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Preface

I. W h y  I w r o te  th is  te x t

This book is about my favorite academic subject: electromagnetics.
The genesis of this book goes back to a student get-together I attended during 

the third year of my teaching career. I struck up a conversation with a good student 
who had taken an introductory electromagnetics course from me the previous semes
ter. When I asked him what he remembered from the course, he very politely told me 
that he really couldn’t remember much, except that it involved a lot of mathematics 
and theory. Worst of all, he seemed unaware of any way in which the material in that 
course would apply to his career as an electrical engineer. Apparently, he had gotten 
the message that, outside of “niche” areas like antennas, electromagnetics had little to 
do with the practice of electrical engineering.

This conversation caused me to do some serious soul searching about the way I 
had been teaching electromagnetics. In the end, I concluded that this student had been 
largely correct. While I had very accurately presented the laws of electromagnetics, I 
made no particular effort to integrate the material into the larger context of electrical 
engineering. My class in electromagnetics was probably not too different from the one 
taught across campus in the physics department. Given this, many of my students were

ix



X PREFACE

convinced that electromagnetics was relevant to their careers in electrical engineering 
only because they needed to pass the course in order to obtain a degree.

In reviewing a selection of electromagnetics textbooks intended for electrical 
engineers, I realized that the problem was more than just my own teaching style. Upon 
closer examination, I concluded that most of these textbooks could be divided into two 
classes. Textbooks in the first class tended to integrate electromagnetics nicely into 
engineering practice, but were often technically weak. On the other hand, textbooks in 
the second class typically gave solid, mathematically oriented discussions of electro
magnetic theory, but little or no physical insight or engineering application.

As my teaching skills matured, I gradually found ways to convince my students 
that electromagnetic theory connects with all aspects of electrical engineering, while 
still approaching the material with the rigor needed for solving real problems. For 
instance, I found that students are more apt to see the relevance of electromagnetics 
when I remind them that the job of an electrical engineer is to constrain electric and 
magnetic fields so that they perform a desired task. This way of thinking is just as 
applicable for computer circuit designers as it is for antenna and microwave engineers.

I also found that topics that motivated the past generation of students to think 
seriously about electromagnetics no longer have the same resonance with the current 
generation. Topics like antennas and radar, while still extremely important in engi
neering practice, don’t touch these students lives as much as computers and consumer 
electronics do. Fortunately, there are a whole range of new topics that work just as well 
as the old ones. As an example, students quickly take notice when it is pointed out to 
them that the motherboard of their PC, while a digital system, is in many ways a 
microwave network. Even better is to show them how electrical interference between 
digital networks is a major safety and economic issue that can only be solved using elec
tromagnetic techniques.

This textbook represents my vision of how to present electromagnetics to under
graduate students - one that emphasizes the physical processes and applications of elec
tromagnetics in engineering, while at the same time presenting the material with the 
rigor necessary to approach real problems in engineering practice.

II. Featu res  o f Th is  T e x t

Once I started writing, I discovered that a project of this magnitude appears to take on a 
life of its own. Although my goals for the text remained fixed, the features of the book 
went through a metamorphosis as the years of writing and testing in the classroom 
unfolded. What finally grew out of this process was a text that I feel is readable and 
understandable for the student, easy to integrate in the classroom, and, possibly most 
important, displays electromagnetics as a mainstream subject in electrical engineering.

1. This text presents electromagnetics using what most would consider a modified 
“traditional” or “historical” approach. After a brief overview (see point 3), sta
tic electric and magnetic fields are presented separately, followed by the time- 
varying case. This approach provides the greatest insight into the physical 
relevance of electromagnetics and allows students to grapple with electric and 
magnetic fields separately, before tackling the more difficult time-varying case.
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2. Whenever possible, concepts and results are presented both mathematically and 
in plain English. My experience has shown that instructors usually prefer purely 
mathematical developments, but students like (and often need) word descrip
tions to give meaning to these developments. In addition, these physical descrip
tions help develop the student’s engineering intuition. This is important for the 
students transition into engineering practice, where the problems don’t look like 
textbook problems.

3. Chapter 3, “Sources, Forces, and Fields” provides a broad overview of the 
experiments and theories that led up to the definitive equations of electromag
netics—Maxwell’s equations. This chapter is designed to show the basic connec
tions between electromagnetic sources and the fields and forces they produce. 
The physical laws are presented in their historical order, culminating in 
Maxwell’s equations.

4. Chapters 4-6 and 7-9 present electric and magnetic fields in parallel fashion. 
Each sequence starts with fields in free space, followed by material effects, and 
finally energy relations. This parallel construction allows students to see clearly 
what is similar and dissimilar about low-frequency electric and magnetic fields.

5. Graphical solution techniques are presented for both low frequency electric and 
magnetic fields. These techniques are useful in gaining insight into many practi
cal problems and are also fun.

6. Unlike most traditional texts, this text presents transmission lines before plane 
waves. I have done this for two reasons. The first is that students find it easier to 
make the transition into propagating waves by first considering scalar voltage 
and current waves. Once these scalar waves are mastered, the jump into the 
more general case of space waves is easier. The second reason is that this choice 
makes it easier to introduce network-analyzer based laboratory experiments in 
conjunction with the last 4 chapters (transmission lines, plane waves, wave
guides, and antennas and radiation).

7. Chapter 11, “Transmission Lines,” covers both time-varying and frequency 
domain analysis. Thévenin equivalent concepts are used throughout this chapter 
to clearly show the student how electromagnetic and circuit theory are comple
mentary. A great effort was made to make the time-domain section relevant to 
students whose primary interests are digital and computer circuits. Advanced 
topics in this section include microstrip transmission lines, reactive and nonlin
ear loads, and rise-time calculations.

8. This text covers a number of topics associated with electric and magnetic shield
ing, electromagnetic compatibility (EMC), and electromagnetic interference 
(EMI). These topics are discussed in both the static and dynamic sections of the 
text. My experience has shown that students very quickly see the relation 
between these topics and consumer electronics.

9. Chapter 13, “Waveguides,” discusses both copper-based and dielectric based wave
guides. This chapter includes a sizable discussion of optical fibers and systems.

10. In addition to a fundamental discussion of radiation and antenna principles, 
Chapter 14, “Antennas and Radiation,” also presents a broad overview of the 
major classes of antennas encountered in engineering practice.
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III. H o w  to  Use Th is  T e x t

This textbook is intended for junior level electrical engineering students and can be 
used in either a one- or two-semester format. The following table gives suggested 
schedules for one- and two-semester courses.

xii

C hapter Title 2 -S em ester  

Lecture Hours

1-S em ester  

Lecture Hours

1 Introduction 1 1
2 Vector Analysis 2 2
3 Electromagnetic Sources, Forces, and Fields 4 2
4 Electrostatic Fields in Free Space 5 5
5 Electrostatic Fields in M aterial Media 9 5
6 Capacitance and Electric Energy 3 3
7 M agnetostatic Fields in Free Space 4 4
8 Magnetostatic Fields in Material Media 5 3
9 Magnetic Inductance, Energy, and Forces 5 4

10 Time-Varying Electromagnetic Fields 4 4
11 Transmission Lines 14 6
12 Plane Waves 10 3
13 Waveguides 8
14 Radiation and Antennas 10

Totals 84 42

These schedules assume that students have had some previous experience with vector 
calculus, presumably from their calculus sequence. When this is the case, I have found 
that two lectures on the material in chapter 2 is a sufficient review, and students typi
cally refer back to chapter 2 throughout the course to review various aspects of this 
material. For curricula where vector calculus has not yet been encountered, a longer 
exposure to chapter 2 would provide students with all the necessary background.

For a two-semester course sequence, I have found that there is ample time to cov
er nearly all the material in this text. For a one-semester course, the suggested schedule 
provides a more concentrated coverage of the electrostatic and magnetostatic topics, 
while still allowing time for 13 lectures on the most important time-varying topics.

IV . A c k n o w le d g m e n ts

In writing this book, I have drawn from every instructor and textbook that I have 
encountered throughout my career as a student and a professor. Without them, I could 
not possibly have written this textbook. Even though the writing style that emerged is 
uniquely my own, I am indebted to all of them.

My greatest thanks go the students at the University of Kansas who endured the 
many drafts of this text in class. I was genuinely surprised by the enthusiasm they dis
played for being a part of this writing process. Their comments were very insightful, 
and I made many changes in the manuscript in response to their comments. Although
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space does not allow me to recognize all the students who made significant comments, 
I could not rest without recognizing Mr. Scott Filion, who provided me with unbeliev
ably detailed and helpful comments on the first half of the book.

I want to thank the reviewers who reviewed the manuscript of this text at various 
stages: Dr. Paul O. Berrett (Professor Emeritus) - Brigham Young University, Paul R. 
Melsaac - Cornell University, John R. Cogdell - University of Texas at Austin, Dr. Stu
art A. Long - University of Houston, Walter J. Gajda, Jr. - University of Missouri - 
Rolla, Dennis P. Nyquist - Michigan State University, Kai Chang - Texas A & M Uni
versity, Warren L. Stutzman - Virginia Polytechnic Institute and State University, 
Markus Zahn - Massachusetts Institute of Technology, Dr. David Rogers - North 
Dakota State University, Bruce Mc Leod - Montana State University, Jeffrey P. Mills 
- Illinois Institute of Technology, Robert York - University of California, Santa Bar
bara, Robert C. Owens - Santa Clara University, Vladimir Mitin - Wayne State Uni
versity, Steven Scott Gearhart - University of Wisconsin - Madison. Their many 
comments caused me to rethink many aspects of the book and point me in the right 
direction. I appreciated their honesty and directness in telling me exactly what they did 
and did not like about the various manuscripts.

I also want to thank a number of colleagues and friends at the University of 
Kansas who assisted me in various ways during the writing of this text. Included in 
these are: Professors James Roberts, James Rowland and K. Sam Shanmugan, who 
gave me encouragement throughout this project, and Ms. Donnis Graham, who 
assisted in the final manuscript revisions. I would also like to thank Professor Ruth 
Miller at Kansas State University for several helpful discussions about teaching 
philosophies and electromagnetics.

Finally, I am most thankful to my wife Susan and my children, Eric and Rebecca, 
for standing by me during the over seven years it took to complete this text. Their con
cern and compassion for me during this time was greatly appreciated, and I could not 
have endured the process without them. I only hope I can follow through with my 
promise that life in the Demarest house will be easier now that this text is finally 
finished!

xiii

Kenneth Demarest 
University o f Kansas



I

Background 
and Motivation

1-1 In tro d u c tio n

Electromagnetics is both the oldest and most basic of all the branches of electrical engi
neering. Stated simply, electromagnetics deals with four questions: What is electricity, 
how does it behave, what can it do, and how can we control it? So fundamental are the 
questions that it addresses that it is not an exaggeration to say that electromagnetics is 
at the heart of everything that is done with electricity. As a result, an understanding of 
electromagnetics is essential in order to fully understand the operation of many (if not 
most) electrical devices and effects.

At its most basic level, electromagnetics concerns itself with the forces that 
charged particles exert upon each other. These forces are important for two reasons. 
The first is that they determine how electric charges and currents distribute themselves 
in electrical devices. The second is that it is such forces that make electricity useful to 
us, since they make other things move and allow us to detect the presence of charges 
and currents. Indeed, applications such as telecommunications, electrical machines, 
and computers would not be possible were it not for electromagnetic forces.

Although there are many applications where electromagnetic forces are our pri
mary interest (as in the case of electric motors), we are usually more interested in how

1



2 CHAP. 1 BACKGROUND AND MOTIVATION

those forces cause the charges and currents in circuits and devices to distribute them
selves. For instance, in the case of electrical computing, electronic memory is accom
plished by moving packets of charge into discrete locations in semiconductor chips and 
later sensing their presence (or absence). Similar processes are used in a large number 
of applications whereby information is stored or transmitted by controlling the flow of 
charges throughout a system or device. Examples include radio, television, radar, and 
sound reproduction, among many others.

Possibly the most useful and remarkable property of electricity is its ability to 
produce effects between two devices or circuits when there is no material connection 
between them. This is unlike mechanical systems, which must always have some sort 
of mechanical linkage in order for there to be any effect.1 Electricity is capable of 
producing measurable effects over very large distances, even through great distances in 
vacuum. This allows us to routinely use electricity in such applications as wireless 
communications, radar, and remote sensing, as well as many others. The key to devis
ing these applications is an understanding of the physical quantities that are responsi
ble for the interactions involved: electric and magnetic fields. Once these concepts are 
understood, the range of applications in electrical devices and systems is limited only 
by our imagination, our knowledge of the properties of materials, and our manufactur
ing ability.

A  L ittle  H is to ry

Electrical systems and devices are so common in our lives that it is difficult to envision 
an age when electricity and magnetism were simply mysterious curiosities. But up 
until the early 1800s, that is exactly what they were. How these phenomena were dis
covered, understood, and harnessed is one of the greatest feats in the history of science 
and engineering.

“Electromagnetics” is a word that was coined in the late 1800s to denote a newly 
discovered phenomenon that was the combination of what previously had been 
thought to be completely separate phenomena: electricity and magnetism. Electric 
effects were the first to be discovered. History records that the ancient Greeks dis
covered that when an amber rod was rubbed with fur, the amber would attract bits of 
dust, straw, and other small objects. Nearly 2,000 years passed before William Gilbert 
realized in the early 1600s that this same effect could be observed when rubbing a vari
ety of substances together. It was he who coined the term “electric,” using the Greek 
word for amber, elektron. About the same time, Niccolo Cabeo also discovered that 
the electric effect could result in both attractive and repulsive forces between electri
fied (i.e., charged) objects.

The first indications that electricity can move from one place to another came 
from experiments conducted by Stephen Gray in 1729. He found that when two 
objects were connected by a tube, both could be electrified when only one was rubbed. 
This discovery led J.T. Desaguliers in 1739 to the discovery of a class of materials he 
called conductors that pass electricity easily.

1 Although mechanical systems are, in theory, coupled by gravity, this coupling is so weak as to render it 
essentially useless in most applications.

1-2



SEC. 1-2 A LITTLE HISTORY 3

As interesting as these discoveries were, they did not explain how these electric 
effects occurred. This started to change in the mid-1700s when a number of investiga
tors began to suspect that the forces between charges could be described as an inverse- 
square law that was similar to the universal gravitational law proposed by Sir Isaac 
Newton in the late 1600s. Although Benjamin Franklin, Joseph Priestley, John Robi
son, and Henry Cavendish all made significant contributions to the discovery of this 
law, it was Charles Augustin de Coulomb who attracted the most attention, so we now 
call the law Coulomb’s law o f force. The discovery of Coulomb’s law was the first step 
towards finding a comprehensive theory of electromagnetics.

Like the electric properties of amber, the magnetic properties of a mineral called 
lodestone were also known to the ancients, who knew that the mineral could attract 
iron and would point towards north when allowed to float on water. As time pro
gressed, several other materials were found to possess similar characteristics. Also, it 
was discovered that artificial magnets could be made from naturally occurring ones. 
The first quantitative theories of magnetism were advanced in the 18th century. In 
1750, John Michell theorized that permanent magnets have north and south poles that 
attract or repel each other according to an inverse-square law that is similar to 
Coulomb’s law of force.

The pace of discovery of both the electric and magnetic effects quickened with 
the onset of the 19th century. In the year 1800, Volta developed the first chemical bat
tery, which consisted of strips of dissimilar metals immersed in a weak acid electrolyte. 
This invention enabled the flow of steady currents and fostered numerous experiments 
involving chemical effects, heating, and material studies. One of the most important 
series of experiments was performed by George Simon Ohm in 1826; Ohm showed that 
when a constant voltage is applied to a conductor, the resulting current is proportional 
to the conductor’s cross-sectional area and inversely proportional to its length. This is 
Ohm’s law, which is one of the most important laws of circuit theory.

The first evidence that electric and magnetic phenomena are related came from 
Hans Christian Oersted, who, in 1819, discovered that a steady current could move a 
compass needle, just as a permanent magnet can. This was closely followed by Andre- 
Marie Ampere’s discovery that electric currents exert attractive and repulsive forces 
on each other. Ampere discovered that the force exerted by current segments varies 
inversely with the square of the distance between them and is perpendicular to the line 
that connects them. We call this law Ampere’s law of force, which is the magnetic ana
log of Coulomb’s law of force.

Another important experimental connection between electric and magnetic 
effects was discovered by Michael Faraday in 1831. He conducted an experiment 
whereby two insulated wires were wrapped around an iron core. Faraday found that 
when the current in one winding was switched, a voltage was induced in the other. 
This discovery of transformer action led Faraday to a series of experiments in which he 
was able to conclude that a voltage is produced in a circuit whenever a time-varying 
magnetic field is present—either because the current is time varying or because the cir
cuit or source are in motion. We call this Faraday’s law o f induction (often simply 
called Faraday’s law).

With the discovery of Faraday’s law, the stage was set for the development of a 
complete theory of electromagnetism. This was accomplished by James Clerk
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Maxwell, a professor of experimental physics at Cambridge University. In 1873 he 
published A Treatise on Electricity and Magnetism. In this work, he proposed that just 
as time-varying magnetic fields can produce electric fields, the opposite is also true. 
Adding this conjecture to what was already known about electricity and magnetism, 
Maxwell produced his now-famous system of equations, called Maxwell’s equations. 
These equations relate electric and magnetic fields to each other and their sources. In 
addition to his work in electromagnetics, Maxwell is known for several other contribu
tions to physics, including thermodynamics (where a set of equations also bears his 
name) and the first workable theory of the rings of Saturn.

The definitive experimental verification of Maxwell’s theory came in 1886 
through a series of experiments conducted by Heinrich Hertz. These experiments 
showed that electromagnetic waves can be propagated, reflected, and focused, just as 
light waves can. This discovery completely validated Maxwell's theory and ushered in 
the era of modern electromagnetic theory and applications.

E n g in e e rin g  A p p lic a tio n s  o f E le c tro m a g n e tic s

One might think that engineering applications of electromagnetics occurred only after 
Maxwell’s theories were presented and Hertz validated them with his experiments. 
The fact is, however, that there was a thriving electrical industry before the complete 
theory of electromagnetics was laid out. This activity started around 1834 with the 
introduction of the telegraph by Charles Wheatstone, William Cook, and Samuel 
Morse, among others. The first undersea telegraph cable was laid in 1851, and nearly 
100,000 miles of cable had been laid worldwide by 1885. Also invented before Hertz’s 
experiments were the telephone (1876) and the electric lightbulb (1879).

The most dramatic application of the new electromagnetic theory came in 1901 
when Guglielmo Marconi sent the first wireless telegraph signals across the Atlantic 
Ocean. The next two decades saw a host of developments in antennas, amplifying 
devices, and modulation techniques, culminating in the first commercial radio broad
casts in the early 1920s. Television soon followed in the early 1930s, followed by radar 
in the late 1930s.

Wireless communication is probably the most conspicuous application of electro
magnetics, since it involves the propagation of electromagnetic waves through air or 
space. Nevertheless, Maxwell’s electromagnetic theory has been equally important in 
the development of a host of other engineering applications. This should come as no 
surprise, since electromagnetics is the comprehensive theory of what electricity is and 
how to control it. Other devices and systems in whose development electromagnetic 
theory played an important part include the vacuum tube (1906), the magnetron (a 
high-frequency amplifier and oscillator used in microwave systems; 1940), the transis
tor (1950), the laser (1960), and fiber-optic systems (late 1970s). In fact, it is safe to say 
that electromagnetic theory has been an essential ingredient in the development of 
every electrical device or system that we now take for granted.

Some of the major engineering applications of electromagnetics can be classed 
into the following areas:

1-3



SEC. 1-4 IN THIS TEXT ... 5

Semiconductor devices: Electromagnetic theory and quantum semiconductor 
theory are the keys to understanding how charges and currents are manipulated 
within semiconductors.
High-speed circuits: Ordinary circuit theory is fine for low-frequency circuits, but 
breaks down when the circuit dimensions and frequency reach the point where 
propagation delay times can no longer be ignored. This is particularly true for 
microwave circuits and high-speed digital circuits.
Antennas: These devices launch and capture electromagnetic waves, so electro
magnetic theory is essential to their operation. Even though antennas have been 
used for decades, recent advances in wireless communication systems have cre
ated the need for smaller and more efficient antennas.
Electromechanical machines: The forces that currents (and sometimes charges) 
exert on each other are used to make machines and devices that are capable of 
generating forces and torques.
Fiber-optic systems: Since the development of low-loss optical fibers in the 1970s, 
the number of fiber-optic communication links has grown steadily, to the point 
where fiber-optic transmission is now the standard in many industries. Electro
magnetic theory is used to describe light propagation on the fibers, as well as the 
operation of the laser diodes and detectors.
Bioelectronics: In many respects, the human body can be considered as a massive 
collection of electrical circuits. This understanding has spawned the bioelec
tronics industry, which supplies instruments and systems that measure and mod
ify various biological functions in humans and animals. Electromagnetics plays 
an essential part in understanding how these instruments interact with the body. 
Electromagnetic interference (EMI) and compatibility (EMC): Even when a cir
cuit or system is not intended to radiate or receive energy, these effects may still 
occur. This is particularly troublesome when digital and analog circuits are pre
sent in the same device, since the high current levels and fast switching times of 
the digital circuits often radiate unwanted energy towards the analog circuits. 
These problems can be controlled by using electromagnetic techniques. 
Superconductors: When cooled below their critical temperature, superconductors 
exhibit zero resistance and repel magnets. The discovery of high-temperature 
superconductors has rekindled interest in using superconductors in a number of 
engineering applications, including power transmission and magnetic levitation.

1 -4  In Th is T e x t ...

The goal of this text is to lay out the electromagnetic theory in the context of its engi
neering applications. This discussion starts with a review of vector calculus, which is 
the best “language” for describing electromagnetic effects. This is followed by a chap
ter that presents an overview of electromagnetic effects and Maxwell’s equations. This 
chapter is intended to provide a broad view of the relationship between electric and 
magnetic fields and the sources that produce them. From there, the next three chap
ters discuss various aspects of low-frequency electric fields when magnetic effects are
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negligible. These chapters are followed by three chapters that discuss low-frequency 
magnetic fields when electric effects are negligible.

Chapter 10 begins the transition from low-frequency electromagnetic effects to 
high-frequency effects, where electric and magnetic fields are interdependent. In this 
chapter, Maxwell’s equations are described in detail for both transient and time-har
monic cases.

The final four chapters of the text discuss four electromagnetic topics that are 
important to the operation of high-frequency devices and systems designed and used 
by electrical engineers. The first topic is transmission lines, which are used to trans
port signals and energy in electric circuits. The second topic is plane waves, which are 
the waves launched into space by sources such as antennas and lasers. The third topic 
is waveguides and cavities. Like transmission lines, waveguides are also used to trans
port signals and energy. A common example of waveguides is optical fibers, which are 
commonly used in communication systems. The final topic is radiation and antennas. 
In this chapter, the general theory of how sources radiate is discussed, and many prac
tical aspects of antennas are examined.

6



2

Vector Analysis

2-1 In tro d u c tio n

Vector analysis is the branch of mathematics that was developed to describe quantities 
that are both directional in nature and distributed over regions of space. The reason 
for starting our study of electromagnetics with vector analysis is simple: Vector analy
sis is the language best suited for describing electromagnetic effects.

In this chapter, we will discuss the elements of vector analysis that are directly 
applicable to electromagnetic phenomena. Our discussion will start by defining the 
concept of a physical quantity and then identifying the properties of scalar and vector 
fields. The remainder of our discussion will be devoted to a development of the alge
bra and calculus of vector fields.

2 -2  Physical Q u a n tit ie s  a n d  U n its

Electromagnetics deals with phenomena and entities that can be perceived and mea
sured. We call entities that can be measured physical quantities. In physics, physical 
quantities are always defined in terms of the measurement procedure used to per
ceive them:

7
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The definition of a physical quantity is the description of the operational procedure 
used to measure it.1

This kind of definition is called an operational definition, since it defines a physical 
quantity in terms of the process used to measure it.

To help us understand this definition, let us consider a common physical quantity, 
distance. We can define the distance between two points as the total number of mea
suring objects that can be laid end to end on a straight line between the points. The 
measuring object can be anything, such as a rock, a twig, or a meterstick. Since we 
have defined distance by telling how to measure it, any number of people can measure 
the distance between two points and obtain the same answer. Obviously, the accuracy 
to which a physical quantity can be measured depends upon how carefully one follows 
the measurement procedure.

Any measurement is a comparison of what is being measured with some stan
dard. These standards are called units. In the case of the distance example just pre
sented, the unit is the object whose size is used as the measurement standard (i.e., the 
rock, twig, or meter stick). In order for the specification of a physical quantity to have 
meaning, the unit must be well defined. For instance, if a rock is used as the unit, the 
particular rock must be clearly identified, along with how it is oriented during the mea
surement process.

Because they are defined in terms of how they are measured, physical quantities 
are always specified by one or more numbers, each with its associated unit. The num
ber of numbers needed to specify a particular physical quantity depends on the way 
the quantity is defined. For instance, only one number is required to specify a dis
tance. On the other hand, three numbers (called coordinates) are necessary to specify 
a position in three-dimensional space. All naturally occurring physical quantities can 
be represented by real numbers. However, we sometimes find it convenient to create 
complex-valued physical quantities from naturally occurring physical quantities. A 
common example is in circuit analysis, where complex phasors are used to represent 
sinusoidal steady-state voltages and currents. In these cases, complex-valued quanti
ties can be considered to represent two quantities—one real, the other imaginary.

The unit of a physical quantity can be any well-defined standard, but it is usually 
desirable to limit the number of units used in a measurement to as few as possible. 
Certain sets of quantities are, by convention, regarded as fundamental quantities, 
specified in internationally accepted fundamental units. All other units can be 
derived in terms of these fundamental units. By far the most accepted unit system 
among electrical engineers is the MKSA system.2 The fundamental quantities in this 
system are length, mass, time, and current, specified in meters, kilograms, seconds, and 
amperes, respectively. The MKSA system is a subset of the International System of 
Units (SI), which also includes the candela (a unit of luminous intensity) and the Kelvin 
(a unit of temperature).

1 See Shortley and Williams, Elements o f Physics, 4th ed. (Englewood Cliffs, NJ: Prentice-Hall, 1965), p. 4.

2 For a complete discussion of the unit systems used in electromagnetics see Handbook o f Chemistry and 
Physics (Boca Raton, FL: The Chemical Rubber Co.. 1991).

8
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Derived units are units that are specified in terms of the fundamental units. The 
newton, for example, is a derived unit of force, defined as 1.0 [kg ■ m/sec2]. The most 
common derived units used in electromagnetic analysis are summarized in Appendix A.

The dimensions of a physical quantity are specified by the powers of the fundamental 
physical quantities that occur in its definition.

For example, since the unit of speed is a length unit divided by a time unit, its 
dimensions are (length)/(time). Similarly, the dimensions of the newton are 
(mass) • (length)/(time)2. The dimensions of physical quantities are important, 
because two physical quantities can be added or subtracted if, and only if, they 
have the same dimensions. Thus, apples can be equated with apples, but not 
oranges. Any equation in which the units of the left- and right-hand sides do not 
agree is simply wrong.

2-2-1 DISCRETE AND FIELD QUANTITIES

The physical quantities used in electromagnetics can be either discrete or field quanti
ties. The simplest are discrete quantities.

Discrete quantities are defined over regions of space or at single points, but not on a 
point-by-point basis throughout a region.

The definition of the average temperature of a room has nothing to do with the posi
tion of the observer, so it is a discrete quantity. Similarly, the distance from Kansas 
City to New York is a quantity that is independent of the position of an observer.

Most of the physical quantities encountered in electromagnetics are field quantities.

Field quantities are defined on a point-by-point basis throughout a region of space.

The temperature in a room is a field quantity, since it is defined uniquely for each point 
in the room. Another field quantity is wind speed, which is also a function of the posi
tion at which it is measured.

The distinction between discrete and field quantities is important, because the 
procedures used to describe them are different. One needs only ordinary algebra to 
balance a checkbook or to compare the weights of two objects, since these operations 
involve only discrete quantities. Analyzing the characteristics of the temperature dis
tribution inside a room is more difficult. This is because the temperature is a continu
ous function of position and requires vector analysis to describe it fully.

2-2-2 SCALARS AND VECTORS

We have just seen that physical quantities can be classified as either discrete or field 
quantities. They can also be classified according to the number of numbers needed to 
specify them. The simplest are scalars.
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A Scalar is a quantity that can be specified by a single number and its associated unit.

Temperature, altitude, and weight are all scalar quantities, since each can be specified 
by a single number. Throughout this text, scalar quantities are represented as non
boldface symbols, in italics, such as D and p. Also, the units of all scalars will be writ
ten in brackets, such as [kg/m].

There are also physical quantities that have both a size and a direction associated 
with them. These are called vectors and are defined as follows:

A Vector is a quantity that can be specified by a magnitude and a direction.

Examples of vector quantities are velocity and force. Throughout this text, boldface 
alphabetic characters, such as A, E, and h, are used to denote vector quantities.3

The magnitude and direction of a vector are very different entities. The magni
tude is a positive-valued scalar, which includes its associated unit. We will represent 
the magnitude of a vector A as either | A | or A. The direction, as its name implies, is a 
spatial orientation. For instance, the wind velocity at a point may be specified as 
2.5 [m/s] in the southeast direction.

By convention, any vector can be represented graphically by a line extending 
from a tail to a head. An arrow is placed at the head and points in the direction of the 
vector. The distance from the tail to the head represents the vector’s magnitude. The 
graphical representation of a vector A is shown in Figure 2-1.

Discrete vectors are associated with regions of space, but not a specific point. An 
important example is the directed distance between two points.

The directed distance Rab between the points a and b is a vector whose magnitude 
equals the distance between these points and whose direction is parallel to the line 
directed from a to b.

Even though this definition of Rab involves the points a and b, this vector is not defined 
to exist at any particular point. As a result, its representation can be translated freely 
to any point, as long as its magnitude and direction are not changed. This is depicted 
in Figure 2-2.

F ig u re  2-1 A graphical representation of a 
vector.

3 In handwritten work, vectors are typically written as A  or A , since boldface characters are difficult to draw 
by hand.
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F ig u re  2-2 A discrete vector, shown at 
two different locations in space.

F ig u re  2 -3  Graphical representations of a 
vector field: a) quiver plot, b) streamlines.

Figure 2-3a shows the graphical representation of a vector field. Here, the vector 
is represented at equally spaced points in a quiver plot (sometimes called a needle 
plot). This type of diagram is helpful in that it conveys both the magnitude and direc
tion of the vector at a number of points. On the other hand, such a diagram does not 
easily convey the sense of the vector’s “flow.” By flow, we mean the path that a parti
cle would take if it were pushed by the vector (assuming that the vector represented a 
force field). Flow is best represented by a streamline plot, such as that shown in Figure 
2-3b. Here, continuous lines called streamlines are drawn that are tangent to the vec
tor’s direction at each point. These streamlines are the paths that the vector would 
“push” a particle. Magnitude information is not directly conveyed by the streamlines. 
Nevertheless, one can usually infer this information by measuring the spacings between 
the streamlines, since vector magnitudes are usually strongest where the streamlines 
are the closest. This can be seen by comparing Figure 2-3a and Figure 2-3b.

V e c to r  A lg e b ra

Having defined scalars and vectors we will now define several operations involving 
them. These operations are essential, for without them we would have no way to 
formulate the mathematical equations that describe the physical processes found in 
electromagnetics. Three classes of operations are possible in vector algebra: scalar- 
scalar, scalar-vector, and vector-vector. Since the operations from the first class are 
already known from ordinary algebra, our discussion will be limited to operations 
involving vectors.

2-3-1 ADDITION AND SUBTRACTION OF VECTORS

The sum of any two vectors A and B is itself a vector, defined by the graphical process 
depicted in Figure 2-4a. Here, the vector sum A + B is defined as the vector that com
pletes the parallelogram formed by A and B.

An equivalent definition of the sum A + B, called the addition tail-to-head rule, 
is depicted in Figure 2-4b, where the representation of B has been translated so that its

2-3
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F ig u re  2 -4  Vector addition: a) completing 
(a) (b) the parallelogram, b) the head-to-tail rule.

tail lies at the head of A. The sum A + B is then defined as the vector whose repre
sentation extends from the tail of A to the head of the translated B. This definition is, 
in some ways, more visually descriptive than the first, but it can also be somewhat mis
leading for field vectors, since it implies that the representations of a vector field can be 
moved to any point in space as if they were discrete vectors. To counter this illusion, 
one must remember that this sliding process is only a tool used to define A + B. In 
reality, A, B, and A + B are all defined at exactly the same point.

Vector addition satisfies the associative and commutative laws:

Associative law: A + (B + C) = (A + B) + C (2.1a)

Commutative law: A + B = B + A. (2.1b)

Both proofs are straightforward from the definition of vector addition and are left as an 
exercise for the reader.

F ig u re  2 -5  Vector subtraction: a) 
completing the parallelogram, b) head-to- 
tail rule.

Vector subtraction is defined in terms of vector addition by

C = A - B  = A + ( -B ) ,  (2.2)

where the symbol “= ” means “equals by definition.” The vector —B is called the neg
ative of B; it has the same magnitude as B, but opposite direction. Figure 2-5a shows 
the graphical representation of C = A + ( — B). Figure 2-5b shows that C = A — B can 
also be represented using the subtraction tail-to-head rule, where the representation 
of A — B extends from the tip of B to the tip of A. When using this rule for vector 
fields, however, it must be remembered that A, B, and C all exist at the same point, 
even though C has been translated by the graphical procedure.

2-3-2 MULTIPLICATION OF A VECTOR BY A SCALAR

The product aB is defined as a vector with the same direction as B and magnitude 
equal to \a\ |b |. If the sign of a is negative, the direction of the vector aB is opposite 
to that of B. Figure 2-6 depicts the scalar product a B.

The product of a scalar and a vector obeys the commutative and distributive laws:

Commutative law: uB = Ba (2.3)
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F ig u r e  2 - 6  M u lt ip l ic a t io n  o f  a  s c a la r  a n d  a  

vector.

As its name implies, a unit vector has unit magnitude.

2-3-3 THE SCALAR (OR DOT) PRODUCT OF TWO VECTORS

There are two multiplication operators that involve two vectors. The first is called the 
scalar product, because it produces a scalar. The scalar product of two vectors is 
defined as a scalar whose value is given by

Here, the angle θAB is defined as the smaller angle between A and B (i.e., θ AB ≤  180°), 
and |A | and |B | are the magnitudes of A and B, respectively. The expression A • B is 
read as “A dot B”, and the terms “scalar product” and “dot product” are used inter
changeably.

When we take the dot product of a vector with itself, we obtain 

A •A = |A| |A| cos θ AA = |A| |A| = |A|2. (2.9)

Thus, the magnitude of any vector can be written in terms of its dot product:

|a | = √ a • a | . (2.10)

The dot product satisfies the commutative and distributive laws:

Commutative law A • B = B •A (2.11)

Distributive law A • (B + C) = A • B + A • C. (2.12)

Distributive law: (2.4)

We can use the scalar-vector product to represent an arbitrary vector A in the form

( 2 . 6 )

(2.5)

The quotient can be defined in terms of the scalar-vector product

where |A| and A are the magnitude of A and âA is a unit vector that has the same direc
tion as A and a magnitude of unity (i.e., 1.0). Multiplying both sides of Equation (2.6) 
by | A | -1, we obtain the following expression for the unit vector âA:

(2.7)

(2 .8)
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The commutative law follows directly from the symmetry of the dot product. The 
proof of the distributive law is straightforward and is left as an exercise.

The definitions of perpendicular and collinear vectors are derived from the 
dot product:

Two vectors A and B are perpendicular (or orthogonal) if A • B = 0. Vectors are 
collinear it |A  • B| = |A | |B|. Collinear vectors are parallel if A  • B = |A| |B| and 
are antiparallel if A • B = -  |A| |B |.

The dot product is a convenient tool for finding the component of a vector along 
particular direction. Figure 2-7 shows a vector A and reference line that is parallel to the 
direction of the unit vector âg. Also shown is the right triangle formed by the reference 
line, the vector A, and the line that extends from the tip of A and intersects the reference 
line at a right angle. When θ ab ≤ 90°, the component A B of the vector A along the di
rection âB is defined as the length of the side of the right triangle that lies along the refer
ence line. If θ ab >  90°, then the component A B is the negative of this distance. From 
this definition and Figure 2-7, it follows that the component of A in the direction ̂̂̂̂̂âB is

Ab = |A| COSθAB.

But from Equation (2.8), we find that | A| cos θ AB can be written as the dot product 
A • âB. Hence, we can write

The dot product can be used to expand any vector as the sum of perpendicular 
component vectors. Consider the vector A, shown in Figure 2-8, which exists in three- 
dimensional space.

Ab = A  • âB = |A| c o sθAB. (2.13)

F ig u re  2 -7  The projection of a vector 
along a reference line.

F ig u re  2 -8  A n arbitrary vector A ,  shown 
as the sum of three mutually orthogonal 
component vectors.
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If the unit vectors âl â2, and â3 are mutually orthogonal (perpendicular), we can 
express A as

The scalars A 1,  A 2, and A 3 are the components of A along the directions â1, â2, and â3, 
respectively. Remembering that the dot products of perpendicular vectors are zero, 
we can find the components A 1,  A 2, and A 3 simply by taking the dot products of A with 
âl, â2, and â3, respectively, obtaining

2-3-4 THE VECTOR (OR CROSS) PR O D U C T  
OF TWO VECTORS

The second product of vectors is the vector (or cross) product. Unlike the scalar prod
uct, which produces a scalar from two vectors, the vector product of two vectors pro
duces another vector, defined by

(2.14)

(2.15)

Figure 2-9 The cross product of two 
vectors.

where ӨAB is defined as the smallest angle between A  and B. The expression A  ×  B is 
read as “A  cross B ,” and the terms “vector product” and “cross product” are used 
interchangeably. Figure 2-9 shows the relationship between A, B, and A  ×  B. The 
unit vector a„ is specified by a convention called the right-hand rule. This rule states 
that an is perpendicular to both A  and B and points in the direction of a right-hand 
thumb when the other fingers point along the arc that A  would follow if it were rotated 
into B through the smallest angle between them.

The cross product obeys the distributive law:

Distributive law: A  ×  (B +  C) = A × B + A × C . (2.17)

This can be proved directly from the definition of the cross product. On the other 
hand, the cross product obeys neither the commutative nor the associative laws, which 
can be seen from the inequalities

A × B =  - B × A ≠ B × A  (2.18)

and

A  ×  (B× C) ≠  ( A×  B)×  C. (2.19)

(2.16)
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Equation (2.18) is a direct result of the right-hand rule. Equation (2.19) is most easily 
proved by observing that the vector A X (B X C) lies in the plane formed by B and C 
(since B X C lies perpendicular to that plane), whereas the vector (A X B) X C lies in 
the plane containing A and B.

2-3-5 PRO DUC TS OF TH REE VECTORS

There are two combinations of products that involve three vectors. These are the 
scalar triple product and the vector triple product, so named because they produce a 
scalar and a vector, respectively. The simplest of the two is the scalar triple product. 
For three vectors A, B, and C, the scalar triple product A • B X C has the following 
cyclic property:

A * B x C  =  B * C x A  = C * A x B .  (2.20)

This identity is easily proved by referring to Figure 2-10, which shows a parallelepiped 
formed by the vectors A, B, and C. From solid geometry, the volume of the paral
lelepiped is | A| | B | | C | sin 6l cos 02, which can be expressed as A • B X C. Similar rea
soning yields the other two expressions in Equation (2.20).

In addition, the vector triple product A X (B X C) satisfies the following identity:

A X ( B X C )  = B (A ‘ C) -  C (A -B ) . (2.21)

This identity can be proven by expanding the vectors in Cartesian coordinates (which 
will be discussed shortly).

2 -4  O r th o g o n a l C o o rd in a te  System s

Our discussion of vectors has been hindered thus far by our inability to specify posi
tions and directions, except through graphical representations. We will now introduce 
the concept of a coordinate system, which provides the framework necessary to 
describe these quantities without graphical representations.

Coordinate systems provide two attractive features that aid in vector opera
tions. The first is the ability to specify positions in space by a sequence of scalars, 
called coordinates. Coordinates identify the position of a point with respect to a 
coordinate center (or origin). The minimum number of scalars needed to uniquely 
specify a point in a particular domain (or space) determines the dimension of the 
space. Fines are one dimensional, surfaces are two dimensional, and volumes are 
three dimensional.

F ig u re  2-10 A graphical depiction of the 
scalar triple product.
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Coordinate systems also provide a convenient way to specify vectors at any point. 
This is accomplished through the use of an orthogonal set of vectors, called base vec
tors, which are defined at each point. Any vector can be uniquely defined in terms of 
its components in the base vector directions. The number of base vectors defined by a 
coordinate system equals the dimension of the space. Each base vector is defined at a 
point in space in terms of the position coordinates used to identify the point:

In a coordinate system in which a point P is described by the coordinates P(ux, u2, u3), 
the zth base unit vector a; at P has a direction parallel to a line through P along which 
only ut varies, and points towards increasing values of ut.

Three coordinate systems are discussed in this section: Cartesian (or rectangu
lar), cylindrical, and spherical. Although there are many others, these three are suffi
cient to model all of the electromagnetic configurations discussed in this text. Why do 
we need more than one? The reason is that no one coordinate system is best suited to 
all situations.

2-4-1 THE CARTESIAN COORDINATE SYSTEM

In the Cartesian coordinate system, three mutually perpendicular axes are used that 
intersect at a point, called the origin. These axes are typically called the jc-, y-, and 
z-axes, respectively, and are oriented according to the right-hand rule: The rotation of 
the positive x-axis into the positive y-axis would cause a right-handed screw at the ori
gin to thread along the positive z-axis.

In this coordinate system, a point is identified by its three position coordinates: 
ux — x, u2 = y, and u3 = z, each defined as the perpendicular distance from the point 
to the x-, y-, and z-axes, respectively. As shown in Figure 2-11, any point can be envi
sioned as the point of intersection of three planes: x = constant, y = constant, and 
z = constant, where any of the three position coordinates can have any real value 
between — oo and + oo.

F ig u re  2-11 Position coordinates and base 
vectors in the Cartesian coordinate system.
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The base vectors of the Cartesian coordinate system are particularly simple. At 
any point P, the unit vector av is directed towards points having increasing values of x 
and perpendicular to the y — constant and z = constant planes. This direction is 
always parallel to the x-axis, regardless of the location of P. The definitions of av and 
a , are similar, and are shown in the figure. From these definitions, it follows that the 
base vectors have the following product relationships:

aY • ax = ay • ay = az • az = 1 (2.22a)

a ,-a , = a ,-a , = ay-az = 0 (2.22b)

ax X ax = a v X ay = a. X a. = 0 (2.22c)

ax X av = a. (2.22d)

ay X a .  = ax (2.22e)

a, X ax = ay. (2.22f)

These product relations are simple to derive, but the cross products are somewhat dif
ficult to remember. Fortunately, there is a simple way to remember them. Looking 
closely at these four relationships (2.22c through 2.22f), we notice a sequence between 
the unit vectors that can be represented by the circle shown in Figure 2-12.

To determine the cross product between any two base vectors, start on the circle 
at the coordinate symbol of the first vector in the product, and progress past the coor
dinate symbol of the second vector by the shortest route. The next symbol encountered 
along that route is the coordinate symbol of the resulting unit vector. The sign of this 
unit vector is positive if the progression is clockwise (i.e., along the arrows) and nega
tive if it is counterclockwise.

Any vector can be expanded at any point in terms of its components in the 
base vectors:

A = A k  + A A  + A z*z> (2-23)

where the scalars A x, A , and A z are the x, y, and z components of the vector A , respec
tively. Using Equation (2.15), we can find these components by taking the dot product 
of both sides of Equation (2.23) with each of the base vectors, yielding

A { — A  • a,- i =  x, y, or z . (2.24)

Once the Cartesian components of two vectors are known, their scalar and vector 
products can be found without graphical representations. To accomplish this, we first 
express the dot product of A  and B as

A - B  =  {Ax a v +  A yay +  A za .)-(B xax +  Byay +  Bzaz).

F ig u re  2 -1 2  Circle diagram for cross 
products in Cartesian coordinates.
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Using the orthogonality properties of the base vectors, this becomes

A • B = A kBx + A yBy + A ZBZ. (2.25)

From Equation 2.10, |A | can be expressed as

|A| = V A - A  = VA \ + A] + A 2Z, (2.26)

which can also be derived from the Pythagorean theorem.
Similarly, the cross product of A and B can be expressed in terms of components:

A X B =  (Axa v +  A yav +  A za.) X (Bxax + Byav +  Bza ,) .

Using the cross-product relations of the base vectors, this becomes

A X B = (AyBz-  A ,B y)ax + (A ,BX -  a„ + (AxBy -  (2.27)

Each term in this formula can be evaluated using the circle aid in Figure 2-12. For 
instance, the term A yB: is positive because av crossed into a . yields + a v. Similarly, a. 

crossed into ay yields -  av, so the sign of the term A zBy is negative. Equation (2.27) 
can also be written as a determinant:

(2.28)

Expanding this determinant by minors yields

(2.29)

Another attractive feature of coordinate systems is that they provide simple 
expressions for the differential quantities needed to evaluate integrals of vector and 
scalar fields. Figure 2-13 shows the differential volume traced about a point when its

Figure 2-1 3 Differential volume and 
surface elements in the Cartesian 
coordinate system.
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position coordinates x, y, and z are varied by the differential amounts dx, dy, and dz, 
respectively. The enclosed volume is

Figure 2-13 also shows three differential surfaces traced when two coordinates at 
a point are varied by differential amounts and the third is held constant. Each of the 
surfaces is named according to the direction of its normal (i.e., perpendicular) direc
tion, which is defined as the unit vector that is perpendicular to each vector (or line) 
that lies on that surface. From Figure 2-13 we see that the normal to each of these sur
faces is the base vector corresponding to the coordinate that is constant on the surface. 
The area of each differential surface is

dsx = dy dz (when dx = 0) (2.31a)

dsy = dx dz (when dy = 0) (2.31b)

dsz = dx dy (when dz — 0). (2.31c)

We can also define differential surface vectors for each of these differential surfaces.
The magnitude of each differential surface vector equals the differential surface area, 
and its direction is normal to the surface. The three differential surface vectors shown 
in Figure 2-13 can be expressed as

dst = dsx ax = dy dz ax (when dx = 0) (2.32a)

ds = ds av = dx dz av (when dy = 0) (2.32b)

ds, = dsz a. = dx dy a, (when dz = 0). (2.32c)

Notice in these expressions that of the two possible normal directions for each surface, 
the direction outward from the enclosed volume is chosen in each case. This conven
tion is always followed whenever a differential surface is part of a larger surface that 
completely encloses a volume. Such surfaces are called closed surfaces.

When integrating along a line of points, it is necessary to define a differential 
vector that represents the magnitude and direction of each segment of the path. 
Consider the path shown in Figure 2-14. We define the differential displacement 
vector df at point P(x, y, z) to be the directed distance from P(x, y, z) to 
P'{x + dx, y + dy,z  +  dz). Along any path, the differential displacement vector 
can be represented as

dv =  dx dy d z . (2.30)

d£ =  dx ax +  dy a  +  dz a , . (2.33)

z

Line

P ' (x + dx, y +  dy, z  + dz)
F ig u re  2-14 A  differential displacement 
vector d l along an arbitrary path (line).
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Here, it is important to note that dx, dy, and dz are not independent quantities, since 
each is a measure of how rapidly the x, y, and z coordinates, respectively, are varying 
at the point.

A frequently used method of finding dx, dy, and dz is to write the position coor
dinates of the line using a single, common variable called a parametric variable. Thus, 
when a line can be represented by P[x(s), y(s), z(V)], where x(V), y(s), and z(s) are 
functions of the parametric variable 5 , the differentials dx, dy, and dz can be obtained 
from the relations

E xam ple  2-1

F o r  t h e  v e c t o r s  A  =  — a x — 2a y +  4 a z a n d  B  =  — a* +  3ay — 2az, f i n d  t h e  s m a l l e s t  a n g le  0AB 
b e t w e e n  A  a n d  B  a n d  t h e  u n i t  v e c t o r  an t h a t  p o in t s  a l o n g  t h e  d i r e c t i o n  o f  A  x  B .

Solution:

W e  c a n  f in d  @AB b y  u s in g  t h e  d o t  p r o d u c t .  S o lv in g  E q u a t i o n  (2 .8 )  f o r  &AB’ w e  h a v e

U s in g  E q u a t i o n s  (2 .2 5 )  a n d  ( 2 .2 6 ) ,  w e  h a v e

S u b s t i tu t i n g ,  w e  f in d

T o  f in d  a„ , w e  f i r s t  s o lv e  E q u a t i o n  ( 2 .1 6 )  f o r  a „ , y i e ld in g

W e  c a n  f in d  A  X  B  b y  u s in g  E q u a t i o n  (2 .2 7 ) :

(2.34a)

(2.34b)

(2.34c)

S u b s t i tu t i n g  th is  i n to  t h e  e x p r e s s io n  f o r  a_ , w e  o b t a i n
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E xam p le  2 -2

Find an expression for the differential displacement vector d i  at any point on the half-circle path 
shown in Figure 2-15. Assume that the direction along the circle is counterclockwise.

Figure 2-15 Differential displacement 
vectors along a counterclockwise, 
semicircular path of radius a.

Solution:

Since the half circle has a unit radius, the position coordinates (x , y )  can be written in terms 
of the parametric variable 0  as

and

To see if this result makes any sense, let us evaluate d£ at the points 0  = 0, 90°, and 180°. Sub
stituting, we obtain

These vectors are shown with amplified lengths (so that they can be seen) in Figure 2-15. Notice 
that each vector is tangent to the circle and has magnitude pd0 .

Using Equations (2.34a) and (2.34b), we find that

Hence, the differential displacement vector at any point can be written as
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The cylindrical coordinate system is a three-dimensional version of the polar coordi
nate system used in two-dimensional analysis.4 Referring to Figure 2-16, we see that 
the position coordinates of a point P in this system are ux = p, u2 -  </>, and u3 = z. 
Here, p is defined as the perpendicular projection from the point to the z-axis, and </> is 
the angle that this projection makes with respect to the x-axis. The z-coordinate is the 
same as in Cartesian coordinates. All points are uniquely specified by the intersection 
of p =  constant, 0  =  constant, and z =  constant surfaces, where 0 <  p <  oo, 

0 < (f) <  277, and -  oo < z <  °o. Using Figure 2-16, we can easily show that cylin
drical and Cartesian coordinates are related by

4 There are many different cylindrical coordinate systems, such as circular cylindrical coordinates, elliptical 
cylindrical coordinates, and parabolic cylindrical coordinates. Throughout this text, however, we will refer to 
the circular cylindrical coordinate system as simply the cylindrical coordinate system.

Figure 2-16 Position coordinates and base 
vectors in the cylindrical coordinate 
system.

2-4-2 THE CYLINDRICAL COORDINATE SYSTEM

(2.35a)

(2.35b)

(2.35c)

and

(2.36a)

(2.36b)

(2.36c)



24 CHAP. 2 VECTOR ANALYSIS

Care must be taken when using Equation (2.35b), since 0 < <f> < 2tt and the tan"' 
{unction has a ptincipat-value range of -  vr/2 < <(. <  rr/2. Because of th.s, vr must be 
added5 to the <(> value of >)> specified by Equation (2.35b) when a point hes in the 
ond or third quadrants (i.e., x < 0).

The base unit vectors of the cylindrical coordinate system, ap, â, and a,, are 
depicted in Figure 2-16. These vectors are directed towards increasing values of p, </>, 

and z, respectively, and are perpendicular to the constant-coordinate surfaces of the 
other coordinates. Unlike the Cartesian coordinate system, in which all three base 
vectors maintain the same orientations at all points, two of the base vectors in the cylin
drical coordinate system vary with the coordinate </>; thus, one must first define the </> 
coordinate of a point before the ap and directions can be specified.

From basic trigonometry, the following relationships can be derived:

The cross products between the cylindrical base vectors can be symbolized using 
the aid shown in Figure 2-17. A vector A at any point can be represented by its com
ponents in the base vectors at that point:

(2.38)

where the scalars A p, A z are the p, 4>, and z components of A, respectively. Using 
Equation (2.15), we can find these components by taking the dot product of A with 
each of the base vectors:

A t = A • a, i = p, <f>, or z ■ (2.39)

The dot product of two vectors A and B can be expressed in terms of their 
components as

A*B = (Apap + A ^  + A zaz)»(Bpap + B + B, az).

F ig u re  2-1 7 Circle diagram for cross 
products in cylindrical coordinates.

5 Most calculators have a polar-to-rectangular function that automatically performs this function when x and 
y are specified separately.

(2.37a)

(2.37b)

(2.37c)

(2.37d)

(2.37e)

(2.37f)
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Using the orthogonality properties of the base vectors, this becomes

This can also be written in shorthand as the determinant

(2.43)

As shown in Figure 2-18, a differential volume dv is traced about a point when its 
coordinates are varied by the amounts dp, d(f>, and dz, respectively. In the limit as dp, 
d(j), and dz approach zero, the enclosed volume dv can be written as

Figure 2-18 Differential volume and 
surface elements in the cylindrical 
coordinate system.

Since | A | = V A  • A, it follows that

(2.40)

(2.41)

which can also be derived from the Pythagorean theorem.
Similarly, the cross product of two vectors can be expressed as

which, using the properties of the base vectors, can be simplified to read

(2.42)

(2.44)
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Notice that the factor p is necessary because the distance traced as the angular coordi
nate varies from 0 to 0 + <70 equals pdcf>. This factor also makes the equation dimen
sionally correct since, strictly speaking, <70 is unitless.6

As can be deduced from Figure 2-18, the surface areas traced when two of the 
three coordinates at a point vary by differential amounts are

(2.45a)

(2.45a)

(2.45a)

The spherical coordinate system identifies points by the coordinates ux = r,u2 = 9, 
and u3 = 0, where r is the length of the line extending from the origin to the point, 9 is 
the angle that this line makes with the z-axis, and 0 has the same definition as in cylin
drical coordinates. As shown in Figure 2-19, any point is uniquely defined as the point 
of intersection of the r = constant, 9 — constant, and 0 = constant surfaces, where

The differential surface vectors associated with these surfaces are found from these by 
adding the appropriate unit vectors:

(2.46a)

(2.46b)

(2.46a)

Finally, the differential displacement vector that represents the directed distance 
from Pip , 0, z) to P'ip + dp, 0 + <70, z + dz) along a line contour is

(2.47)

If the coordinates along the line are defined by p(s), 0 (5 ), and z (s), then dp, dcf), and dz 
can be found from the relations

(2.48a)

(2.48b)

(2.48c)

2-4-3 THE SPHERICAL COORDINATE SYSTEM

6 The units of <£ and dcf) are radians (or degrees), but the radian is defined as the ratio of arc length to the cir
cumference of a circle, so it is actually unitless. The same is true for the degree.
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vectors in the spherical coordinate system. 

The spherical and Cartesian coordinates of a point are related by

(2.49a) 

(2.49b)

(2.49c)

and

x = r sin 6 cos 4> (2.50a)

y = r sin 6 sin 4> (2.50b)

z = rcosd. (2.50c)

As in the case of cylindrical coordinates, care must be exercised when using Equation 
(2.49c) to ensure that the calculated angle </> lies in the correct quadrant.

The base unit vectors in the cylindrical coordinate system, ar, a0, and a(/), are 
directed towards increasing values of r, 0, and <p, respectively. As can be seen from 
Figure 2-19, all three of these vectors are functions of the coordinates 6 and c/>. 
Thus, the coordinates of a point must be specified before the base unit vectors can 
be specified.
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At any point, a vector A  can be expressed in terms of its components in the base 
vector directions as

The base vectors of the spherical coordinate system satisfy the following 
relationships:

The cross-product relationships between the spherical base vectors can be sym
bolized using the aid shown in Figure 2-20. The dot product of any two vectors can be 
expressed as

which reduces to

(2.57)

F ig u re  2 -2 0  Circle diagram for cross 
products in spherical coordinates.

(2.51)

where A r, A e, and A $ are the r, 6, and 4> components of A ,  respectively. These com
ponents can be found via the dot product

(2.52)

(2.53a)

(2.53b)

(2.53c)

(2.53d)

(2.53e)

(2.53f)

Also, since |A | = V A  • A ,  it follows that

(2.54)

(2.55)

which can also be derived from the Pythagorean theorem.
Similarly, the cross product of two vectors can be expressed as

(2.56)

This expression can be written in shorthand form as the determinant
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Figure 2-21 Differential volume and 
surface elements in the spherical 
coordinate system.

As shown in Figure 2-21, a differential volume dv is traced about a point 
P(r, d, 4>) when its coordinates are varied by the amounts dr, dd, and d(f>, respectively. 
In the limit as dr, d(f>, and dz approach zero, the enclosed volume is

In this expression, the multiplier r2 sin 8 is necessary because the lengths traced by dif
ferential changes in 6 and $ are rdd and r sin 8 d(f>, respectively. Also, the r2 makes the 
expression dimensionally correct.

The surfaces traced when two of the three coordinates are varied by differential 
amounts are also shown in Figure 2-21. They have areas given by

(2.58)

(2.62a)

(2.59a)

(2.59b)

(2.59c)
and their associated differential surface vectors are

(2.60a)

(2.60b)

(2.60c)

Finally, the differential displacement vector that represents the directed distance 
from P(r, 8, </>) to P' (r + dr, 8 + dd, 4> + d(f>) along a line contour is

(2.61)

If the coordinates along the line are given by r(s), d(s), and (f>(s), then dr, dd, and dcfi 
can be found from



30 CHAP. 2 VECTOR ANALYSIS

(2.62b)

(2.62c)

2 - 4 - 4  C O N V E R S I O N S  B E T W E E N  C O O R D I N A T E  S Y S T E M S

There are many times when it is necessary to change the representation of a vector 
from one coordinate system to another. Typically, this is done when different aspects 
of a problem are most easily described using different coordinate representations.

Changing a vector’s representation from one coordinate system to another 
requires two steps:

• Convert the coordinates
• Convert the components

The position coordinates in the new system are found simply by applying the appropri
ate coordinate transformations. The components in the new system are found by tak
ing the dot product of the vector with each of the base vectors in the new system:

where i is set equal to each of the coordinate variables in the new system.
Appendix B contains a number of tables that are helpful when converting the 

representation of a vector from one coordinate system to another. Table B-l contains 
the relationships between the coordinate variables of the three coordinate systems. 
Table B-2 contains the dot products of the base vectors of the three coordinate sys
tems. Finally, Table B-3 summarizes the relationships between vector components in 
these coordinate systems.

Find the representation of C = p in Cartesian coordinates.

Solution:

Using Equation (2.63) in conjunction with the values in Table B-2, we find that the Carte
sian components of C are

(2.63)

E xam p le  2 -3

Next, using x = p cos and y = p sin </>, we obtain
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E xam ple  2 -4

Find the representation of A = 3yax in the spherical coordinate system. 

Solution:

Knowing that y = r sin 6 sin cf>, we can write A as

2 - 4 - 5  T H E  P O S I T I O N  V E C T O R

We have already seen that any point is uniquely defined by its position coordinates. 
We can also identify a point by its position vector:

The position vector of a point is defined as the directed distance from the origin to the 
point and is represented by the symbol r.

Every point has a unique position vector that identifies it. This vector is denoted 
by the symbol r and is depicted in Figure 2-22 for an arbitrary point P. The position 
vector of an arbitrary point has the following representations in the Cartesian, cylin
drical, and spherical coordinate systems:

(2.64a)
(2.64b)
(2.64c)

Figure 2-22 The position vector.

Thus, the representation of A in spherical coordinates is

Thus, Ax = 3rsin 6 sin cf), and Ay = Az = 0. Using Table B-3, we obtain the spherical compo
nents of A:
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The spherical representation follows directly from the definition of r. The other two 
representations can be found through coordinate transformations.

The directed distance between two points can be expressed in terms of their posi
tion vectors. Referring to Figure 2-23, consider the points P and P', represented by 
the position vectors r and r', respectively. If we let R denote the directed distance 
from P' to P, it follows from Figure 2-23 that

We can also write R as

In coordinate systems other than Cartesian coordinates, it is important to remem
ber that the base unit vectors at r and r' are not, in general, the same. This is demon
strated in the following example.

Find the directed distance from P ' { 3, 30°, 1) to P ( l ,  90°, 2). W rite the representation of this 
vector at both points using the cylindrical coordinate system.

Solution:

Since the values of (f> at these two points are different, it is best to start by finding R = r — r' 
in the Cartesian coordinate system. Converting P  and P ' to Cartesian coordinates yields

F ig u re  2 -2 3  The directed distance R 
between two arbitrary points.

where

and

(2.65)

(2.66)

(2.67)

In Cartesian coordinates, R is represented by

E xam p le  2 -5

The corresponding position vectors are
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Using Table B-3, we can express R in cylindrical coordinates at any point as

and 0  is the position coordinate at the point. Substituting, 0  = 90° at P  and 0  =  30° at P ' , we 
find that

2 -5  T h e  Calculus o f  S calar a n d  V e c to r  F ields

Most of the physical quantities of interest in electromagnetics are field quantities. 
Because they are functions of position, it is important that we be able to characterize 
the functional behaviors of field quantities over both large and small regions of space. 
This is accomplished through various integral and differential operators.

2-5-1 INTEGRALS OF SCALAR AND VECTOR FIELDS

Electromagnetic phenomena are often described in terms of integrals of vector or 
scalar quantities over a volume, a surface, or a line. Examples of the kinds of integrals 
encountered in electromagnetic analysis are

(2.69)

(2.72)

so the directed distance from P '  to P  is

where

and

where ap and are base unit vectors at P ,  and a . and a .̂ are the base vectors at P ' . Notice that 

although R is the same vector at P  and P ' , its representations at these two points are different.

(2.70)

(2.71)
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The first two of these integrals are called volume integrals, because they take place 
throughout a specified volume. Likewise, the third and fourth integrals are called sur
face and line (or contour) integrals, respectively, because they are evaluated over a 
surface and a line, respectively.

In spite of the obvious differences between the integrals given in Equations 
(2.69-2.72), each is simply the summation of a differential quantity (either scalar or vec
tor) over a range of points. The basic steps for evaluating any of these integrals are:

1. Choose the coordinate system that will be used during the integration process.
2. Determine which position coordinates vary during the integration process.
3. Select the appropriate differential quantity.
4. If the integrand is a vector, make sure that all unit vectors are constants with 

respect to the variable(s) of integration.
5. Integrate over the appropriate limits of the position coordinates.

The three examples that follow demonstrate the general procedure for evaluating inte
grals of field quantities.

E xam ple  2 -6

Evaluate the integral f v  Pd v , where P = r  cos 4> ar and V  is a sphere of unit radius centered at the 
origin.

Solution:

The spherical coordinate variables are the most convenient for this problem. To cover all points 
within the volume, the range of the coordinates must b e O < r < l , O < 0 < 7 r, 0 <  </> <  2tt. 
Also, d v  -  ^ s i n d  drdOdcf) at all points within the volume. Substituting into the integral, we have

The second and third integrals on the right-hand side of this expression are zero, since 

JqW sin (f) cos (f) d(f> = 0 and f 0n cos <f> d(f> =  0, respectively, leaving

This integral is not as easy to evaluate as it may first appear, because of the presence of the unit 
vector ar, which varies with the position variables 9 and 4> . Using Table B-3, however, we can 
represent ar in Cartesian components as

Substituting, we obtain
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E xam p le  2 -7

E v a l u a t e  t h e  i n te g r a l  <fs  F* ds , w h e r e  F =  xax a n d  S is  t h e  c lo s e d  c i r c u la r  c y l in d e r  s h o w n  in  F ig 
u r e  2 -2 4 .

Solution:

F r o m  F ig u r e  2 -2 4 , w e  s e e  t h a t  S c o n s i s t s  o f  tw o  d is c s  a t  z = 0  a n d  z — 5 , r e s p e c t i v e ly ,  a n d  
a n  o p e n  c y l i n d e r  p  =  2  f o r  0  <  c/> <  2ir. O n  t h e  d is c s ,  ds =  ±pdpd(f> az, w h e r e  t h e  u p p e r  a n d  
lo w e r  s ig n s  c o r r e s p o n d  t o  t h e  u p p e r  a n d  l o w e r  d is c s , r e s p e c t i v e ly .  S in c e  F h a s  n o  z c o m p o n e n t ,  
F • ds =  0  e v e r y w h e r e  o n  b o t h  d isc s .

O n  t h e  o p e n  c y l i n d e r ,  ds = p  d(f> dz ap =  2  d(f> dz ap. R e m e m b e r i n g  t h a t  x =  p  c o s  </>, w e  
c a n  w r i t e  F • ds a s

E xam ple  2 -8

F o r  F =  yax — xay, e v a l u a t e  t h e  l in e  i n te g r a l  fc F* d€ a lo n g  tw o  p a t h s  s h o w n  in  F ig u r e  2 -2 5 , e a c h  
s t a r t i n g  a t  (0 , 0 , 0 )  a n d  e n d in g  a t  ( 1 , 2 ,  4 ) .

F ig u r e  2 - 2 5  T w o  p a t h s  c o n n e c t i n g  t h e  
p o i n t s  (0 , 0 , 0 )  a n d  ( 1 , 2 , 4 ) .

Figure 2 - 2 4  A  c i r c u l a r  c y l in d e r .

w h e r e  t h e  v a l u e  o f  ax-ap = c o s  0  a n d  x = p co s< £  w e r e  o b t a i n e d  f r o m  T a b l e s  B -2  a n d  B - l ,  
r e s p e c t iv e ly .  S u b s t i tu t i n g  i n to  t h e  i n te g r a l  y ie ld s
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Solution:

F o r  e i t h e r  p a t h ,  t h e  d i f f e r e n t i a l  d i s p l a c e m e n t  v e c t o r  c a n  b e  w r i t t e n  in  t h e  f o r m  
d£ = dx a ,  +  dy a v +  dz a , .  F o r  t h e  v e c t o r  F g iv e n  in  t h i s  p r o b l e m ,  t h e  d o t  p r o d u c t  F • d£ is

a )  T h e  p a t h  Cx is  a  s t r a ig h t  l in e ,  w h ic h  c a n  b e  d e s c r ib e d  b y  t h e  e q u a t i o n s

y =  2x 

z =  4x.

S in c e  b o t h  y a n d  z c a n  b e  w r i t t e n  a s  f u n c t i o n s  o f  x, w e  c a n  c o n s i d e r  x a s  t h e  p a r a m e t r i c  v a r i a b le  
f o r  u s e  in  E q u a t i o n s  (2 .3 4 a )  t h r o u g h  ( 2 .3 4 c ) .  U s i n g  t h e s e  e q u a t i o n s ,  w e  o b t a in

S u b s t i t u t i n g  t h e s e  e x p r e s s io n s  f o r  dx, dy, a n d  dz y ie ld s

T h i s  m e a n s  t h a t  F  is  p e r p e n d i c u l a r  t o  d £  a t  e v e r y  p o i n t  a l o n g  t h e  p a t h  Cx . I n t e g r a t i n g ,  w e  
o b t a i n  t h e  r e s u l t

T h e s e  l i n e  i n te g r a l s  a r e  s im p le  t o  e v a l u a t e ,  s in c e  o n ly  o n e  p o s i t i o n  v a r i a b l e  v a r i e s  a lo n g  e a c h  
p a t h .  T h u s ,  a l o n g  t h e  p a t h s  Cx, Cy a n d  Cz, w e  h a v e  d£ =  dxax, d£ =  dyay, a n d  dl! =  dzaz, 
r e s p e c t i v e ly .  S u b s t i tu t i n g  t h e s e  i n to  t h e  i n te g r a l s  a n d  t a k i n g  t h e  d o t  p r o d u c t s  w i th  F , w e  o b t a in

S in c e  d i f f e r e n t  a n s w e r s  w e r e  o b t a i n e d  w h e n  i n t e g r a t i n g  F  • d£ a l o n g  tw o  d i f f e r e n t  p a th s  
t h a t  c o n n e c t  t h e  s a m e  e n d p o i n t s ,  F  is c a l l e d  a  nonconservative v e c t o r  f ie ld .  T h i s  n a m e  c o m e s  
f r o m  m e c h a n i c s ,  w h e r e ,  i f  F  r e p r e s e n t s  a  f o r c e ,  t h e  i n te g r a l  j c F  • d£ e q u a l s  t h e  w o r k  d o n e  o n  a n  
o b j e c t  a s  i t  m o v e s  a lo n g  t h e  p a t h  C . F o r  t h e  v e c t o r  F  in  th is  p r o b l e m ,  t h e  n e t  w o r k  d o n e  in  m o v 
in g  t h e  o b j e c t  f r o m  th e  o r ig in  t o  t h e  p o i n t  ( 1 , 2 , 4 )  a lo n g  C 2 a n d  b a c k  t o  t h e  o r ig in  a lo n g  p a t h  Ct 
w o u ld  b e  - 2 - 0  =  - 2 ^ 0 ,  w h ic h  m e a n s  t h a t  t h e  n e t  w o r k  d o n e  a l o n g  t h is  c lo s e d  p a t h  is 
n o n z e r o .  S in c e  w o r k  is n o t  c o n s e r v e d ,  t h e  v e c t o r  F  is c a l l e d  a  nonconservative vector. O n  t h e  
o t h e r  h a n d ,  v e c to r s  f o r  w h ic h  j c F  • df =  0  f o r  a l l  p o s s i b le  c lo s e d  p a t h s  C a r e  c a l l e d  conservative 
vectors.

b )  P a t h  C 2 is a c tu a l l y  a  c o l l e c t i o n  o f  t h r e e  s t r a i g h t - l i n e  p a th s :  Ca f r o m  (0 , 0 , 0 )  t o  (1 , 0 , 0 ) ,  Cb 
f r o m  (1 ,  0 , 0 )  t o  (1 , 2 , 0 ) , a n d  Cc f r o m  (1 , 2 , 0 )  t o  (1 , 2 , 4 ) .  W e  h a v e
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2-5-2 THE GRADIENT OF A SCALAR FIELD

Up to this point we have described scalar fields in terms of the rules that determine 
their values at each point in space. Often, however, the rate at which a scalar changes 
close to a point is more important than its value at the point itself. When walking up 
an incline, for example, one is usually more concerned about the change in altitude 
encountered with each step than with the altitude of each point relative to sea level. 
The gradient operation provides this kind of information.

To start our discussion, let us consider the change in the value of an arbitrary 
scalar field /  as we move from (x, y, z ) to (x + dx,y + dy, z + dz). We will denote 
this change as df. From ordinary multivariable calculus,

This expression can be written as the following dot product between two vectors:

The vector on the far right is simply the differential displacement vector d€ along the 
path of movement (Equation (2.33)), so we can write Equation (2.74) in the form

The vector quantity in parentheses is called the gradient of /  and is denoted symboli
cally by grad /. Hence,

(2.73)

(2.74)

(2.75)

(2.76)

where, in the Cartesian coordinate system,

(Cartesian coordinates). (2.77)

We can also write Equation (2.77) in the shorthand form,

(Cartesian coordinates) (2.78)

where V is called the del operator and is defined by

(Cartesian coordinates). (2.79)
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Strictly speaking, the del ( V )  operator is not a true vector, since its components are 
operators, rather than numbers. Nevertheless, it is convenient to treat it like a 
vector in product equations such as Equation (2.79) and several others in this chap
ter. Throughout the remainder of this text, we always represent the vector g r a d /  

as V / .
Before we derive the representations of V /  in the other coordinate systems, let us 

determine general properties of the gradient operation. Using the definition of the 
dot product (Equation (2.8)), we can write Equation (2.76) in the form

(2.83)

where aM points in the direction of maximum increase in /. This definition is valid in all 
coordinate systems. Thus, the gradient V /  is a vector that points in the direction of 
maximum rate of increase of the function /.

From Equation (2.80) we see that df  = 0 whenever d f  is perpendicular to V / .  
Thus, V /  is always perpendicular to surfaces over which /is  constant. This can be seen 
from Figure 2-26, which shows several surfaces of constant value for a scalar function/. 
In the figure, V /  is perpendicular to each of these surfaces and points towards increas
ing values of /.

Representations of V /  can also be found in the cylindrical and spherical coordi
nate systems. In cylindrical coordinates, the total differential of a scalar function /  is

F ig u re  2-26 Equivalue surfaces and 
gradient vectors for an arbitrary function /

(2.80)

where 9 is the angle between V /  and d £ .  Dividing both sides by dt yields

(2.81)

When the direction of the path is parallel to V / ,  cos 9 =1 .  Along such a path, df/di  
attains its maximum value. Thus,

(2.82)

Using Equation (2.82), we can now define V /  as
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which can be rewritten as the dot product

Since the second vector on the right side of this equation is the differential displace
ment vector df in cylindrical coordinates (see Equation (2.47)), df  can be in the form

Similarly, in spherical coordinates, we can write

or

The second vector on the right side of this expression is d£ (see Equation (2.61)), so this 
expression can be rewritten as

E xam p le  2 -9

Find the gradient of the scalar field f  = x2 + y2 in a) Cartesian and b) cylindrical coordinates. 

Solution:

a) The necessary partial derivatives dictated by Equation (2.79) are

Comparing this with Equation (2.80), we see that the vector in the parentheses must be 
V f. Thus, we have

(cylindrical coordinates). (2.84)

Comparing this with Equation (2.80), we can finally write

(spherical coordinates). (2.85)
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Therefore,

V /  =  2 x a x + 2y a y .

b) The representation of V /  in cylindrical coordinates can be obtained either by trans
forming the preceding expression by the normal rules of vector transformations or by using the 
cylindrical coordinate expression for V /  directly. Choosing the latter, we must first express /  in 
cylindrical coordinates:

/  =  x 2 + y 2 =  p2cos2c/> + p2sin2$  =  p 2.

Next, the necessary partial derivatives o f /a r e

Substituting these into Equation (2.84), we obtain 

V / =  2pap.

It is left as an exercise for the reader to show that the two expressions for V /  found in 
parts a and b  are indeed the same vector.

2-5-3 THE DIVERGENCE OF A VECTOR FIELD

As with scalars, a knowledge of how a vector field changes about a point is often more 
important than the value of the field at that point. When piloting an airplane, for 
instance, it is often more important to know whether the airflow at a point is smooth or 
swirling than it is to know its velocity at a particular point. For vectors, two different 
indications of their rates of change are necessary to completely characterize the 
changes. The first of these, called divergence, is discussed in this section. The second, 
called curl, will be discussed in the section that follows.

The divergence of a vector A at a point P is a scalar quantity, defined as

According to this definition, S is the surface that bounds the volume Av, and ds always 
points outward from Av. The value of surface integral j>s A  • ds indicates whether 
there is a net tendency for A to point outward from P. Integrals of this type are called 
flux integrals.

Figure 2-27a Figure 2-27b show two vectors that have nonzero divergence. In 
the case of Figure 2-27a, the positive divergence of the vector at the origin is easy to 
see, since all the vector streamlines are directed away from the origin. For this case, 
A • ds is positive at all points on a surface that surrounds the origin, resulting in a net 
positive flux.
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F ig u re  2-27 Two vector fields that have 
(b) nonzero divergence at a point P.

The negative divergence of the vector shown in Figure 2-27b is less obvious to the 
eye, however, since this vector maintains a general left-to-right direction on both sides 
of the point P. Nevertheless, the flux entering7 a surface surrounding P from the left is 
greater than that which leaves on the right, resulting in a negative divergence at P.

Even though the divergence of a vector is defined in terms of a surface integral, 
we will now show that it can be represented in terms of derivatives of the components 
of the vector. We will start by evaluating the flux integral <j>5 A • ds about the rectan
gular surface shown in Figure 2-28. Here, a small rectangular volume of dimensions 
Ax, Ay, and Az surrounds the point P(xo,y0, z0), which is shown in the center of the 
volume. The integral over this closed surface can be written as the sum of six open 
surface integrals:

ds J  A • ds + J  A • ds + J  A • ds + J  A • ds + J  A • ds + J A • ds . (2.87)
front back right left top bottom
face face face face face face

On the front face, x = x0 + (Ax)/2, ds = dy dz a*, and A • ds = A x dydz . Sub
stituting, we find that the integral over this face becomes

A • ds =
front 
face

Since Ax, Ay, and Az are all assumed to be small, we can use Taylor’s theorem to 
expand A x{x0 + Ax/2, y, z) about the point P(xQ, y0, z0). Using the first two terms of 
the Taylor’s expansion for each coordinate, we obtain

f y 0 +  A y / 2  , z 0 + Az/2  f  A x  \

Ax\x0 + — , y , z )
• V - A v / 2  J z - A z / 2  \  ^  /- A y / 2  J z 0 - A z / 2

Ax . , ,
+ — ,y ,z ) d y d z . (2.88)

Ax \ . . A x  dAx . . d A x
+  T , y .  z )  -  A , <*0, y „ z 0 )  +  — ■—  +  ( y  -  y o y — + ( z  ~ z 0 )

dZ
(2.89)

F ig u re  2-28 A small rectangular surface 
surrounding a point P.

7 It is common to speak of flux as if it is something that moves through the surface, even if the vector in ques
tion does not represent a quantity of motion (such as a force).
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where the notation \P indicates that the derivatives are evaluated at P(x0, y0, z0). Sub
stituting Equation (2.89) into (2.88) and integrating, we get

I  A-ds  = A y A zA x(xG, y0, zQ) +

front
face

Ax
2

Ay Ax (2.90)

Similarly, on the back face we have x -  x0 -  Ax/2, ds = — dydz a*, A*ds = 
-  A xdy dz, and

A x(xa -  y, z) =  A x(xa, yG, zQ) -
Ax dA,
2 dx

Integrating over this back face, we obtain

/ x dA
"*■ Cv — y<>) ~r~

p dy
/ \ dA

+ ( z - z „ ) —^
p u Z

f A . . A * . Ax A A dAx
J A-ds = -A y Az A x(x0,y 0, z 0) + —  Ay Az —

back
face

(2.91)

The sum of the flux contributions from the front and back faces is found by 
adding Equations (2.90) and (2.91):

r f dAr
A*ds + ! A • ds =  Ax Ay Az— i

dx
front back
face face

Using similar steps, we can also be show that

p
(2.92)

J A*ds +
right
face

f dAyA • ds =  Ax Ay Az - —
J 7 dy

left
face

P

and

j A*ds +
top
face

I dA
A • ds =  Ax Ay Az — -

dZ
bottom

face

(2.93)

(2.94)

Summing all the contributions to <fs A • ds and noting that Ax Ay Az = Av, we 
find that

A • ds =
f dAx dAy dAr
— - + --- ^ + — £

[ dx P dy p dz
Av.

This expression becomes exact in the limit as Av —> 0. Comparing the expression with 
the definition of divergence (Equation (2.86)), we find that
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div A
dA,
dx

+
dAy dA7 
— -  + —  dy dz

(2.95)

where we have dropped the notation \P, since the volume Av collapses to the point P as 
At; —> 0. This equation can also be written as a dot product,

div A (d d d \
a H-----a H----- a ) • (A a + A a + A ,a .) = V • A ,

dx dy y dz ) y y y Z Z
where V is the del operator, defined by Equation (2.79). Thus, the notation V «A has 
the same meaning as div A. In the Cartesian coordinate system, we can write

dAx dAy dA.----- X + + ---
dx dy dz

(Cartesian coordinates). (2.96)

Expressions for V • A also can also be derived in the cylindrical and spherical 
coordinate systems. This can be accomplished in either of two ways. The first is to 
transform the Cartesian coordinate expression into these coordinate systems by the 
standard transformation rules outlined in Section 2-4-4. This procedure is straight
forward but tedious, since the chain rule must be used repeatedly to transform the 
variables in the partial derivatives. The second method is to evaluate j>s A  • ds 
directly in the cylindrical and spherical coordinate systems using a procedure similar 
to what we used in Cartesian coordinates.8 By either technique, it can be shown 
that

V • A = -
P

1 dAt dA.
--- - + — i
p d<f) dz

(cylindrical coordinates) (2.97

and

V • A
1 1

H---------
r sin 6

_d
dd

(A0 sin 6)
1 dA# 

rsinP d(f)
(spherical coordinates). (2.98)

E xam p le  2 - 1 0 ------------------------------------------------------------------------------------------------------ ------------------------

Find the divergence of A = xax at any point using a) Cartesian coordinates and b) cylindrical 
coordinates.

8 See Plonsey and Collin. Principles and Applications o f Electromagnetic Fields, New York: McGraw-Hill, 
1961.
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Solution:

a) From Equation (2.96)

d A  d A  d A , d
V • A = — -  H------- H------- =  —  (x) = 1 (at all points).

dx dy dz dx

b) Transforming A into cylindrical coordinates, we find that 

A — p  cos2 4>ap — p  cos 4> sin </> .

Using Equation (2.97), we get

V • A =
1 d t
-  — (p-cos20) 
P L dp ~ v i ( p COS(t> sin<̂ )pd0

= 2 cos2 (f> — ( —sin20  + cos2<p) = 1.

As expected, this result is the same as was obtained using the Cartesian coordinate system.

Before leaving the subject of divergence, we will derive an important theorem 
called the divergence theorem. Consider the volume integral f v V • Adv. Using the 
definition of divergence, we can write this integral as

V • Adv
® A*ds

f lim ----- dv.Jy *0 \ v

Expressing the right-hand integral as an infinite sum of infinitesimal volumes, we obtain

A • ds

f V .A dv = y  lim
J v  *  a a ->'0 Am

where Avk is the k\h differential subvolume, which is surrounded by the closed surface Sk.
The right-hand side of the above expression allows us to interpret f v V • Adv  as 

the sum of the fluxes emanating from each point within V. But as can be seen from 
Figure 2-29, flux contributions from adjacent points within V cancel, since the out
ward flux from one volume is at the same time inward flux to its neighbor. All flux 
contributions in the integral cancel, except those at points on the surface bounding 
V. Thus,
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V»Adv = ^  lim 0  A»ds = (pA»ds.

The sum on the right-hand side is the integral <fs A • ds, where .S' is the closed surface 
that bounds the volume V. Hence, we obtain the divergence theorem:

j V » A dv = 0  A«ds
Jv  Js

(divergence theorem). (2.99)

This theorem is useful for transforming equations involving vector integrals into sim
pler forms.

E xam ple  2-11

Given A = r a r +  sin 6 ae, verify the divergence theorem  over the spherical volume of radius 
r  — 1, centered about the origin.

Solution:

For the surface integral, 

ds = dsr = r 2sin 9 d d  d(j) ar

and

A • ds = r 3sin 9 d 9  d(f>.

Substituting, we find that the surface integral becomes

/» 2tT /• 77 <* 77
® A * d s =  J I r 3s i n 9 d 9 d ( f )  =  2 tt \ s i n 9 d 9  =  4Tr. 
h  ■'o Jo r=i Jo

To evaluate the volume integral, we must first evaluate the divergence of A:

V • A =
d r

(r3)
1

r  sin 9
”  (sin2 6)

-  3 +
2cos 9

Substituting, the volume integral becomes

2 n  r 77 r 1f V - A dv = f f f
Jv Jo Jo Jo

3 +
2cos 9

r 2sin 9 d r  d 9  d(f>

77 r. 2tT - 1

0 Jo Jo
J. 277 r 77 r 1 r 77 r 277 r 1

I 3r3 s in  9 dr d9 dcf) + | I I 2rsin 9 cos 9 dr d9 dcj)
0 J q J 0 Jo Jo Jo

= 4rr + 0 =  4rr .

The two integrals are indeed equal, just as predicted by the divergence theorem.
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2-5-4 THE CURL OF A VECTOR FIELD

The curl of a vector A is an indication of the tendency of A to “push” or “pull” 
along a closed path that encircles a point. By this, we mean that a vector A has 
curl at a point if the line integral j c A • df is nonzero and C is a differential path 
that encircles the point. This tendency to push or pull around a path is called cir
culation. There are three perpendicular planes that such a path can lie in about a 
point, so the curl is defined as a vector quantity, denoted by the symbol “curl A” 
or “V X A.” Referring to Figure 2-30, we define the component of V X A in the 
direction a, by

(j> A • df

(curl A), = (V X A). = hm — , (2.100)

where Ay is a small surface that is bounded by the contour (i.e., path) C; and has unit 
normal a,-. The direction of C; is governed by the right-hand rule, which says that 
when the right-hand thumb is placed along the path, the remaining fingers “poke” 
through the surface Ay in the direction of a,.

Since V X A is a vector, we can represent it by its magnitude and direction, which 
we will denote as | V X A| and a„, respectively. To find | V X A|, we notice from Equa
tion (2.100) that the values of the components of | V X A| vary with the orientations of 
the integration paths C,. Since the maximum value that any component of a vector 
can attain equals the vector’s magnitude, we can conclude that

VX A lim
As—>0

A -df
c_____

A s m a x

(2.101)

where C is the differential path that maximizes the circulation integral. Thus, we can 
write curl A as

V x A  =  a. limAŝ O

A -df

As
(2.102)

where a„ is perpendicular to the surface bounded by C and points in the direction 
determined by the right-hand rule.

- a ,
c. Figure 2-30 A surface Ay with unit 

normal a„ bounded by the contour C,
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Figure 2-31 “Paddle wheel” analogy of 
the curl of a vector.

Figure 2-31 is helpful in understanding the meaning of the vector V X A. Here, 
a paddle wheel is placed in a fluid whose velocity is represented by the vector A. A 
torque will be exerted on the paddle wheel whenever there is a nonzero circulation of 
A about the paddle wheel axis. According to Equation (2.102), maximum torque is 
produced when the axis of the wheel is in the direction of V X A. If no torque is pro
duced at a point for any orientation of the wheel, A has no curl there.

The curl of a vector can be calculated by evaluating partial derivatives of the 
components of A with respect to the coordinate variables. To show this, let us first 
find the x component of V X A, which requires that we evaluate j>c A • df along the 
contour Cx, shown in Figure 2-32. This integral can be written as the sum of four line 
integrals:

A -df A • d£ + A • d£ + A • d« + A *df.
right top left bottom

(2.103)

Along the right and left contours, df = dz a , . Similarly, df = dy ay along the top and 
bottom contours. Substituting these into the contour integrals, we find that

£  A • de = J  ̂ A z (xQ, y0 + Z) dz + J  Av Ay ̂ x0, y, z0 + y j  dy 

+ I  A z  (x0, y0 ~ y  zj dz + J m A y (xG, y, zQ -  y j  dy. (2.104)

Note that the limits of integration are such that the path of integration is counterclock
wise, which is consistent with the right-hand rule.

Since both Ax and Ay are small, each of the integrands on the right-hand side of 
Equation (2.104) can be expanded in a Taylor’s series about P(x0, y0, zD). For the first 
integral, we can write

Az

P(x0 y0, zo)

----a

Ay

y Figure 2-32 A contour Cx in the yz-plane 
about an arbitrary point P.
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■^z^o’3̂0 2  ’ Az (^0, y0, z0) "h

Integrating, we obtain

Ay dA.
2 dy

+ (z ~ zQ)
d A z

dz

f Ay dA
J A-de = AzAz(xo,yo,z0) + — Az

right
dy

(2.105)

(2.106)

Similarly, for the integral over the left segment of Cx, we can express the integrand as

K  y0 “  ^ T ,z  I = A z (x0, yQ, zQ) ~
Ay dAz
2 dy

, s dAz 
+ (z -  Zo)—

P dZ
(2.107)

which yields

J A • d€ = - A z A z(x0,y a,z 0) + Az
Ay A _ dAz

dy
(2.108)

Summing the contributions from the “right” and “left” portions of the contour yields

J A • d£ + J A • d£ =  Ay Az
right left

dAz
dy

(2.109)

Similar analysis of the “top” and “bottom” portions of the contour results in

dA,j A-d£ + j A-d£ s  -A y Az-
dz

top bottom

(2.110)

Substituting Equations (2.109) and (2.110) into Equation (2.103), we have

(2 .111)

which becomes exact in the limit as Asx = Ay Az —> 0. Comparing this expression with 
Equation (2.100), we can conclude that

<j> A • di = Ay Az dAz dAy

_ dy P dz

(V X A)x = limV /x As,—>0
dAz dAy 

dy dz
(2.112)

where the notation 1̂  has been dropped from the partial derivatives, since the surface 
has collapsed to a point.

The y- and z-components of V X A can be found by evaluating Equation (2.100) 
around the contours Cy and Cz, which lie in the y = yQ and z = z0 planes, respectively.



Evaluating the resulting circulation integrals using the same procedure as used for 
(V X A )X, we finally obtain
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This formula can also be written in shorthand form as the determinant

K K A

d a d
dx

dy
dZ

A A y A

which shows why the symbol “V X A” and “curl A” are used interchangeably.
Corresponding expressions for V X A exist in the cylindrical and spherical coor

dinate systems. We have

_  , f l  dAz dA+1 VdAp dAzl  I f  a A . dA01 .
Ip d<f> dz J p L dZ d p j * p[dpKH d<f>j z

(cylindrical
coordinates)

(2.115)

and

„  ' 1 Id  /A . , d A J ,
V X A  = r s i n f l U (^ Sm9) w \ 3'

, i  r i  dAr d , „ j  . , i  r d , ,  A aAri
+ r U n e  a t  ~ ar(rAA  -  j %

(spherical
coordinates).

(2.116)

These expressions can be derived either by transforming the components and coordi
nates of Equation (2.113) into the new coordinate system or by evaluating the circula
tion integrals of Equation (2.100) directly in the new coordinate systems.9

E xam ple  2 -1 2  -----------------------------------------------------------------------------------------------------------------------------

■
i  Calculate the curl of A  = y ax at all points using a) Cartesian coordinates and b) spherical coor-
1  dinates.

9 See Plonsey and Collin, Principles and Applications o f Electromagnetic Fields (New York: McGraw-Hill 
1961).
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Solution:

a) Of the six partial derivatives present in the expression for V X A, only one is nonzero, 
since A y =  A z =  0 and A x is a function only of y .  Thus,

V x A = ----- - a = - a . .
9y z z

b) Transforming A  into spherical coordinates, we find that 

A = r  sin2 9 sin </> cos (f> ar +  r  sin 9 cos 9 sin <f> cos (f> a 9 — r  sin 6 sin2 0  a^. 

From Equation (2.116), we have

(V x A),
rsin  9

d d
—  ( — r  sin2 9 sin2 </>)------- ( r  sin 9 cos 9 sin <J> cos 4>)
9 9  dip

= — cos 9

1 1 ^ d
(V X A)„ = ----- :-------- ~ ( r  sin2 9 sin (b cos < b ) ------( -  r 2sin 9 sin2 6 )
v Je r  [sin 9 9 cf)K r  9 r y \

sin0

( V X A ) ,  =
d d

— (r 2sin 9 cos 9 sin 0  cos </>)------ ( r  sin20 sin $  cos <£)
d r  99

= 0.

Thus, V X A -  -  cos 9 a r + sin 9 a 0. It is left as an exercise to the reader to show that this result 
is equivalent to the one found in part a).

A  useful theorem that involves the curl operation is Stokes’s theorem. To derive 
this theorem, consider the integral fs (V X A) • ds over an open surface S. From the 
properties of the dot product, we can write the integrand as

(V X A) • ds = (V X A) • dsa„ = (V X A)„ ds, (2.117)

where a„ is the outward normal to the differential surface and (V X A)„ is the compo
nent of V X A in the an direction. Using Equation (2.117), we can write 
f s (V X A) • ds in the form

J  (V X A) • ds = J  (V X A)n ds.

Substituting Equation (2.100) into the right-hand side of this expression, we obtain

f ( V x A ) - d s  = [ lim
Js Js ^ 0

r s c A *df
As

ds,

where the contour AC bounds the surface As = Asan in a right-handed sense. 
Expressing the right-hand integral as an infinite sum of differential surface elements, 
we obtain

( V x A ) . d s  = T  limX 7 A r _vlAs.—>0
A  • d£k__
A Sl

A Si

Canceling the Ask terms, we find that
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F ig u re  2 -3 3  Geometry for deriving 
Stokes’s theorem.

As can be seen from Figure 2-33, the line integral contributions from adjacent cells 
cancel, since the directions of integration along these paths are opposite. As a result, 
all of the line integral contributions cancel, except those along the contour that 
bounds S. Thus,

(Stokes's theorem), (2.118)

where C is the contour that bounds S in a right-handed sense. If S is a closed surface, 
it has no bounding contour, so

cp V X A • ds = 0. (2.119)
's
An important consequence of Stokes’s theorem is that there is more than one 

surface that corresponds to a particular contour C. This is depicted in Figure 2-34, 
where the surfaces 5) and S2 both have the same bounding contour C. Since both sur
faces are bounded by the closed contour C, it follows from Stokes’s theorem that both 
surface integrals have the same value:

(2.120)

The appropriate orientation of the differential surface vector ds: on Sl is easy to visu
alize from the right-hand rule, since S1 is flat. Because S2 is curved, however, the cor
rect orientation of ds2 is not as obvious. An aid that is helpful here is to imagine that 
Sl is an elastic membrane that, when stretched, assumes the shape of S2. During this 
process, we simply allow ds at each point to remain perpendicular to the surface as the 
membrane transforms from S1 to S2.

C
F ig u re  2-34 Two surfaces bounded by the 
same contour C.
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E xam p le  2 -1 3

For A = pz  a^, evaluate both sides of Equation (2.118), Stokes’s theorem, for the contour C and 
the surfaces S l and S2 shown in Figure 2-35.

F ig u re  2-35 Circular contour C that 
bounds two open surfaces 5) and S2 .

Solution:

Both S1 and S2 are bounded by the contour C, which is described by p  =  2 ,0  <  cf> <  2 tt, and 
z — 0. Along this contour,

df = pdcf) â = 2  d<f> sL.
p = 2

Substituting this df into the contour integral, we obtain

<j) A • d£ = (j) 2 p z  a0 • a^dcf) 2~ j = ̂
r  r  z = o  n

To evaluate the surface integrals, we must first calculate V X A. Since A has only a </> 
component, we have

V X A = — ~ a  +  - — ( p A ^ ) a ,  =  - p a  + 2 z a z . 
oZ p o p

For Is, (V X A) • ds, we note that 5, is a circle of radius p  = 2. Since the direction of C  is coun
terclockwise, the right-hand rule requires that ds = p  d p  d<f> az. But, since the surface is in the 
z =  0 plane, (V X A) • ds|z=0 = 0, yielding

I (V x A) • ds = j 0 dpd(f> =  0.
S2 Si

The surface S2 consists of two simple surfaces—a cylinder Sa and its end cap Sb. From the right- 
hand rule, the differential surface vectors on Sa and Sb are dsfl = p  d(f> d z  ap and ds/; = p  d p  0  az, 

respectively. Given these, the surface integral over S2 becomes

(V x A) • ds
. h .277

Jo Jo
p 2d(f) dz

P~2

. 2ir - 2
2 z p d p d ( j )

3 Jn
=  — 8 r rh  + 8 r r h  = 0 .

z = h
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V2/ =

2-5-5 THE LAPLACIAN OPERATOR

There are many occasions in vector analysis where a gradient operation is followed by a 
divergence operation. This combined operation is called the Laplacian and is denoted 
by the symbol

V2 = V«V. (2.121)

The application of the Laplacian to scalar fields is straightforward. In Cartesian 
coordinates, we have

v 2/ =  V . V / V* +
d f ,  d f ,
— a H-----a
dy y dz ;

which yields

(2.122)

V2/ =
d2f  d2f  

dx2 dy2

a2/
d z 2

(Cartesian coordinates). (2.123)

Similarly, the Laplacian of a scalar field can be expanded in cylindrical and spherical 
coordinates to yield

l d _ (  d f \  l d ^ l  d^ f

d p \  dp)  p 2 d(f>2 d z 2
(cylindrical coordinates) (2.124)

and

1 d ( 2df \  1 d ( . n df \  1 d2f
~~y— r2 H— sin0 ) H— y~.—̂------ r
r2dr\  dr) r2s m 6 d 6 \  36) r2sm26d4>~

(spherical coordinates). (2.125)

The Laplacian operator can also be applied to vector fields. To see how this is 
possible, let us consider the Laplacian of a vector A that is represented in Cartesian 
coordinates:

V2A = V2(Axax + Ayay + A zaz).

Since the unit vectors aA, ay, and a. and are not functions of position, they are constants 
with respect to the V2 operator. Thus, we can conclude that the Laplacian of a vector 
is also a vector, with Cartesian components given by

V2A = ay 2Ax + ayy 2Ay + azV2Az (Cartesian components). (2.126)
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If a vector is expressed in non-Cartesian components, its Laplacian cannot be 
evaluated so simply. To derive a general expression for V2A, we note that the right- 
hand side of Equation (2.126) can be written as

V2A = axV 2A x + ayV 2A y + a,ZV 2A Z = V(V*A) - V x V x A .  (2.127)

The proof of this identity is straightforward in Cartesian coordinates and is left as an 
exercise for the reader. Since the divergence and curl operations are well defined in 
all coordinate systems, the right side of Equation (2.127) can be evaluated in any 
coordinate system. Thus, the Laplacian of a vector can be expressed in all coordi
nate systems as

V2A = V(V • A) -  V X V X A. (2.128)

2-5-6 HELMHOLTZ’S THEOREM

An important question in vector analysis is, “What kind of information is necessary to 
completely characterize a vector field over some region of space?” The answer to this 
question is important for two reasons. First, it allows us to judge whether a particular 
set of specifications uniquely defines a vector within some region. Second, a knowl
edge of the minimum information necessary to uniquely specify a vector quantity can 
simplify the work necessary to solve a given problem.

The key to determining the behavior of any quantity over a region is knowing 
how it changes from point to point. For scalars, the gradient operation supplies all of 
the information necessary. The following theorems make it clear that for vectors, two 
operations are needed: the divergence and the curl.

Theorem I: Any vector field that is continuously differentiable in some volume V 
can be uniquely determined if its divergence and curl are known throughout the 
volume and its value is known on the surface S that bounds the volume:

A(r) = -V

I

[ / ,

V '-A (r') 
47r|r — r'l

dv' A (r') • an- 
47t|r -  r'l

ds'

+  V x
V' X A (r') 
477|r -  r'l

dv' —
A (r')X a„, 
47r|r -  r'l

ds' (2.129)

In this expression, the unit vector an. points outward from S. Also, inside the 
integrals, the dummy integration position variable is

r' = x' ax + y'ay + z' az

and the del operator V' is given by
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This relationship is called Helmholtz’s theorem and is proved in a number of 
advanced electromagnetics and mathematics texts.10

For most vectors found in electromagnetics, the surface integrals in Equa
tion (2.29) vanish when the volume V is chosen to be all of space. This means 
that these vectors can be uniquely specified when their curl and divergences are 
known at all points in space.
Theorem II: Any vector field that is continuously differentiable in some region 
can be expressed at every point in the region as the sum of an irrotational vector 
and a solenoidal vector. Thus,

A = V /+  V X G, (2.130)

where /is  a scalar field and G is a vector field. This identity follows directly from 
Helmholtz’s theorem.
Theorem III: If V X A = 0 throughout a region, then A can be represented as 

A = V / (2.131)

throughout the region, where /  is a scalar field. Vectors for which V X A = 0 are 
called irrotational vectors. This theorem follows from Helmholtz’s theorem and 
the identity V X V/ = 0 (Equation (B.9) in Appendix B).
Theorem IV: If V • A = 0 throughout a region, then A can be represented as

A = V X G (2.132)

throughout the region, where G is a vector field. Vectors for which V • A = 0 
are called solenoidal vectors. This theorem follows from Helmholtz’s theorem 
and the identity V • V X G = 0 (Equation (B.8) in Appendix B).

S u m m a tio n

In this chapter, we have presented the basic concepts of vector analysis. While these 
concepts are firmly rooted in mathematics, our interest in them is solely in their ability 
to describe physical processes that involve scalar and vector quantities. In the chapters 
to follow, we will use these concepts freely as we develop the basic equations that 
define electromagnetics. Vector analysis will also form the basic framework of our 
analysis and design of electromagnetic systems.

P roblems

2-1 If A = 3av + 2ay — 4az and B = - 2 a v + a + 2a_, find:
(a) A |
(b) B|

10 F°r instance, see Robert Plonsey and Robert Collin, Principles and Applications o f Electromagnetic Fields 
(New York: McGraw-Hill, 1961).
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(c) aB
(d) A + B
(e) A • B
(f) the minimum angle ®AB between A and B

2-2 If A = — ax + 3ay -  2az and B = 2ax + 3ay -  2az, find:
(a) A |
(b) B|
(c) A -  B
(d) A X B
(e) the minimum angle ®AB between A and B

2-3 If A = 2ap -  -  2az, B = 3ap + 2a^ + 4az, and C = ap + 2a^ + az, find:
(a) A -B
(b) minimum angle & A B  between A and B
(c) A X B
(d) the unit vector an that points in the direction of A X B
(e )  C - A x B
(f) C X (A X B)

2-4 Using the Cartesian coordinate system, prove that the following properties of 
vector addition are true for all vectors:

A + (B + C) = (A + B) + C 

A + B = B + A

(associative law) 

(commutative law)

A»(B + C) = A*B + A*C (distributive law)
2-5 If A = 2 a* — 3ay + 2az at all points P,

(a) find the expression for A in the cylindrical coordinate system.
(b) evaluate this expression at the points P1 (1,60°, 2) and P2(2,30°, 4).

2-6 If A = 2rar -  3r sin<£ae, find the representation of A in the Cartesian coordi
nate system.

2-7 The representation of a vector C using the Cartesian coordinate system base vectors 
is C = 3ax + ay — 3az. Find its representation using the following base vectors:

%

V2
[ * X

V 2 lK

+ az]

2-8 A force F = lOa  ̂ -  8ay [N] is applied to an object that is constrained to travel 
towards increasing values of x along the path defined by y = x2, z = 0. Find the 
component of F that is tangent to this path at the point (2, 4, 0).

2-9 Using integration, calculate the triangular area shown in Figure P2-9.
2-10 Using integration, find the volume of the right pyramid shown in Figure P2-10.

2-11 Evaluate the integral /  5 D * ds  w h e n  D = r s i n 0 a  r + r s i n 6 a e 
and S is a unit sphere centered at the origin.
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F ig u re  P 2 -9

F ig u re  P 2 -1 0

2-12 Consider the integral j c F*d£, where F = pap + z2a^.
(a) Calculate this integral from P (l, 0°, 0) to P (l, 90°, 2) along the path C1 shown 

in Figure P2-12, which consists of the arc p = 1, 0 < $ < 7t/2, z = 0, followed 
by the straight line p = 1, (f> — tt/2, 0 < z <  2.

(b) Calculate this integral from P (l, 0°, 0) to P (l, 90°, 2) along the path C2 shown 
in Figure P2-12 that is defined by the arc p = 1, 0 < (f> < ttI2 ,z = 4 0/7T.

F ig u re  P 2 -1 2

2-13 Consider the line integral f c E • d£, where E = xax + 2xyay + 3az.
(a) Calculate this integral along the path Cx that extends from the origin to the 

point P( 1,1,1) along the straight-line segments that sequentially pass through 
the points P (0 ,0, 0), P (l, 0, 0), P (l, 1,0), and P (l, 1,1).

(b) Calculate this integral along the path C2 that extends from the origin to the 
point P (l, 1,1) along a single straight line.



2-14 Evaluate the volume integral f v Qdv, where Q = 2x3z when x and z are specified 
in meters and V is the cube shown Figure P2-14.
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2 [m]

F ig u re  P 2 -1 4

2-15 Evaluate the surface integral f s gds over the sector shown in Figure P2-15 if 
g = 2p cos 4>•

y

F ig u re  P 2 -1 5

2-16 If F =  xy av -  y a , calculate the value of the line integral /  F • d£ from P1 to P2 in 
Figure P2-16
(a) along a straight line from Pl to P2,
(b) along the path Px to P3 to P2.

2-17 A family of surfaces is defined by the equation

2x2_y + xz — C,
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where each surface corresponds to a different value of the constant C. Find the 
unit vector aM that is directed outward from the surface at the point P( 1,2, -1).

2-18 For the scalar function g — 2xy + z 2, find
(a) the magnitude and direction of the maximum rate of change of g at the point 

P( 1,3,2).
(b) the rate of change of g along the line directed from P{ 1, 3, 2) to P(2, 2, -1), 

evaluated at P( 1, 3, 2).

2-19 Consider the line integral W = J^2 F • df, where F = 4yay.
(a) Using the properties of the gradient, prove that the value of W is independent 

of the path chosen between the endpoints P] and P2 ■
(b) Find the value of W when the endpoints are P (l, 0, 0) and P2(2, -1,4).

2-20 For the function / =  2xy,
(a) calculate V / in Cartesian coordinates.
(b) express/in cylindrical coordinates and calculate V / in cylindrical coordinates.
(c) show that V / is the same vector in both coordinate systems by transforming 

the vector found in a) into cylindrical coordinates.

2-21 If the representation of a vector A in spherical coordinates is A = r ar,
(a) calculateV • A in the spherical coordinate system.
(b) find the representation of A in the Cartesian coordinate system and then cal

culateV • A. Is it the same value as found in part a)? Why or why not?

2-22 Evaluate the integral j>s D • ds over the surface bounding the cube shown in Fig
ure P2-14 when D = 2yav + xza + z ar  Show that the same result is obtained 
using the divergence theorem by integrating V • D througout the volume.

2-23 Consider the line integral j>c B • df, where B = y ax + z ay and C is a square path 
in the z — 0 plane with sidesx = — l ,x  = l ,y  = — 1 andy = 1. Assume that the 
direction of the path is counterclockwise when looking downward from the +z 
axis.
(a) Calculate the line integral directly.
(b) Calculate the line integral by using Stokes’s theorem and integrating V X B 

over the square surface in the z -  0 plane that is bounded by C.

2-24 Find V • B and V X B if
(a) B = pzap + p2 + 2z2a,
(b) B = 2xy&x + 3ya.
(c) B = 4rsin6ar + 3rcos</>ae

2-25 Given that /  = r sin 0 cos </, calculate
(a) V /
(b) V x  V/
(c) V .V /

2-26 In Figure P2-26, 5) is a circular disk with unit radius, centered in the z = 0 plane, 
and S2 is a hemisphere for z > 0, centered at the origin with unit radius. If 
A = 3ra^, calculate /  V X A • ds on and then on S2. Assume that the normal 
direction to both surfaces has a positive z component. Do these integrals have 
the same values? Why or why not?
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2-27 Using the Cartesian coordinate system, verify that the identity V X W  = 0 is 
valid for all scalar fields V.

2-28 Using the Cartesian coordinate system, verify that the identity V • V X A = 0 is 
valid for all vector fields A.

2-29 Using the identity V2A = a^V2̂  + avV2Av + a,V2Az, prove that 
V2A = V ( V » A ) - V x V x A.



3

Electromagnetic Sources, 
Forces, and Fields

3-1 In tro d u c tio n

do with it, things like communications, control, computing, lighting, and electro
mechanical applications. But each of these applications, ultimately, is linked to the 
interactions between the charged particles found in matter. Thus, the starting point to 
all applications of electromagnetic effects is to understand the nature of charges and 
current, where and when they occur in materials, and how they can be controlled to 
produce desired effects.

In this chapter, we will introduce the basic constituents of all electromagnetic 
effects: sources, forces, and fields. The sources of electromagnetic effects are charges 
and currents. These quantities are already familiar from circuit analysis. But whereas 
they are always considered as discrete quantities in circuit analysis, we will usually treat 
them as field quantities. This will allow us to analyze many kinds of phenomena, 
devices, and systems that cannot be modeled using ordinary circuit analysis.

*netics is the study of how electr

61
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The forces that charges and currents exert on each other are important for two 
reasons. First, these forces are responsible for the way that currents and charges dis
tribute themselves throughout electrical devices and systems. Second, it is these forces 
that, in the final analysis, are important to people, for without those forces we would 
never be able to detect the presence, or absence, of electricity. To see why this is 
important, try to envision a stereo system without speakers or headphones. Even the 
best stereo system that money could buy would be of no use to us if it were not capable 
of creating mechanical sound waves that we can hear.

The third topic discussed in this chapter is the electric and magnetic fields that 
are generated by charges and currents. These fields are the agents through which 
charges and currents interact with each other, even when they are separated from each 
other by large distances. We will also introduce the basic equations that relate the 
fields to their sources. These equations, called Maxwell’s equations, are the founda
tion for all electromagnetic analysis and design.

C h a rg e  an d  C h a rg e  D e n s ity

The elemental charged particles are the electron and the proton,1 * which have charges 
that are equal in magnitude but opposite in sign. The charge of the electron is e, where

and “C” is the abbreviation for the basic unit of charge, the coulomb. From this 
expression, we see that it takes many electrons to make 1 [C] of charge. Electrons can 
usually be considered to be point charges, since they possess a finite charge within an 
exceedingly small volume.

Charges produce effects that are a function not only of how much charge is pre
sent in a region, but also of how it is distributed. Because of this, it is often necessary 
to describe charge distributions on a point-by-point basis. For charge distributed 
throughout a volume, we define the volume charge density as

where, as shown in Figure 3-la, AQ is the total charge contained within the volume Av. 
Even though there is always some space between the charges in a volume charge dis
tribution, the distances are usually small enough so that the charge can be considered 
to be a continuous distribution.

There are many situations in which charge is confined to a thin layer. For exam
ple, when charge is deposited on a conductor, it is always drawn to the surface. In 
cases like this, it is convenient to model these charge distributions as surface charge

e = -1.60210 X 10 “19 [C] (3.1)

[C/m3], (3.2)

1 Although it has been proposed that the quark may be a more fundamental basic building block of matter
and possesses a fractional electron charge, it does not appear likely that quarks will ever be observed in non-
relativistic environments.
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Figure 3-1 Geometries used to define a) volumetric, b) surface, and c) line 
charge distributions.

distributions, where the charge is assumed to lie within an infinitesimal depth. Refer
ring to Figure 3-lb, we define the surface charge density as

[c/m2]- (33)

where AQ is the charge contained within the surface As.
There are also situations where charge is confined to lines with small cross sec

tions, such as in a wire or the electron beam in a cathode ray tube (CRT). Since the 
volume charge density for these distributions is extremely large within the lines and 
zero outside, it is usually more convenient to consider these distributions as line charge 
distributions, where the charge is assumed to lie within an infinitesimal cross section 
along a line. Referring to Figure 3-lc, we define the line charge density as

A Q
*  “  it™ ~Kt [C/m], (3.4)

where AQ is the charge that lies within the length AC
The total charge contained within a volume, surface, or line can be determined in 

terms of the volume, surface, or line charge densities by integrating Equations 
(3.2)-(3.4), respectively. The resulting expressions are

e  =  j1 P y d V  

V

(ps — P i  = 0 inside V) (3.5)

e  =  J1 Psds 
s

(pt = 0 inside S) (3.6)

e  = j \ pt d i

c
(3.7)

C u rre n t a n d  C u rre n t D e n s ity

Current is charge in motion. We can specify current by using either a vector or a scalar 
quantity. The scalar quantity, called scalar current (or simply current), should be 
already familiar from circuit analysis. It is useful when it is enough to know the rate of
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charge flow through a surface. Current density, on the other hand, is a vector quantity 
that specifies both the magnitude and direction of the current flow2 at any point.

3-3-1 SCALAR CURRENT

Scalar current /  is defined as the rate at which charge flows through a specified surface,

1 = [C/s or A ], (3.8)

where “A” is the abbreviation for ampere. In this definition, dQ is the charge that 
passes through a surface S in the time dt. The sign of dQ depends on the direc
tion of this flow with respect to the surface normal a„; positive charge moving 
through S in the direction indicated by a„ constitutes a positive current, as does 
negative charge passing through S in the opposite sense. In circuits, scalar current 
is indicated on diagrams and schematics by showing the numerical value of /, 
together with an arrow that defines the direction of positive current. As an exam
ple, consider the positive and negative ions flowing in the pipe shown in Figure 3- 
2. Here, both the positive and negative ions impart positive contributions to 7, 
since u+ • a„ > 0 and u_ • *n < °-

Figure 3-2 Positive and negative charge 
carriers flowing in a pipe.

3-3-2 CURRENT DENSITY

Describing a current using the scalar current is acceptable when the direction of the 
flow is obvious, such as when current flows on wires in a low-frequency circuit. But 
there are many times when the direction of the current and its magnitude vary through
out a volume. In these cases it is best to represent the current as a volume current 
density, which is a vector quantity.

Figure 3-3 shows several streamlines that indicate the paths of moving charges. 
We define the volume current density at a point by

Figure 3-3 Current streamlines flowing 
past a small surface.

2 Although the term “current flow” is redundant, it is nevertheless customary to use the terms “current, 
“current flow,” and “charge flow” interchangeably.
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ds = ds& n

Figure 3-4 Geometry for determining the 
current passing through a surface.

A/
J = lim —

As-»0 /xs amax [A/m2],
max

(3.9)

where amax is perpendicular to the surface As and points in the direction that maximizes 
the current AI flowing through As.

To see how the current density J and the current I are related, consider the situ
ation shown in Figure 3-4. Here, a J current passes through a surface S. We can find 
the total current I flowing outward through S by summing the contributions dl that 
pass through each differential surface element ds = ds an, where a„ points outward 
from the surface. When J and ds are perpendicular, J has no tendency to flow through 
the surface, so dl is zero. On the other hand, when J and ds are parallel, dl = Ids. 
Hence, we can write

dl = J-ds. (3.10)

Integrating dl over all of S, we obtain the total current I passing through this surface:

1=  f J-ds [A], (3.11)
Js

When A is a closed surface, ds is chosen by convention to point away from the enclosed 
volume, and thus, I is defined as an outward flow.

There are many situations in which a current flows within a thin layer. For 
instance, at high frequencies, current flows within a thin layer under the surface of a 
good conductor. We can model these current distributions as surface current distrib
utions, where the current is assumed to flow within a layer of infinitesimal depth. 
Referring to Figure 3-5a, we define surface current density as

(a) (b)

Figure 3-5 A  surface current: a) cross- 
sectional view, b) top view.
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= lim ^
A£—>0 A£

[A/m], (3.12)

where A£ is measured perpendicular to the direction amax that maximizes the ratio 
AI/AL In this figure, both amax and J5 are directed out of the paper.

The scalar current flowing past an arbitrary contour C on a surface can be found 
by noting that the current flowing past the segment in Figure 3-5b is

A/ = Js» A£an, (3.13)

where a,; is in the plane of the surface current and perpendicular to the differential path 
A£. Integrating over the entire contour C, we find that the total current that crosses 
the contour C is

1= [A],
Jc

(3.14)

3-3-3 THE CURRENT DENSITY OF A MOVING CHARGE 
DISTRIBUTION

Since current is charge in motion, it is often convenient to specify it in terms of the 
velocity of the charge movement. These currents are often called convection cur
rents. Referring to Figure 3-6, let us consider a volume charge distribution pv that 
moves with velocity u = uxax. In the time interval At, each elemental charge in this 
distribution moves a distance A i  -  uxAt. Thus, charge moves through the surface 
As at the rate

A/ = = pvux As. (3.15)

Also, from Equation (3.10), we have

AI=  J-As = Jx As. (3.16)

Substituting Equation (3.15) into Equation (3.16), we find that the convection current 
density in Figure 3-6 is

J = Pvux K  [A/m2]. (3.17)

F ig u re  3 -6  Current resulting from a 
moving charge distribution.
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Similar expressions are obtained when the charge distribution has velocity components 
in the y- and z-directions. Summing these velocity components, we obtain the general 
expression for a charge distribution with an arbitrary velocity u:

J = pv u [A/m2]. (3.18)

If a moving charge distribution is confined to a surface, similar analysis shows 
that the surface current density is

Jv = psu [A/m], (3.19)

where u is the velocity of ps in the plane of the surface. Likewise, when charge flows 
along a line  ̂with velocity u = waf, the scalar current along the line is

I = Plu [A]. (3.20)

There are many situations in which two or more kinds of charge carriers move 
with different velocities within a material. For instance, this happens in semiconduc
tors, where electrons and holes3 * * typically move in opposite directions at different 
speeds. For cases where there are N  kinds of charge carriers present, we can general
ize Equation (3.18) to read

J = 2  Pviui [A./m2], (3.21)
/=i

where pvi and u( are the charge density and velocity of the ith charge distribution, 
respectively. An important point to note about this expression is that a net current 
can exist even when the net charge density is zero (i.e., when 2 /=1 pvi = 0). This 
occurs when different types of charge move in different directions. The following 
example demonstrates the point.

E xam p le  3-1

Consider the bulk piece of germanium with cross section 1 [cm2] shown in Figure 3-7. Assume 
that the electron charge density is P v -  = -  4 x  10 6 [C /cm 3] and moves with velocity

— x

S = 1 [cm2]
F ig u re  3-7 Current flow in a section of 
bulk germanium.

3 Although there is no such particle as a hole, it has been found that the net actions of many valence elec
trons in a semiconductor can be accurately modeled by a single fictitious hole particle possessing a charge
of +\e\.
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u — — 15av [cm/s]. Also, the hole charge density is pv+ = +4 X 10 6 [C /cm 3] and has velocity 
u+ = + 10av [cm/s]. Find the current through the semiconductor cross section.

Solution:

From  Equation (3.21), the current density inside the semiconductor is 

j  = 4  x  10“ 6 X 10a* -  4 X 10 " 6 X ( —15)a* =  1.0 X 10 “ 4 a* [A /cm 2] .

Using Equation (3.11) and noting that J and ds are parallel, we find that the current flowing 
through the semiconductor cross section is

I  — f J*ds  = l x  10 ~4 [A /cm 2] x  1.0 [cm2] = 0.1 [mA],
■Is

3 -4  T h e  Law  o f C h a rg e  C o n s e rv a tio n

Now that we have discussed the concepts of current and charge, we are ready to intro
duce the law of charge conservation. This principle is one of the basic postulates 
upon which all electromagnetic theory rests. As with all experimental laws, it is based 
on observation and is accepted as true because no contradictory evidence has ever 
been found.

The law o f charge conservation states that the charge contained in a closed system 
remains constant for all time.

A closed system is a system in which charge can neither enter nor leave. A corollary of 
this law states that if the total charge contained within a region changes, it must be 
accompanied by a net current flow either into or out of the region.

To see what constraints this law places on charge and current distributions, con
sider the current I  passing outward through the closed surface S shown in Figure 3-8:

/  = ^ J « d s  = ^ | M, (3.22)

where dQoul is the charge passing outward through S in time dt. According to the law 
of charge conservation, dQout cannot be created spontaneously at S, but rather must 
come from within the volume V that is bounded by the closed surface S. This means 
that the total charge <2enc enclosed within V must decrease at exactly the same rate at 
which charge passes outward through S. Thus,

dQout _  dQtnc 
dt dt

(3.23)

S

F ig u re  3 -8  Geometry for deriving the 
continuity equation.
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Substituting Equation (3.23) into Equation (3.22) yields

J • ds dQe nc 
dt

(3.24)

This expression is called the continuity equation, because it states that the charge con
tained in any region is constant when no current flows out of the region.

We can derive a point form of the continuity equation by remembering that the 
charge inside S can be expressed as a volume integral of the charge density. Thus,

J • ds = - dQer 
dt

A
dt

p v d v ,

where V is the volume enclosed by S. If V is constant in time, the order of differentia
tion and integration can be interchanged, yielding

(f J • ds = — f dv.
Js J y  dt

Next, we can use the divergence theorem to write the integral on the left as a volume 
integral, yielding

<£ J-ds  = f V-Jdv = -  f ^ d v .
Js Jy Jy dt

Finally, since this expression is valid for all volumes V, it must be valid as V —> 0. Thus, 
the integrands of both volume integrals must be equal at all points, yielding

V . J = - ^ .  (3.25)
d t

This expression is called the differential (or point) form of the continuity equation.

E xam p le  3 -2

■

Suppose that a current density throughout a region is specified by J  = re  [A /rrr], where
a: is a constant that is measured in meters. Find the corresponding charge density.

Solution:

Since J  has only an r  component, we have, from the continuity equation,

1
V -J

d ~ r
— (G /r)

L d r  v r \
= 3 -  -

a
,-tr/a) — dpv 

dt '

Integrating this result over time, we obtain

P v

f 1 r
3 -----

Jta a_
e d t '  =  [ t  — t0] -  -  3

a 'irM +

where pv ( t0) is the charge density at t = t0 , where t0 can be any value of time.
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Figure 3-9 Charge density as a function of 
position at two points in time 
corresponding to an outward-flowing 
current.

Figure 3-9 shows p v as a function of r  for two values of t for the case when a  =  0.4 [m] and 
p v ( t  — 0) = 0 for all values of r. H ere we see that p v decreases with time for small values of r  as 
time progresses. This occurs because J  is directed away from the origin, which means that 
charge is depleted there. On the other hand, more charge is entering the region r  2 [m] than 
is leaving, so the charge density there increases with time.

3-4-1 KIRCHHOFF’S CURRENT LAW

When the charge Q enclosed by a closed surface S is time invariant, —
d t

continuity equation becomes

0, and the

<j> J • ds = 0 ( ~ ^  = 0)- (3.26)

This expression is the integral form of Kirchhoffs current law (KCL), which is a 
foundational principle in circuit theory. At low frequencies, it follows from Equation 
(3.26) that the currents in the TV-wire junction shown in Figure 3-10a satisfy the relation

N
^  /, = 0 (low frequencies), (3.27)
i= 1

where each current /, is defined outward from the junction.
At higher frequencies, the charge density at the junction will often vary with time. 

This is the result of the finite capacitance between the conductors in the network, 
which is often called stray capacitance. This capacitance can be modeled as one or

(a)

C - j=* V
Figure 3-10 Circuit diagrams for 
K irchhoffs current law at a point, a) A t 
low frequencies, stray capacitance can be 
ignored, b) A t high frequencies, stray 
capacitance cannot be ignored.
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more lumped capacitances, such as the one shown in Figure 3-10b. Here, the wires 
connecting the capacitor to the node and ground are shown as dotted lines, indicating 
that they are not physical wires. When the effects of this capacitance are included, the 
continuity equation yields

where V is the voltage between the junction and the ground conductors, C is the junc
tion capacitance to ground, and Ic is the current flowing through this capacitance. 
Notice that this is the same KCL expression as would be obtained if the node-to- 
ground capacitance C were an actual lumped capacitor. Later in this text we will show 
that the current Ic is an example of something called displacement current, which 
occurs whenever there is a time-varying charge density at a point.

Throughout the 19th century, studies of electromagnetic effects were conducted by 
many investigators. As the experimental evidence mounted, laws were proposed to 
explain these effects. The first laws that were proposed viewed the effects as point- 
by-point interactions of charges and currents and are called action-at-a-distance 
laws. The simplest of these laws are Coulomb’s force law, which predicts the force 
between two charges, and Ampere’s force law, which predicts the force between two 
currents. We will discuss these laws first, because they are simple and easy to visu
alize.

3-5-1 COULOMB’S LAW OF FORCE

In its simplest form, Coulomb’s law of force describes the force between stationary 
point charges suspended in free space.4 Figure 3-11 depicts two point charges, Q1 and 
Q2, located at r, and r2, respectively.

Coulomb’s law states that the force exerted on a point charge Qx by another point 
charge Q2 is

dt
(high frequencies), (3.28)

T w o  A c tio n -a t-a -D is ta n c e  Force Laws

z
R

F ig u re  3-11 Two point charges exerting 
forces on each other.x

4 Free space is a term commonly used in electromagnetics to descibe a medium that contains no charged par
ticles, such as a vacuum.
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Fi
1 Q1Q2

4t7 60 R 2 *21 [N] (charges in free space), (3.29)

where R is the distance from Q2 to Qx, a21 is the unit vector directed from Q2 to Qx, and 
“N” is the abbreviation for the newton, the fundamental unit of force. Also, e0 is a 
physical constant of proportionality called the permittivity o f free space, whose value is

= 8.854 X 10“12 =
10
3677

C
N • m2

or F/m (3.30)

where “F” is the abbreviation for the farad. As its unit implies, the permittivity of free 
space plays an important role in capacitance, which we will discuss in Chapter 5.

As can be seen from Equation (3.29), Fx is directed along the line extending from 
Qx to Q2 ■ The magnitude of F1 is proportional to the product of the magnitudes of the 
two charges and inversely proportional to the square of the distance between them. 
The sign of the product Qx Q2 determines whether the force is attractive or repulsive; 
like charges repel and unlike charges attract. Also, since a21 = — a12, we find that Fj = 
—F2. Thus, Coulomb’s law is consistent with Newton’s third law of mechanics, which 
states that every action has an equal and opposite reaction.

Coulomb’s law of force can also be expressed in terms of the position vectors of 
the two charges. Using Equation (2.67), we have

a 21 ~

Ol “  r2) (3.31)

Also, R = |rx — r2|. Substituting these into Equation (3.29), we find that F: can be 
expressed as

Fi ---- “ry [N] (charges in free space).
4 7r€ o  lr l  — r2l

(3.32)

This form of Fx is less elegant than Equation (3.29), but it is more suitable for calcula
tions, since it clearly identifies the positions of Qy and Q2. This can be seen in the fol
lowing example.

E xam p le  3 -3

The point charges Q x and Q 2 are located at P x =  (1, - 2 ,  3) [m] and P 2 = (2, 3, —4) [m], respec
tively. Calculate the force that Q 2 exerts on Q x if Q 2 = +1 [C] and Q x — - 2  [C].
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Solution:

From the given values of P 1 and P 2,

rx = a v -  2a + 3a. [m], r2 = 2ax + 3a -  4a. [m],

and

|ri -  r2| =  V l 2 + 5 2 + 7 2 = V75 [m]. 

Substituting into Equation (3.32), we obtain 

■2 ( - a * - 5 a + 7 a z)
F,= 4tr e  75 3/2

-  -2 .7 7  X 107( - a y- 5 a y+ 7a.) = -2 .4 0  X 10s a21 [N],

where

— a ,~  5ay+ 7 az _
B 9 1  /------- B 1 9  .

V75

3-5-2 AMPERE S LAW OF FORCE

Ampere’s law of force describes the force exerted by one current upon another when 
both currents are time invariant. Such currents are called steady currents. When 
steady currents flow in complete loops, no net charge is transported, and the charge 
density is everywhere constant (i.e., static) in time.

Figure 3-12 shows two differential-length filaments d f{ and dt2 that carry steady 
currents Ix and I2, respectively. In practice, such filaments must be sections of com
plete circuits or loops, but we will for now consider only these short sections.

Through a series of cleverly devised experiments,5 * Andre Marie Ampere 
(1775-1836) deduced that in free space, the current segment I2 df2 exerts a force on the 
current segment Ix d!x that is given by

F ig u re  3 -1 2  Two current filaments 
exerting forces on each other.

5 For a complete description of Ampere’s experiments, see James Clerk Maxwell, Electricity and Magnetism
(New York: Dover, 1954), Volume 2, Part 4, Chapter 2. In Chapter 3 of Part 4, Maxwell states, “The exper
imental investigation by which Ampere established the laws of the mechanical action between electric cur
rents is one of the most brilliant achievements in science. The whole, theory and experiment, seems as if it 
had leaped, full grown and full armed, from the brain of the ‘Newton of electricity.’”
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' _  i^o. ^  ( I 2 ^ 2  ^  **2l) 

1 _ 4tt i?2
[N] (currents in free space), (3.33)

where the unit vector a21 points from segment 2 to segment 1 and R is the distance 
between the segments. In addition, /x0 is a physical constant of proportionality called 
the permeability o f free space:

where “H” is the abbreviation for the henry. The cross-product expression can be 
rewritten in terms of dot products by using Equation (B.2) in Appendix B, yielding the 
alternate form

Comparing Equations (3.33) and (3.35) with Equation (3.32), we see that the 
forces between infinitesimal current filaments bear some similarities with the forces 
between point charges. In particular, both forces vary inversely with the square of the 
distance R between the sources. Also, both forces are proportional to the products of 
the source values, Qi Q2 for charges and / , /2 for currents. But whereas the force 
exerted by one static charge upon another is always directed along the line between 
them, the direction of the force exerted by one steady-current filament upon another 
depends upon their orientations relative to each other.

Figure 3-13 shows the relationship between the orientations of currents and the 
direction of the resulting force for three different cases. From Equation (3.35) we 
see that dFj is in the plane that contains the vectors df2 and a21 and is also perpen
dicular to dfj. This is depicted in Figure 3-13a. When d^ is perpendicular to a21, 
dF1 and a21 are collinear (just as in the case of the force between static charges).

= 4tt X 10“7 [N/A2 or H/m], (3.34)

(d f i * a21) d l2 (d€2 * d l2)a 21

R 2
(3.35)

/id€1

(a) (b) (c)

Figure 3-1 3 Graphical depiction of the force between current filaments, a) 
Parallel filaments, b) Filament #1 is perpendicular to the line connecting the 
filaments, c) Filament #1 is perpendicular to the line connecting the 
filaments, and the filaments are perpendicular to each other.
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This is depicted in Figure 3-13b. Figure 3-13c shows that the interaction force dF, 
is zero when the current filaments are perpendicular to each other and df, is per
pendicular to a21.

E xam p le  3 -4

, i

j f
ilSIll

■
HHH

i t

I l l

SiSUili:

Figure 3-14 shows two parallel current filaments /, df, and / 2dC2. Both filaments are of length d i  

and are directed perpendicular to the line that connects them. Calculate the force acting on / , .

Figure 3-14 Two parallel current 
filaments that are perpendicular to the line 
connecting them.

Solution:

As can be seen from Figure 3-14, both current segments are directed along the y-axis, so 
we can write /jd f, = I xd i 2iy and / 2df2 = I 2d t a y. The filaments are parallel, so d£, • d f2 = (d l ) 2. 
Also, both filaments are perpendicular to the line that connects them, so d f , • a21 = d i 2 • a21 = 0. 
Substituting these expressions into Equation (3.35), we find that the force acting on /, df, is

dF, iA
47Thh

( d i ) 2 „

R2 321
[N], (3.36)

where R  is the distance between the elements. Knowing that a21 is directed from element 2 to 
element 1, we conclude that dF, is an attractive force when both currents flow in the same direc
tion (i.e., when /, / 2 >  0 ) and a repulsive force when the currents are oppositely directed.

3 -6  T h e  L o re n tz  Force Law  an d  th e  Field C o n c e p t o f  
E le c tro m a g n e tic s

The action-at-a-distance force laws discussed in the previous section are fundamental 
postulates of physics whose experimental validity is unquestioned. Important as they 
are, however, our discussion of electromagnetics would be severely limited if we were 
to model all electromagnetic forces and effects with action-at-a-distance laws. This is 
because such laws require that we know the values and locations of all the currents and 
charges in a system at all times. But in many cases this information is not available, at 
least not entirely. Imagine, for instance, the difficulty in measuring the current distri
bution on an antenna in city A  when you are located in city B. In situations like this, a 
more useful view of electromagnetic effects is one that assumes that each electromag
netic source emits “something” throughout all space that interacts with other sources. 
This kind of view is called a field theory, because fields are entities that exist continu
ously throughout regions of space.
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Figure 3-15 An example of a field 
quantity: popcorn odor.

To get an idea of what a field theory is like, let us start by considering a common 
example: odors. Figure 3-15 depicts a situation known to anyone who has ever lived in 
a dormitory. As any student knows, it is hard to keep a bowl of warm popcorn a 
secret. Try as you might, all kinds of people become your “friend” when they know 
that you have some popcorn. There are two ways in which we can understand how 
people in other rooms are drawn to the popcorn. The first is to say that they are drawn 
directly by the popcorn itself. This is an action-at-a-distance view of the interaction. 
The other view is to say that what really attracts people to warm popcorn is its odor, 
which can be sensed at large distances from the popcorn itself. This is a field view, 
since the odor density is a field quantity that exists at each point throughout the build
ing. The advantage of this view is that it is not necessary to know the position of the 
popcorn to predict its effect. All that is needed is a knowledge of the odor field, which 
can be measured remotely. Experience tells us that we can tell a lot about the source 
of an odor simply by sniffing around.

It was Michael Faraday (1791-1867) who first proposed a field theory of electro
magnetics. Faraday speculated that “something” propagates outward from charges 
and currents and manifests itself in two vector fields: the electric field  intensity E and 
the magnetic flux density B. This was a bold proposal in the 1830s, since no one had 
yet speculated on the existence of photons, which we now know are the agents respon
sible for these fields.

The starting point of the field theory of electromagnetics is the Lorentz force law, 
which states that the total electromagnetic force acting on a point “test charge” of 
value Q can always be expressed as

F = <2(E + u X B) [N], (3.37)

where E is the electric field intensity at Q, B is the magnetic flux density at Q, and u is 
the velocity of Q with respect to the “laboratory” frame of reference. The electric 
field intensity E is measured in units of newtons per coulomb [N/C], which is equiva
lent to volts per meter [V/m]. The magnetic flux density B is measured in units of
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newton • seconds per coulomb • meter [N • s/(C *m)], which is equivalent to webers 
per square meter [Wb/m2] or tesla [T]. In Equation (3.37), both E and B are mea
sured in the laboratory reference frame.6

The Lorentz force law was named in honor of Hendrik Lorentz (1853-1928), 
although it also contains contributions from Joseph Thomson (1856-1940) and Oliver 
Heaviside (1850-1925). Like the Coulomb and Ampere force laws, this law is also 
based on experimental evidence. But it differs from the action-at-a-distance force laws 
in that the force on a charge is described in terms of the E- and B-fields generated by 
other sources whose locations and magnitudes need not be known. Also, the Lorentz 
force law is valid when time-varying charge and current distributions are present, while 
the Coulomb and Ampere force laws are valid only for time-invariant sources.

According to the Lorentz force law, there are two distinct kinds of force that 
other currents and charges can exert upon a test charge. The first is the electric force, 
which is defined as

Fe = Q E [N], (3.38)

This force depends only on the magnitude Q of the test charge and the magnitude and 
direction of the electric field E. Also, its direction is always collinear with the direction 
of E. The other force predicted by the Lorentz force law is called the magnetic force, 
which is defined as

Fm -  2  u X B [Nj. (3.39)

Like the electric force Fe, the magnetic force Fw is also proportional to the magnitude 
Q of the test charge. These forces differ, however, in that the electric force is inde
pendent of the velocity of the test charge, whereas the magnetic force is present only 
when the test charge is moving. Also, the direction of the magnetic force is perpen
dicular to both the direction of the test charge velocity u and the direction of the mag
netic flux density B.

Although charged particles can experience both electric and magnetic forces, 
only the electric force can do work on a charge and change its kinetic energy. This is 
because the magnetic force is always perpendicular to the motion of the charge. Mag
netic forces can, however, change the direction of a m o v i n g  charge.

E xam p le  3 -5

A particular source distribution produces the following E- and B-fields at the location of a 
test charge Q :

E =  2ax — 3ay + 4a_ [fiW/ m or /jlN/C]

B = 6av + 8av -4a . /jlT  or
jji N*s 
C • m

Find the total force acting on Q  if its velocity is u -  4aJC- 3 a v [m/s] and Q  = +2 [^C].

In Chapter 9 we will show that E is different when measured in moving and stationary reference frames.
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Solution:

According to the Lorentz force law, the electric force 

F e =  Q  E = 2 X 10” 6 X (2a* - 3 a v + 4 az) X 10“ 6 

= 4a* - 6 av + 8 az [pN].

The magnetic force

Fm = 0 u x B  =  2 x  10” 6 x  (4a* - 3 a y) x  (6 a* + 85, - 4 a , )  x  10“ 6 

= 24a* + 32av + 100a, [pN].

The total force acting on Q  is thus

F  =  F e +  F m =  28a* + 26av + 108a, [pN],

The Lorentz force law does more than just predict the forces on charges. It also 
serves to define the electric and magnetic fields themselves. For instance, solving 
Equation (3.38) for E, we find that

E =
Q

[N/C or V/m], (3.40)

which means that we can test, or measure, the value of E at any point simply by mea
suring the force acting on a stationary test charge. In order for the test charge not to 
disturb the currents and charges responsible for E, Q must be as small as possible. 
Thus, we define the E-field at a point to be

E = lim - f  [N/C or V/m], (3.41)

where Fe is the total force acting on Q when it is at rest.
In a similar way we can use Equation (3.39) to define the B-field at a point. If we 

take the cross product of both sides of that equation with u, we obtain

FmX u =  Q(uXB)  Xu = Q B |u|2 -  <2u(u«B), (3.42)

where we have used Equation (B.2) in Appendix B to expand the triple cross product. 
To solve this expression for B, we need to choose the “test velocity” u such that u* 
B = 0. This choice of the direction of u also maximizes Fm, since u X B is maximized 
when u and B are perpendicular to each other. Solving Equation (3.42) for B under 
this condition yields

B =
1̂

Q

F ^X u
u

(3.43
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Finally, since the purpose of the test charge Q is to measure the field produced by other 
sources without affecting them, we take the limit of Equation (3.43) as Q —> 0, yielding

E xam p le  3 -6

An unknown source distribution exerts a force Fj = - 8 8 ^ + 3 ^  [pN] on a Q  -  2 [pC] test charge 
that is at rest at a point P .  However, when the charge moves with a speed of 2 [m/s] through P ,  

the change in the force is greatest when the direction of the velocity u is amax = (1 /V 2  ) (a* — ay). 
If the force acting on Q  in this case is F2 = 2ax— ay+ 4 az [pN], find both E and B at P.

Solution:

Since u = 0 when Fj was measured, Fc = F j . Using Equation (3.41), we have

Fg _ ( - 8 ax + 3ay) X K T 12 

Q  2  X 1CT12

- 4 a x + 1.5ay [V/m].

To find B, we first note that the magnetic force Fm is the difference between the force when Q  is 
moving and its rest force:

Fm ~ F2 — Fj = 10ax - 4 a y + 4az [pN],

Using Equation (3.44), we obtain

1 F m  X

Q M

10 12(10ax- 4 a y + 4az) x  -q =  (ax -  ay)

2 X 10 -1 2  X 2 2

1  ̂ „
=  y ^ ( a^+  ay ~  1,5az) [T],

When charges are moving, it is often more convenient to express the magnetic com
ponent of the force exerted on them in terms of a test current, rather than a test charge. 
Figure 3-16 shows a thin wire that carries a test current I. We can find the force dFm 
that acts on the differential segment I d£ by noting that

/df = df = ud t  =  d Q u . (3.45)
d t  d t

dFm

F ig u re  3 -1 6  The magnetic field acting on a 
current element.
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where dQ is the charge contained within the length di. Substituting Equation (3.45) 
into Equation (3.39), we find that the magnetic force is given

dFm = / d £ x B . (3.46)

Similarly, the magnetic forces acting on differential surface and volume elements are

dF,„ = J, X Bds (3.47)

and

dFm = J X Bdv, (3.48)

respectively.
The total force dF acting on a differential volume dv of a moving charge distrib

ution equals the sum of the electric and magnetic forces. Using Equations (3.40) and 
(3.48), we obtain

dF -  dFe + dFm = dQ E + J X Bdv

If we replace dQ with pvdv, this expression becomes

dF — (p„E + J X B ) dv. (3.49)

For surface and line charge distributions, Equation (3.49) becomes

dF = (psE + Js X B )ds (3.50)

and

dF = P(Ed£ + I df X B , (3.51)

respectively.

E xam p le  3 -7

A large sheet of charge lies in the z — 0 plane. The charge density ps — 4 [C /m 2] is uniform and 
moves with a constant velocity, u = 2av [m/s]. If E = 2ax — 3a, [V/m] and B = 3av [T] at all 
points in the z — 0  plane, find the force per unit area acting on the sheet.

Solution:

In order to use Equation (3.50), we must first find the surface current density on the sheet. 
Using Equation (3.19), we have

J, =  Psu  =  8 ax [A/m],

and

JSX B  = 8 a v X 3av = 24a., [N /m 2].

