 4-bit PCTL configuration used to connect each pin to its alternate function. For example,
column “5” means set 4-bit field in PCTL to 0101.

Pins PC3 – PC0 were left off Table 4.3 because these four pins are reserved for the JTAG debugger
and should not be used for regular I/O. Notice, some alternate function modules (e.g., U0Rx) only
exist on one pin (PA0). While other functions could be mapped to two or three pins (e.g., CAN0Rx
could be mapped to one of the following: PB4, PE4, or PF0.)

For example, if we wished to use UART7 on pins PE0 and PE1, we would set bits 1,0 in the DEN
register (enable digital), clear bits 1,0 in the AMSEL register (disable analog), write a 0001,0001 to
bits 7–0 in the PCTL register (enable UART7 functionality), and set bits 1,0 in the AFSEL register
(enable alternate function). If we wished to sample an analog signal on PD0, we would set bit 0 in the
alternate function select register AFSEL, clear bit 0 in the digital enable register DEN (disable
digital), set bit 0 in the analog mode select register AMSEL (enable analog), and activate one of the
ADCs to sample channel 7. Additional examples will be presented throughout the book.

Pin Ain 0 1 2 3 4 5 6 7 8 9 14
PA0 Port U0Rx CAN1Rx
PA1 Port U0Tx CAN1Tx
PA2 Port SSI0Clk
PA3 Port SSI0Fss
PA4 Port SSI0Rx
PA5 Port SSI0Tx

PA6 Port I2C1SCL M1PWM2
PA7 Port I2C1SDA M1PWM3
PB0 Port U1Rx T2CCP0
PB1 Port U1Tx T2CCP1
PB2 Port I2C0SCL T3CCP0
PB3 Port I2C0SDA T3CCP1
PB4 Ain10 Port SSI2Clk M0PWM2 T1CCP0 CAN0Rx
PB5 Ain11 Port SSI2Fss M0PWM3 T1CCP1 CAN0Tx
PB6 Port SSI2Rx M0PWM0 T0CCP0
PB7 Port SSI2Tx M0PWM1 T0CCP1
PC4 C1- Port U4Rx U1Rx M0PWM6 IDX1 WT0CCP0 U1RTS
PC5 C1+ Port U4Tx U1Tx M0PWM7 PhA1 WT0CCP1 U1CTS
PC6 C0+ Port U3Rx PhB1 WT1CCP0 USB0epen
PC7 C0- Port U3Tx WT1CCP1 USB0pflt
PD0 Ain7 Port SSI3Clk SSI1Clk I2C3SCL M0PWM6 M1PWM0 WT2CCP0
PD1 Ain6 Port SSI3Fss SSI1Fss I2C3SDA M0PWM7 M1PWM1 WT2CCP1
PD2 Ain5 Port SSI3Rx SSI1Rx M0Fault0 WT3CCP0 USB0epen
PD3 Ain4 Port SSI3Tx SSI1Tx IDX0 WT3CCP1 USB0pflt
PD4 USB0DM Port U6Rx WT4CCP0
PD5 USB0DP Port U6Tx WT4CCP1
PD6 Port U2Rx M0Fault0 PhA0 WT5CCP0
PD7 Port U2Tx PhB0 WT5CCP1 NMI
PE0 Ain3 Port U7Rx
PE1 Ain2 Port U7Tx
PE2 Ain1 Port
PE3 Ain0 Port
PE4 Ain9 Port U5Rx I2C2SCL M0PWM4 M1PWM2 CAN0Rx
PE5 Ain8 Port U5Tx I2C2SDA M0PWM5 M1PWM3 CAN0Tx
PF0 Port U1RTS SSI1Rx CAN0Rx M1PWM4 PhA0 T0CCP0 NMI C0o
PF1 Port U1CTS SSI1Tx M1PWM5 PhB0 T0CCP1 C1o TRD1
PF2 Port SSI1Clk M0Fault0 M1PWM6 T1CCP0 TRD0
PF3 Port SSI1Fss CAN0Tx M1PWM7 T1CCP1 TRCLK
PF4 Port M1Fault0 IDX0 T2CCP0 USB0epen

Table 4.3. PMCx bits in the GPIOPCTL register on the LM4F/TM4C specify alternate
functions. PD4 and PD5 are hardwired to the USB device. PA0 and PA1 are hardwired to the
serial port. PWM not on LM4F120.

The Tiva ® LaunchPad evaluation board (Figure 4.5) is a low-cost development board available as
part number EK-LM4F120XL and EK-TM4C123GXL from www.ti.com and from regular electronic
distributors like Digikey, Mouser, Newark, and Avnet. The kit provides an integrated In-Circuit
Debug Interface (ICDI), which allows programming and debugging of the onboard LM4F
microcontroller. One USB cable is used by the debugger (ICDI), and the other USB allows the user to
develop USB applications (device or host). The user can select board power to come from either the
debugger (ICDI) or the USB device (device) by setting the Power selection switch.

Figure 4.5. Tiva® LaunchPad based on the LM4F120H5QR or TM4C123GH6PM.

Pins PA1 – PA0 create a serial port, which is linked through the debugger cable to the PC. The serial
link is a physical UART as seen by the LM4F/TM4C and mapped to a virtual COM port on the PC.
The USB device interface uses PD4 and PD5. The JTAG debugger requires pins PC3 – PC0. The
LaunchPad connects PB6 to PD0, and PB7 to PD1. If you wish to use both PB6 and PD0 you will
need to remove the R9 resistor. Similarly, to use both PB7 and PD1 remove the R10 resistor.

The Tiva® LaunchPad evaluation board has two switches and one 3-color LED. See Figure 4.6. The
switches are negative logic and will require activation of the internal pull-up resistors. In particular,
you will set bits 0 and 4in GPIO_PORTF_PUR_R register. The LED interfaces on PF3 – PF1 are
positive logic. To use the LED, make the PF3 – PF1 pins an output. To activate the red color, output a
one to PF1. The blue color is on PF2, and the green color is controlled by PF3. The 0-Ω resistors
(R1, R2, R11, R12, R13, R25, and R29) can be removed to disconnect the corresponding pin from the
external hardware.

The LaunchPad has four 10-pin connectors, labeled as J1 J2 J3 J4 in Figures 4.5 and 4.7, to which
you can attach your external signals. The top side of these connectors has male pins, and the bottom
side has female sockets. The intent is to stack boards together to make a layered system, see Figure
4.7. Texas Instruments also supplies Booster Packs, which are pre-made external devices that will
plug into this 40-pin connector. The Booster Packs for the MSP430 LaunchPad are compatible (one
simply plugs these 20-pin connectors into the outer two rows) with this board. The inner 10-pin
headers (connectors J3 and J4) are not intended to be compatible with other TI LaunchPads. J3 and J4
apply only to Stellaris/Tiva Booster Packs.

There are two methods to connect external circuits to the LaunchPad. One method uses male to female
jumper cable (e.g., item number 826 at www.adafruit.com) or solder a solid wire into a female
socket (e.g., Hirose DF11-2428SCA) creating a male to female jumper wire. The second method uses
male-male wires and connect to the bottom of the LaunchPad.

Figure 4.6. Switch and LED interfaces on the LaunchPad Evaluation Board. The
zero ohm resistors can be removed so the corresponding pin can be used for its
regular purpose.

Figure 4.7. Interface connectors on the Tiva® LM4F120/TM4C123 LaunchPad
Evaluation Board.

4.1.3. Texas Instruments TM4C1294 Connected
LaunchPad I/O pins
Figure 4.8 shows the 90 I/O pins available on the TM4C1294NCPDT, which is the microcontroller
used on the Connected LaunchPad. Pins on the TM4C family can be assigned to as many as seven
different I/O functions, see Table 4.4. Pins can be configured for digital I/O, analog input, timer I/O,
or serial I/O. For example PA0 can be digital I/O, serial input, I2C clock, Timer I/O, or CAN
receiver. There are two buses used for I/O. Unlike the TM4C123, the digital I/O ports are only
connected to the advanced high-performance bus. The microcontroller can perform I/O bus cycles
simultaneous with instruction fetches from flash ROM. The TM4C1294NCPDT has eight UART
ports, four SSI ports, ten I2C ports, two 12-bit ADCs, eight timers, two CAN ports, a USB interface,
8 PWM outputs, and an Ethernet port. Of the 90 I/O lines, twenty pins can be used for analog inputs to
the ADC. The ADC can convert up to 1M samples per second. Table 4.4 lists the regular and
alternate functions of the port pins.

Figure 4.8. I/O port pins for the TM4C1294NCPDT microcontroller.

Figure 4.9 shows the pin locations of the two Booster Pack connectors. There are three methods to
connect external circuits to the Connected LaunchPad. One method uses male to female jumper cable
(e.g., item number 826 at www.adafruit.com) or solder a solid wire into a female socket (e.g., Hirose
DF11-2428SCA) creating a male-to-female jumper wire. In this method, you connect the female
socket to the top of the LaunchPad and the male pin into a solderless breadboard. The second method
uses male-to-male wires interfacing to the bottom of the LaunchPad. The third method uses two 49-
pin right-angle headers so the entire LaunchPad can be plugged into a breadboard. You will need one
each of Samtec parts TSW-149-09-L-S-RE and TSW-149-08-L-S-RA. This configuration is shown in
Figure 4.9, and directions can be found at
http://users.ece.utexas.edu/~valvano/arm/TM4C1294soldering.pdf
The Connected LaunchPad has two switches and four LEDs. Switch SW1 is connected to pin PJ0, and
SW2 is connected to PJ1. These two switches are negative logic and require enabling the internal
pull up (PUR). A reset switch will reset the microcontroller and your software will start when you
release the switch. Positive logic LEDs D1, D2, D3, and D4 are connected to PN1, PN0, PF4, and
PF0 respectively. A power LED indicates that 3.3 volt power is present on the board. R19 is a 0 Ω
resistor connecting PA3 and PQ2. Similarly, R20 is a 0 Ω resistor connecting PA2 and PQ3. You need
to remove R19 if you plan to use both PA3 and PQ2. You need to remove R20 if you plan to use both
PA2 and PQ3. See Figure 4.10.

Figure 4.8. Interface connectors on the EK-TM4C1294-XL LaunchPad Evaluation
Board.

Jumper JP1 has six pins creating three rows of two. Exactly one jumper should be connected in the
JP1 block, which selects the power source. The top position is for BoosterPack power. The middle
position draws power from the USB connector, labeled OTG, on the left side of the board near the
Ethernet jack. We recommend placing the JP1 jump in the bottom position so power is drawn from the
ICDI (Debug) USB connection. Under normal conditions, you should place jumpers in both J2 and J3.
Jumpers J2 and J3 facilitate measuring current to the microcontroller. We recommend you place JP4
and JP5 in the “UART” position so PA1 and PA0 are connected to the PC as a virtual COM port. Your
code runs on the 128-pin TM4C1294 microcontroller. There is a second TM4C microcontroller on
the board, which acts as the JTAG debugger for your TM4C1294. You connect the Debug USB to a
PC in order to download and debug software on the board. The other USB is for user applications.

Figure 4.9. EK-TM4C1294-XL Connected LaunchPad.

Pin Analog 1 2 3 5 6 7 11 13 14 15
PA0 - U0Rx I2C9SCL T0CCP0 - - CAN0Rx - - - -
PA1 - U0Tx I2C9SDA T0CCP1 - - CAN0Tx - - - -
PA2 - U4Rx I2C8SCL T1CCP0 - - - - - - SSI0Clk
PA3 - U4Tx I2C8SDA T1CCP1 - - - - - - SSI0Fss
PA4 - U3Rx I2C7SCL T2CCP0 - - - - - - SSI0XDAT0
PA5 - U3Tx I2C7SDA T2CCP1 - - - - - - SSI0XDAT1
PA6 - U2Rx I2C6SCL T3CCP0 USB0EPEN - - - SSI0XDAT2 - EPI0S8
PA7 - U2Tx I2C6SDA T3CCP1 USB0PFLT - - USB0EPEN SSI0XDAT3 - EPI0S9

PB0 USB0ID U1Rx I2C5SCL T4CCP0 - - CAN1Rx - - - -
PB1 USB0VBUS U1Tx I2C5SDA T4CCP1 - - CAN1Tx - - - -
PB2 - - I2C0SCL T5CCP0 - - - - - USB0STP EPI0S27
PB3 - - I2C0SDA T5CCP1 - - - - - USB0CLK EPI0S28
PB4 AIN10 U0CTS I2C5SCL - - - - - - - SSI1Fss
PB5 AIN11 U0RTS I2C5SDA - - - - - - - SSI1Clk
PC4 C1- U7Rx - - - - - - - - EPI0S7
PC5 C1+ U7Tx - - - - RTCCLK - - - EPI0S6
PC6 C0+ U5Rx - - - - - - - - EPI0S5
PC7 C0- U5Tx - - - - - - - - EPI0S4
PD0 AIN15 - I2C7SCL T0CCP0 C0o - - - - - SSI2XDAT1
PD1 AIN14 - I2C7SDA T0CCP1 C1o - - - - - SSI2XDAT0
PD2 AIN13 - I2C8SCL T1CCP0 C2o - - - - - SSI2Fss
PD3 AIN12 - I2C8SDA T1CCP1 - - - - - - SSI2Clk
PD4 AIN7 U2Rx - T3CCP0 - - - - - - SSI1XDAT2
PD5 AIN6 U2Tx - T3CCP1 - - - - - - SSI1XDAT3
PD6 AIN5 U2RTS - T4CCP0 USB0EPEN - - - - - SSI2XDAT3
PD7 AIN4 U2CTS - T4CCP1 USB0PFLT - - - - - SSI2XDAT2
PE0 AIN3 U1RTS - - - - - - - - -
PE1 AIN2 U1DSR - - - - - - - - -
PE2 AIN1 U1DCD - - - - - - - - -
PE3 AIN0 U1DTR - - - - - - - - -
PE4 AIN9 U1RI - - - - - - - - SSI1XDAT0
PE5 AIN8 - - - - - - - - - SSI1XDAT1
PF0 - - - - EN0LED0 M0PWM0 - - - SSI3XDAT1 TRD2
PF1 - - - - EN0LED2 M0PWM1 - - - SSI3XDAT0 TRD1
PF2 - - - - - M0PWM2 - - - SSI3Fss TRD0
PF3 - - - - - M0PWM3 - - - SSI3Clk TRCLK
PF4 - - - - EN0LED1 M0FAULT0 - - - SSI3XDAT2 TRD3
PG0 - - I2C1SCL - EN0PPS M0PWM4 - - - - EPI0S11
PG1 - - I2C1SDA - - M0PWM5 - - - - EPI0S10
PH0 - U0RTS - - - - - - - - EPI0S0
PH1 - U0CTS - - - - - - - - EPI0S1
PH2 - U0DCD - - - - - - - - EPI0S2
PH3 - U0DSR - - - - - - - - EPI0S3
PJ0 - U3Rx - - EN0PPS - - - - - -
PJ1 - U3Tx - - - - - - - - -
PK0 AIN16 U4Rx - - - - - - - - EPI0S0
PK1 AIN17 U4Tx - - - - - - - - EPI0S1
PK2 AIN18 U4RTS - - - - - - - - EPI0S2
PK3 AIN19 U4CTS - - - - - - - - EPI0S3
PK4 - - I2C3SCL - EN0LED0 M0PWM6 - - - - EPI0S32
PK5 - - I2C3SDA - EN0LED2 M0PWM7 - - - - EPI0S31
PK6 - - I2C4SCL - EN0LED1 M0FAULT1 - - - - EPI0S25
PK7 - U0RI I2C4SDA - RTCCLK M0FAULT2 - - - - EPI0S24
PL0 - - I2C2SDA - - M0FAULT3 - - - USB0D0 EPI0S16
PL1 - - I2C2SCL - - PhA0 - - - USB0D1 EPI0S17
PL2 - - - - C0o PhB0 - - - USB0D2 EPI0S18
PL3 - - - - C1o IDX0 - - - USB0D3 EPI0S19
PL4 - - - T0CCP0 - - - - - USB0D4 EPI0S26
Pin Analog 1 2 3 5 6 7 11 13 14 15
PL5 - - - T0CCP1 - - - - - USB0D5 EPI0S33

PL6 USB0DP - - T1CCP0 - - - - - - -
PL7 USB0DM - - T1CCP1 - - - - - - -
PM0 - - - T2CCP0 - - - - - - EPI0S15
PM1 - - - T2CCP1 - - - - - - EPI0S14
PM2 - - - T3CCP0 - - - - - - EPI0S13
PM3 - - - T3CCP1 - - - - - - EPI0S12
PM4 TMPR3 U0CTS - T4CCP0 - - - - - - -
PM5 TMPR2 U0DCD - T4CCP1 - - - - - - -
PM6 TMPR1 U0DSR - T5CCP0 - - - - - - -
PM7 TMPR0 U0RI - T5CCP1 - - - - - - -
PN0 - U1RTS - - - - - - - - -
PN1 - U1CTS - - - - - - - - -
PN2 - U1DCD U2RTS - - - - - - - EPI0S29
PN3 - U1DSR U2CTS - - - - - - - EPI0S30
PN4 - U1DTR U3RTS I2C2SDA - - - - - - EPI0S34
PN5 - U1RI U3CTS I2C2SCL - - - - - - EPI0S35
PP0 C2+ U6Rx - - - - - - - - SSI3XDAT2
PP1 C2- U6Tx - - - - - - - - SSI3XDAT3
PP2 - U0DTR - - - - - - - USB0NXT EPI0S29
PP3 - U1CTS U0DCD - - - RTCCLK - - USB0DIR EPI0S30
PP4 - U3RTS U0DSR - - - - - - USB0D7 -
PP5 - U3CTS I2C2SCL - - - - - - USB0D6 -
PQ0 - - - - - - - - - SSI3Clk EPI0S20
PQ1 - - - - - - - - - SSI3Fss EPI0S21
PQ2 - - - - - - - - - SSI3XDAT0 EPI0S22
PQ3 - - - - - - - - - SSI3XDAT1 EPI0S23
PQ4 - U1Rx - - - - DIVSCLK - - - -

Table 4.4. PMCx bits in the GPIOPCTL register on the TM4C1294 specify alternate functions.
PD7 can be NMI by setting PCTL to 8. PL6 and PL7 are hardwired to the USB device.

Figure 4.10. Switch and LED interfaces on the Connected LaunchPad Evaluation
Board. The zero ohm resistors can be removed so all the pins can be used.

Each pin has one configuration bit in the AMSEL register. We set this bit to connect the port pin to the
ADC or analog comparator. For digital functions, each pin also has four bits in the PCTL register,
which we set to specify the alternative function for that pin (0 means regular I/O port). Table 4.4
shows the 4-bit PCTL configuration used to connect each pin to its alternate function. For example,
column “3” means set 4-bit field in PCTL to 0011.

Pins PC3 – PC0 were left off Table 4.4 because these four pins are reserved for the JTAG debugger
and should not be used for regular I/O. Notice, some alternate function modules (e.g., U0Rx) only
exist on one pin (PA0). While other functions could be mapped to two or three pins. For example,
T0CCP0 could be mapped to one of the following: PA0, PD0, or PL4.

The PCTL bits in Table 4.4 can be tricky to understand. For example, if we wished to use UART6 on
pins PP0 and PP1, we would set bits 1,0 in the DEN register (enable digital), clear bits 1,0 in the
AMSEL register (disable analog), write a 0001,0001 to bits 7–0 in the PCTL register (enable
UART6 functionality), and set bits 1,0 in the AFSEL register (enable alternate function). If we
wished to sample an analog signal on PD0, we would set bit 0 in the alternate function select register
AFSEL, clear bit 0 in the digital enable register DEN (disable digital), set bit 0 in the analog mode
select register AMSEL (enable analog), and activate one of the ADCs to sample channel 15.
Additional examples will be presented throughout the book.

Jumpers JP4 and JP5 select whether the serial port on UART0 (PA1 – PA0) or on UART2 (PD5 – 4)
is linked through the debugger cable to the PC. The serial link is a physical UART as seen by the
TM4C1294 and is mapped to a virtual COM port on the PC. The USB device interface uses PL6 and
PL7. The JTAG debugger requires pins PC3 – PC0.

To use the negative logic switches, make the pins digital inputs, and activate the internal pull-up
resistors. In particular, you will activate the Port J clock, clear bits 0 and
1in GPIO_PORTJ_DIR_R register, set bits 0 and 1in GPIO_PORTJ_DEN_R register, and set
bits 0 and 1in GPIO_PORTJ_PUR_R register. The LED interfaces are positive logic. To use the
LEDs, make the PN1, PN0, PF4, and PF0 pins an output. You will activate the Port N clock, set bits 0
and 1in GPIO_PORTN_DIR_R register, and set bits 0 and 1in GPIO_PORTN_DEN_R register.
You will activate the Port F clock, set bits 0 and 4in GPIO_PORTF_DIR_R register, and set bits 0
and 4in GPIO_PORTF_DEN_R register.

4.2. Basic Concepts of Input and Output Ports
The simplest I/O port on a microcontroller is the parallel port. A parallel I/O port is a simple
mechanism that allows the software to interact with external devices. It is called parallel because
multiple signals can be accessed all at once. An input port, which is read only, allows the software
to read external digital signals. That means a read cycle access from the port address returns the
values existing on the inputs at that time. In particular, the tristate driver (triangle shaped circuit in
Figure 4.11) will drive the input signals onto the data bus during a read cycle from the port address. A
write cycle access to an input port usually produces no effect. The digital values existing on the input
pins are copied into the microcontroller when the software executes a read from the port address.
There are no digital input-only ports on the TM4C family of microcontrollers. TM4C
microcontrollers have 5V-tolerant digital inputs, meaning an input voltage from 2.0 to 5.0 V will be
considered high, and a voltage from 0 to 1.3 V will be considered as low. Check to see the pins on
your microcontroller are 5-V tolerant.

Figure 4.11. A read only input port allows the software to sense external digital
signals.

Checkpoint 4.1: What happens if the software writes to an input port like Figure 4.11?

While an input device usually just involves the software reading the port, an output port can
participate in both the read and write cycles very much like a regular memory. Figure 4.12 describes
a readable output port. A write cycle to the port address will affect the values on the output pins. In
particular, the microcontroller places information on the data bus and that information is clocked into
the D flip-flops. Since it is a readable output, a read cycle access from the port address returns the
current values existing on the port pins. There are no output-only ports on the TM4C family of
microcontrollers.

Figure 4.12. A readable output port allows the software to generate external
digital signals.

Checkpoint 4.2: What happens if the software reads from an output port like Figure 4.11?

To make the microcontroller more marketable, the ports on TM4C microcontrollers can be software-
specified to be either inputs or outputs. Microcontrollers use the concept of a direction register to
determine whether a pin is an input (direction register bit is 0) or an output (direction register bit is
1), as shown in Figure 4.13. We define an initialization ritual as a program executed once during start
up that initializes hardware and software. If the ritual makes the direction bit zero, the port pin
behaves like a simple input, and if it makes the direction bit one, the port pin becomes a readable
output. Each digital port pin has its own direction bit. This means some pins on a port may be inputs
while others are outputs. The digital port pins on most microcontrollers are bidirectional, operating
similar to Figure 4.13.

Common Error: Many program errors can be traced to confusion between I/O ports and regular
memory. For example, you should not write to an input port, and sometimes we cannot read from an
output port.

Figure 4.13. A bidirectional port can be configured as a read-only input port or a
readable output port.

4.2.1. I/O Programming and the Direction Register

On most embedded microcontrollers, the I/O ports are memory mapped. This means the software can
access an input/output port simply by reading from or writing to the appropriate address. It is
important to realize that even though I/O operations “look” like reads and writes to memory
variables, the I/O ports often DO NOT act like memory. For example, some bits are read-only, some
are write-only, some can only be cleared, others can only be set, and some bits cannot be modified.
To make our software easier to understand we include symbolic definitions for the I/O ports. We set
the direction register(e.g., GPIO_PORTF_DIR_R) to specify which pins are input and which are
output. Individual port pins can be general purpose I/O (GPIO) or have an alternate function. We will
set bits in the alternate function register (e.g., GPIO_PORTF_AFSEL_R) when we wish to activate
the alternate functions listed in Tables 4.1, 4.3, and 4.4. To use a pin as a digital input or output, we
must set the corresponding bit in the digital enable register(e.g., GPIO_PORTF_DEN_R). To use a
pin as an analog input we must set the corresponding bit in theanalog mode select register
(e.g., GPIO_PORTF_AMSEL_R). Typically, we write to the direction and alternate function
registers once during the initialization phase. We use the data
register(e.g., GPIO_PORTF_DATA_R) to perform the actual input/output on the port. Table 4.5
shows some of the parallel port registers for the TM4C123. Each of the ports has a clock, which can
be separately enabled by writing to the SYSCTL_RCGCGPIO_R register.

The only differences among the TM4C family are the number of ports and available pins in each port.
For example, the TM4C1294 has fifteen digital I/O ports A (8 bits), B (6 bits), C (8 bits), D (8 bits),
E (6 bits), F (5 bits), G (2 bits), H (4 bits), J (2 bits), K (8 bits), L (8 bits), M (8 bits), N(6 bits), P (6
bits), and Q (5 bits). Furthermore, the TM4C1294 has different addresses for ports. Refer to the file
tm4c1294ncpdt.h or to the data sheet for more the specific addresses of its I/O ports.

Common Error: You will get a bus fault if you access a port without enabling its clock.
Address 7 6 5 4 3 2 1 0 Name
$400F.E608 - - GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA SYSCTL_RCGCGPIO_R
$400F.EA08 - - GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA SYSCTL_PRGPIO_R
$4000.43FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTA_DATA_R
$4000.4400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTA_DIR_R
$4000.4420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTA_AFSEL_R
$4000.4510 PUE PUE PUE PUE PUE PUE PUE PUE GPIO_PORTA_PUR_R
$4000.451C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTA_DEN_R
$4000.4524 1 1 1 1 1 1 1 1 GPIO_PORTA_CR_R
$4000.4528 0 0 0 0 0 0 0 0 GPIO_PORTA_AMSEL_R
$4000.53FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTB_DATA_R
$4000.5400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTB_DIR_R
$4000.5420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTB_AFSEL_R
$4000.5510 PUE PUE PUE PUE PUE PUE PUE PUE GPIO_PORTB_PUR_R
$4000.551C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTB_DEN_R
$4000.5524 1 1 1 1 1 1 1 1 GPIO_PORTB_CR_R
$4000.5528 0 0 AMSEL AMSEL 0 0 0 0 GPIO_PORTB_AMSEL_R
$4000.63FC DATA DATA DATA DATA JTAG JTAG JTAG JTAG GPIO_PORTC_DATA_R
$4000.6400 DIR DIR DIR DIR JTAG JTAG JTAG JTAG GPIO_PORTC_DIR_R
$4000.6420 SEL SEL SEL SEL JTAG JTAG JTAG JTAG GPIO_PORTC_AFSEL_R
$4000.6510 PUE PUE PUE PUE JTAG JTAG JTAG JTAG GPIO_PORTC_PUR_R
$4000.651C DEN DEN DEN DEN JTAG JTAG JTAG JTAG GPIO_PORTC_DEN_R
$4000.6524 1 1 1 1 JTAG JTAG JTAG JTAG GPIO_PORTC_CR_R

$4000.6528 AMSEL AMSEL AMSEL AMSEL JTAG JTAG JTAG JTAG GPIO_PORTC_AMSEL_R
$4000.73FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTD_DATA_R
$4000.7400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTD_DIR_R
$4000.7420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTD_AFSEL_R
$4000.7510 PUE PUE PUE PUE PUE PUE PUE PUE GPIO_PORTD_PUR_R
$4000.751C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTD_DEN_R
$4000.7524 CR 1 1 1 1 1 1 1 GPIO_PORTD_CR_R
$4000.7528 0 0 AMSEL AMSEL AMSEL AMSEL AMSEL AMSEL GPIO_PORTD_AMSEL_R
$4002.43FC - - DATA DATA DATA DATA DATA DATA GPIO_PORTE_DATA_R
$4002.4400 - - DIR DIR DIR DIR DIR DIR GPIO_PORTE_DIR_R
$4002.4420 - - SEL SEL SEL SEL SEL SEL GPIO_PORTE_AFSEL_R
$4002.4510 - - PUE PUE PUE PUE PUE PUE GPIO_PORTE_PUR_R
$4002.451C - - DEN DEN DEN DEN DEN DEN GPIO_PORTE_DEN_R
$4002.4524 - - 1 1 1 1 1 1 GPIO_PORTE_CR_R
$4002.4528 - - AMSEL AMSEL AMSEL AMSEL AMSEL AMSEL GPIO_PORTE_AMSEL_R
$4002.53FC - - - DATA DATA DATA DATA DATA GPIO_PORTF_DATA_R
$4002.5400 - - - DIR DIR DIR DIR DIR GPIO_PORTF_DIR_R
$4002.5420 - - - SEL SEL SEL SEL SEL GPIO_PORTF_AFSEL_R
$4002.5510 - - - PUE PUE PUE PUE PUE GPIO_PORTF_PUR_R
$4002.551C - - - DEN DEN DEN DEN DEN GPIO_PORTF_DEN_R
$4002.5524 - - - 1 1 1 1 CR GPIO_PORTF_CR_R
$4002.5528 - - - 0 0 0 0 0 GPIO_PORTF_AMSEL_R

 31-28 27-24 23-20 19-16 15-12 11-8 7-4 3-0
$4000.452C PMC7 PMC6 PMC5 PMC4 PMC3 PMC2 PMC1 PMC0 GPIO_PORTA_PCTL_R
$4000.552C PMC7 PMC6 PMC5 PMC4 PMC3 PMC2 PMC1 PMC0 GPIO_PORTB_PCTL_R
$4000.652C PMC7 PMC6 PMC5 PMC4 0x1 0x1 0x1 0x1 GPIO_PORTC_PCTL_R
$4000.752C PMC7 PMC6 PMC5 PMC4 PMC3 PMC2 PMC1 PMC0 GPIO_PORTD_PCTL_R
$4002.452C - - - - - - - - PMC5 PMC4 PMC3 PMC2 PMC1 PMC0 GPIO_PORTE_PCTL_R
$4002.552C - - - - - - - - - - - - PMC4 PMC3 PMC2 PMC1 PMC0 GPIO_PORTF_PCTL_R
$4000.6520 LOCK (write 0x4C4F434B to unlock, other locks) (reads 1 if locked, 0 if unlocked) GPIO_PORTC_LOCK_R
$4000.7520 LOCK (write 0x4C4F434B to unlock, other locks) (reads 1 if locked, 0 if unlocked) GPIO_PORTD_LOCK_R
$4002.5520 LOCK (write 0x4C4F434B to unlock, other locks) (reads 1 if locked, 0 if unlocked) GPIO_PORTF_LOCK_R

Table 4.5. Some TM4C123 parallel ports. Each register is 32 bits wide. For PMC bits, see Table
4.3, 4.4.

To initialize an I/O port for general use we perform seven steps. We will skip steps three four and six
in this chapter because the default state after a reset is to disable analog function and disable alternate
function. First, we activate the clock for the port by setting the corresponding bit in RCGCGPIO
register. Because it takes time for the clock to stabilize, we next will wait for its status bit in the
PRGPIO to be true. Second, we unlock the port; unlocking is needed only for pins PD7, and PF0 on
the TM4C123. The only pin needing unlocking on the TM4C1294 is PD7. Third, we disable the
analog function of the pin, because we will be using the pin for digital I/O. Fourth, we clear bits in
the PCTL (Tables 4.3, 4.4) to select regular digital function. Fifth, we set its direction register. The
direction register specifies bit for bit whether the corresponding pins are input or output. A bit in DIR
set to 0 means input and 1 means output. Sixth, we clear bits in the alternate function register, and
lastly, we enable the digital port. Turning on the clock must be first but the other steps can occur in
any order.

In this first example we will make PF4 and PF0 input, and we will make PF3 PF2 and PF1 output, as
shown in Programs 4.1a and 4.1b. To use Port F we first must activate its clock (bit 5)in
the SYSCTL_RCGCGPIO_R register. The second step is to unlock the port (TM4C123 only), by
writing a special value to the LOCK register, followed by setting bits in the CR register. The fifth
step is to specify whether the pin is an input or an output by clearing or setting bits in the DIR
register. The last step is to enable the corresponding I/O pins by writing ones to the DEN register. To
run this example on the LaunchPad, we also set bits in the PUR register for the two switch inputs
(Figure 4.6) to have an internal pull-up resistor.

When the software reads from location 0x400253FC, the bottom 8 bits are returned with the values
currently on Port F. The top 24 bits are returned zero. As shown in Figure 4.13, when reading an I/O
port, the input pins report the high/low state currently on the input, and the output pins show the value
last written to the port. The function PortF_Input will read from all five Port F pins, and return a
value depending on the status of the input pins at the time of the read. As shown in Figure 4.13, when
writing to an I/O port, the input pins are not affected, and the output pins are changed to the value
written to the port. That value remains until written again. The function PortF_Output will write
new values to the three output pins.The #include will define symbolic names for all the I/O ports for
that microcontroller. The header files are in the inc folder. Use the one for your microcontroller.

#include "inc/tm4c123gh6pm.h"
void PortF_Init(void){
 SYSCTL_RCGCGPIO_R |= 0x00000020; // 1) activate clock for Port F
 while((SYSCTL_PRGPIO_R&0x00000020) == 0){};// ready?
 GPIO_PORTF_LOCK_R = 0x4C4F434B; // 2) unlock GPIO Port F
 GPIO_PORTF_CR_R = 0x1F; // allow changes to PF4-0
 GPIO_PORTF_DIR_R = 0x0E; // 5) PF4,PF0 in, PF3-1 out
 GPIO_PORTF_PUR_R = 0x11; // enable pull-up on PF0 and PF4
 GPIO_PORTF_DEN_R = 0x1F; // 7) enable digital I/O on PF4-0
}
uint32_t PortF_Input(void){
 return (GPIO_PORTF_DATA_R&0x11); // read PF4,PF0 inputs
}
void PortF_Output(uint32_t data){ // write PF3-PF1 outputs
 GPIO_PORTF_DATA_R = data;
}
Program 4.1a. A set of functions using PF4,PF0 as inputs and PF3-1 as outputs
(InputOutput_xxx.zip).

Only PD7, and PF0 on the TM4C123 and PD7 on the TM4C1294 need to be unlocked. All the other
bits on the two microcontrollers are always unlocked.

Observation: Programs in Chapter 4 will skip writing zeros to AMSEL AFSEL and PCTL because
these three registers are initialized to zero by the hardware reset. The versions on the web site will
write zeros to the AMSEL AFSEL and PCTL registers.

PortF_Init

 LDR R1, =SYSCTL_RCGCGPIO_R ; 1) activate clock for Port F
 LDR R0, [R1]
 ORR R0, R0, #0x20 ; set bit 5 to turn on clock
 STR R0, [R1]
 NOP
 NOP ; allow time for clock to finish
 LDR R1, =GPIO_PORTF_LOCK_R ; 2) unlock the lock register
 LDR R0, =0x4C4F434B ; unlock GPIO Port F Commit Register
 STR R0, [R1]
 LDR R1, =GPIO_PORTF_CR_R ; enable commit for Port F
 MOV R0, #0xFF ; 1 means allow access
 STR R0, [R1]
 LDR R1, =GPIO_PORTF_DIR_R ; 5) set direction register
 MOV R0, #0x0E ; PF0 and PF7-4 input, PF3-1 output
 STR R0, [R1]
 LDR R1, =GPIO_PORTF_PUR_R ; pull-up resistors for PF4,PF0
 MOV R0, #0x11 ; enable weak pull-up on PF0 and PF4
 STR R0, [R1]
 LDR R1, =GPIO_PORTF_DEN_R ; 7) enable Port F digital port
 MOV R0, #0xFF ; 1 means enable digital I/O
 STR R0, [R1]
 BX LR

PortF_Input
 LDR R1, =GPIO_PORTF_DATA_R ; pointer to Port F data
 LDR R0, [R1] ; read all of Port F
 AND R0,R0,#0x11 ; just the input pins, bits 4,0
 BX LR ; return R0 with inputs
PortF_Output
 LDR R1, =GPIO_PORTF_DATA_R ; pointer to Port F data
 STR R0, [R1] ; write to PF3-1
 BX LR
Program 4.1b. A set of functions using PF4,PF0 as inputs and PF3-1 as outputs
(InputOutput_xxxasm.zip).

Checkpoint 4.3: Does the entire port need to be defined as input or output, or can some pins be input
while others are output?

Checkpoint 4.4: How do we change Program 4.1 to run using Port B?

In Program 4.1 the assumption was the software module had access to all of Port F. In other words,
this software owned all pins of Port F. The TM4C123 Port F has only 5 pins, and we used them all. In
most cases, a software module needs access to only some of the port pins. If two or more software
modules access the same port, a conflict will occur if one module changes modes or output values set

by another module. It is good software design to write friendly software, which only affects the
individual pins as needed. Friendly software does not change the other bits in a shared register.
Conversely, unfriendly software modifies more bits of a register than it needs to. The difficulty of
unfriendly code is each module will run properly when tested by itself, but weird bugs result when
two or more modules are combined.

Consider the problem that a software module needs to output to just Port D bit 7. After enabling the
clock for Port D, we use read-modify-write software to initialize just pin 7. The following
initialization does not modify the configurations for the other 7 bits in Port D.

 SYSCTL_RCGCGPIO_R |= 0x08; // 1) activate clock for Port D
 while((SYSCTL_PRGPIO_R&0x08) == 0){};// ready?
 GPIO_PORTD_LOCK_R = 0x4C4F434B; // 2) unlock GPIO Port D7
 GPIO_PORTD_CR_R |= 0x80; // allow changes to PD7
 GPIO_PORTD_DIR_R |= 0x80; // 5) PD7 out
 GPIO_PORTD_DEN_R |= 0x80; // 7) enable digital I/O on PD7

There is no conflict if multiple modules enable the clock for Port D. There are two friendly ways on
TM4C microcontrollers to access individual port bits. The first method is to use read-modify-write
software to change just the pins of interest, leaving the other pins unchanged. A read-or-write
sequence can be used to set bits. For example, if we wished to set PD7

 LDR R1,
=GPIO_PORTD_DATA_R
 LDR R0, [R1] ; previous
 ORR R0, R0, #0x80 ; set bit 7
 STR R0, [R1]

// make PD7 high
GPIO_PORTD_DATA_R |=
0x80;

A read-and-write sequence can be used to clear one or more bits. If we wished to clear PD7

 LDR R1,
=GPIO_PORTD_DATA_R
 LDR R0, [R1] ; previous
 BIC R0, R0, #0x80 ; clear bit 7
 STR R0, [R1]

// make PD7 low
GPIO_PORTD_DATA_R
&= ~0x80;

The second method uses the bit-specific addressing. The Texas Instruments microcontrollers
implement a more flexible way to access port pins than the bit-banding described in Volume 2. This
bit-specific addressing doesn’t work for all the I/O registers, just the parallel port data registers. The
Texas Instruments mechanism allows collective access to 0 to 8 bits in a data port. We define eight
address offset constants in Table 4.6.

If we wish to access bit Constant
7 0x0200
6 0x0100
5 0x0080

4 0x0040
3 0x0020
2 0x0010
1 0x0008
0 0x0004

Table 4.6. Address offsets used to specify individual data port bits.

Basically, if we are interested in bit b, the constant is 4*2b. There 256 possible bit combinations we
might be interested in accessing, from all of them to none of them. Each possible bit combination has
a separate address for accessing that combination. For each bit we are interested in, we add up the
corresponding constants from Table 4.6 and then add that sum to the base address for the port. The
base addresses for the data ports for each microcontroller can be found in its data sheet; open the data
sheet for your microcontroller, go to the GPIO chapter, Register Descriptions section, and search
for GPIODATA. Figure 4.14 shows a snapshot of the TM4C123 data sheet, illustrating the base
address for Port A is 0x4000.4000. For example, assume we are interested in Port A bits 1, 2, and 3
on the TM4C123. We look up the constants for bits 1,2,3 in Table 4.8, which are 0x0008, 0x0010, and
0x0020. The sum of

0x4000.4000 + 0x0008 + 0x0010 + 0x0020

is the address 0x4000.4038. If we read from 0x4000.4038 only bits 1, 2, and 3 will be returned. If we
write to this address only bits 1, 2, and 3 will be modified.

Figure 4.14. Snapshot of the TM4C123 data sheet, showing how to look up

GPIO base addresses.

The TM4C1294 uses the advanced high-performance bus (AHB) to access the GPIO registers. The
base addresses for the TM4C1294 ports are listed in Table 4.7.

GPIO Port A 0x4005.8000 GPIO Port J
0x4006.0000
GPIO Port B 0x4005.9000 GPIO Port K
0x4006.1000
GPIO Port C 0x4005.A000 GPIO Port L
0x4006.2000
GPIO Port D 0x4005.B000 GPIO Port M
0x4006.3000
GPIO Port E 0x4005.C000 GPIO Port N
0x4006.4000
GPIO Port F 0x4005.D000 GPIO Port P
0x4006.5000
GPIO Port G 0x4005.E000 GPIO Port Q
0x4006.6000
GPIO Port H 0x4005.F000
Table 4.7. Base addresses for the TM4C1294 GPIO ports.

If we want to read and write all 8 bits of Port A, the constants will add up to 0x03FC. Notice that the
sum of the base address (0x4000.4000) and all the constants yields the 0x4000.43FC address used in
Table 4.5 and Program 4.1. In other words, read and write operations to GPIO_PORTA_DATA_R
will access all 8 bits of Port A. If we are interested in just bit 5 of Port A, we add 0x0080 to
0x4000.4000, and we can define this in C and in assembly as

#define PA5 (*((volatile uint32_t *)0x40004080))
PA5 EQU 0x40004080

Now, a simple write operation can be used to set PA5. The following code is friendly because it does
not modify the other 7 bits of Port A. This code sets Port A bit 5.

 PA5 = 0x20; // make PA5 high

A simple write sequence will clear PA5. The following code is also friendly.

 PA5 = 0x00; // make PA5 low

A read from PA5 will return 0x20 or 0x00 depending on whether the pin is high or low, respectively.
If PA5 is an output, the following code is also friendly.

 PA5 = PA5^0x20; // toggle PA5

Checkpoint 4.5: What happens if we write to location 0x4000.4000?

Checkpoint 4.6: Specify a #define that allows us to access bits 7 and 1 of Port A. Use this #define to
make both bits 7 and 1 of Port A high.

Checkpoint 4.7: Specify a #define that allows us to access bits 6, 1, 0 of Port B. Use this #define to
make bits 6, 1 and 0 of Port B high.

To understand the port definitions in C, we remember #define is simply a copy paste. E.g.,

 data = PA5;

becomes

 data = (*((volatile uint32_t *)0x40004080));
To understand why we define ports this way, let’s break this port definition into pieces. First,
0x40004080 is the address of Port Abit 5. If we write just #define PA5 0x40004080 it will create

 data = 0x40004080;
which does not read the contents of PA5 as desired. This means we need to dereference the address.
If wewrite #define PA5 (*0x40004080) it will create

 data = (*0x40004080);
This will attempt to read the contents at 0x40004080, but doesn’t know whether to read 8, 16, or 32
bits. So the compiler gives a syntax error because the type of data does not match the type of
(*0x40004080). To solve a type mismatch in C we typecast, placing a (new type) in front of the
object we wish to convert. We wish force the type conversion to unsigned 32 bits, so we modify the
definition to include the typecast,

#define PA5 (*((volatile uint32_t *)0x40004080))

The volatile is added because the value of a port can change beyond the direct action of the software.
It forces the C compiler to read a new value each time through a loop and not rely on the previous
value.

4.2.2. Switch Inputs and LED Outputs
There are four ways to interface a switch to the microcontroller as shown in Figure 4.15.

Figure 4.15. Interface of a switch to a microcomputer input.

We can use either positive or negative logic, and we can use an external resistor or select an internal
resistor. Notice the positive logic circuit with external resistor is essentially the same as the positive
logic circuit with internal resistance; the difference lies with whether the pull-down resistor is
connected externally as a 10 kΩ resistor or internally by setting the corresponding PDR bit during
software initialization.

In all cases we will initialize the pin as an input. The initialization function will enable the clock,
clear the direction register bit to specify input, and enable the pin. In Program 4.2, we will interface
PA5 to a switch using an external resistor and positive logic. Notice the software is friendly because
it just affects PA5 without affecting the other bits in Port A. The input function reads Port A and
returns a true (0x20) if the switch is pressed and returns a false (0) if the switch is not pressed. The
first function uses the bit-specific address to get just PA5, while the second reads the entire port and
selects bit 5 using a logical AND.

#define PA5 (*((volatile uint32_t *)0x40004080))
PA5 EQU 0x40004080
Switch_Init
 LDR R1,
=SYSCTL_RCGCGPIO_R
 LDR R0, [R1]
 ORR R0, R0, #0x01
 STR R0, [R1] ; Port A clock
 NOP ; time for clock to finish
 NOP
 LDR R1,
=GPIO_PORTA_DIR_R
 LDR R0, [R1]
 BIC R0, #0x20 ; PA5 input
 STR R0, [R1]
 LDR R1,

void Switch_Init(void){
 SYSCTL_RCGCGPIO_R |= 0x01;
// 1) activate clock for Port A

while((SYSCTL_PRGPIO_R&0x01)
 == 0){};// ready?
// 2) no need to unlock GPIO Port A
 GPIO_PORTA_DIR_R &= ~0x20;
// 5) direction PA5 input

 GPIO_PORTA_DEN_R |= 0x20;
// 7) enable PA5 digital port
}

=GPIO_PORTA_DEN_R
 LDR R0, [R1]
 ORR R0, #0x20 ; 7) digital
 STR R0, [R1] ; on PA5
 BX LR
Switch_Input
 LDR R1, =PA5 ; 0x40004080
 LDR R0, [R1] ; read just PA5
 BX LR ; 0x20 or 0x00
Switch_Input2
 LDR R1, =
GPIO_PORTA_DATA_R
 LDR R0, [R1] ; read port
 AND R0, #0x20 ; just bit 5
 BX LR ; 0x20 or 0x00

// return 0x20(pressed)
// or 0(not pressed)
uint32_t Switch_Input(void){
 return PA5;
}

// return 0x20(pressed)
// or 0(not pressed)
uint32_t Switch_Input2(void){
 return
(GPIO_PORTA_DATA_R&0x20);
}

Program 4.2. Software interface for a switch on PA5 (Switch_xxx.zip).

Maintenance Tip: When interacting with just some of the bits of an I/O register it is better to modify
just the bits of interest, leaving the other bits unchanged. In this way, the action of one piece of
software does not undo the action of another piece.

To interface an LED we connect it to a pin, see Figure 4.15, and we initialize the pin as an output. On
the TM4C123, the maximum output current is 8 mA. The TM4C1294 has a maximum output current of
12 mA. If our microcontroller can output the current needed by the LED, we can use the two circuits
on the left of Figure 4.16. For the positive-logic low-current configuration, assume the output voltage
on PF2 is 3.2V, and the LED parameters are 1.7V 2mA (HLMP-4700). Using Ohm’s Law we know
the voltage drop across the resistor is the current times the resistance. The voltage drop across the
resistor sould be 3.2-1.7V and the current should be 2mA. So, (3.2-1.7)=0.002*R. Using this
relationship we calculate the resistance R=(3.2-1.7)/0.002, which is 750Ω.

For the negative-logic low-current configuration, assume the output voltage on PF2 is 0.1V, and the
LED parameters are 1.7V 2mA (HLMP-4700). Again, we know the voltage drop across the resistor is
the current times the resistance, (3.3-1.7-0.1)=0.002*R. Using this relationship we calculate the
resistance R=(3.3-1.7-0.1)/0.002, which is again 750Ω.

If the LED current is more than can be supplied by our microcontroller, we can use the two circuits on
the right of Figure 4.16. If the input to a 7405 or 7406 is high its output will be low (0.5V). If the
input to a 7405 or 7406 is low, its output will float (not driven, hiZ). If the input to a 7407 is low its
output will be low (0.5V). If the input to a 7407 is high, its output will float (not driven, hiZ). If the
output low voltage of the 7405/7406/7407 is 0.5V, the LED parameters are 2V 10mA (LiteOn LTL-
10233-W), we can choose R=(5.0-2-0.5)/0.01 which is about 220Ω. The 7406 and 7407 drivers can
sink up to 40 mA.

Figure 4.16. Four LED interface circuits to a microcontroller output.

The initialization in Program 4.3 will enable the clock, set the direction register bit to specify output,
and enable the pin. On the TM4C123, the default setting for an output pin is 2mA maximum current.
To activate 8-mA mode, we set bits in the GPIO_PORTF_DR8R_R register. Activating 8-mA mode
does not set the current at 8 mA; rather it activates the output pin so it could have a maximum of 8 mA
output. Notice the software is friendly because it just affects PF2 without affecting the other bits in
Port F. The output function uses the bit-specific address to output. The toggle function reads Port F,
flips bit 0, and stores the result back.

#define PF2 (*((volatile uint32_t *)0x40025010))
PF2 EQU 0x40025010
LED_Init
 LDR R1,
=SYSCTL_RCGCGPIO_R
 LDR R0, [R1]
 ORR R0, R0, #0x20
 STR R0, [R1] ; Port
F
 NOP ; time for clock to
finish
 NOP ; 2)
no need to unlock PF2
 LDR R1,
=GPIO_PORTF_DIR_R
 LDR R0, [R1]
 ORR R0, #0x04 ; PF2
output
 STR R0, [R1]
 LDR R1,
=GPIO_PORTF_DEN_R

void LED_Init(void){
 SYSCTL_RCGCGPIO_R |= 0x20;
// 1) activate clock for Port F

while((SYSCTL_PRGPIO_R&0x20)
 == 0){}; // ready?
// 2) no need to unlock PF2
 GPIO_PORTF_DIR_R |= 0x04;
// 5) output on PF2

 GPIO_PORTF_DEN_R |= 0x04;
// 7) digital enable on PF2
}

 LDR R0, [R1]
 ORR R0, #0x04 ; digital
I/O
 STR R0, [R1]
 BX LR

LED_Off
 LDR R1, =PF2 ; R1 is
0x40025010
 MOV R0, #0
 STR R0, [R1] ; clear just
PF2
 BX LR

LED_On
 LDR R1, =PF2 ; R1 is
0x40025010
 MOV R0, #0x04
 STR R0, [R1] ; set just
PF2
 BX LR

LED_Toggle
 LDR R1, =PF2 ; R1 is
0x40025010
 LDR R0, [R1] ; previous
value
 EOR R0, R0, #0x04 ; flip
bit 2
 STR R0, [R1] ; affect just
PF2
 BX LR

void LED_Off(void){
 PF2 = 0; // turn off LED
}

void LED_On(void){
 PF2 = 0x04; // turn on LED
}

void LED_Toggle(void){
 PF2 = PF2^0x04; // toggle LED
}

Program 4.3. Software interface for an LED on PF2 (SSR_xxx.zip).

The LDR R0,[R1] instruction reads Port F bit 2 into Register 0. Let b7 b6 b5 b4 b3 b2 b1 b0 be the
original values. The EOR R0,R0,#0x04 instruction toggles bit 2, and the STR R0,[R1] instruction
stores the result back to Port F. Because of bit-specific addressing only PF2 is affected by these
functions.

b7 b6 b5 b4 b3 b2 b1 b0 original value
0 0 0 0 0 1 0 0 0x04 constant
b7 b6 b5 b4 b3 ~b2 b1 b0 result of the EOR instruction

Example 4.1: Generate two out of phase square waves on PF2 and PF1.

Solution: Out of phase means one signal goes high when the other one goes low. During the
initialization we specify PF2 and PF1 as outputs, then establish the initial values as 0 and 1
respectively. We use the exclusive or operation to toggle both bits at the same time. The infinite loop
program will repeat the exclusive or operation over and over, creating the out of phase square waves
on Port F bit 2 and 1. The other six bits of Port F remain unchanged. We create a bit-specific address
constant to access just PF2 and PF1:

#define PF21 (*((volatile uint32_t *)0x40025018))
PF21 EQU 0x40025018
Start
 LDR R1,
=SYSCTL_RCGCGPIO_R
 LDR R0, [R1] ;1) clock
 ORR R0, R0, #0x20 ; set bit 5
 STR R0, [R1]
 NOP ; time to finish
 NOP ; 2) no need to unlock
PF1,PF2
 LDR R1, =GPIO_PORTF_DIR_R
 LDR R0, [R1] ; 5) set direction
 ORR R0, #0x06 ; PF1,PF2 output
 STR R0, [R1]
 LDR R1, =GPIO_PORTF_DEN_R
 LDR R0, [R1] ; 7) enable Port F
 ORR R0, #0x06
 STR R0, [R1]
 LDR R1, =PF21
 MOV R0, #0x02 ; PF2=0, PF1=1
loop STR R0, [R1] ; write PF1,PF2
 EOR R0, R0, #0x06 ; toggle
PF1,PF2
 B loop

// C implementation
int main(void){

// 1) Port F clock
 SYSCTL_RCGCGPIO_R |= 0x20;
 while((SYSCTL_PRGPIO_R&0x20)
 == 0){};// ready?

// 2) no need to unlock
// 5) PF2 PF1 outputs
 GPIO_PORTF_DIR_R |= 0x06;

// 7) digital I/O on PF2-1
 GPIO_PORTF_DEN_R |= 0x06;

// initial output
 PF21 = 0x02; // PF2=0; PF1=1
 while(1){
 PF21 ^= 0x06; // toggle
 }
}

Program 4.4. Software interface that creates two out of phase square waves
(Squarewaves_xxx.zip).

Checkpoint 4.8: Assume the instructions STR EOR B loop in Program 4.4 take 2, 1, and 3 bus
cycles respectively to execute, and assume the bus frequency is 16 MHz. Estimate the frequency of
each square wave in Program 4.4. See logic analyzer measurement in Figure 4.17.

Figure 4.17. Logic analyzer in the Keil uVision simulator measures the frequency
of the squarewaves.

Example 4.2: The goal is to develop a means for the microcontroller to turn on and to turn off an AC-
powered appliance. The interface will use a solid state relay (SSR) having a control portion
equivalent to an LED with parameters of 2V and 10 mA. Include appropriate functions.

Solution: Since we need to interface an LED, we use an open collector NOT gate just like Figure 2.9.
We choose an electronic circuit that has an output current larger than the 10 mA needed by the SSR.
Since the maximum ICE of the PN2222 is 150 mA, it can sink the 10 mA required by the SSR. A 7405
or 7406 could also have been used, but they require a +5V supply. The resistor is selected to control
the current to the diode. Using the LED design equation, R = (3.3-Vd-VCE)/Id =(3.3-2-0.3V)/0.01A =
100 Ω. There is a standard value 5% resistor at 100 Ω. The specification VCE=0.3V is a maximum. If
VCE is actually between 0.1 and 0.3V, then 10 to 12 mA will flow, and the relay will still activate
properly. When the input to the PN2222 is high (p=3.3V), the output is low (q=0.3V), see Figure 4.18.
In this state, a 10 mA current is applied to the diode, and relay switch activates. This causes 120 VAC
power to be delivered to the appliance. But, when the input is low (p=0), the output floats (q=HiZ,
which is neither high nor low). This floating output state causes the LED current to be zero, and the
relay switch opens. In this case, no AC power is delivered to the appliance.

Figure 4.18. Solid state relay interface using a PN2222 NPN transistor.

The software in Program 4.3 can be used to control the device (SSR_xxx.zip). The initialization will
set bit 2 of the direction register to make PF2an output, see LED_Init . This function should be called
once at the start of the system. After initialization, the LED_On and LED_Off functions can be
called to control the appliance.

Some problems are so unique that they require the engineer to invent completely original solutions.
Most of the time, however, the engineer can solve even complex problems by building the system
from components that already exist. Creativity will still be required in selecting the proper
components, making small changes in their behavior (tweaking), arranging them in an effective and

efficient manner, and then verifying the system satisfies both the requirements and constraints. When
young engineers begin their first job, they are sometimes surprised to see that education does not stop
with college graduation, but rather is a life-long activity. In fact, it is the educational goal of all
engineers to continue to learn both processes (rules about how to solve problems) and products
(hardware and software components). As the engineer becomes more experienced, he or she has a
larger toolbox from which processes and components can be selected.

The hardest step for most new engineers is the first one: where to begin? We begin by analyzing the
problem to create a set of specifications and constraints in the form of a requirements document. Next,
we look for components, in the form of previously debugged solutions, which are similar to our
needs. Often during the design process, additional questions or concerns arise. We at that point
consult with our clients to clarify the problem. Next we rewrite the requirements document and get it
reapproved by the clients.

It is often difficult to distinguish whether a parameter is a specification or a constraint. In actuality,
when designing a system it often doesn’t matter into which category a parameter falls, because the
system must satisfy all specifications and constraints. Nevertheless, when documenting the device it
is better to categorize parameters properly. Specifications generally define in a quantitative manner
the overall system objectives as given to us by our customers.

Constraints, on the other hand, generally define the boundary space within which we must search for a
solution to the problem. If we must use a particular component, it is often considered a constraint. In
this book, we constrain most designs to include an LM3S/TM4C microcontroller. Constraints also are
often defined as an inequality, such as “the cost must be less than $50”, or “the battery must last for at
least one week”. Specifications on the other hand are often defined as a quantitative number, and the
system satisfies the requirement if the system operates within a specified tolerance of that parameter.
Tolerance can be defined as a percentage error or as a range with minimum and maximum values.

The high-level design uses data flow graphs. We then combine the pieces and debug the system. As
the pieces are combined we can draw a call graph to organize the parts. If new components are
designed, we can use flowcharts to develop new algorithms. The more we can simulate the system,
the more design possibilities we can evaluate, and the quicker we can make changes. Debugging
involves both making sure it works, together with satisfying all requirements and constraints.

Observation: Defining realistic tolerances on specifications profoundly affects system cost.

Checkpoint 4.9: What are the effects of specifying a tighter tolerance (e.g., 1% when the problem
asked for 5%)?

Checkpoint 4.10: What are the effects of specifying a looser tolerance (e.g., 10% when the problem
asked for 5%)?

Example 4.3: Design an embedded system that flashes LEDs in a 0101, 0110, 1010, 1001 binary
repeating pattern.

Solution: This system will need four LEDs, and the computer must be able to activate/deactivate
them. Since the problem didn’t specify power source, speed, color, or brightness, we could either put
off these decisions until the engineering design stage in order to simplify the design or minimize cost,
or we could go back to the clients and ask for additional requirements. In this case, the clients didn’t
care about power, speed, color, or brightness but did think minimizing cost was a good idea. In this
book, we will constrain all our designs to include a LM3S/TM4C microcontroller. Because we have
+3.3 V microcontroller systems, we will specify the system to run on +3.3 V power. We have in stock
HLMP-4740 green LEDs that operate at 1.9 V and 2 mA, so we will use them. Table 4.8 summarizes
the specifications and constraints. We will use standard 5% resistors to minimize cost.
Specifications Constraints
Repeating pattern of 5,
6, 10, 9

 TM4C123-based

Four 1.9 V, 2 mA green
LEDs

 Minimize cost

+3.3V power supply Standard 5%
resistors

Table 4.8. Specifications and constraints of the LED output system.

Tolerance for this LED output system says it is acceptable if it has four LEDs, but unacceptable if it
has three or five of them. Similarly, it will be acceptable as long as the LED current is between 1.5
and 2.5 mA. If the current drops below 1.5 mA, we won’t be able to see the LED, and if it goes above
2.5 mA, it might damage the LED.

The data flow graph in Figure 4.19 shows information as it flows from the controller software to the
four LEDs. The data flow graph will be important during the subsequent design phases because the
hardware blocks can be considered as a preliminary hardware block diagram of the system. The call
graph, also shown in Figure 4.19, illustrates this master/slave configuration where the controller
software will manipulate the four LEDs. The hardware design of this system could have used four
copies of the LED interface presented earlier in Figure 2.9. The TM4C microcontroller can source or
sink up to 8 mA. We can save money by using low-current LEDs, which can be connected directly to
the microcontroller without a driver.

Figure 4.19. Data flow graph and call graph of the LED output system.

Figure 4.20 shows four simple negative logic LED interfaces. A low output will turn on the LED, and
a high output will turn it off. Notice the similarity of the data flow graph in Figure 4.19 with the
hardware circuit in Figure 4.20. If the VOL of the microcontroller is 0.4V, and the voltage across the
LED is 1.9V, then the voltage across the resistor should be 3.3-1.9-0.4V or 1V. We calculate the
resistor value using Ohm’s Law, R is 1V/2mA or 500Ω. Using standard resistor values with a 5%
tolerance will be cheaper to build (see Section 9.1). In particular, 470Ω and 510Ω � are two
standard resistor values near 500Ω. If we were to use 470Ω, then the LED current would be (3.3-1.9-
0.4V)/470Ω � or 2.1mA. Similarly, if we were to use 510Ω, then the LED current would be (3.3-
1.9-0.4V)/510Ω � or 1.96mA. Both would have been acceptable, but we will use the 510Ω resistor
because it is acceptable for a wide range of microcontroller output voltages. More specifically, if
VOLranges from 0.13 to 0.63V, then the LED current remains within the 1.5 to 2.5 mA specification. It
would have been more expensive to design this system with � 500Ω resistors.

Pseudo-code is similar to high-level languages, but without a rigid syntax. This means we utilize
whatever syntax we like. Flowcharts are good when the software involves complex algorithms with
many decisions points causing control paths. On the other hand, pseudo-code may be better when the
software is more sequential and involves complex mathematical calculations.

Portability is a measure of how easy it is to convert software that runs on one machine to run on
another machine. Notice how the main program does not refer to Port D at all. This way we can use
this main program on a different microcontroller. C is more portable than assembly.

Figure 4.20. Hardware circuit for the LED output system.

The software design of this system also involves using examples presented earlier with some minor
tweaking. The only data required in this problem is the 5–6–10–9 sequence. Later in Chapter 6, we
will consider solutions to this type of problem using data structures, but in this first example, we will
take a simple approach, not using a data structure. Figure 4.21 illustrates a software design process
using flowcharts. We start with a general approach on the left. Flowchart 1 shows the software will
initialize the output port and perform the output sequence. As we design the software system, we fill
in the details. This design process is called successive refinement. It is also classified as top-down,
because we begin with high-level issues and end at the low level. In Flowchart 2, we set the direction
register and then output the sequence 5–6–10–9. It is at this stage we figured out how to create the
repeating sequence. Flowchart 3 fills in the remaining details. To output the negative logic pattern
1010 to the LEDs, we will output a 5 to the bottom 4 bits of Port D on the TM4C microcontroller.

Figure 4.21. Software design for the LED output system using flowcharts.

Many software developers use pseudo-code rather than flowcharts, because the pseudo-code itself
can be embedded into the software as comments. Program 4.5 shows the C implementation for this
system. Notice the similarity in structure between Flowchart 3 and this code. The LEDS definition
implements friendly access to pins PD3 – PD0.

#define LEDS (*((volatile uint32_t *)0x4000703C))

LEDS EQU 0x4000703C
GPIO_Init
 LDR R1,
=SYSCTL_RCGCGPIO_R
 LDR R0, [R1] ; 1) D clock
 ORR R0, R0, #0x00000008
 STR R0, [R1]
 NOP ; time to finish
 NOP ; 2) no need to
unlock
 LDR R1,
=GPIO_PORTD_DIR_R
 LDR R0, [R1] ; 5)
direction
 ORR R0, R0,#0x0F ; PD3-0
output
 STR R0, [R1]
 LDR R1,
=GPIO_PORTD_DEN_R
 LDR R0, [R1]

// C implementation
void GPIO_Init(void){
// 1) Port D clock
 SYSCTL_RCGCGPIO_R |= 0x08;

while((SYSCTL_PRGPIO_R&0x08)
 == 0){};// ready?

// 2) no need to unlock PD3-0

// 5) PD3-0 outputs
 GPIO_PORTD_DIR_R |= 0x0F;

// 7) digital I/O on PD3-0
 GPIO_PORTD_DEN_R |= 0x0F;
}

void main(void){
 GPIO_Init();
 while(1){

 ORR R0, R0, #0x0F ;
7)PD3-0 digital
 STR R0, [R1]
 BX LR
Start BL GPIO_Init
 LDR R0, =LEDS ; R0 =
0x4000703C
 MOV R1, #10 ; R1 = 10
 MOV R2, #9 ; R2 = 9
 MOV R3, #5 ; R3 = 5
 MOV R4, #6 ; R4 = 6
loop STR R1, [R0] ; LEDS =
10
 STR R2, [R0] ; LEDS = 9
 STR R3, [R0] ; LEDS = 5
 STR R4, [R0] ; LEDS = 6
 B loop

 LEDS = 10; // 1010
 LEDS = 9; // 1001
 LEDS = 5; // 0101
 LEDS = 6; // 0110

 }
}

Program 4.5. C software for the LED output system (GPIO_xxx.zip).
In order to test the system we need to build a prototype. One option is simulation. A second option is
to use a development system like a LaunchPad. In this approach, you build the external circuits on a
protoboard and use the debugger to download and test the software. A third approach is typically
used after a successful evaluation with one of the previous methods. In this approach, we design a
printed circuit board (PCB) including both the external circuits and the microcontroller itself.

During the testing phase of the project we observe that all four of the LEDs are continuously on. We
use the software debugger to single step our program, which correctly outputs the 1010, 1001, 0101,
0110 binary repeating pattern. During this single stepping the LEDs do come on and off in the proper
pattern. Using a voltmeter on the circuit we observe a 0.25V signal on the output of the
microcontroller and a 1.9V voltage drop across the diode whenever the software wishes to turn the
LED on. Because the LEDs are flashing faster than our eyes can see, we test the system at full speed
and observe the four outputs on a logic analyzer (Analog Discovery by Digilent Inc.), collecting data
presented as Figure 4.22. If we wished to be able to see the LEDs flash with our eyes, we could add
a 0.1 second delay after each output.

Figure 4.22. Logic analyzer waveforms collected during the testing of the LED
output system.

4.3. Phase-Lock-Loop
Normally, the execution speed of a microcontroller is determined by an external crystal. The Stellaris
EKK-LM3S1968 evaluation board has an 8 MHz crystal. The Texas Instruments Tiva EK-
LM4F120XL, EK-TM4C123GXL, and EK-TM4C1294-XL boards have a 16 MHz crystal. Most
microcontrollers have a phase-lock-loop (PLL) that allows the software to adjust the execution speed
of the computer. Typically, the choice of frequency involves the tradeoff between software execution
speed and electrical power. In other words, slowing down the bus clock will require less power to
operate and generate less heat. Speeding up the bus clock obviously allows for more calculations per
second.

The default bus speed of the LM3S1968 and TM4C microcontrollers is that of the internal oscillator,
also meaning that the PLL is not initially active. For example, the default bus speed for the LM3S1968
kit is 12 MHz ±30%. The default bus speed for the TM4C internal oscillator is 16 MHz ±1%. The
internal oscillator is significantly less precise than the crystal, but it requires less power and does not
need an external crystal. This means for most applications we will activate the main oscillator and
the PLL so we can have a stable bus clock.

There are two ways to activate the PLL. We could call a library function, or we could access the
clock registers directly. In general, using library functions creates a better design because the solution
will be more stable (less bugs) and will be more portable (easier to switch microcontrollers).
However, the objective of the book is to present microcontroller fundamentals. Showing the direct
access does illustrate some concepts of the PLL.

First, we can include the Stellaris/Tivalibrary and call the SysCtlClockSet function to change the
speed. This function is defined in the sysctl.c file. Assume we wish to run an LM3Swith an 8 MHz
crystal at 50 MHz. The desired bus speed is set by the SYSCTL_SYSDIV_4 parameter, which in this
case will be 200 MHz divided by 4. The library function activates the PLL because of
the SYSCTL_USE_PLL parameter. The main oscillator is the one with the external crystal attached.
The last parameter specifies the frequency of the attached crystal.
 SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL |
 SYSCTL_OSC_MAIN | SYSCTL_XTAL_8MHZ);

Assume we wish to run an LM3S microcontroller with a 6 MHz crystal at 20 MHz. The divide by 10
reduces the 200 MHz base frequency to 20 MHz.
 SysCtlClockSet(SYSCTL_SYSDIV_10 | SYSCTL_USE_PLL |
 SYSCTL_OSC_MAIN | SYSCTL_XTAL_6MHZ);

Assume we wish to run an TM4C with a 16 MHz crystal at 80 MHz. The divide by 2.5 creates a bus
frequency of 80 MHz, implemented as 400 MHz divided by 5.
 SysCtlClockSet(SYSCTL_SYSDIV_2_5 | SYSCTL_USE_PLL |
 SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);

Figure 4.23. Block diagram of the main clock tree on the TM4C123 including the
PLL.

To make our code more portable, it is a good idea to use library functions whenever possible.
However, we will present an explicit example illustrating how the PLL works. An external crystal is
attached to the TM4C microcontroller, as shown in Figure 4.23. The PLLs on the other Stellaris/Tiva
microcontrollers operate in the same basic manner. Table 4.9 shows the clock registers used to define
what speed the processor operates. The output of the main oscillator (Main Osc) is a clock at the
same frequency as the crystal. By setting the OSCSRC bits to 0, the multiplexer control will select the
main oscillator as the clock source.

Program 4.6 shows a program to activate a microcontroller with a 16 MHz main oscillator to run at
80 MHz. 0) Use RCC2 because it provides for more options. 1) The first step is set BYPASS2 (bit
11). At this point the PLL is bypassed and there is no system clock divider. 2) The second step is to
specify the crystal frequency in the four XTAL bits using the code in Table 4.9. The OSCSRC2 bits
are cleared to select the main oscillator as the oscillator clock source. 3) The third step is to clear
PWRDN2 (bit 13) to activate the PLL. 4) The fourth step is to configure and enable the clock divider
using the 7-bit SYSDIV2 field. If the 7-bit SYSDIV2 is n, then the clock will be divided by n+1. To
get the desired 80 MHz from the 400 MHz PLL, we need to divide by 5. So, we place a 4 into the
SYSDIV2 field. 5) The fifth step is to wait for the PLL to stabilize by waiting for PLLRIS (bit 6) in
the SYSCTL_RIS_R to become high. 6) The last step is to connect the PLL by clearing the
BYPASS2 bit. To modify this program to operate on other microcontrollers, you will need to change
the crystal frequency and the system clock divider. Program 4.6 is on the book web site as
PLL_xxx.zip.

XTAL Crystal Freq
(MHz)

 XTAL Crystal Freq
(MHz)

0x0 Reserved 0x10 10.0 MHz
0x1 Reserved 0x11 12.0 MHz
0x2 Reserved 0x12 12.288 MHz
0x3 Reserved 0x13 13.56 MHz
0x4 3.579545 MHz 0x14 14.31818 MHz

0x5 3.6864 MHz 0x15 16.0 MHz
0x6 4 MHz 0x16 16.384 MHz
0x7 4.096 MHz 0x17 18.0 MHz
0x8 4.9152 MHz 0x18 20.0 MHz
0x9 5 MHz 0x19 24.0 MHz
0xA 5.12 MHz 0x1A 25.0 MHz
0xB 6 MHz (reset

value)
 0x1B Reserved

0xC 6.144 MHz 0x1C Reserved
0xD 7.3728 MHz 0x1D Reserved
0xE 8 MHz 0x1E Reserved
0xF 8.192 MHz 0x1F Reserved

Table 4.9a. XTAL field used in the SYSCTL_RCC_R register of the TM4C123.

Address 26-23 22 13 11 10-6 5-4 Name
$400FE060 SYSDIV USESYSDIV PWRDN BYPASS XTAL OSCSRC SYSCTL_RCC_R
$400FE050 PLLRIS SYSCTL_RIS_R

 31 30 28-22 13 11 6-4
$400FE070 USERCC2 DIV400 SYSDIV2 PWRDN2 BYPASS2 OSCSRC2 SYSCTL_RCC2_R

Table 4.9b. Main clock registers for the TM4C123.

#define SYSDIV2 4
void PLL_Init(void){
 // 0) Use RCC2
 SYSCTL_RCC2_R |= 0x80000000; // USERCC2
 // 1) bypass PLL while initializing
 SYSCTL_RCC2_R |= 0x00000800; // BYPASS2, PLL bypass
 // 2) select the crystal value and oscillator source
 SYSCTL_RCC_R = (SYSCTL_RCC_R & ~0x000007C0) // clear bits 10-6
 + 0x00000540; // 10101, configure for 16 MHz crystal
 SYSCTL_RCC2_R &= ~0x00000070; // configure for main oscillator source
 // 3) activate PLL by clearing PWRDN
 SYSCTL_RCC2_R &= ~0x00002000;
 // 4) set the desired system divider
 SYSCTL_RCC2_R |= 0x40000000; // use 400 MHz PLL
 SYSCTL_RCC2_R = (SYSCTL_RCC2_R&~0x1FC00000)+(SYSDIV2<<22); // 80 MHz
 // 5) wait for the PLL to lock by polling PLLLRIS
 while((SYSCTL_RIS_R&0x00000040)==0){}; // wait for PLLRIS bit
 // 6) enable use of PLL by clearing BYPASS
 SYSCTL_RCC2_R &= ~0x00000800;
}

Program 4.6a. Activate the TM4C123 with a 16 MHz crystal to run at 80 MHz
(PLL_xxx.zip).

PLL_Init ; 0) configure the system to use RCC2 for advanced features
 LDR R3, =SYSCTL_RCC2_R ; R3 = &SYSCTL_RCC2_R
 LDR R2, [R3]
 ORR R2, R2, #0x80000000 ; USERCC2
 STR R2, [R3]
 ; 1) bypass PLL while initializing
 ORR R2, R2, #0x00000800 ; BYPASS2
 STR R2, [R3]
 ; 2) select the crystal value and oscillator source
 LDR R1, =SYSCTL_RCC_R ; R1 =&SYSCTL_RCC_R
 LDR R0, [R1]
 BIC R0, R0, #0x000007C0 ; clear XTAL field
 ORR R0, R0, #0x00000540 ; configure for 16 MHz crystal
 STR R0, [R1]
 BIC R2, R2, #0x00000070 ; MOSC
 ; 3) activate PLL by clearing PWRDN
 BIC R2, R2, #0x00002000 ; Power-Down PLL
 ; 4) set the desired system divider
 ORR R2, R2, #0x40000000 ; use 400 MHz PLL
 BIC R2, R2, #0x1FC00000 ; clear system clock divider field
 ADD R2, R2, #(SYSDIV2<<22) ; SYSDIV2 = 4 (80 MHz clock)
 STR R2, [R3] ; set RCC2
 ; 5) wait for the PLL to lock by polling PLLLRIS
 LDR R1, =SYSCTL_RIS_R ; R1 = &SYSCTL_RIS_R
PLL_Init_loop
 LDR R0, [R1] ; R0 = [R1] (value)
 ANDS R0, R0, #0x00000040 ; PLL RIS
 BEQ PLL_Init_loop ; if(R0 == 0), keep polling
 ; 6) enable use of PLL by clearing BYPASS
 BIC R2, R2, #0x00000800 ; BYPASS2
 STR R2, [R3] ; enable PLL
Program 4.6b. Activate the TM4C123 with a 16 MHz crystal to run at 80 MHz
(PLL_xxxasm.zip).

Checkpoint 4.11: How would you change Program 4.6 if your microcontroller had an 8 MHz crystal
and you wish to run at 50 MHz?

4.4. SysTick Timer
SysTickis a simple counter that we can use to create time delays and generate periodic interrupts. It
exists on all Cortex � -M microcontrollers, so using SysTick means the system will be easy to port to
other microcontrollers. Table 4.10 shows some of the register definitions for SysTick. The basis of
SysTick is a 24-bit down counter that runs at the bus clock frequency. There are four steps to initialize
the SysTick timer. First, we clear the ENABLE bit to turn off SysTick during initialization. Second,
we set the RELOADregister. Third, we write to the NVIC_ST_CURRENT_R value to clear the
counter. Lastly, we write the desired mode to the control register, NVIC_ST_CTRL_R . We set the
CLK_SRC bit specifying the core clock will be used. We must set CLK_SRC=1, because
CLK_SRC=0 external clock mode is not implemented on the LM3S/TM4C family. In Chapter 9, we
will set INTEN to enable interrupts, but in this first example we clear INTEN so interrupts will not
be requested. We need to set the ENABLE bit so the counter will run. When the CURRENT value
counts down from 1 to 0, the COUNT flag is set. On the next clock, the CURRENT is loaded with
the RELOAD value. In this way, the SysTick counter (CURRENT) is continuously decrementing. If
the RELOAD value is n, then the SysTick counter operates at modulo n+1 (…n, n-1, n-2 … 1, 0, n, n-
1, …). In other words, it rolls over every n+1 counts. The COUNT flag could be configured to
trigger an interrupt. However, in this first example interrupts will not be generated.

Address 31-
24

23-
17

16 15-3 2 1 0 Name

$E000E010 0 0 COUNT 0 CLK_SRC INTEN ENABLE NVIC_ST_CTRL_R
$E000E014 0 24-bit RELOAD value NVIC_ST_RELOAD_R
$E000E018 0 24-bit CURRENT value of SysTick counter NVIC_ST_CURRENT_R

Table 4.10. SysTick registers.
If we activate the PLL to run the microcontroller at 80 MHz, then the SysTick counter decrements
every 12.5 ns. In general, if the period of the core bus clock is t, then the COUNT flag will be set
every (n+1)t. Reading the NVIC_ST_CTRL_R control register will return the COUNTflag in bit
16 and then clear the flag. Also, writing any value to the NVIC_ST_CURRENT_R register will
reset the counter to zero and clear the COUNT flag.

Program 4.7uses the SysTick timer to implement a time delay. For example, the user
calls SysTick_Wait10ms(123); and the function returns 1.23 seconds later. The RELOAD register
is set to the number of bus cycles one wishes to wait. If the PLL function of Program 4.6 has been
executed, then the units of this delay will be 12.5 ns. Writing to CURRENT will clear the counter
and will clear the count flag (bit 16) of the CTRLregister. After SysTick has been
decremented delay times, the count flag will be set and the while loop will terminate. Since SysTick
is only 24 bits, the maximum time one can wait with SysTick_Wait is 224*12.5ns, which is about 200
ms. To provide for longer delays, the function SysTick_Wait10ms calls the function SysTick_Wait
repeatedly. Notice that 800,000*12.5ns is 10ms. Program 4.7 is on the book web site as
SysTick_xxx.zip.

void SysTick_Init(void){

 NVIC_ST_CTRL_R = 0; // 1) disable SysTick during setup
 NVIC_ST_RELOAD_R = 0x00FFFFFF; // 2) maximum reload value
 NVIC_ST_CURRENT_R = 0; // 3) any write to current clears it
 NVIC_ST_CTRL_R = 0x00000005; // 4) enable SysTick with core clock
}
// The delay parameter is in units of the 80 MHz core clock. (12.5 ns)
void SysTick_Wait(uint32_t delay){
 NVIC_ST_RELOAD_R = delay-1; // number of counts to wait
 NVIC_ST_CURRENT_R = 0; // any value written to CURRENT clears
 while((NVIC_ST_CTRL_R&0x00010000)==0){ // wait for count flag
 }
} // 10000us equals 10ms
void SysTick_Wait10ms(uint32_t delay){
 uint32_t i;
 for(i=0; i<delay; i++){
 SysTick_Wait(800000); // wait 10ms
 }
}
Program 4.7a. Timer functions that implement a time delay (SysTick_xxx.zip).

Checkpoint 4.12: How would you change SysTick_Wait10ms in Program 4.7 if your
microcontroller were running at 12 MHz?

SysTick_Init
 LDR R1, =NVIC_ST_CTRL_R
 MOV R0, #0 ; disable SysTick during setup
 STR R0, [R1]
 LDR R1, =NVIC_ST_RELOAD_R ; R1 = &NVIC_ST_RELOAD_R
 LDR R0, =0x00FFFFFF; ; maximum reload value
 STR R0, [R1] ; [R1] = R0 = NVIC_ST_RELOAD_M
 LDR R1, =NVIC_ST_CURRENT_R ; R1 = &NVIC_ST_CURRENT_R
 MOV R0, #0 ; any write to current clears it
 STR R0, [R1] ; clear counter
 LDR R1, =NVIC_ST_CTRL_R ; enable SysTick with core clock
 MOV R0, #0x05
 STR R0, [R1] ; ENABLE and CLK_SRC bits set
 BX LR
;------------SysTick_Wait------------
; Time delay using busy wait.
; Input: R0 delay parameter in units of the core clock (20 nsec)
; Output: none ; Modifies: R0, R1, R3
SysTick_Wait
 LDR R1, =NVIC_ST_RELOAD_R ; R1 = &NVIC_ST_RELOAD_R

 SUB R0, #1
 STR R0, [R1] ; delay-1, number of counts to wait
 LDR R1, =NVIC_ST_CTRL_R ; R1 = &NVIC_ST_CTRL_R
SysTick_Wait_loop
 LDR R3, [R1] ; R3 = NVIC_ST_CTRL_R
 ANDS R3, R3, #0x00010000 ; Count set?
 BEQ SysTick_Wait_loop
 BX LR

;------------SysTick_Wait10ms------------
; Time delay using busy wait. This assumes 50 MHz clock
; Input: R0 number of times to wait 10 ms before returning
; Output: none ; Modifies: R0
DELAY10MS EQU 500000 ; clock cycles in 10 ms (assumes 50 MHz clock)
SysTick_Wait10ms
 PUSH {R4, LR} ; save current value of R4 and LR
 MOVS R4, R0 ; R4 = R0 = remainingWaits
 BEQ SysTick_Wait10ms_done ; R4 == 0, done
SysTick_Wait10ms_loop
 LDR R0, =DELAY10MS ; R0 = DELAY10MS
 BL SysTick_Wait ; wait 10 ms
 SUBS R4, R4, #1 ; R4 = R4 - 1; remainingWaits--
 BHI SysTick_Wait10ms_loop ; if(R4 > 0), wait another 10 ms
SysTick_Wait10ms_done
 POP {R4, PC}
Program 4.7b. Timer functions that implement a time delay
(SysTick_xxxasm.zip).

Example 4.4. Design a system with four outputs, making them 5, 6, 10, 9 over and over separated by
5 ms.

Solution: There are no inputs to this system. However, the four outputs will be generated using port
pins. We could have used any port, but in this example we will use PD3-0. This example illustrates
how development time is reduced by reusing previously developed code. In this example we need
software that implements a 5-ms delay. Rather than starting over from scratch, we will reuse the timer
subroutines previously developed in Program 4.7. Notice, when we think about SysTick_Wait in
Program 4.7 we can focus on what it does (takes a parameter in Register R0 and waits that many
cycles), rather than worry about how it works. During initialization, we set the direction register to
make PD3-0 outputs and enable the timer. After each output, the system waits 5 ms by
calling SysTick_Wait with Register R0 equal to 400,000. We create a bit-specific definition for the
4 pins PD3-PD0:

#define OUTPUTS (*((volatile uint32_t *)0x4000703C))

OUTPUTS EQU 0x4000703C ; PD3-0 #define DELAY 400000 // 5ms

DELAY EQU 400000 ; 5ms
Start BL PLL_Init ; 80 MHz, Prog 4.6
 BL SysTick_Init ; init
 LDR R1, = SYSCTL_RCGCGPIO_R
 LDR R0, [R1]
 ORR R0, R0, #0x08
 STR R0, [R1] ; 1) Port D clock
 NOP
 NOP ; 2) no need to unlock
 LDR R1, =GPIO_PORTD_DIR_R
 LDR R0, [R1] ; 5) direction
 ORR R0, R0, #0x0F ; PD3-0 output
 STR R0, [R1]
 LDR R1, =GPIO_PORTD_DEN_R
 LDR R0, [R1] ; 7) enable
 ORR R0, R0, #0x0F ; digital I/O
 STR R0, [R1]
 LDR R0, =DELAY ; 5ms
 LDR R4, =OUTPUTS ; R4=0x4000703C
loop MOV R1, #0x05
 STR R1, [R4] ; out 0x0A
 BL SysTick_Wait ; wait
 MOV R1, #0x06
 STR R1, [R4] ; out 0x09
 BL SysTick_Wait ; wait
 MOV R1, #0x0A
 STR R1, [R4] ; out 0x05
 BL SysTick_Wait ; wait
 MOV R1, #0x09
 STR R1, [R4] ; out 0x06
 BL SysTick_Wait ; wait
 B loop

void main(void){
 PLL_Init(); // 80 MHz, Prog 4.6
 SysTick_Init(); // Program 4.7
// 1) activate clock for Port D
 SYSCTL_RCGCGPIO_R |= 0x08;
 while((SYSCTL_PRGPIO_R&0x20)
 == 0){};// ready?

// 2) no need to unlock PD3-0

// 5) set direction register
 GPIO_PORTD_DIR_R |= 0x0F;

// 7) enable digital port
 GPIO_PORTD_DEN_R |= 0x0F;

 while(1){
 OUTPUTS = 0x05;
 SysTick_Wait(DELAY); // Prog 4.7

 OUTPUTS = 0x06;
 SysTick_Wait(DELAY);

 OUTPUTS = 0x0A;
 SysTick_Wait(DELAY);

 OUTPUTS = 0x09;
 SysTick_Wait(DELAY);
 }
}

Program 4.8. A system to output a four-bit pattern.

Observation: If the PD3-0 outputs of Example 4.4 were connected to a stepper motor as shown in
Figure 8.25, this software would cause the motor to spin at a constant rate.

Switches have mass, friction, and a spring. Depending on the magnitudes of these three properties the
switch will bounce (oscillate a few times) or not bounce when pressed or released. If it does occur,
the contact bounce is usually on the order of 1 ms. One way to remove the bounce is to wait at least
10 ms between readings of the switch. The flowcharts in Figure 4.24 show algorithms that wait until a
switch is pressed. The one on the left does not consider bounce, while the one in the middle will
remove bounce. The flowchart on the right uses the wait function to count the number of times a
switch is pressed.

Figure 4.24. Flowcharts illustrating how to debounce a switch.

4.5. Standard I/O Driver and the printf
Function
A very powerful approach to I/O is to provide a high-level abstraction in such a way that the I/O
device itself is hidden from the user. There are three printf projects on the book’s web site. The
overall purpose of each of these examples is to provide an output stream usingthe standard printf
function. Using the project Printf_UART_xxx.zip, we send the output data stream through UART0 to
the PC. The project Printf_Nokia_xxx.zip sends data through SSI0 to a low cost Nokia LCD. The
project Printf_ST7735_xxx.zip implements a similar approach sending data through SSI0 to a color
LCD ST7735.In each implementation, there is an Output_Init() function that initializes the output
device, and a general function printf () we use to output data in a standard way.

At the low level, we implement how the output actually happensby writing a fputc function.
The fputc function is a private and implemented inside the UART.c, Nokia5110.c or ST7735.c file.
It sends characters to the display and manages the line feed and carriage return functionalities.There
is another function called getc to handle standard input. The UART will implement input, but the two
LCD implementations will not have input capabilities.

At the high level, the user performs output by calling printf . This abstraction clearly separates what
it does (printf outputsinformation) from how it works (fputc sends data to the display over UART
or SSI). In these three examples all output is sent to a display; however, we could modify the fputc
function and redirect the output stream to other devices such as a parallel LCD, USB, Ethernet,
wireless link, or solid-state disk.

printf is a function from the standard input and output library that allows you to display messages. To
make the standard input and output library available to your program, you must include one of these
UART.c, Nokia5110.c or ST7735.c files in your project, and add these lines,
replacing UART.h with Nokia5110.h or ST7735.h as appropriate:

#include <stdio.h>
#include "UART.h"

You will need to initialize the display by executing this line at the beginning of your program:
 Output_Init(); // initialize the output display

The call to printf has a string parameter followed by a list of values to display. Assume cc is an 8-
bitvariable containing 0x56 (‘V’), xx is a 32-bitvariable containing 100, and yy is a 16-bit variable
containing -100, zz is a 32-bit floating containing 3.14159265. The following illustrate the use
of printf . After the format parameter, printf requires at least as many additional arguments as
specified in the format.

Example code Output
 printf("Hello world\n"); Hello world

 printf("cc = %c %d
%#x\n",cc,cc,cc);

cc = V 86 0x56

 printf("xx = %c %d
%#x\n",xx,xx,xx);

xx = d 100 0x64

 printf("yy = %d %#x\n",yy,yy); yy = -100 0xffffff9c
 printf("zz = %f %3.2f\n",zz,zz); zz = 3.141593 3.14

Escape sequences are used to display non-printing and hard-to-print characters. In general, these
characters control how text is positioned on the screen, for example, newlines and tabs, see Table
4.11.

Character Value Escape Sequence
alert (beep) 0x07 \a
backslash 0x5C \\
backspace 0x08 \b
carriage
return

0x0D \r

double quote 0x22 \"
form feed 0x0C \f
horizontal tab 0x08 \t
newline 0x0A \n
null character 0x00 \0
single quote 0x27 \'
STX 0x02 \x02 (this syntax works for any 2-

digit hex value)
vertical tab 0x0B \v
question mark 0x3F \?

Table 4.11. Escape sequences.
When the program is executed, the control string will be displayed exactly as it appears in the
program with two exceptions. First, the computer will replace each conversion specification with a
value given in the other arguments part of the printf statement. Second, escape sequences will be
replaced with special non-printing and hard-to-print characters. To display the contents of a variable
we add a % tag into the format string the specifier defines the type as listed in Table 4.12. The
floating-point specifiers have been omitted.

%[flags][width][.precision]specifier

Specifier Output Example
c Character a
d or i Signed decimal integer 392
ld 1234567890

Signed 32-bit long decimal
integer

e Scientific notation 6.022141e23
E Scientific notation, capital letter 6.022141E23
f Floating point 3.14159
o Unsigned octal 610
s String of characters sample
u Unsigned decimal integer 7235
x Unsigned hexadecimal integer 7fa
X Unsigned hexadecimal integer

(capital letters)
7FA

% %% will write % to stdout %

Table 4.12. Format specifiers.
The tag can also contain flags, width, .precision, and length sub-specifiers. The flags are listed in
Table 4.13. If the width is present, it specifies the minimum number of characters to be printed. If the
value to be printed is shorter than this number, the result is padded with blank spaces. The value is
not truncated even if the result is larger. The .precision sub-specifier specifies the minimum number
of digits to be written (d, i, o, u, x, X). If the value to be written is shorter than this number, the result
is padded with leading zeros. The value is not truncated if the result requires more digits. A precision
of 0 means that no character is written for the value 0. For s the .precision is the maximum number of
characters to be printed. For c type is .precision has no effect. For floating point .precision is the
number of digits after the decimal.

Flags Description
- Left-justify within the given field width
+ Forces the result to have a plus or minus sign
(space) If no sign is going to be written, a blank space is inserted

before the value.
Used with o, x or X specifiers the value is preceded with

0, 0x or 0X respectively for values different than zero.
0 Left-pads the number with zeroes (0) instead of spaces,

where padding is specified (see width sub-specifier).
Table 4.13. Flag sub-specifiers.

If successful, printf will return the total number of characters written. On failure, a negative number
is returned. The start of a format specifier is signified by a percent sign and the end is signified by
one of the letter codes in Table 4.12. Each format specifier will be replaced by a value from the
argument list converted to the specified format. These optional fields typical occur in this order

The pound sign ('#') specifies that the value should be converted to an alternate form. The alternate
form for hexadecimal adds the 0x or 0X. The alternate form for octal is a leading zero.

printf("%x", 11); // prints just 'b'

printf("%#x", 11); // prints '0xb'
printf("%X", 11); // prints just 'B'
printf("%#X", 11); // prints '0XB'
printf("%o", 11); // prints just '13'
printf("%#o", 11); // prints '013'

The zero('0') specifies zero-padding. The converted value is padded on the left with the specified
number of zeros minus the number of digits to be printed. This is described in more detail below.

printf("%d", 9); // prints '9'
printf("%4d", 9); // prints ' 9'
printf("%04d", 9); // prints '0009'
printf("%04d", 123); // prints '0123'

A minussign ('-') specifies left justification. Without the minus, the format is right justified.

printf("%5d", 12); // prints ' 12' (right justified)
printf("%-5d", 12); // prints '12 ' (left justified)

A space(' ') specifies that a blank should be left before a positive number.

printf("% d", 9); // prints ' 9'
printf("% d", -9); // prints '-9'

The plus sign('+') specifies that a sign always be placed before the value. The plus sign overrides a
space if both are used.

printf("%+d", 9); // prints '+9'
printf("%+d", -9); // prints '-9'
A decimal digit specifies the minimum field width. Using the minus sign makes the format is left
justified, otherwise it is right justified. Used with the zero-modifier for numeric conversions, the
value is right-padded with zeros to fill the field width.

printf("%3d", 12); // prints ' 12' (right justified)
printf("%-3d", 12); // prints '12 ' (left justified) printf("%3d", 123); // prints '123'
(filled up)
printf("%3d", 1234); // prints '1234' (bigger than 3 width)

A precision value in the form of a period ('.'), followed by an optional digit string. If the digit string
is omitted, a precision of zero is used. When used with decimal, hexadecimal or octal integers, it
specifies the minimum number of digits to print. For floating point output, it specifies the number of
digits after the decimal place. For the 's' (string) conversion, it specifies the maximum number of
characters of the string to print, which is quite useful to make sure long strings don’t exceed their field
width.

printf("%.3d", 7); // prints '007'
printf("%.3d", 12345); // prints '12345'

printf("%3s", "Jonathan"); // prints 'Jonathan'
printf("%.3s", "Jonathan"); // prints 'Jon'
printf("%3s", "JV"); // prints 'JV '
printf("%.3s", "JV"); // prints 'JV'

Consider a decimal fixed-point number with units 0.001 cm. For example, if the value of distance is
equal to 1234, this means the distance is 1.234 cm. Assume the distance varies from 0 to 99.999 cm.
This C code could be used to print the value of the number in such a way that exactly 20 characters
are printed for all values of distance from 0 to 99999. The first format specifier (%2d) prints the
integer part in exactly two characters, and the second format specifier (%.3d) prints the fractional
part in exactly three characters.

printf("Distance = %2d.%.3d cm", distance/1000,distance%1000);

Value Output
0 Distance = 0.000 cm
1 Distance = 0.001 cm
99 Distance = 0.099 cm
123 Distance = 0.123 cm
1234 Distance = 1.234 cm
12345 Distance = 12.345 cm

Program 4.9 demonstrates the use of input/output using the standard library. The low-level UART
includes both standard input and standard output. The Nokia and ST7735 examples only include
standard output.The scanf function will wait for user input and return with a value as specified by the
type. In this case it returns with a signed decimal number in the variable side . The body of the main
program,

1) Asks for input,
2) Waits for input,
3) Performs a calculation, and
4) Displays the results.
//**** 0. Documentation Section
// This program calculates the area of square shaped rooms
// Author: Ramesh Yerraballi & Jon Valvano
// Date: 5/24/2014
//
// 1. Pre-processor Directives Section
#include <stdio.h> // Diamond braces for sys lib: Standard I/O
#include <stdint.h> // C99 variable types
void Output_Init(void);

// 2. Global Declarations section
int32_t side; // room wall meters

int32_t area; // size squared meters
// Function Prototypes

// 3. Subroutines Section
// MAIN: Mandatory routine for a C program to be executable
int main(void) {
 Output_Init(); // initialize output device
 printf("This program calculates areas of square-shaped rooms\n");
 while(1){
 printf("Give room side:"); // 1) ask for input
 scanf("%ld", &side); // 2) wait for input
 area = side*side; // 3) calculation
 printf("\nside = %ld m, area = %ld sqr m\n", side, area); // 4) out
 }
}
Program 4.9. Software to calculate the area of a square room
(Scanf_UART_xxx.zip).

4.6. Debugging monitor using an LED
One of the important tasks in debugging a system is to observe when and where our software is
executing. A debugging tool that works well for real-time systems is the monitor. In a real-time
system, we need the execution time of the debugging tool to be small compared to the execution time
of the program itself. Intrusiveness is defined as the degree to which the debugging code itself alters
the performance of the system being tested. A monitor is an independent output process, somewhat
similar to the print statement, but one that executes much faster and thus is much less intrusive. An
LED attached to an output port of the microcontroller is an example of a BOOLEAN monitor. You can
place LEDs on unused output pins. Software toggles these LEDs to let you know where and when
your program is running. Assume an LED is attached to Port F bit 2. Program 4.10 will toggle the
LED.

TogglePF2
 LDR R1, =
GPIO_PORTF_DATA_R
 LDR R0, [R1]
 EOR R0, R0, #0x04
 STR R0, [R1]
 BX LR

void TogglePF2(void){
 GPIO_PORTF_DATA_R ^= 0x04; // toggle LED
}

Program 4.10. An LED monitor using regular port access.

Program 4.11 will also toggle the LED on PF2, but this version using bit-specific addressing to
access just PF2.

PF2 EQU 0x40025010
TogglePF2
 LDR R1, =PF2
 LDR R0, [R1]
 EOR R0, R0, #0x04
 STR R0, [R1]
 BX LR

#define PF2 (*((volatile uint32_t *)0x40025010))
void TogglePF2(void){
 PF2 ^= 0x04; // toggle LED
}

Program 4.11. An LED monitor using bit-specific addressing to access the port
(TM4C123).

A heartbeat is a pulsing output that is not required for the correct operation of the system, but it is
useful to see whilethe program is running. In particular, you add BL TogglePF2 statements at
strategic places within your system. It only takes 13 bus cycles to execute. Port F must be initialized
so that bit 2 is an output before the debugging begins. You can either observe the LED directly or look
at the LED control signals with a high-speed oscilloscope or logic analyzer. The LCD, which will be
explained in Section 7.8, can be an effective monitor for small amounts of information. The Nokia
5110 LCD cost less than $10 and can display 72 characters. Unfortunately, the Nokia 5110 requires
about 20 µs to output each character, so the use of an LCD monitor might be intrusive. When using
LED monitors it is better to modify just the one bit, leaving the other 7 as is. In this way, you can have
additional LED monitors.

4.7. Performance Debugging
Performance debugging involves the verification of the timing behavior of our system. Performance
debugging is a dynamic process where the system is run and the dynamic behavior of the input/outputs
is compared against the expected results. Two methods of are presented, and then the techniques are
applied to measure execution speed.

4.7.1. Instrumentation
Instrumentation is software code added for the purpose of debugging. SysTick is a 24-bit counter,
decremented at the bus clock frequency. It automatically rolls over when it gets to 0. If we are sure
the execution speed of our function is less than (224 bus cycles), we can use this timer to collect timing
information with only a modest amount of intrusiveness. We initialize the timer by
calling SysTick_Init as shown in Program 4.7. Keep in mind the fact that although the registers and
variables are 32 bits, but the data values are only 24 bits. To perform a measurement we first
read NVIC_ST_CURRENT_R , execute some software, and then read NVIC_ST_CURRENT_R
again. The difference represents the elapsed time for the executing software. In this
example before and elapsed are 32-bit unsigned variables:

 before = NVIC_ST_CURRENT_R;
 // software we wish to test
 elapsed = (before-NVIC_ST_CURRENT_R)&0x00FFFFFF;

Another method to observe time-dependent behavior of our software involves an output port and a
logic analyzer or oscilloscope. Assume an oscilloscope is attached to Port F bit 2. The two
subroutines in Program 4.3 can be used to set and clear the bit. Next, you add calls to
LED_On and LED_Off statements at strategic places within the system. Port F must be initialized
so that bit 2 is an output(LED_Init) before the debugging begins. You can observe the signal with a
high-speed oscilloscope.
 LED_On();
 // software we wish to test
 LED_Off();

4.7.2. Measurement of Dynamic Efficiency
We will present three ways to measure dynamic efficiency of our software. To illustrate these three
methods, we will consider measuring the execution time of the sqrt function. The first method is to
count bus cycles using the assembly listing. This approach is only appropriate for very short
programs, and it becomes difficult for long programs with many conditional branch instructions. This
method is very tedious and often only approximate. A portion of the assembly output is presented in
Program 4.12. The Cortex™-M Technical Reference Manual Section 3.3 lists the execution times for

each instruction. These times are listed in the assembly version of Program 4.12. The “16*”
calculations are because the loop is executed 16 times. The divide instruction lists an execution time
from 2 to 12 cycles, depending on the data. The branch instructions may or may not have to refill the
pipeline, so their execution varies. The total cycle count for the sqrt function ranges from 150 to 344
cycles. At 50 MHz, 150 to 344 cycles ranges from 3 to 6.88 µs. For most programs it is actually very
difficult to get an accurate time measurement using this technique.

; Input: R0 unsigned integer
; Output: R0 squareroot of input
sqrt MOV r1,r0 ;1
 MOVS r3,#0x01 ;1
 ADD r0,r3,r1,LSR #4 ;1
 MOVS r2,#0x10 ;1
loop MLA r3,r0,r0,r1 ;16*2
 UDIV r3,r3,r0 ;16*(2to12)
 LSRS r0,r3,#1 ;16*1
 SUBS r2,r2,#1 ;16*1
 CMP r2,#0x00 ;16*1
 BNE loop ;16*(2to4)
 BX lr ;2to4

// Newton's method
// s is an integer
// sqrt(s) is an integer
uint32_t sqrt(uint32_t s){
uint32_t t; // t*t will become s
int n; // loop counter
 t = s/16+1; // initial guess
 for(n = 16; n; --n){ // will finish
 t = ((t*t+s)/t)/2;
 }
 return t;
}

Program 4.12. Integer sqrt function (assembly language version shows number
of cycles).

The second method uses the SysTick functions defined in Program 4.7. Since the execution speed may
be dependent on the input data, it is often wise to measure the execution speed for a wide range of
input parameters. There is a slight overhead in the measurement process itself. To be more accurate
you could measure this overhead and subtract it off your measurements.

There is an optimization level for the ARM Keil™ uVision® compiler (0, 1, 2, or 3) and a selector
button labeled “Optimize for time”. Measurements were performed with inputs 100 and 230400. The
assembly version took 201 to 220 cycles. The C program at optimization level 3 and “optimize for
time” took 178 to 198 cycles. Interestingly, the sqrt routine in “math.h” took about 1840 cycles to
execute.

void main(void){ uint32_t before,elapsed,ss,tt;
 SysTick_Init(); // initialize, Program 4.7
 ss = 230400;
 before = NVIC_ST_CURRENT_R;
 tt = sqrt(ss);
 elapsed = (before-NVIC_ST_CURRENT_R)&0x00FFFFFF;
 while(1){};
}

The third technique can be used in situations where SysTick is unavailable or where the execution
time might be larger than 224 cycles. In this empirical technique we attach an unused output pin to an
oscilloscope or to a logic analyzer. We will set the pin high before the call to the function and set the
pin low after the function call. In this way a pulse is created on the digital output with duration equal
to the execution time of the function. Assume Port F bit 2 is available and connected to the scope. By
placing the function call in a loop, the scope can be triggered. With a storage scope or logic analyzer,
the function need be called only once.

void main(void){ uint32_t tt;
 LED_Init(); // initialize PF2 (Program 4.3)
 while(1){
 LED_On(); // see Figure 4.25
 tt = sqrt(230400);
 LED_Off;
 }
}

Figure 4.25. Measurement of execution time using a port pin and a logic analyzer
(ProfileSqrt_4F120).

4.8. Exercises
4.1 What parallel ports are available on the TM4C123?

4.2 What parallel ports are available on the TM4C1294?

4.3 What is a direction register? Why does the microcontroller have direction registers?

4.4 What is the alternative function register?

4.5 Write software that initializes TM4C Port A, so pins 7,5,3,1 are output and the rest are input.

4.6 Write software that initializes TM4C Port A, so pins 5,4 are output and the rest are input.

4.7 Write software that initializes TM4C Port C in a friendly manner, so pins 2 and 3 are output.

4.8 Fill in the following table with the bit-specific assembly definitions (the first one is done)
Port Bits Definition (using AHB)
A 5 PA5 EQU 0x40004080
B 1,0
F 7,5
G 3,2,0

4.9 Fill in the following table with the bit-specific C definitions (the first one is done)

Port Bits Definition (using AHB)
A 5 #define PA5 (*((volatile uint32_t *)0x40004080))
C 3,1
D 7,6,5
F 7,0

4.10 Write software that initializes TM4C Port A, so pins 5, 4, and 3 are output. Make the
initialization friendly. Design an output function that takes a 3-bit parameter (0 to 7) and writes the
value to these three pins. Use bit-specific addressing for the output.

4.11 Write software that initializes TM4C Port E, so pin 1 is an output. Make the initialization
friendly. Design an output function that takes a 1-bit parameter (0 or 1) and writes the value to this
pin. Use bit-specific addressing for the output.

4.12 Redesign the SSR interface shown in Figure 4.18 using a +5V source. In particular, recalculate
the required resistor value if we were to change the +3.3V to +5V.

4.13 Redesign the LED interface shown in Figure 4.20 if the four LEDs operated at 1.9 V and 1 mA.
In particular, recalculate the required resistor values if we were to change to these LEDs.

4.14 Rewrite the software in Program 4.5 so the LED pattern changes every 0.1 sec.

4.15 Design a negative logic switch interface on PA5. I.e., the input is low if the switch is pressed
and high if the switch is not pressed.

4.16 Using the software in Program 4.11, write a function that delays 1 second.

D4.17 Show the circuit diagram to interface a switch to PA6 and an LED to PC3. Write software that
initializes the ports. In the body of the main program, toggle the LED on and off every one second if
the switch is pressed, and turn the LED off if the switch is not pressed.

D4.18 Show the circuit diagram to interface two switches to PA1 and PA0 and one LED to PD0.
Write software that initializes the ports. In the body of the main program, toggle the LED every 1
second if the two switches are either both on or both off. Turn the LED off if the PA1 switch is
pressed and the PA0 switch is not pressed. Turn the LED on if the PA0 switch is pressed and the PA1
switch is not pressed.

D4.19 Show the circuit diagram to interface one switch to PB0 and four LEDs to PA3-PA0. The four
LEDs will display a number from 0 to 15 in binary. Write software that initializes the ports. In the
body of the main program, increment the number every time the switch is pressed and released. Wait
at least 10 ms in between reading the switch. Once the number gets to 15, do not increment it any
more.

D4.20 Show the circuit diagram to interface four switches to PA3-PA0 and four LEDs to PE3-PE0.
Switches PA3-PA2 represent a 2-bit unsigned number 0, 1, 2, or 3. Switches PA1-PA0 represent a
second 2-bit unsigned number 0, 1, 2, or 3. The four LEDs will display a number from 0 to 15 in
binary. Write software that initializes the ports. In the body of the main program, read the switches,
form the two numbers, multiply the numbers together, and output the result on the LEDs.

D4.21 You are given a 16-position rotary switch, which has 17 wires. There is one wire called
common, and the other 16 wires are labeled S0 through S15. The common wire is connected to
exactly one of other 16 wires. You are to design an interface that creates a 4-bit digital signal
representing the switch position. These signals are to be connected to Port D bits 3,2,1,0. Write an
initialization ritual. Write an input subroutine that reads Port D and returns in Register R0 the current
switch position 0 to 15.

4.9. Lab Assignments
The labs in this book involve the following steps:

Part a) During the analysis phase of the project determine additional specifications and constraints. In
particular, discover which microcontroller you are to use, whether you are to develop in assembly
language or in C, and whether the project is to be simulated then built, just built or just simulated. For
example, inputs can be created with switches and outputs can be generated with LEDs. The UART
can be interfaced to a PC, and a communication program like PuTTY or TExaSdisplay can be used
to interact with the system.

Part b) Design, build, and test the hardware interfaces. Use a computer-aided-drawing (CAD)
program to draw the hardware circuits. Label all pins, chips, and resistor values. In this chapter, there
will be one switch for each input and one LED for each output. Connect the switch interfaces to
microcontroller input pins, and connect the LED interfaces to microcontroller output pins. Pressing
the switch will signify a high input logic value. You should activate the LED to signify a high output
logic value.

Part c) Design, implement and test the software that initializes the I/O ports and performs the
specified function. Often a main program is used to demonstrate the system.

Lab 4.1 NOT gate. The overall objective is to create a NOT gate. The system has one digital input
and one digital output, such that the output is the logical complement of the input. Implement the
design such that the complement function occurs in the software of the microcontroller.

Lab 4.2 AND gate. The overall objective is to create a 3-input AND gate. The system has three
digital inputs and one digital output, such that the output is the logical and of the three inputs.
Implement the design such that the AND function occurs in the software of the microcontroller.

Lab 4.3 OR gate. The overall objective is to create a 3-input OR gate. The system has three digital
inputs and one digital output, such that the output is the logical or of the three inputs. Implement the
design such that the OR function occurs in the software of the microcontroller.

Lab 4.4 EOR gate. The overall objective is to create a 2-input EXCLUSIVE OR gate. The system has
two digital inputs and one digital output, such that the output is the logical exclusive or of the two
inputs. Implement the design such that the EXCLUSIVE OR function occurs in the software of the
microcontroller.

Lab 4.5 Voting logic. The overall objective is to create a 3-input voting logic. The system has three
digital inputs and one digital output, such that the output is high if and only if two or more inputs are
high. This means the output will be low if two for more inputs are low. Implement the design such that
the voting function occurs in the software of the microcontroller.

Lab 4.6 Counter. The overall objective is to create a 4-bit counter. The system has one digital input
and four digital outputs. The counter is incremented each time the switch is pressed and released.
Wait at least 10 ms in between reading the switch to remove switch bounce. Once the counter reaches
15 roll it back over to 0 on the next press/release.

Lab 4.7 Oscillator. The overall objective is to a variable frequency oscillator. The system has two
digital inputs and two digital outputs. If input1 is true the digital output1 oscillates at 262 Hz. If the
input1 is false the output1 remains low. If input2 is true the digital output2 oscillates at 392 Hz. If the
input2 is false the output2 remains low. If you connect each output to a 10 kΩ resistor as shown in the
figure, then you can hear the tones as middle C and middle G. If both inputs are true attempt to
oscillate both outputs (output1 at 262 Hz and output2 at 392 Hz).

5. Modular Programming
Chapter 5 objectives are to:
• Present the C syntax of keywords and punctuation
• Describe how to program in a modular way
• Use conditional branching to perform decisions
• Implement for-loops, macros, and recursion
• Implement modular programming using subroutines
• Present functional debugging as a method to test software
In this chapter, we will begin by presenting a general approach to modular design. In specific, we
will discuss how to organize software blocks in an effective manner. The ultimate success of an
embedded system project depends both on its software and hardware. Computer scientists pride
themselves in their ability to develop quality software. Similarly electrical engineers are well-trained
in the processes to design both digital and analog electronics. Manufacturers, in an attempt to get
designers to use their products, provide application notes for their hardware devices. The main
objective of this book is to combine effective design processes together with practical software
techniques in order to develop quality embedded systems. As the size and especially the complexity
of the software increase, the software development changes from simple "coding" to "software
engineering", and the required skills also vary along this spectrum. These software skills include
modular design, layered architecture, abstraction, and verification. Real-time embedded systems are
usually on the small end of the size scale, but never the less these systems can be quite complex.
Therefore, both hardware and software skills are essential for developing embedded systems. Writing
good software is an art that must be developed, and cannot be added on at the end of a project. Just
like any other discipline (e.g., music, art, science, religion), expertise comes from a combination of
study and practice. The watchful eye of a good mentor can be invaluable, so take the risk and show
your software to others inviting praise and criticism. Good software combined with average
hardware will always outperform average software on good hardware. In this chapter we will outline
various techniques for developing quality software.

5.1. C Keywords and Punctuation
C has predefined tokens, called keywords, which have specific meaning in C programs, as listed in
Table 5.1. This section describes keywords and punctuation.

Keyword Meaning
__asm Specify a function is written in assembly code (specific to

ARM Keil™ uVision®)
auto Specifies a variable as automatic (created on the stack)
break Causes the program control structure to finish
case One possibility within a switch statement
char Defines a number with a precision of 8 bits(C99

defines int8_t and uint8_t)
const Defines parameter as constant in ROM, and defines a local

parameter as fixed value
continue Causes the program to go to beginning of loop
default Used in switch statement for all other cases
do Used for creating program loops
double Specifies variable as double precision floating point
else Alternative part of a conditional
extern Defined in another module
float Specifies variable as single precision floating point
for Used for creating program loops
goto Causes program to jump to specified location
if Conditional control structure
int Defines a number with a precision that will vary from

compiler to compiler
long Defines a number with a precision of 32 bits(C99

defines int32_t and uint32_t)
register Specifies how to implement a local
return Leave function
short Defines a number with a precision of 16 bits(C99

defines int16_t and uint16_t)
signed Specifies variable as signed (default)
sizeof Built-in function returns the size of an object
static Stored permanently in memory, accessed locally
struct Used for creating data structures
switch Complex conditional control structure

typedef Used to create new data types
unsigned Always greater than or equal to zero
void Used in parameter list to mean no parameter
volatile Can change implicitly outside the direct action of the

software.
while Used for creating program loops

 Table 5.1. Keywords have predefined meanings.
The volatile keyword disables compiler optimization, forcing the compiler to fetch a new value each
time. We will use volatile when defining I/O ports because the value of ports can change outside of
software action. We will also use volatile when sharing a global variable between the main program
and an interrupt service routine. It is a good programming practice not to use these keywords for your
variable or function names.

Punctuation marks are very important in C. It is one of the most frequent sources of errors for both
beginning and experienced programmers.

Semicolons are used as statement terminators. Strange and confusing syntax errors may be generated
when you forget a semicolon, so this is one of the first things to check when trying to remove syntax
errors. Notice that one semicolon is placed at the end of every simple statement in Program 5.1. When
executed, the function Step will output the pattern 10, 9, 5, 6 to Port D. The #define statement
creates a substitution rule, such that every instance of STEPPER in the program is replaces with (*
((volatile uint32_t *)0x4000703C)) .

#define STEPPER (*((volatile uint32_t *)0x4000703C))
void Step(void){
 STEPPER = 10;
 STEPPER = 9;
 STEPPER = 5;
 STEPPER = 6;
}
Program 5.1. Semicolons are used to separate one statement from the next.

Preprocessor directives do not end with a semicolon since they are not actually part of the C language
proper. Preprocessor directives begin in the first column with the # and conclude at the end of the
line. Program 5.2will fill the array DataBuffer with data read from the input Port A. We assume in
this example that Port A has been initialized as an input. Notice that semicolons are used to separate
the three fields of the for loop statement.

uint8_t DataBuffer[100];
#define GPIO_PORTA_DATA_R (*((volatile uint32_t *)0x400043FC))
void Fill(void){ uint32_t j;
 for(j=0; j<100; j++){
 DataBuffer[j] = GPIO_PORTA_DATA_R;
 }
}

Program 5.2. Semicolons are used to separate three fields of the for statement.

We can define a label using the colon. Although C has a goto statement, it is strongly discouraged to
use goto . Software is easier to understand using the block-structured control statements (if, if else,
for, while, do while, and switch case.) Program 5.3 will return after the Port A input reads the same
value 10000 times in a row. Again we assume Port A has been initialized as an input. Notice that
every time the current value on Port A is different from the previous value the counter is reinitialized.
Notice the use of colons in Program 5.3.

int32_t Debounce(void){ uint32_t cnt; uint32_t last,new;
start: cnt = 0; // number of times Port C is the same
 last = GPIO_PORTA_DATA_R;
loop: if(++cnt==10000) goto done; // count 10000 times
 new = GPIO_PORTA_DATA_R;
 if(last != new) goto start; // changed??
 goto loop;
done: return(last);
}
Program 5.3. Colons are used to define labels (places to which we can jump).

Colons also terminate case , and default prefixes that appear in switch statements. In Program 5.4
one output to the stepper motor producedeach time the function OneStep is called. The proper
stepper motor sequence is 10–9–5–6. The default case is used to restart the pattern. For both
applications of the colon (goto and switch), we see that a label is created that is a potential target for
a transfer of control. Notice the use of colons in Program 5.4.

uint8_t Last=10;
void OneStep(void){
uint8_t theNext;
 switch(Last){
 case 10: theNext = 9; break; // 10 to 9
 case 9: theNext = 5; break; // 9 to 5
 case 5: theNext = 6; break; // 5 to 6
 case 6: theNext = 10; break; // 6 to 10
 default: theNext = 10;
 }
 GPIO_PORTD_DATA_R = theNext;
 Last = theNext; // set up for next call
}
Program 5.4. Colons are also used with the switch statement.

Commas separate items that appear in lists. We can create multiple variables of the same type using
commas.

uint32_t beginTime,endTime,elapsedTime;

Lists are also used with functions having multiple parameters, both when the function is defined and
called. Program 5.5 adds two 16-bit signed numbers, implementing ceiling and floor. Notice the use
of commas in Program 5.5.

int16_t add(int16_t x, int16_t y){ int16_t z;
 z = x+y;
 if((x>0)&&(y>0)&&(z<0))z = 32767;
 if((x<0)&&(y<0)&&(z>0))z = -32768;
 return(z);
}
void main(void){ int16_t a,b;
 a = add(2000,2000)
 b = 0
 while(1){
 b = add(b,1);
}
Program 5.5. Commas separate the parameters of a function.

Lists can also be used in general expressions. Sometimes it adds clarity to a program if related
variables are modified at the same place. The value of a list of expressions is always the value of the
last expression in the list. In the following example, first thetime is incremented, next thedate is
decremented, and then x is set to k+2 .

x = (thetime++, thedate--, k+2);

Apostrophesare used to specify character literals. Assuming the function OutChar will display a
single ASCII character, Program 5.6 will display the lower case alphabet.

void Alphabet(void){ char mych;
 for(mych='a'; mych<='z'; mych++){
 OutChar(mych); // Print next letter
 }
}
Program 5.6. Apostrophes are used to specify characters.

Quotation marks are used to specify string literals. Strings are stored as a sequence of ASCII
characters followed by a termination code, 0. Program 5.7 will display “Hello World” twice.

const char Msg[]= "Hello World"; // string constant
void OutString(const char str[]){ int i;
 i = 0;
 while(str[i]){ // output until the 0 termination
 OutChar(str[i]); // Print next letter
 i = i+1;
 }
}

void PrintHelloWorld(void){
 OutString("Hello World");
 OutString(Msg);
}
Program 5.7. Quotation marks are used to specify strings.

Braces {} are used throughout C programs. The most common application is for creating a compound
statement. Each open brace { must be matched with a closing brace }. Notice the use of indenting in
Programs 5.1 through 5.7 that helps to match up braces. Each time an open brace is used, the source
code is tabbed over using 2 spaces. In this way, it is easy to see at a glance the brace pairs.

Square brackets enclose array dimensions (in declarations) and subscripts (in expressions). The
following defines an integer array named Fifo consisting of 100 16-bit signed numbers.

int16_t Fifo[100];

The following assigns the variable PutPt to the address of the first entry of the array.

PutPt = &Fifo[0];

Parentheses enclose argument lists that are associated with function declarations and calls. They are
required even if there are no arguments. As with all programming languages, C uses parentheses to
control the order in which expressions are evaluated. Thus, (11+3)/2 yields 7, whereas 11+3/2 yields
12. Parentheses are very important when writing expressions.

5.2. Modular Design using Abstraction
In Section 2.4, we presented successive refinement as a method to convert a problem statement into a
software algorithm. Successive refinement is the transformation from the general to the specific. In
this section, we introduce the concept of modular programming and demonstrate that it is an effective
way to organize our software projects. There are four reasons for forming modules. First, functional
abstraction allows us to reuse a software module from multiple locations. Second, complexity
abstraction allows us to divide a highly complex system into smaller less complicated components.
The third reason is portability. If we create modules for the I/O devices, then we can isolate the rest
of the system from the hardware details. This approach is sometimes called a hardware abstraction
layer. Since all the software components that access an I/O port are grouped together, it will be easier
to redesign the embedded system on a machine with different I/O ports. Finally, another reason for
forming modules is security. Modular systems by design hide the inner workings from other modules
and provide a strict set of mechanisms to access data and I/O ports. Hiding details and restricting
access generates a more secure system.

Software must deal with complexity. Most real systems have many components, which interact in a
complex manner. The size and interactions will make it difficult to conceptualize, abstract, visualize,
and document. In this chapter we will present data flow graphs and call graphs as tools to describe
interactions between components. Software must deal with conformity. All design, including
software design, must interface with existing systems and with systems yet to be designed. Interfacing
with existing systems creates an additional complexity. Software must deal with changeability. Most
of the design effort involves change. Creating systems that are easy to change will help manage the
rapid growth occurring in the computer industry.

5.2.1. Definition and Goals
The key to completing any complex task is to break it down into manageable subtasks. Modular
programming is a style of software development that divides the software problem into distinct well-
defined modules. The parts are as small as possible, yet relatively independent. Complex systems
designed in a modular fashion are easier to debug because each module can be tested separately.
Industry experts estimate that 50 to 90% of software development cost is spent in maintenance. All
five aspects of software maintenance

• Correcting mistakes,
• Adding new features,
• Optimizing for execution speed or program size,
• Porting to new computers or operating systems, and
• Reconfiguring the software to solve a similar related program

are simplified by organizing the software system into modules. The approach is particularly useful
when a task is large enough to require several programmers.

A program module is a self-contained software task with clear entry and exit points. There is a
distinct difference between a module and the assembly language subroutine or C language function. A
module is usually a collection of subroutines or functions that in its entirety performs a well-defined
set of tasks. A collection of 32-bit trigonometry functions is an example of a module. The device
driver in Program 4.3 is another example of a module. Modular programming involves both the
specification of the individual modules and the connection scheme whereby the modules are
interfaced together to form the software system. While the module may be called from many locations
throughout the software, there should be well-defined entry points. In C, the entry point of a module
is defined in the header file and is specified by a list of function prototypes for the public functions.
Similarly in assembly, the entry point of a module is also a list of public subroutines that can be
called.

Common Error: In many situations the input parameters have a restricted range. It would be
inefficient for the module and the calling routine to both check for valid input. On the other hand, an
error may occur if neither checks for valid input.

An exit point is the ending point of a program module. The exit point of a subroutine is used to return
to the calling routine. We need to be careful about exit points. It is important that the stack be properly
balanced at all exit points. Similarly, if the subroutine returns parameters, then all exit points should
return parameters in an acceptable format. If the main program has an exit point it either stops the
program or returns to the debugger. In most embedded systems, the main program does not exit.

Common Error: It is an error if all the exit points of an assembly subroutine do not balance the stack
and return parameters in the same way.

In this section, an object refers to either a subroutine or a data element. A public object is one that is
shared by multiple modules. This means a public object can be accessed by other modules. Typically,
we make the most general functions of a module public, so the functions can be called from other
modules. For a module performing I/O, typical public functions include initialization, input, and
output. A private object is one that is not shared. I.e., a private object can be accessed by only one
module. Typically, we make the internal workings of a module private, so we hide how a private
function works from user of the module. In an object-oriented language like C++ or Java, the
programmer clearly defines a function or data object as public or private. Later in this chapter, we
will present a naming convention for assembly language or C that can be used in an equivalent manner
to define a function or data object as public or private.

At a first glance, I/O devices seem to be public. For example, Port D resides permanently at the fixed
address of 0x400073FC, and the programmer of every module knows that. In other words, from a
syntactic viewpoint, any module has access to any I/O device. However, in order to reduce the
complexity of the system, we will restrict the number of modules that actually do access the I/O
device. From a “what do we actually do” perspective, however, we will write software that
considers I/O devices as private, meaning an I/O device should be accessed by only one module. In
general, it will be important to clarify which modules have access to I/O devices and when they are
allowed to access them. When more than one module accesses an I/O device, then it is important to
develop ways to arbitrate or synchronize. If two or more want to access the device simultaneously

arbitration determines which module goes first. Sometimes the order of access matters, so we use
synchronization to force a second module to wait until the first module is finished. Most
microcontrollers do not have architectural features that restrict access to I/O ports, because it is
assumed that all software burned into its ROM was designed for a common goal, meaning from a
security standpoint one can assume there are no malicious components. However, as embedded
systems become connected to the Internet, providing the power and flexibility, security will become
important issue.

Checkpoint 5.1: What conflict could arise if multiple modules use the same port, but module
initialization functions are not friendly? How do you resolve the conflict?

Information hiding is similar to minimizing coupling. It is better to separate the mechanisms of
software from its policies. We should separate “what the function does” from “how the function
works”. What a function does is defined by the relationship between its inputs and outputs. It is good
to hide certain inner workings of a module and simply interface with the other modules through the
well-defined input/output parameters. For example we could implement a variable size buffer by
maintaining the current byte count in a global variable, Count . A good module will hide
how Count is implemented from its users. If the user wants to know how many bytes are in the buffer,
it calls a function that returns the count. A badly written module will not hide Count from its users.
The user simply accesses the global variable Count . If we update the buffer routines, making them
faster or better, we might have to update all the programs that access Count too. Allowing all
software to access Count creates a security risk, making the system vulnerable to malicious or
incompetent software. The object-oriented programming environments provide well-defined
mechanisms to support information hiding. This separation of policies from mechanisms is discussed
further in the section on layered software.

Maintenance Tip: It is good practice to make all permanently-allocated data and all I/O devices
private. Information is transferred from one module to another through well-defined public function
calls.

The Keep It Simple Stupid approach tries to generalize the problem so that the solution uses an
abstract model. Unfortunately, the person who defines the software specifications may not understand
the implications and alternatives. As a software developer, we always ask ourselves these questions:

“How important is this feature?”
“What if it worked this different way?”

Sometimes we can restate the problem to allow for a simpler and possibly more powerful solution.

5.2.2. Functions, Procedures, Methods, and Subroutines
A program module that performs a well-defined task can be packaged up and defined as a single
entity. Functions in that module can be invoked whenever a task needs to be performed. Object-
oriented high-level languages like C++ and Java define program modules as methods. Functions and
procedures are defined in some high-level languages like Pascal, FORTRAN, and Ada. In these
languages, functions return a parameter and procedures do not. Most high-level languages however

define program modules as functions, whether they return a parameter or not. A subroutine is the
assembly language version of a function. Consequently, subroutines may or may not have input or
output parameters. Formally, there are two components to a subroutine: definition and invocation. The
subroutine definition specifies the task to be performed. Examples of three subroutine definitions can
be seen as the SysTick functions in Program 4.7. In other words, it defines what will happen when
executed. The syntax for a subroutine definition was presented previously in Section 2.8. It begins
with a label, which will be the name of the subroutine and ends with a return instruction. The
definition of a subroutine includes a formal specification its input parameters and output parameters.
In well-written software, the task performed by a subroutine will be well-defined and logically
complete. The subroutine invocation is inserted to the software system at places when and where the
task should be performed. An example of a subroutine invocation can be seen in Program 3.9. We
define software that invokes the subroutine as “the calling program” because it calls the subroutine.
There are three parts to a subroutine invocation: pass input parameters, subroutine call, and accept
output parameters. If there are input parameters, the calling program must establish the values for
input parameters before it calls the subroutine. A BL instruction is used to call the subroutine. After
the subroutine finishes, and if there are output parameters, the calling program accepts the return
value(s). In this chapter, we will pass parameters using the registers. If the register contains a value,
the parameter is classified as call by value. If the register contains an address, which points to the
value, then the parameter is classified as call by reference.
For example, consider a subroutine that samples the 12-bit ADC, as drawn in Figure 5.1. An analog
input signal is connected to ADC0. The details of how the ADC works will be presented later in
Chapter 10, but for now we focus on the defining and invoking subroutines. The execution sequence
begins with the calling program setting up the input parameters. In this case, the calling program sets
Register R0equal to the channel number, MOV R0,#0 . The instruction BLADC_In will save the
return address in the LR registerand jump to the ADC_In subroutine. The subroutine performs a
well-defined task. In this case, it takes the channel number in Register R0 and performs an analog to
digital conversion, placing the digital representation of the analog input into Register R0. The BX
LR instruction will movethe return address into the PC, returning the execution thread to the
instruction after the BL in the calling program. In this case, the output parameter in Register R0
contains the result of the ADC conversion. It is the responsibility of the calling program to accept the
return parameter. In this case, it simply stores the result into variable n . In this example, both the
input and output parameters are call by value.

Figure 5.1. The calling program invokes the ADC_In subroutine passing
parameters in registers.

5.2.3. Dividing a Software Task into Modules
The overall goal of modular programming is to enhance clarity. The smaller the task, the easier it will
be to understand. Coupling is defined as the influence one module’s behavior has on another module.
In order to make modules more independent we strive to minimize coupling. Obvious and appropriate
examples of coupling are the input/output parameters explicitly passed from one module to another. A
quantitative measure of coupling is the number of bytes per second (bandwidth) that are transferred
from one module to another. On the other hand, information stored in public global variables can be
quite difficult to track. In a similar way, shared accesses to I/O ports can also introduce unnecessary
complexity. Public global variables cause coupling between modules that complicate the debugging
process because now the modules may not be able to be separately tested. On the other hand, we must
use global variables to pass information into and out of an interrupt service routine and from one call
to an interrupt service routine to the next call. When passing data into or out of an interrupt service
routine, we group the functions that access the global into the same module, thereby making the global
variable private. Another problem specific to embedded systems is the need for fast execution,
coupled with the limited support for local variables. On many microcontrollers it is inefficient to
implement local variables on the stack. Consequently, many programmers opt for the less elegant yet
faster approach of global variables. Again, if we restrict access to these globals to function in the
same module, the global becomes private. It is poor design to pass data between modules through
public global variables; it is better to use a well-defined abstract technique like a FIFO queue.

We should assign a logically complete task to each module. The module is logically complete when it
can be separated from the rest of the system and placed into another application. The interface design
is extremely important. The interface to a module is the set of public functions that can be called and
the formats for the input/output parameters of these functions. The interfaces determine the policies of
our modules: “What does the module do?” In other words, the interfaces define the set of actions that
can be initiated. The interfaces also define the coupling between modules. In general we wish to
minimize the bandwidth of data passing between the modules yet maximize the number of modules. Of
the following three objectives when dividing a software project into subtasks, it is really only the
first one that matters

• Make the software project easier to understand
• Increase the number of modules
• Decrease the interdependency (minimize bandwidth between modules).

Checkpoint 5.2: List some examples of coupling.

We will illustrate the process of dividing a software task into modules with an abstract but realistic
example. The overall goal of the example shown in Figure 5.2 is to sample data using an ADC,
perform calculations on the data, and output results. The organic light emitting diode (OLED) could
be used to display data to the external world. Notice the typical format of an embedded system in that
it has some tasks performed once at the beginning, and it has a long sequence of tasks performed over
and over. The structure of this example applies to many embedded systems such as a diagnostic
medical instrument, an intruder alarm system, a heating/AC controller, a voice recognition module,
automotive emissions controller, or military surveillance system. The left side of Figure 5.2 shows
the complex software system defined as a linear sequence of ten steps, where each step represents

many lines of assembly code. The linear approach to this program follows closely to linear sequence
of the processor as it executes instructions. This linear code, however close to the actual processor,
is difficult to understand, hard to debug, and impossible to reuse for other projects. Therefore, we
will attempt a modular approach considering the issues of functional abstraction, complexity
abstraction, and portability in this example. The modular approach to this problem divides the
software into three modules containing seven subroutines. In this example, assume the sequence
Step4-Step5-Step6 causes data to be sorted. Notice that this sorting task is executed twice.

Figure 5.2. A complex software system is broken into three modules containing
seven subroutines.

Functional abstraction encourages us to create a Sort subroutine allowing us to write the software
once, but execute it from different locations. Complexity abstraction encourages us to organize the
ten-step software into a main program with multiple modules, where each module has multiple
subroutines. For example, assume the assembly instructions in Step1 cause the ADC to be initialized.
Even though this code is executed only once, complexity abstraction encourages us to create
an ADC_Init subroutine so the system is easier to understand and easier to debug. In a similar way
assume Step2 initializes the OLED port, Step3 samples the ADC, the sequence Step7-Step8 performs
an average, and Step10 outputs to the OLED. Therefore, each well-defined task is defined as a
separate subroutine. The subroutines are then grouped into modules. For example, the ADC module is
a collection of subroutines that operate the ADC. The complex behavior of the ADC is now
abstracted into two easy to understand tasks: turn it on, and use it. In a similar way, the OLED module
includes all functions that access the OLED. Again, at the abstract level of the main program,
understanding how to use the OLED is a matter knowing we first turn it on then we transmit data. The
math module is a collection of subroutines to perform necessary calculations on the data. In this
example, we assume sort and average will be private subroutines, meaning they can be called only by
software within the math module and not by software outside the module. Making private subroutines
is an example of “information hiding”, separating what the module does from how the module works.
When we port a system, it means we take a working system and redesign it with some minor but
critical change. The OLED device is used in this system to output results. We might be asked to port
this system onto a device that uses an LCD in place of the OLED for its output. In this case, all we
need to do is design, implement and test an LCDmodule with two

subroutines LCD_Init and LCD_Out that function in a similar manner as the existing OLED
routines. The modular approach performs the exact same ten steps in the exact same order. However,
the modular approach is easier to debug, because first we debug each subroutine, then we debug each
module, and finally we debug the entire system. The modular approach clearly supports code reuse.
For example, if another system needs an ADC, we can simply use the ADC module software without
having to debug it again.

Observation: When writing modular code, notice its two-dimensional aspect. Down the y-axis still
represents time as the program is executed, but along the x-axis we now visualize a functional block
diagram of the system showing its data flow: input, calculate, output.

Observation: When writing modular code, we hide details that are likely to change. Furthermore, we
take details that are unlikely to change and use them to define the interfaces between modules.

5.2.4. How to Draw a Call Graph
Defined previously in Figure 2.5, we recall that a call graph is a graphical representation of the
organizational structure of the modules pieced together to construct a system. In this section, we will
work through the process of drawing a call graph. A software module is a collection of public
functions, private functions, and private global variables that together perform a complete task.
Modular programming places multiple related subroutines into a single module. I/O devices are
essential in all computers, but they are particularly relevant when developing software for an
embedded system. Just like our software, it is appropriate to group I/O ports into hardware modules,
which together perform a complete I/O task. The main program is at the top, and the I/O ports are at
the bottom. In a hierarchical system, the modules are organized both in a horizontal and vertical
fashion. Modules at the same horizontal level perform similar but distinct functions (e.g., we could
place all I/O modules at the same horizontal level in the call graph hierarchy). From a vertical
perspective, we place modules responsible for overall policy decisions at the top and modules
performing implementations at the bottom of the call graph hierarchy. Since one of the advantages of
breaking a large software project into subtasks is concurrent development, it makes sense to consider
concurrency when dividing the tasks. In other words, the modules should be partitioned in such a way
that multiple programmers can develop and test the subtasks as independently as possible. On the
other hand, careful and constant supervision is required as modules are connected together and tested.

An arrow represents a software linkage, i.e., one software module calling another. We draw the tail
of the arrow in the software module that initiates the call, and we point the head of the arrow at the
software module it calls. When programming in C, including a header file in the implementation file
of a module defines an arrow in the call graph. The exception to this rule is including a header file
that contains constants and has no corresponding implementation file. The file tm4c123ge6pm.h
contains the I/O port definitions for the TM4C123, and has no code file. Therefore, tm4c123ge6pm
is not a module. On the other hand we can create an ADC module by placing all the ADC functions in
the ADC.c file and defining the prototypes for the public functions in the ADC.h file. If we place
an #include "ADC.h" statement in our main.c code, we create a call graph arrow from the main
module to the ADC module, because software in the main module can call the public functions of the
ADC module. In a large complex system, we will add call graph arrows for situations where it can

call rather than where is does call. It is easier in a larger system to draw the can-call arrows than the
does-call arrows, because we just have to look at the header files each code file includes. In contrast,
we usually draw only the does-call arrows for accesses to I/O devices. In other words, a device
driver is a collection of I/O software for a particular I/O device. This approach will also simplify
maintaining a call graph during phases while the software is being designed, written, debugged, or
upgraded. Changes to the list of header files included by a module are much less frequent than
changes to the list of functions actually called. On the other hand, most embedded systems are simple
enough that it is more appropriate to show just the does-call arrows.

A global variable is one which is allocated in permanent RAM. These variables are a necessary and
important component of an embedded system, because some information is permanent in nature. Good
programming style however suggests we restrict access to these global variables to a single module.
On the other hand, a public global variable is accessed by more than one module. Public globals
represent poor programming style, because they add complexity to the system. Reading and writing
public globals add arrows to the call graph. If module A reads a global variable in module B, then we
add an arrow from B to A, because activities in B cause changes in A. If module A writes to a global
variable in module B, then we add an arrow from A to B, because activities in A cause changes in B.
If there is an arrow from A to B, and a second arrow from B to A, then modules A and B must be
tested together. Coupling through shared global variables is a very bad style because debugging will
be difficult.

Typically, hardware modules are at the lowest level, because hardware responds to software. An
arrow from an oval to a rectangle represents a hardware access, i.e., the software reads from or
writes to an I/O port. An arrow from an oval to a rectangle signifies the usual read/write access to the
hardware module or public global. We will study interrupts in detail in Chapter 9. With interrupts, a
hardware triggering event causes the software interrupt service routine to execute. Therefore with
interrupts, we add an arrow from the hardware module to the software module. It can be drawn with
two single-headed arrows or one double-headed arrow. Defining arrows between hardware and
software modules allows us to identify problems such as conflict (two modules writing to the same
I/O configuration registers), or race conditions (e.g., one module reading a port before another
module initializes it).

Figure 5.3 shows a call graph of the example presented in Figure 5.2. To draw a call graph, we first
represent all the software modules as ovals. Inside the oval lives the functions and variables of that
module. Normally, there is not space to list all the subroutines of each module inside the oval, but
they are drawn here in this figure so you can see the details of how the graph is drawn. In this
example, there is a main program and three software modules. Since this main program calls the Math
module, the main program is at a higher level than the Math module, therefore the oval for main will
be drawn above the oval for Math. The ADC, Math, and OLED modules do not call each other and
each is called by main, so they exist at the same level. In this example, there are two hardware
modules, and they are drawn as rectangles. To draw the arrows, we search for subroutine call
instructions. The tail of an arrow is placed in the module containing the calling program, and the head
of an arrow is placed in the module with the subroutine.

If there are multiple calls from one module to another, only one arrow is needed. For example, there
are two calls from main to ADC, but only one arrow is drawn. No arrows will be drawn to describe
subroutine calls within a module. For example, we do not need to draw arrows representing the Math

routine Math_Calc calling Sort and Average , because these are all within the same module. Two
arrows from software to hardware are drawn, because the ADC module accesses the ADC hardware,
and the OLED module accesses the OLED hardware.

Figure 5.3. A call graph of the system of Figure 5.2.

We can develop and connect modules in a hierarchical manner. Construct new modules by combining
existing modules. In general, to reduce complexity of the system we want to maximize the number of
modules and minimize the number of arrows between them. More specifically, we want to minimize
the bandwidth of data flowing from one module to the other.

Observation: If module A calls module B, and module B calls module A, then these two modules
must be tested together.

Maintenance Tip: It is good practice to have one hardware module (e.g., the ADC or OLED)
accessed by exactly one software module.

Checkpoint 5.3: In what way are I/O devices considered as public?

Checkpoint 5.4: How can you implement a system that considers I/O devices as private?

5.2.5. How to Draw a Data Flow Graph
As shown previously in Figure 2.4, a data flow graph is a graphical representation of the data as it
traverses the system. Figure 5.4 shows the data flow graph for the example presented in Figure 5.2. In
general, the data flow graph contains the same software and hardware modules as the call graph.
There are two fundamental differences, however. The arrows in a data flow graph specify the
direction, data type, and rate of data transfer. Conversely, arrows in a call graph specify which
module invoked which other module. The second difference is in general we draw modules in a data
flow graph from left to right as data enters as inputs on the left and exits as outputs on the right. In a
call graph, we draw modules top to bottom from high-level to low-level functions.

Figure 5.4. A data flow graph of the system of Figure 5.2.

Assume in this example, the analog input contains frequency components from 0 to 50 Hz. We classify
the signal as analog and specify the bandwidth of the analog signal to be 50 Hz. The output of the
ADC hardware is 12-bit digital samples. If the 12-bit ADC is sampled 100 times a second, we define
the bandwidth of the digital data out of the ADC software module as 100 samples/sec, 100
halfwords/sec or 200 bytes/sec. Assume once a second, the main program fills a 100-element buffer
and passes it to the math module. The math module takes in 100 samples and generates one 16-bit
result. In this case, we define the output of the math module to be 1 halfword/sec. If once a second
each result is printed as ten ASCII characters using the OLED, then the bandwidth into and out of the
OLED software module will be 10 characters/sec.

5.2.6. Top-down versus Bottom-up Design
Hierarchical systems have tree-structured call graphs, like system in Figure 5.3. Layered systems
have call graphs that group the modules into layers, such that the linkage arrows only go from a high
level to a lower level or within the same level. A lower level module is not allowed to call a higher
level. If at all possible, we should avoid cyclic graphs. A cycle in the call graph will make testing
difficult. Recall that we design top down and test bottom up. When there is a cycle in the call graph,
there is no good place to start debugging. There are two approaches to hierarchical programming. The
top-down approach starts with a general overview, like an outline of a paper, and builds refinement
into subsequent layers. Most engineers believe top down is the proper approach to design. A top-
downprogrammer was once quoted as saying,

“Write no software until every detail is specified”

Top down provides an excellent global approach to the problem. Managers like top down because it
gives them tighter control over their workers. The top-down approach works well when an existing
operational system is being upgraded or rewritten.

On the other hand the bottom-up approach starts with the smallest detail, builds up the system “one
brick at a time.” The bottom-up approach provides a realistic appreciation of the problem because
we often cannot appreciate the difficulty or the simplicity of a problem until we have tried it. It
allows programmers to start immediately coding and gives programmers more input into the design.
For example, a low level programmer may be able to point out features that are not possible and
suggest other features that are even better. Some software projects are flawed from their conception.
With bottom-up design, the obvious flaws surface early in the development cycle.

Bottom-up is a better approach when designing a complex system and specifications are open-ended.
For example, when researching new technologies or exploring new markets, you can’t perform a top-
down design because there are no specifications or constraints with which to work. However, a
bottom-up approach allows you to brainstorm putting pieces together in new and creative ways. In a
bottom-up design, questions begin with “I wonder what would happen if…”

On the other hand, top down is better when you have a very clear understanding of the problem
specifications and the constraints of your system.

5.3. Making Decisions
The previous section presented fundamental concepts and general approaches to solving problems on
the computer. In the subsequent sections, detailed implementations will be presented.

5.3.1. Conditional Branch Instructions
Normally the computer executes one instruction after another in a sequential or linear fashion. In
particular, the next instruction to execute is found immediately following the current instruction. We
use branch instructions to deviate from this straight line path. The branch instructions were presented
earlier in Chapter 3. The following unsigned conditional branch instructions must follow a subtract or
compare, such as SUBS CMN and CMP .

BLO target ;Branch if unsigned less than if C=0, same as
BCC
BLS target ;Branch if unsigned less than or equal to if C=0 or Z=1
BHS target ;Branch if unsigned greater than or equal to if C=1, same as
BCS
BHI target ;Branch if unsigned greater than if C=1 and Z=0
After a subtraction the carry bit is 0 if there is an error and 1 if there is no error. To understand
exactly how unsigned conditional branches work, let’s start with the BLO instruction. As stated
earlier, we bring the first unsigned number into a register, and then subtract a second unsigned number
from the first. Let’s call the first number First and the second number Second. The BLO instruction is
supposed to branch if the first unsigned number is strictly less than the second. The two possibilities,
branch or no branch, are illustrated in number wheels drawn in Figure 5.5.

Figure 5.5. Number wheel on left shows the result of subtracting a big unsigned
number from a little number, and the one on the right occurs when subtracting a
small unsigned number from a large one.

Assume for a moment that the condition is true, meaning First < Second. Since First < Second, First-
Second should be a negative number. I.e., if we subtract a big unsigned number from a small unsigned
number, an unsigned overflow must occur, because the correct result of the subtraction is negative, but
there are no negative numbers in the unsigned format. Thus, the C bit must be clear (C=0 means
overflow error). The left side of Figure 5.5 shows the subtraction will always cross the 0–(232-1)
barrier because First < Second. Conversely, assume the condition is false, meaning the first unsigned
number is greater than or equal the second. The right side of Figure 5.5 shows when we subtract the
smaller second number from the bigger first number we get the correct result. In this case, the C bit
will be set (C=1 means no overflow error). Thus, the BLO instruction can be defined as branch if
C=0. The BHS instruction is the logical complement of BLO , so BHS instruction will branch if the
C bit is set. The BLS instruction will branch if the first number is less than the second (C=0) or if the
two numbers are equal (Z=1). Hence, the operation of the BLS instruction can be defined as branch
if (C=0 or Z=1). Lastly, the BHI instruction is the logical complement of BLS , so BHI instruction
will branch if (C=1 and Z=0).

The following signed branch instructions must follow a subtract compare or test instruction, such
as SUBS CMN and CMP .

BLT target ; if signed less than if (~N&V | N&~V)=1 if N≠V
BGE target ; if signed greater than or equal to if (~N&V | N&~V)=0 if N=V
BGT target ; if signed greater than if (Z | ~N&V | N&~V)=0 if Z=0 and
N=V
BLE target ; if signed less than or equal to if (Z | ~N&V | N&~V)=1 if Z=1 or N≠V

To understand exactly how signed conditional branches work, we will begin withthe BLT
instruction. We bring the first signed number into a register, and then subtract a second signed number
from the first. The BLT instruction is supposed to branch if the first signed number is strictly less
than the second. Assume for a moment that First < Second, thus the branch should occur. Since First <
Second, First-Second should be a negative number. Let’s further dissect this case into two subcases.
If the V bit is clear, the subtraction is correct and the N bit will be 1. This subcase defines the N&~V
term. If the V bit is set, the subtraction is incorrect and the result will be incorrectly positive, making
N bit 0. This subcase defines the ~N&V term. Conversely, assume the condition is false, meaning
First ≥ Second, and the branch should not occur. Since First ≥ Second, First-Second should be a
positive number. If the V bit is clear, the subtraction is correct and the N bit will be 0. If the V bit is
set, the subtraction is incorrect and the result will be incorrectly negative, making N bit 1. Thus,
the BLT instruction can be defined as branch if (~N&V | N&~V)=1. The BGE instruction is the
logical complement of BLT , so BGE instruction will branch if (~N&V | N&~V)=0. The BLE
instruction will branch if the first number is less than the second ((~N&V | N&~V)=1) or if the two
numbers are equal (Z=1). Combining the less than with the equal conditions, the operation of BLE
instruction can be defined as branch if (Z | ((~N&V) | (N&~V)))==1. Lastly, the BGT instruction is
the logical complement of BLE , so BGT instruction will branch if (Z | ((~N&V) | (N&~V)))=0.

Normally, we will never use the CMN instruction explicitly. However, when we write the
instruction CMP R0,#n the number n is specified by the flexible second operand. Thus, there are only
a limited number of choices we can select for the constant n . For example, n cannot equal -2. Luckily
for us, the assembler will automatically convert CMP R0,#-2 into the equivalent instruction CMN
R0,#2 .

Common Error:It is usually an error to follow a compare instruction with BPL or BMI .

5.3.2. Conditional if-then Statements
Decision making is an important aspect of software programming. Two values are compared and
certain blocks of program are executed or skipped depending on the results of the comparison. In
assembly language it is important to know the precision (e.g., 8-bit, 16-bit, 32-bit) and the format of
the two values (e.g., unsigned, signed). It takes three steps to perform a comparison. You begin by
reading the first value into a register. If the second value is not a constant, it must be read into a
register, too. The second step is to compare the first value with the second value. You can use either a
subtract instruction with the S (SUBS) or a compare instruction (CMPCMN). The CMP CMN
SUBS instructions set the condition code bits. The last step is a conditional branch.

Observation:Think of the three steps 1) bring first value into a register, 2) compare to second value,
3) conditional branch, bxx (where xx is eq ne lo ls hi hs gt ge lt or le). The branch will occur if (first
is xx second).

In Programs 5.8 and 5.9, we assume G is a 32-bit unsigned variable. Program 5.8contains two
separate if-then structures involving testing for equal or not equal. It will
call GEqual7 if G equals 7 , and GNotEqual7 if G does not equal 7 . When testing for equal or not
equal it doesn’t matter whether the numbers are signed or unsigned. However, it does matter if they
are 8-bit or 16-bit. To convert these examples to 16 bits, use the LDRH R0,[R2] instruction instead
of the LDR R0,[R2] instruction. To convert these examples to 8bits, use the LDRB R0,[R2]
instruction instead of the LDR R0,[R2] instruction.

Assembly code C code
 LDR R2, =G ; R2 = &G
 LDR R0, [R2] ; R0 = G
 CMP R0, #7 ; is G == 7 ?
 BNE next1 ; if not, skip
 BL GEqual7 ; G == 7
next1

uint32_t G;
if(G == 7){
 GEqual7();
}

 LDR R2, =G ; R2 = &G
 LDR R0, [R2] ; R0 = G
 CMP R0, #7 ; is G != 7 ?
 BEQ next2 ; if not, skip
 BL GNotEqual7 ; G != 7
next2

if(G != 7){
 GNotEqual7();
}

Program 5.8. Conditional structures that test for equality (this works with signed
and unsigned numbers).

When testing for greater than or less than, it does matter whether the numbers are signed or unsigned.
Program 5.9 contains four separate unsigned if-then structures.In each case, the first step is to bring
the first value in R0; the second step is to compare the first value with a second value; and the third
step is to execute an unsigned branch Bxx . The branch will occur if the first unsigned value is xx the
second unsigned value.

Assembly code C code
 LDR R2, =G ; R2 = &G
 LDR R0, [R2] ; R0 = G
 CMP R0, #7 ; is G > 7?
 BLS next1 ; if not, skip
 BL GGreater7 ; G > 7
next1

uint32_t G;
if(G > 7){
 GGreater7();
}

 LDR R2, =G ; R2 = &G
 LDR R0, [R2] ; R0 = G
 CMP R0, #7 ; is G >= 7?
 BLO next2 ; if not, skip
 BL GGreaterEq7 ; G >= 7
next2

if(G >= 7){
 GGreaterEq7();
}

 LDR R2, =G ; R2 = &G
 LDR R0, [R2] ; R0 = G
 CMP R0, #7 ; is G < 7?
 BHS next3 ; if not, skip
 BL GLess7 ; G < 7
next3

if(G < 7){
 GLess7();
}

 LDR R2, =G ; R2 = &G
 LDR R0, [R2] ; R0 = G
 CMP R0, #7 ; is G <= 7?
 BHI next4 ; if not, skip
 BL GLessEq7 ; G <= 7
next4

if(G <= 7){
 GLessEq7();
}

Program 5.9. Unsigned conditional structures.

It will call GGreater7 if G is greater than 7 , GGreaterEq7 if G is greater than or equal to 7 ,
GLess7 if G is less than 7 , and GLessEq7 if G is less than or equal to 7 . When comparing unsigned
values, the instructions BHI BLO BHS and BLS should follow the subtraction or comparison
instruction. A conditional if-then is implemented by bringing the first number in a register, subtracting
the second number, then using the branch instruction with complementary logic to skip over the body
of the if-then. To convert these examples to 16 bits, use the LDRH R0,[R2] instruction instead of
the LDR R0,[R2] instruction. To convert these examples to 8bits, use the LDRB R0,[R2]
instruction instead of the LDR R0,[R2] instruction.

Example 5.1. Assuming G1 is 8-bit unsigned, write software that sets G2=1 if G1 is greater than 100.

Solution: First, we draw a flowchart describing the desired algorithm, see Figure 5.6. Next, we
restate the conditional as “skip over if G1 is less than or equal to 100”. To implement the assembly
code we bring G1 into Register R0using LDRB to load an unsigned byte, subtract 100, then branch to
next if G1 is less than or equal to 100, as presented in Program 5.10. We will use an unsigned
conditional branch because the data format is unsigned.

Figure 5.6. Flowchart of an if-then structure.

 LDR R2, =G1 ; R2 = &G1
 LDRB R0, [R2] ; R0 = G1
 CMP R0, #100 ; is G1 > 100?
 BLS next ; if not, skip to end
 MOV R1, #1 ; R1 = 1
 LDR R2, =G2 ; R2 = &G2
 STRB R1, [R2] ; G2 = 1
next

uint8_t G1, G2;
if(G1>100){
 G2 = 1;
}

Program 5.10. An unsigned if-then structure. LDRB used because 8-bit, BLS
used because it is unsigned.

Checkpoint 5.5: Assume you have an 8-bit unsignedglobal variable N . Write assembly code that
implements if(N==25)isEqual();

Checkpoint 5.6:Assume H1 and H2 are two 16-bit unsignedvariables. Write assembly code that
implements if(H1==H2)isEqual();

Program 5.11 contains four separate signed if-then structures, where G is signed 32 bits. In each
case, the first step is to bring the first value in R0; the second step is to compare the first value with a
second value; and the third step is to execute a signed branch Bxx . The branch will occur if the first
signed value is xx the second signed value.

Assembly code C code
 LDR R2, =G ; R2 = &G
 LDR R0, [R2] ; R0 = G
 CMP R0, #7 ; is G > 7?
 BLE next1 ; if not, skip
 BL GGreater7 ; G > 7
next1

int32_t G;
if(G > 7){
 GGreater7();
}

 LDR R2, =G ; R2 = &G
 LDR R0, [R2] ; R0 = G
 CMP R0, #7 ; is G >= 7?
 BLT next2 ; if not, skip
 BL GGreaterEq7 ; G >= 7
next2

if(G >= 7){
 GGreaterEq7();
}

 LDR R2, =G ; R2 = &G
 LDR R0, [R2] ; R0 = G
 CMP R0, #7 ; is G < 7?
 BGE next3 ; if not, skip
 BL GLess7 ; G < 7
next3

if(G < 7){
 GLess7();
}

 LDR R2, =G ; R2 = &G
 LDR R0, [R2] ; R0 = G
 CMP R0, #7 ; is G <= 7?
 BGT next4 ; if not, skip
 BL GLessEq7 ; G <= 7
next4

if(G <= 7){
 GLessEq7();
}

Program 5.11. Signed conditional structures.

Similar to Program 5.9, Program 5.11will call GGreater7 if G is greater
than 7 , GGreaterEq7 if G is greater than or equal to 7 , GLess7 if G is less than 7 ,
and GLessEq7 if G is less than or equal to 7 . When comparing signed values, the instructions BGT
BLT BGE and BLE should follow the subtraction or comparison instruction. A conditional if-then
is implemented by bringing the first number in a register, subtracting the second number, then using the
branch instruction with complementary logic to skip over the body of the if-then. To convert these
examples to 16 bits, use the LDRSH R0,[R2] instruction instead of the LDR R0,[R2] instruction.
To convert these examples to 8bits, use the LDRSB R0,[R2] instruction instead of the LDR R0,
[R2] instruction.

Checkpoint 5.7:When implementing if(N>25)isGreater(); why is it important to know if N is
signed or unsigned?

Common error: It is an error to use an unsigned conditional branch when comparing two signed
values. Similarly, it is a mistake to use a signed conditional branch when comparing two unsigned
values.

Observation: One cannot directly compare a signed number to an unsigned number. The proper
method is to first convert both numbers to signed numbers of a higher precision and then compare.

Example 5.2. Redesign the Example 5.1 code assuming G1 is 8-bit signed.

Solution: We can use the same flowchart shown previously in Figure 5.6. Again we bring G1 into
Register R0this time using LDRSB to load a signed byte, subtract 100, then branch to next if G1 is
less than or equal to 100, as presented in Program 5.12. However, we will use a signed conditional
branch because the data format is signed.

 LDR R2, =G1 ; R2 = &G1
 LDRSB R0, [R2] ; R0 = G1 (signed)
 CMP R0, #100 ; is G1 > 100?
 BLE next ; if not, skip to end
 MOV R1, #1 ; R1 = 1
 LDR R2, =G2 ; R2 = &G2
 STRB R1, [R2] ; G2 = 1
next

int8_t G1, G2;
if(G1>100){
 G2 = 1;
}

Program 5.12. A signed if-then structure LDRSB is a signed 8-bit load. BLE is a
signed branch.

Notice that the C code for Program 5.9 looks similar to Program 5.11, and the C code for Program
5.10 looks similar to Program 5.12. This is because the compiler knows the type of variables G1 and
G2; therefore, it knows whether to utilize unsigned or signed branches. Unfortunately, this similarity
can be deceiving. When writing code whether it be assembly or C, you still need to keep track of
whether your variables are signed or unsigned. Furthermore, when comparing two objects, they must
have comparable types. E.g., “Which is bigger, 2 unsigned apples or –3 signed dollars?” The
compiler does not seem to reject comparisons between signed and unsigned variables as an error.
However, I recommend that you do not compare a signed variable to an unsigned variable. When
comparing objects of different types, it is best to first convert both objects to the same format, and
then perform the comparison. Conversely, we see that all numbers are converted to 32 bits before
they are compared. This means there is no difficulty comparing variables of differing precisions: e.g.,
8-bit, 16-bit, and 32-bit as long as both are signed or both are unsigned.

We can use the unconditional branch to add an else clause to any of the previous if then structures.
A simple example of an unsigned conditional is illustrated in the Figure 5.7 and presented in Program
5.13. The first three lines test the condition G1 > G2 . If G1 > G2 , the software branches to high .
Once at high, the software calls the isGreater subroutine then continues. Conversely, if G1≤G2 , the
software does not branch and the isLessEq subroutine is executed.After executing the isLessEq
subroutine, there is an unconditional branch, so that only one and not both subroutines are called.

Figure 5.7. Flowchart of an if-then-else structure.

 LDR R2, =G1 ; R2 = &G1
 LDR R0, [R2] ; R0 = G1
 LDR R2, =G2 ; R2 = &G2
 LDR R1, [R2] ; R1 = G2
 CMP R0, R1 ; is G1 > G2 ?
 BHI high ; if so, skip to high
low BL isLessEq ; G1 <= G2
 B next ; unconditional
high BL isGreater ; G1 > G2
next

uint32_t G1,G2;
if(G1>G2){
 isGreater();
}
else{
 isLessEq();
}

Program 5.13. An unsigned if-then-else structure (unsigned 32-bit).

Checkpoint 5.8: Assume you have a 16-bit signed global variable M. Write assembly code that
implements if(M > 1000) isGreater(); else isLess();

The selection operator takes three input parameters and yields one output result. The format is

Expr1 ? Expr2 : Expr3

The first input parameter is an expression, Expr1 , which yields a Boolean(0 for false, not zero for
true). Expr2 and Expr3 return values that are regular numbers. The selection operator will return the
result of Expr2 if the value of Expr1 is true, and will return the result of Expr3 if the value
of Expr1 is false. The type of the expression is determined by the types of Expr2 and Expr3 .
If Expr2 and Expr3 have different types, then promotion is applied. The left and right side perform
identical functions. If b is 1 set a equal to 10, otherwise set a to 1.

a = (b==1) ? 10 : 1;

 if(b==1)
 a=10;
 else
 a=1;

5.3.3. switch Statements

Switch statements provide a non-iterative choice between any number of paths based on specified
conditions. They compare an expression to a set of constant values. Selected statements are then
executed depending on which value, if any, matches the expression. The expression between the
parentheses following switch is evaluated to a number and compared one by one to the explicit
cases. Figure 5.8 draws a flowchart describing Program 5.4, which performs one output each time the
function OneStep is called. The break causes execution to exit the switch statement. The default
case is run if none of the explicit case statements match. The operation of the switch statement in
Program 5.4 performs this list of actions:

If Last is equal to 10, then theNext is set to 9.
If Last is equal to 9, then theNext is set to 5.
If Last is equal to 5, then theNext is set to 6.
If Last is equal to 6, then theNext is set to 10.
If Last is not equal any of the above, then theNext is set to 10.

When using break , only the first matching case will be invoked. In other words, once a match is
found, no other tests are performed. The body of the switch is not a normal compound statement since
local declarations are not allowed in it or in subordinate blocks.

Assume the output port is connected to a stepper motor, and the motor has 24 steps per rotation.
Calling OneStep will cause the motor to rotate by exactly 15 degrees. 15 degrees is 360 degrees
divided by 24. For more information on stepper motors, see Example 6.1, Program 7.6, and Section
8.7.

Figure 5.8. The switch statement is used to make multiple comparisons.

Program 5.14 converts an ASCII character to the equivalent decimal value. This example of a switch
statement shows that the multiple tests can be performed for the same condition.

uint8_t Convert(char letter){
uint8_t digit;
 switch (letter) {
 case 'A':

 case 'B':
 case 'C':
 case 'D':
 case 'E':
 case 'F':
 digit = letter+10-'A'; break;
 case 'a':
 case 'b':
 case 'c':
 case 'd':
 case 'e':
 case 'f':
 digit = letter+10-'a'; break;
 default:
 digit = letter-'0';
}
 return digit;
}
Program 5.14. A switch statement is used to convert an ASCII character to
numeric value.

5.3.4. While Loops
Quite often the microcomputer is asked to wait for events or to search for objects. Both of these
operations are solved using the while or do-while structure. A simple example of while loop is
illustrated in the Figure 5.9 and presented in Program 5.15. Assume G1 and G2 are unsigned 32-bit
variables. The operation is defined by the C code

while(G2 > G1){Body();}

specifies the function Body() will be executed over and over as long as G2>G1.

Figure 5.9. Flowchart of a while structure. Execute Body() over and over until
G2≤G1.

Program 5.15begins with a test of G2>G1 . If G2≤G1 then the body of the while loop is skipped.
The unconditional branch(B loop)after the body causes G2 and G1 to be tested again. In this way,
the body is executed repeatedly until G2≤G1 .

 LDR R4, =G1 ; R4 = &G1
 LDR R5, =G2 ; R5 = &G2
loop LDR R0, [R5] ; R0 = G2
 LDR R1, [R4] ; R1 = G1
 CMP R0, R1 ; is G2 <= G1?
 BLS next ; if so, skip to next
 BL Body ; body of the loop
 B loop
next

uint32_t G1,G2;

while(G2 > G1){
 Body();
}

Program 5.15. A while loop structure.

Observation: The body of a while loop may execute zero or more times, but the body of a do-while
loop is executed at least once.

One of the conventions when writing assembly is whether or not subroutines should save registers.
According to AAPCS, we will allow subroutines to freely modify R0–R3 and R12. Conversely, if a
subroutine wishes to use R4 through R11, it will preserve the values using the stack. Similarly, if the
subroutine wishes to use LR (e.g., to call another subroutine) it must save and restore LR. AAPCS
requires us to push and pop an even number of registers. AAPCS guarantees the address pointers in
R4 and R5 only need to be set once in Program 5.15, because we can assume that the call to Body()
will not corrupt them. However, since the variables themselves are held in RAM and may therefore
be changed by some other piece of code, it does make sense to reload the values of the variables each
time through the loop.

Checkpoint 5.9: Assume you have a 16-bit unsigned global variable N . Write assembly code that
implements while(N!=25){body();}

5.3.5. Do-while Loops
A do-while loop performs the body first, and the test for completion second. It will execute the body
at least once. Assume PF1 and PA5 are definitions of I/O pins using bit-specific addressing. Program
5.16 will toggle the output PF1 as long as input PA5 is low.

 LDR R1, =PF1 ; R1 = &PF1
 LDR R5, =PA5 ; R5 = &PA5
loop LDR R0, [R1]
 EOR R0, #2 ; toggle bit 1
 STR R0, [R1]
 LDR R2, [R5] ; R2 = PA5
 ANDS R2, #0x20 ; bit 5 set?
 BEQ loop ; spin while low
next

// toggle PF1 while PA5 low
do{
 PF1 = PF1^0x02;
} while((PA5&0x20)==0);

Program 5.16. A do-while loop structure.

5.3.6. For Loops
A for-loop control structure is a special case of the while loop. For loops can iterate up or down. To
show the similarity between the while loop and for loop these two C functions are identical. The
<init> code is executed once. The <test> code returns a true/false and is tested before each iteration.
The <body> and <end> codes are executed each iteration.

<init>;
while(<test>){
 <body>;
 <end>;
}

for(<init>; <test>; <end>){
 <body>;
}

For-loops are a convenient way to perform repetitive tasks. As an example, we write code that
calls Process() 100 times. Two possible solutions are illustrated in Figure 5.10. The solution on the
left starts at 0 and counts up to 100, while the solution on the right starts at 100 and counts down to 0.
The first field is the starting task (e.g., i=0). The next field specifies the conditions with which to
continue execution (e.g., i<100), and the last field is the operation to perform after each interactions
(e.g., i++). Similar to a while loop, the test occurs before each execution of the body.

Figure 5.10. Two flowcharts of a for - loop structure.

The count-up implementation places the loop counter in the Register R4, as shown in Program
5.17.As mentioned earlier, we assume the subroutine Process preserves the value in R4.

 MOV R4, #0 ; R4 = 0
loop CMP R4, #100 ; index >= 100?
 BHS done ; if so, skip to done
 BL Process ; process function
 ADD R4, R4, #1 ; R4 = R4 + 1
 B loop
done

for(i=0; i<100; i++){
 Process();
}

Program 5.17. A simple for-loop.

If we assume the body will execute at least once, we can execute a little faster, as shown in Program
5.18, by counting down. Counting down is one instruction faster than counting up.

 MOV R4, #100 ; R4 = 100
loop BL Process ; body
 SUBS R4, R4, #1 ; R4 = R4-
1
 BNE loop
done

 MOV R4, #0 ; R4 = 0
loop BL Process ; body
 ADD R4, R4, #1 ; R4 = R4+1
 CMP R4, #100 ; done?
 BLO loop ; if not,repeat

Program 5.18. Optimized for-loops.

5.4. *Assembly Macros
A macro is a template for a sequence of instructions. The macro definition includes a name and a
code sequence. This name becomes the mnemonic by which the macro is subsequently invoked.
Invoking a macro means replacing the macro name with its code sequence, analogous to a copy-paste
operation in the editor. Macros are like subroutines in the sense we use them to encapsulate
operations we wish to perform as a single higher-level function. With subroutines, we call a function
at run time by moving the PC into the LR and jumping to the code that defines the function. The return
from subroutine also occurs at run time, by moving return address from LR back into the PC. Invoking
a macro, on the other hand, occurs at assembly time. When the assembler sees a macro in your code,
it performs a character substitution (copy/paste), replacing the macro name with the macro definition.

The syntax used in this section is compatible with ARM Keil™ uVision® compiler. The macro
definition may also include macro arguments. A macro definition may contain any code or directive
except nested macro definitions. Invoking previously defined macros is allowed inside a macro
definition. The code sequence of the macro is inserted in the source file at the position where the
macro is invoked. To invoke a macro, write the macro name in the operation field of a source
statement. Place the arguments, if any, in the operand field. The macro may contain conditional
assembly directives that cause the assembler to produce parameter-dependent variations of the macro
definition. The definition of a macro consists of three parts:

The header statement, a MACRO directive with a label that names the macro.
The code sequence, with argument placeholders as needed.
The MEND directive, terminating the macro definition.

We can use macros to define what looks like new instructions, For example, this macro creates a new
assembly instruction that performs the modulus. MOD = DIVIDEND % DIVISOR

 MACRO
 UMOD $Mod,$Divnd,$Divsr ;MOD,DIVIDEND,DIVISOR
 UDIV $Mod,$Divnd,$Divsr ;Mod = DIVIDEND/DIVISOR
 MUL $Mod,$Mod,$Divsr ;Mod = DIVISOR*(DIVIDEND/DIVISOR)
 SUB $Mod,$Divnd,$Mod ;Mod = DIVIDEND-DIVISOR*(DIVIDEND/DIVISOR)
 MEND
The registers MOD and DIVIDEND must not be the same register. We invoke this macro in our code
simply by placing UMOD as an operation in our program.

Our code
 UMOD R3,R0,R1 ;R3=R0%R1

 STR R3,[R7]
 UMOD R3,R2,R4 ;R3=R2%R4

Result created by assembler
 UDIV R3,R0,R1
 MUL R3,R3,R1
 SUB R3,R0,R3
 STR R3,[R7]
 UDIV R3,R2,R4
 MUL R3,R3,R4

 STR R3,[R6]

 SUB R3,R2,R3
 STR R3,[R7]

Observation: Subroutines optimize memory space with a cost of execution speed.There is one copy
of the code but requires a BL to call and a BX LR to return.

Observation: Macros optimize execution speed with a cost of memory space. There is one copy of
the code for each invocation but does not require call or return instructions. If a macro is invoked
once, then it will execute faster and require less memory as compared to defining the operation as a
subroutine.

Example 5.3. Redesign the I/O driver for an LED on PF2, originally solved in Program 4.3b.

Solution: We will leave the initialization as a function, because it is only called once. However, we
will rewrite the three operations that output to the pin. The initialization will define PE0 as an output.
The subroutine solution, shown on the left of Program 5.19, is repeated from Program 4.3b. These
macros do not have any parameters. Assume PF2 is a bit-specific label, PF2 EQU 0x40025010 .

LED_Off
 LDR R1, =PF2
 MOV R0, #0
 STR R0, [R1]
 BX LR

LED_On
 LDR R1, =PF2
 MOV R0, #1
 STR R0, [R1]
 BX LR

LED_Toggle
 LDR R1, =PF2
 LDR R0, [R1]
 EOR R0, R0, #1
 STR R0, [R1]
 BX LR

 MACRO
 LED_Off
 LDR R1, =PF2
 MOV R0, #0
 STR R0, [R1]
 MEND

 MACRO
 LED_On
 LDR R1, =PF2
 MOV R0, #1
 STR R0, [R1]
 MEND

 MACRO
 LED_Toggle
 LDR R1, =PF2
 LDR R0, [R1]
 EOR R0, R0, #1
 STR R0, [R1]
 MEND

Program 5.19. I/O port drivers using subroutines and macros.

Checkpoint 5.10: What advantage does the macro solution have over the subroutine solution?

Sometimes a macro is only one line long. This example creates a new assembly instruction that
performs multiply by 7. This approach can be used to multiply by any constant in the form of 2n±1.
For multiply by 7, we use the fact that if x is a variable, then 7x = (x<<3)-x.

 MACRO
 MUL7 $Rd,$Rn
 RSB $Rd,$Rn,$Rn,LSL #3
 MEND

We invoke this macro in our code simply by placing MUL7 as an operation in our program. Notice
that this macro generates much smaller object code and runs much faster than using the MUL
instruction.

Our code
 MUL7 R3,R2 ;R3=7*R2
 STR R3,[R7]
 MUL7 R4,R4 ;R4=7*R4
 STR R4,[R6]

Result created by assembler
 RSB R3,R2,R2,LSL #3
 STR R3,[R7]
 RSB R4,R4,R4,LSL #3
 STR R4,[R7]

This approach can also be used to multiply by any constant in the form of 1±2-n. For example, to
multiply by 15/16 we implement x - (x>>4). This macro is unsigned multiply by 15/16.

 MACRO
 MUL15_16 $Rd,$Rn
 SUB $Rd,$Rn,$Rn,LSR #4
 MEND

5.5. *Recursion
A recursive subroutine is one that calls itself. Each time the subroutine is started a new instantiation
occurs. There is a unique set of parameters, registers, and local variables for each instantiation. The
stack is a convenient way to separate the parameters and variables of one instantiation from another.
In order for the recursive function to finish, there must be a situation where a direct result is
generated, which is called the end condition. The body of a recursive relation defines the operation
in terms of calls to itself that are closer to the end condition(s). For example, the factorial has two
possibilities

Fact(1) = 1 end condition, base case, or anchor case
Fact(n) = n*Fact(n-1) if n>1 recursion
Program 5.20 shows two implementations of factorial. The one on the top uses iteration, and the one
on the bottom uses recursion. It is usually the case that a recursive algorithm can be rewritten in
iterative form. Nevertheless, sometimes it is more convenient to implement the algorithm in recursive
form.

; iterative implementation (22 bytes)
; Input: R0 is n
; Output: R0 is Fact(n)
; Assumes: R0 <= 12 (13! overflows)
Fact MOV R1, #1 ; R1 = 1 = total
loop CMP R0, #1 ; is n (R0) <= 1?
 BLS done ; if so, skip to done
 MUL R1, R0, R1 ; total = total*n
 SUB R0, R0, #1 ; n = n – 1
 B loop
done MOV R0, R1 ; total = Fact(n)
 BX LR
; recursive implementation (30 bytes)
; Input: R0 is n
; Output: R0 is Fact(n)
; Assumes: R0 <= 12 (13! overflows)
Fact CMP R0, #1 ; is n (R0) <= 1?
 BLS endcase ; if so, to endcase
 PUSH {R0, LR} ; save R0 and LR
 SUB R0, R0, #1 ; n = n – 1
 BL Fact ; R0 = Fact(n-1)
 POP {R1, LR} ; restore R1, LR
 MUL R0, R0, R1 ; R0 = n*Fact(n-1)
 BX LR ; normal return
endcase
 MOV R0, #1 ; R0 = 1
 BX LR ; end case return

// iterative implementation
// Assumes: n <= 12
uint32_t Fact(uint32_t n){
uint32_t r;
 r = 1;
 for(; n>1; n--){
 r = r*n;
 }
 return r;
}

// recursive implementation
// Assumes: n <= 12
uint32_t Fact(uint32_t n){
 if(n <= 1){ // end condition
 return 1;
 }
 return n*Fact(n-1); // recursion
}

Program 5.20. Iterative and recursive implementations of factorial.

Table 5.2 shows the execution time in cycles for these two assembly implementations. Notice that the
recursive implementation is slightly longer, and the execution speed is slightly slower.

Input Iterative Recursive
1 11 9
2 18 23
3 25 37
4 32 51
5 39 65

Table 5.2. Execution times in cycles for Program 5.20 running on LM3S1968
including all branches.

Recursive Fact(0) and Fact(1) do not push anything onto the stack. Fact(n) (2<=n<=12) pushes 8*(n-
1) bytes (32-bit n and 32-bit LR per call, above 1). The iterative also uses the stack, creating the
digits right to left pushing them onto the stack, and then popping off the digits in the correct order.

Checkpoint 5.11:How many stack bytes are required for each instantiation of Fact ? How much stack
space is required to execute Fact(5) ?

The power function, y = xn, can be designed in a recursive manner. We will assume the inputs x and n
are 32-bit unsigned integers. We begin with some simple observations that may lead to the base case.
At this point we write them all down and see later if any can be used:

0n = 0 for all n
1n = 1 for all n
x0 = 1 for all x not equal to 0
x1 = x for all x
x2 = x*x for all x

Next we try to rewrite the function in terms of itself so that the problem becomes simpler
xn = x*x*x*x…*x (n times, this is the iterative approach)
xn = xn+1/x (This is more complex)
xn = x*xn-1 (This is simpler)

The last rewrite is written in a recursive manner and will eventually lead to the x0 = 1 base.

uint32_t power (uint32_t x, uint32_t n){
 if(x == 0) return 0;
 if(n == 0) return 1;
 return x*power(x,n - 1);
}
The power function has two base cases. The first one is needed to handle the power(0,0) possibility.
For x not zero, the second base case will become true eventually. If n=10, then the recursive function
will call itself 10 times. Fibonacci can be defined recursively
uint32_t fibonacci(uint32_t n){
 if(n == 0) return 0;
 if(n == 1) return 1;
 return fibonacci(n-1) + fibonacci(n-2);}

}

Example 5.4. You are given a subroutine, OutChar , which outputs one ASCII character. Design a
function that outputs a 32-bit unsigned integer.

Solution: We will solve this two ways, iteratively and recursively. As always, we ask “what is our
starting point?”, “how do we make progress?”, and “when are we done?” The input, N, is a 32-bit
unsigned number (in R0), and we are done when 1 to 10 ASCII characters are displayed, representing
the value of N. Figure 5.11 demonstrates the successive refinement approach to solving this problem
iteratively. The iterative solution has three phases: initialization, creation of digits, and output of the
ASCII characters. The digits are created from the remainders occurring by dividing the input, N by
10. To get all the digits we divide by 10 until the quotient is 0. Because the digits are created in the
opposite order, each digit will be pushed on the stack during the creation phase and popped off the
stack during the output stage. The counter is needed so the output stage knows how many digits to pop
from the stack.

Figure 5.11. Successive refinement method for the iterative approach.

Figure 5.12 demonstrates the successive refinement approach to solving this problem recursively.
Most recursive functions first check for the end condition. If the end condition is true, it handles the
simple case directly. If the end condition is not true, it simplifies the problem (in this case N = N/10)
and calls itself. Just like the iterative solution, the digits (calculated as R) are calculated in reverse
order, and the stack is used to save the intermediate results, so the digits are displayed in proper
order.

Figure 5.12. Successive refinement method for the recursive approach.

Program 5.21 shows two assembly language implementations of this 32-bit output decimal function.
The iteration solution actually has two loops; the first loop determines the digits in opposite order,
and the second loop outputs the digits in proper order. The recursive solution also uses the stack to
calculate the least significant digit first, but output the most significant digit first. There is no
fundamental rule that states which is better iteration or recursion. A good programmer has both in his
or her toolbox, and uses whichever is easier to understand and easier to debug.

; iterative implementation
; uses up to 48 bytes of stack
; Input: R0 is 32-bit number N
; Output: none
; Modifies: R1, R2, R3
OutUDec
 PUSH {R4, LR}
 MOV R2, #10 ; R2 = 10 = divisor
 MOV R4, #0 ; R4 = 0 = cnt
ODloop
 UDIV R3, R0, R2 ; R3 = N/10
 MUL R1, R3, R2 ; R1 = N/10*10
 SUB R1, R0, R1 ; R1 = N%10
 PUSH {R1} ; save value
 ADD R4, R4, #1 ; cnt = cnt + 1
 MOVS R0, R3 ; R0 N = N/10
 CMP R0, #0 ; is N == 0?
 BNE ODloop ; if not continue
ODout POP {R0} ; restore into R0
 ADD R0, R0, #'0'; convert ASCII
 BL OutChar ; print character
 SUBS R4, R4, #1 ; cnt = cnt – 1
 CMP R4, #0 ; is cnt == 0?
 BNE ODout ; if not continue
 POP {R4, LR} ; restore
 BX LR ; return

; recursive implementation
; uses a maximum of 76 bytes of stack
; Input: R0 is 32-bit number N
; Output: none
; Modifies: R1, R2, R3
OutUDec
 PUSH {LR}
 CMP R0, #10 ; character < 10?
 BLO ODend ; if so, end
 MOV R2, #10 ; R2 = divisor
 UDIV R3, R0, R2 ; R3 = N/10
 MUL R1, R3, R2 ; R1 = N/10*10
 SUB R1, R0, R1 ; R1 = N%10
 PUSH {R1} ; save
 MOVS R0, R3 ; N = N/10
 BL OutUDec ; OutUDec(N/10)
 POP {R0} ; restore into R0
ODend
 ADD R0, R0, #'0'; convert ASCII

// iterative method
void OutUDec(uint32_t n){
uint32_t cnt=0;
char buffer[11];
 do{
 buffer[cnt] = n%10;// digit
 n = n/10;
 cnt++;
 }
 while(n);// repeat until n==0
 for(; cnt; cnt--){
 OutChar(buffer[cnt-1]+'0');
 }
}

// recursive method
void OutUDec(uint32_t n){
 if(n >= 10){
 OutUDec(n/10); // ms digits
 n = n%10; // n is 0-9
 }
 OutChar(n+'0');
}

 BL OutCh ; print character
 POP {LR} ; restore
 BX LR ; return

Program 5.21. Iterative and recursive implementations of output decimal.

To observethe execution of the recursive implementation of OutUDec , we can place a breakpoint on
the first line and observe the stack and Register R0.

Observation: In general, recursive algorithms are shorter to write, but require additional stack
space.

5.6. Writing Quality Software

5.6.1. Style Guidelines
The objective of this section is to present style rules when developing software. This set of rules is
meant to guide not control. In other words, they serve as general guidelines rather than fundamental
law. Choosing names for variables and functions involves creative thought, and it is intimately
connected to how we feel about ourselves as programmers. Of the policies presented in this section,
naming conventions may be the hardest habit for us to break. The difficulty is that there are many
conventions that satisfy the “easy to understand” objective. Good names reduce the need for
documentation. Poor names promote confusion, ambiguity, and mistakes. Poor names can occur
because code has been copied from a different situation and inserted into our system without proper
integration (i.e., changing the names to be consistent with the new situation.) They can also occur in
the cluttered mind of a second-rate programmer, who hurries to deliver software before it is finished.

Names should have meaning.If we observe a name away from the place where it is defined, the
meaning of the object should be obvious. The object TxFifo is clearly the transmit first in first out
circular queue. The function LCD_OutString will output a string to the LCD.

Avoid ambiguities. Don't use variable names in our system that are vague or have more than one
meaning. For example, it is vague to use temp , because there are many possibilities for temporary
data, in fact, it might even mean temperature. Don't use two names that look similar, but have different
meanings.

Give hints about the type. We can further clarify the meaning of a variable by including phrases in the
variable name that specify its type. For example, dataPt timePt putPt are pointers.
Similarly, voltageBuf timeBuf pressureBuf are data buffers. Other good phrases include Flag Mode
U L Index Cnt , which refer to Boolean flag, system state, unsigned 16-bit, signed 32-bit, index into
an array, and a counter respectively.

Use the same name to refer to the same type of object. For example, everywhere we need a local
variable to store an ASCII character we could use the name letter . Another common example is to
use the names i j k for indices into arrays. The names V1 R1 might refer to a voltage and a
resistance. The exact correspondence is not part of the policies presented in this section, just the fact
that a correspondence should exist. Once another programmer learns which names we use for which
types of object, understanding our code becomes easier.

Use a prefix to identify public objects. A public variable is shared between two modules. A public
function is a function in one module that can be called from another module. An underline character
will separate the module name from the function name. Public objects have the underline and private
objects do not. As an exception to this rule, we can use the underline to delimit words in all upper-
case name (e.g., MIN_PRESSURE equ 10). Functions that can be accessed outside the scope of a
module (i.e., public) will begin with a prefix specifying the module to which it belongs. It is poor

style to create public variables, but if they need to exist, they too would begin with the module prefix.
The prefix matches the module name containing the object. For example, if we see a function call, BL
LCD_OutString we know the public function belongs to the LCD module. Notice the similarity
between this syntax (e.g., LCD_Init) and the corresponding syntax we would use if programming the
module in C++ (e.g., LCD.Init()). Using this convention, we can distinguish public and private
objects.

Use upper and lower case to specify the allocation of an object. We will define I/O port addresses
and other constants using no lower-case letters, like typing with caps-lock on. In other words, names
without lower-case letters refer to objects with fixed values. TRUE FALSE and NULL are good
examples of fixed-valued objects. As mentioned earlier, constant names formed from multiple words
will use an underline character to delimit the individual words. E.g., MAX_VOLTAGE
UPPER_BOUND FIFO_SIZE . Permanently allocated variables are global, with a name beginning
with a capital letter, but including some lower-case letters. Temporarily allocated variables are
called local, and the name will begin with a lower-case letter, and may or may not include upper case
letters. Since all functions are permanently allocated, we can start function names with either an
upper-case or lower-case letter. Using this convention, we can distinguish constants, globals and
locals.

An object's properties (public/private, local/global, constant/variable) are always perfectly clear at
the place where the object is defined. The importance of the naming policy is to extend that clarity
also to the places where the object is used.

Use capitalization to delimit words. Names that contain multiple words should be defined using a
capital letter to signify the first letter of the word. Recall that the case of the first letter specifies
whether it is a local or global variable. Some programmers use the underline as a word-delimiter, but
except for constants, we will reserve underline to separate the module name from the name of a
public object. Table 5.3 overviews the naming convention presented in this section.

Object type Examples of names that identify type
Constants CR SAFE_TO_RUN PORTA STACK_SIZE

START_OF_RAM
Local variables maxTemperature lastCharTyped errorCnt
Private global
variable

MaxTemperature LastCharTyped ErrorCnt RxFifoPt

Public global
variable

DAC_MaxTemperature Key_LastCharTyped
Network_ErrCnt

Private function ClearTime wrapPointer InChar
Public function Timer_ClearTime RxFifo_Put Key_InChar
Table 5.3. Examples of names.

Checkpoint 5.12: Just by looking at its name, how can you tell if a function is private or public?

Checkpoint 5.13: Just by looking at its name, how can you tell if a variable is local or global?

The Single Entry Point is at the Top. In assembly language, we place a single entry point of a
subroutine at the first line of the code. By default, C functions have a single entry point. Placing the
entry point at the top provides a visual marker for the beginning of the subroutine.

The Single Exit Point is at the Bottom. Most programmers prefer to use a single exit point as the last
line of the subroutine. Some programmers employ multiple exit points for efficiency reasons. In
general, we must guarantee the registers, stack, and return parameters are at a similar and consistent
state for each exit point. In particular, we must deallocate local variables properly. If you do employ
multiple exit points, then you should develop a means to visually delineate where one subroutine ends
and the next one starts. You could use one line of comments to signify the start a subroutine and a
different line of comments to show the end of it. Program 5.22 employs distinct visual markers to see
the beginning and end of the subroutine.

Label Names. Some of the assembly examples used weak label names like “ loop ”, “ done ”,
“ end ”, and “ out ”. These names technically work, and they might make sense for very short
examples. But they can cause problems when functions are copied from one file to another, resulting
in multiple “ loop ” labels. One or both needs to be changed before it even assembles. Labels inside
functions can be precededwith the function name, such as “ AbsOK ” or with an underscore
“ Abs_OK ”.

;------------Abs------------
; Take the absolute value of a number.
; Input: R0 is 32-bit signed number
; Output: R0 is 31-bit absolute value
Abs CMP R0, #0 ; is number (R0) >= 0?
 BPL AbsOK ; if so, already positive
 EOR R0, R0, #0xFFFFFFFF ; invert bits
 ADD R0, R0, #1 ; add one
AbsOK BX LR ; return
;------------end of Abs------------

//************Abs************
// Input: signed 32-bit
// Output: absolute value
uint32_t Abs(int32_t n){
 if(n<0){
 n = -n;
 }
 return (uint32_t) n;
}

Program 5.22. Examples that use comments to delineate its beginning and end.

Observation: Having the first and last lines of a subroutine be the entry and exit points makes it
easier to debug, because it will be easy to place debugging instruments (like breakpoints).

Common error: If you place a debugging breakpoint on the last BL LR of a subroutine with multiple
exit points, then sometimes the subroutine will return without generating the break.

Write Structured Programs. A structured program is one that adheres to a strict list of program
structures, previously defined in Section 1.8and further elaborated in Section 5.2. When we program
in C (with the exception of goto , which by the way you should only use with extreme care) we are
forced to write structured programs due to the syntax of the language. One technique for writing
structured assembly language is to adhere to the program structures shown in Figure 1.29. In other
words, restrict the assembly language branching to configurations that mimic the software behavior
of if , if-else , do-while , while , for and switch . Structured programs are much easier to debug,
because execution proceeds only through a limited number of well-defined pathways. When we use
well-understood assembly branching structures, then our debugging can focus more on the overall
function and less on how the details are implemented.

The Registers Must Be Saved. When working on a software team it is important to establish a rule
whether or not subroutines will save/restore registers. Establishing this convention is especially
important when a mixture of assembly and high-level language is being used, or if the software
project remains active for long periods of time. It is safest to save and restore registers that are
modified (most programmers do not save/restore the PSR) and output parameter(s) returned in a
register. Exceptions to this rule can be made for those portions of the code where speed is most
critical. According to AAPCS, we will preserve R4 through R11, but not preserve R0–R3, R12, or
the PSR. Remember to always save the link register if your function calls another function. Stack
operations function more efficiently if the SP remains aligned on an 8-byte boundry. We maintain the
stack on an 8-byte alignment by pushing and popping an even number of registers. Subsequent function
calls over-write the return location for your function, making yours unable to return. It is also
important to ensure that the SP is the same on exit from your function as it was at entry.

Common Error: If the calling routine expects a subroutine to save/restore registers, and it doesn’t,
then information will be lost.