Substituting this into Equation (3.50), we find that

dF/ d s  = p, E + J, X B = 4(2ax -  3az) +  24a, = 8 a v + 12az [N/m2],

which is the force per unit area acting on the sheet.
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Glass

F ig u re  3-1 7 Schematic diagram of a 
cathode-ray tube.

A common device that demonstrates the Lorentz force law is the cathode-ray 
tube (CRT). A simplified illustration of a CRT is shown in Figure 3-17. Here, elec
trons are emitted by the cathode, which is heated by the filament. These electrons are 
then accelerated towards the anode by an E-field that is directed along the axis of the 
tube. This field is the result of a large voltage (roughly 15 kilovolts for a monochrome 
CRT) between the cathode and the anode. The anode is coated with luminescent 
phosphors that glow when struck by high-velocity electrons.

The vertical and horizontal scanning of the electron beam in a CRT is accom
plished by using current-carrying coils. These coils are housed in the deflection yoke 
outside the tube and create B-fields that are perpendicular to the electron beam. Two 
pairs of coils are used to allow independent horizontal and vertical deflections, which 
are controlled by the magnitude and direction of the coil currents.

M a x w e ll's  E qu atio ns

Until now, our discussion of electromagnetics has centered mainly on the forces that 
charges and currents exert upon each other. This is a fitting place to start, since these 
forces are ultimately responsible for all the things that we use electricity and electro
magnetism for. It may come as a surprise to the reader, then, that the majority of this 
text is not devoted to discussing forces, but rather is given over to the relationship 
between electromagnetic sources (i.e., currents and charges) and the electric and mag
netic fields they produce. There are two reasons for this. The first is that we often are 
not aware of these electromagnetic forces. For instance, even though the memory 
function of an integrated circuit (IC) chip is accomplished by applying forces to small 
packets of charge and moving them between various locations within the chip, we are 
not aware of these forces, since they are inside the chip. The second reason is that the 
performance of electrical devices is determined by how the electric and magnetic fields 
distribute themselves. In the case of an IC memory chip, this means that we can deter
mine its operating characteristics once we know how E  and B  distribute themselves for 
all the possible input configurations.

The task of determining the definitive set of equations that describe the relation
ship between electromagnetic sources and fields was a laborious one that involved many
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of the most distinguished scientists of the 18th and 19th centuries. The list of names that 
are prominent in this history includes those of Coulomb, Volta, Poisson, Frankin, 
Oersted, Ampere, Lorentz, and Faraday. Each of these scientists contributed to our ba
sic understanding of electromagnetics, either by conducting key experiments or by pos
tulating theories of how electromagnetic fields behave and are related to their sources. 
By the mid-1800s, a number of laws (or postulates) were generally accepted that each 
identified certain aspects of electromagnets. The most prominent of these were:

1. The Lorentz force law
2. Coulomb’s law of force

3. Ampere’s law of force
4. The law of charge conservation
5. Faraday’s law of induction

We have already discussed the first four laws. The fifth law, Faraday’s law of induc
tion, was proposed in 1831 in order to explain why a time-varying current in one circuit 
produces voltages in other circuits. This law explains the operation of inductors and 
transformers.

As useful as the preceding five laws are, they are relatively unrelated, and some 
are applicable only under restricted circumstances. For instance, we have already seen 
that Coulomb’s law of force is applicable only for charges at rest. Similarly, Ampere’s 
law of force is applicable only for steady currents. As a result, the five laws did not 
constitute an all-inclusive system of equations that described the behavior of electro
magnetic sources and fields under all circumstances.

In 1873, James Clerk Maxwell published his now famous A Treatise on Elec
tricity and Magnetism that put forth a theory of electromagnetics that accounted 
for all that was then known about electromagnetism, plus a bold postulate that was 
all his own. This theory could be summarized with four equations that relate the 
relationship between the electric and magnetic field vectors, E and B, respectively, 
with the two fundamental sources of these fields—current density J and charge 
density pv\

V X B = f i j  + p 0e0
dE
d t

V X E =
3B
d t

V • E
(Maxwell’s equations in free space),

(3.52)

(3.53)

(3.54)

V • B = 0 (3.55)

where “V X ” and “V • ” are the curl and divergence operators, respectively. Even 
though these equations embody many contributions from all the investigators up till 
that time, these equations have been named Maxwell’s equations, because it was he 
who cast them into a complete, unified theory of electromagnetics. The equations
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are consistent with the five experimentally based postulates that were listed earlier 
in this section. More importantly, the equations describe every electromagnetic 
experiment, device, or result that has been encountered since Maxwell first proposed 
them.7

Even though Maxwell’s equations are now universally accepted as the most fun
damental and general postulates of electromagnetics, their acceptance did not come as 
quickly as one might think. This was due in part to the limited range of experimental 
evidence that was available at that time. Another reason is that Maxwell justified one 
of the key terms in his equations not on the basis of experimental evidence, but rather 
on his belief that electromagnetism and light are manifestations of the same physical 
phenomenon. This proposal mystified many of the scientists of that day, because they 
could see no link between the behavior of low-frequency electromagnetic effects and 
the properties of light.

The controversy ended in the late 1880s when Heinrich Hertz (1857-1894) pub
lished the results of his now famous series of experiments.8 These showed clearly that 
electromagnetic fields do indeed have the same characteristics (scaled for the differ
ence in frequency) as light waves. Hertz created electromagnetic waves by exciting 
short-duration, broadband currents on wires. The currents were created by charging a 
Leyden jar (an early type of capacitor) to a high voltage and touching its terminals to 
both transmitting wires, as shown in Figure 3-18.

This voltage caused a spark to jump across the gap between the transmitting 
wires, resulting in a short burst of current on the wires. The fields launched by the 
transmitting wires created a voltage across the spark gap of a receiving loop (also 
shown in the figure), creating a visible spark. Using this simple transmit-receive sys
tem, Hertz was able to demonstrate that electromagnetic fields exhibit lightlike prop
erties such as propagation, reflection, polarization, resonance, and focusing, at 
frequencies we now call microwave frequencies.

The connections between Maxwell’s equations and the five experimental postu
lates that we summarized earlier in this section are not immediately obvious, except 
for one—the law of charge conservation. We can see this connection by first taking 
the divergence of both sides of Equation (3.52):

F ig u re  3 -1 8  Schematic diagram of H ertz’s 
experiment for generating and detecting 
electromagnetic waves.

7 Apart from experiments involving subatomic particles, where some quantum mechanical adjustments must 
be made.

8 For an excellent review of Hertz’s experiments, see John Kraus, “Heinrich Hertz—Theorist and Experi
menter,” IEEE Transactions on Microwave Theory and Techniques, Vol. 36, No. 5, May 1988.
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d
V • V X B = ^ 0V • J + /x0e0 — V • E ,

where we have interchanged the order of the time and spatial differentiation in the last 
term. According to Equation (B.8) in Appendix B, however, the left side of this equa
tion is identically zero, which leaves us with

a
V -J -  - e — V-E.

° dt

But from Equation (3.54), we also have V • E = p j  eQ. Substituting, we obtain

V-J = — — , 
dt

which is the law of charge conservation (see Equation (3.25)). Ironically, Maxwell 
appears to have been unaware of the connection between his equations and the law of 
charge conservation. Had he known of this, his equations might have been universally 
accepted within his lifetime.

To ease our transition into describing electromagnetic effects using Maxwell’s 
equations, we will start by considering time-invariant (i.e., dc) fields. One reason for 
doing this is that the time-invariant case is much simpler, since time is not a factor. 
Another reason is that electric and magnetic fields are independent of each other for 
that case, which will allow us to discuss the characteristics of electric and magnetic fields 
separately. This is helpful, since electric and magnetic fields behave differently around 
their sources and interact differently with materials. Also, many of the characteristics 
of these time-invariant fields are maintained when the sources are time varying.

Following our discussion of time-invariant fields (Chapters 4-9), we will move on 
to the general time-varying case, where electric and magnetic fields always appear 
together. This will allow us to discuss an important effect that can occur only when 
sources are time-varying: propagation. We will discuss three types of applications that 
utilize electromagnetic propagation: transmission lines, free-space plane waves, and 
waveguides, all of which are useful for transporting power and information over large 
and small distances. Also, the final chapter will introduce the closely related subject of 
radiation and antennas.

S u m m a tio n

In this chapter we identified the sources, forces, and fields that are associated with elec
tromagnetics. We found that electric charges and currents exert forces on each other. 
According to the Lorentz force law, all of these forces can be explained by the exis
tence of electric and magnetic fields that are produced by electromagnetic sources.

Maxwell’s equations were also introduced, which relate the electric and magnetic 
fields to the electromagnetic sources that produce them. These equations are now 
considered to be the fundamental postulates of electromagnetics. In one way or 
another, Maxwell’s equations (or equations derived from them) are the foundational 
design tools for electrical engineers.
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P roblems

3-1 The charge density throughout a region is given by pv = 10e-3' [pC/m3], where r 
is measured in meters. Find the total charge Q contained in a sphere centered 
about the origin that has radius 2 meters.

3-2 The surface charge density throughout the z = 0 plane is ps = 1/p [C/m2], where 
p is specified in meters. Find the total charge Q that is contained in a circular 
disk of radius 1.0 [m] that is centered about the origin in the same plane.

3-3 The current density in a region is J = xy a, [A/m2], where x and y are specified in 
meters. Find the current I  flowing towards increasing values of z through the 
surface — 1 < x < 1, — 1 <  y < 1, z = 0.

3-4 A surface current = x av. + xy a [A/m] flows on the z = 0 plane, where x and 
y are specified in meters. Find the magnitude of the current I that flows towards 
increasing values of x, past the line that extends from P(0, 0, 0) to P (l, 1, 0).

3-5 Find the current I that flows out of a sphere of radius 2 [m] that is centered at the 
origin if the current density throughout the region is J = re~r ar [pA/m2], where 
r is specified in meters.

3-6 Find an expression for the charge density at each point in space at an arbitrary 
time t if the current density is J = p ap [mA/m2], where p is measured in meters. 
Assume that pv = 0 at all points at t = 0.

3-7 Find the force exerted on a point charge Qx by the point charges Q2 and Q3. 
Assume that Qx = 2.5 [nC], Q2 = —12.0 [nC], and Q3 = —1.7 [nC] are located at 
(0, -1 , 2) [m], (1.5, 2, -1 ) [m], and (-1 , —1.5, 2) [m], respectively.

3-8 Figure P3-8 shows two short, parallel current segments, each of length 0.001 [m] 
and carrying currents l x = 2 [A] and I2 = 4 [A], respectively. If R = 1 [cm] and 
6 = 30°, calculate the force acting on Ix.

/1

k F ig u re  P 3-8

3-9 A 1 [pC] test charge has velocity u = 3av -  2.5ay + 1.5a. [m/s] at the point 
F ( l , -2 ,1 ) [m] in the presence of the fields E = x ax + xy a. [V/m] and B = y ax 
+ x ay [T], where x and y are specified in meters. Find the total force F acting on 
the test charge at P( 1, -2 ,1 ) [m].

3-10 A point charge of value +3 [pC] moves with velocity u = 2.5at — 3.2a + 4.0a. 
[m/s] in the presence of an electric and magnetic field. Find E if the force acting 
on the electron is F = -320av + 150av [pN] and it is known that B = 200av [T].

3-11 The charge density in a region is pv = e~r e~l [C/m3], where r and t are measured 
in meters and seconds, respectively. Find the current density J throughout this 
region. (Hint: Assume that J is spherically symmetric.)
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3-12 Calculate the final velocity of the electron beam in a CRT as it impinges upon 
the screen if the voltage between the anode and the cathode is 24 [kV] and they 
are spaced by 0.4 [m]. Assume that the electron velocity is zero at the cathode, 
the E-field is directed from the anode to the cathode with a magnitude of E -  
24/0.4 [kV/m], and there is no magnetic field present.

3-13 A point charge with charge Q and mass m is placed in a region with a uniform B- 
field, B = B0az. If the charge’s position and velocity at t = 0 are u(0 ) = uQav 
[m/s], x (0 )  = %0 and y(0 ) = yQ, find x(t)  and y (t) for all t > 0. What kind of 
path is this?



4

Electrostatic Fields 
in Free Space

4-1 In tro d u c tio n

We have seen in the previous chapter that current and charge distributions generate 
electric and magnetic fields. In general, time-varying charge distributions cause both 
electric and magnetic fields. The same is true for time-varying current distributions. 
However, static charge distributions generate only electric fields, called electrostatic 
fields, and steady current distributions cause only magnetic fields, called magnetostatic 
fields. These two special cases are much simpler than the general time-varying case, so 
we will start our discussion of electric and magnetic fields with them. In the next three 
chapters, we will identify the various characteristics of electrostatic fields. Later, we 
will do the same for magnetostatic fields. Not only will this ease our eventual transi
tion into time-varying fields, but we will also see along the way that there are a host of 
practical applications of electrostatic and magnetostatic fields.

In this chapter, we will investigate the electrostatic fields generated by static charge 
distributions in free space (i.e., in a vacuum). We will start our discussion by specializing 
Maxwell’s equations for the electrostatic case and then deriving Coulomb’s law, which 
explicitly specifies the E-field generated by any known, static charge distribution. Using

87
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Coulomb’s law and Maxwell’s equations, we will determine the E-fields generated by 
several classes of charge distributions.

We will also introduce a new field quantity, called the electrostatic potential. 
Unlike the E-field, which is a vector, the electrostatic potential is a scalar, which makes 
it much easier to deal with. This potential is directly related to the potential differ
ences and voltages used in circuit analysis. We will show that using the electric poten
tial often simplifies E-field calculations.

4 -2  M a x w e ll's  E q u atio n s  fo r  E lectrosta tics  in Free Space

We stated in the previous chapter that Maxwell’s equations are considered to be the 
fundamental postulates of all electromagnetic phenomena. In free space, these 
equations read

dE
V « B = 0  V x B  = ^ 0J + ^ 0f0-

at

V • E = ^  V X E = .
6o dt

The preceding equations are written in what is called differential (or point) form, since 
they contain derivatives that are evaluated at individual points. For the time-invariant 
case, all derivatives with respect to time vanish. Thus, for static charge and steady cur
rent distributions, Maxwell’s equations become

< • w II o (4.1) V X B  = p QJ (4.2)

V • E = ^ (4.3) V X E = 0. (4.4)

With the time-derivative terms gone, E and B now appear in separate equations. 
Equations (4.1) and (4.2) show that magnetostatic fields depend only upon the current 
density J, whereas Equations (4.3) and (4.4) show that electrostatic fields depend only 
upon the charge density pv. As a result, we can discuss the characteristics of electro
static fields without considering whether magnetostatic fields are also present.

Equations (4.3) and (4.4) are called the point form of Maxwell’s equations for 
electrostatics in free space. Since they specify both the divergence and curl of E at 
every point, we can conclude from the Helmholtz’s theorem (see Section 2-5-6) that 
no additional equations are needed to uniquely specify E for any given charge distrib
ution pv. We can also derive integral representations of these equations. To do this, 
let us first take the dot product of both sides of Equation (4.4) with a differential sur
face vector ds and integrate over an arbitrary open surface S, yielding

f V X E*ds = 0.
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Using Stokes’s theorem, we can express the surface integral as a line integral over the 
closed contour C that bounds S, resulting in

<j>E«d£ = 0. (4.5)

We can obtain an integral representation of Equation (4.3) by first multiplying 
both sides by the differential volume element dv and integrating over some volume 
V, yielding

f V • E dv = — f pvdv.
Jv e0 ■'v

The integral on the right side of this equation is simply the total charge Q contained in 
V. Also, we can use the divergence theorem to write the integral on the left as a sur
face integral over the closed surface S that surrounds V, giving

<|) E • ds = —. (4.6)
JS €o

Maxwell’s equations for electrostatic fields in free space are summarized as fol
lows in both point and integral forms:

M AXW ELL’S EQ UATIO NS FOR ELECTROSTATICS IN FREE SPACE

Point Form Integral Form

V • E = ^ (4.7) c£ E • ds = — (4.8)
h  6 o

V xE  = 0 (4.9) (j) E • d£ = 0 (4.10)

Regardless of the form they are written in, these equations completely define the 
behavior of electrostatic fields in free space.

Equations (4.7) and (4.8) define the relationship between charge distributions 
and the electrostatic E-fields they generate. These equations are representations of 
Gauss’s law, named in honor of Karl Friedrich Gauss (1777-1855). Gauss’s law states 
that the total outward flux of the electric field intensity over any closed surface in free 
space equals the total charge enclosed by the surface, divided by the permittivity of 
free space. In this chapter we will use Gauss’s law to find the electric field intensities 
of several classes of charge distributions.

Equations (4.9) and (4.10) state another important property of electrostatic fields, 
namely that the electric field intensity E is a conservative vector field. As we saw in 
Chapter 2, a conservative vector field has that property that the scalar line integral 
around any closed path is always zero. Conservative vectors are always irrotational
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(i.e., have zero curl), since a vector with zero rotation at each point cannot have a net 
circulation around a closed path. Equations (4.9) and (4.10) are also the basis of 
another important law of electrostatics: Kirchoff’s voltage law. This law states that 
the sum of all the voltage drops around any closed circuit is zero whenever electrosta
tic fields are present.

C o u lo m b 's  Law

Maxwell’s equations for electrostatics contain all the information necessary to charac
terize the fields generated by static charge distributions, but they are usually not the 
most convenient starting point for actual calculations. This is because Maxwell’s equa
tions describe E implicitly, either in terms of differential equations (Equations (4.7) 
and (4.9)) or as integral equations (Equations (4.8) and (4.10)). However, we can use 
Maxwell’s equations to derive an explicit expression for E, called Coulomb’s law, that 
allows for direct calculations of E when the charge distribution pv is known.

We can derive Coulomb’s law directly from Maxwell’s equations for electrostat
ics, but the proof is tedious. Rather, we will start by using Coulomb’s law of force 
(discussed in Chapter 3) to find an expression for the E-field generated by a single 
point charge. Once we have determined that this expression satisfies Maxwell’s equa
tions for electrostatics, we will then generalize the formula to predict the E-field gen
erated by an arbitrary charge distribution. Figure 4-1 shows a point charge Q located 
at the origin. According to Coulomb’s law of force (Equation (3.29)), this charge will 
induce a force F on a positive test charge q that is given by

F = 1 qQ -
a 24 ire, r2 [N],

where r is the distance from Q to q and ar is parallel to the position vector r that repre
sents the position of q. Remembering that E is defined as the force per unit test 
charge, we can write

E =
F

q
i Q ~

a 2e0 r2
[NIC orV/m], (4.11)

which states that the charge Q at the origin generates an E-field that is directed radially 
outward and decays proportional to l / r 2. Even though E is defined in terms of the 
electric force on a test charge, it is usually more convenient to specify it in units of volts 
per meter, as we shall see later in the chapter.

F ig u re  4-1 Geometry for determining the 
E-field generated by a point charge at the 
origin.
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To see if Equation (4.11) is consistent with Maxwell’s equations, let us first sub
stitute Equation (4.11) into Equation (4.9). Since E has only one component, Er, 
which is a function only of r, we find that

Next, if we substitute Equation (4.11) into Equation (4.8) and integrate around a 
sphere that is centered at the origin, we obtain E • ds = Err2 sin 6 dQdfi and

which is valid for all values of r. Hence, Equation (4.11) is consistent with Maxwell’s 
equations of electrostatics in free space.

We can generalize Equation (4.11) by first recognizing that the E-field gener
ated by a point charge is always directed outward from the charge, regardless of 
whether it is located at the origin or not. For the point charge Q in Figure 4-2 that 
is located away from the origin, we can represent the E-field that it generates at a 
field point P by

where R is the distance from the observer to the charge and points outward from the 
source point (Q ) towards the field point (P). If the field and source points are repre
sented by the position vectors r and r', respectively, we can write

R = | r —r' |

and

(4.12)

Using these, we can write E in the form

(4.13)

radius = F

P

F ig u re  4 -2  Geometry for determining the 
E-field generated by a point charge 
located at an arbitrary point.
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This expression may not appear as easy to use as Equation (4.12), but just the opposite 
is true, since the expression makes it more clear what information must be in hand in 
order to actually calculate E.

E xam p le  4-1

A point charge Q  =  1 [nC] is located at (1, - 1 ,  0) [m]. Find the electric field intensity at the 
point (0, 0, 3) [m].

Solution:

The positions of Q  and the observation point are represented by

r ' =  a , — A 

r = 3 a ,,

respectively. Thus,

r — r' = 3a_ — a v + a

|r -  r'| = V 3 2 + l 2 + l 2 = V Tl.

Substituting these values into Equation (4.13), we obtain 

10 “ 9 (3a, — a v + a v)

4 7T £ q l l 3/ 2

= -0 .246a , +  0.246av + 0.739a, [V/m],

Figure 4-3 shows a volume V that contains a volumetric distribution of charge 
with charge density pv. The charge that is contained within the differential volume 
element dv' is dQ = pvdv', where pv is the charge density within the differential vol
ume. The field dE that this charge generates at the field point P is1

dE
pvdv' (r -  r') 
477 60 |r -  r'|3

[V/m],

where r' is the position vector that represents the position of the differential volume 
dv' and r is the position vector of P. Since dE is proportional to the charge density pv

F ig u re  4 -3  Geom etry for determining the 
E-field of a volumetric charge distribution.

Here, we have drawn r outside the volume V  for the sake of visual clarity, but r can also lie inside V.
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and eQ is a constant, we can use the superposition principle, which states that the total 
response in a linear medium due to a number of sources equals the the sum of the 
responses due to each source individually. Integrating the contributions from each dif
ferential charge element pvdv', we obtain

E =
1

4ire0
[V/m]

(Coulomb’s law for volume- 
charge distributions),

(4.14)

where pv is a function of the primed coordinates. During the integration process, the 
dummy position vector r' sweeps through all the points within V where the charge den
sity pv is nonzero. Equation (4.14) is the volumetric form of Coulomb’s law.

Equation (4.14) is not convenient when surface charge distributions are present, 
since the volume charge density is infinite on these surfaces. For such situations, we 
can replace the term pvdv' with psds' to obtain

E =
477 6, . 'I  3 ds' [V/m]

o JS

(Coulomb’s law for surface- 
charge distributions). (4.15)

Similarly, for a line-charge distribution, we can replace pvdv' with p(dt', yielding

[V/m]
(Coulomb’s law for line- 
charge distributions). (4.16)

The three expressions of Coulomb’s law given by Equations (4.14) to (4.16) are 
typical of many integral expressions we will encounter throughout this text in that they 
contain two position vectors, r and r'. Whenever these vectors appear in a formula, 
their interpretation is always the same. By convention, r always represents the posi
tion (x, y, z ) of the field point, which can be thought of as the position of an observer 
who is measuring the field. Conversely, vector r' is a dummy position vector that 
sweeps during the integration through all points (x', y', z') where the integrand is 
nonzero. Because the primed coordinate variables are dummy variables of integra
tion, the final result after the integration (E, in this case) is a function only of the 
unprimed, field-point position variables, (x, y, z).

4 -4  E-Field C a lc u la tio n s  U sing  C o u lo m b 's  Law

Coulomb’s law can be used to calculate the E-field generated by any charge distribu
tion, provided that the charge density is known at all points. The resulting integrals, 
however, are usually complicated and, in most cases, must be evaluated numerically. 
Fortunately, there are a several special cases where the integrals can be evaluated ana
lytically. The point charge is one such example. In the discussion that follows, we will
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F ig u re  4 -4  Geometry for determining the 
E-field of an infinite line of charge.

derive solutions from Coulomb’s law for three charge distributions: an infinite line of 
charge, a circular charged disk, and an infinite sheet of charge.

4-4-1 THE UNIFORM, INFINITE LINE CHARGE

Figure 4-4 shows an infinite line of charge with a uniform line-charge density p£. This 
charge distribution is often called an infinite line source and is a good approximation of 
the charge distributions found in many practical situations. Examples include the elec
tron beam in a cathode-ray tube and the charges on long, thin wires.

Since the line is infinitely long, the E-field at a point P(p, 4>, z) will be the same 
for all values of z. Thus, for simplicity, let us choose our field point to lie in the z = 0 
plane. Using the cylindrical coordinate system, we find that the position vectors rep
resenting the field and source points are

r = P»p

r' = z ' a z, = z ' a z , 

respectively. Hence,

r -  r' = p a p -  z ' a z

and

|r — r' |3 = [p2 + z '2]3/2.

Also,

dl' = dz ' .

Substituting these into Equation (4.16), we obtain

-£&-[ ___ *____ dz>
47reJ _ A p 2 + Zr2]3/2 '

Here, we are able to move both unit vectors and the charge density p£ outside the inte-

E = Pi

4 tT60

P lp * p

(pap -  z 'a z)

[p2 + z '2]3/2 

1
4 7T 6Q [p2 + z '2]3/2

dz' 

dz' -
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grals, since they are not functions of the integration variable z '■ Evaluating the inte
grals yields

E = Pi P 

4 rre„

z a„

L p 2V z ^
+

+ P̂ pV Y ^ + P̂

Pi P a p 

47r 72 +
P2J

+ 0a„

Simplifying this expression, we obtain

This result is noteworthy for two reasons. The first is that the E-field generated 
by an infinite, uniform line charge is directed radially out from the line. This occurs 
because the field at any observation point can be considered as the sum of contributions 
from an infinite number of point-charge pairs. One such pair is shown in Figure 4-5a. 
As can be seen, the symmetric locations of these charges results in a net field that has 
only a radial component. Using the superposition principle, we find that the field due 
to all charges has this same property.

The second significant aspect of the E-field generated by a uniform, infinite line 
charge is that it varies as p_1 and not p~2. To see why this occurs, we first note that 
only those charges that lie within a finite field of view of an observer have significant 
contributions to E. This is because those charges farthest from the observer contribute 
almost no radial component to E. Figure 4-5b shows a 90° field of view of an observer 
located a distance p from a line charge with charge density p£. As can be seen, the 
charge Q contained in this field of view is proportional to ppr  Thus, the p~2 rate of 
decay of the field produced by each point charge in the line is compensated for by a 
total charge Q “seen” by an observer that is proportional to p, resulting in a net E-field 
that decays proportionally to p -1.

90° field of view

(a) (b)

Figure 4-5 The E-field of an infinite line of charge, a) The cancellation of the 
tangential components of E, b) the 1/p variation of | E | .
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P(0 , 0 , z)

x

F ig u re  4 -6  Geometry for determining the 
E-field generated by a uniform disk of 
charge.

4-4-2 THE UNIFORM DISK OF CHARGE

Consider the uniform circular disk of charge, shown in Figure 4-6. This disk has 
surface charge density ps, has radius a, and lies in the z = 0 plane. Using the 
cylindrical coordinate system, we can represent the position vectors of an arbitrary 
field point P (0, 0, z ) on the z-axis and the dummy source position vector on the 
disk by

respectively, noting that the direction of the unit vector ap. depends on the value of the 
source coordinate </>'. Thus,

where we note that ps can be taken out of the integral since it is a constant. Care must 
be exercised when evaluating this integral, since the unit vector ap- is not a constant 
with respect to the integration variable (f>'. However, we can express ap, in Cartesian 
components as

ap, = cose// â  + sin</>' a .

Substituting this into the integral, we obtain

Since az and ap. are always perpendicular, 

|r -  r ' | 3 = [z2 + p '2]3/2.

Also,

ds' = p'dp'dcf)'.

Substituting these factors into Equation (4.15), we obtain

(4.18)
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E = P s * z  

4 77 6,o J 0 J 0

zp

[z2 + P '2]3/2
d(f>'dp' — P s*x  

477 6,

a r 2-n

/ /
o J 0 J 0

p' 2 cos </>'
[ z 2 +  p ' 2] 312

dcf)' dp'

P s * v
a r 2ir  „ '2

477 6, ifo J0 J0

p 'z siruf)'

[.z2 + p>2]3/2
dxf)' dp' ,

where we note that the unit vectors can be taken out of the integrals, since they are all 
constants. The x and y components of E are zero, as they both involve integrals of 
either sin <p' or cos 4>' over the range 0 < 0' < 277. Evaluating the remaining integrals, 
we obtain

>s*z r  f 277
^ e0 o o4 

P s a z

Zp
d(j)'dp' =

[ z 2 +  p ' 2] 3 /2 ' " r  2 e o •'O

Zp

u 2 + p,2j
/ 2-1 3/2 dp'

2e0

which can be expressed as

p  = a  

P' = 0

F — ±1
V ? +  U -

(uniform, circular disk of charge), (4.19)

where the upper sign is used for z > 0 and the lower sign is used for z < 0.
Figure 4-7 shows how Ez varies with the height z above a disk with a = l[m] that 

contains a total charge Q. Also shown is | E | for a point charge at the origin with the 
same charge Q. As can be seen, Ez is finite just above the disk, whereas the field due 
to the point charge is unbounded as z approaches zero. We also see that, for large val
ues of z, the fields of the disk and the point charge are nearly identical. This means 
that a charged disk looks more and more like a point charge when observed from 
increasingly large distances. This can also be seen from Equation (4.19) by using the 
binomial expansion to approximate the square root for large values of z.

F ig u re  4 -7  Comparison of the E-fields 
generated by a uniform disk of charge 
(with radius a = 1 [m]) and a point charge.

— Both contain the same total charge Q. 
z[m]
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4-4-3 THE INFINITE SHEET OF CHARGE

When viewed from small distances, flat surfaces appear to an observer to be very large. 
Because of this, it is often convenient to approximate large surfaces of charge as infi
nite surfaces. We can obtain the E-field generated by an infinite, uniformly charged 
sheet from Coulomb’s law, but we can obtain the same result from the expression 
derived in the previous section for the field generated by a circular disk. When the 
disk radius a approaches infinity, the disk becomes an infinite sheet in the z — 0 plane. 
For this case, Equation (4.19) yields

E =

f P vs a. z > 0
2e0 Z

P
z < 0______ S_ a.

< 2e0 z

(infinite surface of uniform charge). (4.20)

Here we see that the field generated by an infinite surface of uniform charge does not 
vary with height above (or below) the surface and has opposite directions above and 
below the surface.

P s

+ + + + + +
lEl = ^  

e0
— — — ~ ~ ~

-Ps
F ig u re  4 -8  Two infinite sheets of uniform 
charge.

An important application of this result is presented in Figure 4-8, which shows 
two large sheets with opposite surface charge densities. This approximates the 
charge distributions found on parallel-plate capacitors with metal plates. The top 
sheet has a surface charge density of ps and the bottom surface has a charge density 
of - p s.

Between the sheets, the fields generated by each sheet add, producing a uniform 
field. Outside the sheets, the fields generated by each sheet cancel, yielding no net 
field in this region.

4 -5  Field  C o m p u ta t io n  U sing  Gauss's Law

Gauss’s law states that the net flux passing through any closed surface is proportional 
to the charge Qenc enclosed by that surface:

ciE*ds = ^ .  (4.21)
•'S

The surface S used when evaluating Gauss’s law is called a Gaussian surface. Since 
Gauss’s law is an explicit equation for <2enc, one common use of the law is to find the 
total charge that is contained within some closed surface.
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E xam p le  4 -2

Find the total charge contained within the cubic surface shown in Figure 4-9. Assume that the 
electric field intensity within the cube is given by the expression E = E a [ l  — e _l“^ ]ay, where E 0 

=  2[yuV/m] and a  =  1 [m -1].

F ig u re  4-9 A cubic volume containing an 
unknown charge.

Solution:

Since E has only a y-component, E • ds is nonzero only on the y-directed faces. Also, since 
E = 0 for y = 0, the integral receives a contribution only from the y — 1 face (S ^ . Evaluating 
Gauss’s law, we obtain

Gene = ea<f E *ds = e0 [ E-ds = £0e0 f f [1 -  e~l]dx dz
Js Jst Jo Jo

=  e0E 0 ( l  -  e~')Sx =  1.12 X  1(T17 [C],

Gauss’s law is an implicit equation of the variable E, which means that it cannot, in 
general, be solved explicitly for E. Nevertheless, it is possible to use this law to solve 
for the E-fields generated by certain classes of charge distributions. This is so when
ever a Gaussian surface can be found on which E is constant and perpendicular to the 
surface. When such a surface exists, E can be pulled outside the integral and solved 
for directly. In the sections that follow, we will use Gauss’s law to find the E-fields 
generated by charge distributions with cylindrical and spherical symmetry.

4-5-1 CYLINDRICALLY SYMMETRIC CHARGE
DISTRIBUTIONS

One important class of charge distributions that can be easily analyzed using Gauss’s 
law is those with rotational symmetry about an axis. These charge distributions are 
infinite in one dimension (along the z-axis) and are rotationally symmetric about this 
axis. Included in this class are the infinite line charge, hollow and solid circular cylin
ders, and coaxial cylinders (which we will usually refer to as coaxial lines).

Figure 4-10a depicts a rotationally symmetric charge distribution pv. To show 
that Gauss’s law can be used to find E, we must first determine how many components 
E has and what position variables they are functions of.
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F ig u re  4 -1 0  Rotationally symmetric charge distributions: a) cancellation of all components 
except E  , b) a Gaussian surface.

We can accomplish this by recognizing that any charge distribution in this class 
can be considered as a collection of uniform infinite line charges, each parallel to 
the z-axis, such as the pair shown in the figure. Since both lines are the same radial 
distance p' from the z-axis, they have the same line-charge density. Their net E- 
field has only a radial component, since their </> components cancel. This same can
cellation occurs for all of the complementary line-charge pairs that make up the 
entire charge distribution. Also, this charge distribution “looks” the same when 
observed at a constant radial coordinate p for all values of </> and z, so we can con
clude that E can be a function only of the radial coordinate p. Hence, we can write 
E in the form

E = Ep(p)ap. (4.22)

A family of Gaussian surfaces that can exploit the symmetric properties of this 
class of rotationally symmetric charge distributions consists of circular cylinders of 
arbitrary radius p and length h, centered about the z-axis. One such surface S is shown 
in Figure 4-10b. The radius p and height h can have any positive value, and charge 
can he both inside and outside the surface. For any of these Gaussian surfaces, 
Gauss’s law reads

f  E • ds + f E • ds + [ E • ds =
J

Q en c
( 4 . 2 3 )

J
cylinder upper lower

c o

end cap end cap

where Oenc is the total charge contained inside the cylinder. The integrals along the 
end caps are both zero, since E is perpendicular to both end-cap surfaces. On the 
cylindrical portion of S, E • ds = pEp(p)d(/) dz. Since Ep(p) is constant on this portion 
of S, it can be pulled outside the integral, yielding

E • ds Ep(p)pd(f) dz 2  7ThpEp(p) = Q,
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Solving for E (p), we obtain

As a result, we can write E in the form

(4.24)

(4.25)

This expression may look the same as the field generated by a point charge, but it 
should be remembered that here Qenc is the total charge contained within a cylinder of 
radius p and height h.

To demonstrate how to use Equation (4.25), consider the uniform, infinite cylin
der of charge shown in Figure 4-11. The cylinder has radius a and has a constant 
volume charge density pv. The charge contained within a cylinder of radius p < a and 
height h is

Since there is no charge beyond p = a, we have

(4.26)

Substituting Equation (4.26) into Equation (4.25), we obtain

(4.27)

Figure 4-12b shows Ep vs. p for a uniformly charged cylinder. Inside the cylinder, 
Ep grows linearly with increasing distance from the z-axis. Outside the cylinder, Ep 
drops off as p-1, just like the field of an infinite line charge. Figure 4-12a shows Ep for 
an infinite line charge that has the same charge per unit length as the solid cylinder does.

F ig u re  4 -11  An infinite, solid cylinder of 
charge with uniform charge density.

(solid, uniformly charged cylinder).
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R adius = a Radius = a

Figure 4-12 Comparison of the E-fields generated by three cylindrical charge 
distributions that carry the same charge per unit length: a) line charge, b) solid 
cylinder, c) hollow cylinder.

We can also use Gauss’s law to find the E-field generated by a hollow, uniformly 
charged cylinder. If the surface charge density is ps and the cylinder radius is a, the 
charge contained within a cylinder length h is

G,
f 0 p < a
[2 1rhaps p > a.

(4.28)

Substituting Equation (4.28) into Equation (4.25), we obtain

0 p < a
E = < an (hollow, uniformly charged cylinder).

—  K  p >  a 
U 0p p

(4.29)

The variation of this field with distance p is depicted in Figure 4-12c. Notice in this 
figure that the field outside a hollow cylinder is identical to the field generated by a 
solid cylinder that contains the same charge per unit length.

Coaxial Cylinders. Figure 4-13a shows two infinite coaxial surface charge distrib
utions. The cylinders have radii a and b, respectively, and uniform surface charge den
sities psa and psb, respectively. We can find the field generated by these coaxial 
cylinders simply by adding the fields generated by each cylinder individually. Using 
Equation (4.29) for the fields generated by both the inner and outer cylinders, we obtain

r 0 p < a

E = Win. ^
e0P
a Psa + b Psb

a < p < b

eoP

(coaxial cylinders of charge). (4.30)

p > b
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F ig u re  4-1 3 Coaxial cylinders of charge that contain opposite charges per unit length: a) side 
view, b) cross-sectional view, c) variation of E p with radial position p.

Here, we see that the field between the cylinders is controlled only by the charge den
sity on the inner cylinder and the field outside is controlled by the charges on both 
cylinders. An important special case of Equation (4.30) occurs when the charges per 
unit length on the inner and outer cylinders are exactly opposite. For this case, we 
have apsa = -b p sb, and

E = <
clPsa £ a < p < b
e°P (balanced, coaxial cylinders). (4.31)

0  elsewhere

Figure 4-13b shows the streamlines of E and Figure 4-13c shows E  as a function of p, 
both for the balanced case. As can be seen, the field outside the outer cylinder is zero. 
This is why the outer conductor of a coaxial line (cable) is sometimes called a shield. 
Coaxial cables are often used when interference between adjacent circuits is undesirable.

4-5-2 SPHERICALLY SYMMETRIC CHARGE DISTRIBUTIONS

Gauss’s law can also be used to evaluate the fields generated by spherically symmetric 
charge distributions. Included in this class are solid, hollow, and layered spheres of 
charge. Figure 4-14a depicts an arbitrary spherically symmetric charge distribution. 
Since pv varies only with the radial coordinate r, it can be considered as a collection of 
complementary point-charge pairs, such as the pair shown in the figure. These two 
charges have the same r and 6 coordinates, but their </> coordinates differ by 180°. 
Since both points are equidistant from the origin, their net E-field along the z-axis has 
only a radial component. Our choice of the direction of the z-axis was arbitrary, so we 
can conclude that the E-field generated by spherically symmetric charge distribution 
has only a radial component at all field points. Also, since the entire charge distribu
tion “looks” the same when observed at a constant radius for all values of 6 and </>, E is 
independent of these coordinates. Hence, we can write E in the form
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2).

‘ k. Enet

G aussian  surface z 
radius = r

x

r'

■*-
y Figure 4-14 A spherically symmetric 

charge distribution, a) Field cancellations 
of all symmetric point-charge pairs yield 
only a radial component of E. b) A 
Gaussian surface.

(a) (b)

E = Er(r)K- (4.32)

Considering the spherically symmetric characteristics of the E-field given by 
Equation (4.32), it should come as no surprise that the Gaussian surfaces that exploit 
these symmetric properties are spheres centered at the origin. One such sphere is 
shown in Figure 4-14b. Knowing that ds = r2 sin 6 dd defy ar at all points on a sphere 
that is centered at the origin, we can substitute E • ds = Er{r) r2 sin OdOdfi into Gauss’s 
law, obtaining

where Q is the charge contained inside a sphere of radius r. Solving this expression for 
Er(r) and substituting the latter into Equation (4.32), we obtain

We can use Equation (4.33) to find the E-field generated by a solid, uniformly 
charged sphere, as shown in Figure 4-15. If the sphere has radius a and charge density 
pv, the charge contained within a spherical Gaussian surface of radius r < a is

E — - — ar [V/m] (spherically symmetric charge distributions). (4.33)

Figure 4-15 A  solid sphere of charge.x
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Since no more charge is enclosed inside the Gaussian surface as r is increased beyond 
r  =  a , <2enc = (4/3) for r > a. Substituting these expressions for <2enc into Equa
tion (4.33), we obtain

A  a . r < a
3e0
aipv .

r > an 23 eQr2

(uniformly charged sphere). ( 4 . 3 4 )

We can also express this result in terms of the total charge QT = (4/3) 7ra3pv contained 
within the sphere:

E =

f  r Q r  ~

4 tt e0a3 ' 
< „

r < a 

r > a
(uniformly charged sphere). ( 4 . 3 5 )

Figure 4-16b shows the variation of Er with the radial coordinate r for a uniform, 
solid sphere of charge. As can be seen, Er is proportional to r inside the sphere and 
falls off as r ~2 outside. Comparing Figures 4-16a and b, we see that the field outside the 
sphere is indistinguishable from that of a point charge of value Qr placed at the origin.

We can also use Gauss’s law to find the E-field generated by a hollow, uniformly 
charged sphere. If the surface charge density is ps, the charge on the sphere is simply 
ps times the surface area of the sphere, so Qenc contained within a Gaussian surface of 
radius r is

Q ,

r < a 
r > a,

(4.36)

where a is the radius of the sphere. Substituting Equation (4.36) into Equation 
(4.33), we obtain

F ig u re  4 -1 6  Comparison of the E-fields generated by three spherically 
symmetric charge distributions with total charge Q: a) a point charge, b) a 
solid sphere, c) a hollow sphere.
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E
0 r < a

a 2 p QT £ r > a
e r2 rCc r 47re0r2 '

(hollow, uniformly charged sphere), (4.37)

where QT is the total charge on the sphere. The variation of this field with distance r 
is depicted in Figure 4-16c. Notice in this figure that the field outside a hollow cylinder 
is identical to the field generated by a solid sphere that contains the same charge.

E xam p le  4 -3

Figure 4-17 shows two hollow, concentric spheres. If the inner and outer spheres each have uni
form surface charge distributions and have radii a and b, respectively, find the generated E-field 
when the total charge on the inner and outer spheres is Q and — Q, respectively.

Solution:

By using the superposition principle, we can express the total E-field as the sum of the 
fields generated by each sphere individually. Using Equation (4.33), we can write

E =
Q

4TT€nr2
a < r < b

(4.38)
f 0  otherwise.

H ere we see that Er between the spheres is the same as that generated by the inner sphere alone, 
whereas the field outside the outer sphere is exactly zero.

4-5-3 SLIGHTLY ASYMMETRIC CHARGE DISTRIBUTIONS

Before we leave our discussion of field calculations using Gauss’s law, it is important to 
emphasize that this technique is applicable only when a charge distribution has sufficient 
symmetry. Any deviation from this symmetry will change the character of E, sometimes 
substantially. When a charge distribution is only slightly asymmetric, however, we often 
find that portions of the E-field can be predicted by neglecting the asymmetry.

As an example, Figure 4-18 depicts the E-field generated by a coaxial cable when 
a slot is cut into the outer conductor. In this case, the charge distribution does not 
have perfect cylindrical symmetry, even when the total charge per unit length on the 
two conductors is balanced. This is because no charges exist in the slot and the sur
face charge densities along the remaining surfaces are not perfectly uniform. Compar-
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F ig u re  4 -1 8  The E-field distribution 
generated by a coaxial cable with a 
longitudinal slit in the outer conductor.

ing these streamlines with those generated by a pair of balanced coaxial cylinders, we 
see both similarities and differences. Far from the slot the differences are minimal. 
Near the slot, however, the differences are more obvious. This is particularly true out
side the outer surface, where the field is no longer zero.

V o lta g e  an d  E lectric  P o te n tia l

Our discussion thus far has concentrated on the relationship between electrostatic 
charge distributions and the E-fields that they generate. This is fitting, since the E-field 
is responsible for the forces that charges exert upon each other. There is, however, an 
important scalar quantity that is also associated with electrostatic fields, called the elec
tric potential. We will start our discussion of electric potential by remembering that 
the E-field generated by a static charge distribution has zero curl at all points in space:

Both of these equations state that an electrostatic E-field is a conservative vector field. 
According to Equation (2.131), any conservative vector field can be represented at any 
point as the gradient of a scalar function, so we can represent E as:

where V is called the electric potential function,2 measured in units of volts. Accord
ing to this equation, there is a one-to-one correspondence between the vector E at a 
point and the behavior of the scalar field V at the same point. The minus sign is cho
sen in this expression so that E always points towards decreasing values of V.

We can develop a more physical interpretation of the electric potential function 
by integrating Equation (4.39) between two points. Taking the dot product of both 
sides with a differential displacement vector d£ and integrating along a path between 
two endpoints Pa and Pb, we obtain

V X E = 0.

In integral form, this expression reads:

c

E = -V V , (4.39)

2 T h e electric p o ten tia l fu n ction  is a lso  ca lled  th e  electrostatic po ten tia l function  or the scalar poten tia l 
function.
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-  f E • d« = f  VK* df = [ dV = Va -  Vb . (4.40)
Jb h  h

Here, we have used Equation (2.80) to replace the dot product V V • df with the differ
ential dV, which is the change in the potential V between the endpoints of the differ
ential path d£. The line integral on the far left-hand side of Equation (4.40) is defined 
as the voltage between the points Pa and Pb and is denoted by the symbol Vab:

Vab =  -  f ° E • df =
J b

rb
E • df (electrostatic and time-varying fields). (4.41)

d n

This definition is valid for both electrostatic and time-varying fields. However, for the 
special case of electrostatic fields, we have from Equation (4.40) that Vab can also be 
expressed as the difference of the electric potentials at the endpoints of the path of 
integration:

Vab ~
J h

E -d f = V - V h (electrostatic fields), (4.42)

where Va and Vb are the potentials at the points Pa and Pb, respectively. In this case Vab 
equals the difference of the potentials at the endpoints, so the terms voltage and poten
tial difference are interchangable for electrostatic fields. This means that the voltage 
between two points in an electrostatic field is independent of the path of integration 
chosen between the endpoints.3

The voltage between two points is a measure of the work necessary to move a 
charge between the points. To show this, consider the two points Pa and Pb, shown in 
Figure 4-19. Also shown are two paths leading from Pa to Pb. The force acting on a 
test charge Q is F = QE, so the work per unit charge done by the field on the charge 
when moving it from P(l and Pb is

W h rb
) E - d €  = Vab. (4.43)

Figure 4-19 Two different paths with 
common endpoints in an electrostatic E- 
field.

3 We will see in Chapter 9 that voltages can be path dependant when time-varying magnetic fields are 
present.
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Using this result, we can now offer the following interpretation of the voltage between 
two points.

The voltage Vab between two points is the work per unit charge done by the electric 
field when a positive test charge is moved from Pa to Pb along a given path.

This interpretation of voltage is valid for both electrostatic and time-varying 
fields. However, in the case of electrostatic fields, the voltage between two points is 
unique (i.e., not dependant on the path of integration). Also, the energy it takes to 
move a charge between two points in an electrostatic field is independant of the path 
chosen.

It is important to specify voltages with the correct sign. By convention, the poten
tial difference Vab is indicated by denoting a “ + ” sign at the first point (Pa) and a “ — ” 
sign at the second point {Pb). When this convention is used (as in circuit analysis), it is 
possible to drop the subscripts and simply use a symbol such as “V”, since this notation 
clearly indicates that V is the voltage between the “ + ” and ” points. In this case, 
however, the symbol V is not the electrostatic potential function (defined in Equation 
(4.39)), but rather the difference of the electrostatic potential functions at the “ + ” and 
“ —” points.

E xam p le  4 -4

Find the voltage V  between the two infinite sheets of charge shown in Figure 4-20. Assume that 
the top sheet has a positive surface charge density of ps and the bottom  sheet has a negative 
charge density - p s.

Solution:

We found earlier (see Section 4.4.3) that the E-field between balanced sheets of charge 
has a magnitude of p j e 0 and is directed from the top (positive) sheet to the bottom  (nega
tive) sheet. Since the “ + ” sign is located at the top sheet, we have, from Equation (4.41), 
that

V  =
- L

top

E*df.

The simplest path between the “ + ” and “ —” points is straight down along the z-axis, so

V  = ~ - f °
e0 Jd

d z  = [V].

Ps

IEI = &d

~Ps

Figure 4-20 Two uniform, infinite sheets 
of charge with opposite charges, separated 
by a distance d.
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H ere we see that V  is positive when E is directed from the “ + ” sign to the “ — ” sign. Also, since 
E is perpendicular to both surfaces, we find the same potential difference V  between any point 
on the upper surface and any point on the lower surface.

So far we have defined the electric potential V in terms of E, but it is also possi
ble to derive an expression for V in terms of the charge distribution that generates E. 
We will do this by first finding the potential function for a point charge and then gen
eralizing this expression for an arbitrary charge distribution. Figure 4-21 shows a 
point charge Q and two points a and b, located radial distances Ra and Rh from Q, 
respectively.

The simplest path between the points is the one shown in the figure, from Pb, to P0, to 
Pa. Since E is at all points perpendicular to the path from Pa to Pa, the contribution to 
Vab along this portion of the path is zero. Thus, using the E-field of a point charge 
(Equation (4.11)), we can write

where the unit vector points outward from Q. If we choose Rb to be infinity, we 
obtain the following expression for the potential V at a radial distance R from a point 
charge Q, referenced to infinity:

From this expression, we see that the potential rises as one approaches a positive 
point charge.

We can generalize Equation (4.44) to find the potential function generated by an 
arbitrary charge distribution. First, for a collection of N  point charges, we find

Figure 4-21 Geom etry for determining 
the potential difference between two 
points due to the E-field of a point charge.

The potential difference Vab between these points is

(4.44)

(4.45)
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Figure 4-22 Geometry for determining 
the potential field generated by an 
arbitrary charge distribution.

where r is the position vector that represents the field point and is the position vector 
of the charge Qk. Next, for the volume-charge distribution shown in Figure 4-22, the 
contribution of the charge pv dv' in the volume dv' to the potential at an arbitrary point is

dV
Pydv'

47re0 |r — r'

where r and r' are the position vectors of the field point P and the differential volume 
dv ' , respectively. Summing the contributions from all the charges, we obtain

V = 1 f Pydv' 
477-e0 Jvoi. k  “  r'

V]. (4.46)

In this integral, the primed variables are the dummy integration variables. Also, the 
integration takes place only at locations where charge is present. Using a similar 
sequence of steps, we can find the following potential functions for surface- and line- 
charge distributions:

V = 1 f P sd s '

Att€0 Js |r -  r'
[V], (4.47)

where the surface-charge distribution ps is contained in the surface S, and

T/ 1 f PtM ' [V], (4.48)
4 7reG Jc |r -  r'|

where the line-charge distribution pt lies on the contour C.

E xam p le  4 -5

For the uniform circular loop of charge shown in Figure 4-23, find the E-field it generates at an 
arbitrary point P (0 , 0, z )  along the z-axis by first finding the potential V.  Assume that the radius 
of the loop is a  and the line-charge density is p t .
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Figure 4-23 A uniformly charged circular 
loop.

Solution:

Substituting r =  z a z , r ' =  a a p, and d i '  — adcf>' into Equation (4.48), the potential V  at an 
arbitrary point along the z-axis is

V  =
4 7T e_

Pi
d i '  =

477 6,r fo -b

1

z + a‘
adcf)' =

apt
2 e n Vz2 + a 2

The E-field generated by the loop is related to V  by

E = - V P
dV ~ 1 dV . dV .
a ap i j , 3 a :dp  ̂ p d(f) v dz

This equation implies that E may have up to three components, but we can surmise that the p  

and (f> components of E are zero at all points on the z-axis, since this charge distribution is sym
metric about that axis. Thus, the z-com ponent of E is

z dz
_d_

dz
a p e azpi

2en V z2"+  a ‘ 2 6 0 [z2 + a 2] 3/2‘

Hence,

E = azPt
2 U z 2 + a2]2] 3/2

It is left as an exercise to show that this same result could be obtained using Coulomb’s law.

4-6-1 ABSOLUTE AND RELATIVE POTENTIALS

The potentials given by Equations (4.46) through (4.48) are called absolute poten
tials, because each represents the potential difference between a field (i.e., observa
tion) point and a point at infinity. Choosing infinity as a reference point is 
convenient for many field calculations, because the potentials of all charge distribu
tions with finite dimensions approach zero at points that are very far from the 
charges. We can see this by taking the limit of Equation (4.46) as r —> If pv -> 
0 at infinity, we have

v n f  lim Pv
•'Vol.

—
1 

**1 d v ' = 0.
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The same thing occurs for surface- and line-charge distributions when they are of finite 
extent (i.e., contain no charges at infinity).4

We can also define relative potentials that are referenced to points other than at 
infinity. This is particularly convenient when there exists a constant potential surface 
near the system in question, such as a metal chassis. We can define a relative potential 
function V' as

where V is the absolute potential and Ure{ is a reference potential. Comparing this 
expression with Equation (4.42), we see that V' is the potential difference between a 
point and a point (or surface) with absolute potential Vre{. Since Vre{ is a constant, E is 
related to both V and V' by the same formula:

4-6-2 THE ELECTRIC DIPOLE

An electric dipole consists of two point charges of equal magnitude and opposite sign, 
separated by a distance d. Figure 4-24a shows an electric dipole located on the z-axis. 
Although the E-field of a dipole at a point P can be found by summing the fields of the 
individual point charges, the resulting expression is cumbersome and difficult to sim
plify. A better approach is to first find the potential function associated with this 
charge pair and then simplify it for the case where the distance r from the observer to 
the dipole is much larger than the dipole spacing d.

Using Equation (4.44) for each charge, we can write the potential generated by 
the charge pair as

(4.49)

E = - V V =  - V F . (4.50)

(4.51)

P

x
2

(a) (b)

Figure 4-24 a) The dimensions of an electric dipole, b) the relationship 
between the radial distances for a far-zone observer.

4 This is not true for infinite sheets of charge or for infinite line-sources, since they contain charges out to 
infinity.



114 CHAP. 4 ELECTROSTATIC FIELDS IN FREE SPACE

where R + and R_ are the distances from P to the positive and negative charges, respec
tively. From Figure 4.24b, it follows that when r> d ,

R. r ■+■ — cos 6. 
2

Applying the binomial expansion l/(*  -+- a) ~  (1/x) ± (a/x2) when x > a, we can write

I 1 d
— ~ — ± cos 6.
R± r lr 2

From this, we obtain

I I  d cos 6
R + R _ r2 ‘

Substituting this approximation into Equation (4.51), we obtain 

Qd cos 6
V r »  d.

4Tre0r2

Finally, the E-field is obtained by using

E = —VF =
1 dVd V . 1 dV ,

a,. H- - - - - - - - a fl +  a,
dr r d0 r sin 6 d (/> ^

Evaluating the partial derivatives, we find that

(4.52)

(4.53)

E
Qd

4irenr3
(2 cos 6 ar + sin 6 a0) r »  d. (4.54)

Expressions for each of the E-field streamlines can be obtained by remembering 
that the differential path vector df at each point on a streamline is parallel to E at that 
point. In spherical coordinates, we have, from Equation (2.61) that

d f  =  d r  a r +  r d 6  a d +  r sin 6 d(f> .

This means that in order to have df a E at all points, we must require that

Ee _ r dd _ sin 6 
Er dr 2 cos 6

The solution of this differential equation is

r -  C sin2 d, (4.55)

where C is an arbitrary constant; each value of C corresponds to a different streamline. 
The several streamlines and constant potential surfaces of an electric dipole are plotted 
in Figure 4-25.

A distinctive characteristic of the E-field of a dipole is that it decays proportion
ally to r~3, whereas the field of a single point charge decays as r~2. The reason for this
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P

F ig u re  4 -2 5  Field lines of an electrostatic 
dipole.
_____ E-field streamlines
_____ Constant potential surfaces

is simple: The farther away an observer gets, the more the two charges appear to lie at 
the same point. Also, the field very close to the dipole center is more intense than 
that due to a single point charge. Thus, the field generated by an electric dipole is 
very localized.

We can derive a simple expression for the potential V of a dipole whose center is 
at the origin, but is not necessarily aligned with the z-axis. This can be accomplished 
by noticing that the term Qd cos 6, which appears in Equation (4.53), can be written as 
a dot product:

Qd cos 6 = p • ar.

In this expression, p is called the dipole moment, defined by

P = Qd [C • m], (4.56)

where d is the directed distance from the negative charge to the positive charge. From 
this definition, the potential of an electric dipole located at the origin can be written as

V =
P*a,

4ire0r2
[V].

Finally, if the center of the dipole is located at r', V can be expressed by

v =  P =  P*( r  ~  r' ) 
47re0R 2 4 tt 1 r — r' | 3

[V], (4.57)

where
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and

„ r — r
(4.58)

R =  |r -  r ' | . (4.59)

We will find Equation (4.59) useful in the next chapter when we discuss the electric 
dipoles that are induced in materials when their molecules are subjected to an exter
nally generated E-field.

4 -7  Poisson's an d  Lap lace's  E qu atio ns

We have already seen that a charge distribution pv and its resulting potential function V 
are related by the integral expression

V =
1 f Pvdv' 

4 7re0 J |r — r'
Vol.

(4.60)

This equation is useful whenever a charge distribution is known everywhere. There 
are, however, many situations in which the charge distribution is known only in certain 
regions, but the potential V is also known along certain boundaries. In these cases, it 
is far more useful to have a differential equation that relates V and pv.

We can find this differential equation by manipulating Equation (4.60), but a 
much simpler way is by starting with the point form of Gauss’s law,

V -E

Substituting E = -  V V, we can write

— V »V V  = - V 2V =

where V2 denotes the Laplacian operator. Thus,

V2T = (4.61)

This differential equation is called Poisson’s equation. A special case of Poisson’s 
equation occurs in source-free regions (i.e., where pv = 0):

V2V = 0 (pv =  0). (4.62)

This is called Laplace’s equation.
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E xam p le  4 -6
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Prove that the potential function for a point charge, given by Equation (4.44), satisfies Pois
son’s equation.

Solution:

For a point charge Q  located at the origin,

V  =  .
4 TT€0 r

Taking the gradient of this expression, we find that

___ C - i .
47Te0dr \ r )  47teQr" '

Next, taking the divergence, we obtain

Q  1 d
v - v u  =  V 2U =

4 7re„ r 2 dr
r’xl -4

which is zero at all points r  =  0 , which it should be, since the point charge exists only at the origin.
To see if V  satisfies Poisson’s equation at the origin, let us integrate V 2V = — (p v) / ( e 0) 

throughout a small spherical volume, centered about r  =  0 :

V 2V d v  =  -
1

Pv d  v  ■

Vol. Vol.

The integral on the right-hand side is simply the enclosed charge Q ,  so

\ 2V d v  = -  — .
60

We cannot evaluate the integral in its present form, since V2U is undefined at r = 0. However, 
remembering that V2U = V • V V ,  we can write

V2U d v  =  (f> W » ds,

where S is a small spherical surface centered about the origin. Using V T  -  — 
and ds — r 2 sin 6 dO d(f> ar we obtain

Q

4 7T e j 2

V 2U d v  = Q

4 77

r " Q
sin 6 dddcf) = ---- ,

Jn C,

which shows that V  satisfies Poisson’s equation at r  =  0.

In the next chapter we will use Poisson’s and Laplace’s equations to solve a num
ber of practical problems where little is known a priori about the complete charge dis
tribution, but where the potential V  is known on the surface bounding some region. 
Problems of this sort are called boundary value problems and are an important part of 
electrostatic analysis.
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4 -8  S u m m a tio n

We started this chapter by specializing Maxwell’s equations for static charge distribu
tions in free space. For this case, only an electric field is produced, which is governed 
by Maxwell’s two equations of electrostatics. From these, we were also able to derive 
Coulomb’s law, which is an explicit equation for the E-field generated by any charge 
distribution. Using these relations, we were able to calculate the E-fields that are gen
erated by a number of simple charge distributions.

We also found that electrostatic calculations can be accomplished by using the 
electric potential function. Since it is a scalar, the use of this potential greatly simpli
fies certain electrostatic problems. The potential is also directly related to energy and 
is easily measured.

In the next chapter, we will expand our electrostatic analysis by including the 
effects of material media on the fields generated by electric sources.

P roblems

4-1 A point charge of value 2 [C] is located at the point (2, — 1, 4) [m]. Calculate 
the electric field E at the point P (—1, 2, 2) [m].

4-2 Point charges of value —0.1 [^tC] and 3 [^tC] are located at the points (2, — 1, 4) 
[m] and (-1 , 2, 0) [m], respectively. Calculate the electric field E at the point 
P (2 ,- l ,3 )  [m],

4-3 Figure P4-3 shows a line-charge ring with uniform charge density pt and radius a, 
lying in the z = 0 plane. Use Coulomb’s law to find the electric field E at any 
point on the z-axis.

4-4 Repeat Problem 3 for the case where the line-charge density is pt = p(o cos 4> [C/m].
4-5 Figure P4-5 shows a uniform line-charge segment with charge density with 

length 2h, and centered along the z-axis. Find an expression for the E-field at 
any point P(0, y, 0) on the y-axis. Compare this with the field of an infinite line 
charge (i.e., h -» °°) by plotting | E | vs. y for both cases.

4-6 Use Equations (4.19) and (4.20) to find the range of heights above a uniform disk 
of charge with radius a where | E | is within 5% of the E-field of an infinite surface 
charge with the same charge density.

Z n

R adius = a

x F ig u re  P 4-3
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F ig u r e  P 4 -5

4-7 For an infinite line charge along the z-axis with uniform charge density p{,
(a) using either Equation (4.42) or Equation (4.48), show that the absolute poten

tial function (i.e., referenced at infinity) is of the form

V = ^ - [ l n H  -  lnp].
Z 7 T  € q

(b) show that this potential function yields the correct E-field, using E = —W .
(c) speculate as to why this potential has an infinite value for all finite values of p.
(d) To circumvent the problem of infinite absolute potentials, the relative potential

V  = Pi
eQ

l n p

is often used. Show that this potential yields the same E.
4-8 Find the E-field at an arbitrary point (p, (f>, z) generated by the charge distribu

tion pv = (1/p) e~p [C/m3], where p is measured in meters. (Hint: Is there any 
symmetry here that can be exploited?)

4-9 For the potential function V(x, y ) = V1 sin (ttx/ a) sinh (Try/a) [V],
(a) show that this potential satisfies Laplace’s equation.
(b) find the E-field that follows from this potential.

4-10 Calculate the potential difference Vab between two concentric spherical shells of 
charge. Assume that the inner shell has radius a and charge Q, and the outer 
shell has radius b and charge —Q.

4-11 Use Gauss’s law to find the E-field generated by an infinite line charge with 
charge density p{.

4-12 Use Gauss’s law to find the E-field generated by an infinite sheet of charge with 
uniform surface charge density ps.

4-13 A spherically symmetric charge distribution has a charge density

6 ~T
Pv = Pvo~y [C/m3], 

where r is measured in meters.



(a) Use Gauss’s law to determine E at any point.
(b) What form does E have in the limit as r -» 00? Does this make sense? Why 

or why not?
4-14 If measurements have shown that the E-field in an all of space is
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find the charge distribution that generated this E-field.
4-15 If it is known that an electric dipole is located at the origin and that its E-field at 

the point P{2[m], 30°, 90°) is E = 4a0 [V/m], find the magnitude and direction of 
the dipole moment p.

4-16 If point charges of value +2 [nC] and -3  [nC] are located at the points P1 (2, 2, 
-l)[m ] and P2(l, — 2, l)[m], respectively, find the voltage Vab between points 
Pa(2, 3, l)[m] and Pb(~ 1, 2, 2)[m] by using the superposition principle and the 
potential expression for point charges (Equation (4.44)).

4-17 Find the expression for the E-field at any point along the z-axis due to the solid, 
uniformly charged circular cylinder shown in Figure P4-17. Assume that the 
cylinder has charge density pv, has radius a, and extends between z = —h/2 and z 
= h/2. Derive the expression for the E-field by treating the cylinder as an infi
nite stack of circular disks.

4-18 Two infinite sheets of charge lie parallel to each other, separated by a distance d. 
The upper and lower sheets have surface charge densities psa and psb [C/m2], 
respectively. Find the voltage Vab from the top to the bottom surface.

4-19 Calculate the E-field generated at all points (r, 6, cf>) by two concentric spheres of 
surface charge that are centered at the origin. Assume that inner and outer 
spheres have radii ra and rb and surface charge densities psa and psb, respectively.

4-20 Prove that for a point charge Q at the origin, the integral form of Coulomb’s law 
(Equation (4.14)) collapses to the familiar form

by

Pv
h

R adius = a F ig u re  P4-1 7
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(a) showing that pv(r) = Q <5(x) <5(y)<5(z) [C/m3] represents a point charge at the
00

origin of value Q, where <5(x) = 0 for x 0 and 5(x) dx = 1.

(b) substituting pv(r) of part a) into Equation (4.12) and integrating.
1 (r -  r')

~ — f-------7 j^ by expanding r and r' in Cartesian coordi-4-21 Prove that V
r — r

nates and performing the gradient operation.



5
Electrostatic Fields 
In Material Media

5-1 In tro d u c tio n

Our discussion of electric fields thus far has treated charged particles as if they were 
somehow suspended in a vacuum, with no apparent means of support. Although 
there are times when this is indeed the case (such as the electron beam inside a cath
ode-ray tube), the vast majority of engineering applications of electromagnetics 
involve materials, chosen for their electrical, magnetic, or mechanical properties. In 
fact, most of the advances in electrical engineering have been the result of the dis
coveries of new materials and the interactions these materials have with electromag
netic fields.

Materials interact with electric fields because they are composed, in part, of 
charged particles. When subjected to an electric field, these charges experience elec
tric forces that cause them to move. How the charges move depends upon the nature 
of the material. Some materials, such as metals, possess charges that are free to move 
about the material as conduction currents. These materials are called conductors. 
Dielectrics, on the other hand, are composed of charges that are tightly bound to indi
vidual nuclei. These charges can move only small distances, but they can generate sec
ondary electric fields that can substantially alter the total electric field, both inside and 
outside the material.

122
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In this chapter, we will discuss the ways in which electric fields interact with mate
rial media. We will start this discussion by identifying the relationship between electric 
fields and currents in conducting materials. This will allow us to calculate the resistance 
of simple devices and develop Kirchhoff’s laws for dc circuits. We will then discuss the 
relationship between the bound charges and electric fields in dielectric materials.

The last part of the chapter is devoted to the development of solution techniques 
for finding the electrostatic fields generated by systems that contain constant potential 
surfaces. Problems of this sort are called boundary value problems, and we will dis
cuss how they can be solved using analytical, graphical, and numerical techniques.

C o n d u c to rs

When some of the electrons in a material are free to move from molecule to molecule, 
a conduction (or drift) current will flow when an electric field is applied to the mater
ial. These free charges can be electrons, holes, or ions. For most materials, the cur
rent density J and the electric field E are related by

J = o-E [A/m2], (5.1)

where a  is called the conductivity, which is measured in units of siemens per meter [S/m] 
or inverse ohms per meter [fl-1m _1]. Equation (5.1) is called a constitutive equation, 
because it relates J and E in terms of the material-dependent parameter, called a consti
tutive parameter. This equation is also called the point form of Ohm’s law.

The conductivity of a material is a direct indication of the ease with which its free 
charges can be moved by an electric field. Materials with large conductivites are con
sidered good conductors, or simply conductors, and those with small conductivities are 
called poor conductors, or insulators. The values of a  for a number of materials are 
given in Table C-2 of Appendix C.

We can derive an expression for the conductivity of a material in terms of the 
properties of its free-charge carriers. To accomplish this, we first remember from 
Equation (3.21) that the current density at a point can be expressed in terms of the 
charge densities pvi and drift velocities u; of the different charge carrier types; that is,

m
j  = 2 a >«u/’ (5-2)

i

where m is the total number of different types of charge carriers present in the material. 
For simple materials, the drift velocity u, of each type of charge carrier is related to E by

u, = ±/U('E, (5.3)

where p,{ is the mobility of the ith charge distribution.1 Mobility is measured in units of 
[m2• V ”1 • s-1]. By convention, mobility is always a positive number; the plus sign is 
used in Equation (5.3) for charges that move parallel to E (typically, positive charges), 
and the minus sign is used for charges that move antiparallel to E (typically, negative

1 By convention, the same symbol is used to to represent both mobility and permeability. Even so. it is 
usually easy to tell which meaning is intended in an expression by looking at the context of the expression.
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charges).* 1 2 Substituting Equations (5.2) and (5.3) into Equation (5.1), and solving for 
a, we obtain

m
(7 = 2  i P v i•

E xam p le  5-1 ---------------------------------------------------------------------------------------------------------------------------------

At 300° K (80°F), the electron and hole mobilities in pure silicon are fj,n = 1350 [cm2/(V *s)j and 
fxp = 480 [cm2/V »s], respectively. If the electron and hole densities are both IV = 1.5 x 10'° 
[cm ~3], find the conductivity a.

Solution:

From Equation (5.4), we have 

cr =  ( e N ) ( - ^ )  +  ( - e N ) ( v p)

= (1.6 X 10“19[C]) x (1.5 x 101(,[cm~3]) X (1350 + 480)[cm 2 */V  • s])

= 4.39 X 10 “6 [S/cm] = 4.39 X 10 “4 [S/m ],

This result compares well with the value given in Table C-2 of Appendix C.

Materials are often classed according to whether or not they are homogeneous, 
linear, or isotropic. The definitions of these classes are:

1) A homogeneous material is one in which the constitutive parameters do not vary 
from point to point throughout the material.

2) A linear material is one whose constitutive parameters are not functions of the 
field strength or the current density.

3) An isotropic material is one that has no preferred directions. In the case of con
ductivity, this means that J and E are always collinear, and a  has the same value 
for all orientations of E.

Materials that are homogeneous, linear, and isotropic are called simple materials.

5-2-1 RESISTANCE FORMULAS FOR SIMPLE CIRCUIT 
ELEMENTS

When a conducting material is placed between two constant potential surfaces (often 
called terminals), the relationship between the current I  flowing through the element 
and the potential difference Vab between the surfaces is governed by Ohm’s law,

Vab = IR, (5.5)

2 A notable exception is the valence electrons in semiconductors, which have a negative effective mass and 
actually move in the same direction as E. See Ben G. Streetman, Solid State Electronic Devices, 3rd edition, 
Englewood Cliffs, NJ, 1990, (Prentice Hall), pp. 63-64.
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Term inal a Term inal b

Figure 5-1 A homogeneous section of 
conducting material.

where R is the resistance of the element, measured in ohms [fl].
To see how the resistance of an element is related to its dimensions and its 

conductivity, consider the simple element shown in Figure 5-1. Here, a homoge
neous, cylinder of material has length £, cross-sectional area S, and conductivity a. 
If E and J are uniform throughout the element, the voltage between the two ter
minals is

V = -  f  E -d e = Et. (5.6)
h

The current I  flowing into the positive terminal can be found by integrating the current 
density J = <xE over the cross section of the element:

I = j  J • ds = j  o-E • ds = aES. (5.7)

Substituting Equations (5.6) and (5.7) into Equation (5.5), we find that the resistance of 
this simple element is

l  .

*  -  u r
(5.8)

We can use Equation (5.8) to derive a general expression for the resistance R of
an element in terms of the E-field alone. 
J = <rE, we obtain

Using Vab = -  / ;  E • di, I = Js J • ds and

- j E - d e

r  -  ,  - (5.9)
o-E-ds

■ ■ ' i

where a and b are the positive and negative terminals, respectively, and S is any cross- 
sectional surface of the element whose normal vector is parallel to the current flow. If 
the material has a linear conductivity, R is a function only of the material parameters 
and the dimensions of the element. Also, the conductance G of an element is defined 
as the reciprocal of its resistance, R:

G = R~1 = ^  [n _1orS]. (5.10)
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E xam p le  5 -2

Determ ine the conductance per unit length between the inner and outer conductors of the coax
ial cable shown in Figure 5-2. Assume that the inner and outer conductors are constant poten
tial surfaces of radii a and b , respectively, and the m aterial between the conductors has a 
constant conductivity <x.

Figure 5-2 A  coaxial cable, filled with a 
conducting dielectric.

Solution:

Even though a conducting medium lies between the inner and outer cylinders, the geome
try still has perfect cylindrical symmetry. This means that the E-field has the same general form 
as a cylindrically symmetric charge distribution in free space. (See Equation (4.31).) If the con
ducting medium is homogeneous, E can be expressed as

a <  p <  b ,

where E 0 is a constant. Using this E-field expression, we find that the voltage between the inner 
and outer conductors is

V = -
F  b
—  d p  ~  E 0 l n -  
p  a

[V].

We can find the current per m eter I  that passes between the inner and outer cylinders by inte
grating J  • ds on a circular cylinder of radius p  and unit length that surrounds the inner conductor. 
Using J  = crE, we obtain

C '̂ '7r crE  * ^
/ =  — -  ap ‘ &pp  dcf) =  2 n a E 0 [A/m].

■'o P

Substituting these expressions for V  and I  into Equation (5.10), we get

G  =
I_
V

2ircr

a

[S/m],
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5-2-2 METALS AND PERFECT CONDUCTORS

Metals have large conductivities, because they are composed of atoms (or molecules) 
that each contain at least one loosely bound electron. These electrons constitute a 
highly mobile electron cloud that can flow in response to a small electric field. Non- 
metals can also exhibit large conductivities. A good example is saltwater, which has a 
large concentration of ions that can drift with an applied E-field.

When the conductivity of a material is high enough, it is often an excellent 
approximation to model it as a perfect conductor, where cr-> oo. Perfect conductors 
are particularly simple to model, since the E-field inside them is always zero. To see 
why, let us take the limit of E = J/cr as a —> Since J remains finite in a conductor,
even when a —> °°, we obtain3

E = lim — = 0 (perfect conductor). (5.11)

Hence, since V -  J E • df, the potential at each point on and within a homogeneous, 
perfect conductor is constant. Later in this chapter, we will show that the tangential 
electric field above the surface of a perfect conductor is also zero.

The conductivities of most metals vary inversely with temperature. This is 
because the average number of collisions experienced by the electrons increases with 
the thermal activity of the metal, which, in turn, slows the drift velocity of the electrons. 
For example, the conductivity of copper decreases roughly 0.4% for each 1°C increase 
in temperature.

Some metals, called superconductors, exhibit zero resistivity when cooled below 
a certain critical temperature. For instance, aluminum becomes perfectly conducting 
at temperatures below 1.18°K. This change of state happens very abruptly and can be 
explained only by quantum mechanics. Figure 5-3 shows the variation of the resistiv
ity (1/cr) of a typical superconductor with temperature. The critical temperatures of 
metallic superconductors range from roughly 1.1-23°K, which means that their useful
ness is limited to those situations where liquid helium (boiling temperature = 4°K) can 
be used as a coolant.

One application where the benefits of metal superconductors outweigh the prob
lems associated with helium cooling is in the particle accelerators used in high-energy 
physics experiments. Here, enormous magnetic fields are required to confine the par
ticles. These magnetic fields must be generated by large currents in coils, but the 
ohmic losses of ordinary wire limit the maximum B-fields that can be generated. How
ever, superconducting coils made from niobium wires with a tin coating have a critical

<7-><x= cr

-  [ f t  *171]

F ig u re  5 -3  The resistivity of a 
superconductor as a function of

Tc T  [degrees] tem perature.

3 Collisions between charge carriers limit drift velocities and currents, even in good conductors.
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temperature of approximately 9°K and have been used successfully in particle acceler
ators for many years.

More recently, a new class of compounds has been discovered that exhibits super
conductivity at much higher temperatures. Unlike the earliest superconductors, these 
materials are ceramics, not metals. An example is the compound YBa2Cu30 7, which 
has a critical temperature of approximately 83°K. Ceramics are brittle, which means 
that they cannot be extruded into wires. But current research has indicated that thin 
layers of these materials can be deposited onto long, flexible tapes. In time, such 
superconducting tapes may be used routinely for a variety of applications.

5-2-3 KIRCHHOFF’S VOLTAGE LAW

We will now derive Kirchhoff’s voltage law. In a sense, there is nothing new here, 
since the reader is probably familiar with this law from circuit theory. We will take 
the time to deal with it here because circuit analysis is rooted in electromagnetic the
ory. In particular, the laws of dc circuit analysis can be derived directly from the laws 
of electrostatics.

We will start by showing that a steady current cannot flow in a circuit if the only 
force field present is an electrostatic field. Figure 5-4 shows a circuit that consists of 
two resistors, Rl and R2, connected in a loop with a conducting wire. This circuit is 
subjected to an electrostatic field E, generated by a static charge distribution. Since 
the E-field is conservative, <|>c E • d£ = 0 around the circuit path. Using Ohm’s law, we 
find

from which we conclude that I  = 0. Thus, no steady current can flow in a circuit when 
it is subjected only to an E-field produced by a static charge distribution.

Having proved that a steady current cannot be supported in a circuit via electro
static forces alone (or any other conservative force field, for that matter), it is logical to 
conclude that the only way a steady current can be induced in a circuit is for there to be 
a nonconservative force field present somewhere in the circuit. Sources of nonconser
vative force fields include:

1. Electric batteries, which produce chemical forces that act on electrons.
2. Magnetic induction, where forces are caused by time-varying magnetic fields or 

the movement of conductors in the presence of a magnetic field.
3. Thermocouples, which convert thermal energy to electric forces.

tc E -d i = I(R l + R2) = 0, (5.12)

E

Figure 5-4 A  passive circuit subjected to 
E an electrostatic field.
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Figure 5-5 Cutaway view of a battery, 
showing the conservative electrostatic field 
E inside and outside the battery and the 
nonconservative field Enc that exists only 
inside the battery.

4. Photovoltaic cells, which convert light energy to electric forces within semicon-

To understand how these nonconservative forces can produce steady currents in 
a circuit, consider the schematic of a battery, shown in Figure 5-5. All batteries have 
an internal resistance, but we will assume that this resistance can be modeled as an 
external resistor when the battery is connected in a circuit. Inside the battery, chemi
cal forces produce a nonconservative electric field Enc on the free charges. Initially, 
this force causes positive and negative charges to congregate at the positive and nega
tive terminals, a and b, respectively. This process continues until the resulting electro
static E-field inside the battery exactly counterbalances the chemical force, resulting in 
a net zero force on the charges.

Unlike the chemically induced field Enc, which is present only inside the battery, 
the electrostatic field E is present both inside and outside the battery and gives rise to 
a voltage Vab that can be measured between the terminals as

In this expression, the integration involving E can take place on a path either inside 
or outside the battery, whereas the integration involving Enc must take place inside 
the battery, since Enc = 0 outside the battery. As this voltage is caused by a non
conservative force, it is called an electromotive force (emf), specified in volts [V]. 
This name sometimes causes some confusion with units, but it emphasizes the fact 
that the power required to drive a steady current in a circuit must come from a force 
that is not electrostatic.

Now that we have shown that batteries (or any other dc source) produce an elec
trostatic field and a voltage between their terminals, it is simple to derive Kirchhoff’s 
law for lumped-element, dc circuits. Consider the circuit shown in Figure 5-6, which

ductors.

2 3 +
Vb t R

4 Figure 5-6 A simple circuit for deriving 
Kirchhoff’s voltage law.



consists of a battery with voltage VB and a lumped resistor R , connected by perfectly 
conducting wires. For a closed, clockwise path C around the circuit, the conservative 
property of the electrostatic E-field gives us

cjJ E • df = -  VB + VR = 0,

where

VB = -  f  E • df

and

VR= -  f E • df.
J4

Also, from Ohm’s law, we have VR = IR, and the preceding expression can be written as

Vb = IR. (5.13)

Thus, if VB > 0, 1 > 0, which agrees with the common notion that current flows out of 
the positive terminal of a battery when it is connected to a resistive load.

Finally, we can generalize Equation (5.13) for the case where N  voltage sources 
and resistors are connected in series. If Vi is the voltage across the ith element while 
traversing the circuit in a particular direction (say, CW or CCW), we obtain the famil
iar circuit form of Kirchhoff’s voltage law,
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2
i= 0

E, = 0. (5.14)

Here we see that voltage drops across the sources are treated just the same as the volt
ages across the resistors.

5-2-4 OHMIC POWER DISSIPATION—JOULE S LAW

It follows from the definition of potential difference that the energy dissipated when a 
charge dQ moves through a potential difference V is dW  = VdQ. Since a current con
sists of a stream of charges, the power P that must be expended in order to maintain a 
steady current I through a lumped circuit element is

P =
dW
dt

dQ
~ V ~ d t~  V1,

(5.15)

where V is the potential difference (voltage) across the resistor and I  is defined into 
the most positive terminal of the element. When P > 0, the element is absorbing
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power, and when P < 0, the element is supplying power. When the element is a resis
tor, V = IR , and Equation (5.15) can be expressed in the form

V2
P = i2R = — . (5.16)

This equation is the lumped-load version of Joule’s law.

Figure 5-7 Geometry for deriving Joule’s 
law.

We can also determine the power dissipated in an arbitrary volume of resistive 
material. To accomplish this, consider the differential volume shown in Figure 5-7. 
If this volume is oriented such that J is parallel to the displacement vector df, the cur
rent flowing through the volume is dl = Jds, and the voltage across the element is 
dV = E • d£. Substituting this into Equation (5.15), we obtain

dP = Jds E • df.

Since J is parallel to df, J di = Sdl, so we can write dP as 

dP = E* Jdv [W],

where dv = dids is the volume of the differential element. Thus, E • J is the dissipated 
energy density, measured in units of watts per cubic meter [W/m3]. The total power 
dissipated within a volume can be found by integrating both sides of this expression 
over the entire volume, yielding

P = f E *Jdv [W].
Vol.

(5.17)

This is the integral version of Joule’s law. For isotropic media, J = crE, so

Vol.

or

(5.18)

P =
I

ct|e | 2 dv.

Vol.

(5.19)

Media that dissipate power are called lossy media. According to Equations 
(5.18) and (5.19), the conductivities of lossy media are greater than zero but less than 
infinity: 0 < or < There are two types of lossless media that do not dissipate power. 
The first are insulators, with a  = 0. Insulators are open circuits to current (J = 0), so
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P = 0. On the other hand, E = 0 inside perfect conductors, yet J remains finite 
because of electron collisions. Thus, P — 0 in perfect conductors.

E xam ple  5 -3

Use Joule’s law to calculate the power dissipated per meter in the coaxial resistor discussed in 
Example 5-2. Compare this result with the value obtained from the lumped form of Joule’s law.

Solution:

From the solution of Example 5-2, the E-field between the conductors can be expressed 
in the form

E - V

pin—
a

where a and b are the radii of the inner and outer conductors, respectively, and V is the voltage 
between the conductors. Substituting this into Equation (5.19) and integrating over a 1 [m] 
length, we obtain

P = t
aV

a

l -1 ,*r ,/> 1
To I —j p d p d Q d z

Jo Jo Ja P

2ircrV2

T T
a

[W/m].

Also from Example 5-2, the resistance per meter of this resistor is

R ~ ——— In— [fl*m],
277(7 a

Substituting this into the lumped form of Joule’s law (Equation (5.16)), we obtain 

2tt<tV2

P = ^ T ’

which is the same result.

5 -3  D ie lectrics

Dielectrics contain charges that are tightly bound to individual nuclei. Although these 
bound charges can move only a fraction of an atomic distance away from their equilib
rium positions, they can produce large charge imbalances throughout these materials 
that can significantly affect the total electric field, both inside and outside the dielectric 
material. In most dielectrics, the nuclei are unable to move because of molecular lat
tice forces, but the electron orbits can be distorted when an electric field is applied. 
Figure 5-8a is a simplified illustration of an atom (or molecule) when no externally 
applied electric field (which we will call a polarizing field) is present. Here the nega
tive electron cloud and the positive nucleus form two concentric spheres of charge that 
produce no net electric field outside the atom. In Figure 5-8b, the electron cloud is
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° J

( 0 ) 1
E\zJ F ig u re  5-8 Simplified model of molecular 

charges, a) An unpolarized molecule, b) A
(a) (b) polarized molecule.

distorted (or polarized) by a polarizing field. In this case, the positive and negative 
charge centers are offset and form an electric dipole with dipole moment p. This 
induced dipole generates an E-field that, when added to the polarizing field, changes 
the total field both inside and outside the dielectric.

The molecule depicted in Figure 5-8a is a nonpolar molecule, since it has no 
dipole moment when there is no polarizing field. Some molecules, such as water 
(H20), are polar, meaning that their electron clouds are not symmetrically located 
about the positive nuclei.4 Polar molecules produce a net electric field even when no 
polarizing E-field is present. Even so, the dipole moments of most polar materials 
tend to orient themselves randomly when no polarizing field is present, producing a 
macroscopic dipole moment of zero.

Some dielectrics exhibit a permanent, macroscopic dipole moment, even in the 
absence of a polarizing field. These materials, called electrets, are the electrical analog 
of permanent magnets. Electrets contain polar molecules that, when heated, can be 
aligned by a polarizing field. As they cool, these molecules are locked in the aligned 
state, giving rise to a permanent dipole moment.

Piezoelectric materials exhibit time-varying dipole moments and voltages when 
they are subjected to a time-varying mechanical stress. This effect, which can also act 
in reverse, is used in devices such as microphones and ultrasonic transmitters. Many 
materials that exhibit the piezoelectric effect also exhibit the pyroelectric effect, where 
macroscopic time-varying dipole moments and voltages can be induced by sudden tem
perature changes. Pyroelectric detectors are often used for measuring the output pow
ers of high-infrared lasers, such as carbon dioxide (C 02) lasers.5

5-3-1 DIELECTRIC SUSCEPTIBILITY

The electric dipoles formed throughout a dielectric are discrete, but from a macro
scopic point of view, they appear to be continuously distributed. Thus, it is convenient 
to define the dipole moment per unit volume or polarization vector as

N A v

S p k

p s  i S ,  *a T  [c/m2]’ (5'20)

where N  is the number of dipoles per unit volume and = Qkdk is the dipole moment 
of the A:th dipole. Unlike the discrete quantity pfc, P is much easier to work with, since 
it is a continuous function of position.

4The dipole moment of a water molecule has a magnitude of 6.15 X 10-30 [C* m].

5 See J. T. Verdeyen, Laser Electronics, 2d ed. (Englewood Cliffs, NJ: Prentice Hall, 1989).
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In simple (i.e., linear, homogeneous, and isotropic) dielectric media, P is always 
proportional to E; thus,

where x e, called the electric susceptibility, is a unitless constant of proportionality that 
is a measure of the ease with which dipoles can be formed in the dielectric. In inho
mogeneous materials, the value of x e varies with position. In nonlinear media, xe is a 
function of the magnitude of E. Most dielectrics are linear when the polarizing fields 
are small, but some materials exhibit substantial nonlinearities when the polarizing 
fields are large.

Anisotropic dielectrics possess the property that P and E do not always point in 
the same direction. Crystalline solids often have this property, since their crystal lat
tices allow the electron clouds to stretch more easily in certain directions than in others. 
For these materials, the electric susceptibility xe must be represented as a matrix (often 
called a tensor), since the product of a vector and a scalar cannot change the direction 
of the vector.

5-3-2 POLARIZATION CHARGE DISTRIBUTIONS 
IN DIELECTRICS

To find the relationship between a bound charge distribution in a dielectric and the 
polarization P, let us start by recalling from Equation (4.57) that the potential function 
Vk for a single dipole of moment pfc is given by

where the position vectors r and r' represent field and source points, respectively. For 
a volume filled with dipoles, such as that shown in Figure 5-9, the resulting potential 
function can be found by replacing p with Pdv' and integrating throughout the vol
ume, to obtain

(5.21)

(5.22)

S

T, Figure 5-9 Geometry for determining the 
potential field of a charge distribution in 
terms of the polarization vector.

x
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where P is a function of the primed coordinates. In the discussion that follows, we will 
show that the polarization P within a dielectric gives rise to charge distributions on and 
within the dielectric. These are called polarization charge distributions.

We can manipulate Equation (5.22) into a form that makes the relationship 
between P and the induced volume and surface charge densities on and within the 
dielectric more obvious. This can be accomplished by first noting that the second term 
in the integrand can be written as

r -  r

where the notation V' indicates that the derivatives associated with the del operator 
are with respect to the primed coordinates. The proof of this identity is straightfor
ward when r and r' are expressed in Cartesian coordinates. Substituting, we can write

' I ’

V =
1

4ne0
P-V '

Vol.

dv ' .

Also, using Equation (B.3) of Appendix B, we can write the foregoing integrand as

p . V '
1 v .p

r — r
+ V'

r — r

Substituting this identity into the integral, we obtain

V = —
1

477 €„
V -P  J , 1

dv +
r v  »P

J |r -  r' 477 6,, I V’T
dv'.

Vol.

Finally, the divergence theorem can be used to transform the second volume integral 
into a surface integral, yielding

V =
477

Vol.

V • P
|r -  r'|

dv' +
1 r p - i

4t7 60 J5 |r -  r'
ds', (5.23)

where an is the outward surface normal to the surface S that bounds the volume.
To see what this potential expression tells us about the charge distribution on and 

within a polarized dielectric, let us compare it with the potential field generated by a 
charge distribution that contains a charge distribution pv in a volume and surface- 
charge distribution ps on the surrounding surface. Using Equations (4.46) and (4.47), 
we see that the electric potential function of such a charge distribution is given by

V =
1 f  Py dv'

4tt€0 J |r — r'
Vol.

+ — f4ire„ Js
ds', (5.24)

where pv and ps are both functions of the primed coordinates. Comparing the volume 
integral of Equation (5.24) with that of Equation (5.23), we can conclude that -V ' • P 
represents a volumetric polarization charge density pvp. Similarly, equating the inte
grands of the surface integrals, we can conclude that P • a„ represents a polarization
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surface charge density p . Thus, the volume and surface charge densities caused by P 
can be expressed as

Pvp ~ — V • P [C/m3], (5.25)

P,„ = P-a„ [C/m2], (5.26)

In Equation (5.25), we have dropped the prime notation from the divergence operation 
to indicate pvp as a function of unprimed coordinates. Also, the subscript “p” indicates 
that these are polarization charge distributions, resulting from the displacement of 
bound molecular charges.

Equation (5.26) is valid at the interface between a dielectric and free space. For 
the case where one dielectric is adjacent to another, this expression can be modified to 
take into account the polarization charge deposited on S from both sides of the inter
face, that is

PsP = (p i ~ p 2) -a 12„ [C/m2], (5.27)

where P2 and P2 are the values of P on both sides of the surface and a12„ points from 
region 1 towards region 2.

According to Equations (5.25) and (5.26), a polarization charge distribution exists 
wherever the polarization P has a nonzero divergence inside a dielectric or is discon
tinuous across a dielectric interface. For instance, consider the uniformly polarized 
dielectric shown in Figure 5-10. Here, the charge density within the volume is zero 
(in a macroscopic sense), since the positive and negative charges of adjacent dipoles 
cancel at each interior point. This cancellation does not happen at the right- and left- 
hand faces, however, where positive and negative surface charge densities accumulate, 
respectively. Figure 5-11, on the other hand, depicts a situation in which a volume

F ig u re  5-10 A  uniformly polarized 
dielectric, showing the cancellation of 
charges everywhere inside the volume and 
a surface charge at the edges.

F ig u re  5-11 A  polarized dielectric, where 
a point charge is created at a point where 
P has nonzero divergence.



charge distribution does exist inside a dielectric. Here, the molecular dipoles are 
aligned so that P diverges away from the point at the center, resulting in a negative 
polarization charge density there.

5-3-3 ELECTRIC FLUX DENSITY

The polarization charge distributions that are induced on and within dielectric materi
als generate secondary electric fields that must be accounted for in the design and 
analysis of electromagnetic systems. To accomplish this, let us start by considering the 
point form of Gauss’ law inside a dielectric region, namely,

V*e0E = pvT = pv + pvp,

where pv, pvp, and pvT are the free, polarization, and total charge densities, respectively. 
Remembering that pvp-  -  V • P, we can write

V-6gE = pv -  V«P,

which can be written in the form

V*(e0E + P) = pv.

Comparing the previous two equations, we notice that the right-hand side of the 
latter one is much simpler, since the free charge in most systems usually exists only on 
the surfaces of conductors. Thus, we now define the following new physical parameter 
called the electric flux density:
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D = e0E + P [C/m2]. (5.28)

Using this definition, we obtain another form of Gauss’ law6:

V *D = /v (5.29)

The right-hand side of this form of Gauss’ law looks identical to the free-space form 
(Equation (4.7)), but the reader should note that pv is the free-charge density, not the 
total-charge density.

The electric flux density D in most dielectrics is proportional to E, since P is itself 
proportional to E. By remembering that P and E are related by P = e0/yeE, we can 
write Equation (5.28) in the form

D = 60(1 + *e)E (5.30)

or

D = eE = e0e,.E, (5.31)

For the remainder of this text, the symbols pv, ps, and pf will represent free charge distributions.
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where

6  =  =  e o 0  + Xe) (5-32)

and

= (! + *«)• (5.33)

Here, e is a constitutive parameter called the permittivity of the medium and er is the 
relative permittivity (or dielectric constant). By substituting Equation (5.32) into 
Equation (5.21), we can also write the relationship between P and E as

P = e0(€, - 1 ) E .  (5.34)

Table C-3 of Appendix C lists the values of er for a number of materials commonly 
used in engineering applications.

5-3-4 DIELECTRIC STRENGTH

When a dielectric is subjected to a strong electric field, the forces on the electrons can 
reach the point where they are stripped away from the nuclei, ionizing some or all of 
the atoms in the dielectric. This phenomenon is called dielectric breakdown. The 
minimum electric field intensity Emin at which it occurs is called the dielectric strength 
of the material. The dielectric strengths of a number of common materials are given in 
Table C-3 in Appendix C.

Dielectric breakdown can be either desirable or undesirable, depending on 
where it occurs. In the case of the zener diode, dielectric breakdown is desirable. As 
depicted in Figure 5-12a, electrons are liberated at a pn junction when the reverse- 
bias field exceeds the dielectric strength of the semiconductor. These electrons, in 
turn, are accelerated by the field and collide with other molecules, liberating even 
more electrons.

Once initiated, a chain reaction liberates a large concentration of free charge in 
the junction region. This charge is free to drift as a conduction current and results in a 
terminal current that changes rapidly with small changes in the reverse-bias voltage.

F ig u re  5 - 1 2  a) A circuit containing a semiconductor pn  junction, b) The V-I curve for a
typical pn  junction.
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Because of the nature of the process, this current is called an avalanche current. The 
V-I curve of a typical zener diode7 is shown in Figure 5-12b. As long as the avalanche 
current is kept within acceptable limits, zener diodes can act as effective voltage regu
lators. If, however, the reverse-bias current is not restricted by the external circuit, 
the avalanche process can quickly destroy the diode.

Lightning is a more dramatic example of dielectric breakdown. During a thun
derstorm, two physical processes work in tandem to create large regions of charge with
in the clouds: the frictional forces associated with the high winds and the electrochemi
cal reactions associated with condensing water vapor. When the electric field produced 
by these charges exceeds the dielectric strength of the air, an avalanche ionization 
process is initiated that creates a series of stepped leaders, either between parts of the 
cloud (cloud-to-cloud lightning) or from the cloud to the ground (cloud-to-ground light
ning). This is depicted in Figure 5-13. Each stepped leader is a relatively thin line of 
ionized air (i.e., a plasma). The leaders from the cloud are called “stepped” because 
they are created sequentially, in short segments (or steps). If a stepped-leader channel 
connects large pockets of opposite charge, a return stroke current is initiated. Not only 
are these return stroke currents extremely dangerous (with peak values in the range of 
millions of amperes), but they also create time-varying electric and magnetic fields that 
can interfere with communication systems.

Stepped leader
,/

Return stroke 
current

Ground Figure 5-13
7 7 7 7 7 7 7 7 ^7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 ?  channel and

A cloud-to-ground lightning 
stepped leaders.

5-3-5 DIELECTRIC RELAXATION

When free charge is injected into a material medium, the medium reacts to counteract 
the resulting charge imbalance. This reaction is called the relaxation process and 
involves both the conduction and dielectric properties of the medium.

To understand the relaxation process, let us suppose that free charge has some
how appeared in a homogeneous dielectric. This could occur by injecting free charge 
into the medium or as the result of the random, thermal motion of the molecular 
charges. From Gauss’ law (which is valid for both static and time-varying sources), 
we know that

V • D = V • eE = pv,

7 S o m e zen er  d io d es h ave  this V-I characteristic b eca u se  o f  th e  Zener effect, but m ost zen er d io d es actually  

utilize  the ava lan ch e b reak d ow n  effect.
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where pv is the volumetric, free-charge density within the dielectric. Since J = crE, the 
preceding expression can be written as

When the medium is homogeneous, both e and erare constants and can be taken out of 
the divergence operator, yielding

v  * J =  — p v

But from the law of charge conservation (Equation (3.25)), we also know that J and pv 
are related by the expression

V .J dPv
dt

Equating these two expressions for V • J, we obtain

dPv , <r n _ n
^ r  + 7 p” “ 0’

which is a linear, first-order, homogeneous differential equation that describes the charge 
density pv at each point within the material. The general solution at any point P is

pv(t) = pv( 0 ) e ^ ’t>  0, (5.35)

where py(0) is the volume charge density at t = 0 and

(5.36)

is called the relaxation time constant.
In words, Equation (5.35) states that after an initial disturbance, the volume free- 

charge density at each point within a homogeneous dielectric decays exponentially at a 
rate dictated by the relaxation time constant. Where does the excess charge go? The 
answer is, to the surface of the dielectric, where it appears as a surface charge distribu
tion. For good conductors, ris extremely small. In copper, r  = 1.5 X 10 19 [s]. Insu
lators, on the other hand, can have long relaxation times. Porcelain, for instance, has 
a relaxation time of r  = 252 [s].

Materials with positive relaxation times are called passive materials, since they 
tend to damp out charge disturbances, such as thermally induced disturbances. Some 
materials, however, can be made to exhibit negative conductivities when they are prop
erly biased by an external source (such as a battery). These are called active materials. 
In this case, the relaxation time constant is negative, so thermally induced charge flue-
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tuations in the material are amplified, rather than damped out. This phenomenon 
occurs in Gunn diodes, which are often used as microwave oscillators and amplifiers.8

Not only does the free-charge density inside a homogeneous dielectric approach 
zero after an initial disturbance, but the same is true for the polarization charge density 
pvp. To show this, we note from Equation (5.25) that

P vp  =  ~  v * p >

where, using Equations (5.31) and (5.34), we can write

p - « , ( « , - i ) e  =  ( ^ ) d .

If the dielectric is homogeneous, er is a constant, and we can write 

P„„ = - =  - 4 ( e, -  1)V-D = - 4 ( e ,  -

since V • D = pv. Using pv(t) = p^O) e~t/T (from Equation (5.35)), we finally obtain

P V = - - ( * > - l ) A ( 0 ) e - ' /T. (5-37)
^r

Hence, we see that the volumetric polarization charge density pvp also decays expo
nentially to zero with the same rate as does the volumetric free-charge density inside a 
homogeneous dielectric.

We can summarize the conclusions of Equations (5.35) and (5.37) by the follow
ing statement:

Under normal circumstances, the steady-state charge density inside a homogeneous 
dielectric region is zero.

This is true even if current flows in the dielectric, such as in the case of a resistor. On 
the other hand, it is possible for there to be a surface charge distribution at the inter
face between two dissimilar dielectrics. If one or both regions are conducting (i.e., a  
0), this surface charge can be made up of free charge, polarization charge, or both, 
depending upon whether a current is flowing between materials. If both materials are 
insulators, only a polarization surface charge can exist at the interface.

There are two major exceptions to the preceding statement, where a homoge
neous dielectric region can support a volumetric charge, often called a space charge. 
The first is when charge is injected into free space, such as occurs in a vacuum tube. 
The other is when the charges are subjected to quantum forces, in addition to electric 
forces. This occurs at semiconductor pn junctions and results in opposite space charge 
regions on both sides of the junction.

See S. Y. Liao, Microwave Devices and Circuits, 3d ed. (Englewood Cliffs, NJ: Prentice Hall, 1990).
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5-3-6 FIELD EQ UATIO N S IN DIELECTRICS

Now that we have determined how the bound charges in a dielectric distribute them
selves in response to an applied field, we are in a position to derive the equations that 
model the relationship between electrostatic fields and their sources when dielectrics 
are present. We can start by remembering that for static charges in free space (i.e., a 
vacuum), the electric field intensity satisfies the following equations:

V X E  = 01

V • E P v
(Electrostatic equations in free space).

These equations can also be used when dielectrics are present if all the charges are 
accounted for, both free and bound. For this case the curl equation is unchanged, and 
Gauss’ law can be written as

V • E = ^ .

where the total charge density pvT is the sum of the free and polarization charge densi
ties, pv and pvp, respectively. Unfortunately, this equation is much more complicated 
than the free-space case, since the total charge density pvT depends on the distribution 
of the bound charges, which depends upon E itself.

We can simplify matters considerably by remembering that Gauss’ law can also 
be written in terms of D  as

V * D  = p v .

where pv is the free-charge density. The right-hand side of this equation is much sim
pler than the corresponding E-field equation, because more is known a priori about 
the free charge in a device or system than is known about the total-charge density. For 
example, free charge usually exists only on the surface of conductors. Also, the free- 
charge density on and within perfect dielectrics is usually zero, since perfect dielectrics 
are insulators.

Because of this simplification, Maxwell’s equations for electrostatics are best 
written in the form

V X E  =  0 |

V « D  =  p v \
(Electrostatic equations in dielectrics).

(5.38)
(5.39)

Since both E and D appear in these equations, we also need the constitutive relation

D = eE . (5.40)

Taken as a set, these equations are sufficient to model all electrostatic fields in di
electrics. Equations (5.38) and (5.39) can also be expressed in integral form, as
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E • df = 0

D • ds = Q
(Electrostatic equations in dielectrics),

(5.41

(5.42

where C is a closed path and Q is the free charge enclosed by the closed surface S.
The electrostatic potential V can still be used when dielectrics are present. Since 

V X E = 0 in both free space and dielectrics, we still have

E = -V  V. (5.43)

To see what equation V satisfies in dielectrics, we can substitute Equations (5.40) and 
(5.43) into Equation (5.39), which yields

V - ( e V V ) = - Pv.

Using the identity V • (if/A) = ipV • A + A • Vif/, we can write this expression as

V2y  + - V U - V e  
6

(5.44)

In a homogeneous dielectric, V e = 0, so Equation (5.44) becomes

(Homogeneous dielectrics). (5.45)

Furthermore, in homogeneous regions where pv = 0, V satisfies Laplace’s equation,

V 2V = 0 (Charge-free, homogeneous dielectrics). (5.46)

As we saw in Section 5-3-5, the volumetric charge density pv within a homogeneous 
region normally decays to zero after a short relaxation time, unless free charge is some
how embedded in the dielectric by another physical process (such as occurs in a semi
conductor pn junction, which will be discussed shortly).

E xam p le  5 -4

Calculate the E-field generated by a point charge placed in an infinite, homogeneous region with 
permittivity e.

Solution:

For convenience, let us place the point charge at the origin, as shown in Figure 5-14.
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Figure 5-14 A point charge surrounded by 
a Gaussian surface.

Since this charge distribution has spherical symmetry, we can assume that D = D r ar. For a 
spherical, Gaussian surface of radius r , Gauss’ law becomes

<j> D • ds = 477r 2D r = Q .

Thus,

D Q
Attv2 r

Finally, since D = eE, we have

QE =
4 7 r e r

ar.

This example has shown that the E-field expression for a point charge in an infi
nite, homogeneous dielectric with permittivity e is the same as for the same charge in 
free space, except that e0 is replaced by e. By the superposition principle, we can 
deduce that the same is true for any charge distribution in an infinite, homogeneous 
dielectric. Thus, Coulomb’s law for a free-charge distribution pv in an infinite, homo
geneous dielectric with permittivity e reads,

1 f r — r'
D = eE = —  J pv dv' (Infinite, homogeneous dielectric). (5.47)

Vol.

In a similar way, the potential function generated by a free-charge distribution in an 
infinite, homogeneous dielectric can be written as

V =
Vol.

dv' (Infinite, homogeneous dielectric). (5.48)

E xam p le  5 -5

Calculate the E- and D-fields generated by the two concentric, uniformly charged spheres shown
in Figure 5-15. The inner sphere has radius a and charge Q, and the outer sphere has radius b
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mm

f igure 5-15 Concentric, oppositely 
charged spheres, separated by a uniform 
dielectric.

and charge —Q . Assume that the dielectric between the spheres is homogeneous and has per
mittivity e.

Solution:

This problem has perfect spherical symmetry, so we can use Gauss’ law. We have

b D • ds = 4 7 ir2D r =  Q enc, 
s

where Q enc is the charge enclosed by a Gaussian sphere of radius r. Because the charges on the 
spheres are balanced, Q enc = Q  when a <  r  <  b , and <2enc = 0 otherwise. Thus, we obtain

D = eE
Q

477-C

0

a <  r  <  b 

otherwise

5-3-7 DIELECTRIC BOUNDARY CONDITIONS

In order to calculate the E-fields when more than one kind of dielectric is present, one 
must know the boundary conditions that these fields exhibit across the material dis
continuities. Such a situation is depicted in Figure 5-16, which shows the boundary 
surface between two dissimilar dielectric regions.

The behavior of the tangential components of E and D at the interface can be 
determined by using the conservative property of E, namely,

<j> E • df = 0.

Here we will choose the contour C shown in the figure that has depth Ah and length M , 
and that straddles the boundary between the two regions. In the limit as Ah —» 0, the 
contributions from the left and right portions of the path become negligible. Thus,

D-\n

F ig u re  5-16 The surface and contour used 
to determine the boundary conditions at 
the interface between two dissimilar 
dielectrics.
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j) E-de -  Elt At -  El tM  -  0,

where EXt and Elt are the values of the tangential component of E just inside regions 1 
and 2, respectively. This expression becomes exact in the limit as At - a  0. Dividing 
both sides by At, we obtain

Eu = E, (5.49)

Also, since D = eE, we have Dt = eEt. Substituting this into Equation (5.49), we find that

- D „  = - D * ,  (5.50)
€1 e2

or

Du = ei
&2t e2

(5.51)

Thus, although the tangential components of E are always continuous across a dielec
tric interface, the tangential components of D are discontinuous when the permittivi
ties differ.

The behaviors of the normal components of E and D at a dielectric interface can 
be found using Gauss’ law,

CD D • ds = Q .
h

In this case, we will choose the surface S to be the “pillbox” surface shown in Figure 5- 
16, with height Ah and end-cap area AS. If we let Ah -a 0, the area of the cylindrical 
portion of the surface becomes zero, so the only contributions to the integral come 
from the bottom and top end-cap surfaces, and we have

y1 D • ds ~ DXn AS D2n AS ~ Q ,

where DXn and Dln are the normal components of D in regions 1 and 2, respectively, 
each defined as extending from region 2 to region 1. Since the volume enclosed by 
this surface is infinitesimal, any charge contained within this volume can only be the 
result of a surface-charge distribution along the interface. Substituting Q = ps AS into 
the preceding expression, we have

DXn A S -  D2n A S -  PsAS,

which becomes exact as AS -» 0. Dividing both sides by AS, we obtain
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D — Ps

Figure 5-1 7 The D-field at the interface 
between a dielectric and a perfect 
conductor.

D \n  n -  Ps- (5.52)

Also, since D n — eEn, Equation (5.52) can be written in terms of the normal compo
nents of E:

.

e\E\n ~ €2E2n -  ps.
:

(5.53)

When the media on both sides of the interface are insulators, ps is typically zero. For
this case, Equations (5.52) and (5.53) become

^ 2 n =  D \ n  ( P s  =  0 ) (5.54)

and

€2 E 2n ~  € \  E \ n  (Ps ~  0) • (5.55)

An important special case of these boundary conditions occurs when one of the 
regions is a perfect conductor. Such an interface is shown in Figure 5-17. For this case, 
both E and D are zero everywhere inside a perfect conductor, so Equations (5.51), 
(5.52), (5.54), and (5.55) yield:

E t =  D t = 0]

D n =  e E n =  P s)
At the surface of a perfect conductor.

(5.56)
(5.57)

Thus, even though both components of E and D are zero inside a perfect conductor, 
only the tangential components must be zero on the surface. The condition Etan = 0 
should not be surprising, since E-field lines are always perpendicular to surfaces of con
stant potential.

E xam ple  5 -6

Figure 5-18 shows the interface between two perfect dielectrics. Find the magnitude of E2 and 
angle it makes with the surface normal if the magnitude of Ej and the angle it makes with respect 
to the surface normal are both known.
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Figure 5-18 The E-field at the interface 
between two perfect dielectrics.

Solution:

The tangential and normal components of Ej are 

E u  = E x sin

and

E ln = E l cos ,

respectively. Using Equations (5.49) and (5.55), we see that the tangential and normal compo
nents of E2 just above the interface are given by

E 2, =  E lt =  E x sin 6 l =  E 2 sin d2

and

E2n — E u  =  —  E x cos 9l =  E 2 cos d2, 
e 2 e 2

where ej and e2 are the permittivities of regions 1 and 2, respectively. Using these, we find that 
the magnitude and angle of E2 are

E 2 E l 1 +
1/2

1 COS2 01

and

(5.58)

02 tan 1
e,
— tan . (5.59)

From these expressions, we can conclude that if e2 >  els then 02 >  6i and E 2 <  . Notice
also that we always have 02 =  91 when 6l = 0 or 77-/2 , so E-field streamlines do not bend at a 
dielectric interface when they are parallel to or perpendicular to the interface.________________

At the interface between two media that have nonzero conductivities, the law of 
charge continuity places one more constraint on the fields. For the time-invariant

dQ
case, = 0, so the continuity equation becomes 

d t

J • ds = 0.

Evaluating this integral around the pillbox surface shown in Figure 5-16 yields the
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following relationship between the normal components of J on each side of the inter
face:

y,„ = y2„. (5.60)

Here, both Jln and Jln are defined as pointing from region 2 to region 1. Also, since 
J = <xE and Eu = Elt across any interface, we have

K — h l

(T\ a2
(5.61)

Finally, we can use Equations (5.52) and (5.60) to determine the surface charge density 
that is present at the interface between two conducting media. Substituting Equation

(5.60) into Equation (5.52) and using D = —J, we obtain
a

Ps = f  1 ~ ---- ~ J (interface between two conducting media), (5.62)
V°ri

where Jn is the normal component of J, extending from region 2 to region 1.

5 -4  E lec tro s ta tic  B o u n d a ry  V a lu e  P ro b lem s

Now that we have developed the differential equations and boundary conditions that 
govern the behavior of electrostatic fields in the presence of material media, we can 
discuss an important class of electrostatic problems in which little (or possibly nothing) 
is known a priori about the charge distribution. Instead, the potentials along one or 
more of the bounding surfaces are known. This type of situation occurs whenever 
dielectrics and conductors are present in a system and known voltages are impressed 
between the conductors. Problems of this sort are solved using Laplace’s and Pois
son’s equations and are called electrostatic boundary value problems.

There are three classes of methods used to solve electrostatic boundary value 
problems: analytical techniques, numerical techniques, and graphical techniques. 
Each method has its own advantages and disadvantages, and the choice of which to use 
usually depends upon the exact nature of the problem and the solution accuracy that is 
needed. Although a complete discussion of all of the electrostatic boundary value 
methods in common use is beyond the scope of this text, we will now present examples 
in each of the three major classes that show the kinds of solutions that can be obtained.

5-4-1 THE UNIQUENESS PRINCIPLE

The uniqueness principle states that there is one and only one solution to Laplace’s 
and Poisson’s equations for a given set of sources and boundary conditions. Although 
this may seem obvious, it is worth proving, since the proof shows us clearly what must 
be specified in order to make a solution unique.

The simplest way to prove the uniqueness principle is by proving that if an elec
trostatic system has two solutions, they must be identical. This kind of proof is called 
a proof by contradiction. We start by assuming that V1 and V2 both satisfy Poisson’s
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equation in a region that is bounded by a surface S where the potential is known. To 
keep things simple, we’ll assume that the dielectric is uniform throughout the region, so 
V1 and V2 both satisfy the homogeneous Poisson’s equation; that is,

V2V, = and V2V2 =
e e

where pv is the charge density function throughout the region. Also, V1 and V2 satisfy 
the same boundary conditions on the surface S that bounds the volume V, so we have 
in addition,

V\ — F2 everywhere on S .

If we define Vd as the difference between V1 and V2, i.e.,

v d = V i -  v 2,

then Vd satisfies the conditions 

V2V, = 0

and

Vd = OonS.

To show that Vd must be a null solution (i.e., Vd = 0 at all points), let us consider 
the following volume and surface integrals that are related by the divergence theorem:

|  V-[V dVVd]dv = <j> [VdVVd]-ds = 0.
Vol.

(S is the surface surrounding the volume.) The surface integral is obviously zero, since 
Vd = 0 on S, so the volume integral must also be zero. From the vector identity

= v ^ v d + vvd-vvd = VdV2Vd + |v vd\2

and the fact that V 2Vd = 0 throughout the volume, we can write

f  V-[VdVVd]dv= f \ V V d\2dv = 0.

Vol. Vol.

Since |V Vd\2 cannot be negative, we must have W d = 0 everywhere in the volume. 
This can happen only when Vd is a constant throughout the volume, so

Vd = V1 -  V2 = a constant everywhere in the volume.

But V1 = V2 on the bounding surface S, so this constant must be zero; hence, we have

V\ =  V2 everywhere in the volume and on S ,

and the proof is complete.
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E xam p le  5 -7

%

■

■  '

Figure 5-19 shows a perfect conductor that completely encloses a source-free (i.e., pv =  0) region. 
If the conductor is maintained at a potential V 0 with respect to infinity, what are the potential 
and the E-field inside the enclosed region?

Figure 5-19 A source-free region 
surrounded by a constant-potential 
surface.

Solution:

Since the interior region is source free, the potential in the source-free region bounded by 
the surface satisfies Laplace’s equation, V2U =  0. Certainly, the potential function V  =  V 0 sat
isfies this equation. Since it also satisfies the boundary condition imposed by the conducting 
surface that surrounds the region, we can conclude from the uniqueness principle that the poten
tial throughout the interior region is

V  =  V  .ro

Also, using E = — VU, we find that the E-field throughout the interior region is 

E = 0.

Thus, we can conclude that the potential inside any source-free region that is surrounded by a 
constant-potential surface is itself constant, and the E-field is zero, reg a rd less  o f  w h a t sou rces  

e x is t o u ts id e  the s u rfa ce . This is an example of electric shielding.

5-4-2 ANALYTICAL SOLUTIONS

Analytical solutions are solutions that can be expressed mathematically, usually in 
terms of sums and products of simple functions. Only a small percentage of all elec
trostatic problems can be solved using analytical techniques. Nevertheless, they are 
important, because they are exact solutions which can provide insight into other, more 
complicated problems that cannot be solved analytically.

5-4-2-1 Some Simple Cases. Let us start by considering the geometry shown in 
Figure 5-20, which consists of two flat, perfectly conducting plates, separated by a per
fect dielectric of permittivity e and thickness d . The voltage between the plates is VQ.

Figure 5-20 A  parallel-plate capacitor.
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Since the dielectric is homogeneous and insulating, the volume charge density pv is zero 
and the potential V satisfies Laplace’s equation. In Cartesian coordinates, Laplace’s 
equation reads

V2U
d2v d2v d2v
dx2 dy2 dz2

Away from the plate edges, this geometry shows variations only in the z direction, so 
we have dV/dx = dV/dy = 0, and Laplace’s equation becomes

d2V
dz2

=  0.

The general solution of this differential equation is

v = c lZ + c2,
where Cx and C2 are constants.

The only boundary condition that must be enforced on this solution is that the 
potential difference between the plates is VQ. Hence, we require

v ( z  = 0) -  V(z — d) = C2 — Cxd -  c2 =  v ot

which means that Cx =  -  VQ/d. Thus, we obtain

v = - ' j *  + c »

where C2 can have any value, depending upon the choice of the reference potential. 
Since E = -V V ,w e have

(5.63)

We can also find the free-charge density on the conducting plates by using the rela
tionship between D and the free-charge density at the surface of a perfect conductor. 
Using Equation (5.57), we can express the surface charge density on the inner surfaces 
of the plates in terms of the normal component of D at the surface; that is,

Ps = ^ Y  [C/m2], (5.64)

where ps is the surface charge density on the lower surface of the upper plate and —ps 
is the charge density on upper surface of the lower plate. Hence, for a fixed voltage VQ 
between the plates, the charge density on the metal plates is proportional to the dielec
tric permittivity e.

Figure 5-20 shows several constant-potential surfaces and E-field streamlines for 
this geometry. Away from the edges, the fields are well predicted by our solution of 
Laplace’s equation. In the edge regions, however, streamlines fringe, because the 
(d2V)/(dx2) and (d2V)/(dy2) terms can no longer be neglected. A full analytical solu
tion in these regions is very cumbersome, but we will show later in this chapter how
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these fringing fields can be modeled graphically. It is also worth noting that because of 
the characteristics of the fields generated by infinite sheets of charge, the charge densi
ties on the outer surfaces of the plates (i.e., the upper and lower surfaces of the top and 
bottom plates, respectively) must have the same sign in order to maintain E = 0 inside 
the conductors. Hence, when the total charges on the upper and lower plates are 
opposite (as occurs when the plates are charged using a closed circuit), the charge on 
these outer surfaces is zero, and thus, the fields are negligible above and below the top 
and bottom plates, respectively, except near the edges.

Another simple geometry is depicted in Figure 5-21, which shows a coaxial line 
(cable) with inner radius a and an outer conductor of radius b. The region between 
the conductors is filled with a homogeneous dielectric with permittivity e, and the volt
age between the inner and outer conductors is VQ. In cylindrical coordinates, 
Laplace’s equation reads

Since this cable has perfect cylindrical symmetry, it is reasonable to assume that V is a 
function only of the cylindrical coordinate p. Hence, for a < P < b ,  Laplace’s equa
tion becomes

Integrating twice, we obtain

V=  C1\np + C2.

Since V(p = a) — V(p = b) = VQ, we have

C

Thus,

V
V = ------ g— In p  + C2 a < p <  b ,

2b 2i

Figure 5-21 A coaxial cable.
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where the value C2 is determined by the reference potential (which was not specified). 
From E = — V V, the electric field intensity between the conductors is

E - a  <  p  <  b . (5.65)

We know from our discussion in the previous chapter on coaxial surface-charge 
distributions that the E-field beyond the outer surface will be zero if the charges per 
unit length on both cylinders are opposite. Laplace’s equation gives us some insight 
into when this occurs. In this outer region, the general solution for V has the same 
form as it does in the interior region:

V = C3 In p + C4 (p> b).

If the absolute potential of the outer cylinder and infinity is zero, C3 and C4 are both 
zero (since the potential at infinity is zero), so E = 0 everywhere for p>  b. For this 
case, the E-field is confined to the interior of a coaxial cable, and the exterior region is 
shielded from the interior charges. In practice, we can accomplish this by connecting 
the outer conductor to a zero-potential surface. This practice is called grounding and 
is depicted in Figure 5-22.

Practically speaking, the best ground is usually an earth ground, since the poten
tial of the earth is usually negligible. Another common scheme is to connect the outer 
conductor to a metal chassis. This is less optimum, however, since the chassis potential 
may well vary significantly from zero.

Another simple problem is shown in Figure 5-23, which depicts two hollow, con
centric, conducting spheres with a homogeneous dielectric in between. The spheres 
have radii a and b, respectively, and the voltage between them is V0. In spherical coor
dinates, Laplace’s equation reads,

V2F
l a / -  avA l d ( . dv\ l d2v n
r2 dr \ dr J r2sm6 86 \ 86 J r 2sm20d(/>2

E = 0 Outside |-< Ground Figure 5-22 A grounded coaxial cable.

Figure 5-23 Concentric, conducting 
spheres, separated by a uniform dielectric.
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Since the dielectric is homogeneous, the symmetry of this problem implies that V 
should vary only with r. Thus, Laplace’s equation becomes

1 a 1( , a v
r2 dr '

= 0.

Multiplying both sides by r2 and integrating twice with respect to r yields

L = — + C2. 
r

Because the potential difference between the inner and outer spheres is VQ, we have

T 1
V(r = d) -  V(r = b) = C1 Vo,

so

V = ___VjL
1

r ----
a

a < r < b.

Also, since E = - W ,  and V is independent of 6 and </>, we also have

^ d V .
E = ------ar

dr r
Yo a < r < b. (5.66)

As in the case of the coaxial cable, the E-field will be zero for r > b if the potential dif
ference between the outer sphere and infinity is zero. Otherwise, E will decay in this 
region, proportional to r~2.

5-4-2-2 Solutions Involving Inhomogeneous Dielectrics. As a group, geometries 
that contain inhomogeneous dielectrics are harder to analyze than those that have 
homogeneous dielectrics. This is because the inhomogeneous forms of Laplace’s and 
Poisson’s equations (Equation (5.44)) are more difficult to solve than their homoge
neous counterparts. Even when the dielectric consists of a collection of homogeneous 
regions, the boundary conditions that the E-field must satisfy at the interfaces between 
these regions can be difficult to handle analytically.

There are, however, some problems with inhomogeneous dielectrics that are easy 
to analyze. These problems occur whenever the contours of constant dielectric per
mittivity lie either parallel to or perpendicular to E-field streamlines that would be pre
sent if the dielectric were homogeneous. For this case, the E-field streamline contours 
are not affected by the inhomogenieties, since E-field streamlines do not bend when 
they are directed either perpendicular to or parallel to a dielectric interface. (See 
Example 5-6.)

Figure 5-24 shows two such cases that are variations of the parallel-plate geome
try we considered earlier. In Figure 5-24a, two perfect dielectrics are stacked between 
two conducting plates. In Figure 5-24b, two perfect dielectrics are placed side by side
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P'\s

\
P2s

+ + + + + +
d 1̂ Ei e2 e2

r 1'

P'\S
/

(b)
~P2s

Vo

F ig u re  5-24 Two parallel-plate capacitors with inhomogeneous dielectrics.

between two conducting plates. Since the E-field for the homogeneous dielectric case 
is directed straight from the top plate to the bottom plate, neither of the inhomo
geneities shown in Figures 5-24a and b will cause the E-field streamlines to bend, 
greatly simplifying the analysis.

To model the geometry shown in Figure 5-24a, we first note that since each 
dielectric is uniform, the potential function in each dielectric region will have the same 
form as it does for the uniform dielectric case. Hence, we can write

V i (z) = C„z + Cb 

V2(z) = Cdz + C„

where Vt (z) and V2(z) are the potential functions in the upper and lower dielectric 
regions, respectively, and z is measured from the top plate. Because E = -  V V, we find 
that E, and E2 are both uniform vectors that are directed perpendicular to the plates.

To find the magnitudes of Et and E2, we first require that these fields satisfy the 
necessary boundary condition (Equation (5.53)) at the dielectric interface; thus,

6 1 E l  =  e 2 ^ 2  5

since ps — 0 at the interface between two perfect dielectrics. Second, because the volt
age between the plates is VQ, we must also have

VQ + d2E2 dj + Ei.

Solving this expression for £) and E2, we obtain

E ,=
e, Vn

e i d2 + e2 d |
E, =

d2 + e2 d̂
(5.67)

These expressions tell us that E is strongest in the dielectric with the smallest permit
tivity. Also, since D = eE, we see that D is the same in both regions:

D D1 D2 g2
ei d2 + e2 dx

Because ps = Dn at perfectly conducting surfaces, the free-charge densities on the 
inside portions of the upper and lower plates are opposite, with

Ps =
€1 €2
d2 + e2 d^5 (5.68)
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where the positive sign is used for the upper plate and the negative sign is used for the 
lower plate. Also, just as in the case where the entire dielectric is homogeneous, the 
charge density on the outer surfaces of the plates is negligible, except near the edges.

To find the fields present in the geometry shown in Figure 5-24b, we first note 
that because E is tangent to the interface in both regions, the dielectric boundary con
ditions require that E be continuous across the interface. Thus, it is reasonable to 
assume that the E-fields are the same in both dielectrics, with

E i (5.69)

where £) and E2 are the magnitudes of E in the left- and right-hand regions, respec
tively. Inasmuch as these fields satisfy Laplace’s equation in both regions and also the 
boundary conditions, they are indeed the correct fields. Because the E-fields are the 
same in both regions, the D-fields must be different. Using D = eE, we have

D i =
h Y o

d ’ d 2
e2Vo

d

Since ps -  Dn at the conducting surfaces, the magnitudes of the free-charge densities on 
the conducting plates are different in the two regions. Using Equation (5.57), we find 
that the charge densities on the inner sides of the plates are given by

I Pul = E>x, \p2s\ = D2, (5.70)

where the charge densities on the inner surfaces of the top and bottom plates are posi
tive and negative, respectively, when VQ is positive. Hence, the charge densities have 
the largest magnitudes on the side where the dielectric permittivity is also the largest.

A remarkable aspect of this solution is that we would have been hard pressed to 
have guessed the surface charge distribution that we finally found in Equation (5.70). 
This shows one of the greatest strengths of using a Laplace’s equation method to solve 
field problems: If it is known that the volume charge distribution is zero, solutions can be 
obtained as long as the potentials of the conducting surfaces are known. This is in con
trast to Coulomb’s law, which requires one to know the charge distribution in advance.

5-4-2-3 A Semiconductor pn Junction. A simple, yet important electrostatic 
boundary value problem that involves Poisson’s equation is the field distribution in the 
vicinity of a semiconductor pn junction. Figure 5-25a shows a simplified pn junction. 
Here, p and n doped semiconductor materials from a junction at x = 0. Because of the 
quantum properties of the dopants, electrons migrate from the donor atoms on the n 
side to the acceptor atoms on the p side, leaving a positive space charge on the n side 
and a negative space charge on the p side. A simple approximation of the resulting 
charge distribution is shown in Figure 5-25b, where e is the electron charge, and Na and 
Nd are the densities of the acceptor and donor atoms on the p and n sides of the junc
tion, respectively. The charges contained on each side of the junction have equal mag
nitudes and opposite signs, so the widths xno and x Q are related to the doping densities 
bY NdXno = NaXpo.
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F ig u re  5-25 A p n  junction, 
a) Simplified geometry, b) Charge 
distribution, c) Potential distribution.

If the total junction width W = xpo + xno is much smaller than the cross-sectional 
dimensions of the junction, the potential function V  is independent of the y- and z- 
coordinates, and Poisson’s equation reads

V2V
d2V
dx2

1 1 ^ - x p0 < x <  0

eN j_

e
0 <  x < xno

< 0 Otherwise

where e is the semiconductor permittivity. Integrating this expression once with 
respect to x and using E = — V V (which reduces in this case to Ex = — dV/dx), we obtain

C\

eNa (x + Xpo) 
e

- e N d (x -  xno) 
e

Ci

x  <  ~ Xpo

+ c i -X p o  < x < 0

+ C2 0 < x < x no

X> xno

where the constants of integration have been chosen to ensure that V is continuous at
all points (which always occurs when E is finite).
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To find the constant Cx, we note that the total charge contained in the p and n 
regions of the junction are exactly opposite, so |E| approaches zero as |x| —> oo. Thus, 
Cx = 0, and E is given by

E = a.

'  eNa (x + Xpp) , 
e

< -  eNd (x -  xno) „ 
-------------------a

~xpo< x <  0 

0 < x < xno •

0 otherwise

(5.71)

The value Ex is plotted as a function of x in Figure 5-25c.
The junction voltage VjUnct can be found by integrating Equation (5.71) across 

the junction

V:junct Ex dx = - e N a X l o

2e
eNJXl

2e

where VjUnct is measured from the n side of the junction to the p side. Remembering 
that W = xpo + xno and Naxpo — Ndxno, we see that this can be written as

V;junct
H NaNd 
2e N + AL

W 2 (5.72)

which shows that the junction voltage is a nonlinear function of the junction width.

5-4-2-4 The Method of Images. The method o f images is an analytical technique 
that involves replacing constant-potential surfaces with equivalent sources called image 
sources that generate the same fields. In many cases, a problem can be significantly 
simplified using this technique. Conducting boundaries that can be modeled in this 
way include infinite planes, spheres, infinite cylinders, and wedges. Of these, the infi
nite plane is the simplest to analyze.

To demonstrate the method of images, let us consider the situation depicted in 
Figure 5-26a. Here a point charge Q is located a distance d above an infinite, con
ducting plane. The ground symbol indicates that the plane is maintained at zero 
absolute potential, so it is called a ground plane. This problem may appear simple to 
analyze by applying Coulomb’s law, since only one point charge is present above the 
ground plane. However, there is also a surface-charge distribution on the ground 
plane, because the boundary condition at a perfect conductor requires that ps = Dn 
(See Equation (5.56).) This surface-charge distribution can be found only after E is 
found, so we cannot use Coulomb’s law directly to find E.

Figure 5-26 Example of the method of 
images, a) A point charge above an 
infinite, grounded conductor, b) An 
equivalent geometry that has the same E- 
field above the plane.

Q Q
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F ig u re  5 -2 7  The m ethod of images applied to a multiconductor geometry, 
a) The original geometry, b) A n equivalent geometry.

Now, consider the configuration shown in Figure 5-26b. Here, the ground plane 
has been removed. In its place is a point charge of value -  Q, located a distance 2d 
directly below the charge Q. We call this charge an image charge, because the charge 
and its image constitute an electrostatic dipole that straddles the z — 0 plane, Et = 0 
everywhere on this plane, just as in Figure 5-26a. Hence, replacing the ground plane 
with this mirror-image charge maintains the same boundary condition as the ground 
plane did. The sources above the z = 0 planes for these two situations are identical, 
and the Et = 0 boundary conditions along the planes are also identical. From the 
uniqueness principle, we can conclude that the fields generated by the two situations 
are also identical for all z > 0. Of course, for z < 0 the fields are not the same, which 
means that the situations are equivalent only for z > 0.

This procedure can be generalized for any configuration of electrostatic sources 
and materials above an infinite ground plane. Such a situation is depicted in Figure
5-27a. Here, two conducting surfaces are maintained at a potential difference of VQ 

above an infinite ground plane. In Figure 5-27b, the ground plane has been replaced 
by the image of the conductors, the voltage source, and the dielectric. Note that the 
polarity of the image voltage source must be reversed in order to maintain the correct 
symmetry of the charges. Since potentials above and below the z = 0 plane are exact 
mirror images of each other, they produce zero tangential E-field everywhere on the 
z = 0 plane, just as the ground plane does.

Image theory can also be applied to more complicated configurations of ground 
plane configurations. The example that follows is one such case.

E xam p le  5 -8

I

Figure 5-28a shows a point charge in the presence of two perpendicular ground planes that inter
sect at (0,0,0). If the point charge is located at (d x , d 2, 0), find an equivalent geometry that gen
erates the same field in the range 0  <  </> <  tt/ 2 ,  without the ground planes.
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F ig u re  5-28 a) A  point charge near a 
conducting corner, b) An equivalent 
geometry using the m ethod of images.

Solution:

To maintain E , =  0 along the entire yz-plane without the conductor present, a point charge 
of value -  Q can be placed at the point (—dl ,d2,0). In order to obtain Et =  0 along the x z -plane 
with the conductor removed, images of both of these charges can be placed below the xz-plane. 
Thus, charges of value Q and —Q must be placed at (~dl ,—d2,0) and (d1,-d 2,0), respectively. 
This new configuration is shown in Figure 5-28b. The E-field generated by these four point 
charges can now be evaluated in the region x  >  0 and y >  0 using Coulomb’s law.

5-4-2-S The Separation-of-Variables Technique. The separation-of-variables
technique is a very powerful method of solving homogeneous differential equations, 
including Laplace’s equation. Using this technique, we can represent a differential 
equation with N  coordinate variables as N  differential equations, each with one coor
dinate variable; hence the name “separation of variables.”

To introduce the basic principles of the separation-of-variables technique, let us 
consider Laplace’s equation in Cartesian coordinates,

V2V
e2v d2v s2v  n
------y  H------------- y  H---------y — 0 .
d x 2 d y 2 d z 2

Next, let us look for solutions that can be expressed in the form

V(x,y,z) = X (x)Y (y)Z (z),

where X (x), Y (y), and Z(z) are functions only of x, y, and z, respectively. Solutions of 
this type are called product solutions. Substituting, we obtain

X '(x)Y (y)Z (z) + X (x )Y ’(y)Z(z) + X{x)Y{y)Z"{z) -  0,

where X"(x) = d2X (x)/dx2, Y \y ) = d2Y(y)/dy2, and Z"(z) =d2Z (z)/d z2. Dividing 
both sides of this expression by the product X (x) Y(y) Z (z), we obtain

X ”(x) Y (y) Z"(z) _
X (x) Y(y) Z(z)

(5.73)

Taking a closer look at this equation, we see that the left-hand side is the sum of 
three terms, which are functions of x, y ,  and z, respectively. However, let’s consider 
what happens as one moves from x = x0 to x = x0 + 8  while keeping y  and z constant. 
Along this path, Y " { y ) / Y  (y) and Z"(z)/Z (z) are constant. Since the sum of all three
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terms in Equation (5.73) is zero throughout the region, X '{x)/X  (x) must be constant 
for all values of x. By similar reasoning, we can conclude that Y '(y)/Y  (y) and 
Z"(z)/Z (z) must also be constants for all values of y and z, respectively. If we denote 
these constants as separation constants, — k 2, — kj, and — k 2, respectively, Equation 
(5.73) can be written in a form called the separation equation,

where

kx + k] + k \ = 0,

a

(5.74)

d2X 0IIXT+1; 
^ (5.75)

d2Y
(5.76)

d2Z
—y  + k 2Z = 0. 
dz

(5.77)

Equations (5.75) through (5.77) are each ordinary differential equations, as opposed 
to Laplace’s equation, which is a partial differential equation. Thus, the separation-of- 
variables technique has reduced a partial differential equation in three variables to 
three ordinary differential equations.

To make our discussion simpler, let us now restrict ourselves to geometries where 
the potential V is independent of z. This is a two-dimensional case, where Z (z) is con
stant, so kz = 0. For this case, the separation equation becomes

k 2x + k 2 = 0,

or

ky = ±jkx = k ,

where j = X X .  If k is real, the general solutions of Equations (5.75) and (5.76) are 

X(x) = A cos kx + B sin kx

and

Y(y) = C cosh ky + D sinh k y ,

respectively, and the product solutions are of the form

V(x,y) = (A cos kx + B sin kx) (C cosh ky + D sinh ky) , (5.78)

where A, B, C, D, and k are constants that must be determined to match the boundary 
conditions of the particular problem being solved.

One simple solution occurs when we let A = C = 0, BD = V), and k = ir/a. 
For this case,

V (x,y) = Vl sin
TTX

a
smh I f (5.79)
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V = 0 a

F ig u re  5 -2 9  Potential distribution inside a 
conducting trough with three straight sides 
at ground potential and a curved top side 
at 1 0 0  [V] potential.

This potential function is zero valued at x = 0, x = a, and y — 0. Also, V(x,y) has a 
constant value of V1 along the surface where sin(77x/n) sinh (7ry/a) = 1. Hence, this 
is the potential distribution for the geometry shown in Figure 5-29, where conductors 
have been placed along these constant-potential surfaces. This figure shows several 
constant potential surfaces for the case where V1 = 100 [V]. Since the potential is 
independent of z, these surfaces are shown in cross section. Notice that the conduct
ing surfaces extend to infinity at x = 0 and x — a without meeting, which means that 
this case is interesting, but impractical to construct.

A more practical geometry is the two-dimensional rectangular trough shown in 
Figure 5-30. Here, conducting walls along the x = 0, x = a, and y -  0 planes are main
tained at a potential V = 0, and a conducting wall along the y = b plane is maintained 
at a potential of V1. For this case, we notice that the solution given by Equation (5.79) 
matches the boundary condition V = 0 at x = 0 and y = 0 when A  = C = 0. Also, this 
solution matches the V = 0 condition if we choose k such that sin ka = 1, which occurs 
when

k = —  n = 1, 2 ,... 0 0 .
a

The resulting class of potential functions can be represented by

n = 1, 2 ,... 0 0 . (5.80)

Insulated Insulated
y /  gap

b

V = 0

x
V = 0 a

F ig u re  5-30 A rectangular, conducting 
trough.
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Even though each member of this class of functions matches the boundary con
ditions along the x = 0, x = a, and y — 0 planes, none alone is able to match the 
V -  V1 condition along the y = b plane. However, Laplace’s equation is a linear, 
homogeneous differential equation, so the sum of any number of solutions is also a 
solution. With this in mind, we can try a weighted sum of the foregoing solutions,
i.e.,

V (x j)  = 2  7 „sin
n = 1

mrx . nrry
----- sinh------ ,

a a
(5.81)

where the yn are constants. Since each term in this series satisfies the V — 0 boundary 
conditions of Figure 5-30 at x = 0, x = a, and y = 0, their sum does also. However, in 
order to satisfy the boundary condition at y = b, we must also require that

2  7n sin
n ~  1

nirx . mrb
----- sinh------

a a = V1 0 < x < a.

This expression may at first look formidable, but a closer inspection reveals that the 
sum on the left is simply a Fourier sine series in the variable x. By choosing appropri
ate constants yn, this series is capable of representing any periodic function for 0 < x < 
a that has even symmetry about x = a, including a constant function. We can evaluate 
the constants yn by using the orthogonality properties of the sinusoidal functions. Mul
tiplying both sides by sin (rmrx/a) and integrating over the range 0 < x < a, we obtain

i
n = 1

. , mrb r . mrx . rmrx ,
yn s i n h -----  s i n ----- s i n -------dx

a J0 a a I
1 /  • m 7 T X  AV1 sin------dx. (5.82)

The integral on the left-hand side of this expression is zero for all integer values of m, 
except when n = m, where we find that

. m r r x  . r m r x  a
sin------sin— — d x  =  —.

a  a  2

This means that for a given m, only the n = m term remains in the sum on the left-hand 
side, so Equation (5.82) becomes

a . rmrb 
-  ym sinh -  
2 a

aVx
rmr

(1 — cosmn) m — 1,2,...

Solving for the constants ym yields

7” = ------ m = 1 , 3 , 5 (5.83)
rmr sinh------

a

Now that all the constants in the series have been found, we can write the final
potential solution,
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F ig u re  5 -31  The potential distribution and E-field inside a rectangular trough.

V(x,y) W i
77

2  Sil1
n = 1

n 7TX

a
n odd

sinh
mry

a
. , mrb

n smh-----
a

(5.84)

Although it is not easy to envision the behavior of this solution simply by looking at it, 
it is a rather simple matter to calculate it using a computer or even a programmable cal
culator. A number of equipotential surfaces are shown in Figure 5-31 for the case 
where Vx — 100 [V] and a = 2b. Also shown are several E-field streamlines, which 
are obtained using E = -V V .

As with all analytical techniques, the biggest advantage of the separation-of-vari- 
ables technique is that it provides exact solutions to certain electrostatic problems. 
Unfortunately, analytical techniques can be used only on a relatively small number of 
problems. Also, these geometries are usually much simpler than those typically 
encountered in engineering practice. Fortunately, the graphical and numerical tech
niques discussed in the following sections can often be used to solve these more difficult 
problems.

5-4-3 FLUX PLOTS AND THE CURVILINEAR SQUARES 
TECHNIQUE

The curvilinear squares technique is a graphical method of solving two-dimensional 
electrostatic problems. While it lacks the accuracy of analytical and numerical tech
niques, it has several advantages over those techniques. Probably the most important 
is its ability to provide rough estimates of a solution with much less effort than is 
required by the other techniques. Also important is that the process of generating a 
graphical solution often provides insight into why the fields behave as they do. This is 
particularly helpful in the early stages of a design, where it is important to understand 
the basic operation of a system or device. If a particular configuration looks promising 
after a graphical analysis, a numerical technique can then be used to refine the analysis.