Observation: If the calling routine does not expect a subroutine to save/restore registers, and it does,
then the system executes a little slower and the object code is a little bigger than it could be.

Common Error: When a mixture of C and assembly language programs are integrated, then an error
may occur if the AAPCS rules are changed because there may be a change in if registers are
saved/restored, or how parameters are passed.

Use High-Level Languages Whenever Possible. It may seem odd to have a rule about high-level
languages in a section about assembly language programming. It is even odder to make this statement
in a book devoted to assembly language programming. In general, we should use high-level languages
when memory space and execution speed are less important than portability and maintenance. When
execution speed is important, you could write the first version in a high-level language, run a profiler
(that will tell you which parts of your program are executed the most), then optimize the sections of
code using up the most execution time by writing them in assembly language. If a C language
implementation just doesn't run fast enough, you could consider a more powerful compiler or a faster
microcomputer.

Observation: High-level language programmers who are well acquainted with the underlying
assembly language of the machine have a better understanding of how their machine and software
work.

Minimize Conditional Branching. Every time software makes a conditional branch, there are two
possible outcomes that must be tested (branch or not branch.) In the example shown in Program 5.23,
assume we wish to set a 32-bit Flag if Port G bit 7 is true. A flag will be true if it is any nonzero
value, and false if it is zero. A conditional branch could be avoided by solving the problem in another
way. We will define a PG7 label to be the bit-specific address for this pin (0x40026200).

Observation: Software can be made easier to understand by reworking the approach in order to
reduce the number of conditional branches.

Checkpoint 5.14: If a system has 20 conditional branches, how many potential execution paths might
there be through the software?

PG7 EQU 0x40026200
; set flag with conditional branch
; Input: none
; Output: none
; Modifies: R1, R2
SetFlagConditional
 LDR R2, =PG7 ; R2 = 0x40026200
 LDR R1, [R2] ; R1 = PG7
 LDR R2, =Flag ; R2 = &Flag
 CMP R1, #0x80 ; is PG7 == 0x80?
 BNE SFCClr
SFCSet MOV R1, #-1 ; PG7 is high
 STR R1, [R2] ; Flag = -1
 B SFCEnd
SFCClr MOV R1, #0 ; PG7 is low
 STR R1, [R2] ; Flag = 0
SFCEnd BX LR
; set flag with no conditional branch
; Input: none
; Output: none
; Modifies: R1, R2
SetFlagNoConditional
 LDR R2, =PG7 ; R2 = 0x40026200
 LDR R1, [R2] ; R1 = PG7
 LDR R2, =Flag ; R2 = &Flag
 STR R1, [R2] ; Flag = 0x00 or 0x80
 BX LR

// uses conditional branch
void SetFlag(void){
 if(PG7){
 Flag = -1; // PG7 is 0x80
 } else{
 Flag = 0; // PG7 is 0
 }
}
// no conditional branch
void SetFlag(void){
 Flag = PG7; // 0 or 0x80
}

Program 5.23. Sometimes we can remove a conditional branch and simplify the
program.

5.6.2. Comments
Discussion about comments was left for last, because they are the least important aspect involved in
writing quality software. It is much better to write well-organized software with simple interfaces
having operations so easy to understand that comments are not necessary.

The beginning of every file should include the file name, purpose, hardware connections,
programmer, date, and copyright. E.g.,

; filename adtest.s
; Test of TM4C123 12-bit ADC
; 1 Hz sampling and output to the serial port
; Last modified 5/19/14 by Jonathan W. Valvano
; Copyright 2014 by Jonathan W. Valvano, valvano@mail.utexas.edu
; You may use, edit, run or distribute this file
; as long as the above copyright notice remains

The beginning of every function should include a line delimiting the start of the function, purpose,
input parameters, output parameters, and special conditions that apply. The comments at the beginning
of the function explain the policies (e.g., how to use the function.) These comments, which are similar
to the comments for the prototypes in the header file, are intended to be read by the client. E.g.,

;----------------------UART_InUDec-------------------------------
; Accepts ASCII input from the UART in unsigned decimal format
; and converts to a 32-bit unsigned number with a maximum of 65535
; If a number is above 2^32, it truncates without reporting error
; Backspace will remove last digit typed
; Inputs: none
; Outputs: Register R0 is the unsigned 32-bit value

Comments can be added to a variable or constant definition to clarify the usage. In particular,
comments can specify the units of the variable or constant. For complicated situations, we can use
additional lines and include examples. E.g.,

V1 SPACE 2 ; voltage at node 1 in mV, range -5000 mV to +5000 mV
Fs SPACE 2 ; sampling rate in Hz
FoundFlag SPACE 1 ; 0 if keyword not yet found, 1 if found
RunMode SPACE 1 ; 0, 1, 2, or 3 specifies system mode
; 0 means idle
; 1 means startup
; 2 means active run
; 3 means stopped
Comments can be used to describe complex algorithms. These types of comments are intended to be
read by our coworkers. The purpose of these comments is to assist in changing the code in the future,
or applying this code into a similar but slightly different application. Comments that restate the
function provide no additional information, and actually make the code harder to read. Examples of
bad comments include:

ADD R0,#1 ; add one to R0
MOV R1,#0 ; set R1 to 0

Good comments explain why the operation is performed, and what it means:

ADD R0,#1 ; maintain elapsed time in msec
MOV R1,# 0 ; switch to idle mode because no more data is available

We can add spaces so the comment fields line up. We should avoid tabs because they often do not
translate well from one computer to another. In this way, the software is on the left and the comments
can be read on the right.

I taught a large programming class one semester, and being an arrogant and lazy fellow, I thought I
could write a grading program that accepts the students’ programming assignments and automatically
generates and records their grades. The second step will be to design a Massive Open Online Class,
MOOC, on edX, and then I could teach the masses without ever having to show up for work. My
grading program worked OK for the functional aspects of the students’ software. My program

generated inputs, called the students’ program and compared the results with expected behavior.
Where I utterly failed was in my attempts to automatically grade their software on style. I used the
following three part “quality” statistic. First, I measured execution speed the student's software, si.
Smaller times represent improved dynamic efficiency. Next, I measured the number of bytes in the
object code, bi. Again, a smaller number represents better static efficiency. Third, I used the number
of ASCII characters in the source code, ci, as a quantitative measure of documentation. For this
parameter, bigger is better. In a typical statistical fashion, I used the average and standard deviation to
calculate

Half way through the semester, I happened to look at some assignments and was horrified to find the
all-time worst software ever written from both a style and content basis. To improve speed and
reduce size, the students cut so many corners that their code didn’t really work anymore, it just
appeared to work to my grading program. Then they took the ugly mess and filled it with nonsense
comments, giving it the appearance of extensive documentation. To my students in that class that
semester, I sincerely apologize. We should write comments for coworkers who must change our
software, or clients who will use our software.

5.6.3. Inappropriate I/O and Portability
One of the biggest mistakes beginning programmers make is the inappropriate usage of I/O calls (e.g.,
screen output and keyboard input). An explanation for their foolish behavior is that they haven't had
the experience yet of trying to reuse software they have written for one project in another project.
Software portability is diminished when it is littered with user input/output. To reuse software with
user I/O in another situation, you will almost certainly have to remove the input/output statements. In
general, we avoid interactive I/O at the lowest levels of the hierarchy, rather return data and flags and
let the higher level program do the interactive I/O. Often we add keyboard input and screen output
calls when testing our software. It is important to remove the I/O that not directly necessary as part of
the module function. This allows you to reuse these functions in situations where screen output is not
available or appropriate. Obviously screen output is allowed if that is the purpose of the routine.

Common Error: Performing unnecessary I/O in a subroutine makes it harder to reuse at a later time.

5.7. How Assemblers Work
Assemblers are development tools that process assembly language source program statements and
translate them into executable machine language object files. The symbolic language used to code
source programs to be processed by the assembler is called assembly language. The language is a
collection of mnemonic symbols representing: operations (i.e., machine instruction mnemonics or
directives to the assembler), symbolic names, operators, and special symbols. The assembly language
provides mnemonic operation codes for all machine instructions in the instruction set. The assembly
language also contains mnemonic directives that specify auxiliary actions to be performed by the
assembler. These directives or pseudo-ops are not always translated into machine language.

Most assemblers require two passes. During the first pass, the source program is analyzed in order to
develop the symbol table. A symbol tableis a mapping between symbolic names
(e.g., GPIO_PORTD_DIR_R) and their numeric values (e.g., 0x40007400 .) During the second
pass, the object file is created (assembled) using the symbol table developed in pass one. It is during
the second pass that the source program listing is also produced. The symbol table is recreated in the
second pass. A phasing error occurs if the symbol table values calculated in the two passes are
different. Errors that occur during the assembly process (e.g., undefined symbol, illegal op code,
illegal operand, etc.) are explained in the listing file.

The source code is a file of characters usually created with an editor. Each line within the source
code is processed completely before the next line is read. As each line is processed, the assembler
examines the label, operation code, and operand fields. The operation code table is scanned for a
match with a known opcode. During the processing of a standard operation code mnemonic, the
standard machine code is inserted into the object file. If an assembler directive is being processed,
the proper action is taken.

Any errors that are detected by the assembler are displayed after the actual line containing the error is
printed. Object codeis the binary values (instructions and data) that, when executed by the computer,
perform the intended function. The listing file contains the address, object code, and a copy of the
source code. The listing file also provides a symbol table describing where in memory the program
and data will be loaded. The symbol table is a list of all the names used in the program along with the
values. A symbol is created when you put a label starting in column 1. The symbol table value for this
type is the absolute memory address where the instruction, variable or constant will reside in
memory. The second type of label is created by the EQU ,

GPIO_PORTD_DIR_R EQU 0x40007400

The value for this type of symbol is simply the number specified in the operand field. When the
assembler processes an instruction with a symbol in it, it simply substitutes the fixed value in place of
the symbol. Therefore we will use symbols to clarify (make it easier to understand) our programs.
The symbol table for this example is given at the end of the listing file. An assembler error will occur
if the operand cannot be formed with the flexible second operand:

 MOV R0,#GPIO_PORTD_DIR_R ;will not assemble
 LDR R0,=GPIO_PORTD_DIR_R ;this is OK

A compiler converts high-level language source code into object code. A cross-compiler also
converts source code into object code and creates a listing file except that the object code is created
for a target machine that is different from the machine running the cross-compiler. uVision® and Code
Composer Studio™ include both a cross-assembler and a cross-compiler because they run on the
Windows PC and creates Cortex™ object code.

Checkpoint 5.15: What does the assembler do in pass 1?

Checkpoint 5.16: What does the assembler do in pass 2?

5.8. Functional debugging

5.8.1. Stabilization
Functional debugging involves the verification of input/output parameters. Functional debugging is a
static process where inputs are supplied, the system is run, and the outputs are compared against the
expected results. Four methods of functional debugging are presented in this section, and two more
functional debugging methods are presented in the next chapter after indexed addressing mode is
presented. There are two important aspects of debugging: control and observability. The first step of
debugging is to stabilize the system. In the debugging context, we stabilize the problem by creating a
test routine that fixes (or stabilizes) all the inputs. In this way, we can reproduce the exact inputs over
and over again. Stabilization is an effective approach to debugging because we can control exactly
what software is being executed. Once stabilized, if we modify the program, we are sure that the
change in our outputs is a function of the modification we made in our software and not due to a
change in the input parameters. When a system has a small number of possible inputs (e.g., less than a
million), it makes sense to test them all. When the number of possible inputs is large we need to
choose a set of inputs. There are many ways to make this choice. We can select values:

Near the extremes and in the middle
Most typical of how our clients will properly use the system
Most typical of how our clients will improperly attempt to use the system
That differ by one
You know your system will find difficult
Using a random number generator

To stabilize the system we define a fixed set of inputs to test, run the system on these inputs, and
record the outputs. Debugging is a process of finding patterns in the differences between recorded
behavior and expected results. The advantage of modular programming is that we can perform
modular debugging. We make a list of modules that might be causing the bug. We can then create new
test routines to stabilize these modules and debug them one at a time. Unfortunately, sometimes all the
modules seem to work, but the combination of modules does not. In this case we study the interfaces
between the modules, looking for intended and unintended (e.g., unfriendly code) interactions.

5.8.2. Single Stepping
Many debuggers allow you to set the program counter to a specific address then execute one
instruction at a time. The debugger provides three stepping commands Step, StepOver and StepOut
commands. Step is the usual execute one assembly instruction. However, when debugging C we can
also execute one line of C. StepOver will execute one assembly instruction, unless that instruction is

a subroutine call, in which case the debugger will execute the entire subroutine and stop at the
instruction following the subroutine call. StepOut assumes the execution has already entered a
subroutine, and will finish execution of the subroutine and stop at the instruction following the
subroutine call.

5.8.3. Breakpoints with Filtering
A breakpoint is a mechanism to tag places in our software, which when executed will cause the
software to stop. Normally, you can break on any line of your program.

One of the problems with breakpoints is that sometimes we have to observe many breakpoints before
the error occurs. One way to deal with this problem is the conditional breakpoint. To illustrate the
implementation of conditional breakpoints, add a global variable called Count and initialize it to 32
in the initialization ritual. Add the following conditional breakpoint to the appropriate location in
your software. Using the debugger, we set a regular breakpoint at bkpt . We run the system again (you
can change the 32 to match the situation that causes the error.)

 PUSH {R1, R2} ; save R1 and R2
 LDR R2, =Count ; R2 = Count
 LDR R1, [R2] ; R1 = Count
 SUBS R1, R1, #1 ; Count = Count – 1
 STR R1, [R2] ; store to Count
 BNE DEBUG_skip ; if Count != 0, skip
DEBUG_bkpt NOP ; put breakpoint here
DEBUG_skip POP {R1, R2} ; restore R1 and
R2

if(--Count==0)
 bkpt

Notice that the breakpoint occurs only on the 32nd time the break is encountered. Any appropriate
condition can be substituted. Most modern debuggers allow you to set breakpoints that will trigger on
a count. However, this method allows flexibility of letting you choose the exact conditions that cause
the break.

5.8.4. Instrumentation: Print Statements

The use of print statements is a popular and effective means for functional debugging. One difficulty
with print statements in embedded systems is that a standard “printer” may not be available. Another
problem with printing is that most embedded systems involve time-dependent interactions with its
external environment. The print statement itself may be so slow, that the debugging process itself
causes the system to fail. In this regard, the print statement is intrusive. Therefore, throughout this
book we will utilize debugging methods that do not rely on the availability of a standard output
device.If printf is implemented using the UART (printf_UARTxxx.zip), the baud rate is 115200
bits/sec. This translates to 11520 characters per second. Therefore, it takes about 868 µs to output 10
characters using printf . However, because the UART has a 16-character buffer, if we output less than
16 characters, and then wait more than 1.4ms before we output again, the use of printf would be
minimally intrusive.

5.8.5. Desk checking
We perform a desk check (or dry run) by determining in advance, either by analytical algorithm or
explicit calculations, the expected outputs of strategic intermediate stages and final results for typical
inputs. We then run our program and compare the actual outputs with this template of expected results.

Focus. The first step is to specify a small piece of code you think may be incorrect. This step will get
easier as you develop experience writing and debugging code. If a particular output is incorrect, we
suspect each of the modules used to transform input into the incorrect output. Rather than testing the
entire system we debug a very small piece (10 to 20 lines).

Preparation. For a particular set of inputs (e.g., inputs that result in incorrect outputs), we hand-
execute our code, writing down all intermediate results as we expect them to be. It is called desk
checking because this step is performed at our desk with paper and pencil.

Control. Set a breakpoint at the start of the code, and run to that point. We should force the input
parameters to be one of the sets of inputs for which we prepared.

Observability. Configure the debugger so we can observe variables and intermediate calculations.
Single step the software and compare the actual outputs with the expected results.

5.9. Exercises
5.1Assume you have a 16-bit unsigned global variable H. Write assembly code that implements if(H
> 1234)isGreater();

5.2Assume you have a 16-bit signed global variable H. Write assembly code that implements if(H >
-1234)isGreater();

5.3Assume you have an 8-bit unsigned global variable G. Write assembly code that implements if(G
< 50) isLess(); else isMore();

5.4Assume you have a 16-bit signed global variable H. Write assembly code that implements if(H <
-500) isLess(); else isMore();

5.5Assume you have an 8-bit global variable G. Write assembly code that
implements while(G&0x80)body();

5.6 Write assembly code that implements
while(GPIO_PORTD_DATA_R &0x01)body();

5.7 You will write three assembly language versions of the following C code
n=100; while(n!=0){n--; body();}
a) Assume the variable n is implemented as a 16-bit global variable.
b) Assume the variable n is implemented as an 8-bit global variable.
c) Assume the variable n is implemented as a 32-bit variable in Register R2.

5.8 You will write three assembly language versions of the following C code
n=0; while(n<100){n++; body();}
a) Assume the variable n is implemented as a 16-bit global variable.
b) Assume the variable n is implemented as an 8-bit global variable.
c) Assume the variable n is implemented as a 32-bit variable in Register R4.

5.9 You will write two assembly language versions of the following C code
n=1000; while(n!=0){n--; body();}
a) Assume the variable n is implemented as a 16-bit global variable.
b) Assume the variable n is implemented as a 32-bit variable in Register R5.

5.10 There are two 16-bit signed variables, called Input and Output . Write assembly code that
checks the Input , and if Input is less than -100, then the code sets the Output to 200. Conversely
if Input is greater than or equal to -100, then the code does not modify Output .

5.11 Assume Register R0 contains an ASCII character. Write assembly code that converts any lower
case letters (a-z) to upper case (A-Z). For example, if Register R0 is initially ‘g’, convert it to ‘G’.
Leave all other characters unchanged.

5.12 Assume Register R0 contains an ASCII character. Write assembly code that converts any upper
case letters (A-Z) to lower case (a-z). For example, if Register R0is initially ‘G’, convert it to ‘g’.
Leave all other characters unchanged.

5.13 Write an assembly subroutine that implements a median filter. The three 32-bit unsigned numbers
are passed into the subroutine by value in Registers R0, R1 and R2. The median is the middle value
of the three, sorted by size. The return parameter is passed back in Register R0.

5.14 Write an assembly subroutine that finds the least common multiple of two numbers. The inputs
are passed in as 32-bit unsigned numbers in Registers R0 and R1. The result is returned as a 32-bit
unsigned number in Register R0.

5.15You are given a stopwatch module with the following functions. Try and guess what each function
does. Watch_SetTimerResolution , Watch_StartTimer , Watch_StopTimer , Watch_DisplayTime

D5.16 Assume there are two 8-bit unsigned digital inputs attached to Ports F and G respectively. Port
F contains the measured motor speed in rotations per second (rps), and Port G contains the desired
motor speed also in rps. There is an 8-bit unsigned output on Port A interfaced to the motor that
controls power to the motor. PORTA=0 means no power, PORTA =255 is full power. After
initialization the incremental motor controller should implement this: If the actual speed is less than
the desired and if PORTA <255, then increment PORTA
If the actual speed equals the desired, then do not change PORTA
If the actual speed is greater than the desired and if PORTA >0, then decrement PORTA
After initialization, the body of the main program execute over and over.

D5.17 The goal is to design a one-wheeled balancing robot. Assume there is an 8-bit signed digital
input attached to Port F. Port F contains the measured angle of the robot with respect to the ground in
degrees. The desired position is straight up, which is 0 degrees. There is an 8-bit signed output on
Port G interfaced to the wheel that controls torque to the wheel. Port G = -128 means full clockwise
torque, Port G = 0 means no torque, and Port G = +127 means full counterclockwise torque. After
initialization the incremental controller should:
If the angle is less than zero and if Port G < 127, then increment Port G
If the angle equals zero, then do not change Port G
If the angle is greater than zero and if Port G > -128, then decrement Port G
After initialization, the body of the main program execute over and over.

5.10. Lab Assignments
There are many types of recursion. The factorial and the decimal output functions in Section 5.4 are
examples of linear recursion, because only one call is made to the function within the function. A tail
recursive function has the recursive call as the last action taken by the function. A tail recursive
function can be implemented in an iterative manner by removing the recursive call and substituting it
with a loop. A binary recursive function calls itself twice during the course of its execution. For
Labs 5.1 and 5.2, pass parameters in registers and place local variables also in registers. Implement
32-bit unsigned arithmetic. Design a main program to test the functionality of your solution. Measure
the execution speed and required stack space of both versions for 5 different input values. Generalize
the results.

Lab 5.1 Tail Recursion. Implement the following recursive greatest common divisor function in
assembly language. Convert the operation to a nonrecursive algorithm, and implement it also in
assembly language.
uint32_t gcd(uint32_t m, uint32_t n){
 uint32_t r;
 if(m < n){
 return gcd(n,m);
 }
 r = m%n;
 if(r == 0){
 return(n);
 }
 return(gcd(n,r));
}

Lab 5.2 Binary Recursion. nCk is the number of combinations of choosing n elements out of a set of k
elements. Implement the following recursive function in assembly language. Convert the operation to
a nonrecursive algorithm, and implement it also in assembly language.
uint32_t nCk(uint32_t n, uint32_t k){
 if((k == 0)||(n == k)){
 return(1);
 }
 return(nCk(n-1,k) + nCk(n-1,k-1));
}

6. Pointers and Data Structures
Chapter 6 objectives are to:
• Implement pointers using indexed addressing modes
• Use pointers to access arrays, strings, structures, tables, and matrices
• Present finite state machines as an abstractive design methodology
• Use tables and interpolation to implement nonlinear functions
• Present minimally intrusive methods for functional debugging

Data are brought into registers temporarily for manipulation and decision making. However, on a long
term basis, we store data in memory. If the data values are known at design time, and do not change,
we place them in ROM. If we do not know the values at assembly time, or if the values vary with
time, we need to place them in RAM. When we write software that manipulates the exact same data
each time, then we can know its address at assembly time and use direct or extended addressing to
access the data. For example, because the addresses of the I/O ports are fixed, we typically use direct
or extended addressing to access I/O. Conversely, sometimes we write software that operates on
different data at different times (e.g., calculating the average of a set of numbers in various buffers,
outputting different strings on an LCD.) In these cases, we need a way to access data, where which
data we are operating on is determined at run-time. For these situations, we use pointers. A pointer is
simply an address. A pointer (e.g., Pt in Figure 6.1) is a variable where the contents of the variable is
not data, but rather an address. Our software can be extremely flexible if we allow the address to
change dynamically. On the Cortex™-M processor, pointers are 32 bits containing the address of the
data of interest. Before we use a pointer, we must initialize it, so it points to an object. We can also
change a pointer at run time, so it points to a different object, as shown in Figure 6.1. In this book, we
will use the address 0 as the null pointer, meaning the pointer is not valid. In this chapter, the objects
addressed by pointers will be data, but in Chapter 7, we will see an example of function pointers. A
function pointer is an address pointing to a subroutine. The reset vector, stored at 0x0000.0004, is an
example of function pointer, because it contains a pointer to the main program.

Figure 6.1. Pointers are addresses pointing to objects. The objects may be data,
functions, or other pointers.

6.1. Indexed Addressing and Pointers
At the assembly level, we implement pointers using indexed addressing mode. For example, a
register contains an address, and the instruction reads or writes memory specified by that address.
Basically, we place the address into a register, then use indexed addressing mode to access the data.
In this case, the registerholds the pointer. Figure 6.2 illustrates three examples that utilize pointers. In
this figure, Pt SP GetPt PutPt are pointers, where the arrows show to where they point, and the
shaded boxes represent data. An array or string is a simple structure containing multiple equal-sized
elements. We set a pointer to the address of the first element, then use indexed addressing mode to
access the elements inside. We have introduced the stack previously, and will cover it in more detail
in Chapter 7. The stack pointer (SP) points to the top element on the stack. A linked list contains some
elements that are pointers themselves. The pointers are used to traverse the data structure. Example
linked lists will be presented in Section 6.6. The first in first out (FIFO) queue is an important data
structure for I/O programming because it allows us to pass data from one module to another. One
module puts data into the FIFO and another module gets data out of the FIFO. There is a GetPt that
points to the oldest data (to be removed next) and a PutPt that points to an empty space (location to
be stored into next). The FIFO queue will be presented in detail in Chapter 11.

Figure 6.2. Examples of data structures that utilize pointers.

Accessing 16-bit data structures with indexed addressing is slightly different in assembly
versus in C. For example, if we create an array of the first ten prime numbers stored as 16-bit
integers, we could allocate the structure in ROM using the DCW pseudo-op. E.g.,

Prime DCW 1,2,3,5,7,11,13,17,19,23

The equivalent ROM-based definition in C would be

uint16_t const Prime[10]={1,2,3,5,7,11,13,17,19,23};

By convention, we define Prime[0] as the first element, Prime[1] as the second element, etc.The
address of the first element can be written as &Prime[0] or just Prime . In C, if we want the 5th

element,we use the expression Prime[4] to fetch the 7 out of the structure. In assembly, however, we
are responsible for knowing each element is two bytes and the 5th element is actually at bytes number
8 and 9. In general, the nth element of a 16-bit array is at bytes 2n-2 and 2n-1. E.g., to read the 5th

element into Register R0 we need to perform

 LDR R1,=Prime ;pointer to the structure
 LDRH R0,[R1,#8] ;read 16-bit unsigned Prime[4]

Either way, manipulating addresses in assembly always involves the physical byte-address regardless
of the precision of the data. Similarly assume we have a pointer to Prime , and we want to increment
the pointer to the next element. In C, we define the pointer as

uint16_t const *Pt;

In this case, the const does not indicate the pointer is fixed. Rather, the pointer refers to constant 16-
bit data in ROM. We initialize the pointer at run time using

Pt = Prime; // Pt points to Prime
or
 Pt = &Prime[0]; // Pt points to Prime

Similarly in assembly, we can define the pointer in RAM as

Pt SPACE 4 ; pointer to Prime

and initialize it as

 LDR R1,=Prime ;pointer to the structure
 LDR R0,=Pt ;pointer to the Pt
 STR R1,[R0] ;Pt is a pointer to Prime[0]

You should not use DCD to define/allocate RAM-based variables in microcontrollers used for
embedded systems, because these RAM-based variables have no initial value when power is applied
to the microcontroller. One must explicitly initialize variables using assembly code like the above
three lines. In C however, at start-up all RAM-based variables are initialized to an explicit value, or
to zero if no explicit initial value is given.

Now, to increment the pointer to the next element in C, use the expression Pt++ . In C, Pt++ , which
is the same thing as Pt=Pt+1; actually adds two to the pointer because it points to halfwords.
However, in assembly we have to explicitly add 2 to the pointer. E.g.,

 LDR R0,=Pt ;pointer to the Pt
 LDR R1,[R0] ;R1 is value of Pt
 ADD R1,#2
 STR R1,[R0] ;update Pt

Observation: We normally add/subtract one to the pointer when accessing an 8-bit array,
add/subtract two when accessing a 16-bit array, and add/subtract four when accessing a 32-bit array.

The subroutines thus far in the book have utilized call by value parameter passing. With an input
parameter using call by value, the data itself is passed into the subroutine. For an output parameter
using return by value, the result of the subroutine is a value, and the value itself is returned. The most
efficient mechanism to pass parameters is the registers. In Chapter 7 we will learn a more flexible,
but less efficient technique to pass parameters using the stack. Alternatively, if you pass a pointer to
the data, rather than the data itself, we will be able to pass large amounts of data. Passing a pointer to
data is classified as call by reference. For large amounts of data, call by reference is also very fast,
because the data need not be copied from calling program to subroutine. In call by reference, the one
copy of the data exists in the calling program, and a pointer to it is passed to the subroutine. In this
way, the subroutine actually performs read/write access to the original data. Call by reference is also
a convenient mechanism to return data as well. Passing a pointer to an object allows this object to be
an input parameter and an output parameter.

As an example, consider the situation where we wish to pass 100 bytes into the subroutine Sort . In
this case, we have one or more buffers, defined in RAM, which initially contains data in an unsorted
fashion. The buffers shown here are uninitialized, but assume previously executed software has filled
these buffers with corresponding voltage and pressure data. In C, we could have

uint8_t VBuffer[100]; // voltage data
uint8_t PBuffer[100]; // pressure data

A similar definition in assembly would be
VBuffer SPACE 100 ;voltage data
PBuffer SPACE 100 ;pressure data

Since 100 bytes is more than will fit in the registers, we will use call by reference. In C, to declare a
parameter call by reference we use the *.

void Sort(uint8_t *bufPt){uint8_t data;
 data = *bufPt; // example read data from original buffer
 *bufPt = data; // example write data back to the buffer
}

In C, to invoke a function using call by reference we pass a pointer to the object. These two calling
sequences are identical, because in C the array name is equivalent to a pointer to its first
element.The & operator is used to get the address of a variable.
void main(void){ void main(void){
 Sort(VBuffer); Sort(&VBuffer[0]);
 Sort(PBuffer); Sort(&PBuffer[0]);

} }
In assembly, we use a register as a pointer to the data. The calling sequence for sorting the voltage
data in VBuffer could be
 LDR R0,=VBuffer ;R0 = &VBuffer (pointer to first element)
 BL Sort

The calling sequence for sorting the pressure data in PBuffer could be
 LDR R0,=PBuffer ;R0 = &PBuffer (pointer to first element)
 BL Sort
One advantage of call by reference in this example is the same buffer can be used also as the return
parameter. In particular, this sort routine could shuffle the data around in the same original buffer.
Since RAM is a scarce commodity on most microcontrollers, not having to allocate two buffers will
reduce RAM requirements for the system.

From a security perspective, call by reference is more vulnerable than call by value. If we have
important information, then a level of trust is required to pass a pointer to the original data to a
subroutine. Since call by value creates a copy of the data at the time of the call, it is slower but more
secure. With call by value, the original data is protected from subroutines that are called.

6.2. Arrays
Random access means one can read and write any element in any order. Random access is allowed
for all indexable data structures. An indexed data structure has elements of the same size and can be
accessed knowing the name of the structure, the size of each element, and the element number. In C,
we use the syntax [] to access an indexed structure. Arrays, matrices, and tables are examples of
indexed structures presented in this chapter.

Sequential access means one reads and writes the elements in order. Pointers are usually employed
in these types of data structures. Strings, linked-lists, stacks, queues, and trees are examples of
sequential structures. The first in first out circular queue (FIFO) is useful for data flow problems, and
it will be presented in Chapters 9 and 11.

An array is made of elements of equal precision and allows random access. The precision is the size
of each element. Typically, precision is expressed in bits or bytes. The length is the number of
elements. The origin is the index of the first element. A data structure with the first element existing at
index zero is called zero-origin indexing. In C, zero-origin index is almost always used. For
example, Prime[0] is the first element of the array Prime .

Example 6.1. Write a software module to control the read/write (R/W) head of an audio tape
recorder. From the perspective shown in Figure 6.3, the stepper motor causes the R/W head to move
up and down. This motion affects which audio track on the tape is under the head. The goal is to be
able to move the motor one step at a time.

Solution: This module requires three public functions: one for initialization, one to rotate one step
clockwise, and one to rotate one step counter-clockwise. By rotating the motor one step at a time, the
software can control which audio track on the tape is under the R/W head. A stepper motor has four
digital control lines. To make the stepper motor spin, we output the sequence 5, 6, 10, and 9 over and
over on these four lines. To make it spin in the other direction, we output the sequence in the other
direction. This motor has 24 steps per revolution; therefore one step will change the shaft angle by
exactly 15o. To make the motor step once, we output just the next number in the sequence. For
example, if the output is currently at 5, and we wish to rotate the shaft by 15o, we simply output a 6. In
this solution, we will store the 5, 6, 10, and 9 data in an array, as shown in Figure 6.4. For more
information on the hardware interfacing of stepper motors see Section 8.7.

Figure 6.3. A stepper motor is used in a cassette tape recorder to select the track.

Figure 6.4. A byte array with 4 elements (addresses are made up to illustrate the
array is in ROM).

In C, we can access an element of the array using its name and an index. Assume Port D bits 3–0 are
connected to the stepper motor. The initialization function makes those pins an output, and
the Index is initialized to zero. In assembly, we can perform a similar function using indexed
addressing, see Program 6.1. Assume Index is a 32-bit private global variable, defined in RAM, and
initialized to zero. Index takes on the values 0, 1, 2, and 3. The instruction LDRB R3,[R0,R2] adds
the base address in Register R2 to the index value in Register R0, fetching the contents of the array at
that index. Since the first output generated by Stepper_CW will be a 5, we will initialize the motor
to 9; this way, the first call to Stepper_CW will move the motor. In this example, the subroutine is
public but has no input or output parameters. Port D, the array, and the index are private to this
module. This means if another module wishes to move the motor, it can call the public
function Stepper_CW , but does not have access to Port D bits 3–0, Data , or Index . The third
public function, Stepper_CCW , is left as Homework problem 6.29. To make the code friendly, we
will use this bit-specific STEPPER definitionof PD3-0, the same as LEDS back in Program 4.5.

#define STEPPER (*((volatile uint32_t *)0x4000703C))
 AREA DATA, ALIGN=2
Index SPACE 4

 AREA |.text|,CODE,READONLY,ALIGN=2
 THUMB
Data DCB 0x05, 0x06, 0x0A, 0x09
STEPPER EQU 0x4000703C
Stepper_Init
 PUSH {R4,LR}
 BL GPIO_Init ; Program 4.5
 LDR R1, =STEPPER
 MOV R0, #0x09

const uint8_t Data[4]=
 {0x05,0x06,0x0A,0x09};
uint32_t static Index;

void Stepper_Init(void){
 GPIO_Init(); // Prog 4.5
 STEPPER = 0x09;
 Index = 0; // first index
}

 STR R0, [R1] ; PortD = 9
 MOV R0, #0
 LDR R1, =Index
 STR R0, [R1] ; Index = 0
 POP {R4,PC}
;Move one step clockwise
Stepper_CW
 LDR R1, =Index
 LDR R0, [R1] ; R0 = Index
 LDR R2, =Data ; R2 = &Data
 LDRB R3, [R0, R2] ; R3 = Data[Index]
 LDR R2, =STEPPER
 STR R3, [R2] ; PortD = Data[Index]
 ADD R0, R0, #1 ; Index+1
 AND R0, R0, #3 ; 0 <= Index <= 3
 STR R0, [R1]
 BX LR

void Stepper_CW(void){
 STEPPER = Data[Index];
 Index = (Index+1)&0x03;
}

Program 6.1. Stepper motor software that uses a byte array.

When constraining a sequence of numbers to a power of two, we can use a logical AND. If a
sequence runs from 0 to 2n-1, then the mask will be 2n-1. To get the next number in the sequence we
execute I=(I+1)&(2n-1). Before connecting an actual stepper motor, check its datasheet to determine
its maximum current load. The TM4C123 microcontroller can only source 8mA, and the TM4C1294
can source 12mA, which is far less than what a motor will need. Beware that connecting the motor
directly to digital logic pins will break your microcontroller. This stepper motor interface will be
completed in Section 8.8.

Example 6.2. Design an exponential function, y = 10x, with a 32-bit output.

Solution: Since the output is less than 4,294,967,295, the input must be between 0 and 9. One simple
solution is to employ a constant word array, as shown in Figure 6.5. Each element is 32 bits. In
assembly, we define a word constant using DCD , making sure in exists in ROM.

In C, the syntax for accessing all array types is independent of precision. See Program 6.2. The
compiler automatically performs the correct address correction. We will assume the input is less than
or equal to 9. If x is the index and Base is the base address of the array, then the address of the
element at x is Base+4*x . In assembly, we can access the array using indexed addressing. We will
assume the Register R0 input is less than or equal to 9.

0x00000134 1
0x00000138 10
0x0000013C 100
0x00000140 1,000
0x00000144 10,000
0x00000148 100,000
0x0000014C 1,000,000
0x00000150 10,000,000

0x00000154 100,000,000
0x00000158 1,000,000,000

Figure 6.5. A word array with 10 elements. Addresses illustrate the array is stored
in ROM as 4 bytes each.

 AREA
|.text|,CODE,READONLY,ALIGN=2
Powers DCD 1, 10, 100, 1000, 10000
 DCD 100000, 1000000, 10000000
 DCD 100000000, 1000000000
; Input: R0=x Output: R0=10^x
power LSL R0, R0, #2 ; x = x*4
 LDR R1, =Powers ; R1 = &Powers
 LDR R0, [R0, R1] ; y=Powers[x]
 BX LR

const uint32_t Powers[10]
 ={1,10,100,1000,10000,
 100000,1000000,10000000,
 100000000,1000000000};

uint32_t power(uint32_t x){
 return Powers[x];
}

Program 6.2. Array implementation of a nonlinear function.

In the previous examples, the length of the array was known. Sometimes, it is desirable to allow the
length to vary dynamically. There are many mechanisms that allow for a variable length array. One
simple mechanism saves the length of the array as the first element. In this way, we could add run time
checking to make sure the index bounds are not exceeded. The Powers function could have been
defined as

const uint32_t Powers[11]={10, 1, 10, 100, 1000, 10000, 100000,
 1000000, 10000000, 100000000, 1000000000};
uint32_t power(uint32_t x){
 if(x<Powers[0])
 return Powers[x+1];
 return 0xFFFFFFFF; // overflow
}

Another common mechanism to handle variable length is a termination code. Typical codes for ASCII
character data are shown in Table 6.1. This method can only be used if it is not possible for the
termination code to be present in the data.

ASCII C code name
NUL \0 0x00 null
ETX \x03 0x03 end of text
EOT \x04 0x04 end of transmission
FF \f 0x0C form feed
CR \r 0x0D carriage return
ETB \x17 0x17 end of transmission

block
Table 6.1. Typical termination codes

For arrays of numbers, we can use one of the extreme values as the termination code. For example, if
the data were 16-bit unsigned integers we could use 65535 as the termination code. The other values
from 0 to 65534 would represent actual data. Here are three examples of variable length arrays of 16-
bit unsigned integers. The first array has 4 elements, the second 9 elements and the third array is
empty.

const uint16_t Data1[5]={0,3,4,1,65535};
const uint16_t Data2[10]={1,2,3,4,5,6,7,8,9,65535};
const uint16_t Data3[1]={65535};

If we wished to add up all values in this variable length array, we would need to pass the array into
the function using call by reference. In C, the first parameter is passed in R0, and the return parameter
is returned in R0. The assembly implementation passes parameters the same way, see Program
6.3.The elements are 16-bit unsigned, so the instruction LDRH is used to fetch entries from the array.

; Input: R0=&Array Output: R0=sum
Sum MOV R1,#0
 LDR R3,=65535
loop LDRH R2,[R0] ; value from array
 CMP R2,R3 ; termination?
 BEQ done
 ADD R1,R1,R2
 ADD R0,#2 ; next halfword
 B loop
done MOV R0,R1 ; return result
 BX LR

uint16_t Sum(uint16_t *pt){
uint16_t result=0;
 while(*pt != 65535){
 result = result + (*pt);
 pt++;
 }
 return result;
}

Program 6.3. Function to sum all elements of a variable length array. Data are 16
bits unsigned.

Similarly, if we have 16-bit signed data, we could use -32768 as the termination code

const int16_t Data4[5]={0,3,-4,1,-32768};
const int16_t Data5[10]={1,-2,3,4,-5,6,-7,8,-9,-32768};
const int16_t Data6[1]={-32768};

The functions in Program 6.4 will sum all values in a variable length array using a -32768
termination. The array is passed into the function using call by reference. The elements are 16-bit
signed, so the instruction LDRSH is used to fetch entries.

; Input: R0=&Array Output: R0=sum
Sum MOV R1,#0
loop LDRSH R2,[R0] ; value from array
 CMP R2,#-32768 ; termination?
 BEQ done
 ADD R1,R1,R2
 ADD R0,#2 ; next halfword
 B loop
done MOV R0,R1 ; return result
 BX LR

int16_t Sum(int16_t *pt){
int16_t result=0;
 while(*pt != -32768){
 result = result + (*pt);
 pt++;
 }
 return result;
}

Program 6.4. Function to sum all elements of a variable length array. Data are 16

bits signed.

In general, let n be the precision of a zero-origin indexed array in bytes. If I is the index and Base is
the beginning address of the array, then the address of the element at I is

Base+n*I

The originof an array is the index of the first element. The origin of a zero-origin indexed array is
zero. In general, if o is the origin of the array, then the address of the element at I is

Base+n*(I-o)

6.3. Strings

A string is a data structure with equal size elements that only allows sequential access. The
bytes of the string are always read in order from the first to the last. In contrast, an array
allows random access to any element in any order. The same mechanisms introduced for
variable length arrays will apply also to strings. In general, we store the length of the string in
the first position, when the data can take on any value, negating the possibility of using a
termination code. From a programming perspective we access strings in the same manner as
arrays. In C99, we can define a constant string of ASCII characters with null termination:

const char Hello[] = "Hello world\n\r";

When defining constant strings or arrays we must specify their value because the data will be
loaded into ROM and cannot be changed at run time. In the previous constant arrays we
specified the size; however for constant arrays the size can be left off and the compiler will
calculate the size automatically. Notice also the string can contain special characters, some of
which were listed previously in Table 4.11. The above string has 13 characters followed by a
null (0) termination. The equivalent definition in assembly would be

Hello DCB "Hello world\n\r",0

In C, ASCII strings are stored with null-termination. In C, the compiler automatically adds the zero at
the end, but in assembly, the zero must be explicitly defined.

Example 6.3. Write software to output an ASCII string an output device.

Solution: Because the length of the string may be too long to place all the ASCII charactersinto the
registers at the same time, call by reference parameter passing will be used. With call by reference, a
pointer to the string will be passed. The function OutString , shown in Program 6.5, will output the
string data to the display. A version of the function OutChar will be developed later in Chapter 8
and shown as Program 8.1 which sends data out the UART. When using a development kit, this UART
data is observable on the PC running a terminal program like PuTTY or TExaSdisplay. For now all
we need to know is that it outputs a single ASCII character. In the assembly version R4 is used
because we know by convention the function OutChar will preserve R4 to R11. However, by

convention this function will preserve R4 by saving and restoring it. R4 is a pointer to the string; one
is added to the pointer each time through the loop because each element in the string is one byte.
Since this function calls a subfunction it must save LR. The POP PC operation will perform the
function return.

;Input: R0 points to string
OutString
 PUSH {R4, LR}
 MOV R4, R0
loop LDRB R0, [R4]
 ADD R4, #1 ;next
 CMP R0, #0 ;done?
 BEQ done ;0 termination
 BL OutChar ;print character
 B loop
done POP {R4, PC}

// displays a string
void OutString(char *pt){
 while(*pt){
 OutChar(*pt); // output
 pt++; // next
 }
}

Program 6.5. A variable length string contains ASCII data.

Observation: Most C compilers have standard libraries. If you include “string.h” you will have
access to many convenient string operations.

When dealing with strings we must remember that they are arrays of characters with null termination.
In C, we can pass a string as a parameter, but doing so creates a constant string and implements call
by reference. Assuming Hello is as defined above, these three invocations are identical:

 OutString(Hello);
 OutString(&Hello[0]);
 OutString("Hello world\n\r");

Previously we dealt with constant strings. With string variables, we do not know the length at compile
time, so we must allocate space for the largest possible size the string could be. E.g., if we know the
string size could vary from 0 to 19 characters, we would allocate 20 bytes.

char String1[20];
char String2[20];

In C, we cannot assign one string to another. I.e., these are illegal

 String1 = "Hello"; //********illegal************
 String2 = String1; //********illegal************

We can make this operation occur by calling a function called strcpy , which copies one string to
another. This function takes two pointers. We must however make sure the destination string has
enough space to hold the string being copied.

 strcpy(String1,"Hello"); // copies "Hello" into String1
 strcpy(String2,String1); // copies String1 into String2

Program 6.6 shows two implementations of this string copy function.R0 and R1 are pointers, and R2
contains the data as it is being copied. In this case, dest++; is implemented as an “add 1” because
the data is one byte each. In other situations, the increment pointer would be “add 2” for halfword
data and would be “add 4” for word data.

; Input: R0=&dest R1=&source
strcpy LDRB R2,[R1] ;source data
 STRB R2,[R0] ;copy
 CMP R2,#0 ;termination?
 BEQ done
 ADD R1,#1 ;next
 ADD R0,#1
 B strcpy
done BX LR
;faster version
strcpy LDRB R2,[R1],#1 ;source data
 STRB R2,[R0],#1 ;copy
 CMP R2,#0 ;termination?
 BEQ done
 B strcpy
done BX LR

// copy string from source to dest
void strcpy(char *dest, char *source){
 while(*source){
 *dest = *source; // copy
 dest++; // next
 source++;
 }
 *dest = *source; // termination
}
// another version
void strcpy(char *dest, char *source){
char data;
 do{
 data = *dest++ = *source++;
 } while(data);
}

Program 6.6. Simple string copy functions.

6.4. Structures
A structure haselements with different types and/or precisions. In C, we use struct to define a
structure. The const modifier causes the structure to be allocated in ROM. Without the const , the C
compiler will place the structure in RAM, allowing it to be dynamically changed. If the structure
were to contain an ASCII string of variable length, then we must allocate space to handle its
maximum size.In this first example, the structure will be allocated in RAM so no const is included.
The following code defines a structurewith three elements. We give separate names to each element.
The typedef command creates a new data type based on the structure, but no memory is allocated.

struct player{
 uint8_t Xpos; // first element
 uint8_t Ypos; // second element
 uint16_t LifePoints; // third element
};
typedef struct player playerType;

We can allocate a variable called Sprite of this type, which will occupy four bytes in RAM:

playerType Sprite;
We can access the individual elements of this variable using the syntax name.element . After these
three lines are executed we have the data structure as shown in Figure 6.6, assuming the variable
occupies the four bytes starting at 0x2000.0250.

 Sprite.Xpos = 10;
 Sprite.Ypos = 20;
 Sprite.LifePoints = 12000;

Figure 6.6. A structure collects elements of different sizes and/or types into one
object.

We can also define pointers to structures. We define pointer in a similar way as other pointers

playerType *Ptr;

Before we can use a pointer, we must make sure it points to something
 Ptr = &Sprite;

We access the individual fields using the syntax pointer->element
 Ptr->Xpos = 10;
 Ptr->Ypos = 20;
 Ptr->LifePoints = 12000;

We can create something similar to structures in assembly by using EQU definitions, see Program
6.7. Since structures have multiple elements, we will employ call by reference when passing
parameters. This C function takes a player, moves it to location 50,50 and adds one life-point. We
call the functionby passing an address to a playerType variable. For example, we
execute MoveCenter(&Sprite);

; Input: R0 = &PlayerType
Xpos EQU 0
Ypos EQU 1
LifePoints EQU 2
MoveCenter MOV R1,#50
 STRB R1,[R0,#Xpos]
 STRB R1,[R0,#Ypos]
 LDRH R1,[R0,#LifePoints]
 LDR R2,=65535
 CMP R1,R2 ;at max?
 BHS skip
 ADD R1,#1 ;more life
 STRH R1,[R0,#LifePoints]
skip BX LR

// move to center and add life
void MoveCenter(playerType *pt){
 pt->Xpos = 50;
 pt->Ypos = 50;
 if(pt->LifePoints < 65535){
 pt->LifePoints++;
 }
}

Program 6.7. A function that accesses a structure.

Observation: Most C compilers will align 16-bit elements within structures to an even address and
will align 32-bit elements to a word-aligned address.

Observation: Call by reference allows the single parameter to be both an input parameter and an
output parameter.

Without the const , the C compiler will place the structure in RAM, allowing it to be dynamically
changed. If the structure resides in RAM, then the system will have to initialize the data structure
explicitly by executing software. If the structure is in ROM, we must initialize it at compile time. The
next section shows examples of ROM-based structures.

6.5. Finite State Machines with Linked
Structures

6.5.1. Abstraction
Software abstraction allows us to define a complex problem with a set of basic abstract principles. If
we can construct our software system using these abstract building blocks, then we have a better
understanding of both the problem and its solution. This is because we can separate what we are
doing (policies) from the details of how we are getting it done (mechanisms). This separation also
makes it easier to optimize. Abstraction provides for a proof of correct function and simplifies both
extensions and customization. The abstraction presented in this section is the Finite State Machine
(FSM). The abstract principles of FSM development are the inputs, outputs, states, and state
transitions. The FSM state graph defines the time-dependent relationship between its inputs and
outputs. If we can take a complex problem and map it into a FSM model, then we can solve it with
simple FSM software tools. Our FSM software implementation will be easy to understand, debug,
and modify. Other examples of software abstraction include Proportional Integral Derivative digital
controllers, fuzzy logic digital controllers, neural networks, and linear systems of differential
equations. In each case, the problem is mapped into a well-defined model with a set of abstract yet
powerful rules. Then, the software solution is a matter of implementing the rules of the model. In our
case, once we prove our software correctly solves one FSM, then we can make changes to the state
graph and be confident that our software solution correctly implements the new FSM.

The FSM controller employs a well-defined model or framework with which we solve our problem.
The state graph will be specified using either a linked or table data structure. An important aspect of
this method is to create a 1-1 mapping from the state graph into the data structure. The three
advantages of this abstraction are 1) it can be faster to develop because many of the building blocks
preexist; 2) it is easier to debug (prove correct) because it separates conceptual issues from
implementation; and 3) it is easier to change. In a Moore FSM the output value depends only on the
current state, and the inputs affect the state transitions. On the other hand, the outputs of a Mealy FSM
depend both on the current state and the inputs. See Figure 6.7.

When designing a FSM, we begin by defining what constitutes a state. In a simple system like a single
intersection traffic light, a state might be defined as the pattern of lights (i.e., which lights are on and
which are off). In a more sophisticated traffic controller, what it means to be in a state might also
include information about traffic volume at this and other adjacent intersections. The next step is to
make a list of the various states in which the system might exist. As in all designs, we add outputs so
the system can affect the external environment, and inputs so the system can collect information about
its environment or receive commands as needed. The execution of a Moore FSM repeats this
sequence over and over

1. Perform output, which depends on the current state

2. Wait a prescribed amount of time (optional)
3. Input
4. Go to next state, which depends on the input and the current state

The execution of a Mealy FSM repeats this sequence over and over

1. Wait a prescribed amount of time (optional)
2. Input
3. Perform output, which depends on the input and the current state
4. Go to next state, which depends on the input and the current state

There are other possible execution sequences. Therefore, it is important to document the sequence
before the state graph is drawn. The high-level behavior of the system is defined by the state graph.
The states are drawn as circles. Descriptive states names help explain what the machine is doing.
Arrows are drawn from one state to another, and labeled with the input value causing that state
transition.

Figure 6.7. The output in a Moore depends just on the state. In a Mealy the
output depends on state and input.

Observation: If the machine is such that a specific output value is necessary “to be a state”, then a
Moore implementation will be more appropriate.

Observation: If the machine is such that no specific output value is necessary “to be a state”, but
rather the output is required to transition the machine from one state to the next, then a Mealy
implementation will be more appropriate.

A linked structure consists of multiple identically-structured nodes. Each node of the linked structure
defines one state. One or more of the entries in the node is a pointer (or link) to other nodes. In an
embedded system, we usually use statically-allocated fixed-size linked structures, which are defined
at compile time and exist throughout the life of the software. In a simple embedded system the state
graph is fixed, so we can store the linked data structure in nonvolatile memory. For complex systems
where the control functions change dynamically (e.g., the state graph itself varies over time), we
could implement dynamically-allocated linked structures, which are constructed at run time and
number of nodes can grow and shrink in time. We can also use a table structure to define the state
graph, which consists of contiguous multiple identically-structured elements. Each element of the
table defines one state. One or more of the entries is an index to other elements. An important factor
when implementing FSMs is that there should be a clear and one-to-one mapping between the FSM
state graph and the data structure. I.e., there should be one element of the structure for each state. If
each state has four arrows, then each node of the linked structure should have four links.

6.5.2. Moore Finite State Machines
The outputs of Moore FSM are only a function of the current state. In contrast, the outputs are a
function of both the input and the current state in a Mealy FSM. Often, in a Moore FSM, the specific
output pattern defines what it means to be in the current state. In the first example, the inputs and
outputs are simple binary numbers read from and written to a parallel port.

Example 6.4. Design a traffic light controller for the intersection of two equally busy one-way
streets. The goal is to maximize traffic flow, minimize waiting time at a red light, and avoid
accidents.

Solution: The intersection has two one-ways roads with the same amount of traffic: North and East,
as shown in Figure 6.8. Controlling traffic is a good example because we all know what is supposed
to happen at the intersection of two busy one-way streets. We begin the design defining what
constitutes a state. In this system, a state describes which road has authority to cross the intersection.
The basic idea, of course, is to prevent southbound cars to enter the intersection at the same time as
westbound cars. In this system, the light pattern defines which road has right of way over the other.
Since an output pattern to the lights is necessary to remain in a state, we will solve this system with a
Moore FSM. It will have two inputs (car sensors on North and East roads) and six outputs (one for
each light in the traffic signal.) The six traffic lights are interfaced to Port B bits 5–0, and the two
sensors are connected to Port E bits 1–0,
PE1=0, PE0=0 means no cars exist on either road
PE1=0, PE0=1 means there are cars on the East road
PE1=1, PE0=0 means there are cars on the North road
PE1=1, PE0=1 means there are cars on both roads
The next step in designing the FSM is to create some states. Again, the Moore implementation was
chosen because the output pattern (which lights are on) defines which state we are in. Each state is
given a symbolic name:
goN , PB5-0 = 100001 makes it green on North and red on East
waitN , PB5-0 = 100010 makes it yellow on North and red on East
goE , PB5-0 = 001100 makes it red on North and green on East
waitE , PB5-0 = 010100 makes it red on North and yellow on East

Figure 6.8. Traffic light interface with two sensors and 6 lights.

The output pattern for each state is drawn inside the state circle. The time to wait for each state is
also included. How the machine operates will be dictated by the input-dependent state transitions. We
create decision rules defining what to do for each possible input and for each state. For this design
we can list heuristics describing how the traffic light is to operate:
If no cars are coming, stay in a green state, but which one doesn’t matter.
To change from green to red, implement a yellow light of exactly 5 seconds.
Green lights will last at least 30 seconds.
If cars are only coming in one direction, move to and stay green in that direction.
If cars are coming in both directions, cycle through all four states.
Before we draw the state graph, we need to decide on the sequence of operations.
1. Initialize timer and direction registers
2. Specify initial state
3. Perform FSM controller
a) Output to traffic lights, which depends on the state
b) Delay, which depends on the state
c) Input from sensors
d) Change states, which depends on the state and the input

We implement the heuristics by defining the state transitions, as illustrated in Figure 6.9. Instead of
using a graph to define the finite state machine, we could have used a table, as shown in Table 6.2.

Figure 6.9. Graphical form of a Moore FSM that implements a traffic light.

State \ Input 00 01 10 11
goN (100001,30) goN waitN goN waitN
waitN (100010,5) goE goE goE goE
goE (001100,30) goE goE waitE waitE
waitE (010100,5) goN goN goN goN

Table 6.2. Tabular form of a Moore FSM that implements a traffic light.

The next step is to map the FSM graph onto a data structure that can be stored in ROM. Program
6.8uses a linked data structure, where each state is a node, and state transitions are defined as
pointers to other nodes. The four Next parameters define the input-dependent state transitions. The
wait times are defined in the software as fixed-point decimal numbers with units of 0.01 seconds,
giving a range of 10 ms to about 10 minutes. Using good labels makes the program easier to
understand, in other words goN is more descriptive than &fsm[0] .

The main program begins by specifying the Port E bits 1 and 0 to be inputs and Port B bits 5–0 to be

outputs. The initial state is defined as goN . The main loop of our controller first outputs the desired
light pattern to the six LEDs, waits for the specified amount of time, reads the sensor inputs from Port
E, and then switches to the next state depending on the input data. The timer functions were presented
earlier as Program 4.7. The function SysTick_Wait10ms will wait 10ms times the parameter in
Register R0. These two bit-specific definitions will facilitate friendly access to Ports B and
E. SENSOR accesses PE1–PE0, and LIGHT accesses PB5–PB0. LM3S systems can skip
initialization steps 2, 3, and 4.

#define SENSOR (*((volatile uint32_t *)0x4002500C))
#define LIGHT (*((volatile uint32_t *)0x400050FC))

;Linked data structure
;Put in ROM
OUT EQU 0 ;offset for output
WAIT EQU 4 ;offset for time
NEXT EQU 8 ;offset for next
goN DCD 0x21 ;North green, East red
 DCD 3000 ;30 sec
 DCD goN,waitN,goN,waitN
waitN DCD 0x22 ;North yellow, East red
 DCD 500 ;5 sec
 DCD goE,goE,goE,goE
goE DCD 0x0C ;North red, East green
 DCD 3000 ;30 sec
 DCD goE,goE,waitE,waitE
waitE DCD 0x14 ;North red, East yellow
 DCD 500 ;5 sec
 DCD goN,goN,goN,goN
Start
 BL PLL_Init ;50 MHz clock
 BL SysTick_Init ;enable SysTick
 LDR R1, =SYSCTL_RCGCGPIO_R
 LDR R0, [R1]
 ORR R0, R0, #0x12 ; activate B E
 STR R0, [R1]
 NOP
 NOP ; allow time to finish
 LDR R1, =GPIO_PORTE_AMSEL_R
 LDR R0, [R1]
 BIC R0, R0, #0x03 ; no analog
 STR R0, [R1]
 LDR R1, =GPIO_PORTE_PCTL_R
 LDR R0, [R1]
 BIC R0, R0, #0x000000FF ; PE1-0
 STR R0, [R1]
 LDR R1, =GPIO_PORTE_DIR_R
 LDR R0, [R1]
 BIC R0, R0, #0x03 ; PE1-0 input
 STR R0, [R1]
 LDR R1, =GPIO_PORTE_AFSEL_R
 LDR R0, [R1]
 BIC R0, R0, #0x03 ; no alt funct
 STR R0, [R1]
 LDR R1, =GPIO_PORTE_DEN_R

// Linked data structure
struct State {
 uint32_t Out;
 uint32_t Time;
 const struct State *Next[4];};
typedef const struct State STyp;
#define goN &FSM[0]
#define waitN &FSM[1]
#define goE &FSM[2]
#define waitE &FSM[3]
STyp FSM[4]={
{0x21,3000,{goN,waitN,goN,waitN}},
{0x22, 500,{goE,goE,goE,goE}},
{0x0C,3000,{goE,goE,waitE,waitE}},
{0x14, 500,{goN,goN,goN,goN}}};

int main(void){
STyp *Pt; // state pointer
uint32_t Input;
 PLL_Init(); // 50 MHz, Prog 4.6
 SysTick_Init(); // Program 4.7
 SYSCTL_RCGCGPIO_R |= 0x12; // 1) B E
 while((SYSCTL_PRGPIO_R&0x12)
 != 0x12){};// ready?
// 2) no need to unlock
// 3) disable analog function on PE1-0
 GPIO_PORTE_AMSEL_R &= ~0x03;
// 4) enable regular GPIO
 GPIO_PORTE_PCTL_R &=
~0x000000FF;
// 5) inputs on PE1-0
 GPIO_PORTE_DIR_R &= ~0x03;
// 6) regular function on PE1-0
 GPIO_PORTE_AFSEL_R &= ~0x03;
// 7) enable digital on PE1-0
 GPIO_PORTE_DEN_R |= 0x03;

// 3) disable analog function on PB5-0
 GPIO_PORTB_AMSEL_R &= ~0x3F;
// 4) enable regular GPIO
 GPIO_PORTB_PCTL_R &=
~0x00FFFFFF;
// 5) outputs on PB5-0

 LDR R0, [R1]
 ORR R0, R0, #0x03 ; enable PE1-0
 STR R0, [R1]
 LDR R1, =GPIO_PORTB_AMSEL_R
 LDR R0, [R1]
 BIC R0, R0, #0x3F ; no analog
 STR R0, [R1]
 LDR R1, =GPIO_PORTB_PCTL_R
 LDR R0, [R1]
 BIC R0, R0, #0x00FFFFFF ; PB5-0
 STR R0, [R1]
 LDR R1, =GPIO_PORTB_DIR_R
 LDR R0, [R1]
 ORR R0, R0, #0x3F ; PB5-0 output
 STR R0, [R1]
 LDR R1, =GPIO_PORTB_AFSEL_R
 LDR R0, [R1]
 BIC R0, R0, #0x3F ; no alt funct
 STR R0, [R1]
 LDR R1, =GPIO_PORTB_DEN_R
 LDR R0, [R1]
 ORR R0, R0, #0x3F ; enable PB5-0
 STR R0, [R1]
 LDR R4,=goN ;state pointer
 LDR R5,=SENSOR ;0x4002500C
 LDR R6,=LIGHT ;0x400050FC
FSM LDR R0,[R4,#OUT] ;output value
 STR R0,[R6] ;set lights
 LDR R0,[R4,#WAIT] ;time delay
 BL SysTick_Wait10ms
 LDR R0,[R5] ;read input
 LSL R0,R0,#2 ;4 bytes/address
 ADD R0,R0,#NEXT ;8,12,16,20
 LDR R4,[R4,R0] ;go to next state
 B FSM

 GPIO_PORTB_DIR_R |= 0x3F;
// 6) regular function on PB5-0
 GPIO_PORTB_AFSEL_R &= ~0x3F;
// 7) enable digital on PB5-0
 GPIO_PORTB_DEN_R |= 0x3F;

 Pt = goN;

 while(1){
 LIGHT = Pt->Out; // set lights
 SysTick_Wait10ms(Pt->Time);
 Input = SENSOR; // read sensors
 Pt = Pt->Next[Input];
 }
}

Program 6.8. Linked data structure implementation of the traffic light controller
(PointerTrafficLightxxx.zip).

In order to make it easier to understand, which will simplify verification and modification, we have
made a 1-to-1 correspondence between the state graph in Figure 6.9and the fsm[4] data structure in
Program 6.8. Notice also how this implementation separates the civil engineering policies (the data
structure specifies what the machine does), from the computer engineering mechanisms (the executing
software specifies how it is done.) Once we have proven the executing software to be operational,
we can modify the policies and be confident that the mechanisms will still work. When an accident
occurs, we can blame the civil engineer that designed the state graph.

On microcontrollers that have EEPROM, we can place the FSM data structure in EEPROM. This
allows us to make minor modifications to the finite state machine (add/delete states, change
input/output values) by changing the data structure. In this way small modifications/upgrades/options
to the finite state machine can be made by reprogramming the EEPROM reusing the hardware.

The FSM approach makes it easy to change. To change the wait time for a state, we simply change the
value in the data structure. To add more states (e.g., put a red/red state after each yellow state, which
will reduce accidents caused by bad drivers running the yellow light), we simply increase the size of
the fsm[] structure and define the Out , Time , and Next fields for these new states.

To add more output signals (e.g., walk and left turn lights), we simply increase the precision of
the Out field. To add two more input lines (e.g., wait button, left turn car sensor), we increase the
size of the next field to Next[16] . Because now there are four input lines, there are 16 possible
combinations, where each input possibility requires a Next value specifying where to go if this
combination occurs. In this simple scheme, the size of the Next[] field will be 2 raised to the power
of the number of input signals.

Checkpoint 6.1:Why is it good to use labels for the states? E.g., goN is better than &fsm[0] .

Observation: In order to make the FSM respond quicker, we could implement a time delay function
that returns immediately if an alarm condition occurs. If no alarm exists, it waits the specified delay.

6.5.3. Mealy Finite State Machines
A Mealy FSM has the outputs that depend on both the input and the current state. The state transition
arrows in a Mealy FSM specify both the output and the next state. In general, we employ a Mealy
machine when the output is needed to cause the state to change. We will implement the following
Mealy Finite State machine using a linked structure. There is one input and two outputs. The initial
state is Stop. The heuristics of this machine are:

If we are stopped, and the control is low, we press the brake and remain stopped.
If we are stopped, and the control is high, we release the brake and begin to go.
If we are going, and the control is low, we release the gas and begin to stop.
If we are going, and the control is high, we press the gas and continue to go.
There must be at least 1 ms of no brake, no gas as it switches between go and stop.

This is a Mealy FSM because the 00 output pattern is needed to change states (Stop to Go, or Go to
Stop). There is a 1 ms wait parameter for this simple machine. Most controllers that manipulate real
hardware do require well-specified delays from input to output, which are implemented as delays in
the states. The hardware and FSM are shown in Figure 6.10.

Figure 6.10. Engine controller implemented with a Mealy FSM.

There is one input, Control , connected to PA0. There are two outputs, Brake connected to PA2,
and Gas connected to PA1. Each state has two next states and two outputs which depend on the
current input. The controller continuously repeats the sequence

Input from Control (PA0)
Output to Brake , Gas (PA2,PA1) which depends on the input Control
Delay as specified by this state

Next state which depends on the input Control

E.g., if the state is in Stop , and the Control is 0, then the Brake output is 1 and the Gas output is 0
and the next state is Stop . Program 6.9 shows the implementation. The main program begins by
specifying the Port A bit 0 to be input and Port A bits 2–1 to be outputs. The initial state is defined
as Stop . The main loop of our controller first inputs from PA0, performs an output based on the input,
and then switches to the next state depending on the input data. These two bit-specificdefinitions will
facilitate friendly access to Port A. INPUT accesses PA0, and OUTPUT accesses PA2–PA1.

#define INPUT (*((volatile uint32_t *)0x40004004))
#define OUTPUT (*((volatile uint32_t *)0x40004018))

;Linked data structure
;Put in ROM
OUT EQU 0 ;offset for output
DELAY EQU 8 ;offset for delay
NEXT EQU 12 ;offset for next
Stop DCD 2,0 ;Outputs for 0,1
 DCD 50000 ;1 ms
 DCD Stop,Go ;Next for 0,1
Go DCD 0,1 ;Outputs for 0,1
 DCD 50000 ;1 ms
 DCD Stop,Go ;Next for 0,1
Start
 BL PLL_Init ; 50 MHz clock
 BL SysTick_Init ; enable SysTick
 LDR R1, =SYSCTL_RCGCGPIO_R
 LDR R0, [R1]
 ORR R0, R0, #0x01 ; activate A
 STR R0, [R1]
 NOP
 NOP ; allow time to finish
 LDR R1, =GPIO_PORTA_AMSEL_R
 LDR R0, [R1]
 BIC R0, R0, #0x07 ; no analog
 STR R0, [R1]
 LDR R1, =GPIO_PORTA_PCTL_R
 LDR R0, [R1]
 MOV R2, #0x00000FFF
 BIC R0, R0, R2 ; GPIO PA2-0
 STR R0, [R1]
 LDR R1, =GPIO_PORTA_DIR_R

// Linked data structure
struct State {
 uint32_t Out[2];
 uint32_t Delay;
 const struct State *Next[2];};
typedef const struct State STyp;
#define Stop &FSM[0]
#define Go &FSM[1]
STyp FSM[2]={
{{2,0},50000,{Stop,Go}},
{{0,1},50000,{Stop,Go}}};

int main(void){
 STyp *Pt; // state pointer
 uint32_t Input;
 PLL_Init(); // 50 MHz, Prog 4.6
 SysTick_Init(); // program 4.7
 // 1) activate port A
 SYSCTL_RCGCGPIO_R |= 0x01;
 while((SYSCTL_PRGPIO_R&0x01) == 0)
{};

 // 2) no need to unlock Port A

 // 3) disable analog on PA2-0
 GPIO_PORTA_AMSEL_R &= ~0x07;

 // 4) configure PA2-0 as GPIO
 GPIO_PORTA_PCTL_R &=
~0x00000FFF;

 LDR R0, [R1]
 BIC R0, R0, #0x01 ; PA0 input
 ORR R0, R0, #0x06 ; PA2-1 output
 STR R0, [R1]
 LDR R1, =GPIO_PORTA_AFSEL_R
 LDR R0, [R1]
 BIC R0, R0, #0x07 ; no alt funct
 STR R0, [R1]
 LDR R1, =GPIO_PORTA_DEN_R
 LDR R0, [R1]
 ORR R0, R0, #0x07 ; enable PA2-0
 STR R0, [R1]
 LDR R4,=Stop ; State pointer
 LDR R5,=INPUT ; 0x40004004
 LDR R6,=OUTPUT ; 0x40004018
FSM LDR R3,[R5] ; Read input
 LSL R3,R3,#2 ; 4 bytes each
 ADD R1,R3,#OUT ; R1 is 0 or 4
 LDR R2,[R4,R1] ; Output value
 LSL R2,R2,#1 ; into bits 2,1
 STR R2,[R6] ; set outputs
 LDR R0,[R4,#DELAY] ; 20ns delays
 ADD R1,R3,#NEXT ;R1 is 12 or 16
 LDR R4,[R4,R1] ;find next state
 BL SysTick_Wait ;program 4.7
 B FSM

 // 5) make PA0 in and PA2-1 out
 GPIO_PORTA_DIR_R &= ~0x01;
 GPIO_PORTA_DIR_R |= 0x06;

 // 6) disable alt func on PA2-0
 GPIO_PORTA_AFSEL_R &= ~0x07;

 // 7) enable digital I/O on PA2-0
 GPIO_PORTA_DEN_R |= 0x07;

 Pt = Stop; // initial state: stopped

 while(1){
 Input = INPUT;
// get new input from Control
 OUTPUT = Pt->Out[Input]<<1;
// output depends on input and state
 SysTick_Wait(Pt->Delay);// wait
 Pt = Pt->Next[Input]; // next
 }
}

Program 6.9. Linked data structure implementation of the motor controller
(MealyEngineControl_xxx.zip).

6.6. *Dynamically Allocated Data Structures
In order to reuse memory and provide for efficient use of RAM, we need dynamic memory allocation.
The previous examples in this chapter used fixed allocation, meaning the size of the data structures is
decided in advance and specified in the source code. In addition, the location of these structures is
determined by the assembler at assembly time. With a dynamic allocation the size and location will
be determined at run time. To implement dynamic allocation we will manage a heap. The heap is a
chunk of RAM that is

1. Dynamically allocated by the program when it creates the data structure
2. Used by the program to store information
3. Dynamically released by the program when the structure is no longer needed

The heap manager provides the system two operations:

 pt = malloc(size); // returns a pointer to a block of size bytes
 free(pt); // deallocates the block at pt
The implementation of this general memory manager is beyond the scope of this book. Instead, we
will develop a very useful, but simple heap manager with these two operations:

 pt = Heap_Allocate(); // returns a pointer to a block of fixed size
 Heap_Release(pt); // deallocates the block at pt

Once we allocate space, it is important to keep track of the pointer to that space. If we lose the
pointer, that space is lost forever. Similarly, once we are finished using the space, we should
deallocate that space. If we continue to allocate space without ever deallocating it, then we will run
out of space and the system will crash.

6.6.1. *Fixed Block Memory Manager
In general, the heapmanager allows the program to allocate a variable block size, but in this section
we will develop a simplified heap manager handles just fixed size blocks. In this example, the block
size is specified by SIZE . The initialization will create a linked list of all the free blocks (Figure
6.11). A list is a collection of dissimilar objects, typically implemented in C with struct . In this
case, the list is an array where the first element is a pointer, and the remaining elements are the
memory to be allocated. A linked list is a collection of lists that are connected together with pointers,
as shown in Figure 6.11. Programs 6.10 through 6.13 combine to create a simple memory manager.

Figure 6.11. The initial state of the heap has all of the free blocks linked in a list.

Program 6.10 shows the global structures for the heap. These entries are defined in RAM. SIZE is
the number of 32-bit wordsin each block. All blocks allocated and released with this memory
manager will be of this fixed size. NUM is the number of blocks to be managed. FreePt points to
the first free block. NULL is defined as 0, meaning undefined pointer.

SIZE EQU 4
NUM EQU 5
NULL EQU 0
FreePt SPACE 4
Heap SPACE SIZE*NUM*4

#define SIZE 4
#define NUM 5
#define NULL 0 // empty pointer
int32_t *FreePt;
int32_t Heap[SIZE*NUM];

Program 6.10. Private global structures for the fixed-block memory manager
(HeapFixedBlock_xxx.zip).

Initialization must be performed before the heap can be used. Program 6.11 shows the software that
partitions the heap into blocks and links them together, creating the situation illustrated in Figure
6.11. FreePt points to a linear linked list of free blocks. Initially these free blocks are contiguous
and in order, but as the manager is used the positions and order of the free blocks can vary. It will be
the pointers that will thread the free blocks together.

Heap_Init LDR R0,=Heap
 LDR R1,=FreePt
 STR R0,[R1] ;FreePt=&Heap[0];
 MOV R2,#SIZE
 MOV R3,#NUM-1
imLoop ADD R1,R0,R2,LSL #2 ;pt+SIZE
 STR R1,[R0] ;*pt=pt+SIZE;
 MOV R0,R1 ;pt=pt+SIZE;
 SUBS R3,R3,#1
 BNE imLoop
 MOV R1,#NULL
 STR R1,[R0] ;last ptr is NULL
 BX LR

void Heap_Init(void){ int i;
int32_t *pt;
 pt = FreePt = &Heap[0];
 for(i=1; i<NUM; i++){
 *pt = (int32_t)(pt+SIZE);
 pt = pt+SIZE;
 }
 (int32_t)pt = NULL;
}

Program 6.11. Functions to initialize the heap (HeapFixedBlock_xxx.zip).
To allocate a block, the manager just removes one block from the front of the free list. Program 6.12
shows the allocate function. The Heap_Allocate function will fail and return a null pointer when the
heap becomes empty.

Heap_Allocate ; R0 points to new block
 LDR R1,=FreePt
 LDR R0,[R1] ;R0=FreePt;
 CMP R0,#NULL
 BEQ aDone ;if (pt!=NULL)
 LDR R2,[R0] ;link next
 STR R2,[R1] ;FreePt=*pt;
aDone BX LR

int32_t *Heap_Allocate(void){
int32_t *pt;
 pt = FreePt;
 if (pt != NULL){
 FreePt = (int32_t*)*pt; // next
 }
 return(pt);
}

Program 6.12. Function to allocate memory blocks (returns NULL if empty)
(HeapFixedBlock_xxx.zip).

The Heap_Release returns a block to the free list, see Program 6.13. This function will link it to the
front of the list. This system does not check to verify a released block actually was previously
allocated.

; R0 => block being released
Heap_Release
 LDR R1,=FreePt
 LDR R2,[R1] ;R2=oldFreePt
 STR R0,[R1] ;FreePt=pt
 STR R2,[R0] ;*pt=oldFreePt;
 BX LR

void Heap_Release(int32_t *pt){
int32_t *oldFreePt;
 oldFreePt = FreePt;
 FreePt = pt;
 *pt = (int32_t)oldFreePt;
}

Program 6.13. Function to allocate and release memory blocks
(HeapFixedBlock_xxx.zip).

Checkpoint 6.2: Consider a system that needs variable-size memory allocation, where the size can
range from 2 to a maximum of 20 words. How might this simple heap be used?

6.6.2. *Linked List FIFO
An example application of a dynamically allocated data structure is a first in first out queue (FIFO).
The FIFO is used to pass data from one module to another. One module creates data (the producer)
and puts it into the FIFO. A second module will get data from the FIFO and perform operations on the
data (the consumer). Data are passed from the producer to the consumer in an order-preserved
manner. In this implementation, GetPt points to the oldest node (the one to get next) and PutPt
points to the newest node, the place to add more data. The pointer for the newest node (if it exists) is
a null. The Fifo_Put operation fails (full) when the heap runs out of space. The Fifo_Get operation
fails (empty) when GetPt equals NULL . Program 6.14 shows the global variables defined in RAM.

;put in RAM
Next EQU 0 ;next
Data EQU 4 ;32-bit data for node
GetPt SPACE 4
; GetPt is pointer to oldest node
PutPt SPACE 4
; PutPt is pointer to newest node

struct Node{
 struct Node *Next;
 int32_t Data;
};
typedef struct Node NodeType;
NodeType *PutPt; // place to put
NodeType *GetPt; // place to get

Program 6.14. Definition of the linked list structure (LLFifo_xxx.zip).

Figure 6.12 shows an example FIFO with three elements (after running with lots of putting and
getting). In this example, element 1 is the oldest because it was put first. This system uses Programs
6.11, 6.12, 6.13, and 6.14 with SIZE equal to 2 words.

Figure 6.12. A linked list FIFO after putting 1,2,3.

Program 6.15 shows the functions to initialize the FIFO.When the GetPt is NULL, the FIFO is empty.
Since there is no newest node, the PutPt is also NULL.

Fifo_Init
 PUSH {R4,LR}
 MOV R1,#NULL

void Fifo_Init(void){
 GetPt = NULL; // Empty when null
 PutPt = NULL;

 LDR R0,=GetPt
 STR R1,[R0] ;GetPt=NULL
 LDR R0,=PutPt
 STR R1,[R0] ;PutPt=NULL
 BL Heap_Init
 POP {R4,PC}

 Heap_Init();
}

Program 6.15. Initialization of the linked list FIFO (LLFifo_xxx.zip).

Figure 6.13 is a flowchart of the Put and Get functions. The Put function is shown in Program 6.16.
The first step is to allocate a new block. The FIFO is full only when the heap is full
(Heap_Allocate returns a failure). The Put operation first allocates space for the new entry, and then
stores the new information into the Data field. Since this element will be last, its Next field is set to
null. The last part of Put links this new node at the end of the linked list.

; Inputs: R0 value, data to put
; Outputs: R0=1 if successful
; R0=0 if unsuccessful
Fifo_Put
 PUSH {R4,LR}
 MOV R4,R0 ;data to put
 BL Heap_Allocate
 CMP R0,#NULL
 BEQ PFul ;skip if full
 STR R4,[R0,#Data] ;store data
 MOV R1,#NULL
 STR R1,[R0,#Next] ;next=NULL
 LDR R2,=PutPt ;R2 = &PutPt
 LDR R3,[R2] ;R3 = PutPt
 CMP R3,#NULL ;previously MT?
 BEQ PMT
 STR R0,[R3,#Next] ;link previous
 B PCon
PMT LDR R1,=GetPt ;R1 = &GetPt
 STR R0,[R1] ;Now one entry
PCon STR R0,[R2] ;points to newest
 MOV R0,#1 ;success
 B PDon
PFul MOV R0,#0 ;failure, full
PDon POP {R4,PC}

int Fifo_Put(int32_t theData){
NodeType *pt;
 pt = (NodeType*)Heap_Allocate();
 if(!pt){
 return(0); // full
 }
 pt->Data = theData; // store
 pt->Next = NULL;
 if(PutPt){
 PutPt->Next = pt; // Link
 }
 else{
 GetPt = pt; // first one
 }
 PutPt = pt;
 return(1); // successful
}

Program 6.16. Implementation of the Put function for the linked list FIFO
(LLFifo_xxx.zip).

Figure 6.13. Flowcharts of a linked list FIFO Put and Get operations.

One of the difficulties with Get is the need to return two parameters. The R0 parameter (the regular
return parameter in C) returns 0 if unsuccessful and 1 if successful. If successful, a second return
parameter will contain the data. For this implementation, the second parameter is implemented with
call by reference. This means the calling program passes a pointer to an empty variable and the Get
function will place the data into this empty space. An example of how to call these routines can be
found in the projects LLFifo_xxx.zip

int main(void){ int32_t r1,r2,d1;
 Fifo_Init(); // initialize linked list FIFO
 r1 = Fifo_Put(55); // save the number 55
 r2 = Fifo_Get(&d1); // d1 will be 55, r2=1
 while(1){}
}
The Get function first checks to make sure the FIFO is not empty, see Program 6.17. Next,
the Data field is retrieved from the node. This node is then unlinked from the linked list, and the
memory block is released to the heap. There is a special case that handles the situation where you get
the one remaining node in the linked list. In this case both PutPt and GetPt point to this node. When
you get this node, both PutPt and GetPt are set to null, signifying the FIFO is now empty.

; Inputs: R0 points to an empty place
; Outputs: data removed to place
; R0=0 if successful
; R0=1 if empty

int Fifo_Get(int32_t *datapt){
NodeType *pt;
 if(!GetPt){
 return(0); // empty

Fifo_Get
 PUSH {R4,LR}
 LDR R1,=GetPt ;R1 = &GetPt
 LDR R2,[R1] ;R2 = GetPt
 CMP R2,#NULL
 BEQ GMT ;empty if NULL
 LDR R3,[R2,#Data] ;read
 STR R3,[R0] ;by reference
 LDR R3,[R2,#Next] ;next link
 STR R3,[R1] ; update GetPt
 CMP R3,#NULL
 BNE GCon
 LDR R1,=PutPt ;Now empty
 STR R3,[R1] ;update PutPt
GCon MOV R0,R2 ;old data
 BL Heap_Release
 MOV R0,#1 ;success
 B GDon
GMT MOV R0,#0 ;failure, empty
GDon POP {R4,PC}

 }
 *datapt = GetPt->Data;
 pt = GetPt;
 GetPt = GetPt->Next;
 if(GetPt==NULL){ // one entry
 PutPt = NULL;
 }
 Heap_Release((int32_t*)pt);
 return(1); // success
}

Program 6.17. Implementation of the Get function for the linked list FIFO
(LLFifo_xxx.zip).

6.7. Matrices and Graphics
A matrix is a two-dimensional data structure accessed by row and column. Each element of a matrix
is the same type and precision. In C, we create matrices using two sets of brackets. Figure 6.14 shows
this byte matrix with six 8-bit elements. The figure also shows two possible ways to map the two-
dimensional data structure into the linear address space of memory.

uint8_t M[2][3]; // byte matrix with 2 rows and 3 columns

Figure 6.14. A byte matrix with 2 rows and 3 columns.

With row-majorallocation, the elements of each row are stored together. Let i be the row index, j be
the column index, n be the number of bytes in each row (equal to the number of columns), and Base is
the base address of the byte matrix, then the address of the element at i,j is

Base+n*i+j

An assembly language subroutine that reads elements from this row-major matrix is shown in
Program 6.18. The matrix data is passed using call by reference, and the indices are passed using call
by value. The row index (0 or 1) is passed in Register R1. The column index (0, 1, or 2) is passed in
Register R2. The base address of the matrix is passed in Register R0. The subroutine returns the
value in Register R0. This function works for a 2 by 3 matrix

uint8_t M[2][3]; // byte matrix, 2 rows and 3 columns

; Read an 8-bit value from (i, j)
; Input: Base (R0) pointer to matrix
; i (R1) is the row index
; j (R2) is the column index
; Output: R0 is retrieved value
; Assumes: (0 <= R1 <= 1)
; and (0 <= R2 <= 2)
Matrix_Read
 MOV R3, #3 ; R3 = 3 col
 MUL R3, R3, R1 ; R3 = 3*i
 ADD R3, R3, R2 ; R3 = 3*i+j
 ADD R3, R3, R0 ; R3 = Base+3*i+j
 LDRB R0, [R3] ; R0 = M[i,j]
 BX LR ; return

// Read an 8-bit value from (i, j)
// row or column major by compiler.
// Input: i is the row index
// j is the column index
// Output: retrieved value
// Assumes: (0 <= i <= 1) and
// (0 <= j <= 2)
uint8_t Matrix_Read(
 uint8_t base[][],
 uint8_t i, uint8_t j){
 return base[i][j];
}

Program 6.18. Function to access a two by three row-major matrix.

With column-majorallocation, the elements of each column are stored together. Let i be the row
index, j be the column index, m be the number of bytes in each column (equal to the number of rows),
and Base is the base address of the byte matrix, then the address of the element at i,j is

Base+m*j+i
With a halfwordmatrix, each element requires two bytes of storage. Let i be the row index, j be the
column index, n be the number of halfwords in each row (equal to the number of columns),
and Base is the base address of the word matrix, then the address of the element at i,j is
Base+2*(n*i+j)
With a wordmatrix, each element requires four bytes of storage. Let i be the row index, j be the
column index, n be the number of words in each row (equal to the number of columns), and Base is
the base address of the word matrix, then the address of the element at i,j is
Base+4*(n*i+j)
As an example of a matrix, we will develop a set of driver functions to manipulate a 48 by 84 by 1-
bit graphics display. The Nokia 5110 is 48 by 84 pixel LCD. We will use a bit array to store pixel
values for the LCD, see Figure 6.15.

Figure 6.15. A 1-bit matrix with 48 rows and 84 columns, each pixel is 1 bit. The
first few bytes are outlined in the top left: 0x08, 0x08, 0x08, 0x08, 0x08, 0x18,
0x18, 0x18, 0x38, 0x30, 0x30, 0x30, 0x70.

Placing a 0 into a pixel location will turn the pixel off and a placing a 1 will turn it on. In this display,
the first bit is the top left corner of the display, and the last bit is the bottom right corner. The
graphical image on this 48 by 84 display will be stored in the 1-bit array called Screen . Since there
are a total of 4032 pixels, and each byte can store 8 pixels, we need 504 bytes to store the entire
image. We define an array in global RAM to hold one image,
uint8_t Screen[504]; // stores the next image to be printed on the screen

An implementation of this example can be found in Nokia5110_xxx.zip. Similar graphics driver

implementations for the Kentec and ST7735 LCDs can be found as Kentec_xxx.zip and
ST7735_xxx.zip. The description in this section apply to the Nokia 5110, but the general approach is
similar in all three displays. The Figure 6.15 was created using the Excel file 48x84 Image.xls. On
the Nokia 5110 LCD, 8 pixels are packed into a byte such that all pixels of one byte exist in the same
column, as shown in the upper left corner of Figure 6.15. E.g., the letter ‘B’ is created with 6 columns
and 8 rows: 0x7f, 0x49, 0x49, 0x49, 0x36, 0x00. Since characters are 6 pixels wide, 84/6=12
characters fit per row. Since characters are 8 pixels tall, there can be 48/8=6 rows of ASCII text.

 0 0 0 0 0 0
 1 1 1 1 0 0
 1 0 0 0 1 0
 1 0 0 0 1 0
 1 1 1 1 0 0
 1 0 0 0 1 0
 1 0 0 0 1 0
 1 1 1 1 0 0

The basic idea of graphics is to create the desired image in a RAM buffer by clearing and setting bits
in the buffer. Once the image is complete it is punched into the display by transferring the data to the
hardware display. Once data is transferred, the graphics hardware will send the pixels to the display
over and over so it looks like a fixed image to human eyes. When we wish to change the image, the
software creates another image and sends it to the display.
Thefunction Nokia5110_DisplayBuffer sends the Screen buffer to the LCD. Let i be the row index
(y-coordinate), where i ranges from 0 to 47. 0 is on the top and 47 is on the bottom. Let j be the
column index (x-coordinate), where j ranges from 0 to 83. 0 is on the left and 83 is on the right.
There are 84 bytes creating a 8-pixel high 84-pixel wide group. Therefore, the starting address of the
group containing i,j is

Screen + 84*(i>>3)

where right shiftis integer math without rounding. Notice that if i is 0 to 47, then (i>>3) will be 0 to
5. The column index specifies which byte.The address of the byte containing the information at (i,j) is

Screen + 84*(i>>3) + j

Let k be the bottom 3 bitsof i .

k = i&0x07;

A mask will specify the bit location within the byte. This array can be defined in ROM as

Masks FCB 0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80

For example, if k is 0 then we use the bit mask of 0x01 to access the information stored in the
appropriate bitof the Screen buffer. Program 6.19takes the row and column index values and
calculates the memory address and bit mask to access that pixel in the Screen matrix. Access is a
private function for this module. A helper function is another name for private functions used inside a
module, but not called by software outside the module. Conversely, the other four functions of this
module are public.

; Input: R0 the row index i (0 to 47 in this case), y-coordinate
; R1 the column index j (0 to 83 in this case), x-coordinate
; Output: R0 points to the byte of interest
; R1 the Mask to access that 1-bit pixel
Access ; Access the Image pixel at (i, j).
 LDR R3, =Masks ; R3 = Masks (pointer)
 AND R2, R0, #0x07 ; R2 = k = i&0x07
 LDRB R2, [R3, R2] ; R2 = Masks[k]
 LDR R3, =Screen ; R3 = Screen (pointer)
 LSR R0, R0, #3 ; R0 = R0>>3 (i>>3), divide by 8
 MOV R2, #84
 MUL R2, R0, R2 ; R2 = 84*(i>>3)
 ADD R0, R2, R3 ; R0 = Screen + 84*(i>>3) (pointer)
 ADD R0, R0, R1 ; R0 = Screen + 84*(i>>3)+j (pointer)
 MOV R1, R2 ; R1 is Mask
 BX LR
Program 6.19. A helper function to access a bit-matrix.

Functions to clear, and set bits in the Screen buffer are shown in Program 6.20. For the public
functions, the parameters i , j as passed by value, and the video buffer itself is a private global within
this module. The public functions are callable from C or assembly. For example to set the pixel in
row=5 column=3, we could call Nokia5110_SetPxl(5,3);

;------------Nokia5110_ClrPxl------------
; Clear the Image pixel at (i, j), turning it dark.
; Input: R0 the row index i (0 to 47 in this case), y-coordinate
; R1 the column index j (0 to 83 in this case), x-coordinate
; Output: none ; Modifies: R0,R1,R2,R3
Nokia5110_ClrPxl
 PUSH {LR}
 BL Access ; get pointer to pixel to change
 LDRB R3, [R0] ; R3 = [R0] = 8 pixels
 BIC R3, R3, R1 ; R3 = R3&~R1 (clear proper pixel, save other)
 STRB R3, [R0] ; [R0] = R3 = 8 pixels
 POP {PC}
;------------ Nokia5110_SetPxl------------
; Set the Image pixel at (i, j) to the given value.
; Input: R0 the row index i (0 to 47 in this case), y-coordinate
; R1 the column index j (0 to 83 in this case), x-coordinate
; Output: none ; Modifies: R0,R1,R2,R3
Nokia5110_SetPxl
 PUSH {LR}
 BL Access ; get pointer to pixel to change
 LDRB R3, [R0] ; R3 = [R0] = 8 pixels

 ORR R3, R3, R1 ; R3 = R3|R1 (set proper pixel, save other)
 STRB R3, [R0] ; [R0] = R3 = write 8 pixels
 POP {PC}
Program 6.20. Functions that modify the bit-matrix.

In order for the image to appear on the display, there must be a hardware interface that translates the
data in the video buffer onto the graphics hardware. A typical way this translation occurs is for the
video buffer to exist in the display hardware itself. The software reads and writes this buffer in a
similar way as described in this example. The graphics hardware is then responsible for copying the
data from the buffer onto the display. These 7 functions operate directly on the LCD, and will be
described in more detail later in Section 8.4.
void Nokia5110_Init(void);
void Nokia5110_OutChar(char data);
void Nokia5110_OutString(char *ptr);
void Nokia5110_OutUDec(uint16_t n);
void Nokia5110_SetCursor(uint8_t newX, uint8_t newY);
void Nokia5110_Clear(void);
void Nokia5110_DrawFullImage(const uint8_t *ptr);

These 5 functions operate on the Screen buffer. 16-color BMP files store images in a matrix format
very similar to Figure 6.15. There is also a file converter that translates standard 16-color BMP files
to C code that can be displayed on the LCD.
void Nokia5110_ClearBuffer(void);
void Nokia5110_ClrPxl(uint32_t i, uint32_t j);
void Nokia5110_SetPxl(uint32_t i, uint32_t j);
void Nokia5110_PrintBMP(uint8_t xpos, uint8_t ypos,
 const uint8_t *ptr, uint8_t threshold);
void Nokia5110_DisplayBuffer(void);

6.8. *Tables
A table is a collection of identically-sized structures. Program 6.21 and Figure 6.16 show a table
containing a simple data base. Each entry in the table records the name, life span, and the year of
inauguration. The names are variable length, but a fixed size will be allocated so that each table entry
will be exactly 36 bytes. The C compiler will fill the unused bytes in the Name field with zeros.
Each entry must be the same size, so we can calculate the address quickly.

struct entry{
 char Name[30]; // null-terminated string
 uint16_t life[2]; // birth year, year died
 uint16_t year; // year of inauguration
};
typedef const struct entry entryType;
entryType Presidents[3]={
 {"George Washington",{1732,1799},1789},
 {"John Adams",{1735,1826},1797},
 {"Thomas Jefferson",{1743,1826},1801}
};
Program 6.21. A simple data base with three entries.

Figure 6.16. A table collects structures of same size into one object.
Many applications require the representation of complex waveforms in digital form. A typical
application is calibration curves that describe the input/output behavior of the system. The electronic
hardware takes the measurand (y is position, pressure, temperature etc.) as input and has the ADC
conversion (x is 0 to 1023) as output. In this situation, the software algorithm is asked to reverse the
process, taking as input (x) the ADC measurement and giving as output (y) is the measurand. One of
the most efficient, yet simple, techniques for describing nonlinear equations is to provide a small
table of (x, y) points then use linear interpolation between the points. In this way, the response is
piece-wise linear. This technique only works for any single-valued data set (a unique y for each x).
There is a clear tradeoff between accuracy and software efficiency (static and dynamic). E.g., you can
add more points to improve accuracy, but it requires more memory and runs slower.

As an example, we will design a fixed-point sin() function using table lookup and interpolation. The
input is an 8-bit unsigned fixed point with a resolution of 2π/256, and the output is an 8-bit signed
fixed point with a resolution of 1/127. Rather than have a complete table of all 256 possibilities, we
will store a subset of individual points and use interpolation between the points, as shown in Table
6.3 and Figure 6.17. Let x be the input (0 ≤ x < 2π) and Ix be the integer portion (0 to 255).
Similarly, y is the output (-1 ≤ y≤ +1) and Iy is the integer portion (-127 to 127). First, we find two
points in the table (x1, y1) and (x2, y2) such that x2> x ≥ x1. If we assume a straight line between the
points, we can calculate y from x.

y = (y2-y1)*(x- x1)/(x2- x1) + y1

Figure 6.17. A table contains specific points and the software will use linear
interpolation to fill in the gaps.

index x y=sin(x) Ix Iy
0 0.000 0.000 0 0
1 0.314 0.309 13 39
2 0.628 0.588 26 75
3 0.942 0.809 38 103
4 1.257 0.951 51 121
5 1.571 1.000 64 127
6 1.885 0.951 77 121
7 2.199 0.809 90 103
8 2.513 0.588 102 75
9 2.827 0.309 115 39
10 3.142 0.000 128 0
11 3.456 -0.309 141 -39
12 3.770 -0.588 154 -75
13 4.084 -0.809 166 -103
14 4.398 -0.951 179 -121
15 4.712 -1.000 192 -127
16 5.027 -0.951 205 -121
17 5.341 -0.809 218 -103
18 5.655 -0.588 230 -75

19 5.969 -0.309 243 -39
20 6.283 0.000 255 0

Table 6.3. Fixed-point implementation of a sin function.