Figure 5-32 shows a portion of the cross section of a two-dimensional geometry 
that consists of a pair of charged conductors.
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F ig u re  5 -3 2  An electrostatic, curvilinear 
squares flux plot, showing the E-field 
streamlines and constant-potential 
surfaces between two conductors.

Two equipotential surfaces between these conductors are shown in this figure, as 
well as several E- (or D-) field streamlines. The tubes formed by adjacent stream
lines are called flux tubes, and the electric flux carried by each tube stays constant 
along its length, since flux enters and leaves the tubes only at the ends. The rec
tangles formed by the flux tubes and equipotential surfaces are called cells, and the 
entire plot of field lines is called a flux plot. In the discussion that follows, we will 
show that these field lines can be determined by graphically following a few simple 
“sketching rules.”

Of all the equipotential surfaces and streamlines that could be drawn for the 
geometry shown in Figure 5-32, let us assume that the ones shown here were selected 
according to two criteria. First, the potential differences between adjacent equipo
tential surfaces are the same. We will call this potential difference AV, and for each 
cell we have

AV = f E d l [V], (5.85)
Al„

where ALn is the distance between the bounding potential surfaces of the cell. Sec
ond, we will assume that the spacing between the streamlines is such that the flux Aik 
passing through each flux tube is the same, where A'T for any cell is given by

Here, ALt is the distance between the streamlines that bound the cell, and e is the per
mittivity of the dielectric. Also, since ps = D at the surface of a perfect conductor, the 
charge contained at the positive and negative conductor ends of each flux tube is +A'F 
[C/m] and — A'F [C/m], respectively.

To develop the sketching rules for drawing the equipotential surfaces and flux 
tubes, let us consider the value of EA at the point A in Figure 5-32. From Equation 
(5.85), we see that if the E-field is relatively constant within the cell, then EA can be 
approximated as

A'T = eEdi [C/m]. (5.86)
A L.

(5.87)
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Equation (5.87) becomes exact in the limit as AE and ALn approach zero. Similarly, at 
the point B, which lies in the same cell as A, we can estimate EB using Equation (5.86) as

Eb
1 A'T 
e AZ/

(5.88)

where we have again assumed that E is nearly constant throughout the cell. This 
expression also becomes exact as ALt and Â T approach zero.

Assuming that the number of potential surfaces and flux tubes drawn is large 
enough, the E-field at the points A and B will be nearly equal. Setting Equations 
(5.87) and (5.88) equal to each other, we obtain

AE _ 1 A t
A L „  “  e A L t ‘

Rearranging this expression, we find that

ALt _  1 AT'
(5.89)

However, since we assumed from the onset that AE and A'T do not change from cell to 
cell, the ratio ALr/AL„ must also be the same for each cell. Hence,

A Lt
——-  = constant = 
A

1 ATT 
6 AE'

(5.90)

The ratio ALf/AL,: is called the cell aspect ratio. According to Equation (5.90), the 
cells of a properly drawn flux plot each have the same cell aspect ratio, regardless of 
their size. The simplest aspect ratio to draw is unity (1.0), in which case all the cells are 
square.

We can now formalize the procedure for using the curvilinear squares technique 
to solve two-dimensional problems. The following six-step procedure will almost 
always produce good flux plots in a minimum amount of time:

1. Start the initial plot by sketching just a few equipotential surfaces between the 
conductors. Two or three is often a good choice. Don’t worry at this point 
about whether or not these surfaces are correct—the plot will eventually tell you 
this and you can quickly correct it. As a rule of thumb, the surfaces closest to the 
conductor boundaries will have shapes that are similar to the conductor shapes.

2. Sketch the first streamline. Any line can be chosen, but one along a line of sym
metry is the best choice if such a line exists. Make sure that this line intersects 
each equipotential surface at right angles. Start the second line at a point that 
makes the first cell as square as possible. As this second streamline is extended, 
make sure that it intersects the equipotential surfaces at right angles, even if the 
resulting cells become rectangular, rather than square. Continue this process by 
adding streamlines until the conductors are completely surrounded. Don’t 
worry if the last flux tube is only a partial one; this will not affect the accuracy of 
the flux plot.



3. Look at the sketch critically. Determine what changes in the equipotential sur
faces would result in cells that are more square. Draw a new sketch that incor
porates these changes. Repeat this step until you are satisfied with the 
“squareness” of all the cells. Place greater emphasis on accuracy in the smallest 
cells, since the energy density is highest in these regions.

4. In regions of the plot where the electric field is weak, the cells will be large and 
curved, and will possibly have more than four sides. To judge the “squareness” 
of these cells, subdivide them one or more times. If the original cell is correctly 
drawn, the subdivided cells will be more square.

5. The resolution of the plot is determined by the number of equipotential surfaces 
and electric field lines used. To obtain a more accurate solution, simply add 
more lines.

6. The process is complete when a plot is obtained that has the desired resolution 
and is square throughout the sketch.

A flux plot is a good way to show the fringing of the E-field lines near the edges 
of the plates of a parallel-plate capacitor. Figure 5-33 shows this clearly. Because of 
the symmetry of this problem, only the lines in the upper right-hand quadrant need be 
drawn. As can be seen, the cells are smallest between the plates, indicating that the E- 
field is strongest there. Outside the plates, the fields are weak, so the cells are large 
and irregularly shaped. One of these large, irregular cells has been subdivided in the 
figure to check its squareness. Since the subdivided cells are reasonably square, the 
large cell is indeed correctly drawn.

Flux plots are also useful for showing the behavior of fields near wedges and cor
ners formed by conducting plates. Two examples are shown in Figures 5-34a and b. 
In Figure 5-34a, the fields near a “rooftop” conducting wedge are plotted. As can be 
seen, the cells are smallest near the tip, indicating that the largest fields and charge den
sities occur there. Therefore, this is where dielectric breakdown (arcing) is most likely 
to occur. Figure 5-34b shows the fields near a conductor in the shape of a right-angle 
corner. Here we see that the field strength and charge densities are smallest at the 
corner—just the opposite of the rooftop case. A quick conclusion that can be drawn 
by comparing the two geometries in Figure 5-34 is that a ditch is a much safer place to 
be during a thunderstorm than the peak of a roof!
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Subdivided

F ig u r e  5 - 3 3  Flux plot for a parallel-plate 
capacitor.



SEC. 5-4 ELECTROSTATIC BOUNDARY VALUE PROBLEMS 169

5 - 4 - 4  N U M E R I C A L  T E C H N I Q U E S

Most practical electrostatic boundary value problems are too complicated to be solved with 
a high degree of accuracy either by analytical or graphical techniques. For these situations, 
numerical techniques are needed. While they may lack the elegance of analytical solu
tions, numerical techniques are attractive because they can analyze broad classes of prob
lems using the same solution procedure. This makes them ideal for use on computers.

Many different numerical techniques have been developed to solve electrostatic 
boundary value problems. This is fortunate, since no one technique is suitable for all 
types of problems. In general, these techniques differ from each other in their com
plexity, their accuracy, the range of problems they can handle, and the amount of com
puter resources they require to yield a solution. A presentation of all the numerical 
techniques used in electrostatic analysis is beyond the scope of this text. For that, the 
interested reader can refer to the references cited at the end of this text. Instead, we 
will present a relatively simple technique called the finite-difference technique that can 
be performed using either hand or computer calculations.

The finite-difference technique solves Laplace’s and Poisson’s equations by 
replacing the second-order derivatives in the Laplacian operator with finite-difference 
approximations. To see how this is accomplished, let us consider a two-dimensional 
problem in which the potential does not vary with the z-coordinate. Figure 5-35 shows

y ■

\
* h*

V3

V\
a c i

1 V
dt . b V2

V4

X

F ig u r e  5-35 A numerical grid for the 
finite-difference technique of solving 
Laplace’s and Poisson’s equations.
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a portion of the cross section of a two-dimensional geometry, which has been divided 
into squares of length h  on a side. The potential at the center point 0 is V Q, and the 
potentials at the four surrounding points are Vx though V4, respectively. If the region 
is homogeneous, Poisson’s equation states that

d 2V  d 2V  

d x 2 + 3y2
(5.91)

If h  is small, we can approximate the first-order derivative of V  between any two adja
cent points by the finite differences. For instance, at the point a,

w  V 0 -  v x
dx a h

Similarly, at the points b, c, and d, we have

dV 1

1

dx * h

dV 1

1

dy c _ h

dV
£i

1

dy / "  h

Knowing that d2 V/dx 2 = d/dx [dV/dx\, we can approximate the second deriva
tive of V at the point 0 by

dV dV
d2V dx b dx a _ V2 -  VQ-  VQ+ V,
dx2 h h 2

Similarly,

dV dV
d2V dy c dy d . V3 -  V o -V o +  V4

dy2 h h 2

(5.92)

(5.93)

Substituting Equations (5.92) and (5.93) into Equation (5.91), we have 

a2v  a V .  V j  +  v. + v, + v4-4 v  P„
dx2 dy2 h 2 e '

Solving this expression for V Q, we find that
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Equation (5.94) can be generalized for any point in a rectangular grid, yielding

where i and j  represent the positions of the points along the x- and y-axes, respectively. 
This means that when the charge density at a point is zero, the potential at that point is 
simply the average of the potentials of the adjacent points.

We can use Equation (5.95) to solve electrostatic boundary value problems. 
To demonstrate this procedure, consider the geometry shown in Figure 5-36, which 
depicts a charge-free region surrounded by two conducting surfaces. The potentials 
of these surfaces are V = 100 and V = 0 volts, respectively. When a computer is 
used to solve for the potentials, the initial values of the unknown potentials are usu
ally set to zero. For hand calculations, however, it is usually best to start with rough 
estimates, so that the number of iterations necessary to obtain an accurate solution 
is minimized.

For this problem, an initial estimate of V5 can be obtained by averaging the four 
boundary points. We obtain V5 = (1/4) (0 + 0 + 0 + 100) = 25.0. Next, V7 lies at the 
center of a square bounded by corner potentials of 0, 0, 0, and V5 = 25, so V7 ~  (1/4) 
(25 + 0 + 0 + 0) = 6.3 and V9 = V7. Similarly, V1 lies at the center of a square with 

corner potentials of 0,100, V5, and the gap. If we estimate the potential in the gap to 
be 50 (i.e., the average of the two wall potentials), we can then estimate 
V\ = V3 ~  (1/4) (50 + 0 + 100 + 25) = 43.8. Finally, estimates of the remaining 
potentials can be obtained by applying Equation (5.95) directly to these nodes. These 
initial estimates are tabulated as the first entries in Figure 5-37.

To refine the initial estimate at the upper left-hand interior node potential V1, let 
us apply Equation (5.95) to that node:

(5.95)

1
V1 = ~[0 + 100 + 53.2 + 18.8] = 43.0 V.

Insulating
gap

V= 100 [V]

Insulating
gap

y

v , Vs Vs
—n-------it------- o-

7̂ VB

V/= 0 [V]

Figure 5-36 Numerical grid for 
determining the potential inside a 
rectangular trough.
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V= 100 [V]

F ig u re  5 -3 7  P oten tia l values determ ined  
by successive ite ra tions for a po ten tia l 
trough.

43.8 
43.0
42.9

53.2
52.8
52.7

43.8 
43.0
42.9

42.9* 52.7 42.9'

18.8 25.0 18.8
18.6 24.9 18.6
18.71' 25.0 18.7
18.8 25.0 18.8

6.3 9.4 6.3
7.0 9 T 7.0
7.1 9.8 7.1
7.2 9.8 7.2

V=0 [V]

From the symmetry of the problem, this is also the next estimate of V3. Now, we can 
refine the estimate of V2 by using the best information available, which includes the 
values of V1 and V3 just calculated. Thus,

V2 = i  [42.6 + 100 + 25 + 42.6] = 52.8 V.

We can use this same procedure at all the interior nodes in this problem, resulting in 
the values shown just below the initial estimates in Figure 5-37. Notice that the sym
metry of the problem demands that V3 = V1, V6  = V4, and Vg = V7.

Once the first pass through the interior nodes has been completed, the procedure 
can be repeated until the nodal potentials have converged to the desired accuracy. 
Figure 5-37 shows the potential values through three complete iterations. The number 
of iterations necessary depends upon the complexity of the problem and the accuracy 
of the original potential estimates.

A more direct technique of solving for the nodal potentials using the finite-dif
ference method involves the solution of simultaneous equations of the form

[Z](V) = (B), (5.96)

where (Y) is a column vector composed of the unknown interior potentials, (B) is 
a column vector composed of the known boundary potentials, and [Z] is a square 
matrix that takes into account relative positions of the nodal points. Once the 
appropriate values of [Z] and (B) have been determined, Equation (5.96) can be 
solved by standard matrix techniques. This is demonstrated in the following 
example.
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E xam p le  5 -9

Calculate the nodal potentials for the geometry shown in Figure 5-37 using the matrix approach. 

Solution:

We can reduce the num ber of unknowns in this problem by noting from symmetry that 
V3 =  vltv6 = v4, and V9 =  V7. Applying Equation (5.95) at node 1 yields

V, = \[100 + V ,  + 0 + V , ] ,

or

4Vj - V 2 - V 4 =  1 0 0 .

Similarly, at nodes 2, 4, 5, 7, and 8, we obtain 

-2V1 + 4V2 ~  V5 = 100 

- v x + 4U4 -  u5 -  v 7 = o

- U 2 - 2 U 4 + 4U5 - U 8 = 0

- V 4 + 4V7- V 8 = 0 

- V 5 - 2 V 7 +  4 V s =  0

These simultaneous equations can be written in matrix form as

4 -1 -1 0 0 (f v1~ "too"
-2 4 0 -1 0 0 V2 100
-1 0 4 -1 -1 0 V4 0
0 -1 -2 4 0 -1 V5 0
0 0 -1 0 4 -1 V7 0
0 0 0 -1 -2 4_ _V8_ 0_

Using a numerical matrix solver, the following values for the node voltages are obtained: 

Uj = 42.8 V2 =  52.6 V4 =  18.7

V5 = 25.0 V7 = 7.1 U8 = 9.8.

These values agree well with the values shown in Figure 5-37.

If we were to compare the numerical solutions just obtained with the known ana
lytical solution for this problem (see Equation (5.84)), we would see that these values 
are close, but they do not quite agree. The reason for this is that the values obtained 
using the finite-difference method are limited in accuracy by the grid size used. If 
more accurate results are desired, more grid points must be used. The drawback of 
this, of course, is that the number of calculations needed to obtain these values 
increases rapidly as the number of grid points increases. This is a common tradeoff 
when using numerical techniques; increased accuracy demands more computational 
resources (both in storage and time).
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S u m m a tio n

In this chapter we have laid the foundation for calculating electrostatic fields when 
materials are present. An important part of this discussion was the development of 
equations that relate the currents and charges within materials to the electric field 
intensity. The most important of these equations are

J = oE

and

D = eE.

These constitutive relations provide the necessary material information to Maxwell’s 
equations by accounting for charge and current distributions that are induced on and 
within materials.

The boundary value problems and solution techniques presented in this chapter 
were selected so as to demonstrate some of the basic characteristics of the electrostatic 
fields generated by charge and potential distributions. Many more techniques exist 
for modeling more complicated geometries, for which interested readers can refer to 
the references cited at the end of the chapter.

P roblem s

5-1 Calculate the conductivity of copper [Cu] if it is known that its free-electron 
charge density is N = 8.5 X 1022 [cm-3] and its electron mobility is /z = 41.9 
[cm2/V  • s]. Compare this value with the one shown in Table C-2.

5-2 A sample of lightly doped GaAs has a room temperature conductivity of 4.04 X 
10 "9 [S/cm]. If it is known that the electron and hole mobilities are [xn = 8500 
[cm2/V • s] and [x = 400 [cm2/V • s], respectively, and the electron density is Nn 
= 2.5 X 106 [cm q, find the hole density Np.

5-3 Calculate the resistance of a 10 [m] length of copper wire that has a radius of 2 [mm].
5-4 Calculate the resistance between opposite sides of a solid cube of stainless steel if 

the cube is 1 [cm] on a side.
5-5 In later chapters it will be shown that the E-field inside a good conductor decays 

exponentially with increasing depth. Figure P5-5 depicts such a situation, where 
E varies in flat block of conductor according to the formula

E = E0 e~ az av.

Assuming that the conductivity of the block is cr and the block is deep enough so 
that it can be considered to be infinitely deep, calculate the power dissipated in 
the entire depth beneath a square meter of the surface.

5-6 A material has a dielectric constant of er = 3.0 and has an atomic density of 1028 
atoms per cubic meter. If only two electrons in the outer orbital shell will distort 
with an applied E-field, and both electrons follow the same orbital path as a pair, 
find the spacing between the center of the nucleus and the average location of 
the electrons when the applied E-field is 10,000 [V/m].
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Air

Conductor ---------_

a - - - - - - F ig u r e  P 5 -5

5-7 HC1 is a polar molecule, with a dipole moment of 3.44 X 10~30 [C • m] per mole
cule. If it is known that the molecular bond distance is 0.136 [nm], find the mag
nitude of the net displaced charge in each molecule.

5-8 Water (H20 ) is a polar molecule, with a dipole moment of 6.15 X 10-30 [C*m] 
and a dielectric constant of 80. If the density of water is 33.4 X 1027 molecules 
per cubic meter, find the percentage of water molecules that align themselves 
with an applied E-field of magnitude:
(a) 10 [V/m]
(b) 10 [kV/m].

5-9 If a zener diode has a breakdown voltage of 8 [V], find the dielectric strength of 
the semiconducting material if it is assumed that the entire voltage is dropped 
across the pn junction, which has width 0.3 [/zm]. Assume that E is uniform 
across the junction.

5-10 If the earth is considered to be a metal sphere (radius ~ 6371 [km]), how much 
charge Q must be deposited on its surface in order for an arc to be established in 
the air. If the earth’s surface was charged to this value by removing all the elec
trons from a volume of soil, how large would this volume be? Assume that the 
electron density of soil is approximately 7 X 1023 [cm-3].

5-11 Determine the resistance between the inner and outer surfaces of a homogeneous 
cylinder. Assume that the cylinder has conductivity a, and length i , and that the 
inner and outer radii are a and b, respectively.

5-12 Repeat Problem 11 for the case where the conductivity of the cylinder varies 
inversely with increasing distance from its axis; that is, a  = k/p.

5-13 Figure P5-13 shows two conducting plates with surface area S, separated by two 
homogeneous dielectric sheets. The sheets have permittivities ex and e,, respec
tively, and thickness d1 and d2, respectively.
(a) Calculate the surface charge densities on the upper and lower plates.
(b) Calculate the polarization surface charge densities on the upper, middle, and 

lower dielectric interfaces.
(c) Calculate the total (i.e., free plus polarization) charge contained on all the 

conductor and dielectric surfaces.

d2

F ig u r e  P 5 -1  3

2̂

5-14 Prove the identity V' -r--------
r — r'

(r ~ r')
I -  _  I 3
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5-15 Two point charges a distance d apart in free space exert a force of 1.4 X 10 ”4 [N]. 
When the free space is replaced by a homogeneous dielectric medium, the force 
becomes 0.9 X 10 “4 [N]. What is the dielectric constant er of the medium?

5-16 Determine whether or not V = xy is the correct potential function for the geom
etry shown in Figure P5-16 for the region 0 <  x < 1 and 0 < y  < i-  Why or why 
not? Assume that the region between the conducting plates has a relative per
mittivity of er = 3.0.

Figure P5-16

5-17 A point charge Q is located at (0,0,d) above an infinite conducting plane that lies 
in the xy-plane and is maintained at ground potential. Find a) the surface charge 
density as a function of x and y on the conducting plane and b) the total charge 
induced on the conducting plane.

5-18 Figure P5-18 shows two conducting plates of width w, separated by a distance d, 
where w »  d. The voltage between the plates is VQ. The dielectric constant is 
er between the plates, and 1.0 outside the plates.
(a) Show that, away from the edges, the charge density on the inner plate sur

faces is ± e0er V0 /d.
(b) If the plates are oppositely charged, show that the charge density is negligible 

on the outer surfaces of the plates away from the edges. (Hint: Use the E- 
field expression for uniform surfaces of charge to show that E = 0 inside the 
plates only when the charge density on the outer surfaces is zero.)

(c) Show that, away from the edges, E ~  0 above and below the plates.

Figure P5-18

5-19 Consider a coaxial transmission line that consists of inner and outer conductors of 
radii a and b, and is filled with an electron cloud with a volume charge density of 
Pv = y/p  [C/m3] for a < p <  b. If the outer conductor is + VQ volts more positive 
than the inner conductor, find the E-field between the conductors.
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5-20 Figure P5-20 shows two infinite conductors that extend from p — 0 to p = co on 
the <fi = 0 and the 0 — 4>0  planes, respectively. Solve Laplace’s equation for the 
potential V and the electric field E in the regions:
(a) 0 < 0 < (f>0

(b) <f)0  < 4 > < 2 n.
(Hint: Start by assuming that V is independent of p and z.)

F ig u re  P 5 -2 0

5-21 Modify the rectangular trough shown in Figure 5-30 by assuming that the poten
tial along the wall at y = b is given by V = VQ sin (nx/a) and the other potentials 
are unchanged.
(a) Find V(x, y).
(b) Evaluate V and E at the at the center of the trough when V0  = 100 [V].

5-22 Use the curvilinear squares technique to find three equipotential surfaces
between the inner and outer conductors of the two-dimensional geometry shown 
in Figure P5-22. Assume that the dielectric between the circular and triangular 
conductors is uniform.

F ig u re  P 5 -2 2

5-23 Figure P5-23 shows a rectangular trough. All the walls are maintained at zero 
potential, except the top wall, which is maintained at a potential of 100 [V]. 
Write a numerical program (using a language such as FORTRAN or C++, or a 
mathematical software program, such as Matlab™ or Mathcad™) that solves
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Laplace’s equation throughout the trough. From these calculations, specify the 
potential and the E-field at the point P.

V= 100 [V]

F ig u re  P 5 -2 3

5-24 Use the curvilinear squares technique to estimate the potential V and electric 
field E at the point P in the rectangular trough shown in Figure P5-23.

5-25 Use the finite-difference technique to calculate the potentials at the points a, b, 
and c in the geometry shown in Figure P5-25.

V= 50 [V]

P= 50 [V] b

a ( c

V= 0 [V]

V = -20 [V] F ig u re  P 5 -2 5



6

Capacitance and Electric 
Energy

6-1 In tro d u c tio n

We have already seen from the Lorentz force law that electric fields can exert forces on 
charges and accelerate them. We have also seen that a voltage is a measure of the 
work necessary to move charges through an electric field. Because of this, it should 
not be surprising that the E-field generated by a system of charges is directly linked to 
the energy necessary to assemble those charges. In this chapter, we will formalize this 
relationship between E-fields and energy.

An important parameter that is a measure of an electrostatic element’s ability to 
store energy in its electric field is its capacitance. The reader is no doubt familiar with 
capacitance in lumped electrical circuits, but capacitance is also present in any system 
or element in which electric fields are present. As a result, capacitance is important in 
many types of distributed systems or elements, such as transmission lines and wave
guides. In this chapter, we will show how the capacitances of lumped or distributed 
elements are governed by the geometric arrangement of their components.

179
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6 -2  C a p a c ita n c e

Consider the geometry shown in Figure 6-1, which consists of two perfectly conducting 
surfaces, S+ and S_ , in a dielectric medium with permittivity e. If the conductors hold 
free charges of Q and — Q, respectively, a voltage V will exist between the conductors 
whose value depends upon the charge Q, the sizes and shapes of the conductors, and 
the permittivity £ of the dielectric. We define the mutual capacitance (or simply 
capacitance) of these conductors as

Capacitance is measured in coulombs per volt [C/V] or farads [F], but most capaci
tances found in engineering practice usually have values that are much smaller than a 
farad. Thus, capacitance values are typically specified in microfarads [fxF] or pico
farads [pF].

The definition given by Equation (6.1) is useful for understanding how capaci
tance is related to voltage and charge, but does not readily show what physical aspects 
of a system of conductors give rise to its capacitance. To actually calculate the capac
itance of an element that consists of two or more distinct conductors, we can rewrite 
this expression in terms of the E-field generated by charges on the conductors. Refer
ring to Figure 6-1, we can write

rs+
V = -  E • d£. (6.2)

Also, since the charge density on a conductor equals the normal component of D, we have

C = ^  [C/V or F], (6.1)

(6.3)

Substituting Equations (6.2) and (6.3) into Equation (6.1), we obtain

[F]- (6.4)

s_

F ig u re  6-1 Two charged conductors in a
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This formula shows that the capacitance is a function of how the E-field distributes 
itself throughout a system. Hence, capacitance is controlled by the size, shape, and 
placement of conductors, as well as the permittivity and orientation of the dielec
tric.

6-2-1 TWO SIMPLE CAPACITANCE EXAMPLES

Figure 6-2 shows a parallel-plate capacitor, which consists of a homogeneous dielec
tric with permittivity s that is sandwiched between two parallel, perfectly conducting 
sheets. In Section 5-4-2-1, we found that when fringing is negligible, the E-field 
generated inside the dielectric is directed perpendicular to the plates and has a mag
nitude given by Equation (5.63), i.e.,

where V is the voltage between the plates and d is the spacing between the plates. 
Also, we know from the previous chapter that the charge density on the outer surfaces 
of the plates is negligible and that the charge density on the positive plate is given by

This means that the charge on the positive plate is

Q = pss
eVS 

d '

Finally, using C = Q/V, we find that the capacitance of a parallel-plate capacitor is given 
by

(Parallel-plate capacitor). (6.5)

Figure 6-3 shows another simple capacitor, consisting of two concentric, oppo
sitely charged spheres of radii a and b, respectively. In Chapter 5, we found that when 
the dielectric between the spheres is homogeneous, the E-field between the spheres is 
directed radially outward from the inner sphere to the outer sphere with a magnitude 
given by

1/ Dielectric 
permittivity e

Figure 6-2 A parallel-plate capacitor with
a uniform dielectric.
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Figure 6-3 A  capacito r form ed ou t of two 
concentric spheres, separa ted  by a uniform  
dielectric.

where V is the voltage between the inner and outer spheres. The surface-charge den
sity on the inner conductor equals the magnitude of D  = e E  at r = a. Thus, the charge 
on the inner conductor is

Q  =  PsS  =

AireV 
'1 _  1] ’ 
a b

where S = Air a2 is the surface area of the inner sphere. Using C = Q/V, we obtain

4 ire
i  _  r
a b

[F] (Concentric spheres). (6 .6 )

A special case of this formula occurs when the outer sphere has an infinite radius. For 
this case, Equation (6.6) yields the capacitance of an isolated sphere:

C.sphere
r  4 7 T €  alim —-----— = 47rea.
b —

(6.7)

6 - 2 - 2  C O M P O U N D  C A P A C I T O R S

It is often possible to model complex configurations of conductors and dielectrics as 
series or parallel arrangements of simple capacitors. For instance, consider the com
pound system shown in Figure 6-4.

V F ig u re  6-4 A  parallel-plate capacitor with
a horizontally stratified dielectric.
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Here, two homogeneous dielectric slabs with widths dx and d2, respectively, are 
sandwiched between two parallel, conducting plates that each have surface area S. 
This geometry was analyzed previously; we found that the D-field between the plates is 
uniform and given by Equation (5.68), namely,

e2 dx + ex d2 ’

where V is the voltage between the plates. The surface-charge density on the positive 
plate equals the downward component of D .  Hence, the total charge Q on the posi
tive plate is

Q PsS = DS =
€2 d-y T" £y d2

Using C = Q/V, we obtain

C = €\ e2 $
e2 dx + ex d2

[F ]- (6.8)

This can also be written as

1 d\ d2 _ 1 1
—  = — + --
c *1$ e2S C1 c2 (6.9)

where Cx and C2 are the capacitances of homogeneous dielectric capacitors formed by 
the upper and lower dielectrics, respectively. This is the familiar formula for capacitors 
in series that is used in circuit analysis. Notice that the same result would be obtained 
if a thin, conducting sheet were placed between the two dielectrics. In fact, Equation 
(6.9) can be applied to any series capacitive system whenever conducting sheets can be 
placed between the series elements without upsetting the fields in either region.

Next, let us consider the geometry shown in Figure 6-5, which consists of two dif
ferent dielectric slabs placed side by side between two parallel, conducting plates. The 
surface areas and permittivities of the two dielectric regions are Sx, ex and S2, e2, 
respectively. When fringing is negligible, both E  and D  are directed normal to the 
plates, but this time the boundary conditions require that E ,  rather than D ,  be contin
uous across the dielectric interface. Thus,

Area S2

1/ Figure 6-5 A parallel-plate capacitor with
a vertically stratified dielectric.
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where e equals ex in region 1 and e2 in region 2. Given that the charge density on the 
upper plate is ps — D, the total charge on this plate is

« -  Y '■ *  f

Using C = Q/V, we find that the capacitance of this device is

_ €-, Sjc = — 1 + e2 $ 2 (6.10)

This expression is the same as the formula for capacitors in parallel that is familiar from 
circuit analysis, i.e.,

C = Cj + C2, (6.11)

where C, and C2 are the capacitances of each portion of the capacitor alone. Equation 
(6.11) applies to any capacitive system whenever the E-field in either parallel region is 
unaffected by the presence of the other.

6-2-3 DISTRIBUTED CAPACITANCE ON TRANSMISSION LINES

Transmission lines are multiconductor structures that are capable of guiding electro
magnetic energy. Because of this property, they are useful in a large number of appli
cations, ranging from 60-Hz power transmission to microwave signal transmission.

One of the most important characteristics of any transmission line is its capac
itance per unit length. This parameter, in conjunction with the transmission line’s 
inductance per unit length (which we will discuss in Chapter 9), governs a number of 
the operating characteristics of the line. We will now calculate the capacitance 
properties of two popular types of transmission lines: coaxial lines and two-wire 
lines.

Coaxial Lines. One of the most common transmission lines is the coaxial line. 
In its simplest form, a coaxial line consists of a solid, conducting wire, surrounded by a 
uniform dielectric and a conducting cylinder. In practice, the outer conductor is usu
ally made of braided wire, but can often be modeled accurately by a solid cylinder. 
This structure is shown in Figure 6-6, where the inner and outer conductors have radii 
of a and b, respectively. The electric field between the inner and outer conductors 
was derived in Chapter 5 using Laplace’s equation. When the voltage V between the

2b 2 a

F ig u re  6-6 A  coaxial transmission line.
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inner and outer cylinders is positive, E and D are directed radially outward from the 
inner cylinder and have magnitudes given by

D = eE
eV

The surface-charge density ps on the inner conductor equals D at p = a, so the charge 
per unit length pe on the inner conductor equals the surface-charge density times the 
circumference of the inner conductor:

Pi = 2 7raps =
2treV

[C/m].

The capacitance per meter equals the number of coulombs per meter p( divided by the 
voltage V, so

C =
lire

[F/m]. (6.12)

E xam p le  6-1

RG-58U coaxial cable has a 20-AW G solid inner conductor with a 0.406 [mm] radius, sur
rounded by a solid polyethelene dielectric and an outer, braided conductor of radius 1.553 [mm]. 
Find its capacitance per meter.

Solution:

From Table C-3 of Appendix C, the dielectric constant of polyethylene is er — 2.26. Using 
Equation (6.12), we find that the capacitance per m eter is

277 X 2.26 X e 
C = -------— — — 5  = 93.73

In
1.553

0.406

[pF/m],

Two-wire lines. In its simplest form, a two-wire transmission line consists of two 
round, parallel wires, each of radius a, spaced by a distance D, as shown in Figure 6-7.

F ig u re  6-7 A  two-wire transmission line.
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In order to find the capacitance per meter of this structure, we must first determine the 
potential field between the conductors. This is a more difficult problem than it first 
might seem, since we cannot assume that the charge distribution on either wire is sym
metrical about its cross section, particularly when the wires are closely spaced. How
ever, we will now show that the image of each wire into the other is an infinite charge 
filament that lies parallel and inside the other wire. This derivation involves quite a 
few steps, but is worth it, since the final result is very simple.

Let us start by considering the two infinite line charges shown in Figure 6-8. 
These line charges have opposite line charge densities, pe and —pe, respectively, and 
intersect the xy-plane on opposite sides of the y-axis, at x = ±b, respectively. To 
describe the constant-potential surfaces generated by the two line charges, we first note 
that the E-field generated by a single infinite line charge varies inversely with the radial 
distance R from each line. (See Equation (4.17).)

Since V = f c E • d£, the potential V at an arbitrary point P varies logarithmically 
with the radial distance R from the line; that is,

V = Pi
l i r e

where p( is the line-charge density and R 0  is the radial distance from the line charge to 
an arbitrary zero-potential reference point. When considering the two line charges 
shown in Figure 6-8, it is convenient to choose the reference point R 0 equidistant from 
both charges, which can be any point along the y-axis. For this case, the potential V 
due to both line charges at any point in the xy-plane is given by

V = Pi
2  i r e

Pi
2 IT  6

In
R_

R+'

where R + and R_ are the radial distances from the positive and negative lines, respec
tively, to the point P. In Cartesian coordinates, this can be expressed as

F ig u re  6 -8  The E-field streamlines and equipotential surfaces generated by 
two infinite, parallel, oppositely charged filaments.
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V = P i

lire
In

~(x + b f  + y 
(.x — b) 2 + y

2 “11/2
2

p i , r o  + ^  + / "
Ave (x — b)2 + y2_ ’

(6.13)

The contours of constant potential occur when the argument of the logarithm in 
Equation (6.13) is constant. Thus, the constant potential contours satisfy the expres
sion

(* + b f  + /  = 2
(x -  b f  + y 1

This equation can be rearranged to read

k 2 + 1 
k 2 -  1 + / (6.14)

Equation (6.14) defines a family of circles in the z -  0 plane whose centers lie 
along the x-axis. Each circle corresponds to a different potential V and has a radius 
“a” and a center coordinate x = c, which are given by

2 kb 
k 2 -  1

and

(6.15)

c =
k2 + 1 
k2 -  1

b, (6.16)

respectively. Using Equations (6.15) and (6.16), it is easy to show that a, b, and c are 
related by the simple equation

a2 + b2 = c2. (6-17)

Several of these equipotential cylinders are shown in Figure 6-8, along with several 
E-field streamlines.

Since the circular cylinders shown in Figure 6-8 are all equipotential surfaces, any 
of them could be coated with a perfect conductor without changing either the potential 
distribution or the E-field streamlines. If we were to do this to, say, the smallest cylin
ders in the figure we would obtain a two-wire transmission line. If the radii of these 
cylinders are ax = a2 = a, their center-to-center spacing can be expressed as 
D = cx — c2 = 2c1. The cylinders have equal and opposite potentials V1 and — V1, 
respectively, so the voltage between them is V0  = 2VX. Substituting x = D/2 -  a and 
y — 0 into Equation (6.13), we obtain

( f ~ a + b)
= —  In

776

r  d  n
——  a + b 
2

1 D , \ 2 D
[_(T  -  a -  bj _ ——  a — b

L 2

V = 2 In 
4776

Substituting Equation (6.17) and q  = D/2, we obtain (after some rearranging)

= —  In
776

D
— + 
2 a

DV
2 a

-  1V,
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F ig u re  6-9 A  single-wire transm ission line.

The charge per unit length on the outer surface of the positive cylinder is pt , since 
all the flux lines from the positive line charge pass through the cylinder. Using 
C = Q /Va, the capacitance per unit length of the two-wire line can be expressed as

C =
ire

<^W-‘
[F/m], (6.18)

or, using the identity In [x + Vx2 -  1] = cosh 2x, we can write this as

We can use this result to find the capacitance of another type of transmission line, 
the single-wire line, which consists of a wire at a constant height above an infinite, 
zero-potential, conducting plane. Such a line is shown in Figure 6-9. From this figure, 
it is obvious that the two conductors that constitute this transmission line are not iden
tical, making this an example of an unbalanced transmission line. We can find the 
capacitance of this transmission line by noticing that the x = 0 plane between two cylin
ders in Figure 6-8 has zero potential and thus can be considered to be a conducting sur
face. The voltage between the cylinder and this plane is exactly half the voltage 
between the two cylinders, so the capacitance per unit length of a single-wire line is 
exactly double that of the corresponding two-wire line, that is,

C
2ire

cosh 1
7T
a

[F/m], (6.20)

where h is the height of the wire above the conducting plane.

E xam p le  6 -2

Estimate the capacitance between the wire and the chassis shown in Figure 6-10. Assume that the
wire has radius 1 [mm], and length 1 [cm], and is positioned 2 [mm] above the conducting plane.
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Height = 2 [r

Figure 6-10 A  wire mounted above a flat 
metal chassis.

Solution:

Assuming that the chassis can be approximated by an infinite ground plane, we have from 
Equation (6.20),

Since the length of the wire is 1 [cm], the total capacitance between the wire and the chassis is 

C  =  42.24 [pF/m] x .01 [m] -  0.422 [pF].

6-2-4 ESTIMATING CAPACITANCE WITH THE CURVILINEAR 
SQUARES TECHNIQUE

We showed in the previous chapter that it is possible to solve two-dimensional electro
static problems using the curvilinear squares technique. This technique can also be 
used to provide quick estimates of the capacitance of two-dimensional structures, such 
as transmission lines. Figure 6-11 shows the cross-sectional cut and flux plot of a 
transmission line with a triangular inner conductor and a circular outer conductor. 
Because of the symmetry of this geometry, only one-sixth of the flux plot need be 
drawn. All the information needed to estimate the capacitance of the transmission 
line is contained in this flux plot. To show this, we first note that according to the rules 
of the curvilinear squares technique (see Section 5-4-3), the potential difference

9 7T&
C/length = --------- -—  = 42.24 [pF/m].

Fractional
tube

Figure 6-11 A  curvilinear squares plot of 
a transmission line with a triangular inner 
conductor.
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between each adjacent pair of equipotential surfaces is the same, NV. This means that 
we can write the voltage between the conductors as

where Nv is the number of cells between the inner and outer conductors along any of 
the flux tubes. In this case, Nv = 3.

The flux carried by each flux tube in a curvilinear squares flux plot is the same, 
W .  This means that the charge per unit length contained on the positive conductor 
can be expressed as

where NQ is the total number of flux tubes that surround the positive conductor. In 
this case, since there are six identical sectors that surround the inner conductor, we 
have Nq = 6 X  (3 + 0.9) ~  23.4, where we have estimated that the fractional tube car
ries approximately nine-tenths the flux of the full tubes.

Using Equations (6.21) and (6.22), we can express the capacitance per meter as

Q N q AT

V Nv N V '

But, according to Equation (5.90), when the cells of a flux plot are square, the ratio of 
A'T to NV is given by

NV A Lt

where AL(/AL„ is the cell aspect ratio and eis the permittivity of the dielectric between 
the conductors. When cells are square, the aspect ratio is unity, and the capacitance 
per unit length of a two-dimensional system is given by

Thus, all that is necessary to find the capacitance of a two-dimensional structure is to 
count the voltage and flux squares on the curvilinear squares flux plot. For the trans
mission line shown in Figure 6-11, the capacitance is

V = NvNV, (6.21)

Q  =  N q \ V , (6.22)

(6.23)

where we have assumed that the dielectric is free space.
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6-2-5 CAPACITORS WITH LOSSY DIELECTRICS

So far we have considered only capacitors with perfect (i.e., nonconducting) dielectrics. 
This is often a good approximation to real-world components, but there are many cases 
where the conductivity of the dielectric cannot be ignored. To see how these compo
nents can be modeled, consider the geometry depicted in Figure 6-12a. Here, a par
allel-plate capacitor contains a dielectric that has permittivity e and conductivity a. If 
a dc voltage is applied to the plates, a resistive current IR will flow between them. Nev
ertheless, the potential distribution between the plates is unaffected by the nonzero a. 
This is because both the free and polarization charge densities throughout a homoge
neous dielectric are zero after the initial transient period. (See Equations (5.35) and 
(5.37).) As a result, the potential distribution between the plates still satisfies 
Laplace’s equation and is not affected by the nonzero a.

In order to determine the equivalent circuit of a lossy capacitor, let us now con
sider the voltage between the plates to be time varying. As long as the magnetic field 
is negligible, the E-field between the plates will still distribute itself as an electrostatic 
field.1 In this case, the total current I  can be considered as the sum of the resistive cur
rent IR and the current Ic associated with the time-varying charge Q on the plates. 
Using the definition of capacitance, we have

Ic
d Q

d t

d_

d t
0CV) = C

d V

d t

Hence, the total current flowing into the positive terminal of this lossy capacitor is

I  IC IR C ^  +
d t

V 
R ’

which means that a lossy capacitor can be modeled as the parallel combination of a 
resistor and capacitor, as shown in Figure 6-12b.

When a capacitor has a homogeneous dielectric, the value of the product RC is 
determined solely by the ratio of the dielectric permittivity e to the conductivity u. To 
show this, we first note that we have already shown that the capacitance C and the 
resistance R of a lumped element are governed by the way in which E distributes itself 
throughout the element. From Equations (6.4) and (5.9), we have

H 1/ - lfl  R

_ L  J Ir

/

___ o— — —

------- WA-------

O---------------

' 7 1

--------------- o
---------j f --------

Ic C

(a) (b)

F ig u re  6-12 A  lossy capacitor a) Physical geom etry, b) E qu ivalen t circuit.

1 T his is u su ally  the case w h en  the sp acing b e tw een  the capacitor p la tes is sm all w ith  resp ect to  the tree-sp ace  

w a velen gth  at the op eratin g  freq u en cy . F ree sp ace w a v elen g th  is d iscu ssed  in  C hapter 12.
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c  =

eE • ds

E • df

E • df

R =
crE • ds

>s+ Js+
Hence, the product RC is given by

RC

eE • ds

crE • ds
s.

If the dielectric medium is homogeneous, both e and a  can be taken out of the inte
grals, and the remaining integrals cancel, yielding

RC = — (Homogeneous dielectric). 
a

(6.24)

Thus, if the permittivity and conductivity of a capacitor’s dielectric are known, its 
capacitance can be calculated if its resistance is known, and vice versa.

It is known that a lossy capacitor is filled with a homogeneous dielectric with permittivity e = 2e0 
and conductivity a  = 1.0 X 10"4 [S/m]. If measurem ents show that the resistance of the device 
is 10 [kfl], find its capacitance.

Solution:

Using Equation (6.24), we find that

C =
€

Rd
2 X 8.854 X 10~12 

(10 x 103)(1 x 1(T4)
17.7 [pF],

6-2-6 ELECTRIC SHIELDING

The capacitive coupling between the conductors of a system is not always a welcome 
effect. For instance, the coupling between wires in a telephone circuit can give rise to 
cross talk, where the signal energy from one circuit also appears in another. Mutual 
capacitance decreases as the distance between the conductors increases, but it is often 
impractical to place the conductors far enough apart to reduce the capacitive coupling 
to acceptable levels. A more practical method is to surround the critical components 
with a grounded, metal enclosure. This procedure is called electric shielding, which is 
often called Faraday shielding.

We can model the effects of a conducting shield by considering the multiconduc
tor system shown in Figure 6-13a. In this system, conductors #1 and #2 are separated 
by a shield, conductor #3, that completely surrounds conductor #2. In practice, the
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(a)

Vi C13 V3 °23 Vr
--------II-------- --------II-------

-  C10 -  C30

1

(b)

F ig u re  6-1 3 A multiconductor system with an ungrounded shield, a) Geometry, 
b) Equivalent circuit.

shield may be a chassis or subchassis, and conductors #1 and #2 may represent circuits 
or components that need to be electrically isolated. For the moment, let us assume 
that the shield potential V3  is floating, which means that it is not held at a constant 
potential with respect to ground.

We can model the characteristics of this multiconductor system using the config
uration of lumped capacitances shown in Figure 6-13b. Here, the conductors are rep
resented by nodes and the potential differences between them are governed by lumped 
capacitances between these nodes. A complete verification of this equivalent circuit is 
beyond the scope of this text2, but we can offer an abbreviated proof by first express
ing the total charge on each of the ungrounded conductors in terms of their potentials. 
According to the superposition principle, these charges can be expressed as a weighted 
sum of the conductor potentials. If Q1, Q2, and Q3 are the charges on conductors #1, 
#2 and #3, respectively, we can write

Q \  ~  Cl l ^ l  +  C12^ 2  +  C13^3 

Q l  ~  Cl \ ^ \  "t* C22^2 C23^3

Q 3 ~  C31^1  C3 2 ^ 2  C3 3 ^ 3 ‘

The values of the coefficients cn , c12, ... c33 are governed by the geometric layout of 
the conductors and are called coefficients o f capacitance. These three expressions are 
linear equations with respect to the conductor potentials, so we can rearrange them so 
that they are functions of the potential differences between the conductors,

Qi = C^V, + C1 2 (Vt -  V2) + C13( ^  -  V3) (6.25a)

Qi = Cn(V 2 ~ V Q  + C2 0V2  + C2 3 (V2  -  V3) (6.25b)

Q 3 = C1 3 (V3 -  V.) + C2 3 (V3 -  V2) + C3 0V3 . (6.25c)

The coefficients C10, C12, etc., are linear combinations of the coefficients of capaci
tance. For instance, C12 = _ c12, C13 = ~c13, and C10 = cn + c12 + c13. These new 
coefficients are always positive-valued and represent the lumped, mutual capacitances 
shown in Figure 6-13b.

2For a complete description, see Principles o f Electrodynamics by Melvin Schwartz, published by McGraw 
Hill, 1972, pp. 54-62.



Although a mutual capacitance usually exists between any two conductors, the 
mutual capacitance C12 between conductors #1 and #2 in the system shown in figure
6-13a is zero. To see why this occurs, we can take the partial derivative of equation 
6.25b with respect to Vx, which yields:

dQ2 _ _ r
dVx ~ Cl2’

We know the charge density on conductor #2 is a function of the D-field strength at the 
surface. However, according to the uniqueness principle, neither D nor E inside the 
shield are affected by potentials or charges outside the shield as long as the shield 
potential V3 is held constant. Hence, the partial derivative of this expression is zero, 
which means that Cn  is zero. By similar reasoning, C20 is also zero.

Even though the shield causes Cn  to vanish, we can see from Figure 6-13b that 
the potential V2  can still be affected by V1 when the shield potential V3 is allowed to 
float. This is because of the mutual capacitances C13 and C23 between the outer and 
inner conductors and the shield, respectively. Thus, a floating shield will not isolate 
conductor #1 from changes in potential outside the shield. On the other hand, if the 
shield is grounded (as shown in Figure 6-14a), the potential distribution in the region 
enclosed by the shield is now independent of the charges and potentials outside this 
region, since the surrounding potential is now constant.

The schematic for this situation is shown in Figure 6-14b. Comparing Figures
6-14b and 6-13b, we see that the shield is effective in isolating components within it 
only when it is connected to a constant potential surface—usually a ground.

A region can be electrostatically shielded from the E-fields generated by external 
charge distributions by surrounding the region with a constant-potential surface.

194 CHAP. 6 CAPACITANCE AND ELECTRIC ENERGY

This is an important concept to remember when designing low-noise circuits and systems.
There are many situations where it is not possible to completely enclose circuits 

with a perfect shield, since openings are often needed for power supply wires and ven
tilation. Fortunately, even partial shields can often reduce the coupling to acceptable

0=3

(b)

F ig u re  6-14 A  m ulticonductor system  w ith a grounded  shield, a) geom etry, 
b) equivalent circuit.
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F ig u re  6 -1 6  A n aircraft w ith a lightning channel attached. T he fields 
inside the  fuselage are  sm all due to  F araday  shielding.

levels. Figure 6-15 shows an example of a partial shield. Here, an inner conductor is 
partially shielded by an outer conductor with a slit. Even with the slit, the coupling 
between the inside and outside conductors is small, because the shield intercepts most 
of the E-field lines that would otherwise link the two conductors.

Faraday shields are used not only to reduce capacitive coupling in circuits, but 
also to protect regions from high fields and currents. For example, the metal fuse
lage of an airplane acts as a Faraday shield during a lightning strike. This is 
depicted in Figure 6-16. Here, the fuselage provides a path for the large currents 
and maintains an essentially field-free environment inside. Of course, this shielding 
is not perfect, since an aircraft fuselage is not perfectly conducting and also has 
openings, such as windows and door seams. Nevertheless, the shielding effective
ness afforded by an aircraft fuselage is good enough to make it safe for passengers 
during a lightning strike. Unfortunately, the shielding effectiveness may not be ade
quate to protect the digital control circuits used in modern aircraft, as a transient 
event can actually change the logic states of these circuits. For these types of cir
cuits, additional shielding is often needed. This type of shielding is often called 
hardening.

T h e  E n erg y  C o n ta in e d  in an E lec tro s ta tic  C h a rg e  D is tr ib u tio n

Up to this point in our discussion, we have investigated the electric fields generated by 
charge distributions with little thought as to how these charge distributions are created. 
If we care only about the fields generated by a known charge distribution, there is no 
need to know how this charge distribution was created. But common sense tells us
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C harges at infinity, w here 
each charge “sees” E = 0

F ig u re  6-1 7 A n initially charge-free region R  th a t is charged by bringing po in t 
charges in to  the  region from  infinity.

that charge distributions do not just “happen.” Rather, work must be expended to cre
ate a charge distribution by separating the positive and negative charges that occur nat
urally in material media. In this section, we will develop the expressions that specify 
the energy required to establish a static charge distribution. We will accomplish this 
by “building” these distributions point charge by point charge and summing the ener
gies needed to place each charge.

Figure 6-17 shows a homogeneous, linear dielectric region R that initially con
tains no charge. Far outside of R there exists a pool of point charges—so far away as 
(infinity) that there is no E-field initially within R. In addition, these charges are also 
far enough away from each other that the forces exerted on each other are negligible. 
This means that for this initial state, the E-field experienced by each charge is zero.

If we move the charge Qx to a point within R, no energy is expended, since Q1 

experiences no E-field anywhere along the path. To move the next charge Q2 to a 
point within R, a quantity W2 of energy must be expended on the charge, since Q2 expe
riences a force F = QXE from the electric field generated by Q{ as it nears and enters R. 
Noting that the force - F  must be applied to move the charge Q2, we find that

where V12 is the potential (referenced to the zero potential surface at °°) due to the 
already placed Q1 at the resting location of Q2. Using Equation (4.44), we can 
express V12 as

where Ru is the distance between the resting locations of Qx and Q2. Next, to move Q3 

inside R , work W3 must be expended against the fields generated by both Q{ and Q2 ; thus,

where V13 and V23 are the potentials3 due to Qx and Q2 at the location of Q3, respectively.

W3 -  q 3 v 13 + Q3 V23 = Q3 (V13 + u23),

3 Since we have assumed that the medium is linear, the value of e is independent of the fields already present 
in the system.
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By now, the procedure for adding more charges to the charge distribution 
should be obvious. To place N  charges inside R, the total work expended on the 
charges is

w , = Q2 Va + 2 ,T l3  + V23) + 6 4 ( ^ 1 4  + 2̂4 + ^ 34) + ...

• •• + Q n ^ Y i n  + V i n  + ••• V N - i , n ) . (6.26)

If we note that

Q i V n
QiQj

AireR::
lJ

Q ^ii

we can then rewrite Equation (6.26) as

= Q1 (V21 + v 31 + . . . )  + Q2 (V3 2 + V4 2 + ...)

+  0 3  ( ^ 4 3  +  ^ 5 3  +  ••• ) +

Adding Equations (6.26) and (6.27) and regrouping, we obtain

2We -  Qi (V21 + V31 + V41...)  + Q2 (V12 + V3 2 + V4 2 + ...)

+ 0 3 ( ^ 1 3  + ^ 2 3  + * 4 3 + ^ 5 3  + ••• ) + 
which can be written as

(6.27)

1 N N 1 N

w, = 3  2 a 2 n = 3 2 Q,v,. (6-28)
z  i = l  j=  1 z / =i

where

N

v ,  =  2  v n
1=1
i*i

is the potential “seen” by the z'lh charge due to all of the other charges placed in the system.
To find the energy expended to construct a continuously distributed charge dis

tribution within a volume, we can replace Qt in Equation (6.28) with pvdv. In the limit 
as N  -a 00, this expression can be written as

W e = \ \  P v V d V  [J], 
Vol.

(6.29

where V is the absolute potential function generated by the charge distribution pv. 
Similar expressions can be derived for the energy required to assemble surface and line 
charge distributions:

We = \ \ p , V d s  [J], (6.30)
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and

We = \ j P l VM[fl- (631)

From Equations (6.29)-(6.31), we can see that the energy required to create a 
charge distribution is a function of both the charge distribution itself and the potential 
distribution that it generates. We can also formulate an expression for this energy 
solely in terms of the field quantities D and E. To accomplish this, we first replace pv 
with V • D, which yields

We = |  j  (V • D)Vdv .
Vol.

Using Identity B.3, we can write the integrand as 

(V• D)V = V • VD -  D « W .

Also, substituting E = — W ,  we can express We as

W = —
e 2

V • VD dv + D • E dv
Vol. Vol.

VD • ds + D • Edv, (6.32)

Vol.
where the divergence theorem has been used to transform the left-hand integral into a 
surface integral about the closed surface S that bounds the volume in which the charge 
lies.

Looking closely at Equation (6.29), we see that the volume of integration can be 
any volume, just as long as it contains the actual volume filled by the charge distribu
tion pv. If we let the integration volume be all of space, the contribution to We from 
the surface integral over S approaches zero. This is because E and V decay no slower 
than r ~ 2 and r ~ x (respectively) at large distances from any charge distribution with 
finite dimensions. Thus,

VD • ds == lim f f VD • r 2 sin Odddcf) -a  0. 
r“>“ Jo Jo

Substituting this result into Equation (6.32), we obtain

We = ^  j  D • Edv [J],
Vol.

(6.33)

where the integration takes place at all points at which the dot product D • E is nonzero. 
The term ~ D • E is called the electric energy density and is measured in units of joules 
per cubic meter. Also, if the medium is isotropic, D = eE, from which it follows that

We = i  J  e|E |2̂ .
Vol.

(6.34)



6-3 THE ENERGY CONTAINED IN AN ELECTROSTATIC 199

The energy We required to construct a charge distribution is also the potential 
energy of the system once it is built. The question of where this energy resides is an 
interesting one, and Equations (6.29) and (6.33) offer different perspectives on this 
question. Whereas Equation (6.29) indicates that this energy resides in the charge dis
tribution, Equation (6.33) indicates that it resides in the electric fields generated by 
charge distribution, which can exist far away from the charge distribution itself. Which 
view is correct? The answer is that both are correct. This is because a charge distribu
tion and the electric field that it generates are an inseparable pair; a complete knowl
edge of one completely defines the other.

E xam p le  6 -4

Find the total energy contained in a system consisting of two concentric spheres of radii a and b,  

respectively. Assume that both spheres are perfectly conducting. The inner and outer spheres 
contains charges of + Q  and -  Q ,  respectively, and the region between the spheres is filled with 
a dielectric of permittivity e.

Solution:

The fields generated  by this charge distribution have already been determ ined in 
Exam ple 5.5:

D = 6E

a <  r  <  b 

otherwise

Substituting this into Equation (6.33), we obtain

W e —  ~  f  D • E d v  =  ~  (  \  f  D • E r 2 sin O drdddc f)
2  J v  2  J n  J n  J n

 ̂ /-2ir1 p  ... ru q 2 sin Q

= 2 J0 J0 ]a ^ ? drd9d^  = ^ e
Q 2 i _ r

a b

This same result can be obtained by using Equation (6.30). Since both conductors are 
equipotential surfaces, we can write

w< = lJ  pIF(fc = L |  + 0 1

where V a  and V h  are the potentials of the inner and outer spheres, respectively, and Q  is the 
charge on the inner sphere. Since the E-field outside the outer sphere is zero, V b  = 0, so V a 

equals the voltage between the spheres. Using the capacitance expression that we derived ear
lier (Equation 6 .6 ), V a  can be written as

V a  =  Q I C  =
Q_

4776
r
b '

Substituting this into the expression for W e ,  we obtain
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W .
Q2 IT

8776  [ f l

r
by

which is the same result as was obtained earlier.

6 -4  E n erg y  S to ra g e  in C ap ac ito rs

Capacitors store charge. This means that they also store energy in the electric 
fields generated by that charge. To calculate the energy stored in a capacitor, con
sider the two charged conductors shown in Figure 6-18 with a voltage V between 
them.

From Equation (6.30), we have

W„ = -
= \ /  PsVdS = \ J Ps VdS + 2 ! PsVdS’

where S+ and S_ are the bounding surfaces of the positive and negative conductors, 
respectively. Since the potential on each surface is a constant, this expression can 
be written as

W e  =  ^ V + j  p s d s  +  \ v -  j  P s d s  =  \  V + Q +  + ^ V _ Q _ ,

where V+ and V_ are the absolute potentials of the positive and negative conductors, 
respectively, and Q+ and Q_ are the charges on the positive and negative conductors, 
respectively. If Q+ = —Q_, the preceding expression can be written as

w ,  = \  Q [ V + -  V _ ]  = t  Q V , (6.35)

where V  is the potential difference between the conductors and Q  is the capacitor 
charge. Finally, substituting C  = Q / V  into Equation (6.35) yields

(6.36)

Thus, the energy required to charge a capacitor is specified by its capacitance and the 
voltage to which it is charged.

We can also rearrange Equation (6.36) to provide an alternative definition of the 
capacitance of a lumped element:

S_

F ig u re  6 -1 8  Two conductors with 
balanced charges.



SEC. 6-5 SUMMATION 201

(6.37)

This expression is equivalent to the definition of capacitance given by Equation (6.1). 
The following example shows how it can be applied to calculate capacitance.

E xam p le  6 -5

I S f

7

S ii

p

Find the capacitance of the parallel-plate capacitor shown in Figure 6-19 using the energy defin
ition of capacitance. Assume that the conducting plates have surface area S and are spaced by 
a distance d.

Solution:

W hen fringing is negligible, the magnitude of E between the plates is E  =  V /d .  Since the 
fields are zero outside the capacitor when fringing is negligible, we have, from Equation (6.33),

w, = 5 S d
e V 2S 

2 d  ‘

Substituting this into Equation (6.37), we obtain 

V 2 d  ’

which is the same formula as was obtained earlier (Equation (6.5)).

6 -5  S u m m a tio n

In this chapter, we have defined the capacitance of an element both in terms of its ter
minal characteristics and the electric field within it. The terminal relations are simple 
and well known from circuit theory, but the field relations give greater insight into what 
physical characteristics of a geometry are responsible for its capacitance. We have also 
shown that the energy stored by an electrostatic system is completely determined by 
the charge distributions within the system and their geometric configuration. At the 
same time, this stored energy state can be determined from a knowledge of the electric 
field distribution throughout all space.



202 CHAP. 6 CAPACITANCE AND ELECTRIC ENERGY

Even though our discussion of capacitance assumed that the fields were time- 
invariant, the vast majority of the expressions that were derived in this chapter are 
applicable to time-varying systems with little or no modification. As a result, we will 
often refer to these results once our discussion turns to time-varying fields.

P roblem s

6-1 A parallel-plate capacitor has two metal plates, each with surface area of 
10 [cm2], spaced by 0.2 [mm], with a uniform dielectric with a dielectric constant 
of 4.0 . Find the capacitance C.

6-2 Calculate the capacitance per meter of a two-wire transmission line with an air dielec
tric if the radius of each wire is 1 [mm] and the center-to-center spacing is 1 [cm].

6-3 When the wires of a two-wire transmission line are widely spaced, the charge den
sity on both wires becomes uniform. For this case, an approximate formula for 
the capacitance is

rre

a

[F/m] D »  a.

(a) Derive this formula by using the E-field expression for infinite, uniform cylin
ders of charge.

(b) Compare the results of the formula with the exact formula (Equation (6.19)) 
when D/a — 10.0 and 3.0.

6-4 Consider a capacitor formed by two coaxial metal cylinders with radii 8 [mm] 
and 2 [mm], respectively. Find the capacitance per meter, C, if the relative 
dielectric permittivity between the cylinders is er = 4 + 2p, where p is mea
sured in millimeters.

6-5 Find the center-to-center spacing of a two-wire transmission line that has a capac
itance per meter of 10 [pF/m]. Assume that the wires have radii of 0.5 [mm] and 
that the dielectric is air.

6-6 Calculate the capacitance of the earth by considering the earth to be a perfectly 
conducting sphere (radius ~  6371 [km]). Compare your result with the capaci
tance of commercially available capacitors. Is this surprising?

6-7 Use the curvilinear squares technique to estimate the capacitance of an air-filled 
coaxial line with an outer-conductor/inner-conductor ratio of 4.0. Compare this 
result with Equation (6.12).

6-8 Use the curvilinear squares technique to estimate the capacitance per meter of 
the strip-line transmission line shown in Figure P6-8, which consists of a narrow 
strip, sandwiched between two outer conductors that are both at ground poten
tial. (Hint: This geometry has dual symmetry about the center point of the strip, 
so only the field lines in a single quadrant need to be drawn.)

6-9 Figure P6-9 shows a square cylinder surrounded by a larger square cylinder. Use 
the curvilinear squares technique to estimate the capacitance per meter of this
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F ig u re  P 6-8

F ig u re  P 6-9

geometry. Notice that the symmetry of the geometry is such that only the lines in 
the upper octant need to be drawn.

6-10 A capacitor with a uniform dielectric has a capacitance of .02 [pF] and a resis
tance of 10 [KO]. If the dielectric constant is er = 40, find the conductivity or of 
the dielectric.

6-11 Prove that the energy We necessary to assemble a uniformly charged solid sphere 
with total charge Q and radius a is

2077-eoa '

(.Hint: Find the E-field inside and outside the sphere, and use Equation (6.34).)
6-12 After the discovery of the electron, attempts were made to calculate the elec

tron’s radius by assuming that all of the energy stored in an electron is electro
magnetic and then equating this energy with Einstein’s equation, E = me2, where 
E is the electron mass energy, m is its rest mass, and c is the speed of light in a 
vacuum. Under different assumptions of how the charge within the electron is 
distributed, various radii were calculated, all of which contained the quantity

„ y = 2.81784 X 10“15 
47T€Qmc M ,

which came to be called the classical radius of the electron.4 If an electron is 
assumed to be a uniformly charged spherical shell, use this reasoning to show that 
the resulting electron radius is r0 / 2 .

4 See Robert Leighton, Principles o f Modern Physics (New York: McGraw-Hill, 1959).
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S hield

F ig u re  P6-1 3

6-13 Figure P6-13 shows the schematics of two transistor amplifiers, T1 and T2, that 
are mounted close to each other on the same circuit board. The amplifier on the 
right is enclosed in an electrostatic shield in a effort to reduce the capacitive 
pickup at the input of T2 due to output voltage swing of Tl. The mutual capaci
tances between conductors #1, #2, and #3 and ground are C13 = 0.1 [pF], C23 = 2 
[pF], C3 0  = 10 [pF], and C12 = C20 = 0. If V3 varies sinusoidally between +10 
and -10 volts, calculate the voltage V2  if:
( a )  the shield is grounded,
(b) the shield is allowed to float.



Magnetostatic Fields in 
Free Space

7-1 In tro d u c tio n

Just as static charge distributions generate electrostatic fields, steady current distribu
tions generate magnetostatic fields. In addition to being a natural consequence of 
electric currents, magnetostatic fields are desirable in their own right, particularly for 
generating large forces. Devices that use magnetostatic fields include motors, genera
tors, relays, and electromagnets.

Magnetostatic fields are a convenient starting point towards our ultimate goal of 
understanding the nature of all magnetic fields (both static and time varying), since the 
equations that describe this special case are much simpler than those describing the 
general time-varying case. In addition to their simplicity, many other of the charac
teristics of magnetostatic fields are seen in time-varying magnetic fields. As a result, 
we will use many of the concepts and formulas from this discussion later in the text 
when we discuss the time-varying case.

Just as in the case of electrostatic fields, we will start our discussion of magneto
static fields by identifying the behavior of these fields when currents are suspended in 
free space. Starting here will allow us to see the relationship between the fields and 
their sources, without the effects of materials. In addition to developing a number of

205
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formulas that relate the magnetic flux density B to the currents that cause them, we 
will introduce two types of magnetic potentials that are useful in the analysis of mag
netic systems.

M a x w e ll's  E qu atio n s  fo r  M a g n e to s ta t ic s  in Free Space

In Chapter 3, we found that Maxwell’s equations are the fundamental postulates of all 
electromagnetic phenomena. In free space, the point form of these equations read

dE
V*B = 0 V x B  = /t0J + /i0e0-

V -E

When the sources 
equations become

V X E =
dB
dt

are time invariant, all derivatives with respect to t vanish, and these

V • B = 0 (7.1) V X B = p,0i (7.2)

V • E = — (7.3) V X E = 0. (7.4)
-o

Equations (7.3) and (7.4) define the behavior of electrostatic fields; these were dis
cussed in Chapter 4. Equations (7.1) and (7.2) define the behavior of magnetostatic 
fields and are called Maxwell's equations fo r magnetostatics in free space. Similar to 
the electrostatic equations, these equations define the magnetic flux density B at any 
point, since both the divergence and curl of B are defined. However, unlike the elec
trostatic equations, where E always has zero curl, in the magnetostatic equations it is 
the divergence of B that is always zero. This is the cause of many differences between 
the behaviors of electrostatic and magnetostatic fields.

We can derive integral representations of the magnetostatic equations. To do 
this, let us first take the dot product of both sides of Equation (7.2) with a differential 
surface vector ds and integrate over an arbitrary, open surface S, yielding

J V X B • ds = /x0 J J • ds.
Is 4s

The right-hand side of this expression equals the current I  passing through S in a right- 
handed sense. Also, we can use Stokes’s theorem to express the surface integral on 
the left-hand side as a line integral over the closed contour C that bounds S, resulting in

B • d£ P'of

which is valid for any closed contour C.
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Similarly, we can obtain an integral representation of Equation (7.1) by first mul
tiplying both sides by the differential volume element dv and integrating over some 
volume V, yielding

[  V  • B dv = 0.
J y

We can use the divergence theorem to write the integral on the left as a surface integral 
over the closed surface S that surrounds V:

® B • ds = 0.
's

Maxwell’s equations for magnetostatic fields in free space are summarized in the 
following table in both point and integral forms.

M AX W E LL’S EQ UATIO NS FOR MAGNETOSTATICS IN FREE SPACE

Point Form: Integral Form:

V • B =  0 (7.5) <j> B • ds =  0 (7.6)

V x  B =  n j  (7.7) oa.IIT3ec (7.8)
Jc

In either integral or point form, these equations completely define the behavior of 
magnetostatic fields in free space. Equations (7.7) and (7.8) define the relationship 
between steady current distributions and the magnetostatic B-fields they generate. 
These equations are representations of Ampere’s circuital law (or simply Ampere’s 
law), named in honor of Andre Marie Ampere (1775-1836), who conducted a defini
tive series of experiments that unraveled the mystery of magnetostatic fields. In 
words, Ampere’s law states that the magnetic flux density B  tends to rotate around cur
rents. We will use this law to find the magnetic fields generated by several classes of 
current distributions.

Equations (7.5) and (7.6) state another important property of magnetostatic 
fields, namely, that the net magnetic flux entering or leaving any point or surface is 
always zero. This is often called Gauss’ law fo r magnetics, or the law o f conserva
tion o f magnetic flux. An important consequence of this law is that B-field stream
lines, unlike E-field streamlines, never terminate on points or surfaces. This is 
because unipolar magnetic charges do not exist in nature. Rather, the elemental 
sources of magnetic fields are electric currents, which act as bipolar sources of mag
netic fields. A common example of this is permanent magnets, which always have 
north and south poles. Even when one is cut in half, each half has its own north and 
south poles.
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T h e  B io t-S a v a rt Law  a n d  th e  M a g n e tic  V e c to r  P o te n tia l

Maxwell’s equations for magnetostatics are the most compact formulation of the laws 
of magnetostatics, but that does not mean that they are always the most convenient 
starting point for actual magnetic field calculations. This is analogous to electrostatics, 
where we found it helpful to derive Coulomb’s law from Maxwell’s electrostatics equa
tions. Using Coulomb’s law, we were able to calculate the E-fields generated by a 
number of different types of charge distributions. In the case of magnetostatics, the 
Biot-Savart law is analogous to Coulomb’s law in that it allows the direct calculation of 
the B-fields generated by a given current distribution.

Deriving the Biot-Savart law from Maxwell’s magnetostatic equations is a bit 
more involved than deriving Coulomb’s law from Maxwell’s electrostatic equations. 
This is because the sources of magnetic fields are currents, which are vector quantities, 
as opposed to charges, which are scalar quantities. Because of this, the Biot-Savart 
law is most easily derived by first introducing the concept of the magnetic vector poten
tial. Once this is introduced, the Biot-Savart law will follow quickly.

7-3-1 THE MAGNETIC VECTOR POTENTIAL

In electrostatics, we were able to use the fact that V X E is always zero to express E as 
the gradient of the electrostatic scalar potential V. In addition to its physical interpre
tation, we found that this potential often simplifies electrostatic calculations. In mag
netostatics, Gauss’ law for magnetostatics (Equation (7.5)) provides an analogous 
situation. Since B has zero divergence at all points, Theorem IV in Section 2-5-6 
(Equation (2.132)) allows us to write B in terms of the curl of another vector, that is,

B = V X A, (7.9)

where A is called the magnetic vector potential, which is measured in units of webers 
per meter [Wb/m] or tesla-meters [T • m].

Although Equation (7.9) tells us of the existence of A, it does not tell us how to 
calculate it for a known current distribution. We can accomplish this by first substi
tuting Equation (7.9) into Equation (7.7), which yields

V x  V x  A = /x()J.

We can expand the curl-curl operation using Equation (B.10), from which we obtain

V ( V - A ) - V 2A = /x0J, (7.10)

where V2 is the Laplacian operator, which is defined in Equations (2.126) and (2.128).
Before we attempt to solve Equation (7.10) for the magnetic vector potential A, 

we would benefit from a bit of reflection. In particular, we note that the left-hand side 
of Equation (7.10) has the term V(V • A). This term would certainly be zero if V • A 
were zero, but do we have the right to assume that this is so? The answer to this ques
tion is yes, since, according to Equation (7.9), the only property of A that is important to 
us is its curl. As a result, we can choose its divergence to be anything that we find con-
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venient, as the divergence and curl of a vector are independent quantities that can be 
specified separately. (This is a corollary of Theorem II in Section 2-5-6.) The process 
of selecting a specific divergence of A is called “setting the gauge,” and we will choose

V ♦ A = 0, (7.11)

which is called Coulomb’s gauge and reduces Equation (7.10) to
< > II 1 ? (7.12)

This equation is the vector form of Poisson’s equation.
The easiest way to solve the vector Poisson’s equation is to use the fact that the 

V2 operator is particularly simple when the vector it is acting on is expressed in Carte
sian components. (See Equation (2.126).) Thus, the vector Poisson’s equation can be 
written as three scalar equations,

V2A, = -/*„/, (7.13a)

V2A, = - f i j ,  (7.13b)

V 2A Z = - » 0 J„ (7.13c)

where A x,A y, and A z are the x, y, and z components of A, respectively, and Jx,Jy, and 
Jz are the x, y, and z components of J. Each of these equations is a scalar Poisson’s 
equation, of the same form as the Poisson’s equation found in electrostatics: 
V 2V = —pv/eQ. We can express the solutions of these three magnetostatic Poisson’s 
equations using the electrostatic solution (Equation (4.60)) by replacing pv with and 
l/e 0 with yu0, obtaining

J±O f  J id v ' 

47t J |r — r'
Vol.

i = x, y, z.

Here, r is the field point (i.e., the point at which A t is being evaluated), and r' is the 
dummy position vector that sweeps through all the points where the current density is 
nonzero. Since the solutions for each of the components of A have similar integrands, 
we can combine them to form the vector expression,

Even though we derived this solution by using the Cartesian components of the vec
tors, it is independent of the coordinate system chosen. Hence, the expression is the 
particular solution1 of Poisson’s vector equation in all coordinate systems.

JThe particular solution of a differential equation is one that is proportional to the forcing function (in this 
case, J) and has no arbitrary constants.
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We will find a number of uses for the magnetic vector potential A throughout this 
chapter. For the moment, however, our only concern is that we can use it to quickly 
derive the Biot-Savart law.

7-3-2 THE BIOT-SAVART LAW

Let us consider a steady current I  that flows around an arbitrary, closed path C, such as 
the path shown in Figure 7-1. Since this is a filamentary current, we can modify Equa
tion (7.14) to express the magnetic vector potential of this current by replacing J dv' 
with /d F , yielding

* - ti /dF

r -  r
where r and r' are the position vectors of the field and source points, respectively. To 
keep things simple, we have chosen the direction of integration dt' and the direction of 
the current /  to be the same. Substituting the foregoing expression into Equation 
(7.9), we obtain

B = V X AC
477

aV
477

(7.15)

In this expression, we note that we can bring the V X inside the integral, because it 
operates only on the primed variables.

The easiest way to handle the curl operation inside the preceding integral is to 
use the vector identity

V x  (f G) = /V  x  G +  (V/) x  G.

If we let /  =  -j--------- r and G = d f we can write
|r — r'|

d F 1 / 1 \
V x  ---------- r = ---------- r V x  dF + V -------- r X dF.

|r -  r'l |r -  r'| V |r — r ' | /

In Cartesian coordinates, dF can be expressed as

dF =  dx' av +  dy' av +  dz' a..

This clearly shows that dF is not a function of the unprimed variables, so V X dF = 0 
and

x

Figure 7-1 Geometry for deriving the 
Biot-Savart law.



SEC. 7-3 THE BIOT-SAVART LAW AND THE MAGNETIC VECTOR POTENTIAL 211

V X -———r = (V — ) X dC. (7.16)
|r -  r'| V |r -  i '\)

Next, we can express the scalar function 1 / |r — r '| in Cartesian coordinates as

r^-7T = [(* - x ' f  + (y -  y ’ f  + (z -  z ' Y Y m .
|r -  r |

Taking the gradient of this function, we have

=  a. ± (  _ L _ ] + % A (  i '
dx \ |r  — r ' | /  y d y \ | r - r ' | /  dz

(x ~ x')ax + (y -  y ')ay + (z -  z ')a, 

[(x -  x ' ) 2 + (y -  y ' ) 2  + (z -  z')2]3/2

r'

This can be written in terms of the position vectors r and r' to read

|r — r'| |r — r ' |3

Substituting this result into Equation (7.16), we obtain

„  d£' (r -  r') X d^' d^' X (r -  r')
|r — r'| |r — r '| |r — r'|

(7.17)

(7.18)

Substituting Equation (7.18) into Equation (7.15), we obtain the Biot-Savart law for  
filamentary currents:

B f M  x  (r
477- Jc |r — i M3 [T] (The Biot-Savart law for steady, 

filamentary currents in free space).
(7.19)

The Biot-Savart law is an explicit equation for the magnetic flux density B in 
terms of a steady current I  and the path C that it flows on. To better understand the 
nature of the fields predicted by the Biot-Savart law, let us first consider the B-field 
that is generated by a differential segment of a complete current loop. According to 
Equation (7.19), a short current element 7dC that is located at r' generates a field

dB
H J M  X  (r -  r')  

47r|r -  r ' l3 4ttR 2

df' X aR [T], (7.20)

where R is the distance from the current element to the observer (located at r) and the 
unit vector

2/? (7.21)

points from the current element to the observer. Like the E-field generated by a 
point source, the B-field generated by a short current element of a steady current loop
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/x0/ A£ 
4nr2

sin

F ig u re  7-2 The B-field generated by a 
short filament of current.

varies as the inverse square of the distance to the observer. But unlike the electrosta
tic case, where E is always directed outward from point sources, the B-field of a short 
current source is perpendicular to both the current direction and the line directed from 
the current to the observer.

Figure 7.2 shows a current element, directed along the z-axis at the origin, with 
length Af. For this case, we have di' =  Afa, and =  ar. so Equation (7.20) becomes

B = B̂ r s in e i* m .  (7.22)

where (r, 6 , </>) are the spherical coordinates of the observer. This is the magnetosta
tic equivalent of a point charge located at the origin. The resulting B-field is similar to 
the electrostatic E-field in that both fields are proportional to the magnitude of the 
source (/, in this case) and to 1/r2. But whereas the E-field of a point charge is directed 
outward from the charge, the B-field of a short current element circulates around the 
current according to the right-hand rule. Also, unlike the point charge, where | E | does 
not vary with the observer's angular position about the charge, | B | is proportional to 
the sine of the angle the observer makes with the filament.

We can extend the Biot-Savart law to include steady-current distributions that 
flow on surfaces and in volumes. For a surface current, we can replace 7dF with JSds' 
in Equation (7.19), yielding

Mo f J5 x  (r ~ r')ds' (The Biot-Savart law for steady
4n Js |r -  r' |3 surface currents in free space).

(7.23)

Notice here that the surface current density Js must be placed inside the integral, since 
both the magnitude and direction of the current density may vary with position. Sim
ilarly, for a volumetric current, we have

Mo f J X (r -  r')dv'  ̂ (The Biot-Savart law for steady 
4-7t J |r -  r'|3 volumetric currents in free space)

Vol.

(7.24)

The B-field of any steady-current distribution can be calculated directly from the
Biot-Savart law. For most current distributions, these integrals must be perform ed
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numerically. Nevertheless, there exist several special cases in which the integrals can 
be performed in closed form. In the section that follows, we will use the Biot-Savart 
law to determine the B-fields generated by several types of steady-current distributions.

7-3-3 THE UNIFORM, INFINITE LINE OF CURRENT

Figure 7-3 shows a uniform, steady current that flows in the +a, direction along the 
entire z-axis. We will assume that this current is part of a circuit that is completed at 
infinity. To evaluate B, we first note that the position vectors representing the field 
point r and source points r' can be represented in cylindrical coordinates by

r = pap + zaz

r = z'az,

from which we obtain

|r -  r'|3 = [p2 + (z -  z ')2]3/2

dF = dz'az.

Substituting these into Equation (7.19), we have

R = / V  f” az X [pap + (z -  z')az]dz'

47T L  [p2 + (z -  Z')2]3/2 •

Since az X az = 0, az X ap = a^, and a^ does not vary with z', the preceding expression 
can be written as

p ^  r00 pa^dz' = p,Jpa^ r» dz'______

4n- L  [p2 + (z -  z ')2]3/2 477 J_x [p2 + (z -  z ')2]3/2

Mo tpa* ~ (z ~ z') z'~x _
^

1
 ^

 
+

1__
__

1

4ir - P 2 Vp2 + (z -  z')2- z' = -» 477

Simplifying this expression, we obtain

(Infinite line current). (7.25)

F ig u re  7-3 Geometry for determining the 
B-field generated by an infinite line of 
current.
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F ig u re  7 -4  Cross-sectional view of the B - 

field streamlines generated by an infinite 
line of current.

A cross section of the B-field streamlines for an infinite line current is shown in 
Figure 7-4. Like the E-field generated by an infinite line charge, this field is propor
tional to p_1 and independent of both $  and z. But the B-field circulates around its 
source in a right-handed sense, rather than pointing away from it, as it does for the 
line charge.

E xam p le  7-1

Find the force per unit length acting on the long, parallel lines of steady current shown in Figure 7-5.

F ig u re  7 -5  Two parallel, infinite lines of 
current.

Solution:

Since Ix lies along the z-axis, we can use Equation (7.25) to evaluate the field that this 
current imposes upon I2. Noting that the -  â , direction is the same as the + av direction along 
the positive y-axis, we can write

B, 2nd

According to Equation (3.46), the magnetic force dFm that acts on each differential ele
ment of I2 is

dFm = /2df2 X Bj = - I 2d z az X
Mo A ̂ 2 d z  - 

2nd
[N],

Thus, the force ¥m per meter length on I2 is

Fm
Mo h ̂ 2 - 
2nd  v

[N/m], (7.26)

Notice that when Ix and /2 have the same sign, the force is attractive. This is the opposite of
what occurs with point charges, where like charges repel.
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F ig u re  7 -6  Geometry for determining the 
B-field of a circular loop of current.

7-3-4 CIRCULAR LOOPS

Figure 7-6 shows a loop of radius a that lies in the xy plane and carries a steady current I.
For an arbitrary observation point on the z-axis, the coordinate variables and dif

ferentials needed to evaluate the Biot-Savart law are

r = z a z

r' = aap, = a cos 4 >'stx + a sin^'a 

r — r' = za. — a cos </>'av — a sin (/>'av

r -  r ' |3 = [z2 + a2]3/2

Also,

d f '  =  a d ( f ) 'a^. =  —a d 4 >' sin^'a^ +  a d f i  cos<£'a .

dC X (r -  r') = (az cos4>'ax + az sin<//av + a2az)d(f)'. 

Substituting these terms into Equation (7.19), we obtain 

H0I f 2n {az cos0'av + az sin</>'ay + a2az)d(l)'

B  =  ~ 4 t t  J 0 [ z 2  +  a 2 ] 3 /2  •

The unit vectors in this expression are all constants with respect to 4>' and can be taken 
outside the integral. Upon integrating, we find that the x and y components of B are 
zero, since the integrals of the sine and cosine functions over a complete circle are zero. 
The integral associated with the z component of B is trivial, because the integrand is 
independent of 0'. The final expression for B is

B b X  = Mo a2 1

2[z2 + a2]■2-13/2 (7.27)

The variation of B, with z is shown in Figure 7-7.
For large values of z, Bz decays proportionally to z-3, rather than z-2. The rea

son for this is that, viewed from a large distance, a loop appears to be composed of cur
rent-element pairs that are oppositely directed and very close together. As a result, 
their field contributions tend to cancel, much like the E-field contributions from the 
opposite charges of an electric dipole.
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Bz

Mo1
2 a

a 2 a 3 a

F ig u re  7-7 Plot of ZL vs. height above a 
circular loop of current of radius a.

Equation (7.27) is an exact expression, but it is valid only for observation points 
on the axis of the loop. For all other points, the resulting integrals are very difficult to 
evaluate analytically2 Later in this chapter we will return to the current loop and 
develop a simple, approximate expression for B using the magnetic vector potential.

7-3-5 FLAT STRIPS AND SHEETS OF CURRENT

Another problem that is easily solved using the Biot-Savart law is depicted in Figure 7-8. 
Here, a surface current of value J5 = Jxav flows along a flat strip of width la that is centered 
along the x-axis. If we consider an arbitrary observation point along the z-axis, the posi
tion variables and differential quantities necessary to evaluate the Biot-Savart law are

r  =  z a z

r ' = x'ax + y ’ a y

r — r ' | 3 = [x'2  + y '2 + z 2 ] 3 /2

J ,  X (r  -  r') =  Jxax X (z a , -  x 'a*  -  y 'a v) =  - J x(y 'a ,  +  z a y)

ds' = dx'dy'.

z

F ig u re  7 -8  Geometry for determining the 
B-field of an infinite strip of current.

2For a complete derivation, see W. R. Smythe, Static and Dynamic Electricity (New York, London: McGraw 
Hill, 2d. ed), 1939 p. 270.
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Substituting these into Equation (7.23), we obtain

B Mô x y'az + za
dx'dy'.

4tt J _ a J _ x [x'2  + y '2 + z2]3/2 

We can move the constant unit vectors out of the integrals, obtaining

/g  __ _ Mp̂ X
47T LL*[x'2  + y '2  + z2]3/2

dx'dy'

+ ^  L L dx'dy'. ’
The z-component of B is zero, since its integrand is an odd function of y' and the limits 
of integration are symmetric about y' = 0. Evaluating the y-component of B, we find

B = VoJx zk  r°
f

x ' X* = o o

L. ( y '2 +  z2) V x '2 +  y ' 2 +  z2 x' — — oo _

dy'

lx0 Jxzay ra dy'

2 tt L ?y ' 2 +  Z2

Mo h  
2 tc

tan-l

Thus, we finally obtain

6 = 5 Mo Jx*̂ y _i
------- ^-tan l

7T
(7.28)

Hence, the B-field directly above a uniform strip of steady current is directed perpen
dicular to the direction of the current. A plot of By vs. z is shown in Figure 7-9.

To see how By behaves for large values of z, we can use the approximation tan-1/? 
~  /? when (3 is small. Hence, as z —» °°, we obtain

Mô x̂ vlim B = — ....- ■y lim
TT Z —>oo

Mo^y
27rz

(7.29)

where I = 2aJx is the total current carried by the strip. Comparing Equation (7.29) 
with the field generated by an infinite line current (Equation (7.25)) we see that, for 
large values of z, the fields generated by a uniform strip and an infinite line current 
look the same.

Figure 7-9 Plot of By vs. height above an
infinite strip of current of width 2a.
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B

< ^ - 0000000000000000 ^
F ig u re  7 -1 0  Cross-sectional view of the B- 
field streamlines generated by an infinite 
sheet of current.

We can also use Equation (7.28) to determine the B-field generated by a uniform, 
infinite sheet of current. If we take the limit as a —> °°, we have

lim B = -  A " v lim (tan^1
a - > o c 7 7  a —> oo y

Noting that tan *(± 00) = , we obtain

B =

_  Mo £

■ 2 3

Mo J X  £

/-x

z > 0 

z < 0

(infinite sheet of 
steady current).

(7.30)

Here, we see that the B-field generated by a uniform, infinite sheet of current is inde
pendent of height above the sheet and has opposite signs above and below the sheet. 
Also, as in the case of the infinite line, the direction of this magnetic field is such that it 
tends to circulate around the current source according to the right-hand rule. The 
streamlines generated by an infinite current sheet are shown in Figure 7-10. In this 
figure, the surface current is directed out of the paper.

7 -4  Field C a lc u la tio n s  U sing A m p e re 's  Law

Just as Gauss’ law is useful when calculating the E-fields of certain classes of symmetric 
charge distributions, Ampere’s law is often useful for calculating the B-fields generated 
by symmetric current distributions. In its integral form, Ampere’s law states that the line 
integral of B around any closed path C equals the product of the current 7enc enclosed by 
the path (in a right-handed sense) and the permeability of free space /z0; that is,

<j> B ‘ d f  =  M o 7 enc>

where C is called an amperian path. Before we use Ampere’s law to derive B-field 
expressions for new current distributions, let us first use it to check the B-field of a pre
viously modeled source—the infinite line of current.

E xam p le  7 - 2 -----------------------------------------------------------------------------------------------------------------------— —

■
 Show that the integral form of A m pere’s law is valid for the counterclockwise, circular path C

around the infinite line source, shown in Figure 7-11.
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z

F ig u re  7 -11  An infinite line of current and 
an amperian path.

Solution:

Since the current I 0 passes through C in a right-handed sense, A m pere’s law for this prob
lem becomes

j> B*df = p0 I0-

To evaluate the line integral, we first note that the differential displacement vector df along the 
circular path is

d£ -  pd<f>a*,

where p  is the radius of the circle. Also, the field generated by an infinite line source is

B /A 4  ~
27rp 4

Substituting these into A m pere’s law, we obtain 

f2V o Ia ~ Hoh r2% , T

Thus, as we expected, the field of an infinite line current satisfies A m pere’s law for any circular 
contour whose axis lies along the line current.

Ampere’s law is valid for all possible configurations of steady currents and 
integration contours C, but there are certain combinations of sources and contours 
that allow us to use it to calculate the B-fields of these sources. This is possible 
whenever a contour can be found along which B is constant and parallel to the 
path of integration. When such a contour is found, B can be taken out of the con
tour integral and solved for easily. In the sections that follow, we will use 
Ampere’s law to determine the B-fields of several classes of current distributions 
with much less work than would be required if the Biot-Savart law were used. 
These classes are cylinders, solenoids, and toroids, all of which have important 
practical applications.



7-4-1 CYLINDRICALLY SYMMETRIC CURRENT 
DISTRIBUTIONS

One class of problems that is easily solved using Ampere’s law consists of infinite cylin
ders of current that have rotational symmetry. Current distributions in this class can 
be expressed in the form J = /_ (/?) a ., where the z axis is chosen as the axis of symme
try. To analyze this class of problems, our strategy will be to identify the general char
acteristics of the fields generated by these current distributions and then to use 
Ampere’s law to find the exact expressions for B.

Figure 7-12a depicts the cross section of an arbitrary, cylindrically symmetric cur
rent distribution, where the direction of the current flow is perpendicular to the paper. 
We can determine several aspects of the B-field generated by this current distribution 
by treating it as a collection of infinite line currents. Two such filaments are shown in 
the figure that are equidistant from the z-axis and, hence, carry the same currents, 
Ix = I2. Since both filaments are located off center with respect to the z-axis, they each 
generate fields that have both p and 0 components. However, these contributions add 
to produce only a 0 component along a radial line that lies midway between these fila
ments. Since our choice of the jc-axis was arbitrary and the currents are independent 
of z, B will have only a 0-component, which can be a function only of the radial coor
dinate p. Hence, we can express B in the form

B = B ^p )  a*.

As might be expected, a family of amperian paths that exploits this B-field sym
metry consists of circles that are centered about the z-axis and lie in the xy-plane. 
One such circle is shown in Figure 7-12b. The differential displacement vector df 
along this circle is

df = pd(f) a .̂

Substituting this into Ampere’s law and integrating in a right-handed sense about the 
z-axis, we obtain
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Figure 7-12 Cylindrically symmetric current distributions, a) The fields of all 
the complementary filaments produce only a 0-component of B. b) An 
amperian path.
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(f B*df = [ Bf(p)aj-pd<i>af = lirpB^ip) = p,QIs 
Jc Jo

(7.31)

Here, /enc is the total current that passes through the circle in a right-handed sense; thus

4nc  =  f  J - d s =  f  f 4 ( p V d p W  =  2 i 7 f / > ' W .
•'5 -'O •'0 J0

Substituting this into Equation (7.31) and solving for B<f), we obtain

B =
Mo4nc - M o f p x , .a . , , (Cylindrically symmetric

------Jz( p ) P dP
P  J  O2 r̂p

a, =
current distribution).

(7.32)

This expression can be applied to any cylindrically symmetric current distribution. We 
will now discuss three specific examples.

Solid Cylinders o f Current. Figure 7-13a shows an infinite, solid cylinder of 
radius a that carries a uniform current J = JQaz [A/m2] for p<  a. This current distrib
ution closely approximates a dc current in a solid wire. Also shown is a circular, 
amperian path of radius p.

The current 7enc that passes through the amperian path can be found by integrat
ing J over the surface S. For p < a, we obtain

r2n .p ,2tt 2j  ~2n

fnc = Jq̂ z' ^ zP dp dff)' —JQ p'dp'd(J>'=— -  d(})' = 7Tp2J0  (jj < a).
J q J q J  o J 0  z  J q

If p is increased beyond a, no additional current is enclosed by S. Thus, for p> a we have 

4nc = = h  (p> a),

where IQ is the total current carried by the cylinder. Substituting these values for 1 into 
Equation (7.32), we obtain

Figure 7-13 A  solid cylinder of uniform current, a) Geometry, b) Plot of B^ vs. p.
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(7.33)

As can be seen from Figure 7-13b, B^ increases linearly inside the cylinder from a value 
of zero on the z-axis to a maximum value of (pQIf)/(Iva) at the cylinder’s edge. Out
side the cylinder, however, B^ decays proportional to p-1, just like the field of an infi
nite line source. In fact, the field outside the cylinder is identical to that of an infinite 
line source carrying the same current I0.

Hollow Cylinders o f Current. Consider now the current distribution shown in 
Figure 7-14a. Here, a uniform current J = J0 az [A/m2] within the cross section of a 
hollow cylinder with inner radius b and outer radius c. When p < b, the current I(p)
that passes through the amperian path is zero. For b < p<  c, we have

7enc = f f J*ds = f [ JQp dp d(f> = 2ttJq f p dp = nJ0(p2  -  b 2) b < p < c.
Jo Jo Jo Jb Jb

When p >  c, I  equals the total current I0  carried by the cylinder: 70 = 7r/0(c2 -  b2). 
Substituting these values into Equation (7.32), we obtain

f
0 p  < b

p > c

b < p < c. (7.34)

2c

P

(a) (b)

Figure 7-14 Hollow cylinder of current, a) Geometry, b) Plot of vs. p.
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As can be seen from Figure 7-14b, B^ increases with increasing values of p inside the 
cylinder. Outside the cylinder, the field is identical to that of an infinite line source 
along the cylinder axis that carries the same total current 70.

Coaxial lines. We can combine the results of the previous two sections to find 
the B-field generated by the current distribution shown in Figure 7-15a. Here, a 
solid cylinder of radius a is surrounded by a hollow cylinder of inner radius b and 
outer radius c. The solid cylinder carries a total current 70 in the +az direction, and 
the hollow cylinder carries the same current in the opposite direction. This is the type 
of current distribution that flows on a coaxial cable when it is operated in a balanced 
mode.

The fields generated by both the inner and outer cylinders have already been 
determined (see Equations (7.33) and (7.34)), so we can use the superposition princi
ple to find the total B-field. Since the current flowing in the outer conductor is —70, 
we have

B = <

P'oP 
27ra2

Mp4
2 rrp

h K p < a

** a < p < b

(c2 -  p2)
b < p < c

(c2 -  b2) *

p > c

(7.35)

A plot of B^ vs. p is shown in Figure 7-15b. As can be seen, B is zero outside a coaxial 
line as long as the currents on the inner and outer cylinders are equal. This is one of 
the attractive features of coaxial lines (cables) and is an example of magnetic shielding, 
in which the fields generated by two currents cancel.

F ig u re  7 -1 5  A coaxial line of current, a )  Geometry, (b) Plot of B  ̂vs. p.
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7-4-2 SOLENOIDS

A solenoid is a cylinder with current flowing axially around it. Solenoids are used for a 
large range of devices, including relays, speakers, microphones, and electromagnets. 
Practical solenoids are made by wrapping many turns of wire around a cylindrical form 
and are capable of producing large magnetic fields from relatively small volumes of wire.

To model the fields produced by practical solenoids, let us start by considering 
the infinite solenoid shown in Figure 7-16. Here, a uniform surface current Js [A/m] 
flows around a solenoid of radius a. In order to use Ampere’s law to determine the 13- 
field generated by this solenoid, it is first necessary to find an appropriate amperian 
path. To do this, however, we must know in advance what components B has and 
what coordinates they are functions of.

First, we note that B is independent of the 4> and z-coordinates, since the current 
is rotationally symmetric and infinite in extent. Second, this current distribution is 
simply an infinite series of current loops, each carrying the same current. This means 
that the field along the axis of the solenoid has only a z-component. (This is seen from 
Equation (7.27).) The behavior of B at points off the z-axis is not as obvious, but it can 
be shown that at points both inside and outside the solenoid, B is of the form

B = Bz(p)az.

This can be derived directly from the Biot-Savart law by noticing that all the field con
tributions generated by complementary pairs of loops on both sides of the observer 
cancel, except for the z-component.

An amperian path C  that exploits the symmetry of this field is shown in Figure
7-16. Evaluating Ampere’s law along this path, we find that

f  B-dt = [Bz(p,) -  Bz(p2)\M  =

where I is the current enclosed by the path. When px < a and p2  > a, the current is
-̂ enc ^s^"> SC)

£ z(Pt) -  B z ( P i )  = P'0 J s (Pi <  a and p2 > a).

This expression is valid for all values of p x and p 2 inside and outside the solenoid, 
respectively, so Bz(px) and B,(p2) are both constants and their difference equals pQJs. 
Also, the field at p2 ~>00 *s zero, since the currents on opposite sides of the solenoid are 
opposite and appear to be collocated to an observer at infinity. Thus, B, (p2) = 0, so 
we can write B as

h,z

a m p e r i a n  p a th  C------- ►

>> 6)6)G)(s)(s.
i 'P2 J — Js &<]>

“ __  L____+_______ 1

___________ ::____\l____1
z

F ig u re  7 -1 6  An infinite solenoid of 
current.
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Leakage 
flux lines

B

Figure 7-17 B-field streamlines of a 
typical solenoid.

R f (Inside solenoid) 36)

lO (Outside solenoid)

Practical solenoids have finite lengths and current distributions that are not quite 
uniform, since the current flows through wires, rather than as a continuous sheet. Fig
ure 7-17 shows a wire-wound solenoid. Here, the surface current density is approxi
mately N I/L  [A/m], where N  is the total number of turns, I  is the current flowing in 
each turn, and L is the solenoid length. Using this, we can approximate the B-field in 
a practical solenoid as

There are two aspects of the B-field streamlines of practical solenoids that are 
not predicted by Equation (7.37). The first is the “leakage” flux lines between the 
turns. This is the result of the slightly nonuniform surface current density, which keeps 
the fields outside the solenoid from exactly canceling. Also, the streamlines spread 
out near the ends of the solenoid, weakening B at the ends. This occurs because the 
solenoid does not look infinite there.

To see how B varies in intensity along the axis of a finite-length solenoid, we 
can treat this surface current distribution as an infinite collection of circular loops. 
Figure 7-18a shows a solenoid of length L  and diameter d, with a surface current 
Js = . The current on a loop at z' is Jsdz'. Using Equation (7.27) and d = 2a,
we can write the differential field it generates at a point z as

where d is the diameter of the solenoid (and the loop). Integrating from —L/2 < z' < 
L /2, we obtain

——  az (Inside solenoid)
B ~  • L

0 (Outside solenoid) ’
(7.37)

dB
8[(z -  z ' f  + d 2 / 4]3/2 ’

8 4—L/2 [(* -  z ' f  + d2/ 4 p

ji0 Js r L -  2z L + 2z
2

(7.38)
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Figure 7-18 A finite-length solenoid, a) Geometry, b) Plot of Bz vs. z for two length-to- 
diameter ratios.

Figure 7-18b shows a plot of Bz vs. z for two solenoids, one with L /d  — 10 and the 
other for L /d  = 1. As can be seen, the field inside the solenoid is relatively constant 
away from the ends when L »  d. For this case, the B-field is approximately the same 
as that generated by an infinite solenoid with the same surface current. Notice also 
that when L /d  »  1, the field strength at the solenoid ends is approximately half its 
value deep within the solenoid.

7-4-3 TOROIDS

A toroid is formed when a solenoid is bent so that it forms a complete circle. Figure
7-19 shows a toroid with cross-sectional radius a and radius of revolution pG. Since 
the inner and outer radii of the toroid are different, the surface current density is 
slightly greater on the inner wall than on the outer wall. We will assume that the cur
rent density at p = pQ — a and z — 0 is Jsaz [A/m].

Once again, in order to use Ampere’s law, we must first determine what compo
nents of B exist and then find an appropriate amperian path (if one exists). We can 
determine the general form of the B-field by considering the toroidal current to be an 
infinite collection of loops. Using this line of reasoning, we can show that the B-field 
in the xy-plane is of the form

B = £ 0( p ) v
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Applying Ampere’s law along a circle of radius p, we obtain

B • d£ =  2irpBj(p) =  p 0Ienc,

where I is the current that passes through the path. When the perimeter of the path 
lies inside the toroid, current passes through the surface bounded by the amperian path 
once, yielding 7enc = 27r(p0 — a)Js. Conversely, when the circle lies outside the toroid, 
the total current 1  passing through the surface is zero, either because the current never 
crosses the bounded surface or because it passes through it twice in opposite direc
tions. Hence,

B =
p  Js — ----— a 6  (Inside toroid)

P (7.39)
0 (Outside toroid)

When p0  »  a, B ~ p 0 Jsst̂ , throughout the interior of the toroid.
Practical toroids are constructed by wrapping many turns of wire around a 

toroidal form. If the total number of turns of wire is N  and p0  »  a, then Js ~  
(NI)/[2tt(p0 -  a)] , for which we obtain

B
ftp NI 
2vrp0

0

(Inside toroid) 

(Outside toroid)
(7.40)

Just as in the case of practical solenoids, there is some leakage flux between the wind
ings, which means that there is a small B-field outside a practical toroid.

7-5  M a g n e tic  P o te n tia ls

Just as the electrostatic potential function simplifies the analysis of many electrostatic 
problems, potentials are also useful in magnetostatic analysis. But whereas only one 
kind of potential function is used in electrostatics, two kinds of potentials are useful in 
magnetostatics. The most general is the magnetic vector potential, which we intro
duced earlier. We can also use a scalar magnetic potential in regions where no current 
is flowing. After discussing the properties of these potentials, we will show how they 
can be used to model small current loops.

7-5-1 MAGNETIC VECTOR POTENTIAL

We have already seen that because V • B = 0 at all points, we can always write B in 
terms of the magnetic vector potential A, namely,

B = V X  A, (7.41)
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where

A = —  f t— - — 7 dv' [Wb/m], (7.42)
47t  J  r -  r'

Vol.

Here, r represents the observation point, and the integration is over all points r' where 
the current density J is nonzero. When the source is a surface or line current, we can 
replace J dv' with 3sds' and Id i', respectively, yielding

A = ^  f . J , ds' [Wb/m], (7.43)
477 J s  |r — r' |

and

A = f r ^ T T  [Wb/m]. C 44)477 J c  |r -  r |

Another important relationship between B and A can be derived from Equation
(7.41) by integrating both sides over an arbitrary surface S:

J B • ds = J V X A • ds.

We can use Stokes's theorem to write the right-hand integral as a contour integral, 

j  B • ds = J A-df, (7.45)

where C is the closed path that bounds S. Thus, the line integral of A around a closed 
path C equals the magnetic flux passing through the surface bounded by C.

E xam p le  7 -3

■

:
■ S I

p i

■

Find the magnetic vector potential in the region shown in Figure 7-20 if measurements show that 
B = B 0a. throughout the region.

Solution:

Evaluating Equation (7.45) when 5 is a circular disc of radius p  in the z — 0 plane and C is 
the bounding circle, we obtain

F i g u r e  7-20 A  circular region with 
uniform B.
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f B * d s  — B{)7rp2 = (j) A * d f  = f pÂ dcf).
■'S ■'c ■'O

Since this system “looks” the same for all values of 0, let us for the moment assume that is inde
pendent of </> and later check to see if this assumption is valid. Using this assumption, we obtain

r.2lT

pA^c ic f)  =  I n p A j ,  = trp2B 0 . 
Jo

Thus, A is given by

A = P- ^ a  A 2 a*.

To show that this expression for A is indeed correct, we can take the curl of A, which yields 

1  d
B = V X A

p  dp (PA J a z =  B o * z -

7-5-2 MAGNETIC SCALAR POTENTIAL

In regions where the current density J is zero, Ampere’s law becomes

V X B = 0 (regions where J = 0), (7-46)

which means that B is an irrotational vector. According to Theorem III in Section 2-5-6 
(Equation (2.131)), a vector that is irrotational in a region can always be represented as 
the gradient of a scalar function. Thus, we can express B as

B = - g 0W m (regions where J = 0), (7.47)

where Vm is called the magnetic scalar potential, measured in amperes [A]. The mag
netic scalar potential is applicable only in regions where J = 0, but this is not as severe 
a restriction as one might think, since we are usually more interested in the fields at 
positions that are removed from their sources.

An important characteristic of the magnetic scalar potential is that it satisfies 
Laplace’s equation, just as the electrostatic potential V does in regions that are charge 
free. To show this, let us take the divergence of both sides of Equation (7.47), obtaining

V • B = - p 0V • VVm = ~ v 0 V2 Vm. (7.48)

But since V • B = 0 at all points, Equation (7.48) becomes

(7.49)

An integral relationship between B and Vm can be obtained by multiplying both 
sides of Equation (7.47) by df and integrating over a contour with endpoints A  and B:
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Using the properties of the gradient operation (see Equation (2.76)), we have 
VVm-M = dVm , so the preceding expression can be written as

where Vma and Vmb are the scalar magnetic potentials at the points a and b, respec
tively. This relationship between a magnetic field and the magnetic potential differ
ence it generates between two points is used to model the operation of magnetic 
circuits, which are discussed in Chapter 8.

7-5-3 THE MAGNETIC DIPOLE

Small loops of current are often called magnetic dipoles because, as we will soon see, 
they generate B-fields that have the same form as the E-fields generated by electro
static dipoles. We have already used the Biot-Savart law to calculate the B-field 
along the axes of current loops. In this section we will use the magnetic potentials 
to obtain a more complete model of the fields generated by this important type of 
source.

Figure 7-21 shows a magnetic dipole, which has radius a and carries a current I  in 
the counterclockwise direction. Since this is a filamentary current, the magnetic vec
tor potential A can be written as

(7.50)

(7.51)

For this source, the terms in the integrand are,

dZ' = adfisikp = (flcos0'ay — a sin0'ax)d</>' 

r  =  ra , =  xax +  ya y +  za z 

r' = aap, = a cos 4>'ax + a sin 0 'ay

(7.52)

r — r' = (x — a cos(j>')ax + (y — a sin</>')ay + zaz

Radi
r'

y

Figure 7-21 Geom etry for determining 
the B-field of a magnetic dipole.x
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Also,

(7.54)

(7.55)

(7.56)

In the “far zone” (i.e., at large distances), where r »  a, only the first two terms are 
needed in the expansion. Thus,

Substituting Equations (7.52) and (7.54) into the integral in Equation (7.51), we find 
that

Also, since S = 7ru2 is the area of the loop and (jca — yaf) = r sin 6a^, this expression 
can be further simplified to read

Substituting Equation (7.55) into Equation (7.51), we obtain

Now that we have found A,  calculating B is straightforward. Using B = V x A ,  
we find that

Evaluating the derivatives, we obtain the following far-zone expression:

(7.53)

Rather than substituting Equation (7.53) directly into Equation (7.51), we would 
do well to first simplify Equation (7.53). We can do this by expanding it in a Maclau- 
rin series about a = 0:

The first two terms are
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Figure 7-22 a) A  magnetic dipole, b) A n electric dipole.

(7.57)

Comparing Equation (7.57) with the far-zone E-field generated by an electrostatic 
dipole (Equation (4.54)), we see that, when viewed at large distances, they are of 
exactly the same form. This can also be seen from Figure 7-22, which compares the B- 
and E-fields generated by magnetic and electric dipoles. Here we see that these fields 
differ only at points close to their sources, where the B-field streamlines pass through 
the loop and the E-field streamlines terminate on the charges. Because of this simi
larity, small current loops are often called magnetic dipoles.

We can extend the analogy between electric and magnetic dipoles by using the 
magnetic scalar potential Vm. Given that B = - µo∇ Vm has the same form as 
E = - ∇ V and that the E-field of an electric dipole and the B-field of a magnetic dipole 
differ only by a constant, their potentials Vm and V should differ by only the same con
stant. In Chapter 4 we showed that the potential function of an electric dipole at the 
origin and directed along the z-axis is

(7.58)

where p = Qd is the electric dipole moment. Using Equations (4.53) and (4.54), we 
conclude that the magnetic scalar potential that is associated with the B-field of Equa
tion (7.57) must be

(7.59)

where m is the magnetic dipole moment, measured in units of amperes times 
meters squared [A • m2]. Taking the gradient of this expression and multiplying by 
- µo, we obtain

(7.60)
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Radius = a

x

Comparing this expression with Equation (7.57), we see that they are the same if the 
magnetic dipole moment m equals the product of the loop current I and area S:

m = SI = 7ra2I [A»m2]. (7.61)

We can also use our experience with electric dipoles to generalize our expressions 
for magnetic dipoles to the case where they are located away from the origin and ori
ented along an axis other than the z-axis. To accomplish this, let us make the magnetic 
dipole moment into a vector quantity,

m = SIan, (7.62)

where S and I  are respectively the area and current carried by the loop and an points 
along the axis of the loop in a right-handed sense according to the positive direction of 
the current. Using a sequence of steps similar to the ones used in Section 4-6-2, we can 
write the scalar potential of a magnetic dipole located at a point r' as

m  • aR _  m  • (r — r')

47tR 2  Att\x — r ' l3
[V], (7.63)

where R is the distance from the center of the loop to an observer at the point r and 
points along that line; that is,

—

and

R = r -  r'

(7.64)

(7.65)

In a similar manner, we can generalize the magnetic vector potential expression for a 
magnetic dipole. From Equation (7.56), we see that A for a magnetic dipole is 
directed perpendicular to both the axis of the dipole and the line extending from the 
observer to the center of the loop. We can write the vector potential A for an arbi
trarily located and oriented magnetic dipole as

A  = Ah>m X aR = n 0m x  (r -  r') 
4vR 2 47r|r -  r'l3

(7.66)

The analogy between the fields generated by electric and magnetic dipoles also sug
gests that we can consider the source of a magnetic dipole to be a pair of fictitious mag
netic point charges. Figure 7-23a shows a small current loop that has a radius a and

(a)

Figure 7-23 A  magnetic dipole, a) 
Physical geometry, b) Equivalent 
geometry using fictitious magnetic charges.
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carries a current I. Figure 7-23b shows an equivalent source (for r »  a), consisting of 
magnetic point charges Qm and — Qm, separated by a distance d. In order for the 
B-field generated by this equivalent source to be the same as for the loop, they must 
have the same magnetic dipole moments. Thus, we must have

m = Qmd = 7ra2I = IS. (7.68)

We also see from this expression that if magnetic charges are ever found in nature, they 
would have units of amperes times meters [A • m].

In the next chapter, we will find that the spinning and orbiting electrons in atoms 
and molecules appear as tiny magnetic dipoles. Although the B-field generated by 
each magnetic dipole is very small, large fields can be generated when even a small 
fraction of these dipoles point in a common direction. The following example shows 
that a B-field applied to a magnetic dipole exerts a torque on the dipole that tends to 
align it with the applied field.

E xam p le  7 -4

Find the torque exerted by a uniform B-field on the magnetic dipole shown in Figure 7-24. The 
loop has radius a, lies in the z — 0  plane, and carries a current I  in the counterclockwise direction.

Solution:

From mechanics, we know that the torque applied to each elem ent of an object about 
some coordinate origin equals the cross product of the position vector r X F, where r is the posi
tion vector of the element and force F is the applied force. Thus, the torque contributed by each 
differential element of the loop is

dTm = rX dF

where r is given by

r = a ap = a(coscf>ax + s in 0 ay), 

and

dF = Idi X B - l a  d(f> xB  = / a  d(f) (cos  0 ay — sin^a^) X B

=  I  ad<f> [ B z cos 0  a x +  B z sin 0  ay — (B x cos 0  — B y sin 0 )  a J .  

Taking the cross product of r and dFm, we find

dTm = r X dF = I a 2d ( f ) (B x cos  0  + B y sin 0 ) ( - s in  0  a* + cos 0  ay ).  

Integrating the differential torque contributions around the entire loop yields

F ig u re  7-24 Geometry for calculating the 
torque on a magnetic dipole due to a 
uniform B-field.
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Tm = dTm = Tra2I(Bx av -  By at), 

which can be written as

Tm = ISaz X B = m X B, (7.69)

where S is the area of the loop, and m = 7ra2/a, is the magnetic dipole moment of the loop. 
From this expression we see that maximum torque is induced when m and B are perpendicular 
and the direction of the torque is such that it tends to align m with B.

,277

When a magnetic dipole is allowed to rotate under the influence of the Earth’s 
magnetic field, it’s magnetic moment m will point from geographic south to geographic 
north, since the earth’s magnetic field points in this same direction along the Earth’s 
surface. The same kind of torque is exerted on a permanent magnet when it is sub
jected to the earth’s magnetic field, so that north and south poles of the magnet point 
towards the north and south directions, respectively.

Because of this similarity between magnetic dipoles and permanent magnets, the pos
itive and negative magnetic charges of a magnetic dipole are called its north and south 
poles, respectively.

Figure 7-25 shows the Earth’s magnetic field near its surface. Notice that the axis 
of the magnetic dipole lines is inclined 12° from the Earth’s rotational axis. The north
ernmost and southernmost intersections of this axis with the Earth’s surface are called 
the north and south magnetic poles, respectively. The offset between the geometric
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and magnetic poles is called the magnetic declination and must be compensated for 
when making precise geographic measurements with a compass. The horizontal com
ponent of the magnetic field on the Earth’s surface varies from 35 [|xT] (0.35 gauss) at 
the equator to zero at the magnetic poles; the vertical component varies from zero at 
the equator to 70 [|xT] (0.7 gauss) at the magnetic poles.

The Earth’s magnetic field is produced in its core, which acts as a permanent 
magnet. We will see in the following chapter that the B-fields produced by permanent 
magnets (such as the Earth’s core) are the result of circulating molecular currents. 
Interestingly, since the B-field streamlines are directed from south to north, the north 
pole of this permanent magnet is located in the southern hemisphere, whereas the mag
net’s south pole is located in the northern hemisphere.

7 -6  S u m m a tio n

In this chapter, we developed the fundamental equations that describe the behavior of 
magnetostatic fields in free space. We started this process by specializing Maxwell’s 
equations for the case of steady currents and then proceeded to develop a number of 
different ways to model magnetostatic fields. Using these techniques, we were able to 
calculate the B-fields generated by a number of simple source configurations that are 
good approximations of sources encountered in engineering practice.

In the next chapter, we will expand this discussion by including the effects of 
material media on the fields generated by magnetic sources.

P roblem s

7-1 Show that the B-field generated at the point (p, 0, z) by the straight, finite-length 
current filament shown in Figure P7-1 is given by

B = a<t> (cos os — coscq),
477p

z

/

F ig u re  P 7-1
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where ax and a2 are the angles that the lines extending from the endpoints of the 
filament to the observer make with the z-axis. (Hint: Use the derivation leading 
up to Equation (7.25), except with finite integration limits.)

7-2 Use the result of Problem 7.1 to show that the B-field generated by a finite-length 
current filament is nearly the same as an infinite one when viewed close to the 
current and away from the endpoints.

7-3 Derive the expression for the B-field generated by a uniform, infinite sheet of 
current (Equation (7.30)) using Ampere’s law. (Hint: Use the fact that the field 
has odd symmetry on both sides of the sheet).

7-4 Derive the expressions for the B-field inside and outside an infinite solenoid with 
radius a and current density J5 = + Jz az [A/m] on its surface. (Hint: Use
the superposition principle to account for the two components of separately.)

7-5 An infinite slab of thickness d contains a uniform current J -  J0ax [A/m2], as 
shown in Figure P7-5. Find B at all points in space. (Hint: Use Ampere’s law.)

F ig u re  P7 -5

7-6 Find the B-field at the center of the square loop shown in Figure P7-6. The 
loop has width w and carries a filamentary current I. {Hint: Use the result of 
Problem 7-1).

F ig u re  P 7-6

7-7 At high frequencies, the current density in wires decays exponentially beneath 
the surface. (This is discussed in Chapter 12.) Find the B-field inside and outside 
the long, straight wire in Figure P7-7, which has radius a and current density 
J = az [A/m2] for p < a. Assume that a »  1/a.

F ig u re  P 7-7
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7-8 Figure P7-8 shows two coils spaced by a distance d, each with N  turns, radius a, 
and current I flowing in the same direction. Coils in this configuration are called 
Helmholtz coils and produce a nearly uniform B-field in the region between them.
(a) Find an expression for B at all points along the z-axis.
(b) Show that 3B/dz = 0 at z = 0 for all values of a and d.
(c) For a given a, find the coil spacing d that yields d2B /dz2  = 0 at z = 0.

7-9 Given coaxial cable with an inner conductor with radius a and an outer conductor 
with radius b, find B for p > b when the inner and outer currents are +100 [mA] 
and -90 [mA], respectively, and both conductors are centered along the z-axis. 
Assume that the positive direction for both currents is the +z-direction.

7-10 Figure P7-10 shows two infinite line currents that each lie symmetrically about 
the x-axis in the z = 0 plane and are spaced by a distance d = 1 [cm]. If Ix =  4 
[mA], find /2 such that B = 0 at P (0 ,1, 0) [cm].

F ig u re  P 7 -1 0

7-11 How many turns of wire are required to produce a B-field whose magnitude is 
greater than or equal to 10~3 [T] inside an air-wound solenoid that is 2 [cm] long 
and carries a current of 100 [mA].

7-12 A toroid with a mean radius of revolution of 4.25 [cm] and a cross-sectional 
radius of 0.25 [cm] has two separate windings. The first has 400 turns and carries 
100 [mA], and the second contains 300 turns and carries 150 [mA]. Calculate the 
B-field along the center of the toroid if the currents are a) in the same direction 
and b) in opposite directions.

7-13 Prove that the B-field at the end of a long, narrow solenoid is approximately one-
half its value in the center of the solenoid.
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7-14 Figure P7-14 shows the cross section of a long, circular cylinder of radius b that 
carries a uniform current density J  = JQaz. If a cylindrical cavity of radius a and 
offset d is cut out of this uniform current, find the B-field inside the cavity and 
show that it is uniform. (Hint: Use the superposition principle, and consider this 
current distribution as the sum of a solid axial current / Ga_ with radius b and an 
oppositely directed current - J Qa, in the cavity region.)

7-15 Figure P7-15 shows a short current element of length t that carries a current I.
( a )  Find an approximate expression for the vector potential A  for r »
( b )  Use this A  to find an expression for B .
( c )  Compare the result in part b) with Equation (7.22).

7-16 Prove that the magnetic vector potential inside an infinite, cylindrical conductor 
that carries a uniform current density J  = JQ a , is given by

(Hint: Use the B-field inside the cylinder, given by Equation (7.33)).
7-17 Figure P7-17 shows two small current loops. Loop #1 is located at the origin and 

has a magnetic moment m1, directed along the z-axis. Loop #2 is located a dis
tance d away from loop #1 and has a magnetic moment m 7 that lies in the plane of 
the paper and is also perpendicular to the line that connects the centers of both 
loops. If the distance between the loops is large enough so that the B-field gen
erated by one loop is essentially constant at all points on the other, show that the 
torque T  exerted on loop #2 is

y

X

F ig u re  P 7 -1 4

F ig u re  P 7 -1 5

_ T 2
A = oP a. (p < radius).
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7-18 If the B-field in a source-free region is given by

1 . 7 TX TTV „ 1 7TX 77V .
B = — sin—  cos —-  ax + — cos—  sin-— av, 

a a b b a b y

find the scalar potential Vm(x, y) in this region.
7-19 Prove that the field generated by an infinite, uniform solenoid that is centered 

along the z-axis is of the form B = B. (p) a, by considering the current distribu
tion as symmetric pairs of loops.



8

Magnetostatic Fields In 
Material Media

8-1 In tro d u c tio n

Now that we have discussed the magnetic fields generated by currents in free space, 
we are ready to see how materials can alter these fields. Magnetic fields interact with 
materials because materials are composed of charges in motion that are acted upon by 
forces when a magnetic field is applied. These forces create current distributions on 
and within those materials that can substantially alter the total magnetic field. By 
choosing the right materials, it is usually possible to manipulate the magnetic fields 
generated by a system to fit the requirements of a specific engineering application.

In this chapter, we will discuss two kinds of mechanisms in which magnetic fields 
interact with materials. The first is called the Hall effect, which involves the move
ment of free charge when a magnetic field is applied to a material. The second is the 
interaction of an applied magnetic field with the orbital and spin currents that natu
rally occur in atoms and molecules. As we shall see, this latter phenomenon allows 
certain types of materials to greatly enhance the magnetic fields created by other 
sources, or even act as independent sources (as in the case of permanent magnets).

After discussing the basic types of interactions between materials and mag
netic fields, we will address how these material effects can be incorporated into

241
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magnetic field calculations. Problems of this sort are called magnetostatic bound
ary value problems, and we will discuss both analytical and graphical methods for 
solving them. We will also discuss an important class of magnetostatic configura
tions called magnetic circuits. These networks are encountered often in engineer
ing practice and can be analyzed using a circuit theory that is analogous to electric 
circuit theory.

8 -2  T h e  H all E ffec t

Just as the free charges in materials can move in response to an electric field, they can 
also move under the influence of a magnetic field. For example, Figure 8-1 shows a 
conducting strip of width w and thickness t that carries a bias current /0, flowing in the 
+x direction. According to the Lorentz force law, the total force dF acting on each 
differential volume dv of free charge in the strip is the sum of an electric force dFe and 
a magnetic force dFm; that is,

dF = dFe + dF/n = pvdv(E + u X B),

where pv is the volume charge density of the mobile charge carriers and u is the veloc
ity of the moving charges. When B = 0, the only E-field present is the +x directed 
field that is caused by the battery. Since the bias current I0  flows through a cross-sec
tional area S = wt, the current density is IJw t. Using J = pvu (Equation (3.18)), we 
can express the velocity u of the free charges in the strip as

u = h
Pvwt

(8 .1)

According to Equation (8.1), negative charge carriers move in the — av direction, 
since pv < 0. The opposite is true for positive charge carriers, such as holes in semi
conductors. When a magnetic field B = B 0 az is applied, each charge in the sample 
experiences a magnetic force dFm = pvu X Bdv. Substituting, we obtain

dF„ loBodv
wt

which shows that the force acting on the moving charge carriers is in the same direction 
for both positive and negative charges. When the moving charge carriers are negative, 
this force results in a buildup of negative charge on the left-hand edge of the sample 
and a corresponding positive charge on the right-hand edge. Conversely, when the 
moving charge carriers are positive, the charge buildup on the edges of the sample is

1
t

T F ig u re  8-1 The Hall effect.
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just the opposite. (This is the case depicted in Figure 8-1.) For both cases, the migra
tion of charges towards the sample edges continues until the electric field that they gen
erate exactly counteracts the u X B force. This electric field EA is called a Hall field  
and, at equilibrium, is given by

E ^ - u X B ^ S , .  (8.2)
pvw t y

The Hall field produces a Hall voltage Vh across the strip that is given by 

LB„
Vh = Ehw =

Pvt
(8.3)

where the left-hand edge is assumed to be the positive terminal.
As can be seen from the preceding expression, the polarity of the Hall voltage Vh 

is determined by the sign of the volume charge density pv of the mobile charge carriers. 
It is for this reason that the Hall effect was instrumental in proving the existence of 
holes in semiconductors.1 For n-type semiconductors, pv is negative, since the free- 
charge carriers are conduction band electrons. For p-type semiconductors, missing 
valence electrons can be treated as positive-valued particles called holes, resulting in a 
positive, mobile charge density. Thus, it is possible to distinguish whether a semicon
ductor sample is n or p type by measuring the polarity of the induced Hall voltage when 
the sample is subjected to a magnetic field that is perpendicular to the current flow.

Hall sensors are routinely used to detect magnetic fields with intensities from 
10-11 to 1 tesla. The following example considers the Hall voltage produced in a semi
conductor by the earth’s magnetic field.

E xam ple  8-1

The earth’s magnetic field has a nominal value of 0.5 X 10~ 4 [T], or 0.5 gauss, on the earth’s sur
face. Calculate the maximum Hall voltage V h that could be induced in a silicon strip of thickness 
t  =  0.1 [mm] and that carries a bias current of 100 [mA]. Assume that the silicon has been 
doped with acceptor atoms, resulting in a hole charge density of +160 [C/m3] and a negligible 
electron density.

Solution

Substituting the preceding values into Equation (8.3), we obtain

h B a
Pvt

(100 X  IQ- 3 [A])(0.5 X 10- 4 [T])

(160 [C/m3])(0.1 X 10~ 3 [m]) 1 J

Notice that this voltage is well within the range of measurable voltages.

Sensitive Hall compasses can be made by placing two identical Hall sensors at 
right angles to each other and biasing them with identical currents, as shown in Figure

'See William Shockley, Electrons and Holes in Semiconductors, (D. Van Nostrand Company, 1950.) New 
York
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Bias curren t /0 
(out of the paper)

Identica l sem iconductor 
strips

--
Field d irection that 

y ie lds Vh -  0

B ias curren t /0 
(out o f the paper)

Figure 8-2 A  Hall-sensor compass.

8-2. When the compass is aligned either parallel or antiparallel with the earth’s mag
netic field, the Hall voltages of the two sensors are opposite, producing a null output 
voltage. When such a null voltage is obtained, the heading (north or south) can be 
determined by measuring the sign of either of the Hall sensor outputs.

M a g n e tic  M a te r ia ls

Just as electric fields affect the bound charges in material media, so do magnetic fields. 
The physical mechanism of interaction, however, is very different, because magnetic 
fields interact only with moving charges. A comprehensive description of these atomic 
currents and their interactions with magnetic fields demands full use of the quantum 
theory. Fortunately, classical models of atoms are adequate for predicting most prop
erties of materials.

8-3-1 ORBITAL AND SPIN CURRENTS

Currents and magnetic dipole moments are naturally present within atoms and mole
cules because of two types of electron motion:2 orbital motion and spin motion. Fig
ure 8-3a shows an electron orbiting a nucleus. The current flowing along the orbital 
path is

Electron
S pinning e lectron 
(axis out of paper)

Orbital
rotation Spin

rotation

Figure 8-3 Molecular currents, 
a) Orbital current, b) Spin current.(b)

2 There is also a contribution due to the spin motion of the nucleus, but it is orders of magnitude smaller than 
the electron orbit and spin contributions.
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charge/orbit _ e  _  e u i 0
(8.4)

time/orbit 2 ir/a)0  2 tt

where a>0 is the angular velocity of the electron and e is the electron charge. Substitut
ing Equation (8.4) into Equation (7.62), we find that the magnetic dipole moment of 
this current loop is

where SQ and rD are the surface area and radius of the orbit, respectively.
Electrons have another angular momentum and a related magnetic dipole 

moment that are independent of their orbital motion. The physical structure of the 
electron that gives rise to these properties is not completely understood and is an area 
of intense research, but it can be accounted for by assuming that electrons are solid 
particles of charge that spin on an axis. Figure 8-3b shows this classical model of a 
spinning electron. Here, the circulation of a charge about an axis of rotation consti
tutes an infinite number of current loops whose magnetic moments sum to create a 
total spin dipole moment of m 5. The magnitude of m s always has a value of e h / 4 n m e, 

where h  is Plank’s constant (6.6262 X 10-34 [J • s]) and m e is the mass of the electron. 
The direction of for each electron aligns itself either parallel or antiparallel with an 
applied B-field, depending on the quantum state of the electron.

In the absence of an applied magnetic field from external sources (which we will 
hereafter call a magnetizing field), the spin and orbital magnetic moments within most 
materials are randomly oriented and produce no net B-field. In most of the materials 
this cancellation takes place within the atoms and molecules themselves, resulting in a 
net zero magnetic moment for each atom or molecule.

In some materials, each atom or molecule has a nonzero magnetic moment, but 
these moments normally distribute themselves randomly so as to cancel when no mag
netizing field is present. However, it is sometimes possible to lock at least some of 
these dipoles into aligned orientations, resulting in a net magnetic moment throughout 
the material. When this occurs, the result is a permanent magnet.

Two things can happen to the atomic orbital and spin dipole moments when a 
magnetizing field is applied to a material: 1 2

(1) In materials composed of atoms or molecules that naturally have nonzero dipole 
moments when no magnetizing field is present, a magnetizing field exerts a torque 
on each dipole and tends to align it with the field. This produces a net magnetic 
dipole moment that is parallel to the magnetizing field. The dipole moments 
increase as the field increases, until saturation occurs, where all the dipoles are 
completely aligned. Because the atomic magnetic moments align themselves 
with the magnetizing field, the net B-field within the material increases.

(2) In materials whose atoms or molecules ordinarily do not have a net dipole 
moment, the application of a magnetizing field will slightly decrease each orbital 
magnetic moment, leaving the spin magnetic moments unchanged. This upsets 
the balance between the orbital and spin moments and results in a net magnetic

(8.5)



246 CHAP. 8 MAGNETOSTATIC FIELDS IN MATERIAL MEDIA

moment that is antiparallel to the magnetizing field. The net result is a reduction 
of the net B-field within the material.

Regardless of the physical mechanisms by which they are formed, the mag
netic dipoles induced (or aligned) within a material change the net B-field both 
inside and outside the material. Thus, both the free currents between the mole
cules and bound currents within them must be known in order to calculate the B- 
field produced by a given device or system. Fortunately, this is not as difficult as it 
seems, since the molecular currents are usually proportional to the magnetizing 
field. In the sections that follow, we will develop the methodology that makes 
these calculations possible.

8-3-2 MAGNETIC SUSCEPTIBILITY AND EQUIVALENT 
MAGNETIZATION CURRENTS

The first step to modeling the macroscopic properties of magnetic materials is to intro
duce a vector called the magnetization vector M, which indicates the net magnetic 
dipole moment per unit volume at each point throughout a magnetic material. This 
vector is obtained by taking the limit of the sum of all the dipole moments within a dif
ferential volume; that is,

N A v

E  mk
M = lim [A/ml, (8.6)

Av-»0 A v

where N  is the total number of dipoles in the volume An and is the magnetic dipole 
moment of the kth dipole. The magnetization of a material is directly related to the 
movement of its bound charges. This type of current is called magnetization current. 
We will show in the development which follows that the magnetization current in a 
material is related to M in a way similar to the relationship between the polarization 
charge density and the polarization P in an electrically polarized material.

Figure 8-4 shows a volume V that contains a magnetic material with a magnetiza
tion M defined at each point. Each differential volume dv' within the material can be 
considered as a differential magnetic dipole of moment dM = M(r') dv', where the 
notation M(r') indicates that the magnetization is evaluated at the field point r' which

Figure 8-4 Geom etry for determining the 
magnetic vector potential A  of an arbitrary 
magnetostatic current distribution in terms 
of the magnetization vector M.
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lies inside the differential volume dv'. Using Equation (7.66), we can write the vector- 
potential contribution dA due to an arbitrary point in this volume as

dA
/i,0M (r') X (r -  r ')dv' 

4vrIr -  r 'l3
“ M(r') X V' 
47T

(8.7)

Here, we have used the identity V' [1/|r -  r'|] = (r -  r')/1r -  r ' |3 , which is the same 
as Equation (7.17), except that the differentiation is with respect to the primed vari
ables. Integrating Equation (8.7) over the volume V, we obtain

A = (8.8)

Equation (8.8) can be manipulated into a form where the relationship between 
the magnetization M and the volume and surface magnetization currents can be clearly 
seen. Since the derivation takes several steps, let us start by simply stating the final 
result, namely,

A = Mo f V 'x M fr ')  
477- J Ir — r'l

Vol.

dv' +
i b f  MX a,
477 Js |r -  r'

ds' , (8.9)

where S is the surface that bounds the volume V and the unit vector a„ points outward 
from S. To see what these integrals mean, let us compare them with the magnetic 
vector potential of a current distribution that consists of volumetric current J in a vol
ume V and surface current J 5 on the surface S that surrounds V. Using Equations
(7.42) and (7.43), we see that the magnetic vector potential of such a current distribu
tion is given by

A =
Vol.

J
--------t dv' +
r — r'

M o

477
(8.10)

where, as we recall, J and J s are both functions of the primed coordinates. Comparing 
the volume integral of Equation (8.9) with that of Equation (8.10), we can conclude 
that V' X M represents a magnetization current density Jm. Similarly, equating the 
integrands of the surface integrals, we can conclude that M X a„ represents a magnetic 
surface current density Jsm. Thus, the volume and surface currents caused by the mag
netization M are given by

Jffl = V x M  [A/m2] (8.11)

J™ = M x  a„ [A/m], (8.12)

In Equation (8.12), we have dropped the prime notation from the curl operation to 
indicate the Jm as a function of unprimed coordinates. Also, the subscript m indicates 
that these are magnetization currents, resulting from the movement of bound molecu
lar charges.
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To derive Equation (8.9) from Equation (8.8), we start by using Equation (B.4) to 
expand the integrand of Equation (8.8):

M (r') X V' ( — 1—v) = 1 V' X M (r') -  V' X (
\ |r  — r ' | /  |r -  r'| V|r — r ' | /

Substituting, we obtain

A  =
f V 'X M (E )

477 J |r — r'l
Vol.

dv' Mo
477

V X

Vol.

(8.13)

The second volume integral in this expression can be written as a surface integral by 
using the vector identity

V' X Fdv' = -<fc F x d s ',
Vol.

(8.14)

where the volume is bounded by the closed surface S. This identity is similar to 
Stokes’s theorem and can be proved using the vector theorems in Appendix B. By 
means of Equation (8.14), Equation (8.13) becomes

A  =
_/A f V' X M (r') 

477 J |r -  r'l
Vol.

dv' + Mof M x a, 
477 |r -  r'

ds', (8.15)

which is the desired result.
The relationships given by Equations (8.9) and (8.10) show that magnetization 

currents are present whenever M has curl, or a nonzero tangential component, at the 
edge of a magnetized material. Figure 8-5a depicts a situation in which M has curl at 
the point P. As can be seen, the counterclockwise circulation of M results in a net 
current flow out of the paper at P. Conversely, Figure 8-5b depicts a situation in which 
M is uniform throughout the material. Since V X M is zero inside the material, there 
is a net cancellation of the circulating atomic currents at each interior point, and thus,

F ig u re  8 - 5  a) A volumetric magnetization current produced by a medium where V  X M

AO. b) A surface magnetization current produced by a uniform magnetization M .
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Sm =  0 . At the material edges, however, there is a surface current Jsm =  MXa„,  since 
the tangential currents are not canceled there.

8-3-3 THE MAGNETIC FIELD INTENSITY

The magnetization currents on and within magnetic materials generate secondary mag
netic fields that can be substantial and must be accounted for. To accomplish this, we 
will start with Ampere’s law, taking into account both free and magnetization currents:

V X B = n J T =  f iQ(J +  J,„), (8.16)

Here J, Jm, and JT are the free, magnetization, and total current densities, respec
tively.3 Equation (8.16) is always valid, but the term ju0Jm is troublesome, because it 
represents an induced current density and, hence, is usually a function of B. We can 
eliminate Jm from this equation, however, by substituting V X M for Jm and collecting 
terms. This yields

V x  (— -  m ) = J. (8.17)
V/A /

The right-hand side of Equation (8.17) involves only free current, so it is a more attrac
tive differential equation to solve than Equation (8.16). Because of this, the quantity 
in parentheses on the left-hand side of Equation (8.17) is defined as a new electromag
netic quantity, which we call the magnetic field intensity,

B
(8.18)H = ------M A/m ,

Mo

which is measured in units of [A/m]. 
law as

Using this definition, we can now write Ampere’s

V X H = J. (8.19)

Writing Ampere’s law in terms of H greatly simplifies the handling of bound currents 
within magnetic materials, since the right-hand side is now simply the free current den
sity J, rather than the total current density.

The magnetization M within most materials is directly linked to the magnetic 
torques produced by the B-fields acting on the orbiting and spinning electrons in each 
atom or molecule. (See example 7-4.) In linear, isotropic media, M is proportional to 
B, which means (according to Equation (8.18)) that H is also proportional to B. Thus, 
we can write

M = *mH, (8.20)

3 Hereafter, the symbol J will always denote the free current density.
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where x m  Is a unitless scalar called the magnetic susceptibility and is a measure of the 
ease with which magnetic dipoles are formed in a medium. Substituting Equation 
(8.20) into Equation (8.18) yields the following constitutive relation:

B = f t , ( l + * J H .  (8.21)

The unitless quantity 1 + xm is called the relative permeability of the medium and is 
denoted by the symbol /jLr. Thus, the constitutive relationship between B and H can 
also be written as

B = /Ur/x0H = /zH, (8.22)

where /x = /z,./x0 is the permeability of the medium.
As in the case of electric materials, we define a simple medium as one that is 

homogeneous, linear, and isotropic. The meanings of these three terms are essentially 
unchanged. For instance, ixr is a constant with respect to position in a homogeneous 
material. Likewise, nr is independent of the field level in a linear material. Finally, B 
and H always point in the same direction in isotropic materials, which means that p,r is 
a scalar in these materials.

8-3-4 THE PHYSICAL PROPERTIES
OF MAGNETIC MATERIALS

Table C-5 in Appendix C lists the relative permeabilities of a number of materials com
monly used in engineering practice. As can be seen from this table, there is a wide 
range of values. Typically, magnetic materials are classified according to the nature of 
their response to a magnetizing field. The major classes are diamagnetic, paramag
netic, ferromagnetic, antiferromagnetic, and ferrimagnetic materials.

We will now discuss the physical mechanisms responsible for the magnetic 
behavior of each class of materials. We do this by describing the response of the 
orbital and spin magnetic dipoles to the presence of a uniform magnetizing field 
yU-oĤ  that is generated by external sources (such as the free current in the wires of 
a solenoid). During this discussion, we will assume that the magnetic material sam
ple does not upset the direction of the the B-field when it is placed in the magnetiz
ing field. For this case, when the material is present, B = /x0(Hm + M), so /x0M = 
fjiQ(P'r ~ l)H m can be thought of as the response of the material to the magnetizing 
field.4

8-3-4-1 Diamagnetic Materials. In diamagnetic materials, all of the orbital and 
spin magnetic moments pair off in the absence of a magnetizing field in such a way that 
each atom has no net magnetic moment. When a magnetizing field is applied, each

4 This cannot be said when the direction of B changes when the material is present in the magnetizing field.
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orbiting electron experiences an outward Lorentz force that slightly decreases the elec
tron orbital velocities. This reduces the orbital magnetic moments and leaves the spin 
moments unchanged, producing a small, net magnetic moment in each molecule that is 
antiparallel to the magnetizing field. The net effect is a slight reduction of the B-field 
inside the material, which means that fxr is less than unity for diamagnetic materials. 
Examples of diamagnetic materials include the inert gases, hydrogen, copper, gold, sil
icon, germanium, graphite, and bismuth. Of these, bismuth has the most pronounced 
diamagnetic effect, with /xr = 0.9999833.

Since they have permeabilities that are less than the permeability of free space, 
diamagnetic materials are repelled by permanent magnets, although the repulsive force 
is small. This repulsion was first discovered by Michael Faraday, who found that bis
muth is repelled by a strong bar magnet. We will discuss the cause of the repulsive 
force in Chapter 9.

Superconductors exhibit perfect diamagnetism when they are in their perfectly 
conducting state. This means that xm ~ ~ 1> A9 = 0’ and B = 0 inside a superconduc
tor when operated below its critical temperature Tc. Figures 8-6 a & b show the B- 
field streamlines of a typical superconductor when placed in a uniform B-field at 
temperatures above and below the critical temperature, respectively. When T > Tc, 
the material acts as an ordinary diatomic material, with pr ~  1.0. Thus, the B-field 
lines of Figure 8-6a are uniform.

Figure 8-6b shows the B-field when the temperature of the material is below Tc. 
Here, the streamlines do not enter the material, since the field inside is zero. Although 
it may look like the superconductor somehow expels the B-field lines, what really hap
pens is that the magnetic dipoles within the superconductor align themselves antipar
allel with the magnetizing field and generate a B-field that exactly cancels the 
magnetizing field inside.

Superconductors are strongly repulsed by permanent magnets, which makes 
them useful for suspending objects without mechanical constraints. Figure 8-7 shows 
a permanent magnet suspended above a superconducting disc that is maintained below 
the critical temperature. Unlike the force between two permanent magnets, which 
can be either repulsive or attractive (depending upon the orientations of their north 
and south poles), a superconductor experiences a repulsive force from a permanent 
magnet regardless of its orientation.

5

T>TC

F ig u re  8 - 6  B-field streamlines of a 
superconductor placed in a uniform B- 
field. a) Above the critical tem perature, 
b) Below the critical tem perature.
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Figure 8-7 A small permanent magnet is 
suspended above a superconducting disc of 
barium-yttrium-copper-oxygen compound, 
which is cooled with liquid nitrogen. 
Courtesy of Edmund Scientific Co.

8-3-4-2 Paramagnetic Materials. Each atom or molecule of a paramagnetic 
material has a net magnetic moment because its outer electron shells are not filled. In 
the absence of a magnetizing field, the spin magnetic moments assume random orien
tations and the average magnetic moment is zero. However, when a magnetizing field 
is applied, quantum effects cause slightly more than half of the magnetic moments to 
align themselves parallel to this field, and the rest antiparallel. Hence, a net magnetic 
moment is induced in the material parallel to the magnetizing field. This net magneti
zation increases as the magnetizing field increases. The diamagnetic effect is also pre
sent in these materials, but it is masked, because the decrease of the orbital magnetic 
moments is much smaller than the increase of the average spin magnetic moments due 
to the paramagnetic effect.

Paramagnetic materials have relative permeabilities that are slightly greater than 
unity. One of the strongest paramagnetic materials is nickel chloride, which has 
Hr = 1.00004. Since the paramagnetic effect results in a small increase in the B-field 
within the material, these materials are attracted to permanent magnets, although the 
attractive force is usually small. Other examples of paramagnetic materials are air, 
aluminum, potassium, and tungsten.

8-3-4-3 Ferromagnetic Materials. Like paramagnetic materials, ferromagnetic 
materials are composed of atoms and molecules that each have a spin magnetic 
moment resulting from the incomplete cancellation of electron spins in the outer 
orbital shells. But unlike paramagnetic materials, in which only slightly more than half 
of the spin magnetic moments align themselves with a magnetizing field, ferromagnetic 
materials exhibit a quantum effect called an exchange force that causes all the magnetic 
moments in small regions throughout the material to “lock” in the same direction, even 
in the absence of a magnetizing field. These regions are called ferromagnetic domains 
and are depicted in Figure 8-8. Between adjacent ferromagnetic domains are thin, 
disordered layers called domain walls. When a magnetizing field is applied to a sam
ple that is initially unmagnetized (i.e., the domain moments are randomly oriented),

Figure 8-8 Magnetic domains in a 
ferromagnetic material.



SEC. 8-3 MAGNETIC MATERIALS 253

the domain walls tend to shift so that those domains already aligned with the magne
tizing field grow at the expense of the others. For small fields, this wall movement is 
reversible, meaning that they will return to their original positions when the magnetiz
ing field is removed. As the magnetizing field is increased, however, this wall move
ment becomes irreversible, requiring a negative magnetizing field to bring the walls to 
their original positions. As the field is further increased, the remaining unaligned 
domains eventually rotate, making the material appear as a single magnetized domain. 
At this point, the material is saturated: Further increases in the magnetizing field pro
duce no further increases in M.

Since the ferromagnetic domains can maintain their alignments even when the 
magnetizing field is removed, these materials make excellent permanent magnets. 
Once magnetized, they can maintain their magnetized state over long periods of time 
as long as they are kept at temperatures below the Currie temperature. Above this 
temperature, the random thermal energy forces overshadow the exchange forces, and 
the material returns to an unmagnetized state, behaving as a paramagnetic material. 
The Currie temperatures of most ferromagnetic materials lie in the range from 150 to 
1000 degrees Celsius.

Figure 8-9 shows the relationship between B and H  inside a typical ferromagnetic 
material as the magnetizing field p0H (produced by external currents) oscillates 
between the values ±/x0/ /max. If the sample is initially unmagnetized, B follows the 
dotted curve (called the initial magnetization curve) as H increases toward Hmax. This 
curve starts out linear, but eventually levels off as saturation is reached. As H  
decreases from this point, B at first falls off slowly due to the “memory” of the mater
ial. Later, the decrease in B is more rapid, as the domain walls begin to shift. When 
H  = 0, B has a positive value Br, called the residual flux density, but it is not until 
H — —Hc (the coercive field  intensity) that B = 0. As H  decreases further towards 
—//max’ B continues to decrease and approaches saturation in the negative direction. 
From this point, the material goes through a similar process as //increases from — Hmax 
to Hmax and B follows the bottom curve shown in the figure.

The S-shaped magnetization curve shown in Figure 8-9 is called a hysteresis loop. 
The area of the hysteresis loop corresponds to the energy that must be expended to 
bring the material through one cycle. This energy is called hysteresis loss. “Soft” 
materials have narrow hysteresis loops and are well suited for motors, transformers, 
and magnetic-recording read/write heads, because the loss per cycle is relatively low. 
Other applications make use of the memory characteristics of materials with wide hys-

B .
/  /  /  

/  /  /
/  /

/  /
/  /

_J___

B y

- /^max -H of 1 ' */  Hc //max H

~Br

Figure 8-9 A hysteresis loop.
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teresis loops. Permanent magnets and recording emulsions for tapes and disks are two 
examples. Materials with wide hysteresis loops are called “hard” materials.

Ferromagnetic materials exhibit the largest relative permeabilities of all 
materials and are strongly attracted to permanent magnets. Examples include 
iron, cobalt, nickel, and steel. Relative permeablities exceeding 105 are not 
uncommon for ferromagnetic materials, although values in the range of 100-20,000 
are more typical. These permeabilities are strong functions of frequency, how
ever. At frequencies above a few tens of kilohertz, the relative permeabilities of 
most ferromagnetic materials are essentially unity (1.0). As a result, ferromag
netic materials are usually used for low-frequency applications, such as power fre
quency devices (50-60 [Hz]).

Another characteristic of ferromagnetic materials is that they are moderate con
ductors. Unfortunately, this quality is usually unattractive, because it gives rise to 
eddy currents and their associated losses when time-varying fields are present. Eddy 
current losses are discussed in Chapter 9. As a group, ferromagnetic materials exhibit 
the largest eddy current losses of all magnetic materials.

8-3-4-4 Antiferromagnetic and Ferrimagnetic Materials. The atoms and mole
cules in antiferromagnetic materials each have a net magnetic moment due to uncom
pensated spin moments, but the interaction forces between adjacent atoms are such 
that their moments align antiparallel. Thus, there is no net magnetic moment within 
an antiferromagnetic material, resulting in a relative permeability of unity.

Ferrimagnetic materials are similar to antiferromagnetic materials in that adja
cent atomic moments align antiparallel, but the magnitudes of these adjacent moments 
are not equal, so they do not cancel. The net magnetic moments found in ferrimag
netic materials are smaller than those found in ferromagnetic materials, but they can 
still be substantial.

An important subset of the ferrimagnetic materials is the ferrites, which have con
ductivities that are several orders of magnitude lower than those found in ferromag
netic materials. The resulting low eddy current losses of these materials make them 
attractive for high-frequency applications, where losses can significantly reduce the 
efficiency or the Q (quality factor) of tuned circuits. Iron oxide magnetite and 
nickel-zinc ferrite are examples of ferrite materials. Relative permeabilities in the 
range of 1,500 are typical for ferrites. Also, unlike ferromagnetic materials, many fer
rites exhibit relatively large permeabilities at high-frequencies. For example, 
nickel-zinc (NiZn) exhibits a relative permeability of nearly 100 at frequencies 
approaching 100 [MHz]. This high-frequency characteristic makes ferrites attractive 
for radio frequency (RF) and microwave applications.

Ferrites exhibit anisotropic behavior when subjected to high-frequency magnetic 
fields. This occurs because electrons have an angular momentum that is always an
tiparallel to their magnetic moment. As a magnetizing field attempts to align the mag
netic moments of these electrons, their spin angular momentum causes the electrons to 
precess about the direction of Hw, just like a gyroscope precesses about the gravitation
al field. Thus, M precesses around H,„, causing B and Hw to have different directions.
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This phenomenon is useful in the design of many high-frequency components, such as 
isolators, phase shifters, and oscillators.5

8-3-4-5 Superparamagnetic Materials. Superparamagnetic materials consist of 
ferromagnetic particles that are suspended in a dielectric binder. The binder breaks 
the exchange forces between adjacent particles, which allows each particle to be mag
netized independently of all other particles. This composite material can then be 
deposited as a thin film on a flexible tape, such as Mylar™. When the particles are 
very small, the magnetic state of the tape can change rapidly as a function of position, 
which allows these tapes to store large amounts of information in a small volume. This 
makes superparamagnetic materials attractive for use in audio-, video-, and datastor
age tapes.

8-3-5 FIELD EQUATIONS IN MAGNETIC MATERIALS

Now that we have determined how the orbital and spin currents in a magnetic material 
distribute themselves in response to an applied magnetic field, we are in a position to 
derive the equations that model the relationship between magnetostatic fields and their 
sources when magnetic materials are present. We can start by remembering that for 
steady currents in free space (i.e., in a vacuum), the magnetic flux density satisfies the 
equations

where Jr is the total current density at a point. This version of Ampere’s law is also 
valid when magnetic materials are present, as long as Jr includes both the free and the 
magnetization current densities, J and Jm, respectively. This complicates matters, 
however, since magnetization currents are usually functions of the magnetic field B.

We can simplify things considerably by remembering that Ampere’s law can also 
be written in terms of H as

V X H = J,

where J is the free current density. The right-hand side of this equation is much simpler 
than the corresponding B-field equation, because more is usually known a priori about 
the free current in a device or system than is known about the total current density. 
Using this simplification, we can now write Maxwell’s equations for magnetostatics as

Since both B and H appear in these equations, we also need the constitutive relation

"For more on this subject, see R.E. Collin, The Theory o f Guided Waves, 2d ed. (New York 1994), IEEE 
Press.

(Magnetostatic equations in free space),

(Magnetostatic equations in 
magnetic materials)

(8.23)
(8.24)
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B -  /jlH .  (8.25)

Taken as a set, Equations (8.23) and (8.24) are sufficient to model all magnetostatic fields 
when magnetic materials are present. They can also be expressed in integral form, as

H • d£ = /

B • ds = 0

(Magnetostatic equations in 
magnetic materials)

5

(8.26)

(8.27)

where S is a closed surface and I  is the free current enclosed in a right-handed sense by 
the closed path C.

Both the vector and scalar magnetic potentials can be used when magnetic mate
rials are present. For instance, V • B is zero even when magnetic materials are present, 
so we still can write

B = V X A. (8.28)

Substituting this expression into Ampere’s law and using Coulomb’s gauge, we find 
that in a homogeneous region, A satisfies the vector equation

V2A = -yu,J (Homogeneous regions). (8.29)

The expression for the magnetic scalar potential in magnetic media follows from 
the property that V X H = 0 in regions where J = 0. Thus, in source-free regions, H 
and B can be respectively written as

H = —VVm (Regions where J = 0), (8.30)

and

B = —fiVVm (Regions where J = 0). (8.31)

Substituting Equation (8.31) into Equation (8.24), we find that Vm satisfies

V • /jXVm = 0 (Regions where J = 0). (8.32)

In homogeneous media, Equation (8.32) becomes

\ 2 Vm = 0 (Homogeneous regions where J = 0), (8.33)

which is Laplace’s equation.

E xam p le  8 -2

Find the  B-field genera ted  by the  solenoid show n in F igure 8-10 th a t is filled w ith a m agnetic 

m ateria l w ith perm eability  fi.

Solution:

W e solved this p rob lem  earlier for the  case w here /jl = yu0 by using A m p ere ’s law to  find B 
directly. (See Section 7-4-2.) W e can em ploy a sim ilar p rocedure here , this tim e using A m p ere ’s 

law to  find H and then  the constitutive re la tion  B = gH  to  find B.
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A z

F ig u re  8 -1 0  An infinite solenoid, filled 
with a homogeneous magnetic material.

Even with the magnetic material present, the geometry still has perfect cylindrical sym
metry. Thus, it is reasonable to assume that both B and H  have only a z-component, which can 
vary just with the radial coordinate p. For the amperian path shown in the figure, we can write

j i H . d e  = [ / / > , )  -  Hz(f t )]ie  = /enc

where 7enc is the current enclosed by the path. When P l <  a and p2 >  the enclosed current is 

hnc = JsM- Thus>
H z (P l ) -  H z (p2) = J S ( Pi <  a and p2 >  a).

Since this expression is valid for all Px <  a , we can conclude that H z (P l )  is a constant. Using 
similar reasoning, we can conclude the same thing about H z (p2). We can argue that H z (p2) = 0, 
since the field at infinity is zero. Thus, H ,  (pj) = Js, and we can write B as

b  =  ( ^ A  (Inside solenoid)
[0 (Outside solenoid)'

8-3-6 MAGNETIC FIELD BOUNDARY CONDITIONS

In order to model systems that contain different kinds of magnetic materials, it is nec
essary to know the boundary conditions that B and H exhibit across these material dis
continuities. These boundary conditions can be obtained using the integral form of 
Maxwell’s equations for magnetostatics:

H • d£ = / (8.35)

B • ds = 0. (8.36)
Js

Let us consider the interface between two magnetic media shown in Figure 8-11, 
which have permeabilities pq and pq, respectively. The contour C has length M, has 
height Ah, and straddles the interface. If Ah -a 0, we can write

<j> H-df  *= HltM  -  HltM  «  /,

where Hu and Hlt are the tangential components of H just inside regions 1 and 2, 
respectively.
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Figure 8-11 The contour and surface used 
to find the boundary conditions of B and 
H  at the interface between two dissimilar 
media.

Since Ah -a 0, the only finite current I that can pass through the surface bounded by C 
is a surface current at the interface. If we replace I  with JsM, where Js is the com
ponent of the surface current density that is perpendicular to the loop in a right-handed 
sense, we find that

HUM -  H2tM ~ J sM.

This expression becomes exact in the limit as Af -a  0. Dividing both sides by A£, we 
finally obtain

H lt ~ Hlt = Js. (8.37)

Also, Bt = /iHt, so we can write

—  Bh - — B2l = J,. (8.38)
Mi M2

The integration contour in Figure 8-11 was chosen to lie in the plane of the 
paper for simplicity. This choice resulted in a relationship between components of 
B and H that lie in the same plane. We can obtain similar expressions for the tan
gential components of B and H that lie perpendicular to the paper by choosing a 
path that extends out of the paper. These expressions can be combined into a sin
gle vector expression,

**2i« x (^1 H2) -  J5, (8.39)

where the unit vector a21/) is perpendicular to the interface and points from region 2 
towards region 1, and J ? is the surface current density at the interface. When using 
Equations (8.37)-(8.39), it is important to note that a surface current Js can flow at a 
material interface only when one of the media is perfectly conducting or when there is 
an infinitesimally thin conducting film between the two media.

To find the relationship between the normal components of B and H at a magnet
ic material interface, we can evaluate Equation (8.36) using the “pillbox” surface shown 
in Figure 8-11, which has height Ah and top and bottom surface area AS . If h -a  0, the
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surface area of the cylindrical portion of the surface becomes zero. Hence, the only 
contributions to the integral come from the bottom and top surfaces, and we have

j) B • ds ~  Bln AS -  Bln AS =  0,

which becomes exact as AS -a 0. Dividing both sides by AS, we conclude that

B\n ~ Birr (8.40)

Also, since Bn = \±Hn, Equation (8.40) can be written as

Ah#ln = A<2 H 2rr
(8.41)

E xam p le  8 -3

A t the material interface shown in Figure 8-12, derive the relationship between the magnitudes 
and angles of B on both sides of the interface. Assume that neither region is perfectly conduct
ing, so there is no surface current.

Figure 8-12 An interface between two 
dissimilar magnetic media.

Solution:

The normal components of B t and B 2 are B { cos 0X and B 2 cos 02 , respectively. Substitut
ing these into Equation (8.40), we find that

B x cos 6l  =  B 2 c o s  02 . (8.42)

Similarly, the tangential components of B, and B, are B x sin dY and B 2 sin d2 , respectively. 
Substituting these into Equation (8.38) (with Jsn = 0, since neither medium is perfectly conduct
ing), we obtain

—  B x sin 9X =  —  B 2 sin 02 .
Ah M-2

Dividing this expression into the previous one and solving for 02 , we get

Ah .—  tan i 
LAO

(8.43)

Similarly, substituting Equation (8.43) into Equation (8.42) and solving for B ,  results in
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B2 b 1 sin2^  + cos2#!. (8.44)

A n im portant special case of Equation (8.43) occurs when /q  »  p 2 and 6l  +  ±90°. 
U nder this condition, we have

lim 02 = lim tan 1
A*-!->°° Mi-^

M2 
L̂ l

tan 01 = 0. (8.45)

Thus, B-field lines in a very low-permeability material approach the interface with a high-per- 
meability material at right angles to the surface.

8 -4  M a g n e to s ta t ic  B o u n d a ry  V a lu e  P ro b lem s

When different kinds of magnetic materials are present in a system, solutions are often 
found by solving the appropriate differential or integral equations in the region(s) of 
interest and then enforcing the correct behavior of these solutions at the boundaries of 
the materials. Problems of this sort are called magnetostatic boundary value problems.

The magnetic vector and scalar potentials satisfy Poisson’s and Laplace’s equa
tions, respectively, so the techniques used to solve magnetostatic boundary value prob
lems are very similar to those used to solve electrostatic boundary value problems. 
There are, however, two complications that make magnetostatic problems more diffi
cult to solve. The first is that, whereas nonlinearities are rare in dielectrics, they are 
common in magnetic materials. When nonlinearities are present, the value of p  must 
be considered as an unknown, just as the B-field is. The second complication is that 
constant (magnetic) potential surfaces often do not coincide with the material surfaces, 
because magnetic conductors do not exist in nature. Thus, unlike E-fields, which van
ish inside good conductors, B-fields tend to penetrate magnetic materials.

Magnetostatic boundary value problems can be solved using analytical, graphi
cal, or numerical solution methods. These techniques are very similar to those used 
for electrostatic fields, so we will present only a few. In the paragraphs that follow, 
we examine two analytical solutions and a graphical technique. Interested readers can 
find discussions of more advanced techniques in the references at the end of the text.

8-4-1 ANALYTICAL SOLUTIONS

Just as in the electrostatic case, some types of magnetostatic boundary value problems 
can be solved analytically in terms of simple expressions. These problems all deal with 
objects with high symmetry, such as solenoids, toroids, spheres, etc. In many cases, 
the solutions can be found almost by inspection, since the uniqueness principle ensures 
that only the correct solution can satisfy both the appropriate differential equations 
and the boundary conditions. We will demonstrate this type of procedure in the fol
lowing two examples.
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E xam ple  8 -4

Figure 8-13 shows an infinite solenoid of radius b. The solenoid is partially filled with a solid, 
cylindrical core with permeability p, and radius a that is centered about the solenoid’s axis. If the 
surface current density around the solenoid is J s -  Js a^, find the B-field both inside and outside 
the cylinder.

2)©©©©©©©©©©©©©© ̂ ©

J =

a

T

<7 © © © © © © © © © © © © © © © © © W

" b

< 7 ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ®  <7
F ig u re  8-1 3 An infinite solenoid with a 
partial magnetic core.

Solution:

We can approach this problem by remembering that the H-field inside the solenoid with the bar 
absent is (see Section 7-4-2)

f Js K  P <
1  0  p  >  b

This solution satisfies V x H  = 0 inside and outside the solenoid and also satisfies the boundary 
condition (Equation (8.37)) across the surface current. The boundary condition imposed by the 
bar is that the tangential H-field must be continuous across the air-bar interface. However, this 
H-field already satisfies the condition, so the bar does not impose any new boundary conditions 
on H. Also, the bar does not add any new free currents to the geometry, so it is reasonable to 
assume that H  does not change with the addition of the bar. Finally, using B = /xH, we obtain

f p J s az p < a

B = < mA A  a <  p <  b.

0  p  >  b

Notice that this expression satisfies the necessary boundary conditions (Equation (8.38)) at p  = 
a and p  — b. From this expression, we see that the B-field is greatly enhanced in the magnetic 
core when /x »  /x0, but is unchanged elsewhere.

E xam ple 8 -5

Figure 8-14 depicts a long solenoid that contains two different magnetic materials. The materials

. . .
< 7 ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ®  <7

2  Figure 8-14 A n infinite solenoid with an 
inhomogeneous core and nonuniform 
surface current.
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on the left and right sides of the solenoid have permeabilities /q  and ytq, respectively, and each has 
the same radius as the solenoid. Find the surface current densities on each side of the solenoid 
that generate a uniform, axially directed B-field throughout the inside of the solenoid and no field 
outside.

Solution:

W e will start by assuming that B = B 0a ,  throughout the interior of the solenoid and find 
the surface currents Jls and that support this field. The interface between the two magnetic 
media poses no problem with this assumed B-field, since the normal component of B is always 
continuous across a material interface.

The tangential components of B must satisfy Equation (8.38) at the outer radius of the 
solenoid. Thus, in the left-hand medium, we have

Mi
B „ =  Jls-

Similarly, in the right-hand medium, we have

B0 J2s•
M2

Hence, the required surface current densities along the left- and right-hand sides of the solenoid are

K  = ~ B  0a* [A/m]
Mi

and

J* = — £<>** [A/®].M2

respectively.
We can check this result by recognizing that this B-field is the same as would be generated 

by a uniform solenoidal surface current in free space. Thus, the total (i.e., free plus magnetiza
tion) current density on the solenoid boundary must be uniform along the entire solenoid. In 
the left-hand region, the total surface current density is

J i r  ~  J l s  +  ^1 sm »

where J lsm is the surface magnetization current density. According to Equation (8.12), J lsm is 
given by Jlsm = Mj X a n, where is the magnetization in the left-hand region. Using Equa
tions (8.18) and (8.22), we find that Mj =  [(/q -  m0)-®0] / ( m0Mi)az, s o

T _ (Ml -  Mo) £ q -
J lsm ~  d 4

M oMi

Consequently, we can write J17- as

-  — % a + ----M„) B,t , = -
Mi ° * Mo Mi * Mo 4

[A/m],

A similar sequence of steps shows that the total surface current density on the right-hand side of 
the solenoid J 2T has the same value. Hence, the t o ta l  current density along the solenoid is uni
form, which produces a uniform B-field throughout the interior of the solenoid.
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The two previous examples share the characteristic that the B-field streamlines 
are simple. There are, of course, many situations where this does not occur, which 
means that we must often depend upon graphical or numerical solutions for most of the 
problems encountered in engineering practice. The numerical methods used to solve 
magnetostatic problems are similar to those used for electrostatic problems and, for 
that reason, will not be discussed separately here. The interested reader can find dis
cussions of these techniques in several of the references mentioned at the text.

8-4-2 MAGNETIC FLUX PLOTS

There are many situations where quick, approximate solutions of magnetostatic problems 
are needed in the preliminary stages of a design. In these situations, graphical solutions 
are attractive, because they are reasonably accurate and very easy to obtain. The curvi
linear squares technique provides accurate estimates of two-dimensional geometries.

To see how the curvilinear squares technique can be applied to magnetostatic 
fields, let us first compare the scalar potential equations for both cases. For electro
static fields, we have

E = -V F,

and

V2F = 0,

whereas for the magnetostatic case, we have

H = -V F W

and

V2V = 0.m w*
These equations are the same when F is replaced by Vm and E is replaced by H. As a 
result, the rules for drawing a correct magnetic field flux plot of H-field streamlines 
and magnetic equipotential surfaces are the same as for the electrostatic case.

Figure 8-15 shows a section of a magnetostatic flux plot. Here, each tube “carries”

Equipotentia l
surfaces

F ig u re  8-15 A magnetostatic, curvilinear 
squares flux plot.
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Mo

M '_>0°

Figure 8-16 The behavior of B at the 
interface between high and low- 
permeability media.

the same flux A (P, and the magnetic potential difference AFW between each equipotential 
surface is also the same from cell to cell. Thus, we can write

A 0 =  fiH di ~  fx H \L t [Wb/m] (8.46)
-'AL,

and

\V „  = f H dl =  HAL„ [A], (8.47)
•A  L „

where ALt and ALn are the spacings between adjacent streamlines and equipotential 
surfaces, respectively.

From Equations (8.46) and (8.47), it follows that

A # A Lt
A.V ~  M AL ’m n

(8.48)

where ALf/ALn is the cell aspect ratio. As in the electrostatic case, this aspect ratio is 
usually chosen to be unity, so the cells are square.

The rules for drawing the flux and potential lines of magnetostatic and electro
static flux plots are the same in homogeneous regions, but their boundary conditions 
are different. In electrostatic flux plots, conductors act as equipotential surfaces that 
are not penetrated by E-field streamilines. In magnetostatic flux plots, B-field lines 
tend to concentrate in high-permeability materials. Moreover, the magnetic potential 
is constant on the outside of high-permeability materials but not inside. This is illus
trated in Figure 8-16, which shows the interface between a high-permeability material 
and air (free space). As we found in Example 8-2, the B-field streamlines enter the 
low-permeability region at right angles to the surface, except when B is nearly parallel 
to the interface in the high-permeability material. This makes the interface look like a 
constant magnetic potential surface on the air side of the boundary, but not necessarily 
on the material side.

Figure 8-17 shows a flux plot of the B-field near an air gap in a high-permeability 
core. The plot was obtained by first drawing the streamlines and constant-potential 
surfaces in the air region and then extending these streamlines into the core. In the
ory, the angle that each streamline makes with the inner boundary should be adjusted 
such that the normal component of B is continuous across the interface. In practice, 
however, most of the streamlines inside the core approach the air gap at nearly right 
angles. As can be seen in the figure, B-field streamlines are guided by a high-perme- 
ability core and tend to fringe near an air gap.

Figure 8-18 shows a bend in a high-permeability core. The field outside the bar 
is almost nonexistent, since there is no gap in the core, so the streamlines follow the 
edges of the core.
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F ig u re  8-17 B-field streamlines near the 
gap of a high-permeability core.

F ig u re  8-18 B-field streamlines near a 
bend in a high-permeability core.

As can be seen from this flux plot, the streamlines are uniformly spaced away from the 
corner, but they tend to bunch up near the inside of the corner, increasing the field 
strength there. The tends to increase the eddy curent losses in the region around the 
bend. The effect can be minimized by rounding the inside corner; the more gradual 
the bend, the less the B-field lines are bunched.

P e rm a n e n t M a g n e ts  an d  M a g n e t ic  R eco rd in g

The hysteresis (i.e., memory) of magnetic materials is usually a disadvantage in high- 
flux networks, such as magnetic circuits. This is because energy is lost in time-varying 
circuits as the magnetizing field works against the residual field. On the other hand, 
there are many applications where this memory is very desirable. Two such applica
tions are permanent magnets and magnetic memories.

The techniques for determining the fields generated by permanent magnets are 
somewhat different from those discussed in the previous sections, since B and H are 
not linearly proportional to each other inside a material that has residual magnetiza
tion M. To illustrate this, consider the permanent magnet shown in Figure 8-19.

F ig u re  8 -1 9  Cross section of a uniformly 
magnetized cylindrical rod.



266 CHAP. 8 MAGNETOSTATIC FIELDS IN MATERIAL MEDIA

Here, a cylindrical rod has been magnetized so that M is uniform throughout its inte
rior; M = M 0 az, where az is directed along the axis of the cylinder. Since there is no 
free current present anywhere in this geometry, it is not obvious how to proceed to find 
the B-field using any of the analytical techniques that we used for linear materials. 
However, since M is known, we can use Equations (8.11) and (8.12) to find the magne
tization currents that are present. Substituting, we have

Jm = V X (M0  a2) = 0 

throughout the interior of the cylinder and 

JSm = (M0a*) x  ap = MQ a0 [A/m]
on the surface of the cylinder. From these expressions, we see that the uniform mag
netization M produces a uniform surface current that circulates around the cylinder. 
Since we now know the current distribution, we can treat these currents as if they were 
simply suspended in free space. In Chapter 7 we calculated the field along the center 
of a finite-length solenoid. Substituting the preceding value of Jsm into Equation 
(7.38), we obtain

B, =
H0 M 0 2 z

+
L + 2z

2 LV(L -  2z)2 + d2 V (L + 2z ) 2  + d2

(8.49)

This expression is valid at all points along the z-axis, both inside and outside the cylin
der, and is plotted as the solid curve in Figure 8.20 for the case where L /d  = 5.

To see what the relationship between B and H is inside and outside the cylin
der, we can use

B = ^0(H + M). 

Solving for H, we obtain

H = — — M.

Since M is uniform inside the cylinder and zero outside, H is discontinuous at the 
cylinder end caps. This is evident in Figure 8-20, where H  is dark. We also notice 
from these plots that Bz and Hz are proportional to each other outside the cylinder, 
but definitely not inside. This is because of the residual magnetization M0  of the 
material.

Figure 8-20 Plot of Bz and Hz vs. z along 
the axis of the permanently magnetized 
rod for the case L/d = 5.
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F ig u re  8-21 A magnetic tape moving past recording and playback heads.

One of the most important uses of hysteresis is in magnetic recording or mem
ory applications. Here, information is stored on a magnetic tape or disc by magne
tizing it with a magnetizing field. The information can later be retrieved by sensing 
the magnetization pattern. Figure 8-21 shows a simplified binary (i.e. digital) record
ing configuration. In the figure, a magnetic tape or disc moves past both a write head 
and a read head. In their simplest forms, these heads consist of toroids of high-per
meability material with an air gap. In many systems, the same head is used for both 
the read and write operations.

Information is encoded in the magnetic medium by passing a current in the write 
head coil as the medium moves by. A B-field is induced that fringes outside the gap, 
which magnetizes the material as it passes by. The medium is typically divided into 
racks that run along the direction of motion, and each track is divided into cells. Each 
cell stores one bit of data. The magnetization direction of each cell is determined by 
the polarity of the write current while the cell passes by the write head.

As the magnetized medium passes by the gap of the read head, B-fields are 
induced in the read-head gap and core whose direction is determined by the magneti
zation vector of the cell nearest to the gap. As the cell polarities change from cell to 
cell, a time varying flux in the core induces a voltage N(d<P/dt) across the terminals of 
the read coil. This is a result of Faraday’s law, which we discussed briefly in Chapter 
3 and will discuss more fully in Chapter 9. The voltage waveform in the read head is 
the time derivative of the magnetization pattern passing by the head. Figure 8-22 
shows sample bit sequences of the write current, the magnetization, and the read volt
age waveforms.

The quest for achieving higher and higher data densities on magnetic tapes and 
disks presents several interesting challenges for designers. First, the heads must be 
constructed so that the gaps are very small. Not only this, but the B-fields must drop 
off quickly away from the gaps, to ensure that the field directed towards one cell does 
not also magnetize an adjacent cell. The characteristics of the magnetic recording 
material are also important. For instance, the magnetic domains must be very small 
and not vulnerable to “bleed-through” from the magnetization of adjacent domains. 
At present, the maximum achievable memory density on a disk is approximately 108 
bits per square centimeter.
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1 1 0  1 0  1
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F ig u re  8-22 Magnetic tape recording, a) Write head current vs. time, b) Tape 
magnetization, c) Read head voltage vs. time.

M a g n e tic  C ircu its

We have already seen that high-permeability materials tend to concentrate B-fields 
within themselves, just as conductors do with currents, making high-permeability 
materials ideal for guiding large amounts of magnetic flux around well-defined paths. 
Networks that accomplish this are called magnetic circuits. As their name implies, 
magnetic circuits are in many respects analogs of electric circuits. Magnetic circuits 
are used in a variety of applications, such as transformers, motors, loudspeakers, and 
relays.

Figure 8-23a shows N  turns of wire, wrapped around a core that has permeability 
/ic and cross-sectional area S. In addition, there is an air gap in the core. If the core 
permeability /xc is large and the gap width Lg is small, the B-field will be nearly uni
form throughout the cross section of the core, and fringing in the gap will be negligible. 
This means that the magnetic flux <t> is constant at all points around the loop (including 
the gap) and can be obtained by integrating over the cross section of the loop. We 
obtain

area = S (a)

Ftc

* 9

(b)

F ig u re  8-23 A magnetic circuit, a) Geometry, b) Equivalent circuit.
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<P =  f  B • ds =  B S ,  

's

where B  is the magnetic flux density inside the core and gap. We can find the rela
tionship between <P and the current I  by evaluating Ampere’s law around the mean 
path through the center of the core and the gap. Integrating clockwise and noting that 
the current I  links this path N  times in a right-handed sense, we obtain

H • df 5 1 B • d£ =  N I ,  
c d

where /jl equals /jlc in the core and /jl0  in the gap. Since the streamlines are parallel to 
the path C ,  we can replace B • df with B d l .  Also, B  is constant throughout the loop, so 
we can take it outside the integral, which yields

B  d) —  d i  =  B  

>c d

h  +  h i

. d c  d o .

=  N I ,

where L c and L g are the lengths of the core and gap, respectively. Using B  =  ( P / S  and 
solving for <P, we obtain

d> =
N I

L C L K----  + ---—
d c ^  d o ^

This can be written in the form

<P = y m
k  + %  ’

(8.50)

where

V m =  N I [A] (8.51)

is the magnetomotive force (mmf) of the circuit windings and 0fc 
tances of the core and gap, respectively:

and are the reluc-

d ^IICJ
£

[A/Wb or H_1] (8.52)

[A/Wb or H-1].Of = g
g d o S

(8.53)

Figure 8-23b shows an electrical analog of this magnetic circuit. The magneto
motive force V m  is represented by the voltage V ,  the flux d> is represented by the cur
rent /, and the reluctances 0fc and are represented by the series resistances R c and 
R g , respectively. The analogous quantities are summarized as follows:
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Magnetic Circuits Electric Circuits

magnetomotive force (mmf), Vm [A] electromotive force (emf), V [V]
magnetic flux, <P [Wb] or [T • m2 ] electric current, I [A]
reluctance, [H_1 ] Resistance, R [il]

This analog can be used whenever the magnetic flux is confined to flow within a well- 
defined path. All that is needed to find the equivalent electric circuit is to identify the 
sources of magnetomotive force and to determine the reluctances of the various flux 
paths. The sum of all the magnetic voltage drops around each path is zero, and the mag
netic voltage drop across each reluctance satisfies the magnetic equivalent of Ohm’s law:

Vm = M<P. (8.54)

E xam p le  8 -6

For the magnetic circuit shown in Figure 8-24a, find the flux in the gap region, assuming that 
fringing and leakage can be neglected. Assume also that the permeability of the ferromagnetic 
/.lc core is constant and that the currents Ix and /2 are steady.

9T m2

F ig u re  8-24 A magnetic circuit, a) Geometry, b) Equivalent circuit.

Solution:

The sections along Lx, L2, L3, L4, and L5 are each simple circuit elements, since they have 
constant cross sectional areas.6 On the basis of these average path lengths, we have

= and *5
P c S  P c S

A lso, since L2 = L x and L 3 =  L 4,

Dfj =  and = 9^4.

Ls
—-  , when S is the cross sectional area of the core. 
M0 S

6 This is obviously not true near the corners of the two side regions, but if the volume of these regions is 
small, their effect on the total reluctance is small.
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The equivalent circuit for this configuration is shown in Figure 8-24b. Using the right-hand rule, 
we see that the voltage sources in the equivalent circuit have values V1 = NlI1 and V2 = —N2 I2, 
respectively.

Using standard loop analysis, we obtain the following loop equations:

0 , %  +  ( 0 ,  -  <p 2 ) ( M 3  +  m 5  +  at4> = tyA 

<p2 m2 + (<p2 -  0 l)(?t3 + m5 + m4) = n 2 i2.

Solving these equations, we obtain

_ N,I, (Sft2 + ^  + M4) + N2I2(d\3 + + ffl4)
1 (9^ + m 2x m 3 + m 5 + <n4) + 9ft,

= A/'j/i (9T3 + 915 + 9t4) + A ^O ^i + 9t3 + 9f5 + 9ft4)
2 (Eft, + m2)(9fi3 + m5 + $r4) +

and the flux in the gap region is

<2> = (p, -  0 1
N\ I \  -  N 2I2 

9t, + 49t3 + 29i5 ’

where we have used 9f2 = 9l1 and 9t4 = 9f3.

When nonlinear ferromagnetic materials are present, it is necessary to use the 
magnetization characteristics of the material to determine the actual value of the per
meability. This procedure is demonstrated in the following example.

E xam p le  8 - 7 ---------------------------------------------------------------------------------------------------------------------------------

Find the flux <P in the rectangular circuit shown in Figure 8-23a if the ferromagnetic core has a 
nonlinear permeability with a magnetization characteristic given by the solid curve in Figure 8- 
25. Assume that NI = 1,600 [A] and the circuit dimensions are Lc = 63 [cm], 5 = 1  [cm2] and 
Lg= 1 [mm].

F ig u re  8 -2 5  The magnetization curve for Fe-Se alloy7 and the load line 
for the magnetic circuit of Figure 8-23a.

7 See D.C. Heck, Magnetic Materials and Their Applications (Crane, Russak & Co., 1974), pp. 365.
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Solution:

The reluctances of the core and gap are given by

9tC
A
ncs

where the value of /jlc is, for the moment, unknown. The loop equation around the circuit is thus

L c L e(p —  + <P— ~̂ = NI= 1,600 [A],
P c S  P 0 S

Using < P ~  B CS , where B c is the magnetic flux density inside the core, we can write this equation 
in terms of B c :

— L + — L = 1,600 [A],
P c  P o

Also, since the B-field is continuous across the gap, H c = B c/ / jlc . Substituting this into the fore
going equation yields

P o

which is the equation of a straight line in the variables B c and H c . For the values specified in this 
problem, this equation becomes

H c + l,263fic = 2,540,

which is shown as the dotted curve in Figure 8-25 and can be considered as the load line. Along 
with the magnetization curve of the material, this load line determines the operating point of the 
circuit. The correct values of B c and H c lie at the intersection of the load line with the magneti
zation curve, where we find that

B c = 1.83 [T] or [Wb/m2] 
and

H c = 225 [A/m],

Thus, we finally obtain

( P =  B CS =  1.8 [Wb/m2] X 1(T4 [m2] = 1.8 X 1(T4 [Wb],

8 -7  S u m m a tio n

In this chapter, we have discussed two interactions between magnetic fields and cur
rents in material media. In the Hall effect, voltages are induced across material sam
ples whenever a magnetic field is impressed perpendicular to the flow of current. The 
voltages produced are generally small, but are useful in a variety of applications.

The interaction between an applied magnetic field and the spin and orbital cur
rents is very pronounced in certain materials. Extremely large magnetic fields can be 
produced via this interaction with relatively small currents. It is for this reason that
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most electrical machines generate forces using magnetic fields, rather than electric 
fields. We will talk more about these forces in the next chapter.

8-1 A homogeneous strip of width w = 0.5 [cm] and thickness t — .01 [cm] carries a 
200 [mA] current that flows lengthwise through the strip. A 1.5 X  10-4 [T] 13- 
field is directed perpendicular to width of the strip, resulting in a Hall voltage 
across its width of 3 [/xV]. Find the net free-charge density of mobile charge car
riers in the sample.

8-2 Find the magnetic field B required to produce a Hall voltage of 14 [yuV] across a 
copper strip that is 0.5 [cm] wide and 0.1 [mm] thick, and that carries a current of 
700 [mA]. Assume that B is directed perpendicular to the width of the strip that 
the mobile electron density is 8 . 4  X  1028 [m-3]. X  b b> X lO '' 1

8-3 Prove that

J V X Fdv = — j) F X ds,
Vol. S

where S is the surface that bounds the volume of integration. (Hint: Start by apply
ing the divergence theorem to the product F X C, where C is a constant vector.)

8-4 If the relative permeability of cobalt is /xr = 600 and the density of atoms is 
9.02 X  1022 [cm-3], calculate the average dipole moment per atom when a sample 
is placed in a uniform magnetizing field of value Bm = 0.1 [T].

8-5 A wire loop of radius 1 [cm] that carries a current of 10 [mA] is placed in a homo
geneous medium that has a relative permeability of ytxr = 100. Calculate the 
B-field at a) the center of the loop and b) 10 [cm] along the axis of the loop.

8-6 The B-field in the air just above an iron plate has a magnitude of 0.1 [T] and 
makes an angle of 1° with respect to the surface normal. Calculate the magnitude 
of B just inside the plate and the angle it makes with respect to the surface normal.

8-7 Figure P8-7 shows a magnetic slab with fjLr = 50. A thin conducting film (with 
/xr — 1) lies on top of the slab and carries a surface current of 1.0 [A/mm], 
directed out of the page. If | Bx | = 0.01 [T] and 6 1 = 10°, find |B2| and <92.

F ig u re  P 8 -7

8-8 In Figure P8-8, magnetic flux enters the first interface of a three-layer geometry 
at an angle 0t. If all three media are nonconducting and have permeabilities /.q , 
^ , and yUg, respectively,
(a) show that the angle 0O is independent of the value of /j^.
(b) show that 6 0  = 0 i when yiq = /x3. •
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Figure P8-8

8-9 A long solenoid is constructed by wrapping 200 turns/cm of wire around the outer 
surface of a hollow, circular cylinder that has a relative permeability of an 
inner radius a, and an outer radius b. If the wire carries a current /, calculate B 
in the solid and hollow portions of the cylinder. Also, calculate the total flux 
fsB • ds that passes through the solenoid.

8-10 Draw a flux plot that shows the B-field streamlines in the high-permability “T ” 
shown in Figure P8-10. Assume that flux enters from the bottom and splits 
equally between the right and left halves.

r
d

h

TV

2 d -

Figure P8-10

8-11 Draw a flux plot that shows the B-field streamlines in the vicinity of the high-per- 
meability core restriction shown in Figure P8-11. Assume that the streamlines 
flow from left to right and there is no flux leakage out of the core.

2d

F ig u re  P 8 - 1 1



SEC. 8-7 SUMMATION 275

8-12 Write a numerical program (using languages such as FORTRAN or C+ + , or 
mathematical software programs such as Matlab™ or Mathcad™) that solves 
Laplace’s equation for the magnetic scalar potential inside the restricted core 
shown in Figure P8-11. Assume that the left- and right-hand edges are constant- 
potential surfaces. Since there is zero leakage out of the core, the constant- 
surfaces are perpendicular to the top and bottom walls. This means that the 
boundary condition along these walls is dVm/dn = 0, where n is the direction nor
mal to the wall. Plot several constant-V^ surfaces and B-field streamlines.

8-13 Draw a flux plot that shows the B-field streamlines in the air gap shown in Figure 
P8-13. Assume that the permeability of the core is large and the streamlines flow 
from left to right.

T d/ 2

.1
F ig u re  P 8 -1 3

8-14 The two-dimensional bend shown in Figure 8-18 has a width of 1 [m]. Estimate 
the reluctance/meter between the first and last constant magnetic potential lines. 
Assume that the material has relative permeability /jir. Compare this value with 
the reluctance/meter of an unbent section with the same cross section and mean 
length? {Hint: Reluctance can be calculated from B-field flux plots, analogously 
to calculating capacitance from E-field flux plots.)

8-15 A long cylinder has been uniformly magnetized so that it forms a permanent 
magnet. If the B-field at the ends of the cylinder is 12 [T], calculate the mag
netization M inside the cylinder and the magnetization surface current den
sity i sm that flows around the outer surface of the cylinder. {Hint: 
Remember that B at the ends of a long solenoid equals roughly half its value 
at its center.)

8-16 Calculate the flux passing through the left- and right-hand gaps in the magnetic 
circuit shown in Figure P8-16. Assume that the core has a relative permeability 
of 1,000 and a square cross section throughout. Neglect any fringing.

2 [cm] 2 [cm]

0.5 [cm]
■ I

O-*-
10 [A] 

100 turns

i l l
0.2 [cm ]

300 turns

m
r T

2 [cm ]

5 [A]0.66 [cm] 6 F ig u re  P 8 -1 6
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8-17 Plot the flux (P passing through the magnetic circuit shown in Figure P8-17 as a 
function of jc for 0 < jc <  1 [cm]. Assume that the core and bar have relative 
permeabilities of 1,000 and 500, respectively, and the same square cross sections. 
Neglect all fringing.

F ig u re  P 8 -1 7

8-18 Calculate the flux passing through the magnetic circuit in problem 8-17 when 
x = 0.1 [cm], the bar has a permeability of 500, and the core is Fe-Si alloy (Hint: 
Use the Fe-Si alloy magnetization curve shown in Figure 8-25.)



9

Magnetic Inductance, 
Energy, and Forces

9-1 In tro d u c tio n

Throughout Chapters 4-8, electric and magnetic fields were discussed as if they were 
independent entities. They are indeed independent at low frequencies whenever the 
time-derivative terms in Maxwell’s equations are negligible. In this chapter, we will 
start a discussion of the more general case where electric and magnetic fields not only 
are present simultaneously, but also affect each other.

Faraday’s law of induction will be the starting point for our discussion. From 
this law, we will show how electric fields and voltages are generated by either time- 
varying magnetic fields or the movement of material media through a magnetic field. 
Applications presented during the discussion will include transformers and genera
tors.

Just as the charges in an electrostatic system interact through their mutual capac
itances, we will find that systems of currents also interact through their self and mutual 
inductances. We will first define the inductance of an element in terms of the mag
netic field it generates and will later show how inductance is related to the energy it 
stores in its magnetic field. We will also derive a number of formulas for the induc
tances of geometries commonly encountered in engineering systems.

277



We will conclude this chapter with a discussion of the forces exerted by current 
carrying circuits on other circuits and magnetic materials. These forces are important, 
because most practical transducers that convert electrical energy into a mechanical out
put make use of magnetic forces.
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Whereas only static charge distributions can produce a static E-field, the situation is 
more complicated when time-varying source distributions are present. Michael Fara
day conducted a classic experiment in 1831 that showed that E-fields are produced by 
time-varying B-fields. A schematic of the experimental setup he used is shown in Fig
ure 9-1. Here, a time-varying current i(t) is established in the primary conducting 
loop when the switch is closed at t = 0. The secondary conducting loop is open cir
cuited and contains no lumped voltage source. Faraday found that a time-varying volt
age is generated between the open-circuit terminals of the secondary loop under any of 
the following circumstances:

1. The current in the primary loop is time varying.
2. Either loop is moving with respect to the other, and a steady current is flowing in 

the primary loop.
3. A permanent magnet is moved near the secondary loop.

This voltage is an indication that an E-field is induced in the open-circuit gap of the 
secondary loop as a result of a time-varying B-field in the vicinity of the circuit. Fara
day deduced that these effects are accounted for by the following integral relationship 
between E  and B :

Here, S is any open surface that is bounded in a right-handed sense by a closed contour 
C. This expression is called Faraday’s law o f induction (or simply, Faraday’s law).

In words, Faraday’s law states that there is a net voltage, or electromotive force 
(emf), around a closed path whenever a time-varying magnetic flux passes through (or

9 -2  Faraday 's  Law  o f In d u c tio n

(9.1)

V o ( t )

+

F i g u r e  9-1 A simple network that 
demonstrates Faraday’s law of induction.
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links) the path. The sign of the emf is such that it tends to produce currents whose In
fields oppose the time-varying flux linkage. This latter phenomenon is called Lenz’s 
law and is a convenient method of predicting the direction of the induced currents.

A point form of Faraday’s law can be derived by applying Equation (9.1) to a 
vanishingly small contour. If the contour is stationary, S is also stationary, which 
means that the order of integration and differentiation can be interchanged in the sur
face integral, yielding

f f <9B
cfc E«d£ = - -----ds.
Jc Js dt

Next, we can use Stokes’s theorem to write the contour integral as a surface integral, 

cl) E • df = f V X E -ds = -  I —  • ds.
Jc Js Js dt

When C is made vanishingly small, S becomes a single point, which means that the inte
grands of the surface integrals must be equal at any point. Thus,

V X E =
d B

dt'
(9.2)

Even though Faraday discovered this law by observing voltages produced in circuits, 
the ramifications of Faraday’s law go far beyond circuits. In fact, Faraday’s law is one 
of the two fundamental laws that specify the relationship between electric and mag
netic fields. (The other is Maxwell’s curl-H formula for time-varying fields.)

In the discussion that follows, we will examine two important special cases 
described by Faraday’s law. The first case is voltages induced in stationary circuits that 
are subjected to time-varying magnetic fields. These voltages are called transformer 
em fs and are the physical mechanism involved in the operation of transformers. The 
second case is voltages that are produced in moving circuits. These voltages are called 
motional em fs and are encountered in rotating machinery.

E xam p le  9-1 ---------------------------------------------------------------------------------------------------------------------------------

Figure 9-2 shows a high-pcrmcability core that carries a uniform, time-varying B-field, given by 
B — B() cosw/a..

F ig u re  9-2 A magnetic core carrying a 
uniform, time-varying B-field.
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Calculate the E-field generated inside the core. 

Solution:

Using Equation (9.2), we can write 

dB „ .
V X E = ------= (oBn sin cot a ..

dt 0 z

Expanding the curl operator in cylindrical coordinates (Equation (2.115)), we have

1 dEz 
P d<t>

dE4>
dz

~dEP dE.~ 1
a . + a j —p dz dp *  Pi

d ( dEP a. — coBn sin tot a ,.

Since the right-hand side of this expression has only a z-component, the p and 4> components of 
V X E are zero. Also, we can assume from the cylindrical symmetry of this problem that E is 
only a function of p. Hence, the preceding vector equation reduces to the scalar equation

1
P

= 0)Bo sinoit.

The particular solution of this differential equation is

E4> = 2  MpB» s^

Thus, a time-varying field in a magnetic core induces an E-field that circulates around the core 
and is strongest along the outer perimeter. This is true regardless of the cross-sectional shape of 
the core, although the field expression for a circular cross section is by far the simplest.

9-2-1 TIME-VARYING FIELDS IN STATIONARY CIRCUITS

Figure 9-3 shows a stationary path C in the presence of a time-varying magnetic field. 
Also shown is the stationary surface S that is bounded by C in a right-handed sense. 
Since S is time invariant, the order of the differentiation and integration can be 
reversed in the integral form of Faraday’s law, so we can write

f f dB
q> E • dt = — — »ds.
Jc J5 dt

This equation states that E is nonconservative whenever a time-varying magnetic field 
is present, producing a net voltage called transformer em f around the path. As we saw 
in Chapter 5, emf s are voltage sources that are capable of driving currents around cir
cuits. What makes transformer emf different from the emf generated by a battery is

E nclosed 
surface S

S tationary path C F ig u re  9-3 A time-varying B-field linking 
a stationary path.
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that a battery’s emf is localized to within the battery itself (i.e., the chemical reaction), 
whereas transformer emf is generated throughout the entire circuit.

E xam p le  9 -2

Figure 9-4 shows an open circuited, circular loop of conducting wire that is subjected to a mag
netic field B = B0 sin cot ar. Find the gap voltage Vg if the radius of the loop is a.

R adius =

F ig u re  9-4 A uniform, time-varying B- 
field linking a circular loop with a gap.

Solution:

For a counterclockwise path around the loop, Faraday’s law yields

(p E * d f  =  — — * d s  =  — u>7Ta2B n cosco t.
J c  Js d t

This result tells us the net induced voltage around the circuit, but it does not tell us where 
this voltage will appear in the circuit. For that, we need to consider the circuit parameters of the 
elements that make up the circuit. In this case, no current can flow in the conductor, since it is 
open circuited. Hence, the entire voltage appears across the gap, and we have

(j> E • df = Vg = — a>7ra 2B Q cos cot.

If a resistor were placed across the gap, a current would flow in the circuit. As tempting as it is 
to calculate this current, we are not quite ready to do so, since we would have to account for the 
B-field that the current would produce. This effect is called self-inductance and is discussed 
later in the chapter.

Time-varying magnetic fields can cause problems when one uses test equipment 
to measure voltages. These problems occur when time-varying magnetic flux links the 
wiring path of the test equipment, so the voltage that is displayed may not be the volt
age that the user intended to measure. The following example demonstrates this.

E xam p le  9 -3

1

A uniform magnetic field of value B = 2 sin cot az [Wb/m2] links the circuit shown in Figure 9-5, 
which consists of two resistors. Here, az is out of the page, co = 106 [rad/s], and the surface area 
covered by the circuit is 1 [cm2]. If there is no B-field outside this circuit, calculate the voltage 
Vm measured by a voltage meter for the three configurations shown. Assume that the meter 
resistance is infinite and that all the transformer emf generated in the circuit is dropped across 
the resistors (which means that the self-inductance of the loop is negligible).
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F ig u r e  9 - 5  T h r e e  d i f f e r e n t  v o l t a g e  m e t e r  c o n f i g u r a t i o n s  f o r  a  c i r c u i t  t h a t  is l in k e d  b y  a  t im e -  
v a r y in g  f lu x .

Solution:

S in c e  t h e  m e t e r  r e s i s t a n c e  is i n f in i t e ,  t h e  s a m e  c u r r e n t  i f lo w s  a r o u n d  t h e  c i r c u i t  in  a ll  t h r e e  
c o n f i g u r a t i o n s .  E v a l u a t i n g  F a r a d a y ’s la w  c lo c k w is e  a r o u n d  t h e  c i r c u i t  p a t h  a n d  n o t i n g  t h a t  B  
a n d  d s  a r e  a n t i p a r a l l e l ,  w e  o b t a i n

b )  T h e  p a t h  adcb e n c lo s e s  t h e  s a m e  f lu x  a s  t h e  c i r c u i t ,  s o  F a r a d a y ’s la w  r e a d s

S o lv in g  f o r  i, w e  h a v e

W i th  t h is  v a lu e  f o r  i, t h e  r e s i s t o r  v o l t a g e s  a r e

a )  F o r  th is  c o n f ig u r a t i o n ,  w e  c a n  e v a l u a t e  F a r a d a y ’s la w  o v e r  t h e  p a t h  abed. S in c e  n o  f lu x  is 
e n c l o s e d  b y  th is  p a t h ,  w e  o b t a i n

w h ic h  y ie ld s

S o lv in g  f o r  vm , w e  o b t a in
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which shows that in this case the meter is reading vwo, not v200. We can obtain the same result 
by integrating along the path abcefd. Since no flux is linked by this path, we obtain

j> E -d i  = vm -  vwo = 0.

c) For this configuration, we can evaluate Faraday’s law around the path adcb. Since no flux is 
enclosed by this path, we obtain

£  E • d« = vm -  v2Q0 = 0,

which yields
i i §

vm ~ vioo = 133.3 cosat.

In this case, we see that the voltage read by the meter is not necessarily the same as what might 
be expected from a quick look at the circuit. The key to knowing what voltage the meter will 
read is to know whether or not the meter circuit itself contains any time-varying flux.

9-2-1-1 Transformers. Transformers are devices in which two or more electric 
circuits are linked by a common magnetic flux. Because of this linkage, changes in the 
current in one circuit strongly affect the currents and voltages in the other circuits. 
Transformers are used to provide dc isolation between electric circuits and to change 
the amplitudes of voltages, currents, and impedances.

Figure 9-6a shows an ideal transformer, which consists of two independent wind
ings around a common core that has infinite permeability. The circuit symbol for this 
device is shown in Figure 9-6b. The dots next to each winding symbol indicate the 
polarity of the windings; positive currents flowing into the dotted terminals of each 
winding produce fluxes that circulate in the same direction. Since the core perme
ability /jl is infinite, all the flux is confined to the core and links every turn of both wind
ings. To start our analysis, let us apply Faraday’s law to the contour defined by the 
path of the first winding. Starting from the top terminal and integrating around the 
windings and then upward from the bottom terminal towards the starting point, we can 
write

!) E •df = — v f t )  =  — J B*ds,
C[ s,

(b)

F ig u re  9-6 An ideal transformer, a) Physical geometry, b) Equivalent circuit.
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where S) is the surface that is bounded by the path C{ in a right-handed sense. This 
surface cannot be drawn on a plane, since the path spirals around the core. However, 
it can be seen from Figure 9-6a that Sl intersects the core Nx times. This means that 
the integral JS| B • ds can be written as

|  B-ds = N 1 J B*ds = N {(P,

where SQ is the cross section of the core and <P = fs B • ds is the magnetic flux that 
passes through SQ. Solving for vx (t), we obtain

d &
vd t) = N1— . (9.3)

In a similar manner, we can evaluate Faraday’s law around the contour of the sec
ond winding, S2, yielding

v2(') = N1^ ,  (9.4)

Dividing Equation (9.3) by Equation (9.4), we see that the flux terms ^cancel, result
ing in the expression

M O  =  N i  

M O  n 2

(Ideal transformer). (9.5)

Hence, for an ideal transformer, the winding voltages have the same waveshapes 
(i.e., there is no distortion), and their magnitude ratio equals the windings ratio; the 
winding with the largest number of turns always has the largest voltage. This rela
tionship is responsible for one of the major uses of transformers—transforming volt
age levels from one circuit to another. Often, transformers are called step-up or 
step-down transformers when they are used to increase or decrease voltage levels, 
respectively.

We can derive a similar relationship between the winding currents by using 
Ampere’s law,

(j) H • df =  / .

If we choose C to be the clockwise path around the center line of the core, then the cur
rent I that passes through this path in a right-handed sense is A, q (t) + N2 i2 (t), so we 
obtain

b H*df = N J ^ t)  + N 2 i2 (t).
c



However, H = Blp -a 0 as p  —> so the line integral on the left equals zero, resulting
in
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= (Ideal transformer). (9.6)
*2(0 N i

Equation (9.6) states that the currents into each winding of an ideal transformer 
have opposite signs and their magnitude ratio equals the reciprocal of the windings 
ratio; the winding with the largest number of turns always has the current with the 
smallest magnitude. An important consequence of this relationship between the cur
rents is that the total flux (P produced by both windings is zero. This is because the 
currents have opposite signs and the flux generated by each winding is proportional to 
the number of turns. This somewhat counterintuitive result occurs because the per
meability of an ideal transformer core is infinite.

We can use Equations (9.5) and (9.6) to calculate the energy balance between 
two terminal ports of an ideal transformer. Remembering that the power entering a 
terminal pair equals the voltage across the terminals times the current flowing into the 
positive terminal, we find that the total instantaneous input power is

p it)  = vx{t)ix{t) + u2 (0 *2 ( 0 vx{t)h{t) + " ^ 2 X
- N2

= 0.

Thus, the net instantaneous input power to an ideal transformer is always zero, which 
means that an ideal transformer does not store or dissipate energy in its core. As we 
will see later in the chapter, this is consistent with the fact that the magnetic flux inside 
an ideal transformer is zero.

One important application of transformers is for changing impedance levels. 
Figure 9-7 shows an ideal transformer with a lumped resistor of value RL connected 
to the terminals of a second winding. To find the input resistance at the terminals 
of the first winding, we can first substitute Equation (9.5) into Equation (9.6) to 
obtain

Ri Jh
h

V2 

h ‘

Bn

Figure 9-7 An ideal transformer 
connected to a resistive load.
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Then, substituting v2 /i 2 = —RL, we find that this expression becomes

(9.7)

Thus, the effective impedance of a resistor can be either raised or lowered by attaching 
it to a transformer with an appropriate turns ratio.

Real transformers deviate from ideal transformers when power losses and flux 
leakages cannot be ignored. Typically, these deviations are most pronounced at very 
high frequencies, where core losses become significant, or high powers, where satura
tion effects become significant.

9-2-1-2 Eddy Currents. Figure 9-8a shows a cross section of a high-perme- 
ability core that carries a uniform, time-varying magnetic flux. As we showed in 
Example 9-1, the time-varying flux induces an emf around the cross section of the 
core. If the core has a nonzero conductivity, a conduction current J = crE is 
induced that circulates around the axis of the core. These currents are called eddy 
currents and are shown in Figure 9-8a. Eddy currents are usually undesirable in 
transformers and motors, because they produce ohmic (I 2R ) losses. These losses 
are particularly prevalent in ferromagnetic materials, since they have fairly large 
conductivities.

One way to reduce the eddy current loss in ferromagnetic cores is by fabricating 
them out of thin strips (called laminae), each separated by a thin layer of insulating 
material (cr ~  0). Such a laminated core is depicted in Figure 9-8b. Because of the 
insulating layers, eddy currents can flow around each lamina, but not between them. 
This reduces the dissipated power, since the induced emf in each laminate is propor
tional to its cross-sectional area, whereas its resistance is proportional to its perimeter. 
When using such a scheme, the effective permeability of a laminated core is somewhat 
reduced. This is because a small percentage of its cross section is filled with the non
magnetic, insulating material. Nevertheless, it is a small price to pay for the signifi
cant reduction in the eddy current losses.

Insulating layers

(a) (b)
Figure 9-8 Eddy currents a) Solid core, 
b) Laminated core.
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z
B -  B 0 i ,

Sliding bar

y

x
F ig u re  9 -9  A  circuit with a sliding bar in a 
uniform B-field.

9-2-2 Motional emf

A simple experiment that demonstrates motional emf is depicted in Figure 9-9. Here, 
a metal bar slides over two metal rails in the presence of a uniform, time-invariant mag
netic field B = B0  ar  The velocity of the bar is u = u0  av and its position is y = y0 at 
t = 0. Also, the circuit is open circuited on the left side, which means that no current 
flows in the circuit. The circuit perimeter changes with time t, so we will denote the 
counter clockwise path around this circuit by the symbol C(t) and the area that it 
encloses as S(t). Along this path, Faraday’s law reads

Since the current is zero, there is no ohmic voltage drop along the conductors, so E • df 
= 0 everywhere except in the gap. Thus,

'-'VJ

where Vg is the voltage across the gap.
Turning our attention now to the surface integral, we note that the surface is 

expanding with time. This means that we must first perform the integration and then 
perform the time differentiation. This yields

Notice that the sign of this voltage is such that if a resistor were placed across the gap, 
a clockwise current would be induced whose B-field would counter the increasing flux 
linking the circuit. This tendency of the induced current to oppose changes in the flux 
linkage is called Lenz’s law.

Because the conducting path in this circuit is in motion, it is natural to choose the 
same path as the integration contour when applying Faraday’s law. However, this 
requires that the time differentiation be performed after the surface integration, which

(9-8)

Hence, the voltage in the gap is given by 

=  — B quqL . (9.9)
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was no real problem in this case, since the geometry was simple. For more compli
cated geometries, however, such a procedure can be quite cumbersome. For these sit
uations, it is often attractive to integrate around a stationary contour that coincides 
with the moving contour at some instant in time. To do this, however, we must ask the 
question; What is the E-field that a stationary observer “sees” as a conductor moves 
past when a B-field is present?

We can answer this question by referring to Figure 9-10, which shows a conduct
ing wire that is moving with a velocity u in the presence of a magnetic field B. We will 
consider the electric (qE) and magnetic (qu X B) forces acting on the electrons inside 
this conductor as measured by two observers: one that moves with the wire and one 
that is stationary.

To an observer moving with the conductor, the conductor appears to be at rest, 
just as we appear to be at rest when standing at one spot on the moving earth. This 
observer perceives no magnetic force and an electric force of value eE, where e is the 
electron charge. Thus, as far as the moving observer is concerned, the total force act
ing on each charge is F = eE.

To find what E-field a stationary observer would measure as the wire passes by, 
we can use a well-established law from basic physics: Moving and nonmoving observers 
always measure the same force on an object, as long as the difference between their veloc
ities is much less than the speed of light. Hence, a stationary observer will also measure 
a total force F = qE on each charge. However, since such an observer perceives that 
the charges are indeed moving with velocity u in the presence of a magnetic field, a part 
of this total force must be a magnetic force qu X B. This means that the electric force 
perceived by the stationary observer is different from the one mearured by the moving 
observer. If the E-field measured by the stationary observer is E', we must have

F = qE = qE' + p X B ,

Solving for E', we obtain the result 

E' = E -  u X B,
T T

Stationary Moving (9.10)
Observer Observer

which shows that the stationary observer “sees” a different E-field than does the
observer who is moving with the conductor.

We can use this result to write Faraday’s law in a form that is easier to apply when 
moving conductors are present. If C is a closed, stationary path that bounds a station
ary surface S, we can write

© ©
B

© ©

© ©

t

* --------C onducting  w ire

E'
© ©

B
© ©

© ©

u

F ig u re  9-10 A moving conductor in the 
presence of a B-field. E  and E ' are the 
electric fields measured in the moving and 
stationary reference frames, respectively.
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E' • d£
d_
dt

B • ds
5

ds,

where E' is observed by a stationary observer along the path. If any conductors are 
moving through the portions of the path at the instant the integrals are evaluated, we 
can replace E' with E — u X B, where E is the E-field “seen” by an observer that is 
moving with the conductor and u is the velocity of the conductor relative to the fixed 
path. This yields the following expression equivalent Faraday’s law:

<£ E*d£ = <£ uXB*d£ -  f —-*ds. (9.11)
Jc Jc Js

Comparing Equations (9.8) and (9.11), we see that their left-hand sides are the same at 
the instant of time when the paths C(t) and C coincide, but their right-hand sides are 
different. In essence, the effect of moving the time derivative inside the surface inte
gral of Equation (9.11) is to add the line integral of u X B around the perimeter of the 
path. When using Equation (9.11), it is important to remember that even though the 
path C is stationary, E at each point on the path is the field measured by someone mov
ing through that point with velocity u.

This new form of Faraday’s law makes it clear that the electromotive force 
around a closed path can be considered as the sum of two terms. The first results from 
the motion of conductors as they “cut” through the lines of a magnetic field. This is 
the motional emf contribution. The second contribution, called transformer em f is 
the result of a time-varying flux linking the path. Since their left-hand sides are the 
same, either form of Faraday’s law can be used for a given problem, but this new form 
often simplifies calculations when moving conductors are present.

To see how to apply Equation (9.11), let us return to the moving-bar configura
tion shown in Figure 9-9. This time, we will choose the integration path to be a sta
tionary, counter clockwise circuit path that coincides with the actual circuit path at 
some time ta. The E-field measured in a conductor by someone moving with it is zero 
when no current is flowing, so E = 0 at all points on the path C except in the gap. 
Thus, we have

<j>E«d£ = Vg. (9.12)

Looking at the right-hand side terms, we first notice that the transformer emf is zero, 
since dB /dt =  0. This means that the voltage Vg is generated solely from motional emf. 
Moreover, the only contribution to the motional emf occurs along the sliding bar, where 
u X B = u0 B0  ar Integrating counter clockwise over the length L of the bar, we obtain

F? = |  uXB-d^ ~ /  uoB0dx — ~ u0BoL,

Which agrees with the result given by Equation (9.9).

(9.13)
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E xam ple  9 -4

Figure 9-11 shows a Faraday disk generator, which consists of a metal disk of radius a, rotating 
with constant angular velocity cu in the presence of a constant magnetic field B = B0 az The 
output circuit consists of wires that are connected to the shaft and the disk through low-resis
tance brushes. Find the open-circuit voltage V0 if the radius of the shaft is negligible.

F ig u re  9 -11  A  Faraday disk generator.

Solution:

a) Since B is time invariant, the transformer emf is zero, so we can write 

<j> E  • d£ =  <j) u X B > d ( ,

where C is the counterclockwise path C along the wires, shaft, and the line segment be along the 
disk. We know that E = 0 on metal surfaces when measured by someone moving them, so we 
have E =  0 and u — cup a^along the line segment cb. This means that j c E  • d£ =  v 0.

To evaluate the integral | c u X B ' d ( w e  note that u X B  = cupi?0 apalong the line segment 
cb, where apis directed radially outward from the shaft. Since the integration path is directed 
counter clockwise around the path, d£ = dp apand u X B - d { =  u>pB0dp. Substituting, we obtain

VQ = u X  B • d£ =  J copB0dp = ------- --—

9 -3  In d u c ta n c e

Faraday’s law predicts that a voltage can be induced in a stationary circuit due to the B- 
field generated by its own time-varying current or the time-varying current in another 
circuit. We call the former effect self-inductance and the latter mutual inductance. To 
model these effects, consider the two thin wires that form the loops shown in Figure 9-
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12a, each with Nx and N 2 turns, respectively. Time-varying voltage sources vx (t) and 
v2 (t) are attached to each loop, resulting in the currents q (r) and i2 (t), respectively. 
Applying Faraday’s law to a clockwise path Cx around loop #1, we obtain

E • df = -
c,

B • ds, (9.14)

where Sx is the surface that is bounded in a right-handed sense by the path Cx. The 
integral B • ds is called a flux linkage, since it represents the flux passing through 
(i.e., linking) a current path. Flux linkages are typically denoted by the symbol A. 
Because loop #1 has Nx turns, the flux linkage A1 is simply Nx times the flux <PX that 
passes through the cross section of the winding:

\  ~ j  B • ds = N X 0 X [Wb].
1̂

Substituting Equation (9.15) into Equation (9.14), we find that

d
E • df =

c, dt
Ai.

(9.15)

(9.16)

Since there are two currents, q and i2, flowing in this system, the flux linkage Ax can be 
divided into two components:

■̂1 ~ -̂11 + ■21 -
(9.17)

Here An is the flux linkage in circuit #1 due to q and A21 is the flux linkage in circuit #1 
due to i2; thus,

A, Bj • ds (9.18)

and

A-21 B2 • ds.

Substituting Equations (9.17)-(9.19) into Equation (9.16), we obtain

E ' dC dtAn

(9.19)

(9.20)

If the wires have zero resistance, the only contribution to the line integral occurs at the 
voltage source, so

E*dC = - v v

This means that Equation (9.20) can be written as

dAn A21
+

dt
v

dt
(9.21)



292 CHAP. 9 MAGNETIC INDUCTANCE, ENERGY, AND FORCES

If the permeabilities of all the materials are linear, An and A21 are proportional to q 
and q, respectively, so Equation (9.21) can be written in the form

dix
+ A0

du
■> (9.22)

11 dt 21 dt

where An and L21 are called self- and mutual inductances (respectively), defined by

A,
flux linking C; due to current in C; _ Ay 

current in C. A
[H], (9.23)

The unit of inductance is the henry [H], which is equivalent to webers per ampere 
[Wb/A]. Notice from this definition that A;y is the flux linkage in the j th circuit due to the 
current in the z'th circuit.

A similar application of Faraday’s law around the contour C2 of the second cir
cuit yields

dix di-i
A 1 9  .  - { -  A 9 9  „ v-

dt dt
(9.24)

Taken as a pair, Equations (9.22) and (9.24) can be represented by the lumped circuit 
shown in Figure 9-12b. Here, the voltage drops across the self-inductances An and A22 
represent emf’s caused by time variations of the currents in their own circuits. On the 
other hand, the mutual inductances A12 and A21 represent the emf s generated in one 
circuit due to time variations of the current in the other circuit.

Self-inductances are always positive, regardless of how the currents and voltages 
are defined. In principal, mutual inductances can be either positive or negative, but it 
is always possible to define the polarities of the circuit currents so that their mutual 
inductance has a positive value. Typically, this polarity is indicated using the “dot con
vention.” According to this convention, positive currents flowing into the dotted ter
minal’s dots produce fluxes in each loop that add. Notice that the current directions of 
q and i2 in Figure 9-12a follow this convention (assuming that both circuits are in the 
plane of the paper), so the dots in the equivalent circuit are arranged so that q and i2 
are shown entering the dotted terminals.

The inductances we have discussed so far have been the total self- and mutual- 
inductances of entire circuits. This is a natural starting point, since Faraday’s law of 
induction specifies induced voltages for complete circuit paths. However, it is often 
more convenient to divide these inductances into one or more discrete inductances, 
each associated with a specific portion of the circuit. This makes the most sense when 
the flux linking a circuit is concentrated in more than one lumped element, such as a 
tightly wound coil. In these cases, we can still use Equation (9.23) to determine the 
self- and mutual inductances of the lumped elements, which is demonstrated in the fol
lowing example.
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E xam p le  9 -5

Find the self-inductance of the A-turn solenoid shown in Figure 9-13 that consists of N  turns of 
wire around a long, high permeability core. Assume that the core has cross-sectional area S and 
permeability /x.

F ig u re  9-1 3 A solenoid inductor with a 
magnetic core.

Solution

If yu, »  /xG and d is much larger than the core diameter, we can assume that the flux leak
age out of the core is small, so the field inside the windings is approximately the same as that in 
an infinite solenoid. Using Equation (7.37), we find that the B-field directed along the axis of 
the solenoid is given by

where we have replaced the permeability of free space with the core permeability /x. The flux 
passing through the core is

& = B - d s
's

/jlNIS
d

This flux links the current N times, so the flux linkage is A = TV 0. Using Equation (9.23), we obtain

A _  fiN 2S 
I  d

9-3-1 MUTUAL INDUCTANCE AND THE NEUMANN FORMULA

An important formula involving the mutual inductance between two circuits can be 
derived with the help of the magnetic vector potential. For the two circuits shown in 
Figure 9-14, the mutual inductance L2l can be written as

C2

F ig u re  9-14 Geometry for deriving 
Neumann’s formula for mutual 
inductance.
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B2 * ds = y  f V X A2 • ds,L
where B2 and A2 are the magnetic flux density and the magnetic vector potential gen
erated by the current /2, respectively. Using Stokes’s theorem, we can write the inte
gral on the right as a line integral, which yields

L 2 i  = y  A 2 • .
1 2  JCt

If no magnetic materials are present, //, = /zQ throughout all space. Thus, we can use 
Equation (7.44) to represent A2 at any point on contour Cx. We obtain

where r2 is a source point on C2 and rx is a field point on Cx. Substituting this expression 
into the previous integral yields

Equation (9.25) is called the Neumann formula for mutual inductance. It can 
be used directly to calculate the mutual inductance of any filamentary system, 
although the calculations must almost always be performed numerically because of the 
difficult double-contour integrals. It also conveys two important properties of the 
mutual inductance between any pair of circuits. The first is that mutual inductance is a 
geometrical quantity that is only a function of the contours of the interacting circuits. 
The second is that mutual inductance is reciprocal, i.e., L21 = L12. This is easily seen 
by interchanging the subscripts “1” and “2” in the integrand of Neumann’s formula. 
This result is also true when magnetic materials are present, although it is more diffi
cult to derive.

Calculate the mutual inductance between the infinite line and the square loop shown in Figure 9-15.

(9.25)

E xam p le  9 -6

h

d Figure 9-15 An-infinite line current and a 
square loop of current.
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Solution:

Knowing that L n  = L 1X, we can proceed by finding L 12, since the magnetic field generated 
by an infinite line is represented by a simple, known formula. Using Equation (7.25), we see 
that the flux A12 that links / 2 is given by

An l B ' 4d5 =  l l  ^ • d p d z i * =  !it
_ Vohh ln

d + w

Thus, from Equation (9.23),

Aj2
h 2 tt

ln
d + w

9-3-2 ENERGY STORAGE IN INDUCTIVE SYSTEMS

The relationship between inductance, current, and energy can be determined by consid
ering the two circuits shown in Figure 9-16. Magnetic materials may or may not be pre
sent in these circuits; the only restriction that we will make is that the materials linear.

If we assume that neither circuit has any resistance, the currents ix and i2  and the 
voltage sources vx and v2  are related by

dix
JU~dt

du
+ L2X . = v

dt
(9.26)

L  + L 
L '2 dt L22

6̂ 2
dt

= V-y (9.27)

If both loops are initially open circuited, let us first establish a current Ix in the first 
loop, while maintaining the open circuit in the second loop. The instantaneous power 
supplied to the first loop during this process is pn (t) = ixvx — i1L11 (dix/dt). Inte
grating this expression over time, we obtain the energy Wxx required to establish the 
steady current Ix:

= Li
J o

dix
dt

dt J > - 1 L T2 u i i •

During this process, the power supplied to the second loop is zero, since it is open circuited.
Next, to establish a current I2  in the second loop while maintaining the cur

rent Ix in the first loop, energy must be supplied to both circuits, since current is 
now flowing in each. The instantaneous power supplied to the second loop is

Figure 9-16 Two magnetitically coupled 
loops with voltage sources.
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p22(t) = i2v2 = i2L 2 2  (di2/dt). Integrating this power over time to find the energy 
W2 2 supplied to the second circuit, we obtain

W2 2 L 2

di2
dt

dt — L22 J >  = I 2
2212 •

Power must also be supplied to loop #1 to maintain its current Ix in the presence of the 
emf generated by the time-varying current in loop #2. The instantaneous power sup
plied to loop #1 is p n(t) = Ixvx = I lL u (di2/dt), which, when integrated, yields

ft (fa rh
=  L 12I i J dt =  L12/ t J di2 =  L 12l1I2.

The total energy Wm supplied by both sources to establish the currents 7, and I2 is 
the sum of Wn , W12, and W22, so we have

W  =  —  J J2 + Tlih  ^  ^ +  ̂ T J2^  2 2̂2-*2 • (9.28)

Since = L Y, this result can be written in the form

w m = li  i  v u  (9.29)
z ( = iy=i

For a system of TV circuits, Equation (9.29) can be generalized to read

i N N

z ; = ly=i
[J]. (9.30)

The energy Wm stored in a system of N  loops can also be expressed in terms of the 
total flux linking each loop. Substituting Ay. = I-LtJ into Equation (9.30), we find that

i N  N  i N  N

Wm = A ' , 2  W i = n2  h 2  V,.. (9.31)
z i=l y=i z i=i y = i

Since Av is the flux linkage in the /th loop from the ; th current, we see that the sum 
2  -=1 A7 is the total flux linking the ith loop, which we denote as A, . Using this, we can 
write Equation (9.31) as a single sum:

i N

= A ' , a ,
z  ( = 1

[J]. (9.32)

Finally, we can use Equation (9.28) to determine the maximum value that the 
mutual inductance L u between two circuits can attain. By completing the square, this 
expression can be rewritten in the form
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W„
2 L 22 J2 +

L

1

12

22
+

L 2\
L

12
11 '  L22

The first term is always greater than zero for all values of L u and L22, but the second 
term is greater than zero only when the mutual inductance is less than or equal to the 
geometric mean of the two self-inductances. Since the energy stored in the magnetic 
field must be greater than or equal to zero, we must have

L12 \ /L n L22. (9.33)

This is an important result, since it shows the upper bound that the mutual induc
tance can have in terms of the self-inductances of the circuits. Often, the degree to 
which two circuits are inductively coupled is described by the coupling coefficient k , 
which is defined as

k  —
Lj2

X/L n L 2 2

where

0  k  1 .

(9.34)

(9.35)

E xam p le  9 -7

The circuit shown in Figure 9-17 has L n  =  10 [yuH], L 22 = 3 [yu,H], and L n  =  1 [/iH], Calculate 
the coupling factor between these circuits and the energy stored in the magnetic field at the 
instant when the currents have values =  1 [mA] and i 2 — 3 [mA],

h _ -̂11 1-22 /2

V2
Figure 9-1 7 Two magnetically coupled 
circuits.

Solution:

Substituting the self- and mutual inductance values into Equation (9.34), we obtain 

1 X 1(T6
k  =  —, - ■  = =  = n 1 S3

V lO  x  1 0 ^ 6 x  3 x  1 0 “ 6 ' '

Since k  «  1, these circuits are loosely coupled.
We can use Equation (9.28) to determine the magnetic energy W m stored by these induc

tors, but we must use the current polarities that correspond to the dot convention. In this case, 
since the positive direction of i 2 is into the undotted terminal, we must use —i2 in place of i 2 . 

Substituting, we obtain

W m = “ (1 X 1(T3)2(10 X 10“6) + (1 x 1(T3)( —3 X 10 3) (1 X 10"6)
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= 1.55 x HT11 [J].

9-3-3 ENERGY AND MAGNETIC FIELDS

The energy in an electrostatic system can be expressed in terms of its electric field; the 
same is true for a magnetostatic system. But whereas we were able to derive the elec
trostatic expression by constructing a continuous charge distribution charge by charge, 
the magnetostatic expression cannot be easily derived using this technique. This is 
because as each current loop is brought in from infinity, work must be expended to 
keep the currents in the loops constant, since the flux linking them varies while the 
loops are in motion (even if the motion is exceedingly slow). Instead, we will derive 
the expression by starting with the energy contained in a system of N  loops and extend 
it to describe the energy contained in a continuous current distribution.

Let us start by considering the volumetric current distribution J shown in Figure
9-18 as a collection of N  separate loops. Each loop has cross section As, and carries a 
current A/, = i ( Aj(.. From Equation (9.32) the energy contained in the loops is

where Af = 9P, = f s B • ds. Also, from Equation (7.45), the flux <2> passing through the 
zth loop can be expressed in terms of the line integral of A around the contour Cp

Wm

Elence, Wm can be written in the form

As N  —> this expression becomes

1
2

A«d£ ds,

S
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where S is the cross-sectional surface of the current distribution that is at all points per
pendicular to J. This expression can be further simplified by noting that J and df are 
always parallel. Thus, Jds A • df = A • J dv, which, when substituted into the integral 
in the preceding expression, yields

W — A -J  dv [J] (Linear media), (9.36)

where V is the volume filled by the current distribution J. This expression for Wm is 
the dual of Equation (6.29), which relates the energy stored in an electrostatic system 
to the charge density pv and the potential distribution V.

We can express Wm in terms of B and H alone by first substituting V X H — J 
into Equation (9.36) to obtain

Wm = ”  f A* V X H dv.
^  J y

Using Equation (B.5), we can write the integrand 

A • V X H = -  V • (A X H) + H • V X A .

However, since V X A = B, we have

A • V X H = -V  • (A X H) + H • B .

Substituting this into the integral and using the divergence theorem, we obtain

w m = -  -  <j> (A X H) • ds + 1 1  B - Hdv, (9.37)

where S is the surface that bounds the volume V.
Equation (9.37) is valid for all volumes V that completely enclose the current dis

tribution J. If we let V —> Vx, S becomes the sphere at infinity, Sx . However, if J is 
contained in a finite volume, A and H are proportional to r~] and r~2, respectively, as 
r —> This means that the product A X H falls off as r -3 at large distances from the 
origin. Thus, the surface integral over Sx vanishes, yielding

W = —
m 2

B«H dv [J] (Linear media), (9.38)

For simplicity, we have dropped the subscript “o°” from the volume V in this expres
sion, but it is to be understood that the integration takes place everywhere the product 
B • H is nonzero. The term 1/2 B • H has units of [J/m?] and is called the magnetic 
energy density. For isotropic media, B = ^iH, from which it follows that
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(Linear, isotropic media).

The energy Wm contained in a current distribution can be considered to reside 
either in the current distribution itself (see Equation (9.36)) or in the magnetic fields 
generated by the currents (see Equation (9.38)). These views are equivalent, because 
a current distribution and the magnetic field it generates are an inseparable pair; a 
complete knowledge of one completely defines the other. Also, even though we have 
used the magnetostatic vector potential in deriving Equations (9.38) and (9.39), these 
expressions are also valid for time-varying magnetic fields.

9-3-4 INDUCTANCE IN TERMS OF MAGNETIC FIELDS

Earlier in this chapter, we showed that the inductance of a circuit or element can be 
calculated from a knowledge of the physical layout of the currents. In many cases this 
is the best way to calculate inductance. But it is also possible to use the relationship 
between inductance and stored magnetic energy to calculate the inductance of a device 
in terms of the magnetic fields present in and around the device. To accomplish this, 
let us first consider a single circuit. Using Equation (9.30) for the case N = 1, we find 
that the magnetic energy stored by the device can be expressed in terms of its self
inductance L u. Thus,

W = — L I 2VY m 2  ** * 5

where It is the current flowing in the circuit. Likewise, from Equation (9.38) we 
know that Wm can also be expressed in terms of the B- and H-fields generated by this 
circuit. Elence

where B, and H, are the magnetic fields generated by this circuit and V is the entire 
volume over which B, and H; are nonzero. Equating these two expressions and solv
ing for Lu, we obtain the following expression for the self-inductance of a circuit:

If N  circuits are present that carry currents /, and /•, respectively, the net mag
netic energy stored by these circuits can be expressed in terms of the self-inductances 
L tt and and the mutual inductance L tj, as well as the magnetic fields generated by 
both currents. If the B- and H-fields generated by the iih circuit are denoted by B; and
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H(, respectively, we can use Equations (9.30) and (9.38) to express the energy stored by 
the system as

1
2

N N r

2 2  B, *
(=1 y = l J V

-i N N

^ 2 2  h h h -

Collecting terms with the same indices, we obtain the following expression for the 
mutual inductance

Note that B, and H; are generated by It and /  , respectively. The quantity f v B, • H -dv 
is called the mutual energy.

An advantage of the energy formulations of self- and mutual inductance is that 
they do not require a knowledge of the flux linking the circuit or element. This is an 
attractive feature, since it is sometimes difficult to determine the flux linkages when 
the currents do not flow on thin wires.

E xam ple  9 -8

Calculate the self-inductance per meter of the two parallel metal strips shown in Figure 9-19. 
Assume that the strips are wide enough so that the magnetic field between them is uniform and 
negligible outside.

w

Figure 9-19 Two parallel metal strips, 
each of width w and separated by a 
distance d.

Solution:

Since the strips have width v and carry a current I, the current density on each strip is I/w 
[A/m]. If the ratio w/d is large, we can approximate the strips as infinite sheets and use Equa
tion (7.30) to determine the B-field generated by these currents. Using the superposition prin
ciple and noting that the currents are oppositely directed, we find that

0 < z < d 

otherwise

Substituting this into Equation (9.40), we see that the inductance per unit length (along the x- 
direction) is given by
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I f  1 r d r w r 1
L =  B » H dv - \ B » H dxdydz

I  J y  I  J o  J 0  ^ 0

We can obtain the same result by using the definition of inductance given by Equation (9.23). 
The flux per meter passing between the currents is <f> = B S , where 5 = 1 [m2]. This flux links the 
current once (i.e., N  =  1), so A =  <P, and we again obtain

L =  4 =  —  [H /m ].I w

E xam p le  9 -9

Calculate the mutual inductance between the two windings on the toroidal core with mean radius 
p 0, cross-sectional radius a, and permeability p,c, shown in Figure 9-20.

Solution:

F ig u re  9-20 A  toroidal inductor with two 
windings.

Assuming that P o »  a and the flux leakage is minimal, the B-field inside the core due to 
the first winding alone is given by Equation (7.40) when we replace /x0 with //.c. Hence,

B
2ttp0

Using Equation (9.41), we find that

L* n
A A

B j  • H 2dv ~ fjLc (Po »  a )»

where V, ~  ( n a 2) ( 2 irp0) is the volume of the toroid. Thus,

L17 — L'ii PcN\N2 a‘
2p0

(Po »  fl) »

9 - 3 - 5  I N T E R N A L  A N D  E X T E R N A L  I N D U C T A N C E

So far in our discussion of inductance, we have considered only circuits and devices 
where the current flows either in very thin wires or in sheets. This allowed us to con
sider only the flux linkages that occur outside the current distributions. However, when 
current flows within conductors with finite cross sections, magnetic fields exist within 
the wires, and these fields contribute to the total magnetic flux that links the current. 
This is depicted in Figure 9-21, which shows a current loop with a finite cross section.
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Figure 9-21 A  volumetric current with 
internal and external flux.

The flux that passes through the current-carrying conductors is called the internal flux 
(pint, and the flux that passes through the remainder of the circuit is called the external 
flux <£>ext. We can consider the total self-inductance of this circuit as the sum of two 
components,

where the external inductance Lext is due to flux linkages outside the current and the 
internal inductance Lint is due to flux linkages inside the current.

Although it is possible in principle to calculate the internal inductance by using 
the flux linkage definition of inductance (Equation (9.23)), this is not the easiest way. 
The reason is that a volumetric current can be thought of as of a collection of filamen
tary loops, each linked by differing amounts of flux. Thus, the internal flux linkage is 
difficult to calculate directly. On the other hand, the internal inductance is relatively 
easy to calculate using the energy formulation. This can be accomplished by dividing 
the volume integral in Equation (9.40) into internal and external parts. We obtain

where Eint and Eext are the volumes inside and outside the current distribution. The 
first integral on the right-hand side of this expression is the result of flux linkages out
side the current, so the external inductance is

The second integral accounts for internal flux linkages, so it represents the inter
nal inductance

To demonstrate how internal inductance can be calculated using the energy for
mulation of inductance, let us evaluate the internal inductance per meter of straight 
wire with radius a, shown in Figure 9-22. If we assume that the current flow is uniform 
throughout the wire’s cross section, the B-field inside the wire is given by Equation

(9.42)

(9.43)

(9.44)

(7.33),

p < a,
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Radius = a

z t
l

l
F ig u re  9-22 A section of a solid wire 
carrying a uniform current.

where /jl is the permeability of the wire. Substituting this into Equation (9.40) and 
integrating over a 1-meter length of the wire, we obtain

I f  u, f ̂  T ra
Ant = 72 B - H  d V  =  22 p ^ d p d ^ d l .

1 Jv.m ( Z n a  ) J0 J0 J0

Evaluating this integral, we find that

Lint = ^  [H/m] (Solid wire), (9.45)
07T

Thus, the internal inductance per unit length of a straight wire is independent of its 
radius, as long as the current density is uniform throughout the cross section of the wire 
(as it is at low frequencies). At higher frequencies, however, the majority of the cur
rent flows within a thin layer of the wire surface of the wire, reducing the B-field inside 
the wire. As a result, the internal inductance of a wire becomes progressively smaller 
at higher frequencies. This subject is discussed further in Chapter 12.

In most cases the internal inductance of a circuit or device is negligible compared 
to the external inductance. This is particularly true when magnetic materials are pre
sent or when the surface bounded by the circuit is much larger than the cross-sectional 
dimensions of the wires.

9-3-6 DISTRIBUTED INDUCTANCE ON TRANSMISSION LINES

In Chapter 6, we calculated the capacitance characteristics of coaxial and two-wire 
transmission lines. We will now calculate their inductance characteristics. As we will 
find in Chapter 11, the capacitance and inductance of a transmission line define its 
operation over a broad range of frequencies.

9-3-6-1 Coaxial Lines (Cables). Consider the infinite coaxial line shown in 
Figure 9-23, which consists of a solid inner conductor of radius a  and an outer con
ducting cylinder of inner radius b  and outer radius c. Here, the currents carried by 
the inner and outer conductors are I  and —I, respectively. If the currents on both 
conductors are axially symmetric, the B-field in the region a  <  p  <  b  is given by 
Equation (7.35),
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F ig u re  9-23 A  coaxial cable with a solid 
inner conductor and a solid, finite-width 
outer conductor.

B = 2Vp** a < P < b >

where we have assumed that both the conductors and dielectrics are nonmagnetic, 
which is true for most coaxial cables. The B-field outside the outer conductor is zero 
(since the currents are balanced), so we can calculate the external inductance by inte
grating B • H in region a < p < b .  Using Equation (9.40) and integrating over a unit 
length, we find that

1 r Jj, r1 f 2n f b 1
^ext ~~ t2 B*H dv — 2 I I I 2 pdpd(f) d z ,

1 Jyext (271) J 0 j o Ja P

which yields

Lext = ^  \n-[H/m], (9.46)
Zj IT  Cl

This expression is valid for all frequencies, since the B-field between the conductors is 
unaffected by whether or not the current flows uniformly in the conductors, as long as 
it is rotationally symmetric.

The internal inductance is a function of the magnetic energy contained within the 
inner and outer conductors. When the current flow is uniform (as it is at low frequen
cies), the contribution from the inner conductor is given by Equation (9.45),

= [H/m], (9.47)

where we have used the fact that p ~  p,0  for most metals in coaxial cables. To find the 
internal inductance contribution from the outer conductor, we first note that the B- 
field inside the outer conductor is given by Equation (7.35),

R = Poh (Z
2 lTp (c2

>2)
b2)

b < p < c.

Substituting this into Equation (9.40) and integrating over a 1-meter length yields 
(after much work!)
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înt bc j 2
B-H  dv

d  o 3c2 +
4c4 , c

2 i 2 ^ lc — b b
[H/m].

87t(c2 -  b2)

Thus, the total low-frequency inductance per meter of a coaxial cable is

(9.48)

r = AUl

freq 4  ̂

b 1 1
n a 4 4(c2 — b2)

3c2 +
4c4 c

2 r 2 ^ Ic — b b
(9.49)

At radio frequencies and above, the B-field inside both conductors is negligible, leav
ing only the external inductance (i.e., the first logarithmic term).

E xam p le  9 -1 0

Calculate the low- and high-frequency inductance per m eter of RG-58U coaxial cable, which has 
a solid inner conductor with radius 0.406 [mm] and a thin, braided outer conductor with mean 
radius 1.553 [mm]. Assume that the braided outer conductor can be approximated by a solid 
cylinder of negligible thickness.

Solution:

Since the outer conductor has negligible thickness, Equation (9.48) yields L jnt; ~  0. 
Hence, the total internal inductance of the cable is given by Equation (9.47),

L,n, = ^  =  .050 [,uH/m].

From Equation (9.46), the external inductance is

L t = ^  In
ext 2tt

1.553

0.406
= 0.268

Thus, the total dc inductance per m eter

[yuH/m]. 

is

T low =  L iat +  L ext -  ° - 3 1 8  [/i. H /m ].
freq

A t frequencies above a few hundred hertz or so, the internal inductance becomes negligible. Hence,

LMgh = 0.268 [MH/m].
freq

9-3-6-2 Two-wire Transmission Lines. A two-wire transmission line is shown in 
Figure 9-24, which consists of two infinite wires, each of radius a and separated by a dis
tance d. The wires carry oppositely directed, rotationally symmetric currents,* 1 each 
with magnitude I.

1 This is a good approximation when d »  a. When d is small, however, the current density is higher on the 
inside surfaces than it is on the outside surfaces. This is analogous to the charge imbalance that occurs when 
a voltage is impressed between closely spaced wires. (See Section 6-2.3).
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The total B-field between the wires is the sum of the fields generated by each infinite 
wire alone. Using Equation (7.33), we find that the B-field along the yz-plane between 
the wires is

B Mo7 a.. + Mo7
2 n(y  + d / 2 ) x 2 ir{d/ 2  — y)

The current circulates around the flux between the conductors once, so the external 
flux-linkage per meter, Aext, is simply the net flux per meter between the conductors:

-̂ -ext
d/2 -a

Bxdy =
j  ~d /2  — a

— d /2  +  a

M07 , ( dln
77

277

77

1
+

1

-d/2 +a \ y  + (d/2) {d/2 ) -  y

d\
[H/m] (< 7»fl).

dy [Wb/m]

In I —

Substituting this expression for Aext into Equation (9.23), we obtain

C »  = ;T 1 = - l n ( - )  [H/m] (9.50)

When d »  a, the B-field inside each conductor is nearly the same as that gener
ated by an isolated conductor. Thus, the total internal inductance per meter at low 
frequencies is twice that of a single conductor, so that

L int =  2 x  = 4 / r  Ĥ /m  ̂ ^  >:> a^

and the total low-frequency inductance of a two-wire line is

L low
freq

Mo ( I  
77 \4

[H/m]. (9.51)

At radio frequencies and above, the flux in the conductors is negligible, so only the log
arithmic term  remains.
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9-3-7 MAGNETIC SHIELDING

The mutual inductance between circuits is often undesirable, since it can cause 
unwanted signals from one circuit to appear in another. This can be particularly trou
blesome when digital circuits are placed near analog circuits, because high-level digital 
currents can cause significant noise levels in the analog circuits. As a result, it is often 
necessary to take special precautions to reduce the mutual inductance between circuits 
by reducing the mutual flux linkages between them. Techniques that accomplish this 
are examples of magnetic shielding.

One magnetic-shielding technique involves placing a circuit or component inside 
an enclosure made of high-permeability material that diverts the B-fields of adjacent 
circuits around the shielded circuit. Figure 9-25 shows how the B-field streamlines are 
diverted around the interior of a spherical shell of high-permeability material (yur = 
f,000) when it is placed in a uniform B-field.2 Nearly all of magnetic field lines are 
diverted around the shielded region, thus reducing the field in that region by a factor of 
roughly (/uLr)~ \ This shielding technique can be very effective, but is often difficult to 
implement in microelectronic circuits, as magnetic materials tend to be bulkier and less 
malleable than conductors. Also, since the conductivities of magnetic materials are at 
best poor, they are not well suited for situations where they must conduct current (as in 
the case of the outer conductor of a coaxial cable).

Although it is tempting to think that the Faraday shield technique used for elec
tric shielding is also effective for magnetic shielding, such a line of reasoning often 
leads to poor designs. This is because magnetic fields are not directly affected by good 
conductors such as copper, since their relative permeabilities are nearly unity. A 
grounded Faraday shield is not a surface of constant magnetic potential. Hence, it 
cannot, by itself, provide any magnetic shielding. If this be true, the reader may well 
ask: “Why, then, are coaxial cables often used to provide both electric and magnetic 
shielding?” The answer is that the outer conductor of a coaxial cable shields the out
side region from magnetic fields when it passes a current that is exactly equal and 
opposite to the current on the inner conductor. We saw this in Chapter 7, where we 
showed that the B-field produced by balanced coaxial currents is zero outside the outer 
current. From that result, we can state the following principle:

F ig u re  9 -2 5  An example of magnetic 
shielding, showing a cross-sectional view 
of the B-field streamlines when a hollow 
sphere with iir = 1000 is immersed in a 
uniform magnetic field.

2 T his p lo t w as o b ta in ed  using exact exp ression s for the scalar m agn etic  p o ten tia ls, (s e e  J. D . Jack son , Clas
sical Electrodynamics, 2d ed. (1975), pp. 199 -2 0 1 .) John W iley  & S ons, N ew  Y ork .
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A circuit can be shielded from the magnetic field generated by an offending current 
element by canceling its field with the field of an opposing current element, placed 
close to the offending current, or, better yet, surrounding it.

The outer conductor of a coaxial cable can provide magnetic shielding, not 
because it is a constant electric potential surface, but rather because it can pass a cur
rent whose field cancels the field generated by the inner conductor. As a result, the 
magnetic shielding effectiveness of a coaxial cable has nothing to do with whether or 
not it is grounded, but rather on whether it carries an equal and opposite current. 
Thus, it is very important that the currents on coaxial cables be balanced, which can be 
harder to accomplish than one might think. Figure 9-26a shows a simple configura
tion consisting of two chassis connected by a coaxial cable. Both chassis are connected 
to a common ground.

Even though this circuit consists of only one source and one load, there are two 
return paths for the current—the cable shield and the ground connection. The amount 
of current AI  that flows on the ground loop is a function of the net impedance of this 
path (including the wire inductances). Because of the ground loop, a net current 
AI  = I2  — f ,  called a common-mode current flows on the cable. This current produces 
a nonzero B-field outside the cable that can couple with other circuits or devices. One 
way to fix the problem is removing one of the chassis grounds, which removes the 
ground path (often called a ground loop). This fix is attractive from a shielding effec
tiveness standpoint, but may pose a safety hazard or create unacceptable signal volt
ages between the chassis. Another technique is to pass the coaxial cable through a 
ferrite core, as shown in Figure 9-26b. The core presents a large inductive impedance 
to the common-mode current, resulting in a balanced current (often called a differen
tial-mode current). Such a device is called a common-mode choke.

There are many situations in which coaxial cables are not practical, such as the 
wiring between lumped elements on printed circuit boards. Here, it is much less 
expensive to use standard printed circuit board traces. Even with these, good levels of 
magnetic shielding can still be attained with careful design. One of the most obvious 
methods is to keep the length-to-area ratio of the circuits as high as possible. This 
means keeping the current return paths (i.e., ground currents) as close to the feed paths

Coaxia l
cable

(a)

C oaxia l
cable

(b)

Figure 9-26 a) Two chassis connected by a coaxial cable, b) A  common-mode 
choke.
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Signal curren t / 
(out of the paper)\

□ r
G round plane

J _ d T

Signal curren t / 
(out of the paper)

Im age curren t / 
(into the paper)

(a) (b)

F ig u re  9-27 A  method of reducing magnetic field couplings on printed circuit 
boards, a) Printed circuit configuration, b) Equivalent geometry.

as possible, thus keeping the area covered by the circuit to a minimum. This is best 
accomplished by distributing ground traces liberally throughout the board.

Another common technique for reducing magnetic coupling on printed circuit 
boards is to use multilayer boards. This allows ground layers to be placed directly 
underneath signal layers. Figure 9-27 depicts a trace on a printed circuit board of 
thickness t that carries a current I  which flows out of the paper. For reasons that will 
become clear in Chapter 10, the trace and the ground plane form a transmission line, 
and a current is induced in the ground plane that flows in the opposite direction. 
Above the board, this current can be modeled as an image current I  directed into the 
paper along an image trace, located a distance 21 below the signal trace. This image 
current generates a B-field that nearly cancels the B-field generated by the signal trace, 
since the signal and image currents are opposite and very close together.

9 -4  M a g n e tic  Forces a n d  T o rq u e s

Magnetic forces are used in a large number of electromechanical devices, including 
motors, relays, electromagnets, and loudspeakers. Although electrical forces can pro
duce similar effects, they are usually orders of magnitude smaller. There are two rea
sons for this. First, magnetic materials (particularly ferromagnetic materials) can 
greatly enhance the magnetic fields produced by free currents. Second, low-frequency 
magnetic fields are produced by currents, whereas low frequency electric fields are pro
duced by charge distributions. It is usually easier (and safer) to create large currents, 
as opposed to large charges, so magnetic force effects are usually preferred.

We will discuss magnetic forces from three perspectives: the Lorentz force equa
tion, the magnetic energy stored by the elements, and the mutual inductance between 
the elements. Each perspective is capable of predicting the magnetic force on a given 
circuit or element, but one may hold an advantage in analysis over the others for a par
ticular system.

9-4-1 THE LORENTZ FORCE EQUATION

In Chapter 3, we found that the magnetic force Fw acting on a line-current segment C 
is given by

K =  f  7d£ X B .
c

(9.52)
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If a current-carrying circuit is constrained to rotate, the net torque T at an arbitrary 
point O is given by

Tm = f R X dFm, (9.53)
Jc

where R is a vector that points from O to each point at which the magnetic force dFw is 
applied. If we substitute 7df X B for dFm, Equation (9.53) becomes

Tm = [ R X (7df X B), (9.54)
Jc

Also, we can find the component of Tm along a particular axis of rotation simply by 
taking the dot product of T with the unit vector an that points along this axis:

(T)„ = i„ .T m. (9.55)

E xam p le  9 -11

Figure 9-28 shows a simple dc motor, consisting of a single rectangular loop that rotates between 
two ferromagnetic pole pieces. The sliding contacts change the current direction every half rev
olution, so that the current in the rightmost side of the loop is always in the + ^-direction. If the 
field current I f  generates a magnetic field B = B 0 av in the gap, find the torque T z acting on the 
loop along the rotational axis.

Solution:

The contributions to the torque T z from the front and back portions of the loop are zero. 
This is because the force 7dt X B acting on each differential segment of these conductors is in the 
same direction as the axis of rotation (the z-axis). Thus, we need only calculate the torque con
tributions on the portions of the loop where the current flows parallel to the z-axis. Using Equa
tion (9.44), and for the mom ent restricting 6 to the range -90° <  6 <  90° (so that the current 
direction is constant), we find that the contributions to the torque at the point (0 ,0 ,0 ) due to each 
differential current element on the left and right portions of the loop are given by

dTleft = R X 7dt X B ,
right
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where

h . „ _ h
R = ±  — sin 6 a x  -+- — cos 6 a y  +  z a z ,

I d l  =  + 1 d z  a z .

Here, the upper and lower signs correspond to the left and right portions of the loop, respec
tively. Substituting, we have

dTleft = ( ± sin 0 + — co s 0 ay + z a J x  [ + I d z  a zx B 0ay]
right \  2  2  /

h
= — I B 0 cos Q az d z  ±  I B 0z d z  ay .

Integrating these contributions from z  = — (rw/2)to z = w / ' l  we obtain

T left =  f d T left = ^ I w B 0 COS 0  3 , .  
right ^  right ^

Summing the left and right torque contributions, we find that 

Tz = ’ (T|eft + Tright)
= h w IB 0 cos 6 — 90° <  6 <  90°.

This torque tends to make the loop rotate around the z-axis in a right-handed sense. When the 
loop angle 6 exceeds 90°, the current reverses, keeping the torque positive, so the torque can be 
expressed for all angles as

T z =  h w IB 01 cos 6 1.

The | cos 6 \ dependence of the torque generated by a single-loop m otor is usually undesirable, 
since it is not uniform. To avoid this, motors typically have many windings distributed around 
an a rm a tu re  to produce a more even torque. The system of sliding contacts used to reverse the 
current in each loop is called a c o m m u ta to r .

9-4-2 MAGNETIC FORCES IN TERMS OF MAGNETIC ENERGY

It is also possible to calculate the magnetic force acting on a circuit or element by 
observing how the total magnetic energy stored by the entire system changes as the 
component is moved slightly. This is done by balancing the work done by the system 
during this movement with the net change in the stored magnetic energy. We next will 
derive several equivalent formulas for determining these forces.

9-4-2-1 The Constant-Current Method. Consider the system shown in Figure
9-29, which consists oiN  =3 rigid circuits and a magnetic core that can slide in and out 
of its windings. In general, each of these elements will experience a force due to the 
interactions of their fields. To determine the force Fm acting on any of the elements, 
say, circuit #3, we will allow it to move through a directed distance df in response to 
the force while the other elements are held in fixed positions.

The work done by the system on the element is dW = Fm • df To maintain all 
the currents constant during this motion, voltage sources must be present in each cir-
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F ig u re  9 -2 9  Geometry used to find the 
forces between an arbitrary collection of 
currents and magnetic materials.

cuit to counter the emf’s induced by the time-varying fluxes. Thus, the work dW  
expended by the system on the component equals the difference between the work 
dWs supplied by the sources to maintain the currents and the net change dWm in the 
magnetic energy stored by the system. That is,

dW = Fm • d£ = dWs -  dWm. (9.56)

The voltage that must be applied to the ith circuit to counter the emf generated by the 
time-varying flux linkage is dAJdt, where the positive direction of A , is determined by 
the positive direction of f  and the right-hand rule. Thus, the additional energy that 
must be supplied to maintain the current in the ith circuit constant is

dW.
d \  

1 dt
dt dA,

dt
dt

= IidAi = d(IiAl) .  (9.57)

Summing the contributions from each circuit yields

dwJ = d ( i ; / (Ai).

But from Equation (9.32), the sum in the parentheses is simply two times the total 
stored energy Wm. Thus, we can write

dWs = 2dWm. (9.58)

Substituting Equation (9.58) into Equation (9.56), we obtain 

Fm-d i = dWm.

Finally, remembering from the properties of the gradient operation that dWm = 
VW m-di, we can conclude that

VW
All /' s 
constant

[N]. (9.59)

For an element that is constrained to rotate about an axis, we can calculate the 
net torque by noting the changes in the energy stored by the system as it rotates. For
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instance , th e  w o rk  d o n e  by th e  system  fo r a v irtu a l an g u la r d isp lacem en t a ro u n d  th e  z -  

axis is

d W  =  ( T  m) zd $ .

D iv id ing  b o th  sides o f th is exp ression  by dcf), w e o b ta in

swu m
dcf) All I 's  

constant

[N • m ] . (9.60)

E xam p le  9 -1 2

Figure 9-30 shows a U-shaped electromagnet that is lifting an iron bar. The electromagnet con
sists of N  turns of wire around a core of cross section S and constant permeability /xc. Calculate 
the lifting force exerted on the bar, assuming that the bar has permeability /jib and cross section 
Sb . Assume also that gap has the same cross-sectional area as the core.

F ig u re  9 -3 0  An electromagnet lifting an 
iron bar.

Solution:

If we assume that the bar is slightly separated from the core by air gaps of length z , the flux 
0  passing through the core and gaps is obtained by requiring that the magnetic voltage drops 
around the entire path equal the magnetomotive force of the windings. (See Equations (8.50) 
and (8.53)). This yields the expression

0  =
N I

7RC + 2ft b + 22ftg ’
(9.61)

where 2ftc =  L J ( / jlcS ) ,  7 k b =  L b/ ( i x bSb), and 2ftg = z / ( / jl0 S )  are the reluctances of the core, bar, 
and air gaps, respectively. Also, B  =  0 / S  in the core and air gaps, whereas B  = 0 / S b in the bar. 
Hence, we can express the magnetic energy W m of the system as

W = * f  B - H dv =  
2 Jv

0 2 \ L r S [ L bSb | 2  zS

2 lficS2 iLbSb fx0S _

—  [7Jic + 7Kb + 2TJlg].

Substituting Equation (9.61) into Equation (9.62) yields

W  = —
( N i y i

2 (<3ic + 7fih +  22l i  ) 2

(N iy

+ TJiu + 2
HoS

(9.62)

(9.63)
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The lifting force Fm acting on the bar can now be found by substituting Equation (9.63) into 
Equation (9.59):

F„ -
d W m „ 

= -----a
All 7 's dZ
constant

m '■
All / ' s 
constant + 9L + 2

HoS
VoS

Substituting Equation (9.61) into this expression, we can also express Fm in terms of the flux <P.

Fm = (9-64)

E xam ple  9 -1 3

Figure 9-31 shows a solenoid with a partially inserted core. The solenoid has length L, cross-sec
tional area S, and N  turns of wire that are equally spaced and carry a current I .  If the rod has rel
ative permeability \xT and can slide inside the solenoid with negligible friction, find the force on 
the core.

Solution:

This problem may at first seem difficult, because B fringes both near the ends of the sole
noid and the core. However, if the ends of the core are deep within the solenoid and air regions, 
respectively, the shapes of the B-field streamlines will stay the same as the core moves, except 
that they will shift to the left or right within the core. Thus, the energy stored in the regions 
where B fringes will not change with the depth of penetration.

W hat will change as the core moves, however, are the percentages of the solenoid that are 
filled with air and the core. D eep within the air and core regions, B is given by

B = ^ aair a z >

and

H0HrNI .
**core ’

respectively. The volume inside the solenoid that is filled by the core increases linearly with the 
core penetration distance Az . Conversely, the volume filled by air decreases by the same 
amount. Remembering that the magnetic energy density is 1/2 B • H[J/m3], the net change in 
the magnetic energy AWm as a result of the displacement of the rod is

A  W m =  (B ii
core ^ c o re B a i r* H a ir )A ^

A z
H  J = JsK

B — fM0Js 

& & O O & & &

B-MiPqJs

Q9 Q9 Q̂> ̂  Q0 Q9 Q9 Q9 F ig u re  9-31 A solenoid with a movable 
magnetic core.
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~ r )  -  H o ) * z S .

Dividing both sides by Az, we find that

AW d W „

A z dz

N I
(/A /*r -  Ao)S.

The force acting on the core is found by substituting

(N IS
F„ = VW

aii r  s
constant

dW^
d z

M'o
L

(/*r

this expression into Equation (9.59), giving 

l )Sa2.

As can be seen, the force on the rod is attractive when pbr >  1 and repulsive when /zr <  1 (as is the 
case in superconducting materials). Notice also that this force does not change direction when 
the current direction is reversed.

9-4-2-2 The Constant-Flux Method. Returning to the system shown in Figure 9- 
29, let us once again allow the force Fm to move the element shown a differential dis
tance d£ this time under the condition that the flux linking each circuit is held constant 
while the element is in motion. To do so, the current in each circuit must be adjusted 
during the displacement in order to keep the flux linkages in each circuit constant. 
However, no emf’s are induced in any of the circuits (since the flux linkages are all con
stant), so no additional energy is needed to adjust these currents. Thus, the work done 
on the displaced element equals the net decrease in the magnetic energy:

F^-d i= ~ d W m. (9.65)

From the properties of the gradient operation, dWm — V Wm • d£. This means that we 
can write FOT in the form

All <t>'s 
constant

[N]. (9.66)

If the element (or circuit) is 
this axis is

constrained to rotate about the z-axis, the torque about

. dW 
(T ) = -------

d(P Ally's 
constant

[N -m ], (9.67)

An attractive characteristic of the constant-flux method is that it is often well suited to 
systems that contain nonlinear ferromagnetic components, since it is not necessary to 
know how the flux in these elements changes with the impressed current. This is 
demonstrated in the following example.
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E xam p le  9 -1 4

Calculate the lifting force of the electromagnet in Example 9-12 using the constant-flux method. 
Assume that the core and bar are ferromagnetic materials with nonlinear permeabilities.

Solution:

In Example 9-12, we showed that the magnetic energy W m stored in the system is given by

Wm = -y[& c + 9t* + 29y ,

where <3 lc , <3 lb , and Sft are the reluctances of the core, bar, and gaps, respectively. Using Equa
tion (9.66), we can write

Fm = - v w m
All <f>'s 
constant

02
~ — V[^c + %  + 29y-

However, 5ftc and 2 ftfo are both constants, and — , so we obtain 
/-iQS

0 2

H0s V ( z )
0 2 dz ~ 

fJiQS dz z
(p 2

nQs

This is the same expression that was derived using the constant-current method and is valid for 
both linear and nonlinear materials, as long as the flux <P in the core is known. If all the m ateri
als are linear, ^ c a n  be determined by using Equation (9.61) in Example 9-11. However, if any 
of the materials are nonlinear, their magnetization curves (such as the one shown in Figure 8-21) 
must be specified in order to determine 0 .

9-4-2-3 The Inductance Method. Another formulation of the forces in magnetic 
systems can be obtained by starting with the constant-current formulation, given by 
Equation (9.59):

VWT ' ’  m
All / ' s 
constant

If the magnetic materials in the system are all linear, we can use Equation (9.30) to 
express the magnetic energy in terms of the self- and mutual inductances of the system:

F = VWm m
A U /'s
constant

r  N N

2  2  U A
U = \j=\

Since all the currents of the system are maintained constant during the virtual dis
placement, this yields

i  N N

f» = A 2  W h -
Z i= 1 ;  = 1

(9.68)
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If the component is constrained to rotate about an axis (say, the z-axis), the torque 
about that axis is given by

C O ,
i N N

if 2.2 V,z i = l / = 1
(9.69)

An advantage of formulating the magnetic forces and torques in terms of self- and 
mutual inductances is that it is not necessary to calculate the self-inductances of the cir
cuits if they do not change during the virtual displacement. When that is the case, the 
force or torque is due only to the mutual inductances. This is demonstrated in the fol
lowing example.

E xam ple  9 -1 5

—
Hi

Calculate the torque exerted on the DC m otor loop discussed in Example 9-11, this time using 
the inductance method.

Solution:

This system consists of two circuits: the two field windings and the rotating loop, which 
carry the currents and I ,  respectively. Since the self-inductances of these circuits do not 
change when the loop is allowed to rotate, we need to consider only the mutual inductances.

The B-field in the gap can be expressed as B 0 =  k l f , where the value of the constant A: is a 
function of the number of turns and the reluctance of the flux path. The flux A21 linking the 
loop due to the windings is A21 = k I f S | sin 9 1, where S =  w h  is the area of the loop. From 
Equation (9.23), the mutual inductances are given by

L 2i = L 12 = =  k  w  h  | sin 0 1
if

Substituting these values into Equation (9.69), we find that the torque acting on the loop is

(X ) = I  y  y  n  ^  = - U
2 ^ 1  ' 3 0  2 U f  d<f>

1 „  dL  

+  2 U ~dcf>

=  I  I f  k w  h  |cos01.

Finally, if we substitute B 0 =  k l f  into this expression, we obtain the same result as was obtained 
in Example 9-11.

9 -5  S u m m a tio n

Most of the discussion in this chapter has been an outgrowth of Faraday’s law of induc
tion. This law is one of Maxwell’s equations and describes one of the ways in which 
electric and magnetic fields interact. In addition, it is useful in its own right for 
describing a variety of systems and applications of engineering significance that depend 
on the electric fields produced by magnetic fields.
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Faraday’s law has also enabled us to “turn the corner” in our discussion of sta
tic electric and magnetic systems into a more general discussion of time-varying sys
tems. We will maintain this direction in Chapter 10, where we will discuss Maxwell’s 
final postulate electromagnetic theory and the time-varying form of Maxwell’s equa
tions.

P roblem s

9-1 Calculate i(t) if the loop shown in Figure P9-1 is immersed in a uniform time- 
varying magnetic field B = 2t [T] av, where t is measured in seconds and av is 
directed out of the page. Assume that the self-inductance of the loop is negligi
ble.

F ig u re  P9-1

9-2 Find the voltage V measured by the meter shown in Figure P9-2, where the B- 
field is uniform throughout the inner circuit, is zero outside, and varies with time 
according to

B = BQ sin cot a„

where a„ is directed out of the paper, B0  = 0.5 [T], co = 10 [rad/s], and the area 
enclosed by the circuit is 1 [m2]. Also, assume that the voltage source is 
Vs = 10 cos ojt [V], the meter impedance is infinite, and the self-inductance of the 
circuit is negligible.

F ig u re  P 9-2

9-3 Figure P9-3 shows a two-resistor circuit that is close to a long wire carrying a cur
rent i(t) = 4 cos (100?) [mA]. Calculate C100(t) and V5 0 (t) if the self-inductance 
of the loop is negligible.
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m

1 [cm ]

---------------------------------- r

1.5 cm ]
+

100 [ f t ]  t l  50 [ f t ]

— —

3 [cm ] F ig u re  P 9-3

9-4 Figures P9-4 a and b show two types of magnetic cores that lie along the z-axis: 
one solid and the other laminated. The solid core has length L, radius a, and 
conductivity a. The laminated core is a collection of N  small filamentary cylin
ders, each with length L and conductivity a. If B = B 0  cos cot a. is directed 
upward and the filamentary cylinders fill 90% of the volume of the solid core, 
find
( a )  the average eddy-current power loss in the solid core.
(b) the average eddy-current power loss in each of the filamentary cores.
( c )  the average eddy-current power loss in the total laminated core.

Assume that the B-field is uniform throughout both the solid and laminated 
cores.

B(0

(b) F ig u re  P 9-4

9-5 Figure P9-5 shows a rigid loop that moves with velocity u — uQ av in a uniform B- 
field. If the gap has width d, find the gap voltage V as measured by
( a )  an observer moving with the loop.
(b) a stationary observer watching the gap go by.

9-6 Figure P9-6 shows a rectangular loop that is rotated at an angular frequency of co 
[rad/s] in the presence of a uniform B-field of magnitude B. The slip rings are 
arranged so that the terminals of the rotating loop are always attached to the 
same points in the stationary circuit. If the loop has self-inductance L, show that 
the average power dissipated in R is equal to the mechanical work required to 
rotate the loop.
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x

B = B0eiz

F ig u re  P 9-5

F ig u re  P 9-6

9-7 Figure P9-7 shows a square, rigid loop that moves away from an infinite line with 
current I = 1,000 [A] at a constant velocity u = 20 [cm/s]. If x = 0 at t = 0 and 
the loop is 40 [cm] on a side, find v{t) as measured by someone moving with the 
loop.

L
v ( t )

r
F ig u re  P 9-7

9-8 Figure P9-8 shows a loop that rotates about the z-axis at co -  10 [rad/s]. If B =

0.2 ay [T] and 4> = 0 at t = 0, find the current i. Assume that the loop inductance 
is negligible.

9-9 Two concentric current loops lie in the z = 0 plane, with radii a and b, respec
tively. If a »  b, estimate the mutual inductance between these loops if the pos
itive direction of current is the same for both loops.

9-10 Figure P9-10 shows two toroids, one inside the other. The inner solenoid has
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F ig u re  P 9-8

2,000 turns, and the outer one has 4,000 turns. Estimate the mutual inductance 
between these solenoids if
(a) yLc = /x0 everywhere.
( b )  /jl =  500/jl0  inside the inner toroid and /x0 elsewhere.
(c) ytt = 500^ inside the inner toroid and /x0 = 200/jl0 between the toroids.

F ig u re  P 9 -1 0

9-11 Figure P9-11 shows a high-permeability core with an air gap and two windings. 
Calculate the mutual inductance between the terminals of the two windings for 
the positive current directions shown. Assume that the core has a relative per
meability /x,. = 1,000 and a square cross section with 0.8 [cm] on a side. Also, 
assume that fringing is negligible.

9-12 Calculate the mutual inductance between the infinite line and the circular loop 
shown in Figure P9-12. Assume that d »  r.

9-13 Figure P9-13 shows an infinite line and a 1,000-turn square loop that encloses an 
area of .04 [cm2]. Both the line and the loop carry currents of 10 amperes, and 
their polarities are such that their fluxes add inside the loop. Calculate the force 
acting on the loop, and state whether it is attractive or repulsive, using
(a) the Lorentz force equation.
( b )  the inductance method.
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'V

F ig u re  P 9 -1 2

10 [A]

1,000 turns 
Area = .04 [cm2]

0.5 [cm]

^  F ig u re  P9-1 3

9-14 For the magnetic circuit discussed in Problem 9-11, find the attractive force 
between the pole pieces across the gap when Ix = 20 [A] and /2 = 0.

9-15 Figure P9-15 shows two coils. Coil #1 is stationary and has self inductance Ln = 
0.4 [mH], whereas coil #2 is free to rotate about an axis and has self- inductance 
L22 = 0.3 [mH]. If the mutual inductance between the coils is L12 = 0.1 cos cf) 
[mH],
(a) Find the torque that each coil exerts on the other if Ix = 2 [A] and I2 = 1 [A] 

when (f) = 50°.
(b) If /, = 2 sin 100? [A], find the time-averaged torque acting on coil #2 if the 

coil is short circuited and rotates at a constant angular velocity that is much 
less than 100 [rad/s].

10 [A] i
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F ig u re  P 9 -1 5

9-16 Figure P9-16 shows the cross section of an electromagnet. Here, a coil is wound 
many times around the center core and has an inductance of 0.6 henry when the 
plunger is at y  = 0.7 [cm]. If the reluctance of the core and plunger are negligi
ble compared to the gap reluctance, find the attractive force on the plunger when 
x = 0.7 [cm] and y  = 1.0 [cm] when the current flowing through the windings is
0.8 ampere.

F ig u re  P 9 -1 6
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T im e- V a ry in g  

E le c tro m a g n e tic  Fields

10-1 In tro d u c tio n

This chapter marks the beginning of a discussion that will last through the remainder of 
the text—the behavior of high-frequency electromagnetic fields and devices that pro
duce them. This subject is of great importance in electrical engineering, since a large 
percentage of the systems that electrical engineers design and operate cannot be 
described by simple circuit analysis alone, or even by the low-frequency field analysis 
we have presented up to now. For applications like these, a complete description of the 
time-varying nature of electromagnetic fields is required. This is true even for systems 
that still “look” like ordinary, lumped-element circuits.

We will start the chapter by discussing the last postulate of electromagnetic the
ory—displacement current. This will complete our development of Maxwell’s equations, 
which are capable of describing all electromagnetic effects. We will show how Maxwell’s 
equations can be written in a number of forms so that they can be easily applied to differ
ent types of situations. Finally, we will end the chapter by showing how standard lumped- 
component ac circuit analysis follows directly from Maxwell’s equations.

325
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1 0 -2  D is p la c e m e n t C u rre n t

In Chapter 3, we stated that Maxwell completed the equations that describe electro
magnetism simply by adding a new quantity to Ampere’s circuital law. Initially, this 
addition was not based on direct experimental evidence, but rather on Maxwell’s belief 
that light and electromagnetism are, in fact, the same. Maxwell invented the concept 
of displacement current so that the equations of electromagnetism would also describe 
the behavior of light waves. The addition did not violate the experimental evidence 
that was already known about electromagnetism (in particular, Ampere’s circuital law) 
and was later verified by the experiments of Heinrich Hertz in 1888.

Maxwell postulated that Ampere’s circuital law, while valid for time-invariant 
fields, was incomplete for time-varying fields. For fields in free space, Ampere’s cir
cuital law reads

V X B = p .J T,

where J r accounts for the t o t a l  flow of charged particles at a point. One way to show 
that this expression is incomplete is to take the divergence of both sides, yielding

V • V X B = /x0V • J r .

The left-hand side of this expression is identically zero (since the divergence of the curl 
of any vector is always zero), which leaves

V*Jr = 0 .  (10.1)

On the other hand, the law of charge conservation states that the current density at a 
point can have a net divergence whenever the charge density at that point is changing 
with respect to time, i.e.,

v , T = - % -  (10.2)at

Comparing Equations (10.1) and (10.2), it is obvious that Ampere’s law violates the 
law of charge conservation at points whereTherihafge^density is time varying. Hence, 
Ampere’s circuital law gives an incorrect (or, at best, an incomplete) description of 
time-varying effects.

Maxwell postulated that, in free space, Ampere’s law should be modified to read

(10.3)

This expression is called the time-varying form of Ampere’s law, or, simply Ampere’s 
law. The added term, e0  (<5E/ d t ) ,  is measured in units of amperes per meter squared 
and is called the displacement current density. In spite of its name, however, this new 
quantity does n o t  represent a flow of charge. Rather, it is present whenever a time- 
varying charge displacement (or separation) is present.
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Even though Maxwell did not introduce the concept of displacement current to 
force Ampere’s circuital law to agree with the law of charge conservation,1 it is simple 
to show that it does. Taking the divergence of both sides of Equation (10.3), we obtain

V -Jr + | - e oV .E  = 0. (10.4)
a t

However, from Gauss’ law, we know that in free space, V • E = pvT/e0, where pvT is the 
total (i.e., free plus bound) charge density. Hence, Equation (10 4) can be written as

V . J T = - % ,  (10.5)
a t

which is the law of charge conservation.
When materials are present, it is more convenient to express Ampere’s law in 

terms of the magnetic field intensity H and the electric flux density D, which are related 
to B and E by

B = gH  = fi0( H + M)

and

D = eE = e0E + P,

where P and M are the polarization and magnetization, respectively. Substituting 
these definitions into Equation (10.3), we obtain

dD dP 
V X H = JT + ------------

d t  d t
V X M.

However, according to Equation (8.11), we know that 

V X M = JL,

( 10.6)

(10.7)

where 3m is the magnetization current (defined in Section 8-3-2). Also, from Equation
(5.25), we know that the polarization charge density is specified by the polarization P:

[C/m3].P op - V P

Differentiating both sides of this expression with respect to time and using the law of 
charge conservation, we find that

dP
d t

(10.8)

where Jp is the polarization current, due the movement of polarization charge. 
Substituting Equations (10.7) and (10.8) into Equation (10.6), we obtain

V X H
dD
d t

Finally, noting that i T = J + Jm + J , we can write this equation in the form

See Paul J. Nahin, Oliver Heaviside: Sage in Solitude, (IEEE Press, 1988), New York, Chapter 6, pp. 90-91.
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V x H  =  J +
d D

dt  ’
(10.9)

where J  is the free current density and dD / d t  is the displacement current density.
An integral form of Equation (10.9) can be obtained by taking the dot product of 

both sides by the differential displacement vector d s  and integrating over an arbitrary, 
open surface S, yielding

(* (* C r)
V  X  H • d s  =  J  • d s  +  — - d s .  (10 .10)

Js Js Js d t

If S is time invariant, the order of integration and differentiation in the second term on 
the right-hand side can be interchanged. Also, Stokes’s theorem can be used to write 
the surface integral on the left-hand side as a line integral over the contour C that 
bounds S' in a right-handed sense. In addition, Js J  • d s  is the free current I that passes 
through S. Thus, Equation (10.10) can be written as

<j> H - d f  =  /  +  D - d s ,  (10 .11)

where C is the closed contour that bounds the open surface S. In this expression,
d

—  f s  D  • d s  is the displacement current that “flows” out of S in a right-handed sense. 
dt

A simple device that illustrates the role of displacement current is the capaci
tor shown in Figure 10-1. Applying Equation (10.11) to the closed path C' shown 
in the figure, we note that the surface integration can be performed on any surface 
that is bounded by this path. Two such surfaces are shown. Here, Sl is a small disk 
that intersects the wire, whereas S2  is shaped so that it passes between the capacitor 
plates.

If the wire is perfectly conducting, the tangential D-field near it is negligible, so 
D  • d s  ~ 0 everywhere on S1. Hence, no displacement current flows through S1, and 
Ampere’s law reads

H *  d f
c

(10.12)

Figure 10-1 Geom etry for finding the
displacement current between the plates of
a capacitor.
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Since S2 passes between the capacitor plates, no conduction current flows through this 
surface. But a displacement current “flows” through S2, since D • ds 7  ̂0 between the 
plates. For this surface, Ampere’s law reads

H-df
c

d_

d t
I D«ds.
$2

Comparing Equations (10.12) and (10.13), we conclude that

(10.13)

I  = T , \  D ’ ds, (10.14)
dt Js2

which, in words, states that the conduction current flowing into the capacitor equals 
the displacement current “flowing” between the plates.

We can derive the voltage-current relationship for a capacitor directly from 
Equation (10.14) by noting that D • ds is simply the charge Q on the left-hand plate. 
If C is the capacitance of the capacitor, then Q = CV, and we can write

d_

d t
f  D«ds

2̂

dQ = c dV 
dt dt

Substituting this expression into Equation (10.14), we obtain

I = (10.15)

which is the familiar V-I characteristic of a capacitor. Integrating this equation with 
respect to time, we obtain the other familiar capacitor expression,

(10.16)

We can generalize Equation (10.15) so that it applies to structures that don’t 
“look” like capacitors, such as the structure shown in Figure 10-2. Here, N  wires carry 
current through a surface S. For this case the total current entering the surface is the 
sum of the individual wire currents, which yields

2  ( =  c
( = 1

dV
dt ’

(10.17)

F ig u re  1 0 -2  Conductor currents flowing 
into a surface S, showing that their 
algebraic sum is not zero when 
displacement current is present.
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where / ; is the current flowing toward the surface on the ith wire and C is the capaci
tance of the surface to ground. This expression is called the generalized Kirchhoffs 
current law and states that the net current into a surface (or point) is zero only when 
the surface-to-ground capacitance is zero.

E xam p le  10-1

*

wII
.

■

Figure 10-3 shows a resistive load enclosed by a metal chassis and fed by a coaxial cable. The 
cable shield isattached to the chassis, and the load is connected between the inner conductor of 
the cable and the chassis. If the chassis-to-ground capacitance is 50 [pF] and a sinusoidal, 10 
[mv] voltage is present between the chassis and ground, calculate the difference AI  between the 
currents on the inner and outer conductors of the transmission line w h en /=  60 [Hz] and / =  30 
[MHz],

C hassis

C= 50 [pF]

" d L — - ±
10 [mV]

Figure 10-3 A coaxial cable connected to a chassis with a resistive load 
and a chassis-to-ground capacitance.

Solution:

Using Equation (10.17) and d( sin cot)/dt — co cos cot, we can write

A /  =  I | =  o>CV,

where V is the peak chassis-to-ground voltage. At /  = 60 [Hz], we have 

A/ = (2tt) X (60) X (50 x 1(T12) x 10 ~2 -  0.188 [nA].

A t / =  30 [MHz], we have

AI = (2 tt) X (30 X 106) X (50 X 10“12) X 10~2 = 94.20 [yuA],

Shielded cables and metal chassis are often used to keep circuits from radiating unwanted 
fields. When the currents on the inner and outer conductors of a coaxial cable are balanced (i.e., 
A/  = 0), no net magnetic field is generated outside the cable. (See Section 7-4-1.) However, 
this example shows that the cable currents will not be balanced if the chassis potential is nonzero 
and there is a chassis-to-ground capacitance.

/outer

'inner —► / i 4 - - ■, <
■ - •

/
C oaxia l

10 -3  M a x w e ll's  E q u atio n s  fo r  T im e -V a ry in g  Fields

Maxwell’s invention of displacement current completed the list of postulates necessary 
to model all time-varying electromagnetic effects:



1. Coulomb’s law of force (for static charge distributions)
2. Ampere’s law of force (for steady current distributions)
3. The law of charge conservation (or Maxwell’s displacement current)
4. Faraday’s law of induction
5. The Lorentz force law

The mathematical representations of postulates 1-4 are called Maxwell’s equations, 
which can be written in either differential (point) or integral form. In point form, 
Maxwell’s equations are
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dB
(10.18)V X E = ------

dt

V X H = J + ®
dt

(10.19)

V • D = pt, (10.20)

< • tt II o (10.21)

Although it is not needed to describe the fields themselves, the Lorentz force law (pos
tulate #5) provides the link between electromagnetic fields and the forces that make 
them known to us. As we discussed in Chapter 3, this law states that the electromag
netic force acting on a point charge is given by

F=<2(E + u X B ) ,  (10.22)

where u, E, and B are measured in the same inertial frame of reference.
Each of Maxwell’s four equations was determined from different experimental 

evidence (or conjecture, in the case of displacement current), but the two divergence 
equations can actually be derived directly from the two curl equations. To show this, 
let us take the divergence of both sides of Equation (10.18) to obtain

V*V X E = -  V
dB

* dt '

The left side of this expression is identically zero (see Equation (B.8)), and the order of 
the differentiation on the right-hand side can be interchanged to yield

d_
dt

V-B = 0,

which states that the divergence of B at any point is constant in time. Since a nonzero 
divergence of B has never been observed,2 we conclude that this constant is zero, which 
agrees with Equation (10.21).

In a similar manner, taking the divergence of both sides of Equation (10.19) yields

2 While there is some evidence that may support the existence of subatomic magnetic charges, it appears 
unlikely that they could be of any engineering significance.
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V*V X H = V«J +  V ----- .
dt

Noting that the left-hand side is identically zero and V • J = -  (dpjdt), we can write 
this expression as

| ( V - D - P„) = 0.

which states that the term (V • D -  p v )  is constant in time at any point. Experimental 
evidence shows that this constant is always zero, yielding Equation (10.20).

The integral form of Maxwell’s curl equations can be obtained by integrating 
them over open surfaces and applying Stokes’s theorem to the left-hand sides. Simi
larly, integral forms of the divergence equations can be obtained by integrating them 
over arbitrary volumes and applying the divergence theorem to the left-hand sides.
The resulting equations are

r r 
® E * d £  =  — — * d s
Jc  Js dt

(10 .23)

r r ^F|
ct H * d f  =  7 + -------d s
Jc  Js dt

(10 .24)

(j) D • d s  =  Q
h

(10 .25)

(j) B • d s  =  0 .
h

(10 .26)

Maxwell’s equations provide a complete description of the behavior of E ,  D, B, 
and H  in terms of the sources J and Q. However, the equations do not contain any 
material-dependent information. This information is provided by the constitutive 
relations, which, for simple media, are

D =  e 0 E  +  P =  e E (10 .27)

B =  / x0 ( H  +  M) =  /xH (10 .28)

J =  c r E  +  J ( . (10 .29 )

In these expressions, P the polarization, M the magnetization, and J, the impressed (or 
source) current density. Also, the constitutive parameters e, /jl, and a  are the permit
tivity, permeability, and conductivity of the medium, respectively. For most materials, 
e ,  / a , and crare scalars. However, some materials have directional properties that can
not be modeled with scalar constitutive parameters. In such cases, one or more of the
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constitutive parameters becomes a 3 X 3 matrix, called a tensor. These materials are 
important for certain devices (such as microwave circulators), but they are beyond the 
scope of this text.

One of the distinguishing characteristics of time-varying phenomena is that elec
tric and magnetic fields are always present simultaneously. This is very different from 
electrostatics and magnetostatics, where one type of field can exist without the other. 
The following example demonstrates this characteristic.

E xam p le  1 0 -2

Illr
■

Suppose that the E-field in a source-free (i.e., J, = 0) region of free space is given by 

E = E a sin (cat -  (3 z )a x ,

where ca and (3 are constants. Find the H-field that is also present. W hat value must the con
stant /3 be in order for both fields to satisfy all of Maxwell’s equations?

Solution:

Substituting E into Equation (10.18), we find that

dB 3 „ „
“T 7 = — V X E =  £ 0 s in  (cat -  (3z) av =  / 3 £ 0 c o s (c a t  -  /3z) a .
at oz

Integrating with respect to time yields

B = 1 / 3 E  cos (cot -  (3z) d t  =  sin (cot -  /3z) av + C av,
J (JO y y

where C is some constant. Since the term  C a is a m agnetostatic field, it is unrelated to the 
time-varying E-field and can be ignored, yielding

H = —  = sin (cot -  (3z) a .
Vo

To find the acceptable value of /3, let us substitute this expression for H into A m pere’s 
law (Equation (10.19)) and see if it yields the E-field we started with. Remembering that J; = 
0 , we obtain

6 —  = V x  H =
0 dt

= ( ^ s i n ( a o t -  p z ) )a  
dz \ (O f i0 j

(32 E0

(j)HQ
cos (cat -  (3z) a v.

Integrating this expression with respect to time, we get

E =
P2 EQ .

& Vo€o
sin (cat -  f3z) av.

Com paring this expression with the E-field we started with, we conclude that (3 must satisfy 
/32/(ca2 /x0eQ) = 1. Thus, the necessary value of (3 is given by
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It is left as an exercise for the student to show that these expressions for E and B satisfy the 
divergence equations V • D = 0 and V • B = 0.

The E- and H-fields we have just examined are unlike any of the fields discussed in the 
earlier chapters because they m o v e  (or propagate) with time t. We can see this by noting that 
the sinusoid terms in both E and H have the same argument, cot -  f iz .  This means that the zero- 
crossings of E and H shift towards increasing values of z as t  increases. For instance, one zero
crossing occurs when cot -  /3z =  0. W hen the time is advanced by At, the position of this 
zero-crossing shifts by a value

A z
co At

~ P ~ '

Dividing both sides of the preceding expression by At, we obtain

—  =  — = ,____= 2.9979 X 108 [m/sl -  3 X 108 [m/s].
At jS V > 0 e0

Hence, these fields represent disturbances that are moving towards increasing values of z at a 
rate equal to the speed of light in a vacuum.

There are many types of propagating fields. The specific fields presented in this example 
are called plane waves and will be discussed at length in Chapter 12.

1 0 -4  T im e -H a rm o n ic  Fields

Very often we are interested in the fields generated by sources that vary sinusoidally in 
time. In these cases, it is convenient to express the resulting electric and magnetic 
fields as phasors. Fortunately, transforming the field quantities encountered in elec
tromagnetics from the time domain to the phasor (i.e., frequency) domain is accom
plished in basically the same way as for circuit quantities. We will start our discussion 
by reviewing the rules of phasors for discrete-time functions (such as the voltages and 
currents in a circuit) and then generalize these rules for scalar and vector fields.

10-4-1 REVIEW OF PHASORS FOR DISCRETE SCALARS

Phasor notation makes use of the fact that there are only two parameters that are 
needed to completely specify a time-harmonic waveform: its amplitude and its phase. 
For instance, consider the sinusoidal current waveform

i(t) — Im cos (cot + (jo) [A]. (10.30)

Using Euler’s identity, we can write i (t) as the real part of a complex exponential func
tion, i.e.,

i(t) = Re [Iejojt] [A],

where /  is the phasor representation of i(t), given by 

I = I me'*=ImL4,  [A],

The steps required to transform a time-harmonic function into its phasor form 
are summarized as follows:

1. Write the given time function as a cosine function with a phase angle.
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2. Express the cosine function as the real part of a complex exponential using 
Euler’s identity.

3. Drop the Re and ej(0t from the expression.

Conversely, to transform a phasor into its time-domain equivalent, one need only 
reverse the steps:

1. Reinsert the Re and eja>t.
2. Use Euler’s identity to express the complex exponential in terms of the sine and 

cosine functions.
3. Perform the Re operation.

It is tempting to think of a phasor as simply a shorthand notation for a time-har
monic function, but it is actually the transformation of the time-harmonic function into 
the frequency domain. This transformation is often indicated using the notation

i ( t )  <-»/. (10.31)

One of the most useful features of phasors is that differentiation and integration 
operators in the time domain transform to algebraic operations in the frequency 
domain. For instance, consider again the i ( t )  given by Equation (10.30). Taking the 
derivative of both sides with respect to t, we have

^ T ( t )  =  -  coIm s in ( c o t  +  </>) =  oolm c o s ( c o t  +  cj> +  90°).

Transforming d { i { t ) ) / d t  into the frequency domain, we obtain

J t4 0  <-> = ja L e * .  (10.32)

Remembering that the phasor representation of i ( t )  is /  — Im ei4>, we can write Equa
tion (10.32) as

(10.33)

which shows that the phasor representation of the time derivative of any time-har
monic function is simply jco  times the phasor of the function itself. Similarly, if we inte
grate both sides of Equation (10.30) with respect to time, we obtain

f /  1
i d t  =  — sin (cot +  </>) =  —  cos (cot +  cft -  90°),

J c o  co

which transforms to

f i d t  <-> —  <? “;'90°e^ =  —  .
J oo jco

( 1 0 . 3 4 )
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Knowing that I  = Im ej<b, we can write Equation (10.34) as

idt <-» — I 
ju

(10.35)

Thus, the phasor representation of the integral of a time-harmonic function is simply 
the phasor of the function divided by jco.

A simple way to show how phasors can simplify the analysis of linear systems is to 
consider the circuit shown in Figure 10-4, which consists of a resistor R and an inductor 
L in series with a time-harmonic voltage source with magnitude Vm and phase 0.

The differential equation satisfied by the current i(t) is

L ~ i { t )  + Ri(t) = V cos (cot + (/>). (10.36)
at

Since this is a linear differential equation, the steady-state response i(t) is time har
monic, with the same frequency co as the source. Transforming each term of Equation 
(10.36) into the frequency domain, we obtain

jco L I + RI = Vm ej4>, (10.37)

where /  is the phasor representation of i(t). Unlike Equation (10.36), this equation 
can be solved algebraically, yielding

I =
V ei4>m

R + jcoL

where

V„

V R 2 + (coL):
>/</' (10.38)

ifj = 4> — tan 1——. (10.39)
R

Transforming I  back to the time domain, we finally obtain

i ( t )  =  , 0 Vm  , cos (cot -  I j j ) .  (10.40)
V tf2 +  ( c o L ) 2 y

As this example shows, we can use phasors to solve a differential equation by means of 
simple algebra. The only cost of using phasor analysis is that we must use complex 
arithmetic.