IxTab DCD 0,13,26,38,51,64,77
 DCD 90,102,115,128,141
 DCD 154,166,179,192,205
 DCD 218,230,243,255,256
IyTab DCD 0,39,75,103,121
 DCD 127,121,103,75,39,0
 DCD -39,-75,-103,-121,-127
 DCD -121,-103,-75,-39,0,0
;**********Sin*******************
;Inputs: R0 is 0 to 255, Ix
;Output: R0 is -127 to +127 Iy
Sin PUSH {R4-R6,LR}
 LDR R1,=IxTab ;find x1<=Ix<x2
 LDR R2,=IyTab
lookx1 LDR R6,[R1,#4] ;x2
 CMP R0,R6 ;check Ix<x2
 BLO found ;R1 => x1
 ADD R1,#4
 ADD R2,#4
 B lookx1
found LDR R4,[R1] ;x1
 SUB R4,R0,R4 ;Ix-x1
 LDR R5,[R2,#4] ;y2
 LDR R2,[R2] ;y1
 SUB R5,R2 ;y2-y1
 LDR R1,[R1] ;x1
 SUB R6,R1 ;x2-x1
 MUL R0,R4,R5 ;(y2-y1)*(Ix-x1)
 SDIV R0,R0,R6
 ADD R0,R2 ;Iy
 POP {R4-R6,PC}

const int32_t IxTab[22]={
 0,13,26,38,51,64,77,90,102,
 115,128,141,154,166,179,192,205,
 218,230,243,255,256};

const int32_t IyTab[22]={
 0,39,75,103,121,127,121,103,
 75,39,0,-39,-75,-103,-121,-127,
 -121,-103,-75,-39,0,0};

// Ix is 0 to 255 (pi/128)
// Iy is -127 to +127 (1/256)
int32_t Sin(int32_t Ix){
int32_t x1,x2,y1,y2;
 int i=0;
 while(Ix >= IxTab[i+1]){
 i++;
 }
 x1 = IxTab[i];
 x2 = IxTab[i+1];
 y1 = IyTab[i];
 y2 = IyTab[i+1];
 return ((y2-y1)*(Ix-x1))/(x2-x1)+y1;
}

Program 6.22. Linear interpolation (LinearInterpolation_xxx.zip).

In software we manipulate the integer portion of variable to calculate Iy from Ix .

Iy = ((y2-y1)*(Ix-x1))/(x2-x1) + y1

The two arrays consistof multiple unsigned (Ix , Iy) pairs, which define a piece-wise linear
function. Thefirst Ix entry must be less than or equal to minimum input, and the last Ix entry must be
bigger than maximum input. One entry was added at the end of the table to make sure the operation
works for Ix =255. Thetable must be monotonic in Ix . See Program 6.22.

6.9. Functional Debugging

6.9.1. Instrumentation: Dump into Array without
Filtering
There are three limitations of using print statements to debug. First, many embedded systems do not
have a standard output device onto which we could stream debugging information. A second difficulty
with print statements is that they can significantly slow down the execution speed in real-time
systems. The bandwidth of the print functions often cannot keep pace with the real-time execution. For
example, our system may wish to call a function 1000 times a second (or every 1 ms). If we add print
statements to it that require more than 1 ms to perform, the presence of the print statements will cause
the system to crash. In this situation, the print statements would be considered extremely intrusive.
Another problem with print statements occurs when the system is using the same output hardware for
its normal operation, as is required to perform the print function. For example, your watch may have
an LCD, but that display is used to implement the watch functionality. If we output debugging
information to the LCD, the debugger output and normal system output are intertwined.

To solve these limitations, we can add a debugger instrument that dumps strategic information into an
array at run time. We can then observe the contents of the array at a later time. One of the advantages
of dumping is that the JTAG debugger allows you to visualize memory even when the program is
running. So this technique will be quite useful in systems with a JTAG debugger.
Assume happy and sad are strategic 8-bit variables. The first step when instrumenting a dump is to
define a buffer in RAM to save the debugging measurements.

SIZE EQU 20
HappyBuf SPACE SIZE
SadBuf SPACE SIZE
Cnt SPACE 4

#define SIZE 20
uint8_t HappyBuf[SIZE];
uint8_t SadBuf[SIZE];
uint32_t Cnt;

The Cnt will be used to index into the buffers. Cnt must be initialized to zero, before the debugging
begins. The debugging instrument, shown in Program 6.23, dumps the strategic variables into the
buffers. When writing debugging instruments it is good style to preserve all registers.

Save PUSH {R0-R4,LR}
 LDR R0,=Cnt ;R0 = &Cnt
 LDR R1,[R0] ;R1 = Cnt
 CMP R1,#SIZE
 BHS done ;full?
 LDR R3,=Happy
 LDRB R3,[R3] ;R3 is happy
 LDR R2,=HappyBuf
 STRB R3,[R2,R1] ;save happy

void Save(void){
 if(Cnt < SIZE){
 HappyBuf[Cnt] = happy;
 SadBuf[Cnt] = sad;
 Cnt++;
 }
}

 LDR R3,=Sad
 LDRB R3,[R3] ;R3 is sad
 LDR R2,=SadBuf
 STRB R3,[R2,R1] ;save sad
 ADD R1,#1
 STR R1,[R0] ;save Cnt
done POP {R0-R4,PC}

Program 6.23. Instrumentation dump.

Next, you add BLSave statements at strategic places within the system. You can either use the
debugger to display the results, or add software that prints the results after the program has run and
stopped.

6.9.2. Instrumentation: Dump into Array with Filtering.
One problem with dumps is that they can generate a tremendous amount of information. If you suspect
a certain situation is causing the error, you can add a filter to the instrument. A filter is a
software/hardware condition that must be true in order to place data into the array. In this situation, if
we suspect the error occurs when another variable gets large, we could add a filter that saves in the
array only when the variable is above a certain value. In the example shown in Program 6.24, the
instrument dumpsonly when sad is greater than 100.

Save PUSH {R0-R4,LR}
 LDR R3,=Sad
 LDRB R3,[R3] ;R3 is sad
 CMP R3,#100
 BLS done ;assuming unsigned
 LDR R0,=Cnt ;R0 = &Cnt
 LDR R1,[R0] ;R1 = Cnt
 CMP R1,#SIZE
 BHS done ;full?
 LDR R2,=SadBuf
 STRB R3,[R2,R1] ;save sad
 LDR R3,=Happy
 LDRB R3,[R3] ;R3 is happy
 LDR R2,=HappyBuf
 STRB R3,[R2,R1] ;save happy
 ADD R1,#1
 STR R1,[R0] ;save Cnt
done POP {R0-R4,PC}

void Save(void){
 if(sad > 100){
 if(Cnt < SIZE){
 HappyBuf[Cnt] = happy;
 SadBuf[Cnt] = sad;
 Cnt++;
 }
 }
}

Program 6.24. Instrumentation dump with filter.

Observation: You should save registers at the beginning and restore them back at the end, so the
debugging instrument itself doesn’t cause the software to crash.

6.10. Exercises
6.1 Write a subroutine to converts a null-terminated string to upper case. In particular, convert all
lower case ASCII characters to upper case. The original data is in RAM, so this routine overwrites
the string. A pointer to the string is passed by reference in Register R0.

6.2 Write a subroutine to converts a null-terminated string to lower case. In particular, convert all
upper case ASCII characters to lower case. The original data is in RAM, so this routine overwrites
the string. A pointer to the string is passed by reference in Register R0.

6.3 Write a subroutine that compares two null-terminated strings. A pointer to the first string is passed
by reference in Register R0. A pointer to the second string is passed by reference in Register R1. The
return parameter is in Register R0; it will be 0 if the strings do not match, and will be nonzero if the
strings match.

6.4 Write a subroutine that adds two equal sized arrays. The size of the arrays is passed in Register
R2. A pointer to the first array is passed by reference in Register R0. A pointer to the second array is
passed by reference in Register R1. The first array, pointed to by R0, should be added to the second
array, pointed to by R1, and the sum placed back in the second array. Assume the data is 8-bit
unsigned, and implement a ceiling operation (set result to 255) on overflow.

6.5 Write a subroutine that implements the dot-product two equal sized arrays. The arrays contain 8-
bit unsigned numbers. Register R0 contains the size of the array, and registers R0 and R1 are call by
reference pointers to the arrays. The return parameter is an unsigned 32-bit number in Register R0.
For example consider these two arrays
Vector1 DCB 10,20,30 ; 3-D vector
Vector2 DCB 1,0,2 ; 3-D vector
The dot product is 10*1+20*0+30*2 = 70. The calling sequence is
 MOV R2,#3 ; size of arrays
 LDR R0,=Vector1 ; pointer to first array
 LDR R1,=Vector2 ; pointer to second array
 BL DotProduct

6.6 Write a subroutine that counts the number of characters in a string. The string is null-terminated.
Register R0 is a call by reference pointer to the string. The number of characters in the string is
returned in Register R0. For example, consider this string
Name DCB “Valvano”
 DCB 0
The size is 7. The calling sequence is
 LDR R0,=Name ; pointer to string
 BL Count

6.7 Write a subroutine that finds the maximum number in an array. The array contains 8-bit signed
numbers. The first element of the array is the size. Register R0 is a call by reference pointer to the
array. The maximum value in the array is returned in Register R0.

6.8 Write a subroutine that finds the largest absolute value in an array. The array contains 8-bit signed
numbers. The first element of the array is the size. Register R0 is a call by reference pointer to the
array. The maximum absolute value in the array is returned in Register R0.

6.9 Write a subroutine that counts the frequency of occurrence of letters in a text buffer. Register
R0points to a null-terminated ASCII buffer. There is a 26-element array into which the frequency data
will be entered. For example, the first element of Freq will contain the number of A’s and a’s. Count
only the upper case and lower case letters.
Freq SPACE 26 ;twenty six 16-bit counters

6.10 Assume we have some 6-row by 8-column matrix data structures. The precision of each entry is
16 bits. The information is stored in column-major format (the data for each column is stored
contiguously) with zero indexing. I.e., the row index, I, ranges 0≤I≤5, and the column index, J, ranges
0≤J≤7. Write the assembly language subroutine that accepts a pointer to the array, the I and J indices
and returns the 16-bit contents.
;Inputs R0 row index I=0,1,...,5
; R1 column index J=0,1,...,7
; R2 pointer to a 6 by 8 matrix
;Outputs R0 16-bit contents at matrix[I,J]

6.11 Assume we have some 5-row by 10-column matrix data structures. The precision of each entry is
32 bits. The information is stored in column-major format (the data for each column is stored
contiguously) with zero indexing. I.e., the row index, I, ranges 0≤I≤4, and the column index, J, ranges
0≤J≤9. Write the assembly language subroutine that accepts a pointer to the array, the I and J indices
and returns the 16-bit contents. Don’t save/restore registers.
;Inputs R0 row index I=0,1,...,4
; R1 column index J=0,1,...,9
; R2 pointer to a 5 by 10 matrix
;Outputs R0 32-bit contents at matrix[I,J]

D6.12 Write an assembly main program that implements this Mealy finite state machine. The FSM
data structure, shown below, is given and cannot be changed. The next state links are defined as 32-
bit pointers. Each state has 8 outputs and 8 next-state links. The input is on Port A bits 2, 1, and 0 and
the output is on Port B bits 5, 4, 3, 2, 1, and 0. There are three states (S0, S1, and S2), and initial state
is S0. Show all assembly software required to execute this machine. The repeating execution
sequence is input, output (depends on input and current state), next (depends on input and current
state).
S0 DCB 0,0,5,6,3,9,3,0 ; Outputs for inputs 0 to 7
 DCD S0,S0,S1,S1,S1,S2,S2,S2 ; Next states for inputs 0-7

S1 DCB 1,2,3,9,6,5,3,3 ; Outputs for inputs 0 to 7
 DCD S2,S0,S0,S0,S2,S2,S2,S1 ; Next states for inputs 0-7
S2 DCB 1,2,3,9,6,5,3,3 ; Outputs for inputs 0 to 7
 DCD S2,S2,S2,S2,S0,S0,S2,S1 ; Next states for inputs 0-7

D6.13 Design a microcomputer-based controller using a linked list finite state machine. The system
has one input and one output.

The input, Angle, is a periodic signal with a frequency of 20 to 1000 Hz (has a period of 1 to 50 ms).
The output, Spark, should be a positive pulse (exactly 50 µs wide) every time Angle goes from 0 to
1. The delay between the rising edge of Angle and the start of the Spark pulse should be as short as
possible. The period of Angle can vary from 1 ms to 50 ms. Since Angle is an input you cannot
control it, only respond to its rising edge.
a) Design the one input, one output finite state machine for this system. Draw the FSM graph. Use
descriptive state names (i.e., don’t call them S0, S1, S2...)
b) Show the assembly code to create the statically-allocated linked list. Include statement(s) to place
it in the proper location on your microcomputer.
c) Show the assembly language controller. Include statement(s) to place it in the proper location on a
microcomputer. Assume this is the only task that the microcomputer executes. I.e., show ALL the
instructions necessary. Make the program automatically start on a RESET.

D6.14 Write an assembly main program that implements this Moore finite state machine. The FSM
state graph, shown below, is given and cannot be changed. The input is on Port A bits 1 and 0, and the
output is on Port B bits 4, 3, 2, 1, and 0. There are three states (happy, hungry, and sleepy), and initial
state is happy.

a) Show the ROM-based FSM data structure
b) Show the initialization and controller software. Initialize the direction registers, making all code
friendly. You may add variables in any appropriate manner (registers, stack, or global RAM). The
repeating execution sequence is …output, input, next… . Please make your code friendly.

D6.15 Write an assembly main program that implements this Mealy finite state machine. The FSM
state graph, shown below, is given and cannot be changed. The input is on Port A bit 0 and the output
is on Port B bits 3,2,1,0. There are three states (happy, hungry, sleepy), and initial state is happy.

a) Show the ROM-based FSM data structure
b) Show the initialization and controller software. Initialize the direction registers, making all code
friendly. You may add variables in any appropriate manner (registers, stack, or global RAM). The
repeating execution sequence is … input, output, next… . Please make your code friendly.

6.11. Lab Assignments
Lab 6.1 Minimally Intrusive Debugging. Take one of the labs from Chapter 4 or 5 and add minimally
intrusive debugging instruments. The goal is to collect a set of measurements that prove the lab is
operational. Measure the execution time of your dump, and quantify the intrusiveness as the execution
time divided by the time between dumps.

Lab 6.2 Traffic Light Controller. Implement the traffic light controller of Example 6.4. Use push
button switches for the sensors and LEDs for the lights. Add a walk switch and walk/don’t walk light
to the traffic light controller. Show the Moore FSM graph and demonstrate the 1-1 relationship
between the graph and the software structure.

Lab 6.3 Graphics Driver. Start with the bit matrix routines in Nokia5110_xxx.zip. Design and
implement a line draw function that takes two points and a line color and adds pixels to the Screen .
Design and implement a circle draw that takes a point, a radius and a line color and adds pixels to
the Screen . Use these routines to draw a clock face (without letters and numbers).

Lab 6.4 Cubic Interpolation. Redesign the sin function shown in Program 6.22. The input and output
are 16-bit fixed-point numbers with a resolution of 2-12. The particular interpolation mechanism we
will use is called cubic interpolation. The idea behind this technique is given in the following
document online: http://paulbourke.net/miscellaneous/interpolation/

7. Variables, Numbers, and Parameter Passing
Chapter 7 objectives are to:
• Explain how to implement local variables on the stack
• Show how various C compilers implement local variables and pass parameters
• Compare and contrast call by value versus call by reference parameter passing
• Show the interface to a liquid crystal display
• Present fixed-point and floating-point formats
• Develop algorithms to convert one format into another

Variables are an important component of software design, and there are many factors to consider
when creating variables. Some of the obvious considerations are the size and format of the data.
Another factor is the scope of a variable. The scope of a variable defines which software modules
can access the data. Variables with an access that is restricted to one software module are classified
as private, and variables shared between multiple modules are public. In general, a system is easier
to design (because the modules are smaller and simpler), easier to change (because code can be
reused), and easier to verify (because interactions between modules are well-defined) when we limit
the scope of our variables. However, since modules are not completely independent we need a
mechanism to transfer information from one to another. The ARM Application Binary Interface (ABI)
has detailed descriptions of how to develop software interfaces. However, in this chapter, we will
discuss the fundamentals of software interfaces. Because their contents are allowed to change, all
variables must be allocated in RAM and not ROM. On the one hand, global variables contain
information that is permanent and are usually assigned a fixed location in RAM. On the other hand,
local variables contain temporary information and are stored in a register or allocated on the stack.
One of the important objectives of this chapter is to present design steps for creating, using, and
destroying local variables on the stack. In summary, there are three types of variables public globals
(shared permanent), private globals (unshared permanent), and private locals (unshared temporary).
Because there is no appropriate way to create a public local variable, we usually refer to private
local variables simply as local variables, and the fact that they are private is understood.

7.1. Local versus global
A local variable contains temporary information. Since we will implement local variables on the
stack or in registers, this information cannot be shared with other software modules. Therefore, under
most situations, we can further classify these variables as private. Local variables are allocated,
used, and then deallocated, in this specific order. For speed reasons, we wish to assign local
variables to a register. When we assign a local variable to a register, we can do so in a formal
manner. There will be a certain line in the assembly software at which the register begins to contain
the variable (allocation), followed by lines where the register contains the information (access or
usage), and a certain line in the software after which the register no longer contains the information
(deallocation). As an example, consider the register allocation used in engine controller Mealy FSM,
similar to Program 6.9, shown here as Program 7.1.

Line Program R0 R1 R2 R4 R5 R6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Start
 LDR
R1,=SYSCTL_RCGCGPIO_R
 LDR R0,[R1]
 ORR R0,R0,#0x01
 STR R0,[R1]
 NOP
 NOP
 LDR R1,=PORTA_DIR_R
 LDR R0,[R1]
 BIC R0,R0,#0x01
 ORR R0,R0,#0x06
 STR R0,[R1]
 LDR
R1,=PORTA_AFSEL_R
 LDR R0,[R1]
 BIC
R0,R0,#0x07
 STR R0,[R1]
 LDR R1,=PORTA_DEN_R
 LDR R0,[R1]
 ORR R0,R0,#0x07
 STR R0,[R1]
 LDR R4,=Stop
 LDR R5,=INPUT
 LDR R6,=OUTPUT
FSM LDR R0,[R5]
 LSL R0,R0,#2
 ADD R1,R0,#OUT
 LDR R2,[R4,R1]
 LSL R2,R2,#1
 STR R2,[R6]
 ADD R1,R0,#NEXT
 LDR R4,[R4,R1]
 B FSM

Clk
Clk
Clk

DIR
DIR
DIR
DIR

AFSEL
AFSEL
AFSEL

DEN
DEN
DEN

Input
Input
Input
Input
Input
Input
Input
Input

ClkPt
ClkPt
ClkPt
ClkPt

DIRpt
DIRpt
DIRpt
DIRpt
DIRpt
AFSELpt
AFSELpt
AFSELpt
AFSELpt
DENpt
DENpt
DENpt
DENpt

OutIndex
OutIndex

NextIndex
NextIndex

Out
Out
Out

Pt
Pt
Pt
Pt
Pt
Pt
Pt
Pt
Pt
Pt
Pt
Pt

INpt
INpt
INpt
INpt
INpt
INpt
INpt
INpt
INpt
INpt
INpt

OUTpt
OUTpt
OUTpt
OUTpt
OUTpt
OUTpt
OUTpt
OUTpt
OUTpt
OUTpt

Program 7.1. Register assignments in a finite state machine controller.

R1is allocated for holding the OutIndex value (0 or 4) in Line 25, used in Line 25, and then
deallocated, such that after Line 26, R1 can be used for other purposes. Registers R0, R1, and R2 are
used in this program to temporarily hold information, and hence are classified as local variables.
Contrast this to how Registers R4, R5, and R6 are used. This is a VERY simple program and in such,
the usage of Registers R4, R5, and R6 is unusual. This main program assigns Register R4to hold the
state pointer (Pt) in Line 20. From that point in time, Register R4always contains Pt , and hence we
classify this assignment of Register R4 as permanent. It is appropriate to assign a register as
permanent only in very simple situations (e.g., less than a 50-line program with no interrupts).
Registers R5 and R6 also permanently contain pointers to the input and output ports respectively.

Observation: Use Registers R0, R1, R2, R3, and R12 for temporary data such as function parameters
and use Registers R4–R11 for more permanent data (AAPCS).

The information stored in a local variable is not permanent. This means if we store a value into a
local variable during one execution of the module, the next time that module is executed the previous
value is not available. Examples include loop counters and temporary sums. We use a local variable
to store data that is temporary in nature. We can implement a local variable using the stack or
registers. Reasons why we choose local variables over global variables include

• Dynamic allocation/release allows for reuse of RAM
• Limited scope of access (making it private) provides for data protection
Only the program that created the local variable can access it
• Since an interrupt will save registers, the code is reentrant
• Since absolute addressing is not used, the code is relocatable

Reasons why we place local variables on the stack rather than using registers include

• We can use symbolic names for the variables, making it easier to understand
• The number of variables is only limited by the size of the stack
• Because it is more general, it will be easier to add additional variables

A global variable is allocated at a permanent and fixed location in RAM. A public global variable
contains information that is shared by more than one program module. We must use global variables
to pass data between the main program (i.e., foreground thread) and an ISR (i.e., background thread).
If a function called from the foreground belongs to the same module as the ISR, then a global variable
used to pass data between the function and the ISR can be classified as a private global. Private
means software outside the module does not directly access the data. Global variables are allocated
at assembly time and never deallocated. Allocation of a global variable means the assembler assigns
the variable a fixed location in RAM. The information they store is permanent. Examples include time
of day, date, calibration tables, user name, temperature, FIFOqueues, and message boards. We
use LDR R0,=Data to get a pointer to the variable Data . When dealing with complex data
structures like the ones presented in Chapter 6, we choose to make the pointers to the data either
public (bad) or private (good). In general, it is a poor design practice to employ an excessive number
of public global variables. On the other hand, private global variables are necessary to store
information that is permanent in nature.

Checkpoint 7.1: How do you create a local variable in C?

Checkpoint 7.2: How do you create a global variable in C?

Observation: Sometimes we store temporary information in global variables because it is easier to
observe the contents using the debugger. This usage is appropriate during the early stages of
development, but once the module is initially tested, temporary information should be converted to
local, and the system should be tested again.

In C, a static local has permanent allocation, which means it maintains its value from one call to the
next. It is still local in scope, meaning it is only accessible from within the function. I.e., modifying a
local variable with static changes its allocation (it is now permanent), but doesn’t change its scope
(it is still private). In the following example, count contains the number of times MyFunction is
called. The initialization of a static local occurs just once, during startup.

void MyFunction(void){ static uint32_t count=0;
 count++;
}
In C, we create a private global variable using the static modifier. Modifying a global variable
with static does not change its allocation (it is still permanent), but does reduce its scope. Regular
globals can be accessed from any function in the system (public), whereas a static global can only be
accessed by functions within the same file. A static global is private. Functions can be static also,
meaning they can be called only from other functions in the file. E.g.,

static int32_t myPrivateGlobalVariable; // accessible by this file only
void static MyPrivateFunction(void){
}
In C, a const global is read-only. It is allocated in the ROM portion of memory. Constants, of course,
must be initialized at compile time. E.g.,

const int16_t Slope=21;
const uint8_t SinTable[8]={0,50,98,142,180,212,236,250};

Common Error: If you leave off the const modifier in the SinTable example, the table will be
allocated twice, once in ROM containing the initial values, and once in RAM containing data to be
used at run time. Upon startup, the system copies the ROM-version into the RAM-version.

Maintenance Tip: It is good practice to specify whether an assembly variable is signed or unsigned
in the comments. If the information has units (e.g., volts, seconds etc.) this should be included also.

7.2. Stack rules
In the last section we discussed the important issue of global versus local variables. One of the more
flexible means to create local variables will be the stack. In this section, we define a set of rules for
proper use of the stack. A last in first out (LIFO) stack is implemented in hardware by most
computers. The stack can be used for local variables (temporary storage), saving return addresses
during subroutine calls, passing parameters to subroutines, and to save registers during the processing
of an interrupt. The first advantage of placing local variables on the stack is that the storage can be
dynamically allocated before usage and deallocated after usage. The second advantage is the
facilitation of reentrant software.

The stack pointer (SP) on the Cortex™-M processor points to the top entry of the stack, as shown in
Figure 7.1. Also entries on the stack are 32-bits wide. If it exists, we define the data immediately
below the top (larger memory address) as next to top. To push a word on the stack, we first
decrement the stack pointer (SP) by 4, then we store the word at the location pointed to by the SP. To
pop a byte from the stack, first we read the word from memory pointed to by SP, then we increment
the SP by 4. Interrupts, the PUSH instruction and the POP instruction are the three common ways to
modify the stack. Furthermore, subtracting multiples of 4 from the SP will allocate stack space, and
adding multiples of 4 to the SP will deallocate stack space.

Figure 7.1. Each entry on the stack is 32 bits. The white boxes are free, and the
shaded boxes contain data.

We can read and write previously allocated locations on the stack using indexed mode addressing.
For example to read the 32-bit value from the next to the top word,

LDR R0,[SP,#4] ;R0 = the next to the top byte

The LIFO stack has a few rules (repeated from Chapter 3)

1. Program segments should have an equal number of pushes and pops
2. Stack accesses (push or pop) should not be performed outside the allocated area
3. Stack reads and writes should not be performed within the free area
4. Stack push should first decrement SP by 4, then store the data
5. Stack pop should first read the data, and then increment SP by 4

Programs that violate rule number 1 will probably crash when an illegal address is moved into the
PC. Violations of rule number 2 can be caused by a stack underflow or overflow. Stack underflow is
caused when there are more pops than pushes, and it is always the result of a software bug. A stack
overflow can be caused by two reasons. If the software mistakenly pushes more than it pops, then the
stack pointer will eventually overflow its bounds. Even when there is exactly one pop for each push,
a stack overflow can occur if the stack is not allocated large enough. Stack overflow is a very
difficult bug to recognize, because the first consequence occurs when the computer pushes data onto
the stack and overwrites data stored in a global variable. At this point the local variables and global
variables exist at overlapping addresses. Setting a breakpoint at the first address of the allocated
stack area allows you to detect a stack overflow situation.

Checkpoint 7.3: How do you specify the size of the stack (look in startup.s)?

Figures 7.1 and 7.2 show the free area as white boxes. The following assembly code violates rule 3
and will not work if interrupts are active. The objective is to save Register R0 onto the stack. When
an interrupt occurs registers will automatically be pushed on the stack, destroying the data.

 SUB R1,SP,#8 ;R1 points to the free area
 STR R0,[R1] ;Store contents of R0 into free area (***illegal***)
 LDR R2,[R1] ;Read contents of free area into R2 (***illegal***)

The proper technique is to allocate first, then store.

 PUSH {R0,R1} ;Store contents of R0,R1 onto the stack

7.3. Local variables allocated on the stack
The following assembly codeshows the PUSH and POP instructions can be used to store temporary
information on the stack. If a subroutine modifies a register, it is a matter of programmer style as to
whether or not it should save and restore the register. According to AAPCS a subroutine canfreely
change R0–R3 and R12 but save and restore any other register it changes. In particular, if one
subroutine calls another subroutine, then it must save and restore the LR. In the following example,
assume the function modifies Register R0, R4, R8 and calls another function. The programming style
dictates registers R4, R8, and LR be saved. Notice the return address is pushed on the stack as LR but
popped off into PC. When multiple registers are pushed or popped, the data exist in memory with the
lowest numbered register using the lowest memory address. In other words, the registers in the {} can
be specified in any order, but the order in which they appear on the stack is fixed. According to
AAPCS we must push and pop an even number of registers. Of course remember to balance the stack
by having the same number of pops as pushes.

Func PUSH {R4,R5,R8,LR} ; save registers as needed
 ;1) allocate local variables
 ;2) body of the function, access local variables
 ;3) deallocate local variables
 POP {R4,R5,R8,PC} ; restore registers and return
The ARM processor has a lot of registers, and we appropriately should use them for temporary
information such as function parameters and local variables. However, when there are a lot of
parameters or local variables, we can place them on the stack. Program 7.2 has a large data buffer
that is private to this function. It is inconvenient to store arrays in registers. Rather it is appropriate to
place the array in memory and use indexed addressing mode to access the information. Because this
buffer is private and temporary we will place it on the stack. 1) The SUB instruction allocates 10
words on the stack. Figure 7.2 shows the stack before and after the allocation. 2) During the execution
of the function, the SP points to the first location of data . The local variable i is held in R0. R1 will
contain i *4 as an offset into the buffer, because each buffer entry is 4 bytes.The addressing
mode [SP,R1] accesses data on the stack without pushing or popping. 3) The ADD instruction
deallocates the local variable, balancing the stack.

Set SUB SP,SP,#40 ;1)allocate 10
words
 MOVS R0,#0x00 ;2)i=0
 B test ;2)
loop LSL R1,R0,#2 ;2)4*i
 STR R0,[SP,R1] ;2)access
 ADDS R0,R0,#1 ;2)i++
test CMP R0,#10 ;2)
 BLT loop ;2)

// C language
implementation

void Set(void){
uint32_t data[10];
int i;
 for(i=0; i<10; i++){
 data[i] = i;
 }

 ADD SP,SP,#40 ;3)deallocate
 BX LR

}

Program 7.2. Assembly and C versions that initialize a local array of ten
elements.

Figure 7.2. A stack picture showing a local array of ten elements.

Stack implementation of local variables has four stages: binding, allocation, access, and deallocation.

1. Bindingis the assignment of the address (not value) to a symbolic name. The symbolic name will
be used by the programmer when referring to the local variable. The assembler binds the symbolic
name to a stack index, and the computer calculates the physical location during execution. In the
following example, the local variable will be at address SP+0, and the programmer will access the
variable using [SP,#sum] addressing:
sum EQU 0 ;32-bit local variable, stored on the stack

2. Allocation is the generation of memory storage for the local variable. The computer allocates
space during execution by decrementing the SP. In this first example, the software allocates the local
variable by pushing a register on the stack. According to AAPCS, we must allocate space in multiples
of 8 bytes. The contents of the register become the initial value of the variable.
 MOV R0,#0
 MOV R1,#2
 PUSH {R0,R1} ;allocate and initialize two 32-bit variables
In this next example, the software allocates the local variable by decrementing the stack pointer. This
local variable is also uninitialized. This method is most general, allowing the allocation of an
arbitrary amount of data.
 SUB SP,#8 ;allocate two 32-bit variables
Checkpoint 7.4: Assume Register R0 contains the size in 32-bit words of an array, determined at
run-time. Write assembly code to allocate the array on the stack.

3. The access to a local variable is a read or write operation that occurs during execution.Because
we use SP addressing with offset, we will only use LDR and STR to access local variables on the
stack. In the first code fragment, we will add the contents of R0 tothe local variable sum .

 LDR R1,[SP,#sum] ; R1=sum
 ADD R1,R0 ; R1=R0+sum
 STR R1,[SP,#sum] ; sum=R0+sum

In the next code fragment, the local variable sum is divided by 16.

 LDR R0,[SP,#sum] ; R0=sum
 LSR R0,R0,#4
 STR R0,[SP,#sum] ; sum=sum/4

4. Deallocation is the release of memory storage for the location variable. The computer deallocates
space during execution by incrementing SP. The software deallocates the local variable by
incrementing the stack pointer.

 ADD SP,#4 ;deallocate sum

Checkpoint 7.5: Write a subroutine that allocates then deallocates three 32-bit locals.

7.4. Stack frames
Each time a function is called a stack frame is created. There are four types of data that may be
saved in the stack frame. By convention, if there are more than 4 input parameters, additional
parameters above 4 will be pushed on the stack by the calling program. If the function calls another
function, the LR (return address) must be pushed on the stack. By convention if the function uses
registers R4–R11, it will push them on the stack so their values are preserved. Lastly, the function
may allocate local variables on the stack. If the input parameters are passed on the stack they must be
pushed first, otherwise there is no particular rule about the stack order of the data stored on the stack
frame:

 Parameters
 Return address
 Saved registers
 Local variables

One limitation of SP indexed addressing mode to access local variables is the difficulty of pushing
additional data onto the stack during the execution of the function. In particular, if the body of the
function pushes additional items on the stack, the symbolic binding becomes incorrect. There are two
approaches to this problem. First, we could recompute the binding after each stack push/pop. Second,
we could assign a second register to point into the stack.

To employ a stack frame pointer we execute the initial steps of the function: saving LR, saving
registers, and allocating local variables on the stack. Once these initial steps are complete, we set
another register to point into the stack. Because R4–R11 will be saved and restored any of these
would be appropriate for the stack frame pointer. E.g.,

MOV R11,SP

This stack frame pointer (R11) points to thelocal variables and parameters of the function. It is
important in this implementation that once the stack frame pointer is established (e.g., using the MOV
R11,SP instruction), that the stack frame register (R11) not be modified. The term frame refers to the
fact that the pointer value is fixed. If R11is a fixed pointer to the set of local variables, then a fixed
binding (using the EQU pseudo op) can be established between Register R11 and the local variables
and parameters, even if additional information is pushed on the stack. Because the stack frame pointer
should not be modified, every subroutine will save the old stack frame pointer of the function that
called the subroutine and restore it before returning. Local variable access uses indexed addressing
mode using Register R11.

Observation: One advantage of using a stack frame is that you can push and pop within the body of
the function, and still be able to access local variables using their symbolic name.

Observation: With a processor like the ARM with lots of registers, it is not a disadvantage to
dedicate a register as a stack frame pointer, and thus making it unavailable for general use.

In C, we can define a local variable after any open brace { . The compiler will usually allocate local
variables in registers, but in this section we will place all local variables on the stack. Programs 7.3
and 7.4 calculate the 32-bit sum of the first 1000 numbers. The purpose of these simple programs is to
demonstrate various implementations of local variables. In these programs, the result will be returned
by value in Register R0. The Figure 7.3 shows the local variables with SP indexed addressing. This
simple program did not need to push R4 and LR, but pushing these two illustrates typical components
of a stack frame.

Figure 7.3. The stack frame includes return address, registers, and local
variables. The local variables are accessed with SP-indexed addressing mode.

Program 7.3 shows an implementation using regular stack pointer addressing, drawn in Figure 7.3.
The binding is not necessary, but its usage greatly improves understanding. For example the access
tothe variable n could be performed using [SP,#4] but [SP,#n] addressing mode is easier to
understand. The binding creates exactly the same machine code as without binding, but it is easier to
understand because the variables are referred to by symbolic names.

; *****binding phase***************
sum EQU 0 ;32-bit unsigned number
n EQU 4 ;32-bit unsigned number
; 1)*****allocation phase *********
calc PUSH {R4,LR}
 SUB SP,#8 ;allocate n,sum
; 2)******access phase ************
 MOV R0,#0
 STR R0,[SP,#sum] ;sum=0
 MOV R1,#1000
 STR R1,[SP,#n] ;n=1000
loop LDR R1,[SP,#n] ;R1=n
 LDR R0,[SP,#sum] ;R0=sum
 ADD R0,R1 ;R0=sum+n
 STR R0,[SP,sum] ;sum=sum+n
 LDR R1,[SP,#n] ;R1=n
 SUBS R1,#1 ;n-1
 STR R1,[SP,#n] ;n=n-1
 BNE loop
; 3)******deallocation phase *****
 ADD SP,#8 ;deallocation
 POP {R4,PC} ;R0=sum

uint32_t calc(void){
uint32_t sum,n;
 sum = 0;
 for(n=1000;n>0;n--){
 sum=sum+n;
 }
 return sum;
}

Program 7.3. Stack pointer implementation of a function with two local 32-bit
variables.

Program 7.4 shows an implementation using stack frame pointer addressing, drawn in Figure 7.4. The
program establishes the frame pointer in R11, and then it allocates the variables. In Program 7.4, the
variable n is accessed using the [R11,#4] addressing mode. Notice the similarity between Programs
7.3 and 7.4. However, the body of Program 7.4 is free to push additional data on the stack.

Figure 7.4. The stack frame includes return address, registers, and local
variables. The local variables are accessed with R11-indexed addressing modes.

Common Error: One does not allocate/deallocate stack space by changing R11. We must modify SP
to allocate/deallocate space.

; *****binding phase***************
sum EQU 0 ;32-bit unsigned number
n EQU 4 ;32-bit unsigned number
; 1)*****allocation phase *********
calc PUSH {R4,R5,R11,LR}
 SUB SP,#8 ;allocate n,sum
 MOV R11,SP ;frame pointer
; 2)******access phase ************
 MOV R0,#0
 STR R0,[R11,#sum] ;sum=0
 MOV R1,#1000
 STR R1,[R11,#n] ;n=1000
loop LDR R1,[R11,#n] ;R1=n
 LDR R0,[R11,#sum] ;R0=sum
 ADD R0,R1 ;R0=sum+n
 STR R0,[R11,sum] ;sum=sum+n
 LDR R1,[R11,#n] ;R1=n
 SUB R1,#1 ;n-1
 STR R1,[R11,#n] ;n=n-1
 BNE loop
; 3)******deallocation phase *****
 ADD SP,#8 ;deallocation
 POP {R4,R5,R11,PC} ;R0=sum

uint32_t calc(void){
uint32_t sum,n;
 sum = 0;
 for(n=1000;n>0;n--){
 sum=sum+n;
 }
 return sum;
}

Program 7.4. Stack frame pointer implementation of a function with two local
32-bit variables.

7.5. Parameter Passing
Up to this point in the book, we used registers to pass data into and out of subroutines. The input
parameters (or arguments) are pieces of data passed from the calling routine into the subroutine
during execution. The output parameter (or argument) is information returned from the subroutine
back to the calling routine after the subroutine has completed its task. As previously defined in
Chapter 6, there are two methods to pass parameters: call by reference and call by value. With call
by reference a pointer to the object is passed. In this way the subroutine and the module that calls the
subroutine have access to the exact same object. Call by reference can be used to pass a large
quantity of data, and it can be used to implement a parameter that is both an input and an output
parameter. With call by value, a copy of the data itself is passed.

Call by value Safe, simple, good for small amounts of data
Call by reference Parameter can be input or output, good for large
amounts

Using the stack to pass parameters provides a much greater flexibility not possible with just the
registers. Passing parameters via global variables is extremely poor style.

Registers Fast and simple
Stack Flexible, good for large amounts of data
Global variables Simple and poor style

7.5.1. Parameter Passing in C
The call by value method passes a copy of the current value. By AAPCS convention, the first four
parameters are passed in Registers R0–R3. In this scheme, variables passed to a function cannot be
affected by the function. With call by value parameter passing, there are two copiesof angle (the
original and the copy in R0). See Program 7.5. Notice at the time of the call to next , R0 equals the
value of angle .In this case changes to the variable angle occur in the program that owns or
defined angle .

; R0 is the angle
next ADD R0,#1 ;add to copy
 CMP R0,#200
 BNE skip
 MOV R0,#0 ;roll over
skip BX LR
angle EQU 0 ;0 to 199
main SUB SP,#4 ;allocate
 MOV R0,#0
 STR R0,[SP,#angle]
 BL Stepper_Init
loop BL Stepper_Step
 LDR R0,[SP,#angle] ;R0=angle
 BL next

uint32_t next(uint32_t ang){
 ang++;
 if(ang == 200){
 ang = 0;
 }
 return ang;
}
void main(void){
uint32_t angle=0; // 0 to 199
 Stepper_Init();
 while(1){
 Stepper_Step();
 angle = next(angle);
 }

 STR R0,[SP,#angle] ;update
 B loop

}

Program 7.5. An input/output parameter is implemented using call by value.

The call by reference method passes a pointer to the object. In other words, references (pointers) to
the actual arguments are passed, instead of copies of the actual arguments themselves. In this scheme,
assignment statements have implied side effects on the actual arguments; that is, variables passed to a
function are affected by changes to the formal arguments. Sometimes side effects are beneficial, and
sometimes they are not. As an example consider a stepper motor program shown in Program 7.6.

; R0 points to the angle
next LDR R1,[R0] ;*pt
 ADD R1,#1 ;++
 CMP R1,#200
 BNE skip
 MOV R1,#0 ;roll over
skip STR R1,[R0] ;update
 BX LR
angle EQU 0 ;0 to 199
main SUB SP,#4 ;allocate
 MOV R0,#0
 STR R0,[SP,#angle]
 BL Stepper_Init
loop BL Stepper_Step
 MOV R0,SP ;R0=&angle
 BL next
 B loop

void next(uint32_t *pt){
 (*pt) = (*pt)+1;
 if((*pt) == 200){
 (*pt) = 0;
 }
}
void main(void){
uint32_t angle=0; // 0 to 199
 Stepper_Init();
 while(1){
 Stepper_Step();
 next(&angle);
 }
}

Program 7.6. An input/output parameter is implemented using call by reference.

In Program 7.6, the parameter is passed in R0. Both assembly and C versions are shown. With call by
reference parameter passing, there is one copy of the information,and the calling program (e.g., main)
passes an address (R0 in the assembly version) to the function. The read and write accesses to the
parameter affect the original variable. The local variable angle is put on the stack because we need a
reference (pointer) to it. Notice at the time of the call to next , R0 points to angle .

Since C supports only one formal output parameter, we can implement additional output parameters
using call by reference. The calling program passes pointers to empty objects (R0 and R1in the
assembly version), and the where function fills the objects with data. Program 7.7 shows a function
that returns two parameters using call by reference. Assume global variables Xx Yy are private to
the where function and contain the true current position.

Xx SPACE 4 ; private to where
Yy SPACE 4
where LDR R2,=Xx
 LDR R2,[R2] ;value of Xx
 STR R2,[R0] ;pass data
 LDR R3,=Yy
 LDR R3,[R3] ;value of Yy
 STR R3,[R1] ;pass data
 BX LR
myX EQU 0 ;32-bit
myY EQU 4
func PUSH {R4,LR}

static int32_t Xx,Yy; // position

void where(int32_t *xpt,
 int32_t *ypt){
 (*xpt) = Xx; // return Xx
 (*ypt) = Yy; // return Yy
}

void func(void){

 SUB SP,#8 ;allocate
 MOV R0,SP ;R0=&myX
 ADD R1,SP,#myY ;R1=&myY
 BL where
;do something based on myX,myY
 ADD SP,#8 ;deallocate
 POP {R4,PC}

int32_t myX,myY;
 where(&myX,&myY);
// do something based on myX,myY
}

Program 7.7. Multiple output parameters is implemented using call by reference.

An important point to remember about passing arguments by value in C is that there is no connection
between an actual argument and its source. Changes to the arguments made within a function have no
affect what so ever on the objects that might have supplied their values. They can be changed and the
original values will not be affected. This removes a burden of concern from the programmer since he
may use arguments as local variables without side effects. It also avoids the need to define temporary
variables just to prevent side effects.

It is precisely because C uses call by value that we can pass expressions, not just variables, as
arguments. The value of an expression can be copied, but it cannot be referenced since it has no
existence in memory. Therefore, call by value adds important generality to the language. Since
expressions may include assignment, increment, and decrement operators, it is possible for argument
expressions to affect the values of arguments lying to their right. Consider, for example,

 func(y=x+1, 2*y);

where the first argument has the value x+1 and the second argument has the value 2*(x+1) . However,
the value of the second argument depends on whether the arguments are evaluated right-to-left or left-
to-right. This kind of situation should be avoided, since the C language does not guarantee the order
of argument evaluation. The safe way to write this is

 y=x+1;
 func(y, 2*y);

The value of the expression is calculated at the time of the call, and that value is passed into the
subroutine.This function call passes the ASCII character represented by the digit (0-9)

 OutChar(digit + '0');

Checkpoint 7.6: What is the difference between call by value and call by reference?

7.5.2. Parameter Passing in Assembly Language
In contrast to C, it is easy to return multiple parameters in assembly language. If just a few parameters
need to be returned we can use the registers. In Program 7.8, the values of ports A, B, C, and D are to
be returned. For this microcontroller the 8-bit port data is returned as 32-bit.

; Reg R0 = Port A, Reg R1 = Port B
; Reg R2 = Port C, Reg R3 = Port D

GetPorts LDR R0,=GPIO_PORTA_DATA_R
 LDR R0,[R0] ; value of Port A
 LDR R1,=GPIO_PORTB_DATA_R
 LDR R1,[R1] ; value of Port B
 LDR R2,=GPIO_PORTC_DATA_R
 LDR R2,[R2] ; value of Port C
 LDR R3,=GPIO_PORTD_DATA_R
 LDR R3,[R3] ; value of Port D
 BX LR
;*******calling sequence******
 BL GetPorts
; Reg R0,R1,R2,R3 have four results
Program 7.8. Multiple return parameters implemented with registers (not AAPCS
compatible).

If many parameters are needed, then the stack can be used. In the next four programs,we compare and
contrast four ways to implement a simple subroutine with two input parameters and one output
parameter. The function will add the two 32-bit inputs and return the 32-bit sum as the result. Since
these subroutines will not be callable from C, we will not follow parameter passing conventions
compatible with C. In each case, the calling program will pass in the values of variables A and B ,
and then store the result in variable C .

Registers. The most efficient method of parameter passes is to use registers. R0 and R1 are input
parameters and R2 is the return parameter. On the left of Program 7.9is the subroutine and on the right
is the calling sequence that produces C=A-B .

;Inputs: R0,R1
;Outputs: R2=R0-R1
Sub1 SUB R2,R0,R1
 BX LR

 LDR R0,=A
 LDR R0,[R0] ;R0 has the value of A
 LDR R1,=B
 LDR R1,[R1] ;R1 has the value of B
 BL Sub1
 LDR R0,=C
 STR R2,[R0] ;C=A-B

Program 7.9. Using registers to pass two inputs and return one output call by
value (not AAPCS).

Stack. The stack can be used with passing many input and/or output parameters. When passing an
input parameter on the stack, its value is pushed. When returning an output parameter on the stack, the
calling program allocates an empty stack position, the subroutine fills the space with data, and then
the calling program pops the data from the stack. It is important to draw a stack picture created during
the calling sequence so symbolic binding can occur. Figure 7.5 shows the stack during the execution
of the body of the subroutine. On the left of Program 7.10is the subroutine and on the right is the
calling sequence that produces C=A-B . There are many possible orders of the parameters on the
stack. Any order is fine as long and the calling program and the subroutine are consistent.

;Inputs: In1 In2 on stack
;Outputs: Out=In1-In2 on stack

 LDR R1,=A
 LDR R1,[R0] ;R0 has the value of A

In1 EQU 8
In2 EQU 4
Out EQU 0
Sub2 LDR R0,[SP,#In1]
 LDR R1,[SP,#In2]
 ADD R2,R1,R0
 STR R2,[SP,#Out]
 BX LR

 LDR R0,=B
 LDR R0,[R1] ;R1 has the value of B
 PUSH {R0,R1} ;input parameters
 SUB SP,#4 ;place for output
 BL Sub2
 POP {R2} ;result
 LDR R0,=C
 STR R2,[R0] ;C=A-B
 ADD SP,#8 ;balance stack

Program 7.10. Using the stack to pass two inputs and return one output call by
value (not AAPCS).

Figure 7.5. The stack includes three parameters, call by value.

Stack frame. Again the stack is used to pass parameters. With this example, we will save the return
address, preserve R11, and allocate a local variable. We would need to save the LR if this function
called another function (which it doesn’t in this case). We would need to save the registers if the
convention were to require it. In this case, we did not need a local variable, but we allocated one
anyway, so you could see all 4 parts of a stack frame. The calling sequence is identical to the
previous example. Figure 7.6 shows the stack during the execution of the body of the subroutine. On
the left of Program 7.11 is the subroutine,and on the right is the calling sequence that produces C=A-
B .

;Inputs: In1 In2 on stack
;Outputs: Out=In1-In2 on stack
In1 EQU 20
In2 EQU 16
Out EQU 12
local EQU 0
Sub3 PUSH {R11,LR}
 SUB SP,#4 ;allocate
 MOV R11,SP ;frame pointer
 LDR R0,[R11,#In1]
 LDR R1,[R11,#In2]
 SUB R2,R0,R1
 STR R2,[R11,#Out]
 ADD SP,#4 ;deallocate
 POP {R11,PC}

 LDR R1,=A
 LDR R1,[R0] ;R0 has the value of A
 LDR R0,=B
 LDR R0,[R1] ;R1 has the value of B
 PUSH {R0,R1} ;input parameters
 SUB SP,#4 ;place for output
 BL Sub3
 POP {R2} ;result
 LDR R0,=C
 STR R2,[R0] ;C=A+B
 ADD SP,#8 ;balance stack

Program 7.11. Using the stack frame to pass two inputs and return one output
call by value (not AAPCS).

Figure 7.6. A stack frame contains up to four components: parameters, return
address, saved registers, and locals.

Global variables. A simple but completely inappropriate method is to pass parameters using global
variables, Program 7.12. In this method the information is contained in global memory variables.
Many embedded systems use this approach if the processor has very few registers and has limited or
no facilities with handling data on the stack.

;Inputs: A,B ;Outputs: C=A+B
Sub4 LDR R0,=A
 LDR R0,[R0] ;R0 = value of A
 LDR R1,=B
 LDR R1,[R1] ;R1 = value of B
 ADD R2,R1,R0 ;A+B
 LDR R0,=C
 STR R2,[R0] ;C=A+B
 BX LR

 BL Sub4

Program 7.12. Using global variables to pass two inputs and return one output
(not AAPCS).

It is good style to use registers or the stack to pass parameters into and out of subroutines. When
interrupts are enabled, it is possible to have multiple threads active at the same time. There is still
only one processor, so exactly one thread is actually running at a time, but we define concurrent
programming as the state where multiple threads are “ready to run” at the same time. The interrupt
hardware provides the mechanism to switch from one thread to the next. Invoking the interrupt will
push registers on the stack and the return from interrupt will pull those registers from the stack,
restoring the registers back to their previous values. Because concurrent threads have “separate”
registers and stack areas, software that uses the stack will operate properly in a concurrent
environment. Conversely, extreme care is required when using global variables (including the I/O
ports) in a concurrent environment. On the other hand, since each thread has “separate” registers and
stack, when passing data from one thread to another we must use variables allocated permanently in
RAM. Program 7.13shows an interrupt service routine on the right that sets a global variable
called Flag , and a subroutine on the left, which is called by the main program, which waits for
the Flag to be set.

;Wait for Flag to become 1
Wait LDR R0,=Flag
loop LDR R1,[R0] ;R1 = Flag
 CMP R1,#1
 BNE loop ;wait until 1

SysTick_Handler
 LDR R0,=Flag ;R0 = &Flag
 MOV R1,#1
 STR R1,[R0] ;Flag=1
 BX LR ;return from interrupt

 MOV R1,#0
 STR R1,[R0] ;Flag=0
 BX LR

Program 7.13. RAM-based variables must be used to pass information from an
interrupt service routine to a main program. If Flag is only accessed by these two
routines, we can classify it as a private global.

7.5.3. C Compiler Implementation of Local and Global
Variables
One of the most important applications of learning assembly language involves analyzing assembly
listings when programming in a high-level language. When one programs in a high-level language
there are many design decisions to be made, affecting accuracy (e.g., overflow, drop-out), reliability
(e.g., buffer overflow, critical section, race condition), speed, and code size. Often, these decisions
can be best understood at the assembly language level. In fact, one cannot tell if a section of high-
level language code is critical without looking at the associated assembly language generated by the
compiler. Critical sections will be discussed in Chapter 10. For another example, assume you are
designing a finite state machine in C. You could implement the FSM using a linked data structure (next
states are pointers) or with a table (next states are indices). Because of the complexity of modern
processors, it is almost impossible to determine how fast code will run by just observing the listings
generated by the compiler. It is much more accurate to run actual code with actual inputs adding
debugging instruments and measuring execution speed with an oscilloscope or logic analyzer. On the
other hand, sometimes we have a high-level language program that we know doesn’t work, but we
just can’t seem to find the bug. Often it is easier to visualize bugs by looking at the assembly listing in
and around the bugged code. Another application of observing assembly listing generated by the
compiler involves proving program correctness. For example, we might ask if the following C code
causes an overflow error, assuming both In and Out are 8-bit uint8_t .

Out = (99*In)/100;

There are two ways to determine if overflow could occur. First, we could exhaustively test the
software giving all possible inputs and verifying the correct output for each test case. Second,
knowing the architecture and assembly language of the machine, we could look at the general rules
about how C handles promotion/demotion and prove that overflow cannot occur. In general the
compiler will load variable contents into a register by promoting to the natural size of the processor
(in this case 32 bits), perform the calculations at this natural size, and then demote the result back into
the size of the target variable. The following assembly code was generated by the ARM Keil™
uVision® compiler (optimization level 3). Notice that the input ispromoted to 32 bits, where the
multiply and divide occur with 32-bit precision. In has a range of 0 to 255, so 99* In has a range of
0 to 25245 (fits in 32 bits). As you can see, the compiler will attempt to optimize; in this case
substituting one multiplication by two additions. The result is demoted back to 8 bits. However,
because Out will always be less than In , the demotion cannot overflow. Looking at Section 3.3 of
the Cortex™-M Technical Reference Manual, we can estimate the execution time for this code. Loads
and stores take 2 cycles, moves and adds take 1 cycle, and the divide takes from 2 to 12 cycles.
Therefore, this code takes 11 to 21 cycles to execute.

0x00000356 4934 LDR r1,[pc,#208] ; R1 = &In
0x00000358 2264 MOVS r2,#0x64 ; R2 = 100
0x0000035A 7848 LDRB r0,[r1,#0x01] ; R0 = In
0x0000035C EB001040 ADD r0,r0,r0,LSL #5 ; R0 = R0+32*R0 = 33*In
0x00000360 EB000040 ADD r0,r0,r0,LSL #1 ; R0 = R0+2*R0 = 99*In
0x00000364 FBB0F0F2 UDIV r0,r0,r2 ; 99*In/100
0x00000368 7088 STRB r0,[r1,#0x02] ; Out=99*In/100

Here is another example where observing the assembly code illuminates the bug. The goal of the
software is to combine two 8-bit variables into one 16-bit variable. If you cannot see the bug, look up
the precedence of the two operators << and +.

combine
 MOV r2,r0 ;R0=msb
 ADD r3,r1,#0x08 ;lsb+8
 LSL r0,r2,r3 ;msb<<(8+lsb)
 BX lr

uint32_t combine(
 uint8_t msb,
 uint8_t lsb){
return msb<<8 + lsb;
}

Observation: If you want to understand what your C programs are doing, set the optimization level to
low (no optimization). If you want your C programs to run fast, set the optimization level to high.

Common Error: It would be a grievous programming error to access the local variables of the main
program. Therefore, in assembly language, it is essential to make the distinction between local
variables and data passed on the stack to the subroutine.

The specific goal of this section is to study how compilers implement local variables and pass
parameters. However, in the big picture, we can improve our understanding of both the machine
architecture and our high-level language programs by looking at the assembly code generated by the
compiler. Program 7.14 shows assembly code was generated by the ARM Keil™ uVision® compiler
(optimization level 0).

;R0 is *pt ;R1 is index
;R2 is value

int32_t G; // global
int32_t sub(int32_t *pt, // R0

sub MOV r3,r0 ;R3 is *pt
 LDR r0,[r3,r1,LSL #2]
 SUBS r0,r0,r2
 STR r0,[r3,r1,LSL #2]
 MOV r0,r2 ;return value
 BX lr
main PUSH {r4,lr}
 SUB sp,sp,#0x50 ;allocate z
 MOVS r0,#0x05
 LDR r1,[pc,#340] ;R1 = &G
 STR r0,[r1,#0x00] ;G=5
 MOVS r0,#0x06
 STR r0,[sp,#0x00] ;z[0]=6
 MOVS r2,#0x02 ;value
 MOVS r1,#0x01 ;index
 MOV r0,sp ;*pt
 BL.W sub
 LDR r1,[pc,#320] ;R1 = &G
 STR r0,[r1,#0x00] ;store G
 ADD sp,sp,#0x50 ;deallocate
 POP {r4,pc}

 int32_t index, // R1
 int32_t value){ // R2
 pt[index] -= value;
 return value;
}

void main(void){
int32_t z[20]; // local
 G = 5; // access global
 z[0] = 6; // access local
 G = sub(z,1,2);
}

Program 7.14. An example used to illustrate the C compiler’s access to globals,
locals and parameters.

7.6. Fixed-point Numbers
We will use fixed-point numbers when we wish to express values in our software that have
noninteger values. In order to design a fixed-point system the range of values must be known. A fixed-
point number contains two parts. The first part is a variable integer, called I. This variable integer
may be signed or unsigned. An unsigned fixed-point number is one that has an unsigned variable
integer. A signed fixed-point number is one that has a signed variable integer. The precision of a
number system is the total number of distinguishable values that can be represented. The precision of
a fixed-point number is determined by the number of bits used to store the variable integer. Therefore,
to use a fixed-point system, the precision must be less than or equal to 32 bits or 232 alternatives. On
the Cortex™-M processor, we typically use 32 bits, but 8 or 16 bits could be used. The variable
integer is saved in memory and is manipulated by software. These manipulations include but are not
limited to load, store, shift, add, subtract, multiply, and divide. The second part of a fixed-point
number is a fixed constant, called Δ. The fixed constant is defined at design time and cannot be
changed at run time. The fixed constant defines the resolution of the number system. The fixed
constant is not stored in memory. Usually we specify the value of this fixed constant using software
comments to explain our fixed-point algorithm. The value of the fixed-point number is defined as the
product of the variable integer times the fixed constant:

Fixed-point number = I • Δ

The resolution of a number is the smallest difference that can be represented. In the case of fixed-
point numbers, the resolution is equal to the fixed constant, Δ. Sometimes we express the resolution of
the number as its units. For example, a decimal fixed-point number with a resolution of 0.001 volts is
really the same thing as an integer with units of mV. When inputting numbers from a keyboard or
outputting numbers to a display, it is usually convenient to use decimal fixed point. With decimal
fixed point the fixed constant is a power of 10.

Decimal fixed-point number = I • 10m for some constant integer m

Again, the integer m is fixed and is not stored in memory. Decimal fixed point will be easy to input or
output to humans, while binary fixed point will be easier to use when performing mathematical
calculations. With binary fixed point the fixed constant is a power of 2.

Binary fixed-point number = I • 2n for some constant integer n

Observation: If the range of numbers is known and small, then the numbers can be represented in a
fixed-point format.

Checkpoint 7.7:Give an approximation of π using the decimal fixed-point (Δ = 0.001) format.

Checkpoint 7.8:Give an approximation of π using the binary fixed-point (Δ = 2-8) format.

In the first example, we will develop the equations that a microcontroller would need to implement a
digital voltmeter. The LM3S/TM4C family of microcontrollers has a built-in analog to digital
converter (ADC) that can be used to transform an analog signal into digital form. The 12-bit ADC
analog input range is 0 to +3 V, and the ADC digital output varies 0 to 4095 respectively. Let Vin be
the analog voltage in volts and n be the digital ADC output, then the equation that relates the analog to
digital conversion is

Vin = 3*n/4095 = 0.0007326 *n

Resolution is defined as the smallest change in voltage that the ADC can detect. This ADC has a
resolution of about 0.7 mV. In other words, the analog voltage must increase or decrease by 0.7 mV
for the digital output of the ADC to change by at least one bit. It would be inappropriate to save the
voltage as an integer, because the only integers in this range are 0, 1, 2, and 3. Even though the TM4C
supports floating point, the voltage data will be saved in fixed-point format, because it will take less
memory and execute faster. Decimal fixed point is chosen because the voltage data for this voltmeter
will be displayed. A fixed-point resolution of Δ=0.001 V is chosen because it is about equal to the
ADC resolution. Table 7.1 shows the performance of the system. The table shows us that we need to
store the variable part of the fixed-point number in at least 16 bits.

Vin (V)
Analog input

n
ADC digital
output

I (0.001 V)
variable part of the fixed-
point data

0.000 0 0
0.001 1 1
1.000 1365 1000
1.500 2048 1500
3.000 4095 3000

Table 7.1. Performance data of a microcomputer-based voltmeter.

One possible software formula to convert n into I is as follows.

I = (3000*n+2048)/4095, where I is defined as Vin = I*0.001V

It is very important to carefully consider the order of operations when performing multiple integer
calculations. There are two mistakes that can happen. The first error is overflow, and it is easy to
detect. Overflow occurs when the result of a calculation exceeds the range of the number system. The
two solutions of the overflow problem were discussed earlier, promotion and ceiling/floor. The other
error is called drop-out. Drop-out occurs after a right shift or a divide, and the consequence is that an
intermediate result loses its ability to represent all of the values. To avoid drop-out, it is very
important to divide last when performing multiple integer calculations. If you divided first, e.g.,
I=3000*(n/4095), then the values of I would be only 0, or 3000. The addition of “2048” has the effect
of rounding to the closest integer. The value 2048 is selected because it is about one half of the
denominator. For example, the calculation (3000*n)/4095=0 for n=1, whereas the
“(3000*n+2048)/4096” calculation yields the better answer of 1. A display algorithm for this decimal
fixed-point format is shown the next section.

When adding or subtracting two fixed-point numbers with the same Δ, we simply add or subtract their
integer parts. First, let x, y, and z be three fixed-point numbers with the same Δ. Let x=I•Δ, y=J•Δ, and
z=K•Δ. To perform z = x+y, we simply calculate K = I+J. Similarly, to subtract z = x-y, we simply
calculate K=I-J. When adding or subtracting fixed-point numbers with different fixed parts, we must
first convert the two inputs to the format of the result before adding or subtracting. This is where
binary fixed point is more convenient, because the conversion process involves shifting rather than
multiplication/division.

In this next example, let x, y, and z be three binary fixed-point numbers with different resolutions. In
particular, we define xto be � I•2-5, y to be � J•2-2, and zto be � K•2-3. To convert x to the format of
z, we divide I by 4 (right shift twice). To convert y to the format of z, we multiply J by 2 (left shift
once). To perform z = x+y, we calculate

K = (I>>2)+(J<<1)

For the general case, we define xto be � I•2n, yto be � J•2m, and zto be � K•2p. To perform any
general operation, we derive the fixed-point calculation by starting with desired result. For addition,
we have z = x+y. Next, we substitute the definitions of each fixed-point parameter

K • 2p = I • 2n + J • 2m

Lastly, we solve for the integer part of the result

K = I • 2n-p + J • 2m-p

For multiplication, we have z=x•y. Again, we substitute the definitions of each fixed-point parameter

K • 2p = I • 2n • J • 2m

Lastly, we solve for the integer part of the result

K = I • J • 2n+m-p

For division, we have z=x/y. Again, we substitute the definitions of each fixed-point parameter

K • 2p = I • 2n / J • 2m

Lastly, we solve for the integer part of the result

K = I/J • 2n-m-p

Again, it is very important to carefully consider the order of operations when performing multiple
integer calculations. We must worry about overflow and drop out. In particular, in the division
example, if (n-m-p) is positive then the left shift (I•2n-m-p) should be performed before the divide (/J).
We can use these fixed-point algorithms to perform complex operations using the integer functions on
our microcontroller.

Example 7.1. Rewrite the following digital filter using fixed-point calculations.

y = x-0.0532672 • x1 + x2+ 0.0506038 • y1-0.9025 • y2

Solution: In this case, the variables y, y1, y2, x, x1, and x2 are all integers, but the constants will be
expressed in binary fixed-point format. The value -0.0532672 can be approximated by -14•2-8. The
value 0.0506038 can be approximated by 13•2-8. Lastly, the value -0.9025 can be approximated by
-231•2-8. The fixed-point implementation of this digital filter is

y = x + x2+ (-14 • x1+13 • y1-231 • y2)>>8

Common Error: Lazy or incompetent programmers use floating point in many situations where fixed-
point would be preferable.

Observation: As the fixed constant is made smaller, the resolution of the fixed-point representation is
improved, but the variable integer part also increases. Unfortunately, larger integers will require
more bits for storage and calculations.

Checkpoint 7.9: Using a fixed constant of 2-8, rewrite the digital equation F= 1.8 • C+32 in binary
fixed-point format.

Checkpoint 7.10: Using a fixed constant of 10-3, rewrite the digital filter y = x-
0.0532672 • x1+x2+0.0506038 • y1-0.9025 • y2 in decimal fixed-point format.

Checkpoint 7.11: Assume resistors R1, R2, R3 are the integer parts of 16-bit unsigned binary fixed-
point numbers with a fixed constant of 2-4. Write an equation to calculate R3 = R1||R2 (parallel
combination.)

The purpose of this example is to study overflow and drop-out errors during integer calculations. The
objective of the software is to calculate the circumference of a circle given its radius.

c= 2 π r

Assume r is an unsigned 32-bit fixed-point number with a resolution of 0.001 cm. c is also fixed-point
with the same resolution. I.e., c = C*0.001 cm and r = R*0.001 cm, where C and R are unsigned 32-
bit variable integers. Given 32-bit variables, the values of c can range from 0.000 to 4,294,967.295
cm. If we divide this by 2π, this calculation should work for values of r ranging from 0 to
683,565.275 cm. We substitute the definitions of c and r into the equation to get an exact relationship
between input R and output C,

C= 2* π *R

We need to convert this equation to a function with integer operations. One simple possibility is

C = 6283*R/1000

The difficulty with this equation is the multiply 6283 is the possibility of overflow. The largest value
r can be without overflow is 232/6283*0.001cm = 683cm, which is a 1000 times smaller than the
range predicted by the c = 2 π r equation. There are two approaches to reducing the effect of
overflow. The first approach would be to promote to 64 bits, perform the operation, and then demote
back to 32 bits. The second approach is the find a better approximation for 2π. If we search the space
of all integers (I1, I2) less than 255, such that I1/I2 is as close to 2π as possible, we find this possibility

C = 245*R/39

Notice that 2π-245/39 = 2π-6.28205 = 0.0011, which means this calculation is just as accurate as the
6283/1000 approximation. However, the multiply by 245 is less likely to cause an overflow error as
compared to the multiply by 6283. When dividing by an unsigned number we can implement rounding
by adding half of the divisor to the dividend. In this example, we add 20.

C = (245*R+20)/39

7.7. Conversions
In this section we will develop methods to convert between ASCII strings and binary numbers. Let’s
begin with a simple example. Let Data be a fixed length string of three ASCII characters. Each entry
of Data is an ASCII character 0 to 9. Let Data[0] be the ASCII code for the hundred’s
digit, Data[1] be the ten’s digit and Data[2] be the one’s digit. Let n be an unsigned 32-bit integer.
We will also need an index, i . The decimal digits 0 to 9 are encoded in ASCII as 0x30 to 0x39. So, to
convert a single ASCII digit to decimal number, we simply subtract 0x30. To convert this string of 3
decimal digits into binary we calculate

 n = 100*(Data[0]-0x30) + 10*(Data[1]-0x30) + (Data[2]-0x30);

This 3-digit ASCII string could also be calculated as

 n = (Data[2]-0x30) + 10*((Data[1]-0x30) + 10*(Data[0]-0x30));

If Data were a string of 9 decimal digits we could put the above function into a loop

 n = 0;
 for (i=0; i<9 ;i++){
 n = 10*n + (Data[i]-0x30);
 }

If Data were a variable length string of ASCII characters terminated with a null character (0), we
could convert it to binary using a while loop, as shown in Program 7.15. A pointer to the string is
passed using call by reference. In the assembly version, the pointer R0 is incremented as the string is
parsed. R1 contains the local variable n , R2 contains the data from the string, and R3 contains the
constant 10.

; Input: R0 points to string,
 null-terminated string
; Output: R0 contains number value
Str2UDec
 MOV R1,#0 ; n = 0
 MOV R3,#10 ; R3 = 10
loop LDRB R2,[R0] ; R2 = *pt
 CMP R2,#0 ; null?
 BEQ done ; if so, done
 ADD R0,R0,#1 ; next pointer
 SUB R2,R2,#0x30 ; ASCII to num
 MUL R1,R1,R3 ; n = n*10
 ADD R1,R1,R2 ; n*10+num
 B loop
done MOV R0,R1 ; return n
 BX LR

// Convert ASCII string to
// unsigned 32-bit decimal
// string is null-terminated
uint32_t Str2UDec(char *pt){
 uint32_t n = 0; // number
 while (*pt != 0){
 n = 10*n +((*pt)-0x30);
 pt++;
 }
 return n;
}

Program 7.15. Unsigned ASCII string to decimal conversion.

The example, shown in Program 7.16, uses an I/O device capable of sending and receiving ASCII
characters. When using a development board, we can send serial data to/from the PC using the UART.
The function InChar() returns an ASCII character from the I/O device. The function OutChar()
sends an ASCII character to the I/O device. The function InUDec() will accept characters from the
device until a carriage return (the Enter key) is typed. Only the numbers are echoed.

#define CR 0x0D
// Accept ASCII input in unsigned decimal format, up to 4294967295
// If n> 4294967295, it will truncate without reporting the error
uint32_t InUDec(void){ uint32_t n=0; char character;
 while((character=InChar()) != CR){ // accepts until <enter>
 if((character >= '0') && (character <= '9')){
 n = 10*n+(character-0x30); // overflows if above 4294967295
 OutChar(character); // echo this character
 }
 }
 return n;
}
Program 7.16. Input an unsigned decimal number.

If the ASCII characters were to contain optional “+” and “-” signs, we could look for the presence of
the sign character in the first position. If there is a minus sign,then set a flag. Next use our unsigned
conversion routine to process the rest of the ASCII characters and generate the unsigned number, n . If
the flag was previously set, we can negate the value n . Be careful to guarantee the + and – are only
processed as the first character.

To convert an unsigned integer into a fixed length string of ASCII characters, we could use the integer
divide. Assume n is an unsigned integer less than or equal to 999. In this simple program, the number
5 is converted to the string “005”, see Program 7.17.

// Data is a pointer to a 4-byte empty buffer
// n is the input 0 to 999
void UDec2Str(uint32_t n, char Data[4]){
 Data[0] = n/100 + 0x30;
 n = n%100; // n is now between 0 and 99
 Data[1] = n/10 + 0x30;
 n = n%10; // n is now between 0 and 9
 Data[2] = n + 0x30;
 Data[3] = 0; // null termination
}
Program 7.17. Unsigned decimal to ASCII string conversion.

The functions in Program 7.18 convert numbers into the corresponding ASCII characters, including
units. Instead of creating an output string, these functions output each character to display device by
calling OutChar . The program OutUDec3 is a simple program that outputs exactly three characters.
For example the number 5 is displayed as “005”. The resolution is 0.001 V. The
program OutUHex is a recursive function (similar to OutUDec in Program 5.21) that outputs a
variable number of characters to display the number in hexadecimal.

void OutUDec3(uint32_t n){ // n is the input 0 to 999
 OutChar(n/100 + 0x30); n = n%100; // n is now between 0 and 99
 OutChar(n/10 + 0x30); n = n%10; // n is now between 0 and 9
 OutChar(n + 0x30);
}
void OutUHex(uint32_t number){ // Output a hexadecimal number
 if(number >= 0x10){
 OutUHex(number/0x10); // all but last digit
 OutUHex(number%0x10); // last hex digit
 }
 else{ // base case 0 to 15
 if(number < 0xA){
 OutChar(number + '0'); // 0 to 9
 }
 else{
 OutChar(number -10 +'A'); // A to F
 }
 }
}

void OutFDec(uint32_t i){ // fixed constant is 0.001
 OutUDec(i/1000); // left of the decimal point (Program 5.21)
 OutChar('.'); // decimal point
 OutChar(0x30+(i%1000)/100); // tenths digit
 OutChar(0x30+(i%100)/10); // hundredths digit
 OutChar(0x30+i%10); // thousandths digit
 OutChar('V');} // units
Program 7.18. Print 3-digit decimal, 32-bit hexadecimal, decimal fixed-point
number to an output device.

7.8. *IEEE Floating-point numbers
If the range of numbers is unknown or large, then the numbers must be represented in a floating-point
format. Conversely, we can use fixed point when the range of values is small and known. Therefore,
we will not need floating-point operations for most embedded system applications because fixed
point is sufficient. Furthermore, if the processor does not have floating-point instructions then a
floating-point implementation will run much slower than the corresponding fixed-point
implementation. However, it is appropriate to know the definition of floating point. NASA believes
that there are on the order of 1021 stars in our Universe. Manipulating large numbers like these is not
possible using integer or fixed-point formats. Another limitation with integer or fixed-point numbers
is there are some situations where the range of values is not known at the time the software is being
designed. In a Physics research project, you might be asked to count the rate at which particles strike
a sensor. Since the experiment has never been performed before, you do not know in advance whether
there will be 1 per second or 1 trillion per second. The applications with numbers of large or
unknown range can be solved with floating-point numbers. Floating point is similar in format to fixed
point, except the exponent is allowed to change at run time. Consequently, both the exponent and the
mantissa will be stored. Just like with fixed-point numbers we will use binary exponents for internal
calculations, and decimal exponents when interfacing with humans. This number system is called
floating point because as the exponent varies, the binary point or decimal point moves.

The IEEE Standard for Binary Floating-Point Arithmetic or ANSI/IEEE Std 754-1985 is the most
widely-used format for floating-point numbers. There are three common IEEE formats: single-
precision (32-bit), double-precision (64-bit), and double-extended precision (80-bits). The 32-bit
short real format as implemented by the TM4C123 is presented here. The floating-point format, f, for
the single-precision data type is shown in Figure 7.11. Computers use binary floating point because it
is faster to shift than it is to multiply/divide by 10.
Bit 31 Mantissa sign, s=0 for positive, s=1 for negative
Bits 30:23 8-bit biased binary exponent 0 ≤ e ≤ 255
Bits 22:0 24-bit mantissa, m, expressed as a binary fraction,
 A binary 1 as the most significant bit is implied.
 m = 1.m1m2m3...m23

Figure 7.11. 32-bit single-precision floating-point format.

The value of a single-precision floating-point number is

f = (-1)s • 2e-127• m

The range of values that can be represented in the single-precision format is about ±10-38 to ±10+38.
The 24-bit mantissa yields a precision of about 7 decimal digits. The floating-point value is zero if
both e and m are zero. Because of the sign bit, there are two zeros, positive and negative, which
behave the same during calculations. To illustrate floating point, we will calculate the single-
precision representation of the number 10. To find the binary representation of a floating-point
number, first extract the sign.
10 = (-1)0 •10
Step 2, multiply or divide by two until the mantissa is greater than or equal to 1, but less than 2.
10 = (-1)0 •23• 1.25
Step 3, the exponent e is equal to the number of divide by twos plus 127.
10 = (-1)0 •2130-127• 1.25
Step 4, separate the 1 from the mantissa. Recall that the 1 will not be stored.
10 = (-1)0 •2130-127• (1+0.25)
Step 5, express the mantissa as a binary fixed-point number with a fixed constant of 2-23.
10 = (-1)0 •2130-127• (1+2097152•2-23)
Step 6, convert the exponent and mantissa components to hexadecimal.
10 = (-1)0 •20x82-127• (1+0x200000•2-23)
Step 7, extract s, e, m terms, convert hexadecimal to binary
10 = (0,0x82,0x200000) = (0,10000010,01000000000000000000000)

Sometimes this conversion does not yield an exact representation, as in the case of 0.1. In particular,
the fixed-point representation of 0.6 is only an approximation.
Step 1 0.1 = (-1)0 •0.1
Step 2 0.1 = (-1)0 •2-4• 1.6
Step 3 0.1 = (-1)0 •2123-127 • 1.6
Step 4 0.1 = (-1)0 •2123-127 • (1+0.6)
Step 5 0.1 ≈ (-1)0 •2123-127• (1+5033165•2-23)
Step 6 0.1 ≈ (-1)0 •20x7B-127• (1+0x4CCCCD•2-23)
Step 7 0.1 ≈ (0,0x7B,0x4CCCCD) = (0,01111011,10011001100110011001101)

The following example shows the steps in finding the floating-point approximation for π.
Step 1 π = (-1)0 •π
Step 2 π ≈ (-1)0 •21• 1.570796327
Step 3 π ≈ (-1)0 •2128-127• 1.570796327
Step 4 π ≈ (-1)0 •2128-127• (1+0.570796327)
Step 5 π ≈ (-1)0 •2128-127• (1+4788187•2-23)
Step 6 π ≈ (-1)0 •20x80-127• (1+0x490FDB•2-23)
Step 7 π ≈ (0,0x80,0x490FDB) = (0,10000000,10010010000111111011011)

There are some special cases for floating-point numbers. When e is 255, the number is considered as
plus or minus infinity, which probably resulted from an overflow during calculation. When e is 0, the
number is considered as denormalized. The value of the mantissa of a denormalized number is less
than 1. A denormalized short result number has the value,

f = (-1)s • 2-126• m where m = 0.m1m2m3...m23

Observation: The floating-point zero is stored in denormalized format.

When two floating-point numbers are added or subtracted, the smaller one is first unnormalized. The
mantissa of the smaller number is shifted right and its exponent is incremented until the two numbers
have the same exponent. Then, the mantissas are added or subtracted. Lastly, the result is normalized.
To illustrate the floating-point addition, consider the case of 10+0.1. First, we show the original
numbers in floating-point format. The mantissa is shown in binary format.

 10.0 = (-1)0 •23 • 1.01000000000000000000000
 + 0.1 = (-1)0 •2-4• 1.10011001100110011001101

Every time the exponent is incremented the mantissa is shifted to the right. Notice that 7 binary digits
are lost. The 0.1 number is unnormalized, but now the two numbers have the same exponent. Often the
result of the addition or subtraction will need to be normalized. In this case the sum did not need
normalization.

 10.0 = (-1)0 •23 • 1.01000000000000000000000
 + 0.1 = (-1)0 •23 • 0.00000011001100110011001 1001101
 10.1 = (-1)0 •23 • 1.01000011001100110011001

When two floating-point numbers are multiplied, their mantissas are multiplied and their exponents
are added. When dividing two floating-point numbers, their mantissas are divided and their exponents
are subtracted. After multiplication and division, the result is normalized. To illustrate the floating-
point multiplication, consider the case of 10*0.1. Let m1, m2 be the values of the two mantissas.
Since the range is 1 ≤ m1, m2 < 2, the product m1*m2 will vary from 1 ≤ m1*m2 < 4.

 10.0 = (-1)0 •23 • 1.01000000000000000000000
 * 0.1 = (-1)0 •2-4 • 1.10011001100110011001101
 1.0 = (-1)0 •2-1 •10.00000000000000000000000
The result needs to be normalized.

 1.0 = (-1)0 •20 • 1.00000000000000000000000

Roundoff is the error that occurs as a result of an arithmetic operation. For example, the
multiplication of two 64-bit mantissas yields a 128-bit product. The final result is normalized into a
normalized floating-point number with a 64-bit mantissa. Roundoff is the error caused by discarding
the least significant bits of the product. Roundoff during addition and subtraction can occur in two
places. First, an error can result when the smaller number is shifted right. Second, when two n-bit
numbers are added the result is n+1 bits, so an error can occur as the n+1 sum is squeezed back into
an n-bit result.

Truncation is the error that occurs when a number is converted from one format to another. For
example, when an 80-bit floating-point number is converted to 32-bit floating-point format, 40 bits
are lost as the 64-bit mantissa is truncated to fit into the 24-bit mantissa. Recall, the number 0.1 could
not be exactly represented as a short real floating-point number. This is an example of truncation as
the true fraction was truncated to fit into the finite number of bits available.

If the range is known and small and a fixed-point system can be used, then a 32-bit fixed-point number
system will have better resolution than a 32-bit floating-point system. For a fixed range of values
(i.e., one with a constant exponent), a 32-bit floating-point system has only 23 bits of precision, while
a 32-bit fixed-point system has 9 more bits of precision.

Figure 7.11 shows the floating-point registers on the Cortex M4. Software can access these registers
in any combination of 32 single-precision registers named S0 to S31 or 16 double-precision registers
D0 to D15. In particular, registers S0 and S1 are the same as register D0. This section will focus on
single precision floating-point operations.

Figure 7.12. The TM4C has 32 single-precision floating-point registers that
overlap with 16 double-precision floating-point registers.

The following lists the general form for some of the load and store instructions. Because the constant
is stored into memory, and the assembly creates a PC relative access, the constant can be any single-
precision floating-point value. St Sd Sn and Sm represent any of the 32 single-precision floating-
point registers. Rn and Rd are regular integer registers.

 VLDR.F32 Sd, [Rn] ; load 32-bit float at [Rn] to Sd
 VSTR.F32 St, [Rn] ; store 32-bit St to memory at [Rn]
 VLDR.F32 Sd, [Rn, #n] ; load 32-bit memory at [Rn+n] to Sd
 VSTR.F32 St, [Rn, #n] ; store 32-bit St to memory [Rn+n]
 VLDR.F32 Sd, =constant ; load 32-bit constant into Sd

The move instructions get their data from the machine instruction or from within the processor and do
not require additional memory access instructions. The immediate value is any number that can be
expressed as ±n*2-r, where 16 ≤ n ≤ 31, and 0 ≤ r ≤ 7.

 VMOV.F32 Sd, Sn ; set Sd equal to the value in Sn
 VMOV.F32 Sd, #imm ; set Sd equal to imm
 VMOV Rd, Sn ; set Rd equal to the value in Sn
 VMOV Sd, Rn ; set Sd equal to the value in Rn

These are some of the arithmetic operations, which operate on the floating-point registers. Arithmetic
operations can cause overflow, underflow, divide by zero floating-point exceptions. In particular, bits
in the SYSEXC_RIS_R register will get set if there is a floating-point error.

 VADD.F32 Sd, Sn, Sm ; set Sd equal to Sn+Sm
 VSUB.F32 Sd, Sn, Sm ; set Sd equal to Sn-Sm
 VMUL.F32 Sd, Sn, Sm ; set Sd equal to Sn*Sm
 VDIV.F32 Sd, Sn, Sm ; set Sd equal to Sn/Sm
 VNEG.F32 Sd, Sm ; set Sd equal to -Sm
 VABS.F32 Sd, Sm ; set Sd equal to the absolute value of Sm
 VSQRT.F32 Sd, Sm ; set Sd equal to the square root of Sm

To enable the floating-point hardware on the Cortex M4, we need to set bits 23-20 of the Coprocessor
Access Control (NVIC_CPAC_R) register.

NVIC_CPAC_R equ 0xE000ED88
EnableFPU
 LDR R0, =NVIC_CPAC_R
 LDR R1, [R0] ; Read CPAC
 ORR R1, R1, #0x00F00000 ; enable floating coprocessor
 STR R1, [R0] ; Write CPAC
 BX LR

The following example calculates the area of a circle. The radius input is passed by value in register
S0 and the output is returned by value also in register S0.In C, we define a single-precision floating-
point variable using float .

 AREA DATA, ALIGN=2
In SPACE 4
Area SPACE 4
 AREA |.text|,CODE,READONLY,ALIGN=2
 THUMB
; Input: S0 is radius r in cm
; Output: S0 is area in cm^2
CircleArea
 VMUL.F32 S0,S0,S0 ; r*r
 VLDR.F32 S1,=3.14159265
 VMUL.F32 S0,S0,S1 ; pi*r*r
 BX LR
Test PUSH {R4,LR}
 LDR R0,=In
 VLDR.F32 S0,[R0] ;S0 is In
 BL CircleArea
 LDR R0,=A
 VSTR.F32 S0,[R0] ;A = pi*In*In
 POP {R4,PC}

float In; // radius in cm
float A; // area in cm^2

float CircleArea(float r){
 return 3.14159265*r*r;
}

void Test(void){
 A = CircleArea(In);
}

Program 7.22. Floating-point function to calculate the area of a circle
(Float_xxx.zip).

Observation: The assembly version of CircleArea executes in 22 bus cycles, while the C version
requires 110 bus cycles. A C version of CircleArea running on a LM3S1968 without floating point
hardware runs in 165 bus cycles.

7.9. Exercises
7.1 What does it mean to say a function is public versus private? Why is this distinction important?

7.2 What does it mean to say a variable is public versus private? Why is this distinction important?

7.3 What does it mean to say a variable is local versus global?

7.4 Consider the reasons why one chooses which technique to create a variable.
a) List three reasons why one would implement a variable using a register.
b) List three reasons why one would implement a variable on the stack and access it using R11
indexed mode addressing.
c) List three reasons why one would implement a variable in permanently allocated RAM.

7.5 Consider reasons for implementing "call by value" versus "call by reference"
a) List two reasons for implementing "call by value".
b) List two reasons for implementing "call by reference"

7.6 Give an approximation of √2 using the decimal fixed-point (Δ= 0.001) format.

7.7 Give an approximation of √2 using the binary fixed-point (Δ= 2-8) format.

7.8 Assume M and N are two integers, each less than 1000. Find the best set of M and N, such that
M/N is approximately √2. (Like 7/5, but much more accurate).

7.9 Assume M and N are two integers, each less than 1000. Find the best set of M and N, such that
M/N is approximately π. (Like 22/7, but much more accurate).

7.10 Give an approximation of √101 using the decimal fixed-point (Δ= 0.01) format.

7.11 Give an approximation of √99 using the binary fixed-point (Δ= 2-4) format.

7.12 A signed 16-bit binary fixed-point number system has a Δ resolution of 1/256. What is the
corresponding value of the number if the integer part stored in memory is 384?

7.13 An unsigned 16-bit decimal fixed-point number system has a Δ resolution of 1/100. What
is the corresponding value of the number if the integer part stored in memory is 384?

D7.14 Write assembly code that finds the average value of a 10-element array. Each element is
unsigned 32 bits. A pointer to the array is passed in R0 and you return the result in R0. A typical
calling sequence:

 LDR R0,=mydata ; pointer to 10-element structure
 BL Average
 ;result in R0

D7.15 Write assembly code that calculates the average of three unsigned 32-bit numbers. The three
parameters are passed by value on the stack. You return the result in R0. A typical calling sequence:
 MOV R0,#100
 MOV R1,#200
 MOV R2,#400
 PUSH {R0-R2}
 BL Average
 ;result in R0
 ADD SP,#12 ;balance stack

D7.16 Write assembly code that finds the maximum of value of a 10-element array. Each element is
unsigned 16 bits. The two parameters are passed by reference on the stack. A typical calling
sequence:
 LDR R0,=mydata ;pointer to 10-element structure
 PUSH {R0}
 SUB SP,#4 ;place for the result
 BL max
 POP {R0} ;result
 ADD SP,#4 ;balance stack

D7.17 Write assembly code that sorts three unsigned numbers. The three parameters are passed by
value in R0, R1, and R2. You return the results back in the same registers such that R0≤R1≤R2. A
typical calling sequence:
 MOV R0,#400
 MOV R1,#200
 MOV R2,#100
 BL Sort ;shifts numbers around such that R0≤R1≤R2

D7.18 Write assembly code that converts temperature in Fahrenheit to temperature in Centigrade.
Both input and output are fixed-point 0.1. The input parameter is passed by value on the stack. You
return the result in R0.
 MOV R0,#720 ; 72.0F
 PUSH {R0}
 BL FtoC
 ADD SP,#4 ; balance stack

D7.19 Write assembly code that converts temperature in Centigrade to temperature in Fahrenheit.
Both input and output are fixed-point 0.01. The input parameter is passed by value in R0. You return
the result in R0. A typical calling sequence:
 MOV R0,#2500 ;25.00C

 BL CtoF
 ;result in R0

D7.20 Write assembly code that finds the median of value of a 5-element array. Each element is
unsigned 8 bits. The input parameter is passed by reference in R0. You return the result in R0. A
typical calling sequence:
 LDR R0,=mydata ; pointer to 5-element structure
 BL Median
 ;result in R0

D7.21 Using recursion, write a subroutine that calculates the Fibonacci function. In particular,
fib(0) = 1
fib(1) = 1
fib(n) = fib(n-1)+fib(n-2) for n>1
The input is passed by value in R0, and the result is also returned by value in R0.

D7.22 First, rewrite the following digital filter using decimal fixed-point math. Assume the inputs are
unsigned 10-bit values (0 to 1023). Then, rewrite it so that it can be calculated with integer math
using the fact that 0.11111 is about 1/9 and 0.088889 is about 4/45 and 0.8 is 4/5. In both cases, the
calculations are to be performed in 32-bit unsigned integer form without overflow.

y = 0.11111•x +0.08889•x1 + 0.80000•y1

7.23 Does the associative principle hold for signed integer multiply and divide? Assume Out1 Out2
A B C are all the same precision (e.g., 32 bits). In particular do these two C calculations always
achieve identical outputs? If not, give an example.
Out1 = (A*B)/C;
Out2 = A*(B/C);

7.24 Does the associative principle hold for signed integer addition and subtraction? Assume Out3
Out4 A B C are all the same precision (e.g., 32 bits). In particular do these two C calculations
always achieve identical outputs? If not, give an example.
Out3 = (A+B)-C;
Out4 = A+(B-C);

D7.25 Write an assembly subroutine that implements an averaging filter. The three 16-bit unsigned
numbers are passed into the subroutine by value in Registers R0, R1 and R2. The average is
(first+second+third)/3. The return parameter is passed back in Register R0. If you need a temporary
variable, you should use the stack.

7.26 Give the short real floating-point representation of √2. Give the short real floating-point
representation of –134.4. Give the short real floating-point representation of –0.0123.

D7.27 Assume we have 10-dimensional vectors, stored as 10-element arrays. For example, let the
vector X equal (x0, x1,… x9). Each value is a signed 32-bit integer. Write assembly code that finds the
dot-product of two 10-element vectors. Neglect overflow.

X•Y = x0*y0+ x1*y1+ … + x9*y9

The two parameters are passed by reference using registers, R0 and R1. The result is to be returned
as a 32-bit signed value in Register R0.

D7.28 Write a subroutine to implement linear regression. A typical calling sequence:
 LDR R0,= DataSet1 ; pointer to 10-element structure
 BL Regression
; R0 = m =slope as a fixed point
; R1 = b =offset as a fixed point
; R2 = e =average error as a fixed point
Input x, y numbers will be in signed two’s complement 32-bit decimal fixed point with a resolution,
∆, of 0.01. Outputs m,b,e will be in signed two’s complement 32-bit decimal fixed point with a
resolution, ∆, of 0.0001. Ignore overflow A typical array structure looks like:
DataSet1 DCD 3 ; number of data points
 DCD 0,1 ; (x,y) = (0 , 0.01)
 DCD 10,2 ; (x,y) = (0.1 , 0.02)
 DCD 20,3 ; (x,y) = (0.2 , 0.03)
For this example b=0.01 , m=0.1 , e=0 , so R0 is returned as 100, R1 is 1000, and R2 is 0. Let (x0,
y0) and (x1, y1) be two points, then the slope and intercept of the “y=mx+b” line through those points
is given by
m = b = and e = 0
In general, let x(i) and y(i) be arrays of length n>2. Each of the following sums range from i=0 to n-1.
m = and b =

For n>2, the average error is defined as
 e =

7.10. Lab Assignments
Lab 7.1 Fast conversion. The goal of this lab is to device a high speed number to ASCII conversion
function. First implement program 7.17 and and write a main program that calls it. Use the SysTick
technique decribed in Section 4.7 to measure how fast the UDec2Str program requires to execute.
Automate the measurement so the function can be profiled for all input data values from 0 to 999.
Next, implement a fast version using table lookup. Goal is to improve execution speed at the expense
of memory.

Lab 7.2 Fast conversion. In a similar way write three functions that implement ASCII to hexadecimal
conversion. The input is one ASCII character ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’, ‘A’, ‘B’,
‘C’, ‘D’, ‘E’, ‘F’, ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’ and the output is a 4-bit number representing the
hexadecimal value of the input. The first function uses if-then, the second function uses a switch
statement, and the third function uses a table lookup. Use the SysTick technique decribed in Section
4.7 to measure how fast each function requires to execute. Automate the measurement so the function
can be profiled for all possible input values.

Lab 7.3 Sort. Write a function that sorts an array of signed 32-bit numbers. Implement it at least two
ways. Design a method to test the functionality of the sort programs. Compare the sort speed of the
two methods. Test the functions with sizes 10, 100, and 1000 elements.

8. Serial and Parallel Port Interfacing
Chapter 8 objectives are to:
• Describe the UART and SSI serial ports,
• Discuss how to interface a keyboard using scanning,
• Explain and interface electromechanical devices that are binary in nature,
• Use pulse width modulation (PWM) to control power delivered to a DC motor,
• Interface and control a stepper motor.

A more detailed approach to interfacing can be found in Volume 2 of these series. However, in this
chapter is an introduction to I/O interfacing. The common theme of this chapter is I/O interfacing
connected to serial and parallel ports. The chapter begins with a discussion of UART and SSI ports,
which can be used to interface external devices to the microcontroller such as GPS, DAC, LCD,
OLED, and ADC devices. Various I/O devices such as keyboards, optical sensors, relays, solenoids,
DC motors, and stepper motors will be interfaced. In addition, the pulse width modulation will be
used when interfacing DC motors so that the software can control power delivered to the motor.
Advances in the number and sophistication of the I/O ports have contributed greatly to the long term
growth of applications of embedded systems. This book covers just some of the ports and some of the
features of the LM3S/TM4C family of microcontrollers. For a complete list of I/O ports refer to the
respective data sheets.

Figure 8.1. Geared DC motors provide a good torque and speed for light-weight
robots.