Most circuit analysis texts use lowercase variables (such as i ( t ) )  to represent time- 
domain waveforms and uppercase variables (such as /)  to represent frequency-domain 
phasors. This convention is not usually followed in electromagnetics, because of the 
large number of variables that are needed. Instead, uppercase variables are usually 
used for both time-domain and frequency-domain quantities. This poses no real prob-

Wn COS (wt + (/)) Q
i( t)

-AWr
R

F ig u re  1 0 -4  An R L  circuit with a time- 
harmonic voltage source.
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lem, since it is usually obvious which domain an equation is written in. As a rule, the 
presence of complex numbers indicates the frequency domain, and the presence of the 
variable t indicates the time domain.

10-4-2 PHASOR REPRESENTATIONS OF SCALAR 
AND VECTOR FIELDS

The vector and scalar fields encountered in electromagnetics are functions of position, 
as well as time. Nevertheless, these quantities can be transformed into the frequency 
domain whenever they are time harmonic. For instance, consider the volume charge 
density distribution

pv(r,t) = e~ r2 cos (cot + (3r) [C/m3],

which is time harmonic at all radial positions r. Using Euler’s identity, we can write pv as

pv = R e[< r'V ftV'*Jr| [C/m3].

If we now drop the Re and the ei<ot, we are left with e~r~ eifir, which is the phasor repre
sentation of pv(r, t). Thus, we can write

pv (r,t) e~r~ejpr [C/m].

As this example shows, the rules for transforming scalar fields into the frequency 
domain are the same as for discrete quantities. The only difference is that the phasors 
of scalar fields are functions of position.

The rules for transforming vector fields into the frequency domain are basically 
the same. This is accomplished most easily by writing these vectors in terms of their 
components and then transforming each component. For instance, consider the vector

If E (t) is time harmonic, each of its components is also time harmonic. Also, since the 
unit vectors are not functions of time, they are not affected by the transformation. 
Hence, we can transform E(r) into the frequency domain as

where E is the phasor (i.e., frequency domain) representation of E (t), and Ex, E , and 
Ez are the x-, y-, and z-component phasors, defined by

We can also express the relationship between E (t) and the phasor E by the expression

E (0 = Ex(t)ax + Ey(t) ay + Ez(t) az. (10.41)

(10.42)

Ex(t) ** Ex

Ey(t) <-» Ey

Ez(t) Ez.

(10.43a)

(10.43b)

(10.43c)

E(r) = Re [E eiwt] . (10.44)
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E xam ple  1 0 -3

For the time-harmonic vector

B(t) = 3cos(wf -  j8z + 30°) ax -  4sin(a'f -  f3z)ay, 
find its phasor representation B. Also, transform B back to the time domain, and verify that it 
equals B(f).

Solution:

First, we write both components of B in terms of cosine functions:

B ( t )  =  3 cos ( co t  -  f i z  +  30°) a* +  4 cos (cat -  /3z +  90°) ay .

Transforming both components into the frequency domain, we obtain

B = 3 e,30° e~jl3z ax + 4e-'90° e~JPzay .

Also, since e/30° = 0.866 + j 0.5 and e;90° = j, B can also be written as 

B = (2.598 + jl.5)e~iPzax + j4e~iPzay.

To obtain B (t) from B, we simply reinsert the Re and e’ wt, yielding 

B(f) = Re[3e/30°e“̂ V ",aJt + 4em ° e~,fiz a y\

— 3 cos (co t — (3z + 30°) ax + 4 cos (cat — (3z + 90°) ay

= 3 cos (cat — (3z + 30°)^ — 4 sin (cat — f3 z )a y, 

which is same as the expression we started with.

10-4-3 MAXWELL’S EQUATIONS FOR TIME-HARMONIC 
FIELDS

Maxwell’s equations are particularly simple when written in the frequency domain. 
For instance, consider the curl-E equation (Equation (10.18)),

V x E ( t )  = -
8B(Q

dt

The left-hand side contains spatial derivatives, but no time derivatives, so it retains the 
same form in the frequency domain:

V x  E(f) h V x E.

The right-hand side contains a time derivative of B, which transforms to 

BB(t)
dt

<-> — ycuB.

Thus, the frequency-domain version of the curl-E equation is 

V X E = -  jto B .

Similarly, the curl-H equation transforms to

(10.45)
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V x H  = J + /w D , (10.46)

where J is the phasor representation of the volume current density J (t).
As can be seen from Equations (10.45) and (10.46), only the time-derivative 

terms in Maxwell’s equations change their form when transformed to the frequency 
domain. As a result, Maxwell’s two divergence equations (Equations (10.20) and 
(10.21)) do not change in the frequency domain, since they contain no time derivatives. 

Summarizing, the frequency domain form of Maxwell’s equations are

V x E = - j o j B  (10.47)

V X H = J + ja>D (10.48)

V ‘ D = p v (10.49)

V • B = 0. (10.50)

Similarly, the integral form of Maxwell’s equations in the frequency domain are

<j) E • df = —jo) J  B • ds (10.51)

<£ H • dt = I  + jo) [ D • ds
4c 45

(10.52)

cl) D • ds = Q
h

(10.53)

j) B • ds = 0 . (10.54)

The constitutive relations that account for the material properties of a medium 
retain the same forms in the frequency domain as they do in the time domain, namely,

D = e0E + P = eE (10.55)

B = fi0(H + M) = /xH (10.56)

J = trE + J/5 (10.57)

where the constitutive parameters e, /jl, and a  are, respectively, the permittivity, per
meability, and conductivity of the medium. The constitutive parameters of most mate
rials are independent of frequency and are real, at least at low frequencies. At higher 
frequencies, however, these parameters often vary with frequency and become com
plex, indicating that the vectors they relate differ in phase. In Chapter 12, we will show 
that complex values of e and n  indicate that the medium is lossy, even if its conductiv
ity a  is zero. When the complex nature of these parameters is important, we will use 
the notation



340 CHAP. 10 TIME-VARYING ELECTROMAGNETIC FIELDS

(10.58)

(10.59)

(10.60)

6 = 6 ' -  je"

P = V' -  7>"

<r = <r' -  jo1' .

10-4-4 MAXWELL’S EQUATIONS IN SIMPLE MEDIA

Most of the materials used in electrical devices are relatively elementary. We will call 
a simple medium a medium that is 1) homogeneous, 2) isotropic, and 3) linear. This 
means that the constitutive parameters (e, p , and a) of simple media are 1) indepen
dent of position, 2) scalar valued, and 3) independent of the field strengths.

Since D and E, and B and H, are related by constants in simple media, it is cus
tomary to express Maxwell’s equations in terms of E and H only. Hence, for simple 
media, Equations (10.47)-(10.50) become

^ (10.61)
(10.62)

} (Simple media). (10.63)

V X E = —jcop H
V X H = J, + crE + jcoeE

V • E = Pv

V-H = 0. (10.64)

If a region is source free, the impressed current density J, is zero. It then follows that 
the charge density pv is also zero in a simple, source-free region. To see why, we note 
that when J; = 0, Equation (10.62) becomes

V X H = (<x + jcoe) E .

If we take the divergence of both sides of this expression and remember that the diver
gence of the curl of any vector is identically zero, we obtain

V 'V X H  = (cr + jcoe) V • E = 0.

Notice in this expression that since erand e are constants, they can both be taken out of 
the divergence operation. Then, because the term (cr + jcoe) is nonzero, we can con
clude that V • E = 0, and Equation (10.63) yields3

pv = 0 (Simple, source-free media). (10.65)

Thus, at source-free points in simple media, Maxwell’s equations become

V X E = —jcoplU
V X H = (cr + jcoe) E
V • E = 0
V *H = 0

(Simple, source-free media)

(10.66)

(10.67)
(10.68) 
(10.69)

Of all the forms of Maxwell’s equations, we will find Equations (10.66)-(10.69) the 
most useful, since most materials are simple, and we are usually interested in the E- 
and H-fields away from the sources that cause them.

3 When fields are not time harmonic, pv can be nonzero while the medium relaxes from a transient event. 
(See Section 5-3-5).
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^ 1  n,  n

Figure 10-5 Contours and surfaces 
used to determine the boundary 
conditions for electric fields, magnetic 
fields, and currents at the interface 
between two dissimilar media.

10-5  B o u n d a ry  C o n d it io n s  fo r  T im e -v a ry in g  Fields

The properties of time-varying electric and magnetic fields at the interfaces between 
different media are the same as for time-invariant fields. These properties can be 
derived directly from Maxwell’s equations.

Figure 10-5 shows an interface between two homogeneous media. The upper 
medium is characterized by and ev and the lower medium is characterized by 
and e2. Also shown is a contour C, which is a small path with depth Ah and length A£ 
that straddles the interface. We can determine the behavior of the tangential E- and 
H-fields at the interface by evaluating Equations (10.23) and (10.24) around this con
tour, obtaining

<t E-d£ = -  — f B*ds
Jc dtjs

and

<j! H - d f  =  /  +  D - d s ,

where S is the flat surface surrounded by the path and I  is the current that passes 
through A in a right-handed sense. In the limit as Ah —> 0, the contributions from the 
contour that are perpendicular to the interface become negligible. Also, since AS —> 0 
as Ah —> 0, both surface integrals also become negligible, leaving

E-d£ Eu Af -  E2tM  ~  0

and

j) H - d f  - H l tM  -  H 2lA i = I  « JsnM ,

where Jsn is the component of the surface current density that is perpendicular to the 
loop. Dividing both expressions by A£, we obtain

(10.70)
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and

A , -  A , = A - (10-71)
Using B = /x H and D = eE, we find that the preceding conditions become

— Dlt — — Dlt = 0 (10.72)
6 1 e 2

and

= (10.73)
Pi P2

Recognizing that there can be two tangential components for both D and B, we can 
generalize Equations (10.70) and (10.71) by using the cross product, yielding

a21„ X (E, -  Ej) = 0 (10.74)

X (H, -  H2) = J , , (10.75)

where a21n is the unit normal to the interface that is directed from region 2 to region 1.
The boundary conditions satisfied by the normal components of the fields are 

obtained by evaluating Equations (10.25) and (10.26) over the “pillbox” surface shown 
in Figure 10-5, with height Ah and end-cap area AS. If we let Ah —> 0, the area of the 
“barrel” portion of the surface becomes zero, and hence, the only contributions to the 
integral come from the bottom and top surfaces; thus

b D • ds = DlnAS -  D2nAS = Q *  psAS,
s

and

b B • ds «  BXnAS -  B2nAS = 0,
5

where ps is the charge density along the interface. Dividing both equations by 
AS, we obtain

® l n  ^2n " P i  

& l n  ~  B l n  = 0.

(10.76)

(10.77)

Using B = /x H and D = eE, we can also write these expressions

e l E l n  ~ €lE2n = Ps (10.78)

P ^ l H l n  ~ P̂ 2H2n = (10.79)
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Finally, the boundary conditions can be written in more compact form using the unit 
normal a21„:

i m i  nn mb |  |  ;

(D, -  D2)-a,,„ = p, (10.80)

(B, — B2) • ii,|„ = 0. (10.81)

There are two important special cases of these boundary conditions. The first is 
when both media are nonconducting. For this case, ps — 0 at the interface, so the nor
mal component of D is continuous across the interface and the normal component of E 
is discontinuous when e1 ^  e2. The second special case occurs when one region is a 
perfect dielectric (a  = 0) and the other is a perfect conductor (a- —> oo). For this case, 
the electric and magnetic fields inside the perfect conductor are zero (except for possi
bly a magnetostatic field), and Equations (10.70) and (10.79) show that the tangential 
electric field and the normal magnetic field on the dielectric side of the interface are 
both zero, yielding

Et = Hn — 0. (10.82)

Also, the surface current density along the surface is related to the tangential compo
nent of the magnetic field and is given by

Js = a„XH,  (10.83)

where a„ is perpendicular to the conductor and points from the conductor to the 
dielectric.

The most general case occurs when both media are conducting. For this case, the 
constraints on the tangential components of J follow directly from Equation (10.70), 
which is valid for both conducting and nonconducting media. Using J = crE, we obtain

lu

^
1II

°~i °2
(10.84)

On the other hand, the constraints on the normal components of the current density J 
can be determined from the integral form of the continuity equation,

J • ds = ---- Q
dt

Here, S is the pillbox surface shown in Figure 10-5, and <2enc is the charge contained 
within this surface. In the limit as the pillbox height goes to zero, the only contribu
tion to the surface integral comes from the end caps, so j s J*ds 5=3 {J2n -  Jln)As. 
Also, on the right side, we have <2enc ~  p5As, where ps is the surface charge density 
along the interface. Equating these two expressions and noting that the As terms can
cel, we obtain

^ 2 n J \ n  ~ dt
(10.85)
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Figure 10-6 shows a flat, perfectly conducting surface. If it is known that the magnetic field 
is given by

f 3 cosx av + 2 cos* a v [A/m ] z s* 0 
H = [0 ' z <  O’

find the current density on the conductor surface.

Figure 10-6 A perfectly conducting 
surface.

Solution:

If we call the regions z 2s 0 and z <  0 regions 1 and 2, respectively, the unit normal from 
region 2 to region 1 is a21„ =  a.. Hence, using Equation (10.83), we have

3S = a, X (3 cos (x) ar + 2 cos (x) a )

= 3 cos (x) a -  2 cos (x) ax [A /m ].

1 0 -6  ac C irc u it Analysis

Strange as it may seem, a common goal of electromagnetic analysis is to analyze as 
many parts of a system as possible using ordinary ac circuit analysis. The reason for 
this is simple: Circuit analysis is much simpler than field analysis. In this section, we 
will derive the equation for a simple circuit directly from Maxwell’s equations. This 
will demonstrate not only that ac circuit theory is based firmly on electromagnetic the
ory, but also what assumptions are necessary in order for ac circuit theory to be valid.

Figure 10-7 shows a series circuit consisting of a voltage source, a resistor, an 
inductor, and a capacitor. These elements are connected with perfectly conducting, 
filamentary wires that are short enough so that the inductance and capacitance of the 
wires can be neglected. We will also assume that the only places where an electric 
field exists along the circuit are between the terminals of the voltage source, between 
the terminals of the resistor, and between the terminals of the capacitor. Also, we will 
assume that the magnetic field is negligible everywhere except between the windings of 
the inductor.

—AWv-
3 4

6
S'

5
=!= c

Figure 10-7 An ac circuit in which the 
magnetic field is significant only near the 
inductor and the electric field is significant 
only between the plates of the capacitor.
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We can apply Faraday’s law (Equation (10.23)) to this circuit, as long as the inte
gration path passes around the voltage source, rather than through it, since a noncon
servative force field is present inside a voltage source. Integrating along the circuit 
perimeter, and assuming that the tangential electric field is zero along the conductors, 
we can write

f E - d f + f  E - d f + f  E • d£ = — f —  • ds, (10.86)
J1 A  A  A  dt

where the numbered points in the integrals correspond to the indicated points in Figure
10-7 and S is the surface bounded by the circuit contour. We will now show that each 
of these integrals represents a familiar circuit expression.

The integral f f  E • dt! is simply the electromotive force (emf) of the source (see 
Section 5-2-3); that is,

f E-df = -  f E-df = - V s, (10.87)
A A

where Vs is the source voltage from terminal 1 to terminal 2. Next, we note that inside 
the resistor, E = J/(aSR) (where SR is the cross-sectional area of the resistor), so the 
integral f 3 E • dt! can be written as

f  E -d i = I - ^ -  = IR (10 .88)
J3 <t Sr

where dR is the length of the resistor, R = dR/crSR is its resistance, and I is the current 
flowing clockwise through the circuit. The third line integral, f5 E • dt!, is the voltage 
across the capacitor. Using Equation (10.16), we can write this voltage in terms of the 
current flowing into the positive plate, i.e.,

f  E • dt! =  ~ j  I (t )dt ,  (10 .89)

where C is the capacitance of the capacitor. Finally, since B is negligible everywhere 
except inside the inductor windings, the surface integral fs (dB/dt) • ds takes place over 
the surface S' linking the inductor windings. Using the definition of inductance, L = 
0 / 1 , we can write the surface integral as

dB
dt

ds
d_

dt
B • ds

S'

s_
dt

(LI) = L
cU
dt ’

(10.90)

Substituting Equations (10.87)-(10.90) into Equation (10.86), we obtain

IR+h[ Jd,+Lf, = v” <10-91>

which is the familiar mesh equation used for circuit analysis.
Obviously, one does not need electromagnetic analysis to evaluate Equation 

(10.91). Electromagnetic analysis is needed, however, to establish under what circum
stances a circuit can be modeled using this simple equation. These circumstances are:
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1. A thin conducting wire defines the closed contour of the circuit.
2. All wire resistance is incorporated in lumped resistances.
3. The wire inductance is either neglibible or incorporated into lumped induc

tance elements.
4. Stray capacitance of the wires to ground (or other circuits) is negligible, so each 

component in the loop has the same current.

As we shall see at various points throughout the remainder of this text that most of 
these conditions are met when all the wires and components of a circuit are short, com
pared with the wavelength of the operating frequency.

1 0 -7  S u m m a tio n

The concept of displacement current was the last postulate of electromagnetic theory 
to be discovered. Without it, the equations of electromagnetics would not be capable 
of correctly modeling many effects, particularly at high frequencies. However, it is 
rarely necessary to think about the meaning of the term “displacement current.” In 
fact, this can be said about all the physical postulates that lead up to Maxwell’s equa
tions. As a result, most of our effort in the remainder of the text will be devoted to 
simply using Maxwell’s equations to solve various practical problems. Each of these 
chapters will center on a specific class of devices or phenomena: transmission lines, 
plane waves, waveguides, and radiation.

P roblems

10-1 Suppose that an electric field E =  E0x2e~°“ay exists in a nonmagnetic (/x = fx0), 
nonconducting (cr = 0) region. Using Maxwell’s curl equations, show that this 
field can exist only if the permittivity e is a specific function of position. Find 
this function.

10-2 The addition of Maxwell’s displacment current term dD/dt to Ampere’s law 
make this law consistent with the law of charge conservation. There are, how
ever, an infinite number of terms that would accomplish the same thing. Prove 
that any term of the form

dD
—  + V X G,
dt

where G is any vector, also accomplishes this. Of course, only the choice G = 0 
makes Ampere’s law agree with all the other experimental evidence pertaining 
to time-varying fields.

10-3 When observed at large distances from their sources, the electric and magnetic 
fields generated by many current and charge distributions can be appoximated 
as spherically symmetric waves whose amplitudes vary inversely with distance. 
Consider the following spherical wave in source-free (i.e., J, = 0) free space:
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E = —  sin {tot -  fir) a0,

(a) Use Maxwell’s curl-E equation to find the magnetic field intensity H that is 
associated with the preceding E.

(b) By substituting the H found in part a) into Maxwell’s curl-H equation, find the 
value of fi that allows E to satisfy Maxwell’s curl equations for large values of r.

(c) What other component of E must also be present at small values of r in order 
to satisfy Maxwell’s curl equations?

10-4 Displacement current 3d — dT)/dt cannot be neglected at high frequencies in 
insulators (of which free space is an example). In conductors, however, dis
placement current can often be ignored when the conduction current Jc = crE is 
high. Find the ratio Jc/Jd in seawater at
(a) / =  30 [Hz], where er = 80 and <j  — 4 [S/m],
(b) / =  10 [GHz], where er = 80 and a = 25 [S/m].

10-5 A homogeneous dielectric with dielectric constant er — 8 and conductivity a  is 
placed between the plates of a parallel-plate capacitor. Determine the value a  
at which the conduction and displacement currents in the dielectric are equal at 
a ) /  = 1 [kHz] and b) 100 [MHz].

10-6 Suppose that the following H-field exists in a source-free vacuum region:

f i  „ (X „
H = --------EQ sin ax cos { t o t  — fiz) ax ---------E 0  cos ax sin (cot — fiz) a .

/ z 0 6> n Q(o

(a) Use Ampere’s law to find the E associated with the H-field.
(b) By substituting the E found in part a) into Maxwell’s curl-E equation, show 

that these E- and H-fields are valid only when a 2  + fi2  = /iQ e0 a>2

(c) Prove that these E- and H-fields also satisfy Maxwell’s divergence equations.
10-7 Let H = H 0  cos (kxx) cos {tot -  fiz) az, where kx and fi are real valued. Find H

in the frequency domain.
10-8 If E = EQe~aze~iPz ax, find E in the time domain if a and fi are real valued.
10-9 Show that for sinusoidally varying fields, the conduction and displacement cur

rents are always 90° out of phase in time when e and a  are real valued.
10-10 Find the displacement current density associated with the following magnetic 

field in a source-free region of free space:

H — H 0  cos kxx e~iPz ax.

10-11 Consider a three-dimensional space that is divided into two regions, z > 0 and 
z < 0, that have permittivites e1 and e2, respectively. If both media are noncon
ducting (crj = <r2 = 0) and E1 -  aax + fisty + £az at z = 0+, find E2 at z -  0~.

10-12 Consider a three-dimensional space that is divided into two regions, z > 0 and 
z < 0, that have permeabilities yu1 and ^ , respectively. If

= azx + fiay + £az at z — 0+,

find B2 at z =  0 “ when a surface current J5 = Jx ax +  Jy ay flows along the boundary.
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10-13 Figure P10-13 shows an interface between two nonconducting media. If the E- 
and H-fields in region 1 at the interface are

Ej = 2ax + ay -  3az [V/m]

Hj = -  + 2ay -  4az [A/m],

find E2 and H2 at the interface.

10-14 Figure P10-14 shows a rectangular waveguide, which consists of a conducting, 
rectangular cylinder with cross-sectional dimensions a and b along the x- and y- 
axis, respectively. In Chapter 13, we will find that a possible magnetic field dis
tribution inside such a waveguide at frequency <o is given by

H = H„
w) sinla  x) + C0SU x]a’

,-jPz

where H0  and [3 are constants. Use the boundary conditions at a perfect con
ductor to find expressions for the surface current Js on the four inside walls of 
the waveguide.

F ig u re  P I 0 -1 4



II

Transmission Lines

11-1 In tro d u c tio n

Any configuration of wires and conductors that carries opposing currents is a trans
mission line. However, when the term “transmission line” is used, it usually refers to 
a uniform transmission line-two or more conductors that maintain the same cross-sec
tional dimensions throughout their lengths. Transmission lines are essential compo
nents in nearly all electrical systems and devices. Often, they take the form of cables, 
such as the coaxial cable shown in Figure 11-la, which consists of a solid center con
ductor, surrounded by a dielectric core and an outer conductor. The outer conductor 
can be either solid or braided and is usually grounded at one or both ends. Another 
common transmission line is a two-wire (or twin-lead) line, shown in Figure 11-lb. 
Here, two wires are separated by a dielectric that provides mechanical support. When 
the wires have identical cross sections and the same relationship to ground, the result
ing transmission line is called a balanced transmission line.

Transmission lines found on electronic circuit boards are usually planar types, 
where the conductors lie on flat dielectric sheets. Figures ll-2a-c show examples of 
microstrip, slot-line, and fin-line transmission lines, respectively. Planar transmission 
lines are popular because they can be manufactured using the same technology that is

349
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Figure 11 -1 Transmission line cables: a) A 
coaxial cable, b) A two-wire transmission 
line.

I 1

l I
Figure 11 -2 Planar transmission lines: a) A microstrip line, b) A  slot line, c) A fin line.

used for printed circuit boards. We will show in this chapter that all conductor traces 
on ordinary printed circuit boards are really transmission lines, which often do not 
behave at all like the idealized “wires” used in ordinary circuit analysis, particularly at 
high frequencies. We will also discuss the major aspects of uniform transmission lines, 
using both time-domain and frequency-domain analysis.

1 1 -2  T E M  M o d e s  on  T ran sm iss io n  Lines

When a transmission line is connected to a source (such as an ideal voltage or current 
source), electric and magnetic fields are induced throughout the line. The way in 
which these fields distribute themselves is a function of the cross-sectional dimensions 
of the line, the materials used, the frequency of operation of the line, and the nature of 
the source. Under the right conditions, any one of an infinite number of distinct elec
tric and magnetic field patterns can be induced on a transmission line. Each of these 
patterns is called a mode. Because the electric and magnetic fields of each mode are 
different, each mode has different electrical characteristics.

For a transmission line that lies along the z-axis, we can classify all the possible 
modes into three basic classes:

TEM modes Transverse-electromagnetic modes, often called transmission-line 
modes, are characterized by Ez = 0 and Hz = 0 at all points. Transmission lines 
that have at least two separate conductors and a homogeneous dielectric can sup
port one TEM mode. This mode is capable of transporting energy and informa
tion over a wide band of frequencies, including dc.
Quasi-TEM modes For these modes, Ez and Hz approach zero in the limit as the 
frequency of operation approaches zero. A single quasi-TEM mode can exist on
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transmission lines that have at least two conductors and an inhomogeneous 
dielectric (such as a microstrip transmission line). These modes have nearly the 
same characteristics as TEM modes and can be analyzed using the same tech
niques.
Waveguide modes These are modes for which Ez, Hz, or both, are nonzero. 
Waveguide modes can transport energy or information only when operated 
above distinct cutoff frequencies. They modes are usually considered to be 
undesirable on transmission lines and can generally be avoided by operating the 
line well below their cutoff frequencies.

Any of these three classes of modes can exist on a transmission line. However, 
as long as the operational frequency is kept below the cutoff frequencies of the wave
guide modes, only the TEM or quasi-TEM mode will be transported over large dis
tances. The dominant mode of a transmission line is its TEM or quasi-TEM mode. 
For the remainder of this chapter, we will deal exclusively with TEM or quasi-TEM 
modes. (We will discuss waveguide modes in detail in Chapter 13.) Also, since the 
quasi-TEM modes are nearly the same as TEM modes, we will call them both TEM 
modes, unless there is a particular need for a distinction.1

11-2-1 CIRCUIT EQUATIONS FOR TEM MODES

As we said in the preceding section, the TEM mode of a transmission line is by far the 
most desirable mode to use for nearly all practical applications. It is also the easiest 
mode to model. This is because the electric and magnetic fields of TEM modes pro
duce uniquely determined modal voltage and currents. Since they are scalars, these 
voltages and currents are relatively easy to measure and model. In this section, we 
will derive two fundamental equations that characterize these voltages and currents 
along the line.

Figure 11-3 shows the cross section of a uniform transmission line, aligned so that 
it runs parallel to the z-axis.

F ig u re  11 -3  Geometry for deriving the 
equations for voltages and currents on a 
uniform transmission line. Path C is 
closed and lies in a constant z-plane. Path 
Cj extends from conductor 1 to conductor 
2 in a constant z-plane.

1 For a more complete discussion of how quasi-TEM modes differ from TEM modes, see R.E. Collin, Foun
dations o f Microwave Engineering, 2d ed. (New York, McGraw Hill: 1992).



If Cxv is an arbitrary contour that lies in any constant z-plane, Maxwell’s line integral 
equations read

c£ E«d£ = - — f B-ds (11.1)
Jcxy dt Js^

H-<M = /„ C + U  D-ds, (11.2)
dt JS:

where the surface Sz lies in a constant z-plane and is bounded by the closed path Cxy, 
and / enc is the current passing through Sz in a right-handed sense. Since Ez - H z = 0 
for a TEM mode, B*ds = 0 and D*ds = 0 everywhere on Sz. Thus, when only a 
TEM mode is present, Equations (11.1) and (11.2) become
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E • di = 0 (11.3)

H-d« = /enc. (11.4)
JCXy

These equations should look familiar; they are the very same equations satisfied by 
electrostatic and magnetostatic fields. Hence, we can conclude that the electric and 
magnetic fields associated with TEM modes distribute themselves throughout con
stant z-planes just like electrostatic and magnetostatic fields, regardless of the fre
quency of operation. This is our first clue that we can model TEM modes using 
ordinary circuit analysis.

Next, let us suppose that conductors #1 and #2 in Figure 11-3 are perfectly con
ducting and carry currents I  and - / ,  respectively. We will also assume that the dielec
tric material is homogeneous and lossless. We can express the voltage V between the 
conductors in a constant z-plane by integrating along the path Cj shown in Figure 11-3; 
that is,

V = — f E • d£ = f E • df,
h  h

where “1” and “2” are points on the left and right conductors, respectively. Since C, 
is in the xy-plane, df = dx av + dy av, which means that the preceding expression can 
be written as

V =  (Exdx + Exdy).

Differentiating both sides with respect to z yields

dV

dz f(f dEy

dz
dx ——  dy I. (11.5)

We can write the integrand of this integral in a more useful form by remembering that
V x E  = — (dB/dt) (for all fields) and Ez = 0 (for TEM modes). Using these, we can write
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and

(V X E)* =

(VXE)> =

dEy dBx 

dz dt

dE dB__ _ _ ___ y_

dz dt

( 11. 6)

(11.7)

Substituting Equations (11.6) and (11.7) into Equation (11.5), we obtain

dV_
dz J>

ydx -  Bxdy), (11.8)

noting that the differentiation with respect to time has been brought outside the inte
gral, since the integration path C is stationary. Next, the integrand of Equation (11.8) 
can be written as a dot product, i.e.,

Bydx -  Bxdy = (11-9)

where

a„ =
— dyax + dx ay 

V dx2 + dy2

dyax + dx ay 

di

is a unit vector that is perpendicular to the path Cv 
Equation (11.8), we obtain

dV d r2
dz dt J1

B • a„dl.

(11.10)

Substituting Equation (11.9) into

(11.11)

The line integral on the right-hand side of Equation (11.11) is the magnetic flux 
per unit length <P that passes between the two conductors in a right-handed sense. 
Remembering that L = <P/I, where I  is the transmission line current and L  is the induc
tance per unit length in [H/m], we can write Equation (11.11) as

—  -  - L  — 
dz d t '

(11.12)

This expression is the first of two fundamental equations that describe the voltages and 
currents associated with TEM modes on lossless transmission lines. A similar 
sequence of steps yields the companion equation

di dV
—  = - c — ,
dz dt

(11.13)

where C is the capacitance per unit length of the transmission line in [F/m].
Equations (11.12) and (11.13) were both derived under the assumption that the 

conductors are perfectly conducting and the dielectric is uniform and lossless. In the 
real world, neither of these conditions are met. When losses are taken into account, 
these equations become
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a/

3z
= -  GV -

dV

dz
— RI -

(11.14)

(11.15)

where R is the resistance per unit length of the conductors in [fl/m] and G is the con
ductivity per unit length of the dielectric in [S/m]. The additional terms in these gen
eralized equations are more difficult to derive formally, but are easily justified using 
simple physical reasoning. For instance, Equation (11.14) states that the rate at which 
I  varies along the line is proportional to C(dV/dt) ,  which is the capacitive (i.e., dis
placement) current flowing between the conductors. When the dielectric is lossy, an 
additional conduction current GV flows in parallel with the capacitive current. Simi
larly, if the conductors have finite conductivity, an additional term RI is needed in 
Equation (11.15) to account for the ohmic voltage drop along the line.

The values of the circuit parameters L, C, R, and G depend upon the cross-sec
tional shape of the transmission line and the materials used. Since the electric and 
magnetic fields of TEM and quasi-TEM modes distribute themselves throughout the 
cross section of a transmission line exactly like their electrostatic and magnetostatic 
counterparts, the values of C, L, and G can be calculated using the techniques dis
cussed earlier in Chapters 6 and 9, respectively. Expressions for R are somewhat 
harder to come by, since this parameter is related to the penetration of the fields into 
the conductors. Formulas for the circuit parameters of a number of common trans
mission lines are presented in Appendix D.

11-2-2 THE UNIT CELL

Since the TEM fields on a transmission line can be described in terms of voltages and 
currents, it follows that any length of transmission line can be represented as an equiv
alent network of lumped components. The simplest equivalent circuit is obtained 
when one considers a very short section. This equivalent circuit is called the unit cell 
and is shown in Figure 11-4.

Figure 11-4 The unit cell of an arbitrary transmission line.
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In this “T” configuration, the values of the inductance and resistance on either side of 
the shunt elements are LAz/2 and RAz/2, respectively, where L and R are the induc
tance and resistance per unit length, respectively. Similarly, the values of the shunt 
capacitance and conductance2 are CAz and GAz, where C and G are the capacitance 
and conductance per unit length of the transmission line.

To show that the voltages and currents on this equivalent circuit are consistent 
with the transmission-line circuit equations (Equations (11.14) and (11.15)), let us first 
apply Kirchhoff s voltage law around the outer perimeter of the circuit. A clockwise 
KVL path around the circuit yields

-y+Az(f̂ + f)/+AzK + f)(/+A/)+y+Ay=0’
where V and I  are the voltage and current at the left-hand terminals, respectively, and 
V + AC and I + AI are the voltage and current at the right-hand terminals, respec
tively. As Az -a 0, 1 + A/ —> 7, so

r) I
R IA z + LAz — + AV = 0.

Dividing both sides by Az, we find that

lim
Az—>0

AV
Az

dV
dz

RI + L
d/
dt

which is the same as Equation (11.15).
The voltage across the shunt elements GAz and CAz approaches V when Az is 

small, so we can express the current AI  flowing through these elements as

dV
AI = -G A zV  -  CAz —  .

dt

Dividing both sides of this expression by Az, we obtain

lim ~  = —  = - I g V + C ~
Az-^0 Az dz \ dt

which is the same as Equation (11.14).
The equivalent circuit shown in Figure 11-4 is exact only in the limit as Az —» 0. 

Nevertheless, it is an excellent approximation when Az is small. Hence, a transmis
sion line of any length can be modeled as a cascaded chain of unit cells. (See Figure
11-5).

11 -3  T ra n s ie n t V o lta g e s  a n d  C u rre n ts  on  T ran sm iss ion  Lines

Now that we have developed the differential equations and the circuit parameters that 
control the voltages and currents on transmission lines, we are ready to investigate how 
transmission lines respond when driven by sources. Just as in circuit analysis, it is con
venient to divide this discussion into two parts: time-domain (i.e., transient) analysis

2 The shunt resistance is typically called a conductance to distinguish it from the series resistance R.
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A z A z A z

F ig u re  11 -5  A n equivalent circuit of a finite length of transmission line, consisting of a 
cascaded chain of unit cells.

and frequency-domain analysis. First, we will use time-domain analysis to characterize 
the voltage and current waves that are launched on transmission lines by general, time- 
domain sources. Later, we will develop frequency-domain techniques for modeling 
transmission-line responses due to steady-state sources.

11-3-1 TRANSIENT WAVES ON LOSSLESS TRANSMISSION 
LINES

When no losses are present, R — G — 0. For this case, the transmission-line equa-
tions become

dV _ dl
(11.16)

dz dt

"  = - c ^ .
dz dt

(11.17)

These are simple differential equations, but they are coupled, since they both contain V 
and I. To obtain an equation that contains only V, let us first differentiate Equation 
(11.16) with respect to z, obtaining

d2V _ _ L &]__ d2/

dz2 dzdt dtdz '
(11.18)

Here we have assumed that I  is a “well-behaved” function, so the order of differentia
tion with respect to z and t can be interchanged. Next, if we differentiate Equation 
(11.17) with respect to t, we have

a2/  _ c s2v
dtdz dt2

(11.19)

Substituting Equation (11.19) into Equation (11.18), we obtain a differential equation 
in terms of only V:

d2V _ d2V
dz2 "  dt2 •

(11.20)
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We can derive a similar equation for the current /  by a similar sequence of steps:

d2/
dz2

(11.21)

Equations (11.20) and (11.21) are called one-dimensional wave equations.

Propagating Voltage Waves. To understand the nature of the voltages that can 
exist on lossless transmission lines, let us start by stating the general solution of the 
voltage wave equation (Equation (11.20)):

V(t, z) = V +(t -  z/u) + V~(t + z /u ). (11.22)

Here,

u  =  ^ / =  [m/s], (11.23)

and V +( t )  and V ~ ( t )  are arbitrary functions of a single variable, called waveform func
tions. To verify that Equation (11.22) satisfies Equation (11.20), we note that the sec
ond derivatives of V with respect to t and z are

^  = (V*)" (t -  z/u) + (V~y (I + z/u) (11.24)
a t

and

= A  (V*)" (t -  z/u) + i  (V - ) "  ( t  + z/u), (11.25)
d Z  U  U

where (V +)" and (V ~ )" are the second derivatives of V+ and V ~ ,  respectively. Substi
tuting Equations (11.24) and (11.25) into Equation (11.20), we find that Equation 
(11.22) is indeed the general solution of the wave equation for all waveform functions 
V +(t) and provided that the parameter u is given by Equation (11.23).

The voltage expression given by Equation (11.22) consists of waves that travel 
along the transmission line. To show this, let us for the moment assume that 
V~(t) = 0. For this case, the voltage expression becomes

V ( t ,  z) = V +(t -  z/u).

Figure 11-6 shows V(t, z) as a function of time t for three values of z when V +( t )  is a 
“pulselike” function. As can be seen, the same waveform is observed at each position, 
with a time delay that increases linearly with z. Since the waveform shape is the same 
for all values of z, we call this distortionless (or dispersionless) propagation. This is a 
characteristic of all lossless transmission lines. To calculate the propagation velocity, 
let us observe how fast the value of z must change in order for an observer to “ride” on 
the same point of the pulse as it moves. This occurs when the argument of V + remains 
constant as time progresses:

t  — z/u — constant.

Differentiating both sides of the preceding expression with respect to t ,  we obtain
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F ig u re  11 -6  A forward-propagating voltage pulse, measured at three 
points along a lossless transmission line.

dz _ 1
dt ~ vTC  “

Thus, we can conclude that the waveform V +(t -  z/u) travels (i.e., propagates) 
towards increasing values of z at a rate of

1
“  VLC

[m/s], (11.26)

where u is called the velocity o f propagation. Waves propagating towards increasing 
values of z are called forward-propagating waves.

Returning to the general voltage expression given by Equation (11.22), let us now 
consider the case where V + = 0 and V~ 0. For this case, we have

V(t, z) = V~(t + z/u).

To “ride” on the same point of this waveform, we must maintain 

t + z/u  = constant.

Differentiating both sides of this expression with respect to t, we obtain

dz _ _ 1
*  " ~ u ~ ~V T X '

which means that the term V~(t + z/u) represents a wave traveling in the ~z  direction 
at the rate \u\ = 1/VLC . We will call waves propagating in this direction backward- 
propagating waves.
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Forward-propagating and backward-propagating waves can exist on a transmis
sion line simultaneously. When that happens, both V + and V~ are nonzero. This 
often occurs when an incident wave reflects off a lumped load at the end of a transmis
sion line, as we will show later. When oppositely directed waveforms pass by each 
other, however, they do not affect each other.

Propagating Current Waves. Associated with each traveling-wave voltage is a 
traveling-wave current. To show this, we first remember from Equation (11.21) that 
the current I(t, z) satisfies exactly the same one-dimensional wave equation that 
V(t, z ) does:

a2/
dz2

(11.27)

Hence, just as with V(t, z), solutions for I(t, z) are always of the form

I{t, z) = I +(t -  z /u ) + I~(t + z/u), (11.28)

where u is given by Equation (11.26). Although it may appear from Equation (11.28) 
that the waveform functions I +(t) and I~(t) are arbitrary, they have the same shapes as 
the forward-propagating and backward-propagating voltage waveform functions, 
V +(t) and V~(t), respectively. To show this, substitute Equations (11.28) and (11.22) 
into Equation (11.16), obtaining

1 1
-  — V +(t -  z/u) + — V (t + z /u ) = - L I +(t — z/u) -  LI (t + z/u). 

Both sides of this equation will be equal for all values of t and z only when 

V +(t)

and

I +(t)

V~(t)

= R.

r ( t )

where

(11.29)

(11.30)

= A /f m (11.31)

As a result, the current I(t, z) can be written as

I (I z) = V +(t -  z/u) -  V~{t + z/u). (11.32)

The parameter R 0  is called the characteristic resistance of the transmission line. 
This name is a logical one, since it is measured in ohms and is the ratio of a voltage 
and a current. However, this resistance is not like lumped resistors, which dissipate
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electrical energy. Rather, the characteristic resistance of a transmission line is an 
indication of its ability to transport energy via the propagation of voltage and cur
rent waves.

Later, when we use phasor analysis to describe time-harmonic waveforms on 
lossy transmission lines, we will find that the voltage and current waves are related by 
the characteristic impedance Z0, which is complex for lossy lines. However, for loss
less lines, ZG = Ra, so the variables Ra and Z0 and the terms “characteristic resistance” 
and “characteristic impedance” can be used interchangeably.

E xam p le  11-1

Calculate the characteristic resistance R 0 of RG -58/U  coaxial cable which has a solid inner con
ductor with radius a = 0.406 [mm] and a braided outer conductor with radius b  = 1.553 [mm]. 
Assume that the dielectric is polyethylene, which has a dielectric constant of 2.26.

Solution:

We have already found the distributed capacitance and inductance for this cable in Exam 
ples 6-1 and 9-10, respectively:

L =  0.268 [|xH/m]

C  =  93.73 [pF/m],

Substituting these values into Equation (11.31) yields

0.268 x  1 0

93.73 X 10“ 12
=  53.47 [ft],

which agrees well with the nominal value of 53.5 [ft] for this type of cable. We can also obtain 
this result by using Equation (D.12) in Appendix D. Remembering that R a =  Z 0 for lossless 
transmission lines, we find that

=  J _  ( b )  =  J _  / 4?t x  IQ" 7 / 1.553\

0 2 7 rV e ' ( a /  277 V 2.26 X 8.854 X 10” 12 ln \0.406/

= 53.47 [ft]

E xam p le  1 1 -2

Calculate the characteristic resistance R 0 of a microstrip transmission line shown in Figure
11-7, where w  =  3 [mm], hi =  2 [mm] and er = 2.3.

i w |

F ig u re  11 -7 A microstrip transmission 
line.

Solution:

Since W/h  =  1.5 >  1, we can use equations (D.20) and (D.21). Substituting the values of
w,  h , and er, we find that
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1 i  / 12\~1/2
e. „  =  - ( 2.3 +  1) +  - ( 2.3 - 1) ( l + —  )

= 1.87

120
R 0 = Z 0 — {1.5 + 1.393 + 0.667 In [1.5 +  1.444] } - 1

= 76.3 [ft].

Power Transport. As might be expected, the presence of propagating waves on 
a transmission line is an indication that power is being transported. To show this, con
sider the situation depicted in Figure 11-8, which shows a section of a uniform transmis
sion line that is carrying both forward-propagating and backward-propagating waves. 
Viewing this section of transmission line as a one-port network with its terminals at the 
plane z = z ', we see that the power P + entering the terminals equals the product of the 
voltage across the terminals and the current into the positive terminal; that is,

P = VI

where V and I are the total voltage and current at z = z \  respectively, and the positive 
direction for /  is directed towards the right. Substituting V = V + + V~ and 
I  = I + + I~ into this expression, we obtain

p = [ v +  +  v ~ ] [ i +  + /  ] = v + i +  + v + r  +  v - i +  +  v ~ r .

Since V + = R 0 I + and V~ = —R0 I~, the second and third terms on the right-hand side 
cancel, and we can write

p  =  p +  -  p -in ’

where

(v y
R,

p +  =  v + r  =  =  r q( / +)2 [w]

and

(V ~ ) 2

P ~  =  v - r  =  ~  =  R 0 ( n 2 [w].

(11.33)

(11.34)

(11.35)

Fin /

0 ~
+ ((
V

) )

! z=z'

Figure 11 - 8  Power transport on a transmission line. P in is the power 
entering the z =  z '  plane from the left.
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Since P + and P~ are always positive, we can interpret them as the power entering and 
leaving the terminal pair, respectively, at z = z '■ Thus, P + is the forward-propagating 
power transported by the forward-propagating voltage and current waves. Con
versely, P~ is the backward-propagating power transported by the backward-propa
gating voltage and current waves.

11-3-2 WAVE PROPAGATION ON LOSSY TRANSMISSION LINES

When conductor or dielectric losses are present, V and I satisfy Equations (11.14) 
and (11.15); hence,

dl_

dZ
= - G V - C

dV
dt

(11.36)

dV

dZ
- R I -  L

dl
dt

(11.37)

We can obtain an equation involving only Cby differentiating Equations (11.36) and 
(11.37) with respect to z and t, respectively, and substituting one into the other:

d2V d2V dV
- ^ =  L C — f  + (RC + LG) —  + RGV. (11.38)
dZ2 dt2 y '  dt V '

Conversely, if we differentiate Equations (11.36) and (11.37) with respect to t and z, 
respectively, and substitute one into the other, we obtain an equation in terms of I  alone:

~  = LC ^  + (RC + LG) — + RGI. (11.39)
dz2 dt2 v 7 dt

These two equations are similar to those obtained for the lossless case (Equations (11.20) 
and (11.21)), except that they have some terms which change the nature of the solutions.

General solutions of Equations (11-38) and (11-39) cannot be expressed easily in 
the time domain. This is because waves launched on lossy transmission lines normally 
do not maintain the same waveshape as they propagate. Typically, waveforms spread 
out in time and diminish in amplitude as they propagate on lossy lines. Figure 11-9 
depicts such a case. Here, a forward-propagating pulse has a waveshape at z = 0 of
V +(z = 0). At z > 0, however, the waveshape V +(z > 0) is not only delayed, but also

t

Figure 11 -9 A pulse waveform at two 
points on a lossy transmission line.



attenuated and distorted. This waveform distortion is called dispersion and is usually 
an undesirable characteristic of lossy lines.

Lossy lines are easily modeled using frequency-domain analysis, which we will 
discuss later in this chapter. However, there is one special case where the waves on 
lossy lines can be easily represented in the time domain. This is called the dispersion
less (or nondistorting) case and occurs when R , C, L, and G satisfy the relation

RC = GL. (11.40)

For this case, the general solutions of Equations (11.38) and (11.39) are of the form

V{t, z) = e~azV +(t — z/u) + e+azV~(t + z/u) (11.41)

and
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I(t, z) = \ - e  azV +(t -  z/u) -  ~ e +azV (t + z/u), 

where

(11.42)

(11.43)

(11.44)

(11.45)

and V +{t) and V~(t) are arbitrary functions of t. Equations (11.41) and (11.42) can be 
verified by direct substitution into Equations (11.38) and (11.39). The terms in Equa
tions (11.41) and (11.42) that contain e~azV +(t — z/u) represent forward-propagating 
waves that grow exponentially weaker when they are observed at increasing values of 
z. The constant a has units of inverse meters and is called the attenuation constant of 
the wave. Similarly, the terms that contain eaz V~(t + z/u) represent backward-prop
agating waves that become exponentially weaker when observed at increasingly nega
tive values of z. Although both waves decay exponentially as they propagate, their 
waveshapes do not become distorted.

Oliver Heaviside discovered this nondistorting case in 1887 while studying the 
performance of long-distance telegraph circuits. At that time, it was known that the 
maximum rate at which telegraph signals could be transmitted on a line varied 
inversely with the length of the line, but the reason for this phenomenon was a subject 
of fierce debate. Heaviside was the first to discover why distortion occurs on lossy 
lines and theorized that it could be reduced or eliminated on practical transmission 
lines by adjusting the line parameters so that Equation (11.40) is satisfied. The initial 
engineering application of Heaviside’s idea to telegraph lines was done by George 
Campbell and, to a lesser extent, Micheal Pupin3.

3 See Paul Nahin, Oliver Heaviside: Sage in Solitude (New York: IEEE Press, 1988).
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F ig u re  1 1 -1 0  Loading coils placed periodically on a transmission line to reduce dispersion.

On practical transmission lines, the values of R, C, L, and G are usually such that 
RC > GL. To obtain a distortionless line, either RC must be decreased, or GL must 
be increased. This could be accomplished by increasing the conductor spacing, which 
increases L and decreases C. However, that world result in unacceptable conductor 
spacings. Another unacceptable solution is to add shunt conductance to the line to 
increase G, which also increases the attenuation constant a. Heaviside proposed rais
ing L by placing series inductors (called loading coils) periodically along the line, as 
depicted in Figure 11-10. This simple procedure was an immediate success and is still 
used on analog telephone links to allow distortionless transmission throughout the 
voice band (0-3 [KHz]).

E xam p le  1 1 -3

A twisted-pair telephone cable transmission line has the following parameters:

R  =  0.107 [H/m]

L  =  543 [nH/m]

C = 51.3 [pF/m]

G  = 51.0 [pfl/m].

Find the loading-coil inductance that must be added at each kilom eter of the line in order to 
obtain distortionless propagation.

Solution:

Using Equation (11.40) and the specified values of R , G ,  and C, we find that the required 
value of the inductance is

L' =
R C

G

0.107 x  51.3 x  1 0 ~ 12 

51.0 x  10~ 12
0.108 [H/m],

Using L '  = L  + L c , where L c  is the loading-coil inductance per meter, we find that 

L c  =  0.108 [H/m] -  543 [nH/m] »  108 [H/km],

1 1 - 3 - 3  L A U N C H I N G  W A V E S  O N  T R A N S M I S S I O N  L I N E S

A wave can be launched on a transmission line simply by attaching a voltage across its 
terminals. Figure 11-1 la depicts such a situation. Here, an independent voltage gen
erator Vg(t) and a resistor Rg are connected to the end of an infinite, lossless transmis-
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F ig u re  11-11 Launching waves on a transmission line: a) A voltage generator connected to
an infinite transmission line, b) The equivalent circuit as seen by the generator circuit, 
c) The voltage generator waveform, d) The voltage waveform observed a distance z along 
the transmission line.

sion line. The waveshape of Vg{t) is shown in Figure 11-llc; it has a peak amplitude of 
A. Because the line is infinitely long, the total voltage and current on the line consist 
only of forward-propagating waves; that is,

V(t,z) = V +( t -  z/u) (11.46)

and

I(t, z) = I +(t ~ z/u) = V +(t -  z/u). (11.47)

Since only a forward-propagating wave exists on the line, the resistance Rm look
ing into the line at z = 0 is the same for all time t :

, = M
in I(t, 0)

V+(t -  0/u)

j H i -  o/»)

Because of this, the input circuit can be redrawn as shown in Figure 11-1 lb, 
where the infinite transmission line has been replaced by a resistor of value R0. Using 
the voltage divider relation, we obtain
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^ • 0) = ̂ V,)’ (1L48)
which is the amplitude of the transmission line voltage at z = 0. Substituting this result 
into Equations (11.46) and (11.47), we get the following voltage and current waves:

H<.z) = -F 4 v V s ( r - z /« )  (11.49)
Rs + A

K t,z) = T ~ - V t { t - z /u ) .  (1L5°)
RS + Ro

Figure 11-lld shows that V (t, z) is simply a delayed and attenuated version of the gen
erator waveform Vg(t).

We assumed that the transmission line is infinitely long, so the waves launched by 
the generator will propagate forever without encountering any discontinuities. Because 
of this, no backward-propagating waves will appear. In the next section, we will investi
gate what happens when transmission lines are terminated with lumped resistors.

1 1 - 3 - 4  R E F L E C T I O N S  F R O M  R E S I S T I V E  T E R M I N A T I O N S

Figure 11-12a shows a section of lossless transmission line with characteristic resistance 
Ra, terminated with a load resistance of value RL at z = z '■ We will assume that a 
source far off to the left of the figure has launched forward-propagating (or incident) 
voltage and current waveforms that are described by

Vinci*’*) = V + ( t ~  Z/u) (11.51)

and

7inc0> z) = I +(t -  z/u) = V +(t -  z/u),
Ko

(11.52)

where V +(t — z/u) has a peak amplitude of A. If we assume that the waveform F +(r) 
is zero for r < 0, the leading edges of the incident waves will not reach the load until 
t = l/u. Thus, V +(t — z/u) and I +(t — z/u) are the only waves on the line for t < i/u.

When the incident waves reach the load, backward-propagating waves will be ini
tiated at the load if RL ^  R0. To see why, let us suppose that only the forward-propa
gating waves are present on the line for all values of t. If this were the case, the load 
voltage VL(t) and current IL(t) would simply be the incident waves, evaluated at z = £; 
that is,

VL(t) = V ( t , i )= V + ( t - l /u )

and

lL(t) = = - l / u ) .

°However, at the load, the ratio of the voltage and current must 
equal the load resistance RL:

M )

h ( 0
= Rl - (11.53)
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(a)

a

a

(d ) V +( t - z / u )  4

✓
___

F ig u re  11-12 The process of reflection at a resistive load: a) A transmission line
terminated by a resistor. b)-d) Line voltage along the line before, during, and after the 
incident pulse reaches the resistor, respectively.

Substituting the expressions for VL (?) and IL (f) into this equation, we find that the load 
resistance must be

Rl ~ Ro-

A load that is equal to the characteristic resistance produces no reflections and is 
called a matched load. When RL ^  R0, Equation (11.53) is not satisfied, which means 
that the incident waves alone cannot satisfy the conditions of both the transmission 
line and the load.

To model the case where RL ^  Ra, let us again assume that the same forward- 
propagating waves V +(t -  z/u) and I +(t -  z/u) are incident from the left in Figure
ll-12a, but this time let us also speculate that reflected, backward-propagating waves 
are also present. Hence, the total voltage and current on the line are given by

V(t, z) = V +(t -  z/u) + V~(t + z/u) (11.54)
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and

/(r, z) = I +(t -  z/u) + I  (f + z/u) = ~ - V +(t -  z/u) -  (t + z/w), (11.55)

where F~(t) is a yet-to-be-determined reflected waveform. Also, note that the nega
tive polarity of the reflected current I~(t + z/u) occurs because this wave is backward 
propagating. (See Equation (11.32)). Evaluating these expressions at z = t, we find 
that the voltage and current at the load are, respectively,

v L(t) = v +(t, l) + V~(t, i)

and

,L(‘) = Y v + (tA )~ Y v ~( tJ ) -

From these expressions, the ratio of the load voltage to the load current is

y +(r, l) + V-(t, t)v L ( t )  __________________________

4 ( 0  Y v+{ t A ) - Y v ~{tA)

Setting this expression equal to the load resistance RL and solving for V (t), we obtain 

V~(t,l) = r LV +( t,i) ,  (11.56)

where TL is the reflection coefficient, defined by

Substituting Equation (11.56) into Equations (11.54) and (11.55), we obtain the com
plete expressions for the voltage waves on a terminated line:

V(f, z) = V +{t -  z /u ) + r LV +(t + ( z -  2€)/«)

1(1, z ) = f ( y +( l  -  Z/u) -  r LV*(t + <)/«)).

(11.58)

(11.59)

These voltage and current waves satisfy the requirements of both the transmission line 
and the load resistance.

From Equation (11.58), we see that the reflected voltage waveform has the same 
shape as the incident waveform, with an amplitude that is governed by the reflection 
coefficient YL. For passive load resistances (RL 5= 0), TL has a magnitude that is always 
less than or equal to unity:

- i * r t « i  (r l * o). (11.60)
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Notice that TL = 0 when RL = R0, which means that no reflection is generated by a 
matched load. For this case, all the power in the incident voltage and current waves is 
dissipated by the load.

Figures ll-12b-d shows the incident, reflected, and total voltages on the termi
nated transmission line for three values of t. When tx< i / u (Figure 1 l-12b), the lead
ing edge of the incident wave has yet to reach the load, so only the incident wave 
appears on the line. Even so, it is convenient to show the yet-to-appear reflected wave 
as a dotted curve to the right of the load position (z = V) that propagates towards the 
left. The peak amplitude of this reflected wave is TL A , where A is the peak ampli
tude of the incident wave. Figures ll-12c and 11-12d show the voltages at two instants 
in time after the incident waveform has reached the load. Tn these plots, the incident 
waveform is drawn as a dotted line in the region z >  L to remind us that this region of 
the graph does not represent actual points on the transmission line. In Figure ll-12c, 
the incident and reflected waveforms appear simultaneously across the load, since the 
reflected wave is generated at the load the instant the incident wave appears. Figure
ll-12d shows that once the incident wave has encountered the load, only the reflected 
wave is left on the line (assuming that there is no mismatch at the generator).

Finally, we can also describe reflections in terms of the current waves. To do 
this, we substitute I + { t ,  0) =  V + ( t ,  0)/.R 0 and I ~ ( t ,  0) =  -  V ~ ( t ,  0 ) / R 0 into Equation 
(11.56) to obtain

no 
no

load
at the

Hence, the current reflection coefficient is simply the negative of the voltage reflection 
coefficient TL.

11-3-5 STEP RESPONSE OF TRANSMISSION LINES

We are now ready to discuss the full transient response of transmission lines that are 
terminated at both ends. To introduce this topic, consider the setup shown in Figure 11- 
13a. Here, a transmission line with characteristic resistance R0  = 50 [H] and length i = 
3 [m] is connected to a load resistor RL = 100 [O]. The source consists of a 12 [V] bat
tery, a resistor R g =  10 [fl], and a switch that closes at t  = 0. Also, the velocity of prop
agation is u = 3 X  108 [m/s], so the one-way propagation delay from end to end is 10 [ns].

When the switch closes at t = 0, a step waveform is launched towards the load 
with an amplitude V1 given by Equation (11.49):

V,
50

50 + 10
12 = 10 [V].

For 0 <  t < 10 [ns], this is the only voltage wave on the line. Figure ll-13b shows the 
line voltages at t = 7 [ns].

At t -  10 [ns], the leading edge of the incident waveform reaches the load, where 
a reflected wave is produced. The reflection coefficient at the load end is



3 7 0 CHAP. 11 TRANSMISSION LINES

r  = ——
i= o 9  3

10 [ft]

----VWr— o---- Q

3 [m]

(a) 12[V]-i
H0 = 50 [H] 

u = 3 x 108 [m/s]
-d

HL= 100 [H]

Total = V, = 10 [V]

(b) 1=7 [ns] V2 = 3.33 [V]

z = 0 z =  2.1 [m] z =  3 [m]

Total = 10 [V]
Total = 13.33 [V]

(c) 1=17 [ns]

V3 = -2.22 [V] z = 0

Total = 11.11 [V]

^ ______ zF

z=0.9[m ] z=3 [m]

Total = 13.33 [V]
/ __

(d) 1=27 [ns]
I/4 = -0.74 [V]

z = 0 z = 2.1 [m] z = 3 [m]

Figure 11-13 Transient response of a transmission line, switched at t = 0: a) The circuit. 
b)-d) Voltage waveforms on the line at three points in time. The arrows show the 
propagation directions of the leading edges of the waveforms.

_ 100 -  50 _ 1 
L “  100 + 50 “  3 ’

so the first reflected wave has amplitude

V2  = V i r L = 1 0 X ^  = 3.3333 [V],

Figure ll-13c shows the line voltages at t = 17 [ns].
The first reflection from the load reaches the generator terminals at t = 20 [ns]. 

Since the generator resistance is not matched to the transmission line, a reflected wave 
will be produced that propagates towards the load. The amplitude of this reflected
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wave is not affected by the battery, because, according to the superposition principle, 
the battery voltage has already been accounted for in the first forward-propagating 
wave (launched at t = 0). The reflection coefficient at the generator end is

Figure 11-13d shows the voltages on the line at t = 27 [ns].
By now, the method for determining the subsequent reflections on the line should 

be obvious. To determine the Â h reflection at either the generator or load, all that 
must be known is the amplitude of the approaching (N -  l) th wave and the reflection 
coefficient. In this way, the total voltages on the line can be considered as an infinite 
sum of reflections. Since the reflection coefficients of passive loads have magnitudes 
less than or equal to the previous one, the higher order reflections eventually have neg
ligible amplitudes. As a result, the step response of a transmission line approaches a 
constant value along the entire line as t —> °°.

Figures ll-13b through 11-13d show “snapshots” of the voltages on the line at 
various points in time. Plots like these give a global picture of how the waves reflect 
and rereflect off the terminations. Another useful way to determine the step response 
of a transmission line is by using a bounce diagram, such as the one shown in Figure
11-14. In a bounce diagram, the progression of the leading edges of the incident and 
reflected voltage waves are displayed as functions of both time and position. In Figure
11-14, the line marked Vf indicates the progress of the leading edge of the wave 
launched by the generator as it propagates towards the load. This line starts at (t = 0,

_ 10 -  50 _ _2  
g ~ 10 + 50 _ 3 ’

so the reflection of V2  off the generator resistance is

27

47

37

7

2  F ig u re  11-14 A transmission line bounce 
diagram.m
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z = 0) and ends at (t = T, z = £), where T — i/u  is the one-way transit time. The line 
marked TL V̂ f represents the first reflection off the load. This line starts at t = T and 
has a negative slope, since it represents a backward-propagating wave. In like manner, 
each of the subsequent reflections are represented by lines that have alternating posi
tive and negative slopes and begin at progressively later times.

To obtain the voltage waveform V(t, z') at a point z = z' on a transmission line, 
we first draw a vertical line at z -  z' on the bounce diagram. Next, starting at t = 0 
and z = z \  we progress vertically on this line, noting the times tn at which this line 
intersects the lines representing each wave. At each value tn, the waveform V(t, z') 
will exhibit a step discontinuity equal to the value of the newest wave arriving at that 
point. Figures ll-15a and b show V(t, z') at z' = 1 [m] and z' = 3 [m], respectively, for 
the transmission-line network of Figure ll-13a when the line has length £ = 3 [m]. In 
particular, the waveform at z' = 3.0 [m] has fewer jumps in this time interval than the 
waveform at z' = 1.5 [m]. This is because an observer at the load (z' = 3.0 [m]) sees 
the leading edges of the incident wave and its reflection simultaneously, whereas an 
observer in the center of the transmission line sees them at different times.

Finally, bounce diagrams for the transmission-line currents are the same as volt
age bounce diagrams, except that the voltage reflection coefficients, T, are replaced 
with current reflection coefficients, —T.

Rise Time. As we said earlier, every trace on a printed circuit board (PCB) is, in 
fact, a transmission line. For digital circuits, transmission-line behavior becomes 
important when the rise time of the signal is less than or comparable to the propagation 
delay between the signal source and the load.

F ig u re  1 1 -1 5  Voltage waveforms for the circuit in Figure ll-13a: a )z ' = l[m ]. b )z ' = 3[m].
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(a) (b)

Figure 11-16 Rise time in digital circuits: a) A digital clock and a CMOS logic gate, 
connected by a PCB trace, b) The equivalent circuit.

Figure ll-16a shows a digital clock generator, connected to the input pin of a 
CMOS (Complementary Metal-Oxide Semiconductor) logic gate via a PCB trace of 
length 1. Since the input impedance of CMOS gates is extremely high, we can model 
this circuit with the simplified equivalent circuit shown in Figure ll-16b. In this 
equivalent circuit, the clock is represented by a unit-step generator in series with a 
resistance Rg, the PCB trace is replaced by a transmission line with characteristic 
resistance Ra, and the input terminals of the logic gate are modeled by an open cir
cuit.

Using the analysis techniques we developed in this section, we can calculate the 
transient voltages at the terminals of the clock and the gate when the step waveform in 
the clock switches at t = t'. Figures ll-17a through ll-17c show these waveforms for 
three different cases: Rg »  RQ, Rg = R0, and Rg «  Ra, respectively. In each case, the

Figure 11-17 Step-response waveforms for the clock circuit shown in Figure 11-16
a) Rg > Rq> b ) R g =  R 0 , c) R g <  R 0 .
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logic gate voltage VL is shown as a dotted curve, and the clock output voltage Vc is 
shown as a solid curve. As can be seen, these three cases produce very different step 
responses. Note that the time scale in the first plot is different than in the other two in 
order to show the entire rise time.

From Figure ll-17a we see that the clock and gate waveforms resemble “stair
cased” exponentials when Rg »  R0. For this case, the transmission line can be 
approximated as a shunt capacitance of value Ct, where C is the capacitance per 
meter of the transmission line and the 10% to 90% rise time of the gate voltage is 
approximately

tr ~  22RgCl. (11.61)

As a result, when Rg »  R0, the rise time is proportional to the length of the PCB trace.
Faster rise times can be attained when the value of R approaches R0. As can be 

seen from Figure 11-17b, the case where R = Ra produces responses with zero rise 
time. If, however, R < R 0  (such as in Figure ll-17c), the waveforms exhibit overshoot 
and ringing, since the reflection coefficients at the opposite ends of the transmission 
line have opposite signs. This situation is clearly undesirable for digital circuit appli
cations, as ringing requires additional delay in synchronous signal lines and can cause 
logic errors in asynchronous signal lines.

11-3-6 PULSE RESPONSE OF TRANSMISSION LINES

The pulse response of a transmission-line network is easily found from its step 
response. To see why, consider the ideal pulse function PT(t), shown in Figure 11-18 
and defined by

f 1 0 < t < T
\  0 otherwise ’

(11.62)

As shown in the figure, we can express PT(t) as the sum of two unit-step functions, i.e., 

p r (0  = U(r) -  U(r -  T), (11.63)

where U(f) is the unit-step function, defined by

t <  0 
*2* O'

(11.64)

- U  (t-T)  Figure 11-18 A n ideal pulse function.
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Using Equation (11.63) and the superposition principle, we can express the pulse 
response of a transmission line as the difference of two unit-step responses. We can 
also use bounce diagrams to calculate pulse responses. This is accomplished simply by 
plotting lines on the bounce diagram that indicate the position of both the leading and 
trailing edges of the pulse, as demonstrated by the following example.

E xam p le  1 1 -4

The air-dielectric transmission line shown in Figure 11-19 is € = 0.09 [m] long and has character
istic resistance R 0 = 50 [fl]. The generator and load resistances are R g =  25 [IT] and R L = 100 
[fl], respectively. The generator voltage has an am plitude of 12 [V], Plot the load voltage 
waveforms when the pulse width is

a) T  = 0.1 [ns]
b) T  =  0.8 [ns]

r __1 i

R 0 = 25 [fl] l 9~  3_____________ r L = -

n _  « v  ( 5 "

------WA---------0
R 0 = 50 [ft]

= d — r -
VL :P  Rl = 100 [fl]

— U____________ _ u ------------
-*—  € = 0.09 [m] —

Figure 11-19 A loaded transmission line with a pulse input.

Solution:
The generator and load reflection coefficients are

=  25 -  50 _  _  1 

*  ~  25 + 50 ~~ 3

= 100 -  50 = 1 

L ~  100 + 50 ”  3 ■

Since the dielectric is air, u  ~  3 X 108 [m/s], and the one-way propagation delay is

At =  ° ' 0 9  8 =  0.3 [ns],
3 X 108 L J

a) The bounce diagram corresponding to the T  =  0.1 [ns] generator pulse width is 
shown in Figure ll-2 0 a . H ere, the solid lines represent the leading edges of the pulses, 
whereas the dotted lines represent the trailing edges of the pulses. The voltage V L ( t )  across 
the load is shown in Figure 11-20b and is obtained by summing the contributions along the z 

=  0.09 line in Figure ll-20a . Notice that the incident pulse and its reflections are distinct, 
since the pulse width is shorter than the propagation delay.

b) Figures 11-21 a and b show the bounce diagram and load voltage waveform, respec
tively, when the pulse width is T  =  0.8 [ns]. In this case, the first-reflected pulse arrives at the 
load before the incident pulse is finished. Notice that since the pulse width is longer than the 
propagation delay, the output waveform V L has roughly the same shape as the input wave
form.

1
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Figure 11 -20 Pulse response of circuit in Figure 11-19 when T  = 0.1 [ns]: a) Bounce diagram,
b) Load voltage.

Figure 11 -21 Pulse response of circuit in Figure 11-19 when T  — 0.8 [ns] : a) Bounce
diagram, b) Load voltage.

11-3-7 REFLECTIONS FROM REACTIVE LOADS

When a transmission line is terminated with a load that contains either inductance or 
capacitance, the reflected waveforms have different shapes than those of the incident 
waves. This happens because a reactive load presents a time-varying impedance to the 
line, resulting in reflection coefficients that vary with time. In this section, we will 
develop a procedure for calculating the step responses of transmission lines that are 
terminated in reactive loads and driven by sources that are matched to the line.
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Rn= Rn

Vg U (I)

-u___________________ L>

R0

h*- z = 0

il_______ _____ l>

v L - r

(a) (b)

Figure 11 -22 Reflections from a capacitive load: a) The circuit, b) The equivalent circuit 
at the capacitor terminals, c) The incident and load voltages at the capacitor terminals, d) 
The reflected waveform.

Let us start by considering the network shown in Figure 11-22a, which consists of 
a lossless transmission line of length i and characteristic resistance Ra, excited by a step 
voltage generator with impedance R0, and terminated with a capacitor of value C. 
The easiest way to analyze this network is to replace the transmission line and genera
tor with its Thevenin equivalent circuit, as shown in Figure ll-22b. We can find the 
Thevenin resistance by noting that when the voltage source is turned off, the resistance 
seen looking into the terminals is R0, since a matched load simulates an infinite trans
mission line. Also, we can find the Thevenin voltage Tth(t) by calculating the open- 
circuit voltage Voc(t) at the output terminals. Knowing that the voltage reflection 
coefficient at an open circuit is +1, we find

= V „(0 = VsV(t -  T).

Using the equivalent circuit shown in Figure ll-22b, we can calculate the load 
voltage VL (t) at the capacitor by means of standard circuit analysis. The general form 
Of VL(t) is

VL(t) = IMoo) + [Vt ( r )  -  Vt ( ~ ) K (" WT|U(( -  7), (11.65)

where ris the time constant and VL(°°) and VL(T +) are the capacitor voltages at t -  
and t = T +, respectively. For this circuit,

r = R 0C

Vl (T +) = Vl (T~) -  0 

VL(oo) = Vg,
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which yields a time response of

VL(t) = v g [ l -  e-(?- ^ /T]U (t -  T). (11.66)

Figure ll-22c shows a plot of V(t).
The voltage VL(t) can also be considered to be the sum of the incident and 

reflected waves; that is,

VL(t) = V +(t, l) + V~(t, «), (11.67)

where V +(t, z ) and V~(t, z) are the incident (forward-propagating) and reflected 
(backward-propagating) waves, respectively. Using Equation (11.49) with Rg = R0, 
we can write the incident voltage wave as

v * ( t ,  z = t )  =  L u (' -  n  = y  U(r -  7). (11-68)

Substituting Equations (11.68) and (11.66) into Equation (11.67) and solving for V 
(t, z = t), we obtain

V~(t,z = l) = VK
T _ o~{t— T)/t U(t -  T ). (11.69)

The reflected wave propagates towards decreasing values of z, so its leading edge 
arrives at a point z = z' at time t = T ,  where

T  = i/u  + (£ — z ')/u  — 2T — z'/u . (11.70)

Thus, the reflected wave can be written as

V~(t, z) = Vg
1
2

e - ( t - T ’) / r U(f -  T). (11.71)

This waveform is plotted in Figure ll-22d. As can be seen, it does not have the same 
shape as the incident waveform.

The foregoing procedure can be used to determine the waves reflected from any 
reactive load. The example that follows considers the response of an inductive load.

E xam p le  1 1 -5  ------------------------------------------------------------------------------------------------------------------------------
Calculate the waveform reflected from the inductive load shown in Figure ll-23a.

Solution:

The Thevenin equivalent circuit seen by the load is shown in Figure 11-236. The general 
form of the load voltage V L is given by Equation (11.65), where

vL( r )  =  vs 

= o

L

r = RZ
Substituting these values into Equation (11.65), we obtain 

VL(t) = V ^ ' - ^ U ( t -  T).

Figure ll-23c shows VL(t) and the incident voltage wave V+(t, t).
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F ig u re  11 -23 Reflection from a inductive load: a) The circuit, b) The equivalent circuit
at the inductor terminals, c) The incident and load voltages at the inductor terminals, d) 
The reflected waveform.

Remembering that the load voltage V L { t )  is the sum of the incident and reflected waves 
(Equation (11.67)), we find that the reflected voltage at the load is

V ~ ( t ,  L ) = V, U(f -  T ) .

Finally, the reflected waveform V  (t, z ' )  at an arbitrary position z '  on the line is obtained by 
replacing T  with

T  — t / u  + (f — z ) / u  =  2 T  — z ' / u .

This waveform is plotted in Figure 11.23d.

The transient response of a transmission line contains information about all the 
discontinuities present along the line. This fact is used in a procedure called time- 
domain reflectometry, where step waveforms (or pulses) are launched down a trans
mission line that has unknown loads or discontinuities. By monitoring the voltage at 
the input terminals of the transmission line, the location and characteristics of the loads 
and discontinuities along the line can be determined. This is accomplished by noting 
the position and wave shape of the reflected waveforms. The technique is particularly 
effective for finding faults in buried lines, since the cable itself does not need to be dis
turbed during the measurement.
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O utput 
load line

/

F ig u re  11 -2 4  Transmission-line response for nonlinear loads: a) Nonlinear
input and output circuits, connected by a nondistorting transmission line, 
b) Bergeron diagram.

11-3-8 TRANSMISSION LINES WITH NONLINEAR LOADS

There are many instances where transmission lines are connected to nonlinear loads. 
This often occurs in digital circuits, where PCB traces connect chips whose input and 
output circuits contain nonlinear elements, such as diodes. Transmission lines with 
nonlinear loads are difficult to analyze when the sources have arbitrary pulse shapes. 
However, a simple graphical procedure can be used to determine the step response 
when the nonlinear loads do not contain inductance or capacitance. This method was 
developed originally by L. J. B. Bergeron,4 and the resulting graphs are called Berg
eron diagrams.

Figure ll-24a shows nonlinear source and load circuits, connected by a lossless 
transmission line. The V -  I  plots (called load lines) of the input and output circuits 
are indicated by the solid curves in Figure ll-24b. These load lines can have any 
shape, but we will restrict our analysis to the case where the output circuit load line 
must pass through the origin (0,0), which means that waves can be launched only by 
the input circuit.

4Begeron published his work in French in 1949. A good tutorial summary can be found in P.J. Langlois, 
“Graphical Analysis of Delay Line Waveforms: A Tutorial,” IEEE Transactions on Education, vol. 38, no. 1, 
February 1995, pp .27-32.
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The transient response at the input and output terminals can be found using the 
following procedure:

1. For t <  2T (where T is the one-way transit time), reflections from the load have 
not yet reached the input terminals, so the transmission line presents a constant 
resistance of value R 0  to the source circuit. This resistance is represented by a 
load line with slope 1 /R 0  that passes through the origin (shown as a dotted line in 
Figure ll-24b). The voltage and current (V0, /0) at the source terminals during 
this time interval occur at the intersection of the input-circuit load line and the 
dotted line, as shown in the figure.

2. During the time interval T < t < 3T, the initial incident wave propagating 
towards the output terminals appears to come from a Thevenin equivalent circuit 
that consists of a voltage source 2Va in series with a resistance R0. This is repre
sented by a load-line with a slope — 1 /R a that passes through the point (V0, JQ), 
shown as a dotted line in Figure 11-24b. The voltage and current (V1, Ix) at the 
output terminals during this time interval occur at the intersection of this line 
with the output-circuit load line.

3. During the time interval 2 T < t <4T, the equivalent circuit seen looking towards 
the load from the source terminals is a voltage source 2(V1 -V 0) in series with a 
resistor R0. This corresponds to a load line with slope 1/R 0  that passes through 
the point (V1, Ix), shown as a dotted line in Figure ll-24b. The voltage and cur
rent (V2, /2) at the output terminals during this time interval occur at the inter
section of this line with the input-circuit load line.

4. The procedure for finding subsequent values of (Vn, In) is the same. Using this 
procedure, we find that input terminal voltages and currents have even-num
bered subscripts (e.g., V0, V2, ...) and occur at intersections with the input-circuit 
load line. Output terminal voltages and currents have odd-numbered subscripts 
and occur at intersections with the output-circuit load line. Eventually, the 
source and load voltages (and currents) approach the same values, which occur at 
the intersection of the input and output load lines.

The logic behind these steps may seem difficult to follow, but the procedure itself 
is quite easy, as is demonstrated by the following example.

E xam p le  1 1 -6

Plot Vs(t) and VL(t) for the circuit shown in Figure 11-25. Assume that the diode is ideal and 
that the transmission line is uncharged at t = 0~. Also, assume that the one-way propagation 
delay on the transmission line is 10 [ns].

Figure 11-25 A transmission line with a diode output circuit.
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Solution:

If we apply K irchhoff s voltage law around the around the input circuit, we obtain the 
input-circuit load-line expression

V, = 10-  25 /„

where I s is measured left to right. The straight line representing this input load line is shown in 
Figure 11-26. Similarly, we can obtain the output-circuit load line by noticing that the diode is 
reverse biased when V  <  12 [ V ] ,  so I L =  0 for all V L less than 12 [ V ] .  On the other hand, the 
diode is forward biased when I L >  0 , so the voltage at the terminals of the output circuit equals 
the battery voltage (12 [ V ] )  for all I L >  0. Hence, the output-circuit load line consists of hori
zontal and vertical lines that intersect at the point (0 ,1 2 [V]).

Using the graphical procedure described, we obtain the V  — I  plot shown in Figure 11-26. 
The waveforms of V s( t )  and V L ( t )  are shown in Figures ll-27a  and b, respectively.

1 1 -4  T im e -H a rm o n ic  W a v e s  on  T ran sm iss io n  Lines

The time-harmonic response of transmission lines is an important special case of the 
general time-varying case for three reasons. First, many practical engineering appli
cations involve time-harmonic sources, such as the local oscillators in RF and 
microwave equipment. Second, the response of a linear network line due to an arbi
trary time-varying source can always be expressed as the sum of time-harmonic wave
forms; this is due to the properties of the Fourier transform. And third, whereas lossy 
transmission lines are usually difficult to model using time-domain analysis, they are 
relatively easy to model when the sources are time harmonic.
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9.28 [V]

40 60

(b)

t [ns]

F ig u re  11 -27 Response of the nonlinear circuit shown in Figure 11-25: 
a) Voltage waveform at the source terminals, b) Voltage waveform at 
the load terminals.

As in the time-domain analysis of the previous sections, our analysis of transmis
sion lines with time-harmonic sources starts with the transmission-line equations:

dv _ nT dl
— R I— L —

dz dt

dl dV
- G V - C  —

dz dt

When all the sources have exactly the same frequency co, the frequency-domain form of 
these equations can be derived using the transform rules outlined in Section 10-4-1. 
Thus, the preceding equations become

dV
- = - ( R + j c o L ) I
aZ

3/
dz

~ (G  + j(oC)V,

(11.72)

(11.73)

where V and I  are the phasor representations of the transmission-line voltage and cur
rent, respectively. These equations can be decoupled by differentiating one with 
respect to z and substituting it into the other, resulting in the wave equations

d2V 2V
— t = y  v
dZ2 r

3~7

dz2
—  „ ,2

y %

(11.74)

(11.75)
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where

7 = V(R + jcoL)(G + jtoC) [m_1  ]. (11.76)

The constant y is called the propagation constant (for reasons which will soon be obvi
ous) and is a function of the transmission-line parameters R, L, G, and C, as well as 
the frequency to. In general, y is a complex number. Hence, we can write

y= a + j(3 , (11.77)

where a and (3, called the attenuation and phase constants, respectively, are given by

a = Re[y] = Re[V(R + jtoL)(G + jcoC)] (11.78)

(3 = Im [y] = Im [V(R + jtoL)(G + jtoC)}. (11.79)

By convention, the principle values of the square roots are implied in Equations (11.78) 
and (11.79), so a, (3 5 = 0.

Solutions of Equations (11.74) and (11.75) are easy to find, since they are both 
second-order, linear, homogeneous differential equations. Their general solutions are

V = V +e~yz + V~e+yz (11.80)

and

1 = i +e~yz + r e+y\ (11.81)

where V +, V~, I +, and / - are all constants (possibly complex). We will prove shortly 
that the terms with e~7Z represent forward-propagating waves, whereas the terms with 
e+yz represent backward-propagating waves.

Just as for the general time-domain case, V and /  are not independent quantities. 
To show this, we can substitute Equations (11.80) and (11.81) into Equations (11.72) 
and (11.73). Comparing like terms, we obtain

j r  = z ° (11'82)

and

V

where Z0 is the characteristic impedance of the line, given by

R + jcoL
Z„ = 7R + jcoL 

G + jtoC G + jcoC [ft].

(11.83)

(11.84)

The current I  can now be written as

V+ V~
/ = — e~yz------ e+7Z. (11.85)

Zo Z 0

In  th e  sec tio n s  th a t  fo llow , w e w ill d e te rm in e  th e  b e h a v io r  o f th e se  tim e -h a r 

m on ic  w aves on  b o th  lossless an d  lossy tran sm issio n  lines.
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11-4-1 TIME-HARMONIC WAVES ON LOSSLESS 
TRANSMISSION LINES

On lossless transmission lines, the distributed conductor resistance R and dielectric 
conductance G are both zero. For this case, the characteristic impedance Z0 is real 
valued and given by

Comparing Equation (11.86) with Equation (11.31), we see that the characteristic 
impedance is exactly the same as the characteristic resistance seen by time-domain 
waveforms on lossless lines. Evaluating Equation (11.76) for the case of zero loss, we 
find that the propagation constant y is imaginary; thus,

y =  a  +  j / 3 -------- > j a >  V LC  .
r=g = o  1

Therefore, for lossless transmission lines,

a = 0 (i? = G = 0) (11.87)

P = V L C  [nT1] ( R - G -  0). (11.88)

Using these values, the voltage and current expressions given by Equations (11.80) and 
(11.81) become

V = V+e~iPz + V~e+iliz (11.89)

V+ V
I  = —  e~^z -  —  e+jPz. (11.90)

Even though the preceding expressions for V and I  are written in the frequency 
domain, they still represent waves that propagate in time. To see this more clearly, let 
us for the moment transform these expressions into the time domain. To accomplish 
the transformation, it is necessary to first represent the complex amplitudes V + and I~ 
in exponential form:

F+ - |F+| A  6 +  = |y+| e i e +

V ~  = | v i  l  e _  = | V |  e > 6-

The time-domain expressions V(t,  z) and I ( t ,  z) are found by multiplying Equations 
(11.89) and (11.90) by eltot and taking the real parts, yielding

V(t, z) = Re[\V+\ej{o>t- pz + ê  + V~ei{(0t+fiz + 6-)}

I { t, z) = Re
V4 7j( (o t-p z  + 8+) | v ,j(<ot + (3z + 6_)
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Remembering that Z0 is real for lossless transmission lines, we obtain the following 
time-domain expressions:

V (t,z ) = | 1 cos (tar -  /3z + 9+) + | V~ | cos (cot + f3z + 6 _) (11.91)

IV+1 IV~ I
I(t, z) = cos (a)t -  (3z + 9+)----- V~  cos (cot + (3z + 9_). (11.92)

The preceding voltage and current expressions vary sinusoidally with both time t 
and position z ■ To see that they are indeed propagating waves, let us first consider the 
terms that contain cos {cot -  /3z + 9 +). In order to “ride” on a constant phase point on 
these waves, the argument of the cosine term must remain constant with time. This 
occurs when

-  (3z + 9+) = 0.

Since co, yS, and 9+ are constants, this expression becomes

dz _ co 
dt (3

Noting that dz/dt is a velocity, we conclude that these waves propagate towards 
increasing values of z at a rate of

p (All transmission lines), (11.93)

where up is called the phase velocity of the wave, since it is the rate at which the con
stant phase fronts move. Equation (11.93) is a general expression that is applicable to 
both lossless and lossy transmission lines. For lossless transmission lines, however, 
1 3 = c o  V I C ,  which yields

1

V l c
(Lossless transmission lines). (11.94)

It is also possible to express up in terms of the permittivity and permeability of the 
dielectric when the dielectric of the transmission line is homogeneous. In Section 13- 
2 we will show that the phase velocity of any TEM wave that passes through a lossless, 
homogeneous medium equals 1/V/xe, where p, and e are the permeability and permit
tivity of the medium, respectively. Hence, comparing 1/Vyae with 1 /VLC in Equa
tion (11.94), we conclude that the product LC on a lossless, homogeneous-dielectric 
transmission line (i.e., a TEM line) equals the product /xe:

LC = ixe (Lossless, TEM transmission lines). (11.95)
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Substituting Equation (11.95) into Equation (11.94) and assuming that the dielectric is 
nonmagnetic (as is nearly always the case), we obtain

1

V /x () e

c
(Lossless, TEM transmission lines), (11.96)

where c is the speed of light in a vacuum and er is the dielectric constant of the 
medium. Equation (11.96) can also be used with Quasi-TEM transmission lines (such 
as microstrip lines) if er is replaced by an effective dielectric constant eeff. (See Appen
dix D).

We can also show that the terms which contain cos (cot + /3z + 0_) in Equations 
(11.91) and (11.92) correspond to waves that propagate towards decreasing values of z. 
To “ride” on a constant phase point of these waves, an observer must move such that

d ,
~  (cot + f3z + #_) — 0, 
dt

from which we obtain

dz _ _ 0}
dt ~ Up~ (3'

Thus, the phase fronts of these voltage and current waves propagate towards decreas
ing values of z at a rate up.

From the preceding comments, we can conclude that frequency-domain terms 
that vary with z as represent forward-propagating waves, whereas terms with e+;/?z 
represent backward-propagating waves. Knowing this allows us to determine the 
direction of propagation of a frequency-domain expression simply by looking at the 
sign of the exponent. Elence, we rarely find a need to express time-harmonic voltages 
and currents in the time domain; all the required information is easily determined from 
the frequency-domain expressions.

An important parameter that is used to describe time-harmonic waves on trans
mission lines is the wavelength, which is defined as the distance over which the waves 
repeat themselves and is signified by the symbol A. To derive an expression for A, let 
us assume that a forward-propagating wave is present on a transmission line. Setting 
V~ = 0 in Equation (11.89), we have

V{z) = V +e~i/3z.

If we require that V(z + A) = V(z), we obtain

y+e-iP̂+\) = y +e-jPz

which simplifies to

e~ipz = 1.

The smallest nonzero value of A that satisfies this expression is 2 77/ (3, so
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where we have used (3 = 27rf/up. As might be expected, the wavelength of backward- 
propagating waves is also given by Equation (11.97.)

E xam ple  11 -7

Common “TV twin lead” transmission lines consist of two stranded wires encased in a thin 
dielectric ribbon. Stranded wires are used to reduce the high-frequency resistance, and the 
dielectric is needed for mechanical support. Consider a case where 20 A.W .G. wires are used, 
the wire spacing is 7 [mm], and the dielectric gives rise to an effective dielectric constant of eeff = 
1.29. Calculate Z 0 , u p , f3, and A at 100 [MHz],

Solution:

The diam eter of 20 A.W.G. wire is d  =  0.812 [mm]. Using Equation (D.14), we find that 

1
Z„ = c o sh - 'D

4 7 7  x  10“ 7

d )  7T V 1.29 X 8.854 X 10“ 12
cosh-

7.0

0.812
300 [ n ] .

Also, from Equation (D.7), we have 

r  A x  1 0 8
u -  7—  =  — ,- =  2.64 X 108 [m/s]
P VL29

A t / =  100 [MHz], Equations (11.88) and (11.97) give us

(o 2tt X 100 X 106 „ 0 0  r
P =  —  =  ^ ---- rTa—  -  2.38 m 1

u „  2.64 x  108 1 1

and

A =
2 77
T

2.64 [m].

E xam ple  11 -8

Find the conductor width w  necessary to obtain a 50 [H] characteristic impedance from a 
microstrip transmission line if the height A is 2 [mm] and the substrate material is R T/Duroid5 

5880, which has a dielectric constant of 2.26. Also, find the wavelength at /  = 2 [GHz],

Solution:

The width-to-height ratio is given by either Equations (D .22-23) (valid for w / h  2) or 
Equations (D.24-25) (valid for w / h  s* 2). Let us try the first set and see if consistent values are 
obtained. From Equation (D.23), we find that

5 RT/Duroid is a registered trademark of the Rogers Corporation.
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A  =
7T X 5 0  

377
V 2  (2.26 + 1) +

2.26 -  1 

2.26 + 1
^0.23 +

0.11\
2.26/

1.172.

Substituting this value into Equation (D.22) yields

w

I
- e x p (1.172) -  exp (-1 .172 ) 3.066.

Since 3.066 is >2, we have used the wrong formula, which means that we must instead use Equa
tions (D.24-25). When we do, we get

B - .....^ ^ =7 .878
2 V 2 2 6  50 [11]

T  “  2 '26 ~  I  (ln(fi -  1) + 0.39 -  0.61/2.26) + -  ( b  -  1 -  In ( 2 B  -  1)) = 3.029.
n  tt X  2.2b  \ /  7r  \  )

Since w / h  — 3.029 >  2, this is a valid result. Hence, the conductor strip width necessary to 
achieve Z 0 — 50 [H] is

w  =  3.029 X h  =  6.058 [mm].

We can now use Equation (D.20) to find the effective dielectric constant:

— A (2-26 + 1) +
(2.26 -  1)

2 V l  +  1 2  X  3 .0 2 9
1.733.

Finally, substituting Equation (11.96) into Equation (11.97) and replacing er with eeff, we obtain 
the wavelength at 300 [MHz],

3 X 1 0 8

V l.733 X 2 X 109
113.93 [mm].

11-4-2 TIME-HARMONIC WAVES ON LOSSY 
TRANSMISSION LINES

Earlier in this chapter it was stated that waveforms tend to distort (or disperse) as they 
propagate down lossy transmission lines (except for the case when RC = GL). 
Because of this, lossy transmission lines are difficult to describe using standard time- 
domain analysis. There is no such problem in the frequency domain, however, since 
the waves remain sinusoidal no matter how much loss is present. To show this, let us 
return to Equation (11.80), which is the general phasor expression for the voltage 
waves that can exist on a transmission line:

V = V +e~yz + (11.98)

Unlike the lossless case, where the propagation constant y  is imaginary, the presence of 
loss (either R 0 or G 0) makes y  complex, so we can express y in the form

r  = a + jp, (11.99)

where

a = Re [V(R + jcoL)(G + jcoC)] [Np • m 1] (11.100)
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P = Im [VOR + jcoL)(G + jcoC)] [nT1]. (11.101)

Using these expressions, we can write Equation (11.98) in the form

V = V+e~aze~ipz + V~e+aze+iPz (11.102)

Since the exponential terms e~az and e+az in Equation (11.102) are real valued, 
the time-domain representation of V is given by

V (t,z ) = |U+|e_“zcos(wt -  Pz + 9+) + \V~\e+az cos((ot + Pz + 6 _), (11.103)
where 6 + and 9_ are the phases of the phasors V + and V~, respectively. Comparing 
this expression with Equation (11.91), we see that they are nearly the same, since they 
both have identical sinusoidal terms. This means that the first and second terms in the 
preceding expression represent forward and backward-propagating waves, respec
tively, with a phase velocity and wavelength respectively given by

and

A
277

~P'

(11.104)

(11.105)

where, for lossy transmission lines, p  is given by Equation (11.101). Unlike the lossless 
case, however, the forward and backward-propagating waves on lossy transmission 
lines contain the exponential terms e~az and eaz, respectively, which cause the wave 
amplitudes to decay along their propagation directions. The rate of decay is deter
mined by the attenuation constant a.

There are two ways to specify a. The first is in units of nepers per meter [Np/m], 
where the neper is a dimensionless unit. This way of specifying a follows directly from 
Equation (11.100). The other way is to specify a in terms the decibels of loss per 
meter. To do this, we note that the amplitude of a forward-propagating voltage decays 
at a rate proportional to e~az, so the decibel loss per meter is

dB loss per meter = —20 log10
\V(z = 0)[

\V(z = 1)|
-201og10[e -].

Simplifying this expression and using loglo [e\ = 0.434, we obtain the following conver
sion relations:

a [dB/m] = 8.686 X a [Np/m] (11.106a)

a [Np/m] = 0.1151 X a [dB/m]. (11.106b)

Although a can be specified in either [Np/m] or [dB/m], the reader should beware; a  
must be specified in [Np/m] when it is used in formulas that contain the terms e~az 
and eaz.
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E xam ple  1 1 -9

A forward-propagating voltage wave has an am plitude of 7 [V] at z = 0. Calculate the ampli
tude at z = 10 [m] if it is known that a = 0.5 [dB/m].

Solution:

Using Equation (11.106b), we find that 

a  = 0.1151 X 0.5 = 0.0576 [Np/m].

Thus, the voltage amplitude at z = 10 [m] is

V(z = 10) = V(z = 0 )e_10“ = 7e“ 576 = 3.937 [V].

An alternative method of finding this result is to note that if the transmission line exhibits 0.5 
dB/m, then there will be 0.5 X 10 = 5 [dB] loss in 10 meters. Hence,

I V(z = 10)1

20iog,» W ^ = - 5[dB1'

Solving for V(z — 10), we again obtain

V(z =  10) =  7 X K T 25 =  3.936 [V],

Another important effect of loss on a transmission line is that the characteristic 
impedance Z0 becomes complex. This can be seen from Equation (11.84):

Z„ =
R + jcoL _ y R + ju>L 
G + jcoC G + jcoC y

[H]. (11.107)

Whenever R ^  0 or G 0, Z0 is complex and can be expressed in either rectangular or 
polar form:

Z0 = R0 + jX 0 = \Z0\ Z . e z . (11.108)

When ZQ is complex, the voltage and current waves are out of phase. To see why, let 
us return to the frequency-domain expression for I (Equation (11.90)):

,  V + .

/ = T r e
v ~  v +

y z --------- e +yz — .—— e ~ aze~iPz

Zn Z„
v ~

e +aze +i ^

V+ V'
e 6ze aze — -— -e “ie “"e, - 6 z +azp +jl3z

\ Z 0 \ \ Z 0 ,

Transforming the preceding expression into the time domain, we obtain

\V+\
I(t, z ) = e azcos(cot -  /3z + 6+ -  6Z)

\V~
eazcos(cot + [3z + 6_ — 6).

(11.109)

Comparing this expression for I with the voltage expression (Equation (11.102)), we 
see that the forward and backward-propagating voltage and current wave amplitudes 
are proportional by the factor \Z0\, but the currents lag the voltages by the phase angle 
6Z of the characteristic impedance.
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Approximate expressions for low-loss transmission lines. Because of the com
plex square-root operations necessary to calculate both y and Z0 on lossy lines (see 
Equations (11.76) and (11.84)), it is often desirable to use approximations of these for
mulas for low-loss conditions. For most practical transmission lines, R  «  coL and 
G «  coC when operated above a megahertz or so. For this case, we can use the bino
mial theorem to derive simple expressions for Z0, R 0, and X 0 as follows:

Z 0 =  R0 +  jX o -

Thus,

R ,

X n «  -

Ir  + jcoL 1/2

V G + JcoC VC jcoL ycoC

- 1/2

1 +
R

+
R 2

j2coL 8 (jo2L 2
+

1 +

1 +

1 (R

8or \L

So?

2o)

R  _  G  

L  C

G~

C

1 -
3 G :

j2a>C Sco2C 2

R  3 GY 
L  + C )

R 3G 
L  + C

± _

2 oj

+

G'
C

(11.110)

(11.111)

R 0

x n

(11.112)

If we retain only the first-order terms, these relations can be further simplified to

\L
c

(11.113)

In a similar manner, we can find approximate expressions for (3 and a by applying 
the binomial theorem to Equation (11.76),

y  — a + j p  = (R  + jo)L) (G + /oiC)

0

= jcoV L C  

= jcoV L C

1 +
R

jcoL

-1/2 r g  i

i
h-̂ + |

£ o
l

1/2

R R 2
1 3— i—r— I- t— +

R
L

+ jco V L C

+ G

j2coL 8 (j? L 2

1

1 + +
j2coC 8 co2C 2

+

1 +
R

So? \ L  C

,
8o>2 \ L  C )

i + i

Since y = a + j(3, we have

j8« coV l C 1 +
1 (R

8col \L

Gx2' 
C

(11.114)
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a G (11.115)

When the loss is small, these expressions can be further simplified by retaining only the 
first-order terms, in which case we obtain

P ^ w V L C  (11.116)

and

a  ~  a c +  a d , (11.117)

where ac and ad are the conductor and dielectric attenuation constants, respectively, 
given by

a c

< *d  =

R fc R
2 V L ~ 2Z0

G [E GZq

2 VC 2

(11.118)

(11.119)

For most transmission lines, the conductor losses are much greater than the dielectric 
losses, so ad can usually be neglected.

The characteristic impedance Z0 of a transmission line is always a function of 
both its material properties and its cross sectional dimensions. However, when losses 
are low, several other parameters are controlled solely by the properties of the 
dielectrics. For instance, when losses are low, the phase velocity up can be expressed as:

1
up~  -_=  (Low loss TEM transmission lines), (11.120)

v / i 0e'

where e' is real part of the dielectric permittivity and the dielectric is assumed to be 
non magnetic (i.e., /jl = /jlq). This formula is derived in the next chapter for plane 
waves (see Equation 12.82) and is applicable for transmission lines since plane waves 
are also TEM waves. Remembering that /3 = co/up , we also have

2 tt / ------
p = —  ~  (o V /jL0e'., (Low loss TEM transmission lines), (11.121)

A

The preceding formulas can also be applied to non TEM transmission lines when e! is 
replaced with the effective dielectric constant eeff of the line (see Appendix D). The 
dielectric loss constant ad is also a function of the dielectric properties alone. When 
losses are small, we have:

a d

cue"

2e'
(Low loss TEM transmission lines), (11.122)

where -  e" is the imaginary part of the dielectric’s complex permittivity.1 This expres
sion is also derived in the next chapter (see Equations 12.79) for plane waves and is 
applicable for transmission lines with uniform dielectrics (i.e., TEM lines).

6 In Chapter 12, it is shown that the loss of a dielectric can be specified in terms of either cror e".
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E xam p le  1 1 -1 0

m

Calculate the attenuation constant for a polyethylene-filled RG-58/U coaxial cable at /  = 100 
[MHz]. Assume that the complex permittivity of polyethylene is e = eG (2.26 — j  0.0002) [F/m] 
and the conductivity of copper is 5.8 X 107 [S/m].

Solution:

From  Equation (D.13), we find that the attenuation constant for a coaxial cable is

coe7'

2e' 4 nerd Z,,
1 + -  
a b

[Np/m],

where a and b  are the radii of the inner and outer conductors, respectively; e = e' — ye" is the 
complex permittivity of the dielectric (polyethylene); tris the conductivity of the conductors (for 
copper, c  — 5.8 X 10 [S/m]); Z 0 is the characteristic impedance when losses are neglected; and 8 

is the skin depth, which is given by Equation (D .ll)  as

V  7Tf/JLCT

The values of a, b , and Z 0 for RG-58/U cable are given in Exam ple 11-1; a — 0.406 [mm], 
b =  1.553 [mm], and Z 0 = 53.47 [ft]. Using these values, we obtain

5 = . 1 =  -  6.61 X 1(T6 [m]
V tr X 100 X 106 X 4tt X 10“7 X 5.8 X 107

and

I n  X 100 X 106 X 0.0002eo 

2 X 2.26e„
V 2 .2 6 Mo€0

_________________ 1_________________

4 n  x 5.8 x 107 x 6.61 x 10“6 x 53.47

103 103 \  

0.406 + 1.553/

=  1.39 x 10“4 + 1.205 x 10“2 -  1.22 x 10“2 [Np/m],

Comparing the magnitudes of the two components of a ,  we see that 1.205 X 10-2 »  1.39 X 

10 4, which means that the conductor losses dominate the dielectric losses by more than an 
order of magnitude.

11-4-3 GROUP VELOCITY AND DISPERSION

We have already shown that the constant-phase fronts of the voltage and current waves 
travel at the phase velocity

co

On lossless lines, (3 =  co VLC, which means that u p is the same for all frequencies. 
This is not the case, however, when losses are present, since (3 no longer varies linearly 
with co. In this section, we will show that waveform distortion occurs when the phase 
velocity varies with frequency.
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Let us consider the propagation of the simple, narrow-band signal 

V ( t )  = V Q[1  + m cosc^.r] coscoc t.

This waveform is called an amplitude-modulated signal, where cos and coc are the sig
nal and carrier frequencies, respectively, and m is the modulation index (usually 
with a value between zero and unity). Figure 11-28 shows a plot of V ( t )  for the case 
ws «  wc. The carrier amplitude-vs.-time trace is called the envelope, which con
tains the information carried by the signal. To see how this waveform propagates 
down a transmission line, let us first use the cosine product identity to write V { t )  in 
the form

v ( t )  =  y 0 cos coct  +
m
 ̂COS COjj t "E

m
—  COS 0 ) ,  t  . 
2 L

(11.123)

Here, (ov and ioL are called the upper and lower sideband frequencies, respectively, and 
are given by

°>U =  Mc +  <°s

and

=  *»c “

From Equation (11.123), we see that V(t) is the sum of three distinct sinusoids with 
frequencies a)c, o)v , and coL.

By introducing the appropriate propagation delay for each frequency component, 
we can write the voltage at any point on the line in the form

V(l, z) = V„
f f l  f f l

cos ( c o c t  -  pcz) +  y  cos ( ( O u t  -  j3vz) +  y  COS ( t o L t  -  pLz) (11.124)

where (3C, fiv , and are the phase constants at the frequencies coc, coa, and coL, respec
tively. Since cos «  coc, we can use Taylor’s theorem to calculate approximate values of 
Pu and pL. Retaining only the first two terms, we find that

d p
W ,---

5 d c o
(11.125)

d p
U». ---  .

5 d o j
(11.126)

Figure 11 -28 An amplitude-modulated 
signal.



396 CHAP. 11 TRANSMISSION LINES

Substituting Equations (11.125) and (11.126) into Equation (11.124) and rearrang
ing, we obtain

tY lV
V ( t , z) = V0 cos (coct -  f3cz) + -y ^ c c s

/ . i 3/3
(fuc/ - p cz) +  \ a)st -  ( o — z

dOJ

mV.
H-----r ^ c o s

. 3/3
(o)ct -  0 cz) “ ((Ost ~  (Os —  Z

Using the cosine sum formula, we can write this equation as

V ( t ,z )  =  V0
, , 3/3
1 T- m cos 1 coj — Co —  z 

du)
COS ((O t -  Pcz). (11.127)

Comparing Equation (11.127) with the initial waveform, we see that V(t, z) is still 
an amplitude-modulated signal for all values of z. However, the phases of the carrier 
and the envelope propagate at different rates. The phase constant of the carrier is p c , 

so its phase fronts travel at a velocity

_ =
ĉarrier ^  ^p ’

which is the same as the phase velocity of a single time-harmonic waveform. On the 
other hand, the envelope propagates at a velocity

/ a m -1 _  dco 

\ d Q ) J  ~  d p  '
wenvelope

d P

d(o

Since the envelope is composed of a narrow band of frequencies, this velocity is called 
the group velocity and is denoted by the symbol ug, where

(11.128)

From the foregoing definition, we see that ug = up only when /? is a linear function of co, 
such as when a transmission line has zero loss and the inductance L and capacitance C 
are independent of frequency. Another important parameter is the group delay rg, 
which is the inverse of the group velocity:

rg = — [s/m]. (11.129)
ug

When the group delay is not constant across a signal’s bandwidth, distortion will 
occur. This distortion is called dispersion or broadening. Dispersion can be particu
larly troublesome in digital communication systems, since each “bit” is assigned a spe-
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Figure 11 -29 Adjacent pulses on a 
dispersive transmission line at two 
locations.

cific time slot. As these pulses travel down a dispersive line, the “tail” of one pulse 
spreads into the leading edge of another, causing ambiguities and errors. This is 
depicted in Figure 11-29, which shows two pulses that are sent down a dispersive trans
mission line. At z = 0, the pulses show no overlap, but at z = f, both pulses have 
broadened, so that they now overlap.

The amount of pulse broadening At incurred by a pulse while it propagates 
depends upon how much the group delay varies within the pulse bandwidth. We can 
estimate At for a pulse by calculating the difference between the group delays of the 
highest and lowest frequency components. We obtain

Tnax -  Tnin’ (11.130)

where Tmax and Tmin are, respectively the maximum and minimum group delays within 
the pulse bandwidth.

It is difficult to derive simple formulas for ug and t  directly from Equations 
(11.128) and (11.100), since these formulas involve both square roots and derivatives of 
complex-valued functions. Worse yet, the values of R, L, G, and C often vary with 
frequency (particularly R, due to the skin effect, which is discussed in Chapter 12), fur
ther complicating the calculations. Because of this, it is usually easier to measure the 
group velocity than it is to calculate it. Figure 11-30 shows the relative group delay t  

on a sample of RG-58U coaxial cable. As can be seen, t  varies most rapidly at low 
frequencies. This is because the wire resistance R is greater than the inductive reac
tance coL at low frequencies.

[ns/m ] n 

0.6  -

- 0.2 *—

Figure 11 -30 Relative group delay vs. 
frequency on a typical section of RG-58U 
coaxial cable.
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E xam p le  11 -11

A 1 [ns] pulse is transm itted down an RG-58U coaxial cable. Calculate how much pulse spread
ing occurs in a 1.0 [cm] length.

Solution:

From  Fourier analysis, the bandwidth of a rectangular pulse is approximately A/ — 1 / T ,  

where T is the pulse width. W hen T  =  1 [ns], we find that A / ~  1 [GHz]. Thus, the pulse con
tains frequency components from dc through 1 [GHz],

From Figure 11-30, the maximum group velocity within this bandwidth occurs at dc and is

7-max =  0-52 [ns/m].

The minimum value occurs at 1 [GHz] and is 

Tmin = - ° - 15 [ns/ml-

Substituting these values into Equation (11.130), we obtain 

At — 0.52 -  (-0 .1 5 ) = 0.67 [ns/m].

Thus, along a 1.0 [cm] length, the pulse spreading is 

At = 0.67 [ns/m] X .01 [m] = 6.7 [ps].

11-4-4 REFLECTIONS OF TIME-HARMONIC WAVES

Figure 11-31 shows a section of transmission line with characteristic impedance ZQ, 
terminated with a load impedance Z L.

Regardless of what sources are attached to the left-end terminals of the transmis
sion line, the expressions for the total voltage and current on the line at a frequency oj 
are of the form

V = V+e~yz + V~e+yz 

I  = ^ r  (V+e~yz -  V~eyz),

where y  =  a  +  j / 3  and z is measured towards the right. At the load (z =  0 ) , V / 1  =  Z L . 

Substituting this into the preceding expressions for V and I and solving for V~ , we obtain

7 — 7
V ~  =  — -----—  V + .

/
r L

Q 0— |
+ r 1-

o ~~ " o-T

z
z=  0

F ig u re  11 - 31 A  transmission line 
term inated by an arbitrary impedance.
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This expression shows that the backward-propagating voltage phasor V~ is the product 
of the forward-propagating phasor V+ and a factor that depends upon the mismatch 
between Z0 and ZL. This factor is the load reflection coefficient and is given by

Y l
v +

z - 0

Z l - Z q

z l +  z q -
(11.131)

Comparing Equation (11.131) with the reflection coefficient derived earlier for resistive 
loads attached to lossless lines (see Equation (11.57)), we see that they are the same, ex
cept that Equation (11.131) is also valid for lossy lines and reactive loads. Further, this 
time-harmonic reflection coefficient can be complex when either Z0 or ZL is complex, 
which means that the reflected wave can differ from the incident wave in both ampli
tude and phase. Finally, we can solve Equation (11.131) for ZL in terms of TL, yielding

Z l  =  z ° i ~ ^ t;•  (1L132)

This formula can be used to determine the load impedance when the reflection coeffi
cient is known.

E xam p le  1 1 -1 2

Calculate the load reflection coefficient on a transmission line if Z Q =  50 [O] and Z L — 100 — j  30 [11]. 

Solution:

Using Equation (11.131), we have

r L
Z l  +  Z a

100 -  30 -  50 

100 -  j  3 0  +  50
=  0.359 -  j  0.128

= 0.381 Z. -19.65°.

11-4-5 INPUT IMPEDANCE AND THE IMPEDANCE 
TRANSFORMATION

One of the most important effects associated with transmission lines is the way in 
which they can transform the impedance of a load into a different value when it is 
viewed through a length of the line. Figure 11-32 depicts such a situation. Here, a

/

3n = (*)
+

--- *~v z0

0 -

z  = - €

r L

z =  0
z

F ig u re  1 1 -3 2  Geometry for determining 
the input impedance a distance £ from a 
load impedance.
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section of transmission line of length i and characteristic impedance ZQ is terminated 
with a load with impedance Z L. If z is measured from the load, with increasing val
ues towards the right, the general expressions for the voltage and current on the line 
are

where we note that the magnitudes of the backward-propagating waves are propor
tional to the load-reflection coefficient TL. The impedance Zin, looking into the ter
minals a distance l to the left of the load, is the ratio of the voltage to the current at the 
input terminals (z = —t); thus,

Substituting V and I into this expression, we obtain

Substituting TL = (ZL -  Z0)/(Z L + ZG) into this expression and multiplying both top 
and bottom by (ZL + ZD) yields

Finally, using the hyperbolic tangent function,

Zin (f) we can write as

(11.133)

If the line is lossless, y = j/3, and

(Lossless transmission lines). (11.134)

This means that for lossless transmission lines,
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Equations (11.133) and (11.134) are called impedance transformation formulas, 
because they predict how a transmission line transforms the value of a load impedance 
when viewed from the input terminals of a the line. Both formulas are important, but 
Equation (11.134) is used most often, since most transmission lines have losses that can 
be ignored, at least over short lengths.

E xam p le  1 1 -1 3

Calculate the input impedance of a 1 [m] length of transmission line that is term inated in a load 
impedance of Z L = 20 [ft]. Assume that the characteristic impedance of the transmission line is 
50 [ft], its effective dielectric constant is eeff = 1 .5 , and the frequency of operation is 50 [MHz],

Solution:

From Equations (11.93) and (11.95), the phase constant f3 is

)8 =
277/ _ 277/. 277 x 50 x 106 x V L 5

= 1.28.
up c eff 3 x 108

Since i  = 1 [m], we also have 

tan/3f = tan 1.28 = 3.37.

(Note that the argument of the tangent function is in ra d ia n s .) Finally, using Equation (11.134), 
the input impedance is

20 +  j  50 X 3.37
Z m(£) = 50

50 + j 20 x 3.37 = 87.7 + j 50.2 [ft].

The following are some special cases that demonstrate important characteristics 
of the impedance transformation:

(1 ) When Z L = Z0, the numerator and denominator of Equation (11.134) are equal, 
yielding Zin = Z0 for all values of i.

(2) When € —> 0, tan (/?£) —> 0 and Zin = Z L, regardless of the value of Z0.
(3) When i = n (A/2) = (nir/f3) (where n is an integer), tan((31) = 0 and Zin = Z L. 

Thus, the input impedance equals the load impedance when viewed at multiples 
of a half-wavelength in back of the load, regardless of the value of Z0.

(4) When (31 = 27t(£/A) «  1, tan ((31) ~  (31. Using (3 = (2tt/ \ ) ,  we find that Equa
tion (11.134) becomes

7  ~  y  +  /2-7r(l/A)ZP
in ° ZQ + j2ir(i/A)Zl

(5) When ZL = 0 (i.e., a short circuit), Equation (11.134) yields

Z in =  J Z o t a n  W  =  J'Z o t a n  ( 2 7 t £ / \ ) .

(11.135)

(11.136)

Hence, Zin is of the form Zin = jX  for all values of i. Figure 11-33 shows a plot of 
X  vs. 1. Notice that when i = A/4, Zin = which is an open circuit.

(6 ) When Z L —» °° (i.e., we have an open circuit), Equation (11.134) yields
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F ig u re  1 1 -3 3  Input reactance vs. length 
for a short-circuited section of 
transmission line.

Zin = —jZ 0  cot (pt) = —jZ 0  cot (2tTi/\). (11.137)

Like the short-circuit case, Zin is of the form Zin = jX  for all values of L Fig
ure 11-34 shows a plot of X  vs. L Notice that when i = A/4, Zin = 0, which 
means that an open-circuit load always appears as a short circuit when viewed 
A/4 away.

F ig u re  11 -3 4  Input reactance vs. length 
for an open-circuited section of 
transmission line.

11-4-6 TRANSMISSION-LINE EQUIVALENT CIRCUITS

Whenever a transmission line is used to connect components in a circuit, the operation 
of the circuit is affected. One way to account for this is to model the transmission as a 
lumped, equivalent circuit. This allows us to use ordinary circuit analysis to model the 
overall circuit’s performance. In this section we will show how any section of trans
mission line can be modeled as a lumped, two-port network.

Figure ll-35a shows a uniform section of transmission line of length i and char
acteristic impedance Z0. Like any linear system of components, we can describe it in 
terms of its impedance (i.e., Z) parameters. These parameters satisfy the usual two- 
port network equations,

Z j,/, + Zi2 /2 = V, (11.138)

Z2lIi + Z a I2  = V2, (11.139)

where Zn ’ Z12, Z21, and Z22 are the Z parameters of the network, and the port volt
ages, V1 and V2, and the port currents, Ix and /2, are shown in Figure 11-35a. Equa
tions (11.138) and (11.139) can be written in matrix form as
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 ̂ 2̂ \  Zn-Z.2 Z2 2  -  z 12  ̂ 2̂

u 0 O-------- 1 I-------1-------- --- 0
+ + + Jl. +
Vi z0 v2 V) Z12 v2
- - -

T
-

u_________________________
1

________ D
1

o----------------------- — 0

1 ^
£

1

(a) (b)

Figure 11 -35 a) A uniform section of transmission line, b) An equivalent “T ” network in 
terms of Z  parameters.

V 1 Z l l -^12

•"T

1__ _^21 ^ 2 2 - U J

(11.140)

If the line section contains no nonlinear or anisotropic materials, it behaves as a rec
iprocal network. Reciprocal two-port networks have Z12 = Z21 and can be repre
sented as a “T” configuration of three passive impedance elements, as shown in 
Figure ll-35b. Once the values of the Z matrix are known, the equivalent circuit is 
also known.

The diagonal elements, Zn and ■^22 > are the easiest Z matrix elements to find. 
For instance, from Equation (11.138), we find that

z „  = L  . (11.141)
i l /2 = 0

Hence, Zn is simply the input impedance looking into port 1 when port 2 is open cir
cuited. Using Equation (11.137), we have

Z n = - jZ 0  cot (JX). (11.142)

Similarly, since the transmission line is symmetric,

z
22 u /,= o

SO

Z22= —;Z0 cotOM). (11.143)

Knowing the values of Zu and -̂ 2 2 ’ we can now proceed to find Z12. From Fig
ure ll-35b, we notice that when port 2 is short circuited, the impedance Zin, seen look
ing into port 1 , can be written as

7 — 7 — 7 7 II(7 _  7 'v _  7 __ 7  1 ^12(^22 ^12)
-̂ in ~ ^ 1 1  ^ 1 2  ^  ^ 1 2  IK-^22 ^ 1 2 ) ~ ^ 1 1  ^ 1 2  7

Z 22

Solving for Z12, we obtain 

^ 1 2  = ^  Z 1 2  (Zn — Zin). (11.144)
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However, since we know that the input impedance of a short-circuited transmission 
line is given by

Zin=y'Z0 tan(/3C), (11.145)

we can substitute Equations (11.142), (11.143), and (11.145) into Equation 
(11.144), obtaining

Z n = Z 21 = - jZ 0 c s c m ,  (11.146)

where we note that the negative sign was chosen from the square-root operation to 
ensure that Z X2 is capacitive when £ ~  0. (This is consistent with the unit-cell equivalent 
circuit shown in Figure 11-4.)

Using Equations (11.142), (11.143), and (11.146), we find that the impedance 
matrix of a section of lossless, uniform transmission line is

[Z\ ~JZ0

cot (J3E) 
csc(/3£)

esc (/3£) 
cot (/3£)_ ’

(11.147)

From these values, the lumped loads in the equivalent circuit (Figure ll-35b) are

Ẑ  ̂ — Z 12 -J Z 0

[cos (/3£) -  1 ] 
sin(/3£)

(11.148)

Zn Z n jZ 0

[cos (/3£) -  1 ] 
sin (/3£)

(11.149)

Z12= - ;Z 0csc(/3f). (11.150)

The following example demonstrates how these impedance values can affect the per
formance of networks that use transmission lines to connect circuit components.

E xam p le  1 1 -1 4

Figure ll-3 6 a  shows two analog integrated circuits (ICs), connected by a short section of 
microstrip transmission line of length £ and characteristic impedance Z 0. If the input im ped
ance of IC #2 is Z 2 and £ = 0.05A, find a simplified, approximate model for the impedance seen by 
IC #1 when

(a) |Z2| «  |ZG|
(b) |Z2| »  |Z J .

Zin

IC IC
#1 #2

e

(a)

Z J 2 Z J  2
o-------cnnp-------- — nsw -----
+

L- == zc

o---------------------<

(b)

Figure 11 -36 (a) Two analog ICs, connected by a length £ of transmission line, b) The 
equivalent circuit at the output port of IC #1.
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Solution:

To find the values of the lumped T  network of the transmission line, we note that since ^ -  

.05 A, we have

(51 =  2tt(.05) =  0.314, 

cos ( f i t )  =  0.951,

sin(/31) =  0.309.

Substituting these values into Equations (11.148), (11.149), and (11.150), we obtain 

Z n  — Z 12 =  Z22 — Z 12 = j  (0.158) Z 0 =  Z l /2  

Z 12 — —;(3.236)Z 0 =  Z c .

Figure ll-36b  shows the lumped equivalent circuit of the load “seen” by IC #1.

(a) I f |Z 2| « | Z 0| , we find that Z c »  Z 2 + Z L /2. As a result, Z c can be approximated as an 
open circuit, yielding the simplified-equivalent circuit shown in Figure ll-37a. Here we 
see that a short length of high-impedance transmission line effectively adds series induc
tance to a low-impedance load.

Z\r\ Z\n
Zl

O-------------'T5TP---------O-------
+ 1

O------------- 1
+

>--------------o---
1

Z2 L- ^
r Z c

o---------------------------- o-------X O------------- 1>--------------o---X

(a) (b)

Figure 11-37 Simplified equivalent circuits of the circuit in Figure 11-36b: a) |Z2| «
|z„|.b)|z2| » |z j.

(b) If |Z2| »  |Z0| , then Z 2 »  Z L/2 , which means that the impedances of both inductors are 
negligible compared with Z 2 and Z c . This yields the circuit shown in Figure ll-37b , 
which shows that a short length of low-impedance transmission line effectively adds shunt 
capacitance to a high-impedance load.

In addition to altering the impedance of loads, transmission lines can alter the 
equivalent circuits of generators. Since lossless transmission lines are linear elements, 
Thevenin’s theorem can be used to analyze networks that contain transmission lines 
and time-harmonic sources.

E xam ple  1 1 -1 5

Figure ll-38a shows a sinusoidal generator attached to a A/8 section of lossless, 50 [ft] transmis
sion line. The generator consists of a 100 [mV] voltage source in series with a 75 [ft] resistor. 
Find the Thevenin equivalent circuit of this network at the output terminals ab.
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46.15 -j 19.23 [H]

(b)

F ig u r e  11 -38 a) A sinusoidal generator attached to a section of transmission line, 
b) The Thevenin equivalent circuit as seen from the transmission line output terminals.

Solution:

To find Zth, we simply set the generator voltage to zero and find the impedance at the out
put terminals. Using the impedance transformation formula (Equation (11.134)) and (3t =  2 tt 

(i/A) — tt/A, we obtain:

Zs„ = Ztl
75 + j  50 tan(-7r/4) 

50 + j  75 tan(7r/4)
= 46.15 -  j  19.23 [H].

We could find the Thevenin voltage V'th by calculating the open-circuit voltage of the net
work directly, but this method requires a fair amount of work, since both forward- and back- 
ward-propagating voltage and current waves will be excited on the line. A simpler method is to 
attach the same matched (i.e., 50 [O]) load to both the original network and the Thevenin equiv
alent circuit and find the Thevenin voltage source that makes the load voltage in the equivalent 
circuit equal to that in the original network. This greatly simplifies the transmission line analy
sis, since only a forward-propagating wave will be present.

When a 50 [12] load is attached to the output terminals of the original network, the gener
ator “sees” a 50 [12] load. Thus, the voltage Vm at the input terminals of the transmission line is 
determined by the voltage divider relation:

V x 1 0 0  L °° lmVl = 4 0  ^  °° (mVl-

Since only a forward-propagating wave exists on the line for a matched load, the voltage at the 
output terminals will have the same magnitude, but will be delayed by 7r/4 = 45°; hence,

Uout = 40 Z  -45° [mV].

To find the Thevenin voltage Vth, we now apply this same 50 [12] load to the Thevenin 
equivalent circuit of the network, shown in Figure 11-38b. Using the voltage divider, we find 
that the voltage across a 50 [12] load is given by

50

y °ut ~~ 50 + 46.15 -  j  19.23 X ^

However, this voltage must equal 40 Z -45° [mV], which means that

V* =
50 + 46.15 -  j  19.23

x  40 Z  -45° [mV] = 78.45 Z  -56.31° [mV],
50
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F ig u r e  11 - 3 9  Voltage standing wave 
patterns on a terminated transmission line 
for three different loads.

1 1 - 4 - 7  S T A N D I N G  W A V E S  A N D  V S W R

Figure 11-39 shows a lossless transmission line with characteristic impedance Z0, ter
minated with a load impedance Z L. If positive values of z lie to the left of the load, the 
total voltage at any position along the line is given by

V(z) = V ^e l*  + r LVixe -* \

where V inc is the complex amplitude of the wave that is incident upon the load and T L 

is the load reflection coefficient. This expression can be rewritten in the form

v(z) = vmc[eifiz + |rj

or

V(z) =Vh cos[5z + js in f iz  + | r L| cos(/3z -  4>r) ~ / | r L| sin(/3z -  cf^)

where \Tl | and fa  are the magnitude and phase of TL, respectively. We can find | V(z) \ 
by taking the square root of the sum of the squares of its real and imaginary parts. 
Remembering that sin2 6  + cos2 9= 1, this yields

|V(z)| = |V J  V l +  | r L |2 + 2 | r J  cos(2/3z -  <̂r). (11.151)

Figure 11-40 shows plots of |F(z)| for three different values of TL. As can be seen, 
\V(z)\ oscillates between maximum and minimum values, with a period of A/2. 
These magnitude distributions are called standing wave patterns because they do not 
change with time.

The ratio of the maximum and minimum voltages of a standing wave are directly 
related to the magnitude of the reflection coefficient. To show this, consider the 
standing wave pattern depicted in Figure 11-40. Here, |F|max and |v |min are the maxi
mum and minimum steady-state voltage magnitudes, respectively. According to
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Figure 11 -40 Voltage minima and 
maxima on a standing wave pattern.

Equation (11.151), |V(z)| attains its maximum value at points where cos(2(3z -  4>v) = 
1. Thus,

|vL x  = I L J  V i + | r j 2 + 2 | r J  = | V J ( 1  + | r j ) .  (1 1 .1 5 2 )

Similarly, points of minimum voltage amplitude (called nodes) occur when cos (2(3z ~ 
0 r ) = —1 , and

Mmin = | v j  v 'l + | r j 2 -  2 |r t | = | v j ( i  -  | r j ) .  (11.153)

We define the voltage standing wave ratio (VSWR) as the ratio of the maximum and 
minimum voltage magnitudes:

VSWR =
id

(11.154)

Substituting Equations (11.152) and (11.153) into this expression, we obtain

VSWR =
1  + [rL 

1 -  | r L
(11.155)

Since |T j =£ 1,1 VSWR ^  °°. Solving Equation (11.155) for p j ,  we can also write

, , VSWR -  1 
L' ~ VSWR + 1 '

(11.156)

Equation (11.156) shows that the magnitude of the reflection coefficient caused 
by an unknown load can be found by measuring the VSWR. This is important, 
because it is often easier to measure the VSWR than it is to measure |Tl | directly, 
since measuring \Tl \ directly requires a device that can distinguish between waves



propagating in opposite directions. By substituting Equation (11.156) into Equations 
(11.152) and (11.153), expressions for |E|max and |v |min in terms of the VSWR can be 
obtained. We have
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M m a x  2 l ^ i n c l  y £ W R  +  \  ( 1 1 . 1 5 7 )

and

M m i n  -  2  k i n d  ^ S W R T T  ’  ( 1 1 . 1 5 8 )

where |Einc| is the magnitude of the wave that is incident upon the load. Equation 
(11.157) is particularly important, since it shows that the VSWR dictates the maximum 
voltage on the line for a given incident wave.

E xam p le  1 1 -1 6

Figure 11-41 shows a transmission line attached to a matched generator and an arbitrary load. If 
V g — 1,000 [V rms], and the breakdown voltage of the transmission line is 700 [V rms], find the 
range of acceptable VSWRs which guarantee that no breakdown will occur anywhere on the 
line.

■ m --------a
rL

~X
Z 0

<1
Figure 11-41 A transmission line with a 
matched generator and unmatched load.

Solution:

It is usually good engineering practice to make sure that |V|max is less than the specified 
breakdown value, with a 10% margin of safety. Since the specified value for this cable is 700 
[V], we will use 630 [V rms] as the maximum allowable voltage. The generator is matched to the 
line, so the voltage wave launched towards the load has a magnitude |Einc| =  V g / 2  =  500. Solv
ing Equation (11.157) for the maximum VSWR, we find that

VSWR =
I El
| I m a x

2 \V- \ -  \v\I mcl I I max

630

1000 -  630
1.7.

Thus, breakdown will be avoided as long as 1 =£ VSW R =£ 1.7.

Measuring the VSWR is sufficient to determine the magnitude of but not its 
phase. Fortunately, the phase of can be determined simply by measuring the dis
tance zvm between the first voltage minimum (node) and the load. (See Figure 11-40.)
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To see how this is accomplished, we remember that voltage minima occur whenever 
cos (2(3z -  4>r) = —U which in turn occurs when

'T s f i Z v m  </>T

Using [3 = we can solve this expression for yielding

(Ar = 720°
r
4

(11.159)

Even when cannot be measured directly, it can be deduced from the VSWR 
pattern if the load can be temporarily replaced with a short circuit and we measure the 
shift in the nodes. This “trick” works because the nodes caused by a short-circuit load 
occur at integer multiples of A/2 behind the short. When using this technique, we 
observe that zvm is the distance from a load minimum to the closest short-circuit mini
mum that lies towards the load.

E xam p le  1 1 -1 7

Figure 11-42 shows an unknown load attached to a 50 [H] transmission line. Also shown are the 
VSW R patterns along a section of the transmission line with the unknown load in place and with 
the load replaced by a short circuit. Find the impedance of the load.

S hort c ircu it

r,0 (F 1+
To V Z0

generator
— T0____________ ------------------ _ D -

F ig u re  11 -4 2  Standing wave patterns on a transmission line for an unknown 
load and a short-circuit load.
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Solution:

W ith the unknown load in place, V max = 4 and V mm =  2.5, so 

4
VSW R = —- = 1.6.

2.5

Substituting this value into Equation (11.156), we find that

I ' - d - M r i - 0231-

To find <f)v , we must find both A and z vm. The wavelength A equals twice the distance 
between adjacent nodes when either the unknown load or the short circuit is present, but the 
nodal points are sharper when the short circuit is present. From Figure 11-42, the positions of 
two successive nodal points are Z\ =  2.4 [cm] and z2 = 9.7 [cm]. Thus,

-  = 9.7 -  2.4 -  7.3 [cm],

or

A = 14.6 [cm].

Also, zvm is the distance that the nodes shift towards the load when the short circuit is in place, and 

zvm =  6.6 -  2.4 = 4.2 [cm].

Using Equation (11.159), we have

<;by =  720°
4.2

14.6

1

4
27.12°.

Thus,

r L  = 0.231 A 27.12° = 0.205 + j  0.105.

Finally, from Equation (11.132), the load impedance is

^  1 + 0.205 + ;'0 .105 „ . i r „n r m
Z t “  50 1 -  0.205 0.105 =  73'68 + '  1638 [ft]'

11-4-8 EFFECTIVE REFLECTION COEFFICIENTS

We have already seen that the load reflection coefficient TL is the ratio of the reflected 
and incident voltages, evaluated at the load. In many cases it is helpful to keep track 
of the relationship between incident and reflected waves at arbitrary points on the line. 
Such a situation is depicted in Figure 11-43. Here, a transmission line with character
istic impedance ZG is terminated at z — 0 with a load impedance Z L. If positive values 
of z are defined to the left of the load, we can define the effective reflection coefficient 
at z = i as
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V+(z = €)
m rL

V+(z=0) l \ l \ l ^ [ 1

X

V-(z=0)

Figure 11 -43 The effective reflection 
coefficient T(£) at an arbitrary point on a 
transmission line.

V ~ ( z  =  i )

r ( e ) = n ^ i  (m 6 0 )

where V +(z = f) and V~ (z = £) are the incident and reflected voltages, respectively, 
at z = £.

The effective coefficient T (f) is directly related to the load reflection coefficient 
Tl . To see how, we note that because V + and V~ propagate in the positive and nega
tive directions, respectively, we can write

V +(z = £) = V +(z = 0 ) eiyl

and

V~(z = £) = V~(z = 0) e-M.

Substituting these into Equation (11.160), we find that

T(£) = r Le ~ (11.161) 

Remembering that y — a + j(3, we can also write

T(£) = YLe~2al e-jzpt. (11.162)

For lossless transmission lines, a = 0, which yields

F(£) = TLe~j2pi (Lossless transmission lines). (11.163)

From Equation (11.163), we see that the magnitude of T (£) is independent of i on 
lossless lines. This occurs because the magnitudes of both the incident and reflected 
fields do not vary with position when there is no loss. On the other hand, the phase of 
T (f) becomes more and more negative (i.e., delayed) as l increases. This delay occurs 
because a wave launched towards the load must experience a propagation delay of fit 
as it propagates towards the load, and the reflected wave experiences the same delay 
while propagating back.

On lossy lines, |T (£)| gets smaller as l increases. This occurs because the incident 
wave diminishes as it approaches the load, and the reflected wave is further diminished 
as it propagates back. As a result, a highly reflecting load appears less reflecting when 
viewed through a section of lossy transmission line. This effect can be used to reduce
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A*) m  \
0 0

z. ! 1 1 10 ()
7

(a)

m

( b )

TL

m

_ r

Figure 11 -44 a) A transmission line terminated in a lumped load, b) An equivalent load 
Z (1) at z = 1 that yields the same effective reflection coefficient.

the reflections of mismatched loads. Using this technique, very low reflection coeffi
cients can be attained, but at the cost of power dissipated in the lossy matching section.

We saw earlier that the load reflection coefficient TL is related to the load imped
ance by the expression

r  _ Z L ~ Z q

L z L +  z 0 -

A similar relationship exists between the effective reflection coefficient T (t) and the 
input impedance Z(l) at an arbitrary point z = l . To derive this relationship, con
sider the circuit shown in Figure 11-44a. Here, a load with impedance Z L is con
nected to a transmission line with characteristic impedance Z0.

Figure 11-44b shows an equivalent circuit, where the transmission line to the 
right of z =  ̂ and the load have been replaced by the input impedance Z(f), given 
by Equation (11.134) (or Equation (11.133), for lossy lines). As far as an observer 
to the left of z = i is concerned, the circuits shown in Figures 11 -44a & b are iden
tical. Since a load Z(£) appears at z — f in Figure ll-43b, we can write the reflec
tion coefficient at this point as

F(«) Z{1) -  ZQ 
Z (i)  + z G •

(11.164)

Here, we see that the effective reflection coefficient T (£) at any point on a transmission 
line can be determined from the input impedance at that point. Conversely, we can 
solve Equation (11.164) for Z(i)  to obtain

Z{i) = ZG
i + r ( i)
i - r(«) ’ (11.165)

which shows that the input impedance can be found from the effective reflection 
coefficient.
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—W ^ r
Zo

Two-port
netw ork 2 o

-  w v

VZ ~ W —

F ig u re  11 -4 5  Ingoing and outgoing 
voltage waves at the ports of a two-port 
network.

11-4-9 SCATTERING PARAMETERS AND NETWORK 
ANALYZERS

A useful way to represent the port characteristics of RF and microwave circuits is by 
using scattering parameters, which are often called S parameters. We will introduce 
these parameters using Figure 11-45, which shows a linear two-port network. Here, 
both ports are transmission lines with characteristic impedance ZG. As is always the 
case on transmission lines, voltage waves can propagate in two directions. Let us 
denote the incoming and outgoing voltage phasors at port 1 as V f and V^, respec
tively. Similarly, V2 and V2 are the phasors of the incoming and outgoing voltage 
waves at port 2. The S parameters relate the waves according to following equations:

vr = S„V,+ + S12v2+ (11.166a)
V -2  = Sn Vt + S2 2 V*2 . (11.166b)

These equations can also be written in matrix form as

—
1

~ s u 1̂2 --
1

^+
l

L ^ J _̂ 21 2̂2_ £

(11.167)

From the preceding equations, we can express each S parameter in terms of the 
ratio of an outgoing and incoming voltage phasor:

'12

'21

when V2  = 0 (Port 2 matched) (11.168a)

— when V f = 0 (Port 1 matched)
*/ 2

(11.168b)

v~
when V2 = 0 (Port 2 matched) (11.168c)

when V f = 0 (Port 1 matched).
*2

(11.168d)
^22

Here, we see that each S parameter is the ratio of an outgoing wave to an incoming 
wave, under the restriction that one of the ports is terminated with a nonreflecting (i.e., 
matched) load.

Comparing the definition of Sn (Equation (11.168a)) with Equation (11.131), we 
see that Su is simply the reflection coefficient seen at port 1 when port 2 is terminated 
by a matched (i.e., nonreflecting) load. Similarly, S2 2  is the reflection coefficient seen 
at port 2  when port 1 is terminated with a matched load.
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The parameters Sn  and S2l are also ratios of outgoing and incoming waves, but 
they are not reflection coefficients, since the waves are not at the same ports. Rather, 
these parameters represent the coupling of waves from one port to the other. For in
stance, ^21 represents the wave that exits port 2  due to a wave incident upon port 1 . 
Similarly, Sn represents the wave that exits port 1 due to a wave incident upon port 2.

The S parameters of a two-port network are directly related to its Z parameters. 
We can show this by noting that the total voltage and current at each port are related to 
the incoming and outgoing voltages. Using Equations (11.80) and (11.81), we have

where V1 and Ix are the total voltage and current phasors at port 1. Similarly, at 
port 2  we have

Substituting Equations 11.169 and 11.170 into Equations 11.138, 11.139, and 11.166, 
and, using matrix algebra, we can derive the following relationships between the Z 
and S parameters:

Here, [Z] and [5] are the impedance and scattering matrices, respectively, [/] is the 
identity matrix, and the superscript “—1 ” denotes “matrix inverse.” Thus, one can 
determine the Z parameters from the S parameters, and vice versa.

Given that the Z and S parameters of a network can each be found one from 
another, the reader might be wondering why the S parameters are ever used. The fol
lowing are three reasons why S parameters are useful for describing networks at high 
frequencies:

(1) Measuring the Z parameters of a network requires placing open circuits at the 
ports. But many active devices (such as transistors and FETs) will spring into 
parasitic oscillations when a port is open circuited. This does not happen as 
often when matched loads are used, so S parameters are easier to measure.

(2) At high frequencies, it is often easier to visualize and measure traveling voltage 
waves than total voltages. Hence, the S parameters provide a more natural rep
resentation at these frequencies.

(3) Scattering matrices have several useful mathematical properties that make them 
easier to manipulate.7

7S ee  Sam uel L iao, Microwave Devices and Circuits, 3d  ed., (U p p e r  S addle R iver, N ew  Jersey: P ren tice-H all, 

1990).

K  = v t  + v r (11.169a)

(11.169b)

(11.170b)

(11.170a)

[S) = [[Z]-Z0[I]][[Z]+Z0[I]]-'

[z] = -z0[[s] -  mr'm + m
(11.171)

(11.172)
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Figure 11 -46 A  commercial network 
analyzer, displaying the S-parameters of a 
2-port microwave network. Courtesy of 
the Hewlett-Packard Company.

A network analyzer is a piece of test equipment that measures the S parameters 
of a network. A typical network analyzer is shown in Figure 11-46. Network analyz
ers usually have two ports, each with standard 50 [fl] coaxial connectors that allow 
quick connections to the networks being tested. Most modern network analyzers are 
computer controlled and allow the automatic characterization of networks over wide 
frequency bands. In addition to S parameters, most analyzers also provide network Z 
and Y  parameters (using relations like Equation (11.172)). Also, many analyzers uti
lize Fourier transform techniques to simulate the transient responses.

11-4-10 THE SMITH CHART

The Smith chart is a graphical representation of transmission-line parameters that is used 
both for numerical calculations and for presenting design parameters in a visual setting. 
Although its use in numerical calculations has diminished with the advent of electronic 
computing, it remains an important visual design tool for RF and microwave circuits.

Figure 11-47 shows a section of lossless transmission line with characteristic 
impedance Z0 and length £, and terminated with a load impedance Z L. The imped
ance Z (£) seen looking into the end of the transmission line is given by the impedance 
transformation formula

7 m  = 7 z l + j Z 0tan(pt)
{ } ° ZQ + jZL tan (fit) '

m IT

1

Figure 11 -47 The input impedance and 
effective reflection coefficient a distance l  

from a load on a transmission line.
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F ig u re  11 -4 8  The variation of the 
reflection coefficient T (£) vs. position on a 
lossless transmission line.

This is a periodic function, since the values of Z (f) change in both amplitude and phase 
as i changes. As a result, it is not easy to tell how the numerical values of Z (f) change 
from position to position simply by looking at the formula. On the other hand, the 
effective reflection coefficient T changes quite simply as a function of the distance i 
from the load, according to the formula

where TL is the load reflection coefficient. From this expression, we see that only the 
phase of T changes with i. This means that T (£) traces out a circle on the complex 
plane each time that i increases by A/2, such as the circle shown in Figure 11-48. Thus, 
if the value of T (f) is known for one value of i, its value at any other position can be 
quickly determined simply by rotating through the appropriate angle—clockwise when 
moving away from the load and counterclockwise when moving towards the load. 
Constant |r| circles are called constant-VSWR circles, since the VSWR is a function of 
only the magnitude of T (f) and not its phase. (See Equation 11.155.)

To see what kind of graphical relationship the impedance and reflection coefficient 
have, let us first write T (f) as the sum of a real part Tr and an imaginary part T,. We have

where we have dropped the “(f)” from these quantities to simplify the notation. Next, 
we define the normalized impedance z as the input impedance Z divided by the char
acteristic impedance ZD. The definition is

where r and .r are the normalized resistance and reactance, respectively. Notice here 
that z, r, and * are all dimensionless parameters. Substituting Equation (11.173) into 
Equation (11.164), we obtain

T(f) = TLe~ ™ 1

z
z = —  = r + jx,

O
(11.173)

(11.174)

which can also be written as
1 + r

(11.175)
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If we express both z and T in terms of their real and imaginary parts, Equation 
(11.165) becomes

r + jx =
l  + rr + ;T ;

i -  r r ~ j r f
Multiplying both the numerator and denominator of the right side by the complex con
jugate of the denominator yields

r +j x  =
i - r ; - r ?  + ; 2 r,.

(i - rr)2 + r2 '
Equating the real and imaginary parts of the right- and left-hand sides of this expres
sion, we obtain

i -  r? -  r? . 2r,
r = and(i - r,)2 + r2 “““ ~ (i - r,)2 + r2 *

Finally, these expressions can be rearranged to obtain the equations that define the 
Smith chart, namely,

r + 1
+ n

i

1 + r
(11.176)

and

( r ' - 1)2 + (r - - 1 )2 = 0 - (1L177) 
Equation (11.176) defines a family of circles in the (r^, 17) plane called constant- 

r circles, since each circle corresponds to a particular value of r. Each circle has a 
radius of 1/(1 + r) and is centered at the point (r/( 1 + r), 0). Figure 11-49a shows 
several constant-r circles. Each circle represents all the values of T that correspond to 
a particular value of r. If f  is known at a particular location on the transmission line,

F ig u re  11 -49 a) Constant-r circles and b) Constant-* circles, plotted in Cartesian 
coordinates.
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the value of r at that location can be found simply by plotting F in the complex plane 
and locating the constant-r circle that intersects this point.