8.1. General Introduction to Interfacing
There are three components to microcomputer interfacing. Since many external devices have physical
characteristics, the first step is the mechanical design of the physical components. Often, the
mechanical design is simply selecting the physical devices from a list of available components. The
next step is the analog and digital electronics used to connect the physical devices to the computer.
The voltage levels of the external device must be translated into values compatible with the
microcontroller. The RS232 interface using the MAX3232 interface in Figure 8.3 is a typical example
of this translation. Some external devices need the interface to source or sink current, and the
interfaces in Figures 8.14, 8.18 and 8.23 can be used for these applications. The input/output
information may be encoded as simple digital signals or variable analog signals. Interfacing with
analog signals will be presented in Chapter 11. More complex systems may use frequency, period,
phase, or pulse width to represent the signals. Interfacing with time-based signals will be presented
in Chapter 9. The third component of interfacing is the low-level software that transforms the
mechanical and electrical devices into objects that perform the desired tasks. The group of these low-
level functions is often designated as an I/O device driver. Since this book serves as an introduction
to interfacing, most of the hardware circuits are given, and the software design is explained. More
details can be found in Volume 2.

Most microcontrollers are built with CMOS logic. Interfacing with CMOS logic involves
consideration of voltage, current, and capacitance. First, let’s consider a digital output, e.g., a port pin
with its direction register equal to 1. IOH is the largest current a port pin can source when the output is
high. VOH is the smallest voltage a port pin will be if the output is high and the current is less than IOH.
If the microcontroller is powered by VDD, then the output high voltage will be between VOH and VDD.
IOL is the largest current a port pin can sink when the output is low. VOL is the largest voltage a port
pin will be if the output is low and the current is less than IOL. The output low voltage will be
between 0 and VOL. Next, let’s consider a digital input, e.g., a port pin with its direction register equal
to 0. IIH is the current the input port pin will require when its input is high. VIH is the voltage above
which the input will be considered high. IIL is the current the input port pin will require when its input
is low. VIL is the voltage below which the input will be considered low. Figure 8.2 shows current
parameters for various digital logic families, and Table 8.1 shows voltage parameters. In summary, if
the input is between 0 and VIL, it is considered a low. If the input is between VIH and VDD, it is
considered a high. Refer back to the transistor-level implementation in Figure 3.5. If the voltage on an
input pin remains between VIL and VIH for a long time, both the p-type and n-type transistors will be
active, causing a short circuit from power to ground. With some CMOS microcomputers one must
define unused I/O pins either as outputs or specify them as inputs and tie the pin high (or low) in
hardware. On the LM3S/TM4C family of microcontrollers we can leave an unused pin disconnected
if the software leaves its DEN pins zero. Because of the extremely high impedance of CMOS inputs,
an unconnected input pin may oscillate, dissipating power unnecessarily. In order for the output to
properly drive all the inputs of the next stage, the maximum available output current must be larger
than the sum of all the required input currents for both the high and low conditions.

 and

In order for the digital information to be properly transferred from the output of one module to the
input of the next, we need the output high voltage to be more than the required input high voltage, and
the output low voltage to be less than the input low voltage, see Figure 8.2.

VOH ≥ VIH and VOL ≤ VIL

Family Example IOH IOL IIH IIL

Standard TTL 7404 0.4 mA 16 mA 40 µA 1.6
mA

Schottky TTL 74S04 1 mA 20 mA 50 µA 2 mA
Low Power
Schottky

74LS04 0.4 mA 4 mA 20 µA 0.4
mA

High Speed
CMOS

74HC04 4 mA 4 mA 1 µA 1 µA

TM4C 2mA-
drive

TM4C123 2 mA 2 mA 2 µA 2 µA

TM4C 4mA-
drive

TM4C123 4 mA 4 mA 2 µA 2 µA

TM4C 8mA-
drive

TM4C123 8 mA 8 mA 2 µA 2 µA

TM4C 12mA-
drive

TM4C1294 12 mA 12 mA 2 µA 2 µA

Table 8.1. The input and output currents of various digital logic families and microcontrollers.

Figure 8.2. Voltage thresholds for various digital logic families.

The last consideration for interfacing with CMOS logic is capacitance. Capacitance loading occurs
with each input and with long cables. ADC pins on the LM3S/TM4C microcontrollers have an input
capacitance around 1 pF. A typical input capacitance on CMOS logic is about 5 pF. Consider a
situation where the output of one circuit is attached to the input of another. If the output goes from 0 to
+3.3V, the voltage as perceived at the input of the next stage will be

where R is the resistance in the circuit, and C is the capacitive load. τ =R*C is called the time
constant. If the time constant is very small, the input goes from 0 to +3.3 almost immediately after the
output goes 0 to +3.3V. If the signal is a square wave with period T, the interface will only work for
situations where the period T is large compared to the time constant τ.

I/O ports are the specific components of a microcomputer that allow it to interact with its
environment. A device driver is a collection of software functions that allow higher level software to
utilize an I/O device. In other words, the set of low-level functions that input/output directly with the
hardware are grouped together in a single module and called a device driver.

8.2. Universal Asynchronous Receiver
Transmitter (UART)
In this section we will develop a simple device driver using the Universal Asynchronous
Receiver/Transmitter (UART). This serial port allows the microcontroller to communicate with
devices such as other computers, printers, input sensors, and LCDs. Serial transmission involves
sending one bit at a time, such that the data is spread out over time. The total number of bits
transmitted per second is called the baud rate. The reciprocal of the baud rate is the bit time, which
is the time to send one bit. Most microcontrollers have at least one UART. Before discussing the
detailed operation on the LM3S/TM4C, we will begin with general features common to all devices.
Each UART will have a baud rate control register, which we use to select the transmission rate. Each
device is capable of creating its own serial clock with a transmission frequency approximately equal
to the serial clock in the computer with which it is communicating. A frame is the smallest complete
unit of serial transmission. Figure 8.3 plots the signal versus time on a serial port, showing a single
frame, which includes a start bit (which is 0), 8 bits of data (least significant bit first), and a stop bit
(which is 1). There is always only one start bit, but the Stellaris ® and Tiva ® UARTs allow us to
select the 5 to 8 data bits and 1 or 2 stop bits. The UART can add even, odd, or no parity bit.
However, we will employ the typical protocol of 1 start bit, 8 data bits, no parity, and 1 stop bit. This
protocol is used for both transmitting and receiving. The information rate, or bandwidth, is defined as
the amount of data or useful information transmitted per second. From Figure 8.3, we see that 10 bits
are sent for every byte of usual data. Therefore, the bandwidth of the serial channel (in bytes/second)
is the baud rate (in bits/sec) divided by 10.

Figure 8.3. A serial data frame with 8-bit data, 1 start bit, 1 stop bit, and no parity
bit.

Common Error: If you change the bus clock frequency without changing the baud rate register, the
UART will operate at an incorrect baud rate.

Checkpoint 8.1: Assuming the protocol drawn in Figure 8.3 and a baud rate of 1000 bits/sec, what is
the bandwidth in bytes/sec?

Table 8.2 shows the three most commonly used RS232 signals. The RS232 standard uses a DB25
connector that has 25 pins. The EIA-574 standard uses RS232 voltage levels and a DB9 connector
that has only 9 pins. The most commonly used signals of the full RS232 standard are available with
the EIA-574 protocols. Only TxD, RxD, and SG are required to implement a simple bidirectional
serial channel, thus the other signals are not shown (Figure 8.4). We define the data terminal
equipment (DTE) as the computer or a terminal and the data communication equipment (DCE) as
the modem or printer.

DB25
Pin

RS232
Name

DB9
Pin

EIA-
574
Name

Signal Description True DTE DCE

2 BA 3 103 TxD Transmit
Data

-5.5V out in

3 BB 2 104 RxD Receive
Data

-5.5V in out

7 AB 5 102 SG Signal
Ground

Table 8.2. The commonly-used signals on the RS232 and EIA-574 protocols.

Figure 8.4. Hardware interface implementing an asynchronous RS232 channel.
The TM4C123 and TM4C1294 have eight UART ports (see Tables 4.3 and 4.4).

Observation: Most LM3S/TM4C development kits send UART0 channel through the USB cable, so
the circuit shown in Figure 8.4 will not be needed. On the PC side of the cable, the serial channel
becomes a virtual COM port.

RS232 is a non-return-to-zero (NRZ) protocol with true signified as a voltage between -5 and -15 V.
False is signified by a voltage between +5 and +15 V. A MAX3232 converter chip is used to translate
between the +5.5/-5.5 V RS232 levels and the 0/+3.3 V digital levels. The capacitors in this circuit
are important, because they form a charge pump used to create the ±5.5 voltages from the +3.3 V
supply. The RS232 timing is generated automatically by the UART. During transmission, the Maxim
chip translates a digital high on microcontroller side to -5.5V on the RS232/EIA-574 cable, and a
digital low is translated to +5.5V. During receiving, the Maxim chip translates negative voltages on
RS232/EIA-574 cable to a digital high on the microcontroller side, and a positive voltage is
translated to a digital low. The computer is classified as DTE, so its serial output is pin 3 in the EIA-
574 cable, and its serial input is pin 2 in the EIA-574 cable. When connecting a DTE to another DTE,
we use a cable with pins 2 and 3 crossed. I.e., pin 2 on one DTE is connected to pin 3 on the other
DTE and pin 3 on one DTE is connected to pin 2 on the other DTE. When connecting a DTE to a
DCE, then the cable passes the signals straight across. In all situations, the grounds are connected
together using the SG wire in the cable. This channel is classified as full-duplex, because
transmission can occur in both directions simultaneously.

8.2.1. Asynchronous Communication
We will begin with transmission, because it is simple. The transmitter portion of the UART includes a
data output pin, with digital logic levels as drawn in Figure 8.5. The transmitter has a 16-element
FIFO and a 10-bit shift register, which cannot be directly accessed by the programmer (Figure 8.5).
The FIFO and shift register in the transmitter are separate from the FIFO and shift register associated
with the receiver. To output data using the UART, the software will first check to make sure the
transmit FIFO is not full (it will wait if TXFFis 1) and then write to the transmit data register
(e.g., UART0_DR_R). The bits are shifted out in this order: start, b0, b1, b2, b3, b4, b5, b6, b7, and then
stop, where b0 is the LSB and b7 is the MSB. The transmit data register is write only, which means the
software can write to it (to start a new transmission) but cannot read from it. Even though the transmit
data register is at the same address as the receive data register, the transmit and receive data registers
are two separate registers.

Figure 8.5. Data and shift registers implement the serial transmission.

When a new byte is written to UART0_DR_R , it is put into the transmit FIFO. Byte by byte, the
UART gets data from the FIFO and loads them into the 10-bit transmit shift register. The 10-bit shift
register includes a start bit, 8 data bits, and 1 stop bit. Then, the frame is shifted out one bit at a time
at a rate specified by the baud rate register. If there are already data in the FIFO or in the shift register
when the UART0_DR_R is written, the new frame will wait until the previous frames have been
transmitted, before it too is transmitted. The FIFO guarantees the data are transmitted in the order they
were written. The serial port hardware is actually controlled by a clock that is 16 times faster than
the baud rate, referred to in the datasheet as Baud16. When the data are being shifted out, the digital
hardware in the UART counts 16 times in between changes to the U0Tx output line.

The software can actually write 16 bytes to the UART0_DR_R , and the hardware will send them all
one at a time in the proper order. This FIFO reduces the software response time requirements of the
operating system to service the serial port hardware. Unfortunately, it does complicate the
hardware/software timing. At 9600 bits/sec, it takes 1.04 ms to send a frame. Therefore, there will be
a delay ranging from 1.04 and 16.7 ms between writing to the data register and the completion of the
data transmission. This delay depends on how much data are already in the FIFO at the time the
software writes to UART0_DR_R .

Receiving data frames is a little trickier than transmission because we have to synchronize the
receive shift register with the incoming data. The receiver portion of the UART includes a U0Rx data
input pin with digital logic levels. At the input of the microcontroller, true is 3.3V and false is 0V.
There is also a 16-element FIFO and a 10-bit shift register, which cannot be directly accessed by the
programmer (Figure 8.6). Again the receive shift register and receive FIFO are separate from those in
the transmitter. The receive data register, UART0_DR_R , is read only, which means write
operations to this address have no effect on this register (recall write operations activate the
transmitter). The receiver obviously cannot start a transmission, but it recognizes a new frame by its
start bit. The bits are shifted in using the same order as the transmitter shifted them out: start, b0, b1,
b2, b3, b4, b5, b6, b7, and then stop.

There are six status bits generated by receiver activity. The Receive FIFO empty flag, RXFE, is clear
when new input data are in the receive FIFO. When the software reads from UART0_DR_R , data
are removed from the FIFO. When the FIFO becomes empty, the RXFE flag will be set, meaning there
are no more input data. There are other flags associated with the receiver. There is a Receive FIFO
full flag RXFF, which is set when the FIFO is full. There are four status bits associated with each
byte of data. For this reason, the receive FIFO is 12 bits wide. The overrun error, OE, is set when
input data are lost because the FIFO is full and more input frames are arriving at the receiver. An
overrun error is caused when the receiver interface latency is too large. The break error, BE, is set
when the input is held low for more than a frame. The PE bit is set on a parity error. Because the
error rate is so low, most systems do not implement parity. The framing error, FE, is set when the stop
bit is incorrect. Framing errors are probably caused by a mismatch in baud rate.

Figure 8.6. Data register shift registers implement the receive serial interface.
The receiver waits for the 1 to 0 edge signifying a start bit, then shifts in 10 bits of data one at a time
from the U0Rx line. The internal Baud16 clock is 16 times faster than the baud rate. After the 1 to 0
edge, the receiver waits 8 Baud16 clocks and samples the start bit. 16 Baud16 clocks later it samples
b0. Every 16 Baud16 clocks it samples another bit until it reaches the stop bit. The UART needs an
internal clock faster than the baud rate so it can wait the half a bit time between the 1 to 0 edge
beginning the start bit and the middle of the bit window needed for sampling. The start and stop bits
are removed (checked for framing errors), the 8 bits of data and 4 bits of status are put into the
receive FIFO. The FIFO implements hardware buffering so data can be safely stored if the software
is performing other tasks.

Observation: If the receiving UART device has a baud rate mismatch of more than 5%, then a
framing error can occur when the stop bit is incorrectly captured.

An overrun occurs when there are 16 elements in the receive FIFO, and a 17th frame comes into the
receiver. In order to avoid overrun, we can design a real-time system, i.e., one with a maximum
latency. The latency of a UART receiver is the delay between the time when new data arrives in the
receiver (RXFE=0) and the time the software reads the data register. If the latency is always less than
160 bit times, then overrun will never occur.

Observation: With a serial port that has a shift register and one data register (no FIFO buffering), the
latency requirement of the input interface is the time it takes to transmit one data frame.

In the example illustrated in Figure 8.7, assume the UART receive shift register and receive FIFO are
initially empty (RXFE=1). 17 incoming serial frames occur one right after another (letters A – Q), but
the software does not respond. At the end of the first frame, the 0x41 (letter ‘A’) goes into the receive
FIFO, and the RXFEflag is cleared. Normally, the UART_InChar function would respond to RXFE
being clear and read the data from the UART. In this scenario however, the software is busy doing
other things and does not respond to the presence of data in the receive FIFO. Next, 15 more frames
are shifted in and entered into the receive FIFO. At the end of the 16th frame, the FIFO is full
(RXFF=1). If the software were to respond at this point, then all 16 characters would be properly
received. If the 17th frame occurs before the first is read by the software, then an overrun error
occurs, and a frame is lost. We can see from this worst case scenario that the software must read the
data from the UART within 160 bit times of the clearing of RXFE.

Figure 8.7. Seventeen receive data frames result in an overrun (OE) error.

8.2.2. LM3S/TM4C UART Details
Next we will overview the specific UART functions on the LM3S/TM4C microcontrollers. This
section is intended to supplement rather than replace the Texas Instruments manuals. When designing
systems with any I/O module, you must also refer to the reference manual of your specific
microcontroller. It is also good design practice to review the errata for your microcontroller to see if
any quirks (mistakes) exist in your microcontroller that might apply to the system you are designing.

The LM3S/TM4C microcontrollers have one to eight UARTs. The specific port pins used to
implement the UARTs vary from one chip to the next. To find which pins your microcontroller uses,
you will need to consult its datasheet. Table 8.3 shows some of the registers for the UART0. If the
microcontroller has a second or third UART, the register names will replace the 0 with a 1 – 7. For
the exact register addresses, you should include the appropriate header file (e.g., tm4c1294ncpdt.h).
To activate a UART you will need to turn on the UART clock in the SYSCTL_RCGCUART_R
register. You should also turn on the clock for the digital port in the SYSCTL_RCGCGPIO_R
register. You need to enable the transmit and receive pins as digital signals. The alternative function
for these pins must also be selected.

The OE, BE, PE, and FE are error flags associated with the receiver. You can see these flags in two
places: associated with each data byte in UART0_DR_R or as a separate error register
in UART0_RSR_R . The overrun error (OE) is set if data has been lost because the input driver
latency is too long. BE is a break error, meaning the other device has sent a break. PE is a parity
error (however, we will not be using parity). The framing error (FE) will get set if the baud rates do
not match. The software can clear these four error flags by writing any value to UART0_RSR_R .

The status of the two FIFOs can be seen in the UART0_FR_R register. The BUSY flag is set while
the transmitter still has unsent bits, even if the transmitter is disabled. It will become zero when the
transmit FIFO is empty and the last stop bit has been sent. If you implement busy-wait output by first
outputting then waiting for BUSY to become 0 (right flowchart of Figure 8.8), then the routine will
write new data and return after that particular data has been completely transmitted.

The UART0_CTL_R control register contains the bits that turn on the UART. TXE is the Transmitter
Enable bit, and RXE is the Receiver Enable bit. We set TXE, RXE, and UARTEN equal to 1 in
order to activate the UART device. However, we should clear UARTEN during the initialization
sequence.

 31–
12

11 10 9 8 7–0 Name

$4000.C000 OE BE PE FE DATA UART0_DR_R

 31–3 3 2 1 0
$4000.C004 OE BE PE FE UART0_RSR_R

 31–

8
7 6 5 4 3 2–0

$4000.C018 TXFE RXFF TXFF RXFE BUSY UART0_FR_R

 31–

16
15–0

$4000.C024 DIVINT UART0_IBRD_R

 31–6 5–0
$4000.C028 DIVFRAC UART0_FBRD_R

 31–

8
7 6 – 5 4 3 2 1 0

$4000.C02C SPS WPEN FEN STP2 EPS PEN BRK UART0_LCRH_R

 31–

10
9 8 7 6–3 2 1 0

$4000.C030 RXE TXE LBE SIRLP SIREN UARTEN UART0_CTL_R

Table 8.3. Some UART registers. Each register is 32 bits wide. Shaded bits are zero.

The UART0_IBRD_R and UART0_FBRD_R registers specify the baud rate. The baud rate divider
is a 22-bit binary fixed-point value with a resolution of 2-6. The Baud16 clock is created from the
system bus clock, with a frequency of (Bus clock frequency)/divider. The baud rate is 16 times
slower than Baud16

Baud rate = Baud16/16 = (Bus clock frequency)/(16*divider)

For example, if the bus clock is 8 MHz and the desired baud rate is 19200 bits/sec, then the divider
should be 8,000,000/16/19200 or 26.04167. As a binary fixed-point number, this number is about
11010.000011. We can establish this baud rateby putting the 11010 into UART0_IBRD_R and the
000011 into UART0_FBRD_R . In reality, 11010.000011 is equal to 1667/64 or 26.046875. The
baud rates in the transmitter and receiver must match within 5% for the channel to operate properly.
The error for this example is 0.02%.

The three registers UART0_LCRH_R , UART0_IBRD_R , and UART0_FBRD_R form an internal
30-bit register. This internal register is only updated when a write operation to UART0_LCRH_R is
performed, so any changes to the baud-rate divisor must be followed by a write to
the UART0_LCRH_R register for the changes to take effect. Out of reset, both FIFOs are disabled
and act as 1-byte-deep holding registers. The FIFOs are enabled by setting the FENbit
in UART0_LCRH_R .

Checkpoint 8.2: Assume the bus clock is 10 MHz. What is the baud rate if UART0_IBRD_R equals
2 and UART0_FBRD_R equals 32?

Checkpoint 8.3: Assume the bus clock is 50 MHz. What values should you put in UART0_IBRD_R
and UART0_FBRD_R to make a baud rate of 38400 bits/sec?

Figure 8.8. Flowcharts of InChar and OutChar using busy-wait synchronization.

8.2.3. UART Device Driver
Software that sends and receives data must implement a mechanism to synchronize the software with
the hardware. In particular, the software should read data from the input device only when data is
indeed ready. Similarly, software should write data to an output device only when the device is ready
to accept new data. With busy-wait synchronization, the software continuously checks the hardware
status waiting for it to be ready. In this section, we will use busy-wait synchronization to write I/O
programs that send and receive data using the UART. After a frame is received, the receive FIFO will

be not empty (RXFE becomes 0) and the 8-bit data is available to be read. To get new data from the
serial port, the software first waits for RXFEto be zero, then reads the result from UART0_DR_R .
Recall that when the software reads UART0_DR_R it gets data from the receive FIFO. This
operation is illustrated in Figure 8.8 and shown in Program 8.1. In a similar fashion, when the
software wishes to output via the serial port, it first waits for TXFFto be clear, then performs the
output. When the software writes UART0_DR_R it puts data into the transmit FIFO. An interrupt
synchronization method will be presented in Chapter 11.

The initialization program, UART_Init , enables the UART device and selects the baud rate. The
PCTL bits were defined back in Tables 4.3, 4.4. PCTL bits 7-0 are set to 0x11 to select U0Tx and
U0Rx on PA1 and PA0. The input routine waits in a loop until RXFE is 0 (FIFO not empty), then
reads the data register. The output routine first waits in a loop until TXFF is 0 (FIFO not full), then
writes data to the data register. Polling before writing data is an efficient way to perform output.
UART2_xxx.zip is the interrupt-driven version, which will be presented in Chapter 11.

// Assumes a 50 MHz bus clock, creates 115200 baud rate
void UART_Init(void){ // should be called only once
 SYSCTL_RCGCUART_R |= 0x0001; // activate UART0
 SYSCTL_RCGCGPIO_R |= 0x0001; // activate port A
 UART0_CTL_R &= ~0x0001; // disable UART
 UART0_IBRD_R = 27; // IBRD=int(50000000/(16*115,200)) = int(27.1267)
 UART0_FBRD_R = 8; // FBRD = round(0.1267 * 64) = 8
 UART0_LCRH_R = 0x0070; // 8-bit word length, enable FIFO
 UART0_CTL_R = 0x0301; // enable RXE, TXE and UART
 GPIO_PORTA_PCTL_R = (GPIO_PORTA_PCTL_R&0xFFFFFF00)+0x00000011; // UART
 GPIO_PORTA_AMSEL_R &= ~0x03; // disable analog function on PA1-0
 GPIO_PORTA_AFSEL_R |= 0x03; // enable alt funct on PA1-0
 GPIO_PORTA_DEN_R |= 0x03; // enable digital I/O on PA1-0
}
// Wait for new input, then return ASCII code
char UART_InChar(void){
 while((UART0_FR_R&0x0010) != 0); // wait until RXFE is 0
 return((char)(UART0_DR_R&0xFF));
}
// Wait for buffer to be not full, then output
void UART_OutChar(char data){
 while((UART0_FR_R&0x0020) != 0); // wait until TXFF is 0
 UART0_DR_R = data;
}
Program 8.1. Device driver functions that implement serial I/O (UART_xxx.zip).

Checkpoint 8.4: How does the software clear RXFE?

Checkpoint 8.5: How does the software clear TXFF?

Checkpoint 8.6: Describe what happens if the receiving computer is operating on a baud rate that is
twice as fast as the transmitting computer?

Checkpoint 8.7: Describe what happens if the transmitting computer is operating on a baud rate that
is twice as fast as the receiving computer?

Checkpoint 8.8: How do you change Program 8.1 to run at the same baud rate, but the system clock is
now 10 MHz.

8.3. Synchronous Serial Interface, SSI
Microcontrollers employ multiple approaches to communicate synchronously with peripheral devices
and other microcontrollers. The synchronous serial interface (SSI) system can operate as a master or
as a slave. The channel can have one master and one slave, or it can have one master and multiple
slaves. With multiple slaves, the configuration can be a star (centralized master connected to each
slave), or a ring (each node has one receiver and one transmitter, where the nodes are connected in a
circle.) The master initiates all data communication.

Stellaris ® and Tiva ® microcontrollers have 0 to 4 Synchronous Serial Interface or SSI modules.
Another name for this protocol is Serial Peripheral Interface or SPI. The fundamental difference
between a UART, which implements an asynchronous protocol, and a SSI, which implements a
synchronous protocol, is the manner in which the clock is implemented. Two devices communicating
with asynchronous serial interfaces (UART) operate at the same frequency (baud rate) but have two
separate clocks. With a UART protocol, the clock signal is not included in the interface cable
between devices. Two UART devices can communicate with each other as long as the two clocks
have frequencies within ±5% of each other. Two devices communicating with synchronous serial
interfaces (SSI) operate from the same clock (synchronized). With a SSI protocol, the clock signal is
included in the interface cable between devices. Typically, the master device creates the clock, and
the slave device(s) uses the clock to latch the data (in or out.) The SSI protocol includes four I/O
lines. The slave select SSI0Fss is an optional negative logic control signal from master to slave
signal signifying the channel is active. The second line, SCK, is a 50% duty cycle clock generated by
the master. The SSI0Tx (master out slave in, MOSI) is a data line driven by the master and received
by the slave. The SSI0Rx (master in slave out, MISO) is a data line driven by the slave and received
by the master. In order to work properly, the transmitting device uses one edge of the clock to change
its output, and the receiving device uses the other edge to accept the data. Figure 8.9 shows the I/O
port locations of the SSI ports discussed in this book, see Tables 4.3 and 4.4.

Figure 8.9. Synchronous serial port pins on Stellaris ® LM3Sand Tiva ® TM4C
microcontrollers.

On the LM3S/TM4C the shift register can be configured from 4 to 16 bits. The shift register in the
master and the shift register in the slave are linked to form a distributed register. Figure 8.10
illustrates communication between master and slave. Typically, the microcontroller and the I/O
device slave are so physically close we do not use interface logic.

The interface is classified as synchronous because the hardware clock is shared between devices.
The SSI on the LM3S/TM4Cemploys two hardware FIFOs. Both FIFOs are 8 elements deep and 4 to
16 bits wide, depending on the selected data width. When performing I/O the software puts into the
transmit FIFO by writing to the SSI0_DR_R register and gets from the receive FIFO by reading from
the SSI0_DR_R register.

Figure 8.10. A synchronous serial interface between a microcontroller and an I/O
device.

Table 8.4 lists the SSI0 registers on the TM4C. The TM4C can operate in slave mode, but we will
focus on master mode. The PCTL bits are defined in Tables 4.3 and 4.4.

Address 31-6 3 2 1 0 Name
$400F.E61C SSI3 SSI2 SSI1 SSI0 SYSCTL_RCGCSSI_R

 31-16 15-8 7 6 5-4 3-0
$4000.8000 SCR SPH SPO FRF DSS SSI0_CR0_R

 31-16 15-0
$4000.8008 Data SSI0_DR_R

 7 6 5 4 3 2 1 0
$4000.8004 SOD MS SSE LBM SSI0_CR1_R
$4000.800C BSY RFF RNE TNF TFE SSI0_SR_R
$4000.8010 CPSDVSR SSI0_CPSR_R
$4000.8014 TXIM RXIM RTIM RORIM SSI0_IM_R
$4000.8018 TXRIS RXRIS RTRIS RORRIS SSI0_RIS_R
$4000.801C TXMIS RXMIS RTMIS RORMIS SSI0_MIS_R
$4000.8020 RTIC RORIC SSI0_ICR_R
$4000.4420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTA_AFSEL_R
$4000.441C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTA_DEN_R
$4000.4400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTA_DIR_R
$400F.E608 GPIOH GPIOG GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA SYSCTL_RCGCGPIO_R

Table 8.4. The TM4C SSI0 registers. Each register is 32 bits wide. Bits 31 – 8 are zero.

If there is data in the transmit FIFO, the SSI module will transmit it. With SSI it transmits and
receives bits at the same time. When a data transfer operation is performed, this distributed 8- to 32-
bit register is serially shifted 4 to 16 bit positions by the SCK clock from the master so the data is
effectively exchanged between the master and the slave. Data in the master shift register are
transmitted to the slave. Data in the slave shift register are transmitted to the master. Typically, the
microcontroller is master and the I/O module is the slave, but one can operate the microcontroller in
slave mode. When designing with SSI, you will need to consult the data sheets for your specific
microcontroller.

The SSI clock frequency is established by the 8-bit field SCRfield in the SSI0_CR0_R register and
the 8-bit field CPSDVSRfield in the SSI0_CPSR_R register. SCR can be any 8-bit value from 0 to
255. CPSDVSR must be an even number from 2 to 254. Let fBUS be the frequency of the bus clock.
The frequency of the SSI is

fSSI = fBUS / (CPSDVSR * (1 + SCR))

Common control features for the SSI module include:
Baud rate control register, used to select the transmission rate
Data size 4 to 16 bits
Mode bits in the control register to select
master versus slave
Freescale mode with clock polarity and clock phase
TI synchronous serial mode
Microwire mode
Interrupt arm bit
Ability to make the outputs open drain (open collector)

Common status bits for the SPI module include:
BSY, SSI is currently transmitting and/or receiving a frame,
or the transmit FIFO is not empty
RFF, SSI receive FIFO is full
RNE, SSI receive FIFO is not empty
TNF, SSI transmit FIFO is not full
TFE, SSI transmit FIFO is empty

The key to proper transmission is to select one edge of the clock (shown as “T” in Figure 8.11) to be
used by the transmitter to change the output, and use the other edge (shown as “R”) to latch the data in
the receiver. In this way data is latched during the time when it is stable. Data available is the time
when the output data is actually valid, and data required is the time when the input data must be valid.

The LM3S/TM4C output transmission is valid (S5) from 0 to 1 bus clock after the clock. I.e., the
maximum S5 time is 1 system bus cycle and the minimum is 0. When receiving the setup time (S8) is
1 system bus cycle and the hold time (S9) is 2 system bus cycles. In order for the communication to
occur without error, the data available from the device that is driving the data line must overlap (start
before and end after) the data required by the other device that is receiving the data. It is this overlap
that will determine the maximum frequency at which synchronous serial communication can occur.
The concepts of data available and data required will be presented in much more detail in Volume 2.

Checkpoint 8.9: What are the definitions of setup time and hold time?

Figure 8.11. Synchronous serial timing showing the data available interval
overlaps the data required interval.

Observation: Because the clocks are shared, if you change the bus clock frequency, the transfer rate
will change in both master and slave.

The Freescale SPI timing (with SPO=SPH=0) is shown in Figure 8.12. The SPI transmits data at the
same time as it receives input. In the Freescale modes, the SPI changes its output on the opposite edge
of the clock as it uses to shift data in. There are three mode control bits (MS, SPO, SPH) that affect
the transmission protocol. If the device is a master (MS=0), it generates the SCLK, and data is output
on the SSI0Tx pin and input on the SSI0Rx pin. The SPO control bit specifies the polarity of the
SCLK. In particular, the SPO bit specifies the logic level of the clock when data is not being
transferred. The SPH bit affects the timing of the first bit transferred and received. If SPH is 0, then
the device will shift data in on the first (and 3rd, 5th, 7th, … etc.) clock edge. If SPH is 1, then the
device will shift data in on the second (and 4th, 6th, 8th, … etc.) clock edge. The data is transmitted
MSB first. There are SSI examples on the book web site (MAX5353_xxx.zip, SDC_xxx.zip).
Furthermore, most Stellaris® evaluation boards utilize the SSI to interface the organic light emitting
diode display. So most of the OLED example projects also include example SSI code.

There is also a TI synchronous serial mode and another protocol called Microwire. Refer to the data
sheets for details of these modes.

Figure 8.12. Synchronous serial Freescale single transfer mode (SPO=0, SPH=0).

Analog Devices, Maxim, and Texas Instruments will send free samples of DACs and ADCs to
students, so these SPI interface examples are inexpensive to build. The data sheets of most devices
will assist you when interfacing it to your microcontroller. I do suggest you get plastic dual in-line
packages (PDIP), so you can plug the parts into a protoboard. Also you should consider voltage
levels, making sure the chips operate on whatever voltage supply you have on your system.

http://www.analog.com/en/index.html
http://www.maxim-ic.com/
http://www.ti.com

8.4. Nokia 5110 Graphics LCD Interface
In this section we will interface a Nokia 5110 LCD using busy-wait synchronization. See Figure 8.13.
Before we output data or commands to the display, we will check a status flag and wait for the
previous operation to complete. Busy-wait synchronization is very simple and is appropriate for I/O
devices that are fast and predicable.

Figure 8.13. Nokia 5110 display with 84 by 48 monochrome pixels.

The Nokia 5110 uses the synchronous serial interface (SSI) described in the last section to control
PA5 (MOSI), PA3 (Fss), and PA2 (Sclk), as shown in Figure 8.14. Pins PA7 and PA6 are regular
GPIO pins. The microcontroller will be master and the LCD slave. There are multiple Nokia 5110
displays for sale on the market with the same LCD but different pin locations for the signals. Figure
8.14 shows two of the possible pin configurations. Please look on your actual display for the pin
name and not the pin number. Be careful when connecting the backlight, because at 3.3V the back light
draws 80 mA. If you want a dimmer back light connect 3.3V to a 100 ohm resistor, and the other end
of the resistor to the LED/BL pin.

Figure 8.14. Nokia 5110 interface to a TM4C123.

Program 8.2 lists the prototypes for public functions available in the software starter project. The Init
function must be called once, before any of the other functions can be called. The SetCursor function,
defines where on the screen subsequent character output will occur. Each ASCII character is 7 pixels

wide and 8 pixels high. This means there can be 84/7 = 12 characters by 48/8 = 6 rows. The cursor is
defined by character position, not pixel location, so 0 ≤ newX ≤ 11 and 0 ≤ newY ≤ 5, with 0,0
being the top row on left. The Clear function erases the entire screen. It takes 4,032 bits, or 504
bytes, to represent an entire 84 by 48 pixel image. The DrawFullImage function takes a 504-byte
array and copies it onto the display. Additional graphics functions were presented previously in
Section 6.7.

void Nokia5110_Init(void);
void Nokia5110_SetCursor(uint8_t newX, uint8_t newY);
void Nokia5110_Clear(void);
void Nokia5110_DrawFullImage(const uint8_t *ptr);
void Nokia5110_OutChar(char data);
void Nokia5110_OutString(char *ptr);
void Nokia5110_OutUDec(unsigned uint16_t n);
Program 8.2. Software prototypes for Nokia 5110 display (Nokia5110xxx.zip).

The OutChar OutString and OutUDec functions draw ASCII characters on the screen. These three
functions maintain a cursor so you can call these three functions in any order.The matrix ASCII[][5]
contains the pixel image for each character. Notice the 5 by 8 image for ASCII 0x7F is the University
of Texas UT symbol. There is one blank line before the 5 by 8 character and one blank line after
making each character 7 wide by 8 pixels tall, see Program 8.3.

static const uint8_t ASCII[][5] = {
 {0x00, 0x00, 0x00, 0x00, 0x00} // 20, space
 ,{0x00, 0x00, 0x5f, 0x00, 0x00} // 21 !
…
 ,{0x1f, 0x24, 0x7c, 0x24, 0x1f} // 7f UT sign
};
#define PA6 (*((volatile uint32_t *)0x40004100))
void static lcddatawrite(uint8_t data){
 while((SSI0_SR_R&0x02)==0){}; // busy-wait on TNF
 PA6 = 0x20; // DC is data
 SSI0_DR_R = data; // data out
}
void Nokia5110_OutChar(char data){int i;
 lcddatawrite(0x00); // blank vertical line padding

 for(i=0; i<5; i=i+1){ // 5 by 8 image
 lcddatawrite(ASCII[data - 0x20][i]);
 }
 lcddatawrite(0x00); // blank vertical line padding
}
Program 8.3. Low-level functions to output characters on the Nokia 5110 display
(Nokia5110xxx.zip).

8.5. Scanned Keyboards
In a scanned interface, the switches are placed in a row/column matrix. In this way, many keys can
be interfaced with just a few I/O pins. Figure 8.15 shows a matrix keyboard with 4 rows and 4
columns. In general, if there are n rows and m columns, there could be n*m switches, but we would
need only n+m I/O pins. The at the four outputs signifies open collector (an output with two states
HiZ and low.)

Figure 8.15. A matrix keyboard interfaced to the microcomputer.

The computer drives one row at a time to zero, while leaving the other rows at HiZ. By reading the
column, the software can detect if a key is pressed in that row. The software “scans” the device by
checking all rows one by one. For most microcontrollers, the open collector functionality can be
implemented by toggling the direction register. Remember, open collectors have two states low and
off. The output low state can be made by making the pin an output and setting the output data to zero.
The output off state can be made by making the pin an input.

8.6. Binary actuators

8.6.1. Interface
Relays, solenoids, and DC motors are grouped together because their electrical interfaces are similar.
We can add speakers to this group if the sound is generated with a square wave. In each case, there is
a coil, and the computer must drive (or not drive) current through the coil. To interface a coil, we
consider voltage, current, and inductance. We need a power supply at the desired voltage
requirement of the coil. If the only available power supply is larger than the desired coil voltage, we
use a voltage regulator (rather than a resistor divider) to create the desired voltage. We connect the
power supply to the positive terminal of the coil, shown as +V in Figure 8.16. We will use a
transistor device to drive the negative side of the coil to ground. The computer can turn the current on
and off using this transistor. The second consideration is current. In particular, we must however
select the power supply and an interface device that can support the coil current. The 7406 is a digital
inverter with open collector outputs (HiZ and low). The 2N2222 is a bipolar junction transistor
(BJT), NPN type, with moderate current gain. The TIP120 is a Darlington transistor, also NPN type,
that can handle larger currents. The IRF540 is a MOSFET transistor that can handle even more
current. BJT and Darlington transistors are current-controlled (meaning the output is a function of the
input current), while the MOSFET is voltage-controlled (output is a function of input voltage). When
interfacing a coil to the microcontroller, we use information like Table 8.5 to select an interface
device capable of sinking the current necessary to activate the coil. It is a good design practice to
select a driver with a maximum current at least twice the required coil current. When the digital Port
output is high, the interface transistor is active, and current flows through the coil. When the digital
Port output is low, the transistor is not active, and no current flows through the coil.

Device Type Maximum
current

TM4C123 CMOS 8 mA
TM4C1294 CMOS 12 mA
7406/7407 TTL logic 40 mA
2N2222 BJT NPN 500 mA
TIP120 Darlington NPN 5 A
IRF540 power MOSFET 28 A

Table 8.5. Four possible devices that can be used to interface a coil compared to the
LM3S/TM4C.

Similar to the solenoid and EM relay, the DC motor has a frame that remains motionless, and an
armature that moves. In this case, the armature moves in a circular manner (shaft rotation). A DC
motor has an electro-magnet as well. When current flows through the coil, a magnetic force is created
causing a rotation of the shaft. Brushes positioned between the frame and armature are used to

alternate the current direction through the coil, so that a DC current generates a continuous rotation of
the shaft. When the current is removed, the magnetic force stops, and the shaft is free to rotate. The
resistance in the coil (R) comes from the long wire that goes from the + terminal to the – terminal of
the motor. The inductance in the coil (L) arises from the fact that the wire is wound into coils to
create the electromagnetics. The coil itself can generate its own voltage (emf) because of the
interaction between the electric and magnetic fields. If the coil is a DC motor, then the emf is a
function of both the speed of the motor and the developed torque (which in turn is a function of the
applied load on the motor.) Because of the internal emf of the coil, the current will depend on the
mechanical load. For example, a DC motor running with no load might draw 50 mA, but under load
(friction) the current may jump to 500 mA.

Figure 8.16. Binary interface to EM relay, solenoid, DC motor, or speaker.

Observation: It is important to realize that many devices cannot be connected directly up to the
microcontroller. In the specific case of motors, we need an interface that can handle the voltage and
current required by the motor.

The third consideration is inductance in the coil. The 1N914 diode in Figure 8.16 provides protection
from the back emf generated when the switch is turned off, and the large dI/dt across the inductor
induces a large voltage (on the negative terminal of the coil), according to V=L∙dI/dt. For example, if
you are driving 0.1 A through a 0.1 mH coil (Port output = 1) using a 2N2222, then disable the driver
(Port output = 0), the 2N2222 will turn off in about 20ns. This creates a dI/dt of at least 5·106 A/s,
producing a back emf of 500 V! The 1N914 diode shorts out this voltage, protecting the electronic
from potential damage. The 1N914 is called a snubber diode.

Example 8.1. Design an interface for two +12V 1A geared DC motors. These two motors will be
used to propel a robot with two independent drive wheels, shown back in Figure 8.1.

Solution: We will use two copies of the TIP120 circuit in Figure 8.16 because the TIP120 can sink at
least three times the current needed for this motor. We select a +12V supply and connect it to the +V
in the circuit. The needed base current is
Ib = Icoil /hfe = 1A/1000 = 1mA
The desired interface resistor.
Rb ≤ (VOH - Vbe)/ Ib = (5-2.5)/1mA = 2.5 k Ω

To cover the variability in hfe, we will use a 1 kΩ resistor instead of the 2.5 kΩ. The actual voltage on
the motor when active will be +12-2 = 10V. The coils and transistors can vary a lot, so it is
appropriate to experimentally verify the design by measuring the voltages and currents.

8.6.2. Electromagnetic and Solid State Relays
A relay is a device that responds to a small current or voltage change by activating switches or other
devices in an electric circuit. It is used to remotely switch signals or power. The input control is
usually electrically isolated from the output switch. The input signal determines whether the output
switch is open or closed. Relays are classified into three categories depending upon whether the
output switches power (i.e., high currents through the switch) or electronic signals (i.e., low currents
through the switch). Another difference is how the relay implements the switch. An electromagnetic
(EM) relay uses a coil to apply EM force to a contact switch that physically opens and closes. The
solid state relay (SSR) uses transistor switches made from solid state components to electronically
allow or prevent current flow across the switch). The three types are
 1. The classic general purpose relay has an EM coil and can switch AC power
 2. The reed relay has an EM coil and can switch low level DC electronic
signals
 3. The solid state relay (SSR) has an input triggered semiconductor power
switch
Three solid state relays are shown in Figure 8.17. Interfacing a SSR is identical to interfacing an
LED, which was previously described in Figure 2.9. A SSR interface was presented earlier as Figure
4.17. SSRs allow the microcontroller to switch AC loads from 1 to 30A. They are appropriate in
situations where the power is turned on and off many times.

Figure 8.17. Solid state relays can be used to control power to an AC appliance.

The input circuit of an EM relay is a coil with an iron core. The output switch includes two sets of
silver or silver-alloy contacts (called poles.) One set is fixed to the relay frame, and the other set is
located at the end of leaf spring poles connected to the armature. The contacts are held in the
“normally closed” position by the armature return spring. When the input circuit energizes the EM
coil, a “pull in” force is applied to the armature and the “normally closed” contacts are released
(called break) and the “normally open” contacts are connected (called make.) The armature pull in
can either energize or de-energize the output circuit depending on how it is wired. Relays are
mounted in special sockets, or directly soldered onto a PC board.

The number of poles (e.g., single pole, double pole, 3P, 4P etc.) refers to the number of switches that
are controlled by the input. The relay shown below is a double pole because it has two switches.
Single throw means each switch has two contacts that can be open or closed. Double throw means
each switch has three contacts. The common contact will be connected to one of the other two
contacts (but not both at the same time.) The parameters of the output switch include maximum AC
(or DC) power, maximum current, maximum voltage, on resistance, and off resistance. A DC signal
will weld the contacts together at a lower current value than an AC signal, therefore the maximum
ratings for DC are considerable smaller than for AC. Other relay parameters include turn on time, turn
off time, life expectancy, and input/output isolation. Life expectancy is measured in number of
operations. Figure 8.18 illustrates the various configurations available. The sequence of operation is
described in Table 8.6.

Figure 8.18. Standard relay configurations.

Form Activation

Sequence
Deactivation
Sequence

A Make 1 Break 1
B Break 1 Make 1
C Break 1, Make 2 Break 2, Make 1
D Make 1, Break 2 Make 2, Break 1
E Break 1, Make 2,

Break 3

Table 8.6. Standard definitions for five relay configurations.

8.6.3. Solenoids

Solenoids are used in discrete mechanical control situations such as door locks, automatic disk/tape
ejectors, and liquid/gas flow control valves (on/off type). Much like an EM relay, there is a frame
that remains motionless, and an armature that moves in a discrete fashion (on/off). A solenoid has an
electro-magnet. When current flows through the coil, a magnetic force is created causing a discrete
motion of the armature. Each of the solenoids shown Figure 8.19 has a cylindrically-shaped armature
the moves in the horizontal direction relative to the photograph. The solenoid on the top is used in a
door lock, and the second from top is used to eject the tape from a video cassette player. When the
current is removed, the magnetic force stops, and the armature is free to move. The motion in the
opposite direction can be produced by a spring, gravity, or by a second solenoid.

Figure 8.19. Photo of four solenoids.

8.7. *Pulse-width modulation
In the previous interfaces the microcontroller was able to control electrical power to a device in a
binary fashion: either all on or all off. Sometimes it is desirable for the microcontroller to be able to
vary the delivered power in a variable manner. One effective way to do this is to use pulse width
modulation (PWM). The basic idea of PWM is to create a digital output wave of fixed frequency, but
allow the microcontroller to vary its duty cycle. Figure 8.20 shows various waveforms that are high
for H cycles and low for L cycles. The system is designed in such a way that H+L is constant
(meaning the frequency is fixed). The duty cycle is defined as the fraction of time the signal is high:

Hence, duty cycle varies from 0 to 1. We interface this digital output wave to an external actuator
(like a DC motor), such that power is applied to the motor when the signal is high, and no power is
applied when the signal is low. We purposely select a frequency high enough so the DC motor does
not start/stop with each individual pulse, but rather responds to the overall average value of the
wave. The average value of a PWM signal is linearly related to its duty cycle and is independent of
its frequency. Let P (P=V*I) be the power to the DC motor, shown in Figure 8.20, when the PP0
signal is high. Notice the circuit in Figure 8.20 is one of the examples previously described in Figure
8.16. Under conditions of constant speed and constant load, the delivered power to the motor is
linearly related to duty cycle.

Delivered Power =
Unfortunately, as speed and torque vary, the developed emf will affect delivered power.
Nevertheless, PWM is a very effective mechanism, allowing the microcontroller to adjust delivered
power. See PWMxxx.zip examples.

Figure 8.20. Pulse width modulation used to vary power delivered to a DC
motor.

8.8. *Stepper motors
A motor can be evaluated in terms of its maximum speed (RPM), its torque (N-m), and the efficiency
in which it translates electrical power into mechanical power. Sometimes however, we wish to use a
motor to control the rotational position (θ=motor shaft angle) rather than to control the rotational
speed (ω=dθ/dt). Stepper motors are used in applications where precise positioning is more
important than high RPM, high torque, or high efficiency. Stepper motors are very popular for
microcontroller-based embedded systems because of their inherent digital interface. Figure 8.21
shows three stepper motors.

Figure 8.21. Photo of three stepper motors.

The larger motors provide more torque, but require more current. It is easy for a computer to control
both the position and velocity of a stepper motor in an open-loop fashion. Although the cost of a
stepper motor is typically higher than an equivalent DC permanent magnetic field motor, the overall
system cost is reduced because stepper motors may not require feedback sensors. They are used in
printers to move paper and print heads, tapes/disks to position read/write heads, and high-precision
robots. For example, the stepper motor shown previous in Figure 6.3 moves the R/W head from one
track to another on an audio tape recorder.

A bipolar stepper motor has two coils on the stator (the frame of the motor), labeled A and B in
Figures 8.22 and 8.23. Typically, there is always current flowing through both coils. When current
flows through both coils, the motor does not spin (it remains locked at that shaft angle). Stepper
motors are rated in their holding torque, which is their ability to hold stationary against a rotational
force (torque) when current is constantly flowing through both coils. To move a bipolar stepper, we
reverse the direction of current through one (not both) of the coils, see Figure 8.20. To move it again
we reverse the direction of current in the other coil. Remember, current is always flowing through
both coils. Let the direction of the current be signified by up and down. To make the current go up, the
microcontroller outputs a binary 01 to the interface. To make the current go down, it outputs a binary
10. Since there are 2 coils, four outputs will be required (e.g., 01012 means up/up). To spin the motor,
we output the sequence 01012, 01102, 10102, 10012… over and over. Each output causes the motor to
rotate a fixed angle. To rotate the other direction, we reverse the sequence (01012, 10012, 10102,
01102…). There is a North and a South permanent magnet on the rotor (the part that spins). The
amount of rotation caused by each current reversal is a fixed angle depending on the number of teeth
on the permanent magnets.

Figure 8.22. A bipolar stepper has 2 coils, but a unipolar stepper divides those
two coils into four parts.

For example, the rotor in Figure 8.23 is drawn with one North tooth and one South tooth. If there are n
teeth on the South magnet (also n teeth on the North magnet), then the stepper will move at 90/n
degrees. This means there will be 4n steps per rotation. Because moving the motor involves
accelerating a mass (rotational inertia) against a load friction, after we output a value, we must wait
an amount of time before we can output again. If we output too fast, the motor does not have time to
respond. The speed of the motor is related to the number of steps per rotation and the time in between
outputs. For information on stepper motors see the data sheets web page at
http://users.ece.utexas.edu/~valvano/Datasheets/

Figure 8.23. To rotate this stepper by 18o, the interface flips the direction of one
of the currents.

The unipolar stepper motor provides for bi-directional currents by using a center tap, dividing each
coil into two parts. In particular, coil A is split into coil A and A’, and coil B is split into coil B and
B’. The center tap is connected to the +V power source and the four ends of the coils can be
controlled with open collector drivers. Because only half of the electro-magnets are energized at one
time, a unipolar stepper has less torque than an equivalent-sized bipolar stepper. However, unipolar
steppers are easier to interface. For example, you can use four copies of the circuit in Figure 8.16 to
interface a stepper motor.

Figure 8.24 shows a circular linked graph containing the output commands to control a stepper motor.
This simple FSM has no inputs, four output bits and four states. There is one state for each output
pattern in the usual stepper sequence 5,6,10,9... The circular FSM is used to spin the motor is a
clockwise direction. Notice the 1-to-1 correspondence between the state graph in Figure 8.24and
the fsm[4] data structure in Program 8.3.

Figure 8.24. This stepper motor FSM has four states. The 4-bit outputs are given
in binary.

Example 8.2. Design a stepper motor controller than spins the motor at 6 RPM.

Solution: We choose a stepper motor according to the speed and torque requirements of the system. A
stepper with 200 steps/rotation will provide a very smooth rotation while it spins. Just like the DC
motor, we need an interface that can handle the currents required by the coils. We can use a L293 to
interface either unipolar or bipolar steppers that require less than 1 A per coil. In general, the output
current of a driver must be large enough to energize the stepper coils. We control the interface using
an output port of the microcontroller, as shown in Figure 8.25. The circuit shows the interface of a
unipolar stepper, but the bipolar stepper interface is exactly the same except there is no +V
connection to the motor.

Figure 8.25. A unipolar stepper motor interfaced to a microcontroller.

The main program, Program 8.3, begins by initializing the Port D output and the state pointer, pt .
Every 50 ms the program outputs a new stepper command using the bit-specific address. The
function SysTick_Wait10ms() from Program 4.7 generates an appropriate delay between outputs to
the stepper. For a 200 step/rotation stepper, we need to wait 50 ms between outputs to spin at 6 RPM.
When calculating speed, it is important to keep track of the units.

Speed = (1 rotation/200 steps)*(1000ms/s)*(60sec/min)*(1step/50ms) = 6 RPM

This is a FSM with no input, because it always spins at 6 rps.

struct State{
 uint8_t Out;
 const struct State *Next;
 uint32_t Delay;
};
typedef const struct State StateType;
typedef StateType *StatePtr;
StateType fsm[4]={
 {10,&fsm[1],5},
 { 9,&fsm[2],5},
 { 5,&fsm[3],5},
 { 6,&fsm[0],5}
};
const struct State *Pt; // Current State
#define STEPPER (*((volatile uint32_t *)0x4000703C))
int main(void){
 PLL_Init(); // Program 4.6
 SysTick_Init(); // Program 4.7
 SYSCTL_RCGCGPIO_R |= 0x08; // 1) port D clock enabled
 Pt = &fsm[0];

 // 2) no need to unlock PD3-0
 GPIO_PORTD_AMSEL_R &= ~0x0F; // 3) disable analog function
 GPIO_PORTD_PCTL_R &= ~0x0000FFFF; // 4) GPIO
 GPIO_PORTD_DIR_R |= 0x0F; // 5) make PD3-0 out
 GPIO_PORTD_AFSEL_R &= ~0x0F;// 6) disable alt func on PD3-0
 GPIO_PORTD_DR8R_R |= 0x0F; // enable 8 mA drive on PD3-0
 GPIO_PORTD_DEN_R |= 0x0F; // 7) enable digital I/O on PD3-0
 while(1){
 STEPPER = Pt->Out; // step motor
 SysTick_Wait10ms(Pt->Delay);
 Pt = Pt->Next; // circular linked list
 }
}
Program 8.3. Stepper motor controller.

To illustrate how easy it is to make changes to this implementation, let’s consider these three
modifications. To make it spin in the other direction, we simply change pointers to sequence in the
other direction. We could also add an input pin and have it spin clockwise or counterclockwise
depending on the input. Each would have two next states depending on the input. To make it spin at a
different rate, we change the wait time. To implement an eight-step sequence (the half-stepping
outputs are 5, 4, 6, 2, 10, 8, 9, 1…), we add the four new states and link all eight states in the desired
sequence.

Checkpoint 8.10: If the stepper motor were to have 36 steps per rotation, how fast would the motor
spin using Program 8.3?

Checkpoint 8.11: What would you change in Program 8.3 to make the motor spin at 30 RPM?

Performance tip: Use a DC motor for applications requiring high torque or high speed, and use a
stepper motor for applications requiring accurate positioning at low speed.

Performance tip: To get high torque at low speed, use a geared DC motor (the motor spins at high
speed, but the shaft spins slowly).

8.9. Exercises
8.1 Assume the baud rate is 9600 bits/sec. Show the serial port output versus time waveform that
occurs when the ASCII characters “ABC” are transmitted one right after another. What is the total
time to transmit the three characters?

8.2 Assume the baud rate is 19200 bits/sec. Show the serial port output versus time waveform that
occurs when the ASCII characters “125” are transmitted one right after another. What is the total time
to transmit the three characters?

8.3 Assume the bus clock is 50 MHz. Write an assembly language subroutine that initializes the serial
port to communicate at 9600 bits/sec, 8-bit data, 1 start bit, and 1 stop bit.

8.4 Considering the voltages shown in Figure 8.2, prove that you can connect an LM3S/TM4C output
to a 7404 input. Similarly, prove that you can connect a 7404 output to an LM3S/TM4C input. Which
logic family types shown in Figure 8.2 allow the output of the digital gate to be connected to an
LM3S/TM4C input?

D8.5 Design an interface for a 64-key keyboard, which is configured with 8 rows and 8 columns.
Show the hardware interface to the microcontroller. Show the initialization ritual. Assume there is
either no key or one key pressed. Write an input subroutine that returns the key number 0 to 63 if a key
is pressed or –1 if no key is pressed. Assume the keys do not bounce.

D8.6 Design an interface for a 20-key keyboard, which is configured with 4 rows and 5 columns.
Show the hardware interface to the microcontroller. Show the initialization ritual. Assume there is
either no key or one key pressed. Write an input subroutine that returns the key number 0 to 19 if a key
is pressed or –1 if no key is pressed. Assume the keys do not bounce.

D8.7 Interface an electromagnetic relay (2 wires) to the microcontroller. The coil requires 250 mA at
5V. Write a ritual to initialize the interface. Write a subroutine, called On , that activates the relay,
and a subroutine, called Off , that deactivates the relay.

D8.8 Interface a solenoid (2 wires) to the microcontroller. The coil requires 100 mA at 12V. Write a
ritual to initialize the interface. Write a subroutine, called Pulse , that activates the solenoid for 10 ms
(then shuts off). No interrupts needed, use SysTick_Wait .

D8.9 Interface a DC motor (2 wires) to the microcontroller. The coil requires 500 mA at 12V. In
addition to the motor output, there are two inputs. When the Go input is high the motor spins, (when
Go is low, no power is delivered). When the motor is spinning, the other input (Direction) determines
the CCW/CW rotational direction. Use a L293 H-bridge driver.

D8.10 There is a microcontroller digital output connected to a microcontroller digital input across a
long cable. The connection has an equivalent capacitance of 25 pF into a 10 MΩ resistance. The
capacitance results from the long cable, and the resistance results from the input impedance of the
receiver microcontroller. What is the time constant of this system? If we operate 10 times slower than
the time constant, what is the maximum period allowed for this system? List two ways to speed up
this transmission.

D8.11 Interface an 8-bit DAC, MAX549 to the LM3S/TM4C SSI port. Write two functions, one to
initialize and one to update both DAC analog outputs.

D8.12 Interface a unipolar stepper motor (5 wires) to the microcontroller. Each coil requires 500 mA
at 12V. There are 200 steps per revolution. There is also a switch input, if the input is low the motor
spins CW at 5 rps. If the input is high the motor spins CCW at 10 rps. Use SysTick_Wait and a FSM.

D8.13 Interface a unipolar stepper motor (5 wires) to the microcontroller. Each coil requires 100 mA
at 6V. There are 36 steps per revolution. There is also a switch input, if the input is low the motor
stops. If the input is high the motor spins at 10 rps. Use SysTick_Wait and a FSM.

D8.14 Interface a bipolar stepper motor (4 wires) to the microcontroller. Each coil requires 500 mA
at 12V. There are 200 steps per revolution. There is also a switch input, if the input is low the motor
stops. If the input is high the motor spins at 5 rps. Use SysTick_Wait and a FSM.

8.10. Lab Assignments
Lab 8.1 Keyboard Device Driver. Interface a matrix keyboard and design a software device driver to
support the functionality of the keyboard.

Lab 8.2 Stepper motor. Interface a stepper motor and three switches. Design a FSM controller that
spins the motor as specified by the switches. One switch determines CW or CCW rotation, one
switch determines fast or slow speed, and the third switch determines stop or go operation.

Lab 8.3 Calculator. Interface both a keyboard and an LCD. Design, implement and test a four-function
calculator using decimal fixed-point math.

Lab 8.4 LCD interface. Interface an LCD to the microcontroller. Develop a software driver (a set of
functions) similar to the Nokia5110 example project.

9. Interrupt Programming and Real-time Systems
Chapter 9 objectives are to:
• Explain the fundamentals of interrupt programming,
• Introduce interrupt-driven I/O, and implement periodic interrupts,
• Explain edge-triggered interrupts and use them to interface individual switches,
• Present the timer-based modules needed for real-time systems,
• Develop methods to debug real-time events.

An embedded system uses its input/output devices to interact with the external world. Input devices
allow the computer to gather information, and output devices can display information. Output devices
also allow the computer to manipulate its environment. The tight-coupling between the computer and
external world distinguishes an embedded system from a regular computer system. Given a change in
input, it is not only necessary to get the correct response, but it will be necessary to get the correct
response at the correct time. The challenge is under most situations the software executes much faster
than the hardware. E.g., the software may ask the hardware to clear the LCD, but within the hardware
this action might take 1 ms to complete. During this time, the software could execute thousands and
thousands of instructions. Therefore, the synchronization between the executing software and its
external environment is critical for the success of an embedded system. This chapter begins with an
overview of I/O synchronization. We then present general concepts about interrupts, and specific
details for the Cortex™-M microcontroller. We will then use periodic interrupts to cause a software
task to be executed on a periodic basis. This chapter describes the timer-based modules used to
design real-time embedded systems. If a GPIO pin is configured as an input, it can also be armed to
invoke an interrupt on falling edges, rising edges or both falling and rising edges. This way software
can response quickly to changes in the external environment .

9.1. I/O Synchronization
Latency is the time between when the I/O device indicated service is required and the time when
service is initiated. Latency includes hardware delays in the digital hardware plus computer software
delays. For an input device, software latency (or software response time) is the time between new
input data ready and the software reading the data. For an output device, latency is the delay from
output device idle and the software giving the device new data to output. In this book, we will also
have periodic events. For example, in our data acquisition systems, we wish to invoke the analog to
digital converter (ADC) at a fixed time interval. In this way we can collect a sequence of digital
values that approximate the continuous analog signal. Software latency in this case is the time
between when the ADC conversion is supposed to be started, and when it is actually started. The
microcomputer-based control system also employs periodic software processing. Similar to the data
acquisition system, the latency in a control system is the time between when the control software is
supposed to be run, and when it is actually run. A real-time system is one that can guarantee a worst
case latency. In other words, the software response time is small and bounded. Throughput or
bandwidth is the maximum data flow in bytes/second that can be processed by the system. Sometimes
the bandwidth is limited by the I/O device, while other times it is limited by computer software.
Bandwidth can be reported as an overall average or a short-term maximum. Priority determines the
order of service when two or more requests are made simultaneously. Priority also determines if a
high-priority request should be allowed to suspend a low priority request that is currently being
processed. We may also wish to implement equal priority, so that no one device can monopolize the
computer. In some computer literature, the term "soft-real-time" is used to describe a system that
supports priority.

The purpose of our interface is to allow the microcontroller to interact with its external I/O device.
There are five mechanisms to synchronize the microcontroller with the I/O device. Each mechanism
synchronizes the I/O data transfer to the busy to done transition. The methods are discussed in the
following paragraphs.

Blind cycle is a method where the software simply waits a fixed amount of time and assumes the I/O
will complete before that fixed delay has elapsed. For an input device, the software triggers (starts)
the external input hardware, waits a specified time, then reads data from device, see the left part of
Figure 9.1. For an output device, the software writes data to the output device, triggers (starts) the
device, then waits a specified time. We call this method blind, because there is no status information
about the I/O device reported to the computer software. It is appropriate to use this method in
situations where the I/O speed is short and predictable. One application of blind-cycle
synchronization is the LCD, presented previously in Chapter 7. We can ask the LCD to display an
ASCII character, wait 37 µs, and then we are sure the operation is complete. This method works
because the LCD speed is short and predictable. Many stepper motor interfaces use blind-cycle
synchronization. If we repeat this 8-step sequence over and over 1) output a 0x05, 2) wait 1ms, 3)
output a 0x06, 4) wait 1ms, 5) output a 0x0A, 6) wait 1ms, 7) output a 0x09, 8) wait 1ms, the motor
will spin at a constant speed.

Figure 9.1. The input device sets a flag when it has new data.

Busy wait or polling is a software loop that checks the I/O status waiting for the done state. For an
input device, the software waits until the input device has new data, and then reads it from the input
device, see the middle part of Figure 9.1. For an output device, the software writes data, triggers the
output device then waits until the device is finished. Another approach to output device interfacing is
for the software to wait until the output device has finished the previous output, write data, and then
trigger the device. Busy-wait synchronization will be used in situations where the software system is
relatively simple and real-time response is not important. The UART software in Chapter 8 employed
busy-wait synchronization.

An interrupt uses hardware to cause special software execution. With an input device, the hardware
will request an interrupt when input device has new data. The software interrupt service will read
from the input device and save in global RAM, see the right part of Figure 9.1. With an output device,
the hardware will request an interrupt when the output device is idle. The software interrupt service
will get data from a global structure, and then write to the device. Sometimes we configure the
hardware timer to request interrupts on a periodic basis. The software interrupt service will perform
a special function. A data acquisition system needs to read the ADC at a regular rate. Interrupt
synchronization will be used in situations where the system is fairly complex (e.g., a lot of I/O
devices) or when real-time response is important.

Periodic polling uses a clock interrupt to periodically check the I/O status. At the time of the interrupt
the software will check the I/O status, performing actions as needed. With an input device, a ready
flag is set when the input device has new data. At the next periodic interrupt after an input flag is set,
the software will read the data and save them in global RAM. With an output device, a ready flag is
set when the output device is idle. At the next periodic interrupt after an output flag is set, the
software will get data from a global structure, and write it. Periodic polling will be used in situations
that require interrupts, but the I/O device does not support interrupt requests directly.

DMA, or direct memory access, is an interfacing approach that transfers data directly to/from
memory. With an input device, the hardware will request a DMA transfer when the input device has
new data. Without the software’s knowledge or permission the DMA controller will read data from
the input device and save it in memory. With an output device, the hardware will request a DMA
transfer when the output device is idle. The DMA controller will get data from memory, and then
write it to the device. Sometimes we configure the hardware timer to request DMA transfers on a
periodic basis. DMA can be used to implement a high-speed data acquisition system. DMA
synchronization will be used in situations where high bandwidth and low latency are important. DMA
will be discussed in Volume 3.

One can think of the hardware being in one of three states. The idle state is when the device is
disabled or inactive. No I/O occurs in the idle state. When active (not idle) the hardware toggles
between the busy and ready states. The interface includes a flag specifying either busy (0) or ready
(1) status. Hardware-software synchronization revolves around this flag:

 The hardware will set the flag when the hardware component is complete.
 The software can read the flag to determine if the device is busy or ready.
 The software can clear the flag, signifying the software component is

complete.
 This flag serves as the hardware triggering event for an interrupt.

For an input device, a status flag is set when new input data is available. The “busy to ready” state
transition will cause a busy-wait loop to complete, see middle of Figure 9.1. Once the software
recognizes the input device has new data, it will read the data and ask the input device to create more
data. It is the busy to ready state transition that signals to the software that the hardware task is
complete, and now software service is required. When the hardware is in the ready state the I/O
transaction is complete. Often the simple process of reading the data will clear the flag and request
another input.

The problem with I/O devices is that they are usually much slower than software execution.
Therefore, we need synchronization, which is the process of the hardware and software waiting for
each other in a manner such that data is properly transmitted. A way to visualize this synchronization
is to draw a state versus time plot of the activities of the hardware and software. For an input device,
the software begins by waiting for new input. When the input device is busy it is in the process of
creating new input. When the input device is ready, new data is available. When the input device
makes the transition from busy to ready, it releases the software to go forward. In a similar way, when
the software accepts the input, it can release the input device hardware. The arrows in Figure 9.2
represent the synchronizing events. In this example, the time for the software to read and process the
data is less than the time for the input device to create new input. This situation is called I/O bound,
meaning the bandwidth is limited by the speed of the I/O hardware.

Figure 9.2. The software must wait for the input device to be ready (I/O bound
input interface).

If the input device were faster than the software, then the software waiting time would be zero. This
situation is called CPU bound (meaning the bandwidth is limited by the speed of the executing
software). In real systems the bandwidth depends on both the hardware and the software. Another
characteristic of real systems is the data can vary over time, like traffic arriving and leaving an
intersection. In other words, the same I/O channel can sometimes be I/O bound, but at other times the
channel could be CPU bound.

The busy-wait method is classified as unbuffered because the hardware and software must wait for
each other during the transmission of each piece of data. The interrupt solution (shown in the right
part of Figure 9.1) is classified as buffered, because the system allows the input device to run
continuously, filling a FIFO with data as fast as it can. In the same way, the software can empty the
buffer whenever it is ready and whenever there is data in the buffer. We will implement a buffered
interface for the serial port input in Chapter 11 using interrupts. The buffering used in an interrupt
interface may be a hardware FIFO, a software FIFO, or both hardware and software FIFOs. We will
see the FIFO queues will allow the I/O interface to operate during both situations: I/O bound and
CPU bound.

For an output device, a status flag is set when the output is idle and ready to accept more data. The
“busy to ready” state transition causes a busy-wait loop to complete, see the middle part of Figure
9.3. Once the software recognizes the output is idle, it gives the output device another piece of data to
output. It will be important to make sure the software clears the flag each time new output is started.

Figure 9.3. The output device sets a flag when it has finished outputting the last
data.

Figure 9.4 contains a state versus time plot of the activities of the output device hardware and
software. For an output device, the software begins by generating data then sending it to the output
device. When the output device is busy it is processing the data. Normally when the software writes
data to an output port, that only starts the output process. The time it takes an output device to process
data is usually longer than the software execution time. When the output device is done, it is ready for
new data. When the output device makes the transition from busy to ready, it releases the software to
go forward. In a similar way, when the software writes data to the output, it releases the output device
hardware. The output interface illustrated in Figure 9.4 is also I/O bound because the time for the
output device to process data is longer than the time for the software to generate and write it. Again,
I/O bound means the bandwidth is limited by the speed of the I/O hardware.

Figure 9.4. The software must wait for the output device to finish the previous
operation (I/O bound).

The busy-wait solution for this output interface is also unbuffered, because when the hardware is
done, it will wait for the software and after the software generates data, it waits for the hardware. On
the other hand, the interrupt solution (shown as the right part of Figure 9.3) is buffered, because the
system allows the software to run continuously, filling a FIFO as fast as it wishes. In the same way,
the hardware can empty the buffer whenever it is ready and whenever there is data in the FIFO. We
will implement a buffered interface for the serial port output in Chapter 11 using interrupts. Again,
FIFO queues allow the I/O interface to operate during both situations: I/O bound and CPU bound.

On some systems an interrupt will be generated on a hardware failure. Examples include power
failure, temperature too high, memory failure, and mechanical tampering of secure systems. Usually,
these events are extremely important and require immediate attention. The Cortex-Mprocessor will
execute special software (fault) when it tries to execute an illegal instruction, access an illegal
memory location, or attempt an illegal I/O operation.

9.2. Interrupt Concepts
An interrupt is the automatic transfer of software execution in response to a hardware event that is
asynchronous with the current software execution. This hardware event is called a trigger. The
hardware event can either be a busy to ready transition in an external I/O device (like the UART
input/output) or an internal event (like bus fault, memory fault, or a periodic timer). When the
hardware needs service, signified by a busy to ready state transition, it will request an interrupt by
setting its trigger flag. A thread is defined as the path of action of software as it executes. The
execution of the interrupt service routine is called a background thread. This thread is created by the
hardware interrupt request and is killed when the interrupt service routine returns from interrupt (e.g.,
by executing a BX LR). A new thread is created for each interrupt request. It is important to consider
each individual request as a separate thread because local variables and registers used in the
interrupt service routine are unique and separate from one interrupt event to the next interrupt. In a
multi-threaded system, we consider the threads as cooperating to perform an overall task.
Consequently we will develop ways for the threads to communicate (e.g., FIFO) and synchronize
with each other. Most embedded systems have a single common overall goal. On the other hand,
general-purpose computers can have multiple unrelated functions to perform. A process is also
defined as the action of software as it executes. Processes do not necessarily cooperate towards a
common shared goal. Threads share access to I/O devices, system resources, and global variables,
while processes have separate global variables and system resources. Processes do not share I/O
devices.

There are no standard definitions for the terms mask, enable, and arm in the professional, Computer
Science, or Computer Engineering communities. Nevertheless, in this book we will adhere to the
following specific meanings. To arm (disarm) a device means to enable (shut off) the source of
interrupts. Each potential interrupting trigger has a separate arm bit. One arms (disarms) a trigger if
one is (is not) interested in interrupts from this source. To enable (disable) means to allow interrupts
at this time (postponing interrupts until a later time). On the ARM ® Cortex™-M processor there is
one interrupt enable bit for the entire interrupt system. We disable interrupts if it is currently not
convenient to accept interrupts. In particular, to disable interrupts we set the I bit in PRIMASK.

The software has dynamic control over some aspects of the interrupt request sequence. First, each
potential interrupt trigger has a separate arm bit that the software can activate or deactivate. The
software will set the arm bits for those devices from which it wishes to accept interrupts, and will
deactivate the arm bits within those devices from which interrupts are not to be allowed. In other
words it uses the arm bits to individually select which devices will and which devices will not
request interrupts. The second aspect that the software controls is the interrupt enable bit.
Specifically, bit 0 of the special register PRIMASK is the interrupt mask bit, I. If this bit is 1 most
interrupts and exceptions are not allowed, which we will define as disabled. If the bit is 0, then
interrupts are allowed, which we will define as enabled. The third aspect is priority. The BASEPRI
register prevents interrupts with lower priority interrupts, but allows higher priority interrupts. For
example if the software sets the BASEPRI to 3, then requests with level 0, 1, and 2 can interrupt,
while requests at levels 3 and higher will be postponed. The software can also specify the priority

level of each interrupt request. If BASEPRI is zero, then the priority feature is disabled and all
interrupts are allowed. Five conditions must be true for an interrupt to be generated: device arm,
NVIC enable, global enable, level, and trigger. A device must be armed by setting bits in its interrupt
mask register; enabled in the NVIC; I bit must be 0; the level of the requested interrupt must be less
than BASEPRI; and an external event must occur setting its trigger flag (RIS register). These five
conditions must be simultaneously true but can occur in any order.

An interrupt causes the following sequence of five events. First, the current instruction is finished.
Second, the execution of the currently running program is suspended, pushing eight registers on the
stack (R0, R1, R2, R3, R12, LR, PC, and PSR with the R0 on top). If the floating point unit on the
TM4C123/TM4C1294 is active, an additional 18 words will be pushed on the stack representing the
floating point state, making a total of 26 words. Third, the LR is set to a specific value signifying an
interrupt service routine (ISR) is being run (bits [31:8] to 0xFFFFFF, bits [7:1] specify the type of
interrupt return to perform, bit 0 will always be 1 on the Cortex-M meaning Thumb mode). In our
examples we will see LR is set to 0xFFFFFFF9. If the floating point registers were pushed, the LR
will be 0xFFFFFFE9. Fourth, the IPSR is set to the interrupt number being processed. Lastly, the PC
is loaded with the address of the ISR (vector). These five steps, called a context switch, occur
automatically in hardware as the context is switched from a foreground thread to a background thread.
We can also have a context switch from a lower priority ISR to a higher priority ISR. Next, the
software executes the ISR.

If a trigger flag is set, but the interrupts are disabled (I=1), the interrupt level is not high enough, or
the flag is disarmed, the request is not dismissed. Rather the request is held pending, postponed until
a later time, when the system deems it convenient to handle the requests. In other words, once the
trigger flag is set, under most cases it remains set until the software clears it. The five necessary
events (device arm, NVIC enable, global enable, level, and trigger) can occur in any order. For
example, the software can set the I bit to prevent interrupts, run some code that needs to run to
completion, and then clear the I bit. A trigger occurring while running with I=1 is postponed until the
time the I bit is cleared again. In particular we will need to disable interrupts when executing
nonreentrant code but disabling interrupts will have the effect of increasing the response time of
software to external events.

Clearing a trigger flag is called acknowledgement, which occurs only by specific software action.
Each trigger flag has a specific action software must perform to clear that flag. We will pay special
attention to these enable/disable software actions. The SysTick periodic interrupt will be the only
example of an automatic acknowledgement. For SysTick, the periodic timer requests an interrupt, but
the trigger flag will be automatically cleared. For all the other trigger flags, the ISR must explicitly
execute code that clears the flag.

The interrupt service routine (ISR) is the software module that is executed when the hardware
requests an interrupt. There may be one large ISR that handles all requests (polled interrupts), or
many small ISRs specific for each potential source of interrupt (vectored interrupts). The design of
the interrupt service routine requires careful consideration of many factors. Except for the SysTick
interrupt, the ISR must clear the trigger flag that caused the interrupt (acknowledge). After the ISR
provides the necessary service, it will execute BX LR . Because LR contains a special value (e.g.,
0xFFFFFFF9), this instruction pops the 8 registers from the stack, which returns control to the main
program. If the LR is 0xFFFFFFE9, then 28 registers will be popped by BX LR . There are two stack

pointers: PSP and MSP. The software in this book will exclusively use the MSP. It is imperative that
the ISR software balance the stack before exiting. Execution of the previous thread will then continue
with the exact stack and register values that existed before the interrupt. Although interrupt handlers
can create and use local variables, parameter passing between threads must be implemented using
shared global memory variables. A private global variable can be used if an interrupt thread wishes
to pass information to itself, e.g., from one interrupt instance to another. The execution of the main
program is called the foreground thread, and the executions of the various interrupt service routines
are called background threads.

An axiom with interrupt synchronization is that the ISR should execute as fast as possible. The
interrupt should occur when it is time to perform a needed function, and the interrupt service routine
should perform that function, and return right away. Placing backward branches (busy-wait loops,
iterations) in the interrupt software should be avoided if possible. The percentage of time spent
executing any one ISR should be minimized. For an input device, the interface latency is the time
between when new input is available, and the time when the software reads the input data. We can
also define device latency as the response time of the external I/O device. For example, if we
request that a certain sector be read from a disk, then the device latency is the time it take to find the
correct track and spin the disk (seek) so the proper sector is positioned under the read head. For an
output device, the interface latency is the time between when the output device is idle, and the time
when the software writes new data. A real-time system is one that can guarantee a worst case
interface latency.

Many factors should be considered when deciding the most appropriate mechanism to synchronize
hardware and software. One should not always use busy wait because one is too lazy to implement
the complexities of interrupts. On the other hand, one should not always use interrupts because they
are fun and exciting. Busy-wait synchronization is appropriate when the I/O timing is predictable and
when the I/O structure is simple and fixed. Busy wait should be used for dedicated single thread
systems where there is nothing else to do while the I/O is busy. Interrupt synchronization is
appropriate when the I/O timing is variable, and when the I/O structure is complex. In particular,
interrupts are efficient when there are I/O devices with different speeds. Interrupts allow for quick
response times to important events. In particular, using interrupts is one mechanism to design real-
time systems, where the interface latency must be short and bounded. Bounded means it is always
less than a specified value. Short means the specified value is acceptable to our consumers.

Interrupts can also be used for infrequent but critical events like power failure, memory faults, and
machine errors. Periodic interrupts will be useful for real-time clocks, data acquisition systems, and
control systems. For extremely high bandwidth and low latency interfaces, DMA should be used.

An atomic operation is a sequence that once started will always finish, and cannot be interrupted. All
instructions on the ARM ® Cortex™-M processor are atomicexcept store and load multiple, STM
LDMPUSH POP . If we wish to make a section of code atomic, we can run that code with I=1. In
this way, interrupts will not be able to break apart the sequence. Again, requested interrupts that are
triggered while I=1 are not dismissed, but simply postponed until I=0. In particular, to implement an
atomic operation we will 1) save the current value of the PRIMASK, 2) disable interrupts, 3)
execute the operation, and 4) restore the PRIMASK back to its previous value.

Checkpoint 9.1: What five conditions must be true for an interrupt to occur?

Checkpoint 9.2: How do you enable interrupts?

Checkpoint 9.3: What are the steps that occur when an interrupt is processed?

As you develop experience using interrupts, you will come to notice a few common aspects that most
computers share. The following paragraphs outline three essential mechanisms that are needed to
utilize interrupts. Although every computer that uses interrupts includes all three mechanisms, there
are a wide spectrum of implementation methods.

All interrupting systems must have the ability for the hardware to request action from computer. In
general, the interrupt requests can be generated using a separate connection to the processor for each
device. The LM3S/TM4C microcontrollers use separate connections to request interrupts.

All interrupting systems must have the ability for the computer to determine the source. A vectored
interrupt system employs separate connections for each device so that the computer can give
automatic resolution. You can recognize a vectored system because each device has a separate
interrupt vector address. With a polled interrupt system, the interrupt software must poll each device,
looking for the device that requested the interrupt. Most interrupts on the LM3S/TM4C
microcontrollers are vectored, but there are some triggers that share the same vector. For these
interrupts the ISR must poll to see which trigger caused the interrupt. For example, all eight input pins
on a GPIO port can trigger an interrupt, but the eight trigger flags share the same vector. So if multiple
pins on a GPIO port are armed, the shared ISR must poll to determine which one(s) requested
service.

The third necessary component of the interface is the ability for the computer to acknowledge the
interrupt. Normally there is a trigger flag in the interface that is set on the busy to ready state
transition, i.e., when the device needs service. In essence, this trigger flag is the cause of the interrupt.
Acknowledging the interrupt involves clearing this flag. It is important to shut off the request, so that
the computer will not mistakenly request a second (and inappropriate) interrupt service for the same
condition. The first Intel x86 processors used a hardware acknowledgment that automatically clears
the request. Except for periodic SysTick, LM3S/TM4C microcontrollers use software acknowledge.
So when designing an interrupting interface, it will be important to know exactly what hardware
conditions will set the trigger flag (and request an interrupt) and how the software will clear it
(acknowledge) in the ISR.

Common Error: The system will crash if the interrupt service routine doesn’t either acknowledge or
disarm the device requesting the interrupt.

Common Error: The ISR software should not disable interrupts at the beginning nor should it
reenable interrupts at the end. Which interrupts are allowed to run is automatically controlled by the
priority set in the NVIC.

9.3. Interthread Communication and
Synchronization
For regular function calls we use the registers and stack to pass parameters, but interrupt threads have
logically separate registers and stack. In particular, registers are automatically saved by the processor
as it switches from main program (foreground thread) to interrupt service routine (background
thread). Exiting an ISR will restore the registers back to their previous values. Thus, all parameter
passing must occur through global memory. One cannot pass data from the main program to the
interrupt service routine using registers or the stack.

In this chapter, multi-threading means one main program (foreground thread) and multiple ISRs
(background threads). An operating system allows multiple foreground threads (see Volume 3).
Synchronizing threads is a critical task affecting efficiency and effectiveness of systems using
interrupts. In this section, we will present in general form three constructs to synchronize threads:
binary semaphore, mailbox, and FIFO queue.

A binary semaphore is simply a shared flag, as described in Figure 9.5. There are two operations
one can perform on a semaphore. Signal is the action that sets the flag. Wait is the action that checks
the flag, and if the flag is set, the flag is cleared and important stuff is performed. This flag must exist
as a private global variable with restricted access to only the Wait and Signal functions. In C, we add
the qualifier static to a global variable to restrict access to software within the same file. In order to
reduce complexity of the system, it will be important to limit the access to this flag to as few modules
as possible.

Figure 9.5. A semaphore can be used to synchronize threads.

A flag of course has two states: 0 and 1. However, it is good design to assign a meaning to this flag.
For example, 0 might mean the switch has not been pressed, and 1 might mean the switch has been
pressed. Figure 9.5 shows two examples of the binary semaphore. The big arrows in this figure
signify the synchronization link between the threads. In the example on the left, the ISR signals the
semaphore and the main program waits on the semaphore. Notice the “important stuff” is run in the
foreground once per execution of the ISR. In the example on the right, the main program signals the
semaphore and the ISR waits. It is good design to have NO backwards jumps in an ISR. In this
particular application, if the ISR is running and the semaphore is 0, the action is just skipped and the
computer returns from the interrupt.

The second interthread synchronization scheme is the mailbox. The mailbox is a binary semaphore
with associated data variable. Figure 9.6 illustrates an input device interfaced using interrupt
synchronization. The big arrow in this figure signifies the communication and synchronization link
between the background and foreground. The mailbox structure is implemented with two shared
global variables. Mail contains data, and Status is a semaphore flag specifying whether the mailbox
is full or empty. The interrupt is requested when its trigger flag is set, signifying new data are ready
from the input device. The ISR will read the data from the input device and store it in the shared
global variable Mail , then update its status to full. The main program will perform other calculations,
while occasionally checking the status of the mailbox. When the mailbox has data, the main program
will process it. This approach is adequate for situations where the input bandwidth is slow compared
to the software processing speed.

Figure 9.6. A mailbox can be used to pass data between threads.

One way to visualize the interrupt synchronization is to draw a state versus time plot of the activities
of the hardware, the mailbox, and the two software threads (Figure 9.7).

Figure 9.7. Hardware/software timing of an input interface using a mailbox.

Figure 9.7 shows that at time (a) the mailbox is empty, the input device is idle and the main program
is performing other tasks, because mailbox is empty. When new input data are ready, the trigger flag
will be set,and an interrupt will be requested. At time (b) the ISR reads data from input device and
saves it in Mail , and then it sets Status to full. At time (c) the main program recognizes Status is
full. At time (d) the main program processes data from Mail , sets Status to empty. Notice that even
though there are two threads, only one is active at a time. The interrupt hardware switches the
processor from the main program to the ISR, and the return from interrupt switches the processor
back.

The third synchronization technique is the FIFO queue. Details of the FIFO will be presented in
Chapter 11.

There are other types of interrupt that are not an input or output. For example we will configure the
computer to request an interrupt on a periodic basis. This means an interrupt handler will be executed
at fixed time intervals. This periodic interrupt will be essential for the implementation of real-time
data acquisition and real-time control systems. For example if we are implementing a digital
controller that executes a control algorithm 100 times a second, then we will set up the internal timer
hardware to request an interrupt every 10 ms. The interrupt service routine will execute the digital
control algorithm and then return to the main thread. In a similar fashion, we will use periodic
interrupts in Chapter 10 to perform analog input and/or analog output. For example if we wish to
sample the ADC 100 times a second, then we will set up the internal timer hardware to request an
interrupt every 10 ms. The interrupt service routine will sample the ADC, process (or save) the data,
and then return to the main thread.

Performance Tip: It is poor design to employ backward jumps in an ISR, because they may affect the
latency of other interrupt requests. Whenever you are thinking about using a backward jump, consider
redesigning the system with more or different triggers to reduce the number of backward jumps.

9.4. NVIC on the ARM Cortex-M Processor
On the ARM ® Cortex™-M processor, exceptions include resets, software interrupts and hardware
interrupts. Each exception has an associated 32-bit vector that points to the memory location where
the ISR that handles the exception is located. Vectors are stored in ROM at the beginning of memory.
Program 9.1 shows the first few vectors as defined in the Startup.sfile. DCD is an assembler
pseudo-op that defines a 32-bit constant. ROM location 0x0000.0000 has the initial stack pointer, and
location 0x0000.0004 contains the initial program counter, which is called the reset vector. It points
to a function called the reset handler, which is the first thing executed following reset. There are up to
240 possible interrupt sources and their 32-bit vectors are listed in order starting with location
0x0000.0008. From a programming perspective, we can attach ISRs to interrupts by writing the ISRs
as regular assembly subroutines or C functions with no input or output parameters and editing the
Startup.sfile to specify those functions for the appropriate interrupt. For example, if we wrote a Port
C interrupt service routine named PortCISR , then we would
replace GPIOPortC_Handler with PortCISR . In this book, we will write our ISRs using standard
function names so that the Startup.s file need not be edited. I.e., we will simply name the ISRfor
edge-triggered interrupts on Port C as GPIOPortC_Handler . The ISR for this interrupt is a 32-bit
pointer located at ROM address 0x0000.0048. Because the vectors are in ROM, this linkage is
defined at compile time and not at run time. For more details see the Startup.s files within the
interrupt examples posted on the book web site. Each processor is a little different so check the data
sheet.

Checkpoint 9.4: Where is the vector for SysTick? What is the standard name for this ISR?

 EXPORT __Vectors
__Vectors ; address ISR
 DCD StackMem + Stack ; 0x00000000 Top of Stack
 DCD Reset_Handler ; 0x00000004 Reset Handler
 DCD NMI_Handler ; 0x00000008 NMI Handler
 DCD HardFault_Handler ; 0x0000000C Hard Fault Handler
 DCD MemManage_Handler ; 0x00000010 MPU Fault Handler
 DCD BusFault_Handler ; 0x00000014 Bus Fault Handler
 DCD UsageFault_Handler ; 0x00000018 Usage Fault Handler
 DCD 0 ; 0x0000001C Reserved
 DCD 0 ; 0x00000020 Reserved
 DCD 0 ; 0x00000024 Reserved
 DCD 0 ; 0x00000028 Reserved
 DCD SVC_Handler ; 0x0000002C SVCall Handler
 DCD DebugMon_Handler ; 0x00000030 Debug Monitor Handler
 DCD 0 ; 0x00000034 Reserved
 DCD PendSV_Handler ; 0x00000038 PendSV Handler

 DCD SysTick_Handler ; 0x0000003C SysTick Handler
 DCD GPIOPortA_Handler ; 0x00000040 GPIO Port A
 DCD GPIOPortB_Handler ; 0x00000044 GPIO Port B
 DCD GPIOPortC_Handler ; 0x00000048 GPIO Port C
 DCD GPIOPortD_Handler ; 0x0000004C GPIO Port D
 DCD GPIOPortE_Handler ; 0x00000050 GPIO Port E
 DCD UART0_Handler ; 0x00000054 UART0
 DCD UART1_Handler ; 0x00000058 UART1
 DCD SSI0_Handler ; 0x0000005C SSI
 DCD I2C0_Handler ; 0x00000060 I2C
 DCD PWM0Fault_Handler ; 0x00000064 PWM Fault
 DCD PWM0_Handler ; 0x00000068 PWM Generator 0
Program 9.1. Software syntax to set the interrupt vectors for the LM3S/TM4C.

Program 9.2 shows that the syntax for a ISR looks like a function with no parameters. Notice that each
ISR (except for SysTick) must acknowledge the interrupt.

GPIOPortC_Handler
 LDR
R0,=GPIO_PORTC_ICR_R
 MOV R1,#0x10
 STR R1,[R0] ; ack
 ;stuff
 BX LR ;return from interrupt

void
GPIOPortC_Handler(void){
 GPIO_PORTC_ICR_R =
0x10; // ack
 // stuff
}

Program 9.2. Typical interrupt service routine.

Vector address Number IRQ ISR name in Startup.s NVIC Priority bits
0x00000038 14 -2 PendSV_Handler NVIC_SYS_PRI3_R 23 – 21
0x0000003C 15 -1 SysTick_Handler NVIC_SYS_PRI3_R 31 – 29
0x00000040 16 0 GPIOPortA_Handler NVIC_PRI0_R 7 – 5
0x00000044 17 1 GPIOPortB_Handler NVIC_PRI0_R 15 – 13
0x00000048 18 2 GPIOPortC_Handler NVIC_PRI0_R 23 – 21
0x0000004C 19 3 GPIOPortD_Handler NVIC_PRI0_R 31 – 29
0x00000050 20 4 GPIOPortE_Handler NVIC_PRI1_R 7 – 5
0x00000054 21 5 UART0_Handler NVIC_PRI1_R 15 – 13
0x00000058 22 6 UART1_Handler NVIC_PRI1_R 23 – 21
0x0000005C 23 7 SSI0_Handler NVIC_PRI1_R 31 – 29
0x00000060 24 8 I2C0_Handler NVIC_PRI2_R 7 – 5
0x00000064 25 9 PWM0Fault_Handler NVIC_PRI2_R 15 – 13
0x00000068 26 10 PWM0_Handler NVIC_PRI2_R 23 – 21
0x0000006C 27 11 PWM1_Handler NVIC_PRI2_R 31 – 29
0x00000070 28 12 PWM2_Handler NVIC_PRI3_R 7 – 5
0x00000074 29 13 Quadrature0_Handler NVIC_PRI3_R 15 – 13
0x00000078 30 14 ADC0_Handler NVIC_PRI3_R 23 – 21
0x0000007C 31 15 ADC1_Handler NVIC_PRI3_R 31 – 29

0x00000080 32 16 ADC2_Handler NVIC_PRI4_R 7 – 5
0x00000084 33 17 ADC3_Handler NVIC_PRI4_R 15 – 13
0x00000088 34 18 WDT_Handler NVIC_PRI4_R 23 – 21
0x0000008C 35 19 Timer0A_Handler NVIC_PRI4_R 31 – 29
0x00000090 36 20 Timer0B_Handler NVIC_PRI5_R 7 – 5
0x00000094 37 21 Timer1A_Handler NVIC_PRI5_R 15 – 13
0x00000098 38 22 Timer1B_Handler NVIC_PRI5_R 23 – 21
0x0000009C 39 23 Timer2A_Handler NVIC_PRI5_R 31 – 29
0x000000A0 40 24 Timer2B_Handler NVIC_PRI6_R 7 – 5
0x000000A4 41 25 Comp0_Handler NVIC_PRI6_R 15 – 13
0x000000A8 42 26 Comp1_Handler NVIC_PRI6_R 23 – 21
0x000000AC 43 27 Comp2_Handler NVIC_PRI6_R 31 – 29
0x000000B0 44 28 SysCtl_Handler NVIC_PRI7_R 7 – 5
0x000000B4 45 29 FlashCtl_Handler NVIC_PRI7_R 15 – 13
0x000000B8 46 30 GPIOPortF_Handler NVIC_PRI7_R 23 – 21
0x000000BC 47 31 GPIOPortG_Handler NVIC_PRI7_R 31 – 29
0x000000C0 48 32 GPIOPortH_Handler NVIC_PRI8_R 7 – 5
0x000000C4 49 33 UART2_Handler NVIC_PRI8_R 15 – 13
0x000000C8 50 34 SSI1_Handler NVIC_PRI8_R 23 – 21
0x000000CC 51 35 Timer3A_Handler NVIC_PRI8_R 31 – 29
0x000000D0 52 36 Timer3B_Handler NVIC_PRI9_R 7 – 5
0x000000D4 53 37 I2C1_Handler NVIC_PRI9_R 15 – 13
0x000000D8 54 38 Quadrature1_Handler NVIC_PRI9_R 23 – 21
0x000000DC 55 39 CAN0_Handler NVIC_PRI9_R 31 – 29
0x000000E0 56 40 CAN1_Handler NVIC_PRI10_R 7 – 5
0x000000E4 57 41 CAN2_Handler NVIC_PRI10_R 15 – 13
0x000000E8 58 42 Ethernet_Handler NVIC_PRI10_R 23 – 21
0x000000EC 59 43 Hibernate_Handler NVIC_PRI10_R 31 – 29
0x000000F0 60 44 USB0_Handler NVIC_PRI11_R 7 – 5
0x000000F4 61 45 PWM3_Handler NVIC_PRI11_R 15 – 13
0x000000F8 62 46 uDMA_Handler NVIC_PRI11_R 23 – 21
0x000000FC 63 47 uDMA_Error NVIC_PRI11_R 31 – 29

Table 9.1. Some of the interrupt vectors for the LM3S/TM4C123.
Interrupts on the Cortex � -M are controlled by the Nested Vectored Interrupt Controller (NVIC). To
activate an interrupt source we need to set its priority and enable that source in the NVIC. This
activation is in addition to the arm and enable steps. Table 9.1 lists the interrupt sources available on
the LM3S/TM4C family of microcontrollers. Interrupt numbers 0 to 15 contain the faults, software
interrupt and SysTick; these interrupts will be handled differently from interrupts 16 to 63.

Table 9.2 shows some of the priority registers on the NVIC. Each register contains an 8-bit priority
field for four devices. On the LM3S/TM4C microcontrollers, only the top three bits of the 8-bit field
are used. This allows us to specify the interrupt priority level for each device from 0 to 7, with 0
being the highest priority. The interrupt number (number column in Table 9.1) is loaded into the IPSR
register. The servicing of interrupts does not set the I bit in the PRIMASK, so a higher priority
interrupt can suspend the execution of a lower priority ISR. If a request of equal or lower priority is
generated while an ISR is being executed, that request is postponed until the ISR is completed. In
particular, those devices that need prompt service should be given high priority.

Address 31 – 29 23 – 21 15 – 13 7 – 5 Name
0xE000E400 GPIO Port

D
GPIO Port C GPIO Port

B
GPIO Port
A

NVIC_PRI0_R

0xE000E404 SSI0, Rx Tx UART1, Rx
Tx

UART0,
Rx Tx

GPIO Port
E

NVIC_PRI1_R

0xE000E408 PWM Gen 1 PWM Gen 0 PWM Fault I2C0 NVIC_PRI2_R
0xE000E40C ADC Seq 1 ADC Seq 0 Quad

Encoder
PWM Gen
2

NVIC_PRI3_R

0xE000E410 Timer 0A Watchdog ADC Seq 3 ADC Seq
2

NVIC_PRI4_R

0xE000E414 Timer 2A Timer 1B Timer 1A Timer 0B NVIC_PRI5_R
0xE000E418 Comp 2 Comp 1 Comp 0 Timer 2B NVIC_PRI6_R
0xE000E41C GPIO Port

G
GPIO Port F Flash

Control
System
Control

NVIC_PRI7_R

0xE000E420 Timer 3A SSI1, Rx Tx UART2,
Rx Tx

GPIO Port
H

NVIC_PRI8_R

0xE000E424 CAN0 Quad
Encoder 1

I2C1 Timer 3B NVIC_PRI9_R

0xE000E428 Hibernate Ethernet CAN2 CAN1 NVIC_PRI10_R
0xE000E42C uDMA Error uDMA Soft

Tfr
PWM Gen
3

USB0 NVIC_PRI11_R

0xE000ED20 SysTick PendSV -- Debug NVIC_SYS_PRI3_R

Table 9.2. The LM3S/TM4C NVIC registers. Each register is 32 bits wide. Bits not shown are
zero.

There are two enable registers NVIC_EN0_R and NVIC_EN1_R . The 32 bits in register
NVIC_EN0_R control the IRQ numbers 0 to 31 (interrupt numbers 16 – 47). In Table 9.1 we see
UART0 is IRQ=5. To enable UART0 interrupts we set bit 5 in NVIC_EN0_R , see Table 9.3. The
bottom 16 bits in NVIC_EN1_R control the IRQ numbers 32 to 47 (interrupt numbers 48 – 63). In
Table 9.1 we see UART2 is IRQ=33. To enable UART interrupts we set bit 1 (33-32=1)
in NVIC_EN1_R , see Table 9.3. Not every interrupt source is available on every LM3S/TM4C
microcontroller, so you will need to refer to the data sheet for your microcontroller when designing
I/O interfaces. Writing zeros to the NVIC_EN0_R NVIC_EN1_R registers has no effect. To disable
interrupts we write ones to the corresponding bit in the NVIC_DIS0_R or NVIC_DIS1_R register.

Address 31 30 29-
7

6 5 4 3 2 1 0 Name

0xE000E100 G F … UART1 UART0 E D C B A NVIC_EN0_R
0xE000E104 … UART2 H NVIC_EN1_R

Table 9.3. The LM3S/TM4C NVIC interrupt enable registers.

Figure 9.8 shows the context switch from executing in the foreground to running an edge-triggered ISR
from Port C. Assume Port C interrupts are configured for a priority level of 2. The I bit in the
PRIMASK is 0 signifying interrupts are enabled. The interrupt number (ISRNUM) in the IPSR
register is 0, meaning we are running in Thread mode (i.e., the main program, and not an ISR).
Handler mode is signified by a nonzero value in IPSR. When BASEPRI register is zero, all
interrupts are allowed and the BASEPRI register is not active.

When a Port C interrupt is triggered, the current instruction is finished. (a) Eight registers are pushed
on the stack with R0 on top. These registers are pushed onto the stack using whichever stack pointer
is active: either the MSP or PSP. (b) The vector address is loaded into the PC (“Vector address”
column in Table 9.1). (c) The IPSR register is set to 18 (“Number” column in Table 9.1) (d) The top
24 bits of LR are set to 0xFFFFFF, signifying the processor is executing an ISR. The bottom eight
bits specify how to return from interrupt.
 0xE1 Return to Handler mode MSP (using floating point state on TM4C)
 0xE9 Return to Thread mode MSP (using floating point state on TM4C)
 0xED Return to Thread mode PSP (using floating point state on TM4C)
 0xF1 Return to Handler mode MSP
 0xF9 Return to Thread mode MSP ← we will mostly be using this one
 0xFD Return to Thread mode PSP

After pushing the registers, the processor always uses the main stack pointer (MSP) during the
execution of the ISR. Events b, c, and d can occur simultaneously

Figure 9.8. Stack before and after an interrupt.

To return from an interrupt, the ISR executes the typical function return BX LR . However, since
the top 24 bits of LR are 0xFFFFFF, it knows to return from interrupt by popping the eight registers
off the stack. Since the bottom eight bits of LR in this case are 0b11111001, it returns to thread mode
using the MSP as its stack pointer. Since the IPSR is part of the PSR that is popped, it is
automatically reset its previous state.

A nested interrupt occurs when a higher priority interrupt suspends an ISR. The lower priority
interrupt will finish after the higher priority ISR completes. When one interrupt preempts another, the
LR is set to 0xFFFFFFF1, so it knows to return to handler mode. Tail chaining occurs when one ISR
executes immediately after another. Optimization occurs because the eight registers need not be
popped only to be pushed once again. If an interrupt is triggered and is in the process of stacking
registers when a higher priority interrupt is requested, this late arrival interrupt will be executed
first.

On the CortexTM-M4, if an interrupt occurs while in the floating point state, an additional 18 words
are pushed on the stack. These 18 words will save the state of the floating point processor. Bits 7-4 of
the LR will be 0b1110 (0xE), signifying it was interrupted during a floating point state. When the ISR
returns, it knows to pull these 18 words off the stack and restore the state of the floating point
processor.

Priority determines the order of service when two or more requests are made simultaneously.
Priority also allows a higher priority request to suspend a lower priority request currently being
processed. Usually, if two requests have the same priority, we do not allow them to interrupt each
other. NVIC assigns a priority level to each interrupt trigger. This mechanism allows a higher priority
trigger to interrupt the ISR of a lower priority request. Conversely, if a lower priority request occurs
while running an ISR of a higher priority trigger, it will be postponed until the higher priority service
is complete.

Observation: There are many interrupt sources, but an effective system will use only a few.

Program 9.3 gives the definitions in startup.s that allow the software to enable and disable interrupts.
These functions are callable from either assembly or C code.

;*********** DisableInterrupts ***************
; disable interrupts
; inputs: none outputs: none
DisableInterrupts CPSID I ;set I=1
 BX LR

;*********** EnableInterrupts ***************
; enable interrupts
; inputs: none outputs: none
EnableInterrupts CPSIE I ;set I=0
 BX LR
Program 9.3. Assembly functions needed for interrupt enabling and disabling.

9.5. Edge-triggered Interrupts
Synchronizing software to hardware events requires the software to recognize when the hardware
changes states from busy to done. Many times the busy to done state transition is signified by a rising
(or falling) edge on a status signal in the hardware. For these situations, we connect this status signal
to an input of the microcontroller, and we use edge-triggered interfacing to configure the interface to
set a flag on the rising (or falling) edge of the input. Using edge-triggered interfacing allows the
software to respond quickly to changes in the external world. If we are using busy-wait
synchronization, the software waits for the flag. If we are using interrupt synchronization, we
configure the flag to request an interrupt when set. Each of the digital I/O pins on the LM3S/TM4C
family can be configured for edge triggering. Table 4.5 listed some of the I/O registers. Table 9.4
expands this list to include many of the registers available for Port A. The differences between
members of the LM3S/TM4C family include the number of ports (e.g., the TM4C123 has ports A – F,
while the TM4C1294 has ports A,B,C,D, E,F,G,H,J,K,L,M,N,P, and Q) and the number of pins in
each port (e.g., the TM4C123 has pins 7 – 0 in Port B, while the TM4C1294 only has pins 5 – 0 in
Port B). For more details, refer to the datasheet for your specific microcontroller. Any or all of
digital I/O pins can be configured as an edge-triggered input. When writing C code using these
registers, include the header file for your particular microcontroller (e.g., tm4c123ge6pm.h). To
useany of the features for a digital I/O port, we first enable its clock in
the SYSCTL_RCGCGPIO_R register. For each bit we wish to use we must set the corresponding
DEN (Digital Enable) bit. To use a pin as regular digital input or output, we clear its AFSEL
(Alternate Function Select) bit. Setting the AFSEL will activate the pin’s special function (e.g.,
UART, I2C, CAN etc.) For regular digital input/output, we clear DIR (Direction) bits to make them
input, and we set DIR bits to make them output. On the TM4C123, only pins PD7 and PF0 need to be
unlocked. We clear bits in the AMSEL register to disable analog function. See Tables 4.3, 4.4 to see
the PCTL bits.

Address 7 6 5 4 3 2 1 0 Name
$4000.43FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTA_DATA_R
$4000.4400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTA_DIR_R
$4000.4404 IS IS IS IS IS IS IS IS GPIO_PORTA_IS_R
$4000.4408 IBE IBE IBE IBE IBE IBE IBE IBE GPIO_PORTA_IBE_R
$4000.440C IEV IEV IEV IEV IEV IEV IEV IEV GPIO_PORTA_IEV_R
$4000.4410 IME IME IME IME IME IME IME IME GPIO_PORTA_IM_R
$4000.4414 RIS RIS RIS RIS RIS RIS RIS RIS GPIO_PORTA_RIS_R
$4000.4418 MIS MIS MIS MIS MIS MIS MIS MIS GPIO_PORTA_MIS_R
$4000.441C ICR ICR ICR ICR ICR ICR ICR ICR GPIO_PORTA_ICR_R
$4000.4420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTA_AFSEL_R
$4000.4500 DRV2 DRV2 DRV2 DRV2 DRV2 DRV2 DRV2 DRV2 GPIO_PORTA_DR2R_R
$4000.4504 DRV4 DRV4 DRV4 DRV4 DRV4 DRV4 DRV4 DRV4 GPIO_PORTA_DR4R_R
$4000.4508 DRV8 DRV8 DRV8 DRV8 DRV8 DRV8 DRV8 DRV8 GPIO_PORTA_DR8R_R
$4000.450C ODE ODE ODE ODE ODE ODE ODE ODE GPIO_PORTA_ODR_R
$4000.4510 PUE PUE PUE PUE PUE PUE PUE PUE GPIO_PORTA_PUR_R
$4000.4514 PDE PDE PDE PDE PDE PDE PDE PDE GPIO_PORTA_PDR_R
$4000.4518 SLR SLR SLR SLR SLR SLR SLR SLR GPIO_PORTA_SLR_R

$4000.451C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTA_DEN_R
$4000.4524 CR CR CR CR CR CR CR CR GPIO_PORTA_CR_R
$4000.4528 AMSEL AMSEL AMSEL AMSEL AMSEL AMSEL AMSEL AMSEL GPIO_PORTA_AMSEL_R

 31-28 27-24 23-20 19-16 15-12 11-8 7-4 3-0
$4000.452C PMC7 PMC6 PMC5 PMC4 PMC3 PMC2 PMC1 PMC0 GPIO_PORTA_PCTL_R
$4000.4520 LOCK (32 bits) GPIO_PORTA_LOCK_R

Table 9.4. Some TM4C123 port A registers. For PMC bits, see Tables 4.3, 4.4.
To configure an edge-triggered pin, we first enable the clock on the port and configure the pin as a
regular digital input. Clearing the IS (Interrupt Sense) bit configures the bit for edge triggering. If the
IS bit were to be set, the trigger occurs on the level of the pin. Since most busy to done conditions are
signified by edges, we typically trigger on edges rather than levels. Next we write to the IBE
(Interrupt Both Edges) and IEV (Interrupt Event) bits to define the active edge. We can trigger on the
rising, falling, or both edges, as listed in Table 9.5. We clear the IME (Interrupt Mask Enable) bits if
we are using busy-wait synchronization, and we set the IME bits to use interrupt synchronization.

The hardware sets an RIS (Raw Interrupt Status) bit (called the trigger) and the software clears it
(called the acknowledgement). The triggering event listed in Table 9.5 will set the corresponding
RISbit in the GPIO_PORTA_RIS_R register regardless of whether or not that bit is allowed to
request an interrupt. In other words, clearing an IME bit disables the corresponding pin’s interrupt,
but it will still set the corresponding RIS bit when the interrupt would have occurred. To use
interrupts, clear the IME bit, configure the bits in Table 9.5, and then set the IME bit. The software
can acknowledge the event by writing ones to the corresponding IC(Interrupt Clear) bit in
the GPIO_PORTA_IC_R register. The RISbits are read only, meaning if the software were to write
to this registers, it would have no effect. For example, to clear bits 2, 1, and 0 in
the GPIO_PORTA_RIS_R register, we write a 0x07 to the GPIO_PORTA_IC_R register. Writing
zeros into IC bits will not affect the RIS bits.

DIR AFSEL IS IBE IEV Port mode
0 0 0 0 0 Input, falling edge

trigger
0 0 0 0 1 Input, rising edge

trigger
0 0 0 1 - Input, both edges

trigger
0 0 1 0 0 Input, low level trigger
0 0 1 0 1 Input, high-level trigger

Table 9.5. Edge-triggered and level-active interrupt modes (set IME=1 to arm interrupt).
For input signals we have the option of adding either a pull-up resistor or a pull-down resistor. If we
set the corresponding PUE (Pull-Up Enable) bit on an input pin, the equivalent of a 13 kΩ � to 30
kΩ resistor to +3.3 V power is internally connected to the pin. Similarly, if we set the corresponding
PDE (Pull-Down Enable) bit on an input pin, the equivalent of a 13 kΩ to 35 kΩ resistor to ground is
internally connected to the pin. We cannot have both pull-up and a pull-down resistor, so setting a bit
in one register automatically clears the corresponding bit in the other register.

A typical application of pull-up and pull-down mode is the interface of simple switches. Using these
modes eliminates the need for an external resistor when interfacing a switch. Compare the interfaces
on Port A to the interfaces on Port B illustrated in Figure 9.9. The PA2 and PA3 interfaces will use
software-configured internal resistors, while the PB2 and PB3 interfaces use actual resistors. The
PA2 and PB2 interfaces in Figure 9.9a) implement negative logic switch inputs, and the PA3 and PB3
interfaces in Figure 9.9b) implement positive logic switch inputs.

Checkpoint 9.5: What do negative logic and positive logic mean in this context?

Figure 9.9. Edge-triggered interfaces can generate interrupts on a switch touch.

Using edge triggering to synchronize software to hardware centers around the operation of the trigger
flags, RIS. A busy-wait interface will read the appropriate RIS bit over and over, until it is set. When
the RIS bit is set, the software will clear the RIS bit (by writing a one to the corresponding IC bit)
and perform the desired function. With interrupt synchronization, the initialization phase will arm the
trigger flag by setting the corresponding IME bit. In this way, the active edge of the pin will set the
RIS and request an interrupt. The interrupt will suspend the main program and run a special interrupt
service routine (ISR). This ISR will clear the RIS bit and perform the desired function. At the end of
the ISR it will return, causing the main program to resume. In particular, five conditions must be
simultaneously true for an edge-triggered interrupt to be requested:
• The trigger flag bit is set (RIS)
• The arm bit is set (IME)
• The level of the edge-triggered interrupt must be less than BASEPRI
• The edge-triggered interrupt must be enabled in the NVIC_EN0_R
• Bit 0 of the special register PRIMASK is 0
Checkpoint 9.6: What values to you write into DIR, AFSEL, PUE, and PDE to configure the switch
interfaces of PA2 and PA3 in Figure 9.9?

Table 9.4 listed the registers for Port A. The other ports have similar registers. We will begin with a
simple example that counts the number of rising edges on Port F bit 4 (Program 9.4). The
initialization requires many steps. (a) The clock for the port must be enabled. (b) The global
variables should be initialized. (c) The appropriate pins must be enabled as inputs. (d) We must
specify whether to trigger on the rise, the fall, or both edges. In this case we will trigger on the rise of
PF4. (e) It is good design to clear the trigger flag during initialization so that the first interrupt occurs
due to the first rising edge after the initialization has been run. We do not wish to trigger on a rising
edge that might have occurred during the power up phase of the system. (f) We arm the edge-trigger by
setting the corresponding bits in the IM register. (g) We establish the priority of Port Fby setting bits
23 – 21 in the NVIC_PRI7_R register as listed in Table 9.2. We activate Port F interrupts in the
NVIC by setting bit 30in the NVIC_EN0_R register, Table 9.3. There is no need to unlock PF4.

volatile uint32_t FallingEdges = 0;
void EdgeCounter_Init(void){
 SYSCTL_RCGCGPIO_R |= 0x20; // (a) activate clock for port F
 FallingEdges = 0; // (b) initialize counter
 GPIO_PORTF_DIR_R &= ~0x10; // (c) make PF4 in (built-in button)
 GPIO_PORTF_AFSEL_R &= ~0x10; // disable alt funct on PF4
 GPIO_PORTF_DEN_R |= 0x10; // enable digital I/O on PF4
 GPIO_PORTF_PCTL_R &= ~0x000F0000; // configure PF4 as GPIO
 GPIO_PORTF_AMSEL_R &= ~0x10; // disable analog functionality on PF4
 GPIO_PORTF_PUR_R |= 0x10; // enable weak pull-up on PF4
 GPIO_PORTF_IS_R &= ~0x10; // (d) PF4 is edge-sensitive
 GPIO_PORTF_IBE_R &= ~0x10; // PF4 is not both edges
 GPIO_PORTF_IEV_R &= ~0x10; // PF4 falling edge event
 GPIO_PORTF_ICR_R = 0x10; // (e) clear flag4
 GPIO_PORTF_IM_R |= 0x10; // (f) arm interrupt on PF4
 NVIC_PRI7_R = (NVIC_PRI7_R&0xFF00FFFF)|0x00A00000; // (g) priority 5
 NVIC_EN0_R = 0x40000000; // (h) enable interrupt 30 in NVIC
 EnableInterrupts(); // (i) Program 9.3
}
void GPIOPortF_Handler(void){
 GPIO_PORTF_ICR_R = 0x10; // acknowledge flag4
 FallingEdges = FallingEdges + 1;
}
Program 9.4. Interrupt-driven edge-triggered input that counts rising edges of
PF4 (EdgeInterrupt_xxx.zip).

This initialization is shown to enable interrupts in step (i). However, in most systems we would not
enable interrupts in the device initialization. Rather, it is good design to initialize all devices in the
system, then enable interrupts. All ISRs must acknowledge the interrupt by clearing the trigger flag
that requested the interrupt. For edge-triggered PF4, the trigger flag is bit 4 of
the GPIO_PORTF_RIS_R register. This flag can be cleared by writing a 0x10
to GPIO_PORTF_ICR_R .

If two or more triggers share the same vector, these requests are called polled interrupts, and the ISR
must determine which trigger generated the interrupt. If the requests have separate vectors, then these
requests are called vectored interrupts and the ISR knows which trigger caused the interrupt.
Example 9.1 illustrates these differences.

Example 9.1. Interface two switches and signal associated semaphores when each switch is pressed.

Solution: We will assume the switches do not bounce (interfacing switches that bounce will be
covered later in the chapter). The semaphore SW1 will be signaled when switch SW1 is pressed, and
similarly, semaphore SW2 will be signed when switch SW2 is pressed. In the first solution, we will
use vectored interrupts by connecting one switch to Port C and the other switch to Port E (left side of
Figure 9.10). Since the two sources have separate vectors, the switch on Port C will automatically
activate GPIOPortC_Handler and switch on Port Ewill automatically
activate GPIOPortE_Handler . The left side of Figures 9.10 and 9.11 show the solution with
vectored interrupts.

Figure 9.10. Two solutions of switch-triggered interrupts.

Figure 9.11. Flowcharts for a vectored and polled interrupt.

The software solution using vectored interrupts is in Program 9.5. We initialize two I/O pins as inputs
with rising edge interrupt triggers. In this way, we get an interrupt request when the switch is touched.
I.e., an interrupt occurs on the 0 to 1 rising edge either of PC4 or PE4. To acknowledge an interrupt
we clear the trigger flag. Writing a 0x10 to the interrupt clearregister, GPIO_PORTn_ICR_R , will
clear bit 4 in the RIS register without affecting the other bits in the RIS register. Notice that the
acknowledgement uses an “ = ” instead of an “ |= ” because this register is write-only, such that
writing ones to IC register the will clear corresponding bits in the RIS register. Writing zeros to the
IC register has no effect.

volatile uint8_t SW1, SW2; // semaphores
void VectorButtons_Init(void){
 SYSCTL_RCGCGPIO_R |= 0x14; // activate port C and port E

 SW1 = 0; // clear semaphores
 SW2 = 0;
 GPIO_PORTC_AMSEL_R &= ~0x10; // disable analog function on PC4
 GPIO_PORTC_PCTL_R &= ~0x000F0000; // configure PC4 as GPIO
GPIO_PORTC_DIR_R &= ~0x10; // make PC4 in
 GPIO_PORTC_AFSEL_R &= ~0x10; // disable alt funct on PC4
 GPIO_PORTC_DEN_R |= 0x10; // enable digital I/O on PC4
 GPIO_PORTC_IS_R &= ~0x10; // PC4 is edge-sensitive
 GPIO_PORTC_IBE_R &= ~0x10; // PC4 is not both edges
 GPIO_PORTC_IEV_R |= 0x10; // PC4 rising edge event
 GPIO_PORTC_ICR_R = 0x10; // clear flag4
 GPIO_PORTC_IM_R |= 0x10; // enable interrupt on PC4
 NVIC_PRI0_R = (NVIC_PRI0_R&0xFF00FFFF)|0x00400000; // priority 2

 GPIO_PORTE_AMSEL_R &= ~0x10; // disable analog function on PE4
 GPIO_PORTE_PCTL_R &= ~0x000F0000; // configure PE4 as GPIO
 GPIO_PORTE_DIR_R &= ~0x10; // make PE4 in
 GPIO_PORTE_AFSEL_R &= ~0x10; // disable alt funct on PE4
 GPIO_PORTE_DEN_R |= 0x10; // enable digital I/O on PE4
 GPIO_PORTE_IS_R &= ~0x10; // PE4 is edge-sensitive
 GPIO_PORTE_IBE_R &= ~0x10; // PE4 is not both edges
 GPIO_PORTE_IEV_R |= 0x10; // PE4 rising edge event
 GPIO_PORTE_ICR_R = 0x10; // clear flag4
 GPIO_PORTE_IM_R |= 0x10; // enable interrupt on PE4
 NVIC_PRI1_R = (NVIC_PRI1_R&0xFFFFFF00)|0x00000040; // priority 2
 NVIC_EN0_R = 0x00000014; // enable interrupts 2 and 4 in NVIC
 EnableInterrupts();
}
void GPIOPortC_Handler(void){
 GPIO_PORTC_ICR_R = 0x10; // acknowledge flag4
 SW1 = 1; // signal SW1 occurred
}
void GPIOPortE_Handler(void){
 GPIO_PORTE_ICR_R = 0x10; // acknowledge flag4
 SW2 = 1; // signal SW2 occurred
}
Program 9.5. Example of a vectored interrupt (TwoButtonVector_xxx.zip).

The right sides of Figures 9.10 and 9.11 show the solution with polled interrupts. Touching either
switch will cause a Port Einterrupt. The ISR must poll to see which one or possibly both caused the
interrupt. Fortunately, even though they share a vector, the acknowledgements are separate. The
code GPIO_PORTE_ICR_R=0x10; will clear bit 4 in the status register without affecting bit 5, and
the code GPIO_PORTE_ICR_R=0x20; will clear bit 5 in the status register without affecting bit 4.
This means the timing of one switch does not affect whether or not pushing the other switch will
signal its semaphore. On the other hand, whether we are using polled or vectored interrupt, because
there is only one processor, the timing of one interrupt may delay the servicing of another interrupt.

The polled solution is Program 9.6. It takes three conditions to cause an interrupt. 1) The PE4 and
PE5 are armed in the initialization; 2) The LM3S/TM4Cis enabled for interrupts with
the EnableInterrupts() function; 3) The trigger GPIO_PORTE_RIS_R is set on the rising edge of
PE4 or the trigger GPIO_PORTE_RIS_R is set on the rising edge of PE5. Because the two triggers
have separate acknowledgments, if both triggers are set, both will get serviced. Furthermore, the
polling sequence does not matter.

volatile uint8_t SW1, SW2; // semaphores
void PolledButtons_Init(void){
 SYSCTL_RCGCGPIO_R |= 0x10; // activate port E
 SW1 = 0; // clear semaphores
 SW2 = 0;
 GPIO_PORTE_AMSEL_R &= ~0x30;// disable analog function on PE5-4
 GPIO_PORTE_PCTL_R &= ~0x00FF0000; // configure PE5-4 as GPIO
 GPIO_PORTE_DIR_R &= ~0x30; // make PE5-4 in
 GPIO_PORTE_AFSEL_R &= ~0x30;// disable alt funct on PE5-4
 GPIO_PORTE_DEN_R |= 0x30; // enable digital I/O on PE5-4
 GPIO_PORTE_IS_R &= ~0x30; // PE5-4 is edge-sensitive
 GPIO_PORTE_IBE_R &= ~0x30; // PE5-4 is not both edges
 GPIO_PORTE_IEV_R |= 0x30; // PE5-4 rising edge event
 GPIO_PORTE_ICR_R = 0x30; // clear flag5-4
 GPIO_PORTE_IM_R |= 0x30; // enable interrupt on PE5-4
 NVIC_PRI1_R = (NVIC_PRI1_R&0xFFFFFF00)|0x00000040; // priority 2
 NVIC_EN0_R = 0x00000010; // enable interrupt 4 in NVIC
 EnableInterrupts();
}
void GPIOPortE_Handler(void){
 if(GPIO_PORTE_RIS_R&0x10){ // poll PE4
 GPIO_PORTE_ICR_R = 0x10; // acknowledge flag4
 SW1 = 1; // signal SW1 occurred
 }
 if(GPIO_PORTE_RIS_R&0x20){ // poll PE5
 GPIO_PORTE_ICR_R = 0x20; // acknowledge flag5
 SW2 = 1; // signal SW2 occurred
 }

}
Program 9.6. Example of a polled interrupt (TwoButtonPoll_xxx.zip).

One of the problems with switches is called switch bounce. Many inexpensive switches will
mechanically oscillate for up to a few milliseconds when touched or released. It behaves like an
underdamped oscillator. These mechanical oscillations cause electrical oscillations such that a port
pin will oscillate high/low during the bounce. In some cases this bounce should be removed. To
remove switch bounce we can ignore changes in a switch that occur within 10 ms of each other. In
other words, recognize a switch transition, disarm interrupts for 10ms, and then rearm after 10 ms.
Alternatively, we could record the time of the switch transition. If the time between this transition and
the previous transition is less than 10ms, ignore it. If the time is more than 10 ms, then accept and
process the input as a real event.

9.6. SysTick Periodic Interrupts
One application of periodic interrupts is called “intermittent polling” or “periodic polling”. Figure
9.12 shows busy wait side by side with periodic polling. In busy-wait synchronization, the main
program polls the I/O devices continuously. With periodic polling, the I/O devices are polled on a
regular basis (established by the periodic interrupt.) If no device needs service, then the interrupt
simply returns.

Figure 9.12. On the left is busy-wait, and on the right is periodic polling.

If the polling period is Δt, then on average the interface latency will be ½Δt, and the worst case
latency will be Δt. Periodic polling is appropriate for low bandwidth devices where real-time
response is not necessary. This method frees the main program from the I/O tasks. We use periodic
polling if the following two conditions apply:
1. The I/O hardware cannot generate interrupts directly
2. We wish to perform the I/O functions in the background
For a data acquisition system, it is important to establish an accurate sampling rate. The time in
between ADC samples must be equal and known in order for the digital signal processing to function
properly. Similarly for microcontroller-based control systems, it is important to maintain both the
ADC and DAC timing. In the next section, we will see the general purpose timers can also create
periodic interrupts.

The SysTick timer is a simple way to create periodic interrupts. A periodic interrupt is one that is
requested on a fixed time basis. This interfacing technique is required for data acquisition and control
systems, because software servicing must be performed at accurate time intervals.

Table 9.6 shows the SysTick registers used to create a periodic interrupt. SysTick has a 24-bit
counter that decrements at the bus clock frequency. Let fBUS be the frequency of the bus clock, and let n
be the value of the RELOAD register. The frequency of the periodic interrupt will be fBUS/(n+1).
First, we clear the ENABLE bit to turn off SysTick during initialization. Second, we set the
RELOADregister. Third, we write to the NVIC_ST_CURRENT_R value to clear the counter.
Lastly, we write the desired mode to the control register, NVIC_ST_CTRL_R . We must set
CLK_SRC=1, because CLK_SRC=0 external clock mode is not implemented on the LM3S/TM4C
family. We set INTENto enable interrupts. We establish the priority of the SysTick interrupts using the
TICK field in the NVIC_SYS_PRI3_R register. We need to set the ENABLE bit so the counter will
run. When the CURRENT value counts down from 1 to 0, the COUNT flag is set. On the next clock,
the CURRENT is loaded with the RELOAD value. In this way, the SysTick counter (CURRENT) is
continuously decrementing. If the RELOAD value is n, then the SysTick counter operates at modulo
n+1 (…n, n-1, n-2 … 1, 0, n, n-1, …). In other words, it rolls over every n+1 counts. Thus, the
COUNT flag will be configured to trigger an interrupt every n+1 counts. Program 9.7 shows a simple
example of SysTick. SysTick is the only interrupt on the LM3S/TM4C that has an automatic
acknowledge. Notice there is no explicit software step in the ISR to clear the trigger flag.

Address 31-
24

23-
17

16 15-3 2 1 0 Name

$E000E010 0 0 COUNT 0 CLK_SRC INTEN ENABLE NVIC_ST_CTRL_R
$E000E014 0 24-bit RELOAD value NVIC_ST_RELOAD_R
$E000E018 0 24-bit CURRENT value of SysTick counter NVIC_ST_CURRENT_R

Address 31-29 28-

24
23-21 20-

8
7-5 4-0 Name

$E000ED20 TICK 0 PENDSV 0 DEBUG 0 NVIC_SYS_PRI3_R

Table 9.6. SysTick registers.

volatile uint32_t Counts;
#define PD0 (*((volatile uint32_t *)0x40007004))
void SysTick_Init(uint32_t period){
 SYSCTL_RCGCGPIO_R |= 0x08; // activate port D
 Counts = 0;
 GPIO_PORTD_AMSEL_R &= ~0x01; // no analog
 GPIO_PORTD_PCTL_R &= ~0x0000000F; // regular GPIO function
 GPIO_PORTD_DIR_R |= 0x01; // make PD0 out
 GPIO_PORTD_AFSEL_R &= ~0x01; // disable alt funct on PD0
 GPIO_PORTD_DEN_R |= 0x01; // enable digital I/O on PD0
 NVIC_ST_CTRL_R = 0; // disable SysTick during setup
 NVIC_ST_RELOAD_R = period - 1;// reload value
 NVIC_ST_CURRENT_R = 0; // any write to current clears it
 NVIC_SYS_PRI3_R = (NVIC_SYS_PRI3_R&0x00FFFFFF)|0x40000000; //priority 2
 NVIC_ST_CTRL_R = 0x00000007; // enable with core clock and interrupts
 EnableInterrupts();
}

void SysTick_Handler(void){
 PD0 ^= 0x01; // toggle PD0
 Counts = Counts + 1;
}
Program 9.7. Implementation of a periodic interrupt using SysTick
(PeriodicSysTickInts_xxx.zip).

9.7. Timer Periodic Interrupts
The LM3S/TM4C microcontrollers have timers that are separate and distinct from SysTick, see
Figure 9.14. In periodic timer mode the timer is configured as a 16-bit down-counter with an optional
8-bit prescaler that effectively extends the counting range of the timer to 24 bits. The timer is
compared to a preloaded constant, and when the timer equals the constant a trigger flag is set and the
output pin is inverted. We select periodic timer mode by setting the 2-bit TAMR (or TBMR) field of
the TIMER0_TAMR_R (or TIMER0_TBMR_R) to 0x02. If we set this field to 0x01, the timer is
in one shot mode. In periodic mode the timer runs continuously, and in one shot mode, it runs once and
stops. The periodic mode can also be used to create pulse width modulated outputs.

We will use output compare to create time delays, trigger a periodic interrupts, and control ADC
sampling. We will also use output compare together with input capture to measure frequency. Output
compare and input capture can also be combined to measure period and frequency over a wide range
of ranges and resolutions. We may run the output compare modes with or without an external output
pin attached.

Each periodic timer module has
An external output pin, e.g., CCP0,
A flag bit, e.g., TATORIS
A control bit to connect the output to the ADC as a trigger, e.g., TAOTE,
An interrupt arm bit, e.g., TATOIM
A 16-bit output compare register, e.g., TIMER0_TAILR_R
An 8-bit prescaleregister, e.g., TIMER0_TAPR_R
An 8-bit prescale match register, e.g., TIMER0_TAPMR_R

The members of the LM3S/TM4C family have varying number of timers, see Figure 9.13. When
designing a system using the timers, you will need to consult the datasheet for your particular
microcontroller. In particular, some of the channels do not have an associated output pin. The
TM4C123 has six timers, and the TM4C1294 has eight timers. See Tables 4.3, 4.4 to see which I/O
pins the TM4C123/TM4C1294 uses for the timers.

Figure 9.13. Timer pins on the LM3S/TM4C microcontroller are labeled CCP.

To connect the output pin to the timer, we must set the alternative function bit for that pin. The output
compare pin is an output of the computer, hence can be used for debugging or to control an external
device. An output compare event occurs, changing the state of the output pin, when the 16-bit timer
matches the 16-bit TIMER0_TAILR_R register. The timer will be used without the output pin if the
corresponding alternative function bit is clear.

The output compare event occurs when a timer counts down to zero. The timer mode specifies what
effect the output compare event will have on the output pin or the rest of the system. If the timer is in
one-shot or periodic timer mode, the TATORIS (or TBTORIS) bit of the Raw Interrupt Status
register (TIMER0_RIS_R) is set. If the arm bit TATOIM (or TBTOIM) in the TIMER0_IMR_R
register is set, a timer interrupt is requested. The hardware can also trigger an ADC conversion at this
time. If the timer is in one-shot mode, it stops counting after the first output compare event. In periodic
timer mode, the timer continues counting indefinitely until explicitly disabled by clearing the TAEN
(or TBEN) enable bit in the TIMER0_CTL_R register. Just like the input capture, the output
compare flag is cleared by writing a 1 to its corresponding bit in the Interrupt Clear Register
(TIMER0_ICR_R).

One simple application of output compare is to create a fixed time delay. Let delay be the number of
bus cycles you wish to wait, up to 65,535. The steps to create the delay are:

0) Enable the General-Purpose Timer Module in of SYSCTL_RCGCTIMER_R
1) Ensure that the timer is disabled before making any changes (clear TAEN)
2) Put the timer module in 16-bit mode by writing 0x4 to TIMER0_CFG_R
3) Write 0x1 to TAMR
4) Load the desired delay into TIMER0_TAILR_R
5) Write a 1 to CATOCINTof TIMER0_ICR_R to clear the time-out flag
6) Set the TAEN bit to start the timer and begin counting down from delay
7) Poll TATORIS of TIMER0_RIS_R , wait is over when this bit is set
A second application of output compare is to create a periodic interrupt. Let prescale be an 8-bit
number loaded into TIMER0_TAPR_R . The timer frequency will be bus frequency divided by
prescale+1. The default prescale is 0, meaning the timer frequency equals the bus frequency. Let
period be the 32-bit value loaded into TIMER0_TAILR_R . The steps to create the periodic
interrupt are:

0) Enable the General-Purpose Timer Module in of SYSCTL_RCGCTIMER_R
1) Ensure that the timer is disabled before making any changes (clear TAEN)
2) Put the timer module in 32-bit mode by writing 0x00to TIMER0_CFG_R
3) Write 0x2 to TAMR to configure for periodic mode
4) Load period into TIMER0_TAILR_R
5) Load prescale into TIMER0_TAPR_R
6) Write a 1 to CATOCINTof TIMER0_ICR_R to clear the time-out flag
7) Write a 1 to TATOIENof TIMER0_IMR_R to arm the time-out interrupt
8) Set the priority in the correct NVIC Priority register

9) Enable the correct interrupt in the correct NVIC Interrupt Enable register
10) Set the TAEN bit to start the timer and begin counting down from period

If the bus period is Δt, then the timer interrupt period will be

Δt*(prescale+1)*(period+1).

A few cycles of instructions should separate Steps 0 and 1 to ensure that the timer is receiving a clock
before the program attempts to use it. Move Step 0 earlier in your program or insert dummy
instructions between Steps 0 and 1 if you get a Hardware Fault. The maximum period can be 32 bits
without the prescaler. Resolution is 1 bus cycle. Please check the errata for your microcontroller.
Many LM3S microcontrollers have hardware bugs associated with 32-bit timer modes. However, we
will use 32-bit mode on the TM4C microcontrollers.

Checkpoint 9.7: When is TATORIS trigger flag set in periodic timer mode?

Example 9.2. Design a system to execute a user task at a periodic rate with units of µs.

Solution: We will generate a periodic interrupt and call the user task from the ISR. Assuming a 80
MHz bus clock, we multiply the period by 80 to match the units of 1 µs. To define the user task we
will create a private global variable containing a pointer to the user’s function. We will set the
variable during initialization and call that function at run time. Another name for a dynamically set
function pointer is a hook. The TIMER0_TAILR_R is 32 bits, so the maximum interrupt period is
12.5ns*232, which is about 53 seconds.

void (*PeriodicTask)(void); // user function

The initialization sequence follows the 1 – 10 outline listed above (Program 9.8).

void Timer3_Init(void(*task)(void), uint32_t period){
 SYSCTL_RCGCTIMER_R |= 0x0008; // 0) activate timer3
 PeriodicTask = task; // user function (also delay)
TIMER3_CTL_R = 0x00000000; // 1) disable timer3 during setup
 TIMER3_CFG_R = 0x00000000; // 2) configure for 32-bit timer mode
 TIMER3_TAMR_R = 0x00000002; // 3) configure for periodic mode
 TIMER3_TAILR_R = (period*80)-1; // 4) reload value
 TIMER3_TAPR_R = 0; // 5) 12.5ns timer3
 TIMER3_ICR_R = 0x00000001; // 6) clear timer3 timeout flag
 TIMER3_IMR_R |= 0x00000001; // 7) arm timeout interrupt
 NVIC_PRI8_R = (NVIC_PRI8_R&0x00FFFFFF)|0x40000000; // 8) priority 2
 NVIC_EN1_R = 1<<(35-32); // 9) enable IRQ 35 in NVIC
 TIMER3_CTL_R |= 0x00000001; // 10) enable timer3
 EnableInterrupts();
}
void Timer3A_Handler(void){
 TIMER3_ICR_R = 0x00000001; // acknowledge timer3 timeout

 (*PeriodicTask)(); // execute user task
}
Program 9.8. Implementation of a periodic interrupt using Timer3A
(PeriodicTimer0AInts_xxx.zip).

Example 9.3. Design an interface 32 Ω speaker and use it to generate a loud 1 kHz sound.

Solution: At 3V, a 32 Ω speaker will require a current of about 100 mA. We will use the 2N2222
circuit in Figure 8.16 because it can sink at least three times the current needed for this speaker. In
this example the interface will be connected to PA5 (any port pin could have been used). We select a
+3.3V supply and connect it to the +V in the circuit. The needed base current is Ib = Icoil /hfe =
100mA/100 = 1.0mA.

The desired interface resistor is Rb ≤ (VOH - Vbe)/ Ib = (3.3-0.6)/1.0mA = 2.7 kΩ. To cover the
variability in hfe, we will use a 1.5 kΩ resistor instead of the 2.7 kΩ. The actual voltage on the
speaker when active will be +3.3-0.3 = 3V. We can make the sound quieter by using a larger resistor
for Rb. To generate the 1 kHz sound we need a 1 kHz square wave. There are many good methods to
generate square waves. In this example we will implement one of the simplest methods: period
interrupt and toggle an output pin in the ISR. To generate a 1 kHz wave we will toggle the PA5 pin
every 500 µs. Assuming a 80 MHz crystal and no prescale, TIMER3_TAILR_R value will equal
500*80-1 = 39999. See Program 9.9.

#define PA5 (*((volatile uint32_t *)0x40004080))
void PA5toggle(void){
 PA5 = PA5^0x20; // make output sound
}
void Sound_Init(void){
 SYSCTL_RCGCGPIO_R |= 0x01; // 1) activate clock for Port A
 while((SYSCTL_PRGPIO_R&0x01) == 0){};
 GPIO_PORTA_AMSEL_R &= ~0x20; // no analog
 GPIO_PORTA_PCTL_R &= ~0x00F00000; // regular GPIO function
 GPIO_PORTA_DIR_R |= 0x20; // make PA5 out
 GPIO_PORTA_AFSEL_R &= ~0x20; // disable alt funct on PA5
 GPIO_PORTA_DEN_R |= 0x20; // enable digital I/O on PA5
 Timer3_Init(&PA5toggle,500); // Program 9.8 (counts at 1us)
}
Program 9.9. Sound output using a periodic interrupt.

Observation: To make a quieter sound, we could use a larger resistor between the PA5 output and the
2N2222 base.

9.8. Hardware debugging tools
Microcomputer related problems often require the use of specialized equipment to debug the system
hardware and software. Two very useful tools are the logic analyzer and the oscilloscope. A logic
analyzer is essentially a multiple channel digital storage scope with many ways to trigger, see Figure
9.14. As a troubleshooting aid, it allows the experimenter to observe numerous digital signals at
various points in time and thus make decisions based upon such observations. As with any debugging
process, it is necessary to select which information to observe out of a vast set of possibilities. Any
digital signal in the system can be connected to the logic analyzer. Figure 9.14 shows an 8-channel
logic analyzer, but real devices can support 128 or more channels. One problem with logic analyzers
is the massive amount of information that it generates. With logic analyzers (similar to other
debugging techniques) we must strategically select which signals in the digital interfaces to observe
and when to observe them. In particular, the triggering mechanism can be used to capture data at
appropriate times eliminating the need to sift through volumes of output. Sometimes there are extra
I/O pins on the microcontroller, not needed for the normal operation of the system (shown as the
bottom two wires in Figure 9.14). In this case, we can connect the pins to a logic analyzer, and add
software debugging instruments that set and clear these pins at strategic times within the software. In
this way we can visualize the hardware/software timing.

Figure 9.14. A logic analyzer and example output.

An oscilloscope can be used to capture voltage versus time data. You can adjust the voltage range and
time scale. The oscilloscope trigger is how and when the data will be capture. In normal mode, we
measure patterns that repeat over and over, and we use the trigger (e.g., rising edge of channel 1) to
freeze the image. In single shot mode, the display is initially blank, and once the trigger occurs, one
trace is captured and display.

9.9. Profiling
Profiling is similar to performance debugging because both involve dynamic behavior. Profiling is a
debugging process that collects the time history of strategic variables. For example if we could
collect the time-dependent behavior of the program counter, then we could see the execution patterns
of our software. We can profile the execution of a multiple thread software system to detect reentrant
activity. We can profile a software system to see which of two software modules is run first. For a
real-time system, we need to guarantee the time between when software should be run and when it
actually runs is short and bounded. Profiling allows us to measure when software is actually run,
experimentally verifying the system is real time.

Checkpoint 9.8: Write two friendly debugging instruments, one that sets Port B bit 3 high, and the
other makes it low.

Observation: Debugging instruments need to save and restore registers so the original function is not
disrupted.

9.9.1 Profiling using a software dump to study execution
pattern
In this section, we will use a software instrument to study the execution pattern of our software. In
order to collect information concerning execution we will define a debugging instrument that saves
the time and location in an array (like a dump), as shown in Program 9.10. The debugging session
will initialize the private global N to zero. In this profile, the place p will be an integer, uniquely
specifying from which place in the software Profile is called. The compiledversion of Profile with
optimization level 0 requires about 40 cycles to execute. If the microcontroller is running at 80 MHz,
this debugging instrument consumes about 0.5 µs per call. This amount of time would usually be
classified as minimally intrusive.

uint32_t Time[100];
uint32_t Place[100];
uint32_t N;
void Profile(uint32_t p){
 if(N<100){
 Time[N] = NVIC_ST_CURRENT_R; // record time
 Place[N] = p; // record place
 N++;
 }
}
Program 9.10. Debugging instrument for profiling.

Next, we add calls to the debugging instrument at strategic locations in the software, giving a different

number for each place, as shown in Program 9.11. By observing these data, we can determine both a
time profile (when=SysTick timer) and an execution profile (where= p) of the software execution.
From Section 4.7 we previously estimated this function runs in about 100 to 300 cycles. 18 calls to
the debugger, each at 40 cycles, will slow down execution by over 700 cycles. Therefore, profiling
this program with a dump would be highly intrusive. This profiling method is appropriate for
situations where the time between dumps is much longer than 40 cycles.
uint32_t sqrt(uint32_t s){ int n; // loop counter
uint32_t t; // t*t will become s
Profile(0);
 t = s/16+1; // initial guess
 for(n = 16; n; --n){ // will finish
Profile(1);
 t = ((t*t+s)/t)/2;
 }
Profile(2);
 return t;
}
Program 9.11. A time/position profile dumping into a data array.

9.9.2. Profiling using an Output Port
In this section, we will discuss a hardware/software combination to visualize program activity. Our
debugging instrument will set output port bits. We will place these instruments at strategic places in
the software. If we are using a regular oscilloscope, then we must stabilize the system so that the
function is called over and over. We connect the output pins to an oscilloscope or logic analyzer and
observe the program activity. Program 9.12 uses an output port to profile. Assume Port A pins 4 and 5
are initialized as outputs and connected to the logic analyzer or scope. Analysis of the assembly code
generated by the compiler shows this code will execute at most 5 cycles. Therefore this is less
intrusive than the dump in Program 9.11.
#define PA54 (*((volatile uint32_t *)0x400040C0))
uint32_t sqrt(uint32_t s){ int n; // loop counter
uint32_t t; // t*t will become s
 PA54 = 0x10;
 t = s/16+1; // initial guess
 for(n = 16; n; --n){ // will finish
 PA54 = 0x20;
 t = ((t*t+s)/t)/2;
 PA54 = 0x30;
 }
PA54 = 0x00;
 return t;
}

Program 9.12. A time/position profile using two output bits.

9.9.3. *Thread Profile
When more than one thread is active, you could use the previous technique to visualize the thread that
is currently running. For each thread, we assign an output pin. The debugging instrument would set the
corresponding bit high when the thread starts and clear the bit when the thread stops. We would then
connect the output pins to a multiple channel scope or logic analyzer to visualize in real time the
thread that is currently running. Program 9.13 shows a simple thread profile of a system with a
foreground thread (main program) and two background threads (SysTick and Timer). Three Port A
outputs are used to visualize execution
PA5 will toggle when the software is running in the foreground
PA4 will pulse high then low when executing the SysTick ISR
PA3 will pulse high then low when executing the Timer ISR
The SysTick and Timer initializations were shown previously in Program 9.7 and 9.8 respectively.
The timer is running at priority3 and SysTick is running at priority 2 (higher). The debugging
instruments are shown in bold.

volatile uint32_t Counts;
#define PA5 (*((volatile uint32_t *)0x40004080))
#define PA4 (*((volatile uint32_t *)0x40004040))
#define PA3 (*((volatile uint32_t *)0x40004020))
void Timer0A_Handler(void){
 PA3 = 0x08;
 TIMER0_ICR_R = TIMER_ICR_TATOCINT;// acknowledge timer0A timeout
 PA3 = 0;
}
void SysTick_Handler(void){
 PA4 = 0x10;
 Counts = Counts + 1;
 PA4 = 0;
}
int main(void){
 PLL_Init(); // configure for 50 MHz clock
 SYSCTL_RCGCGPIO_R |= 0x01; // 1) activate clock for Port A
 while((SYSCTL_PRGPIO_R&0x01) == 0){};
 GPIO_PORTA_AMSEL_R &= ~0x38; // disable analog function
 GPIO_PORTA_PCTL_R &= ~0x00FFF000; // GPIO
 GPIO_PORTA_DIR_R |= 0x38; // make PA5-3 outputs
 GPIO_PORTA_AFSEL_R &= ~0x38; // disable alt func on PA5-3
 GPIO_PORTA_DEN_R |= 0x38; // enable digital I/O on PA5-3
 Timer0A_Init(5); // 200 kHz
 SysTick_Init(304); // 164 kHz

 EnableInterrupts();
 while(1){
 PA5 = PA5^0x20;
 }
}
Program 9.13. Thread profile using output pins a logic analyzer
(Profile_xxx.zip).

Bit-specific addresses are used so the two accesses to Port A do not interact with each other. The
results shown in Figure 9.15 demonstrate the two interrupts occurs periodically (measured with
Analog Discovery by Digilent Inc.) Furthermore the results show, most of the time the software is
running in the foreground. The time to execute the ISR is short compared to the time between interrupt
requests. This represents a good interrupt design. The following labels in Figure 9.15 illustrate these
events

A) The main program is running
B) A Timer0 interrupt service has begun
C) A SysTick interrupt service has begun
D) The SysTick ISR is finished
E) The Timer0 ISR is finished
F) The main program resumes

The A-B-C-D-E-F labels illustrate the case when that the SysTick interrupt has suspended the
execution of the Timer ISR. The other interrupts on this trace do not overlap.

Figure 9.15. Real-time thread profile measured with a logic analyzer. Trigger is
set for condition PA3 is high (running Timer0 ISR) and rising edge of PA4 (start
of SysTick ISR).

9.10. Exercises
9.1 If you are using SysTick interrupts, how do you set the priority to level 6?

9.2 If you are using Timer0A interrupts, how do you set the priority to level 5?

9.3 If you are using edge trigger F and edge trigger G, can you set their priority to the same level?
What happens if the two triggers occur at the same time?

9.4 List the steps automatically occurring in hardware as the context switches from foreground to
background.

9.5 While executing an ISR can the software tell if this trigger suspended the main program or a
lower priority interrupt?

9.6 Explain tail chaining. Explain late arriving interrupt.

9.7 What performance specification will degrade if your software sets I=1, executes for 1 ms, and
then clears I back to 0?

D9.8 Create the repeating waveform on PD0 output as shown below. Design the software system
using SysTick periodic interrupts. Show all the software for this system: direction registers, global
variables, SysTick initialization, main program, and SysTick ISR. The main program initializes the
system, and then executes a do-nothing loop. The SysTick ISR performs output to Port D. Please make
your code that accesses Port D friendly. Variables you need should be allocated in the appropriate
places.

D9.9 Perform the design described in D9.8 using Timer0A interrupts.

D9.10 Create the repeating waveform on PE0,PE1 output as shown below. Design the software
system using SysTick periodic interrupts. Show all the software for this system: direction registers,
global variables, SysTick initialization, main program, and SysTick ISR. The main program
initializes the system, and then executes a do-nothing loop. The SysTick ISR performs output to Port
E. Please make your code that accesses Port E friendly. Variables you need should be allocated in the
appropriate places.

D9.11 Perform the design described in D9.10 using Timer0A interrupts.

D9.12 Write interrupting SysTick software that counts a global variable at 1 Hz. Give the
initialization, and the ISR.

D9.13 Write interrupting SysTick software in C or assembly that maintains the time of day. Give the
initialization, and the ISR. The initial time of day is passed in when initialization is called. Register
R0 contains the initial hour, Register R1 contains the initial minute. Assume the initial seconds are 0.
Implement military time, where the hour goes from 0 to 23. Include a function called Time_Get that
returns the time in hours:minutes:seconds.

D9.14 Redesign the FSM in Homework 6.13 in C or assembly to run in the background using Timer
interrupts. There are no backward jumps in the ISR.

D9.15 Redesign the FSM in Homework 6.14 in C or assembly to run in the background using SysTick
interrupts. There are no backward jumps in the ISR. Execute the FSM every 2 ms.

D9.16 Redesign the FSM in Homework 6.15 in C or assembly to run in the background using SysTick
interrupts. There are no backward jumps in the ISR. Execute the FSM every 10 ms.

D9.17 Interface a unipolar stepper motor (5 wires) to the microcontroller. Each coil requires 500 mA
at 12V. There are 200 steps per revolution. Write software that spins the motor at 1 rps, using timer
interrupts.

D9.18 Interface a unipolar stepper motor (5 wires) to the microcontroller. Each coil requires 100 mA
at 6V. There are 36 steps per revolution. Write software in C or assembly that spins the motor at 10
rps, using Timer0A interrupts.

D9.19 Interface a bipolar stepper motor (4 wires) to the microcontroller. Each coil requires 500 mA
at 12V. There are 200 steps per revolution. Write software in C or assembly that spins the motor at 5
rps, using Timer0A interrupts.

D9.20 Interface a 32 Ω speaker (2 wires) to the microcontroller. To make a sound, output a 1 kHz
square wave to the interface, creating about 1 V peak-to-peak on the speaker (about 10 mA pulsed
current). Use the +3.3V supply and a 2N2222 transistor. Write one subroutine to activate the sound
(arm Timer0A interrupts), and a second subroutine to stop the sound (disarm Timer0A). Write in C or
assembly.

D9.21. The students in a class are specifies as an array of structures. Write C code to navigate
through the class array and print all student records in the following format: first initial, last initial,
id, and teammate’s id.

struct Student {
 char Initials[2];
 int16_t id;
 struct Student *teammate;
};
typedef struct Student SType;

#define JVpt &class[4]
#define RYpt &class[5]
SType class[6] = {
{{'X','Y'},123, RSpt}, // XY
{{'A','B'}, 23, RYpt}, // AB
{{'R','S'}, 11, XYpt}, // RS

#define XYpt &class[0]
#define ABpt &class[1]
#define RSpt &class[2]
#define CDpt &class[3]

{{'X','Y'}, 44, JVpt}, // CD
{{'A','B'}, 42, CDpt}, // JV
{{'R','Y'},457, ABpt}}; // RY

9.11. Lab Assignments
Lab 9.1 Traffic light controller. Redesign the traffic light controller from Lab 6.2 to run within the
SysTick handler.

Lab 9.2 Stepper controller. Redesign the stepper motor controller from Lab 8.2 to run within the
SysTick handler.

Lab 9.3 Stop watch. Design, implement and test a stop watch. There should be at least 3 buttons and a
display (LCD or OLED).

Lab 9.4 Alarm clock. Design, implement and test an alarm clock. There should be at least 3 buttons,
one buzzer, and a display (LCD or OLED). Have the buttons request edge-triggered interrupts. It will
probably be necessary to debounce the switches.

10. Analog I/O Interfacing
Chapter 10 objectives are to:
• Discuss sampling and the Nyquist Theorem,
• Present a simple way to build a DAC,
• Use the DAC to generate sounds and music,
• Present some simple ADC conversion methods,
• Describe the internal ADC on the LM3S/TM4C.

The common theme of this chapter is analog I/O interfacing. The chapter begins with a discussion of
representing continuous signals with digital approximations. A digital to analog converter will be
used to generate waveforms and sound. This chapter covers some ADC modes built into the
microcontroller. The ADC is then used to design measurement systems. A control system includes
both inputs and outputs.

10.1. Approximating continuous signals in the
digital domain
An analog signal is one that is continuous in both amplitude and time. Neglecting quantum physics,
most signals in the world exist as continuous functions of time in an analog fashion (e.g., voltage,
current, position, angle, speed, force, pressure, temperature, and flow etc.) In other words, the signal
has an amplitude that can vary over time, but the value cannot instantaneously change. To represent a
signal in the digital domain we must approximate it in two ways: amplitude quantizing and time
quantizing. From an amplitude perspective, we will first place limits on the signal restricting it to
exist between a minimum and maximum value (e.g., 0 to +3V), and second, we will divide this
amplitude range into a finite set of discrete values. The range of the system is the maximum minus the
minimum value. The precision of the system defines the number of values from which the amplitude
of the digital signal is selected. Precision can be given in number of alternatives, binary bits, or
decimal digits. The resolution is the smallest change in value that is significant.

Figure 10.1 shows a temperature waveform (solid line), with a corresponding digital representation
sampled at 1 Hz and stored as a 5-bit integer number with a range of 0 to 31 oC. Because it is
digitized in both amplitude and time, the digital samples (individual dots) in Figure 10.1 must exist at
an intersection of grey lines. Because it is a time-varying signal (mathematically, this is called a
function), we have one amplitude for each time, but it is possible for there to be 0, 1, or more times
for each amplitude.

Figure 10.1. An analog signal is represented in the digital domain as discrete
samples

The second approximation occurs in the time domain. Time quantizing is caused by the finite sampling
interval. For example, the data are sampled every 1 second in Figure 10.1. In practice we will use a
periodic timer to trigger an analog to digital converter (ADC) to digitize information, converting from
the analog to the digital domain. Similarly, if we are converting from the digital to the analog domain,
we use the periodic timer to output new data to a digital to analog converter (DAC). The Nyquist
Theorem states that if the signal is sampled with a frequency of fs, then the digital samples only
contain frequency components from 0 to ½ fs. Conversely, if the analog signal does contain frequency
components larger than ½ fs, then there will be an aliasing error during the sampling process.
Aliasing is when the digital signal appears to have a different frequency than the original analog
signal.

Checkpoint 10.1: Why can’t the digital samples represent the little wiggles in the analog signal?

Checkpoint 10.2: Why can’t the digital samples represent temperatures above 31 oC?

Checkpoint 10.3: What range of frequencies is represented in the digital samples when the ADC is
sampled once a second, like Figure 10.1?

Checkpoint 10.4: If I wanted to create an analog output wave with frequencies components from 0 to
1000 Hz, what is the slowest rate at which I could output to the DAC?

10.2. Digital to Analog Conversion
A DAC converts digital signals into analog form as illustrated in Figure 10.2. Although one can
interface a DAC to a regular output port, most DACs are interfaced using high-speed synchronous
protocols, like the SSI. The DAC output can be current or voltage. Additional analog processing may
be required to filter, amplify or modulate the signal. We can also use DACs to design variable gain or
variable offset analog circuits.

The DAC precision is the number of distinguishable DAC outputs (e.g., 1024 alternatives, 10 bits).
The DAC range is the maximum and minimum DAC output (volts, amps). The DAC resolution is the
smallest distinguishable change in output. The units of resolution are in volts or amps depending on
whether the output is voltage or current. The resolution is the change in output that occurs when the
digital input changes by 1.

Range(volts) = Precision(alternatives) • Resolution(volts)

Figure 10.2. A 12-bit DAC provides analog output. A 12-bit ADC provides analog
input.

The DAC accuracy is (Actual - Ideal) / Ideal where Ideal is referred to the National Institute of
Standards and Technology (NIST). One can choose the full scale range of the DAC to simplify the
use of fixed-point math. For example, if an 8-bit DAC had a full scale range of 0 to 2.55 volts, then
the resolution would be exactly 10 mV. This means that if the DAC digital input were 123, then the
DAC output voltage would be 1.23 volts.

Checkpoint 10.5: An 8-bit DAC has a range of 0 to 2.5V, what is the approximate resolution?

Checkpoint 10.6: You need a DAC with a range of 0 to 2V, and a resolution of 1 mV. What is the
smallest number of bits could you use for the DAC?

A DAC gain error is a shift in the slope of the Vout versus digital input static response. A DAC offset
error is a shift in the Vout versus digital input static response. The DAC transient response has three
components: delay phase, slewing phase, ringing phase. During the delay phase, the input has changed
but the output has not yet begun to change. During the slewing phase, the output changes rapidly.
During the ringing phase, the output oscillates while it stabilizes. For purposes of linearity, let m,n be
digital inputs, and let f(n) be the analog output of the DAC, see Figure 10.3. One quantitative measure
of linearity is the correlation coefficient of a linear regression fit of the f(n) responses. If ∆ is the
DAC resolution, it is linear if

f(n+1)-f(n) = f(m+1)-f(m) = ∆ for all n, m

The DAC is monotonic if

sign(f(n+1)-f(n)) = sign(f(m+1)-f(m)) for all n, m

Conversely, the DAC is nonlinear if

f(n+1)-f(n) ≠ f(m+1)-f(m) for some n, m

Practically speaking all DACs are nonlinear, but the worst nonlinearity is nonmonotonicity. The DAC
is nonmonotonic if

sign(f(n+1)-f(n)) ≠ sign(f(m+1)-f(m)) for some n, m

Figure 10.3. Nonlinear and nonmonotonic DACs.

Example 10.1. Design a 2-bit binary-weighted DAC with a range of 0 to +3.3V using resistors.

Solution: We begin by specifying the desired input/output relationship of the 2-bit DAC. There are
two possible solutions depending upon whether we want a resolution of 0.825 V or 1.1 V, as shown
as V1 and V2 in Table 10.1. Both solutions are presented in Figure 10.4.

N Q1 Q0 V1 (V) V2 (V)
0 0 0 0.000 0.0
1 0 3.3 0.825 1.1
2 3.3 0 1.650 2.2
3 3.3 3.3 2.475 3.3

Table 10.1. Specifications of the 2-bit binary-weighted DAC.

Assume the output high voltage (VOH) of the microcontroller is 3.3 V, and its output low voltage (VOL)
is 0. With a binary-weighted DAC, we choose the resistor ratio to be 2/1 so Q1 bit is twice as
significant as the Q0 bit, as shown in Figure 10.4. Considering the circuit on the right, if both Q1 and
Q0 are 0, the output V2 is zero. If Q1 is 0 and Q0 is +3.3V, the output V2 is determine by the resistor
divider network

which is 1.1V. If Q1 is +3.3V and Q0 is 0, the output V2 is determine by the network

which is 2.2V. If both Q1 and Q0 are +3.3V, the output V2 is +3.3V. The output impedance of this DAC
is approximately 4 kΩ, which means it cannot source or sink much current.

Figure 10.4. Two solutions for a 2-bit binary-weighted DAC.

You can realistically build a 6-bit DAC using the binary-weighted method.

Checkpoint 10.7: How do you build a 3-bit binary-weighted DAC using this method?

10.3. Music Generation
Most digital music devices rely on high-speed DACs to create the analog waveforms required to
produce high-quality sound. In this section, we will discuss a very simple sound generation system
that illustrates this application of the DAC. The hardware consists of a DAC and a speaker interface.
You can drive headphones directly from a DAC output, but to drive a regular speaker, you will need
to add an audio amplifier, as illustrated in Figure 10.5.

Figure 10.5. DAC allows the software to create music.

For more information on the audio amplifier, refer to the data sheet of the MC34119. To generate
sound we need a table of data and a periodic interrupt. Program 10.1 shows C code that defines a 64-
element 6-bit sine wave. The const modifier will place the data in ROM. The static modifier for the
variable i causes the allocation to be in permanent RAM, with a one-time initialization to 0. The
interrupt software will output one value to the DAC. See Figure 10.6. In this example, the 6-bit DAC
is interfaced to output pins PB5-0. A 6-bit binary-weighted DAC was made with six resistors having
values which were powers of 2, similar to Figure 10.4. To output to this DAC we simply write to
Port B. In order to create the sound, it is necessary to output just one number to the DAC each
interrupt. The DAC range is 0 to +3.3 V.

Figure 10.6. A DAC and a periodic interrupt are used to create sound. Output is
discrete in time and voltage.

const uint8_t wave[64] = {
 32,35,38,41,44,47,49,52,54,56,58,59,61,62,62,63,63,63,62,62,61,59,58,
 56,54,52,49,47,44,41,38,35,32,29,26,23,20,17,15,12,10,8,6,5,3,2,2,1,
 1,1,2,2,3,5,6,8,10,12,15,17,20,23,26,29};

#define DAC (*((volatile uint32_t *)0x400050FC)) // PB5-0
void Timer3A_Handler(void){
static uint32_t i=0; // i varies from 0 to 63
 DAC = wave[i]; // output one value each interrupt
 i = (i+1)%0x3F;
 TIMER3_ICR_R = TIMER_ICR_TATOCINT; // ack
}
Program 10.1. The periodic interrupt outputs one value to the DAC. The
initialization is in Program 9.8.

The quality of the music will depend on both hardware and software factors. The precision of the
DAC, external noise, and the dynamic range of the speaker are some of the hardware factors.
Software factors include the DAC output rate and the complexity of the stored sound data. If you
output a sequence of numbers to the DAC that form a sine wave, then you will hear a continuous tone
on the speaker, as shown in Figure 10.7. The loudness of the tone is determined by the amplitude of
the wave. The pitch is defined as the frequency of the wave. Table 10.2 contains frequency values for
the notes in one octave. The frequency of the wave, fsin, will be determined by the frequency of the
interrupt, fint, divided by the size of the table n. The size of the table in Program 10.1 is n=64.

 fsin = fint /n

Figure 10.7. The loudness and pitch are controlled by the amplitude and
frequency.

The frequency of each note can be calculated by multiplying the previous frequency by . You can
use this method to determine the frequencies of additional notes above and below the ones in Table
10.2. There are twelve notes in an octave, therefore moving up one octave doubles the frequency.

Note frequency
C 523 Hz
B 494 Hz
Bb 466 Hz
A 440 Hz
Ab 415 Hz
G 392 Hz
Gb 370 Hz
F 349 Hz
E 330 Hz
Eb 311 Hz

D 294 Hz
Db 277 Hz
C 262 Hz

Table 10.2. Fundamental frequencies of standard musical notes. The frequency for ‘A’ is exact.

Figure 10.8. A 440Hz sine wave generated with a 6-bit DAC. The plot on the right
is the Fourier Transform(frequency spectrum dB versus kHz) of the data plotted
on the left.

The measured data in Figure 10.8 was collected using this DAC. The plot on the left was measured
with a digital scope (without the headphones being attached). The measured waveform on the left of
Figure 10.8 is approximately V(t) = 1.6+1.6sin(2π440 t) volts. The plot on the right shows the
frequency response of this data, plotting amplitude (in dB) versus frequency (in kHz). A decibel (dB)
is a measure of the relative magnitude of two voltages. Figure 10.8 it compares the input voltage to
the full scale voltage using this definition

20·log10(signal/fullscale)

The two peaks in the spectrum are at DC and 440 Hz. The DC and 440 Hz points are signal, and all
the other points in the spectrum are considered noise. The 440 Hz signal has magnitude of about 3 dB
and the noise peaks are less than -33 dB. We can calculate the signal to noise

db = 20·log10(signal/noise) = 20·log10(signal/fullscale) - 20·log10(noise/fullscale)

For this data, 20log10(signal/fullscale) is +3dB and 20log10(noise/fullscale) is -33dB, so we plug this
data into the above equation and get +36 = 20log10(signal/noise). Thus, we calculate signal/noise =
1036/20 = 63, which is about 6 bits.

Figure 10.9 illustrates the concept of instrument. You can define the type of sound by the shape of the
voltage versus time waveform. Brass instruments have a very large first harmonic frequency.

Figure 10.9. A waveform shape that generates a trumpet sound.

The tempo of the music defines the speed of the song. In 2/4 3/4 or 4/4 music, a beat is defined as a
quarter note. A moderate tempo is 120 beats/min, which means a quarter note has a duration of ½
second. A sequence of notes can be separated by pauses (silences) so that each note is heard
separately. The envelope of the note defines the amplitude versus time. A very simple envelope is
illustrated in Figure 10.10. The Cortex™-M processor has plenty of processing power to create these
types of waves.

Figure 10.10. You can control the amplitude, frequency and duration of each
note (not drawn to scale).

The smooth-shaped envelope, as illustrated in Figure 10.11, causes a less staccato and more melodic
sound. This type of sound generation is possible to produce in real time on the Cortex™-M
microcontroller.

Figure 10.11. The amplitude of a plucked string drops exponentially in time.

A chord is created by playing multiple notes simultaneously. When two piano keys are struck
simultaneously both notes are created, and the sounds are mixed arithmetically. You can create the
same effect by adding two waves together in software, before sending the wave to the DAC. Figure
10.12 plots the mathematical addition of a 262 Hz (low C) and a 392 Hz sine wave (G), creating a
simple chord.

Figure 10.12. A simple chord mixing the notes C and G.

10.4. Analog to Digital Conversion
An analog to digital converter (ADC) converts an analog signal into digital form, also shown in
Figure 10.2. An embedded system uses the ADC to collect information about the external world (data
acquisition system.) The input signal is usually an analog voltage, and the output is a binary number.
The ADC precision is the number of distinguishable ADC inputs (e.g., 4096 alternatives, 12 bits).
The ADC range is the maximum and minimum ADC input (e.g., 0 to +3.3V). The ADC resolution is
the smallest distinguishable change in input (e.g., 0.8 mV). The resolution is the change in input that
causes the digital output to change by 1.

Range(volts) = Precision(alternatives) • Resolution(volts)

Normally we don’t specify accuracy for just the ADC, but rather we give the accuracy of the entire
system (including transducer, analog circuit, ADC and software). An ADC is monotonic if it has no
missing codes. This means if the analog signal is a slow rising voltage, then the digital output will hit
all values one at a time. The merit of an ADC involves three factors: precision (number of bits),
speed (how fast can we sample), and power (how much energy does it take to operate). How fast we
can sample involves both the ADC conversion time (how long it takes to convert), and the bandwidth
(what frequency components can be recognized by the ADC). The ADC cost is a function of the
number and quality of internal components.

10.4.1. LM3S/TM4C ADC details
Table 10.3 shows the ADC register bits required to perform sampling on a single channel. For more
complex configurations refer to the specific data sheet. The value in ADC0_PC_R specifies the
maximum sampling rate, see Table 10.4. This is not the actual sampling rate. The actual sampling rate
is determined by how frequently the ADC is triggered. Refer to the data sheet of your specific
microcontroller for maximum possible sampling rate. See Tables 4.3, 4.4 to see which I/O pins the
TM4C uses for the ADC analog input channels. On the TM4C, we will need to set bits in the AMSEL
register to activate the analog interface.

Address 31-2 1 0 Name
$400F.E638 ADC1 ADC0 SYSCTL_RCGCADC_R

 31-

14
13-
12

11-
10

9-8 7-6 5-4 3-2 1-0

$4003.8020 SS3 SS2 SS1 SS0 ADC0_SSPRI_R

 31-16 15-12 11-8 7-4 3-0
$4003.8014 EM3 EM2 EM1 EM0 ADC0_EMUX_R

 31-4 3 2 1 0
$4003.8000 ASEN3 ASEN2 ASEN1 ASEN0 ADC0_ACTSS_R
$4003.80A0 MUX0 ADC0_SSMUX3_R

$4003.80A4 TS0 IE0 END0 D0 ADC0_SSCTL3_R
$4003.8028 SS3 SS2 SS1 SS0 ADC0_PSSI_R
$4003.8004 INR3 INR2 INR1 INR0 ADC0_RIS_R
$4003.8008 MASK3 MASK2 MASK1 MASK0 ADC0_IM_R
$4003.8FC4 Speed ADC0_PC_R

 31-12 11-0
$4003.80A8 DATA ADC0_SSFIFO3_R

Table 10.3. The TM4C ADC registers. Each register is 32 bits wide. LM3S has 10-bit data.
The ADC has four sequencers, but we will use only sequencer 3. We set the ADC0_SSPRI_R
register to 0x0123 to make sequencer 3 the highest priority. Because we are using just one sequencer,
we just need to make sure each sequencer has a unique priority. We set bits 15–12 (EM3) in the
ADC0_EMUX_R register to specify how the ADC will be triggered. Table 10.5 shows the various
ways to trigger an ADC conversion. In Volume 2, we will use timer triggering (EM3=0x5). However
in this first example, we use software start (EM3=0x0). The software writes an 8 (SS3) to the
ADC0_PSSI_R to initiate a conversion on sequencer 3. Bit 3 (INR3) in the ADC0_RIS_R register
will be set when the conversion is complete. We can enable and disable the sequencers using the
ADC0_ACTSS_R register. There are eight ADC channels on the LM3S1968, twelve on the
TM4C123, and twenty on the TM4C1294. Which channel we sample is configured by writing to the
ADC0_SSMUX3_R register. The ADC0_SSCTL3_R register specifies the mode of the ADC
sample. We set TS0 to measure temperature and clear it to measure the analog voltage on the ADC
input pin. We set IE0 so that the INR3 bit is set on ADC conversion, and clear it when no flags are
needed. We will set IE0 for both interrupt and busy-wait synchronization. When using sequencer 3,
there is only one sample, so END0 will always be set, signifying this sample is the end of the
sequence. We set the D0 bit to activate differential sampling, such as measuring the analog difference
between ADC1 and ADC0 pins. In our example, we clear D0 to sample a single-ended analog input.
The ADC0_RIS_R register has flags that are set when the conversion is complete, assuming the IE0
bit is set. The ADC0_IM_R register has interrupt arm bits. The ADC0_ISC_R register has interrupt
trigger bits. The IN3 bit is set when both INR3 and MASK3 are set. We clear the INR3 and IN3 bits
by writing an 8 to the ADC0_ISC_R register.

Value Description
0x7 1M samples/second
0x5 500K samples/second
0x3 250K samples/second
0x1 125K samples/second
Table 10.4. The ADC speed bits in the ADC0_PC_R register.

Value Event
0x0 Software start
0x1 Analog Comparator 0
0x2 Analog Comparator 1

0x3 Analog Comparator 2
0x4 External (GPIO PB4)
0x5 Timer
0x6 PWM0
0x7 PWM1
0x8 PWM2
0x9 PWM3
0xF Always (continuously

sample)
Table 10.5. The ADC EM3, EM2, EM1, and EM0 bits in the ADC0_EMUX_R register.

On the LM3S, we can skip steps 1 through 5. We perform the following steps to software start the
ADC and sample one channel. Program 10.2 shows a simple initialization of the ADC. It will sample
one channel using software start and busy-wait synchronization.

Step 1. We enable the port clock for the pin that we will be using for the ADC input.

Step 2. Make that pin an input by writing zero to the DIR register.

Step 3. Enable the alternative function on that pin by writing one to the AFSEL register.

Step 4. Disable the digital function on that pin by writing zero to the DEN register.

Step 5. Enable the analog function on that pin by writing one to the AMSEL register.

Step 6. We enable the ADC clock by setting bit 0 of the SYSCTL_RCGCADC_R register.

Step 7. Bits 3 – 0 of the ADC0_PC_R register specify the maximum sampling rate of the ADC. In
this example, we will sample slower than 125 kHz, so the maximum sampling rate is set at 125 kHz.
This will require less power and produce a longer sampling time as described the S/H section,
creating a more accurate conversion.

Step 8. We will set the priority of each of the four sequencers. In this case, we are using just one
sequencer, so the priorities are irrelevant, except for the fact that no two sequencers should have the
same priority.

Step 9. Before configuring the sequencer, we need to disable it. To disable sequencer 3, we write a 0
to bit 3 (ASEN3) in the ADC0_ACTSS_R register. Disabling the sequencer during programming
prevents erroneous execution if a trigger event were to occur during the configuration process.

Step 10. We configure the trigger event for the sample sequencer in the ADC0_EMUX_R register.
For this example, we write a 0000 to bits 15–12 (EM3) specifying software start mode for sequencer
3.

Step 11. For each sample in the sample sequence, configure the corresponding input source in the
ADCSSMUXn register. In this example, we write the channel number to bits 3–0 in the
ADC0_SSMUX3_R register. In this example, we sample channel 9, which is PE4.

void ADC0_InitSWTriggerSeq3_Ch9(void){

 SYSCTL_RCGCGPIO_R |= 0x10; // 1) activate clock for Port E
 while((SYSCTL_PRGPIO_R&0x10) == 0){};
 GPIO_PORTE_DIR_R &= ~0x10; // 2) make PE4 input
 GPIO_PORTE_AFSEL_R |= 0x10; // 3) enable alternate function on PE4
 GPIO_PORTE_DEN_R &= ~0x10; // 4) disable digital I/O on PE4
 GPIO_PORTE_AMSEL_R |= 0x10; // 5) enable analog function on PE4
 SYSCTL_RCGCADC_R |= 0x01; // 6) activate ADC0
 ADC0_PC_R = 0x01; // 7) configure for 125K
 ADC0_SSPRI_R = 0x0123; // 8) Sequencer 3 is highest priority
 ADC0_ACTSS_R &= ~0x0008; // 9) disable sample sequencer 3
 ADC0_EMUX_R &= ~0xF000; // 10) seq3 is software trigger
 ADC0_SSMUX3_R = (ADC0_SSMUX3_R&0xFFFFFFF0) // 11) clear SS3 field
 + 9; // set channel Ain9 (PE4)
 ADC0_SSCTL3_R = 0x0006; // 12) no TS0 D0, yes IE0 END0
 ADC0_IM_R &= ~0x0008; // 13) disable SS3 interrupts
 ADC0_ACTSS_R |= 0x0008; // 14) enable sample sequencer 3
}
Program 10.2. Initialization of the ADC using software start and busy-wait
(ADCSWTrigger_xxx.zip).

Step 12. For each sample in the sample sequence, we configure the sample control bits in the
corresponding nibble in the ADC0SSCTLn register. When programming the last nibble, ensure that
the END bit is set. Failure to set the END bit causes unpredictable behavior. Sequencer 3 has only
one sample, so we write a 0110 to the ADC0_SSCTL3_R register. Bit 3 is the TS0 bit, which we
clear because we are not measuring temperature. Bit 2 is the IE0 bit, which we set because we want
to the RIS bit to be set when the sample is complete. Bit 1 is the END0 bit, which is set because this
is the last (and only) sample in the sequence. Bit 0 is the D0 bit, which we clear because we do not
wish to use differential mode.

Step 13. If interrupts are to be used, write a 1 to the corresponding mask bit in the ADC0_IM_R
register. With software start we do not want ADC interrupts, so we clear bit 3.

Step 14. We enable the sample sequencer logic by writing a 1 to the corresponding ASENn. To
enable sequencer 3, we write a 1 to bit 3 (ASEN3) in the ADC0_ACTSS_R register.

Program 10.3 gives a function that performs an ADC conversion. There are four steps required to
perform a conversion. The range is 0 to 3V. If the analog input is 0, the digital output will be 0, and if
the analog input is 3.3V, the digital output will be 4095.

Step 1. The ADC is started using the software trigger. The channel to sample was specified earlier in
the initialization.

Step 2. The function waits for the ADC to complete by polling the RIS register bit 3.

Step 3. The 12-bit digital sample is read out of sequencer 3.

Step 4. The RIS bit is cleared by writing to the ISC register.

//------------ADC0_InSeq3------------
// Busy-wait analog to digital conversion. 0 to 3.3V maps to 0 to 4095
// Input: none
// Output: 12-bit result of ADC conversion
uint32_t ADC0_InSeq3(void){ uint32_t result;
 ADC0_PSSI_R = 0x0008; // 1) initiate SS3
 while((ADC0_RIS_R&0x08)==0){}; // 2) wait for conversion done
 result = ADC0_SSFIFO3_R&0xFFF; // 3) read 12-bit result
 ADC0_ISC_R = 0x0008; // 4) acknowledge completion
 return result;
}
Program 10.3. ADC sampling using software start and busy-wait
(ADCSWTrigger_xxx.zip).

There is software in Volume 2 showing you how to configure the ADC to sample a single channel at a
periodic rate using a timer trigger (ADCT0ATrigger_xxx.zip). The most accurate sampling method is
timer-triggered sampling (EM3=0x5).

Checkpoint 10.8: If the input voltage is 1.0V, what value will the LM3S 10-bit ADC return?

Checkpoint 10.9: If the input voltage is 1.0V, what value will the TM4C 12-bit ADC return?

10.4.2. ADC Resolution
The ADC resolution is the smallest change in input that can be reliably detected by the system. Figure
10.13 illustrates how ADC resolution should be measured. Because of noise, if we set the ADC input
to Vin and sample it many times, we will get a distribution of digital outputs. We plot the number of
times we got an output as a function of the output sample. The shape of this response is called a
probability density function (pdf) characterizing the noise processes. A pdf plots the number of
occurrences versus the ADC sample value. When two pdfs overlap, the two inputs are not
distinguishable. If the pdfs do not overlap, we claim the system can resolve the two inputs. For
example, white noise has a Gaussian pdf. The standard deviation of repeated measurements (with
units of volts) is a simple measure of ADC resolution (in volts). A better measure of resolution would
be to repeat the 100 measurements with an input slightly larger, Vin +ΔV. If we can demonstrate that
the second data set is statistically different from the first (regardless of Vin), we claim the resolution
is less than or equal to ΔV. For the 12-bit ADC on the TM4C123, Figure 10.13 shows us that we
have to increase the input by 1 mV to always be able to recognize the change. For example, the
1.6500V data is statistically different from the 1.6510V data. Therefore, we claim the ADC has a
resolution of 1 mV.

Figure 10.13. A probability density function showing experimental determination
of ADC resolution.

Checkpoint 10.10: The standard deviation of the data in Figure 10.13 is about 1 ADC sample. Is this
the expected result or extremely noisy?

10.5. Real-time data acquisition
Whenever we wish convert a continuous analog signal into discrete time digital samples, the rate at
which the sampling process occurs is extremely important.

Nyquist Theorem: If fmax is the largest frequency component of the analog signal, then you must
sample more than twice fmaxin order to faithfully represent the signal in the digital samples. For
example, if the analog signal is A + B sin(2 π ft + φ) and the sampling rate is greater than 2f, you will
be able to determine A, B, f, and φ from the digital samples.

The goal of a data acquisition system is to sample the ADC at a regular rate. Let fs be the desired
sampling rate, and let ti be the actual time the ADC creates sample number i. In a perfect world, we
would like to have

(ti – ti-1) = 1/fs

for all i. When using periodic interrupts to establish the sampling rate (SysTick or Timer), there are
two factors that lead to fluctuations in the sample period. We define time jitter, δt, as the maximum
variation in the sample-to-sample time.

1/fs -δt < (ti – ti-1) < 1/fs +δt

We learned in Chapter 9 that it takes time to process an interrupt (vector fetch, push registers). These
cycles, plus the execution of the ISR itself, are equal for every sample. Thus, the time between
samples is not affected by this fixed delay. The first factor that does cause jitter is the instruction
currently being executed at the time of the interrupt request. The time to execute an instruction on the
Cortex™-M processor varies from 1 to 12 cycles. However, other than the divides, most instructions
execute in 1, 2, or 3 cycles. We do not know which instruction will be executing or when during that
instruction the interrupt will be requested. This uncertainty causes a maximum time jitter of at most 12
cycles, or 240 nsec on a 50 MHz microcontroller. This jitter is usually acceptable. The second source
of jitter can be much larger. If there are any portions of the main program that disable interrupts (e.g.,
because of a critical section), then the time running with interrupts disabled will cause time jitter in
the sampling. In a similar fashion, if there are other higher priority interrupts, then the time to execute
the other ISR may cause a time jitter. Sampling is an important task that we will assign to a high
priority interrupt.

Observation: Good software places as little processing in the ISR itself. Perform whatever functions
must be done in the ISR, and shift the rest of the processing to the foreground.

Observation: Real-time systems must put an upper bound on the time the software is allowed to run
with interrupts disabled.

10.6. Exercises
10.1 Consider the 8-bit R-2R resistor ladder shown below. Assume Port F is an output and the digital
output voltages from Port F are 0 or +3.3V. Derive a relationship between the 8-bit digital number
output to Port F and the current flowing in the resistor labeled Rout. Hint: if one output pin is high and
the other pins are low, calculate the current flowing from the pin up from through the 20k resistor.
Show that this current is the same value regardless of which pin is high (assuming the other pins are
low). When a current comes up to a node (drawn with the black dot), it can go one way or another.
Again assuming exactly one digital output is high, what happens to currents at each node? I.e., how
much goes left and how much goes right? Solve for the basis elements of the 8-bit digital number. I.e.,
what is Iout if the digital number is 1, 2, 4, 8, 16, 32, 64, and 128? Given the responses for these basis
elements, use the law of superposition to derive a general relationship.

10.2 Assume you have a 12-bit signed ADC. Let Vin be the analog voltage in volts and N be the
digital ADC output. The input range of –5 ≤ Vin ≤ +5V. The ADC digital output range is –2048 ≤ N ≤
+2047. First, write a linear equation that relates Vin as a function of N. Next, rewrite the equation in
fixed-point math assuming Vin is represented as a decimal fixed-point number with Δ= 0.001 V.

10.3 Assume you have an 11-bit signed ADC. Let Vin be the analog voltage in volts and N be the
digital ADC output. The input range of –10 ≤ Vin ≤ +10V. The ADC digital output range is –1024 ≤ N
≤ +1023. First, write a linear equation that relates Vin as a function of N. Next, rewrite the equation in
fixed-point math assuming Vin is represented as a decimal fixed-point number with Δ= 0.01 V.

10.4 An embedded system will use an ADC to measure a parameter. The measurement system range
is 0.0 to 9.99 and a resolution of 0.01. What is the smallest number of ADC bits that can be used?

10.5 An embedded system will use an ADC to measure a distance. The measurement system range is
-10 to +10 cm and a resolution of 0.01 cm. What is the smallest number of ADC bits that can be used?

10.6 An embedded system will use an ADC to measure a force. The measurement system range is 0 to
100 N and a resolution of 0.01 N. What is the smallest number of ADC bits that can be used?

10.7 An 8-bit ADC (different from the LM3S/TM4C) has an input range of 0 to +2 volts and an output
range of 0 to 255 (called straight binary). What digital value will be returned when an input of +1.5
volts is sampled?

10.8 A 12-bit ADC (different from the LM3S/TM4C) has an input range of -2.5 to +2.5 volts and an
output range of 0 to 4095 (called offset binary). What digital value will be returned when an input of
+1.25 volts is sampled?

10.9 A 16-bit ADC (different from the LM3S/TM4C) has an input range of 0 to +2.5 volts and an
output range of 0 to 65535 (called straight binary). What digital value will be returned when an input
of +0.625 volts is sampled?

D10.10 Write a function in C or in assembly that samples the ADC and returns a voltage in Register
R0 using decimal fixed point with ∆=0.001 V. Assume the ADC has been initialized.

D10.11 Write a function in C or in assembly that samples the ADC and returns a voltage in Register
R0 using binary fixed point with ∆=2-8 V. Assume the ADC has been initialized.

D10.12 Assume an AC waveform is connected to analog channel 0. Write an initialization ritual.
Write a subroutine that samples the analog input 256 times, and returns the DC amplitude (average) in
Register R0, and the AC amplitude (maximum-minimum) in Register R1. Solve this problem in
assembly or in C.

10.7. Lab Assignments
Lab 10.1 Voltmeter. Design, implement and test a device that measures DC voltage. Use periodic
interrupts, ADC, and a display (OLED or LCD). Calibrate the device, then measure accuracy. Use
decimal fixed-point numbers

Lab 10.2 Distance Monitor. Interface a Sharp GP2Y0A21YK0F infrared object detector to measure
distance (http://www.sharpsma.com). This sensor creates a continuous analog voltage between 0 and
+3V that depends inversely on distance to object, see Figure 10.14.

Figure 10.14. Response curve of the Sharp GP2Y0A21YK0F distance sensor.

Lab 10.3 AC Voltmeter. Design, implement and test a device that measures AC voltage. Use periodic
interrupts, ADC, and a display (OLED or LCD). Calibrate the device, then measure accuracy. Use
decimal fixed-point numbers

DC = (v[0]+v[1]+…+v[255])/256)

The AC amplitude is calculated as a root-mean-squared value.

AC = sqrt(((v[0]-DC)2+(v[1]-DC)2+…+(v[255]-DC)2)/256)

Lab 10.4 Real-Time Position Measurement System. Interface a slide pot to the microcontroller and
use it to measure distance. You will design a position meter with a range of about 3 cm. A linear slide
potentiometer (Alpha RA300BF-10-20D1-B54) converts position into resistance (0<R<50 kΩ). You
will use an electrical circuit to convert resistance into voltage (Vin). The potentiometer has three
leads. The ADC will convert voltage into a 10-bit digital number (0 to 1023). Your software will
calculate position from the ADC sample as a decimal fixed-point number. The position measurements
will be displayed on the LCD. A periodic interrupt will be used to establish the real-time sampling.

Average accuracy (with units in cm) =

Lab 10.5 Music generation using a Digital to Analog Converter. Design implement and test a 4-bit
binary-weighted DAC. Use it to create music. Output a waveform to the DAC during a periodic
interrupt.

11. Communication Systems
Chapter 11 objectives are to:
• Present a general model for data flow problems,
• Develop implementations for the first in first out queue,
• Discuss methods to support interthread communication,
• Design show simple networks based on the UART port

The goal of this chapter is to provide a brief introduction to communication systems. Communication
theory is a richly developed discipline, and much of the communication theory is beyond the scope of
this book. Nevertheless, the trend in embedded systems is to employ multiple intelligent devices,
therefore the interconnection will be a strategic factor in the performance of the system. A variety of
different manufacturers are involved in the development these devices, thus the interconnection
network must be flexible, robust, and reliable. Because the emphasis of this book is on real-time
embedded systems, this chapter focuses on implementing communication systems appropriate for
embedded systems. The components of an embedded system typically combined to solve a common
objective, thus the nodes on the communication network will cooperate towards that shared goal. In
particular, requirements of an embedded system, in general, involve relatively low to moderate
bandwidth, static configuration, and a low probability of corrupted data. On the other hand reliability
and latency are important for real-time systems.

11.1. Introduction
A network is a collection of interfaces that share a physical medium and a data protocol. A network
allows software tasks in one computer to communicate and synchronize with software tasks running
on another computer. For an embedded system, the network provides a means for distributed
computing. The topology of a network defines how the components are interconnected. Examples
topologies include rings, busses and multi-hop. Figure 11.1 shows a ring network of three
microcontrollers. The advantage of this ring network is low cost and can be implemented on any
microcontroller with a serial port. Notice that the microcontrollers need not be the same type or
speed.

Figure 11.1. A simple ring network with three nodes, linked using the serial
ports.

The ZigBee wireless network will be described in Volume 2, and Ethernet will be presented in
Volume 3. In Chapter 8, we presented the hardware and software interfaces for the UART channel.
We connected the LM3S/TM4C to an I/O device and used the UART to communicate with the human.
In this chapter, we will build on those ideas and introduce the concepts of networks by investigating a
couple of simple networks. In particular, we will use the UART channel to connect multiple
microcontrollers together, creating a network. A communication network includes both the physical
channel (hardware) and the logical procedures (software) that allow users or software processes to
communicate with each other. The network provides the transfer of information as well as the
mechanisms for process synchronization.

When faced with a complex problem, one could develop a solution on one powerful and centralized
computer system. Alternatively a distributed solution could be employed using multiple computers
connected by a network. The processing elements in Figure 11.2 may be a powerful computer, a
microcontroller, an ASIC, or a smart sensor/actuator.

Figure 11.2. Distributed processing places input, output and processing at
multiple locations connected together with a network.

There are many reasons to consider a distributed solution (network) over a centralized solution. Often
multiple simple microcontrollers can provide a higher performance at lower cost compared to one
computer powerful enough to run the entire system. Some embedded applications require input/output
activities that are physically distributed. For real-time operation there may not be enough time to
allow communication a remote sensor and a central computer. Another advantage of distributed
system is improved debugging. For example, we could use one node in a network to monitor and
debug the others. Often, we do not know the level of complexity of our problem at design time.
Similarly, over time the complexity may increase or decrease. A distributed system can often be
deployed that can be scaled. For example, as the complexity increases more nodes can be added, and
if the complexity were to decrease nodes could be removed.

Most networks provide an abstraction that hides low-level details from high-level operations. This
abstraction is often described as layers. The International Standards Organization (ISO) defines a 7-
layer model called the Open Systems Interconnection (OSI). It provides a standard way to classify
network components and operations. The Physical layer includes connectors, bit formats, and a
means to transfer energy. Examples include RS232, controller area network (CAN), modem V.35, T1,
10BASE-T, 100BASE-TX, DSL, and 802.11a/b/g/n PHY. The Data link layer includes error
detection and control across a single link (single hop). Examples include 802.3 (Ethernet),
802.11a/b/g/n MAC/LLC, PPP, and Token Ring. The Network layer defines end-to-end multi-hop
data communication. The Transport layer provides connections and may optimize network resources.
The Session layer provides services for end-user applications such as data grouping and check
points. The Presentation layer includes data formats, transformation services. The Application layer
provides an interface between network and end-user programs. A simple three-layer model is shown
in Figure 11.3.

Figure 11.3. A layered approach to communication systems.

At the lowest level, frames are transferred between I/O ports of the two (or more) computers along
the physical link or hardware channel. Error detection and correction may be handled at this low
level. At the next logical level, the operating system (OS) of one computer sends messages or packets
to the OS on the other computer. The message protocol will specify the types and formats of these
messages. Error detection and correction may also be handled at this level. Messages typically
contain four fields:

1) Address information field
Physical address specifying the destination/source computers
Logical address specifying the destination/source processes (e.g., users)
2) Synchronization or handshake field
Physical synchronization like shared clock, start and stop bits
OS synchronization like request connection or acknowledge
Process synchronization like semaphores
3) Data field
ASCII text (raw or compressed)
Binary (raw or compressed)
4) Error detection and correction field
Longitudinal redundancy check (LRC) (exclusive or of all data)
Checksum (least significant bits of the sum of all the data)
Block correction codes (BCC)

Observation: Communication systems often specify bandwidth in total bits/sec, but the important
parameter is the data transfer rate.

Observation: Often the bandwidth is limited by the software and not the hardware channel.