In a similar manner, Equation (11.177) defines a family of circles in the ( r r, T, ) 
plane called constant-x circles. Each circle has a radius of 1/x and is centered at the 
point (1 ,1/x). Several constant-x circles are plotted in Figure ll-49b. Just as with the 
constant-r circles, the normalized reactance x that corresponds to a particular value of 
T can be determined by noting which constant-x circle intersects F on the ( r r, T, ) plane.

When the constant-r and constant-x circles are plotted together, as shown in Fig
ure 11-50, we obtain the Smith chart, which was devised in 1939 by P.H. Smith.8 Each 
point on the Smith chart is a simultaneous plot of the reflection coefficient F and the

SP.H. Smith, “Transmission-line calculator,” Electronics, vol. 12, p. 29, January 1939. Also, “An improved 
transmission-line calculator,” Electronics, vol. 17, p. 130, January 1944.
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normalized impedance z at a particular location on a transmission line. Both T and z 
are complex numbers, but they are plotted differently on the Smith chart. The real 
and imaginary parts of the reflection coefficient, Yr and 12, respectively, are plotted in 
rectangular coordinates, with the horizontal axis representing Yr and the vertical axis 
representing T-. On the other hand, the values of r and x are located on the Smith 
chart using the constant-r and constant-x circles, respectively. In this way, the value of 
z that corresponds to a particular reflection coefficient Y can be read directly off the 
Smith chart, and vice versa. The process is demonstrated in the example that follows.

E xam p le  1 1 -1 8

§ 1

If the effective reflection coefficient at a location on a transmission line is Y =  0.4 + j  0.2, use the 
Smith chart to determine the input impedance Z  at that location. Compare this with the value 
predicted by Equation (11.175).

Solution:

In polar coordinates, Y  has a value of 

T = 0.4 + j  0.2 = 0.45 Z. 26.56°.

We can locate the angular position of this point P l  by using the degree markings on the outer 
perim eter of the Smith chart, shown in Figure 11-51. Since |r| = 0.45, the distance between P l  

and the center of the chart is simply 0.45 times the radius of the chart (which corresponds to

16 = i).
The operating point P 1 is also the intersection of the r  = 2.0 and x — 1.0 circles. Thus, the 

normalized impedance is

z = 2 + / 1 .0 .
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Since the characteristic impedance of the line is 50 [D], the input impedance seen looking 
towards the load is

Zin = 50z -  100 + j 50 [XI],
Finally, using Equation (11.175), we have

z =
i + r
i -  r

1 + 0.4 + j 0.2 
1 -  0.4 -  j 0.2

— 2  + j 1 .0 ,

which agrees with the result obtained from the Smith chart.

The previous example shows how the Smith chart can be used to determine the 
normalized input impedance z of a transmission line from the effective reflection coef
ficient T. Conversely, the Smith chart can also be used to determine the effective 
reflection coefficient T that corresponds to a particular normalized input impedance z. 
As important as these functions are, however, the real utility of the Smith chart is that 
it allows for quick graphical impedance transformations from one position to another 
on a transmission line.

Consider the situation depicted in Figure ll-52a. Here, a load is connected to 
a lossless transmission line with characteristic impedance ZQ. We will denote the 
normalized impedance and reflection coefficient at the load as zL = rL + jxL and 
rl = |rj z. cf)L, respectively. These values are represented by the point P1 in Fig
ure ll-52b. Using Equation (11.163), we find that the effective reflection coefficient 
seen a distance £ from the load is given by

r = r L e ~ ^ ’ = |rj z. (<t>L -  ip i) .

Figure 11 -52 Using the Smith chart to compute the normalized impedance vs. position on a 
lossless transmission line.
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In words, this expression says that the new value of T is found simply by rotating the 
point P1 clockwise through the angle 2p i = 720° X (£/A). This value is represented by 
the point P2 in Figure ll-52b. As can be seen, and T lie on the same constant- 
VSWR circle. The value of z can be read directly off the Smith chart from the inter
section of P2 with the constant-r and -x circles.

A convenient way to determine how far an operating point on a constant-VSWR 
circle moves between two positions on a transmission line is to use the wavelength 
scales along the perimeter of the Smith chart. When an observer moves a distance Al 
towards the load, the phase of the reflection coefficient changes by an amount

A<£ = 2pM = 720° X (11.178)

This relationship allows us to relate angular positions on the Smith chart using the 
wavelengths-toward-the-generator (WTG) and wavelengths-toward-the-load (WTL) 
scales on the outer perimeter of the Smith chart. Movement towards the generator 
(i.e., away from the load) results in a negative A0 , whereas movement towards the load 
results in a positive A</>. Notice that one revolution around a VSWR circle corre
sponds to a change in position of A/2.

19

A load of value Z L — 50 — j  25 [O] is attached to a lossless, 100 [fl] transmission line. Use the 
Smith chart to find Z  a distance i  =  0.4A from the load.

Solution:

The normalized load impedance is z L -  0.5 -  j  0.25, which is represented by the point P x 

in Figure 11-53. To find the operating point at £ = OTA, we must rotate the point P x clockwise
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the appropriate number of degrees. This is most easily accomplished by using the W TG scale at 
the outer edge of the Smith chart. The point P x occurs at 0.45 WTG. Thus, the operating point 
P 2 in back of the load is found by rotating an additional 0.4A on the W TG scale. Remembering 
that a full revolution on the Smith chart is 0.5A, we find that P 2 is located at 0.4 — (0.5 -  0.45) =
0.35 WTG. Using the constant-r and -x circles, we obtain

Z =  0.952 -  j 0.77

Z  = lOOz = 95.2 -  j 77.0 [O],

Another useful property of the Smith chart is that the VSWR can be read directly 
off the chart simply by noting where the constant-VSWR circle intersects the real axis. 
To see how, note that every constant-VSWR circle intersects the real axis twice. Inter
sections to the right and left of the coordinate center yield z = rmax 5= 1 and 
z = r min =£ 1, respectively. These are also points of maximum and minimum voltages, 
respectively, since the incident and reflected waves have phase differences of 0 ° or 180° 
when T is real. At a point where z = rmax,

T  =
-  1

+ 1 + 1

Substituting this into Equation (11.155), we obtain

VSWR = y r l j  = '•max- (11.179)

Using a similar sequence of steps, we can also show that 

1

VSWR = ---- . (11.180)
T r i m

The Smith chart can be used to calculate the input admittances as well. At 
every operating point, the normalized impedance z and the reflection coefficient T 
are related by

z =
i + r
i  -  r '

(11.181)

If we define the normalized admittance y as

1

(11.182)

it follows from Equation (11.181) that
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which can also be written as

i  +  ( - n  

i - ( - r ) '
(11.183)

Comparing Equations (11.181) and 11.183, we see that normalized impedance and 
admittance values interchange when the sign of Y is changed. Since half revolutions 
on the Smith chart correspond to multiplying Y by -1 , normalized impedance-to- 
admittance conversions can be obtained graphically on the Smith chart by using the 
following procedure:

(1) Identify the impedance operating point on the Smith chart by locating either the 
reflection coefficient Y or the normalized impedance z. Draw the corresponding 
constant-VSWR circle.

(2 ) Locate the admittance operating point by rotating the impedance operating point 
through 180°.

(3) The normalized admittance can be read directly by interpreting the constant 
resistance (r) and -reactance (*) circles as constant admittance (g) and -suscep- 
tance (b) circles, respectively.

(4) Admittance values at any other position on the line can be obtained by rotating 
the admittance operating point around the constant-VSWR circle the appropriate 
number of degrees, using the WTG and WTL scales.

11-20 --------------------------------------------------------------------------------------------------------------

Figure 11-54 shows a lossless, 50 [O] transmission line that is term inated with an unknown 
impedance. Using the VSW R pattern plotted in this figure, calculate the load impedance and 
admittance.

F ig u re  11 -54 VSW R plot for a 
transmission line with an unknown load.
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Solution:

First, we can calculate the wavelength using the distance between successive maxima in 
Figure 11-54:

A = 2(7.232 -  0.832) = 12.8 [cm].

Next, from the voltage plot,

V  8 2
VSW R = = 2.56.

’ min
The constant-VSW R circle, shown in Figure 11-55, passes through the intersection of the 
r  — 2.56 circle and the real axis.

To find the load impedance, we note that the impedance at the z =  0.832 [cm] voltage 
maximum is found on the Smith chart at the intersection of the constant-VSW R circle and the 
positive real axis. This point is indicated as P { in Figure 11-55. In terms of wavelengths, the dis
tance from the first maximum to the load is

, 0.832
a = ------

12.8
0.065 A.

The im pedance at the load is obtained by starting at P 1 and rotating counterclockwise 
0.065A on the constant-VSW R circle. Since P, occurs at 0.25 on the W TL scale, P 2, is located at 
(0.25 + 0.065) =  0.315A on the W TL scale. A t P 2, we read the normalized impedance

z = 1.3854 +  j  1.081,

and a load impedance

Z L = 50z = 69.27 + j  54.05 [ft].

The normalized admittance of the load can be found by rotating an additional 1/2 revolution 
from P 2 (on the constant-VSW R circle) to obtain the point P3. A t P 3, we find
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y L = 0.4487 -  j  0.3501 

and a load admittance of

A  = Tf; = 8.?7-/7.0[mS].

On lossy transmission lines, the reflection coefficient decreases exponentially 
with increasing distance from the load. This causes the constant-VSWR circles to 
become spirals with decreasing radius when an observer moves. Other than that, the 
technique for using the Smith chart is the same as it is for lossless lines.

E xam ple  11-21

A transmission line with characteristic impedance Z 0 = 50 + j  0.01 [fl] is terminated with a load 
Z L =  10 [fl]. If A =  40 [cm] and a  — 1.4 [Np/m], find the input impedance at a distance i  — 15 
[cm] behind the load.

Solution:

The normalized load impedance is

10
50 + j  0.01

0.2 + j  0,

which is represented in Figure 11-56 as the point P x at 0.0 on the W TG scale.
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Remembering that the distance from the origin to the outer perim eter of the Smith chart 
corresponds to |T| — 1, we see from this figure that |T| =  0.666 at P 1 . Using a  =  0.014 [Np/cm], 
we find that the value of |T| a distance l  =  15 [cm] behind the load is

|r| = 0.666 X e- 2(-014)(15) =  0.442.

To find the phase of T at l  = 15 [cm], we must rotate 15/40 =  0.375 of a wavelength towards the 
generator, which is 270° clockwise from P 1. The operating point at i  = 15 [cm] is shown as P 2 . 

Using the constant-r and -x  circles, we obtain

z2 = 0.678 -  j  0.735,

and

Z 2 -  (0.678 -  j  0.735) • (50 + j  0.01) =  33.9 -  j  36.7 [CL].

11-4-11 IMPEDANCE MATCHING

Throughout this chapter, we have discussed several characteristics of transmission 
lines with mismatched loads. Most of these characteristics are undesirable, the worst 
of which are:

1. Input impedances that vary with line length.
2. Non-optimum power transfer between the source and the load.
3. Waveform distortion.
4. Voltage “hot spots” that can cause dielectric breakdown.

Because of these undesirable effects, measures are often taken to ensure that trans
mission lines and loads are matched as closely as possible. Sometimes this is as simple 
as choosing transmission and load impedances that are closely matched. Often, how
ever, one has to make do with an existing load or source. In these cases, it is still pos
sible to improve the match, either by using an impedance transformer or by adding 
lossless, lumped impedances.

Quarter-Wave Transformer. A quarter-wave transformer is simply a quarter- 
wavelength-long section of transmission line. When a resistive load is attached to 
one end of a quarter-wave transformer, the input impedance at the other end is also 
resistive. Figure 11-57 depicts such a situation, where a resistor of value R, is 
attached to a quarter-wavelength section of lossless transmission line with charac
teristic impedance Z 0. Noting that (31 = ttI 2  when £ = A/4, the impedance trans-

A/4

F ig u re  11-57 A quarter-wave section of 
transmission line, term inated with a 
resistive load.
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Quarter-wave
transformer

D----d Wc
A/4

F ig u re  11 -58 A quarter-wave 
transformer, used to match a resistive load 
to a transmission line.

formation (Equation (11.134)) predicts that the input impedance is real and given 
by

(11.184)

Since Z G is real for lossless transmission lines, Zjn is also real. Hence, RL can be trans
formed to any real value simply by choosing a quarter-wavelength transformer with 
the appropriate characteristic impedance Z0.

Figure 11-58 shows how quarter-wave transformers are used to match loads to 
transmission lines. Here, a resistive load of RL is to be matched to a transmission line 
with characteristic impedance Z0. Between the load and the transmission line is 
placed a quarter-wave transformer with characteristic impedance Z D. In order for the 
transmission line to “see” a matched impedance, we simply require that the trans
formed impedance Zin (given by equation 11.184) equal

Solving for Z 0 we find that the quarter-wave matching section must have a character
istic impedance of value

(11.185)

When Z 0 has this value, the reflection coefficient at the input terminals of the quarter- 
wave transformer is zero, so all the power incident from the transformer is delivered 
to the load.

E xam p le  1 1 -2 2

Design a quarter-wavelength section that matches a 20 [H] resistance to a 50 [fl] microstrip line 
at /  -  4 [GHz]. Assume that the dielectric substrate is 0.75 [mm] thick and has a dielectric con
stant of 6,. = 2.5.

Solution:

From Equation (11.185), the characteristic impedance of the matching section must be

Z Q = V zoi?L = V50 X 2 0  = 31.62 [H],
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We can use Equations (D.24) and (D.25) to determ ine the width-to-height ratios of the 50 
[fl] and 31.62 [fl] PCB traces. For the 50 [fl] section, we have

B  =
tt 377 [a]

2 V Z 5  50 [fl]
-  7.49

w  _  (2.5 -  1) 

h  ~  2.5tt

= 2.84.

In (7.49 -  1) + 0.39 -
0.61

2.5
+  -  7.49 -  1 -  In (2 X 7.49 -  1)

77

Since h  — 0.75 [mm], this means that w  =  2.13 [mm]. 
Similarly, for the 31.62 [fl] line, we have

d _  77 377 [fl] _  g

2 V ^ 5  31.62 [fl]

w  _  (2.5 -  1) 

h  ~
. I n (11.8 -  1) + 0.39 -  + -{11.8 -  1 -  In (2 X 11.8 -  1)

2.077 \ 2.5 / 77

= 5.37.

This means thatxu — 5.37 X 0.75 [m] =  4.03 [mm].
Finally, to determine the physical length of the A/4 section, we need to find the wavelength 

on the 31.62 [fl] line. Using Equation (D.20), we find that the effective dielectric constant on 
this line is

\(*r+  1) + U *r~  1) { 1 +
1 2  r 1/2

5.37
=  2.17.en 2 v-r ~7 2

Using this value, we see that the wavelength on this line is

 ̂ c 3 X 108 ^  „  r ,
A = _■ ■;— : = --------- ------- = 50.9 [mm].

/V feff 4 X 109 X V 2T 7

Hence, the length of the A/4 section is 

50 9
i  =  — —  =  12.73 [mm],

4

Figure 11-59 shows a top view of the input transmission line, the quarter-wave section, and the 
resistive load.

12.73 [mm]

31.62 [fl]

F ig u re  11-59 A microstrip quarter-wave 
transform er that matches a 50 [fl] 
microstrip line to a 20 [fl] load.
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V3 V-i

V'o V2
1

R eactive
shunt

Mismatched
load

F ig u re  11 -60 Impedance matching using a 
lumped, reactive shunt.

Stub Tuners. Quarter-wave transformers work well in many situations, but they 
can only provide perfect matches for resistive loads; reactive loads can’t be matched 
well by quarter-wave transformers. A technique that avoids this problem is depicted 
in Figure 11-60. Here, a transmission line is terminated with a mismatched load. The 
essence of this technique is to place a reactive shunt element a distance d  away from 
the load such that the net impedance of the shunt and the transformed impedance of 
the load exactly equals the characteristic impedance of the transmission line ZQ. 
When this occurs, the transmission line “sees” a matched load, and all the power from 
the transmission line is absorbed by the load (since the reactive shunt cannot dissipate 
power).

The key to this technique lies in choosing the distance d  such that the admittance 
Y 1 seen looking towards the load is of the form

y , = y 0 ( i + / 6 ) ,

where Ya = 1/ZG is the characteristic admittance of the transmission line. Next, we 
choose the admittance Y2 of the shunt element so that it is given by

^ 2  = ~jbY0.

For this choice of Y2, the parallel combination of Yl and Y2 results in a net admittance

y , = y , + y 2  = y 0 ( i  + jb) - jb Y 0  = y„,

which is a matched admittance. Thus, by choosing the distance d  and the reactive 
admittance Y2 appropriately, it is possible to match any load (even reactive ones) to a 
transmission line.

Although any reactive shunt element can be used in this technique, lumped 
capacitors and inductors are usually too lossy to be of practical use at RF frequencies 
and above. An attractive alternative is to use sections of short- and open-circuited 
transmission lines, called stub tuners. Figures 11-61 a and b show short-circuited and 
open-circuited stub tuners, respectively. By choosing the stub lengths appropriately, 
the necessary shunt susceptances can be obtained. For instance, the admittance Ys 
seen looking into a short-circuited stub of length t ,  shown in Figure ll-61a, is given by 
Equation (11.136),

Ys = - ;T 0 cot (2ttT/A) (Short-circuited stub), (11.186)

where Y 0  and A are the characteristic admittances of the stub and the wavelength, 
respectively. Similarly, the admittance looking into an open-circuited stub of length £, 
shown in Figure ll-61b, is given by Equation (11.137),

Ys = jY 0  tan (27rf/A) (Open-circuited stub). (11.187)
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d d

tuner.

Equations (11.186) and (11.187) show that any reactive admittance Ys can be obtained 
from an open- or short-circuited stub simply by choosing an appropriate length L

The appropriate dimensions of a single-stub tuner are easily accomplished by 
using the Smith chart. Assuming that the characteristic admittances of the transmis
sion line and the stub are equal (Y0), the single-stub matching technique proceeds as 
follows (see Figure 11-62):

Figure 11 -62 Using the Smith chart to 
determine the position and length of a stub 
tuner.



(1 ) Locate the normalized load impedance zL on the Smith chart, and draw the con- 
stant-VSWR circle.

(2) Rotate this point 180° to obtain the normalized load admittance yL.
(3) From yL, rotate CW along the constant-VSWR circle until it intersects the g = 1 

circle. There are always two intersection points, but it is usually best to choose 
the intersection that yields the smallest stub length. In Figure 11-62, the first 
intersection point has admittance yx = (1 + jb); the second intersection point has 
admittance yj = (1 — jb). The arc length traversed during this rotation (read in 
wavelengths on the WTG scale) equals the distance d from the load to the loca
tion of the lumped reactive load.

(4) The stub length i needed to match the load depends upon which point on the 
g = 1 circle is used (yx or yj), and whether the stub is open or short circuited. 
When the point yx = (1 + jb) is chosen, the input admittance to the stub must be 
ys = —jb. To find £, start at the admittance of the stub’s end (y = 0 or y = °° for 
open-circuited and short-circuited stubs, respectively), and rotate clockwise until 
the point ys = —jb is reached. For either case, the stub length £ equals the arc 
length traversed on the WTG scale. Figure 11-62 shows the length for a short- 
circuited stub. The procedure is similar when the point y[ is chosen, except that 
the susceptance values of the stubs are positive.

There are several reasons why the shortest stub length is usually the best choice.
Among them are the following:

(a) Less space is needed.
(b) All transmission lines have finite losses, so minimizing the stub length also mini

mizes the power lost in the stub.
(c) The bandwidth over which a good match is obtained is maximized when the short 

stubs length are used. This is because the VSWR along the stub is infinite (or 
nearly so when the stub is lossy), so the stub admittance varies rapidly with slight 
changes in its electrical length. (Notice how large the spacing between the con
stant b circles is at the outer edge of the Smith chart.)
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E xam ple  1 1 -2 3

Design a single-stub tuner that matches a load of value Z L — 60 — j  40 [fl] to a 50 [O] transmis
sion line. Use a short-circuited stub that has the same characteristic impedance as the trans
mission line.

Solution:

The normalized load impedance is

which is plotted in Figure 11-63. Rotating this point through 180° yields the admittance: 

y L =  0.577 + j  0.385 at 0.0777 WTG.

The intersections of the VSW R circle with the g  -  1 circle occur at the points 

y x =  (1 + j  0.753) at 0.1536 WTG
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and

y [  =  (1 -  j  0.753) at 0.3463 W TG,

respectively. Because the matching reactance is a short-circuited stub, we choose the value y Y, 
since short, short-circuited stubs have negative susceptance. Thus, the optimal distance from 
the load to the stub is

d  =  0.1536 -  0.0777 =  0.0759 A.

To find the stub length i ,  we first locate the stub admittance y s — - j  0.7534 at 0.3973 on the 
WTG scale. Rotating counterclockwise towards the short-circuit admittance y sc =  (located at 
0.25 WTG), we find that

t  = 0.3973 -  .25 = 0.1473 A.

Another stub-matching technique that is common in microwave circuits is the 
double-stub technique. This technique uses two stubs that are located at fixed dis
tances from the load. Figure 11-64 shows a typical double-stub tuner. Double-stub 
tuners are attractive when it is necessary to quickly change the tuner characteristics 
as different loads are attached to the transmission line. Unlike the lone stub of a sin
gle-stub tuner, which changes its position and length as the load changes, the stubs of 
a double-stub tuner are at fixed positions. For this network, stub #1 is adjusted so 
that the normalized admittance at stub #2 is of the form y  — 1 +  j b .  Then, stub #2 
is adjusted so that it adds a susceptance - j b  at that point, yielding a matched imped
ance to the transmission line. The Smith chart can also be used to design double
stub tuners, but the procedure is more involved than for single-stub tuners.
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Interested readers can find these design procedures in many texts on microwave the
ory and techniques.9

1 1 -5  S u m m a tio n

In this chapter we have found that the voltages and currents on transmission lines can 
be described as waves that are related by a unique characteristic impedance and that 
propagate at a fixed velocity. These waves can propagate in either direction, and the 
behavior of a transmission line system is usually a strong function of the reflections that 
these waves encounter at junctions, loads, and switches.

Most of the wires, traces, or cables that occur in RF, microwave, and digital cir
cuits can be analyzed using the techniques developed in this chapter. This is because 
the voltages and currents on these lines are usually TEM waves, to which transmission
line analysis applies. When the operating frequencies (or bit rates) are extremely high, 
however, it is sometimes necessary to use waveguide analysis to model the voltages and 
currents properly. These methods will be discussed in Chapter 13.

11-1 Derive the relation dl/dz — —C (dV/dt) for lossless transmission lines by apply
ing Ampere’s law (Equation (11.4)) to the contour Cxy shown in Figure 11-3. 
(Hint: This derivation is similar to that of Equation (11.12).)

11-2 RG-8U coaxial cable has an inner conductor of diameter 1.83 [mm] and an outer 
conductor of diameter 7.24 [mm]. If the dielectric is solid polyethylene, and the 
losses of both the conductors and the dielectric are negligible, find

9 For instance, se e  R .E . C ollin , Foundations for Microwave Engineering, 2d ed. (N ew  York: M cG raw -H ill 

B o o k  C om p any, 1992.)
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(a) the capacitance per meter
(b) the inductance per meter at high frequencies (ignore the internal induc

tance)
(c) the characteristic resistance RQ
(d) the velocity of propagation u.

11-3 Figure PI 1-3 shows the equivalent circuit of an infinite, lossless transmission line 
when a single unit cell is added to the line. Since the line is still infinitely long, 
the addition of the cell does not affect the input impedance Zin; it is still Z0. 
Use this circuit to derive an expression for Z0 in terms of the capacitance and 
inductance elements in the cell. What must be assumed about the length of the 
cell in order for this expression in order to obtain Z0 = V l /C? Use phasor 
analysis.

U nit cell

Zin - Z0

LAz/2
n nm

LAz/2
oooc\

z CAz

^ __________  A

E quiva lent c ircu it 
on an infin ite  line

Z0

Figure PI 1-3

11-4 Prove that for the dispersionless case (RC = GL), voltage and current waves on 
transmission lines can be expressed by

V (t, z ) =  e~az V+(t — z/u) + e+az V~(t + z /u )

I ( t, z) = qy e~az V +(t -  z/u) -  ~  e+az V~(t + z/u),

where u, a, and R 0  are given by Equations (11.43)-(11.45), respectively.
11-5 A source consisting of a 50 [V] dc battery in series with a 25 [fl] resistor is 

applied to the input terminals of a ZG = 50 [H] transmission line at t = 0. 
Assuming that the transmission line is long enough so that reflections can be 
ignored, what are the voltage and current at the input terminals for r > 0?

11-6 Use the appropriate formulas in Appendix D to calculate the characteristic 
impedance Z0 of a microstrip transmission line that consists of a 2.5 [mm] wide 
copper trace on a conductor-backed PCB board that has a dielectric constant of 
5.0 and a thickness of 1 [mm].

11-7 Suppose that it is necessary to fabricate a microstrip transmission line with a 
50 [fl] characteristic impedance on a conductor-backed PCB board with a 
dielectric constant of 3.5 and a dielectric thickness of 1.5 [mm]. Using the 
appropriate formulas in Appendix D, what trace width is required to attain this 
impedance?
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11-8 Use the appropriate formulas in Appendix D to calculate the characteristic 
impedance of the air dielectric, strip-line transmission line shown in Figure P ll- 
8 when b = 1.5 [cm], t = 0.1 [cm], and
(a) w — 0.3 [cm]
(b) w = 0.6 [cm]
(c) w — 1.2 [cm].

V / / / / / / / 7 / / / / / / / / / / / / / / / / / / / / / / / / / 7 7 7 7 X

t z :  v y y y y y y y x  

I A— w—*-j
F ig u re  P I 1 -8

11-9 A 10 [V] step-function voltage source with a source resistance of 25 [fl] is con
nected to a 1.5 [m] length of 75 [U], air-dielectric transmission line 
(u = 3 X  108 [m/s]). If the load resistance is 100 [11], plot the voltage, cur
rent, and input resistance seen at the input terminals for 0 < t < 40 [ns].

11-10 A transmission line of length i can be approximated by a single unit cell (with 
Az = f) when the rise and fall times of the signals are much longer than the 
propagation delay T from one end to the other. For the circuit shown in Figure 
11-16, prove that the 10% to 90% rise time is given by the approximation tr ~  
2.2RgCi for the case when Rg »  R0.

11-11 The transmission-line network shown in Figure PI 1-11 has a linear input circuit 
and a nonlinear load. Use a Bergeron graph to calculate and graph the load 
voltage for 0 < t <  600 [ps]. Is this waveform approaching a steady-state value? 
If so, what value?

Rg = 40 [ft] 
------W A ------

-z^12 [V ]

t =  0

o—(T

2 [cm]

R0 = 200 [H]
u=  2.5 x 108 [m/s]

-d

Rl = kl2 
k=  500 [ft/A2]

F ig u re  P 1 1-11

11-12 Sketch VL (t) for 0 < t < 20 [ns] for the circuit shown in Figure Pll-12 if the one
way propagation time on the transmission line is 4 [ns]. Also, what is the 
steady-state value? Assume that the diode is ideal.

200 [ f t ]  

--- W/r-
t =  0

o—a

------ a

R0 = 50 [ft] 

7= 4 [ns]

D-
+
Kl

D-

400 [ft]

F ig u re  P 1 1 -1 2
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11-13 A dc source with an open-circuit voltage of 10 [mV] dc and a series impedance 
of 50 [11] is attached to the input terminals of a lossless transmission line at t = 0. 
The transmission line has a characteristic impedance of 50 [ft], is 2 [m] long, has 
a propagation velocity of u — 0.6455 c, and is terminated by a 150 [ft] resistor in 
series with a 20 [pF] capacitor. Sketch the reflected waveform at the input ter
minals of the transmission line.

11-14 Repeat Problem 11-13 for the case where the capacitor is replaced by a 1.2 [pTl] 
inductor.

11-15 Figure Pll-15a shows two networks connected by a lossless transmission line 
characteristic impedance Z0 and one-way propagation delay T. Prove that the 
output voltages and currents of each network are unchanged when the transmis
sion line is replaced with the Thevenin equivalent circuits shown in Figure P ll- 
15b, where

Va(t - T )  =  V ( t ,  t - T ) -  Z 0 I(l, t -  T )

Vb{t — T) = V(0, t — T) + Z J { 0, t -  T ).

These equivalent circuits are used by the circuit analysis software PSPICE™ to 
model transmission lines. {H int: Write KVL expressions around the equivalent

(a)

t
1(0,t) z0 Z 0 /(€ ,0

F ig u re  P I 1 - 1 5  a )  O r ig in a l  n e t w o r k ,  b )  E q u i v a l e n t  c i r c u i ts .

circuits and use Equations (11.22) and (11.32) to express total voltages and cur
rents in terms of traveling components.)

11-16 Suppose that the dielectric constant of a coaxial transmission line over a band of 
frequencies varies as Ver -  a + ba>, where a and b are constants. Find the 
expressions for the phase and group velocities on this line as a function of fre
quency.

11-17 For the twin-lead transmission line discussed in Example 11-7, calculate the 
attenuation constant a at 100 [MHz] if the wires are made of copper {cr = 5.8 X 
107 [S/m]) and the dielectric is lossless.



11-18 A sinusoidal generator with a 20 [V] open-circuit voltage and an impedance of 
75 [H] is attached to a lossless 75 [CL] transmission line that is terminated in an 
unknown load. If measurements show that the load reflection coefficient TL 
has a value of 0.45 Z 23°, find (a) the load impedance and (b) the voltage ampli
tude at the load.

11-19 What is the shortest length of a lossless, open-circuited transmission line that 
can be used to simulate a 20 [pF] capacitor at 400 [MHz]. Assume that the 
characteristic impedance of the line is 50 [Cl] and the dielectric constant is er = 
2.5.

11-20 A lossy transmission line with R0  ~ 50 [fl] and X 0  ~  0 has a loss of 0.5 [dB/m] at 
200 [MHz]. If the dielectric constant is er = 2.0, find the input impedance of a 
quarter-wavelength section when the load is a short circuit. What would the 
input impedance be if the transmission line was lossless?
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x/4 A/4
1 0 0  [H]

25 [nj

11-21 Calculate the power delivered to all three resistors in Figure PI 1-21. Assume 
that Z0 = 50 [Cl].

11-22 Prove that the frequency-domain equivalent “T” circuit of a finite-length, loss
less transmission line (shown in Figure ll-35b) is equivalent to the unit cell 
(shown in Figure 11-4) when the length of the line is small.

11-23 For a A/4 section of lossless transmission line with characteristic impedance Z0,
(a) Find the two-port equivalent “T” circuit of this section.
(b) Using the “T” circuit, show that the input impedance Zin is zero when the 

output terminals are open circuited.
(c) Using the “T” circuit, show that Zin = °° when the output terminals are 

short circuited.

25 [a]
X/4

20 Z0° (A

D --------o  a

f 0 = ioo  [a]

<) D--------O h  F ig u re  P 1 1 -2 4

11-24 Find the Thevenin equivalent circuit of the network shown in Figure PI 1-24 
with respect to the output terminal pair ab.
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11-25 Suppose that measurements on a 50 [12] transmission line with an unknown load 
show that VSWR = 1.85 and that two successive voltage minima occur at z = 
2.43 [cm] and z = 17.47 [cm] on a scale that increases toward the load. If a volt
age minimum occurs at z — 6.28 [cm] when the load is replaced by a short cir
cuit, find the impedance of the load.

11-26 Supose that when using a network analyzer, a person finds the S-parameters of 
a two-port network to be

Sn = 0.1 Z. -30°

S12 =  S21 =  0.6 Z .  —15°
S22 = 0.3 A 70°.

Find the impedance matrix of this network and draw its equivalent “T” circuit if 
the characteristic impedance of each port is 50 [12].

11-27 Using the definitions of the scattering matrix elements (Equation (11.168)), 
determine the ^-matrix of a section of uniform, lossless transmission line with 
length t and characteristic impedance ZQ. From this matrix, use the S- to Z- 
matrix conversion (Equation (11.172)) to derive the Z-matrix elements. Does 
this result agree with the Z-matrix elements given by Equation (11.147)?

11-28 Using the Smith chart, determine the impedance of the load attached to a ZG = 75 
[12] transmission line if it is known that the input impedance 2 [cm] away from the 
load is Zin = 75 + ; 20 [12] at a frequency where the wavelength on the line is 6 [cm].

11-29 A load of value Z L = 125 -  j  60 [12] is attached to a transmission line with Z0 = 50 
[II]. If the wavelength on the line is 12.5 [cm], use the Smith chart to find
(a) the input impedance 4.5 [cm] away from the load
(b) the VSWR
(c) the closest location from the load where the input impedance seen looking 

towards the load is real and greater than ZQ.
11-30 A lossy transmission line with Z0 ~  50 [12] and a — 1.5 [dB/m] is terminated with 

a load impedance of Z L = 100 [12]. If A = 2.0 [m], use the Smith chart to find 
the input impedance 1.0 [m] away from the load.

11-31 Design a single-stub tuner that matches a Z L = 40 -  j 60 [12] load to a 50 [12] 
uniform-dielectric transmission line using the shortest possible open-circuited 
stub that has the same characteristic impedance as the transmission line. Spec
ify all the critical dimensions if the dielectric constant is er = 2.8 on both the stub 
and the transmission line and/ =  4 [GHz].

11-32 Design a microstrip, quarter-wave transformer that matches a 10 [12] load to a 
50 [12] microstrip transmission line. Assume that the substrate is 1 [mm] thick, 
the dielectric constant is 3.5, and the frequency is 12.5 [GHz]. Show all the crit
ical dimensions of this design.

11-33 Design a microstrip, single-stub tuner that matches a 50 [12] microstrip trans
mission line to load impedance of ZL = 70 + j  10 [12]. Assume that the fre
quency is 10 [GHz], the dielectric constant is 2.5, and the substrate thickness is 
1.2 [mm]. Assume that the stub is open circuited and has the same characteris
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tic impedance as the transmission line. Show all the critical dimensions of this 
design (including the 50 [H] line).

11-34 Prove that the characteristic impedance of a section of uniform transmission line 
(lossy or lossless) can be written as 

7  =  V  7  7
V ^ S C  ^ O C  9

where Zsc and Zoc are the input impedances when the output terminals are short 
circuited and open circuited, respectively.
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Plane Waves

12-1 In tro d u c tio n

One of the most useful features of electromagnetics is that electromagnetic waves can 
travel through space, without the need for a guiding structure. These waves are called 
space waves, because they can propagate through empty space (i.e., a vacuum), which 
we commonly call free space. Space waves can also propagate in nearly any kind of 
medium. A large number of applications make use of these waves, including wireless 
communication systems and radars.

The simplest kind of space waves that can be produced by a source are called 
plane waves, so named because their constant-amplitude and constant-phase surfaces 
are flat sheets (planes). Not only are these waves the simplest space waves; they are 
also excellent approximations of the waves most commonly encountered in engineer
ing practice. This is because nearly all space waves behave like plane waves after they 
propagate just a few wavelengths from their source.

Plane waves share many common characteristics with the TEM waves found on 
transmission lines. This should come as no surprise, since both are propagating waves. 
However, since plane waves are not confined to a guiding structure, there is more vari
ety in the kinds of plane waves that can be produced and the way in which they inter
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act with materials. In this chapter, we will discuss the various properties of plane 
waves, including wavelength, attenuation, polarization, reflection, and refraction. 
These topics will be discussed under the assumption that the waves have already been 
launched by unspecified sources. The specific nature of the sources of the waves will 
be dealt with in Chapter 14.

1 2 -2  W a v e  E q u atio n s  in S im p le , S ou rce -F ree  M e d ia

In Section 10-4-4 we showed that in simple, source-free media, Maxwell’s equa
tions become

V x E  = — jcjfi H (12.1)

V X H = (cr + jo)e)E (12.2)

V • E = 0 (12.3)

V • H = 0. (12.4)

Any field distribution that can exist in a simple, source-free medium must satisfy these 
equations. Nevertheless, the equations are not the best starting point for our devel
opment of plane waves, since they are coupled differential equations that each contain 
both E and H. In this section, we will derive a single equation that either E or H alone 
must satisfy at every point in the medium.

If we take the curl of both sides of Equation (12.1), we obtain

V X V X E =  -jcofxV X H .

Substituting Equation (12.2) into this expression yields

V X V X E =  — j c o f x ( c r  +  j c o e )  E .

Using Equation (B.10), we can write V x  V x  E in terms of the divergence and 
Laplacian of E:

V X V X E =  V(V • E) — V 2E =  — j ( o / u L ( a  +  j c o e ) E .

Finally, remembering that V »E  = 0 in simple, source-free media (i.e., Equation 
(12.3)), we obtain

v 2e  + k2E = 0, (12.5)

where

k 2  = —jojfji (<r + j(oe). (12.6)

Equation (12.5) is called the vector wave equation, or the vector Helmholtz equation, 
and the constant k is called the wave number of the medium.
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When E is expressed in terms of its Cartesian components, we can use Equation 
(2.126) to split the vector wave into three scalar equations,

V2£,. + k 2Et = 0 i = x, y, z , (12.7)

where Ex,E y, and Ez are the x-, y-, and z-components of E. Equation (12.7) is called 
the scalar wave equation or the scalar Helmholtz equation.

The magnetic field H within a simple, source-free region also satisfies the vector 
and scalar wave equations at each point. This can be shown by taking the curl of 
Equation (12.2) and proceeding with a similar sequence of steps, yielding

V2H + k 2H = 0 (12.8)

and

V 2Ht + k 1Hi = 0  i = x ,y ,z .  (12.9)

In the sections that follow, we will use these wave equations to find expressions 
for the simplest (and most important) space waves: plane waves.

12-3  P lan e  W a v e s  in Lossless M e d ia

In Cartesian coordinates, the scalar wave equation can be written as

d2El d2E: 
dx2  + dy2

+ k 2Et = 0 i = x ,y ,z . (12.10)

When the medium is lossless, o-is zero, and and e are both real. According to Equa
tion (12.6), this means that the wave number k is a positive, real number:

k = (oVJEe (Lossless media). (12.11)

Rather than considering the most general case, we will ease ourselves into the 
subject by first restricting ourselves to plane waves with one E-field component that 
propagates along the z-axis only. To accomplish this, we will search for E-field solu
tions of the wave equation that are of the form

E = Ex(z)ax.

Substituting this expression into Equation (12.10), we obtain

d %

dz 2

+ k % = 0 .

(12.12)

This is a second-order, linear, homogeneous differential equation, so it has two inde
pendent solutions, which can be written in the form

Ex(z) = E*0e~yz + E ~ M y\ (12.13)
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where Exo and Exo are constants (possibly complex) and

y = jk = ja>V]xe. (12.14)

is the propagation constant.
It is customary to express the propagation constant y as the sum of a real and 

imaginary part; that is,

y = a + j(3 ,  (12.15)

where a and (3 are the attenuation and phase constants, respectively. However, since 
k is real in lossless media, we have

(Lossless media).
a = 0
(3 = k — coV/xeJ 

Since a is zero in lossless media, we can write Ex(z) in the form

(12.16)
(12.17)

N (z )  =  No + £ - e +' * . (12.18)

Finally, substituting Equation (12.18) into Equation (12.12), we obtain the complete 
frequency-domain expression for E:

E = Exoe~iPz ax + E~0e+jPza^. (12.19)

Equation (12.19) should look familiar to the reader, since, except for the unit vec
tors, this expression is the same as the voltage-wave expressions on transmission lines. 
(See Equation (11.89)). The propagating nature of these waves can be seen more clearly 
by transforming this expression into the time domain. If we let Exo = \Exo\zL6  ancj 
Exo = | Ex01 E 6 ~, the corresponding time-domain expression for E is

E = \EU cos (cat -  (3z + 6+)ax + \Exo\ cos (at + (3z + d~)ax. (12.20)

Here, it is clear that this E-field is the sum of two waves, one with peak amplitude 
|E;o| that propagates towards increasing values of z and another with peak ampli
tude |E to| that propagates towards decreasing values of z. Also, using Equations 
(12.17), (11.96), and (11.97), the phase velocity up and wavelength A of these waves 
are given by

Up=<l 3 == V )b  tm/sec] (12.21)

A = —— = — [m]. (12.22)

For the case where the medium is a vacuum (free space), e = e0, /jl = p,0, and the phase 
velocity equals the speed of light in a vacuum:

up = 3.0 X  108 [m/s] =  c (Vacuum speed of light). (12.23)

Just as every voltage wave on a transmission line is accompanied by a current 
wave, every electric field of a plane wave is accompanied by a magnetic field. We
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can find the H-field associated with the preceding E-field by first solving Equation 
(12.1) for H:

V x  E
H = --------- .

-JWfl

Substituting Equation (12.19) into this expression and performing the curl opera
tion, we obtain

H = f 1  ^  K ,* - '*  + £ ;„« ■* ] a,
Jio/JL dz

= ar
OJfl

This can be written in the form

H = e+jpz
V

av, (12.24)

where 77 is the intrinsic (or wave) impedance of the medium and is given by

OJ/JL
(Lossless media). (12.25)

In a vacuum (free space), the value of 77 is

[fh
Vo = 377 [ft] ~  12077 (Free space). (12.26)

Finally, since 77 is real in lossless media, H has the following form in the time domain:

H cos (cot -  (3z + 6+) a  - cos(wf + (3z + 9 )a . (12.27)

Comparing Equations (12.19) and (12.27), we see that the forward-propagating E- 
and H-waves in lossless media have identical phases and a fixed amplitude ratio. The 
same is true for the backward-propagating waves, except for the 180° phase shift of the 
H-field. For both the forward- and backward-propagating waves, a right-handed coor
dinate system is formed by the E- and H-field vectors and the direction of propagation. 
Figure 12-1 depicts these vectors for a forward-propagating wave. Here, we see that the 
E-field vector, crossed into the H-field vector, points in the direction of propagation.

y

Direction of 
propatation

F ig u re  12-1 E- and H-field vectors at an 
instant in time for a plane wave 
propagating in the +z direction.
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12-3-1 PLANE WAVE PROPAGATION IN ARBITRARY 
DIRECTIONS

So far we have only considered simple plane waves that propagate along the z-axis. 
This has been a convenient starting point, but there is nothing magic about the z-direc- 
tion; plane waves can be launched in any direction through a medium. In this section, 
we will use what we have already discovered about waves that propagate along the z- 
axis to describe plane waves propagating in any direction.

Let us start by noting that when we developed the +z propagating waves in the 
previous section, the orientations of the x- and y-axes were arbitrary, except that they 
formed a right-handed coordinate system with the z-axis. Remembering that E, H, and 
the direction of propagation form a right-handed coordinate system, it follows that the 
electric and magnetic field vectors of a +z propagating wave can have any orientation 
in the xy-plane, as long as the cross product E X H points in the +z direction. Thus, 
the general expressions for +z propagating plane waves can be written in the form

where Exo and Eyo are the complex amplitudes of the x and y electric field components, 
respectively, and (3 equals the wave number k when the medium is lossless. Although 
we have derived these two expressions in a somewhat nonrigorous way, it is simple to 
prove that they satisfy the vector wave equations and Maxwell’s equations.

We can use Equations (12.28) and (12.29) to write expressions for plane waves 
propagating in any direction. To accomplish this, consider the situation shown in Fig
ure 12-2, which depicts the E- and H-field vectors of a plane wave that propagates in 
the direction of the unit vector ak. Two orthogonal coordinate systems are shown in 
this figure: an unprimed system in which the +z direction coincides with the direction 
of propagation of the wave and a primed system whose axis directions are arbitrary. 
Using the figure, we first note that the product /3z that appears in Equations (12.28) 
and (12.29) can be expressed at any point as the dot product of two vectors,

(12.28)

(12.29)

(3z =  kz = k az - (xav + yav + za,) = k » r , (12.30)

x z' z

X /
\ /
\ /
\ /

X F ig u re  1 2 -2  Coordinate systems for 
representing a plane wave propagating in 
an arbitrary direction.
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where r = xax + y a + zaz is the position vector of an arbitrary point (see Equation 
(2.64a)) and k = kaz is a vector, called the wave-number vector, that points in the 
direction of propagation and whose magnitude equals the wave-number k. 

Substituting Equation (12.30) into Equation (12.28), we obtain

E = [Ex 0  a, + Eyai,}e -* -\

or

E = E0 e"'k-r, (12.31)

where E0, called the polarization vector, can be any vector that is perpendicular 
to k; that is

E -k = 0. (12.32)

We can derive a companion expression for the H-field of this plane wave by not
ing that Equation (12.29) can be written in terms of the cross product between E0 and k;

v
H = —̂  e~;/3za „ -----— e _y/3z av = e5

V

- t f z

V
X (Exo ax + E a )

-jpz

a, X E =
-iPz k

t XE,
17 7] k

Remembering that (3z = k • r and k = co VJie, we can write H in the form

H = —  (k X E )e_;k,r. (12.33)
(O/JL

Even though Equations (12.32) and (12.33) were derived for the case of a plane 
wave propagating in the +z direction, they are the same in any coordinate system, 
since they contain only dot and cross products of the vectors k, E0, and r. As a result, 
these equations can describe a plane wave propagating in any direction simply by 
choosing the direction of the wave-number vector k such that it points in the desired 
propagation direction; that is,

k = kak, (12.34)

where a*, is the direction of propagation.
Taken as a set, Equations (12.32), (12.33), and (12.34) can describe any plane 

wave that propagates in any direction; thus,

E = E0 e~;k’r, (12.35)

H = —— (k X E )e~/k‘r, (12.36)
( o p

dII<ea•O
wII■ mO
H

(12.37)
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These expressions are valid for any direction of propagation and in any coordinate sys
tem. All that is necessary to evaluate these expressions is to find appropriate expres
sions for the direction of propagation ak, the polarization vector E0, and the position 
vector r in the chosen coordinate system. From Equations (12.35)-(12.37), we can list 
the following general characteristics of all plane waves:

1. Both E and H propagate in a direction parallel to the wave-number vector k.
2. E and H are perpendicular to each other.
3. The direction of E X H points in the same direction as the wave-number vector k.
4. The ratio of the magnitudes of E and H equals (co/E)/k = 77, the intrinsic imped

ance of the medium.

Find the expression for the plane wave that propagates parallel to the xy-plane in the direction 
indicted in Figure 12-3. Assume that E  has only a z-component.

Solution:

Since this wave propagates at an angle d with respect to the x-axis, we can express the 
wave-number vector k as

k = k (cos 6  av + sin 0  a ) .

As a result,

k • r — k(x cos 6 + y sin 6 ) .

Since E has only a z-component, we also can write

Substituting these expressions into Equation (12.35), we obtain

g g  g (>~jk (x cos 0 + y sin 6)

To find H, we first evaluate k x E0:

k X E0 = k  (cos 6 av + sin 0 ay) X E 0 a,

= k E 0 (sin 6 ax -  cos 0 a ) .

Finally, using (( o f i ) / k  =  17, we have, from Equation (12.36),

z

y
Figure 12-3 A  plane wave propagating 
parallel to the xy-plane at an angle 6 with 
respect to the x-axis.
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12-3-2 POLARIZATION

The polarization of a plane wave is a measure of how its E-field vector varies with 
time. To simplify our discussion (without loss of generality), we will consider plane 
waves that propagate in the +z direction. A general wave of this type can be rep
resented as

E = ( lE je ^ a ,  + |£ yo| e'‘̂ y) e ~ ^ , (12.38)

where | Exo | and | Eyo | are the peak amplitudes of the x- and y-components of E, 
respectively, and 9X and dy are the phases of these components at z -  0 , respectively. 
Transforming this expression to the time domain, we obtain

E = Exocos(cot -  (3z + 9x)ax + Eyocos((ot -  /3z + 9y)ay. (12.39)

In the paragraphs that follow, we will use this expression to describe three classes of 
polarization: linear polarization, circular polarization, and elliptical polarization.

Linear Polarization. Linear polarization occurs when 6 X = 9y = 9. For this case, 
Equation (12.39) becomes

E = (I^Ja* + \Eyo\Zy) COS ( c o t  -  pz + e). (12.40)

As can be seen from this expression, the x- and y-components of the field maintain the 
same ratio for all values of t, which means that E always lies along a straight line in any 
constant-z plane. The tilt angle between E and the x-axis is

r  = tan 1 (12.41)

Figure 12-4 shows E at several points in time at z = 0.
Many practical sources generate linearly polarized plane waves. Lasers, for 

instance, are often constructed so that their outputs are linearly polarized. Many sim
ple antennas also generate waves that, when viewed at large distances, behave as lin
early polarized plane waves. The most common example is the dipole antenna, which 
is discussed in depth in Chapter 14.

Circular Polarization. Circular polarization occurs when the orthogonal compo
nents of E have equal magnitudes, but differ in phase by ±90°. For simplicity, we will 
assume that | Exo \ = |Eyo \ = E0, 0X = 0, and 0 = ±90°. For this case, they-compo-

Figure 12-4 The E-field vector of a 
linearly polarized, +z propagating plane 
wave as a function of time at a fixed 
position.
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(a) (b)

Figure 12-5 E-field rotation of + z  propagating, circularly polarized plane 
waves: a) Left hand polarization, b) Right-hand polarization.

nent of E either leads or lags the ^-component by 90°, so E can be represented in the 
time and frequency domains as

E = £ 0 ( a ,± ; a , ) e - ^ ,  (12.42)

and

E = E 0 (cos (cot -  (3z)ax ■+■ sin (cot -  (3z)ay), (12.43)

respectively.
Figure 12-5a shows a plot of E for several values of t at z = 0 when Ey leads Ex by 

90° (i.e., the upper sign in Equation (12.43)). As can be seen, the magnitude of E 
remains constant, but its direction rotates around the z axis once every 2 zr/a> seconds. 
Since the tip of E rotates around the direction of propagation (the z-axis) in a left- 
handed sense, this is called left-hand polarization (LHP).

Figure 12-5b shows how E varies with time for the case when 6 y — —90°. This 
case corresponds to the lower sign in Equation (12.43). Here, the behavior is basically 
the same, except that E rotates around the direction of propagation in a right-handed 
sense. Hence, this is called right-hand polarization (RHP).

Not only do the E-fields of a circularly polarized wave rotate around the axis of 
propagation as a function of time; they do the same thing in space. Figure 12-6a shows 
a “snapshot” of a left-hand, circularly polarized wave. Here, we see that E follows a 
right-handed helix along the direction of propagation. This means that observers at 
different points along the direction of propagation detect different directions of E at 
the same time t. Similarly, Figure 12-6b shows E for a right-hand, circularly polarized 
wave. In this case, the vector traces out a left-handed helix along the axis of propaga
tion when time is frozen.

Unlike linear polarization, relatively few simple sources generate circularly 
polarized waves. One notable exception is the helical antenna. Circularly polarized 
waves can be launched by two linearly polarized sources (such as dipole antennas) 
when they are oriented perpendicular to each other and fed with currents that are out 
of phase by 90°.
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F ig u re  1 2 -6  The helical paths traced by circularly polarized waves at fixed instants in time: 
a) Left-hand polarization, b) Right-hand polarization.

Elliptical Polarization. Linear and circular polarization occur when the two or
thogonal components of a plane wave have very specific magnitude and phase relation
ships. We will now discuss a more general case where these relationships are indepen
dent of time, but are otherwise arbitrary.1 Returning to Equation (12.39), let us assume
that the x- and y-components of the wave have peak magnitudes Exo \ 
spectively, and the y component leads the x-component by an angle AO.

and \Eyo |, re- 
Thus, at z — 0,

E = Exax + Eyay, (12.44)

where the x- and y-components of E are given by

Ex = \Exo\ cos (oot) (12.45)

and

Ev = |Eyo | cos (cot + AO), (12.46)

respectively. Since Ex and Ex maintain a fixed relationship in time, it is possible to 
write one component in terms of the other. To accomplish this, we first solve Equa
tion (12.45) for cos (cot):

cos (cot) =_ X

FL/ v-n
(12.47)

Similarly, if we solve Equation (12.46) for E /\E  \ and use the cosine reduction for
mula, we find that

y 01
cos (cot + Ad) = cos (cot) cos(A0 ) — sin (cot) sin(A0 ) 

i i- cos (A 6 ) ± J l  -  ( i r* i) sin(A0), (12.48)

where we have used Equation (12.47) to write sin (cot) in terms of Ex and | Exo \. 
Finally, solving for the square-root term, squaring both sides of the resulting expres
sion, and simplifying yields

1 A wave is said to be unpolarized when these amplitude and phase relationships between the orthogonal 
components vary with time.
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F ig u re  12-7 A polarization ellipse with 
major axis O A ,  minor axis O B ,  and tilt 
angle r.

E \ 2 2FrF v cos(A0 )
+

“xo\ I yo\ yo i
= sin (A0), (12.49)

which is the equation of an ellipse, called the polarization ellipse.
Figure 12-7 shows the polarization ellipse of an elliptically polarized plane wave. 

Right-handed polarization (RHP) occurs when A 6  < 0, and left-handed polarization 
(LHP) occurs when A9> 0. Two parameters that are commonly used to describe the 
polarization ellipse are the axial ratio AR and the tilt angle r. The axial ratio is 
defined as

AR  =
major axis 
minor axis

OA
OB

1 ss AR (12.50)

where, after a great deal of algebraic manipulation, it can be shown from Equation 
(12.49) that

OA =

OB

\U E „ + Ie  I2' I ̂ yo I

+ £ JO  I

+ [I £ ,

-  [|E„

4 + If  I4 + 2lF' I ̂ y o  I ' ^  I ̂  x

+  \ E  4 +  2 F~  \ r j yo\ '

yo

yo

|2 cos(2A0) ] 1/2 

2 cos(2A0) ] 1/2

1/2

1/2

(12.51)

(12.52)

The tilt angle is the angle between the major axis of the ellipse and the x-axis, and 
is given by

1

r = — tan
2

-l 2| £ Fxo I I ' - ‘yo I
cos(A0 ) (12.53)

Figure 12-8 shows the polarization states for a +z propagating plane wave as the 
relative amplitudes and phases of the x and y components of E are varied. In this dia
gram, the horizontal and vertical axes are real and imaginary parts of the ratio Ey/E x, 
respectively, where Ev and Ex are the complex amplitudes of the x- and y-components 
of E, respectively. As can be seen, linear polarization (AR = °°) occurs when 
Im (E /E x) = 0, and circular polarization (AR = 1) occurs when Re(Ey/E x) = 0 and 
Im (£ ,/£ ,)  = ± 1 .
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F ig u re  1 2 -8  Polarization diagram for a + z  

propagating plane wave.

E xam ple  1 2 -2

Find the polarization ellipse for a plane wave described by 

E = 4 cos (cot — f l z )  ax + 2 cos (cot +  30° — /3z) .

Solution:

For this wave, we have E xo =  4.0, E yo =  2.0, and Ad = 30°. Using Equations (12.51) and 
(12.52), we find that

O A  = | { 4 2 + 2 2 + [4 4 4- 2 4 + 2 X 4 2 X 22 cos (60°)]1/2}

— {42 + 2 2 -  [44 + 2 4 + 2 X 4 2 x 22 cos (60°)]1/2}O B  =

From Equation (12.50), the axial ratio is

1/2

1/2

4.38

0.914.

A R
O A

O B

4.38

0.914
4.79.

Finally, using Equation (12.53), we see that the tilt angle is

1
r  = -  tan

2

2 X4 X2  
4 2 _ 2 2 cos (30°) =  24.55°.

12 -4  P lan e  W ave s  in Lossy M e d ia

Even when a medium is lossy, the electric and magnetic fields in it must still satisfy the 
wave equation,

V2£ ;. + k 2Ei = 0  i = x ,y ,z , (12.54)
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where the wave number is
k = V—jco/ji(a + jcoe) [m-1] . (12.55)

However, whereas k is real when the medium is lossless, it is complex when loss is pre
sent, either because <j ¥= 0  or because either e or p, is complex.

To demonstrate how plane waves behave in lossy media, consider an x polarized 
electric field of the form

E = Ex(z) ax.

Since E has only an x-component, which is a function only of z, the general solution of 
Equation (12.54) is

£ ,(z) = + E~xy \  (12.56)

where Ex 0  and E ~0  are constants (possibly complex) and y is the propagation con
stant, given by

y = jk = Vj(on(a + jcoe) [m-1]. (12.57)

When loss is present, y is complex and can be expressed as

y=  a + j(3, (12.58)

where a and (3 are the attenuation and phase constants, respectively, given by

a = Ke[Vjcop(a + jcoe)] [Np/m], (12.59)

and

/3 = Im [Vjcop (<x + jcoe)] [m-1]. (12.60)

In both Equations (12.59) and (12.60), the square roots are taken so that both a and (3 
are positive when the medium is passive.2 Also, since y = jk, we can write

k = (3 — ja. (12.61)

Using these definitions, we can write the frequency-domain expression for E 
in the form

E = E +xoe~aze ^ z av + EmeazelPzax. (12.62)

The only difference between this expression and the corresponding expression 
for the lossless case (Equation (12.19)) is that these waves decay exponentially along 
their respective directions of propagation. This can be seen more clearly by trans
forming the expression to the time domain. Noting that we can write the complex 
amplitudes of the waves in the form Exo = \Exo\/L6 + and E ~0  = \Exo\Ad~, we obtain 
the time-domain expression

E = |£+ |e~QZ cos(wr -  (3z + 0+)ax + \E~0 \eaz cosjcot + [3z + d~)ax. (12.63)

Figure 12-9 shows a “snapshot” of a forward-propagating plane wave in a lossy medium 
as a function of position.

2 Passive media can dissipate, but not amplify, waves. Active media, such as are used in lasers and active 
fiber-optic amplifers, are capable of amplifying waves.
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Figure 12-9 E-field amplitude at a fixed 
time of a plane wave in a lossy medium.

As can be seen, the phase of this wave is dictated by the cosine function, whereas 
its amplitude is controlled by the exponential function. Just as in the case of transmis
sion lines, it is often convenient to specify the attenuation constant a in terms of the dB 
attenuation per meter [dB/m], rather than the “natural” units of nepers per meter 
[Np/m]. The conversion between these two specifications is accomplished by using 
Equation (11.106),

a  [Np/m] = 0.1151 X  a [dB/m]. (12.64)

Since the phase terms in Equations (12.62) and (12.63) have the same form as for 
the lossless case, the formulas that relate the wavelength A and phase velocity up to the 
phase constant (3 are also the same:

2 tt
A = —  (12.65)

a>
(12.66)

However, it is important to remember that [3 ~  a>V/xe in lossy media. Similarly, the 
group velocity ug is defined for plane waves just as it was for transmission lines:

_ dm _ /d/3\ _1

U g ~  d(3 ~  U <o/
(12.67)

Since (3 is not a linear function of a> when loss is present, ug up in lossy media.
The magnetic field that accompanies the E-field given by Equation (12.62) can be 

determined by substituting E  into Maxwell’s curl-E equation (Equation (12.1)) and 
solving for H, yielding

H =
—;o>/x

- 1  d 

j(Dli dz
[Kae -yz + £ ;0^ R

7
jcoii [K - y z

]®V

This can be written in the form
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H = £ ° e-yi$ E*°ert£ 
V V

where the intrinsic impedance is

(12.68)

[n] (i2.69)
y V a  + jooe

Since y is complex in lossy media, 7 7  is also complex. If we denote 7 7  = 17 7 1Z. dv, we can 
express H in the time domain as

H = e az cos (cot — (3z + 9+ -  0v)ay

-  | | e az cos (cot + (3z + 6  — 0 „)av.
1771 ' y

Comparing this expression with the one obtained for the lossless case (see Equation 
(12.27)), we see that they are nearly the same. One difference, as we would expect, is 
that the forward- and backward-propagating H-fields decay in lossy media along their 
propagation directions. Another difference is that there is an additional phase delay 
0 in both the forward- and backward-propagating H-fields in lossy media that occurs 
because the intrinsic impedance of lossy materials is complex. As a result, H lags 
behind E in phase by the angle 6V in lossy media.

Finally, just as we can have linearly, circularly, and elliptically polarized plane 
waves in lossless media that propagate in any direction, the same is true in lossy media. 
For instance, Equations (12.35)-(12.37) can still be used to describe the E- and H-fields 
propagating in any direction simply by using the appropriate values of the wave 
number k and the intrinsic impedance 7 7  in these expressions.

1 2 -5  M e d iu m  C h a ra c te r iz a t io n

When a medium is lossy, both the propagation constant y  and the intrinsic impedance 
7 7  are complex, either3  because of conduction loss, where a  is nonzero and finite, or 
because of polarization loss, where the permittivity e is complex. The physical mech
anisms responsible for these losses are different, but they have the same effect on the 
behaviors of E and H. Because of this, it is customary to lump all the loss parameters 
of a material into a single parameter that yields the correct propagation constant y and 
intrinsic impedance 7 7 .

The key to understanding how to lump both the conductivity and polarization 
loss into a single parameter is to notice how a  and e appear in the formulas for y and 7 7 :

y = Vj(o/x(a + jcoe) [m-1]. (12.70)

V  =

y
[fi]. (12.71)

3 Magnetization loss (where fi is complex) is also possible in the magnetic materials. They are sometimes 
used in microwave devices, but are not usually suitable for propagating plane waves.
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When [x is real, both y  and rj are correctly specified as long as the sum cr + jcoe has the 
correct value.

For good conductors, it is customary to specify the total loss in terms of an effec
tive conductivity creff = a  + coe" and a real permittivity eeff = e', where e' is the real 
part of the complex permittivity. Thus, for good conductors, we have

eeff = e' = ere0  (12.72a)
(Good conductors),

0 -eff = cr + coe” (12.72b)

where a  and e =  e' -  je" are the actual conductivity and permittivity of the material 
and er = e ' / e Q is the relative permittivity. For good dielectrics, it is customary to spec
ify the total loss in terms of only an effective complex permittivity eeff, so

6 ^ = 6 ' - ] ^ '  + ^  (12.73a)
(Good dielectrics),

o-eff = 0 (12.74b)

where a  and e — e' — je" are the actual conductivity and permittivity of the material, 
respectively. Typically, the subscripts “eff” are not used in practice, since it is usually 
understood that all of the loss has been specified using effective values.

E xam p le  12 -3

T'
* ft ::

i l l

Suppose that measurements have shown that a certain material has the following values of con
ductivity erand permittivity 6  at 100 [MHz]:

a  =  500 [/uS/m]

6 = e o( 2 .5 - ;0 .4 ) .

Find an equivalent set of param eters by assuming that the loss is 1) conductive loss and 2) polar
ization loss.

Solution:

1) To treat all the loss as conduction loss, we solve Equation (12.72b) for <reff, obtaining

o-eff = cr +  coe" -  500 x 10~ 6 + (2tt x  100 X 106) X (0.4 X 8.854 X 10~12)

= 2.73 [/uS/m],

Thus, this medium can be described by the param eters 

6 = * 1 2-5G
cr — 2.72 [^tS /m ].

2) To treat all the loss as polarization loss, we solve Equation (12.73a) for eeff, obtaining
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= 2.5e0 -  j e 0 0̂.4 +
500 X  1Q~ 6 \ 

277 e D 100 X 106J

= e0 (2.5 -  y 0.49)

Hence, this medium can also be described by the param eters 

e = eo(2-5 -  j 0.49)

cr = 0.

Another way to specify the loss characteristics of a material is write the complex 
effective permittivity in the form

eeff =  e' (1 -  j  tan 0) = ereQ (1 -  j  tan 0 ), (12.74)

where 0  and tan 0  are called the loss angle and the loss tangent of the medium, respec
tively and er = e'/ eQ is the relative permittivity. Substituting Equation (12.74) into 
Equation (12.73a) and solving for tan 0 yields

tan cf) =
e'

+
cr

coer

For dielectrics, where cr is assumed to be zero, the loss tangent is given by

tan0 = ^ 7  (Dielectrics; cr = 0). (12.75)

For conductors, where e" is assumed to be zero, the loss tangent is given by

tan 0  = (Conductors; e" = 0). (12.76)
at e

It is possible to specify the loss characteristics of a material by using either an 
equivalent conductivity, a complex permittivity, or a loss tangent, but it is important to 
note that, for most materials, these parameters are functions of frequency. As a result, 
one must always check to see if a tabulated value is valid at the frequency of interest. 
Generally, tabulated values of complex permittivity tend to be more accurate over 
larger bandwidths than are tabulated values of conductivity—particularly for low-loss 
dielectrics. The loss tangents of a number of materials used in engineering practice are 
shown in Table C-3.

E xam p le  1 2 -4

Suppose that a sample of mica has a relative permittivity of er = 5.4 and a loss tangent of tan 0  
= 0.0006 at a frequency of 100 [MHz]. Calculate the effective conductivity o-at this frequency.

Solution:

Using Equation (12.76), we find that

cr = 6  tan 0  — (277 x 100 x 106) x (5.4 X 8.54 x 10~12) x (0.006)

= 1.8 X 10~ 5 [S/m ],
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The formulas for y and rj are cumbersome to evaluate when loss is present, 
because they involve the square roots of complex numbers. However, when the loss is 
either very small or very large, approximate formulas are available that are more 
straightforward to evaluate. We will now discuss these two special cases: low-loss 
dielectrics and good conductors.

Low-Loss Dielectrics. A material is considered to be low loss when its loss tan
gent is much less than unity; that is,

tan 0 = — «  1 (Low-loss dielectrics). (12.77)

We can derive approximate formulas for the phase constant (3 and the attenuation con
stant a by substituting Equation (12.77) into Equation (12.70) and retaining the three 
lowest terms of the binomial expansion

7 = a + 7/3 = /w V ge'
1 ~ b  +

1

8
(12.78)

Hence,

( O f ? .

2 e' M  =
oj \fer tan 0  

2 c

/3 ~  ( O V / J L f 1
r 1 wv7r
i 1  + 8 b )  J c

1 + — tan2 (f) 
8

(12.79)

(12.80)

where er = e' /  eQ and c is the speed of light in a vacuum. Using a similar procedure, 
we find that approximate formulas for the intrinsic impedance 17 and the phase veloc
ity up are

V 1

1

+ j~  tan </> ,

and

1

8
tan2</> ,

(12.81)

(12.82)

where rj0  ~  377 [H] is the intrinsic impedance of free space.
When the material loss is specified in terms of its conductivity, we can replace 

tan cf) in the preceding formulas with cr/(w e) and obtain

/3 ~  OJ V  fJL€ 1  + -  —
0 ) 6

(12.83)

(12.84)
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1 + 7
cr

2  c o e

w„ =
p (3 VJie

i / A Y
8  \(t)€

(12.85)

(12.86)

where it is assumed that e is the real part of the complex permittivity.

Good Conductors. A material is considered to be a good conductor when its loss 
tangent is much greater than unity; that is,

tan (f) »  1
coe

(Good conductors).

For this case, the propagation constant yean be approximated as

y = a + j(3 = Vjoo/uL(a + jcoe) = jcoVjxe J  1 + -—
V \  j c o e

5=5 y'w VTie =  V j w f i a  =  — \  o ) f x a .

(12.87)

(12.88)

Thus,

a ~  (3 ~  Virfiicr.

Also, substituting Equation (12.89) into Equation (12.71), we obtain

0 + j )  w
' V2 V (j V a

(12.89)

(12.90)

Since the attenuation constant for a good conductor is large, the depth of pene
tration of the fields is small. The distance into the conductor at which the field 
strengths are diminished by the factor e ~ x = 0.368 is called the skin depth 8. Using 
Equation (12.89), we can write

8
1   ___1_
a V t t J / jl a

(12.91)

Also, since a ~  (3 and [3 = 2 77/ A, we can also write

(12.92)

which shows that the wavelength in a good conductor is of the same order of magnitude 
as the skin depth.
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E xam p le  1 2 -5

A plane wave is incident from free space into seawater. Calculate the distance below the surface 
where the E-field is 10% of its value at the surface when a) /  = 30 [Hz] and b) /  = 10 [GHz]. A t 
these frequencies, seawater has the following constitutive parameters: 4

H  =  / i Q, e '  =  80 e0, a  =  4 [S/m] @ /=  30 [Hz]

jbi =  H 0 , e '  =  80 e0, e"  =  45 e0 @ /  =  10 [G H z].

Solution:

a )  A t 30 [Hz], the loss tangent is

r r  A.
ta ru f)  = 3 x  107 »  1,

which means that seawater is a good conductor at this frequency. Using Equation (12.89), we have 

a - V tt X 30 X 4 tt X HT7 X 4 = 2.18 X 10“ 2 [Np/m],

Since E decays proportionally to e ~az, the depth d  at which the electric field is 10% of its value 
at the surface satisfies the expression

e ~ ad =  0 .1 .

Solving for d,  we obtain 

ln(0 .1 )
d  = — - 106 [m].

2.18 X 10“ 2 

b) A t 10 [GHz], the loss tangent is 

e" 45 e
ta n 0  = -  = — ^  =  0.56, 

e  80 e Q

which means that the seawater is neither a good conductor nor a good dielectric, so we must use 
Equation (12.70) to find the attenuation constant:

a  — Re[V/a>yu,(cr + jcoe)] = Re [V— ca2q,0 eo(80 — 7 45)]

= j  Re [V — (80 -  ;45)]
(2tt X 10 X 109) 

3 X 108
Re [2.43 + j  9.27]

= 508.8 [N p/m ].

Hence, the depth at which E  is 10% of its value at the surface is

ln(O.l) _  2.3 

a  “  508.8
= 0.005 [m]

From the results of parts a) and b), we see that the transmission characteristics of seawater 
at low frequencies are far superior to those at microwave frequencies. Because of this, subma
rine radio communications are conducted using either very low-frequency electrom agnetic 
waves (usually 40 [Hz] to 10 [KHz]) or sound waves (used in sonar), which decay at a much 
slower rate.

4 Taken from Moore, Fung, and Ulaby, Microwave Remote Sensing, Volume 3, Artech House, Deadham, 
MA, 1981.
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1 2 -6  P o w e r T ran sm iss ion

We found in the previous chapter that propagating voltage and current waves on trans
mission lines transmit power in the direction of propagation. The same is true for 
plane waves. We will show this by first deriving an important theorem of electromag
netic theory—Poynting’s theorem. Poynting’s theorem describes the electromagnetic 
power balance over an arbitrary volume. Using this theorem, we will develop formu
las for the power transported by a plane wave.

12-6-1 POYNTING’S THEOREM

We will start our discussion by considering fields in the time domain. If we take the dot 
product of both sides of Maxwell’s curl-H equation (Equation 10.19) with E, we obtain

E • V X H = E • J + E • -—.

Using the vector identity given by Equation (B.l), we can expand the left-hand side of 
the preceding expression so that it reads

<9D
H ' V X E  - V ' ( E x H )  = E • J + E»----.dt

Rearranging, we have

- V ' ( E X H )  = E • J + E --------H • V X E.v 7 dt
Also, from Maxwell’s curl-E equation, we have

Substituting this into the former expression, we obtain

dt

(12.93)

If the medium is simple, we can also write

(12.94)

and

(12.95)

Substituting Equations (12.94) and (12.95) into Equation (12.93), we obtain
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Integrating this expression over an arbitrary volume V, we find that

- / / • (  e  x  -  J > j * +U(*¥)*>■
Finally, we can use the divergence theorem to express the left-hand side as a surface 
integral over the surface S that bounds V:

— (j )EXH»ds = J  E - J dv + y t j  ( -Y  + ^ Y ~ ) dv- {12.96)

Equation (12.96) is called Poynting’s theorem. To see what this theorem says physi
cally, note initially that the first term on the right-hand side is an expression of Joule’s 
law (Equation (5.17)), which represents the instantaneous power dissipated inside V:

^d iss  =  f E . J dv. (12.97)
Jv

If the volume contains only passive media and no sources, Pdiss > 0.
Next, the integrals involving E 2 and H 2 represent the electric and magnetic ener

gies,5 We and Wm, respectively, stored within V (see Equations (6.34) and (9.39)), 
where the total stored energy is

w = w t + w m = j l ~  + * j ~ )  dv . (12.98)

Thus, the time derivative of this volume integral represents the time rate of change in 
the energy stored in V. When dW/dt > 0, the net power stored is increasing, whereas 
when dW/dt <  0, the net power stored is decreasing.

From the foregoing comments, we can conclude that the right-hand side of Equa
tion (12.96) is the sum of the dissipated and stored power within the volume V. This 
power must come from somewhere, so it must equal the net power transferred through 
the bounding surface S into the volume. Thus, the surface integral on the left-hand 
side of Equation (12.96) must be equal to the net power flowing into V  through its 
bounding surface S\ that is,

Pin = -  (j> E  X  H  • ds [W]. (12.99)

Conversely, the negative of the integral must be the net power flowing out of V  through 
its bounding surface S:

Pout=4 ExH-ds [W]. (12.100)

5 Although these expressions were derived rigorously for static fields, they have been found to be true for 
time-varying fields as well.
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Equation (12.100) is an important corollary of Poynting’s theorem and is valid 
for any distribution of E and H, not just plane waves. When E and H are represented 
in the time domain, the cross product E X H is denoted by the symbol SP and called 
the instantaneous Poynting vector.6

<T = E X H [W/m2] . (12.101)

Since SP is measured in units of watts per square meter, it is natural to assume that SP 
represents the direction and density of the power flow at a point. As it turns out, this 
interpretation is always correct for time-varying fields, but can occasionally yield 
strange results for problems involving static fields.7 Fortunately, since we are inter
ested only in time-varying fields for the remainder of this text, this interpretation will 
pose no such problems.

E xam ple 1 2 -6

i
■ | ' ■ |

ill**

Use Poynting’s theorem  to calculate the power transported by a forward-propagating TEM  
mode in the coaxial transmission line shown in Figure 12-10.

Figure 12-10 A TEM  wave propagating 
into the paper on a coaxial cable.

Solution:

If the instantaneous voltage at a point on the transmission line is V  + , the instantaneous 
current I + (into the page) on the inner conductor is

where Z 0 is the characteristic impedance of the line. The electric and magnetic fields of a coax
ial TEM  wave are given by Equations (5.65) and (7.35), respectively;

6 Named after John Henry Poynting (1852-1914), a British physicist.

7 For an interesting discussion of these problems, see Daniel R. Frankl, Electromagnetic Theory (Englewood 
Cliffs, NJ: Prentice Hall, 1986), pp. 205-206.
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E =
pin

H
2ttp ^ 2ttZ qp ^

Using these fields, we find that the instantaneous Poynting vector is

r/= a„  x
V4 (U+) :

p \ n b / a " p 2 i r Z 0p  ^ 2 r r Z 0p 2 \ n b /a  z 

The power transm itted through any constant-z surface is

(U+ )2
= 9>* ds =

27tZ q \ n b / a J0 J0 p

* Ztt /. b j
I —r pdpdcf) 

J n  J n  P

i v y
=  V +I +,

which is the familiar result predicted by ordinary circuit theory.

1 2 - 6 - 2  A V E R A G E  P O W E R  F L O W  A N D  T H E  C O M P L E X  
P O Y N T I N G  V E C T O R

When the fields are time varying, it is often desirable to keep track of the average 
power, rather than the instantaneous power. We define the average Poynting vector 
for time-periodic fields as

= 9’dt = 2 \ T E K H d t,  (12.102)
1  J q  1  J q

where T is the waveform period. If E  and H  are time harmonic, we can write them at 
any point as

E  =  |E | cos (cot +  dE)aE 

H  =  \h \ cos (cot + dH)aH,

where the unit vectors a£ and stH point in the direction of E  and H ,  respectively. Sub
stituting these expressions into Equation (12.102) and using the trigonometric identity

1  1

cos a cos b =  — cos (a + b) + — cos (a -  b) ,

we obtain
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where T = 2itIco. The average value of the first term inside the integral is zero, and the 
second term inside the integral is a constant, so it is equal to its own average. Hence, 
we can write

'̂ ave = ^ \E \a Ex \H \a H-cos(0E -  0H).

This can be rewritten using complex notation as

= ~ R e {( |£ |e'“* i E) x  (|H |«-"»a„))

where “Re” denotes “the real part of.” Noting that \H\e~i9li aH is simply the complex 
conjugate of H ,  we can write ^ ave in the form

•̂ ave = |R e (S )  [W/m2], (12.103)

where

S  =  E  X H *  [W/m2] (12.104)

and denotes “the complex conjugate of.” The vector S  =  E  X H *  is called the 
complex Poynting vector and is the vector analog of complex power used in ac circuit 
analysis. Comparing Equations (12.102) and (12.103), we see that the average Poynt
ing vector f f  for time-harmonic fields can be determined either by averaging the instan
taneous Poynting vector SP or by taking one-half of the real part of the complex 
Poynting vector S . Using these definitions, we see that the average power that passes 
through a surface S is given by

A e  =  f •S L e - d S -  ( 1 2 - 1 0 5 )

J S

1 2 - 6 - 3  T H E  P O W E R  T R A N S M I S S I O N  O F  P L A N E  W A V E S

We can use the Poynting vector to determine the power that is transported by a plane 
wave. Let us start by considering the following time-domain description of a linearly 
polarized plane wave in a lossless medium:

E = Ko cos(wt -  (5z)ax

H  = cos (c o t Pz)ay.
V
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The instantaneous Poynting vector associated with this wave is

■9(t) = E X H  = (̂ Ê 0  cos (cot -  /3z)a}j X |^ ^ c o s (w t -  /3z)ayj 

I e + 12
= v0 cos2 (cot -  f3z)a. [W/m2].

V

Thus, f9(t) always points in the direction of propagation and varies in amplitude 
between zero and | Exo \2/ 17. Given that the time average of the term cos2 (cot -  (3z) is 
1/2, we can express the average Poynting vector of the plane wave as

= [W/m2]. (12.106)
2  17

Since our choice of +z propagation and x-polarization was arbitrary, we can generalize 
Equation (12.106) to read

,9
'  ave

I I E
2 v

[W/m2]
(Linearly polarized plane 
waves in lossless medium), (12.107)

where ak is the direction of propagation and Ea is the peak amplitude (in time) of the 
electric-field vector. From this expression, we see that the average power density of a 
linearly polarized plane wave in a lossless medium is independent of position.

E xam p le  1 2 -7

A linearly polarized plane wave propagates through free space at an angle 6 with respect to the 
z = 0 plane, as shown in Figure 12-11. If the peak amplitude of E is 10 [mV/m], calculate the 
average power that passes through the 1 [m2] surface shown in the figure.

Solution:

Using Equation (12.107), we can represent the average Poynting vector as 

1 110 x 10 312
'/ave = 2 ------ 3 7 7 ------ * k  =  132.6 ak [nW/m2] ,

1 [m2] surface

Figure 12-11 A plane wave propagating at 
an angle 9 through a 1 [m2] surface.
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where points in the direction of propagation.
The average power that passes through the surface is

^ a v e  =  f  ^ a v e * d s  =  1 3 2 ' 6  X  f  » k m * z d z -

Js Js

From Figure 12-11, we see that afc»az — cos0. Since the total surface area is 1 [m2], we 
finally obtain

Pave = 132.6 cos 9 [nW].

Thus, the power that passes through the surface is maximized when the direction of propagation 
is parallel to the surface normal.

In the preceding paragraphs, we saw that the instantaneous power density of a 
linearly polarized wave is proportional to cos2 (cot -  /3z). This means that the power 
density of a linearly polarized plane wave is small for a significant percentage of its 
period. Let us now consider the electric and magnetic fields of a circularly polarized 
wave, given by

E = E* cos (cot — fiz)skx ± E* sin(o>f -  /3z)ay

and
E + E+

H = —1-  cos (cot -  /3z) a T —1-  sin (cot — (3z) a*.
1? 7]

The instantaneous Poynting vector for such a wave is

= ^ o )  _  fiz)ax ± sin (cot -  (3z) ayj X

^cos(art — (3z) ay ■+■ sin (cot — / 3 z ) a x j  

). .. (cos2 (cot -  (3z) + sin2(wf — /3z)) az.

Simplifying this expression, we obtain

n t )  =
( K ) 1

v
aZ * (12.108)

Here, we see that the Poynting vector is a constant in both time and position, which 
means that the instantaneous and average Poynting vectors are equal. Given that our 
choice of +z propagation was arbitrary, we can generalize Equation (12.106) to read

„  _ (£ = ) ! -  rw , 2, (Circularly polarized plane
*ave Ak [w/in j wave in lossless medium), (12.109)

where ak is the direction of propagation and E 0  is the amplitude of the electric-field vector.
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C o m p arin g  E q u a tio n s  (12.109) an d  (12.107), w e see th a t th e  av erag e  p o w er d e n 

sity o f a circu larly  p o la rized  w ave is exactly  tw ice th a t o f a linearly  p o la rized  w ave th a t 

has th e  sam e p e a k  am p litu d e . T h e re  a re  tw o w ays to  exp lain  this. T h e  firs t is th a t a 

circu larly  p o la rized  w ave consists o f tw o o rth o g o n a l w aves th a t have  eq u a l am p litudes. 

H en ce , the  to ta l p o w er is tw ice th e  value  o f e ith e r  one. T h e  second  e x p lan a tio n  is th a t 

th e  am p litu d es o f E  an d  H  rem a in  c o n s tan t fo r a circu larly  p o la rized  w ave, so such  a 
w ave is “o n ” tw ice as m uch  as a linearly  p o la rize d  w ave.

F inally , to  see how  loss affects th e  p o w er d en sity  o f p la n e  w aves, le t us w rite  th e  

freq u en cy -d o m ain  re p re se n ta tio n s  o f th e  e lec tric  an d  m ag n etic  field  o f a  sim ple p lane  
w ave in  a lossy m ed ium . W e have

E  =  E ^ e ~ aze ~ il3z a x

and

H = —̂  e~aze~’Pza ,
7]

w h ere  77 is com plex  valued . T h e  com plex  P oyn ting  v ec to r assoc ia ted  w ith  th is w ave is

S =  E  X H* =  { E +xoe ~ aze - ^ za j  X ( - ^ e ~ aze - jp z a y

I e + I2
L ®L «T2aza7. 

77* z

U sing  9 aye =  — R e (E  X H * ) ,  w e find  th a t th e  av e rag e  P oy n tin g  v ec to r is

âve = T Re ( E *  e ~ aze~ iP z a  )  X
77

w hich can  b e  sim plified  to  rea d

.9
I e +

1 2

h ? l

(L in ea rly  p o la rized  p lan e
w ave in  lossy m e d iu m ) , ( 1 2 .1 1 0 )

w here  1 7 7 1 and  6  a re  the  m ag n itu d e  and  p h ase  of th e  in trinsic  im pedance  77, respectively .

E xam p le  1 2 -8  --------------------------------------------------------------------------------------------------------------------- --------

A 1-GHz, linearly polarized plane wave propagates through a lossy medium in the + x  

direction and has a magnitude of 1 [V/m] at x = 0. Use Poynting’s theorem  to calculate how 
much power is dissipated in the 1 [m3] volume shown in Figure 12-12. Assume that the medium 
has a relative permittivity of er = 2 . 0  and a loss tangent of tan <f> = 0 .0 0 1 .

Solution:

Since tan </> = e"/e' «  1, the medium is a low-loss dielectric. Using Equations (12.79) 
and (12.81), we find that
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F ig u re  12-12 A  square volume in which 
power is dissipated by a propagating plane 
wave.

X —  X = 0.0148
6  C

[Np/m]

and

266.38Z0.0290.

From  Equation (12.110), the average Poynting vector is

,9ave
1 [ll2
2 266.38

e 2(°-0148)* cos (0.029°) a v

=  1 .8 8 e -° 0296xax [mW/m2].

The average power dissipated P diss in the volume equals the net average power P m flowing 
into the bounding surface. Since .9 ave has only an x  component, the sole contributions to this 
integral come from the faces Sa and S l , which have areas of 1 [m2] each and are located at x  = 0 
and x  — 1, respectively. Thus,

Anss = -  <J> -̂ ave • ds = f  ^ ave • ax ds -  j  .9ave • k x ds
S S0 S]

= 1.88 x 10_3[W /m 2] [1 - e-°0296] x 1 [m 2]

=  54.8 [iiW ].

1 2 -7  P la n e -W a v e  R e flec tio n  an d  T ran sm iss io n  a t  P la n a r B ou nd aries ,
N o rm a l In c id e n c e

Up to this point, we have discussed the characteristics of plane waves in source-free, 
homogeneous regions of space. A sizable percentage of space does indeed fit this 
description, but the reflections of waves off of material interfaces must often be con
sidered in order to determine the actual performance of a system or device. For exam
ple, the waves generated by broadcast TV stations can reflect off buildings and hills,8 
giving rise to one or more delayed signals that cause undesirable “ghosts”. Wave 
reflections can also be beneficial, as they are in lasers. In this case, waves are reflected

Yes, there are hills in Kansas!
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back and forth through an amplifying medium to produce the laser’s high-amplitude 
output beam.

We will begin this section by considering the reflection and transmission experi
enced by plane waves that are normally incident upon a planar dielectric interface. 
After this, we will discuss the reflections and transmissions of normally incident plane 
waves from stratified interfaces.

1 2 - 7 - 1  R E F L E C T I O N  A N D  T R A N S M I S S I O N  C O E F F I C I E N T S

Figure 12-13 shows the interface between two dielectric regions. In region 1 (z <  0) 
the constitutive parameters are ev ju1, and ax, and in region 2  (z > 0 ) the constitutive 
parameters are e 2 ,  n 2 , and c r 2 . We will assume that an incident plane wave launched 
by sources somewhere to the left of the interface propagates in the +z direction and 
has electric and magnetic fields described by

E ' = E !e~y'zax (z ^  0) (12.111)

H ' = — e~y,zav ( z ^ O ) ,  (12.112)
Vi

where yx and r\x are the propagation constant and intrinsic impedance of region 1 , 
respectively. These waves satisfy the wave equation in region 1, but reflected and 
transmitted fields will also be present because of the interface. We will proceed by 
assuming that the reflected and transmitted fields have the same polarization as the 
incident field and then prove this assumption to be true by showing that the necessary 
boundary conditions at the interface are satisfied when these reflected and transmitted 
fields have specific amplitudes.

We expect that reflected fields will exist in region 1 and propagate towards the 
left, which can be expressed as

E r = E rey'zstx (z =£ 0) (12.113)

E r
H = ------eyiZav (z «£ 0 ), (12.114)

h

x

R egion 1

ei > A1. cri

w - E' H'

b , h ^ y y *

z =  0 ' z

R egion 2

e2, <Z2

w - E - H?

F ig u re  12-13 A  plane wave normally 
incident upon a planar interface between 
two dissimilar media.
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where the minus sign in the H-field expression occurs because this field is propagating 
towards the left. The transmitted fields in region 2 propagate towards the right, so we 
can write them as

E' = (z > 0) (12.115)

H = — e ~ y * L  ( z ^  0), (12.116)
V2

where y2  and r\2 are, respectively, the propagation constant and intrinsic impedance 
of region 2 .

The incident, reflected, and transmitted fields each satisfy the wave equation in 
their respective regions. However, they will not satisfy the necessary boundary condi
tions at the interface unless E r and E ‘ assume specific values. These boundary condi
tions require that the tangential electric and magnetic fields both be continuous across 
the interface. Starting with the tangential electric fields, we note that the incident, 
reflected, and transmitted fields are all tangent to the interface. Also, the total tan
gential field in region 1 is the sum of the incident and reflected fields. Equating these 
fields at the interface, we have

E ‘e yiZax + E re y'z ax = E ‘e-y*zax
z = 0" z= 0-

Canceling the common terms, this results in the following relationship between the 
amplitudes of the incident, reflected, and transmitted fields:

E l + E r = E ‘. (12.117)

Next, continuity of the tangential H-field at the interface requires that

E ‘ E r . E ‘S3

£1

------ey'za = — e yiZ av
Vi z= 0- vi y Z = 0“ V2 '

which results in another expression for the incident, reflected, and transmitted field 
amplitudes, namely,

Vi Vi '
(12.118)

Substituting Equation (12.118) into Equation (12.117) and solving for E T and E l in 
terms of E l, we obtain

E r L i ^ 2  ~ Vi 
t?2 + Vi

and

E‘ E i 2rh
Vi + Vi'

(12.119)

(12.120)
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The ratio of Er to El is called the reflection coefficient and is designated by the 
symbol T. Using Equation (12.119), we find that

Y = —  = ^ 2  ~ % 
E ‘ 1 7 2+ 17/

(12.121)

When both media are passive, T is real and has a magnitude less than or equal to unity. 
This means that the reflected wave cannot have a larger magnitude than the incident 
wave. Values of T close to unity are obtained when there is a big mismatch between 
the impedances, i.e., which r]2 »  i?i or »  rj2. We can also define an H-field reflec
tion coefficient as the ratio of the reflected and incident H-fields at the interface. Just 
as in the case of the waves on transmission lines, the H-field reflection coefficient is 
simply the negative of the E-field reflection coefficient T.

The amplitude ratio of the transmitted and incident electric fields at the interface 
is called the transmission coefficient and is designated by the symbol T. Using Equa
tion (12.120), we can write

T = E [ _  2 T ?2

E l 172 + i?i'
(12.122)

Substituting the definitions of T and T into Equations (12.117) and (12.118), we obtain 
two important relationships between the reflection and transmission coefficients:

T = 1 + T (12.123)

r 2 + 32lT2 = i (12.124)
V2

Unlike the reflection coefficient T, the transmission coefficient T can have a mag
nitude greater than unity. This occurs when the incident medium has a lower charac
teristic impedance than the transmission medium. In the limit as rj2 approaches 
infinity, T approaches 2.0, which means that the E-field of the transmitted wave is twice 
as big as the incident wave. Although this may at first seem like a violation of energy, 
we will prove shortly that it is not, since the transmitted H-field is nearly zero.

1 2 - 7 - 2  R E F L E C T E D  A N D  T R A N S M I T T E D  P O W E R

When a plane wave transports power towards a planar interface, power is also trans
ported by the reflected and transmitted waves. As might be expected, the amount of 
power transported by the reflected and transmitted waves is proportional to the reflec
tion and transmission coefficients, T and T, respectively. If the incident medium is 
lossless, these relationships are particularly simple.
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x

R egion 1 

e1 > AM > cr-| = 0

)

S&e

z  = 0 z

F ig u r e  1 2 - 1 4  I n c i d e n t ,  r e f l e c t e d ,  a n d  
t r a n s m i t t e d  P o y n t i n g  v e c t o r s  a t  t h e  p l a n a r  
i n te r f a c e  b e t w e e n  tw o  d i s s im i l a r  m e d ia .

Figure 12-14 shows a plane wave propagating towards an interface between two 
media. We will assume that region 1 is lossless (i.e., crx = 0), but region 2 may have loss. 
Knowing that the total fields in the incident region are the sums of the incident and 
reflected fields, we can express the total E- and H-fields in this region as

E 1 =  £'(e~^z +  Te^z)ax,

and

H 1 = —  ( e ~ ^ z  -  r e 1PlZ)  av,
V i

where we note that rjx is a real number, since we have assumed that the incident 
medium is lossless. Using Equations (12.103) and (12.104), we see that the average 
Poynting vector 9^1  in this region is

^ave ”  ^  R e f E 1 X (H1)*]

(e~iPlZ +  Ye>^z)
( e ^ z Y*e~il3'z

U  ~
*

' 1 Ye™ * Ye-™ 'z | r |  2“

I V *
*

m V?
*

m  J
(12.125)

Evaluating this expression at the interface (z = 0), and noting that the cross-coupling 
term ( r  — T*)/rjx * is imaginary when r)x is real, we find that

1  IE
2

i I 2

V i

1 |T£_
2  rjx

/I 2
[W/m2] .

Taking a closer look at this expression, we see that 9 ^ l \z = 0  is simply the sum of the 
average Poynting vectors of the incident and reflected waves; that is,

9^1 — Q> 1 + q>r
ave ave

z = 0
O i  =  o ) . (12.126)
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where

1 Eq>i -  _  
ave -

i 12

and

cpr -  —
ave

2  Vi z

i lr^ '1 2

[W/m2] ,

a, = -  T  2^ i
’ll

[W/m2] .

(12.127)

(12.128)

The average Poynting vector on the transmission side of the interface is
much simpler, since only the transmitted fields are present. Using Equations (12.103) 
and (12.104), we find that

- a  z - j f i  z \ * -

q>Q) r=
^  ave

u\2
|T |2Re

-O 'z - j p  z

cos evaz,

where 6 V is the angle of the intrinsic impedance rj2. As we can see from this expres
sion, power density decays exponentially with increasing values of z inside the trans
mission medium if this medium is lossy. Evaluating the expression at z = 0, we obtain 
the net average power density injected into the transmission medium,

z = 0

_|£ /| 2 | r | :

2M
cos evaz [W/m2 (12.129)

According to the law of power conservation, the average power injected into 
the interface from the incident medium must equal the average power coming out of 
the interface in the transmitted region. In terms of the average Poynting vectors, 
this means that

z - 0

g> (2)
z = 0

Substituting Equations (12.126) and (12.129) into this expression, we obtain

< pi _l  < pr —
‘'a v e  1 ave "  ave (<7] = 0 ), (12.130)

1 (<7-1 = 0 ). (12.131)

Also, by substituting Equations (12.127), (12.128), and (12.129) into Equation 
(12.131), we obtain the following relationship between the reflection and transmission 
coefficients:

r | 2 + COS dv =  1 O i  =  0 ) . (12.132)
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In words, Equations (12.130) and (12.131) state that power transported through a 
lossless medium towards an interface divides itself between the reflected and transmit
ted waves. This is a very convenient result, since it allows us to calculate the power 
density transmitted across the interface simply by subtracting the power density of the 
reflected wave from the power density of the incident wave. It should be noted, how
ever, that the power densities of the incident, reflected, and transmitted waves are not 
so simply related when the incident medium is lossy, since the real part of the cross
coupling term in Equation (12.125) no longer vanishes.

Taking a closer look at Equations (12.128) and (12.129), we can see why it is not 
a violation of the conservation of energy for the transmission coefficient T to have a 
value greater than unity. Noting that | T | ~  1 and | T| ~ 2 when r]2  -a we have

Here we see that even though the transmitted E-field has twice the magnitude of the 
incident field, very little power is transmitted, since the impedance of the medium is 
high. As a result, nearly all the incident power is reflected by the surface.

1 2 - 7 - 3  R E F L E C T I O N  A N D  A B S O R P T I O N  O F  W A V E S  F R O M  
C O N D U C T I N G  S U R F A C E S

An important property of metals is that they are good reflectors of waves. This allows 
metal surfaces to either confine waves to some area of space or send them off in 
another direction. A wide range of practical devices make use of this property, includ
ing transmission lines, waveguides, resonant cavities, and antennas.

The easiest metal surfaces to model are perfect conductors, which have a  —> °c. 
Figure 12-15 shows a plane wave, normally incident upon a perfectly conducting 
slab. From Equation (12.69), the intrinsic impedance of the conductor is

w - E -H

Er,H

R egion 1

«i. A1>

Figure 12-15 Incident and reflected waves 
at a perfectly conducting slab.
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7] = limar—> oo
1 <»V‘

a  + jtoe
= 0 .

Using this value, we obtain the following reflection and transmission coefficients:

T = - l  (12.133)

T =  0. (12.134)

Since |r| = 1 , the incident and reflected fields have the same magnitude, so all the 
incident power is reflected by the surface, regardless of its thickness.

In addition to the wave reflected from the surface of a perfect conductor, a sur
face current is induced that flows within an infinitesimal depth of the conductor. This 
follows from the boundary conditions, since the H-field is zero inside the conductor 
and nonzero just outside it. Using Equation (10.83), we see that the current density on 
the conductor surface is given by

J s = a„ X H s = 2 in X H '  [A/mj (Perfectly conducting surface), (12.135)

where H '  and Hs = 2 H '  are the incident and total H-fields at the surface, respectively, 
and the unit vector an points outward from the conductor surface.

When the conductor is lossy, the E-field transmitted into the conductor is small, but 
definitely not zero. This case is depicted in Figure 12-16, where a linearly polarized plane 
wave is incident from a perfect dielectric towards a lossy slab with conductivity a. Here, 
the E-field in the dielectric is a nearly perfect standing wave, since the reflected fields 
have almost the same magnitudes as the incident fields. At the interface, the transmitted 
E-field has a magnitude equal to the difference between the incident and reflected E- 
fields. Because the transmitted fields decay exponentially, we can, for all practical pur
poses, assume that these fields exist only within a few skin depths S of the surface, where

F ig u re  1 2 -1 6  The incident, reflected, and transmitted fields near the 
surface of a lossy, conducting surface.
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8  =
1

a

1

V Trffxcr
(12.136)

Also, the wavelength in the slab is much smaller than it is in the dielectric, since (3 is 
large in a good conductor.

We can calculate the average power P that is dissipated per square meter of the 
conductor surface by using Joule’s law (Equation (12.97)). The time-averaged power 
density for a sinusoidal field is  ̂Re [ E  • J * ] ,  so we can integrate the power density over 
the thickness of the slab to find

P = E ’ J * dz
L-'O

[W/m2] . (12.137)

In this expression, we have replaced the actual slab thickness with infinity, which is a 
good approximation as long as the slab is at least several skin depths thick. Most met
als are isotropic, so E  and J  point in the same direction. This means that the dot prod
uct E  • J *  is equal to EJ*, where E and J are the components of E  and J  along the 
direction of polarization. Knowing that J — crE and E — r\H inside the conductor, we 
can write the current density as

J=  a E =  ar}H = ar]Hs e~aze~i/3z [A/m2] , (12.138)

where Hs is the value of the total H-field at the surface, rj and a  are the intrinsic imped
ance and conductivity of the metal, and a and (3 are the attenuation and phase con
stants in the metal. Substituting Equation (12.138) into Equation (12.137) and 
integrating, we obtain

P = \j<r|?)|2|Al 2e~*°‘ dz = (12.139)

This can be simplified by using the approximate expressions for r\ and a (Equations 
(12.90) and (12.89), respectively), yielding the result

RAH. [W/m2 (12.140)

where Rs is called the surface resistance of the slab and is given by

(12.141)

Rather than flowing as a surface current, as it does when the conductivity a  is 
infinite, the current in a lossy conductor flows as a volumetric current that decays expo
nentially from the surface. If we denote the total current per unit length flowing 
beneath the surface as I, we have from Equation (12.138) that
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I  = f  Jdz=  t <rVH,e *  = <nL  W == w
Jo  Jo  a  + 1/3

since (ar])/(a + j/3) ~  1 for a good conductor. (See Equations (12.88) and (12.90)). 
Also, Hs ~  2H  = Js, where Js is the surface current density that would flow if the con
ductivity were infinite. Thus, we find that

I ~ J S [A/m], (12.142)

which shows that the total current flowing beneath the surface of a lossy conductor is 
the same as that which flows within an infinitesimal depth of a perfect conductor. 
Because of this, Js can be considered as the equivalent surface current density for the 
volumetric current in a lossy conductor.

By substituting Equation (12.142) into (12.140), we can express the dissipated 
power density at a lossy conductor surface in terms of the product of the surface resis
tance Rs and the square of the equivalent surface current density Js:

P ~ \ r s\J,V[W/m2]. (12.143)

This expression shows that the dissipated power can be thought of as occurring in an 
equivalent resistance Rs through which the surface current flows. This resistance is a 
function of the resistivity of the conductor, cr”1, and the depth of penetration of the 
current into the slab.

Even though the current actually decays exponentially within the conductor, it is 
instructive to see what power would be dissipated if the same amount of current flowed 
uniformly within exactly one skin depth. In this case, the volumetric current density 
would be Js /  8 , so the power dissipated would be

P =
1 f s  1

2 J 0 <r

—
i

co dz
1 J]
2  a 8 2

8 .

But since Rs = l/(cr<5), we obtain

P «
1

2 R,U,

which is the same dissipated power as when the current decays exponentially.
Finally, even though Equations (12.140) and (12.143) were derived for the case of 

a normally incident plane wave, they are excellent approximations even when the inci
dent waves are incident at oblique angles to the surface. Since the conductor imped
ance is much smaller than the dielectric impedance, the direction of propagation inside 
the conductor is nearly always approximately normal to the surface, regardless of the 
angle of incidence.9 Because of this, Equations (12.140) and (12.143) can be used to 
find the power dissipated by metal reflectors and enclosures, regardless of nature of 
the incident fields.

9 This is a consequence of Snell’s law of refraction, which is discussed later in the chapter.
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m p le  1 2 -9

Calculate the power dissipated per square m eter beneath the surface shown in Figure 12-17, 
where a time-harmonic plane wave is normally incident upon a copper plate. The frequency of 
the wave is 1.0 [GHz] and the peak amplitude of the E-field is 700 [V/m],

C onducting
slab F ig u re  12-17 A plane wave normally 

incident from air upon a lossy, conducting 
slab.

Solution:

From Table C-2, the conductivity of copper is a  — 5.8 X 107 [S/m]. Using Equations 
(12.136) and (12.141), we find that the skin depth <5 and surface resistance R s are

8  =

R, =

r ^ _ l

4 5
 

t:
 q

i

_ ( n  X 109) X (47t  X 1(T7) X (5.8 X 107)_

1/2

2.1 H -

l
(2.1 x 10“6) x (5.8 x 107) 

The peak incident H-field is,

-  8.25 [mil].

_  700 [V/m] _

H  “  377 [n j  “  L86
[A/m ].

Since cris large, the total H-field at the surface is approximately 2 X H '  =  3.71 [A/m]. Thus, 
from Equation (12.140), we obtain

P  = |  (8.25 x 10“3) X (3.71)2 = 56.9 [mW/nT

12-7-4 REFLECTIONS AND TRANSMISSIONS FROM 
LAYERED MEDIA

There are many situations where a plane wave passes through several layers of differ
ent materials. Two common examples are the passage of light through a lens with 
multiple optical coatings and the waves generated by a ground-probing radar as they 
pass through various strata in the ground. To model these situations, the reflected and 
transmitted waves from each interface must be accounted for. There are two ways 
that this can be accomplished. In the first, each reflection and transmission is dealt 
with one at a time. The second method uses an impedance transformation that lumps 
multiple reflections into a single parameter. Both methods produce correct results, 
but differ in the work they entail and the amount of information they provide.

Multiple Reflections. Figure 12-18 shows a stack of three different lossless, 
dielectric regions that form planar interfaces at z — 0 and z = l, respectively. All three 
regions are of infinite extent in the x- and y-directions, and the second region has thick-
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R egion 3 

TlTtE'e-W

T+ar £ r aTb+Eltr& M

W£Li)n V £'e“/2(n+1

Interface 
b

Figure 12-18 Multiple reflections and transmissions of a plane wave 
incident upon the planar interfaces between three dissimilar media.

ness £ along the z-direction. When a plane wave E' is normally incident from the left 
(z <  0 ), an infinite number of transmitted and reflected waves are produced at the 
interfaces. However, all the waves reflected towards the left in region 1 have the same 
wavelength, so their sum can be considered to be a single reflected wave E r. Similarly, 
all the waves transmitted into region 3 combine to form a single transmitted wave E'. 
In the analysis that follows, we will develop expressions for Er and E ' by following the 
progression of the incident field and its reflections.

Let us start our analysis by assuming that the incident field can be represented as

E' = E ‘ e ~ i p z a x .

When this wave arrives at the z = 0 interface (interface a), a reflected wave of ampli
tude TqE 1 and a transmitted wave of amplitude T+aE l are produced, where and T+ 
are reflection and transmission coefficients, given by

r+ = Vi ~ Vi 
a V2  + Vi ’

and

R egion 1 p

---- > ^
ra+£''

T+nTaE'e-VW -

mnT-a)nT-E'e-i2nW -

In terface 
a

Region 2

^ '

*------N

__ >

1 + rr = 2t?2
T?2 + Vl

In these formulas, the subscript a indicates coefficients that are associated with inter
face a, and the superscript “+ ” indicates coefficients that correspond to waves propa
gating in the +z direction (i.e., from region 1  to region 2 ).

While propagating through region 2, the first transmitted wave undergoes a phase 
delay of When this wave strikes interface b, transmitted and reflected waves are
produced, with amplitudes of T ^T lE le~ iPl1 and T ^r^E le~]̂ 1, respectively, where
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r+ _ T?3 ~ V2 

1 b ~ , ’
V3 + Vl

and

T+b = 1 + r+ .

The reflected wave propagates backward in region 2 and produces new transmitted and 
reflected waves at interface a, with amplitudes T^Y^T~Ele~i2^  and T^Y^Y^E 1 

respectively, where T~ and T~ are reflection and transmission coefficients at interface 
a for waves propagating towards the left. Thus,

r -  =  Vi ~  V2 =  _ r +
A a I 1 a

V\ +  1?2

and

77 = 1 + r : = i -  n  = 2 t?i

T?2 + 1?1 ’

By now, the sequence of waves produced by successive reflections from the two 
interfaces should be obvious. We can determine the net fields in each region by sum
ming the infinite series of rays. For instance, the amplitude E r of the reflected field in 
region 1  can be written as

E r =  £ , [ r + +  r a T - T + b e - w  +  6+ ) V ' W

+ C C ( r ; ) 2 ( C A - 'w  + •■•],

which can also be written as

e ' = e t ;  + e ‘t : i( r ; r t+«-'2« ) ( n ~  1)

« = 1

As complicated as the infinite series in this expression may appear, it is simply a geo
metric series. From ordinary calculus, it is known that the sum of a geometric series 
can be written in the form

^  arn 1

n = 1
r\ <  1 .

Using this result, we can write the reflected field in region 1 as

E r(z) = E re+iP'z ax

where

T j r j t e - w ' 

i -  '

(12.144)

E r = E (12.145)
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Employing a similar sequence of steps, we can derive an expression for the transmitted 
field E{ in region 3 (z > f), which can be written in the form

E f(z) = E te ^ {z~n ax, (12.146)

where

E 1 = E l
T+T+e-’W

l -  r ; n r w ‘
(12.147)

If the reflection coefficient T is defined as the net reflected wave amplitude to the 
incident wave amplitude at interface a, we have, from Equations (12.145),

r = T+a T-T+b e 
1  -  T-T+b e - W

(12.148)

Similarly, the transmission coefficient T is defined as the ratio of the transmitted wave 
amplitude in region 3 to the incident wave amplitude in region 1. Using Equation 
(12.147) we have

T =
E l

n n e - M
1 -  T :T te - j2̂

(12.149)

As can be seen from Equations (12.148) and (12.149), both Y and T are functions not 
only of the impedance values of all three media, but also of the thickness of the “sand
wiched” medium (medium 2). This is because the phases of the individual reflected 
and transmitted waves depend on the phase delay across the region.

To see how T and T vary with the frequency/of the incident wave, let us consider 
the case where regions 1 and 3 are both free space. This situation is depicted in Figure
12-19, which shows a dielectric slab of thickness i with free space on both sides. For 
this case, we have

Dielectric slab 
(Region 2)

Free space 
(Region 3)

v /\A r^  E'

Figure 12-19 Incident, reflected, and 
transm itted waves at a finite-width, 
dielectric slab.
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r,+ - r; = - r a+,
r;r; = (i + ra+)(i -  ra+) = 1 - (ra+)2,
T i n  =  (1 + rfl+)(i + T t )  =  1 -  (O 2.

Substituting these into Equations (12.148) and (12.149), we obtain

1 -  R
T = V7? 1

1 — R ex p (-;'4 7 7 /r)_

and

T =
1 -  R

1 — R exp(—jA irfr)
* m

(12.150)

(12.151)

In both of these expressions, r  is the one-way propagation time across the slab and R is 
the reflectivity of either side of the slab alone; that is,

R =
V7r - 1 2

V7r + 1  ’
(12.152)

where er is the dielectric constant of the slab.
Figures 12-20a and b shows plots | T\ and | T | vs. /, respectively, for three differ

ent values of R. The curves for | T\ and | T | are complementary, since one parameter 
is high when the other is low. In particular, note that there are an infinite number of 
resonant frequencies at which T = 0 and \T\ =1. These frequencies are given by

„ m 
fm ~ 2 r ~

me
2J v Z

m — 1 , 2 , (12.153)

where c is the speed of light in a vacuum and er is the dielectric constant of the slab. At 
each resonant frequency, the wavelength \ m in the slab is an integral fraction of the 
slab width:

F ig u re  1 2 -2 0  Reflection and transmission from and through a finite-width dielectric slab 
for different reflectivities R: a) Net transmission coefficient | T\ vs. frequency, b) Net 
reflection coefficient | T | vs. frequency.
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A„ = -  m = 1 , 2 ,.... (12.154) 
m

The slab appears as nonreflecting at these frequencies regardless of the width, since all 
the waves directed back towards the source sum exactly to zero. When this occurs, 
the transmitted wave has the same magnitude as the incident wave.

It can also be seen from Figure 12-20 that the off-resonance behavior of the slab is 
a strong function of the reflectivity R. When R is small, the reflection and transmission 
coefficients vary only slightly about the values 0 and 1, respectively. However, when R 
is close to unity (i.e., 100% reflectivity), T ~  1 and T ~  0 at nearly all frequencies, 
except the resonant frequencies, where T ~  0 and T = 1. If a wave containing a spread 
of frequencies is incident upon the slab, the transmitted wave will contain mostly the 
resonant frequencies if R is relatively large. Because of this characteristic, dielectric 
slabs are often used as filters, particularly at optical frequencies (which include both 
visible and infrared frequencies). Slabs used in this way are called etalons.

Figure 12-21 shows a schematic of a tunable wedge etalon filter for use in optical 
fibers. Here, the narrow optical beam10 from the fiber is deflected vertically by a volt
age controlled deflector. Since the etalon thickness varies along the vertical axis, the 
frequency passed by the filter varies as the deflector voltage changes. Etalon filters 
like this are often used to allow optical receivers to “see” only the light emitted at cer
tain frequencies.

Reflection Analysis Using Effective Wave Impedances. It is possible to extend 
the multiple-reflection technique discussed in the preceding section to model the 
reflection and transmission through any number of planar interfaces. However, this 
method becomes quite cumbersome when more than two interfaces are present, since 
the number of possible reflections grows dramatically in that case. In this section, we 
will develop a technique that avoids the problem by replacing pairs of regions with a 
single equivalent medium that has the same reflection properties. With this method, 
any number of interfaces can be modeled.

To develop the technique, let us return to the three-medium problem discussed in 
the previous section. This configuration is redrawn in Figure 12-22a. As we saw 
before, an infinite number of backward-propagating waves are produced in region 1 , 
due to the reflections and transmissions at the interfaces. But since they are all of the 
same wavelength and frequency, they can be treated as a single wave, with electric and

Voltage-controlled

lens

F ig u re  1 2 -2 1  An etalon filter system for 
wavelength-selective routing of signals on 
optical fibers.

10 Although the beam emitted by an optical fiber is very narrow, it can be approximated as a plane wave 
within its beamwidth.
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Region 1 Region 2 Region 3 Region 1 Equivalent

771. A 772. 773. 3
region

7?1. /3i 7?eff

v /\A r^  E>H' vAAr^ E' H'

Er, H ^ V \A / 7?eff

z Z

z = - i  Z~--.0 z =-e

(a) (b)

Figure 12-22 Two geometries that have the same net reflection coefficient at z 
— —I  for a wave incident from the left: a) A planar, three-medium geometry, b) 
An equivalent two-medium geometry.

magnetic fields E r and H r, respectively. The same is true of the forward-propagating 
waves in region 3, which form the waves E' and FT. In the middle region (region 2), 
where both forward-propagating and backward-propagating waves are present, we can 
consider them to form the waves E + and H +, and E _ and H~, respectively.

To simplify the problem further, let us see if it is possible to produce the same 
reflected fields E r and H r from a single interface between region 1 and some yet-to-be- 
determined medium with intrinsic impedance 77eff that fills the entire region z >  — t  
This situation is depicted in Figure 12-22b. In order for the substitution to work, we 
must find a value for r/e{{ that maintains exactly the same ratio of the electric and mag
netic fields just to the right of the z = — i interface as were there in the original prob
lem (Figure 12-22a). Noting that E " and H~ can be thought of as the reflections of E + 
and H + off the z — 0  (interface b ), we can write

E(z) = E +{e~™ + r oe+^z), (12.155)
and

H(z) = —  («-*** -  (12.156)
V 2

where the reflection coefficient at the z = 0  interface is given by

T = % ~ 7,2. (12.157)
t?3 + Vi

If we define the effective wave impedance r]et[ as the ratio of E and H  at z = — i +, we 
can use Equations (12.155) and (12.156) to obtain

E_ _ e+ y >1 + r oe~^
7?eff ~ H z=_t+ “  Vl e+y* -  r 0e-y>r

(12.158)
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Substituting Equation (12.157) into Equation (12.158) and simplifying the resulting 
expression, we can write rjeU in the form

Vi +..ifctanh(y2£) 

eff V lVi + Vi tanh ( y2f )
to]. (12.159)

If medium 2 is lossless, y2 = j(32, which means that Equation (12.159) 
fied to read

can be simpli-

V i  + J V i  tan(0 2f) 

2 V 2  "*■ ] V i  tan O 2O

S
'IIG

(12.160)

Comparing Equations (12.159) and (12.160) with the impedance transformation 
formulas for transmission lines (Equations (11.133) and (11.134), respectively), we see 
that they are of exactly the same form. Thus, we can interpret r;eff as the transformed 
impedance of region 3 at the point z = —£+, just inside region 2.

Returning to Figure 12-22a, if we replace regions 2 and 3 with a homogenous 
region of intrinsic impedance 7]eff (given by Equation (12.159) or (12.160)), there will be 
no change in the fields to the left of z -  —t  This is because the equivalent region 
maintains exactly the same ratio of the electric and magnetic fields as did the original 
two regions at z = — t  The net reflection coefficient at the z = — i interface can easily 
be calculated using the simplified geometry of Figure 12-22b; we obtain

EL = Veft ~ Vl
*?eff +  Vl '

(12.161)

It is left as an exercise to the reader to show that Equations (12.161) and (12.148) are 
equivalent.

In addition to making reflection calculations easier, the effective-wave impedance 
technique provides additional insight into ways to either reduce or enhance the reflec
tions. For example, suppose it is necessary to transmit a plane wave across an interface 
between two dissimilar materials. Unless some sort of impedance-matching technique 
is used, the impedance mismatch between the two materials will give rise to a reflec
tion, which, in turn, reduces the power that can be transported across the interface. To 
remedy this, consider the quarter-wave transformer shown in Figure 12-23, which con
sists of a quarter-wavelength layer that is sandwiched between two dissimilar materials.

To find the net reflection coefficient T of this geometry, the quarter-wavelength 
layer and the right-hand medium can be replaced by a single medium of intrinsic 
impedance rj&ii, given by Equation (12.160). Noting that tan ((31) -a °c when i = A/4, 
we find that

T/eff = V
Vi ±JV ta n (g l)  
V + iVi tan ((31)

->— (when l = A/4), 
Vi
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*71

vAAr^ E' H

Er= 0,

J \IV ^  

"  vAA/

A
4

%

vAAr^ E? H'

F ig u re  12-23 A quarter-wave 
transformer.

where 77 and r;2 are the intrinsic impedances of the quarter-wave section and the right- 
hand medium, respectively. To determine what value of 77 achieves a net zero reflec
tion at the leftmost interface, we simply set i7eff equal to ^ , yielding

17 = Vrjj 772 (Quarter-wave transformer). (12.162)

This quarter-wave transformer is analogous to the quarter-wave transformers dis
cussed in the previous chapter for use on transmission lines. In both cases, they trans
form the impedance of a load to the impedance level of the incoming wave. 
Quarter-wave transformers are often used as antireflection coatings on optical lenses.

It is easy to apply this effective impedance technique to larger numbers of inter
faces. Consider the situation depicted in Figure 12-24a, which shows a plane wave 
incident upon three parallel interfaces. Here, the interfaces are identified by the let
ters a, b, and c, starting with the rightmost interface. To find the net reflection coeffi
cient for these interfaces, we first calculate the effective impedance r]b, as seen from 
interface c, looking towards interface b\ we get

m V2 V3 774 771 772 77 b m

v A A r  E' H' v A A E' H' v A A r^  E' H'

E ,H ^ A A /
, * 2 ,  ̂ I 3 >

e ' . h ' ^ A A j E ,H  r^ A A /

c b a
Vb

c b

77 c
c

(a) (b) (c)

F ig u re  1 2-24 Reflection from three planar interfaces: a) Original four-medium 
geometry, b) Equivalent three-m edium geometry, c) Equivalent two-medium 
geometry.
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t? 4 +  ta n ( /3 3l 3)

3 Vi + ii4  ân (^ 3 3̂)

where f3 is the width of region 3. Replacing regions 3 and 4 with a single region of 
intrinsic impedance rjb, we obtain the geometry shown in Figure 12-24b. We can then 
eliminate the next interface by calculating the effective impedance rjc, just to the right 
of the interface c. Using the impedance transformation formula, we obtain

V b + h 2 ta n ( /3 2l 2)

2 Vz JVb tan (^ 2 2̂)

where l 2 is the width of region 2. We can now replace the two media at the far right of 
Figure 12-24b with a single medium of impedance r/c, which results in the geometry 
shown in Figure 12-24c. Since this final geometry is a simple interface between two 
media, the net reflection coefficient is

r  =  =  Vc ~  Vi
E l r)c + t?! ’

By now, the procedure for modeling any number of parallel dielectric interfaces 
should be obvious: Remove the interfaces one by one, starting with the interface far
thest from the incident wave. By working sequentially towards the incident wave, any 
number of interfaces can be modeled. Comparing this technique with the multiple- 
reflection method discussed in the previous section, we see that this technique is easier, 
but does not provide information about the fields inside any of the media except the 
incident medium. This is not a problem, however, if one is interested only in the net 
reflection coefficient seen by the incident field.

E xam ple  1 2 -1 0

Calculate the net reflection coefficient T for the plane wave incident upon the stratified media 
shown in Figure 12-25. Assume that the dielectric constants of the media are 

= 1, er! = 6.25, = 2.25, and erj =  1. Also, assume that t 2 =  A2 / 8  and l  — A3 /5.

er\ er2 er3

v A A r ^  E'

rE W W 4 > * >

Figure 12-25 Incident and reflected waves 
at a stack of three interfaces of dissimilar
materials.

Solution:

Using the specified dielectric constants, we first calculate the following parameters: 

'ill
7,1 = 7,4 = VT = 3 7 7  ^
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377

*  -  v s s  - 1 5 0 8

377

7,3 V225

tan(j 8 3«3) = tan

[ft]

251.33 [CL]

—  = tan (2 77/ 5 ) = 3.08
At 5

tan(/32£2) =  tan(27i/8) = 0.785.

The effective wave impedance % just to the right of the interface between regions 2 and 3 
^  ion (12.160):

The effective wave impedance i  

can be found from Equation (12.160):

tj4 +  jt )3 tan (ff3l 3)

V3 + 7174 tan(^3£3)

= 25! 33 377 + ;(2 5 1 3 3 )(3.08) =  g 4  _  3 4

251.33 + 7  (377) (3.08) 1 '

Next, the effective wave impedance r jc just to the right of the interface between regions 1 and 2 is

Vb +  J V i tan (/32l2)

172 + JVb tan(/32f2)

= r  (176.94 - ;4 3 .3 4 )  + ;(1 5 0 .8 )(0.785) 

150.8 + 7 (176.94 -  j 43.34) (0.785)

=  1 2 1 .6 6 -7 3 0 .2  [n j .

Finally, the effective reflection coefficient is

ylc -  _  121.66 -  7 30.2 -  377

~ Vc + Vi~  1 2 1 -6 6  “ 7'3 0 -2  + 3 7 7  

= 0 .5 1 5 Z -169.8°.

This results in a power reflection coefficient of 

I r l 2 = 0.265 = 26.5%.

1 2 -8  P la n e -W a v e  R e flec tio n  a n d  T ran sm iss io n  a t  P la n a r B ou n d aries ,
O b liq u e  In c id e n c e

Up to this point, we have discussed the reflection and transmission of plane waves 
when the direction of propagation is normal to the interfaces. We will now discuss the 
more general case where the incident wave strikes the interface at a nonperpendicular 
(i.e., oblique) angle. This analysis is more cumbersome for oblique incidence than for 
normal incidence, so we will restrict our comments to single interfaces of lossless 
media. We will start by considering the case where the incident electric-field vector is 
parallel to the interface. This will be followed by the case where the incident H-field 
vector is parallel to the interface.
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Incident
/̂a\/o

R eflected
wave

A2. e2

A1. *1

Of '  w ave

Figure 12-26 Reflection and transmission 
of an obliquely incident, perpendicularly 
polarized plane wave at a planar interface.

1 2 - 8 - 1  P E R P E N D I C U L A R  P O L A R I Z A T I O N

Figure 12-26 shows a plane wave incident upon the interface between two lossless 
media, characterized by ^  and ev and and e2, respectively. The incident field E '  is 
y polarized and propagates downward and to the right in medium 1. Using Equation 
(12.35), we can represent E '  by

where 0, is the angle between the surface normal and the direction of propagation. If 
we define the plane o f incidence as the plane containing the surface normal and the 
propagation vector of the incident field, we see that E ! is perpendicular to that plane. 
Hence, this choice of polarization is called perpendicular polarization.n Also, from 
Equation (12.36), the magnetic field

Because of the impedance change at the interface, both reflected and transmitted 
fields must also be present. These fields must have the same polarization as the inci
dent field in order to satisfy the boundary conditions at the interface. We can repre
sent the reflected and transmitted fields using the expressions

(12.163)

H' = — (— cos 0,. slx + sin 0,- az) e ;*l(z cos e>+Ar sin 0i) (12.164)

(12.168)

(12.165)

(12.167)

(12.166)

11 Other names are horizontal polarization, E polarization, and TE (trasverse electric) polarization.



where the superscripts r and t denote reflected and transmitted fields, respectively, and 
T and T are the perpendicular reflection and transmission coefficients, respectively. 
Notice that the reflected fields propagate upward and to the right at an angle 9r, while 
the transmitted fields propagate downward and to the right at an angle 9r

Each of the incident, reflected, and transmitted fields defined above satisfies 
Maxwell’s equations in its respective region. But they form a correct solution for this 
problem only if they satisfy the boundary conditions at the interface, which require that 
Etan and Htan be continuous across the surface. The total electric field in region 1 is the 
sum of the incident and reflected fields, so we can evaluate Equations ( 1 2 . 1 6 3 ) ,  

( 1 2 . 1 6 5 ) ,  and ( 1 2 . 1 6 7 )  at z = 0  to obtain the following expression for the tangential 
electric fields:

E ie - j k lX sine,. +  r  ^ E ie - j k lX siner =  T ^ E ie - j k 2X sine,' ( 1 2 . 1 6 9 )

Also, the tangential component of H-field is the x-component, so we must evaluate 
Equations ( 1 2 . 1 6 4 ) ,  ( 1 2 . 1 6 6 ) ,  and ( 1 2 . 1 6 8 )  at x = 0  to obtain

-----cos 9 e~ik'xsm0i H----——  cos 6 re~̂ k'xsm°r
Vi

=  -  T ± E  c o s  e t e ~ ^ xsin 6 '.  ( 1 2 . 1 7 0 )

t?2

To satisfy Equations ( 1 2 . 1 6 9 )  and ( 1 2 . 1 7 0 ) ,  we must find the appropriate reflec
tion and transmission coefficients, T± and 7 \,  respectively. However, in order for 
these values to be independent of z, the three exponential terms in both expressions 
must all be identical functions of x. Hence, we must require that

g —jk xX sinfl,. __ .v sin dr _  ^ - j k 2x sin 0,

which is satisfied when

k { sin 6 i = kx sin 8 r = k 2 sin 9t . ( 1 2 . 1 7 1 )

This equation is often called the surface phase-matching requirement.
Equation (12.171) specifies a unique relationship between the incident, reflected, 

and transmitted angles. The equality of the first two terms is called Snell’s law o f 
reflection and states that the angle of incidence equals the angle of reflection:

492 CHAP. 12 PLANE WAVES

ft = ft (12.172)

The relationship between 0i and dt that is specified in Equation (12.171) is called 
Snell’s law o f refraction. This law states that the angle of transmission 6 t is given by

/c
sin 9t = ~r~ sin 8 t. (12.173)

k 2

The law is often written in the form
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sin 9t =
n, .

sin 6 :,
n 2

(12.174)

where n x and n 2 are the indices o f refraction of the two media. The index of refraction 
of a medium (lossless or lossy) is defined as the ratio of the speed of light in a vacuum 
to the phase velocity in the medium.

(12.175)

In lossless, nonmagnetic media, however, u p =  \ J \ f x f e .  This means that n  equals the 
square root of the relative permittivity in lossless, nonmagnetic materials:

n  = V e r (Lossless, nonmagnetic materials). (12.176)

A medium with a large index of refraction is called a dense medium, since the dielectric 
constant er is usually large when the number of atoms per unit volume is high. Con
versely, a medium with a small index of refraction is called a rare medium. The rarest 
medium is a vacuum (free space), where n  =  1 .

We can shed more light on the meaning of Snell’s laws by observing the con
stant-phase planes shown in Figure 12-27. Here, we see that the distance between the 
incident and reflected phase planes (shown as dotted lines) are the same, since both 
waves have the same wavelength. This means that 9t and 9r must be equal in order 
for these phase planes to track each other along the interface. On the other hand, the

Phase

F ig u re  12-27 Constant-phase planes of 
the incident, reflected, and transm itted 
waves at an interface. These show how 
Snell’s laws of reflection and transmission 
m aintain the same distance between the 
planes along the interface.
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spacing between the transmitted phase planes is different, since the wavelength is dif
ferent in the transmission region. In order for the phase planes below the surface to 
track those above, the direction of propagation of the transmitted wave must bend 
towards the surface normal when A2 < Aj and away from the surface normal when 
A2> A1? respectively.

Now that the correct relationships between the incident, reflected, and transmit
ted angles have been determined, we can return to the electric and magnetic field 
boundary conditions (Equations (12.169) and (12.170), respectively). Substituting 
Equations (12.172) and (12.173) into the boundary condition equations and canceling 
the common terms, we obtain

1 + E± = T±.

and

i - r x
T m cos 0 ,

1  rj2 cos 0 ,'

Solving these expressions for and T \, we find that

r x =
r}2 cos 6 t -  rix co s  0,

(12 .177)
t )2 cos 0, +  1 7 } co s  6 ,

T ±  =

2 i72co s  0,.
(12 .178)

7]2 COS 0; +  1 7 } COS 0, ’

Notice that when 0; = 0, 0r = 6 , = 0, and Y x and T± assume the same values as for the 
case of normal incidence (Equations (12.121) and (12.122), respectively). Also, when 
the second medium is a perfect conductor, rj2 = 0 , which yields

r ± = - 1  (ct-2 - » oo) (12.179)

T± = 0  (<x2 —> oo). (12.180)

E xam p le  12-11

A perpendicularly polarized plane wave is incident from free space onto a lossless dielectric sur
face at an angle of 30° with respect to the surface normal. If the material param eters are e =  

4.0 eQ and /x =  /uQ, find the angle of transmission and the reflection and transmission coefficients.

Solution:

From Equation (12.174), the angle of transmission

0, = sin 1 — sin 0, = sin 1 ~  sin (30°) =14.48°.

The intrinsic impedances of the two media are

V i  = \F * = 3 7 7  72 = = 188.5 fOl.V e V4e„ L J
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Substituting these values into Equations (12.177) and (12.178), we find that

_ 188.5 cos (30°) -  377 cos (14.48°) _
1 188.5 cos (30°) + 377 cos (14.48°)

2X188.5 cos (30°)
1 188.5 cos (30°) + 377 cos (14.48°) ' '

1 2 - 8 - 2  P A R A L L E L  P O L A R I Z A T I O N

Parallel polarization12 occurs when the incident electric-field vector lies in the plane of 
incidence. The situation is depicted in Figure 12-28. We can represent the incident 
electric and magnetic fields for this case by the expressions

E ‘ = E l{cos e ^x -  sin 0 Iaz)e-'*‘(zcose'+*sinfl') (12.181)

H '  = —jkx (z cos 0j+ x sin 8i) (12.182)

Since the incident field is polarized parallel to the plane of incidence, we will now show 
that the reflected and transmitted fields have the same polarization and can be 
expressed as

W  = r„ jF'(cos 6 rsix + sin 0 raz)e~jki('~zcos9r+xsm (12.183)

H r

and

r ,  e *
Vi

£  g - j k x{ - z  cos 8,+x sin 9r) (12.184)

E '  = Tj, E ‘(cos dtax -  Si n ^ a z) e _ ^ (zco s®'+ * sin®') (12.185)

H '  = M l
Vi

g g ~jk2(z cos 8,+x sin 9,) (12.186)

Inc ident E ' R eflected

Figure 12-28 Reflection and transmission 
of an obliquely incident, parallel-polarized 
plane wave at a planar interface.

12 Other names for this are vertical polarization, H polarization, and TM (transverse magnetic) polarization.
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In these expressions, T,, and 7„ are the parallel reflection and transmission coefficients, 
respectively.

To find the appropriate values of T|| and Tp we must require the total tangential 
electric and magnetic fields to be continuous at x = 0. Evaluating Equations 
(12.181)—(12.186) at x = 0 , and remembering that the total fields in region 1 are the 
sum of the incident and reflected fields, we obtain the following expressions for the 
electric and magnetic fields, respectively:

£ ‘cos0;.£r'Vsin(?' + r„ islcos dre~ikl*sin9r = T„ E l cos dte~^xsin0'

E l e ~jkyx sin 6t _  IlJL e - j k lXsine, _  ^|| E  e ~jlclX sin 9,

Vl *?! ^ 2

(12.187)

(12.188)

The exponential terms in these expressions are the same as for the perpendicular case 
(Equation (12.170)), so Snell’s laws of reflection and transmission are the same for par
allel polarization as they are for perpendicular polarization:

0 i = 0 r (12.189)

sin Qt = 7 1  sin -  —  sin 0 ,-. 
^ 2  n 2

(12.190)

Substituting Equations (12.189) and (12.190) into Equations (12.187) and (12.188) and 
canceling the common terms, we obtain

„  _ cos 6 .
i  + r n — 7 y

cos 6 i

i _ r  = t  —  I"

Finally, solving the preceding expressions for T,, and Tp we get

r  Vi cos 6 ( -  % cos 0 (. 
11 rj2  cos 6 t + rjx cos

(12.191)

T  2 t]2  cos e t
11 7)2 COS 6 , + T)1 COS 0,

(12.192)

Note that these expressions are similar to those for the case of perpendicular polariza
tion, but they are not identical. However, these formulas yield the same reflection and 
transmission coefficients as were derived earlier for normal incidence when 6 i = 0 . 
Also, when the second medium is a perfect conductor, t/2 = 0, which yields

T, = - 1  (<j 2 —» oc) (12.193)

7,1 =  0  (cr2 - »  oo). (12.194)
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1.0

10° 20° 30' di

Figure 12-29 Plots of the reflection 
coefficients for perpendicular- and
parallel-polarized waves that are incident

- 1.0 from free space onto a medium with 
e — 4e0 and /x =  /x0.

12-8-3 THE BREWSTER ANGLE

Figure 12-29 shows the values of Tx and as a function of Bi when a wave is incident 
from free space onto a medium characterized by e = 4 e0 and /jl = /jl0. A s can be 
seen, T ± and r,, are equal at 0t = 0, but as 0L —> 90°, they approach +1 and -1 , 
respectively. Notice also that T± is never zero, whereas T|| equals zero at one angle, 
6t = 63.4°, for this case. The incident angle that yields = 0 is called the Brewster 
angle and is denoted by the symbol dB. It is also called the polarizing angle, because 
at this angle, the reflected fields are always linearly polarized, with the electric field 
perpendicular to the plane of incidence.

To find a general formula for the Brewster angle, we set the expression for T„ 
(Equation (12.191)) equal to zero:

h  cos e t ~  h  cos d i =  q

i72 cos 6t + 171 cos dj

This equation is satisfied when the numerator is zero, which occurs when 

rj2 cos 6t = 7]1 cos .

If both media are nonmagnetic, /.q = = /u0, and the preceding expression becomes

e] (1 -  sin2 6t) = e2(l -  sin2 6t).

But we also know from Snell’s law that sin2 6t = {e je 2) sin2 0t. Substituting this into 
the preceding expression and solving for sin , we obtain

1 1
cos 6t = cos 6j,

or



498 CHAP. 12 PLANE WAVES 

Hence, = 0 when dt — dB, where

sin
_ V 1 + el/e2_

tan (12.195)

The reader might be wondering if it is ever possible for T± to equal zero. Theo
retically, the answer is yes, since T± can be zero when the two media have different 
values of /jl. However, this case is of little practical use, since magnetic materials usu
ally have high losses, particularly at RF frequencies and above.

The polarizing effect at the Brewster angle is often used in optical devices to 
either reflect or transmit a specific polarization. One common application that uses 
the Brewster effect is glare-resistant sunglasses. Sunlight is unpolarized, which means 
that its the polarization state is random and fluctuates rapidly. Reflections of sunlight 
off most surfaces contain more power in the perpendicular component than in the par
allel component if the angle of incidence is relatively close to the Brewster angle. Such 
a situation is depicted in Figure 12-30. When the angle of incidence is close to the 
Brewster angle, most of the power in the reflected wave is polarized parallel to the 
ground. If these reflections are viewed through a lens that passes only light that is 
polarized perpendicular to the earth, very little of the reflection will be seen. Lenses 
that pass only one type of polarization are called polarizing (or Polaroid™) lenses.

Another important use of the Brewster angle is in lasers. A simplified schematic 
of a laser is shown in Figure 12-31. A laser is an oscillator that amplifies waves by forc
ing them to reflect back and forth in an optical cavity that contains a lasing medium. 
The lasing medium, which can be gas, liquid, or solid, is induced into an amplifying 
state by a process called pumping, whereby a critical number of its atoms are excited

Figure 12-30 Unpolarized sunlight that 
becomes mostly polarized after reflecting 
off a water puddle at roughly the Brewster 
angle.

Return
m irror

O utpu t
m irror

100%

Am plify ing
m edium

G lass R <  100%
plate

©
E„

Polarized
output

Figure 12-31 A glass plate in a laser cavity at the Brewster angle, yielding a 
polarized output.
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into elevated energy states. Common methods of pumping are optical flashlamps 
(common in solid lasers), electric discharges (common in gas lasers), and minority car
rier injection (used in semiconductor lasers). Sustained oscillations occur when the 
pumping rate is sufficient to make the net power gain per round trip in the optical cav
ity greater than zero.

The outputs of many lasers are randomly polarized, since the gain in the cavity is 
often independent of the wave polarization. To obtain a polarized output, a glass plate 
can be placed between the mirrors and aligned so that the waves enter and leave it at 
the Brewster angle. 13 The parallel-polarized waves are unaffected by the plate, but 
lasing for perpendicular polarization is extinguished because the gain per round trip is 
pushed below the threshold value.

E xam p le  1 2 -1 2

Calculate the Brewster angle of the interface between free space and a glass plate that has a 
dielectric constant of er — 7.0.

Solution:

Using Equation (12.195), we obtain 

0B =  tan - 1  (V 7) = 69.3°.

12-8-4 TOTAL REFLECTION AND THE CRITICAL ANGLE

When a plane wave is incident from a dense medium into a rare medium, such as from 
water to air, Snell’s law of refraction predicts that the transmission angle 9t must be 
larger than the angle of incidence dL. The angle of incidence that results in 9t = 90° is 
called the critical angle 6C. To calculate 9C, note that sin 9, = 1 when 9t = 90°. Using 
Snell’s law of reflection, we find that

n7 . n0 
sin 9 = — sin 9 = —,

nx nx

where nx and n2 are the refraction indices of regions 1 and 2, respectively. Solving for 
9C, we obtain

(12.196)

When both media are nonmagnetic, 9C can be written in terms of the permittivities 
of the media:

13 It is shown in Problem 12-28 that when the incident field enters a flat plate at the Brewster angle, it also 
leaves the plate at the Brewster angle.
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(Nonmagnetic media). (12.197)

To see what happens when 9t is greater than the critical angle, note that Snell’s 
law of refraction predicts that sin 9, is greater than unity:

sin#f = H-  sin 9i > 1 (0; >  9C). (12.198)
n2

This means that 9t is an imaginary number and can no longer be interpreted as the 
angle of transmission of an ordinary plane wave. Also, since

cos 9t = V l — sin2 0r,

we find that cos 9, is imaginary when 0i > 9C. Hence, we can write14

cos 9t = — jA , (12.199)

where A is a positive real number, defined by

A  = Vsin2 9. — 1 = \  sin2 9■ — 1. (12.200)
V n {

Even when ° i  >  o c , Snell’s law of reflection still predicts that the angle of reflec
tion equals the angle of incidence. But the reflection coefficients do something pecu
liar when 0i > ec for both perpendicular and parallel polarization. To see this, let us 
start with the perpendicular polarization case. If we substitute Equation (12.199) into 
Equation (12.177), we obtain

V 2 COS 01 +  j ^ A  

172 cos 91 -  jrjxA
(12.201)

Since the numerator and denominator of this expression are complex conjugates, r ± 
has a magnitude of 1.0. This means that the incident field undergoes total reflection at 
the interface. Writing T x in complex form, we obtain

TX = 1 Z ^ ± (9i >cf> c )  (12.202)

where the phase shift is

4>± = 2 tan 1

V i \  sin2 9j — 1
2

V2 V l -  sin2 0t
(12.203)

When both media are nonmagnetic, /i{ — /jl2 = ii0,n f — el/eQ,andn2 = e je 0, so 
Equation (12.203) can be further simplified to read

14 The choice cos 0t = jA  is also possible, but would result in a transmitted field that increases exponentially 
with depth, violating the conservation-of-energy principle.
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</>x = 2 tan 1
V sin2 6t — e2/ e\ 

V l  -  sin2 6,
(Nonmagnetic media). (12.204)

Given that the reflected fields have the same magnitudes as the incident fields 
when 6i > 0C, it may at first seem logical to assume that the transmitted fields are zero. 
But such is not the case. To see why, let us take a closer look at the expressions for the 
transmitted electric and magnetic fields when the incident field is perpendicularly 
polarized. Using Equations (12.167) and (12.168), we can write the transmitted fields 
in the form

E r = T±E ‘aye~°‘2Ze~i^ x (12.205)

H r = — ̂  (J /laY + s i n 0 t 2tz) e ~ a2Ze ~ ]P2zX, (12.206)
Vi

where A and sin 0t are given by Equations (12.200) and (12.198), respectively, and

T x =
2 772 cos

V 2 cos -  i v A

= knA  = /c9 \ k ~ \s in 26; — 1
n 2

[Np/m]

(12.207)

(12.208)

(32z = k2sinOt = k2~ s i n 9 i [m x] . (12.209)
n i

As can be seen from Equation (12.207), the transmission coefficient T± does not 
equal zero when 6i > 6C, which means that the transmitted fields are nonzero, even 
though the incident field is totally reflected. The transmitted fields decay exponen
tially with increasing values of z and exhibit no phase changes with increasing depth, 
which is the characteristic of an evanescent wave. This decay has nothing to do with 
loss, however. Rather, it occurs because the incident wave has been totally reflected. 
Because it decays quickly with depth, this wave is often called a surface wave. Such a 
situation is depicted in Figure 12-32.