At the highest level, we consider communication between users or high-level software tasks. Many
embedded systems require the communication of command or data information to other modules at
either a near or a remote location. Because the focus of this book is embedded systems, we will limit
our discussion with communication with devices within the same room. A full-duplex channel allows
data to transfer in both directions at the same time. In a half-duplex system, data can transfer in both
directions but only in one direction at a time. Half duplex is popular because it is less expensive (2
wires) and allows the addition of more devices on the channel without change to the existing nodes.

11.2. Reentrant Programming and Critical
Sections
As the system becomes more complex we need to be careful when sharing data. In general, if two
threads access the same global memory and one of the accesses is a write, then there is a causal
dependency between the threads. This means, the execution order may affect the outcome. Shared
global variables are very important in multi-threaded systems because they are required to pass data
between threads, but they are complicated and it is hard to find bugs that result with their use. The
situation is even more complex in a distributed system.

A program segment is reentrant if it can be concurrently executed by two (or more) threads. To
implement reentrant software, we place variables in registers or on the stack, and avoid storing into
global memory variables. When writing in assembly, we use registers, or the stack for parameter
passing to create reentrant subroutines. Typically each thread will have its own set of registers and
stack. A nonreentrant subroutine will have a section of code called a vulnerable window or critical
section. An error occurs if

1) One thread calls the function in question
2) It is executing in the critical section when interrupted by a second thread
3) The second thread calls the same function.

There are a number of scenarios that can happen next. In the most common scenario, the second thread
is allowed to complete the execution of the function, control is then returned to the first thread, and the
first thread finishes the function. This first scenario is the usual case with interrupt programming. In
the second scenario, the second thread executes part of the critical section, is interrupted and then re-
entered by a third thread, the third thread finishes, the control is returned to the second thread and it
finishes, lastly the control is returned to the first thread and it finishes. This second scenario can
happen in interrupt programming if the second interrupt has higher priority than the first. A critical
section may exist when two different functions that access and modify the same memory-resident data
structure.

The fundamental difficulty arises when information exists in multiple places. Program 11.1 shows a C
function and the assembly code generated by the ARM Keil™ uVision®compiler. The function is
nonreentrant because of the read-modify-write nonatomic access to the global variable, num . After
executing LDR r0,[r0,#0x00] , there are two copies of num , one in the variable and a second copy
in R0.

num SPACE 4
Count LDR r0,[pc,#116] ; R0=
&num
;*******start of critical section***
 LDR r0,[r0,#0x00] ; R0=num
;could be bad if interrupt occurs here

uint32_t volatile num;
void Count(void){
 num = num + 1;
}

 ADDS r0,r0,#1
;could be bad if interrupt occurs here
 LDR r1,[pc,#108] ; R1=&num
;could be bad if interrupt occurs here
 STR r0,[r1,#0x00] ; update num
;*******end of critical section***
 BX lr
ptr DCD num
Program 11.1. This function is nonreentrant because of the read-modify-write
access to a global.

Assume there are two concurrentthreads (the main program and a background ISR) that both call this
function. Concurrent means that both threads are ready to run. Because there is only one computer,
exactly one thread will be running at a time. Typically, the operating system switches execution
control back and forth using interrupts. There are three places in the assembly code at which if an
interrupt were to occur and the ISR called the same function, the end result would be num would be
incremented only once, even though the function was called twice. Assume for this example num is
initially 100. An error occurs if:
1.The main program calls Count
2.The main executes LDR r0,[r0,#0x00] making R0 = 100
3. The OS halts the main (using an interrupt) and starts the ISR
4.the ISR calls Count , executing num=num+1; making equal to 101
5. The OS returns control back to the main program, R0 is back to its original value of 100
6. The main program finished the function (adding 1 to R0), making num equal to 101
Basically, Count was called twice, but num was only incremented once.

An atomic operation is one that once started is guaranteed to finish. In most computers, once an
instruction has begun, the instruction must be finished before the computer can process an interrupt. In
general, nonreentrant code can be grouped into three categories all involving 1) nonatomic sequences,
2) writes and 3) global variables. We will classify I/O ports as global variables for the consideration
of critical sections. We will group registers into the same category as local variables because each
thread will have its own registers and stack.

The first group is the read-modify-write sequence:

1. The software reads the global variable producing a copy of the data
2. The software modifies the copy (original variable is still unmodified)
3. The software writes the modification back into the global variable.

In the second group, we have a write followed by read, where the global variable is used for
temporary storage:

1. The software writes to the global variable (only copy of the information)
2. The software reads from the global variable expecting the original data to be there.

In the third group, we have a non-atomic multi-step write to a global variable:

1. The software writes part of the new value to a global variable
2. The software writes the rest of the new value to a global variable.

Observation: When considering reentrant software and vulnerable windows we classify accesses to
I/O ports the same as accesses to global variables.

Observation: Sometimes we store temporary information in global variables out of laziness. This
practice is to be discouraged because it wastes memory and may cause the module to not be reentrant.

Sometime we can have a critical section between two different software functions (one function
called by one thread, and another function called by a different thread). In addition to above three
cases, a non-atomic multi-step read will be critical when paired with a multi-step write. For
example, assume a data structure has multiple components (e.g., hours, minutes, and seconds). In this
case, the write to the data structure will be atomic because it occurs in a high priority ISR. The
critical section exists in the foreground between steps 1 and 3. In this case, a critical section exists
even though no software has actually been reentered.

Foreground thread

1. The main reads some of the
data

3. The main reads the rest of
the data

Background thread

2. ISR writes to the data
structure

In a similar case, a non-atomic multi-step write will be critical when paired with a multi-step read.
Again, assume a data structure has multiple components. In this case, the read from the data structure
will be atomic because it occurs in a high priority ISR. The critical section exists in the foreground
between steps 1 and 3.

Foreground thread

1. The main writes some of the
data

3. The main writes the rest of the
data

Background thread

2. ISR reads from the data
structure

When multiple threads are active, it is possible for two threads to be executing the same program. For
example, the system may be running in the foreground and calls Func . Part way through execution
the Func , an interrupt occurs. If the ISR also calls Func , two threads are simultaneously executing
the function. To experimentally determine if a function has been reentered, we could use two flags or
two output pins. Set one of them (PD1, Entered) at the start and clear it at the end. The thread has
been re-entered if this flag or pin is set at the start of the function, as shown in Program 11.2. In this
example, Port D bits 1,0 are not part of the original code, but rather used just for the purpose of
debugging. PD1 is 1 when one thread starts executing the function. However, if PD0 becomes 1, then
the function has been reentered.Let PD0 and PD1 be bit-specific labels.

// function to be tested
volatile int Entered=0,Flag=0;
void Func(void){
 if(Entered) Flag = 1;
 Entered = 1;
// the regular function
 Entered = 0;
}

// function to be tested
void Func(void){
 if(PD1) PD0 = 1;
 PD1 = 2;
// the regular function
 PD1 = 0;
}

Program 11.2. Detection of re-entrant behavior using two flags or two output
pins.

If critical sections do exist, we can either eliminate it by removing the access to the global variable
or implement mutual exclusion, which simply means only one thread at a time is allowed to execute
in the critical section. In general, if we can eliminate the global variables, then the subroutine
becomes reentrant. Without global variables there are no “vulnerable” windows because each thread
has its own registers and stack. Sometimes one must access global memory to implement the desired
function. Remember that all I/O ports are considered global. Furthermore, global variables are
necessary to pass data between threads.

A simple way to implement mutual exclusion is to disable interrupts while executing the critical
section. It is important to disable interrupts for as short a time as possible, so as to minimize the
effect on the dynamic performance of the other threads. While we are running with interrupts
disabled, time-critical events like power failure and danger warnings cannot be processed. Notice
also that the interrupts are not simply disabled then enabled. Before the critical section, the interrupt
status is saved, and the interrupts disabled. After the critical section, the interrupt status is restored.
1. Save the I bit in a local variable
2. Disable interrupts
3. Run critical section, code that requires mutual exclusion
4. Restore the I bit from the local variable.
You cannot save the interrupt status in a global variable, rather you should save it either on the stack
or in a register. We will add the assembly code of Program 11.3 to the Startup.s file in our projects
that use interrupts.

;*********** StartCritical ************************

; make a copy of previous I bit, disable interrupts
; inputs: none
; outputs: previous I bit
StartCritical
 MRS R0, PRIMASK ; save old status
 CPSID I ; mask all (except faults)
 BX LR

;*********** EndCritical ************************
; using the copy of previous I bit, restore I bit to previous value
; inputs: previous I bit
; outputs: none
EndCritical
 MSR PRIMASK, R0
 BX LR
 ALIGN
 END
Program 11.3. Assembly functions needed for implementing mutual exclusion.

Program 11.4 illustrates how to implement mutual exclusion and eliminate the critical section.

uint32_t volatile num;
void Count(void){ uint32_t sr;
 sr = StartCritical(); // 1) save I bit and 2) disable
 num = num + 1; // 3) run critical code exclusively
 EndCritical(sr); // 4) restore I bit
}
Program 11.4. This function is reentrant because of the read-modify-write access
to the global is atomic.

Checkpoint 11.1: Consider the situation of nested critical sections. For example, a function with a
critical section calls another function that also has a critical section. What would happen if you
simply added disable interrupt at the beginning and a reenable interrupt at the end of each critical
section?

Another category of timing-dependent bugs, similar to critical sections, is called a race condition. A
race conditionoccurs in a multi-threaded environment when there is a causal dependency between
two or more threads. In other words, different behavior occurs depending on the order of execution of
two threads. In this example of a race condition, Thread-A initializes Port D bits 3 – 0 to be output
using GPIO_PORTD_DIR_R=0x0F; Thread-B initializes Port D bits 6 – 4 to be output
using GPIO_PORTD_DIR_R=0x70; In particular, if Thread-A runs first and Thread-B runs second,
then Port D bits 3 – 0 will be set to inputs. Conversely, if Thread-B runs first and Thread-A runs
second, then Port D bits 6 – 4 will be set to inputs. This is a race condition caused by unfriendly
code. The solution to this problem is to write the two initializations in a friendly manner.

In a second example, assume two threads are trying to get data from the same input device. Both call
the function UART_InChar . When data arrives at the input, the thread that executes first will capture
the data.

11.3. Producer-Consumer using a FIFO Queue

11.3.1. Basic Principles of the FIFO Queue
The first in first out circular queue (FIFO) and double buffer are useful for data flow situations, as
shown in Figure 11.4. These data structures can be used to link a source process (the producer is
hardware/software that generates data) to a sink process (the consumer is hardware/software that
consumes data.) In both cases the data is order-preserving, such that the order in which data is saved
equals the order in which it is retrieved. There are many producer-consumer applications. In Table
11.1 the activities on the left are producers that create or input data, while the activities on the right
are consumers that process or output data.

Figure 11.4. FIFO queues and double buffers can be used to pass data from a
producer to a consumer.

Source/Producer Sink/Consumer
Keyboard input Program that interprets
Program with data Printer output
Program sends
message

Program receives
message

Microphone and ADC Program that saves
sound data

Program that has
sound data

DAC and speaker

Table 11.1. Producer-consumer examples.

The source process puts data into the FIFO or double buffer. If there is room, the FIFO_Put operation
saves data in the structure. If the data structure is full and the user tries to put, the FIFO_Put routine
will return a full error signifying the last (newest) data was not properly saved. The sink process
removes data from the FIFO or double buffer. After a FIFO_Get, the particular information returned
from the FIFO_Get routine is no longer saved. If the structure is empty and the user tries to get, the
FIFO_Get routine will return an empty error signifying no data could be retrieved. The FIFO and
double buffer are order preserving, such that the information is returned by repeated calls of
FIFO_Get in the same order as the data was saved by repeated calls of FIFO_Put. A FIFO typically
can store many small chunks of data, whereas a double buffer can store two large fixed-size blocks of
data. One can think of a double buffer as a FIFO of two elements, but each element is a large fixed-
size block.

Checkpoint 11.2: What conditions might cause the FIFO to become full?

The first in first out circular queue (FIFO) is quite useful for implementing a buffered I/O interface. It
can be used for both buffered input and buffered output. The order preserving data structure
temporarily saves data created by the source (producer) before it is processed by the sink
(consumer). After initialization, the FIFO has two functions: FIFO_Put (enters new data) and
FIFO_Get (removes the oldest data). You have probably already experienced the convenience of
FIFOs. For example, when using an editor, you can continue to type characters while other processing
is occurring. The ASCII codes are input from the keyboard as they are typed and put in a FIFO. When
the editor is active again, it gets more keyboard data to process. A FIFO is also used when you ask
the computer to print a file. Rather than waiting for the actual printing to occur character by character,
the print command will put the data in a FIFO. Whenever the printer is free, it will get data from the
FIFO. The advantage of the FIFO is it allows you to continue to use your computer while the printing
occurs in the background. To implement this magic of background printing we will need interrupts.

Figure 11.5 shows a data flow graph with buffered input and buffered output. FIFOs used in this book
will be statically allocated global structures. Because they are global variables, it means they will
exist permanently and can be carefully shared by more than one program. The advantage of using a
FIFO structure for a data flow problem is that we can decouple the producer and consumer threads.
Without the FIFO we would have to produce one piece of data, then process it, produce another piece
of data, then process it. With the FIFO, the producer thread can continue to produce data without
having to wait for the consumer to finish processing the previous data. This decoupling can
significantly improve system performance.

Figure 11.5. A data flow graph showing two FIFOs that buffer data between
producers and consumers.

The flowchart for using FIFOs is illustrated in Figure 11.6. With mailbox synchronization, the threads
execute in lock-step: one, the other, one, the other… However, with the FIFO queue execution of the
threads is more loosely coupled. The classic producer/consumer problem has two threads. One
thread produces data and the other consumes data. For an input device, the background thread is the
producer because it generates new data, and the foreground thread is the consumer because it uses the
data up. For an output device, the data flows in the other direction so the producer/consumer roles are
reversed. It is appropriate to pass data from the producer thread to the consumer thread using a FIFO
queue.

Figure 11.6. In a producer/consumer system, FIFO queues can be used to pass
data between threads.

Observation: For systems with interrupt-driven I/O on multiple devices, there will be a separate
FIFO for each device.

We could process the data within the ISR itself and just report the results of the processing to the main
program using the mailbox. Processing data in the ISR is usually poor design because we try to
minimize the time running in the ISR, in order to minimize latency of other interrupts.

An input device needs service (busy to done state transition) when new data are available, see Figure
11.7. The interrupt service routine (background) will accept the data and put it into a FIFO. Typically,
the ISR will restart the input hardware, causing a done to busy transition.

An output device needs service (busy to done state transition) when the device is idle, ready to output
more data. The interrupt service routine (background) will get more data from the FIFO and output it.
The output function will restart the hardware causing a done to busy transition. Two particular
problems with output device interrupts are

1. How does one generate the first interrupt?
In other words, how does one start the output thread? and
2. What does one do if an output interrupt occurs (device is idle)
but there is no more data currently available (e.g., FIFO is empty)?

The foreground thread (main program) executes a loop and accesses the appropriate FIFO when it
needs to input or output data. The background threads (interrupts) are executed when the hardware
needs service.

Figure 11.7. The input device interrupts when it has new data, and the output
device interrupts when idle.

One way to visualize the interrupt synchronization is to draw a state versus time plot of the activities
of the hardware and the two software modules. Figure 11.8 is drawn to describe a situation where the
time between inputs is about twice as long as it takes the software to process the data. For this
example, the main thread begins by waiting because the FIFO is empty (a). When the input device is
busy, it is in the process of creating new input. When the input device is done, new data are available
and an interrupt is requested. The interrupt service routine will read the data and put it into the FIFO
(b). Once data are in the FIFO, the main program is released to go on because the get function will
return with data (c). The main program processes the data (d) and then waits for more input (a). The
arrows from one graph to the other represent the synchronizing events. Because the time for the
software to read and process the data is less than the time for the input device to create new input,
this situation is called I/O bound. In this situation, the FIFO has either 0 or 1 entry, and the use of
interrupts does not enhance the bandwidth over the busy-wait implementations presented in the
previous chapter. Even with an I/O bound device it may be more efficient to utilize interrupts because
it provides a straight-forward approach to servicing multiple devices.

Figure 11.8. Hardware/software timing of an I/O bound input interface.

In this second example, the input device starts with a burst of high bandwidth activity. Figure 11.9 is
drawn to describe a situation where the input rate is temporarily two to three times faster than the
software can handle. As long as the interrupt service routine is fast enough to keep up with the input
device, and as long as the FIFO does not become full during the burst, no data are lost. The software
waits for the first data (a), but then does not have to wait until the burst is over. In this situation, the
overall bandwidth is higher than it would be with a busy-wait implementation, because the input
device does not have to wait for each data byte to be processed (b). This is the classic example of a
“buffered” input, because the ISR puts data the FIFO. The main program gets data from the FIFO (c),
and then processes it (d). When the I/O device is faster than the software, the system is called CPU
bound. As we will see later, this system will work only if the producer rate temporarily exceeds the
consumer rate (a short burst of high bandwidth input). If the external device sustained the high
bandwidth input rate, then the FIFO would become full and data would be lost.

Figure 11.9. Hardware/software timing of an input interface during a high
bandwidth burst.

For an input device, if the FIFO is usually empty, the interface is I/O bound. During times when there
are many elements, the interface is CPU bound.

For an output device, the interrupt is requested when the output is idle and ready to accept more data.
The “busy to done” state transition causes an interrupt. The interrupt service routine gives the output
device another piece of data to output. Again, we can visualize the interrupt synchronization by
drawing a state versus time plot of the activities of the hardware and the two software modules.
Figure 11.10 is drawn to describe a situation where the time between outputs is about half as long as
it takes the software to generate new data. For an output device interface, the output device is initially
disarmed and the FIFO is empty. The main thread begins by generating new data (a). After the main
program puts the data into the FIFO it arms the output interrupts (b). This first interrupt occurs
immediately and the ISR gets some data from the FIFO and outputs it to the external device (c). The
output device becomes busy because it is in the process of outputting data. It is important to realize
that it only takes the software on the order of 1 µsec to write data to one of its output ports, but
usually it takes the output device much longer to fully process the data. When the output device is
done, it is ready to accept more data and an interrupt is requested. If the FIFO is empty at this point,
the ISR will disarm the output device (d). If the FIFO is not empty, the interrupt service routine will
get from the FIFO, and write it out to the output port. Once data are written to the output port, the
output device is released to go on. In this first example, the time for the software to generate data is
larger than the time for the external device to output it. This is an example of a CPU bound system. In
this situation, the FIFO has either 0 or 1 entry, and the use of interrupts does not enhance the

bandwidth over the busy-wait implementations presented in the previous chapter. Nevertheless
interrupts provide a well-defined mechanism for dealing with complex systems.

Figure 11.10. Hardware/software timing of a CPU bound output interface.

In this second output example, the software starts with a burst of high bandwidth activity. Figure 11.11
is drawn to describe a situation where the software produces data at a rate that is temporarily four to
five times faster than the hardware can handle. As long as the FIFO does not become full, no data are
lost. In this situation, the overall bandwidth is higher than it would be with a busy-wait
implementation, because the software does not have to wait for each data byte to be processed by the
hardware. The software generates data (a) and puts it into the FIFO (b). When the output is idle, it
generates an interrupt. The ISR gets data and restarts the output device (c).

Figure 11.11. Hardware/software timing of an I/O bound output interface.
This is the classic example of a “buffered” output, because data enter the system (via the main
program), are temporarily stored in a buffer (put into the FIFO), and then are processed later (by the
ISR, get from the FIFO, write to external device.) When the I/O device is slower than the software,
the system is called I/O bound. Just like the input scenario, the FIFO might become full if the
producer rate is too high for too long.

Checkpoint 11.3: What does it mean if the RxFifo is empty?

Checkpoint 11.4: What does it mean if the TxFifo is empty?

11.3.2. FIFO Queue Analysis

As you recall, the FIFO passes the data from the producer to the consumer. In general, the rates at
which data are produced and consumed can vary dynamically. Humans do not enter data into a
keyboard at a constant rate. Even printers require more time to print color graphics versus black and
white text. Let tpbe the time (in sec) between calls to Fifo_Put , and rp be the arrival rate (producer
rate in bytes/sec) into the system, so rp = 1/tp. Similarly, let tgbe the time (in sec) between calls
to Fifo_Get , and rg be the service rate (consumer rate in bytes/sec) out of the system, so rg = 1/tg.

If the minimum time between calls to Fifo_Put is greater than the maximum time between calls
to Fifo_Get , then a FIFO is not necessary and the data flow could be solved with a mailbox. I.e., no
FIFO is needed if min(tp) ≥ max(tg). On the other hand, if the time between calls to Fifo_Put becomes
less than the time between calls to Fifo_Get because either

• The arrival rate temporarily increases
• The service rate temporarily decreases

then information will be collected in the FIFO. For example, a person might type very fast for a
while, followed by long pause. The FIFO could be used to capture without loss all the data as it
comes in very fast. Clearly on average the system must be able to process the data (the consumer
thread) at least as fast as the average rate at which the data arrives (producer thread). If the average
producer rate is larger than the average consumer rate

Ave(rp) > Ave(rg)

then the FIFO will eventually overflow no matter how large the FIFO. If the producer rate is
temporarily high, and that causes the FIFO to become full, then this problem can be solved by
increasing the FIFO size.

There is fundamental difference between an empty error and a full error. Consider the application of
using a FIFO between your computer and its printer. This is a good idea because the computer can
temporarily generate data to be printed at a very high rate followed by long pauses. The printer is like
a turtle. It can print at a slow but steady rate. The computer will put a byte into the FIFO that it wants
printed. The printer will get a byte out of the FIFO when it is ready to print another character. A full
error occurs when the computer calls Fifo_Put at too fast a rate. A full error is serious, because if
ignored data will be lost. On the other hand, an empty error occurs when the printer is ready to print
but the computer has nothing in mind. An empty error is not serious, because in this case the printer
just sits there doing nothing.

Checkpoint 11.5: If the FIFO becomes full, can the situation always be solved by increasing the
size?

Consider a FIFO that has a feature where we can determine the number of elements by
calling Fifo_Size . If we place this debugging instrument inside the producer, we can measure a
histogram of FIFO sizes telling us 1) if the FIFO ever became full; 2) if the interface is CPU bound;
or 3) if the interface is I/O bound.

uint32_t Histogram[FIFOSIZE];
#define Collect() (Histogram[Fifo_Size()]++;)

An input interface using interrupts without a FIFO isn’t any better than a busy-wait solution. If the next
input data arrives before the previous data is processed, then data will be lost. When the I/O
bandwidth is fast or unpredictable, it is appropriate to pass data from the producer thread to the
consumer thread using a first in first out queue (FIFO). The FIFO will buffer the data between the
foreground and background. The presence of the FIFO placed between the producer and consumer
greatly improves performance by reducing the time each waits for the other.

11.3.3. FIFO Queue Implementation
There are many ways to implement a statically allocated FIFO. We can use either a pointer or and
index to access the data in the FIFO. We can use either two pointers (or two indices) or two pointers
(or two indices) and a counter. The counter specifies how many entries are currently stored in the
FIFO. There are even hardware implementations of FIFO queues. If we were to have infinite memory,
as shown in Figure 11.12, a FIFO implementation is easy. GetI is the index specifyingdata that will
be removed by the next call to Fifo_Get , and PutI is the indexto the empty space where the data
will be stored by the next call to Fifo_Put . To put data in the FIFO, the new data is stored at PutI ,
and then this indexis incremented. To get data from the FIFO, the value at GetI is read, and then this
index is incremented.

void Fifo_Put(int32_t data){
 FIFO[PutI] = data;
 PutI++;
}

void Fifo_Get(int32_t *datapt){
 *datapt = FIFO[GetI];
 GetI++;
}

Figure 11.12. The FIFO implementation with infinite memory.

There are three modifications that are required to these functions. If the FIFO is full when Fifo_Put is
called then the subroutine should return a full error. Similarly, if the FIFO is empty when Fifo_Get is
called, then the subroutine should return an empty error. There is never an infinite amount of memory,
so a finite number of bytes will be permanently allocated to the FIFO. Figures 11.13 and 11.14 show
an example with 10 wordsallocated. The PutI and GetI must be wrapped back up to the top when
they reach the bottom. The shaded blocks in these two figures represent valid data saved in the FIFO.
Figure 12.8 shows how the FIFO changes as four wordsare Put into it. Figure 11.14shows the same

FIFO as Fifo_Get is called four times. Observe the order-preserving nature of the FIFO.

Figure 11.13. The FIFO Put operation showing the index wrap.

Figure 11.14. The FIFO Get operation showing the index wrap.

There are two mechanisms to determine whether the FIFO is empty or full. A simple method is to
implement a counter containing the number of elementscurrently stored in the FIFO. Fifo_Get would
decrement the counter and Fifo_Put would increment the counter. The second method, shown in
Figure 11.15 and Program 11.5, is to prevent the FIFO from being completely full. For example, if the
FIFO had 10 wordsallocated, then the Fifo_Put subroutine would allow a maximum of 9 words to be
stored. If there were already 9 words in the FIFO and another Fifo_Put were called, then the FIFO
would not be modified and a full error would be returned. In this way if PutI equals GetI at the
beginning of Fifo_Get , then the FIFO is empty. Similarly, if PutI+1 equals GetI at the beginning
of Fifo_Put , then the FIFO is full. Be careful to wrap the PutI+1 before comparing it to GetI . This
second method does not require the length to be stored or calculated. The FIFO global structures must
be allocated in RAM. PutI and GetI are private, and not accessible by programs outside the FIFO
module.

Figure 11.15. Flowcharts of the put and get operations.

The initialization function, Fifo_Init , is usually called once at the start of the system. The FIFO is
empty if the PutI equals the GetI . Both indices should always address locations within the 10-
wordallocated area. The Fifo_Put routine enters new data in the FIFO. To check for FIFO full,
the Fifo_Put routine compares PutI+1 to GetI . If putting would make the FIFO look empty, then the
routine is exited without saving the data. This is why a FIFO with 10 allocated words can only hold 9
data points. If not full, then the data is stored and the PutI is updated. The Fifo_Get routine removes
the oldest data from the FIFO. To check for FIFO empty, the following Fifo_Get routine checks to see
if GetI equals PutI . If they match at the start of the routine, then Fifo_Get returns with the “empty”
condition signified. If not empty, the information is retrieved from the FIFO. The GetI is incremented
signifying that information is no longer in the FIFO. If adding one to an index makes the index go
beyond the FIFO buffer, the index is wrapped back to the beginning.

#define SIZE 10
uint32_t static PutI; // should be 0 to SIZE-1
uint32_t static GetI; // should be 0 to SIZE-1
int32_t static FIFO[SIZE];
void Fifo_Init(void){
 PutI = GetI = 0; // empty
}
int Fifo_Put(int32_t data){
 if(((PutI+1)%SIZE) == GetI) return 0; // fail if full
 FIFO[PutI] = data; // save in FIFO
 PutI = (PutI+1)%SIZE; // next place to put
 return 1;
}
int Fifo_Get(int32_t *datapt){
 if(PutI == GetI) return 0; // fail if empty
 *datapt = FIFO[GetI]; // retrieve data
 GetI = (GetI+1)%SIZE; // next place to get
 return 1; }
Program 11.5. Implementation of a two-index FIFO (FIFO_xxx.zip).

11.3.4. Double Buffer
A double buffer is two buffers of fixed size. One example that uses a double buffer is a disk. Consider
the situation where a large amount of data is to be read from a disk. The disk is organized into fixed
size blocks. The size of each of the two buffers will match the block size of the disk. In the situation
shown in Figure 11.16, the hardware is reading data from the disk filling Buf1 . The hardware is
configured to read an entire block. During this time the software is reading the data previously stored
in Buf2 . The double buffer will preserve order. This means the order in which the characters are
input from the disk is the same as the order in which they are processed by the software. The
differences between a FIFO queue and a double buffer are data size and queue length. The data size
of a FIFO is typically one or two bytes. This means that one puts and gets single bytes into and out of
the FIFO queue. The data size of the double buffer is typically large (e.g., 80, 256, 1024 bytes.) This
means that one always saves and removes big blocks into and out of the double buffer. The FIFO
queue length is large (typically ranging from 16 to 60000 bytes.) The double buffer has exactly 2
buffers. When the software finishes processing Buf2 and the hardware finishes filling Buf1 , the
buffers are switched (hardware fills Buf2 and the software processes Buf1 .) This means if the
hardware finishes first, then the disk hardware will have to be paused. Maximum disk efficiency
occurs only if the disk can continuously read data as the blocks pass under the read head.

Figure 11.16. A double buffer allows you to store data into one buffer at the
same time as retrieving data from the other buffer.

I/O devices which manipulate data in fixed size blocks are candidates for using double buffer data
structures. Other examples of such devices include: graphics displays, bar code scanners, UPC
readers, credit card readers, and IR receivers. A graphics display uses two buffers called a front
buffer and a back buffer. The graphics hardware uses the front buffer to create the visual image on the
display, i.e., the front buffer contains the data that you see. The software uses the back buffer to create
a new image, i.e., the back buffer contains the data that you see next. When the new image is ready,
and the time is right, the two buffers are switched (the front becomes the back and the back becomes
the front.) In this way, the user never sees a partially drawn image.

11.4. Serial port interface using interrupt
synchronization
The system shown in Figure 11.17 has two channels, one for input and one for output, and each
channel employs a separate FIFO queue. Program 11.6 shows the interrupt-driven UART device
driver. The flowchart for this interface was shown previously as Figure 11.6. During initialization,
Port A pins 0 and 1 are enabled as alternate function digital signals. The two software FIFOs of
Program 11.5 are initialized. The baud rate is set at 115200 bits/sec, and the hardware FIFOs are
enabled. A transmit interrupt will occur as the transmit FIFO goes from 2 elements down to 1
element. Not waiting until the hardware FIFO is completely empty allows the software to refill the
hardware FIFO and maintain a continuous output stream, achieving maximum bandwidth. There are
two conditions that will request a receive interrupt. First, if the receive FIFO goes from 2 to 3
elements a receive interrupt will be requested. At this time there are still 13 free spaces in the
receive FIFO so the latency requirement for this real-time input will be 130 bit times (about 1 ms).
The other potential source of receiver interrupts is the receiver time out. This trigger will occur if the
receiver becomes idle and there are data in the receiver FIFO. This trigger will allow the interface to
receive input data when data comes one or two frames at a time. In the NVIC, the priority is set at 2
and UART0 (IRQ=5) is activated. Normally, one does not enable interrupts in the individual
initialization functions. Rather, interrupts should be enabled in the main program, after all
initialization functions have completed. Table 11.2 is an expanded version originally presented as
Table 8.3. This table includes the registers required when using interrupts.

 31–
12

11 10 9 8 7–0 Name

$4000.C000 OE BE PE FE DATA UART0_DR_R

 31–3 3 2 1 0
$4000.C004 OE BE PE FE UART0_RSR_R

 31–

8
7 6 5 4 3 2–0

$4000.C018 TXFE RXFF TXFF RXFE BUSY UART0_FR_R

 31–

16
15–0

$4000.C024 DIVINT UART0_IBRD_R

 31–6 5–0
$4000.C028 DIVFRAC UART0_FBRD_R

 31–

8
7 6 – 5 4 3 2 1 0

$4000.C02C SPS WPEN FEN STP2 EPS PEN BRK UART0_LCRH_R

 31–
10

9 8 7 6–3 2 1 0

$4000.C030 RXE TXE LBE SIRLP SIREN UARTEN UART0_CTL_R

 31–6 5-3 2-0
$4000.C034 RXIFLSEL TXIFLSEL UART0_IFLS_R

 31-

11
10 9 8 7 6 5 4

$4000.C038 OEIM BEIM PEIM FEIM RTIM TXIM RXIM UART0_IM_R
$4000.C03C OERIS BERIS PERIS FERIS RTRIS TXRIS RXRIS UART0_RIS_R
$4000.C040 OEMIS BEMIS PEMIS FEMIS RTMIS TXMIS RXMIS UART0_MIS_R
$4000.C044 OEIC BEIC PEIC FEIC RTIC TXIC RXIC UART0_ICR_R

Table 11.2. More UART registers. Each register is 32 bits wide. Shaded bits are zero.
To use interrupts we will enable the FIFOs by setting the FENbit in the UART0_LCRH_R register.
RXIFLSEL specifies the receive FIFO level that causes an interrupt.

RXIFLSEL RX FIFO Set RXMIS interrupt trigger when
0x0 ≥ ⅛ full Receive FIFO goes from 1 to 2 characters
0x1 ≥ ¼ full Receive FIFO goes from 3 to 4 characters
0x2 ≥ ½ full Receive FIFO goes from 7 to 8 characters
0x3 ≥ ¾ full Receive FIFO goes from 11 to 12 characters
0x4 ≥ ⅞ full Receive FIFO goes from 13 to 14 characters

TXIFLSEL specifies the transmit FIFO level that causes an interrupt.

TXIFLSEL TX FIFO Set TXMIS interrupt trigger when
0x0 ≤ ⅞ empty Transmit FIFO goes from 15 to 14 characters
0x1 ≤ ¾ empty Transmit FIFO goes from 13 to 12 characters
0x2 ≤ ½ empty Transmit FIFO goes from 9 to 8 characters
0x3 ≤ ¼ empty Transmit FIFO goes from 5 to 4 characters
0x4 ≤ ⅛ empty Transmit FIFO goes from 3 to 2 characters

We will employ three of the possible seven interrupt trigger flags, located in the UART0_RIS_R
register. The setting of the TXRIS and RXRIS flags is defined above. The RTRISis set on a receiver
timeout, which is when the receiver FIFO is not empty and no incoming frames have occurred in a 32-
bit time period. Each of the seven trigger flags has a corresponding arm bit in the UART0_IM_R
register. A bit in the UART0_MIS_R register set if the trigger flag is both set and armed. To
acknowledge an interrupt (make the trigger flag become zero), software writes a 1 to the
corresponding bit in the UART0_IC_R register.

When the main thread wishes to output it calls UART_OutChar , which will put the data into the
software FIFO. Next, it copies as much data from the software FIFO into the hardware FIFO and
arms the transmitter. The transmitter interrupt service will also get as much data from the software
FIFO and put it into the hardware FIFO. The copySoftwareToHardware function has a critical
section and is called by both UART_OutChar and the ISR. To remove the critical section the
transmitter interrupt is temporarily disarmed in the UART_OutChar function
when copySoftwareToHardware is called. This helper function guarantees data is transmitted in the
same order it was produced.

When input frames are received they are placed into the receive hardware FIFO. If this FIFO goes
from 1 to 2elements, or if the receiver becomes idle with data in the FIFO, a receive interrupt occurs.
The helper function copyHardwareToSoftware will get from the receive hardware FIFO and put
into the receive software FIFO. When the main thread wishesto input data it calls UART_InChar .
This function simply gets from the software FIFO. If the receive software FIFO is empty, it will spin.

#define FIFOSIZE 16 // size of the FIFOs (must be power of 2)
#define FIFOSUCCESS 1 // return value on success
#define FIFOFAIL 0 // return value on failure
AddIndexFifo(Rx, FIFOSIZE, char, FIFOSUCCESS, FIFOFAIL)
AddIndexFifo(Tx, FIFOSIZE, char, FIFOSUCCESS, FIFOFAIL)

void UART_Init(void){ // should be called only once
 SYSCTL_RCGCUART_R |= 0x01; // activate UART0
 SYSCTL_RCGCGPIO_R |= 0x01; // activate port A
 RxFifo_Init(); // initialize empty FIFOs
 TxFifo_Init();
 UART0_CTL_R &= ~UART_CTL_UARTEN; // disable UART
 UART0_IBRD_R = 27; // IBRD=int(50,000,000/(16*115,200)) = int(27.1267)
 UART0_FBRD_R = 8; // FBRD = round(0.1267 * 64) = 8
 UART0_LCRH_R = (UART_LCRH_WLEN_8|UART_LCRH_FEN); // 8-bit word, FIFOs
 UART0_IFLS_R &= ~0x3F; // clear TX and RX interrupt FIFO level fields
 // configure interrupt for TX FIFO <= 1/8 full
 // configure interrupt for RX FIFO >= 1/8 full
 UART0_IFLS_R += (UART_IFLS_TX1_8|UART_IFLS_RX1_8);
 // enable TX and RX FIFO interrupts and RX time-out interrupt
 UART0_IM_R |= (UART_IM_RXIM|UART_IM_TXIM|UART_IM_RTIM);
 UART0_CTL_R |= 0x0301; // enable RXE TXE UARTEN
 GPIO_PORTA_PCTL_R = (GPIO_PORTA_PCTL_R&0xFFFFFF00)+0x00000011; // UART
 GPIO_PORTA_AMSEL_R &= ~0x03; // disable analog function on PA1-0
 GPIO_PORTA_AFSEL_R |= 0x03; // enable alt funct on PA1-0
 GPIO_PORTA_DEN_R |= 0x03; // enable digital I/O on PA1-0
 NVIC_PRI1_R = (NVIC_PRI1_R&0xFFFF00FF)|0x00004000; // UART0=priority 2
 NVIC_EN0_R = NVIC_EN0_INT5; // enable interrupt 5 in NVIC
 EnableInterrupts();

}
// copy from hardware RX FIFO to software RX FIFO
// stop when hardware RX FIFO is empty or software RX FIFO is full
void static copyHardwareToSoftware(void){ char letter;
 while(((UART0_FR_R&UART_FR_RXFE)==0)&&(RxFifo_Size() < (FIFOSIZE-1))){
 letter = UART0_DR_R;
 RxFifo_Put(letter);
 }
}
// copy from software TX FIFO to hardware TX FIFO
// stop when software TX FIFO is empty or hardware TX FIFO is full
void static copySoftwareToHardware(void){ char letter;
 while(((UART0_FR_R&UART_FR_TXFF) == 0) && (TxFifo_Size() > 0)){
 TxFifo_Get(&letter);
 UART0_DR_R = letter;
 }
}
// input ASCII character from UART
// spin if RxFifo is empty
char UART_InChar(void){
 char letter;
 while(RxFifo_Get(&letter) == FIFOFAIL){};
 return(letter);
}
// output ASCII character to SCI
// spin if TxFifo is full
void UART_OutChar(char data){
 while(TxFifo_Put(data) == FIFOFAIL){};
 UART0_IM_R &= ~UART_IM_TXIM; // disable TX FIFO interrupt
 copySoftwareToHardware();
 UART0_IM_R |= UART_IM_TXIM; // enable TX FIFO interrupt
}
// at least one of three things has happened:
// hardware TX FIFO goes from 3 to 2 or less items
// hardware RX FIFO goes from 1 to 2 or more items
// UART receiver has timed out
void UART0_Handler(void){
 if(UART0_RIS_R&UART_RIS_TXRIS){ // hardware TX FIFO <= 2 items
 UART0_ICR_R = UART_ICR_TXIC; // acknowledge TX FIFO
 // copy from software TX FIFO to hardware TX FIFO
 copySoftwareToHardware();
 if(TxFifo_Size() == 0){ // software TX FIFO is empty
 UART0_IM_R &= ~UART_IM_TXIM; // disable TX FIFO interrupt

 }
 }
 if(UART0_RIS_R&UART_RIS_RXRIS){ // hardware RX FIFO >= 2 items
 UART0_ICR_R = UART_ICR_RXIC; // acknowledge RX FIFO
 // copy from hardware RX FIFO to software RX FIFO
 copyHardwareToSoftware();
 }
 if(UART0_RIS_R&UART_RIS_RTRIS){ // receiver timed out
 UART0_ICR_R = UART_ICR_RTIC; // acknowledge receiver time out
 // copy from hardware RX FIFO to software RX FIFO
 copyHardwareToSoftware();
 }
}
Program 11.6. Interrupt-driven device driver for the UART uses two hardware
FIFOs and two software FIFOs to buffer data (UART2_xxx.zip).

11.5. *Distributed Systems.
In this section, we will present three communication systems that utilize the UART port. If the
distances are short, half duplex can be implemented with simple open collector or open-drain
digital-level logic. Open drain logic has two output states: low and off. In the off state the output is
not driven high or low, it just floats. The 10 kΩ pull-up resistor will passively make the signal high if
none of the open drain outputs are low. The microcontroller can make its TxD serial outputs be open
drain (ODE on the LM3S/TM4C). This mode allows a half-duplex network to be created without any
external logic (although pull-up resistors are often used). Three factors will limit the implementation
of this simple half-duplex network: 1) the number nodes on the network, 2) the distance between
nodes; and 3) presence of corrupting noise. In these situations, a half-duplex RS485 driver chip like
the SP483 made by Maxim can be used.

The first communication system is master-slave configuration, where the master transmit output is
connected to all slave receive inputs, as shown in Figure 11.17. This provides for broadcast of
commands from the master. All slave transmit outputs are connected together using wire-or open
drain logic, allowing for the slaves to respond one at a time. Wire-or means if one slave sends a low,
then all devices will see a zero on the line. If all slaves send a high each output will be HiZ, and the
10kΩ pull-up resistor will create a 3.3V on the line. I.e., the low state dominates over the high state.
The ODE (Open Drain Enable) in the slaves should be set to activate open drain mode on
transmitters. The low-level device driver for this communication system is identical to the UART
driver developed in the last section. When the master performs UART output it is broadcast to all the
slaves. There can be no conflict when the master transmits, because a single output is connected to
multiple inputs. When a slave receives input, it knows it is a command from the master. In the other
direction, however, a potential problem exists because multiple slave transmitters are connected to
the same wire. If the slaves only transmit after specifically being triggered by the master, no
collisions can occur.

Checkpoint 11.6: What voltage level will the master RxD observe if two slaves simultaneously
transmit, one making it a logic high and the other a logic low?

Figure 11.17. A master-slave network implemented with multiple
microcontrollers.

Figure 11.18. A ring network implemented with three microcontrollers.

The next communication system is a ring network. This is the simplest distributed system to design,
because it can be constructed using standard serial ports. In fact, we can build a ring network simply
by chaining the transmit and receive lines together in a circle, as shown in Figure 11.18. Building a
ring network is a matter as simple as soldering a RS232 cable in a circle with one DB9 connector for
each node. Messages will include source address, destination address and information. If computer A
wishes to send information to computer C, it sends the message to B. The software in computer B
receives the message, notices it is not for itself, and it resends the message to C. The software in
computer C receives the message, notices it is for itself, and it keeps the message. Although simple to
build, this system has slow performance (response time and bandwidth), and it is difficult to
add/subtract nodes.

Checkpoint 11.7: Assume the ring network has 10 nodes, the baud rate is 100,000 bits/sec, and there
are 10 bits/frame. What is average time it takes to send a 10 byte message from one computer to
another?

The third communication system is a very common approach to distributed embedded systems, called
multi-drop, as shown in Figure 11.19. To transmit a byte to the other computers, the software
activates the SP483 driver and outputs the frame. Since it is half-duplex, the frame is also sent to the
receiver of the computer that sent it. This echo can be checked to see if a collision occurred (two
devices simultaneously outputting.) If more than two computers exist on the network, we usually send
address information first, so that the proper device receives the data. Many collisions can be avoided
by waiting for the receiver to finish before transmitting.

Figure 11.19. A multidrop network is created using a half-duplex serial channel
implemented with open drain logic or with RS485 drivers.

Checkpoint 11.8: How can the transmitter detect a collision had corrupted its output?

Checkpoint 11.9: How can the receiver detect a collision had corrupted its input?

There are many ways to check for transmission errors. You could use a longitudinal redundancy
check (LRC) or horizontal even parity. The error check byte is simply the exclusive-OR of all the
message bytes (except the LRC itself). The receiver also performs an exclusive-OR on the message
as well as the error check byte. The result will equal zero if the block has been transmitted
successfully. Another popular method is checksum, which is simply the modulo256 (8-bit) or
modulo65536 (16-bit) sum of the data packet. In addition, each byte could have (but doesn’t have to)
include even parity.

There are two mechanisms that allow the transmission of variable amounts of data. Some protocols
use start (STX=0x02) and stop (ETX=0x03) characters to surround a variable amount of data. The
disadvantage of this “termination code” method is that binary data cannot be sent because a data byte
might match the termination character (ETX). Therefore, this protocol is appropriate for sending
ASCII characters. Another possibility is to use a byte count to specify the length of a message. Many
protocols use a byte count. The ZigBee frames, for example, have a byte count in each frame.

11.6. Exercises
11.1 How do you tell if this C code
GPIO_PORTA_DATA_R |= 0x80; // set PA7
has a critical section with this C code?
GPIO_PORTA_DATA_R |= 0x40; // set PA6

11.2 How do you tell if the following C code is reentrant?
Counter++;

11.3 Consider the memory manager programs of Section 6.6. Are any of the following programs
reentrant: Heap_Init , Heap_Allocate , Heap_Release , Fifo_Init , Fifo_Put , and Fifo_Get ? How
can the problem be fixed?

11.4Consider the pointer-based Fifo_Put and Fifo_Get functions shown in Program 11.5. There is
one foreground thread that calls Fifo_Get , and two interrupt threads that call Fifo_Put . In particular,
both the regular UART interrupt and a SysTickperiodic ISR call Fifo_Put to enter data into
the FIFO . Is there a critical section?

11.5Consider the linked list Fifo_Put and Fifo_Get functions from Program 6.16 and Program 6.17.
Assume exactly one is called from the foreground main program and one from the background ISR. Is
there a critical section? I.e., do interrupts need to be disabled to use these two functions?

11.6 Consider the situation in which a FIFO queue is used to buffer data between a main program
(e.g., UART_OutChar that calls TxFifo_Put) and an output interrupt service routine
(e.g., UART0_Handler that calls TxFifo_Get and writes to the hardware). Experimental
observations show that this FIFO is usually empty, and at most contains 3 elements. What does it
mean? Choose A-F.
a) The system is I/O bound e) The latency is small and bounded
b) The system is CPU bound f) Interrupts are not needed in this system
c) Bandwidth could be increased by increasing FIFO size
d) The FIFO could be replaced by a global variable

11.7 Consider the situation in which a FIFO queue is used to buffer data between a main program
(e.g., UART_OutChar that calls TxFifo_Put) and an output interrupt service routine
(e.g., UART0_Handler that calls TxFifo_Get and writes to the hardware). Experimental
observations show that this FIFO often becomes full, and usually having more than 5 elements. What
does it mean? Choose A-F.
a) The system is I/O bound e) The latency is small and bounded
b) The system is CPU bound f) Interrupts are not needed in this system
c) Bandwidth could be increased by increasing FIFO size
d) The FIFO could be replaced by a global variable

11.8 Consider the situation in which a FIFO queue is used to buffer data between a main program
(e.g., UART_InChar that calls RxFifo_Get) and an inputinterrupt service routine
(e.g., UART0_Handler that reads the hardware and calls RxFifo_Put). Experimental observations
show that this FIFO is often becomes full, and usually having more than 5 elements. What does it
mean? Choose A-F.
a) The system is I/O bound e) The latency is small and bounded
b) The system is CPU bound f) Interrupts are not needed in this system
c) Bandwidth could be increased by increasing FIFO size
d) The FIFO could be replaced by a global variable

11.9 Consider the situation in which a FIFO queue is used to buffer data between a main program
(e.g., UART_InChar that calls RxFifo_Get) and an inputinterrupt service routine
(e.g., UART0_Handler that reads the hardware and calls RxFifo_Put). Experimental observations
show that this FIFO is usually empty, and at most contains 3 elements. What does it mean? Choose A-
F.
a) The system is I/O bound e) The latency is small and bounded
b) The system is CPU bound f) Interrupts are not needed in this system
c) Bandwidth could be increased by increasing FIFO size
d) The FIFO could be replaced by a global variable

D11.10.Design a UART driver that just outputs using interrupt synchronization. Use the UART1 serial
port and run at 38400 bits/sec. Include user
functions UART1_Init() , UART1_OutChar() , UART1_OutString() and UART1_OutDec .

D11.11. Assume you have two microcontrollers the UART1s connected. Implement interrupt
synchronization with a baud rate of 78600 bits/sec. Implement a distributed mailbox as described in
Section 9.3. The main program on one microcontroller produces data and puts it in the mailbox, and
the main program on the other microcontroller consumes the data. The two threads are synchronized.
This means they wait for each other.

D11.12. Write two functions that operate on variable length strings. The first is LRC generation that
takes an ASCII string and calculates the exclusive or of all the data in a byte wise fashion. The input
to the function is a string and the output is a single byte, which is the LRC. The second function
assumes the string already has an LRC byte as the last character. There are two inputs and one output
for this function. The inputs are a pointer to the string and the length (length is needed because the
LRC might be 0). The output is a Boolean true if the LRC is OK or false if the LRC is incorrect.

11.7. Lab Assignments
Lab 11.1 Distributed Data Acquisition System. Take one of the measurement labs (Lab 10.1, 10.2,
10.3, or 10.4 and split the sensor and display. Interface the sensor to one microcontroller and
interface the display to the other. Collect data from the sensor, transmit it across the serial link and
display it on the other microcontroller.

Lab 11.2 Walkie-talkie. Interface microphones and speakers to two or more microcontrollers.
Measure sound on from one microphone, transmit the sound to the other microcontroller and output it
to the speaker.

Lab 11.3 Ring Network. Take one of the measurement labs (Lab 10.1, 10.2, 10.3, or 10.4 and split
the sensor and display. Implement 3 or more microcontrollers in a ring network. Interface a sensor
and a display to each microcontroller. Collect data from the sensors, share it with the other
microcontrollers. Create a display that shows both local and remote measurements.

11.8. Best Practices
• Consider debugging when defining, designing, implementing, building and
deploying.
• Careful thought during design can save lots of time during implementation and
debugging.
• Choose good variable names so the software is easier to understand.
• Divide large projects into modules and test each module separately.
• Separate hardware from software bugs by first testing the software on a simulator.
• When designing modules start with the interfaces, e.g., the header files.
• The second step when designing modules is pseudo code typed in as comments.
• Make the time to service an interrupt short compared to the time between
interrupts.
• When developing a modular system, try not to change the header files.
• Use a consistent coding style so all your software is easy to read, change, and
debug.
• Most of your time is spent changing or fixing existing code called maintenance.
• So, when designing code plan for testing and make it easy to change.
• Writing friendly code makes it easier to combine components into systems.
• Use quality connectors, because faulty connectors can be a difficult flaw to detect.
• It is your responsibility to debug your hardware and software.
• It is also your responsibility to debug other hardware/software you put into your
system.
• A simple solution is often more powerful than a complex solution.
• Listen carefully to your customers so you can understand their needs.
• Draw wiring diagrams of electrical circuits before building.
• Double-check all the wiring before turning on the power.
• Double-check all signals in cables, don’t assume red is power and black is ground.
• Be courageous enough to show your work to others.
• Be humble enough to allow others to show you how your system could be better.

Appendix 1. Glossary
1/f noise A fundamental noise in resistive devices arising from fluctuating conductivity. Same as pink
noise.
2’s complement (see two’s complement).
60 Hz noise An added noise from electromagnetic fields caused by either magnetic field induction or
capacitive coupling.
accumulator High-speed storage located in the processor used to perform arithmetic or logical
functions. The accumulators on the ARM Cortex M are Register R0 through R12.
accuracy A measure of how close our instrument measures the desired parameter referred to the
NIST.
acknowledge Clearing the interrupt flag bit that requested the interrupt.
actuator Electro-mechanical or electro-chemical device that allows computer commands to affect the
external world. Examples include motors, relays, solenoids, and speakers.
ADC Analog to digital converter, an electronic device that converts analog signals (e.g., voltage)
into digital form (i.e., integers). The ADC on the TM4C is 12 bits and can sample up to 1 M
samples/sec.
address bus A set of digital signals that connect the CPU, memory and I/O devices, specifying the
location to read or write for each bus cycle. See also control bus and data bus.
aliasing When digital values sampled at fs contain frequency components above 0.5 fs, then the
apparent frequency of the data is shifted into the 0 to 0.5 fs range. See Nyquist theory.
alternatives the total number of possibilities. E.g., an 8-bit number scheme can represent 256
different numbers. An 8-bit digital to analog converter (DAC) can generate 256 different analog
outputs.
arithmetic logic unit (ALU) Component of the processor that performs arithmetic and logic
operations.
arm Activate an individual trigger so that interrupts are requested when that trigger flag is set.
ASCII American Standard Code for Information Interchange, a code for representing characters,
symbols, and synchronization messages as 7 bit, 8-bit or 16-bit binary values.
assembler System software that converts an assembly language program (human readable format)
into object code (machine readable format).
assembly directive Operations included in the program that are not executed by the computer at run
time, but rather are interpreted by the assembler during the assembly process. Same as pseudo-op.
assembly listing Information generated by the assembler in human readable format, typically showing
the object code, the original source code, assembly errors, and the symbol table.
asynchronous protocol a protocol where the two devices have separate and distinct clocks
atomic Software execution that cannot be divided or interrupted. Once started an atomic operation
will run to its completion without interruption. On most computers the assembly language instructions
are atomic. All instructions on the ARM® Cortex™-Mprocessor are atomic except store and load
multiple, STM LDM .
availability The portion of the total time that the system is working. MTBF is the mean time between
failures, MTTR is the mean time to repair, and availability is MTBF/(MTBF+MTTR).

bandwidth The information transfer rate, the amount of data transferred per second. Same as
throughput.
basis Subset from which linear combinations can be used to reconstruct the entire set. The basis of
the 8-bit unsigned number system is 1, 2, 4, 8, 16, 32, 64, and 128.
baud rate In general the baud rate is the total number of bits (information, overhead, and idle) per
time that are transmitted, in a modem application it is the total number of sounds per time are
transmitted.
bi-directional Digital signals that can be either input or output.
biendian The ability to process numbers in both big and little endian formats.
big endian Mechanism for storing multiple byte numbers such that the most significant byte exists first
(in the smallest memory address). See also little endian.
binary A system that has two states, on and off.
binary operation A function that produces its result given two input parameters. For example,
addition, subtraction, and multiplication are binary operations.
binary recursion A recursive technique that makes two calls to itself during the execution of the
function. See also recursion, linear recursion, and tail recursion.
bipolar stepper motor A stepper motor where the current flows in both directions (in/out) along the
interface wires; a stepper with 4 interface wires.
bit Basic unit of digital information taking on the value of either 0 or 1.
bit time The basic unit of time used in serial communication.
blind cycle A software/hardware synchronization method where the software waits a specified
amount of time for the hardware operation to complete. The software has no direct information
(blind) about the status of the hardware.
Board Support Package (BSP) A set of software routines that abstract the I/O hardware such that the
same high-level code can run on multiple computers. Same as hardware abstraction layer (HAL).
borrow During subtraction, if the difference is too small, then we use a borrow to pass the excess
information into the next higher place. For example, in decimal subtraction 36-27 requires a borrow
from the ones to tens place because 6-7 is too small to fit into the 0 to 9 range of decimal numbers.
break or trap A break or a trap is an instrument that halts the processor. When encountered it will
stop your program and jump into the debugger. Therefore, a break halts the software. The condition of
being in this state is also referred to as a break.
breakpoint The place where a break is inserted, the time when a break is encountered, or the time
period when a break is active.
buffered I/O A FIFO queue is placed in between the hardware and software in an attempt to
increase bandwidth by allowing both hardware and software to run in parallel.
burn The process of programming a ROM, PROM or EEPROM.
bus A set of digital signals that connect the CPU, memory and I/O devices, consisting of address
signals, data signals and control signals. See also address bus, control bus and data bus.
bus interface unit (BIU) Component of the processor that reads and writes data from the bus.
busy wait A software/hardware synchronization method where the software continuously reads the
hardware status waiting for the hardware operation to complete. The software usually performs no
work while waiting for the hardware. Same as gadfly. Same as polling.

byte Digital information containing 8 bits.In C, we use char or unsigned char to create a byte. In
C99, we use int8_t or uint8_t to create a byte.In both C and C99, we use char to create an 8-bit
ASCII character.
call graph A graphical way to define how the software/hardware modules interconnect. If a function
in module A invokes a function in module B, then there is an arrow from A to B.
carry During addition, if the sum is too large, then we use a carry to pass the excess information into
the next higher place. For example, in decimal addition 36+27 requires a carry from the ones to tens
place because 6+7 is too big to fit into the 0 to 9 range of decimal numbers.
ceiling Establishing an upper bound on the result of an operation.
checksum The simple sum of the data, usually in finite precision (e.g., 8, 16, 24 bits).
client A programmer/engineer who will use our software and/or hardware. This is typically not the
end-user of the final system rather it is another engineer who will integrate our software and/or
hardware into a larger system.
closed loop control system A control system that includes sensors to measure the current state
variables. These inputs are used to drive the system to the desired state.
CMOS A digital logic system called complementary metal oxide semiconductor. It has properties of
low power and small size. Its power is a function of the number of transitions per second.
cohesion A cohesive module is one such that all parts of the module are related to each other to
satisfy a common objective.
compiler System software that converts a high-level language program (human readable format) into
object code (machine readable format).
complex instruction set computer (CISC) A computer with many instructions, instructions that have
varying lengths, instructions that execute in varying times, many instructions can access memory,
instructions that can read and write memory in the same bus cycle, fewer and more specialized
registers, and many different types of addressing modes. Contrast to RISC.
concurrent programming A computer system that supports two or more software tasks that are
simultaneously active. Typically one task executes at a time, and there are mechanisms to suspend one
task and execute another task. Compare to parallel programming.
control bus A set of digital signals that connect the processor, memory and I/O devices, specifying
when to read or write for each bus cycle. See also address bus and data bus.
control unit (CU) Component of the processor that determines the sequence of operations.
CPU bound A situation where the input or output device is faster than the software. In other words it
takes less time for the I/O device to process data, than for the software to process data.
critical section Locations within a software module, which if an interrupt were to occur at one of
these locations, then an error could occur (e.g., data lost, corrupted data, program crash, etc.) Same
as vulnerable window.
cross-assembler An assembler that runs on one computer but creates object code for a different
computer.
cross-compiler A compiler that runs on one computer but creates object code for a different
computer.
cyber-physical system A system that performs a specific dedicated operation where the computer is
hidden or embedded inside the machine. The system has intelligence in the software and physical
connections to the real world. Same as embedded system.

DAC Digital to analog converter, an electronic device that converts digital signals (i.e., integers) to
analog form (e.g., voltage).
data acquisition system (DAS) A system that collects information, same as instrument.
data bus A set of digital signals that connect the CPU, memory and I/O devices, specifying the value
that is being read or written for each bus cycle. See also address bus and control bus.
data flow graph A block diagram of the system, showing the flow of information. Arrows represent
the flow of data from one module to another.
decibel A measure of the relative amplitude of two voltages: dB = 20 log10(V1/V2). It is also refers to
the relative amplitude of two powers: dB = 10 log10(P1/P2).
denormalized A denormalized number is an unnormalized floating-point number with an exponent of
the smallest possible value. An unnormalized number has a mantissa value less than one. The
mantissa of a normalized floating-point number is greater than or equal to 1, but strictly less than 2.
desk-checking or dry run We perform a desk check (or dry run) by determining in advance, either by
analytical algorithm or explicit calculations, the expected outputs of strategic intermediate stages and
final results for typical inputs. We then run our program and compare the actual outputs with this
template of expected results.
device driver A collection of software routines that perform I/O functions.
digital signal processing Processing of data with digital hardware or software after the signal has
been sampled by the ADC, e.g., filters, detection and compression/decompression.
direction register A bi-directional port configuration register that determines if the port will be an
input or an output.
disarm Deactivate a trigger flag so that interrupts are not requested when that trigger flag is set.
DMA Direct Memory Access is a software/hardware synchronization method where the hardware
itself causes a data transfer between the I/O device and memory at the appropriate time when data
needs to be transferred. The software usually can perform other work while waiting for the hardware.
No software action is required for each individual byte.
double byte Two bytes containing 16 bits. Same as halfword.
double-pole switch Two separate and complete switches that are activated together, same as two-
pole. Contrast with single-pole.
double-throw switch A switch with three contact connections. The center contact will be connected
exactly one of the other two contacts. Contrast with single-throw.
download The process of transferring object code from the host (e.g., the PC) to the target
microcontroller.
drop-out An error that occurs after a right shift or a divide, and the consequence is that an
intermediate result loses its ability to represent all of the values. E.g., I=100*(N/51) can only result in
the values 0, 100, or 200, whereas I=(100*N)/51 properly calculates the desired result.
duty cycle For a periodic digital wave, it is the percentage of time the signal is high.
dynamic efficiency A measure of how fast the program executes.
dynamic RAM Volatile read/write storage built from a capacitor and a single transistor having a low
cost, but requiring refresh. Contrast with static RAM.
EEPROM Electrically erasable programmable read only memory that is nonvolatile and easy to
reprogram.
effective address register (EAR) A register that contains the address for the current memory cycle.

embedded computer system A system that performs a specific dedicated operation where the
computer is hidden or embedded inside the machine. The system has intelligence in the software and
physical connections to the real world. Same as cyber-physical system.
emulator An in-circuit emulator is an expensive debugging hardware tool that mimics the processor
pin outs. To debug with an emulator, you would remove the processor chip and attach the emulator
cable into the processor socket. The emulator would sense the processor input signals and recreate
the processor outputs signals on the socket as if a real chip were actually there running at full speed.
Inside the emulator you have internal read/write access to the registers and processor state. Most
emulators allow you to visualize/record strategic information in real time without halting the program
execution. You can also remove ROM chips and insert the connector of a ROM-emulator. This type of
emulator is less expensive, and it allows you to debug ROM-based software systems.
EPROM programmer System hardware/software that burns the object code into the
microcomputer’s EPROM.
EPROM Same as PROM. Electrically programmable read only memory that is nonvolatile and
requires external devices to erase and reprogram. It is usually erased using UV light.
erase The process of clearing the information in a PROM or EEPROM. The information bits are
usually all set to logic 1.
EVB Evaluation Board, a product used to develop microcomputer software.
even parity A communication protocol where the number of ones in the data plus a parity bit is an
even number. Contrast with odd parity.
fan out The number of inputs that a single output can drive if the devices are all in the same logic
family.
filter In the debugging context, a filter is a Boolean function or conditional test used to make run-time
decisions. For example, if we print information only if two variables x, y are equal, then the
conditional (x==y) is a filter. Filters can involve hardware status as well.
Finite State Machine (FSM) An abstract design method to build a machine with inputs and outputs.
The machine can be in one of a finite number of states. Which state the system is in represents
memory of previous inputs. The output and next state are a function of the input. There may be time
delays as well.
fixed point A technique where calculations involving nonintegers are performed using a sequence of
integer operations. E.g., 0.123*x is performed in decimal fixed point as (123*x)/1000 or in binary
fixed point as (126*x)>>10.
flash EEPROM Electrically erasable programmable read only memory that is nonvolatile and easy
to reprogram. Flash EEPROMs are typically larger than regular EEPROM.
floating A logic state where the output device does not drive high or pull low. The outputs of open
collector and tristate devices can be in the floating state. Same as HiZ.
floor Establishing a lower bound on the result of an operation.
fork Used in parallel programming to create additional software tasks that will run in parallel. See
join.
frame A complete and distinct packet of bits occurring in a serial communication channel.
framing error An error when the receiver expects a stop bit (1) and the input is 0.
friendly Friendly software modifies just the bits that need to be modified, leaving the other bits
unchanged.

full-duplex channel Hardware that allows bits (information, error checking, synchronization or
overhead) to transfer simultaneously in both directions. Contrast with simplex and half-duplex
channels.
full-duplex communication A system that allows information (data, characters) to transfer
simultaneously in both directions.
functional debugging The process of detecting, locating, or correcting functional and logical errors
in a program and the process of instrumenting a program for such purposes is called functional
debugging or often simply debugging. Contrast with performance debugging.
gadfly A software/hardware synchronization method where the software continuously reads the
hardware status waiting for the hardware operation to complete. The software usually performs no
work while waiting for the hardware. Same as busy wait. Same as polling
general purpose computer system A system like the PC or Macintosh with a keyboard, disk and
display that can be programmed for a wide variety of purposes.
half-duplex channel Hardware that allows bits (information, error checking, synchronization or
overhead) to transfer in both directions, but in only one direction at a time. Contrast with simplex and
full-duplex channels.
half-duplex communication a system that allows information to transfer in both directions, but in
only one direction at a time.
halfword Two bytes containing 16 bits. Same as double byte.In C, we use short or unsigned short
to create a halfword. In C99, we use int16_t or uint16_t to create a halfword.
handshake A software/hardware synchronization method where control and status signals go both
directions between the transmitter and receiver. The communication is interlocked meaning each
device will wait for the other.
hard real-time system as one that can guarantee that a process will complete a critical task within a
certain specified range. In data acquisition system, hard real-time means there is an upper bound on
the latency between when a sample is supposed to be taken (every 1/fs) and when the ADC
conversion is actually started. Hard real-time also implies that no ADC samples are missed.
heartbeat A debugging monitor, such as a flashing LED, we add for the purpose of seeing if our
program is running.
hexadecimal A number system that uses base 16.
HiZ A logic state where the output device does not drive high or pull low. The outputs of open
collector and tristate devices can be in the HiZ state. Same as floating.
hold time When latching data into a device with a rising or falling edge of a clock, the hold time is
the time after the active edge of the clock that the data must continue to be valid. Contrast with setup
time.
hysteresis A condition when the output of a system depends not only on the input, but also on the
previous outputs, e.g., a transducer that follows a different response curve when the input is
increasing than when the input is decreasing.
I/O bound A situation where the input or output device is slower than the software. In other words it
takes longer for the I/O device to process data, than for the software to process data.
I/O device A computer component capable of bringing information from the external environment into
the computer (input device), or sending data out from the computer to the external environment (output
device.)
I/O port A hardware device that connects the computer with external components.

IIH Input current when the signal is high.
IIL Input current when the signal is low.
immediate An addressing mode where the operand is a fixed data or address value.
impedance The ratio of the effort (voltage, force, pressure) divided by the flow (current, velocity,
flow).
incremental control system A control system where the actuator has many possible states, and the
system increments or decrements the actuator value depending on either in error is positive or
negative.
indexed An addressing mode where the data or address value for the instruction is located in
memory pointed to by an index register.
infinite impulse response filter (IIR) is a digital filter where the output is a function of an infinite
number of past data samples, usually by making the filter output a function of previous filter outputs.
input capture A mechanism to set a flag and capture the current time (TCNT value) on the rising,
falling or rising&falling edge of an external signal. The input capture event can also request an
interrupt.
input impedance The input voltage divided by the input current. When a 3V input is applied to the
TM4C123 ADC, a maximum of 2µA will flow into the pin. Thus, Zin= 3V/2µA = 1.5MΩ.
instruction register (IR) Register in the control unit that contains the op code for the current
instruction.
instrument An instrument is the code injected into a program for debugging or profiling. This code is
usually extraneous to the normal function of a program and may be temporary or permanent.
Instruments injected during interactive sessions are considered to be temporary because these
instruments can be removed simply by terminating a session. Instruments injected in source code are
considered to be permanent because removal requires editing and recompiling the source. An
example of a temporary instrument occurs when the debugger replaces a regular op code with a
breakpoint instruction. This temporary instrument can be removed dynamically by restoring the
original op code. A print statement added to your source code is an example of a permanent
instrument, because removal requires editing and recompiling.
instrument A system that collects information, same as data acquisition system.
instrumentation The process of injecting or inserting an instrument.
interrupt A software/hardware synchronization method where the hardware causes a special
software program (interrupt handler) to execute when its operation to complete. The software usually
can perform other work while waiting for the hardware.
interrupt flag A status bit that is set by the hardware to signify an external event has occurred. Same
as trigger flag.
interrupt mask A control bit that, if programmed to 1, will cause an interrupt request when the
associated flag is set. Same as arm.
interrupt polling A software function to look and see which of the potential sources requested the
interrupt.
interrupt service routine (ISR) Program that runs as a result of an interrupt.
interrupt vector 32-bit values at the beginning of memory specifying where the software should
execute after an interrupt request. There is a unique interrupt vector for each type of interrupt.
intrusive A characteristic of a debugging instrument when the presence of the collection of
information itself does significantly affect the parameters being measured.

IOH Output current when the signal is high. This is the maximum current that has a voltage above VOH.
IOL Output current when the signal is low. This is the maximum current that has a voltage below VOL.
join Used in parallel programming to combine two or more software tasks into one. Execution after a
join will continue when all software tasks above the join are complete. See fork.
kibibit Stands for kilo-binary-bits, which is 1024 bits or 128 bytes, abbreviated Kibit.
kibibyte Stands for kilo-binary-bytes, which is 1024 bytes or 8192 bits, abbreviated KiB.
latch As a noun, it means a register. As a verb, it means to store data into the register.
latched input port An input port where the signals are latched (saved) on an edge of an associated
strobe signal.
latency In this book latency usually refers to the response time of the computer to external events.
For example, latency is the time between new input becoming available and the time the input is read
by the computer. For example, the time between an output device becoming idle and the time the input
is the computer writes new data to it. There can also be a latency for an I/O device, which is the
response time of the external I/O device hardware to a software command. For a data acquisition
system, the time between the time when the signal should be sampled and the time the ADC is actually
started.
LCD Liquid Crystal Display, where the computer controls the reflectance or transmittance of the
liquid crystal, characterized by its flexible display patterns, low power, low cost, and slow speed.
LED Light Emitting Diode, where the computer controls the electrical power to the diode,
characterized by its simple display patterns, medium power, and high speed.
linear recursion A recursive technique that makes only one call to itself during the execution of the
function. Linear recursive functions are easier to implement iteratively. We draw the execution pattern
as a straight or linear path. See also recursion, binary recursion, and tail recursion.
little endian Mechanism for storing multiple byte numbers such that the least significant byte exists
first (in the smallest memory address). Contrast with big endian.
loader System software that places the object code into the microcomputer’s memory. If the object
code is stored in EEPROM, the loader is also called an EEPROM programmer.
logic analyzer A hardware debugging tool that allows you to visualize many digital logic signals
versus time. Real logic analyzers have at least 32 channels and can have up to 200 channels, with
sophisticated techniques for triggering, saving and analyzing the real-time data.
LSB The least significant bit in a number system is the bit with the smallest significance, usually the
right-most bit. With signed or unsigned integers the significance of the LSB is 1.
maintenance Process of verifying, changing, correcting, enhancing, and extending a system.
mark A digital value of true or logic 1 used in serial communication. Contrast with space.
mask As a verb, mask is the operation that selects certain bits out of many bits, using the logical and
operation. The bits that are not being selected will be cleared to zero. When used as a noun, mask
refers to the specific bits that are being selected.
Mealy FSM A FSM where the both the output and next state are a function of the input and state
measurand A signal measured by a data acquisition system.
mebibit Stands for mega-binary-bits, which is 1,048,576 bits, abbreviated Mibit.
mebibyte Stands for mega-binary-bytes, which is 1,048,576 bytes, abbreviated MiB.
memory A computer component capable of storing and recalling information.

memory-mapped I/O A configuration where the I/O devices are interfaced to the computer in a
manner identical to the way memories are connected, from an interfacing perspective I/O devices and
memory modules shares the same bus signals, from a programmer’s point of view the I/O devices
exist as locations in the memory map, and I/O device access can be performed using any of the
memory access instructions.
Mibit Stands for mega-binary-bits, which is 1,048,576 bits, same as mebibit.
MiB Stands for mega-binary-bytes, which is 1,048,576 bytes, same as mebibyte.
microcomputer An electronic device capable of performing input/output functions containing a
microprocessor, memory, and I/O devices.
microcontroller A single chip microcomputer like the Texas Instruments TM4C123, Freescale 9S12,
Intel 8051, Atmel ATmega328, Atmel SAM3X8E, PIC16, or the Texas Instruments MSP430.
minimally intrusive A characteristic of a debugging instrument when the presence of the collection of
information itself has a small but insignificant effect on the parameters being measured.
mnemonic The symbolic name of an operation code, like mov str push .
monitor or debugger window A monitor is a debugger feature that allows us to passively view
strategic software parameters during the real-time execution of our program. An effective monitor is
one that has minimal effect on the performance of the system. When debugging software on a
windows-based machine, we can often set up a debugger window that displays the current value of
certain software variables.
MSB The most significant bit in a number system is the bit with the greatest significance, usually the
left-most bit. If the number system is signed, then the MSB signifies positive (0) or negative (1).
multiple access circular queue MACQ A data structure used in data acquisition systems to hold the
current sample and a finite number of previous samples.
multi-threaded A system with multiple threads (e.g., main program and interrupt service routines)
that cooperate towards a common overall goal.
negative logic A signal where the true value has a lower voltage than the false value, in digital logic
true is 0 and false is 1, in digital logic true is less than 0.7 volts and false is greater than 2 volts, in
RS232 protocol true is -5.5 volts and false is +5.5 volts. Contrast with positive logic.
nibble 4 binary bits or 1 hexadecimal digit.
nonatomic Software execution that can be divided or interrupted. Most lines of C code require
multiple assembly language instructions to execute, therefore an interrupt may occur in the middle of a
line of C code. The instructionsstore and load multiple, STM LDM , are nonatomic.
nonintrusive A characteristic of a debugging instrument when the presence of the collection of
information itself does not affect the parameters being measured. Nonintrusiveness is the
characteristic or quality of a debugger that allows the software/hardware system to operate normally
as if the debugger did not exist. Intrusiveness is used as a measure of the degree of perturbation
caused in program performance by an instrument. For example, a print statement added to your source
code and single-stepping are very intrusive because they significantly affect the real-time interaction
of the hardware and software. When a program interacts with real-time events, the performance is
significantly altered. On the other hand, an instrument with outputs strategic information on LEDs (that
requires just 1 µs to execute) is much less intrusive. A logic analyzer that passively monitors the
address and data by is completely nonintrusive. An in-circuit emulator is also nonintrusive because
the software input/output relationships will be the same with and without the debugging tool.

noninvasive/invasive Noninvasiveness is the characteristic or quality of a debugger that makes the
order of invocation immaterial. The debugger and the user program co-exist in the same global
environment. On the other hand, an invasive debugger requires the user program to execute within an
environment defined by the debugger. The debugger is invoked first and the program is then loaded
either by the debugger or by the user from within the debugger. Invasiveness is also a measure of the
degree of source code modification to debug or monitor a program. A resident debugger like the
serial monitor is invasive because it exists first and then your program is loaded on top of it. This
program development environment is invasive because the UART interrupts with the serial monitor is
different from the eventual the single chip embedded application. An in-circuit emulator is non-
invasive because it can coexist (be added or deleted) from our system without changing the way our
system runs.
nonreentrant A software module that once started by one thread, cannot be interrupted and executed
by a second thread. Nonreentrant modules usually involve nonatomic accesses to global variables or
I/O ports: read modify write, write followed by read, or a multistep write.
nonvolatile A condition where information is not lost when power is removed. When power is
restored, then the information is in the state that occurred when the power was removed.
nonvolatile RAM Read/write storage that achieves its long term storage ability because it includes a
battery.
normalized The mantissa of a normalized floating-point number is greater than or equal to 1, but
strictly less than 2.
Nyquist Theorem If a input signal is captured by an ADC at the regular rate of fs samples/sec, then
the digital sequence can accurately represent the 0 to ½fs frequency components of the original signal.
object code Programs in machine readable format created by the compiler or assembler.
odd parity A communication protocol where the number of ones in the data plus a parity bit is an odd
number. Contrast with even parity.
op code opcode or operation codeA specific instruction executed by the computer. The op code
along with the operand completely specify the function to be performed. In assembly language
programming, the op code is represented by its mnemonic, like LDR . During execution, the op code
is stored as a machine code loaded in memory.
open collector A digital logic output that has two states low and HiZ. On CMOS circuits, it is
sometimes called open drain.
open drain A CMOS digital logic output that has two states low and HiZ. Often used interchangeably
with the term open collector.
operand The second part of an instruction that specifies either the data or the address for that
instruction. An assembly instruction typically has an op code and an operand (e.g., #55). Instructions
that use inherent addressing mode have no operand field.
operating system System software for managing computer resources and facilitating common
functions like input/output, memory management, and file system.
oscilloscope A hardware debugging tool that allows you to visualize one or two analog signals
versus time.

output impedance A specification of how strong an output signal is. Zout is the open circuit output
voltage divided by the short circuit output current. In the 2-bit DAC made with a 10kΩ and a 20kΩ
resistor, if the both digital signals are high, the open circuit voltage is 3.3V. If the output of the DAC is
shorted, 3.3V/10kΩ=0.33mA will flow through the 10kΩ, and 3.3V/20kΩ=0.165mA will flow
through the 20kΩ, making a total short circuit current of about 0.5mA. Zout = 3.3V/0.5mA = 6.6kΩ
overflow An error that occurs when the result of a calculation exceeds the range of the number
system. For example, with 8-bit unsigned integers, 200+57 will yield the incorrect result of 1.
overrun error An error that occurs when the receiver gets a new frame but the data register and shift
register already have information.
parallel port A port where all signals are available simultaneously. In this book the parallel ports
are 8 bits wide. Some ports have less than 8 bits.
parallel programming A computer system that supports simultaneous execution of two or more
software tasks. Compare to concurrent programming.
PC-relative An addressing mode where the effective address is calculated by its position relative to
the current value of the program counter.
performance debugging or profiling The process of acquiring or modifying timing characteristics
and execution patterns of a program and the process of instrumenting a program for such purposes is
called performance debugging or profiling. Contrast with functional debugging.
periodic polling A software/hardware synchronization method that is a combination of interrupts and
busy wait. An interrupt occurs at a regular rate (periodic) independent of the hardware status. The
interrupt handler checks the hardware device (polls) to determine if its operation is complete. The
software usually can perform other work while waiting for the hardware.
personal computer system A small general purpose computer system having a price low enough for
individual people to afford and used for personal tasks.
port External pins through which the microcomputer can perform input/output. Same as I/O port.
positive logic a signal where the true value has a higher voltage than the false value, in digital logic
true is 1 and false is 0, in digital logic true is greater than 2 volts and false is less than 0.7 volts, in
RS232 protocol true is +5.5 volts and false is -5.5 volts. Contrast with negative logic.
precision For an input signal, it is the number of distinguishable input signals that can be reliably
detected by the measurement. For an output signal, it is the number of different output parameters that
can be produced by the system. For a number system, precision is the number of distinct or different
values of a number system in units of “alternatives”. The precision of a number system is also the
number of binary digits required to represent all its numbers in units of “bits”.
priority When two requests for service are made simultaneously, priority determines which order to
process them. If we are processing a low priority task and a higher priority request is received, we
will suspend the low priority task, execute the high priority task to completion, and then return to the
lower priority task.
private Can be accessed only by software functions in that module. Contrast with public.
private variable A variable that is used by a single module, and not shared with other modules.
process The execution of software that does not necessarily cooperate with other processes. Contrast
with thread. Processes generally do not share global memory or I/O devices.
producer-consumer A multi-threaded system where the producers generate new data, and the
consumers process or output the data.

program counter (PC) A register in the processor that points to the memory containing the instruction
to execute next.
program status register (PSR) Register in the processor that contains the status of the previous ALU
operation, as well as some operating mode flags such as the interrupt enable bit.
PROM Same as EPROM. Programmable read only memory that is nonvolatile and requires external
devices to erase and reprogram. It is usually erased using UV light. Contrast with EEPROM.
promotion Increasing the precision of a number for convenience or to avoid overflow errors during
calculations.
pseudo-code A shorthand for describing a software algorithm. The exact format is not defined, but
many programmers use their favorite high-level language syntax (like C) without paying rigorous
attention to the punctuation.
pseudo op Operations included in the program that are not executed by the computer at run time, but
rather are interpreted by the assembler during the assembly process. Same as assembly directive.
public Can be accessed by any software module. Contrast with private.
public variable A variable that is shared by multiple programs or threads.
pulse width modulation A technique to deliver a variable signal (voltage, power, and energy) using
an on/off signal with a variable percentage of time the signal is on (duty cycle). Same as variable
duty cycle.
RAM Random Access Memory, a type of memory where the information can be stored and retrieved
easily and quickly. Since it is volatile the information is lost when power is removed.
range Includes both the smallest possible and the largest possible signal (input or output). The
difference between the largest and smallest input that can be measured by the instrument. The units are
in the units of the measurand. When precision is in alternatives, range=precision•resolution.
real-time A system that can guarantee an upper bound (worst case) on latency.
real-time computer system A system where time-critical operations occur when needed.
recursion A programming technique where a function calls itself. See also linear recursion, tail
recursion, and binary recursion.
reduced instruction set computer (RISC) A computer with a few instructions, instructions with
fixed lengths, instructions that execute in 1 or 2 bus cycles, only load and store can access memory,
instructions that cannot read and write memory in the same bus cycle, many identical general purpose
registers, and a limited number of addressing modes. Contrast to CISC.
reentrant A software module that can be started by one thread, interrupted and executed by a second
thread. A reentrant module allows multiple threads to properly execute the desired function.
registers High-speed storage located in the processor. The registers in the ARM ® Cortex™-M
processor include R0 through R15.
reproducibility (or repeatability) A parameter specifying how consistent over time the measurement
is when the input remains fixed.
requirements document A formal description of what the system will do in a very complete way, but
not including how it will be done. It should be unambiguous, complete, verifiable, and modifiable.
reset vector The 32-bit value at memory locations 4–7 specifying where the software should start
after power is turned on or after a hardware reset.

resolution For an input signal, it is the smallest change in the input parameter that can be reliably
detected by the measurement. For an output signal, it is the smallest change in the output parameter
that can be produced by the system, range equals precision times resolution, where precision is given
in alternatives.
ritual Software, usually executed once at the beginning of the program, that defines the operational
modes of the I/O ports.
ROM Read Only Memory, a type of memory where the information is programmed into the device
once, but can be accessed quickly. It is low cost, must be purchased in high volume, and can be
programmed only once. See also PROM, EEPROM, and flash EEPROM.
roundoff The error that occurs in a fixed-point or floating-point calculation when the least significant
bits of an intermediate calculation are discarded so the result can fit into the finite precision.
sampling rate The rate at which data is collected in a data acquisition system. Sampling rate applies
to both the ADC while collecting data, and the DAC while outputting data.
scan or scanpoint Any instrument used to produce a side effect without causing a break (halt) is a
scan. Therefore, a scan may be used to gather data passively or to modify functions of a program.
Examples include software added to your source code that simply outputs or modifies a global
variable without halting. A scanpoint is triggered in a manner similar to a breakpoint but a scanpoint
simply records data at that time without halting execution.
scope A logic analyzer or an oscilloscope, hardware debugging tools that allows you to visualize
multiple digital or analog signals versus time.
semaphore A system function with two operations (wait and signal) that provide for thread
synchronization and resource sharing.
sensitivity The sensitivity of a transducer is the slope of the output versus input response. The
sensitivity of a data acquisition system that detects events is the percentage of actual events that are
properly recognized by the system.
serial communication A process where information is transmitted one bit at a time.
serial peripheral interface (SPI) device to transmit data with synchronous serial communication
protocol. The clock is shared on both sides. Same as synchronous serial interface (SSI).
serial port An I/O port where the bits are input or output one at a time.
setup time When latching data into a device with a rising or falling edge of a clock, the setup time is
the time before the active edge of the clock that the data must be valid. Contrast with hold time.
signed two’s complement binary A mechanism to represent signed integers where 1 followed by all
0’s is the most negative number, all 1’s represents the value -1, all 0’s represents the value 0, and 0
followed by all 1’s is the largest positive number.
sign-magnitude binary A mechanism to represent signed integers where the most significant bit is set
if the number is negative, and the remaining bits represent the magnitude as an unsigned binary.
simplex channel Hardware that allows bits (information, error checking, synchronization or
overhead) to transfer only in one direction. Contrast with half-duplex and full-duplex channels.
simplex communication A system that allows information to transfer only in one direction.

simulator A simulator is a software application, which simulates or mimics the operation of a
processor or computer system. Most simulators recreate only simple I/O ports and often do not
effectively duplicate the real-time interactions of the software/hardware interface. On the other hand,
they do provide a simple and interactive mechanism to test software. Simulators are especially useful
when learning a new language, because they provide more control and access to the simulated
machine, than one normally has with real hardware.
single-pole switch One switch that acts independent from other switches in the system. Contrast with
double-pole.
single-throw switch A switch with two contact connections. The two contacts may be connected or
disconnected. Contrast with double-throw.
software interrupt vector The 32-bit value at memory locations in low memory specifying where
the software should go after executing a software interrupt instruction.
software maintenance Process of verifying, changing, correcting, enhancing, and extending software.
source code Programs in human readable format created with an editor.
space A digital value of false or logic 0 used in serial communication. Contrast with mark.
specificity The specificity of a transducer is the relative sensitivity of the device to the signal of
interest versus the sensitivity of the device to other unwanted signals. The specificity of a data
acquisition system that detects events is the percentage of events detected by the system that are
actually true.
stabilize The process of stabilizing a software system involves specifying all its inputs. When a
system is stabilized, the output results are consistently repeatable. Stabilizing a system with multiple
real-time events, like input devices and time-dependent conditions, can be difficult to accomplish. It
often involves replacing input hardware with sequential reads from an array or disk file.
stack Last in first out data structure located in RAM and used to temporarily save information.
stack pointer (SP) A register in the processor that points to the RAM location of the stack.
start bit An overhead bit(s) specifying the beginning of the frame, used in serial communication to
synchronize the receiver shift register with the transmitter clock. See also stop bit, even parity and
odd parity.
static efficiency A measure of program size, which is number of memory bytes required. In an
embedded system we need to specify both RAM size for variables/stack and ROM size for
programs/constants.
static RAM Volatile read/write storage built from three transistors having fast speed, and not
requiring refresh. Contrast with dynamic RAM.
stepper motor A motor that moves in discrete steps.
stop bit An overhead bit(s) specifying the end of the frame, used in serial communication to separate
one frame from the next. See also start bit, even parity and odd parity.
string A sequence of ASCII characters, usually terminated with a zero.
symbol table A mapping from a symbolic name to its corresponding 32-bit address, generated by the
assembler in pass one and displayed in the listing file.
synchronous protocol a system where the two devices share the same clock.
synchronous serial interface (SSI) device to transmit data with synchronous serial communication
protocol. The clock is shared on both sides. Same as serial peripheral interface (SPI).
tachometer a sensor that measures the revolutions per second of a rotating shaft.

tail recursion A technique where the recursive call occurs as the last action taken by the function. See
also recursion, binary recursion, and linear recursion.
thread The execution of software that cooperates with other threads. A thread embodies the action of
the software. One concept describes a thread as the sequence of operations including the input and
output data. Contrast with process.
throughput The information transfer rate, the amount of data transferred per second. Same as
bandwidth.
time constant The time to reach 63.2% of the final output after the input is instantaneously increased.
time profile and execution profile Time profile refers to the timing characteristic of a program and
execution profile refers to the execution pattern of a program.
toggle Change 0 to 1 or 1 to 0. A toggle switch is one that if it is off when you push it, it will turn on.
If it is on when you push it, it will turn off.
transducer A device that converts one type of signal into another type.
trigger flag A status bit that is set by the hardware to signify an external event has occurred. Same as
interrupt flag.
tristate The state of a tristate logic output when HiZ or not driven.
tristate logic A digital logic device that has three output states low, high, and HiZ.
truncation The act of discarding bits as a number is converted from one format to another.
two-pole switch Two separate and complete switches, which are activated together, same as double-
pole.
two’s complement A number system used to define signed integers. The MSB defines whether the
number is negative (1) or positive (0). To negate a two’s complement number, one first complements
(flip from 0 to 1 or from 1 to 0) each bit, then add 1 to the number.
unary operation A function that produces its result given a single input parameter. For example,
negate, increment, and decrement are unary operations.
unbuffered I/O The hardware and software are tightly coupled so that both wait for each other
during the transmission of data.
unipolar stepper motor A stepper motor where the current flows in only one direction (on/off) along
the interface wires; a stepper with 5 or 6 interface wires.
universal asynchronous receiver/transmitter (UART) A device to transmit data with asynchronous
serial communication protocol.
unnormalized An unnormalized floating-point number has a mantissa value less than one. The
mantissa of a normalized floating-point number is greater than or equal to 1, but strictly less than 2.
unsigned binary A mechanism to represent unsigned integers where all 0’s represents the value 0,
and all 1’s represents is the largest positive number.
vector An address at the end of memory containing the location of the interrupt service routines. See
also reset vector and interrupt vector.
VIH If the input voltage is above this value, the input is considered high.
VIL If the input voltage is below this value, the input is considered low.
VOH The smallest possible output voltage when the signal is high, and the current is less than IOH.
VOL The largest possible output voltage when the signal is low, and the current is less than IOL.
volatile A condition where information is lost when power is removed. In C, volatile tells the
compiler, the value may change beyond the control of the software itself.

vulnerable window Locations within a software module, which if an interrupt were to occur at one
of these locations, then an error could occur (e.g., data lost, corrupted data, program crash, etc.)
Same as critical section.
white noise A fundamental noise in resistive devices arising from the uncertainty about the position
and velocity of individual molecules. Same as Johnson noise and thermal noise.
word Four bytes containing 32 bits. In C, we use long or unsigned long to create a word. In C99, we
use int32_t or uint32_t to create a word.
workstation A powerful general purpose computer system having a price in the $3K to 50K range
and used for handling large amounts of data and performing many calculations.
XON/XOFF A protocol used by printers to feedback the printer status to the computer. XOFF is sent
from the printer to the computer in order to stop data transfer, and XON is sent from the printer to the
computer in order to resume data transfer.

Appendix 2. Solutions to Checkpoints
Checkpoint 1.1: 2mA is 0.002A. Ohm’s Law R=V/I = 1V/0.002A = 500Ω.
Checkpoint 1.2: Ohm’s Law I=V/R = 5V/100Ω = 0.02A = 20mA.
Checkpoint 1.3: Theoretically, the current will be infinite, but practically there will be sparks.
Checkpoint 1.4: Resistance is effort over flow = Newtons/m2/ (m3/sec) = Newtons-sec/m5.
Checkpoint 1.5: Resistance is effort over flow = º C/ watts.
Checkpoint 1.6: 2mA is 0.002A. Power is V*I = 1V*0.002A = 0.002W = 2 mW.
Checkpoint 1.7: Power is V2/R = 5V*5V/100Ω = 0.25W = 250 mW.
Checkpoint 1.8: Power is I2*R = (0.09A)*(0.09A)*100Ω = 0.81W.
Checkpoint 1.9: Total resistance is 1kΩ +2kΩ = 3kΩ. Ohm’s Law V=I*R = 0.001A*3000Ω = 3V.
Checkpoint 1.10: Total resistance is 1kΩ+2kΩ=3kΩ. I is 6V/3kΩ=2mA. V2 =I*R2 = 0.002A*2000Ω
= 4V.
Checkpoint 1.11: Total resistance is 2000*3000/(2000+3000)=1200Ω. V =I*R = 0.001A*1200Ω =
1.2 V.
Checkpoint 1.12: Ohm’s Law I2=V/R2 = 6V/3000Ω = 0.002A = 2 mA
Checkpoint 1.13: Use 2 gates

Checkpoint 1.14: Use 2 gates

Checkpoint 1.15: Add the powers of 2 for each digit that is 1.
1•27+1•26+1•25+1•24+1•23+1•22+1•21+1•20 = 255
Checkpoint 1.16: 15•161+14•160 = 254
Checkpoint 1.17: First, divide the binary into 4-bit nibbles, then convert the two 4-bit nibbles:
01002=0x4 and 01112=0x7. Third, combine the two hex digits into one number 0x47.
Checkpoint 1.18: First, divide the binary into 4-bit nibbles, then convert the three 4-bit nibbles:
11012=0xD, 10102=0xA and 10112=0xB. Third, combine the three hex digits into one number 0xDAB
Checkpoint 1.19: First, convert the two 4-bit nibbles: 0x4=01002 and 0x9=10012. Second, combine
the 8 binary bits into one binary number 010010012

Checkpoint 1.20: First, convert the four 4-bit nibbles: 0xB=10112, 0xE=11002, 0xE=11002 and
0xF=11112. Second, combine the 16 binary bits into one binary number 10111100110011112

Checkpoint 1.21: Four binary bits are required for each hex digit. 4*5 is 20 bits.
Checkpoint 1.22: There are 8 bits/byte, so 60 bits will take 60/8 = 7.5, or 8 bytes of memory.
Checkpoint 1.23: 3½ decimal digits is about 2000 alternatives, which is about 11 bits.
Checkpoint 1.24: The rule of thumb says 260 is about 1018, which is 18 decimal digits. 24 is 16,
which is about 1½ decimal digits. Together, we have 19½ decimal digits.
Checkpoint 1.25: 0•27+1•26+1•25+0•24+1•23+0•22+1•21+1•20 = 64+32+8+2+1 = 107
Checkpoint 1.26: 4*16+6 = 64+6 = 70

Checkpoint 1.27: We start by setting the running total to the number we wish to convert. We start
with the basis element associated with the MSB and work towards the basis element for the LSB. We
must also subtract basis elements from the running total as we determine they are needed. If the basis
element in question is less than or equal to the running total, then we need that basis element.
Checkpoint 1.28: Combine binary basis elements to create the desired value. 45=32+8+4+1, so 45 =
001011012 = 0x2D.
Checkpoint 1.29: Combine binary basis elements to create the desired value. 200=128+64+8, so 200
= 110010002 = 0xC8.
Checkpoint 1.30: Combine signed binary basis elements to create the desired value.
-128+64+32+8+2 = -22.
Checkpoint 1.31: They are the same, because bit 7 is zero.
Checkpoint 1.32: Combine signed binary basis elements to create the desired value. -45 =
-128+64+16+2+1 = 110100112 = 0xD3.
Checkpoint 1.33: Because the range of 8-bit signed numbers is -128 to +127.
Checkpoint 1.34: Each four bits represent a single decimal digit, 0x25 = 001001012.
Checkpoint 1.35: 8192+64+32+8+2=8298.
Checkpoint 1.36: 1*4096+2*256+3*16+4=4660.
Checkpoint 1.37: 1234 = 4*256+13*16+2 = 0x04D2.
Checkpoint 1.38: 10000 = 8192+1024+512+256+16 = 00100111000100002.
Checkpoint 1.39: 1*4096+2*256+3*16+4 = 4660.
Checkpoint 1.40: -32768 + 2*4096+11*256+12*16+13 = -21555.
Checkpoint 1.41: 1234 = 4*256+13*16+2 = 0x04D2.
Checkpoint 1.42: -10000 = -32768 +16384+4096+2048+128+64+32+16 = 11011000111100002.
Checkpoint 1.43: Looking in the ASCII table we see ‘0’ is 0x30 (or 48).
Checkpoint 1.44: Let c be the character ‘0’ to ‘9’, n = c - 0x30.
Checkpoint 1.45: Look up each letter, concatenate, add 0 at end, 0x48656C6C6F20576F726C6400.
Checkpoint 1.46: A microprocessor is a small processor. A microcomputer is a small computer that
includes a processor, memory and I/O devices. A microcontroller is a single chip computer.
Checkpoint 1.47: Flash ROM is higher density because it requires few transistors compared to
RAM.

Checkpoint 2.1: An embedded system is a microcomputer with mechanical, chemical, and electrical
devices attached to it, programmed for a specific dedicated purpose, and packaged up as a complete
system.
Checkpoint 2.2: A microcomputer is a small computer that includes a processor, memory and I/O
devices.
Checkpoint 2.3: Typical input devices include the keys on the keyboard, mouse and its buttons, touch
pad, DVD reader, and microphone. USB drives, Ethernet, and wireless can be used for input and
output.
Checkpoint 2.4: Typical output devices include the LEDs on the keyboard, monitor, speaker, printer,
DVD burner, and speaker. USB drives, Ethernet, and wireless can be used for input and output.

Checkpoint 2.5: The software in a digital watch must maintain time using a real-time clock, output
the current time on the LCD, respond to button pushes updating parameters as required, check and see
if the current time matches the alarm time.
Checkpoint 2.6: Both terms refer to parameters of a system, but the differences lie in the level of
detail used to describe the parameter. A requirement is usually defined in general terms, whereas a
specification entails detailed engineering rigor. A requirement often refers to an objective of the
system, while a specification describes how well the actual device works.
Checkpoint 2.7: It failed because employees were rewarded for poor behavior. It is much better to
punish poor behavior and reward good behavior.
Checkpoint 2.8: In general, the presence of a minimally intrusive debugging instrument itself only has
minimal effect on the parameter being measured. One criterion is the total execution time required to
perform the instrumentation is small compared to the execution times of the original target operation.
Checkpoint 2.9: Runtime debugging can be activated in final production systems. Runtime debugging
is quicker to activate/deactivate because an edit/assemble/download cycle is not needed. Assembly-
time debugging produces a final production system that runs faster and requires less memory.
Checkpoint 2.10: We are sure we debugged the exact system that is being manufactured. The
debugging statements can be used to evaluate the proper operation of systems before they are shipped.
The instruments can also be used to diagnose and repair systems.
Checkpoint 2.11: The VOL of the LED driver is still 0.5V. R = (3.3-1.7-0.5)/0.012 = 92 � Ω.
Checkpoint 2.12: Negative logic interface: The VOL is still 0.4V. R = (3.3-1.7-0.4)/0.002 = 600Ω.

Checkpoint 3.1: The addressing mode defines the format for the effective address for that instruction.
In other words, it defines how the instruction will access the data it needs.
Checkpoint 3.2: 0x2000.0008, R3 is not changed.
Checkpoint 3.3: 0x2000.0000, and 8 is added to R3, it becomes 0x2000.0008.
Checkpoint 3.4: Bit-wise AND. 0x12345678 & 0x87654321 = 0x02244220.
Bit-wise EOR. 0001^1000=1001. 0010^0111=0101. 0011^0110=0101. 0100^0101=0001.
So 0x12345678 ̂0x87654321 = 0x95511559.
Checkpoint 3.5:

Checkpoint 3.6: Read N, shift, store into M
 LDR R2,=N ; R2 = &N
 LDRSH R1,[R2] ; R1 = N (16-bit signed)
 LSL R0,R1,#2 ; R0 = N<<2
 LDR R2,=M ; R2 = &M
STRH R0,[R2] ; M = 4*N
Checkpoint 3.7: 32 bits plus 32 bits yields 33 bits
Checkpoint 3.8: 32 bits plus 32 bits yields 33 bits
Checkpoint 3.9: 232-1 to 0, or 4,294,967,295 to 0.
Checkpoint 3.10: 0x7000.0000 + 0x2000.0000 = 0x9000.0000. N=1 because result is negative. Z=0
because result is not zero. V=1 because a positive number was added to a positive number yielding a
negative result. C=0 because the unsigned sum is less than 232.

Checkpoint 3.11: 0x0000.0001 + 0xFFFF.FFFF = 0x0000.0000. N=0 because result is positive. We
consider zero a positive number. Z=1 because result is zero. V=0 because a positive number was
added to a negative number. C=1 because the unsigned sum is equal to 232 passing the discontinuity.
Checkpoint 3.12: 100 – 200 = -100. N=1 because result is negative. Z=0 because result is not zero.
V=0 because the result is correct. Remember, crossing the discontinuity clears the carry, not crossing
sets the carry. C=0 because the difference crosses the discontinuity. Thinking another way, 100 – 200
causes an unsigned overflow, so C=0.
Checkpoint 3.13: 100 – -200 = 300. N=0 because result is positive. Z=0 because result is not zero.
V=0 because the result is correct. Remember, crossing the discontinuity clears the carry, not crossing
sets the carry. C=0 because the difference crosses the discontinuity. -200 is the same number as
4294967096. Thinking another way, 100 – 4294967096 causes an unsigned overflow, so C=0.
Checkpoint 3.14: unsigned 16-bit means using LDRH and STRH
 LDR R3, =N ; R3 = &N
 LDRH R1, [R3] ; R1 = N
 ADD R0, R1, #10 ; R0 = N+10
 LDR R2, =M ; R2 = &M
 STRH R0, [R2] ; M = N+10
Checkpoint 3.15: signed 8-bit means using LDRSB and STRB
 LDR R3, =N ; R3 = &N
 LDRSB R1, [R3] ; R1 = N
 ADD R0, R1, #10 ; R0 = N+10
 LDR R2, =M ; R2 = &M
 STRB R0, [R2] ; M = N+10
Checkpoint 3.16:Change ADDS to SUBS , the rest is the same
Checkpoint 3.17: 32 bits times 32 bits yields 64 bits
Checkpoint 3.18: 32 bits times 32 bits yields 64 bits
Checkpoint 3.19: No, because the product is 64 bits
Checkpoint 3.20: dividend=quotient*divisor+remainder.

Checkpoint 4.1: Nothing happens if the software writes to an input port.
Checkpoint 4.2: If the software reads this output port it gets the values last written to the port. For
example, if the user mistakenly grounded the output pin (very bad thing to do), and the software writes
a ‘1’; when it reads it will get ‘1’.
Checkpoint 4.3: Since there are as many bits in a port as there are bits in the direction register, each
bit can be individually programmed as input or output.
Checkpoint 4.4: First, write a 0x00000002 to the clock register to activate Port B. Second, change
all the labels PORTF to PORTB (change all 0x40025 to 0x40005). If it is an LM3S microcontroller,
remove steps 2, 3, and 4****fix*****.
Checkpoint 4.5: Nothing happens. Since none of the address bits are selected, none of the port bits
are affected.
Checkpoint 4.6: The base address for Port A is 0x4000.4000.
#define PA71 (*((volatile uint32_t *)0x40004208))

PA71 = 0x82; // sets PA7 PA1, other 6 bits are not affected
Checkpoint 4.7: The base address for Port B is 0x4000.5000.
#define PB610 (*((volatile uint32_t *)0x4000510C))
PB610 = 0x43; // sets PB6 PB1 PB0, other 5 bits are not affected
Checkpoint 4.8: 16 MHz means 62.5ns per cycle. It takes 6 cycles to be high and 6 cycles to be low.
There are 14 cycles per period of the squarewave. So, the frequency is 16 MHz/12 = 1.33 MHz
Checkpoint 4.9: It will still operate according to specifications, but it may be more expensive to
build or it may be harder to order components to build it.
Checkpoint 4.10: It will no longer operate according to specifications.
Checkpoint 4.11: Change the specification from 16 MHz to 8 MHz. Change the line
 SYSCTL_RCC_R += 0x00000540; // 10101, configure for 16 MHz crystal
to
 SYSCTL_RCC_R += 0x00000380; // 01110, configure for 8 MHz crystal
Change the specification from divide by 5 to divide by 8. Change the line
 SYSCTL_RCC2_R += (4<<22); // configure for 80 MHz clock
to
 SYSCTL_RCC2_R += (7<<22); // configure for 50 MHz clock
Checkpoint 4.12: Change SysTick_Wait(500000); to SysTick_Wait(120000); .

Checkpoint 5.1: The initialization in one module may modify the configuration needed by another
module. To resolve, assign individual port pins to only one module, and make all the initializations
friendly.
Checkpoint 5.2: Coupling can be parameters passed, shared globals, functions called, and shared I/O
devices. It is measured in bytes/sec transferred from one module to the other.
Checkpoint 5.3: They are permanently allocated and can be accessed by any function.
Checkpoint 5.4: Use a “does-call” graph so only one module actually does access the I/O device.
Checkpoint 5.5: Use LDRB , because the number is 8 bits unsigned. Bring first number into a
register, subtract second number. Since we want to call the subroutine if equal, we skip over if not
equal.
 LDR R2, =N ; R2 = &N
 LDRB R0, [R2] ; R0 = N (unsigned)
 CMP R0, #25 ; is N == 25 ?
 BNE next1 ; if not, skip
 BL isEqual ; N == 25
next1
Checkpoint 5.6: Use LDRH , because the number is 16 bits unsigned. Bring first number into a
register, subtract second number. Since we want to call the subroutine if equal, we skip over if not
equal.
 LDR R1, =H1 ; R1 = &H1
 LDRH R1, [R1] ; R1 = H1 (unsigned)
 LDR R2, =H2 ; R2 = &H2
 LDRH R2, [R2] ; R2 = H2 (unsigned)

 CMP R1, R2 ; is H1 == H2 ?
 BNE next2 ; if not, skip
 BL isEqual ; H1 == H2
Next2
Checkpoint 5.7: It determines whether to use the BLS or BLE instruction.
Checkpoint 5.8: Use LDRSH , because the number is 16 bits signed.
 LDR R2, =M ; R2 = &M
 LDRSH R0, [R2] ; R0 = M (signed)
 CMP R0, #1000 ; is M > 1000 ?
 BGT high ; if so, skip to high
low BL isLessEq ; M <= 1000
 B next ; unconditional
high BL isGreater ; M > 1000
next
Checkpoint 5.9: Use LDRH , because the number is 16 bits unsigned.
 LDR R4, =N ; R4 = &N (use R4 for AAPCS)
loop LDRH R0, [R4] ; R0 = N (unsigned)
 CMP R0, #25 ; is N == 25?
 BEQ next ; if so, skip to next
 BL Body ; body of the loop
 B loop
next
Checkpoint 5.10: The macro runs faster. If the subroutine/macro is called/invoked from one or two
locations in our software, then the macro will also require less storage.
Checkpoint 5.11: Recursive version requires 8 bytes, four bytes to save R0 and four bytes for the
return address. It is called five times, so 40 bytes are required.
Checkpoint 5.12: Public functions have an underline. E.g., UART_OutString . Private functions do
not have an underline. E.g., SetBaud .
Checkpoint 5.13: Local variables begin with a lower case letter E.g., myKey . Global variables
begin with an upper case letter E.g., TheKey .
Checkpoint 5.14: Each conditional branch creates two potential execution paths. Twenty conditional
branches might create 220, which is about a million, potential paths. In most cases, the actual number
of paths will be much less, because taking one branch path usually prevents other conditional
branches from being executed.
Checkpoint 5.15: The assembler determines the size of each instruction. Using the AREA statements
it will create a symbol table mapping the symbols into physical addresses.
Checkpoint 5.16: The assembler determines the machine code for each instruction and creates the
listing file.

Checkpoint 6.1: To make it easier to understand.

Checkpoint 6.2: Create it using an 80-byte size, and just waste the space when less than 80 bytes are
requested.

Checkpoint 7.1: Define the variable within the scope of the function. E.g.,
void MyFunction(void){ int32_t myLocalVariable;
}
Checkpoint 7.2: Define the variable outside the scope of the function. E.g.,
int32_t myGlobalVariable; // accessible by all programs
void MyFunction(void){
}
Checkpoint 7.3: Look for this line in the startup.s file. It contains the stack size in bytes
Stack EQU 0x00000400
Checkpoint 7.4: Multiply R0 by 4 and subtract it from SP. LSL R0,R0,#2 then SUB SP,SP,R0
Checkpoint 7.5: Three 32-bit variables is 12 bytes
Func SUB SP,#12 ;1) allocate local variables
 ;2) body
 ADD SP,#12 ;3) deallocate local variables
 BX LR
Checkpoint 7.6: In call by value, we pass a copy of the data (which may be result of an expression).
In call by reference, we pass a pointer to the data such that the calling program and the subroutine are
accessing the same data.
Checkpoint 7.7: π*1000 is about 3141.59, so the variable integer part is 3142.
Checkpoint 7.8: π*256 is about 804.2477, so the variable integer part is 804.
Checkpoint 7.9: F = (461•C)/256+32.
Checkpoint 7.10: y = (1000•x-53•x1+1000•x2+51•y1-903•y2)/1000.
Checkpoint 7.11: Simply, R3=(R1*R2)/(R1+R2), because the fixed constants factor out.

Checkpoint 8.1: There is 1 byte of data per 10 bits of transmission. So, there are 100 bytes/sec.
Checkpoint 8.2: divider = 0010.1000002. or 2 plus 32/64 = 2.5. The baud rate is 10MHz/2.5/16
which is 250 kHz.
Checkpoint 8.3: 50,000,000/38400/16 is 81.3802, which is similar to 81 and
24/64. UART0_IBRD_R is 81 UART0_FBRD_R is 24. The baud rate is 50MHz/(81+24/64)/16
which is 38402 bits/sec.
Checkpoint 8.4: RXFE is set and cleared by hardware. It means receive FIFO empty. To make it 0
means to put data into the FIFO. Software cannot clear this flag. An incoming UART frame will clear
RXFE.
Checkpoint 8.5: TXFF is set and cleared by hardware. It means transmit FIFO full. To make it 0
means to get data from the FIFO. Software cannot clear this flag. An outgoing UART frame will clear
TXFF.

Checkpoint 8.6: The data will be received in error (values will not be correct). The receiver could
appear to get two input frames for every one frame transmitted. It will probably cause framing errors
(FE). It would cause parity errors if active.
Checkpoint 8.7: The data will be received in error (values will not be correct). The receiver will
appear to get one input frame for every one frame transmitted. It will probably not cause framing
errors (FE). It would cause parity errors if active.
Checkpoint 8.8: 10,000,000/115200/16 is 5.4253, which is similar to 5 and
27/64. UART0_IBRD_R is 5 UART0_FBRD_R is 27. The baud rate is 10MHz/(5+27/64)/16
which is 115274 bits/sec.
Checkpoint 8.9: Setup time is the time before a clock input data must be valid. Hold time, the time
after a clock input data must continue to be valid.
Checkpoint 8.10: Speed = (1 rotation/36 steps)*(1000ms/s)*(60sec/min)*(1step/50ms) = 33.3 RPM
Checkpoint 8.11: Change the 50ms to 10ms, and it will spin 5 times faster.
Speed = (1 rotation/200 steps)*(1000ms/s)*(60sec/min)*(1step/10ms) = 30 RPM

Checkpoint 9.1: Trigger flag set by hardware; the device is armed by software; the device is enabled
for interrupts in the NVIC; the processor is enabled for interrupts (PRIMASK I bit is clear); the
interrupt level must be less than the BASEPRI. The order of these conditions does not matter.
Checkpoint 9.2: The processor is enabled for interrupts by clearing the I bit in the PRIMASK.
Execute
 CPSIE I
Checkpoint 9.3: Instruction is finished; registers R0–R3, R12, LR, PC, and PSR are pushed; LR is
set to 0xFFFFFFF9; IPSR is set to the interrupt number being processed; PC is set with interrupt
vector address. The last three steps can occur in any order.
Checkpoint 9.4: From Program 9.1 or Table 9.1 we see the vector is 32 bits at 0x0000003C.The
standard name of the interrupt handler is SysTick_Handler .
Checkpoint 9.5: Negative logic means when we touch the switch the voltage goes to 0 (low).
Formally, negative logic means the true voltage is lower than the false voltage. Positive logic means
when we touch the switch the voltage goes to +3.3 (high). Formally, positive logic means the true
voltage is higher than the false voltage.
Checkpoint 9.6: For PA2, we need input with pull-up. DIR bit 2 is low (input), AFSEL bit 2 is low
(not alternate), PUE bit 2 high (pull-up) and PDE bit 2 low (not pull-down). For PA3, we need input
with pull-down. DIR bit 3 is low (input), AFSEL bit 3 is low (not alternate), PUE bit 3 low (no pull-
up) and PDE bit 3 high (pull-down).
Checkpoint 9.7: The timer counts down, and when it hits zero it reloads and continues to count. The
TATORIS flag is set when the timer rolls over.
Checkpoint 9.8: This bit-specific address makes the access friendly
#define PB3 (*((volatile uint32_t *)0x40005020))
The first instrument sets it high and the second sets it low
 PB3 = 0x08; // high
 PB3 = 0x00; // low

Checkpoint 10.1: Because the frequency components of the wiggles are higher than ½ the sampling
rate. The Nyquist Theorem is violated.
Checkpoint 10.2: Because temperatures above 31 o C are beyond the range, which is definedin this
example as 0 to 31 o C.
Checkpoint 10.3: If the sampling rate is 1 Hz, according to the Nyquist Theorem, the digital data can
reliably represent frequencies from 0 to ½ Hz.
Checkpoint 10.4: According to the Nyquist Theorem we would have to output to the DAC at 2 kHz.
Checkpoint 10.5: 2.5V/256 is about 0.01 V or 10 mV.
Checkpoint 10.6: 2V/1mV is 2000 alternatives. This is about 11 bits.
Checkpoint 10.7: Q2 is connected to 10 kΩ, Q1 is connected to 20 kΩ and Q0 is connected to 40
kΩ, the other ends of the resistors are connected together. Any three resistors with a 1/2/4 ratio would
be ok.
Checkpoint 10.8: Approximating the 10-bit ADC is linear, either Dout = 1024*Vin/3 or 1023*Vin/3 =
341.
Checkpoint 10.9: Approximating the 12-bit ADC is linear, either Dout = 4096*Vin/3.3 or
4095*Vin/3.3 = 1241.
Checkpoint 10.10: This is the expected result. This means it can resolve differences in input voltage
at about 1 ADC value. Note the data in Figure 10.13 was collected with 64-sample hardware
averaging.
 ADC0_SAC_R = 0x06;
Checkpoint 11.1: At the end of the inner nested program, interrupts would be enabled. So, the last
part of the outer section would be running with interrupts enabled. In this example Stuff2B runs with
interrupts enabled.
Critical1 Critical2
 Disable Disable
 Stuff1A Stuff2A
 Call Critical2 Enable
 Stuff1B return
 Enable
 return
Checkpoint 11.2: There are two ways a FIFO can get full. If the average rate at which data is put in
the FIFO is larger than the average rate data is get from the FIFO, then the FIFO will always fill up. If
the temporary rate at which data is put in the FIFO is larger than the temporary rate data is get from
the FIFO, and the FIFO size is small, then the FIFO may fill up.
Checkpoint 11.3: The RxFifo is empty when there is no input data. Software is waiting for hardware.
Checkpoint 11.4: The TxFifo is empty when there is no output data. Hardware is waiting for
software.
Checkpoint 11.5: No, if the average producer rate exceeds the average consumer rate, the FIFO will
always fill regardless of size. However, if the average producer rate is less than the average
consumer rate, the FIFO full errors can be eliminated by increasing size.
Checkpoint 11.6: With open collector outputs, the low will dominate over HiZ. The signal will be
low.

Checkpoint 11.7: The minimum is 1 and the maximum is N-1. On average, it will take N/2
transmissions for the message to go from one computer to another. There are 10 bits/frame, so there
are 10,000 bytes/sec. Because there are 10 bytes/message, it takes 1ms to transmit a message.
Because it has to be sent 5 times, it takes 5ms on average.
Checkpoint 11.8: The frame sent by a transmitter is echoed to its own receiver. If the data does not
match, or if there are any framing or noise errors then a collision occurred.
Checkpoint 11.9: Parity could be used to detect collisions. Also the message could have checksum
added. Framing or noise errors can also indicate a collision.

Appendix 3. How to Convert Projects from Keil to CCS
Most of the examples in this book follow the Keil™ uVision® syntax. An equally powerful code
development tool is the Texas Instruments Code Composer Studio™. The purpose of this Appendix is
to illustrate how to convert files from Keil to CCS. Program A3.1 shows the equivalent code and
order of use in an assembly file. The subroutine will input from Port A bit 5 and store the value into
global variable M (0 or 0x20).

;Keil
 THUMB
 AREA DATA, ALIGN=2

 EXPORT M
M SPACE 4

 AREA
|.text|,CODE,READONLY,ALIGN=2

PORTA EQU 0x400043FC
BIT5 EQU 0x20
 EXPORT InputPA5
InputPA5

 LDR R0,=PORTA ;R0 =
&PORTA
 LDR R1,[R0] ;R1 = PORTA
 AND R1,R1,#BIT5 ;Mask
 LDR R2,=M ;R2 = &M
 STR R1,[R2] ;M = PA5
 BX LR

 END

;CCS
 .thumb ;1)
 .data ;2)
 .align 4 ;3)
 .global M ;4)
M .field 32 ;5)
 .align 2 ;6)
 .text ;7)
PtM .field M,32 ;8)
PORTA .field 0x400043FC,32
;8)
BIT5 .equ 0x20 ;9)
 .global InputPA5 ;10)
 .thumbfunc InputPA5 ;11)
InputPA5: .asmfunc ;12)
 LDR R0,PORTA
;13)
 LDR R1,[R0]
 AND R1,R1,#BIT5
 LDR R2,PtM ;13)
 STR R1,[R2]
 BX LR
 .endasmfunc ;12)
 .end ;14)

Program A3.1. This illustrates the order and syntax of pseudo-ops in assembly
files.

1) Use Thumb assembly language
2) This is a data section (variables typically go in RAM)
3) Align on 32-bit boundary
4) Declare the variable M globally visible to other files including to C programs
5) Define an uninitialized 32-bit object and call it M
6) Align on 16-bit boundary
7) This is a text section, which is executable code and callable from C (in ROM)
8) .field defines 32-bit objects and initialize them as pointers to M and to Port A
9) .equ defines a numerical constant

10) Declare it globally visible to other files including to C programs
11) There is a thumb function with this name
12) .asmfunc and .endasmfunc help with debugging, marking beginning and end
13) A pointer-constant is stored in ROM, and PC relative addressing is used
14) Marks the end of the file

One of the difficulties in translating Keil to CCS is that the Keil syntax of LDR R#,=Label is not
supported in CCS. So, to access variables and I/O ports we need to define a 32-bit pointer-constant
using the .field pseudo-op. The actual machine code created by these two assemblers is virtually
identical. The only difference is where in ROM the pointer-constant resides. In CCS you explicitly
position the pointer-constants, and in Keil, the assembly automatically positions them.

In CCS there MUST be a ‘main’ function, if you have to you can alias it using substitution of symbols

 .asg “main”, XXXXXXX
where XXXXXXX is the function name you want to substitute for main

In Keil you could write these four invalid instructions

 AND R0,R1,#0x00FFFFFF
 MOV R1,#-1
 ORR R2,#0x0FFFFFFF
 CMP R3,#-100
and it would be automatically converted to equivalent valid instructions
 BIC R0,R1,#0xFF000000
 MVN R1,#0
 ORN R2,#0xF0000000
 CMN R3,#100

In CCS you have to do this manually.

Each compiler has its own syntax for handling inline assembly. The syntax for inline assembly in C is
illustrated in Program A3.2. Both compilers follow the AAPCS convention for passing parameters
and saving registers.

// Keil
__asm void Delay(uint32_t ulCount){
 subs r0, #1
 bne Delay
 bx lr
}

// CCS
void Delay(uint32_t ulCount){
__asm (" subs r0, #1\n"
 " bne Delay\n"
 " bx lr\n");
}

Program A3.2. This illustrates inline assembly in C programs.

The CCS code requires the quotation marks with a new line character at the end of each assembly
line. This is a clever hack around to enable multiple lines to be written as one line. In essence Keil
allows straight inline assembly, whereas in CCS you have to specify it as a string that will then be
inserted. If you have to use assembly it is better to place it in a separate file, because inline assembly
can be difficult to debug and makes the code less portable.

The example files of this book are posted on the book’s web site and have versions for both
compilers. For help with CCS equivalents please reference the document spnu118j.pdf (which can be
found on www.TI.com).

Appendix 4. Assembly Reference
My purpose in writing this book is not to provide a complete description of the ARM®Cortex � M
or any LM3S/TM4C microcontroller. Rather the book is a learning tool for first year college students
majoring in engineering and science. As such, this appendix is not a complete list of all Thumb
instructions. It gives details on the subset of instructions introduced in this book. Depending on
exactly how you count, the Cortex M processor has over 150 instructions. However, I think this subset
of 30 instructions will be sufficient to perform the homework and labs associated with the book. As
the book evolves I will consider adding instructions to this subset that enhance the learning objectives
without adding unnecessary complexity. Once you finish reading this book, I encourage you to
propose to me Thumb instructions you feel every freshman engineer or scientist needs to know. On the
other hand, these three are complete reference manuals for the Cortex-M processor. They are
available as pdf files and are posted on the book web site.

CortexM_InstructionSet.pdf Cortex-M3/M4 Instruction Set Technical User's Manual
CortexM4_TRM_r0p1.pdf Cortex-M4 Technical Reference Manual
QuickReferenceCard.pdf ARM® and Thumb-2 Instruction Set Quick Reference
Card

Table 3.2, repeated here,shows the conditions {cond} that we will use for conditional branching.
Conditional instructions, except for conditional branches, must be inside an If-Then (IT) instruction
block. Depending on the vendor, the assembler might automatically insert an IT instruction if you have
conditional instructions outside the IT block.

Suffix Flags Meaning
EQ Z = 1 Equal
NE Z = 0 Not equal
CS or HS C = 1 Higher or same, unsigned ≥
CC or LO C = 0 Lower, unsigned <
MI N = 1 Negative
PL N = 0 Positive or zero
VS V = 1 Overflow
VC V = 0 No overflow
HI C = 1 and Z = 0 Higher, unsigned >
LS C = 0 or Z = 1 Lower or same, unsigned ≤
GE N = V Greater than or equal, signed ≥
LT N ≠ V Less than, signed <
GT Z = 0 and N = V Greater than, signed >
LE Z = 1 or N ≠ V Less than or equal, signed ≤
AL Can have any

value
Always. This is the default when no
suffix specified

Table 3.2. Condition code suffixes used to optionally execution instruction.

ADR
Load PC-relative address

Syntax
 ADR{cond} Rd, label
where {cond} is an optional condition code. See Table 3.2. Rd Is the destination register. label is a
PC-relative expression.

Operation
ADR determines the address by adding an immediate value to the PC, and writes the address of the
label to the destination register. ADR produces position-independent code, because the address is
PC-relative. If you use ADR to generate a target address for a BX or BLX instruction, you must
ensure that bit[0] of the address you generate is set to 1 for correct execution. Values of label must be
within the range of -4095 to +4095 from the address in the PC. You might have to use the .W suffix to
get the maximum offset range or to generate addresses that are not word-aligned. See the instruction
manual for more information about .W width selection.

Restrictions

 Rd must not be SP and must not be PC.

Condition Flags
This instruction does not change the flags.

Examples
Hello PUSH {R4,LR}
 ADR R0, Name ;R0 is the address of the string at Name
 BL OutString ;Print welcome
 POP {R4,PC}
Name DCB "Hello world",0

 AREA DATA
FuncPt SPACE 4
 AREA CODE,READONLY,ALIGN=2
Set ADR R0, Hello ;R0 points to function Hello
 ORR R0,R0,#1 ;set Thumb bit (this step IS necessary)
 LDR R1,=FuncPt
 STR R0,[R1] ;FuncPt points to Hello
 BX LR

ADD
32-bit Addition

Syntax
 ADD{S}{cond} {Rd,} Rn, Op2
 ADD{cond} {Rd,} Rn, #imm12
where {S} is an optional suffix. If S is specified, the condition code flags are updated on the result of
the operation. {cond} is an optional condition code. See Table 3.2. Rd is the destination register. If
Rd is omitted, the destination register is Rn. Rn is the register holding the first operand. Op2 is a
flexible second operand. imm12 is any value in the range 0–4095. The syntax of Op2 is
 ADD Rd, Rn, Rm ; op2 = Rm
 ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 ADD Rd, Rn, #constant ; op2 = constant , where X and Y are hexadecimal digits :

 produced by shifting an 8-bit unsigned value left by any number of bits
 in the form 0x00XY00XY
 in the form 0xXY00XY00
 in the form 0xXYXYXYXY

Operation
The ADD instruction adds the value of Op2 or imm12 to the value in Rn and stores the sum in Rd.
Rd = Rn + Op2
Rd = Rn + imm12

Restrictions (for additional restrictions about PC see data sheet)
 Op2 must not be SP and must not be PC.
 Rd can be SP only with the additional restrictions:

 Rn must also be SP.
 any shift in Op2 must be limited to a maximum of 3 bits using LSL.

Condition Flags
If S is specified, these instructions update the N, Z, C and V flags according to the result. R=X+M,
where X is initial register value, M is the flexible second operand or the #imm12 constant, and R is
the final register value.
N: result is negative N = R31

Z: result is zero
V: signed overflow
C: unsigned overflow

Examples
 ADD R2, R1, R3 ;R2=R1+R3
 ADDS R4, R4, #100 ;R4=R4+100, set flags
 ADDHI R11, R0, R3 ;R11=R0+R3, part of IT, execute if C=0 and Z=0

AND
32-bit Logical AND

Syntax
 AND{S}{cond} {Rd,} Rn, Op2
where {S} is an optional suffix. If S is specified, the condition code flags are updated on the result of
the operation. {cond} is an optional condition code. See Table 3.2. Rd is the destination register. If
Rd is omitted, the destination register is Rn. Rn is the register holding the first operand. Op2 is a
flexible second operand. The syntax of Op2 is
 AND Rd, Rn, Rm ; op2 = Rm
 AND Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 AND Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 AND Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 AND Rd, Rn, #constant ; op2 = constant , where X and Y are hexadecimal digits :

 produced by shifting an 8-bit unsigned value left by any number of bits
 in the form 0x00XY00XY
 in the form 0xXY00XY00
 in the form 0xXYXYXYXY

Operation
The AND instruction performs a 32-bit bitwise AND operation on the values in Rn and Op2 and
places the results into Rd. The AND instruction is useful for selecting bits. You specify which bits to
select in the Op2.
Rd = Rn & Op2

Restrictions

 Do not use SP and do not use PC.

Condition Flags
If S is specified, update the N and Z flags according to the result, Rd. It can also update the C flag
during the calculation of Op2. It does not affect the V flag.
N: result is negative N = R31

Z: result is zero

Examples
 AND R9, R2, #0xFF00 ;R9=R2&0x0000FF00
 AND R0, R0, R5 ;R0=R0&R5

 AND R0, R0, R5, LSR #3 ;R0=R0&(R5<<3)
 ANDS R9, R8, #1 ;R9=R8&0x00000001, sets flags
 ANDHS R11, R0, R3 ;R11=R0&R3, part of IT, execute if C=0

ASR
32-bit Arithmetic Shift Right

Syntax
 ASR{S}{cond} Rd, Rm, Rs
 ASR{S}{cond} Rd, Rm, #n
where {S} is an optional suffix. If S is specified, the condition code flags are updated on the result of
the operation. {cond} is an optional condition code. See Table 3.2. Rd is the destination register. Rd
cannot be omitted. Rm is the register holding the value to be shifted. Rs is the register holding the
shift length to apply to the value in Rm. Only the least significant byte of Rs is used and can be in the
range 0 to 255. n is the shift length (1 to 32).

Operation
ASR moves the bits in the register Rm to the right by the number of places specified by constant n or
register Rs. Values are signed integers, so the sign bit in bit 31 is preserved. The result is written to
Rd, and the value in register Rm remains unchanged.
Rd = Rm >> Rs (signed)
Rd = Rm >> n (signed)

Restrictions
 Do not use SP and do not use PC.

Condition Flags
If S is specified, these instructions update the N and Z flags according to the result in Rd. The C flag
is updated to the last bit shifted out, except when the shift length is 0.
N: result is negative N = R31

Z: result is zero

Examples
 ASR R7, R8, #9 ;R7 = R8>>9, signed, (similar to R7 = R8/512)
 ASR R0, R1, R2 ;R0 = R1>>R2, signed (similar to R0 = R1/2R2)
 ASRS R1, R2, #3 ;R1 = R2>>3, signed, with flag update
 ASREQ R4, R5, #6 ;part of IT, if Z=1 then R4=R5>>6, signed

B
Branch instructions

Syntax
B label ; branch to label Always
 BEQ label ; branch if Z == 1 Equal
 BNE label ; branch if Z == 0 Not equal
 BCS label ; branch if C == 1 Higher or same, unsigned ≥
 BHS label ; branch if C == 1 Higher or same, unsigned ≥
 BCC label ; branch if C == 0 Lower, unsigned <
 BLO label ; branch if C == 0 Lower, unsigned <
 BMI label ; branch if N == 1 Negative
 BPL label ; branch if N == 0 Positive or zero
 BVS label ; branch if V == 1 Overflow
 BVC label ; branch if V == 0 No overflow
 BHI label ; branch if C==1 and Z==0 Higher, unsigned >
 BLS label ; branch if C==0 or Z==1 Lower or same, unsigned ≤
 BGE label ; branch if N == V Greater than or equal, signed ≥
 BLT label ; branch if N != V Less than, signed <
 BGT label ; branch if Z==0 and N==V Greater than, signed >
 BLE label ; branch if Z==1 or N!=V Less than or equal, signed ≤
where {cond} is an optional condition code. See Table 3.2. label is a PC-relative expression.

Operation
These instructions cause a branch to label. These are the only conditional instructions that can be
either inside or outside an IT block. All other conditional instructions must be inside an IT block.
 B label -16 MB to +16 MB
 Bcond label -1 MB to +1 MB (outside IT block)
 Bcond label -16 MB to +16 MB (inside IT block)
You might have to use the .W suffix to get the maximum branch range. See the instruction manual for
more information about .W width selection.

Restrictions

 When inside an IT block, it must be the last instruction of the IT block.

Condition Flags
These instructions do not change the flags.

Examples
 B loopA ;Branch to loopA
 BLE ng ;Conditionally branch to label ng

 B.W target ;Branch to target within 16MB range
 BEQ target ;Conditionally branch to target
 BEQ.W target ;Conditionally branch to target within 1MB

BIC
32-bit Logical Bit Clear

Syntax
 BIC{S}{cond} {Rd,} Rn, Op2
where {S} is an optional suffix. If S is specified, the condition code flags are updated on the result of
the operation. {cond} is an optional condition code. See Table 3.2. Rd is the destination register. If
Rd is omitted, the destination register is Rn. Rn is the register holding the first operand. Op2 is a
flexible second operand. The syntax of Op2 is
 BIC Rd, Rn, Rm ; op2 = Rm
 BIC Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 BIC Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 BIC Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 BIC Rd, Rn, #constant ; op2 = constant , where X and Y are hexadecimal digits :

 produced by shifting an 8-bit unsigned value left by any number of bits
 in the form 0x00XY00XY
 in the form 0xXY00XY00
 in the form 0xXYXYXYXY

Operation
The BIC instruction performs a 32-bit bitwise AND operation on the bits in Rn with the complements
of the corresponding bits from Op2 and places the results into Rd. This instruction is useful for
clearing bits. You specify which bits to clear in the Op2.
Rd = Rn & ~Op2

Restrictions

 Do not use SP and do not use PC.

Condition Flags
If S is specified, update the N and Z flags according to the result, Rd. It can also update the C flag
during the calculation of Op2. It does not affect the V flag.
N: result is negative N = R31

Z: result is zero

Examples
 BIC R9, R2, #0xFF00 ;R9 = R2&0xFFFF00FF, clear bits 15-8
 BICS R0, R0, #2 ;R0 = R0&0xFFFFFFFD, clear bit1, set flags

 BIC R1, R2, R3, LSL #2 ;R1 = R2&(~(R3<<2))
 BICEQ R2, R0, R5 ;R2 = R0&(~R5), part of IT execute if Z=1

BL
Branch link (call subroutine)

Syntax
 BL{cond} label ; branch to subroutine at label
where {cond} is an optional condition code. See Table 3.2. label is a PC-relative expression.

Operation
BL is the call to subroutine instruction. The address of the subroutine is specified by the label. The
BL instruction also saves the return address (the address of the next instruction) in the Link Register
(LR), Register R14. The range of the BL instruction is -16 MB to +16 MB from the current
instruction. You might have to use the .W suffix to get the maximum branch range. See the instruction
manual for more information about .W width selection.

Restrictions

 Conditional execution can only occur inside an IT block.
 When inside an IT block, it must be the last instruction of the IT block.

Condition Flags
This instruction does not change the flags.

Examples
 BL Func ;Call to Func, return address in LR
 MOV R0,#1234
 MOV R1,#100
 BL.W Divide ;Call to Divide, return address in LR (-16 to +16MB)

;example subroutine
Func PUSH {R4-R8,LR} ;save registers
;body of subroutine
 POP {R4-R8,PC} ;restore registers and return

; find the unsigned quotient and remainder
; Inputs: dividend in R0
; divisor in R1
; Outputs: quotient in R2
; remainder in R3
;dividend = divisor*quotient + remainder
Divide
 UDIV R2,R0,R1 ;R2=R0/R1, R2 is quotient
 MUL R3,R2,R1 ;R3=(R0/R1)*R1

 SUB R3,R0,R3 ;R3=R0%R1, R3 is remainder of R0/R1
 BX LR ;return

BLX
Branch link indirect (call subroutine)

Syntax
 BLX{cond} Rm ; branch to subroutine indirect specified by Rm
where {cond} is an optional condition code. See Table 3.2. Rm is a register that indicates the address
to which to branch. Bit[0] of the value in Rm must be 1, but the address to branch to is created by
changing bit[0] to 0.

Operation
BLX is an indirect call to subroutine instruction. The address of the subroutine is specified by the
register Rm. The BLX instruction also saves the return address (the address of the next instruction) in
the Link Register (LR), register R14.

Restrictions

 Conditional execution can only occur inside an IT block.
 It must be unconditional outside the IT block.
 Do not use PC in the BLX instruction.
 Bit[0] of Rm must be 1, the target address is created by changing bit[0] to 0.
 When inside an IT block, it must be the last instruction of the IT block.

Condition Flags
This instruction does not change the flags.

Examples
FList DCD Fun0,Fun1,Fun2,Fun3 ;pointers to four functions
;Assume R2 contains a value from 0 to 3
 LDR R1,=FList ;R1 points to list of functions
 LDR R0,[R1,R2,LSL #2] ;R0 points to subroutine to execute
 ORR R0,R0,#1 ;set thumb bit (this step may not be necessary)
 BLX R0 ;call subroutine, return address in LR
;end of example

Fun0 ;body of function 0
 BX LR
Fun1 ;body of function 1
 BX LR
Fun2 ;body of function 2
 BX LR
Fun3 ;body of function 3
 BX LR

BX
Branch indirect

Syntax
 BX{cond} Rm ; branch indirect to location specified by Rm
where {cond} is an optional condition code. See Table 3.2. Rm is a register that indicates the address
to which to branch.

Operation
This is a branch indirect instruction, with the branch address indicated in Rm. This instruction causes
a UsageFault exception if bit[0] of Rm is 0. BX LR is often used as a return from subroutine.

Restrictions

 Conditional execution can only occur inside an IT block.
 It must be unconditional outside the IT block.
 Bit[0] of Rm must be 1, the target address is created by changing bit[0] to 0.
 When inside an IT block, it must be the last instruction of the IT block.

Condition Flags
This instruction does not change the flags.

Examples
; Inputs: dividend in R0
; divisor in R1
; Outputs: quotient in R2
; remainder in R3
;dividend = divisor*quotient + remainder
Divide
 UDIV R2,R0,R1 ;R2=R0/R1, R2 is quotient
 MUL R3,R2,R1 ;R3=(R0/R1)*R1
 SUB R3,R0,R3 ;R3=R0%R1, R3 is remainder of R0/R1
 BX LR ;return

List DCD Place0,Place1,Place2,Place3 ;pointers to four places
;Assume R2 contains a value from 0 to 3
 LDR R1,=List ;R1 points to list of assembly labels
 LDR R0,[R1,R2,LSL #2] ;R0 points to code to execute
 ORR R0,R0,#1 ;make sure thumb bit set (not needed on Keil)
 BX R0 ;jump to place specified by R0
;end of example

Place0 ;code 0
Place1 ;code 1
Place2 ;code 2
Place3 ;code 3

CMN
32-bit Compare Negative

Syntax
 CMN{cond} Rn, Op2
where {cond} is an optional condition code. See Table 3.2. There is no destination register. Rn is the
register holding the first operand. Op2 is a flexible second operand. The syntax of Op2 is
 CMN Rn, Rm ; op2 = Rm
 CMN Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 CMN Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 CMN Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 CMN Rn, #constant ; op2 = constant , where X and Y are hexadecimal digits:

 produced by shifting an 8-bit unsigned value left by any number of bits
 in the form 0x00XY00XY
 in the form 0xXY00XY00
 in the form 0xXYXYXYXY

Operation
This instruction compares the value in a register with Op2. They update the condition flags on the
result, but do not write the result to a register. The CMN instruction adds the value of Op2 to the
value in Rn. The condition codes are set as if a subtraction occurred. This instruction can be followed
by a conditional branch.
Rn – (-Op2) (result is calculated but not stored)
This instruction is useful for extending the range of the immediate field of a CMP instruction. E.g.,
 CMP R0,#-2 ;not a valid instruction
can be executed as
 CMN R0,#2 ;a valid instruction comparing R0 to -2

Restrictions

 Do not use PC.
 Operand2 must not be SP.

Condition Flags
These instructions update the N, Z, C and V flags according to the result, Rn – (-Op2). R=X-(-M),
where X is initial register value, M is the flexible second operand, and R is the final subtracted
value.
N: result is negative N = R31

Z: result is zero
V: signed overflow V = X31& M31& (~R31) | (~X31)& (~M31)& R31
C: unsigned overflow C = ~(((~X31)& (~M31)) | (~M31)& R31 | R31&(~X31))

Examples
 CMN R2, #25 ; compare R2 to -25
 BEQ gothere ;branch to gothere if R2 equals -25

CMP
32-bit Compare

Syntax
 CMP{cond} Rn, Op2
where {cond} is an optional condition code. See Table 3.2. There is no destination register. Rn is the
register holding the first operand. Op2 is a flexible second operand. The syntax of Op2 is
 CMP Rn, Rm ; op2 = Rm
 CMP Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 CMP Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 CMP Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 CMP Rn, #constant ; op2 = constant , where X and Y are hexadecimal digits :

 produced by shifting an 8-bit unsigned value left by any number of bits
 in the form 0x00XY00XY
 in the form 0xXY00XY00
 in the form 0xXYXYXYXY

Operation
These instructions compare the value in a register with Op2. They update the condition flags on the
result, but do not write the result to a register. The CMP instruction subtracts the value of Op2 from
the value in Rn. This is the same as a SUBS instruction, except that the result is discarded. This
instruction can be followed by a conditional branch.
Rn – Op2 (result is calculated but not stored)

Restrictions

 Do not use PC.
 Operand2 must not be SP.

Condition Flags
These instructions update the N, Z, C and V flags according to the result, Rn – (Op2). R=X-M, where
X is initial register value, M is the flexible second operand, and R is the final subtracted value.
N: result is negative N = R31

Z: result is zero
V: signed overflow

C: unsigned overflow

Examples
 CMP R2, #6400
 BGT gothere ;branch to gothere if R2>6400 (signed)

 CMP R2, R3, LSR #1
 BLO gothere ;branch to gothere if R2<(R3>>1) (unsigned)

CPS
Change Processor State

Syntax
 CPSIE I ;Clears the Priority Mask Register (PRIMASK)
 CPSIE F ;Clears the Fault Mask Register (FAULTMASK)
 CPSID I ;Sets the Priority Mask Register (PRIMASK)
 CPSID F ;Sets the Fault Mask Register (FAULTMASK)

Operation
CPS changes the PRIMASK and FAULTMASK special register values. See the Data
Sheet for more information about these registers.

Restrictions

 Use CPS only from privileged software; it has no effect if used in unprivileged
software.

 CPS cannot be conditional and so must not be used inside an IT block.

Condition Flags
This instruction does not change the flags.

Examples
 CPSID I ; Set I, disable interrupts and configurable fault handlers
 CPSIE I ; Clear I, enable interrupts and configurable fault handlers

EOR
32-bit Logical Exclusive OR

Syntax
 EOR{S}{cond} {Rd,} Rn, Op2
where {S} is an optional suffix. If S is specified, the condition code flags are updated on the result of
the operation. {cond} is an optional condition code. See Table 3.2. Rd is the destination register. If
Rd is omitted, the destination register is Rn. Rn is the register holding the first operand. Op2 is a
flexible second operand. The syntax of Op2 is
 EOR Rd, Rn, Rm ; op2 = Rm
 EOR Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 EOR Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 EOR Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 EOR Rd, Rn, #constant ; op2 = constant , where X and Y are hexadecimal digits :

 produced by shifting an 8-bit unsigned value left by any number of bits
 in the form 0x00XY00XY
 in the form 0xXY00XY00
 in the form 0xXYXYXYXY

Operation
The EOR instruction performs a 32-bit bitwise Exclusive OR operation on the values in Rn and Op2
and places the results into Rd. The EOR instruction is useful for toggling bits. You specify which bits
to toggle in the Op2.
Rd = Rn ̂Op2

Restrictions

 Do not use SP and do not use PC.

Condition Flags
If S is specified, update the N and Z flags according to the result, Rd. It can also update the C flag
during the calculation of Op2. It does not affect the V flag.
N: result is negative N = R31

Z: result is zero

Example
TogglePG2
 LDR R1, =GPIO_PORTG_DATA_R ;R1 = &GPIO_PORTG_DATA_R

 LDR R2, [R1] ;R2 = [R1] (read all data on PG)
 EOR R2, R2, #0x04 ;R2 = R2^~0x04 (toggle bit 2)
 STR R2, [R1] ;[R1] = R2
 BX LR ;return

LDR
Load from memory into a register

Syntax
 LDR{type}{cond} Rt, [Rn {, #offset}] ; immediate offset EA=Rn+offset
 LDR{type}{cond} Rt, [Rn, #offset]! ; pre-indexed, EA=Rn+offset
 LDR{type}{cond} Rt, [Rn], #offset ; post-indexed, EA=Rn
 LDR{type}{cond} Rt, [Rn, Rm {, LSL #n}] ; register offset, EA=Rn+(Rm<<n)
 LDR{type}{cond} Rt, label ; PC relative, EA=PC+relative
where type is one of

 B Unsigned byte, zero extended to 32 bits.
 SB Signed byte, sign extended to 32 bits.
 H Unsigned halfword, zero extended to 32 bits.
 SH Signed halfword, sign extended to 32 bits.
 Omit, for word.

{cond} is an optional condition code. See Table 3.2. Rt is the register to load. Rn is the register on
which the memory address is based. offset is an offset from Rn. If offset is omitted, the effective
address is the contents of Rn. Rm is a register containing a value to be used as the offset. n is a
number 0 to 3.

Operation
LDR instructions copy values from memory into registers. Immediate offset addressing adds the
offset value (-255 to 4095) to the value of Rn to get the effective address. The register Rn is
unaltered. Pre-indexed addressing first adds the offset (-255 to 255) to Rn to create the effective
address. This mode changes Rn. Post-indexed addressing uses the original value of Rn as the
effective memory address. After memory is accessed, the offset (-255 to 255) is added to Rn. This
mode also changes Rn. Register offset addressing, first shifts left Rm by 0 to 3 bits and adds it to
the value of Rn to get the effective address. This mode does not alter Rn or Rm. When using PC
relative addressing, the label must be within -4095 to +4095.

Restrictions

 Rt can be SP or PC for word loads only.
 Rm must not be SP and must not be PC.
 When Rt is PC in a word load instruction, Bit[0] must be 1. If conditional in IT

block, it must be last
 Rn must not be PC for register offset addressing.

Condition Flags
These instructions do not change the flags.

Examples
 LDR R8, [R10] ;Load 32-bit from R10 address to R8
 LDRB R0, [R1] ;Load 8-bit unsigned from R1 address to R0
 LDRSB R1, [R2,#5] ;Load 8-bit signed from (R2+5) address to R1
 LDRH R2, [R5,#2]! ;R5=R5+2, load 16-bit unsigned from R5 address to R2
 LDR R3, [R7],#4 ;Load 32-bit from R7 address to R3, R7=R7+4
 LDR R0, Pi ;R0=314159
Pi DCD 314159

LSL
32-bit Logical Shift Left

Syntax
 LSL{S}{cond} Rd, Rm, Rs
 LSL{S}{cond} Rd, Rm, #n
where {S} is an optional suffix. If S is specified, the condition code flags are updated on the result of
the operation. {cond} is an optional condition code. See Table 3.2. Rd is the destination register. Rd
can not be omitted. Rm is the register holding the value to be shifted. Rs is the register holding the
shift length to apply to the value in Rm. Only the least significant byte of Rs is used and can be in the
range 0 to 255. n is the shift length (0 to 31).

Operation
LSL moves the bits in the register Rm to the left by the number of places specified by constant n or
register Rs. This instruction can be used for signed and unsigned integers. Shift left is similar to
multiplication by a power of 2. The result is written to Rd, and the value in register Rm remains
unchanged.
Rd = Rm << Rs (signed or unsigned)
Rd = Rm << n (signed or unsigned)

Restrictions
 Do not use SP and do not use PC.

Condition Flags
If S is specified, these instructions update the N and Z flags according to the result in Rd. The C flag
is updated to the last bit shifted out, except when the shift length is 0.
N: result is negative N = R31

Z: result is zero

Examples
 LSL R7, R8, #9 ;R7 = R8<<9 (similar to R7=R8*512)
 LSLS R1, R2, #3 ;R1 = R2<<3 (similar to R1=R2*8) with flag update
 LSL R4, R5, R6 ;R4 = R5<<R6 (similar to R4=R5*2R6)

LSR
32-bit Logical Shift Right

Syntax
 LSR{S}{cond} Rd, Rm, Rs
 LSR{S}{cond} Rd, Rm, #n
where {S} is an optional suffix. If S is specified, the condition code flags are updated on the result of
the operation. {cond} is an optional condition code. See Table 3.2. Rd is the destination register. Rd
cannot be omitted. Rm is the register holding the value to be shifted. Rs is the register holding the
shift length to apply to the value in Rm. Only the least significant byte of Rs is used and can be in the
range 0 to 255. n is the shift length (1 to 32).

Operation
LSR moves the bits in the register Rm to the right by the number of places specified by constant n or
register Rs. Values are unsigned integers, so zeros are shifted into bit 31. Shift right is similar to
unsigned division by a power of 2. The result is written to Rd, and the value in register Rm remains
unchanged.
Rd = Rm >> Rs (unsigned)
Rd = Rm >> n (unsigned)

Restrictions
 Do not use SP and do not use PC.

Condition Flags
If S is specified, these instructions update the N and Z flags according to the result in Rd. The C flag
is updated to the last bit shifted out, except when the shift length is 0.
N: result is negative N = R31

Z: result is zero

Examples
 LSR R7, R8, #9 ;R7 = R8>>9 (similar to R7=R8/512)
 LSRS R1, R2, #3 ;R1 = R2>>3 (similar to R1=R2/8) with flag update
 LSR R4, R5, R6 ;R4 = R5>>R6 (similar to R4=R5/2R6)

MLA
32-bit Multiplication with Accumulation

Syntax
 MLA{cond} Rd, Rn, Rm, Ra ; Multiply with accumulate
where {cond} is an optional condition code. See Table 3.2. Rd is the destination register. Rd cannot
be omitted. Rn, Rm are registers holding the values to be multiplied. Ra is a register holding the
value to be added.

Operation
The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places the
least-significant 32 bits of the result in Rd. The result does not depend on whether the operands are
signed or unsigned. This instruction is useful for implementing digital filters and other digital signal
processing.
Rd = Ra + (Rn * Rm)

Restrictions

 Do not use SP and do not use PC.

Condition Flags
This instruction does not change the flags.

Examples
 MLA R9, R2, R1, R5 ;R9 = R5 + (R2 * R1)
 MLA R0, R2, R3, R0 ;R0 = R0 + (R2 * R3)

MLS
32-bit Multiplication with Subtraction

Syntax
 MLS{cond} Rd, Rn, Rm, Ra ; Multiply with subtract
where {cond} is an optional condition code. See Table 3.2. Rd is the destination register. Rd cannot
be omitted. Rn, Rm are registers holding the values to be multiplied. Ra is a register holding the
value to be subtracted from.

Operation
The MLS instruction multiplies the values from Rn and Rm, subtracts the product from Ra, and
places the least-significant 32 bits of the result in Rd. The result does not depend on whether the
operands are signed or unsigned. This instruction is useful for implementing digital filters and other
digital signal processing.
Rd = Ra – (Rn * Rm)

Restrictions

 Do not use SP and do not use PC.

Condition Flags
This instruction does not change the flags.

Examples
 MLS R9, R2, R1, R5 ;R9 = R5 - (R2 * R1)
 MLS R0, R2, R3, R0 ;R0 = R0 - (R2 * R3)

MOV
32-bit Move

Syntax
 MOV{S}{cond} Rd, Op2
 MOV{cond} Rd, #imm16
where {S} is an optional suffix. If S is specified, the condition code flags are updated on the result of
the operation. {cond} is an optional condition code. See Table 3.2. Rd is the destination register. Op2
is a flexible second operand. imm16 is any value in the range 0–65535. The syntax of Op2 is
 MOV Rd, Rm ; op2 = Rm
 MOV Rd, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 MOV Rd, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 MOV Rd, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 MOV Rd, #constant ; op2 = constant , where X and Y are hexadecimal digits :

 produced by shifting an 8-bit unsigned value left by any number of bits
 in the form 0x00XY00XY
 in the form 0xXY00XY00
 in the form 0xXYXYXYXY

Operation
The MOV instruction copies the value of Op2 into Rd. This instruction is useful for moving values
from one register to another, and for initializing registers to a constant value.
Rd = Op2

Restrictions
You can use SP and PC, with the following restrictions:

 The second operand must be a register without shift
 You must not specify the S suffix.

Though it is possible to use MOV as a branch instruction, it is strongly recommended the use BX or
BLX.

Condition Flags
If S is specified, update the N and Z flags according to the result, Rd. It can also update the C flag
during the calculation of Op2. It does not affect the V flag.
N: result is negative N = R31

Z: result is zero

Examples
 MOVS R11, #10 ; R11=10, N and Z flags get updated
 MOV R1, #0xFA05 ; R1 = 0xFA05

 MOVS R10, R12 ; R10 = R12, N and Z flags get updated
 MOVS R0, R0 ; N and Z flags set according to R0
 MOV R11, SP ; Place a copy of stack pointer in R11
 MOVEQ R0, #0 ; Part of IT, if Z=1, set R0=0

MUL
32-bit Multiplication

Syntax
 MUL{S}{cond} {Rd,} Rn, Rm ; Multiply
where {S} is an optional suffix. If S is specified, the condition code flags are updated on the result of
the operation. {cond} is an optional condition code. See Table 3.2. Rd is the destination register. If
Rd is omitted, the destination register is Rn. Rn, Rm are registers holding the values to be multiplied.

Operation
The MUL instruction multiplies the values from Rn and Rm, and places the least-significant 32 bits of
the result in Rd. The result does not depend on whether the operands are signed or unsigned. This
instruction is useful for implementing digital filters and other digital signal processing.
Rd = Rn * Rm

Restrictions
In these instructions, do not use SP and do not use PC. If you use the S suffix:

 Rd, Rn, and Rm must all be in the range R0 to R7.
 Rd must be the same as Rm.
 You must not use the cond suffix.

Condition Flags
If S is specified, update the N and Z flags according to the result, Rd. It does not affect the C and V
flags.
N: result is negative N = R31

Z: result is zero
Examples
 MUL R10, R2, R5 ;R10 = R2 * R5
 MUL R0, R1 ;R0 = R0 * R1
 MULS R0, R1 ;R0 = R0 * R1, sets N and Z flags
 MULCC R2, R3, R2 ;part of IT, if C=0, R2 = R3 x R2

MVN
32-bit Move NOT
Syntax
 MVN{S}{cond} Rd, Op2
where {S} is an optional suffix. If S is specified, the condition code flags are updated on the result of
the operation. {cond} is an optional condition code. See Table 3.2. Rd is the destination register. Op2
is a flexible second operand. The syntax of Op2 is
 MVN Rd, Rm ; op2 = Rm
 MVN Rd, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 MVN Rd, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 MVN Rd, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 MVN Rd, #constant ; op2 = constant , where X and Y are hexadecimal digits :

 produced by shifting an 8-bit unsigned value left by any number of bits
 in the form 0x00XY00XY
 in the form 0xXY00XY00
 in the form 0xXYXYXYXY

Operation
The MVN instruction takes the value of Op2, performs a bitwise logical NOT operation on the value,
and places the result into Rd.
Rd = ~Op2
This instruction is useful for extending the range of the immediate field of a MOV instruction. For
example
 MOV R0,#-2 ;not a valid instruction (-2 = 0xFFFF.FFFE)
can be executed as
 MVN R0,#1 ;R0 = -2

Restrictions

 You cannot use SP and PC

Condition Flags
If S is specified, update the N and Z flags according to the result, Rd. It can also update the C flag
during the calculation of Op2. It does not affect the V flag.
N: result is negative N = R31

Z: result is zero

Examples
 MVN R0, #10 ;R0 = -11
 MVN R1, R2 ;R1 = ~R2
 MVN R1, R2, LSL #2 ;R1 = ~(R2<<2)

ORN
32-bit Logical OR NOT

Syntax
 ORN{S}{cond} {Rd,} Rn, Op2
where {S} is an optional suffix. If S is specified, the condition code flags are updated on the result of
the operation. {cond} is an optional condition code. See Table 3.2. Rd is the destination register. If
Rd is omitted, the destination register is Rn. Rn is the register holding the first operand. Op2 is a
flexible second operand. The syntax of Op2 is
 ORN Rd, Rn, Rm ; op2 = Rm
 ORN Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 ORN Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 ORN Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 ORN Rd, Rn, #constant ; op2 = constant , where X and Y are hexadecimal digits :

 produced by shifting an 8-bit unsigned value left by any number of bits
 in the form 0x00XY00XY
 in the form 0xXY00XY00
 in the form 0xXYXYXYXY

Operation
The ORN instruction performs a 32-bit bitwise OR operation on the bits in Rn with the complements
of the corresponding bits in Op2 and places the results into Rd. The ORN extends the useful range of
the OR.
Rd = Rn | ~Op2

Restrictions

 Do not use SP and do not use PC.

Condition Flags
If S is specified, update the N and Z flags according to the result, Rd. It can also update the C flag
during the calculation of Op2. It does not affect the V flag.
N: result is negative N = R31

Z: result is zero

Examples
 ORN R9, R2, #0x00FF ;R9 = R2 | 0xFFFFFF00
 ORN R7, R11, R12, LSR #4 ;R7 = R11 | (~(R12>>2)), R12 is unsigned

ORR
32-bit Logical OR

Syntax
 ORR{S}{cond} {Rd,} Rn, Op2
where {S} is an optional suffix. If S is specified, the condition code flags are updated on the result of
the operation. {cond} is an optional condition code. See Table 3.2. Rd is the destination register. If
Rd is omitted, the destination register is Rn. Rn is the register holding the first operand. Op2 is a
flexible second operand. The syntax of Op2 is
 ORR Rd, Rn, Rm ; op2 = Rm
 ORR Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 ORR Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 ORR Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 ORR Rd, Rn, #constant ; op2 = constant , where X and Y are hexadecimal digits :

 produced by shifting an 8-bit unsigned value left by any number of bits
 in the form 0x00XY00XY
 in the form 0xXY00XY00
 in the form 0xXYXYXYXY

Operation
The OR instruction performs a 32-bit bitwise OR operation on the values in Rn and Op2 and places
the results into Rd. The OR instruction is useful for setting bits. You specify which bits to set in the
Op2.
Rd = Rn | Op2

Restrictions

 Do not use SP and do not use PC.

Condition Flags
If S is specified, update the N and Z flags according to the result, Rd. It can also update the C flag
during the calculation of Op2. It does not affect the V flag.
N: result is negative N = R31

Z: result is zero

Examples
 ORR R9, R2, #0xFF00 ;R9 = R2 | 0xFF00 (set bits 15-8)
 ORREQ R2, R0, R5 ;part of IT, if Z=1, R2=R0|R5

 ORRS R7, R11, #0x18181818 ;R7=R11|0x18181818

POP
Pop registers off a full-descending stack

Syntax
 POP{cond} reglist
where {cond} is an optional condition code. See Table 3.2. reglist is a non-empty list of registers,
enclosed in braces. It can contain register ranges. It must be comma separated if it contains more than
one register or register range. POP is a synonym for LDM with the memory addresses for the access
based on SP, and with the final address for the access written back to the SP. According to AAPCS
we need to push and pop an even number of registers to maintain an 8-byte alignment on the stack.

Operation
POP loads registers from the stack in order of increasing register numbers, with the lowest numbered
register using the lowest memory address and the highest numbered register using the highest memory
address.

Restrictions

 reglist must not contain SP.
 reglist must not contain PC if it contains LR.
 When PC is in reglist in a POP instruction:

 Bit[0] of the value loaded to the PC must be 1 for correct execution,
 A branch occurs to this halfword-aligned address.

 If the instruction is conditional, it must be the last instruction in the IT block.

Condition Flags
This instruction does not change the flags.

Examples
 POP {R5} ;pop 32 bits from stack and place it in R5
 POP {R0,R4-R7} ;pop 5 words from stack and place into R0,R4,R5,R6,R7
 POP {R2,LR} ;pop 2 words from stack and place into R2, R14
 POP {R0,R10,PC} ;pop 3 words from stack and place into R0,R10,PC

;example subroutine
Func PUSH {R4-R8,LR} ;save registers
;body of subroutine
 POP {R4-R8,PC} ;restore registers and return

PUSH
Push registers onto a full-descending stack

Syntax
 PUSH{cond} reglist
where {cond} is an optional condition code. See Table 3.2. reglist is a non-empty list of registers,
enclosed in braces. It can contain register ranges. It must be comma separated if it contains more than
one register or register range. PUSH is a synonym for STMDB with the memory addresses for the
access based on SP, and with the final address for the access written back to the SP. According to
AAPCS we need to push and pop an even number of registers to maintain an 8-byte alignment on the
stack.

Operation
PUSH stores registers on the stack in order of decreasing register numbers, with the highest numbered
register using the highest memory address and the lowest numbered register using the lowest memory
address.

Restrictions

 reglist must not contain SP or PC
 If the instruction is conditional, it must be the last instruction in the IT block.

Condition Flags
This instruction does not change the flags.

Examples
 PUSH {R0} ;push the 32-bit contents of R0 on stack
 PUSH {R0,R4-R7} ;push R7,R6,R5,R4,R0 on stack (R0 on top)
 PUSH {R2,LR} ;push LR,R2 on stack (R2 on top)

;example subroutine, with local variable
Func PUSH {R4-R8,LR} ;save registers
sum EQU 0 ;32-bit local variable, stored on the stack
 MOV R0,#0

PUSH {R0,R1} ;allocate and initialize 2 local variables
;body of subroutine
 LDR R1,[SP,#sum] ;R1=sum
 ADD R1,R0 ;R1=R0+sum
 STR R1,[SP,#sum] ;sum=R0+sum
;end of subroutine
 ADD SP,#8 ;deallocate sum

 POP {R4-R8,PC} ;restore registers and return

RSB
32-bit Reverse Subtraction

Syntax
 RSB{S}{cond} {Rd,} Rn, Op2
where {S} is an optional suffix. If S is specified, the condition code flags are updated on the result of
the operation. {cond} is an optional condition code. See Table 3.2. Rd is the destination register. If
Rd is omitted, the destination register is Rn. Rn is the register holding the first operand. Op2 is a
flexible second operand. The syntax of Op2 is
 RSB Rd, Rn, Rm ; op2 = Rm
 RSB Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 RSB Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 RSB Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 RSB Rd, Rn, #constant ; op2 = constant , where X and Y are hexadecimal digits :

 produced by shifting an 8-bit unsigned value left by any number of bits
 in the form 0x00XY00XY
 in the form 0xXY00XY00
 in the form 0xXYXYXYXY

Operation
The RSB instruction subtracts the value in Rn from the value of Op2 and stores the sum in Rd.
Rd = Op2 - Rn
This is useful because of the wide range of options for Op2.

Restrictions (for additional restrictions about PC see data sheet)

 Op2 must not be SP and must not be PC.
 Rn cannot be SP.

Condition Flags
If S is specified, these instructions update the N, Z, C and V flags according to the result. R=M-X,
where X is initial register value, M is the flexible second operand, and R is the final register value.
N: result is negative N = R31

Z: result is zero
V: signed overflow V = M31& (~X31)& (~R31) | (~M31)&X31& R31
C: unsigned overflow C = ~((~M31& X31) | X31& R31 | R31&(~M31))

Examples
 RSB R2, R1, R3 ;R2=R3-R1
 RSBS R8, R6, #240 ;R8=240-R6, sets the flags
 RSB R4, R4, #1280 ;R4=1280-R4

SDIV
32-bit Signed Division

Syntax
 SDIV{cond} {Rd,} Rn, Rm
where {cond} is an optional condition code. See Table 3.2. Rd is the destination register. If Rd is
omitted, the destination register is Rn. Rn is the register holding the value to be dividend. Rm is a
register holding the divisor.

Operation
SDIV performs a signed integer division of the value in Rn by the value in Rm. If the value in Rn is
not divisible by the value in Rm, the result is rounded towards zero.
Rd = Rn / Rm

Restrictions

 Do not use SP and do not use PC.

Condition Flags
This instruction does not change the flags.

Examples
 SDIV R0, R2, R4 ;Signed divide, R0 = R2/R4.
 SDIV R8, R1 ;Signed divide, R8 = R8/R1.

; find the signed quotient and remainder of R0 divided by R1
; Inputs: dividend in R0
; divisor in R1
; Outputs: quotient in R2
; remainder in R3
;dividend = divisor*quotient + remainder
;remainder has the same sign as dividend
Divide
 SDIV R2,R0,R1 ;R2=R0/R1, R2 is quotient
 MUL R3,R2,R1 ;R3=(R0/R1)*R1
 SUB R3,R0,R3 ;R3=R0%R1, R3 is remainder of R0/R1
 BX LR ;return

STR
Store from register into memory

Syntax
 STR{type}{cond} Rt, [Rn {, #offset}] ; immediate offset EA=Rn+offset
 STR{type}{cond} Rt, [Rn, #offset]! ; pre-indexed, EA=Rn+offset
 STR{type}{cond} Rt, [Rn], #offset ; post-indexed, EA=Rn
 STR{type}{cond} Rt, [Rn, Rm {, LSL #n}] ; register offset, EA=Rn+(Rm<<n)
where type is one of

 B Unsigned byte, save bits 7-0 into memory.
 H Unsigned halfword, save bits 15-0 into memory.
 Omit, for word.

{cond} is an optional condition code. See Table 3.2. Rt is the register to load or store. Rn is the
register on which the memory address is based. offset is an offset from Rn. If offset is omitted, the
effective address is the contents of Rn. Rm is a register containing a value to be used as the offset. n
is a number 0 to 3.

Operation
STR instructions copy 8-bit 16-bit or 32-bit values from registers to memory. Immediate offset
addressing adds the offset value (-255 to 4095) to the value of Rn to get the effective address. The
register Rn is unaltered. Pre-indexed addressing first adds the offset (-255 to 255) to Rn to create
the effective address. This mode changes Rn. Post-indexed addressing uses the original value of Rn
as the effective memory address. After memory is accessed, the offset (-255 to 255) is added to Rn.
This mode also changes Rn. Register offset addressing, first shifts left Rm by 0 to 3 bits and adds it
to the value of Rn to get the effective address. This mode does not alter Rn or Rm.

Restrictions

 Rt can be SP for word stores only.
 Rt must not be PC.
 Rm must not be SP and must not be PC.
 Rn must not be PC.

Condition Flags
These instructions do not change the flags.

Examples
 STR R2, [R9,#4] ;32-bit store value of R2 into address R9+4
 STRH R3, [R4], #2 ;16-bit store value of R3 into address R4, R4=R4+2
 STRB R0, [R5, R1] ;8-bit store value of R0 into address R5+R1
 STRH R0, [R5, R1, LSL #1] ;16-bit store R0 into address R5+2*R1

 STR R0, [R1, R2, LSL #2] ;32-bit store R0 into address R1+4*R2
 STRB R0, [R5, #1]! ;R5=R5+1,8-bit store value of R0 into address R5

SUB
32-bit Subtraction

Syntax
 SUB{S}{cond} {Rd,} Rn, Op2
 SUB{cond} {Rd,} Rn, #imm12
where {S} is an optional suffix. If S is specified, the condition code flags are updated on the result of
the operation. {cond} is an optional condition code. See Table 3.2. Rd is the destination register. If
Rd is omitted, the destination register is Rn. Rn is the register holding the first operand. Op2 is a
flexible second operand. imm12 is any value in the range 0–4095. The syntax of Op2 is
 SUB Rd, Rn, Rm ; op2 = Rm
 SUB Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 SUB Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 SUB Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 SUB Rd, Rn, #constant ; op2 = constant , where X and Y are hexadecimal digits :

 produced by shifting an 8-bit unsigned value left by any number of bits
 in the form 0x00XY00XY
 in the form 0xXY00XY00
 in the form 0xXYXYXYXY

Operation
The SUB instruction subtracts the value of Op2 or imm12 from the value in Rn and stores the sum in
Rd. This instruction can be followed by a conditional branch.
Rd = Rn - Op2
Rd = Rn - imm12

Restrictions (for additional restrictions about PC see data sheet)

 Op2 must not be SP and must not be PC.
 Rd can be SP only with the additional restrictions:

 Rn must also be SP.
 any shift in Op2 must be limited to a maximum of 3 bits using LSL.

Condition Flags
If S is specified, these instructions update the N, Z, C and V flags according to the result. R=X+M,
where X is initial register value, M is the flexible second operand or the #imm12 constant, and R is
the final register value.
N: result is negative N = R31

Z: result is zero
V: signed overflow

C: unsigned overflow
Examples
 SUB R2, R1, R3 ;R2=R1-R3
 SUBS R6, #240 ;R6=R6-240, sets the flags on the result

UDIV
32-bit Unsigned Division

Syntax
 UDIV{cond} {Rd,} Rn, Rm
where {cond} is an optional condition code. See Table 3.2. Rd is the destination register. If Rd is
omitted, the destination register is Rn. Rn is the register holding the value to be dividend. Rm is a
register holding the divisor.

Operation
UDIV performs an unsigned integer division of the value in Rn by the value in Rm. If the value in Rn
is not divisible by the value in Rm, the result is rounded towards zero.
Rd = Rn / Rm

Restrictions

 Do not use SP and do not use PC.

Condition Flags
This instruction does not change the flags.

Examples
 UDIV R0, R2, R4 ;Signed divide, R0 = R2/R4.
 UDIV R8, R1 ;Unsigned divide, R8 = R8/R1.

; find the unsigned quotient and remainder
; Inputs: dividend in R0
; divisor in R1
; Outputs: quotient in R2
; remainder in R3
;dividend = divisor*quotient + remainder
Divide
 UDIV R2,R0,R1 ;R2=R0/R1, R2 is quotient
 MUL R3,R2,R1 ;R3=(R0/R1)*R1
 SUB R3,R0,R3 ;R3=R0%R1, R3 is remainder of R0/R1
 BX LR ;return

Reference Material
Vector address Number IRQ ISR name in Startup.s NVIC Priority bits
0x00000038 14 -2 PendSV_Handler NVIC_SYS_PRI3_R 23 – 21
0x0000003C 15 -1 SysTick_Handler NVIC_SYS_PRI3_R 31 – 29
0x00000040 16 0 GPIOPortA_Handler NVIC_PRI0_R 7 – 5
0x00000044 17 1 GPIOPortB_Handler NVIC_PRI0_R 15 – 13
0x00000048 18 2 GPIOPortC_Handler NVIC_PRI0_R 23 – 21
0x0000004C 19 3 GPIOPortD_Handler NVIC_PRI0_R 31 – 29
0x00000050 20 4 GPIOPortE_Handler NVIC_PRI1_R 7 – 5
0x00000054 21 5 UART0_Handler NVIC_PRI1_R 15 – 13
0x00000058 22 6 UART1_Handler NVIC_PRI1_R 23 – 21
0x0000005C 23 7 SSI0_Handler NVIC_PRI1_R 31 – 29
0x00000060 24 8 I2C0_Handler NVIC_PRI2_R 7 – 5
0x00000064 25 9 PWM0Fault_Handler NVIC_PRI2_R 15 – 13
0x00000068 26 10 PWM0_Handler NVIC_PRI2_R 23 – 21
0x0000006C 27 11 PWM1_Handler NVIC_PRI2_R 31 – 29
0x00000070 28 12 PWM2_Handler NVIC_PRI3_R 7 – 5
0x00000074 29 13 Quadrature0_Handler NVIC_PRI3_R 15 – 13
0x00000078 30 14 ADC0_Handler NVIC_PRI3_R 23 – 21
0x0000007C 31 15 ADC1_Handler NVIC_PRI3_R 31 – 29
0x00000080 32 16 ADC2_Handler NVIC_PRI4_R 7 – 5
0x00000084 33 17 ADC3_Handler NVIC_PRI4_R 15 – 13
0x00000088 34 18 WDT_Handler NVIC_PRI4_R 23 – 21
0x0000008C 35 19 Timer0A_Handler NVIC_PRI4_R 31 – 29
0x00000090 36 20 Timer0B_Handler NVIC_PRI5_R 7 – 5
0x00000094 37 21 Timer1A_Handler NVIC_PRI5_R 15 – 13
0x00000098 38 22 Timer1B_Handler NVIC_PRI5_R 23 – 21
0x0000009C 39 23 Timer2A_Handler NVIC_PRI5_R 31 – 29
0x000000A0 40 24 Timer2B_Handler NVIC_PRI6_R 7 – 5
0x000000A4 41 25 Comp0_Handler NVIC_PRI6_R 15 – 13
0x000000A8 42 26 Comp1_Handler NVIC_PRI6_R 23 – 21
0x000000AC 43 27 Comp2_Handler NVIC_PRI6_R 31 – 29
0x000000B0 44 28 SysCtl_Handler NVIC_PRI7_R 7 – 5
0x000000B4 45 29 FlashCtl_Handler NVIC_PRI7_R 15 – 13
0x000000B8 46 30 GPIOPortF_Handler NVIC_PRI7_R 23 – 21
0x000000BC 47 31 GPIOPortG_Handler NVIC_PRI7_R 31 – 29
0x000000C0 48 32 GPIOPortH_Handler NVIC_PRI8_R 7 – 5
0x000000C4 49 33 UART2_Handler NVIC_PRI8_R 15 – 13
0x000000C8 50 34 SSI1_Handler NVIC_PRI8_R 23 – 21
0x000000CC 51 35 Timer3A_Handler NVIC_PRI8_R 31 – 29
0x000000D0 52 36 Timer3B_Handler NVIC_PRI9_R 7 – 5
0x000000D4 53 37 I2C1_Handler NVIC_PRI9_R 15 – 13
0x000000D8 54 38 Quadrature1_Handler NVIC_PRI9_R 23 – 21
0x000000DC 55 39 CAN0_Handler NVIC_PRI9_R 31 – 29
0x000000E0 56 40 CAN1_Handler NVIC_PRI10_R 7 – 5
0x000000E4 57 41 CAN2_Handler NVIC_PRI10_R 15 – 13
0x000000E8 58 42 Ethernet_Handler NVIC_PRI10_R 23 – 21

0x000000EC 59 43 Hibernate_Handler NVIC_PRI10_R 31 – 29
0x000000F0 60 44 USB0_Handler NVIC_PRI11_R 7 – 5
0x000000F4 61 45 PWM3_Handler NVIC_PRI11_R 15 – 13
0x000000F8 62 46 uDMA_Handler NVIC_PRI11_R 23 – 21
0x000000FC 63 47 uDMA_Error NVIC_PRI11_R 31 – 29

Some of the interrupt vectors for the LM3S/TM4C.

C Data type C99 Data type Precision Range
unsigned char uint8_t 8-bit unsigned 0 to +255
signed char int8_t 8-bit signed -128 to +127
char char 8-bit ASCII characters
unsigned int unsigned int compiler-

dependent

int int compiler-
dependent

unsigned
short

uint16_t 16-bit unsigned 0 to +65535

short int16_t 16-bit signed -32768 to +32767
unsigned long uint32_t unsigned 32-bit 0 to 4294967295L
long int32_t signed 32-bit -2147483648L to

2147483647L
float float 32-bit float ±10-38 to ±10+38

double double 64-bit float ±10-308 to ±10+308

 BITS 4 to 6
 0 1 2 3 4 5 6 7
 0 NUL DLE SP 0 @ P ` p
B 1 SOH XON ! 1 A Q a q
I 2 STX DC2 " 2 B R b r
T 3 ETX XOFF # 3 C S c s
S 4 EOT DC4 $ 4 D T d t
 5 ENQ NAK % 5 E U e u
0 6 ACK SYN & 6 F V f v
 7 BEL ETB ' 7 G W g w
T 8 BS CAN (8 H X h x
O 9 HT EM) 9 I Y i y
 A LF SUB * : J Z j z
3 B VT ESC + ; K [k {
 C FF FS , < L \ l |
 D CR GS - = M] m }
 E SO RS . > N ^ n ~

 F SI US / ? O _ o DEL

 Standard 7-bit ASCII.

Memory access instructions
 LDR Rd, [Rn] ; load 32-bit number at [Rn] to Rd
 LDR Rd, [Rn,#off] ; load 32-bit number at [Rn+off] to Rd
 LDR Rd, =value ; set Rd equal to any 32-bit value (PC rel)
 LDRH Rd, [Rn] ; load unsigned 16-bit at [Rn] to Rd
 LDRH Rd, [Rn,#off] ; load unsigned 16-bit at [Rn+off] to Rd
 LDRSH Rd, [Rn] ; load signed 16-bit at [Rn] to Rd
 LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd
 LDRB Rd, [Rn] ; load unsigned 8-bit at [Rn] to Rd
 LDRB Rd, [Rn,#off] ; load unsigned 8-bit at [Rn+off] to Rd
 LDRSB Rd, [Rn] ; load signed 8-bit at [Rn] to Rd
 LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd
 STR Rt, [Rn] ; store 32-bit Rt to [Rn]
 STR Rt, [Rn,#off] ; store 32-bit Rt to [Rn+off]
 STRH Rt, [Rn] ; store least sig. 16-bit Rt to [Rn]
 STRH Rt, [Rn,#off] ; store least sig. 16-bit Rt to [Rn+off]
 STRB Rt, [Rn] ; store least sig. 8-bit Rt to [Rn]
 STRB Rt, [Rn,#off] ; store least sig. 8-bit Rt to [Rn+off]
 PUSH {Rt} ; push 32-bit Rt onto stack
 POP {Rd} ; pop 32-bit number from stack into Rd
 ADR Rd, label ; set Rd equal to the address at label
 MOV{S} Rd, <op2> ; set Rd equal to op2

 MOV Rd, #im16 ; set Rd equal to im16, im16 is 0 to 65535
 MVN{S} Rd, <op2> ; set Rd equal to -op2
Branch instructions
 B label ; branch to label Always
 BEQ label ; branch if Z == 1 Equal
 BNE label ; branch if Z == 0 Not equal
 BCS label ; branch if C == 1 Higher or same, unsigned ≥
 BHS label ; branch if C == 1 Higher or same, unsigned ≥
 BCC label ; branch if C == 0 Lower, unsigned <
 BLO label ; branch if C == 0 Lower, unsigned <
 BMI label ; branch if N == 1 Negative
 BPL label ; branch if N == 0 Positive or zero
 BVS label ; branch if V == 1 Overflow
 BVC label ; branch if V == 0 No overflow
 BHI label ; branch if C==1 and Z==0 Higher, unsigned >
 BLS label ; branch if C==0 or Z==1 Lower or same, unsigned ≤
 BGE label ; branch if N == V Greater than or equal, signed ≥
 BLT label ; branch if N != V Less than, signed <
 BGT label ; branch if Z==0 and N==V Greater than, signed >
 BLE label ; branch if Z==1 or N!=V Less than or equal, signed ≤
 BX Rm ; branch indirect to location specified by Rm
 BL label ; branch to subroutine at label
 BLX Rm ; branch to subroutine indirect specified by Rm
Interrupt instructions
 CPSIE I ; enable interrupts (I=0)
 CPSID I ; disable interrupts (I=1)

Logical instructions
 AND{S} {Rd,} Rn, <op2> ; Rd=Rn&op2 (op2 is 32 bits)
 ORR{S} {Rd,} Rn, <op2> ; Rd=Rn|op2 (op2 is 32 bits)
 EOR{S} {Rd,} Rn, <op2> ; Rd=Rn^op2 (op2 is 32 bits)
 BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)
 ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)
 LSR{S} Rd, Rm, Rs ; logical shift right Rd=Rm>>Rs (unsigned)
 LSR{S} Rd, Rm, #n ; logical shift right Rd=Rm>>n (unsigned)
 ASR{S} Rd, Rm, Rs ; arithmetic shift right Rd=Rm>>Rs (signed)
 ASR{S} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n (signed)
 LSL{S} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned)
 LSL{S} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned)
Arithmetic instructions
 ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
 ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095
 SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2

 SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095
 RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
 RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn
 CMP Rn, <op2> ; Rn – op2 sets the NZVC bits
 CMN Rn, <op2> ; Rn - (-op2) sets the NZVC bits
 MUL{S} {Rd,} Rn, Rm ; Rd = Rn * Rm signed or unsigned
 MLA Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm signed or unsigned
 MLS Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned
 UDIV {Rd,} Rn, Rm ; Rd = Rn/Rm unsigned
 SDIV {Rd,} Rn, Rm ; Rd = Rn/Rm signed
Notes Ra Rd Rm Rn Rt represent 32-bit registers
 value any 32-bit value: signed, unsigned, or address
 {S} if S is present, instruction will set condition codes
 #im12 any value from 0 to 4095
 #im16 any value from 0 to 65535
 {Rd,} if Rd is present Rd is destination, otherwise Rn
 #n any value from 0 to 31
 #off any value from -255 to 4095
 label any address within the ROM of the microcontroller
 op2 the value generated by <op2>
Examples of flexible operand <op2> creating the 32-bit number. E.g., Rd = Rn+op2
 ADD Rd, Rn, Rm ; op2 = Rm
 ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 ADD Rd, Rn, #constant ; op2 = constant , where X and Y are hexadecimal digits:

 produced by shifting an 8-bit unsigned value left by any number of bits
 in the form 0x00XY00XY
 in the form 0xXY00XY00
 in the form 0xXYXYXYXY

I/O port pins for the TM4C123 microcontroller (LM4F120 is the same except no
PWM).

TM4C123 LaunchPad (LM4F120 is the same except no R25 and R29)
IO Ain 0 1 2 3 4 5 6 7 8 9 14
PA0 Port U0Rx CAN1Rx
PA1 Port U0Tx CAN1Tx
PA2 Port SSI0Clk
PA3 Port SSI0Fss
PA4 Port SSI0Rx
PA5 Port SSI0Tx
PA6 Port I2C1SCL M1PWM2
PA7 Port I2C1SDA M1PWM3
PB0 Port U1Rx T2CCP0
PB1 Port U1Tx T2CCP1

PB2 Port I2C0SCL T3CCP0
PB3 Port I2C0SDA T3CCP1
PB4 Ain10 Port SSI2Clk M0PWM2 T1CCP0 CAN0Rx
PB5 Ain11 Port SSI2Fss M0PWM3 T1CCP1 CAN0Tx
PB6 Port SSI2Rx M0PWM0 T0CCP0
PB7 Port SSI2Tx M0PWM1 T0CCP1
PC4 C1- Port U4Rx U1Rx M0PWM6 IDX1 WT0CCP0 U1RTS
PC5 C1+ Port U4Tx U1Tx M0PWM7 PhA1 WT0CCP1 U1CTS
PC6 C0+ Port U3Rx PhB1 WT1CCP0
PC7 C0- Port U3Tx WT1CCP1
PD0 Ain7 Port SSI3Clk SSI1Clk I2C3SCL M0PWM6 M1PWM0 WT2CCP0
PD1 Ain6 Port SSI3Fss SSI1Fss I2C3SDA M0PWM7 M1PWM1 WT2CCP1
PD2 Ain5 Port SSI3Rx SSI1Rx M0Fault0 WT3CCP0
PD3 Ain4 Port SSI3Tx SSI1Tx IDX0 WT3CCP1
PD4 USB0DM Port U6Rx WT4CCP0
PD5 USB0DP Port U6Tx WT4CCP1
PD6 Port U2Rx M0Fault0 PhA0 WT5CCP0
PD7 Port U2Tx PhB0 WT5CCP1 NMI
PE0 Ain3 Port U7Rx
PE1 Ain2 Port U7Tx
PE2 Ain1 Port
PE3 Ain0 Port
PE4 Ain9 Port U5Rx I2C2SCL M0PWM4 M1PWM2 CAN0Rx
PE5 Ain8 Port U5Tx I2C2SDA M0PWM5 M1PWM3 CAN0Tx
PF0 Port U1RTS SSI1Rx CAN0Rx M1PWM4 PhA0 T0CCP0 NMI C0o
PF1 Port U1CTS SSI1Tx M1PWM5 PhB0 T0CCP1 C1o TRD1
PF2 Port SSI1Clk M0Fault0 M1PWM6 T1CCP0 TRD0
PF3 Port SSI1Fss CAN0Tx M1PWM7 T1CCP1 TRCLK
PF4 Port M1Fault0 IDX0 T2CCP0 USB0epen

Table 4.3. PMCx bits in the GPIOPCTL register on the LM4F/TM4C specify alternate
functions. PD4 and PD5 are hardwired to the USB device. PA0 and PA1 are hardwired to the
serial port. PWM not on LM4F120.

	Preface to the Fifth Edition
	Preface
	Acknowledgements
	1. Introduction to Computers and Electronics
	1.1. Review of Electronics
	1.2. Binary Information Implemented with MOS transistors
	1.3. Digital Logic
	1.4. Digital Information stored in Memory
	1.5. Numbers
	1.6. Character information
	1.7. Computer Architecture
	1.8. Flowcharts and Structured Programming
	1.9. Concurrent and Parallel Programming
	1.10. Exercises
	2. Introduction to Embedded Systems
	2.1. Embedded Systems
	2.2. Applications Involving Embedded Systems
	2.3. Product Life Cycle
	2.4. Successive Refinement
	2.5. Quality Design
	2.5.1. Quantitative Performance Measurements
	2.5.2. Qualitative Performance Measurements
	2.5.3. Attitude
	2.6. Debugging Theory
	2.7. Switch and LED Interfaces
	2.8. Introduction to C
	2.9. Exercises
	3. Introduction to the ARMCortex-M Processor
	3.1. Cortex-M Architecture
	3.1.1. Registers
	3.1.2. Reset
	3.1.3. Memory
	3.1.4. Operating Modes
	3.2. The Software Development Process
	3.3. ARM Cortex-M Assembly Language
	3.3.1. Syntax
	3.3.2. Addressing Modes and Operands
	3.3.3. Memory Access Instructions
	3.3.4. Logical Operations
	3.3.5. Shift Operations
	3.3.6. Arithmetic Operations
	3.3.7. Stack
	3.3.8. Functions and Control Flow
	3.3.9. Assembler Directives
	3.3.10. First Example Project
	3.4. Simplified Machine Language Execution
	3.5. CISC versus RISC
	3.6. Details Not Covered in this Book
	3.7. Exercises
	4. Introduction to Input/Output
	4.1. Texas Instruments Microcontroller I/O pins
	4.1.1. Texas Instruments LM3S1968 I/O pins
	4.1.2. Texas Instruments TM4C123 LaunchPad I/O pins
	4.1.3. Texas Instruments TM4C1294 Connected LaunchPad I/O pins
	4.2. Basic Concepts of Input and Output Ports
	4.2.1. I/O Programming and the Direction Register
	4.2.2. Switch Inputs and LED Outputs
	4.3. Phase-Lock-Loop
	4.4. SysTick Timer
	4.5. Standard I/O Driver and the printf Function
	4.6. Debugging monitor using an LED
	4.7. Performance Debugging
	4.7.1. Instrumentation
	4.7.2. Measurement of Dynamic Efficiency
	4.8. Exercises
	4.9. Lab Assignments
	5. Modular Programming
	5.1. C Keywords and Punctuation
	5.2. Modular Design using Abstraction
	5.2.1. Definition and Goals
	5.2.2. Functions, Procedures, Methods, and Subroutines
	5.2.3. Dividing a Software Task into Modules
	5.2.4. How to Draw a Call Graph
	5.2.5. How to Draw a Data Flow Graph
	5.2.6. Top-down versus Bottom-up Design
	5.3. Making Decisions
	5.3.1. Conditional Branch Instructions
	5.3.2. Conditionalif-then Statements
	5.3.3.switch Statements
	5.3.4. While Loops
	5.3.5. Do-while Loops
	5.3.6. For Loops
	5.4. *Assembly Macros
	5.5. *Recursion
	5.6. Writing Quality Software
	5.6.1. Style Guidelines
	5.6.2. Comments
	5.6.3. Inappropriate I/O and Portability
	5.7. How Assemblers Work
	5.8. Functional debugging
	5.8.1. Stabilization
	5.8.2. Single Stepping
	5.8.3. Breakpoints with Filtering
	5.8.4. Instrumentation: Print Statements
	5.8.5. Desk checking
	5.9. Exercises
	5.10. Lab Assignments
	6. Pointers and Data Structures
	6.1. Indexed Addressing and Pointers
	6.2. Arrays
	6.3. Strings
	6.4. Structures
	6.5. Finite State Machines with Linked Structures
	6.5.1. Abstraction
	6.5.2. Moore Finite State Machines
	6.5.3. Mealy Finite State Machines
	6.6. *Dynamically Allocated Data Structures
	6.6.1. *Fixed Block Memory Manager
	6.6.2. *Linked List FIFO
	6.7. Matrices and Graphics
	6.8. *Tables
	6.9. Functional Debugging
	6.9.1. Instrumentation: Dump into Array without Filtering
	6.9.2. Instrumentation: Dump into Array with Filtering.
	6.10. Exercises
	6.11. Lab Assignments
	7. Variables, Numbers, and Parameter Passing
	7.1. Local versus global
	7.2. Stack rules
	7.3. Local variables allocated on the stack
	7.4. Stack frames
	7.5. Parameter Passing
	7.5.1. Parameter Passing in C
	7.5.2. Parameter Passing in Assembly Language
	7.5.3. C Compiler Implementation of Local and Global Variables
	7.6. Fixed-point Numbers
	7.7. Conversions
	7.8. *IEEE Floating-point numbers
	7.9. Exercises
	7.10. Lab Assignments
	8. Serial and Parallel Port Interfacing
	8.1. General Introduction to Interfacing
	8.2. Universal Asynchronous Receiver Transmitter (UART)
	8.2.1. Asynchronous Communication
	8.2.2. LM3S/TM4C UART Details
	8.2.3. UART Device Driver
	8.3. Synchronous Serial Interface, SSI
	8.4. Nokia 5110 Graphics LCD Interface
	8.5. Scanned Keyboards
	8.6. Binary actuators
	8.6.1. Interface
	8.6.2. Electromagnetic and Solid State Relays
	8.6.3. Solenoids
	8.7. *Pulse-width modulation
	8.8. *Stepper motors
	8.9. Exercises
	8.10. Lab Assignments
	9. Interrupt Programming and Real-time Systems
	9.1. I/O Synchronization
	9.2. Interrupt Concepts
	9.3. Interthread Communication and Synchronization
	9.4. NVIC on the ARM Cortex-M Processor
	9.5. Edge-triggered Interrupts
	9.6. SysTick Periodic Interrupts
	9.7. Timer Periodic Interrupts
	9.8. Hardware debugging tools
	9.9. Profiling
	9.9.1 Profiling using a software dump to study execution pattern
	9.9.2. Profiling using an Output Port
	9.9.3. *Thread Profile
	9.10. Exercises
	9.11. Lab Assignments
	10. Analog I/O Interfacing
	10.1. Approximating continuous signals in the digital domain
	10.2. Digital to Analog Conversion
	10.3. Music Generation
	10.4. Analog to Digital Conversion
	10.4.1. LM3S/TM4C ADC details
	10.4.2. ADC Resolution
	10.5. Real-time data acquisition
	10.6. Exercises
	10.7. Lab Assignments
	11. Communication Systems
	11.1. Introduction
	11.2. Reentrant Programming and Critical Sections
	11.3. Producer-Consumer using a FIFO Queue
	11.3.1. Basic Principles of the FIFO Queue
	11.3.2. FIFO Queue Analysis
	11.3.3. FIFO Queue Implementation
	11.3.4. Double Buffer
	11.4. Serial port interface using interrupt synchronization
	11.5. *Distributed Systems.
	11.6. Exercises
	11.7. Lab Assignments
	11.8. Best Practices
	Appendix 1. Glossary
	Appendix 2. Solutions to Checkpoints
	Appendix 3. How to Convert Projects from Keil to CCS
	Appendix 4. Assembly Reference