The existence of nonzero transmitted fields when the reflection coefficient T± has 
unity magnitude may appear to violate the principle of energy conservation. To see 
why this is not a problem, let us calculate the complex Poynting vector S in the region 
where the transmitted wave exists:

Incident R eflected

F ig u re  1 2-32 A  totally reflected wave and 
the accompanying surface wave.
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I r7~' I 2 I tt1 i  I 2
S = E f x  ( H f)* = -— — —e~2a2 z\jAaT + sin#fa j .  (12.210)

V2

This vector has both x- and z-components. However, only the x-component is real, 
which means that a net average power flows parallel to the interface inside the trans
mission medium, but not perpendicular to it. This is consistent with the fact that the 
incident and reflected fields have the same magnitude and, as a result, transport no net 
power through the interface.

Now that we have identified the evanescent behavior of the transmitted fields 
when the incident field is perpendicularly polarized, let us next consider the case 
where the incident field is parallel polarized. The reflection coefficient for this case 
can be found by substituting Equation (12.199) into Equation (12.191):

r = - jV iA  ~ Vl cos 0,
-jri2A + cos 

Writing this in polar form, we have 

T -  1  A</> (0 .  >  0C) ,
II HI v ' c/

where the phase shift is

0 ii = —180° + 2 tan 1
Vi

Vi

\  sin2 0i -  1 
l2

V l -  sin2 6:

(12.211)

(12.212)

When both media are nonmagnetic, Equation (12.212) can be further simplified to read

(f) = —180° + 2 tan
f n

- 1

“2 sin2 -  e je 2 
-2

V l -  sin2 0:
(Nonmagnetic media). (12.213)

The transmitted fields for parallel polarization are evanescent, with exactly the 
same rates of decay as for the perpendicular polarization case. The formula for the 
transmission coefficient is slightly different:

T -
ii

2 r ]2 cos

—j A y ] 2 +  V i  cos 0,-
(12.214)

Finally, an interesting question concerning the phenomenon of total reflection is 
the following: If no power flows into the transmitted medium, how did the transmitted 
fields get there? The answer is that the frequency-domain analysis we have used to 
describe this process has neglected the initial transient response of the waves when 
they are first turned on. Although | T | = 1 when the steady state is reached, | T | < 1 
during the initial transient period. Once steady state is reached, energy is no longer 
passed across the interface, and the stored energy in the transmitted fields simply prop
agate parallel to the interface.
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E xam ple  1 2 -1 3

A 100-MHz plane wave is incident from fresh water ( er — 80, a  ~  0) into air at an angle of inci
dence of 60°. If the field is perpendicularly polarized, calculate the reflection coefficient and the 
rate of decay of the transmitted field in dB/m.

Solution:

From Equation (12.196), the critical angle for this interface is

Thus, an incident angle of 60° is well beyond the critical angle, and we can use Equation (12.208) 
to find the attenuation constant a 2 in the air. Remembering that fH = w/c in air,

- e, - 1 = 2tt X 100 x  i o 6 

3 x  108
V 80 sin 2 60° -  1

= 16.087 [N p/m ].

Substituting this result into Equation (12.64) to convert a 2 from [Np/m] to [dB/m], we obtain

« 2

16.087

.1151
139.7 [dB/m ].

The magnitude of the reflection coefficient Tx is unity, since di >  ec. The phase of the 
reflection coefficient can be found using Equation (12.204);

=  115.9°.

Thus, the reflection coefficient is 

T x = 1.0zLll5.9°.

<t>± -  2  tan 1
V  sin2 60° -  1 / V 80

a n r

1 2 -9  S u m m a tio n

In  this ch a p te r, w e have d iscussed  v ario u s  aspec ts o f p lan e  w aves. P lan e  w aves a re  th e  
sim plest, an d  m o st im p o rta n t ex am p les  o f space w aves. E v en  th o u g h  tru e  p la n e  w aves 
a re  nonphysical in th a t th ey  c o n ta in  an  in fin ite  a m o u n t o f p o w er, they  a re  excellen t 

ap p ro x im atio n s o f th e  w aves g e n e ra te d  by  rea l sources.
W e will aga in  see p la n e  w aves in  C h a p te r  14 w hen  w e discuss an ten n a s  and  ra d i

a tion . T h e re , w e w ill n e a rly  a lw ays assu m e th a t  th e  fields ra d ia te d  by  an  a n te n n a  

b eh av e  like p la n e  w aves w h en  th e y  a re  v iew ed fa r  from  th e ir  sources.

P roblems

12-1 T h e  fre q u e n c y -d o m a in  e x p re ss io n  fo r th e  e le c tr ic  f ie ld  in te n s ity  o f a p la n e  

w ave in  a ir is

E = 3 e - /(2-094y + it/ 4) -  [V /m ] 5



where y is measured in meters. Find the frequency of this wave (in [MHz]) and 
time-domain expressions for both E and H .

12-2 The time-domain expression for the magnetic field intensity of a plane wave in air 
is

H  = 0.1 cos(aH + 7 tz + 20°) ax [A/m],

where z is measured in meters. Find the frequency (in MHz) of this wave and 
its wavelength.

12-3 If the frequency-domain representation of the H-field in a source-free region 
filled with air is given by

H  = 3e~i(fiy+7r/A)ax -  Ae~iPzay [A/m],

find the frequency-domain representation of E.
12-4 Find the time-domain expression for the E- and H-fields of a plane wave that 

propagates in air in the direction 1/(V5) (ar — 2 a,). Assume that H  has only a 
y-component and has a magnitude of 10 [A/m],

12-5 Determine the direction of propagation and the polarization state of the follow
ing plane wave:

E = E0[(l + j)a , + (1 -  y ja je - '*
12-6 Prove that:

(a) any linearly polarized wave can be resolved into the sum of right- and left- 
hand circularly polarized waves,

(b) any elliptically polarized wave can be resolved into the sum of right- and 
left-hand circularly polarized waves.

12-7 Prove that a linearly polarized wave can always be constructed by adding two 
elliptically polarized waves with opposite rotations.

12-8 Find the tilt angle rand the axial ratio AR  of the plane wave

E = 3e-;hE+2°0)a + e~m+4ff,)L .
x  y

12-9 Prove that the attenuation and phase constants of a medium can always be 
expressed in the form
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12-10 Certain materials become anisotropic when subjected to a strong magnetic bias 
field (such as from a magnet) so that counter rotating, circularly polarized waves 
propagate through them with different velocities. This effect is called Faraday 
rotation and can be used to create devices that rotate the plane of polarization of 
linearly polarized waves. For the device shown in Figure P12-10, prove that if a 
plane wave propagation in the + z  direction has polarization E  =  E{ a v at z  =  0, 
then the polarization vector will rotate clockwise as the wave propagates if /3L > 
/3r  and counterclockwise if (3L <  (3R , where (SL and (3R are the phase constants
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for left- and right-hand propagating waves, respectively. Also if (/3L -  (3R)l = 
7t, show that E 0 =  E t a at z  = L (Hint: Remember that any linearly polarized 
wave can be considered as the sum of two circularly polarized waves—in this 
case with different velocities.)

F ig u re  P I 2 -1 0

12-11 Prove by direct substitution that all possible plane waves represented by Equa
tions (12.35)-(12.37) satisfy Maxwell’s frequency-domain equations for all pos
sible directions of propagation.

12-12 Find the complex permittivity of a material at 100 [MHz] that has a dielectric 
constant of 2.5 and a conductivity of 1.39 X  10~4 [S/m].

12-13 Calculate the attenuation in [dB/m] of a 1 [GHz] plane wave as it passes through 
a medium with a loss tangent of tan 4> = 0.05 if it is known that the medium is 
nonmagnetic and the wavelength at that frequency is 17.32 [cm].

12-14 Calculate the intrinsic impedance 77, the attenuation constant (in [Np/m]), the 
skin depth 8, and the wavelength of copper (a — 5.8 X  107 [S/m], e = e0, /jl = /jlq) 
at a) /  = 60 [Hz], b) /  = 100 [MHz], and c) /  = 10 [GHz].

12-15 Calculate the effective complex permittivity e of a nonmagnetic material that 
exhibits an attenuation of 0.1 [dB/km] at a frequency of 10 [GHz] if the wave
length at that frequency is 1.342 [cm].

12-16 A linearly polarized plane wave with a peak electric field amplitude of 3 [V/m] 
propagates through a lossless, nonmagnetic medium and has a power density of 
22 [mW/m2]. Find the relative permittivity er of the medium.

12-17 At large distances from an antenna, the radiated electric and magnetic fields can 
always be written in the form

E = Ee ae + E^

H = (E^&q ~ Eea^),
17

where 77 is the intrinsic impedance of the medium. Find the expression for the 
power density ^ ave in terms of E e and E ^  Since both E e and E^ are always pro
portional to 1/r when r is large, how does ^ ave decay with increasing values of r?

12-18 A uniform current J = J0az flows in a conducting slab with conductivity a  that 
lies in the region \x\ < d.
(a) Calculate the dissipated power per unit surface area of the upper face Pdiss 

using Joule’s law (Equation (12.97)).
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(b) Calculate Pdiss by integrating the instantaneous Poynting vector SP around 
the outside surface of the slab. {Hint: Use Ampere’s law to find H.)

12-19 Calculate the time it takes to boil a container of distilled water in a microwave 
oven, where the container is 2  [cm] high and has a cross section of 100 [cm2]. 
Microwave ovens typically operate at 2.4 GHz, where distilled water is character
ized by er -  78 and tan </> = 0.157. Assume that water starts at 23° [C], and the 
specific heat and density of water are 4.184 [J/g • °C] and 1.0 [g/cm3], respectively. 
To simplify matters, assume that the microware energy is a 1.5 [kW], square-aper- 
tured plane wave (10 X 10 [cm]) that passes from the top of the container to the 
bottom. Assume also that the air/water reflections are negligible and the energy 
that is not absorbed by the water after a single pass is absorbed by the grease on 
the oven floor (not a bad assumption in many university living quarters!).

12-20 A 300 [MHz] plane is normally incident from free space onto a lossless, non
magnetic slab of infinite thickness. Find the refection and transmission coeffi
cients if it is known that the velocity of propagation in the slab is 0.85c.

12-21 A 10 [GHz] uniform plane wave is normally incident from free space onto an 
ocean surface. If the power density of the incident wave is 100 [mW/m2] and the 
seawater has er = 80 and tan <£ = 0.56, calculate the time average power density
(a) just below the surface
(b) at a depth of 1 [cm].

12-22 A 1 [GHz] plane wave is normally incident upon a thick, nonmagnetic metal 
slab. If the slab has a conductivity of a  = 1 X  107 [S/m] and the power density 
of the incident wave is 10 [W/m2], find the power (in [W/m2]) that is dissipated 
in the slab for each square meter of surface area.

12-23 Suppose that the spacing between adjacent resonant frequencies of a particular 
etalon is 40 [GHz]. If the etalon is 3 [mm] thick, find its dielectric constant.

12-24 A quarter-wave stack consists of a series of quarter-wavelength-thick layers, usu
ally deposited on a substrate (such as glass). Highly reflecting mirrors can be 
made from these stacks by alternating values of permittivity. Figure P12-24 
shows a quarter-wave stack consisting of a number of cells, where each cell is a pair 
of high- and low-permittivity layers. Find the minimum number of layers neces
sary to attain 99.9% power reflectivity if eH = 6 eQ, eL = 1.8 eD, and es = 4 eQ.

es

S ubstra te

Cell #N Cell #2 Cell #1 F ig u re  P I 2 -2 4

12-25 The window of lowest loss in silica glass optical fibers is centered at a free-space 
wavelength of approximately 1.55 [/xm] and has a width of approximately 200 
[nm]. The frequency range of semiconductor lasers is much narrower than this 
window, so many laser frequencies can be used simultaneously to transmit dif
ferent signals. (This is called wavelength division multiplexing.) One way to
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filter each wavelength out separately for detection is by using etalons. Calcu
late the etalon width that is necessary to obtain a resonant wavelength spacing 
of 10 [nm] if the relative permittivity of the etalon is 6 .0 .

12-26 Suppose that transparent coating is applied to a glass substrate to eliminate 
reflections of violet light (A0 = 0.4 [/ttm]) at normal incidence. If the substrate 
has er — 6 and /xr = 1, find:
(a) the required coating permittivity and thickness.
(b) the power reflectivity for red light (A0 = 0.7 [/im]).

12-27 A circularly polarized plane wave is incident from free space onto a flat surface 
with er = 2.5 and n r = 1. If the angle of incidence is 40°, calculate the axial ratio 
AR  of the reflected wave.

12-28 The dielectric slab in Figure P12-28 is illuminated by an incident plane wave. 
Show that:
(a) the input and output rays are parallel.
(b) if the angle of incidence 91 equals the Brewster angle for the input face, then 

the angle 02 automatically equals the Brewster angle of the output face.

F ig u re  P 1 2 -2 8

12-29 Suppose that a glass plate with er = 4.5 is inserted into a helium-neon laser cav
ity at the Brewster angle to polarize the laser’s output, as shown in Figure 12-31. 
If the cavity wavelength is A0 = 0.6328 [/xm] and multiple reflections within the 
plate are negligible, calculate the net reflection loss, in dB per pass through the 
plate, of the unwanted polarization.

12-30 A 300 [MHz] plane wave with a power density of 100 [mW/m2] is incident from 
fresh water (er = 80, a  = 0) into air at an incident angle of 40° and is polarized 
perpendicular to the plane of incidence. Calculate the height above the water 
surface at which the E-field has a magnitude of 10 ~4 [V/m].

12-31 Show that the reflection and transmission coefficients for a plane wave incident 
upon a planar boundary between two nonmagnetic media can be written in the 
form

sin (0, -  91) _ 2 cos 0, sin 9,

sin (9,+ 9,) 1 sin (0, + 0f)

r =
ii

tan (0, — 9') 
tan (9t + 0,)

T =
ii

2 cos 0, sin 9t
sin (0f + 9j) cos (0f -  0,) ’
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Waveguides

13-1 In tro d u c tio n

Waveguides are similar to transmission lines in that they, too, are used to transport 
electromagnetic energy and signals along a fixed path. But whereas transmission lines 
carry TEM (or quasi-TEM) modes, waveguides carry non-TEM modes, often called 
waveguide modes. This difference between transmission lines and waveguides may 
seem subtle, but their mechanical and electrical properties are quite different. For 
instance, transmission lines must have at least two separate conductors, whereas wave
guides can consist of a single conductor or only dielectrics (as in the case of an optical 
fiber). Typically, waveguides must be operated over smaller bandwidths than trans
mission lines, but they generally exhibit smaller losses, which makes them attractive 
for many applications.

There are many different types of waveguides, but they can usually be placed into 
two broad classes: metal waveguides and dielectric waveguides. Metal waveguides 
employ conductors to confine and guide the waves and are typically used in the RF, 
microwave, and millimeter wave ranges. Figure 13-1 shows three types of metal wave
guides: rectangular, circular, and ridge.

508
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Figure 1 3-1 Three types of metal waveguides: a) Rectangular, b) Circular, c) Ridge.

Each of these types of metal waveguide has distinct properties, but they are similar 
enough so that a detailed analysis of one gives insight into most of the properties of 
the others.

Unlike metal waveguides, dielectric waveguides direct waves using the reflections 
at the interfaces of dissimilar dielectrics. Dielectric waveguides do not confine waves 
as tightly as do metal waveguides, but they have many attractive properties, particu
larly at frequencies where the conductive losses of metal waveguides make them unat
tractive. Figure 13-2 shows two types of dielectric waveguides: a slab waveguide and 
an optical fiber.

The advantages of dielectric waveguides are most pronounced at optical fre
quencies, where the losses of certain dielectric materials are extremely low. This prop
erty is directly responsible for the rapid increase in the use of fiber-optic links that have 
revolutionized computer networks and communication systems.

1 3 -2  W a v e g u id e  M o d e s

Even though the electric and magnetic fields inside different types of waveguides dis
tribute themselves differently, all waveguides share a number of common properties. 
The most important of these is that they can support an infinite number of field con
figurations, called modes. In this section, we will identify the basic types of modes pre
sent in waveguiding structures.

(a) (b)
Figure 1 3-2 Two dielectric waveguides: 
a) Dielectric slab, b) Optical fiber.
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F ig u re  1 3-3 A  uniform waveguide that 
contains both conductors and dielectrics.

Figure 13-3 shows a section of a waveguide with an arbitrary cross section that is 
uniform along the z-axis. The materials used can be either dielectrics or conductors, 
and more than one kind of material may be present. To model the kinds of fields that 
exist within and around this waveguide, we start with Maxwell’s two curl equations in 
source-free media:

V X E = -  j c o / i H  (13.1)

V X H = joeE . (13.2)

If we assume that the z dependence of each component of E and H is of the form 
E -n H, °c e yz (i — x, y, or z), where y is the propagation constant, these two vector 
equations can be written as the following six scalar equations:

BE - TT
—— +  y E =  -]Ui[iHx 
ay

(13.3)

(13.4)

SE, SEX
~  1 7  z

(13.5)

d H z Tr . ^  
—  + yH y = ja>eEx (13.6)

(13.7)

dHv dHx 
-T-* -  —  = Jm Ez. 
dx dy

(13.8)

In spite of the formidable appearance of the preceding six equations, we can sim
plify matters significantly by separating the electric and magnetic fields into two 
classes: transverse fields and longitudinal fields. Transverse fields are directed per
pendicular to the direction of propagation (i.e., Ex, Ey, Hx, and Hy), whereas longitu
dinal fields are directed parallel to the direction of propagation (i.e., Ez, Hz). Next, we
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can manipulate the six equations so that each transverse component is specified only in 
terms of the longitudinal components. For instance, solving Equation (13.4) for Hy, 
we obtain

H y =  f - E x
]U\X

+
jco/JL dx

Substituting this into Equation (13.6) and solving for Ex, we get

h 2

dE . dH
7 t "  +dx dy _

where h 2 = y2 + a>2/xe. Similar expressions can be derived for the other transverse 
components and are summarized as follows:

E x =

E y =

H x =

H y =

1 dEz
h 2 y dx

+ JCOfX

1 dEz
h 2 y dy

-  / wg

1 -
dEz

h 2 -
j0)6 __Z_

dy
+

1 - dE,
h 2 dx y

d H ;

dy

d H ;

dx

dJk
dy J ’

where

h 2 = y2 + oE/xe.

(13.9)

(13.10)

(13.11)

(13.12)

(13.13)

Equations (13.9)-(13.13) suggest that we can divide the modes in waveguiding 
structures into the following classes:

TEM modes These modes have Ez = Hz = 0 and h2 = y2 + or/xe = 0. Exam
ples of TEM modes are plane waves and transmission-line modes. 
Waveguides with finite cross-sectional dimensions can have a TEM 
mode only if there are at least two separate conductors and a uni
form dielectric (such as is found in coaxial cables).

TE modes Transverse-electric modes, sometimes called FI modes, have Ez = 0 
at all points within the waveguide, which means that the electric 
field vector is always perpendicular (i.e., transverse) to the wave
guide axis. These modes are always possible in metal waveguides 
with uniform dielectrics.
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TM modes Transverse-magnetic modes, sometimes called E modes, have 
H, = 0 at all points within the waveguide, which means that the 
magnetic field vector is perpendicular to the waveguide axis. Like 
TE modes, they are always possible in metal waveguides with uni
form dielectrics.

EH modes These are hybrid modes in which neither Ez nor Hz is zero, but the 
characteristics of the transverse fields are controlled more by Ez 
than H .. EH modes are often possible in metal waveguides with 
inhomogeneous dielectrics and also in optical fibers.

HE modes These are hybrid modes in which neither Ez nor Hz is zero, but the 
characteristics of the transverse fields are controlled more by Hz 
than Ez. Like EH modes, these modes are often possible in metal 
waveguides with inhomogeneous dielectrics and also in optical 
fibers.

We have already encountered two examples of TEM modes in Chapters 11 and 
12—transmission-line modes and plane waves. These modes have many attractive 
properties, not the least of which is that they can propagate without attenuation at all 
frequencies when material losses are zero. To see why all TEM modes have this char
acteristic, we note that when h2 = y2 + co2/xe = 0 , we have

y  = j/3 = jcoV^xe (TEM modes). (13.14)

Thus, TEM modes propagate with no attenuation when the medium is lossless, regard
less of the frequency of operation. Also, the phase velocity of a TEM mode in a loss
less medium is always given by

1

/3 V/X6
(TEM modes). (13.15)

Single-conductor waveguides cannot support TEM modes. This is because B- 
field lines always must close upon themselves (since V»B = 0). According to 
Ampere’s law, however, any closed loop of magnetic flux must be accompanied by 
either a conduction current or a displacement current flowing through the loop. For a 
TEM mode, B-field lines can exist only in the transverse plane. But if there is no lon
gitudinal D-field (since Ez = 0) and no longitudinal conduction current (since there is 
no inner conductor) inside the waveguide, then no B-field loops can exist.

Waveguides that have only one conductor cannot support TEM modes, but they 
can support the other types of modes listed, which are all types of waveguide modes. 
As we shall see in this chapter, waveguide modes behave quite differently than TEM 
modes, particularly at lower frequencies. Since most metal waveguides share many 
basic characteristics, we will carefully analyze the characteristics of a specific type— 
rectangular waveguides—and then offer general comments about several other types 
of metal waveguides. Likewise, since most dielectric waveguides have many similari
ties, we will analyze the modes of the dielectric slab waveguides and then discuss the 
characteristics of the fiber-optic cables used in optical communication systems.
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1 3 -3  M e ta l W a v e g u id e s

Metal waveguides can be made with nearly any cross-sectional shape. Although they 
are usually hollow metal tubes, they can also be filled with dielectrics, or even other 
conductors. In spite of their differences, the modes of all metal waveguides share 
many common features. This is particularly true when the waveguides are filled with 
a homogeneous dielectric, such as air.

Consider the metal waveguide shown in Figure 13-4. The cross-sectional shape 
of this waveguide is arbitrary, but we will consider the dielectric to be lossless and 
homogeneous. We will assume that the z-axis lies along the waveguide axis. At every 
point in the waveguide, the longitudinal electric and magnetic fields (E z and H z , 

respectively) satisfy the scalar wave equation (Equation (12.7)),

V 2E z +  k 2E z = 0 (13.16)

and

V 2H Z +  k 2H ,  = 0, (13.17)

where k  =  o o V J ie  is the wave number of the medium and

d 2 d2 d2
---------o ’ " t "

—

dx2 dy2 d z 2

is the Laplacian. Since we are interested only in fields with a z-dependence of the 
form e~yz,

d z 2

This means that Equations (13.16) and (13.17) can be written as 

V 2Ez + h 2Ez = 0

and

V ? H Z +  h 2H z = 0, 

where

(13.18)

(13.19)

h 2 =  y 2 +  o rp e  (13.20)

is the same variable that appears in Equations (13.9)—(13.13) and V 2 is the transverse 
Laplacian operator, which, in Cartesian coordinates, can be expressed as

V f2 =
dx ‘

+ (13.21)

F ig u re  1 3-4 A  metal waveguide with a 
lossless, homogeneous dielectric.
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Solutions of Equations (13.18) and (13.19) exist for all values of h, but the bound
ary conditions imposed by the highly conducting metal walls can be satisfied only when 
h is restricted to certain values, called eigenvalues. Every waveguide shape has a dis
tinct set of eigenvalues and corresponding modal fields. If the metal walls are per
fectly conducting (which is a good approximation for most metal waveguides), each 
eigenvalue is real and independent of frequency. Solving Equation (13.20) for y, we 
find that

y =  a  + j ( 3 =  V /? 2 -  <o 2h € = jk  V l  -  ( / c/ / ) 2 [m_1] , (13.22)

where

*  = tHzi (1323)

is called the mode cutoff frequency and k is the wave number of the dielectric. When 
f  > f c, the propagation constant y is imaginary, and thus, the mode is called a propa
gating mode. On the other hand, when /  < f c, y is real, which means that the fields 
decay exponentially with increasing values of z. When waveguide modes are operated 
below their cutoff frequencies, they are called evanescent modes, or nonpropagating 
modes.

Even though the eigenvalues of metal waveguides are independent of frequency, 
most of the other parameters associated with metal waveguides are strong functions of 
the operating frequency, particularly when operated close to the cutoff frequency. 
Also, the fields of each mode are distributed differently throughout the waveguide, giv
ing each mode a unique impedance, attenuation, and velocity.

13-3-1 TM MODES IN RECTANGULAR WAVEGUIDES

Figure 13-5 shows a rectangular waveguide with perfectly conducting walls of width a 
and height b, filled with a lossless dielectric. For TM modes, Hz = 0 and Ez ^  0. The 
scalar wave equation for Ez in Cartesian coordinates can be written as

d2E.
Bx2

B2E
+ + h2E

By2 z
0 . (13.24)

Because the conducting walls of a rectangular waveguide lie along the coordinate axes, 
we can use the separation-of-variables technique (discussed earlier in Chapter 5) to

F ig u re  1 3 -5  Geometry for calculating the 
modes in rectangular waveguides.
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solve this wave equation. This technique greatly simplifies the solution procedure and 
starts by assuming that the transverse electric field Ez can be written as the product of 
functions that each depend on a single variable:

Ez = X ( x )  Y ( y ) e ~ y z .

Substituting this expression into Equation (13.24), we have

X \ x ) Y ( y ) e ~ yz + X ( x )  Y'(y ) e ~ yz + h 2X ( x ) Y ( y ) e ~ yz = 0,

where X ' { x )  =  d 2[ X ( x ) ] / d x 2 and Y ” { y )  =  d 2[ Y { y ) \ / d y 2 . Dividing both sides of the 
foregoing expression by X ( x )  Y ( y  ) e ~ yz, we obtain

F ix )  Y \y )  
X(x) Y(y)

+ h2 = 0 . (13.25)

In this expression, the term [X'(x)\/[X(x)\ appears to be a function of jc. However, 
since none of the other terms are functions of x, this term must actually be a constant. 
By the same reasoning, the term [Y \y )\/[Y (y)] must also be a constant. If we denote 
these constants as -  k 2 and — k 2 respectively, Equation (13.25) can be written as

h2 = k 2 + k 2, (13.26)

where

+ k 2X  = 0 (13.27)

d2Y
dy2

+ k 2Y 0 . (13.28)

Equations (13.27) and (13.28) are both homogeneous, second-order differential 
equations in a single variable. Their general solutions are

X{x) = A  cos kxx + B sinkxx (13.29)

y(y) = C cos kyy + D sinkyy, (13.30)

which means that the general solution for Ez is

Ez -  [A cos kxx + B sin kxx\ [C cos kyy + D sin kyy]e~yz. (13.31)

We can find the appropriate values of the unknown constants in this expression 
by requiring that Ez vanish at the perfectly conducting walls of the waveguide. Start
ing with the wall at x = 0 , we require that

E
Z

x  — 0

[A cos (0) + B sin (0)] [C cos kyy + D sin kyy]e yz = 0.

Since the values of y and z are arbitrary along this wall, we must have A = 0. Simi
larly, at y = 0 , we require that

y =  0

[A cos kxx + B sin kxx] [C cos (0) + D sin (0)] e yz = 0.
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Since x and z are arbitrary along this wall, B or C must be zero. However, if both A 
and B are zero, then Ez (and all the transverse fields) would be zero at all points within 
the waveguide. Instead, we choose C — 0, so Ez can be expressed in the form

Ez = E0 sin kxx sin kyy e~yz, (13.32)

where the new constant E0 is simply the product of the constants B and D.
Turning our attention to the wall at x -  a, we now require that

Ez = E0 sin kxa sin kyy e yz = 0.
x — a

This equation is satisfied whenever

k = —— m = 1, 2 ,..., oo, (13.33)
u

where we note that m = 0 is not allowed, since this would result in Ez = 0  at all points 
inside the waveguide. Similarly, along the wall at y = b, we must also require that

= E0 sin kxx sink b e yz = 0,
y = b

which is satisfied whenever

M T

k’ = b
n  =  1 , 2 , . . . ,  oo. (13.34)

Again, we cannot have n = 0, since this results in null fields. Substituting Equations 
(13.33) and (13.34) into Equation (13.26), we find that the allowed values of h2 are 
given by

hi
m.7r\2 (nrr\2—) + U

(13.35)

Substituting Equations (13.33) and (13.34) into Equation (13.32), we can now 
write the allowed solution for E , in the form

^  „  . ( m 7 r  \  . ( m r
Ez = E0 sm I ■ x I sin I —  y j e

Using Equations (13.22) and (13.36), we find that the propagation constant is

(13.36)

f m i r \ 2 ( n v y  2
y m n  =  a m n  + ] P m n  = \ l  1 ~  I + 1"^) ~  0 )  €

where the cutoff frequency for each mode is

(13.37)

(13.38)
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Now that we have a complete description of the longitudinal field Ez, the rest of the 
field components of the TM modes can be found by simply substituting Equation 
(13.36) into Equations (13.9)-(13.12), yielding

= -  J7 (
m u

' ° h'L \ a \ a
cos

m u
x sin

n u
y e y mn̂

_  /ym„ ( n i r \  . / m u  \  n i r  . ^ .

A b

_  ^  . . m7r
£ , = sin 1---- x | sm

a

H, = E.
jc o e  n u \

O u2
Km \ b

n u

~b~

m u

y e

sm
\ a

X  cos
n u

b
y e

(TM modes)

H,.
ja>e  ( m u \  ( m u  \  , ( n u----- -----  1 r r \ c  -----  v cm ----

' o , 2  \ - COS,
Kn \ a ) \ a

xj s i n l —  y je  y,nnZ

H, = 0.

(13.39)

(13.40)

(13.41)

(13.42)

(13.43)

(13.44)

Figure 13-6 shows the electric and magnetic field patterns of some of the lower 
order TM modes in rectangular waveguides. Also shown in this figure are the surface 
currents J s on the conducting walls for each mode. These are obtained by using Equa
tion (12.135),

I = £„ X Hs, (13.45)

where is the magnetic field at the wall and the unit vector a„ points outward from 
each wall into the waveguide. In addition to having different modal field patterns, we 
will show later in this section that each mode has many other distinct operating char
acteristics.

E xam p le  13-1

K
Find expressions for the wall currents of the TM„!n modes.

Solution:

According to Equation (13.45), the wall currents are controlled by the magnetic fields that 
exist at the walls. For the wall at x = 0, a„ = a v, so we have

= A X (Hx aY + Hy ay) = Hy a.
- ^ /u»6 ( m u \  .

- < 7 '
n u

Since the fields are symmetric, the surface current on the wall x  =  b  is given by a similar expres
sion.
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2 .

T M 2i
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z i n c c r a
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_ E F ield d is tribution fo r TM  m odes in rectangu la r guides.

' H 1. C ross-sectiona l v iew

2. Longitud ina l v iew
3. S urface v iew

F ig u re  1 3 -6  TM mode patterns in rectangular waveguides (adapted from 
N. Marcuvitz, W a v e g u id e  H a n d b o o k ,  London: Peter Peregrinus Ltd. on behalf 
of the Institution of Electrical Engineers, 1986).
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A t the y = 0 wall, a„ = ay. Substituting, we obtain

= a x ( H x a x + H  a ) = ~ H x a z

y =o y =o

. r m r
sin ----x

\ a

A similar expression can be derived along the wall at y = b.
From these expressions, we see that the wall currents for all the TM modes are directed 

along the waveguide axis. This is true for all the modal currents depicted in Figure 13-6.

13-3-2 TE MODES IN RECTANGULAR WAVEGUIDES

For TE modes, Ez = 0 and Hz A 0, and the wave equation for Hz in Cartesian coordi
nates can be written as

d2H . a2//,_______ Z_ I _______z_

dx2 dy2
+ h2Hz =  0 . (13.46)

Since the boundary conditions for TE modes are also enforced on surfaces that lie 
along the coordinate axes, we can again use the separation-of-variables technique to 
find the general solution for Hz. Using the same steps that we used for the TM modes, 
we can write the general solution for Hz in the form

Hz = [A cos kxx + B sin kxx] [C cos kvy + D sin kyy]e~yz. (13.47)

where, again, we have

h2 = kx + k 2. (13.48)

Before we can evaluate the unknown constants in Equation (13.47), we must 
first take a closer look at the boundary conditions that must be imposed on Hz. 
Unlike the tangential components of the electric field, there is no reason to sup
pose that Hz vanishes at the perfectly conducting walls. However, we can derive 
a useful boundary condition for Hz by considering the geometry of Figure 13-7, 
which shows the interface between a dielectric and a perfect conductor. Remem
bering that the only nonzero fields at the surface of a perfect conductor are the tan
gential magnetic and the normal electric fields, we can write Maxwell’s curl-H 
equation as

d H 2t

. 3 ( 1 0

dH± 
d (21) _

d H i

dn
ai, +

dHl

dn
a2t = j(oeEn a„

E l

777777777ft77777777777Z&777??777777777/
F ig u re  13-7 Geometry for determining 
magnetic field boundary conditions at the

cr—> oo surface of a perfect conductor.
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where an is the direction normal to the surface, and alt and a2( are the two tangential 
directions. The right-hand side of this expression has only an n component, so the (It) 
and (21) components on the left-hand side must be zero. This means that

d H i t  _  d H 2t =  0

dn dn

Thus, we can write the H-field boundary condition at a conducting surface as

— — = 0 (Near a perfectly conducting surface), (13.49)
dn

which, in words, states that the tangential magnetic field has zero slope along the nor
mal direction at the surface of a perfect conductor.

We can now return to the matter of determining the unknown constants in the 
general solution for Hz. (See Equation (13.47)). Starting with the wall at x = 0, the 
magnetic field boundary condition requires that

= [—kxA sin(0) + kxB cos (0)] [C coskyy + D smkyy]e~yz = 0,
jc = 0

which is satisfied if B = 0. Similarly, at the y = 0 wall, we must have

= [A coskxx + B sinkxx\[— kyC sin(0) + kyD cos(0)]e~7Z = 0,
y=o

which is satisfied when D = 0. Using B — D -  0, we can now write Hz in the form

Hz = H0 cos kxx cos kyy e~yz, (13.50)

where we have replaced the product AC  with the constant H0.
The appropriate values of kx and ky are found by requiring that Hz satisfy the 

boundary condition at the two remaining walls. At x — a, we have

= - k xHa sin kxa cos kyy e~yz = 0.

This is satisfied when

kx = —  m = 0 , 1 , 2 , oo. (13.51)
a

Similarly, at y = b, we require that

= - k yHQ cos kxx sin kyb e~yz = 0,
y = b

which is satisfied when

§1£  
dy

dHz
dx

dHz
dy

m r

~b
°C #n = 0 , 1, 2 , ..., (13.52)
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C om bin ing  E q u a tio n s  (13 .50)-(13 .52), w e can  w rite  th e  allow ed so lu tions fo r H z in  th e  

fo rm

m  7T
H z =  H 0 cos I ----- a: | cos

m r
y e (13.53)

S u b stitu tin g  E q u a tio n s  (13.51) an d  (13.52) in to  E q u a tio n  (13.48), w e find  th a t th e  

allow ed values o f h 2 fo r T E  m o d es  a re  g iven by

h
2
mn (13.54)

w hich is th e  sam e ex p re ss io n  w e e n c o u n te re d  fo r th e  T M  m odes. (S ee  E q u a t io n  
(13.35)). A s a resu lt, th e  m o d a l p ro p a g a tio n  co n s tan ts  y mn and  cu to ff f re q u en c ies  f c 

for T E  m odes a re  th e  sam e as fo r T M  m odes; th a t is,

Imn amn + jPmn ~
— j c o V J ie

w here

1

2  V/Ze

(13.55)

(13.56)

H ow ever, u n lik e  th e  T M  m odes, w h ere  n e ith e r  m  n o r n  can  b e  zero , H z fo r T E  m odes 
van ishes only  w hen  b o th  m  an d  n  a re  ze ro . H en ce , e i th e r  m  o r n  (b u t n o t b o th )  can  be 
ze ro  fo r T E  m odes.

W e o b ta in  th e  co m p le te  lis ting  o f all th e  fie ld  co m p o n en ts  fo r T E mn m odes by 
su b stitu tin g  E q u a tio n  (13.53) fo r H z in to  E q u a tio n s  (13.9)-(13.12):



Figure 13-8 shows the electric and magnetic fields associated with some of the lowest 
order TE modes in rectangular waveguides. Also shown are the surface currents along 
the conducting walls. Comparing these modal patterns with the TMmM modal patterns 
(Figure 13-6), we see that the TE modes behave differently than the TMm„ modes, 
even when the modal parameters m and n are the same.

13-3-3 MODAL HIERARCHY AND THE DOMINANT RANGE

As we have seen in the preceding sections, an infinite number of distinct modes can 
exist in a rectangular waveguide. Each mode has a cutoff frequency, which means 
that it can propagate signals and energy over long distances only when it is operated 
above cutoff. Since each mode has different operating characteristics, it is important 
to know the order in which the modes come “on-line” as the operating frequency is 
increased.

The dominant mode of a waveguide is the mode with the lowest cutoff frequency. 
For rectangular waveguides, the TE10 mode is the dominant mode. 1 From Equations
(13.57)-(13.61), the field components of the TE10 mode are

522 CHAP. 13 WAVEGUIDES

Ey = —j(0 fiHo f— \ sin f—x \ e y,,,z

h x = y \o H o ( “ ) sin 

H, = H0 cos (—jcj e~7]oZ

(TE10 mode).

(13.62)

(13.63)

(13.64)

Also,

fc 10

1 _  U T E M

2 flV/xe 2 a
(13.65)

and

7io =  7/3 io =  j ( o V J x e (13.66)

where wTEM = 1 /  V/ue is the phase velocity of a TEM wave (such as a plane wave) in 
the same dielectric.

1 This assumes that the wall dimensions have a ratio a/b>  1, which is the standard convention. If, however, 
a/b < 1, the TE01 mode is the dominant mode.
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Field d istribution fo rT E  m odes in rectangu la r waveguide.

Figure 1 3-8 TE mode patterns in rectangular waveguides (adapted from 
N. Marcuvitz, W a v e g u id e  H a n d b o o k , London: Peter Peregrinus Ltd. on behalf 
of the Institution of Electrical Engineers, 1986).

t e 21

T E 1 1

TE10
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E xam p le  1 3 -2

Find expressions for the wall currents for the T E 10 mode.

Solution:

According to Equation (13.45), the wall currents are determined by the Fl-fields and the 
normal direction to the surfaces. Along the narrow wall at x  =  0, a„ = a v, so we obtain

a.v x  ( H A  +  H z*?) = ■ * y H z
-  — a„H„ e

From the symmetry of the fields, the surface current on the opposite narrow wall is given by a 
similar expression.

On the broad wall at y  = 0, a„ = a , so we have

= a x ( H x ax +  H za.) = aXH Z -  a H x

y =o

= H „ c ^ioZ .

A similar expression can be derived along the opposite wall at y  = b.

From these expressions, we see that 3S has only one component along the narrow walls 
and two components along the broad walls. This is evident in the graph of the T E 10 mode in Fig
ure 13-8.

A  c o n v e n ie n t w ay to  specify  th e  c u to ff  f re q u e n c ie s  o f w av eg u id e  m o d e s  is in  

te rm s o f th e  cu to ff freq u en cy  o f th e  d o m in an t m o d e  ( /  fo r re c tan g u la r  w avegu ides). 

T a b le  13.1 show s th e  c u to ff  fre q u e n c ie s  o f th e  low est o rd e r  re c ta n g u la r  w av eg u id e  

m o d es w hen  a / b  = 2 .1 .
T h e  d o m i n a n t  r a n g e  o f  a w avegu ide  is d e fin e d  as th e  ran g e  o f fre q u en c ie s  fo r 

w hich on ly  th e  d o m in an t m o d e can p ro p ag a te . F o r  re c tan g u la r  w avegu ides, th e  sec 
o n d  p ro p ag a tin g  m ode has a cu to ff fre q u en c y  tw ice th a t o f th e  d o m in an t m o d e  w hen  

a / b  >  V3, so th e  d o m in a n t ran g e  is /  <  /  <  2f  . H o w ev er, since th e  p ro p ag a tio n

TABLE 13.1 C utoff frequencies of the low est order 
rectangular w aveguide m odes (referenced to the cutoff 
frequency of the dom inant m ode) for a rectangular 

w aveguide w ith a / b  =  2.1.

f r / f r  M odes° ________________

1 . 0 T E 10

2 . 0 t e 20

2 .1 T E 01

2.326 T E n , TM
2.9 T E 21, TM :
3.0 t e 30

3.662 TE31, TM
4.0 TE 40
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p a ra m e te rs  o f any  m o d e a re  rap id  fu n ctio n s o f freq u en cy  n e a r  cu toff, it is b es t to  stay  
aw ay fro m  th e  m o d a l cu to ff freq u en c ies . A  good  ru le  o f th u m b  fo r re c tan g u la r  w av e 

gu ides is to  o p e ra te  w ith in  th e  so -ca lled  u sab le  range , 1.25 f  3 < / <  0.95 f c, w h ere  f c is 
th e  cu to ff fre q u en c y  o f th e  n ex t h ighest m ode.

E xam p le  1 3 -3  ------------------------------------------------------------------------------------------------------------------------------

■  Find the dominant range of type WR-75 rectangular waveguide, which is filled with air and has
inside dimensions a = 1.905 [cm] and b  = 0.953 [cm].

Solution:

Using Equation (13.65), we obtain 

3 x  108

^  ~  2 x  (.01905) = 7 - 8 7  ĜHzJ '

Also, since a / b  =  1.99 >  V3, the dominant range is

7.87 < / <  (2) X 7.87 [GHz], 

or

7.87 < / <  15.74 [GHz],

The usable frequency range is

(1.25) X 7.87 < / <  (0.95) X 15.74 [GHz], 

or

9.84 < / <  15.35 [GHz],

T h e  m o d es o f o th e r  m e ta l w avegu ides are  also  specified  in  te rm s o f m o d e  indices. 

H o w ev er, b ecau se  o f d iffe ren ces in th e  m a th em a tica l fo rm u la tio n s, th e ir  m oda l h ie ra r 

chy is o ften  d iffe ren t. F o r  in stance , th e  d o m in an t m o d e  fo r a circu la r w avegu ide is th e  

T E n  m o d e , w hose field  p a tte rn s  a re  show n in F ig u re  13-9.

F ig u re  1 3-9 T E n mode pattern for circular waveguides (adapted from 
N. Marcuvitz, W a v e g u id e  H a n d b o o k ,  London: Peter Peregrinus Ltd. on behalf 
of the Institution of Electrical Engineers, 1986).
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As can be seen, this mode looks much like a “rounded” version of the TE10 in a rec
tangular waveguide.

13-3-4 PROPERTIES OF PROPAGATING WAVEGUIDE 
MODES

Waveguide modes are propagating fields when they are operated above cutoff. Like 
the TEM waves we encountered on transmission lines and as plane waves, propagating 
waveguide modes can be described in terms of their wavelengths, phase and group 
velocities, and wave impedances, as well as the power they transport.

Wavelength. Above cutoff, each waveguide mode contains the phase term e ;/3z. 
Using Equations (13.22), we can write (3 as

l3 = k r W  f > L  (13-67)
where f c is the cutoff frequency of the mode and k = wVge is the wave number of the 
dielectric. Just as for a TEM wave, the wavelength Ag of a waveguide mode is defined 
as the distance between points of identical phase along the direction of propagation. 
Hence, (3Ag =27t, which means that

\  (13.68)
? P

Substituting Equation (13.67) into Equation (13.68), we obtain

A
8

(13.69)

where A = 27r/k  is the wavelength of a TEM wave (such as a plane wave) of the same 
frequency in the same dielectric.

Figure 13-10 shows how Ag| and A vary with frequency in a rectangular wave
guide when a = 2b. As can be seen, both wavelengths vary rapidly near their respec
tive cutoff frequencies. This rapid variation is usually deemed undesirable. On the

F ig u re  1 3 -1 0  W avelength vs. frequency 
for a TEM  wave, and the T E 10 and T E 20 

modes in a rectangular waveguide.
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other hand, as / - » both Agio and \ gig approach A asymptotically. This is an indication 
that waveguide modes share many of the characteristics of TEM modes when they are 
operated far above cutoff.

Another parameter that is often specified for a waveguide mode is its cutoff 
wavelength Ac. This is defined as the free-space wavelength (i.e., wavelength in a vac
uum) at the modal cutoff frequency. From this definition, we can write Ac in the form

Ac = f ,  (13.70)
J c

where c  is the speed of light in a vacuum. Since the dominant mode has the lowest 
cutoff frequency, it also has the largest cutoff wavelength. For an air-filled, rectangu
lar waveguide, the cutoff wavelength of the TE10 mode is

A = 2 a ,  (13.71)
C10

where a  is the width of the broad wall.

E xam p le  1 3 -4

An air-filled, rectangular waveguide has dimensions a — 1 [cm] and b — 0.6 [cm]. Calculate the 
cutoff wavelengths of the T E 10 and the TE 20 modes. If the waveguide is operated at a frequency 
of 18 [GHz], calculate the guide wavelength, and compare it to the free-space wavelength.

Solution:

From Equation (13.71), the cutoff wavelength for the T E 10 mode is

AC q = 2 X 1.0 [cm] =  2 [cm].

Given that f ĉ  =  2 /c , we can conclude from Equation (13.70) that

A. =  0.5 Ac = 1 [cm].
C20 C10 L J

A t 18 [GHz], the free-space wavelength is

A o y 31oX l0 1‘° tl;nl/J = l.6 7 [cm ]. 
18 x 1 0 9 [s-1] 1 1

Since AC]o >  A0 and A0 >  Ac2I , only the TE10 mode propagates.
Finally, the guide wavelength at this frequency can be found from Equation (13.69). 

Using f Cw =  c/2n =  15 [GHz] and A = A0 (since the dielectric is air), we obtain

A£io

1.67 [cm]
= 3.02 [cm].

Notice that since the operating frequency is relatively close to the cuttoff frequency, the guide 
wavelength is significantly longer than the free-space wavelength.

Wave Velocities and Dispersion. The basic formulas that relate the phase and 
group velocities to the phase constant /? are the same for waveguide modes as they are 
for TEM waves. (See Equations (12.21) and (12.66).) Hence,

O)
(13.72a)
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and

_ c h o  _  ( d P Y 1 

Ug ~ d(3 ~ U W
(13.72b)

respectively. Because (3 is not a linear function of frequency for waveguide modes, up 
and ug are different, even when the dielectric is lossless. This can be seen by first writ
ing the phase constant (3 as an explicit function of frequency. Using Equation (13.67) 
and remembering that k = 2nrf YJxe, we can write

f3 = 277■ /  Vge f > f c - (13.73)

Substituting this into Equations (13.72a) and (13.72b), we obtain

(13.74)

(13.75)

where wTEM = 1/VJxe is the velocity of a TEM wave in the dielectric.
Figure 13-11 shows how up and ug vary with frequency for a typical waveguide 

mode. As can be seen, both approach wTEM a s /—> °°, which is an indication that wave
guide modes appear more and more like TEM modes at high frequencies. But up and 
ug behave differently near cutoff: ug approaches zero, whereas up approaches infinity. 
This behavior of up may at first seem at odds with Einstein’s theory of special rela
tively, which states that energy and matter cannot travel faster than the speed of light 
in a vacuum. But the behavior is not a violation of Einstein’s theory, since neither 
information nor energy is conveyed by the phase of a steady-state waveform. Rather, 
the energy and information are transported at the group velocity, and which is always 
less than or equal to c.

The rapid variations in both up and ug near cutoff are nearly always undesirable. 
The behavior of ug near cutoff is particularly troublesome when a waveguide is used to
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propagate modulated signals, such as pulses. As we saw earlier in Chapter 11, the dif
ferential propagation delay (or pulse spreading) per meter At is related to the group 
velocity given by the expression

Ar = — 
u„

(13.76)

where — 
u„

and —
u„

are the maximum and minimum inverse group velocities

within the bandwidth, respectively. Substituting Equation (13.75) into Equation
(13.76), we obtain

A t
1 1 1

[s/m]. (13.77)

Unlike the modes on transmission lines, which exhibit differential propagation 
delays (i.e., dispersion) only when the dielectrics are lossy or frequency dependent, 
Equation (13.77) shows that waveguide modes are always dispersive, even when the 
dielectric is lossless and walls are perfectly conducting. This dispersion is called wave
guide dispersion. Waveguides can also exhibit material dispersion, which occurs 
when the dielectric parameters are frequency dependent.

E xam p le  1 3 -5

| | |

Calculate the differential delay experienced by the 18 [GHz] sinusoidal radar pulse with 5 [ns] 
duration (shown in Figure 13-12a) as it propagates in a 1 m eter length of air-filled type WR-51 
rectangular waveguide.

Solution:

The Fourier transform of the pulse, shown in Figure 13-12b, is a sine function. It has fre-

F ig u re  13-12 A microwave pulse: a) Time-domain representation, b) Frequency-domain 
power spectrum.
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quency components over an infinite range, but most of the signal's energy is contained in a band
width

A/ -  4 / r  = 5  x 410_, = 800 [MHz].

Thus,

/„« -  /  + A//2 = 18.4 [GHz]

/min =  /  -  A//2 =  17,6 [GHz],

For WR-51 waveguide, a = 1.295 [cm] and h = 0.648 [cm]. Using Equation (13.65), we obtain

r  _  f<TEM

/c'° 2o

3 x 1 0 8

2 X 1.295 X 10 “ 2
11.583 [GHz],

All other modes are cut off within the waveform bandwidth, so we can assume that all the sig
nal’s energy is carried by the TE10 mode. Using Equation (13.77), the differential time delay is

A t =
1

3 x 10f
1 1

1 -
11.583
17.6

11.583
18.4

0.137 [ns/m].

Thus, the pulse width grows 0.137 [ns] for every meter that it propagates.

Wave Impedance. The ratio of the transverse electric and magnetic fields of a 
mode is called its wave impedance, defined by the relation

Z = (13.78)
lHrl

where |Er| and |H,| are the magnitudes of the transverse electric and magnetic fields, 
respectively. For plane waves, the wave impedance is the intrinsic impedance r/ of the 
dielectric, which, if it is lossless, is independent of frequency. For waveguide modes, 
however, we will now show that the wave impedance is related not only to the intrinsic 
impedance of the dielectric, but also to the type of mode (TE, TM, etc.) and the fre
quency of operation.

Let us start by considering TE modes. Setting Ez — 0 in Equations 
(13.9)—(13.12), we obtain the following ratios of the electric and magnetic fields:

E x E y =

H y Hx y
(13.79)

Here, ZTE is the wave impedance for TE modes. Using these equalities, we can write 
the transverse electric and magnetic fields as

E f = Ex a, + Ey av

Hf = ^ - [ - E var + Evav]. 
z ,Te

(13.80)

(13.81)
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We can easily see from these two expressions that Er«H( = 0, which means that the 
transverse electric and magnetic fields of TE modes are mutually orthogonal through
out the waveguide. Using Equations (13.79) and (13.81), we can relate Ef and Hf to 
the wave impedance ZTE by the vector formula

H, = ^ - a ,X E , .  (13.82)
z te

When a TE mode is operated above cutoff, y =jk V l -  (f j f )2- Substituting this 
into Equation (13.79), we obtain the formula:

(13.83)

where rj = V /r/e is the intrinsic impedance of the dielectric. Figure 13-13 shows a 
plot of ZTE as a function of frequency for a typical TE mode. As can be seen, ZTE 
approaches infinity near cutoff, which means that the electric field E? is much greater 
than the magnetic field Hf. On the other hand, as / —» ZTE -a 77, which is yet 
another indication that waveguide modes behave much like TEM modes when oper
ated far above cutoff.

For TM modes, we can set Hz = 0 in Equations (13.9)-(13.12) to obtain the fol
lowing ratios of the transverse electric and magnetic field components that define the 
wave impedance ZTM:

Ex Ey = y
Hy Hx jcoe

(13.84)

From these expressions, it follows that Er and Hf can be related by the vector formula

H, = - 3 -  a. X E,.
ATM

Also, substituting y =jk V l -  (f j f )2 into Equation (13.84), we obtain

(13.85)

(13.86)

Figure 1 3-1 3 TE and TM wave 
impedances vs. frequency for waveguide 
modes.
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Figure 13-13 shows a plot of ZTM as a function of frequency for a typical TM mode. 
Like ZTE, ZTM —> 17 as /  —» 0 0 . But near cutoff, ZTM -a 0. Hence, the TM magnetic 
fields are much stronger than the electric fields at frequencies near cutoff.

Finally, we note from Equations (13.83) and (13.86) that the wave impedances of 
both TE and TM modes are reactive (i.e., imaginary) when f < f c. This occurs because 
the propagation constant y is real below cutoff.

E xam p le  1 3 -6

An air-filled waveguide has dimensions a = 1.25 [cm] and b = 0.2 [cm]. Find the frequency at 
which the wave impedance of the TE10 mode is twice its value in free space.

Solution:

Since the waveguide is filled with air, the intrinsic impedance of the dielectric is 77 = rjQ. 
From Equation (13.83), the ratio of the wave impedance to the intrinsic impedance to free space 
is

ZTE 1

This ratio equals 2.0 when V l -  ( f j f )2 = 1 / 2 , which occurs when /  = /C/V0.75. The cutoff 
frequency for the TE10 mode is fc = c/(2a) = 12 [GHz]. Hence, ZTE = 2iyG when /  = 13.86 
[GHz],

Transmitted Power. The power P transported by a waveguide mode can be 
found by integrating the average Poynting vector «̂ ave over the cross section of the 
waveguide. From Equation (12.105), the power transmitted by a waveguide mode is 
given by

P = \  • ds = |  Re [  (E X H *) • ds [W], (13.87)

where S is the waveguide cross section, and E and H are the modal electric and mag
netic fields, respectively. Using Ex = ZHy and Ey = - Z H X (where Z is the wave 
impedance of the mode), we can write Equation (13.87) as

P - + \Ey\2] ds. (13.88)

To evaluate this expression, all that is necessary is to substitute the appropriate expres
sions for Ex and E that correspond to the mode in question and integrate. For the 
case of the TE10 in a rectangular waveguide, we have

Ex = 0, -j(o/iH 0

Z  ZTE
jcojx

y

(O/JL

T '
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Substituting these into Equation (13.88) yields

Integrating, we obtain

Pta = ~ o > ^ 1 0 \Ha\2 { ^ J  [W], (13.89)

This can be rewritten as

P l „ = \ E m a \ 2 ( « b ) K 4 v )max

2

(13.90)

where 77 = VJPJe is the intrinsic impedance of the dielectric and Emax — co/jl (a/n) H0  is 
the maximum electric field strength inside the waveguide. Similar expressions can be 
derived for all other rectangular waveguide modes.

Figure 13-14 shows a plot of Pw vs. frequency when the maximum electric field 
strength Emax is held constant. As can be seen, P10 ~  {ab)\Emax\2/ ( 477) when /  »  /  . 
Except for a factor of 2 (caused by the sinusoidal taper of the E-field across the width 
of the waveguide), this is the same result as would be obtained for a plane wave of 
identical amplitude. (See Equation (12.107)). On the other hand, Pw —> 0  a s / - > /c, 
which shows that significant power can be transmitted only when Emax is very large.

13-3-5 PROPERTIES O F M O D ES BELOW  CUTOFF

When a waveguide mode is operated below its cutoff frequency, its propagation con
stant y is a real quantity, which means that its fields decay exponentially as a function 
of position. For metal waveguides with uniform dielectrics, the attenuation and phase 
constants (a and /3, respectively) are given by Equation (13.22),

(13.91)

0  = 0  ( f< fc), (13.92)

Pi0[W]

Figure 13-14 Power transmitted in the 
TE10 mode vs. frequency for a fixed

f maximum electric field E,max •
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where k = a> \f/Ie is the wavenumber of the dielectric and f c is the cutoff frequency. 
By convention, the positive root of Equation (13.91) is used, yielding a 5* 0. Since the 
phase constant (5 is zero below cutoff, the phases of these modes do not vary with posi
tion, which means that they have no wavelength or phase velocity. As a result, these 
modes are called evanescent, or nonpropagating, modes.

Because evanescent modes decay exponentially, they are not capable of trans
porting power over large distances. This makes them useful for situations where it is 
necessary to restrict the amount of power that leaks through holes, seams, and joints in 
various structures. If the dimensions of these apertures are small enough so that all 
the waveguide modes are cut off, the leakage power can be controlled. The example 
that follows shows how this can be accomplished.

E xam ple  1 3 -7

■

Figure 13-15 shows a microwave furnace, used for drying large objects such as wood. Furnaces of 
this type operate by converting standard 60-Hz power into microwave power (usually at 2.45 GHz) 
and directing it into a metal enclosure that contains the objects to be dried. Since the metal walls 
of the enclosure cannot absorb the energy, all of the microwave energy is absorbed by the object. 
Also shown in the figure is a viewing port, constructed out of a narrow section of square waveguide.

If the viewing port is 4 [cm] on each side, calculate the minimum length d which guarantees 
that the field strength at the end is at least 140 [dB] down from the level at the furnace wall.

Viewing Figure 13-15 A microwave oven with a
port viewing port.

Solution:

Since the TE10 decays most slowly, we will find the minimum length based on this mode. 
For a 4 [cm] square waveguide, the cutoff frequency of the TE10 mode is

, 3X108 r̂ TT1
fc = ~--- 7̂T7 = 3-75 [GHz].10 2 X 0.04

From Equation (13.91), the attenuation constant is

2tr x 2.45 x 109 1/3.75
_ ,.o in . | ~ 1 — 61.6 [Np/m].3 X 108 V v 2.4 1 i r' i

From Equation (12.64), the loss in dB/m is

dB loss per meter = 8.69ar = 535.4 [dB/m].

Hence, the length needed to obtain at least 140 [dB] attenuation is

■  ̂ 140 [dB]
524.2 [dB/m]

0.2627 [m] = 26.2 [cm].
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Even though waveguides are most often used in their dominant range, evanes
cent modes are usually present at discontinuities, such as at bends, junctions between 
waveguide sections, or holes in waveguide walls. These higher order, evanescent 
modes appear because no single waveguide mode is capable of satisfying the addi
tional boundary conditions imposed by the discontinuities. But an infinite collection 
of modes can. Thus, even when a single mode is incident upon a discontinuity, a 
large number of modes is generated at the discontinuity. Most of these additional 
modes are higher order modes that are below cutoff and, as a result, are not 
observed far from the discontinuity. Even so, the presence of such modes changes 
the wave impedance of the dominant mode in these regions, causing reflections that 
are similar to those obtained when a lumped load is placed on a transmission line. 
We will investigate this further when we discuss the equivalent circuits of waveguide 
discontinuities.

13-3-6 LOSSES IN METAL WAVEGUIDES

Until now, our analysis of metal waveguides has assumed that both the walls and the 
dielectric are lossless. This assumption has resulted in waveguide modes that propa
gate with no attenuation when operated above cutoff. As might be expected, that 
types of behavior changes when losses are present.

Power losses in waveguides are the result of dielectric losses, metal losses, or 
both. Of these, dielectric losses are easiest to model. This is because the pres
ence of a lossy dielectric does not change the Etan = 0 boundary condition at the 
walls. Hence, all the expressions derived for the TE and TM modes for the loss
less case still apply, except that the permittivity e is now complex, e = e' -  je". 
Using Equation (13.37), we find that the dielectric attenuation constant above cut
off is given by,

Figure 13-16 shows a plot of ad vs. frequency for a waveguide with dimensions a = 2 
[cm], b = 1 [cm], filled with a dielectric with permittivity e = (1 -  y .01) eG. As can be 
seen from this plot, the attenuation is nonzero at all frequencies, although it is small 
above 7.5 [GHz], which is the cutoff frequency when e" = 0. Thus, when e" is small, 
the cutoff frequency is essentially the same as in the lossless case. Using Equation 
(13.93) and the binomial expansion, we can derive the following approximation for ad 
above cutoff when the loss is small;

(13.93)

when (13.94)

Here, 17 is the intrinsic impedance of the dielectric and f c is the cutoff frequency of the 
mode when no loss is present.



536 CHAP. 13 WAVEGUIDES

7 7.5 10 f [GHz]

Figure 1 3-16 The attenuation constant vs. 
frequency for the dominant mode in a 
rectangular waveguide with dimensions 
a -  2 [cm], b = 1 [cm], and a dielectric 
with permittivity e = (1 — j.01) e0.

Whereas the effects of dielectric loss are easy to calculate, the effects of metal 
losses are less straightforward to model. This is because Etan is no longer zero at the 
waveguide walls, which means that the modal fields distribute themselves differently 
throughout the waveguide cross section. Fortunately, when the wall conductivity is 
high (such as when the walls are made of copper), we can derive a simple, yet accurate, 
expression for the attenuation constant ac due to the conductor losses. When E and H 
decay proportional to e - "cZ, the power P transmitted through the waveguide will decay 
as

P = P0 e~2otcZ [W], (13.95)

where P0  is the power at z = 0. Differentiating this expression with respect to z, we 
obtain

dP
dz

- 2 a cP [W/m].

Solving for ac, we get 

- 1  dP/dz
(13.96)

Since -  (dP/dz) is the power loss per unit length, we can express the attenuation con
stant in the form

1 PL _  1 Power loss per meter 
a° 2 P 2 Transmitted power

(13.97)

When the wall conductivity a  is high, the E- and H-fields distribute themselves 
throughout the waveguide nearly the same as for the perfectly conducting case. This 
means that we can obtain excellent estimates of the transmitted power P and the power 
loss per meter PL using the E- and H-field expressions derived for the case of perfectly 
conducting walls. Using Poynting’s theorem, we find that the transmitted power P 
equals the integral of the average Poynting vector over the cross section S of the wave
guide. Thus, we can write

P = -  Re 
2

E X H • ds [W],
L-'S

(13.98)
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Figure 13-17 Geometry showing the 
surface S and contour C used to determine 
the attenuation constant in a rectangular 
waveguide due to metal losses.

where the waveguide cross section S is shown in Figure 13-17. Similarly, the power 
lost in the waveguide walls is given by Equation (12.140), which relates the power dis
sipated per square meter at a conducting surface in terms of the tangential H-field and 
the surface resistance of the conductor. Integrating this expression around the perime
ter of the waveguide cross section, we obtain

Hi 2di [W/m], (13.99)

where the integration contour C is the perimeter of the waveguide, shown in Figure
13-17. In Equation (13.99),

(13.100)

is the surface resistance, and a  and S are the conductivity and skin depth of the metal, 
respectively. Substituting Equations (13.96) and (13.98) into Equation (13.99), we 
obtain

R,
H \2di

ar =
Re f E X H : ds

(13.101)

For the TE10 mode in a rectangular waveguide, the integral in the denominator of 
Equation (13.101) has already been evaluated. (See Equation (13.89).) Hence,

Re |  E x H * -d s  = 2P1 0  = ~(oju/3\Hol2 ^ j  [W]. (13.102)

Next, by integrating on all four sides of the contour C, it is straightforward (but 
tedious) to show that for the TE10 mode, we have

<j> |H |2di = H ^ 2a + H 2[a + 2b]. (13.103)

Substituting Equations (13.102) and (13.103) into Equation (13.101), and also using 
Equations (13.65), (13.66), we get
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where 17 is the intrinsic impedance of the dielectric. To see the complete frequency 
dependence of this expression, we can substitute Equation (13.100) into it and obtain

where A, Ag, and Ac are the TEM, guide, and cutoff wavelengths, respectively. As can 
be seen from Equations (13.104) and (13.105), the attenuation ac decreases as the 
height b of the waveguide decreases. This, of course, is attractive, but is offset by the 
fact that the dominant range decreases when a is less than b V3. Because of this trade
off, the typical compromise is to choose the width-to-height ratio as a/b ~  2 .

Figure 13-18 shows a plot of a as a function of frequency for a standard, air- 
filled WR-75 copper waveguide with dimensions a = 1.905 [cm] and b = 0.953 [cm], 
and a cutoff frequency of 7.874 [GHz]. In this plot, the shaded region is the dominant 
range. As can be seen, the lowest attenuation occurs near the high end of that range.

Finally, metal losses are usually much greater than dielectric losses, particularly 
when the dielectric is air. Thus, in these cases, only the metal losses need to be con
sidered. When both types of loss are present, however, the total loss constant a can 
usually be approximated as the sum of the conductor constant ac (Equation (13.101)) 
and the dielectric loss constant ad (Equation (13.94)):

(13.104)

This can also be written in the form

(13.105)

a  = ad + ac . (13.106)

aCl0 [dB/m] 
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Dominant
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10 20 30 40 f [GHz]
Figure 1 3-18 Attenuation coefficient vs. frequency for the dominant 
mode in a rectangular copper waveguide with dimensions a = 1.905 [cm] 
and b = 0.953 [cm].
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Figure 13-19 A coax-to-waveguide 
coupler that launches the TE10 mode.

13-3-7 WAVEGUIDE COUPLERS

An efficient way to generate waves in waveguides is to use couplers that convert input 
power from a transmission line into waveguide modes, and vice versa. Figure 13-19 
shows a TE10-mode coupler, which consists of a coaxial cable that enters the broad wall 
of a waveguide. The portion of the center conductor that extends into the waveguide 
is called the probe.

An exact analysis of this coupler is quite involved, but the general idea is that the 
probe acts as a small monopole antenna2 and launches outward-propagating waves that 
are polarized parallel to the probe and are strongest near the probe. These waves are 
a close match to the fields of the TE10 mode, so they are accepted by the waveguide as 
forward- and backward-propagating TE10 modes. The short-circuit plate, placed Ag/4 
in back of the probe, allows the backward-propagating mode to reflect and add con
structively with the forward-propagating mode. The net effect is that power incident 
from the transmission line is launched as a TE10 mode in the waveguide. If the probe 
is properly designed, very little power is reflected back into the transmission line from 
the coupler. Conversely, if a TE10 wave is incident from the waveguide upon the cou
pler, the process reverses itself, and power is delivered to the transmission line.

Figure 13-20 shows a transition that launches a right-propagating TE10 wave in a 
waveguide that is open at both ends. Here, two probes are fed such that their currents 
are 90° out of phase and are placed Ag/4 apart inside the waveguide. The propagation

We will discuss monopole antennas in Chapter 14.

Figure 1 3-20 A coax-to-waveguide 
coupler that launches the TE10 mode in 
one direction only.
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delay between the probes is 90°, so waves launched towards the right by each probe 
add constructively, whereas waves launched towards the left add destructively. As a 
result, this transition couples waves from the coaxial line into right-propagating waves 
in the waveguide. By the same reasoning, waves incident from the right towards the 
coupler will deliver power to the transmission line, whereas waves incident from the 
left will not. Couplers that have this type of directional characteristic are called direc
tional couplers. A common use of directional couplers is to monitor signals propa
gating in one direction, while ignoring signals propagating in the other direction.

Higher order modes can be launched in waveguides using similar techniques. 
Here again, the idea is to place the radiating elements (usually probes or small loops) 
at positions inside the waveguide where the fields of the desired modes are strong.

13-3-8 MODE FILTERS

Metal waveguides are almost always operated so that only a single propagating mode is 
present. This is because the presence of more than one propagating mode causes dis
persion, since different modes propagate with different group velocities. In addition, 
each mode behaves differently at bends, twists, couplers, and other discontinuities in a 
waveguide, resulting in frequency-dependent reflections and phase shifts.

As might be expected, the easiest way to ensure single-mode operation is to oper
ate a waveguide in its dominant range. However, there are times when it is necessary 
to operate above the dominant range, a technique called overmoded operation. As 
an example, waveguide feeds for antennas mounted on tall towers are often operated 
in this way to take advantage of the lower conductor losses of certain higher order 
modes. In order for these feeds to operate successfully, however, filters must be 
placed in the waveguide to ensure that only one mode is present. Even when a wave
guide is operated in its dominant range, the nonpropagating, higher order modes pro
duced at discontinuities in the waveguide may also upset its operation. Here again, 
mode filters can be used to remove energy from these unwanted modes.

There are two popular methods of fabricating mode filters. Both make use of 
the different modal patterns of each mode. The first technique involves placing thin, 
resistive cards parallel to E-field “hot spots” of the undesired modes. The unwanted 
modes drive conduction currents in the cards that dissipate power. If the E-field of 
the desired mode is perpendicular to a card, it is unaffected if the card is very thin. 
Obviously, this technique will work only if field patterns of the desired and undesired 
modes are different enough so that the cards affect the undesired mode, while leaving 
the desired mode unchanged. Figure 13-21 shows a filter that passes the TE10 mode 
and absorbs several higher order modes, including the TEU, TE21, and TMn modes.

Figure 1 3-21 A restive-card mode filter 
that filters out higher order modes.
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Slot

Waveguide
wall

Figure 13-22 A narrow slot in a 
waveguide wall, showing the charge 
separation across the slot and the resulting 
E-field.

Another way to filter undesired modes is to cut narrow slots in the waveguide 
walls so that they disrupt the surface currents of those modes. As depicted in Figure
13-22, an electric field is excited across a slot when it breaks lines of current, because of 
the buildup of opposing charges on both sides of the slot. This E-field radiates power 
from the unwanted mode outside the waveguide, just as power is radiated from a horn 
antenna (which we will discuss in Chapter 14). On the other hand, the slots have lit
tle effect on currents that run parallel to the slots if they are narrow. To filter 
unwanted modes, the slots are placed so that only the currents of the undesired modes 
are affected. Figure 13-23 shows a filter slot that passes the TE10 and radiates the TE01 

mode. Because these slots radiate power, they can also be used as antennas. We will 
discuss this application further in the next chapter.

13-3-9 LUMPED ELEMENTS IN WAVEGUIDES

Just as it is possible to place lumped elements (loads) on transmission lines to make 
devices such as filters and couplers, the same is true for waveguides. However, the 
lumped loads placed in waveguides often do not look like simple, two-terminal circuit 
elements, such as lumped inductors and capacitors. Rather, waveguide lumped ele
ments often look more like obstructions, which alter the nearby electric and magnetic 
field distributions. Fortunately, even though these field distributions tend to be rather 
complex, their transmission and reflection characteristics can frequently be modeled 
using simple equivalent circuits.

Radiated
energy

Figure 13-23 Waveguide slots that radiate 
power from the TE01 mode.
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Figure 1 3-24 A capacitive window: a) Front view, b) Side view, c) Equivalent circuit.

Figure 13-24a shows two thin metal fins attached to the top and bottom walls of a 
waveguide, forming an opening called a capacitive window. The side view shown in 
Figure 13-24b shows why the name is appropriate, since the entire voltage between the 
top and bottom walls of the waveguide is dropped across the narrow gap of the win
dow. This increases the E-field within the window and increases the energy stored in 
the electric field.

On the other hand, the window has essentially no effect on the magnetic field, 
since it does not cause a redistribution of the wall currents. Hence, the net effect of 
the window is analogous to placing a lumped capacitor across the lines of a transmis
sion line, as shown in Figure 13-24c. In fact, when the capacitor susceptance is chosen 
correctly, there is a one-to-one correspondence between the incident, reflected, and 
transmitted waves on the transmission line circuit and the incident, reflected, and trans
mitted waves in the waveguide. Using a more detailed analysis,3 we find that the 
appropriate values of the actual susceptance Bc and the normalized susceptance bc are 
given by

bC
A
Yo Xg

In (13.107)

where A is the guide wavelength and Y0  is the characteristic admittance of the trans
mission line (any convenient value can be used—usually unity). The magnitude and 
phase of the waves transmitted and reflected by the window are the same as those 
transmitted and reflected by the capacitively loaded transmission line at the plane of 
the window.

Figure 13-25a shows an inductive window, so named because its equivalent cir
cuit is a shunt inductor. In Figure 13-25b, we see that the window forces the current on 
the top and bottom walls to flow through a restricted width, which increases the current 
density and the magnetic field in the vicinity of the window. This is analogous to plac
ing a shunt inductor across a transmission-line, as shown in Figure 13-25c. The inci
dent, reflected, and transmitted waves in the waveguide and transmission line networks 
are equivalent when the normalized susceptance of the inductor is chosen as

b i -
A
Z

(13.108)

3 See N. Marcuvitz, Waveguide Handbook, (London: Peter Peregrinus Ltd. on behalf of the Institution of 
Electrical Engineers, 1986).
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Front
view

Figure 1 3-25 An inductive window: a) Front view, b) Top view, c) Equivalent circuit.

The following example shows how lumped elements in a waveguide can be used 
to alter the frequency characteristics of a waveguide system.

E xam p le  1 3 -8

Consider the waveguide network shown in Figure 13-26a. Here, two identical inductive shunts 
are placed a distance l — 1.5 [cm] apart in a waveguide with dimensions a = 2 [cm] and b — 1 
[cm]. Use the transmission-line equivalent circuit for this network to calculate the reflection 
coefficient at the plane of the first window when d/a — 1/2 and 1/4.

a =
2 [cm]

Wavelength filter 
(top view)

r

Matched
load

Equivalent
circuit

Yt Ya

(a) (b)

Figure 1 3-26 A waveguide network consisting of two inductive shunts: a) Side view, 
b) Equivalent circuit.

Solution:

The equivalent circuit for this network is shown in Figure 13-26b, where the resistive 
admittance Y0 is placed in parallel with the right-hand inductor to model the matched load. We 
will approach problem by first finding the normalized admittance y(l just to the right of the left
most inductor. We will then combine this admittance with the admittance of the left-hand win
dow to find the total admittance yT that the shunts and the remainder of the waveguide present 
to the input waveguide.

The normalized admittance at the plane of the right-hand window is the parallel combina
tion of the normalized admittances of the window (y = jbt, where £>; is given by Equation
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(13.108)) and the matched load (y = 1). Using the admittance transformation formula (Equa
tion (11.134)) we find that the admittance

= (1 +;*>,-) + j tan (/3l) 
y“ 1 + ;'(! + ibi) tan(/3f) ’

where the normalized susceptance 5, is given by Equation (13.108). Adding ya to the admit
tance jbj of the left-hand window yields

yT = ya + ibi •
The effective reflection coefficient of the network is

Figure 13-27 shows a plot of |T| v s . frequency for two different window widths. As can be 
seen, ITI exhibits a band-pass characteristic for both widths, but decreasing the window width d 
increases the resonant frequency and decreases the bandwidth.

Figure 1 3-27 Reflection coefficient vs. frequency for the waveguide 
network in Figure 13-26 for two iris widths.

One way to explain why the filter bandwidth is small when the window width is narrow is to 
notice the similarity between this microwave filter and the etalon filter described in Chapter 12. 
(See Figures 12-18 and 12-19.) In both cases, waves reflect back and forth and form standing 
waves in a cavity, and the transmission bandwidth is smallest when the input and output faces are 
highly reflecting. Since the inductive windows look more and more like short-circuit plates when 
the window widths are small, it is reasonable to expect the filter bandwidth to be narrow for small 
window widths. We will have more to say about the fields in cavities later in this chapter.

13-3-10 SURVEY OF COMMON METAL WAVEGUIDES

In the preceding sections, we have seen that rectangular waveguides are capable of 
transporting signals and energy using any one of an infinite set of waveguide modes. 
Each mode has a distinct cutoff frequency, wavelength, impedance, and velocity of 
propagation. Since the same is true for all metal waveguides, regardless of their shape,
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one might wonder why different types of waveguides are used in engineering practice. 
The reason is that each type of waveguide has certain specific electrical or mechanical 
characteristics that may make it more or less suitable for a specific application. In this 
section we will briefly summarize and compare the notable features of the most com
mon types: rectangular, circular, elliptical, and ridge waveguides.

Rectangular waveguides are popular because they have a large dominant range 
and moderate losses. Since the cutoff frequencies of the TE10 and TE01 modes are dif
ferent, it is impossible for the polarization direction to change when a rectangular 
waveguide is operated in its dominant range, even when nonuniformities such as bends 
and obstacles are encountered. This is important when feeding devices such as anten
nas, where the polarization of the incident field is critical.

Circular waveguides (depicted in Figure 13-28a) have a smaller dominant range 
than rectangular waveguides. While this can be a disadvantage, circular waveguides 
have several attractive features. One of them is their shape, which allows the use of 
circular terminations and connectors, which are easier to manufacture and attach. 
Also, circular waveguides maintain their shapes reasonably well when they are bent, so 
they can be easily routed between the components of a system. Moreover circular 
waveguides are used for making rotary joints, which are needed when a section of 
waveguide must be able to rotate, such as the feed of a revolving antenna.

Another useful characteristic of circular waveguides is that some of their higher 
order modes have particularly low loss. This makes them attractive when signals must 
be sent over relatively long distances, such as for the feeds of microwave antennas on 
tall towers. For instance, there were serious plans in the early 1970s to use 5-centime
ter-diameter circular waveguides to carry long-distance telephone traffic by means of 
these low-loss modes. The measured performance of these waveguides was 1.5 
[dB/km] from 45-110 [GHz], which is very impressive for metal waveguides. As luck 
would have it, however, the systems were never used commercially, since fiber-optic 
cables appeared on the scene about that time, with lower loss, greater bandwidth, and 
much lower cost.

An elliptical waveguide is shown in Figure 13-28b. As might be expected by 
their shape, these waveguides bear similarities to both circular and rectangular wave
guides. Like circular waveguides, they are easy to bend. But unlike circular wave
guides, in which the direction of polarization tends to rotate as the waves pass through 
bends and twists, the polarization is much more stable in elliptical waveguides. This is

Figure 13-28 Common types of metal waveguide: a) Circular, b) Elliptical, c) Single 
ridge, d) Double ridge.
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because the cutoff frequencies are different for modes directed along the major and 
minor axes of the elliptical cross section. This property makes elliptical waveguides 
attractive for feeding antennas, in which the polarization state is very important.

The most popular types of ridge waveguides are the single and double structures 
shown in Figures 13-28c and d, respectively. In these waveguides, the ridges act as a 
uniform, distributed capacitance that reduces the characteristic impedance of the wave
guide and lowers its phase velocity. This reduced phase velocity results in a lowering 
of the cutoff frequency of the dominant mode by a factor of 5 or higher, depending 
upon the dimensions of the ridges. Thus, the dominant range of a ridge waveguide is 
much greater than that of a standard rectangular waveguide. However, the increased- 
frequency bandwidth is obtained at the expense of increased attenuation and 
decreased power-handling capacity.

1 3 -4  D ie le c tr ic  W a v e g u id e s

Dielectric waveguides have been used for many years in microwave applications, but it 
is the relatively recent development of low-loss optical fibers that has made dielectric 
waveguides the important technology they are today. At the present time, optical 
fibers and cables offer the lowest losses of any guided-wave medium of electromag
netic energy.

Whereas metal waveguides confine waves by reflecting them off metal surfaces, 
dielectric waveguides utilize the total reflection of waves that occurs at the interface 
between two dielectrics when the incident angle is greater than the critical angle. 
Because more than one dielectric is involved, dielectric waveguides are typically harder 
to analyze than metal waveguides. This is particularly true of optical fibers, which are 
circular and often have complicated cross sections. Nevertheless, we can understand 
many of the properties of all dielectric waveguides by studying the characteristics of a 
relatively simple example—the dielectric slab waveguide.

13-4-1 THE DIELECTRIC SLAB WAVEGUIDE

Figure 13-29 shows a dielectric slab waveguide, which consists of a uniform, dielectric 
slab, bounded on the top and bottom by an infinite, uniform dielectric (usually free 
space). Using the nomenclature of optical fibers, we will call the slab the core and 
the surrounding medium the cladding. We will assume that both the core and 
cladding are lossless and nonmagnetic and have refractive indices of nx and n2 , respec
tively. This waveguide can support propagating modes in any direction that is paral-

X ;

n2 (cladding)

n-i (core) yC ;

dz
n2 (cladding)

Figure 1 3-29 Geometry for determining the modes of a slab waveguide.
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lei to the yz-plane, but we will restrict our analysis to the modes that propagate along 
the z-axis.

One way to find the modes of this waveguide is to solve the wave equation in the 
core and cladding regions and then require the necessary boundary conditions at the 
top and bottom interfaces. This method is straightforward, but tedious. An easier 
way to obtain the same result is to postulate that the modes are simply plane waves 
that reflect back and forth inside the core and then prove that stable modes are 
obtained when these waves propagate only at certain angles with respect to the wave
guide axis. This technique has the added advantage that it gives special insights into 
the behavior of waveguide modes.

Referring to Figure 13-30, let us start by postulating that some source has 
launched a y-polarized plane wave inside the slab that propagates upward and to the 
right, at an angle 9 with respect to the upper surface. If 9 is greater than the critical 
angle 9C, a downward-propagating wave of the same magnitude is produced as the inci
dent wave strikes the top face. This reflected wave, in turn, produces an upward-prop
agating wave due to the reflection at the bottom face. The process repeats itself an 
infinite number of times, producing an infinite series of upward- and downward-prop
agating waves.

For most incident angles 9, the total electric and magnetic fields inside the slab 
will sum to zero. This occurs because each wave has a different phase, and hence, they 
add destructively. But there are certain incident angles at which the waves add con
structively, producing modes that propagate without attenuation down the slab. To 
find these allowed values of 9, we need only require that all the upward-propagating 
waves have identical phase fronts. This is the same as requiring that the first upward- 
propagating wave turn back into itself after one complete reflection cycle. We can 
accomplish that with the help of Figure 13-30, which shows rays (dark, solid lines) that 
represent a plane wave as it progresses through one reflection cycle. The dotted line 
represents a constant-phase plane of the incident wave just before it strikes the top face 
at the point Pl .

In order for the twice-reflected wave to have the same constant-phase planes as 
the incident wave, its phase at the point P2 must be the same as the phase of the inci
dent wave at P, or must differ by a multiple of 2n. Noting that the phase difference

n2 (cladding) P:

Figure 1 3-30 Ray diagram showing a complete reflection cycle as a plane wave reflects 
off of both interfaces of a dielectric slab waveguide. Permitted angles of reflection yield 
phases at Px and P2 that differ by a multiple of 2tt.
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between these two points equals the sum of the propagation delay along the distance 
sx + s2  and the phase shift 2 (f) caused by the two reflections, we require that

—kx + s2) + 2(f) = — 2-77-m m = 0 ,1 ,2 ,... (13.109)

In this expression, kx is the TEM phase constant in the slab. For TE modes, E is 
directed out of the page, so (f> is simply the reflection phase shift for perpendicular 
polarization, (f>±, which is given by Equation (12.204):

<t>± = 2 tan 1
Vsin20 -  (n2 /n ^ ) 2 

cos 6
(13.110)

Also, using simple trigonometry, we can show that

+ s2  = 2d cos 0 . (13.111)

Substituting Equations (13.110) and (13.111) into Equation (13.109) and using kx = 
2 7 rn x / A0 (where A0 =  c /co  is the free-space wavelength), we find that

4 tan 1
Vsin20 — (n2 ln x ) 2 

cos d
4ti-nxd

K
cos 6  = —2 TTin (TE modes),

which can be rewritten as

Modes; =0.1.2, ...,.(13.112)

Equation (13.112) is an exact expression for the allowed propagation angles for 
each TE mode in a dielectric slab waveguide. This expression cannot be solved 
explicitly for 6 , but a graphical solution can be obtained by plotting both sides of the 
expression separately and noting the intersection points of the curves that are pro
duced. Such a graphical solution is shown in Figure 13-31 for the case where nx -  
2.3, n2  = 1.0, and d — 1.4 A0. There are three points of intersection among these 
curves, which correspond to three possible propagating modes. Additional propa
gating modes become possible when either nx is increased (which shifts the critical 
angle towards lower values of 6 ) or d is increased (which decreases the period of the 
tangent function).

As the frequency of operation decreases, the value of 6  for each mode becomes 
smaller. Cutoff occurs when 6  — 6 C, the critical angle, at which cos 6 C = 
V l -  (/r2/Vq)2. Hence, at cutoff, Equation (13.112) becomes

7m xd
V l -  (n2 /n x ) 2 = m y ,

where Ac is the cutoff wavelength in free space. Substituting f c = c/Xc, we find that
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Figure 13-31 Graphical solution for the lowest order modes of a slab 
waveguide, obtained by graphing the left- and right-hand sides of Equation 
(13.112) for nx = 2.3, n2 = 1.0, and d — 1.4 A0.

It can be shown that this formula also applies to the TM modes.
Unlike metal waveguides, in which all modes have nonzero cutoff frequencies, 

the dominant modes in a dielectric slab waveguide, TE0 and TM0, propagate at all fre
quencies. Dominant-mode operation occurs when there is only one point of intersec
tion in Equation (13.112), which happens when

d_

K
U [ ( « , ) 2 - ( « 2  )2r 1/2 (Single-mode operation). (13.114)

Thus, single-mode operation at any frequency can be attained by making the slab thin, 
decreasing the refractive-index difference between the core and cladding, or both. 
Conversely, the number of propagating modes is large when the slab is thick or the dif
ference between the indices of refraction is large.

The electric fields in the core can be found by summing the upward- and down
ward-propagating plane waves, Eu and Erf, respectively, that make up each mode. 
Referring to Figure 13-30, we can represent Eu and Ed by the expressions

E  =  £  a  g - //U*cos0 + zsin e)

= Ed2i e~il3i(-xcose+̂ s'm6)

At the upper face, Eu is the incident wave and Erf is the reflected wave. Hence,
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Erf = I \ E U at* = d/2.

Using r ± = lZ-4>±, along with the allowed values of <£x given by Equation (13.110), 
we obtain

Ed = E u e - ^ = ( - l ) mEu (m = 0 ,1 ,2 ,...).

With these values, the total field E = E(< + Ed inside the slab is

f E0  cos (kxx) e ipzay \x\ < d /2 , m even
[E0  sin(kxx) e~iPz ay |jc| < d /2 , m odd

(13.115)

where

kx = kx cos 9,

and

(13.116)

/3 — kx sin 9, (13.117)

in which the value of 6  is obtained from Equation (13.112). Remembering that the 
guide wavelength \ g equals 2 n/b, we also have

= = A0

8  kx sin 6  nx sin 9 ’
(13.118)

where A0 is the free-space wavelength.
The fields in a slab waveguide are not confined to just the core region. The rea

son for this is that evanescent waves are generated in the cladding as a result of the 
total reflection in the cofe. Remembering that the tangential E-field at a dielectric 
interface is continuous, we can find the amplitude of these evanescent fields by evalu
ating the fields in the core at the core-cladding interfaces and adding the exponential 
decay factor yielding

{E0  cos(kxd / 2 )e “2̂  dlT)e iPz ay |jc| > d / 2 , m even
|± E 0 sin(kxd / 2 )e~â x\~d/2̂ e~il3z ay jxj > d / 2 , m odd

(13.119)

where the upper sign is used for x > dt2 and the lower sign is used for x < -d/2. The 
cladding attenuation constant is found by using Equation (12.208) and is

a2 = k2  yj sin2 6  — 1 = kx Vsin2# -  {n jn / ) 1 , (13.120)

where 9 is the appropriate propagation angle for the mode in question.
Figure 13-32 shows how the field strength of the TE0 mode varies throughout the 

core and cladding regions at two frequencies, one near cutoff and the other far above 
cutoff. As can be seen, the fields are more confined to the core at frequencies far 
above cutoff. This is an important point to consider, since real claddings have finite 
thicknesses, and fields can radiate from the edge of the core. In general, the lowest 
radiation losses are obtained when the slab is operated far above cutoff.

The TM modes of a slab waveguide are similar to the TE modes and can be 
derived by a similar procedure. Essentially, the only change necessary is that the
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f> fc

Core Cladding

Figure 13-32 TE0 field-strength in the 
core and the cladding for high and low 
frequencies, showing that the fields are * x
most tightly bound to the core at higher

x frequencies.

upward- and downward-propagating waves in the core are polarized parallel (rather 
than perpendicular) to the xz-plane. This means that the reflection phase shifts used 
in Equation (13.109) become <f>, rather than <f>±, which results in slightly different val
ues of the propagation angles for TM modes. Even so, the TMW modes have the same 
cutoff frequencies as the TEm modes.

E xam ple  1 3 -9

For a slab waveguide with ex — 1.96e0, e2 — 60> an<̂ d — \ [cm], find the dominant range and the 
operating characteristics at /  = f cJ 2 .

Solution:

The refractive indices of the core and cladding are nx = VI.96 = 1.4 and n2 — 1.0, respec
tively. Substituting these values into Equation (13.113), we find that

c 3 X 108
^  ~ 2d \Jn\ -  n\ ~ (2) (1.0 X 10-2)V1.4 -  1.(5 “ 23‘? ^°HZ*'

When /=  fcJl = 11.85 [GHz], A0 = c/(11.9 X 109) = 2.52 [cm]. Hence, from Equation (13.112), 
the propagation angle for the TE0 mode satisfies the expression

tan [1.47 cos 0]
Vsin2 9 -  0.714 

cos 6
Solving this expression numerically yields 

0 = 64.47°.

Substituting this value into Equation (13.117), we have

, . „ 2vfn 1 . n 2tt X 11.9 X 109 X VL4 .
P = kx sin 6  = — 1 sin 6  = --------- ~ x 1q8--------- sin (64.47 )

= 2.66 [cm-1]-

Finally, using Equation (13.118), we obtain 

2 tt

Xg 266.1
2.36 [cm].
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13-4-2 FIBER-OPTIC WAVEGUIDES

The idea of communicating using optical wavelengths (or light waves) has been around 
for a long time. Various “low-tech” schemes have been used throughout history, 
including smoke signals, lanterns, and ship-to-ship blinker lights. The first modern sys
tem was devised in 1880 by Alexander Graham Bell, the inventor of the telephone. 
This system used a voice-modulated mirror to vary the light intensity directed towards 
a selenium photocell. The modulated output current was then used to drive a receiver 
headset. Although the device was not a commercial success, it did show that commu
nication via light waves was possible.

The idea of communicating with light waves was to remain merely a curiosity for 
nearly a century. There were two reasons for this. The first was that the optical 
sources available during that time (such as incandescent, fluorescent, and arc lamps) 
could be modulated only at low speeds. This made their data rates smaller than those 
of competing technologies. Second, the optical attenuation between the transmitter 
and receiver sights was high, either because of spreading losses (as in open-air systems) 
or because of high material losses (as in dielectric waveguides).

Renewed interest in light-wave technology was aroused in the 1960s and 1970s 
by two inventions. The first was the laser, which provided a nearly single-wavelength 
optical source that could be modulated at high data rates. During the 1960s, many 
optical communication systems were developed that utilized unguided-laser propaga
tion in the atmosphere. These systems represented a significant increase in the per
formance of light-wave communication, but there were many problems associated with 
the unguided propagation of the light waves. Among them were the need for line-of- 
sight links and a clear, unturbulent atmosphere.

The second major breakthrough was the development of low-loss silica glasses 
that could be formed into optical fibers. Throughout the 1970s, the loss per kilo
meter of optical fibers dropped dramatically, the result of new fabrication techniques 
that could eliminate most of the impurities that cause loss. Figure 13-33 4shows the 
current state of the art in fiber attenuation as a function of the free-space wavelength 
A0. Also shown are the three operating windows that are used by most fiber-optic 
systems.

The usable bandwidth of a typical optical fiber is approximately 25,000 
[GHz], which is roughly a thousand times greater than the entire RF spectrum used 
for radio communications in free space. This enormous bandwidth is responsible 
for the significant changes that are occurring in communication and computing sys
tems. In the past, the communication channel between two electronic systems was 
often the low-speed bottleneck that limited the overall system performance. But 
with optical fibers, the electronic systems themselves are often the low-speed bot
tleneck. This means that it is becoming increasingly desirable to use optical tech
nology to perform tasks that in the past were performed electrically, such as 
switching and computing.

4 Adapted from G. Keiser, Optical Fiber Communications, 2d ed., (New York: McGraw-Hill, 1991), p. 11.
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Wavelength [/aiti]

Figure 1 3-33 F iber a ttenua tion  vs. 
frequency for sta te-o f the  art optical fibers. 
A lso show n are  the  th ree  m ost com m on 
frequency w indows used in optical 
com m unication  systems.

Figure 13-34 shows the basic components of a typical fiber-optic communication 
system. In this figure, the three basic system components are the optical source, the 
optical channel, and the receiver. The optical source is usually a laser or an LED 
whose output is modulated by the electrical signal that contains the message. Com
mon modulation techniques are amplitude shift keying (ASK), phase shift keying 
(PSK), and frequency shift keying (FSK). In simple systems, the optical channel con
sists solely of an optical fiber. In more complicated systems, the optical channel also 
includes connectors, couplers, optical amplifiers, and repeaters, which both amplify and 
reconstruct digital signals. Finally, the receiver consists of a photodetector (usually a 
PIN diode) that converts the optical signal into an electrical signal, followed by ampli
fiers and demodulators.

Transmitter

Figure 1 3-34 Block diagram  showing the basic com ponents in an optical 
com m unication  system.
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Figure 13-35 summarizes the characteristics of the most popular optical fibers. 
Although each construction has different operating characteristics, optical fibers are 
usually divided into two classes: multimode fibers and single-mode fibers. In the fol
lowing paragraphs, we will discuss the basic properties of both types of fiber.

Structure Index
profile

Ray paths

Cladding

125 bun] 50 b-im] Core

Cladding

Graded-index multimode fiber

|  Cladding n2
r?i

125 [yu,m] 10 [/an] Core *

 ̂ Cladding

Step-index single mode fiber
Outer cladding Inner cladding 

Outer cladding 

>r Inner cladding 
(d) 8 ban] Core

f Inner cladding 
Outer cladding

Dispersion-flattened single mode fiber

Figure 1 3-35 R efractive index profiles of com m on optical fibers: a) S tep-index, 
m ultim ode fiber, b) G raded-index, m ultim ode fiber (G R IN ), c) S tep-index, single
m ode fiber.
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Multimode Fibers. There are two principal types of multimode fibers in com
mon use: step-index and graded-index fibers. The index profiles of these fibers are 
shown in Figures 13-35a and b, respectively. In step-index fibers, the core has a con
stant refractive index, yielding modes that are very similar to those of the slab wave
guide. When the core diameter is large with respect to the free-space wavelength, the 
number of modes supported by these fibers is large, often in excess of many thousands 
of modes.

A major advantage of step-index, multimode fibers is that they accept a relatively 
large percentage of the light produced by LEDs and lasers. This occurs both because 
the core diameter is large and because these fibers are able to direct the incident light 
into a large number of modes. The high-power capability of these fibers makes them 
ideal for use in short-distance, local area networks. In these networks, a signal emitted 
by one user is shared by many users simultaneously, which means that the number of 
users is limited by how much optical power can be injected into the fiber. Step-index, 
multimode fibers permit large numbers of users, while allowing the use of relatively 
low-power optical sources.

The major disadvantage of step-index, multimode fibers is that they have high 
dispersion. This is because the higher order modes reflect off the core-cladding inter
face more often than lower order modes do, so their path lengths are larger. As a 
result, the propagation delays of higher order modes are larger than those of lower 
order modes. The high dispersion of these fibers limits their distance-bandwidth 
product. Although this makes them unsuitable for long-distance networks, the dis
tances typically encountered in local area networks are usually small enough so that 
dispersion is not a problem.

Graded-index fibers (GRINs) achieve lower dispersions by using a tapered 
refractive index in the core, with the highest index at the center of the core. Because 
there is no abrupt change in the refractive index at the core-cladding interface, the 
waves that would otherwise to escape the core are gradually bent back towards the 
core. Graded-index fibers have less dispersion than step-index fibers with comparable 
core radii. This is because higher order modes spend a large percentage of time in the 
outer region of the core, where the velocity of propagation is faster. As a result, the 
longer path lengths of these modes are, in part, compensated by faster propagation 
speeds. This velocity compensation in graded-index fibers allows for higher signaling 
rates than can be achieved with step-index fibers.

A figure of merit that is often used to describe multimode fibers is the numerical 
aperture, which indicates the light-gathering ability of the fiber. Figure 13-36 shows a 
plane wave approaching the end of a step-index fiber at an angle 0 O with respect to the 
optical axis.

Figure 1 3-36 Geometry for calculating 
the numerical aperture NA of a step- 
index, optical fiber.
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As this ray enters the core, it makes an angle 6  with the optical axis, and the angle of 
incidence at the core-cladding interface is </>. Using Snell’s law of refraction, we find 
that

sin 0o = nx sin 6 = nx Vl - sin20.

The maximum entrance angle 6omax occurs when (f> = sir\~ l (n2/ n x), which is the critical 
angle for the core-cladding interface. The sine of 6 omax is the numerical aperture, NA. 
For a step-index fiber,

NA = sin 6 omax = V n j -  n\. (13.121)

The larger the NA of a fiber, the more optical power it can capture from a source. A 
typical value of NA for a step-index multimode fiber is in the range from 0.19 to 0.25.

E xam p le  1 3 -1 0  ----------------------------------------------------------------------------------------------------------------------------

Calculate the numerical apertures of the following fibers:

a) a step-index, all-plastic fiber having core and cladding refractive indices of ny = 1.60 and n2 
= 1.48, respectively,

b) a step-index fiber with a silica core (nx = 1.45) and a silicone resin cladding (n2 = 1.4). 

Solution:

For part a),

NA = V(1.6)2 -  (1.48)2 = 0.608.

For part b),

NA -  V(1.45)2 -  (1.4)2 -  0.377.

As these numbers indicate, plastic fibers tend to have higher numerical apertures. Unfor
tunately, they also have higher losses.

Since the refractive index is not constant inside the core of graded-index fibers, 
the maximum acceptance angle of these fibers depends upon the radial position at 
which the ray enters the fiber. The core is most dense at its center, so the acceptance 
angle is less for rays entering further away from the optical axis. As a result, GRIN 
fibers tend to accept less light than step-index fibers with the same core diameters. 
Typical average NAs for GRIN fibers are in the range from 0.16 to 0.21.

Single-Mode Fibers. Multimode fibers are popular for short-haul communication 
networks, where high optical power levels are necessary to distribute signals to a large 
number of users. But long-haul systems, such as long-distance telephone and com
puter networks, have different requirements. Here, fiber dispersion becomes a major 
factor, since the maximum distance between repeaters is often determined by the 
amount of pulse spreading along the fiber. Repeaters are expensive, so it is desirable 
to use low-dispersion fibers, which typically have low numerical apertures. Fortu
nately, the power requirements of long-haul systems are not as great as those of short-
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haul systems, since the number of users tied to the ends is usually smaller. For these 
applications, single-mode fibers are most often used. As their name implies, these 
fibers support only one propagating mode and thus eliminate intermodal dispersion 
effects.

There are many kinds of single-mode fibers. The simplest are step-index fibers 
with very small core diameters. (See Figure 13-35c.) An exact analysis of the modes 
in these fibers shows that single-mode operation is attained when the core radius satis
fies the inequality5

TL 2.405 
A0 2 tt \ / n \  — n\

(13.122)

E xam ple  13 -11

Calculate the maximum core radius that guarantees single-mode operation for a fiber with n1 = 
1.48 and n2 = 1.46, where the operating wavelength is A0 = 1.3 [^m].

Solution:

Using Equation (13.122), we have 

2.405
a < 1.3 X 10~b X

which yields

a < 2.05 [/urn].

2 tt V(1.48)2 -  (1.46)2 ’

When only one mode propagates in a fiber, intermodal dispersion is eliminated. 
Nevertheless, this still leaves two other dispersion mechanisms that can limit signaling 
bandwidths. The first is material dispersion, which is due to the changes in the refrac
tive index of the core with the optical wavelength. Very little can be done about this 
component of the dispersion, since the silica glasses used in fibers are already very 
pure. The second dispersion mechanism is waveguide dispersion, which occurs for all 
non-TEM modes in any kind of waveguide.

Single-mode optical fibers can be designed so that the material and waveguide 
dispersion components cancel. This is possible because these two dispersion mecha
nisms have opposite frequency characteristics. The index of refraction of silica glass 
increases slightly with increasing frequency, causing larger phase delays at higher opti
cal frequencies. On the other hand, the group velocity of the dominant waveguide 
mode increases at higher frequencies, thus decreasing the phase delays. The material 
dispersion is fixed, but the waveguide dispersion can be varied by simply changing the 
core diameter. Zero net dispersion at a single optical wavelength can be achieved by 
choosing a core diameter that is even smaller than that needed to ensure single-mode 
operation. These fibers are called dispersion-shifted fibers, since they exhibit zero 
total dispersion at a higher wavelength than the wavelength at which the material dis
persion alone is zero.

3 See G. Keiser, Optical Fiber Communications, (New York: McGraw Hill, 1991).
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It is also possible to attain low dispersion over a band of frequencies by using 
more complicated index profiles within the cladding, such as the profile shown in Fig
ure 13-35d. Fibers of this type are called dispersion-flattened fibers. They are attrac
tive when a number of signals with slightly different optical wavelengths are 
multiplexed to propagate along the same fiber.

1 3 -5  C a v ity  R esonators

At low frequencies, circuits with lumped inductors and capacitors often exhibit one or 
more frequencies at which the input impedance is purely real. These frequencies are 
called resonant frequencies, or simply resonances, and the circuits are often called res
onators. At or near the resonant frequencies, the network appears resistive. Away 
from the resonances, however, the circuits appear highly reactive. These characteris
tics make resonators very useful for tuning and filtering in electronic systems.

Theoretically, it would seem possible to construct lumped resonators at any fre
quency. However, lumped elements become increasingly difficult to fabricate at 
microwave frequencies and above. For instance, it is difficult to imagine how one 
would construct a capacitor for use at optical frequencies. At high frequencies, a more 
attractive way to make a resonator is to allow waves to reflect back and forth within 
some sort of enclosure. These enclosures, called cavities, can be a dielectric (possibly 
air) surrounded by metal walls, or simply a block of dielectric. The sharp resonances 
are a result of the constructive and destructive interference that the waves exhibit as 
they reflect back and forth within the resonator. Cavity resonators are very important 
in a wide range of electrical and optical applications, including oscillator circuits, fil
ters, tuned amplifiers, and laser cavities.

Cavity resonators are similar to waveguides in that they both support a large 
number of distinct modes. But whereas each waveguide mode can exist over a broad 
range of frequencies, resonator modes are usually restricted to very narrow frequency 
ranges. To understand why, consider the rectangular cavity shown in Figure 13-37, 
which has perfectly conducting walls of width a, height b, and length d along the x-, y-, 
and z-axes, respectively, and is filled with a lossless dielectric. The easiest way to ana
lyze the modes of this resonator is to recognize that the structure is nothing more than 
a rectangular waveguide that is closed at both ends. Given this, it follows that wave-

Figure 1 3-37 A rectangular resinator 
(cavity), showing E vs. z for one resonant 
mode.
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guide modes propagating along the z-axis will experience constructive interference 
when the length d is a multiple of A /2, where Ag is the guide wavelength. For these 
lengths, standing waves are formed in the cavity, one of which is depicted in Figure 13- 
37. Since Ag = I tt/ (3, the condition for resonance is

P = p ^ ,  P  = 1 ,2 ,.... (13.123)
a

From Equations (13.55) and (13.56), the propagation constant (3mn for the mnth TE or 
TM mode in a rectangular waveguide is

13mn (13.124)

where k = 2 rrf /u  and u = c/V er are the wave number and the speed of light in the 
dielectric, respectively. Comparing Equations (13.123) and (13.124), we find that they 
are both satisfied only when k takes on discrete values, which occur at the resonant fre
quencies, given by

L (13.125)

In this expression, the indices m, n, and p can take on all positive integer values, includ
ing zero, as long as only one index is zero at a time. Thus, there are a triply infinite 
number of resonant frequencies and corresponding modal field distributions through
out the cavity. If the x-, y-, and z-axes are chosen such that a> d>  b, then the lowest 
resonant frequency is / 101.

Since the lowest resonance has m — 1 and n — 0, the E- and H-fields of this mode 
correspond to the fields of the TE waveguide mode. We can obtain the corresponding 
cavity fields by summing forward- and backward-propagating modes whose amplitudes 
add such that Ey = 0 at z = 0 and z = d. Substituting p = fid/ t t  = 1  into Equations 
(13.62)-(13.64) and noting that y — j/3 changes sign for backward-propagating waves, 
we obtain

E  =  -2(ojxH0
7T

sin
7T

x | sin | — z

Hx = ;2  Ha
7r  \  TT

sin | — x I cos I — z

Hz = - j2 H 0  cos xj sin z j ,

(13.126)

(13.127)

(13.128)

where H0  is an arbitrary constant. We can find the energies stored in these electric 
and magnetic fields by substituting Equations (13.126)-(13.128) into Equations (6.34) 
and (9.39), respectively. The time-averaged electric energy is

'iopa\2 ra rb rd . 2 ttx . 2 ttz 
—- sin — sin —  dxdydz
TT ) Jo -'o - * 0  a d

W. =
1

R e(E-E  *)dv = e\H 0

Vol.
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abde . , 2 / 2 f/xa \ 2

= ~ |HJ r v j
[j]. (13.129)

Similarly, the time-averaged magnetic energy is

r 1

-R e(H -H *)tfo
./Vnl ^

= M |#ol
ab d/x

a r  b  r  d

0 J 0  J 0

. 9  7TX 9 7TZ o TTV . 9  77"Z \  . . .
s in —  cos —— + cos —  sin —  ax dy dz 

a ~ d /

|//0 |2 E ) 2 + 1 '
\ d j [J] (13.130)

However, since/ 101 = 1 (2VJTe) (1/a2 + l / t /2) 1/2, we find that We = Ww, which is anal
ogous to what happens in lumped LC networks at resonance.

The resonant frequencies given by Equation (13.125) were derived under the 
assumption that cavity walls are lossless, with no power transferred out of the cavity 
through apertures or couplers. This assumption led to infinitely sharp resonances, 
which become broader when loss is present. Just as with lumped RLC  resonant cir
cuits, the more loss that is present, the broader the resonance will be. The bandwidth 
and power dissipation of a resonator are related by its quality factor, which is defined 
by

Q 2 tt
maximum energy stored 

energy loss per cycle of oscillation
(13.131)

where We is the time-averaged energy stored in the electric field and PL is the time- 
averaged dissipated power at resonance. This is the same definition for the quality 
factor as is used for lumped-element tuned circuits.6 Also as in lumped circuits, the 
quality factor Q and the 3dB bandwidth BW of a cavity resonator are related by

BW (13.132)

where f Q is the resonant frequency of the cavity. The derivation of this formula for 
cavity resonators is beyond the scope of this text,7 but is a direct consequence of the 
Fourier transform principle that networks with short transient responses (i.e., low Q) 
have large bandwidths.

When conduction losses in the metal walls of a cavity resinator are dominant, we 
can use Equation (13.99) to express the dissipated power PL in terms of the H-field on 
the cavity walls. Substituting, we obtain

e  = 47r/ 0 ----^ ---- , (13.133)
Rs <£ H 2ds

h

6 See David Irwin, Basic Engineering Circuit Analysis, 4th ed., (New York: Macmillan, 1993).
7 See R. E. Collin, Foundations for Microwave Engineering, 2d ed., (New York: McGraw-Hill, 1992).
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where S is the surface of the conducting walls and Rs is the surface resistance of the 
walls and is given by Equation (13.100). For the case where a > d > b, it can be shown 
by direct substitution of the modal fields that the Q of the lowest order mode is

n  = _________ { ^ f m adV bR ______
101 u 327r2R s(2a3b + 2 d 3b +  a 3d  +  d 3a )

(13.134)

where u and 77 are the speed of light and the intrinsic impedance the dielectric, respec
tively, and f m  -  (u /2)  V(1 / a ) 2 + (1  / d ) 2.

E xam p le  1 3 -1 2

■ C alculate the frequency, the  Q, and the  bandw idth  of the  low est o rder resonance of an air-filled, 
square m etal cavity th a t is 2 [cm] on a  side. A ssum e th a t th e  walls are m ade of copper.

Solution:

U sing E quation  (13.125), we find th a t the  low est resonan t frequency is 

3 X 10s
f  = ~  Jxox 2 .02 X V2

=  10.6 [G H z].

F or copper, <r= 5.8 X 107 [S/m ], F rom  E quation  (13.100), the surface resistance is 

R  = = 0 0 2 7  [ft].
a

Substituting these values into E quation  (13.133), we ob tain  

(2Trfm a d y b r ]0
Qxox ~' 101 c327r2Rs(2a3b +  2 d 3b + a3d + d 3a)

Finally, using E quation  (13.132), we find tha t

[M Hz],

=  10,320.

BW  =  =  6.45
Q

Since the half-pow er bandw idth  is a very sm all fraction  of the  resonant frequency, this is a sharp 
resonance.

The rectangular cavity just described, while interesting, is of no practical value, as 
there are no input or output ports. In practice, cavities are usually attached to trans
mission lines or waveguides. Just as with lumped circuits, resonance occurs at those 
frequencies at which the input impedance Zin is real valued. A series resonance occurs 
when the imaginary part of Zin has a positive slope at resonance (just like a series RLC  
circuit). A parallel resonance occurs when the imaginary part of the input admittance 
(1/Zin) has a positive slope at resonance (just like a parallel RLC  circuit).

There are a number of ways that cavities can be coupled to waveguide and trans
mission-line circuits. One method is to construct the resonator inside a waveguide by 
placing lumped elements (such as capacitive or inductive windows) inside the wave
guide. This kind of resonator was discussed in Example 13-7. Another method is
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C avity
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C avity
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(b)

Figure 1 3-38 Typical cavity configurations: a) A shunt-mounted cavity in a waveguide 
wall, b) A  series configuration with coaxial ports.

shown in Figure 13-38a. Here, a cavity is coupled to a waveguide by an aperture in the 
side wall of the waveguide. The aperture is positioned so that the waveguide fields 
excite the desired cavity mode. Figure 13-38b shows another method, in which, probes 
attached to the center conductors of the coaxial cables extend into the cavity and act as 
antennas, coupling energy in and out of the cavity.

Figures 13-39a and b show two types of microstrip resonators that use simple 
microstrip components as the resonating elements. In Figure 13-39a, the resonator is 
simply a strip of open-circuited, microstrip transmission line, which is capacitively cou
pled to the input transmission line. The resonant frequencies of the strip can be deter
mined by simple transmission-line analysis. A similar effect can be obtained from the 
circular-disk resonator shown in Figure 13-39b. Here, the resonant frequencies of the 
disk are a function of its radius.

A problem often encountered when using microstrip resonators, such as the ones 
depicted in Figure 13-39, is that they must have dimensions on the order of a free-space 
wavelength at resonance. At low frequencies, this often makes them unacceptably 
large. A way around the problem is to use dielectric resonators, such as the one shown 
in Figure 13-40. These resonators are often called dielectric puck resonators, because 
they look like miniature hockey pucks. Here, the fields are confined to a region of 
high dielectric constant, where the wavelength is small. This allows a small resonator 
to resonate at a relatively low frequency. Power can be coupled to the puck using 
capacitive coupling from a microstrip transmission line. Because of their small size 
and sharp frequency characteristics, dielectric puck resonators are often used as feed
back elements in microwave oscillators.

R esonator

/
M icrostrip  line M icrostrip  line

R esonator

(a) (b)

Figure 1 3-39 Microstrip resonators: a) Rectangular strip, b) Circular patch.
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Figure 1 3-40 A dielectric puck resinator, 
coupled to a microstrip transmission line.

1 3 -6  S u m m a tio n

In this chapter, we have seen how electromagnetic waves can be transported by simple 
metal and dielectric structures using non-TEM modes. Unlike the TEM modes 
encountered with transmission lines, non-TEM modes have distinct cutoff frequencies, 
below which they will not propagate. Even when operated above cutoff, these wave
guide modes exhibit variations with frequency that must be anticipated in order to 
obtain acceptable system performance. Nevertheless, waveguides offer low-loss trans
mission characteristics that make their less-than-desirable dispersion characteristics 
well worth the trouble.

The optical revolution that started with the invention of low-loss optical fibers is 
only in its beginning stages. In addition to the low loss, the bandwidth capabilities of 
a single fiber exceed those of air. Only time will tell what percentage of functions that 
are at present performed electrically will someday be performed optically.

P r o b l e m s

13-1 Show that the component Ex, given by Equation (13.9), satisfies the wave equa
tion (Equation (13.16)) as long as both Ez and Hz do also.

13-2 The TM modes for rectangular waveguides were found by finding the appropri
ate longitudinal component Ez that satisfies the boundary conditions at the con
ductor walls. Show that the transverse components Ex and E for these modes 
also satisfy the correct boundary conditions.

13-3 Repeat Problem 13-2 for the TE modes in rectangular waveguides.
13-4 An air-filled, rectangular waveguide has dimensions a = 2.5 [cm] and b -  1.25 

[cm]. At an operating frequency of 17 [GHz], what modes are above cutoff?
13-5 An air-filled, rectangular waveguide has dimensions a — 1.5 [cm] and b = 0.8 

[cm]. Calculate the ratio of the guide wavelength to the free-space wavelength 
for the dominant mode a t/ =  a) 10.2 [GHz], b) 15 [GHz], and c) 30 [GHz].

13-6 A section of WR-75 waveguide {a = 1.905 [cm] and b = 0.953 [cm]) is operated 
at 6  [GHz]. Find the attenuation of the dominant mode through this section, in 
dB/m.

13-7 Find the dimensions of a square waveguide that has a cutoff frequency of 12.5 
[GHz].



13-8 Calculate the group velocity of a 14 [GHz] narrowband, AM-modulated signal 
that propagates in the TE 1 0  mode of an air-filled, rectangular waveguide with 
dimensions 1.15 [cm] X 0 . 8  [cm].

13-9 A narrowband signal with a center frequency of 10 [GHz] propagates along an 
air-filled waveguide with dimensions a = 1.8 [cm] and b = 0.6 [cm]. Calculate 
the length of this waveguide through which the signal is delayed by 1 [/as], com
pared with the same signal propagating through the same length in air.

13-10 Calculate the ratio of the wave impedance to the free-space characteristic 
impedance for the dominant mode in an air-filled, rectangular waveguide with 
dimensions a = 2 [cm] and 6  = 1 [cm] a t /=  a) 7.7 [GHz], b) 10.0 [GHz], and c) 
15 [GHz].

13-11 Show that in the region near the center of a rectangular waveguide, the TE 1 0  

mode behaves like a plane wave. What is the polarization state of this plane 
wave? What is the intrinsic impedance? {Hint: Expand Equations 
(13.62)-(13.64) in a Taylor’s series about x = a/2.)

13-12 A rectangular, air-filled waveguide has dimensions a = 3.4 [cm] and b = 1.8 [cm] 
and walls made of copper. Calculate the attenuation (in dB/m) for the domi
nant mode a t/ =  a) 6  [GHz] and b) 12 [GHz].

13-13 Figure P13-13 shows a horn antenna attached to a lossless rectangular wave
guide. Measurements at 7 [GHz] show that the horn is not perfectly matched to 
the wave impedance of the TE 1 0  mode, resulting in a VSWR of 2.5 in the wave
guide and a voltage minimum 1.2 [cm] behind the neck of the horn. Using the 
reactive shunt (or stub) tuner method of impedance matching discussed in 
Chapter 11, find the location and the dimensions of the inductive iris that 
achieves a perfect match.
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13-14 Repeat Problem 13, this time using a capacitive iris.
13-15 For a rectangular waveguide with a lossless dielectric, prove that the normalized 

frequency at which the TE 1 0  mode exhibits its minimum attenuation is

When a/b = 2, where does this frequency lie with respect to the dominant 
range?

13-16 Calculate the maximum power that can be sent through an a = 2.0 [cm] and b = 
1.0 [cm], air-filled waveguide at 12 [GHz] such that dielectric breakdown does 
not occur. Assume that the dielectric strength of air at atmospheric pressure is 
3 X 106  [V/m].

2 [cm ]

3 [cn

Figure PI 3-13
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13-17 A sinusoidal pulse with a center frequency of 12.5 [GHz] is launched down an 
air-filled, rectangular waveguide with dimensions a — 1.9 [cm] and b = 0.9 [cm]. 
If the bandwidth of this pulse is 500 [MHz], estimate the pulse spread per meter.

13-18 For a slab waveguide where the core and cladding have refractive indices of nt 
and n2, respectively, prove that the phase constant (3 of any propagating mode 
satisfies the inequality

n 2 P o <  P < n iP o >

where (30 is the phase constant of a TEM wave in free space at the same fre
quency. Also, interpret the extreme values [3 = nx/30 and (3 = n2f30.

13-19 For a dielectric slab waveguide, the field intensities decay very slowly away from 
the core-cladding interface when the core thickness d is small with respect to 
the TEM wavelength in the core. Show that when kx d «  2 and both the core 
and cladding are nonmagnetic, the following approximations are valid for the 
dominant TE mode:

The constants kx and k2 are the wave numbers of the core and cladding, respec
tively.

13-20 For a dielectric slab waveguide with nx = 1.46 and n2 = 1.44, calculate the max
imum slab thickness d that results in single mode propagation at the frequency 
at which the free-space wavelength is 0.8 [yum].

13-21 A dielectric slab waveguide with thickness 10 [yum] has nx — 1.5 and n2 = 1.49. 
Find the number of modes that can propagate at the frequency whose free-space 
wavelength is 0.94 [yum].

13-22 Find the thickness d of a dielectric slab waveguide with a dielectric constant of er 
= 4.0 whose dominant asymmetrical mode (i.e., m = 1) has a cutoff frequency of 
18 [GHz]. Assume that the cladding is air.

13-23 Find the numerical aperture NA of a step-index optical fiber that has nx = 1.51 
and n2 -  1.49.

13-24 Figure P13-24 shows a laser source illuminating the end of an optical fiber. The 
laser can be considered a point source that radiates power uniformly within a 
40° angle of rotation about the fiber axis. If the fiber has a core radius of 50 
[yum] and a numerical aperture of 0.2, calculate the percentage P% of the laser’s 
power that is captured by the fiber if the distance from the laser to the fiber is a) 
1 0  [yum], b) 1  [mm], c) 1  [cm].

P ~ kx sin 6C = k2

Radiation

Figure PI 3-24



13-25 Calculate the maximum core diameter that results in single-mode operation of a 
step-index optical fiber with nx — 1.51 and n2 = 1.50 at a free-space wavelength 
of 1.3 [/u,m].

13-26 A 40 [km] optical link uses a fiber that has a loss of 0.75 [dB/km] and has con
nectors spaced every 4 [km] and connectors at the ends. Each connector adds a 
loss of 0.25 [dB]. Determine the power that must be launched in the fiber if the 
power required at the detector is 1.5 [/xW],

13-27 For a metal, air-filled cavity with dimensions 4 [cm] X  5 [cm] X  2 [cm], find the 
four lowest order resonant modes and their frequencies.

13-28 An air-filled rectangular cavity has copper walls (<x = 5.8 X  107 [S/m]) and 
dimensions 6  [cm] X  5 [cm] X  3 [cm]. Calculate the Q of the dominant reso
nance and its frequency.

13-29 When measurements are conducted in a shielded room, it is best to operate the 
equipment at frequencies well below all of the resonant frequencies of the room. 
For a shielded room with dimensions 3 [m] X  2  [m] X  2.5 [m], calculate the low
est resonant frequency.

13-30 Design a cubic cavity resonator that has a dominant resonant frequency of 9 
[GHz] if it is filled with a) air, b) a dielectric with er = 150.
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14

R adiation  and  Antennas

14-1 In tro d u c tio n

One of the most useful properties of electromagnetic fields is that they can transport 
energy and signals from one place to another. When these waves propagate without a 
guiding structure, this process is called radiation. We have already encountered some 
aspects of radiation in our discussion of plane waves, but there we did not consider the 
sources of these waves. In this chapter, we will look closely at how these waves are 
actually launched by sources.

Radiation can be viewed as either a desirable or an undesirable phenomenon, 
depending upon the situation. Situations where electromagnetic radiation is desirable 
are numerous. The most notable examples are communication systems and radars, 
both of which use electromagnetic waves to transport information.

A common example of undesirable radiation is the interference caused by per
sonal computers with other devices, such as television receivers or cellular phones. In 
these cases, the high-speed digital signals inside the computer generate electromagnetic 
waves that leak out of the chassis and cables. Emissions of this type are called electro
magnetic interference (EMI) and are regulated by governmental agencies such as the

567



568 CHAP. 14 RADIATION AND ANTENNAS

Federal Communications Commission (FCC). The engineering discipline that seeks 
to minimize these sorts of problems is called electromagnetic compatibility (EMC).

In what follows, we will introduce the subject of electromagnetic radiation by first 
discussing electromagnetic potentials, which greatly simplify the analysis of radiating 
structures. Next, we will discuss the properties of the simplest radiator: a short fila
ment of current. This radiator is the prototype for all radiating elements, since any 
current distribution can be modeled as a collection of these elemental sources. After 
this, we will discuss a number of different types of antennas, including both simple ele
ments and arrays of simple elements.

1 4 -2  E le c tro m a g n e tic  P o te n tia ls

The fundamental source of all electromagnetic radiation is the acceleration of charges, 
which occurs whenever time-varying current or charge distributions are present. 
Because of this, it is often convenient to use formulas for the radiated electric and mag
netic fields that are explicit functions of the currents and charges that cause them. In 
that case, Maxwell’s equations are not the most convenient starting point for the analy
sis. A better approach is to use electromagnetic potentials, which are similar to the 
electric and magnetic potentials derived earlier in Chapters 4 and 7. We will start our 
discussion of radiation by defining these potentials and showing how they can be used 
to determine the electric and magnetic fields generated by known current distribu
tions.

It takes a fair number of steps to derive the electromagnetic potentials from 
Maxwell’s equations, so we will start our discussion by stating the final result. Figure
14-1 shows arbitrary current and charge distributions, J and pv, respectively, that lie 
within a volume V. For an observer at the position indicated by the vector r, the fields 
E and B can be represented in the frequency domain as

E = — W  — /&>A (14.1)

B = V X A, (14.2)

where the electric scalar potential V and the magnetic vector potential A are defined 
by

Figure 14-1 Geometry for deriving the 
electromagnetic potentials.
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l/(r) = 1 i ,i dv' I r — r
[V] (14.3)

Vol.

A(r) =
477 j r -  r'

[Wb/m] or [T • m]. (14.4)
Vol.

In these expressions, r' is a dummy position vector that sweeps through all the points 
inside the volume, and k is the wave number of the medium. (See Equation (12.6).)

Equations (14.1) and (14.2) state that the electric and magnetic fields E and B 
can be obtained by performing straightforward vector operations on the scalar poten
tial V and the vector potential, respectively, A. These potentials are explicit functions 
of the current and charge distributions present in the system. Hence, if the current 
and charge distributions on a radiating structure are known, E and B can be calculated 
by simply evaluating the integrals given in Equations (14.3) and (14.4) and substituting 
V and A into Equations (14.1) and (14.2). While this may seem like a lot of work, it is 
often easier than solving Maxwell’s equations directly, since the integral form of 
Maxwell’s equations contain the unknowns E and B inside the integrals.

To derive Equations (14.1)-(14.4), we start by restating Maxwell’s equations in 
differential form : 1

V X E = -jcoB  (14.5)

V X H = J + j(oeE (14.6)

V • e E = p v  (14.7)

V • B = 0. (14.8)

Because B has zero divergence at all points regardless of how the sources are config
ured, Theorem IV in Section 2-5-6 allows us to express B as the curl of a yet-to-be- 
determined vector potential:

B = V X A. (14.9)

Next, if we substitute Equation (14.9) into Equation (14.5), we obtain 

V X E = —joj V X A, 

which can be rewritten as

V X (E + jot A) = 0.

Since the vector (E + j a > A) has zero curl, we can use Theorem III of Section 2-5-6 to 
write it as the negative gradient of a yet-to-be-determined scalar potential V:

E + jco A = — W .

1 In our analysis, it is assumed that any loss in the host medium is treated as polarization loss, i.e., 
e = e' — ye". This means that J is assumed to be a source (or impressed) current.
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Solving for E, we have

E = -V V  -jcoA. (14.10)

Equations (14.9) and (14.10) show how E and B can be obtained once A and V 
are known. To derive the equations that define A and V, we first substitute Equations
(14.9) and (14.10) into Equation (14.6), which, when /x is constant, yields

—V x V x A = J +  jcoe(-jajA -  VV).

Using V2A = V (V -A )-V x V x A and rearranging the resulting expression, we obtain 

V2A + k2A -  V[V • A + jcofjieV] = - /x J , (14.11)

where k = a>V/xi is the wave number of the medium. Similarly, substituting Equation
(14.10) into Equation (14.7), we find that when e is constant,

V2  V + jcoV • A = (14.12)

Equations (14.11) and (14.12) are coupled differential equations that relate the 
potentials A and V to the sources J and pv. We can uncouple them by noting from 
Equation (14.9) that the essential property of the vector potential A is its curl. Since 
the curl and divergence of a vector can be specified separately (see Section 2-5-6), we 
can choose V • A to be anything that is convenient. The choice that uncouples these 
differential equations is

V ‘A = -jco/ieV. (14.13)

Using this relation, which is called the Lorentz gauge2 we find that Equations (14.11) 
and (14.12) reduce to the following uncoupled equations:

V2V + k2V -  ——. (14.14)
e

V2A + k2A = - /x J . (14.15)

We can further simplify Equation (14.15) by noting that in Cartesian coordinates, the 
Laplacian of the vector A can be written in terms of the Lapacians of its components. 
(See Equation (2.126).) Hence, Equation (14.15) can be written as

V2A, + k2At = —fJiJi i = x, y, or z. (14.16)

Comparing Equations (14.16) and (14.14), we see that they are the same, except 
for the source terms on their right-hand sides. Hence, they have similar solutions. 
Also, note that these equations become Poisson’s equation (Equation (4.61)) when 
k = 0. Because of this, it should not be surprising that the solutions for V and A are

2 Other gauges can also be used, such as Coulomb’s gauge: V • A = 0. When we use these other gauges, the 
resulting expressions for A are more complex, although they yield the same E- and B-fields when substi
tuted into Equations (14.7) and (14.8).
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similar to the solution of Poisson’s equation (Equation (4.46)). For instance, the par
ticular solution for V is

1  f
4776 J |r -  r '| [V]. (14.17)

Vol.

Comparing Equation (14.17) with the electrostatic potential function (given by Equa
tion (4.46)), we see that they are the same when k — 0, which occurs when co = 0. 
When co 0, however, the time-harmonic potential V has an additional phase term 
inside the integral, which, as we will see shortly, is caused by propagation delays.

A rigorous proof that equation 14.17 satisfies equation 14.14 is tedious, but we can 
outline a heuristic proof by first taking the Laplacian of the scalar potential V that is giv
en by Equation (14.17). Because the V2  operator does not involve the primed coordi
nates, it can be brought inside the integral, yielding

Vol.

(14.18)

An exact evaluation of the Laplacian term inside the integral reveals that

V2

' e - ) k \ r - x '  |-

|r — r'l
- k z j - ----Tj- -  4tt8(x -  x')8(y -  y ’)8(z -  z'),

r — r
(14.19)

where S(x) is the Dirac delta (or impulse) function, with the property <5(r — x')dx = 1. 
The exponential term on the right-hand side of this expression can be found evaluating the 
Laplacian in Cartesian coordinates, using Equation (2.123). The second term is nonzero 
only at the point r = r' and can be derived by using the divergence theorem (see problem 14- 
35). Substituting Equation (14.19) into Equation (14.18), we obtain

V2V = - k : —  f
4776 J

P v ( r ' ) e ~ jk  lr-r'|

r — r
dv' -  ^ j  pv(r')8(x -  x')(y -  y')8(z -  z')dv'

Vol. Vol.

Comparing the first integral in this expression with Equation (14.17), we see this term 
is — k2V. Using the sampling property of the delta functions, the second integral 
equals pv/e, evaluated at r' = r. Thus, the above expression becomes

V2V + k2V =
6

which is the differential equation that defines V. (see Equation (14.14).)
We can write the solution for the vector potential A almost by inspection. This 

is because the Cartesian components of A satisfy the same differential equation as V 
does (i.e., Equation (14.16)). Thus, we can write

A i =
j x _  r  / . ( r ')e - ;* lr - r'l 

4 v  ivoi. | r - r ' |
dv' (i = x, y, or z ) . (14.20)
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Summing the three components of A, we obtain the complete expression,

Interestingly, even though we used the Cartesian coordinate system to develop Equa
tion (14.21), this final expression is not specific to the Cartesian system—any coordi
nate system can be used.

E xam ple  14-1

Slg&fg

m m

mm

Calculate E  and H  if it is known that the vector and scalar potentials are

A  = A 0e~ikz a , [Wb/m]

V  =  0 ,

where k  — ( o \ f j x e .

S o lu t io n :

First, we note that V  • A  = d [yf0 e-;*z]/d;t =  0 = V ,  so these potentials satisfy the Lorentz 
condition. Next, using Equation (14.9), we have

H  =  —  V  X  A  = —  —  (e~Jkz) a = * k  A ° -~ 
f l  f i  dz y H

jkz .

To find E ,  we can substitute the potentials into Equation (14.10), yielding 

E  = -  W  -  j(oA = -j(oA0e~ikzax.

These E- and H-fields form a linearly polarized plane wave. To see this more clearly, let 
us select the value of the constant A 0 so that it equals — E 0 /jco. Substituting, we find the famil
iar expressions for a plane wave propagating in the + z  direction,

E  =

H  =  a ,  =
OJfJL V

We can also use the scalar and magnetic potentials to represent electromagnetic 
fields in the time domain. To do this, we first transform Equations (14.1) and (14.2) 
into the time domain by replacing the jc o  with d / d t ,  yielding

B = V X A

3A
E = -  VV -  — .

(14.22)

(14.23)
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Next, we note that the integrands of both potentials (Equations (14.17) and (14.21)) 
contain terms of the form F(co, t ')e~ikW~ x'\ where F(oo, r') is some function of both fre
quency and position r'. Since k  =  oo V/xe, the phase of the exponential term is a linear 
function of co as long as p. and e are independent of frequency.

This allows us to use the well-known Fourier-transform, time-delay theorem;

f i t -  r ) < ^ F { ( o ) e - iuT,

where f ( t) and F(oo) form a Fourier transform pair. If we let r  = |r — r ' | /u, where 
u -  1/Vpe is the speed of light in the medium, we obtain the following Fourier trans
form pair:

< - > F (  < o , r ' ) e - Jklt- T'j . (14.24)

Using Equation (14.24), we find that Equations (14.17) and (14.21) become

i

[Wb/mJ or [T»mJ,

(14.25)

(14.26)

where t' — t — |r — r'\/u is the delayed time. According to Equations (14.25) and 
(14.26), the potentials A and V resulting from sources at the point r' at time t' are not 
observed at the point r until the delayed time t' + |r — r' |/w, which is the shortest time 
that electromagnetic energy can propagate between the points r and r' in a homoge
neous medium. Because of this time delay, the scalar and vector potentials for time- 
varying fields are often called retarded potentials.

14-3  T h e  In fin ite s im a l D ip o le

The simplest radiation source is a short segment of current, which, for reasons that will 
soon be obvious, is called an infinitesimal dipole. This source is also called & Hertzian 
dipole. Figure 14-2 shows such a current segment, which lies along the z axis and car
ries a time-harmonic current of amplitude IQ at all points along its length M. The eas
iest way to calculate the electric and magnetic fields generated by a Hertzian dipole is 
to first calculate the vector potential A, then B, and then E.

To evaluate the vector potential of a filamentary current, it is best to replace the 
volumetric current density J in the expression with the filamentary current I using the 
substitution

J(r ' ) d v ' = / (  r')dE,
With this substitution, the vector potential A can be written as
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z

dz'

F ig u re  1 4 -2  Geometry for calculating the 
fields of a Hertzian dipole.x

d£' (Filamentary currents), (14.27)

where C  is the contour of the filament.
For the infinitesimal dipole, the terms necessary to evaluate the integral for A  are 

J(r') =  /0, &l' = dz'az 

r' = z az, r = rar 

|r — r'| = |rar -  z' az| .

Substituting these expressions into Equation (14.27) and noting that the unit vector az 
is a constant along the filament, we obtain

When the filament length A£ is small, we can evaluate this integral as follows. First, we 
can expand the term |rar -  z 'a j  using Cartesian components:

|rar — z'az| = \r sin 6 cos 4>ax + r sin 6 sm4>ay + (r cos 8 — z')az|

If z' «  r, we can ignore the (z')2 term and use a two-term binomial expansion of the 
remaining terms, yielding

(14.28)

V r 2  -  2 rz' cos 6 + (z')2.

\rar — z 'az| ~ V r2 — 2rz' cos6 «  r — z' cosd. 

Substituting Equation (14.29) into Equation (14.28), we have

(14.29)

(14.30)

As long as M «  r, we can safely ignore the term z'-cos dm the denominator. How
ever, in order for us to be able to ignore this same term in the exponential function, 
we must have kz' «  1 ; otherwise, there will be a significant phase error in the inte-
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gral. Since k = 2 77/ A, the product kz' will be small throughout the integration if we 
restrict the filament length Ai such that M «  A. Hence, Equation (14.30) can be 
approximated as

A -
/jlI q M  e~ ikr „ 

4tt r
(Af «  r and Af «  A). (14.31)

Now that we have an expression for the vector potential A, finding the E- and H- 
fields is straightforward. Substituting Equation (14.31) into Equation (14.2), we have

U , V x "
—jkr

H = - V X A
/x  4 7 7  \  r

Using Table B-3, we can express a. in the spherical coordinate system as 

a. = cos 0 ar -  sin 0 a0.

Hence, Equation (14.32) can be written as

(14.32)

H L M
Air

V x
, - j k r -jkr

cos 6 a,. — sin 9 a,

Since the vector in the brackets does not vary with and has no 4> component, most of 
the terms in the curl expression vanish, yielding

H =
/ 0Af

Azrr
d_

dr

-jkr

cos 9 A
d d

, - j k r

sin 6

Evaluating the derivatives, we obtain

(14.33)

At this point, we have a choice of how to proceed to find E. One way is to use 
the Lorentz gauge to find V from A and then use the relation E = -V V  — jcoA. 
Another, simpler way is to substitute the H-field expression we have just found into 
Maxwell’s curl-H equation and solve for E. Knowing that J = 0 everywhere except on 
the filament itself, we can write

V X H
E = —----- ,

] 0 ) €

Substituting Equation (14.33) into this expression and evaluating the curl opera
tion, we obtain

E — Er ar + Ed&e, (14.34)

where
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and 1 7 = V;u/e is the intrinsic impedance of the medium.
As the reader has no doubt noticed, the E- and H-field expressions given by 

Equations (14.33), (14.35), and (14.36) are not simple, even though a short current fil
ament is about as simple a source as one could imagine. What makes these expres
sions so formidable is that they contain terms with three different rates of decay: 1 /r, 
1/r2, and 1/r3. In the discussion that follows, we will show that the 1 /r 3  and 1/r 2  com
ponents are similar to those generated by time-invariant currents and charges, whereas 
the 1 / r  components are radiation fields, found only for time-varying sources.

Starting with the electric field, we note from Equations (14.35) and (14.36) that 
the 1/r 3  terms are dominant when r «  1/k = \ / 2 tt, where A is the wavelength of a 
plane wave in the ambient medium. This region is called the near-zone region, where 
we find that

£  ~  .J J pA -  32 [ 2  cos q a r +  sin  9 a e] ( r « A / 2 7 r ) .  (14.37)

We can interpret this result more easily by noting that since the current is uniform 
along the filament, point charges ±Qa collect at the upper and lower endpoints, respec
tively. In the frequency domain, IQ = dQ0/dt, so it follows that in the frequency 
domain that

4  =  J u Q o (14.38)

Substituting Equation (14.38) into Equation (14.37) and using rj/k = (coe) 1, we find that

E  « M

4  77-er3

[2 cos 9 ar + sin 9 ae\ (r « (14.39)

This expression is the same as the field generated by a static dipole (Equation (4.54)), 
except that the amplitude of the field varies sinusoidally with time. Hence, at short 
distances, the field generated by a short current filament is dominated by the effects of 
the charges collecting at the endpoints. This is why we call this source an infinitesi
mal dipole.

The near-zone behavior of the H-field can be found by noting that the 1 /r 2  term 
in Equation (14.33) is dominant in that region. Thus, in the near zone we have

h M

4 7 rr2
sin 9H « (r «  X/2tt). (14.40)
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Except for the fact that this field varies sinusoidally in time, the H-field component dis
tributes itself exactly as the field of a steady-current filament. (See Equation (7.22).)

From the foregoing comments, we see that the electric and magnetic fields 
close to an infinitesimal dipole behave like those generated by a static dipole and a 
steady current, respectively. Except for the sinusoidal variations in these fields, 
there is nothing really new here. When r is large, however, the fields take on a dis
tinct time-varying behavior. To see this, we note that when r »  A, only the 1/r 
terms in the expressions for E and H are significant. Hence, in the far zone, we 
have

The 1/r decay rate exhibited by these fields is new: Static current and charge dis
tributions with finite dimensions do not generate fields that decay proportional to 1 /r. 
Also, the fields are outward propagating, as indicated by the e ~ikr phase terms. 
Because of this, we also call the region r »  A the radiation zone, and the fields in this 
region are called radiation fields. When viewed from a global perspective, the fields 
in the radiation zone have spherical phase fronts, as shown in Figure 14-3. However, 
when viewed over a small range of angles, these phase fronts appear planar, which is 
one indication that they can be approximated as plane waves. Other indications are 
that |E | / |H| = rj, and E and H are perpendicular both to each other and to the direc
tion of propagation. As a result, these fields “look” like plane waves when viewed 
locally by an observer in the far zone. This is useful in analysis and design, since plane 
waves are simple to model.

ae (r »  A) (14.41)

(14.42)

z  O utw ard-propagating  
phase fronts

Infin itesim al d ipole

y

x
F ig u re  1 4 -3  Radiation phase fronts of an 
infinitesimal (Hertzian) dipole.
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1 4 - 3 - 1  R A D I A T E D  P O W E R  A N D  R A D I A T I O N  R E S I S T A N C E

Given that the fields generated by an infinitesimal dipole propagate outward from the 
source and behave locally like plane waves in the far zone, it is logical to assume that 
these fields carry power with them. To show that this is so, we first calculate the com
plex Poynting vector

S  =  E  X H *  [W/m2].

associated with these fields. Substituting Equations (14.33)-(14.36) into this expres
sion, we obtain

S  -  17
L M
477

2  sin 6 cos 6 j k
„3

7
kr5

ae + sin2 0

k 2

„ 2

7
kr5

[W/m2

Remembering that the average Poynting vector «^ve is 1/2 times the real part of S , we 
can write

1 ( I  A ! \ 2

'̂ ave = g V sin2  e K  [W/m2] , (14.43)

where we have used k: = 2 77/ A. Comparing the preceding expressions for S  and -̂ ave, 
we see that the complex power S  has components in both the r and //directions, but the 
average power 7^ve has only an r component, since the 6 component of S  is imaginary 
and corresponds to stored, not radiated, energy.

We can find the total power radiated by an infinitesimal dipole simply by inte
grating the average Poynting vector -̂ ave around any closed surface that completely 
encloses the dipole:

Prad • ds.

Since /Cave has only an r component, a sphere is the easiest surface for integrating. For 
this case, ds = r2 sin 9 dd d<j> an which yields

1  / T A G 2 " l7T ^  

r̂ad = o V
0 J 0

sin 6
a,.* arr2 sin 6 dO d<j>.

Since ar • ar = 1, 7 7 ~  12077 [fl] (in free space), and j q sin3  6 dd = 4/3, Prad can be writ
ten as

P rad =  40772/ 2 [W] (At «  A, I in amperes). (14.44)

Equation (14.44) shows that the power radiated by an infinitesimal dipole is propor
tional to the squares of both the current magnitude I0 and the length-to-wavelength
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ratio A£/A. This observation has important applications both for elements that are 
designed to radiate and for those that are not. For instance, in order for a short dipole 
to radiate large amounts of power, the current levels must be high. On the other hand, 
the radiation from printed circuit board (PCB) traces can become troublesome when
ever the circuit paths or component lengths approach even l / 2 0 th of a wavelength.

Since a short current segment radiates power, it follows that it must present a 
resistive load to the source that drives this current. To see why, consider the situation 
shown in Figure 14-4a, which depicts a sinusoidal current source with magnitude 7a, 
connected to the midpoint of a short, perfectly conducting wire dipole of total length 
A t If the wire is loaded with large capacitors at the ends, 3  the current excited along 
the wire will be uniform, and it will radiate a power Prad, given by Equation (14.44). 
This power must be supplied by the current source, so

A  = A d = 40u2/o2 (14.45)

Also, since the wire is passive, the equivalent circuit looking into the terminals must be 
an impedance Zin = Rin + jX in [11], which is depicted in Figure 14.4b. In terms of this 
impedance, the input power to the dipole can be expressed as

A  = y A A  (14-46)

Substituting Equation (14.45) into Equation (14.46) and solving for P in, we obtain

A  =  =  8 0 ^ 2 ( y ) 2- h 4 -47)

The filaments are perfectly conducting, so the input resistance Rin can only be due to 
radiation effects. For that reason, we call this resistance the radiation resistance of 
the wire, denoted by the symbol Rr, and given by

R..
I P rad

[11] (A£ «  A). (14.48)

(a)

Pin = Pr?

(b)

F ig u re  1 4 -4  An infinitesimal (Hertzian) 
dipole, driven by a current source, a) 
Physical geometry, 
b) Equivalent circuit at the input 
terminals.

3 In practice, this can be accomplished by attaching metal discs to the wire ends.
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From the standpoint of the source that drives the current, radiation resistance is in
distinguishable from ohmic resistance. In both cases, the source must continually supply 
energy to the element in order to keep the current amplitude constant with time. In the 
case of ohmic resistance, this energy is transformed into thermal energy. Radiation resis
tance, on the other hand, converts the energy into propagating electromagnetic waves.

E xam p le  1 4 -2

Calculate the radiation resistance of a 1 [cm] length of uniform current if the frequency is 900 
[MHz] and the host medium is air.

Solution:

A t 900 [MHz], the wavelength in air is:

c _  3 x  1 0 8 

/  ~~ 900 x  106
33.3 [cm].

Since At = 1 [cm] «  A, the radiation resistance of this current is given by Equation (14.48),

R r =  80 t t 2
/  1 X 1 (T 2 \ 2 

\33.3 X l(T 2j
0.711 [«]•

As can be seen from this example, the radiation resistance of a short current seg
ment is only on the order of a fraction of an ohm, making it a relatively inefficient radi
ator. Later, we will show that currents that flow on structures a half wavelength or 
larger typically have much larger, and more usable, radiation resistances.

14-3-2 THE FIELDS OF CURRENTS ABOVE A PERFECTLY 
CONDUCTING GROUND

There are many situations where currents flow above large conducting planes. Typical 
examples are antennas above the earth and wires mounted near a conducting chassis. 
In many cases, we can consider these conducting planes to be infinitely large and per
fectly conducting. Also, since all current distributions are simply collections of infini
tesimal dipoles, we can model these situations by considering the fields generated by 
infinitesimal dipoles above an infinite, perfectly conducting ground.

Figure 14-5a shows two infinitesimal dipoles above an infinite, perfectly conduct
ing plane. Both are located a distance d from the plane, but differ in that one current is

G round plane

7V 7777777777777777777777777

(a)
Im age sources 

(b)

F ig u re  1 4 -5  Currents above a conducting 
ground plane, a) Physical geometry, 
b) Equivalent geometry.
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oriented parallel to the ground and the other perpendicular to the ground. Both of 
these currents radiate fields that, in turn, induce secondary currents in the ground plane. 
We can model the effect of these secondary currents by replacing the ground plane with 
image sources that maintain the same boundary conditions imposed by a conductor: 
Etan = 0 at all points on the plane. This equivalent geometry is shown in Figure 14-5b.

The image of a perpendicular current element above a ground plane is an identi
cal current element the same distance below the ground plane and with the same ori
entation. In this case, both the source and its image generate Er and Ee components 
(where the z-axis is perpendicular to the ground plane), each having a component par
allel to the ground plane. However, since Er is proportional to cos 6 and Ee is propor
tional to sin 9, the tangential component of Er from the source is canceled by the 
tangential component of Er from the image. The same occurs for the tangential com
ponents arising from the Ee components of the currents.

The image of a tangentially oriented current above a ground plane is also an iden
tical current element, located the same distance below the ground plane, but with an 
opposite orientation. An easy way to see why the source and the image must be 
directed oppositely is to consider a point on the ground plane that is exactly between 
the two currents. For this case, the Ee components of both sources are parallel to the 
ground plane and will cancel when the currents are oppositely directed.

The fields of the image sources can add either constructively or destructively with 
the fields of the original sources, depending upon the position of the observer and the 
distance of the source current from the ground plane. One special case occurs when 
the distance from the source to the ground plane is small. In this case, an observer 
above the ground plane “sees” the source and its image at essentially the same point, so 
the image of a perpendicular current has the effect of doubling the field of the source, 
whereas the image of a tangential current tends to cancel the fields of the source. For 
that reason, antennas mounted very close (in wavelengths) to a ground are nearly 
always oriented so that the currents flow perpendicular to the ground. A common 
example is the vertical dipole antenna, which we will discuss later.

A current elem ent in free space with length A£ = 0.5 [cm] and peak current 70 = 0.1 [A] at 1 
[GHz] is positioned d = 1 [cm] above a perfectly conducting ground plane that is tangent to 
the current. Calculate the m agnitude of the E-field 1 [km] above the ground plane, directly 
above the source. Com pare this with the E-field m agnitude if the ground plane were 
removed.

The wavelength in free space is A = c/f = 30 [cm]. Thus, M  «  A, and this current can be 
considered as an infinitesimal dipole. Also, since 1 [km] »  A, the observation point is in the far 
zone, which means that we can use Equation (14.41) for the E-fields radiated by both the source 
and its image. Directly above the sources, sin 6 - 1 ,  so, using the superposition principle, we 
can express the field due to the source and its oppositely directed image as

E xam p le  1 4 -3

Solution:
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where r x is the distance from the observer to the source (1 0 5 [cm] — 1  [cm]), r2 is the dis
tance from  the observer to the image (10"' [cm] + 1 [cm]), and k  = 2 7 7 /A =  0.209 [ c m 1]. 
Since 1 / r x ~  \ / r 2 ~  1 /r, where r  =  1 [km], we can write this expression as

j k I 0M

4 7 rr
y)(e ~jkr i — e~ikri ) .

Also, since r y — r  — d  and r 2 = r + d, we can write the preceding expession as

Ea  «  j U ° M  V e~ik r(e jkd -  e~ikd)  =  -qe~ikr ( j  2  sin k d ) ,
4 7 rr 4 n r

where we have used E uler’s identity to write e’ kd — e ’kd as j  2 sin k d .  Using the values 77 = 377 
[fl], | e — 7^| = ancj 2  sin k d  — 2 sin (1.047) = 0.416, we find that

0.209 [cm"1] x 0.1 [A] x 0.5 [cm] X 377 [ft] X 0.416 

A n  X 105 [cm]
[yuV/m].

If the ground were not present, | E e\ would be given by the same expression, but without the 2 
sin k d  — 0.416 term, so we would have

Ee
1.3 [yu. V/m] 

0.416
3.135 [yuV/m].

Thus, for this case, we see that the ground plane has the effect of reducing the field of the dipole 
by (3.135 -  1.3)/3.135 X 100 = 58%.

1 4 -4  T ra n s m itt in g  A n te n n a  P a ra m e te rs

The infinitesimal dipole is a simple prototype that demonstrates the basic operating 
characteristics of many antennas. Just as circuit engineers never stop using Ohm’s law, 
antenna engineers often find themselves modeling antenna performance using the 
properties of infinitesimal dipoles. Before we discuss more complicated antennas, 
however, it is worthwhile to define the various parameters that are used in engineering 
practice to specify the performance of an antenna when it is acting as a transmitter. In 
general, apart from its mechanical characteristics, what distinguishes one type of 
antenna from another is 1 ) the range of angles over which its radiated power is directed, 
2) the input impedance looking into the feed-point terminals, and 3) its bandwidth.

In this section we will define a number of parameters that are commonly used to 
quantify the operating characteristics of antennas. Although the discussion will center 
upon the transmitting characteristics of antennas, we will see later in the chapter that 
most these parameters can also be used to describe their receiving characteristics.

14-4-1 RADIATION INTENSITY

In the preceding section, we saw that the radiated power density generated by an infin
itesimal dipole is directed radially outward from the source and decays as 1 /r2. This is 
true for all radiation sources with finite dimensions, which means that we can express
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the radiated power density of any radiation source as a function of angular position, 
divided by r2:

= [W/m2]. (14.49)

The function U(6, cf>) is called the radiation intensity, which, as we will soon show, is 
measured in units of watts per steradian:

U(8, 4>) = r2 ,^ave [W/sr]. (14.50)

Since the fields in the radiation zone always behave locally as plane waves, we can 
express the power density using Equation (12.107),

Substituting this into Equation (14.50), we obtain an expression that specifies the radi
ation intensity U in terms of the E-field:

U(6, </>) = r2^ -  [W/sr].
2 i7

(14.51)

Whereas the power density /Pave is a measure of the power passing through a unit 
area, the radiation intensity U is a measure of the power passing through a unit solid 
angle. To see this more clearly, let us calculate the power Prad radiated by a source. 
Using Prad = j>s ^ ave • ds and integrating around a sphere, we obtain

Prad j) ^  ar* a/ 2  sin 6 d8 dcf).

This can be written as

p rad = & V(e, <t>)dci, (14.52)
h

where d£l -  sin 8 dd dcf) is the area traced on a unit sphere when 0 and cf> change by the 
amounts dO and dcf), respectively. Since dPl is measured in units of steradians 
[sr], U is measured in units of watts per steradian [W/sr].

E xam p le  1 4 -4

Suppose that an antenna has a radiation intensity given by

£ / ( U )
f 1.5 cos 6

|o
[W/sr] 0 <  6 <  7r/2, 0 <  cf> <  2 tt 

otherwise
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Find the power radiated by this antenna. 

Solution:

Using Equation (14.52), we obtain

*2tt r tt/2

P rad =  i> U ( d , ( l ) ) d n  =  \ 1/(0, $ )  s in  0 dO d(f>
- ' S  •'0 -*0

~ 2 tt f T r / 2  * tt/ 2

= I 1.5 cos 6 sin 6 d d  dcf) — 3 -7T c o s O s in d d O
■I 0 A) -'0

3 TT
4.71 [W ].

14-4-2 ANTENNA PATTERNS

A radiation pattern is simply a plot of the radiation characteristics of an antenna. 
There are two types of radiation patterns. A plot of the radiated power at a constant 
radius is called a power pattern. Similarly, a plot of the electric (or magnetic) field 
magnitude at a constant radius is called a field pattern. These patterns can be plotted 
either in absolute units or in dB. Figure 14-6a shows the radiation pattern of a typical 
antenna. As can be seen, this pattern consists of a number of lobes. The largest lobe 
is usually called the main lobe, and the others are called side lobes. The minima 
between the lobes are called nulls.

(a) (b)

F ig u re  14-6 A ntenna patterns, a) A three-dimensional pattern, b) Two-dimensional cuts.
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Radiation patterns are three-dimensional entities, but they are usually measured 
and displayed as a series of two-dimensional patterns, called cuts. For most antennas, 
two cuts are sufficient to convey a good idea of their three-dimensional patterns. Fig
ure 14-6b shows two cuts of the three-dimensional radiation pattern in Figure 14-6a for 
(f) -  0° and (f) = 90°, respectively. As can be seen, these cuts are similar, but not iden
tical, indicating that the three-dimensional pattern is not symmetrical.

The radiation patterns of linearly polarized antennas are often specified in 
terms of their E-Plane and H-Plane patterns. By definition, the E-plane contains 
the direction of maximum radiation and the electric field vector. Similarly, the El- 
plane contains the direction of maximum radiation and the magnetic field vector. 
These planes are perpendicular to each other, since E and H are always perpendic
ular in the far zone. Figure 14-7 shows the E-plane and H-plane patterns of a horn 
antenna.

Two kinds of antenna pattern shapes are given special names. The first is an 
isotropic pattern, which is the same in all directions. No antenna can have a truly 
isotropic pattern, but it is often a convenient idealization. An omnidirectional pat
tern is rotationally symmetric about an axis, often called the azimuthal axis. Figure
14-8 shows an omidirectional antenna pattern. Omnidirectional antennas are often 
used in broadcast applications, since they provide uniform coverage in all directions 
around them.

ds,

Figure 14-7 E -  and H -  plane patterns for a 
v horn antenna.

Figure 14-8 An omnidirectional antenna 
pattern.x y
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14-4-3 DIRECTIVE GAIN AND DIRECTIVITY

The directive gain Dg of an antenna is the ratio of its radiation intensity U(6, cf>) in a 
given direction to the radiation intensity C/ref (6, <£) of a reference antenna that radiates 
the same total power Prad:

Dg(e, (f>) = (Dimensionless), (14.53)

where,

p,hi = £  £/(», = £  £/„,(»,

In practice, a lossless, isotropic radiator is usually chosen as the reference antenna. 
For this case, £/ref (d, <£) is independent of 0 and <£, so

<f U Te{d n  = 4nUref.
Js

Substituting the preceding expressions into Equation (14.53) and noting that 
f/ave = 1 / ( 4 7 r)j>s U(6, (f>)d£l, we obtain the following equivalent expressions for

4ttU(6, <j>) _  4ttU(9, <f>) _  U(6, 4>) (Istropic reference 
gW *)  ^ radiator) \ • )

u(d,<f>)da

In this expression, f/ave = 1 /(4 7 t) j>s U(d, (f>)dCL is the average radiation intensity of the 
antenna under consideration (not the reference antenna).

As its name implies, the directive gain is an indication of how much more (or 
less) power an antenna radiates in a given direction than an isotropic antenna does. 
The directive gain in the direction of maximum radiation is called the directivity and 
is given by

D0  = D (0, (j>)
f i l l  U,

rad u ,
(Istropic reference radiator), (14.55)

where I/max is the radiation intensity in the direction of maximum radiation.
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E xam p le  1 4 -5  --------------------------------------------------------------------------------------------------------- --------------------

Find the directivity of an infinitesimal dipole.

Solution:

The average Poynting vector for an infinitesimal dipole is given by Equation (14.43),

1 / /  A£\2
^ a v e - g ^ i n ^ ^ j a ,  [W/m2].

Hence, the radiation intensity £/(0, 4>) is of the form 

U ( 6 ,  <f>) =  U max sin2 6,

where U max is the radiation intensity along 0 — 90°. Substituting this into Equation (14.55), we have 

r ,  4 ^ m a x ___________ 4 tt_____________  4 tt

■  U 0 . T ~ 77 1 8 7 7 - / 3 1

<j> U max sin 2 6 dVL sin2 0  sin d d d  d4>
Js Jo Jo

Thus,

D 0 = 1.5.

We can also express this in dB:

D 0 =  10 log(1.5) = 1.76 [dB],

14-4-4 POWER GAIN AND RADIATION EFFICIENCY

The directive gain Dg(0, 0) indicates where an antenna radiates its energy, but does 
not indicate what percentage of the input power is actually radiated. To convey this 
additional information, we define the power gain Gg(0, 4>) of an antenna as the ratio of 
the radiation intensity U(0, (f>) to the radiation intensity Uiei of a lossless reference 
antenna that has the same input power Pin. Usually, the reference antenna is an 
isotropic radiator, so Pin = 47rt/ref, which yields

Gg(6,4>)= _  ̂ (Isotropic reference radiator).
în

(14.56)

The maximum power gain of an antenna is denoted by

4 7 tU
G0 = max (Isotropic reference radiator).

*in
(14.57)

Usually, when the term “antenna gain” is used in practice, the maximum power gain 
is implied.

Comparing Equation (14.57) with Equation (14.55), we see that the definitions 
of the directivity and gain of an antenna differ only in that the directivity has the radi
ated power in the denominator, whereas the gain has the input power in the denomi-
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nator. This difference is subtle, but important. The ratio of these quantities is the 
radiation efficiency rjr of the antenna, given by

Go _  - r̂ad

ZT
(14.58)

Most antennas have efficiencies well over 90%. Exceptions to this are electrically 
small antennas and ones that make extensive use of dielectrics, such as a horn antenna 
with a lossy dielectric lens.

14-4-5 RADIATION RESISTANCE AND INPUT IMPEDANCE

Figure 14-9a shows an arbitrary antenna with a pair of input terminals a and b. If the 
antenna is not receiving power from waves generated by other sources, the Thevenin 
equivalent circuit looking into these terminals will consist only of an impedance

Zin = Ri„ + jX ta [fl], (14.59)

where Rin and Xin are the input resistance and reactance, respectively. This Thevenin 
equivalent circuit is shown in Figure 14-9b. In general, the antenna input resistance 
Rin is the sum of two components:

Ria = Rri + RL. (14.60)

Rri and RL are the input radiation resistance and input loss resistance of the antenna, 
respectively. As their names imply, the loss resistance RL accounts for that portion of 
the input power that is dissipated in heat, whereas the input radiation resistance Rri 
accounts for power that is radiated by the antenna. Using

P  =  — 7~ R'  rad 2 T r r  V(

we can write the input radiation resistance Rrj in terms of the terminal current 7jn and 
the power Prad radiated by the antenna:

2  P
Rri = - rf 1 [ft]- (14-61)

*in

Also, the radiation efficiency r/r can be expressed in terms of Rri and RL as

Figure 14-9 The input impedance of an 
antenna: a) Input terminals of an antenna, 
b) The equivalent circuit as seen looking 
into the input terminals.
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Vr = X T  = " (Dimensionless).
“ in K ri +

(14.62)

Even though the input radiation resistance is a parameter that is measured in the 
near zone of an antenna, Equation (14.61) shows that it can be calculated by knowing 
only the far-zone radiation pattern. On the other hand, it is not so easy to calculate the 
input reactance Xm. This is because Xin represents energy stored in the fields close to 
the antenna. Hence, Xin can only be calculated by first calculating the fields close to 
the antenna, which are typically much harder to calculate than the far-zone fields.

Another common resistance parameter used to describe antennas is the radia
tion resistance

where /max is the maximum current on the antenna. This resistance is related to the 
input radiation resistance Rri, but they are equal only when the maximum current on 
the antenna appears at the input terminals. In general, Rri and Rr are related by

Simple antennas consist of a single radiating element or structure. The major classes 
of simple antennas include straight wire antennas, loop antennas, aperture antennas, 
and reflector antennas. These antennas are often used individually, but they can also 
be used as the basic building blocks of larger antenna structures called arrays. In this 
section, we will outline the basic characteristics of the major classes of simple antennas. 
Later, we will discuss how these elements can be arranged to form arrays.

14-5-1 DIPOLES

We have already discussed one type of dipole, the infinitesimal (or short) dipole. This 
antenna is simple to model, but is not very practical for a number of reasons, the most 
important being that its input impedance is undesirable—a small resistance in series 
with a very large capacitive reactance. Because of this, it is very difficult to design effi
cient matching networks that allow short dipoles to be driven by amplifying circuits. 
However, when the dipole length is on the order of a half wavelength or more, its input 
impedance becomes much more attractive. This, along with its mechanical simplicity, 
makes the finite-length dipole attractive for a number of applications.

In order to determine the fields generated by finite-length dipoles, we must first 
determine what kinds of current distributions are excited on these wires by a voltage 
feed. Calculating these currents directly from Maxwell’s equations is a difficult prob
lem, since both the currents and the fields must be found simultaneously. A simpler, 
alternative procedure is to consider the wire configurations shown in Figure 14-10.

(14.63)

(14.64)

14 -5  S im p le  A n te n n a s
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c  y r s g ,
o  '

^  €/2

(c)

F ig u re  1 4 -1 0  Sequence of wire 
configurations for determining the current 
distributions on dipoles: a) A  straight 
dipole, b) A slightly bent dipole, c) An 
open-circuited transmission line.

In Figure 14-10a, a dipole antenna of length l is fed at its center by a voltage source. 
Figures 14-10b and c show the same geometry, but with the dipole arms bent progres
sively towards each other until they are parallel. At the end of this progression, the 
wires form a uniform, open-circuited transmission line. Even though the properties of 
transmission lines and antennas are quite different, the current on the wires remains 
remarkably constant throughout the progression. This means that we can use the 
transmission-line current as an approximation of the antenna current. Using standard 
transmission-line analysis, we find that the current on the upper wire of Figure 14-10c 
is of the form

K z )  =  / m sin

where k = <u V / x ()e0 is the phase constant of a transmission line with an air dielectric 
and z = 0 occurs at the terminals. Since the currents on the upper and lower wires 
have even symmetry, the preceding expression for /(z) can be used over the entire 
length of the dipole in Figure 14-10a by replacing z with | z | , yielding

I(z) = Im sin (14.65)

This approximation for /(z) is most accurate when the dipole is fed at its center, but 
can also be used for off-center-fed dipoles.

Figures 14-lla-c show the current distributions excited on dipoles of three dif
ferent lengths.

I ( z )

e = a/2 €  =  A

€ z e z
(a) (b) (c)

F ig u re  1 4 -1 1  Current distributions on dipole antennas: a) l  «  A/2. b) l  = A/2. c) i  -  A.
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As can be seen, when i «  A/2, the shape of the current is roughly triangular. For 
longer lengths, I{z) takes on a sinusoidal shape, with more lobes on longer length 
wires. For all lengths, the current I0 at the center of the wire is given by I0 = Im 
sin (k 1/2). However, when i is an odd multiple of half wavelengths, 70  = Im.

Having found an expression for the dipole current I(z), we can calculate the 
total radiated field by summing the contributions from each infinitesimal segment 
along the dipole. Referring to Figure 14-12 and using the field of an infinitesimal cur
rent segment (Equation (14.41)), we can write the far-zone contribution from the seg
ment at z = z' as

dE
jkl{z')dz'

A tt
rj sin 6' (14.66)

where R is the length of a line from the segment to the observer and O’ is the angle that 
this line makes with the z-axis. When r »  1/2, all lines drawn from the wire to the 
observer are nearly parallel, so 6 ~ O' and

R ~ r — z' cos d, (14.67)

where r and 0 are the position coordinates of the observer. Substituting Equation 
(14.67) into Equation (14.66) yields

d E  =  , * / M £ ^

4zrr 1 6
(14.68)

Replacing I(z') with Im sin{/c[(£/2) — |z|]} and integrating all the contributions to the 
field along the wire, we obtain

TOP

E = dE
} M m e

—jkr

A TTY
7 7 sin 6 a 6

1 /2

sm
BOTTOM

- 1 / 2

k l i 7jkz' cos 8d z'.

F ig u re  1 4 -1 2  Geometry for determining 
the far-zone radiated field of a finite- 
length dipole.
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Using Euler’s identity to expand the exponential term and evaluating the resulting 
integral, we get

E = nIf  F(g) [V/m], (14.69)
Z77T

where F{6) is called the pattern function and is given by

cos

m  =

k i
cos 6 — cos

k i

sin 6
(14.70)

Since in the far zone E and H behave locally as plane waves, we also have = E J rj. 
Hence,

H = i L e ~ ikr
2lTV

m  v (14.71)

Figure 14-13 shows the pattern functions for four different-length wire antennas, 
each normalized to a maximum amplitude of unity. As can be seen, dipole pattern 
functions become more complex as their lengths increase. The reason for this is that 
the phase difference between the fields emanating from the endpoints of the dipole 
becomes more pronounced as the dipole length increases. At 0 = 90°, all delays are

(C) € = 1.25 A

F ig u re  14-1 3 Pattern functions for dipole antennas oriented along the z-axis: a) i  = A/2. 
b) i  =  A. c) i  = 1.25A. d) i  =  1.5A.
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equal, since the current lies along the z-axis. But as 6 approaches 0° or 180°, contribu
tions from the different points on the dipole arrive with significant phase differences.

We can find the power radiated by a wire antenna by integrating the radiation 
intensity over a large sphere that surrounds the wire. Substituting Equations (14.69) 
and (14.70) into Equation (14.51), we see that the radiation intensity is

U ( 8 , 4 > )  =  ^ F H 9 ) .

Substituting U{6, </>) into Equation (14.55), we find that the directivity Da is given by

„  t / - ,  f 2W L x  _  f 2W L „ ,
0 U 1 r2lT r7r 1 rn

ave T-  E2(0) sin 6 dd d(f> — F2(d)sinddd
4irJo J0  2  Jo

The integral in this expression cannot be evaluated in closed form, but it can be manip
ulated into a form that contains well-tabulated functions,4 or it can be evaluated 
numerically. Figure 14-14 show D0 as a function of £/A. As can be seen, DQ ~ 1.5 
when £ «  A/2. For i — A/2, the directivity is

D0 = 1.64 = 2.15 [dB] (Half wave dipole). (14.72)

Remembering that the current at the dipole center is Iin = Im sin (k 1/2), we can 
determine the input radiation resistance of a lossless, center-fed dipole using Equa
tion (14.61):

R:„ — R,: —
2 P,rad _

27r sin2(/c 1/2) fJo
F2(d) sin 6 dd. (14.73)

The dark curve in Figure 14-15 is a plot of Rm as a function of dipole length. The 
values in this curve were obtained using Equation (14.73), except for the lengths in the 
range 0.8A to 1.0A, where Equation (14.73) predicts unreasonably large values. These 
incorrect values occur because the approximate current distribution goes to zero for 
this range of dipole lengths, whereas the actual current distribution does not. To

See C. Balanis, Antenna Theory (Harper &  Row publishers). New York, 1982.
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Figure 14-15 Input resistance and reactance of a center-fed dipole vs. length.

account for that behavior, the values of Rm plotted in the aforesaid range were obtained 
using an advanced numerical technique that calculates the exact current distribution on 
the wire. The figure also shows the values of the input reactance X in, which were 
obtained using the same numerical technique throughout the entire range of dipole 
lengths.

As can be seen from Figure 14-15, the input impedance of a center-fed dipole is 
purely resistive for certain lengths, called resonant lengths. The shortest resonant 
length is t ~  A/2 (£ = 0.475A, to be more exact), for which we obtain

Zin ~  73 + j  0 [Cl] (Half wave dipole). (14.74)

There are other resonant lengths, but the half-wave dipole is by far the most popular 
choice, since it has the shortest length, the simplest radiation pattern, and a relatively 
large bandwidth over which Im(Zin) is small.

Dipole antennas were among the first antennas used in electrical communications 
and are still used in a wide range of applications. They are particularly popular at RF 
frequencies, where wavelengths are long. This is because it is usually much easier to 
mount a long wire between towers and trees than it is to position a large metal surface, 
such as a reflector.

There are times when dipoles are formed unintentionally. For instance, coaxial 
cables act as dipole radiators when they carry unbalanced currents. As we discussed in 
Section 9-3-7, a nonzero magnetic field is generated outside a coaxial cable that has 
unbalanced currents. When the currents and fields are time varying, a time-varying 
electric field is also produced, since time-varying electric fields always accompany 
time-varying magnetic fields. Thus, to an outside observer, the cable appears to be a 
thick wire dipole carrying the common-mode current (i.e., the sum of the inner and 
outer currents).
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Radiation from cables is a significant problem in digital equipment, since it causes 
interference with communication services (such as radio and television) and can also 
interfere with the operation of the digital systems themselves. A common way of sup
pressing this radiation is to wrap an offending cable around a ferrite core, as shown in 
Figure 9-26b, which reduces the common-mode current.

Two types of wire antennas that are closely related to dipoles are monopoles and 
folded dipoles, which we will discuss in the paragraphs that follow.

Monopole Antennas. Figure 14-16a shows a monopole antenna, consisting of 
a straight wire, mounted perpendicular to a conducting ground plane and fed with a 
voltage Vm at the base. At first look, this antenna may appear to have little relation 
to the dipole, since currents flow on both the wire and the ground plane. However, 
we can determine the fields of a monopole by using the equivalent geometry shown 
in Figure 14-16b. Here, the ground plane is replaced by an image wire that carries 
a current which is a mirror image of the monopole current. To ensure that the cur
rent on the equivalent dipole has the required even symmetry, a voltage Vin is 
applied symmetrically, just below the z = 0 plane. The fields above the z -  0 plane 
are unchanged, since the Etan = 0 boundary condition once imposed by the ground 
plane is now maintained by the image currents. As a result, the radiation pattern of 
a monopole is identical to a dipole whose length is exactly twice that of the mono
pole.

We can find the input impedance of a monopole using the equivalent dipole 
shown in Figure 14-16b. Starting with Zin = Vin/ / in, we can rewrite this as

(a)

(b)

Figure 14-16 A monopole over a conducting plane and its equivalent dipole, 
a) The monopole and ground plane, b) The equivalent dipole in free space.



596 CHAP. 14 RADIATION AND ANTENNAS
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Since the two series voltage sources in the equivalent dipole constitute a single voltage 
of value 2Vjn, it follows that 2Vin/I in is the impedance of the equivalent dipole. Thus, 
the monopole input impedance is given by

7  = — 7monopole ^  dipole- (14.75)

For a monopole of length £ ~  A/4, we have

Z monopoie = \  x 73 = 36.5 [11] (A/4 monopole). (14.76)

Because monopole antennas require only half the wire length of dipole antennas, 
they are often used in low-frequency systems, where wavelengths are long. They also 
have radiation patterns that are ideal for ground-to-ground communication systems, 
since the direction of maximum radiation is parallel to the ground. Also, unlike hori
zontal dipoles, which must be mounted several wavelengths above the ground to be 
effective (due to reflections off the ground that tend to cancel the fields), monopoles 
work best when mounted directly above the ground.

Folded Dipoles. Another common variation of the dipole wire antenna is the 
folded dipole, shown in Figure 14-17a. As can be seen, this antenna consists of two 
A/2 dipoles connected in parallel, with the feed point at the center of one of the dipoles. 
Although at first glance it may appear that a folded dipole antenna will act more as a 
loop antenna than as a dipole, the small area enclosed by the wires prevents it from 
acting in the loop mode.

Folded dipoles can be analyzed quite easily by recognizing that, according to the 
superposition principle, the single voltage feed can be represented as the sum of the

/in
+ JL

e  = a/2

(a)

lo

< ©  © + ♦  ?  G> < 9  ?

(b) (c)

Figure 14-17 A folded dipole and its odd and even components, a) A folded dipole, fed 
at a single port, b) The odd-mode excitation, c) The even-mode excitation.
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odd and even voltage feed configurations shown in Figures 14-17b & c, respectively. 
Thus, the folded dipole current distribution can be expressed as the sum of the even- 
and odd-mode current distributions. The input current of the folded dipole can now 
be expressed as

4  = 4  + /», (14.77)

where Ie and 70 are the currents at the original feed point due to the even- and odd
mode voltage feeds, respectively. Also, the radiated fields of the folded dipole are the 
sums of the fields radiated by the odd- and even-mode configurations.

The odd-mode configuration of Figure 14-17b is a transmission-line mode, since 
the sources drive currents that are oppositely directed on the upper and lower wires. 
Transmission-line modes do not radiate, so this part of the total current distribution 
does not contribute to the radiation pattern of the folded dipole. Also, the odd-mode 
current distribution has no effect on the input impedance of the folded dipole. This is 
because the impedance “seen” by both voltage generators in the odd-source configu
ration is infinite, since they are located A/4 away from short circuits. Hence, 70 = 0 
when i ~  A/2.

For the even-mode configuration, shown in Figure 14-17c, the currents at the wire 
ends are zero, which means that the current distributions on both wires are essentially 
the same as the current distribution on a single dipole. Since the wires are closely 
spaced, their radiated fields add in the far zone, producing a standard dipole pattern. 
As a result, the even-mode excitation behaves as a thick, center-fed dipole, with volt
age feed Uin/2 and terminal current 2Ie. The input impedance of a thick dipole is 
roughly the same as for a thin one, so the ratio of the terminal voltage Fin/2 to the ter
minal current 2Ie must be 73 [O], which gives us

Y J l
2 h

73 [H].

Multiplying both sides by 4 and using 7in = Ie, we obtain the ratio of Vm to 7in, which is 
the input impedance of the folded dipole;

Adipoie = T 1 = 4 X 73 = 292 [O] (£ =  A/2). (14.78)
-Mil

Thus, a folded dipole has the same pattern function as a standard dipole and an input 
impedance that is four times larger than a standard dipole.

Because of their relatively high input impedances, folded dipoles are often used 
with FM radio and television receivers. They provide a particularly good match to the 
300 [Cl] twin-lead transmission lines commonly used in these systems.

14-5-2 LOOP ANTENNAS

Loop antennas usually consist of one or more circular loops of wire. Figure 14-18 
shows a single-turn loop antenna, fed by a voltage source. Unlike wire antennas, 
which are analytically simple for all lengths, only small-circumference loops can be ana
lyzed easily.
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Vin

Figure 14-18 A small loop antenna with a 
uniform current.

We can determine the radiating characteristics of small loop antennas by estimating 
the current distribution on the loop, calculating the vector potential A generated by 
this current, and then calculating the radiated E- and H-fields.

From a lumped-circuit point of view, the short loop shown in Figure 14-18 is 
essentially a short circuit driven by a voltage source. Thus, it is reasonable to assume 
that the current is uniform along the loop. This is verified by experimental mea
surements. Referring to Figure 14-19, we see that the vector potential generated by a 
uniform loop of current is given by

In this expression, r and r' represent the positions of the observer and the dummy inte
gration points along the loop, respectively, and d£' is the differential displacement vec
tor along the loop. Rather than integrating directly, we will rewrite the expression in 
terms of an integral that we encountered in Chapter 7, while discussing the magnetic 
dipole. To accomplish this, we first write the exponential term in the integrand as

e - j k \ x - t ' \  — e - j k r  e - j k { | r - r ' |  -  r )  _

As long as a «  r, | r — r' | and r are nearly equal, so the second exponential can be 
approximated by the first two terms of its Maclaurin series:

(14.79)

I " rJ *  1 -  jk [ |r r' -  r] .

Substituting into Equation (14.79), we obtain

Radius = a

Figure 14-19 Geometry for determining the fields radiated by a small, 
constant-current loop.
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A = 1— 0 p - j k r  

4 7 7
(1 +  j k r )

d r
(14.80)

The second integral in this expression is zero (since the path of integration is closed), 
and the first integral is the same as that found in Equation (7.55), namely,

^ | ^  | , ~  ~ 2  sind r » a ,  (14.81)

where S is the area of the loop. Substituting Equation (14.81) into Equation (14.80), we 
obtain the final expression for A:

ulS I  e~’kr
A = ^ °—2— [1 + j k r \  sin 9  ** r »  a and a «  A. (14.82)

Having found A ,  it is a simple matter to find E  and H .  Using Equation (14.2) 
and H  =  B / / x ,  we have

i i r u SI p~ikr
H  =  ~ V x A  =  - V x  r  a ° - [1 +  j k r ]  sin  6 .

/X  IX L 4 7 7 T 2

Evaluating the appropriate derivatives, we find that 

H  = Hrar + Hg afl, 

where

Hr = ^ c o s 8  

r 2tt

J
k r 3

, - jk r

= sine
6  4 t t

j k  1~ + r 7
k r 3

, - jk r

(14.83)

(14.84)

(14.85)

Finally, we can use Maxwell’s curl-H equation to find E .  Noting that J  = 0 except on 
the loop itself, we have

j o je

Substituting Equations (14.84) and (14.85) into this expression and evaluating the curl 
operation, we obtain

E  =  £  o  =  - m k s i 0  • n—:— ^sin0 
477

j k  1 
— + ,-jkr ̂ (14.86)

Comparing the fields generated by a small loop with those of a small dipole 
(Equations (14.33), (14.35), and (14.36)), we see that they are the same, except that the 
roles of E  and H  are reversed. Sources that have this kind of reversal in the roles of E  
and H  are called duals of each other. The pattern function for a small loop is shown in 
Figure 14-20. As can be seen, the pattern is omidirectional, with maximum radiation 
in the plane perpendicular to the axis of the loop.
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sin 0

F ig u r e  1 4 - 2 0  T h e  p a t t e r n  f u n c t i o n  f o r  a  
s m a l l ,  c o n s t a n t - c u r r e n t  l o o p  a n t e n n a .

Because the radiation patterns of small loops and dipoles are duals, the radiation 
resistance for a small loop antenna can be derived using a similar sequence of steps as 
was used for the small dipole, resulting in the expression

Rr = ^  = ^ Y { !f ) 2  = 2 ° n 2 { f )  [fl] <C « A ) ,  (14.87)

where C = lira is the circumference of the loop and rj ~  377 [fl] in free space. As 
with the small dipole, the radiation resistance of a small loop is also small—too small 
to be of much practical value in most cases. However, unlike the situation with short 
dipoles, there are two “tricks” that are often used to dramatically increase the radia
tion resistance of small loops. The first is to use multiple turns. According the super
position principle, the E- and H-fields generated by an A-turn loop are both 
proportional to A, so the radiation resistance varies as A2. The second trick is to 
wrap the multiple turns around a high-permeability core, which increases the strength 
of both E and H in the far zone. When both of these tricks are used, the radiation 
resistance is given by

Rr = 20n 2 A2 [«] (C «  A), (14.88)

where /jlc is the permeability of the core. Multiturn loops with ferrite cores are called 
loop-stick antennas and are used in AM broadcast receivers because of their relatively 
high radiation resistances and small sizes.

Even though we have not yet discussed the receiving properties of antennas, 
there is one important receiving property of loop antennas that is worth discussing 
here: Loop antennas are relatively insensitive to near-zone electric sources, such as the 
sparks created by electrical machinery. This makes these antennas particularly attrac
tive for use as receiving antennas in electrically noisy environments, since they respond 
well to far-zone electric and magnetic sources, but not near-zone electric sources. This 
property follows directly from that fact that the near-zone transmitted E-fields of loop 
antennas are much weaker than the H-fields. Since the transmitting and receiving 
properties of antennas are related,5 loop antennas respond well to incident H-fields, 
but not E-fields. The near-zone fields of short electric currents are predominately 
electric (see Equations (14.33)—(14.36)), so loop antennas respond much less to these 
sources than dipoles do.

5 We will show this later in the chapter.
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Slot-----

Ground plane

(a) (c)

Figure 14-21 Examples of aperture antennas: a) A horn antenna, b) A slot antenna, c) A 
microstrip patch antenna.

14-5-3 APERTURE ANTENNAS

As the name implies, an aperture antenna is characterized by an aperture, or opening, 
from which the radiated fields are emitted. Popular types of aperture antennas are 
horns, slots, and microstrip patches, shown in Figure 14-21.

In a way, aperture antennas are the easiest antennas to understand, since they 
look like they are capable of launching waves. The operation of aperture antennas is 
most easily explained using Huygens’s principle (Christiaan Huygens, 1629-1695), 
which, in words, states that each point in an advancing wave front acts as a source of 
spherical, secondary wavelets that propagate outward. Figure 14-22 demonstrates this 
by showing a plane wave impinging upon a slit aperture in a screen. Here, we see that 
the secondary wavelets lead to a spreading of the wave as it emerges from the aperture. 
This spreading is called diffraction and occurs whenever a wave is incident upon a 
sharp discontinuity. Hence, the antenna pattern of an aperture antenna is actually a 
diffraction pattern.

We can derive an expression for the far-zone pattern of this simple aperture 
antenna by using Figure 14-23a and a simplified expression of Huygens’s principle 
(which can be derived from Maxwell’s equations),* 6

(14.89)

Diffracted field

Incident field

Figure 14-22 Diffraction from a uniformly 
illuminated aperture.

6 See Stutzman and Thiele, Antenna Theory and Design. New York.
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Figure 14-23 R a d i a t i o n  f r o m  a  n a r r o w  a p e r t u r e :  a )  T h e  g e o m e t r y ,  b )  N o r m a l i z e d  f a r - z o n e  
E - f i e ld  v s. o b s e r v a t i o n  a n g le .

In this expression, E (r) is the magnitude of the electric field at the observation point 
r = (r, 6 , <f>), S is the aperture surface, Ea(r') is the magnitude of the electric field in the 
aperture, and r' = (x', y', z ') is the dummy position vector that sweeps over all the 
aperture points during the integration. At large distances from the aperture, we can 
write

|r — r' | ~  r — z' cos 6 .

Assuming that the field in the aperture is uniform and that the aperture width Ax is 
small, Equation (14.89) can be evaluated for the aperture as follows:

. / a \
.. .. sin 7T —COS0

jJc A y p râ  p \  A /

“  ~~ 2 ^ ~  ~ ------- (14'90)

Figure 14-23b shows this radiation pattern as a function of 6  for the case where 
a — 3A. As can be seen, the pattern consists of a main lobe at 6  = 90° and a number of 
side lobes. The size of the main lobe is inversely proportional to the aperture width a. 
This characteristic is shared by all aperture antennas. To obtain a narrow main lobe, 
the aperture dimensions must be on the order of a wavelength or greater.

Horn antennas are simply flared waveguides. The flare can be in the plane that 
contains the E-field vector (E-plane horns), in the plane that contains the H-field vec
tor (H-plane horns), or in both planes (pyramidal horns). Typically, the aperture dis
tribution is roughly the same as the waveguide mode in the feed, with a phase taper 
across the aperture due to the spherical expansion of the fields from the waveguide. 
Figure 14-24 shows the E- and //-plane patterns of an E-plane horn.7 As can be seen, 
the E-plane pattern is much more directive than the H -plane pattern. This is because 
the aperture is wide in the E-plane and narrow in the E-plane.

7 From equations derived in C. Balanis, Antenna Theory, pp. 539.
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Figure 14-24 F a r - z o n e  r a d i a t i o n  f r o m  a  t y p i c a l  h o r n  a n t e n n a :  a )  T h e  g e o m e t r y ,  b) T h e  
f a r - z o n e  E- a n d  H- p l a n e  p a t t e r n s  in  d B .

Radiating Patch Radiating

Figure 14-25 C r o s s - s e c t i o n a l  v ie w  o f  a  
m ic r o s t r i p  a n t e n n a  w ith  a  c o a x i a l  f e e d .

Microstrip patch antennas consist of metal patches mounted on a dielectric 
sheet, with a ground plane underneath. The most popular patch shapes are rectangles 
and circles. Often, these patches are fed by microstrip transmission lines, as shown in 
Figure 14-21c. Another common way to feed patch antennas is shown in Figure 14-25. 
Here, the center conductor of a coaxial cable is brought up from the ground plane and 
attached to a point on the patch. The apertures of these antennas are not the patches 
themselves, but rather the regions just beside the patch edges, where the E-field lines 
fringe. This fringing is shown in the figure; the apertures (or radiating slots) are indi
cated by the dotted lines.

Real input impedances are obtained when the patch dimensions are roughly A/2 
on a side. Figure 14-26 shows the radiation pattern of a typical patch antenna. As 
can be seen, the direction of maximum radiation is perpendicular to the patch. Also, 
the radiation pattern is quite broad, which makes patch antenna useful for applications 
in which the position of the receiver (or transmitter) is unknown, such as mobile com
munication receivers.

Although the gain of single patch antennas is low, their planar construction makes 
them an ideal choice for the elements in large, planar arrays. As we will see later in this 
chapter, high-gain antennas can be made out of arrays of relatively low-gain elements. 
Patch antennas are also attractive in situations where the antenna height must be kept
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Figure 14-26 E- a n d  / / - p l a n e  r a d i a t i o n  p a t t e r n s  o f  a  r e c t a n g u l a r  p a t c h  a n t e n n a ,  A/2 o n  
a  s id e ,  w i th  a  m ic r o s t r i p  t r a n s m i s s i o n - l i n e  f e e d .

low, such as on an aircraft fuselage. Another reason for their popularity in large arrays 
is that they can often be fabricated using standard printed-circuit techniques. On the 
downside, however, the impedance bandwidths of these antennas are small, since the re
gion beneath the patch is basically a high-<2 cavity.

Sometimes aperture antennas are formed unintentionally in electronic equip
ment. A common example is a hole or seam in a metal chassis. Figure 14-27 shows a 
seam on a chassis, possibly formed along the edges of a lid or an access panel. Even if 
the seam is thin, the radiation can be significant when its length is even a fraction of a 
wavelength. A common method of reducing the radiation is to place conducting tape 
along the seam. Another common solution is to place flexible metal fingers on each 
side of the chassis doors that mesh as the door is closed.

14-5-4 REFLECTOR ANTENNAS

Reflector antennas use reflectors (usually metal) to reshape the pattern of a smaller 
feed antenna into a more directive pattern. Figure 14-28 shows three popular types of 
reflector antennas: a planar reflector, a corner reflector, and a parabolic reflector. As 
can be seen from this figure, each of these reflectors redirect rays back towards the 
feed, but with different angular spreads.

The radiation patterns of planar and corner reflector antennas can usually be 
obtained using image theory to replace the conducting surfaces with equivalent

- Seam (aperture)

Figure 14-27 R a d i a t i o n  f r o m  a  s e a m  in  a  
C h a s s is  c o n d u c t i n g  c h a s s is .

Lid

Leakage
radiation>k
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Figure 14-28 Examples of reflector antennas: a) A planar reflector, b) A corner 
reflector, c) A parabolic reflector.

Image
dipoles

Corner
reflector

(b)

Figure 14-29 A corner reflector with a dipole feed: a) The reflector, the feed dipole, and its 
images, b) The far-zone radiation pattern.

sources. For instance, Figure 14-29a shows the equivalent sources for a 90° corner 
reflector, fed by a dipole antenna (directed out of the paper). This geometry can be 
simplified by replacing the corner reflector with three image dipoles. Figure 14-29a 
shows the image polarity necessary to maintain the constant potential surfaces of the 
corner reflector. With the image dipoles in place, the pattern function of this antenna 
can be obtained simply by summing the fields generated by each of the four dipoles. 
Using the array techniques discussed in the next section, it can be shown that the pat
tern function of this antenna in the plane of the paper is

F(6 ) = 2 COS I 27T  —  COS 6 -  COS (14.91)

Figure 14-29b shows the radiation pattern for a 90° corner reflector when d = 0.8A.
Parabolic reflectors are distinctive because they reflect all the rays emanating 

from a point source parallel to the axis of the reflector. This is an attractive feature, 
since the reflected fields on the focal plane resemble a plane wave, as shown in Figure
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14-28c. This feature makes parabolic reflector antennas highly directive, with pattern 
functions that have very narrow main beams, often called pencil beams. Although 
dipoles are sometimes used as the feeds for parabolic reflector antennas, the most 
common feeds are horns. This is because horns provide a more symmetric illumina
tion of the reflector. Also, horns tend to illuminate the center of the reflector more 
strongly than the edges, which tends to reduce the side-lobe levels.8 Figure 14-30 
shows the radiation pattern for a large parabolic reflector antenna. The narrow main 
beam and —30 [dB] side-lobe levels shown in the figure are typical of parabolic reflec
tor antennas. This characteristic makes them attractive for applications such as radar 
and satellite communications, where high gains and low side-lobe levels are required.

1 4 -6  A n te n n a  A rrays

In our discussion of the basic antennas in the previous section, we saw that these anten
nas can usually be made more directive by making them large with respect to a wave
length. This often poses problems, however, since such structures can become difficult 
to fabricate and maneuver when they are large. Another problem is that the antennas 
often don’t offer as much freedom as we’d like in shaping the exact characteristics of 
the radiation patterns, such as their directivity and the side-lobe characteristics.

An attractive way to deal with these limitations is to construct arrays of small, 
simple antenna elements. By positioning and feeding each element appropriately, one 
can attain both large directivities and low side-lobe levels, even when the radiated pat
tern of each element (alone) is poor. Also, one can change the direction of maximum 
radiation by changing the phases of the feed voltages. This electronic beam steering is 
often better than mechanical steering, since it is usually faster and does not demand 
heavy positioning equipment.

Antenna arrays can be arranged in a variety of geometrical configurations, but 
planar arrays are the most popular. Figure 14-31 shows three types of planar arrays: 
linear, rectangular, and circular.

Figure 14-30 R a d i a t i o n  p a t t e r n  o f  a  
t y p ic a l  l a r g e  p a r a b o l i c  a n t e n n a  w i th  a  h o r n  
f e e d .  ( C o u r te s y  o f  M .C . B a i l e y ,  N A S A  
L a n g le y  R e s e a r c h  C e n t e r ) .

8 This side lobe reduction with feed taper is similar to what occurs in the tapered arrays discussed later in the 
chapter.
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Figure 1 4 -3 1  E x a m p l e s  o f  a n t e n n a  a r r a y s :  a )  A  l i n e a r  a r r a y ,  b )  A  r e c t a n g u l a r ,  
p l a n a r  a r r a y ,  c )  A  c i r c u l a r ,  p l a n a r  a r r a y .

We will start our discussion of arrays by deriving the characteristics of a simple two- 
element array; then we will discuss the characteristics of several uniform and nonuni
form arrays.

14-6-1 A  TW O-ELEM ENT A R R A Y

Consider the two short dipoles with currents

shown in Figure 14-32. The dipoles have equal lengths At and lie parallel to the z-axis. 
They are positioned symmetrically along the y-axis and spaced a distance d apart. The 
dipole currents have equal magnitudes, but phases that differ by the phase shift S.

Using the superposition principle, we find that the total electric field E radiated 
by this array is the sum of the fields radiated by each individual dipole. When the 
observer is far from the origin, only the phase difference between the dipole fields must 
be accounted for. Using Equation (14.41), the total field can be written as

where rx and r2 are the distances from the observer to the left- and right-hand dipoles, 
respectively, and r is the distance from the origin to the observer. When r is large, 
we can write

(14.92a)

(14.92b)

(14.93)

d
2

Figure 14-32 G e o m e t r y  f o r  d e t e r m i n i n g  
t h e  f a r - z o n e  r a d i a t e d  f i e ld s  o f  a  tw o -  
e l e m e n t ,  l i n e a r  a r r a y  o f  H e r t z i a n  d ip o le s .
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rx «= r + — sin 9 sin </>

r — — sin 0 sin 0.

Substituting Equations (14.94)a and b into Equation (14.93), we obtain

E j y k  kol ^ j  \  (kd sin 0 sin 4>-8) _|_ £ j  \  (kd sin 0 sin <j> -  S)j

477T

jpk \ l  \ M e ~ ’kr . .  „ I"1
= -----—---------sin 0 a „ x 2  cos

4 ttt 0

This expression can be written in the form

jrjk \ l 0 \A le ~ i kr

(kd sin 6  sin 4> ~ <5)

E
47tt

sin 0  aeA (6 , 0 ),

where A ( 6 , 0) is the array factor, defined by 

'1
A( 6 , 4 >) = 2 cos (kd sin 6  sin 0 — 8 )

(14.94a)

(14.94b)

(14.95)

(14.96)

Equation (14.95) is an example of the pattern multiplication theorem, which 
states that

The combined pattern of N  identical elements can always be expressed as the element 
pattern times an array factor A ( 6 , 4>) that accounts for the number of elements, their 
relative positions, and their feed currents.9

If we were to replace the infinitesimal dipoles in the array in Figure 14-32 with, say, 
horns, we would replace the element pattern in Equation (14.95) with the pattern of a 
horn, but the array factor would remain the same.

Figure 14-33 shows the radiation patterns in the 6  = 90° plane for three different 
dipole spacings when the dipole currents are in phase (i.e., 8  = 0). As can be seen, all 
three array factors have maxima in the f  = 0° and 180° directions, called the broadside 
directions. These figures show that the arrays become more directive as the element 
spacing d is increased. When d = A/2 (Figure 14-33b), the pattern has deep nulls along 
the end-fire directions, f  = ±90°. Figure 14-33c shows that when d is increased 
beyond A/2, the lobes in the broadside directions become even narrower, but other 
lobes are formed.

Figure 14-34 shows the effect of changing the current differential phase shift 8  

when the element spacing is held constant at d = A/3. Here, we see that the direction

9 This theorem assumes that the elements are uncoupled, meaning that a current on one element does not 
excite appreciable currents on other elements.
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Figure 14-33 Array factor plots in the 6  = 90° plane for three two-element broadside 
arrays with different spacings between the elements along the y-axis: a) d — 0.2A. 
b) d = 0.5A. c) d = 1.5A.

Maximum

(a) (b) (c)

Figure 14-34 Array factor plots in the 0 = 90° plane for three two-element arrays along 
the y-axis, each with d = A/3 and phase shift a) 8  = 0°, b) 8  = 60°, c) 8  = 120°.

of maximum radiation varies with 8 . When 5 = 0 ,  the lobes are directed broadside to 
the array axis (0 = 0° and 0 = 180°). As 8  is increased, the lobes bend towards the 
4> = 90° end-fire direction. When 8  = - k d  (120° when d — A/3), radiation along the 
forward end-fire direction is maximized. The shift in the radiation pattern shown in 
the figure is an example of electronic beam steering.

14-6-2 A-ELEMENT LINEAR ARRAYS WITH UNIFORM 
AMPLITUDE AND SPACING

We can extend our analysis of two-element arrays to include any number of equally 
spaced elements. Arrays that have their elements along a line are called linear arrays.
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1Z.0 1 Z_ 5 1 A 2 S  U 3 8

Figure 14-35 A linear, A-element array of isotropic radiating elements. The 
element spacing is d, the phase shift between adjacent elements is 8 , and the 
observer’s angle with respect to the array axis is 6 .

Figure 14-35 shows a linear array consisting of N  isotropic radiators with element spac
ing d. Each element is driven with the same-magnitude current, with a progressive 
phase shift S between adjacent elements. To an observer far from the array, the field 
from each element arrives with a phase that is determined by the position of the ele
ment, the current phase shift of the feed, and the observer’s angular coordinate 6 . 
Adding these contributions, we can write the array factor A in the form

A O ) = 1 + e** + eiZ* + ... + ei(N ~ ^  (14.97)

In this expression, i/as the far-zone phase difference between adjacent elements when 
observed at an angle 6  with respect to the array axis:

ifj—kd cos 6  + 8 .

To simplify the preceding expression for A O), let us multiply both sides by e^, obtaining 

e’* A (ip) = e*  + + ... + e!N*.

Subtracting this expression from Equation (14.97) yields 

(1 -  e1*)A(tft) = 1 -  e*N+.

Solving for the array factor, we obtain
2 — e j N 4> gW/2 - jN if i /2  _  e jN ip /2j

A O )  =  —  ‘ib _ idj /2  r  _ — i i l / /2 „ i d j / 2 l
eiW N - 1)/2] sin (Nip/2) 

sin 0 /2 )

Finally, since we are usually concerned only with the magnitude of the far-zone radia
tion pattern, we can drop the exponential phase term, yielding

\ ( ! \  SillW / 2)
A W ) -  sinW 2) ’

(14.98)

where

\p -  kd cos 6  + 8 . (14.99)

Notice that A (if/) attains a maximum value of Amax = N  when ip -  0.
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The array factor A (i f/ ) of a uniform, linear array is a function of the number of 
elements, their spacing, and the phase difference between each element. Even when 
the number of elements is fixed, there is a great variety of different array factors that 
can be obtained, depending upon the element spacing d and differential phase shift 5 
that are chosen. Two common special cases of linear arrays are broadside arrays and 
ordinary end-fire arrays, which we will discuss next.

Broadside Arrays. Arrays that generate their maximum radiation perpendicular 
to the array axis are called broadside arrays. Broadside arrays are popular for broad
cast applications, since their array factors are omnidirectional. To be most effective, 
broadside arrays should be constructed using radiating elements that also have omni
directional patterns.

The array factor A (if/) for any linear array is maximized when = kd cos 9 + 5 = 0 .  
For a broadside array, this maximum occurs when 9 = ±90°, which means that the ele- 
ment-to-element phase shift 5 is zero:

5 = 0 (Broadside arrays). (14.100)

We could also determine this criterion by noticing that all of the elements are equidis
tant from a far-zone observer at 9= ±90°, which means that the fields of each element 
will add constructively when the current feeds all have the same phase.

Two things control the directivity of a broadside array: the number of elements N  
and the distance d between the elements. To illustrate the effect of N, Figure 14-36 
shows the normalized array factors when d = 0.5A for N  = 3 and N  = 5, respectively. 
As can be seen, the main lobe becomes narrower as N  increases, but at the expense of 
more side lobes. For a fixed number of elements, increasing d has a similar effect. 
This latter observation can be seen from Figure 14-33 for the case N  = 2. Here, we see 
that when d is large, the peak radiation intensities of some side lobes will be as great as 
that of the main lobe. These strong side lobes, called grating lobes, are usually unde
sirable. In practice, the element spacing is typically chosen such that d A/2 for 
broadside arrays to avoid grating lobes.

Figure 14-36 Array factor plots for two broadside arrays with the same 
element spacing, d = 0.5A: a) N = 3. b) N = 5.
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We can obtain an expression for the directivity of a broadside array by substitut
ing the array factor A(ift) into Equation (14.55), yielding

D _ ^ \ K AttN 2

j) A(0, 4>)\ 2d£l 2lT , TTJ jJo

'N
sin (— kd cos 6

sin (— kd cos 6
sin 6  d 6  d(J)

When Nkd > 6, the following approximation is accurate to at least 10%:

(14.101)

Here, L = (N — 1) d is the total length of the array. This expression clearly shows that 
the directivity of a broadside array increases as its length L increases.

E xam p le  1 4 -6

A  1 0 - e l e m e n t  b r o a d s i d e  a r r a y  o f  i s o t r o p i c  r a d i a t o r s  is  t o  h a v e  a  d i r e c t iv i t y  o f  D0 = 5 (7  [d B ] ) .  
W h a t  is  t h e  m in i m u m  e l e m e n t  s p a c in g  t h a t  a c h i e v e s  t h is  d i r e c t iv i t y ?

Solution:

S in c e  t h e  i n d iv id u a l  e l e m e n t s  a r e  i s o t r o p i c ,  t h e  d i r e c t iv i t y  o f  t h e  a r r a y  e q u a l s  t h e  d i r e c t iv 
i ty  o f  t h e  a r r a y  f a c t o r  a lo n e .  U s in g  E q u a t i o n  (1 4 .1 0 1 ) ,  w e  h a v e

5 =  2  X (1 0 )  x DU.

S o lv in g  f o r  d, w e  f i n d  t h a t  t h e  m in im u m  s p a c in g  is  

d = A /4 .

F in a l ly ,  t o  s e e  i f  o u r  u s e  o f  E q u a t i o n  (1 4 .1 0 1 )  w a s  j u s t i f i e d ,  w e  f in d  t h a t  

Nkd = 1 0  X X ( j j  -  1 5 .7  >  6 , 

w h ic h  v a l i d a t e s  o u r  p r o c e d u r e .

End-Fire Arrays. An end-fire array directs its main lobe along the array axis. 
Unlike broadside arrays, in which the incremental current phase shift 8  is always the 
same (zero), there are a number of phase shifts that result in end-fire radiation pat
terns. The simplest scheme occurs when the fields of each element arrive in the end- 
fire direction with the same phase. Since the incremental propagation delay along the 
end-fire direction ( 0  = 0°) is kd, the required current phase shift 8  is

8 = —kd (Ordinary end-fire array), (14.102)

where the negative sign indicates that the element phases are progressively more 
delayed in the end-fire direction.
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Figure 14-37 Array factor plots for two end-fire arrays with the same 
element spacing, d = A/4, and S = -kd: a) TV = 4, b) N = 8.

As with broadside arrays, the directivities of end-fire arrays are functions of both 
the number of elements N  and the element spacing d. Figure 14-37 shows the pattern 
functions for arrays with N  = 4 and N  = 8, both with d = 0.25A. As can be seen, the 
pattern becomes more directive as N  increases, although the increase in directivity is 
more modest than occurs for broadside arrays. The directivity of end-fire arrays can 
also be increased by increasing d, but at the expense of higher side lobe levels. In prac
tice, the array spacing is usually chosen so that d A/4 in order to avoid high lobes in 
the backward direction (0 = 180°).

We can obtain an expression for the directivity of an end-fire array by substitut
ing the array factor A(0) into Equation (14.55), yielding

£> =
47T1 Amax|2 

|a (0, (f>)\2dn

4ttA^
- ~N - 2

r 2 tt r TT sin — kd (cos 0 - 1 )i / r i sin 6  d 6  d(f>
Jo Jo sin - k d  (cos 8  — 1)

When Nkd > 3, the following approximation is accurate to at least 10%:

Here, L  = (N — 1) d is the total length of the array.

E xam ple  1 4 -7

A 10-element ordinary end fire array of isotropic radiators is to have a directivity of D0 = 5 
(7 [dB]). What is the minimum element spacing that achieves this directivity?

Solution:

Since the individual elements are isotropic, the directivity of the array equals the directiv
ity of the array factor alone. Using Equation (14.103), we have

5  =  4 x ( 1 0 ) x ^ j .
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S o lv in g  f o r  d, w e  f in d  t h a t  t h e  m in im u m  s p a c in g  is

d — A /8 .

C h e c k in g  to  s e e  i f  w e  w e r e  j u s t i f i e d  in  u s in g  E q u a t i o n  ( 1 4 .1 0 3 ) ,  w e  s e e  t h a t

Nkd =  1 0  X A )  = 7 . 5 8 > 3 ,

w h ic h  j u s t i f i e s  o u r  u s e  o f  E q u a t i o n  (1 4 .1 0 3 ) .

14-6-3 NONUNIFORM ARRAYS

In our discussion of uniform, linear arrays we saw that they are capable of achieving 
very high directivities when the number of elements is large. Since the current magni
tudes at the feeds are all the same, the feed networks for these arrays are relatively 
simple to build. On the down side, however, the side-lobe levels of uniform arrays 
tend to be quite high. For instance, the first side lobe of a large array can be reduced 
by no more than 13.5[dB] from the main beam level. For applications in which the 
side-lobe levels are critical (such as radars), this kind of performance is unacceptable.

One way to reduce side-lobe levels of an array is to use nonuniform element 
feeds, since side-lobe levels decrease when the center elements of an array are excited 
more strongly than the edge elements. These are called tapered feeds. A simple array 
that uses tapered feeds is the binomial array, which produces a single main lobe with no 
side lobes. We can develop the characteristics of binomial arrays by repeatedly using 
the pattern multiplication theorem and the properties of two element uniform arrays.

To start our discussion of binomial arrays, let us review the characteristics of two- 
element broadside arrays. As shown in Figure 14-33, two-element arrays have a single 
main lobe with deep nulls in the end-fire directions when the element spacing is d = 
A/2 and the feed currents are identical. Further increases in d will narrow the main 
beam, but only at the expense of radiation in the end-fire directions.

Let us now consider the radiation pattern of the two, two-element broadside 
arrays shown in Figure 14-38a. Here, each two-element array is fed with uniform cur
rents (1 A 0°) and have element spacings of d = A/2. The center-to-center offset spac
ing between the arrays is also A/2, so the two overlapping elements in the center can 
be considered as a single element with a feed current of 2 Z. 0°. Hence, this configu
ration can also be considered as a three-element nonuniform array with feeds 1-2-1 
(all in phase).

We can determine the radiation pattern of this three-element array by consider
ing it as a two-element array whose the elements are themselves two-element arrays. 
This interpretation is depicted in Figure 14-38b, where each symbol ® denotes a two- 
element broadside array with d = A/2. Using the pattern multiplication theorem, we 
see that the radiation pattern of the three-element nonuniform array is the product of 
the element pattern and the array factor of a two-element broadside array. For this 
case, the element pattern and the array factor are the same, and the total array factor 
for the three-element binomial array is shown in Figure 14-38c. This pattern function 
is more directive than the two-element pattern and yet has no side lobes. Also, we
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(a) 3 element binomial array

1 A/2 1
0

(b) Equivalent array

x

Element x Array
pattern factor

Total
array factor

(c)

F ig u r e  1 4 - 3 8  C o n s t r u c t i n g  a  t h r e e - e l e m e n t  b i n o m ia l  a r r a y  o u t  o f  tw o ,  t w o - e le m e n t  
a r r a y s :  a )  T w o  o v e r l a p p i n g  tw o - e l e m e n t  a r r a y s ,  b )  A n  e q u i v a l e n t  t w o - e le m e n t  
a r r a y  in  w h ic h  e a c h  e l e m e n t  is  a  tw o - e l e m e n t  a r r a y ,  c )  T h e  b i n o m ia l  a r r a y  p a t t e r n  
e q u a l s  t h e  p r o d u c t  o f  t h e  e l e m e n t  p a t t e r n  a n d  t h e  a r r a y  f a c to r .

notice that the feed sequence 1-2-1 is the third row of Pascal’s triangle, which means 
that these feeds are binomial coefficients for m = 3.

We can extend this same idea to construct iV-element binomial arrays. For 
example, to construct a four-element binomial array, we can place two three-element 
binomial arrays as shown in Figure 14-39a. The overlapping elements in the center 
can be considered to form single elements, so this entire configuration is a four-ele
ment array, with element spacing d, — \ /2  and feed sequence 1-3-3-1 (the fourth row 
of Pascal’s triangle). We can determine the radiation pattern of this array by treating 
it as a two-element array whose elements are three-element binomial arrays. This 
interpretation is depicted in Figure 14-39b, where the symbol 0 represents a three- 
element binomial array. From the pattern multiplication theorem, the total radiation 
pattern is the product of the compound element pattern (from Figure 14-38c) and the 
array factor of a two-element array.

F ig u r e  1 4 - 3 9  C o n s t r u c t i n g  a  f o u r - e l e m e n t  b in o m ia l  a r r a y  o u t  o f  tw o ,  t h r e e - e l e m e n t  b in o m ia l  
a r r a y s :  a )  T w o  o v e r l a p p i n g  t h r e e - e l e m e n t  b in o m ia l  a r r a y s ,  b )  A n  e q u i v a l e n t  t w o - e le m e n t  
a r r a y  in  w h ic h  e a c h  e l e m e n t  is  a  t h r e e - e l e m e n t  b i n o m ia l  a r r a y ,  c )  T h e  f o u r - e l e m e n t  b in o m ia l  
a r r a y  p a t t e r n  e q u a l s  t h e  p r o d u c t  o f  t h e  e l e m e n t  p a t t e r n  a n d  t h e  a r r a y  f a c to r .
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This process can be repeated as many times as desired to obtain an TV-element, bi
nomial broadside array that has no side lobes. For each value of N, the current feeds al
ways follow the binomial distribution. For instance, a five-element binomial array has 
a feed sequence 1-4-6-4-1. The beam widths become more narrow as N  is increased, 
though not as narrow as the main beam of a uniform array with the same number of ele
ments. This is typical of all side-lobe reduction schemes; side lobes are reduced at the 
expense of widening the main beam.

There are many other feed-tapering schemes that produce lowered side lobes. 
Generally, the amount of side-lobe reduction is proportional to the contrast between 
the feed amplitudes in the middle of the array and those on the edges. Unfortunately, 
it is often difficult to fabricate feed networks that drive some elements with large cur
rents and others with small currents. As a result, practical designs usually represent a 
trade-off between side-lobe levels and the cost of the feed network.

So far, we have only considered the transmitting properties of antennas. In this discus
sion, we have seen that a voltage or current applied to the terminals of an antenna pro
duces radiated fields. It is just as possible, however, for an antenna to capture power 
from an incident wave and direct it to a load. This property is obvious for an aperture 
antenna, such as a horn. In that case, the horn simply captures a portion of the incom
ing wave front and delivers the power to the waveguide feed. The same is true of all 
antennas, even when the physics of the receiving mechanism is not so obvious.

In this section, we will look closely at the receiving characteristics of antennas and 
demonstrate how they are directly related to their transmitting properties.

14-7-1 ANTENNA EQUIVALENT CIRCUITS

Let us start by considering a pair of antennas that are capable of both transmitting and 
receiving energy to and from each other. Such a situation is depicted in Figure 14-40a, 
which shows two antennas in free space. Each antenna has a pair of terminals (i.e., a 
port) to which generators or loads can be attached.

1 4 -7  P ro p ertie s  o f  R ece iv ing  A n te n n a s

(a)

(b)

Figure 14-40 Coupled antennas: a) Two arbitrary antennas, b) The 
equivalent circuit.
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Since free space is a linear medium, we can relate the port voltages and currents of 
these antennas using Z (impedance) parameters, just as we do with any other two-port 
network:

v, = Z „ /, + Z 12I2 (14.104)

V2 = Z 21I 1 + Z22I2. (14.105)

The parameters Z n , Z12, Z21, and Z22 make up the Z-matrix, which completely defines 
the port characteristics of this antenna system. Figure 14-40b shows a lumped equiva
lent circuit that has the same port characteristics.

When antennas #1 and #2 are far apart, their input impedances are Zn and Z>2 2 ’ 
respectively. To show this, we note that Zn is the ratio of the voltage and current at 
antenna #1 when the terminals of antenna #2 are short circuited:

However, if antenna #2 has no power applied to it, it will have a negligible effect on the 
currents and voltages on antenna #1 when the distance between them is large. The 
same is true if a source is placed at the terminals of antenna #2 and the terminals of 
antenna #1 are short circuited. As a result, we have

Zn -  ZnX (14.106)

and

Z22 ~  ZA2, (14.107)

where ZA1 and ZA2 are the input impedances of antennas #1 and #2, respectively, when 
they are driven as isolated transmitters. We will call these impedances the self-imped
ances of the antennas.

Unlike the self-impedance terms Zn and ^22’ which are nearly independent of 
the presence of the other antenna, the mutual impedance terms Z 12 and ^21 are func
tions of the distance between the antennas and their relative orientations. They are 
also functions of the polarization states of the antennas, since a receiving antenna 
responds best to the same polarization it emits when transmitting. Free space is reci
procal,10 so the reciprocity principle applies, which states that the off-diagonal elements 
of the impedance matrix are equal. Hence,

^12 = ^21 = > (14.108)

where ZM is called the mutual impedance of the antennas. Using Equations (14.106), 
(14.107), and (14.108), we can write the port characteristics of our two-antenna net
work as

Vx ~  ZAlIx + ZMI2 (14.109)

^ 2  ~  + -ZA2/2. (14.110)

10 Most media are reciprocal, but there are some important exceptions, such as the ionosphere under the 
influence of the earth’s magnetic field.
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(a) Transmitting and receiving antennas

' O

I2
I 7,~1 *-A2

L  j

ôc = ZM11

(b) Equivalent circuit

Figure 14-41 Transmitting and receiving antennas: a) A transmitting antenna 
connected to a voltage source and a receiving antenna attached to a load, b) The 
equivalent circuit when the mutual coupling is weak.

Consider now the situation illustrated in Figure 14-41a, which shows a voltage 
generator connected to antenna #1 and a passive load connected to antenna #2. Figure 
14-41b shows the equivalent circuit for this network, where we have assumed that the 
antennas are spaced far enough apart so that the effect of the receiving antenna on the 
transmitting antenna is negligible. For this case, the dependent voltage source nor
mally present in the transmitter circuit (see Figure 14.40b) can be neglected. Using 
standard circuit analysis, we find that the transmitted power is given by

1 V\
2 Z,

Re(Z^) [W]. (14.111)

Similarly, we can express the received power delivered to the load ZL by the expression

L Re(z L) (14.112)
rec 2 ZA2 +  Z L|

where Voc is the open-circuit voltage at the receiving-antenna terminals and is given by

^oc ~ Z MIi —
JA1

(14.113)

When Z L — Z *A 1  (i.e., a conjugate-matched load), Prec attains its maximum value, which 
is given by

1 \V
8 Re (ZA2)

[W] (Conjugate-matched load). (14.114)
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Substituting Equations (14.112) and (14.113) into Equation (14.114) and rearranging, 
we obtain the following expression for the ratio of the received power to the trans
mitted power:

P, 1 \Zm \2
P, 4 R e(Zai)R q(Za2)

(Conjugate-matched load). (14.115)

A noteworthy feature of Equation (14.115) is that it is symmetric in the subscripts 
“1” and “2.” This means that the same transfer function is obtained if power is sup
plied to antenna #2 and antenna #1 is terminated in a conjugate-matched load. Hence, 
we see that

The power transferred between two antennas is independent of which antenna is trans
mitting, as long as the receiving antenna is terminated in a conjugate-matched load.

As a final point, some readers might be wondering what happens to the power 
that is “lost” in the self-impedance of an antenna that is acting as a receiver. At first 
glance, it may appear that there should be no lost power, particularly if the antenna is 
constructed with lossless materials. Closer examination, however, reveals that this 
“lost” power is actually power that is reradiated by the antenna. This should not be 
surprising, since a current distribution on an antenna will always radiate power—even 
when the current is caused by an incoming field.

14-7-2 EFFECTIVE APERTURE

The effective aperture of an antenna is a parameter that represents the electrical sur
face area that an antenna presents to an incoming wave. We can introduce the con
cept by considering the horn antenna shown in Figure 14-42. Here, a plane wave 
impinges upon the horn, which delivers power to a matched load. Because the inci
dent power density is measured in watts per square meter, it is reasonable that the 
power delivered to the load is proportional to the product of the incident power density 
and the area of the aperture. This line of reasoning is sensible for antennas that have 
obvious physical apertures, such as horn and reflector antennas. But even thin wire 
antennas are capable of “grabbing” power from an incident wave, in spite of their 
apparent lack of a physical aperture.

Incident wave

& ave

Physical 
aperture

Horn
antenna

[W/m2]

PrectW]

Load
Figure 14-42 A plane wave impinging 
upon a horn antenna that is terminated 
with a load.
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z

e

Conjugate-matched
load y

x

Figure 14-43 A n  e x p e r im e n t a l  s e t u p  f o r  
m e a s u r i n g  t h e  e f f e c t i v e  a p e r t u r e  o f  a n  
a n t e n n a .

To probe the matter further, let us consider the situation shown in Figure 14-43, 
which depicts an arbitrary antenna at the origin and an incident plane wave approach
ing from the direction (0, <f>). If Prec is the power delivered to a conjugate-matched 
load and Sfave is the incident power density, we define the effective aperture A e (9, 0) of 
the antenna as the ratio of Prec to !Tave when the polarization state of the incident wave 
matches the antenna’s polarization state. In equation form, this definition can be 
stated as

Using Equation (14.114), we can also express A e( 6 , <f>) in terms of the open-circuit volt
age and the self-impedance of the antenna:

The maximum effective aperture is defined as the maximum value of A e(0, 4>)\

ave

(14.116)

[m2] (Conjugate-matched load). (14.117)

Am =  A (14.118)
max
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E xam p le  1 4 -8

F in d  t h e  m a x im u m  e f f e c t iv e  a r e a  Aem o f  t h e  s h o r t  d ip o l e  s h o w n  in  F i g u r e  1 4 -4 4 .

Figure 14 - 4 4  A  p l a n e  w a v e  t h a t  is 
n o r m a l ly  i n c i d e n t  u p o n  a  s h o r t ,  o p e n -  
c i r c u i t e d  d ip o le .

Solution:

W e  w ill  a s s u m e  t h a t  t h e  c a p a c i t a n c e  o f  t h e  a n t e n n a  t ip s  is  h ig h  e n o u g h  s o  t h a t  t h e  w ir e  
c u r r e n t  is u n i f o r m  w h e n  t h e  a n t e n n a  is  d r i v e n  a s  a  t r a n s m i t t e r .  T h i s  m e a n s  t h a t  t h e  o p e n - c i r c u i t  
v o l t a g e  ( w h e n  t h e  a n t e n n a  is  r e c e iv in g )  e q u a l s  t h e  p r o d u c t  o f  t h e  i n c i d e n t  e l e c t r ic - f ie ld  i n te n s i t y  
Ei a n d  t h e  d ip o l e  l e n g th  M ( s e e  P r o b l e m  1 4 .2 8 ) :

V0C = EiM.

T h e  i n p u t  r e s i s t a n c e  o f  th is  a n t e n n a  is  g iv e n  b y  E q u a t i o n  (1 4 .4 8 )  a n d  is

w h e r e  77 a n d  A a r e  t h e  f r e e - s p a c e  im p e d a n c e  a n d  w a v e le n g th ,  r e s p e c t i v e ly .  A ls o ,  t h e  i n c i d e n t  
p o w e r  d e n s i t y  T ave is  g iv e n  b y  E q u a t i o n  (1 2 .1 0 7 ) :

S u b s t i tu t i n g  t h e  p r e c e d i n g  t h r e e  e x p r e s s io n s  i n to  E q u a t i o n s  (1 4 .1 1 7 )  a n d  ( 1 4 .1 1 8 ) ,  w e  o b t a i n

( £ , A £ ) 2 _  3 A 2

8 ( E 2 / 2 77) ( 2 7 7 7 7  A £ 2 / 3 A 2) 8 7 7

T h i s  r e s u l t  is  n o t e w o r t h y  b e c a u s e  i t  is  i n d e p e n d e n t  o f  t h e  d ip o l e  l e n g t h  A t,  a s  lo n g  a s  A t «  A.

To show how the effective aperture A e and directivity D of an antenna are 
related, consider the two antennas shown in Figure 14-45. Here, antenna #1 is fixed at 
the origin. Antenna #2 is free to move along a sphere of constant radius, but it is 
always oriented such that it directs its maximum radiation intensity towards the origin. 
When antenna #2 radiates power Pt2, the power density ^ ave arriving at antenna #1 is 
independent of the angular position (0, </>) and is given by
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Figure 14-45 A n  e x p e r im e n t a l  s e t u p  f o r  
s h o w in g  t h a t  t h e  t r a n s m i t t i n g  a n d  
r e c e iv in g  p a t t e r n s  o f  a n  a n t e n n a  a r e  
i d e n t i c a l .

where D2 is the directivity of antenna #2. 
solving for the ratio Prl/P t2, we obtain

Pf\ _ 4*) ̂ 2

Pt2 477T2 ’

Substituting this into Equation (14.116) and

(14.119)

where A el ( 6 , 4>) is the effective aperture of antenna #1 along the direction ( 6 , </>).
When the experiment is reversed, so that antenna #1 is the transmitter, the power 

density arriving at antenna #2 is

ave
Pti 

4ttv2

£>i(0, </>),

where Dx (0, </>) is the directive gain of antenna #1 along the direction ( 6 , </>). If Pr2 is 
the power received by antenna #2, we can substitute the preceding expression into 
Equation (14.119) to find the ratio Pr2 /P n :

Prl _  A em2D\{8i <f>)
Ptl 4ttt2

(14.120)

Here, A e m 2  is the effective aperture of antenna #2 when the incident waves arrive along 
its direction of maximum effective aperture.

Since the power transferred between two antennas is independent of which one is 
transmitting, the ratios Prl/P t2 and Pr2 /P n must be identical. Setting Equations 
(14.119) and (14.120) equal to each other, we find that

^ei(A> (A) _ A e m 2 

D  i (0, (f>) D 2
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However, since both antennas were arbitrary, we can conclude that both sides of this 
expression are constants, regardless of the types of antennas used. Hence, we can 
drop the subscripts from the expression and write

0) _  constant (14.121)
Dg{e,<f)

which states that the ratio of an antenna’s directive gain in a direction (#,</>) to its effec
tive aperture in that direction is a universal constant. This means that the transmit and 
receive patterns o f an antenna are always identical.

We can find the universal constant in Equation (14.121) by using the results of 
Example 14-7. In that example, we showed that the maximum effective aperture of a 
Hertzian dipole is given by 

3A2
A em = (Hertzian dipole).077

But we also know that the directivity of a Hertzian dipole is 

3
Da — — (Hertzian dipole).

Taking the ratio of these expressions, we find that

A em =  3A2/8t7 = A^

Da 3/2 477

Thus, the universal constant is A2/(47r), and Equation (14.121) can be rewritten as

A e{e.<t>) = ~ D g(e,^)[m2]. (14.122)

Since A e(0, cf) and Z)?(0, <f) have their maximum values in the same direction (9, <fi), 
we also have

A. [m2]. (14.123)

E xam p le  1 4 -9

Find the power delivered to a conjugate-matched load from an antenna that is illuminated by a 
2 [GHz] plane wave. Assume that the antenna has a directivity of 5 [dB] and the incoming 
wave is incident along the antenna’s direction of maximum sensitivity, is polarization matched to 
the antenna, and has a peak amplitude of 500 [mV/m],

Solution:

The directivity in linear units is
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D0 = 10“ = 3.16.

Also, the free-space wavelength is 

3 X 108[m-s_1]
A = = 0.15 M .2 X 109[s-1]

Substituting these values into Equation (14.123) yields a maximum effective aperture of 

X 3.16 = 5.66 x 1(T3 [m2].= (-15)2
477

The power density of the incident wave is

Substituting these values of Aem and !Tave into Equation (14.116), we obtain 

Erec = 3.32 X 10~4 [W/m2] X 5.66 X 1(T3 [m2] = 1.88 [fiW].

Some readers may be wondering why the wavelength-squared term appears in 
the expressions that relate the effective aperture A em to the directivity D 0  of an 
antenna (Equations (14.122) and (14.123)). One explanation is that such a term is 
needed in order for these expressions to be dimensionally correct. Another, more 
insightful, explanation is that short-wavelength (i.e., high-frequency) antennas are 
smaller than low-frequency antennas with the same directivity. Since the physical sizes 
of high-frequency antennas are smaller, their effective apertures are also smaller.

As a final comment, we note that Equations (14.122) and (14.123) were derived 
for lossess antennas. Under this circumstance, all the received power is delivered to 
the load. It is relatively simple to show that these same expressions hold for lossy 
antennas, except that the directive gain Dg( 6 , </>) is replaced by the power gain 
Gg(d, </>), and the directivity D 0  is replaced by the gain G0.

14-7-3 ANTENNA LINKS AND THE FRISS TRANSMISSION 
EQUATION

Now that we have discussed both the transmitting and receiving characteristics of 
antennas, we can determine the complete transfer function between transmitting and 
receiving antennas. Figure 14-46 shows a typical antenna link, consisting of transmit
ting and receiving antennas, spaced a distance R apart. We will assume that the anten
nas are polarization matched and oriented such that each antenna lies in the direction 
of maximum radiation of the other.

If the transmitting antenna has a gain Gt, the time-averaged power density at the 
receiving antenna is

ave
P,

A ttR 2
Gt [W/m2],
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R

Gain = Gt Gain = G,

Figure 14-46 Geometry for deriving the Friss transmission equation.

where Pt is the input power to the transmitting antenna. From Equation (14.116), the 
power Prec delivered to a conjugate-matched load attached to the terminals of the 
receiving antenna is

where A er is the maximum effective aperture of the receiving antenna. Thus, the trans
fer function that relates the transmitted and received powers is given by the expression

Pt 4ttR 2'

Using Equation (14.122), we can replace the effective aperture A er in this expression 
with (A2/47t) Dr, where Dr is the receiving antenna directivity, yielding

Equation (14.124) is called the Friss transmission equation, which states that

The amount of power transferred between two antennas is proportional to the prod
uct of the antenna gains.

According to the Friss equation, the deficiencies of a low-gain transmitting antenna 
can be compensated for by using a high-gain receiving antenna, and vice versa. This is 
an important consideration in many practical applications, since it is often necessary 
for one antenna of a transmit-receive link to have a low gain due to size or weight con
straints, such as when antennas are placed on spacecraft or satellites.

(14.124)

E xam p le  1 4 -1 0

Design a transmit-receive link that delivers 1 [/aW] of power to a load when 10 [W] is supplied to 
the transmitting antenna. If space requirements demand that one antenna has a gain Ga of only
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5 [dB], find the necessary gain G h of the other antenna if the distance between the antennas is 
100 [km] and the operating frequency is 6 [GHz].

Solution:

In linear units, we have 

G a = 10“ = 3.16,

and the operating wavelength

3 x 108
A =

6 X 10l
=  0.05 [m ].

Substituting these values into Equation (14.124) and solving for G h, we obtain the required gain 
of the second antenna:

1 X 1(T6 [W] / 4 tt X 100 X 103[m ]\2

10 [W] X ( .05 [m] )
6.32 X 107 =  78 [dB].

14-7-4 R A D A R  CROSS SECTION A N D  THE R A D A R  R A N G E  
E Q U A T IO N

Antennas are key components in radars, which are used to determine the position 
and velocity of objects such as aircraft and ships. Figure 14-47 shows a simple radar 
configuration. Here, a transmitting antenna radiates a field that illuminates a target. 
The target then reradiates (or scatters) a portion of this energy back to a receiving 
antenna. To simplify matters, we will assume that both the transmitting and receiving 
antennas are the same distance R from the target. Radars whose transmit and receive 
antennas are colocated are called monostatic radars, whereas those with transmit and 
receive antennas in different locations are called bistatic radars. Most radars are 
monostatic, since it is usually more convenient to use the same antenna for both trans
mitting and receiving.

To determine the power received by the receiving antenna of a radar, we must 
first model the scattering characteristics of the target. This is done using a parameter 
called the radar cross section a  (also called the echo area), which is defined as follows:

Figure 14-47 Geom etry for deriving the radar range equation.
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The radar cross section a  of a scatterer is the cross-sectional area of an idealized 
isotropic scatterer that reradiates the same power density to the receiver as does the 
actual target.

Using this definition, we find that the power Pc captured by the equivalent scatterer is 

Pc = SCcO- [W],

where ITinc is the power density incident upon the scatterer. Also, since the equivalent 
scatterer reradiates this power isotropically, the scattered power density Sf, at the 
receiver is

^rec = t A u  =  [w /m 2] . (14.125)
rec 477R 2  4ttR z l j v '

Solving this expression for cr, we find that the radar cross section is given by

a lim
R —>00

477tf2SU
[m2]. (14.126)

If the gain of the transmitting antenna is Gn the incident power density at the 
scatterer is

P
Cf  — t

mc 477R 2  n

where Pt is the power input to the transmitter. From Equation (14.125), the scattered 
power density at the receiving antenna is

_ crPtGt 
rec (4ttR 2)2'

If the effective aperture of the receiving antenna is A er, the power Pr delivered to 
the load is

P  =  a  Vrec -r *-er'J  rec = A.
vP<Gt

(4ttR 2)2'

Finally, using A er = A2/ (477) Gr, where Gr is the gain of the receiving antenna, we obtain

G t G r

477

" A V
477R 2 '

(14.127)

Equation (14.127) is called the radar range equation. This equation is used rou
tinely in radar system calculations to estimate target sizes from a knowledge of the
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received power and the antenna gains. It can also be used to determine the transmitted 
power and antenna gains necessary to “see” a specified target at given range (distance).

E xam ple  14 -11

A radar system is to be built that is capable of detecting targets with radar cross sections of 10 
[m2] at a range of 100 [km] at a frequency of 2 [GHz]. If the transmitting and receiving anten
nas both have gains of 40 [dB], and the minimum detectable signal at the receiver is 0.5 [nW], 
find the minimum transmitted power.

Solution:

In linear units, the antenna gains are

G0[ = Gor = 10* = 104.

Also, the free-space wavelength A is 

3 x  108
A =

2 x  109
= 0.15 [m].

Substituting these values into Equation (14.127), we find that the

P,
0.5 X 10 

10

47T X (100 X 103) 

.15

3\ 2"l2 47T
104 X 104

minimum transmitted power is 

4.41 [M W ].

1 4 -8  S u m m a tio n

In this chapter, we have discussed various aspects of radiation, including its causes, 
ways that it can be controlled, and a number of structures that can initiate it. Although 
this discussion was certainly not exhaustive, the reader should have a good background 
for tackling radiating systems and problems.

Perhaps the key concept that should be remembered when dealing with radiation 
is that radiated fields are totally dependent on the fields and currents on and near the 
radiating structure. If these quantities can be controlled, the radiated fields can also 
be controlled. This is true for antennas, in which we want radiation, and also for sys
tems in which radiation is undesirable. In both cases, the way to control the far-zone 
behavior of a structure is to pay close attention to the fields and currents close to the 
structure, as well as the shape of the structure itself.

P ro blem s

14-1 For the vector potential A = A 0  (e~jkz/p) ap, where k = wV/xe,
(a) Show that A satisfies Equation (14.15) in the dielectric region of a coaxial 

cable.
(b) Find the scalar potential V that corresponds to A using the Lorentz gauge.
(c) Find the E- and H-fields that are associated with these potentials, and show 

that they are the TEM-fields of a coaxial cable.
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14-2

14-3

14-4

14-5

14-6

14-7

14-8

14-9

14-10

14-11

14-12

In Example 14-1 it was shown that the potential pair A1 = A ae~ikz aT and V1 -  
0 corresponds to a linearly polarized plane wave. But this potential pair is not 
unique. Another vector potential that produces the same E- and El-fields is

A2 = A 0(ax + i z)e~ikz.

(a) Using the Lorentz gauge, find the scalar potential V2 that corresponds to A2.
( b )  Show that A 2  and V2 correspond to the same E- and H-fields as do Aj and V1. 
A Hertzian dipole is located at the origin. If a measurement shows that

E  = 10 [mV/m] at a range of r = 50 [m] along angular coordinates ( 6 , </>), find 
E  at a range r — 8 [m] along the same angular coordinates. Assume that both 

ranges are in the far zone of the dipole.
A 1.0 [cm] length wire segment lies along the z-axis and carries a uniform, 100 
[MHz] current. If the wire is centered about the origin, calculate the ratio 
E J H (j) in the xy-plane at a) r — 0.1 [m], b) r = 0.5 [m], and c) r = 5.0 [m].
Find the distance (in terms of wavelength) where the r _1, r~2, and r -3 factors in 
the expression for the Ee of a Hertzian dipole are equal.
If an antenna has a far-zone E-field given by

E  =
sin 26 , ~ jkr

r
calculate the radiated power.
Find the directivity of an antenna whose normalized radiation intensity is

fsin0sin</> [W/sr] 0 < 6  < tt and 0 < </> < n  
[ 0 otherwise

A sinusoidal current of with a peak amplitude of 0.5 [A] is applied to the input 
terminals of a lossless antenna. Calculate the input resistance if the resulting 
radiation pattern is given by

y. |4  sin2 0 sin2 </> [W/sr] 0 < 6  <  180° and 0 < </> < 180°
|  0 otherwise

A lossless antenna has a directivity of 12 [dB]. If its input resistance is 100 [H], 
calculate the rms current at the input terminals necessary to produce a radiation 
intensity of 100 [W/sr] in the direction of maximum radiation.
An 800 [MHz] current with a peak amplitude of 100 [mA] is applied to the ter
minals of an f = 0.3 [m], center-fed dipole. What is the maximum power den
sity in [W/m2] radiated by this antenna at a range of 60 [km].
A common “trick” for raising the input impedance of a half-wave dipole is to 
feed it off center. Using the assumption that the shape of the current distribu
tion on a half-wave dipole antenna is insensitive to where the feed point is, find 
the input resistance of a half-wave dipole when the feed point is offset by a dis
tance h = A/8 from the center.
The length of typical automobile “whip” antenna is 85 [cm]. Find the input 
resistance to such an antenna at 1100 [KHz] (the middle of the AM broadcast



band), assuming that the current induced along its length is uniform and the 
automobile body acts as an infinite ground plane.

14-13 Consider a circular loop antenna that consists of 100 turns of wire around a 
cylindrical core with radius of 1 [cm]. The windings are AWG 20 copper wire, 
which has a radius of 0.406 [mm] and a conductivity of cr =  5.8 X 107 [S/m]. 
Assuming that the current flows uniformly within the skin depth of the wire, cal
culate the radiation efficiency of this antenna a t / =  500 [kHz] if the permeabil
ity of the core is a) jmr = 1.0, b) yu.r = 200.

14-14 Find the number of turns N  required to fabricate a loop-stick antenna for use in 
the AM broadcast band (525-1610 [kHz]) that has a minimum in-band radiation 
resistance of 20 [H]. Assume that the windings are formed around a 0.25 [cm] 
diameter core that has a relative permeability of 500.

14-15 Determine the width (in wavelengths) of a long slot antenna with a uniform 
aperture field that radiates a main-beam width (null to null) of a) 30°, b) 15°, 
and c) 5°.

14-16 Derive the pattern function (Equation (14.91)) of the dipole-reflector antenna 
shown in Figure 14-29.

14-17 Determine the minimum number of elements necessary to obtain a null-to-null 
beam width of 20° for a broadside array of isotropic elements if the element 
spacing is A/4.

14-18 A simple technique that is often used to produce a scanning radar antenna is to 
form arrays out of waveguide slots. Each slot radiates a field that depends on 
the amplitude and phase of the waveguide mode beneath it. Since waveguide 
modes are dispersive, the phase shift between adjacent elements is a function of 
frequency. This causes the main beam to scan with frequency without the need 
for mechanical gimbals or electric phase shifters for each element. For the five 
element slot array shown in Figure P14-18, calculate the range of angles A6> 
scanned as the transmitting frequency is varied from 1.1 f c to 1.95 f c, where f c is 
the cutoff frequency of the dominant waveguide mode.
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14-19 A 10-element broadside array has an element spacing of A/3. Calculate the 
angles (with respect to the array axis) where pattern nulls appear.

14-20 Repeat Problem 14-19 for the case where the array is fed as an ordinary end- 
fire array.

( D irection of 
m axim um  rad ia tion

M atched
load

Figure PI 4-18
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14-21 Plot and compare the pattern functions for a four-element broadside array with 
element spacing 0.4A when the elements are a) isotropic radiators, and b) A/2 
dipoles parallel to the array axis.

14-22 Plot and compare the pattern functions for a five-element, end-fire array with 
element spacing 0.2A when the elements are a) isotropic radiators, and b) paral
lel A/2 dipoles, mounted perpendicular to the array axis.

14-23 Find the relative feed-current magnitudes required to create a seven-element 
broadside, binomial array.

14-24 Using the identity

sin {Nijj/2) 2 
sin (j/f/2)

1
-- +
N

2 V
—v X  (N -  m ) cos mils, 
N  ,1 Ml = 1

one can derive the following closed-form expression for the directivity of a lin
ear array of N  identical elements (see Stutzman and Thiele Antenna Theory and 
Design, New York):

£> =
1 2

— + —y
N N 2

N - 1

m = 1

1
(N — m) 

mkd
sin mkd cos md

In this equation, d is the element spacing, k is the free-space wave number, and <5 
is the incremental phase shift between elements. Compare the values obtained 
from the preceding formula with the approximate formula given by Equation 
(14.101) for broadside arrays with d/k  = 0.4 that have a) N — 2 and b) N = 4 
elements.

14-25 Show that a six-element, linear broadside array can be arranged as either a two- 
or three-element array of compound elements. Specify what these complex ele
ments are in terms of the original isotropic elements, and show that the array 
factors of these equivalent arrays are identical to the factors of the original 
array.

14-26 Calculate the open-circuit voltage Voc of an antenna with gain 22 [dB] that is illu
minated by a 3 [GHz] polarization-matched plane wave with a power density of 
2.5 X 10 ~12 [W/m2] along the direction of the antenna’s maximum sensitivity. 
Assume that the antenna has an input impedance of 50 [O].

14-27 Calculate the directive gain Dg and effective aperture A e of a A/2 dipole at /  = 
500 [MHz] and an observation angle of 6  = 45°, where 6  is measured with 
respect to the dipole axis.

14-28 A well-known formula from antenna theory states that when a wire antenna is 
illuminated by an incident field E \ the open circuit voltage Voc is given by:

y oc =  j  f  I ( i ) E i(l)d i.
J-Q J

In this formula, E'(i) is the tangential component of the incident field along the 
wire, and /(f) is the current induced on the wire when it is driven as a transmit



ter by a current source /G at its terminals. The formula is proven in a number of 
texts (for instance, John Kraus, Antennas) and is a result of the reciprocity the
orem of electromagnetics. For a half-wave dipole,
(a) use the formula to find Voc when the incident field is a plane wave with peak 

amplitude E l that is polarized parallel to the wire and propagates perpen
dicular to the wire,

(b) use the result in part a) to find the effective aperture of the antenna (Hint: 
Use Equation (14.117).)

(c) show that the effective aperture value found in b) corresponds to the direc
tivity of a half-wavelength dipole, Da — 1.64 = 2.15 [dB].

14-29 If an antenna with a 30 [dB] directivity is illuminated along its direction of max
imum sensitivity with a polarization-matched, 2 [GHz] plane wave with a power 
density of 100 [mW/m2], calculate the power that this antenna will deliver to a 
matched load.

14-30 A certain antenna has a directivity of 24 [dB] at 12 [GHz]. Find the power this 
antenna delivers to a matched load when a 1 [gW/m2], linearly-polarized plane 
wave of the same frequency is incident upon the antenna along its direction of 
maximum sensitivity when
(a) the antenna is polarization matched with the incident plane wave,
(b) the antenna is circularly polarized.

14-31 Suppose that a communication channel must deliver a minimum of 3 X 10_14 
[W] to the input terminals of its receiver in order to maintain the channel. If the 
transmitting and receiving antennas have gains of 15 [dB] and 10 [dB], respec
tively, and are 62 [km] apart, find the minimum power Pt that must be delivered 
to the transmitting antenna if the antennas are polarization matched, the chan
nel frequency is 2 [GHz], and the receiver input impedance is conjugate 
matched to the receiving antenna.

14-32 A J-band radar uses the same antenna for transmitting and receiving, with a gain 
of 37 [dB] at a frequency of 18.6 [GHz]. If the peak transmitted power is 1.2 
[MW] and the minimum detectable signal at the receiver is 14 X 10~15 [W], find 
the maximum range at which a target with radar cross section a = 5 [m2] can be 
detected.

14-33 Find the radar cross section erof a target that returns a peak power of 1 X 10-1° 
[W] to a radar receiver when the peak transmitted power is 100 [kW], the fre
quency is 15 [GHz], and the range is 1.5 [km]. Assume that the transmitter and 
receiver use the same 25 [dB] antenna, which is conjugate matched to the 
receiver’s input impedance.

14-34 Antenna side lobes can pose serious target-identification problems in radar sys
tems. Consider a radar antenna with a 50 [dB] directive gain along its direction 
of maximum radiation. It also has a side lobe 30° off that direction with a direc
tive gain of 20 [dB]. If a target with radar cross section crx located along the 
angle of maximum directivity at a range of 10 [km] produces a received power P, 
find the radar cross section <x2 of a target along the side-lobe angle at a range of 
1 [km] that produces the same received power.
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14-35 In the derivation of Equation (14.17), it was stated that:

- jk \r - t '\

=  —k 2 -,--------- - p r  -  4 7 t8 ( x  -  x ' )  8 (y  -  y ' )  8 ( z  ~  z ' ) ,
| r — r I

where <5(x) is the Dirac delta function.
(a) Show that the first term on the right-hand side of this expression follows 

directly from the Lapacian operator (Equation (2.123)) by expanding r and 
r' in Cartesian coordinates.

(b) Prove that the second term is needed at r = r' by considering the integral 
JAV V 2( e _j'/clr_ r l / | r  -  r ' | )  dv, where AV is the small spherical volume of 
radius 8  surrounding the point r' shown in Figure P14-35.

F ig u re  P I 4 -3 5

Use the divergence theorem to evaluate this integral using a surface integral 
around the spherical surface, noting that r — r' = 8  an points outward from the 
surface at each point



Appendix A: Units and 
Symbols

TABLE A-1 M KSA (RATIONALIZED) UNITS

Quantity Typical Symbols Unit Abbreviation

Length l, r, R M eter m
Mass m Kilogram kg
Time t Second s
Current I, i Am pere A

634
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TABLE A-2 DERIVED U NITS USED IN ELECTRO M AG NETICS

Quantity Typ.

Symbol

Prim ary Unit C om m on Alt. 
Unit

M KSA

Equivalent Unit

Admittance Y siemens (S) ampere/volt m 2 • k g -1s3 • A 2
Attenuation a neper/meter(Np/m) — m -1
Conductance G siemens (S) ampere/volt m -2 • kg -1 • s3 • A 2
Capacitance C farad (F) coulomb/volt m -2 • k g -1 ■ s4 • A 2
Charge Q ,q coulomb (C) — s • A
Charge density (volume) Pv coulomb/m eter3 (C/m 3) — m -3 • s • A
Charge density (surface) Ps coulomb/m eter2 (C /m 2) — m -2 • s • A
Charge density (line) Pi coulomb/meter (C/m) — m -1 • s • A
Conductivity a siemens/meter (S/m) — m • kg -1 • s3 • A 2
Energy (work) W joule (J) newton-meter m 2 • kg • s -2
Current I ampere (A) — A
Current density (volume) J am pere/m eter2 (A /m 2) — m -2 • A
Current density (surface) J, am per/meter (A/m) — m 1 • A
Electric dipole moment P ,P coulomb-meter (C • m) — m • s • A
Electric flux density D coulomb/m eter2 (C/m 2) — m -2 • s • A
Electric field intensity E volt/meter (V/m) newton/coulomb m • kg • s -3 • A -1
Electric potential V volt (V) — m 2 ■ kg • s -3 • A -1
Energy (work) W joule (J) — m 2 • kg • s -2
Energy density w joule/m eter3 (J/m 3) — m -1 • kg • s -2
Electromotive force V volt (V) — m 2 • kg • s -3 • A -1
Force F newton (N) — m • kg • s -2
Frequency f hertz (Hz) — s -1
Impedance z , v ohm (CL) — m 2 • kg • s -3 • A -2
Inductance L henry (H) — m 2 • kg • s -2 • A -2
Magnetic dipole moment m, m am pere-m eter2 (A ■ m 2) — m 2 • A
Magnetic field Intensity H am pere/meter (A/m) gauss m -1 • A
Magnetic flux <P weber (Wb) tesla-m eter2 m 2 • kg - s -2 • A -1
Magnetic flux density B tesla (T) weber/m eter2 kg • s -2 • A -1
Magnetic vector potential A tesla-meter (T • m) weber/meter m • kg • s -2 • A -1
Magnetization M am pere/meter (A/m) — m -1 - A
Magnetomotive force v « ampere (A) — A
Permeability P'1 Po henry/meter (H/m) — m • kg • s -2 • A -2

Permittivity * 1  eo farad/meter (F/m) —- m -3 • k g -1 • s4 • A 2

Phase <t> radian — (dimensionless)
Phase constant p radian/meter m eter-1 m -1
Power p watt (W) joule/second m 2 • kg • s -3
Propagation constant y m eter-1 (m -1) — m -1
Radiation intensity u watt/steradian — m 2 • kg • s -3
Reactance X ohm (CL) — m 2 • kg • s -3 ■ A -2
Reluctance henry-1 (H -1) — m -2 • k g -1 • s2 • A 2
Resistance R ohm (fl) — m 2 • kg ■ s -3 • A -2
Solid angle n steradian — (dimensionless)
Susceptance B siemens (S) ohm -1 m -2 • k g -1 ■ s3 • A 2
Torque T newton-meter (N ■ m) — m 2 • kg • s -2
Velocity u meter/second (m/s) — m ■ s -1
Voltage V , v volt (V) joule/coulomb m 2 • kg • s -3 • A -1
Wavelength A meter (m) — m
Wave number k m eter-1 (m -1) — m -1
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TABLE A -3 LIST OF PREFIXES (M ULTIPLIERS) USED W ITH UNITS

Prefix Symbol M agnitude Prefix Symbol M agnitude

Tera T 1012 C enti1 c 1(T2
Giga G 109 Mili m 1CT3
Mega M 106 Micro 1(T6
Kilo k 103 Nano n 1CT9
Hecto* h 102 Pico P lO "12
D ecaf da 101 Femto f 1(T15
D ecif d 10”1 A tto a 10-18

f These prefixes are usually used only for measurements of length.



A p p e n d ix  B: C o o rd in a te  

System  R e la tio n s h ip s  a n d  

V e c to r Id e n tit ie s

TABLE B-1 RELATIONSHIPS BETW EEN C O O RDINATE VARIABLES IN 
CARTESIAN, C YLINDRICAL, AND SPHERICAL C O O RDINATE SYSTEM S

c
CO

O

_o
'Ch"Oc

U

= Cartesian Cylindrical Spherical

X X p COS 0 r sin 0 cos </>

y y p sin 4> r sin 9 sin 4>

z z z r cos 9

p V x 2 +  y2 P r sin 9

0 •“ '1 9 0 0

z z z r cos 9

V x 2 + y2 + z 2 P
sin d

<D-CCu
t/5

COS

V x 2 + y2 + Z2
ta n -1 ] —

0 * n - f 4 0 0UJ
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TABLE B -2 DOT PRODUCTS OF THE BASE UNIT VECTO RS OF THE CARTESIAN, CYLINDRICAL, 
AND SPHERICAL COORDINATE SYSTEM S

Cartesian Cylindrical Spherical

• »y K a * ar a0

a* 1 0 0 COS Cp —sin cp 0 sin 0cos cp COS 0COS Cp -s in  cp

a, 0 1 0 sin cp COS Cp 0 sin 0sin cp cos 0sin cp COS Cp

a* 0 0 1 0 0 1 cos 9 —sin 9 0

K COS Cp sin (f> 0 1 0 0 sin 9 cos 9 0

A —sin cp C O S  Cp 0 0 1 0 0 0 1

a z 0 0 1 0 0 1 cos 9 -s in  9 0

K sin 9 cos cp sin 0sin cp cos 9 sin 9 0 cos 9 1 0 0

a0 cos 9 cos cp cos 9 sin cp —sin 9 cos 9 0 —sin 9 0 1 0

—sin cp COS Cp 0 0 1 0 0 0 1

TABLE B-3: RELATIONSHIPS BETW EEN VECTOR C O M P O N E N TS  IN TH E  CARTESIAN, C YLINDRICAL, 
A ND  SPHERICAL COORDINATE SYSTEM S.

= Cartesian Cylindrical Spherical

A A A p cos cp -  A ^  sin cp A r sin 0cos cp + A gcos 9 c os cp 

-A+ sin 0

A A ApSin cp + A^cos cp A r sin 9 sin cp +  A g cos 9 sin cp 

+ A lf) cos cp

A A A A r cos 9 — A^sin 9

A A x cos cp + A y sin cp A A r sin 9 +  A g cos 6

A —A x sin <f> + A y cos cp A A

A A A r cos 9 -  .AflSin 9

A A x sin 9 cos cp + A y sin 0sin cp 

+  A z cos 9

A p sin 9 + A z cos 9 A

Ag A x cos 9 cos cp + A y cos 9 sin cp 

-  A z sin 9

A p cos 9 -  A z sin 9 Ag

A - A x sin cp + A y cos cp A A,



APPENDIX B: COORDINATE SYSTEM RELATIONSHIPS 639

V e c to r  Id e n titie s :

(A X B) • C = (B X C) • A = (C X A) • B (B.l)

A X (B X C) = (A • C)B -  (A • B)C (B.2)

V • (VA) = A • VV + V V • A (B.3)

V X (VA) = VV X A + VV x  A (B.4)

V • (A X B) = B* VXA - A * V X B  (B.5)

V(A • B) = (A • V)B + (B • V)A + A X (V X B) + B X (V X A) (B.6)

V • V = V2 (B.7)

V • (V X A) = 0 (B.8)

V X (VV) = 0 (B.9)

V x V x A = V ( V ' A ) - V 2A (B.10)

f (V • A)di> = (j> A • ds (B.ll)
>v h

J  (V x  A)*ds = <j> A-d£ (B.12)

[ V X Fdv = -<£ FX ds (B.13)
'v Js



Appendix C: Fundamental 
Constants and Material 
Parameters

TABLE C-1 FUNDAM ENTAL PHYSICAL CO NSTANTS

Physical Quantity Symbol Value

Electron charge e -1 .602 x  10“19 [C]
Electron rest mass m e 9.107 X 10"31 [kg]
Electron radius K 2.81 x  10~15 [m]
Proton rest mass m p 1.673 x  10 '~21 [kg]
Velocity of light (in a vacuum) c ~  3 x  108 [m/s]

8.854 x  10-12~ - ^  X 10“9 [F/m] 
367T

Permittivity of free space *0

Permeability of free space Mo 477 X 10-7 [H/m]
Intrinsic Impedance of free space Vo -12077 or 377 [11]

640
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TABLE C -2  C O N DU C TIV IT IES  OF SO M E C O M M O N  M ATERIALS AT 20° C

M aterial a , [S/m]

Aluminum 3.817 X 107
Carbon (diamond) 2.0 X 10”13
Carbon (graphite) 7.143 X 104
Copper (commercial annealed) 5.8 X 107
Germanium 2.22 X 106
Gold 4.1 X 107
Iron 1.03 X 107
Lead (solid) 4.56 X 106
Mercury (liquid) 1.04 X 106
Magnesium 2.242 x  107
Nickel 1.45 X 107
Silicon 1.176 X 103
Steel (0.4-0.5 C, balance Fe) 4.5 -  7.7 X 106
Tin 8.77 X 106
Titanium 2.09 X 106
Tungsten 1.825 X 107
Zinc 1.66 X 107
W ater (distilled) 2 X 10"4
W ater (fresh) 1.0 X 10“3
Seawater 4.0
Soil (dry) 10“5
Rubber 2.7 X lO^11
Polyethylene 1.5 X 10”12
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TABLE C -3  D IELECTRIC  CONSTANTS, LOSS TANG ENTS, AND DIELECTRIC  

STRENG THS OF SO M E C O M M O N  DIELECTRICS

M aterial D ielectric
Constant

er

Loss Tangent
tan </> = e"/ er Dielectric  

Strength  
in [M V/m ]103 Hz 106 Hz 108 Hz

A ir (atmospheric pressure) 1.0006 ~ 0 * 0 « 0 3
Ice (fresh or salt) 3.3-4.2* — 0.12 0.035 —
Glass 4-7 0.005 0.004 0.003 30
Mica 7.45 0.0019 0.0013 — 200
Paper 2-4 0.008 0.04 0.07 12
Polyethylene 2.26 <0.0002 <0.0002 0.0002 47
Polystyrene 2.56 <0.00005 <0.00005 0.00007 20-30
Polytetrafluoroethylene 2.1 <0.0005 <0.0003 <0.0002 20
(teflon)
Porcelain 5.5 0.014 0.0075 .0078 4
Seawater 72 — 0.9 — —
Silicone-rubber 3.35 0.0067 0.003 0.0032 10-40
Snow 1.2-3.3* 0.49 0.0215 — —
Soil, sandy dry 2.91 0.08 0.017 — —
Soil, loamy dry 2.83 0.05 0.018 — —
W ater (distilled) 80 < 1 0 “6 0.04 0.005 —
Wood (Douglas fir) 2.1 0.008 0.026 0.033 10

* Decreases with increasing frequency.
The relative permittivity er of most materials is relatively constant from dc through the rf and microwave frequency 
ranges. Ice and water are notable exceptions. For them er decreases with increasing frequency in the rf region.
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TABLE C -4  RELATIVE PERM EABILITIES  

OF SO M E C O M M O N  M AG NETIC  M ATERIALS

M aterial
Relative

Perm eability

/A

Ferrom agnetics
Iron 4,000
Permalloy 70,000
Supermalloy 1,000,000
Perm endur 5,000
Cobalt 600

Ferrim agnetics
M anganese-zinc ferrite 750
Nickel-zinc ferrite 650

Diam agnetics
Bismuth 0.999833
Mercury 0.999968
Copper 0.9999906
W ater 0.9999912

Param agnetics
Air 1.00000037
Tungsten 1.00008
Manganese 1.001



Appendix D: Transmission- 
Line Parameters

The most fundamental parameters of a transmission line are its inductance L, capaci
tance C, resistance R, and conductance G. These parameters are distributed on a per- 
unit-length basis along the length of the transmission line and are functions of the 
cross-sectional dimensions of the transmission line, the materials used, and the operat
ing frequency (or bandwidth). From these fundamental parameters, the following 
operating parameters can be determined:

Ir  + jcoL
Characteristic impedance: Z = R + jX  = \  .

V G + jwC m (D.l)

Phase constant: (5 = Im[V(i? + jioL)(G + jcoC)] [m_1] (D.2)

Attenuation constant: a = Re[V(7? + jcoL)(G + jcoC)] [Np/m] (D.3)

2 tt
Wavelength: A = —  [m] (D.4)

Phase velocity: up = — [m/s] (D.5)

Group velocity: ug = ^  [m/s] (D.6)

644
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All of the preceding operating parameters are interrelated, so it is common to 
characterize a transmission line using just a few parameters. The parameters most 
often chosen are the characteristic impedance ZQ, the phase velocity up, and the atten
uation constant a. Formulas for these parameters have been derived for a wide range 
of different types of transmission lines, and the reader can find exhaustive presenta
tions of these formulas in the references cited at the end of this appendix.

Most transmission lines fall into one of two classes. The first and simplest are 
transverse electromagnetic (TEM) lines. These are transmission lines whose domi
nant mode is a TEM wave. In the strictest sense, only transmission lines with a homo
geneous dielectric and no losses can support a TEM mode. However, even when loss 
is present, the dominant modes on transmission lines with uniform dielectrics are so 
close to being TEM that they are generally classed as TEM lines. Examples of TEM 
lines are coaxial cables, two-wire lines (with uniform dielectrics), and strip lines. On 
TEM lines, the phase velocity up is governed only by the dielectric constant of the 
dielectric. If the dielectric is nonmagnetic,

(TEM transmission lines), (D.7)

where c is the speed of light in a vacuum (3 X 108 [m/s]) and er = Re (e/eG) is the dielec
tric constant.

The second class of transmission lines consists of those with nonuniform 
dielectrics. These are called quasi-TEM lines, since their dominant modes are nearly 
TEM, but always have at least one longitudinal component when the lines are oper
ated above dc. These lines can be characterized by the same types of operating para
meters as for TEM lines. But unlike TEM lines, where the phase velocity is controlled 
only by the dielectric constant of the dielectric, the phase velocity of quasi-TEM lines 
is controlled not only by the dielectric constants of the materials used, but also by how 
they are configured. An effective dielectric constant eeff is typically used to specify the 
velocity of propagation:

(Quasi-TEM transmission lines). (D.8)

Examples of quasi-TEM transmission lines are microstrip transmission lines and slot 
line transmission lines.

The attenuation constant a of both classes of transmission lines can usually be 
expressed as the sum of a dielectric loss constant ad and a conductor loss constant ac:

a = ad + ac, (D.9)

For all low-loss TEM lines, ad is given by1

(Low loss TEM transmission lines), (D.10)

1 This expression was derived in Chapter 12 (see Equation (12.79)) for the case of a plane wave, but it is 
applicable to any TEM wave in a homogeneous dielectric.
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where e' and -  e” are the real and imaginary parts of the complex permittivity, respec
tively. (See Sections 10-4-3 and 12-5 for a discussion of the complex permittivity.) 
Formulas for ad on quasi-TEM lines must be derived for the specific geometry of the 
line.

Formulas for ac always involve the cross sectional dimensions of the line. Also, 
these formulas always involve the conductor skin depth <5, which is given by

8 =
1

V  77'f/JLCr
(D .ll)

where/is the frequency of operation, and /z and a  are the permeability and conductiv
ity of the conductors. (Equation (D .ll) is derived in Section 12-5.)

The remainder of this appendix presents formulas for the operating parameters 
of a number of common types of transmission lines.

Coaxial Cables. Coaxial cables are the most popular type of TEM transmission 
line. They are particularly attractive for their shielding properties, which makes them 
resistant to outside sources of interference. Figure D-l shows the geomtery of a coax
ial cable.

Figure D-l A  coaxial cable.

The characteristic impedance and conductor attenuation constant are respectively 
given by

[fi] (D.12)

^ r ~ G  + £ ) [Np/ml- (D13)

where 8  is the skin depth of the conductors. Equation (D.12) is derived using the per- 
unit-length capacitance and inductance formulas derived in Chapters 6 and 9, respec
tively. Equation (D.13) can be derived using Equation (11.115) and the surface 
resistance of the conductors.
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Two-Wire Lines. In two-wire transmission lines, both conductors have the same 
relationship to ground: so they are balanced transmission lines. This makes them 
attractive for feeding balanced loads, such as dipole antennas or the inputs of balanced 
amplifiers. Although they are not shielded, it is often possible to limit their inductive 
coupling to outside sources of interference by twisting them.

Figure D-2 shows a two-wire transmission line.

Figure D-2 A two-wire transmission line.

Expressions for the characteristic impedance and conductor attenuation constant are 
respectively given by (Wadell p. 66)

z o = — cosh 17r V e \d
in] (D.14)

and

<oe" A ,— r 7.48 X 1(T4 D id
a  — -7—r  V /Lte H---------:—7------- X

2e'
X

1

rfcrS V ( W ^ 1  cosh-, (D
d

where S is the skin depth of the conductors.

[Np/m], (D.15)

Strip Lines. Strip lines are common in microwave circuits. Like coaxial cables, 
they are shielded, but the losses on strip lines are usually lower, since the dielectric is 
usually air. Figure D-3 shows the cross section of a typical strip line. Approximate 
expressions for the characteristic impedance Z0 (Wadel, p. 126-128),

Figure D-3 A strip line transmission line.

377
0 27r Ve~

r 4  b r 8 b U
] 1 + , ■.... y + (
{ 7rw 1TW V \

8 b
7TW

+ 6.27 [H] (D.16)

where

, t , (5b
w  =  w  +  —— In — 

3.2 I t
(D.17)

This approximation is valid for



t/b < 0.1 

w /t > 2.5 

w/b > 0.1.

Microstrip Lines. Microstrip transmission lines are the most popular type of 
transmission used on printed circuit boards. These transmission lines are very easy to 
fabricate using automated processes and offer relatively attractive electrical properties. 
Figure D-4 shows a typical microstrip transmission line.

64S, KWEHDYX. TV. P AR AMEYFRS

1
Figure D-4 A microstrip transmission line.

Approximate expressions for the effective dielectric constant and the characteristic 
impedance are as follows (Gardiol pp. 92-93):
^  w For — 1,

h

eeff ** 2 +  -1) +  2  ( 6 r  ~  ^

60 , / h w
:o ~  —t=  In 8 — + — Ve^ \  w  4h

h \ 1/2 ( w
1 + 12— +0.04 1 -  —

w V h

21
(D.18)

(D.19)

^ w For— > T 
h

1 l / h \ ~ 1 / 2

+ D + 1 + 1 2 - (D.20)

120tt W  W
— + 1.393 + 0.6671n — + 1.444 
h \n

(D.21)

Formulas have also been derived that predict the w/h ratio necessary to achieve
a particular value of Z0 (Wheeler: see Gardiol, p. 93).
^ w 
For — ^  2, 

h

w
exp (A) -  exp(-A ) (D.22)

where

e ~  1
„„„ V2(e + 1). + ------- (0.23 + 0.11/er).
377 w  ’ + 1 v r)

A  = (D.23)
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w
Similarly, for — 5* 2, 

h

W 6r~ 1 l \n (B -  1) + 0.39 -  — ) + — (B -  1 -  ln(2£ -  1) I , (D.24)
h rrer 77

where

B =
7t 377 [fl]

2 W  Z '
(D.25)

r o

Slot Lines. Figure D-5 shows a typical slot line, which consists of two metal traces 
on the same side of a dielectric slab. Slot lines are attractive on printed circuit boards 
when it is not convenient to have a conducting sheet on the bottom of the dielectric 
(such as for microstrip lines).

w
eoIV

V
V

•

■

Figure D-5 A slot line transmission line.

Approximate expressions for eeff and ZQ are as follows:

For 0.02 < w /h <  0.2,

(feff)_1 *  [0-923 -  0.448 log er + 0.2w/h

-  (0.29w /h  + 0.047) log(/z/A0 X 102)]"2 (D.26)

Z0 -  72.62 -  35.19 log,, + 50 ~ ° ° 2> ~ ^
w/h

+ log (w/h X  102) [44.28 -  19.58 logej 

— [0.32 log er — 0.11 + w/h  (1.07 log €r + 1.44)]

X [11.4 -  6.07 loger -  h /A0 X  102]2. (D.27)

For 0.2 < w/h < 1.0,

(eeff) 1 -  0.987 -  0.483 loger + — (0.111 -  0.0022er)
h

( o 094w \
-  (0.121 + ------  0.0032eJ log(/t/A0 X 102) (D.28)
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ZG «  113.19 -  53.55 log 6, + 1.25w/h{lU.59 -  51.88 log er)

+ 20.0(w/h -  0.2) (1.0 -  w/h)

-  [0.15 + 0.23 loger + w / h ( - 0.79 + 2.07 log*,)]

X  [10.25 -  5er + w /h (2.1 -  1.42 loger) -  h /A X  102]2, (D.29)

where “log” signifies the base-10 logarithm. These expressions are valid for 
9.7 < er < 20.0 and 0.01 < h /A < 0.25/Ver -  1.0. (See R. Garg and K. C. Gupta, pp. 
156-161.)
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Appendix E: Answers to 
Selected Problems

CHAPTER 2

2-2 a) V l4, b) V l7, c) - 3 i „  d) -  -  9a;, e) 0min = 44.52°.
2-5 a) A =  (2 cos</> — 3 sin</>)ap +  (—2 sincf> — 3 cos</>)a  ̂ 4- 2az, b) at Pl5

A = -1 .6 ap -  3.2a^ + 2az, a tP 2, A = 0.23ap -  3.6a^ + 2az.

2-7 C = 6/V2 a2 + a3.
1

2 - 1 0  volume = — abh.
3

2-13 a) 4.5, b) 25/6.

2-15 -4= .

V3
2-18 a) 7.48, b) -2.41
2-20 a) V/ = 2yax + 2xay, b) V/ = 2p sin2</>ap + 2p cos2(/>a^, c) proof 
2-23 a) -4 , b) -4

2-25 a) V/ = sin 6 cos </>ar + cos d cos </>ae -  sin t/>a0, b) V X  V/ = 0, c) V • V/ = 0 . 

2-26 a) 6tt, b) 677-.

651
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CHAPTER 3

3-1 Q = 8.73 [fiC].

3-4 I = 1/6 [A].

3-6 pv = -2 1 + Const [mC/m3]

3-8 d¥1 = 6.93 X  10'9 a, [N]

3-10 E = 693.3a, +50ay -500az [V/m] 

3-12 u = 0.918 X  108 [m/s].

CHAPTER 4

4-2 E = 0.575 a, -  0.575 ay + 1.47az [kV/m], 

4-4 E = a2plo

4-6 z

4e0[z2 + a ] 
a

19.975

2i3/2 “ x

>

a^.

1 -  e~p  ̂
4-8 E = --------- a„

4-13 a) E =

P*o
Pv0[1 “  O' +  l ) e ~ 1

e0r
charge at the origin.

a,, b) lim E = —̂  a,., which is the same as a point

4-16 Vab = 4.4 [V]

4-IN Vab = —  (p„ -  (>,!,) 

CHAPTER 5

5-2 Np = 107 [cm"3]. 
c r E 2

5-5 Pdls = ^ [ W /m 2].

5-8 a ) 3.4 X 10~6%, b) 3.4 X 10"3%.

5-12 R = 

5-15 =

b — a 
I ttIIc 

1.56.

5-17 a) Ps =
- 2  Qd

4ir[x2 + y 2 + d2]2i3/2 ,b) Qsurface Q•

5-19 E = where A =
X ( b - a )  + Va
€o

a
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CHAPTER 6

6-2 C = 12.1 [pF/m].
6-4 C = 473 [pF/m],

6-10 1.77 X 1CT6 [S/m].
6-13 a) V2 = 0, b) V2 = 99 [mV],

CHAPTER 7

7-4 B = p0/*az for p < B = — a* for p> a.
P

nwV2
2 X 10“9 . r .

7-9 B = -----------a* [T], where p is specified in meters.
P

7-12 a) 400a* [pT], b) -23.5a* [pT].

7-14 B = ay inside hole.

* P*c J %  ~ „  p n/ €  .
7-15 A = —----a B = - — -̂sinfla,* .

47rr 4ttH

7-18 Vm
1 7TJC 7TV

----- cos—  cos— .
7r p a 6

CHAPTER 8

8-1 pv = 105 [C/m3].
8-4 m = 5.2 X 10-22 [A -m2].
8-7 | £ 21 = 0.15 [T], d2 = 86.2°.
8-9 B = 2 X 104p o/a z for p < a,B = 2 X 104p zp o/a z for a < p < b,

B = 0 for p > 0, <2> = 2tt/  X 104po a 2 +  p r( 6 2 -  a 2) .

8-15 M = 1.91 X 107az [A/m], and = 1.91 X 107 a* [A/m]. 
8-16 <Pleft = 10.5 [pWb] and <2>right = 65.8 [pWb], both upward. 
8-18 B = 1.9 [T].

CHAPTER 9

9-2 Vm = -8.33 cos o>r [V].
<r(
It 

(0.9)2

9-4 a) />a>e = [w], = m

c) ifaPo =
A

9-8 i(?) = 0.24 sin [mA],
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9-11 L12 = 0.158 [mH],
9-14 Fm -  15.5 [mN] (attractive).

9-16 Fm — 21A [N] when x = 0.7 [cm], and Fm = 13.4 [N] when x = 1.0 [cm]

CHAPTER 10

2
10-1 e =

10-3 a) H =

small.

Ao Ox)2 

PE0
co/xr

sin (cot -  fir) a^, b) (3 = ooVjie, c) an ar must be present when /3r is

10-4 a) JJJd = 1.5 X 107, b) JJJA = 0.562. 

10-7 H0 = H0 cos (kxx) e_;/3zaz.

10-10 Jd = -  jfiH0 cos (kxx)e~iPzay 

10-13 E2 = 1.52a, + 0.04 ay -  3 a z [V/m] 

H2 = -1 .58a, + 0.83ay -  4az [A/m]

CHAPTER 11

11-2 a) C = 91.4 [pF/m], b) L — 275 [nH/m], c) R0 = 54.9 [ft], d) u = 1.99 X  108 [m/s].

11-5 Vm = 33.3 [V], 7in = 0.66 [A].

w
11-7 — = 2.26. 

h

11-12 vL — 0 for t < 4 [ns], vL = 3.5 [V] for 4 < t < 12 [ns], vL = 5 [V] for / > 12 [ns]. The 
steady state value is vL = 5 [V].

11-14 i>ref(0  = [2.5 + 2.5e-('-r)/T]U(? — IT )  [mV], where r  = 6 [ns] and T  = 10.3 [ns],

c c
g —11-16 .

F fl + bhi
,u g

a + 2b(o

11-18 a) ZL = 174.76 Z. 23.8° [ft], b) \vL\ = 14.25 [V], 

11-21 P75 = 13.3 [W], P25 = 9.97 [W], Pm  = 39.9 [W], 

11-25 ZL = 42.83 -  ;27.99 [ft].

11-28 ZL = 91.12 -  y 15.0 [ft].

11-30 Zin = 80.88 [ft].

CHAPTER 12

12-1 / =  100 [MHz], H = —  e-^2my+7T/%  [A/m],
Vo

E < 0 - ! » . ( « - 2.094y — tt/4) az
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12-2 f  = 150 [MHz], A = 2 [m].

12-4 zj [kV/m],

12-8 AR = 9.64, r  = 17.58°.
12-12 e = e0[2.5 -  j 0.025].
12.15 € = e0[4.99 -  ;2.45 X  10"7].

12-19 t = 57.1 [s],
12-22 Fdiss = 2.1 [mW/m2].
12-25 l = 0.049 [mm].
12-27 AR = 2.2.
12- 30 h = 0.3 [m].

CHAPTER 13

13-4 TE10, TE20, TEn , TM^ , TE21 , TM21, 1E01
13-6 a = 928.6 [dB/m].
13- 9 d = 370.8 [m].

13- 12 a) a = 6 X 10~2 [dB/m], b) a = 4.5 X 10-2 [dB/m].
13-14 i = 1.75 [cm], d = 0.659 [cm].
13-17 A t = 0.114 [ns/m],

13-20 dmax = 3.3218 [Aim].
13-22 d = 4.81 [mm].
13-24 a) 31.45%, b) 1.89%, c) 0.019%.
13-26 P > 2.66 [mW].
13- 30 a) d = 2.36 [cm], b) d — 1.925 [mm].

CHAPTER 14

14- 3 E = 62.5 [mV/m],
14-6 Erad = 8.89 [mW].
14-8 Rin = 67.02 [ft].

14- 11 Rm = 146 [ft].
14-13 a) rjr = 1.04%, b) Vr = 99.76%.
14-17 Nmin = 24.
14-18 30.85° < 6< 65.38°.
14-20 Nulls occur at 6=  ±45.57°, ±66.42°, ±84.26°, ±101.5°, ±120°, ±143.1°.
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14-26 ]/oc = 11.2 [/*V]. 
14-29 Pr = 179 [mW], 
14-32 Rmax = 193.6 [km]. 
14-34 cr2 = lOOo-!.
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In d e x

Action-at-a-distance force laws 71 
Ampere’s law of force 73, 82 
Coulomb’s law of force 71, 82 

Ampere’s circuital law , see Ampere’s law 
Ampere’s law

magnetostatic case 207, 218-219 
time-varying case 326 
use in field calculations 218 

Ampere’s law of force 3, 73, 82, 331 
Ampere, Andre Marie 3, 73, 82, 207 
Ampere, unit of current 8 
Amperian path 218 
Anisotropic materials 134 
Antenna arrays 606 

array factors of 608 
binomial 614 
broadside 611
electronic beam steering of 606, 609 
end-fire 612 
linear 609-610 
nonuniform 614
pattern multiplication theorem 608 
planar 606

two-element array 607 
Antenna parameters 

conjugate matched load 618 
directive gain 586 
directivity 586 
effective aperture 619 
equivalent circuits 616 
gain 587
input impedance 617 
input resistance 

loss component 588 
radiation component 588 

mutual impedance 617 
open circuit voltage 618 
power gain 587 
radiated power 583 
radiation efficiency 588, 589 
radiation intensity 583 
radiation patterns 

cuts 585 
E-plane 585 
field pattern 584 
H-plane 585
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Antenna parameters (cont.) 
isotropic 585 
main and side lobes 584 
nulls 584
omidirectional 585 
power pattern 584 

radiation resistance 589 
receiving 616-623 
transmitting 582-589 

Antennas 
aperture 601
array , see Antenna arrays 
dipole 589 
folded dipole 596 
horn 601, 602, 606 
loop 597 
loopstick 600 
microstrip patch 601, 603 
monopole 595 
parabolic reflector 606 
reflector 604 
slot 601

Array factor 608
Asymmetric charge distributions 106 
Attenuation constant 

of a plane wave 454 
of a transmission line 363, 389, 393, 645 
of a waveguide 533 

Avalanche current 139

Bahl, IJ. 603 
Balanis, C. 593 
Base vectors 17 
Battery, electric 128 
Beam steering, electronic 606 
Bergeron diagrams 380 
Bergeron, L.J.B 380 
Bhartia, P. 603 
Binomial arrays 614 
Bioelectronics 5 
Biot-Savart law 210-212 

use in B-field calculations 213-218 
Bounce diagram 375 
Bounce diagrams 371 
Boundary conditions 

for current density 148, 343 
for electromagnetic fields 341-343 
for electrostatic fields 145 
for magnetostatic fields 258, 264 

Boundary Value Problems
electrostatic (see also Electrostatic boundary 

value problems) 149
magnetostatic (see also Magnetostatic boundary 

value problems) 260 
Breakdown, dielectric 138

Brewster angle 497 
Broadening, pulse 

on a waveguide 529 
on transmission lines 396-397 

Broadside arrays 611

Cabeo, Niccolo 2
Candela, unit of luminous intensity 8 
Capacitance 180, 329 

calculation, using curvilinear squares 189 
coaxial line 184 
coefficients of 193 
energy storage of 200 
formulas for simple geometries 181-184 
mutual 193
parallel connection 184 
series connection 183 
stray 70
two-wire line 185 

Capacitors
concentric spheres 181 
lossy dielectric 191 
parallel plate 152,168,181 

Carbon dioxide (C02) laser 133 
Cartesian coordinates 17 
Cathode ray tube (CRT) 81, 86 
Cavendish, Henry 3 
Characteristic admittance 430 
Characteristic impedance 384 
Characteristic resistance 359 
Charge 62 

bound 132 
conservation of 68 
free 123 
magnetic 234 
point 62 
polarization 135

Charge conservation, law of 68,140, 331 
Charge density 62-63 

surface 62-63 
volume 62

Circuit-theory concepts 344-346 
Circular current loop, B-field of 215 
Circulation, of a vector 46 
Closed surface 20 
Coaxial cylinders, E-field of 102 
Coaxial line (cable) 349, 646 

B-field of 223 
capacitance of 184 
E-field of 103 
electric shielding of 154 
inductance of 304 
magnetic shielding of 223, 309 

Coercive field intensity 253 
Collin, R.E. 43, 49, 55, 255, 351, 434, 560
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Collinear vectors 14 
Compass 

Hall effect 243 
permanent magnet 236 

Complex permittivity 339-340 
Concentric spheres, E-field of 106 
Conduction current 123 
Conductivities, table of 641 
Conductivity 123, 332 

complex 339-340 
effective 457 

Conductors 2, 123 
boundary conditions at 343 
plane wave absorption of 476 

Conservation of Charge , see Charge conservation, 
law of

Conservation of magnetic flux, law of 207 
Conservative vector field 36,128 
Constitutive parameters 

conductivity 123, 339 
permeability 250, 339 
permittivity 339 
permittivity of 137

Constitutive relations 123, 137, 250, 332 
Continuity equation 69 
Cook, William 4 
Coordinate systems 16 

Cartesian 17-22
conversions between 30-31, 637-638 
cylindrical 23-26 
orthogonal 16 
spherical 30 

Coulomb’s law 90, 93 
use in E-field calculations 93-97 

Coulomb’s law of force 3, 71, 82, 331 
Coulomb, Charles A. 3, 82 
Critical angle 499 
Critical temperature 127 
Cross (vector) product , see Vector products 
Curie temperature 253 
Curl 46-50 

definition 46
operations (see also back cover) 49 

Current 63-68 
common mode 309 
convection 66 
density 64
differential mode 309 
displacement 326-330 
drift 123 
eddy 286
magnetization 246-249 
orbital 244 
polarization 327 
scalar 64

spin 244 
steady 73, 255 

Current density 
surface 65-66 
volume 64-65 

Current filament, short 
electromagnetic fields of 573 
magnetostatic B-field of 212 

Current loop, B-field of 231 
Current sheet, B-field of 218 
Curvilinear squares technique 165, 263 
Cutoff

frequency 514 
wavelength 527

Cylindrically symmetric charge distributions 99 
Cylindrically symmetric current distributions 

220-223

Decibel (dB) 390, 455 
Deflection yoke 81 
Del operator 37 
Delta function, Dirac 571, 633 
Desaguliers, J.T. 2 
Diamagnetism 250 
Dielectric constant 138 

effective 387, 645 
Dielectric constants, table of 642 
Dielectric relaxation 139, 340 
Dielectric strength 138 
Dielectric strengths, table of 642 
Dielectrics 132 

anisotropic 134 
breakdown of 138 
dielectric constant of 138 
electric susceptibility of 134 
permittivity of 138 

Differential displacement vectors 
Cartesian coordinates 20 
cylindrical coordinates 26 
spherical coordinates 29 

Differential surface vectors 
Cartesian coordinates 20 
cylindrical coordinates 26 
spherical coordinates 29 

Differential volume elements 
Cartesian coordinates 20 
cylindrical coordinates 25 
spherical coordinates 29 

Diffraction 601 
Dimension 

of a space 17 
of a unit 9 

Dipole 
electric 113 
Hertzian 573
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Dipole (cont.)
magnetic 230-234 

Dipole antenna
current distribution of 590 
directivity of 593 
effective aperture of 621 
folded 596
infinitesimal (see also Hertzian dipole) 573 
input impedance of 594 
monopole 595 

Dipole moment 
electric 115 
magnetic 232 

Directed distance, 10 
Directivity, antenna 586 
Discrete quantities 9 

scalars 9 
vectors 10 

Disk, E-field of 96 
Dispersion 

material 529, 557
transmission line 362-363,396-397 
waveguide 529, 557 

Displacement current 326-330 
density 328 

Divergence 40-44 
definition 40
operations (see also back cover) 43 

Divergence theorem 45 
Dominant mode 

for a transmission line 351 
for a waveguide 522

Dot scalar product, see Vector products

Earth magnetic field 235 
Echo area 626 
Eddy currents 254, 286 
Effective aperture 619 
Eigenvalues 514 
Electrets 133 
Electric field intensity 76 

definition of 78 
Electric flux density 137 
Electric potential, see Potential, electric 107 
Electric susceptibility 134 
Electrical computing 2 
Electricity 1
Electro-mechanical machines 5 
Electromagnetic compatibility (EMC) 5, 568 

see also shielding, or unintentional radiators 
Electromagnetic interference (EMI) 5, 567 

see also shielding, or unintentional radiators 
Electromagnetic potentials 568 
Electromagnetics 1, 61 
Electromotive force (emf) 129

motional 279, 287-289 
transformer 279,280-283, 289 

Electron 62
classical radius (Prob. 6-12) 203 

Electron cloud 127 
Electronic memory 2
Electrostatic Boundary value problems 149 

analytical solutions 151-165 
graphical solutions (curvilinear squares) 165 
numerical solutions 169 

Electrostatic fields 87 
End-fire arrays 612 
Energy

electric 195-199, 200,463 
magnetic 295-300, 301, 463 

Energy density 
electric 198 
magnetic 299 

Etalon 485 
Far zone region 577

Faraday disk generator 290 
Faraday shielding, see Shielding, electric 
Faraday’s law 3, 278-279, 331 
Faraday, Michael 3, 76
Federal Communications Commission (FCC) 568 
Ferrimagnetism 254 
Ferromagnetism 252 
Fiber, optical, see Optical fibers 
Field quantities 9 

scalars 9 
vectors 11 

Field theory 75 
Filters

metal waveguide 540 
optical fiber 485 

Fin lines 350
Finite difference technique 169 
Flux linkage 291 
Flux plots 

electric 166 
magnetic 264 

Flux tubes 166 
Folded dipole antenna 596 
Force 

electric 77
magnetic 77, 310-318 

Frankl, Daniel R. 464 
Franklin, Benjamin 3 
Friss transmission equation 625

Gain, antenna 587 
Gauge

Coulomb’s 209 
Lorentz 570
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Gauss’s law 89 
field calculations using 98 

Gauss’s law for magnetics 207 
Gauss, Karl Friedrich 89 
Gaussian surface 98, 100 
Gilbert, William 2 
Gradient 37^10 

definition 38
operations (see also back cover) 39 

Grating lobes 611 
Gray, Stephen 2 
Ground loop 309 
Ground plane 159 
Grounding (see also shielding) 154 
Group delay 396
Group velocity see Velocity, group

Hall effect 242, 243 
sensor 243 
voltage 243

Hardening, electronic 195 
Heaviside, Oliver 77, 363 
Heck, D. C. 271
Helmholtz coils 238, (problem 7-8) 
Helmholz equation 442 
Helmholz theorem 54 
Hertz, Heinrich 4, 83 
Hertzian dipole 573 

directivity of 587 
effective aperture of 621 
radiated power of 578 
radiation resistance of 579 

High speed circuits 5 
Homogeneous media 124, 141. 340 
Horn antenna 601, 602, 606 
Huygens, Christian 601 
Hysteresis 253, 267

Images
charge 160, 186 
current 310, 581 

Images, method of 159 
Impedance 

characteristic 384 
intrinsic 445, 456 
wave 445, 530

Impedance (Z) parameters and matrix 415 
Impedance matching techniques 427 

quarter wave transformer 427 
single stub turner 430 
stub tuner 430

Impedance transformation formulas 
plane wave 487 
transmission lines 400-401 

Impulse function 571

Index of refraction 493 
Inductance 290 

coaxial line 304 
coupling coefficient 297 
dot convention 292 
energy storage 295 
external 302 
internal 302
mutual 290-292, 293, 297, 301 
self 290-292, 300 
two-wire line 306 

Induction, magnetic 128, 278 
Inductors 336 

solenoid 293 
toroid 302

Infinitesimal dipole , see Hertzian dipole 
Insulators 123
Intrinsic impedance 445, 456 

of free space 445 
Irrotational vector 55 
Isotropic media 124, 340

Joule’s law 131

Kansas 470
Keiser, G. 553, 557
Kelvin, unit of temperature 8
Kilogram, unit of mass 8
Kirchhoff’s voltage law (KVL) 90, 128
Kirchoff’s current law (KCL) 70, 330
Kraus, John 83

Laplace’s equation 116, 143, 151, 256 
Laplacian operator 53-54 

definition 54
operations (see also back cover) 53 

Laser 498,555 
Leighton, R. 203 
Lenz’s law 279, 287 
Leyden jar 83 
Liao, Samuel 415 
Light emitting diode (LED) 555 
Lightning 139,195 
Line (contour) integrals 34 
Line charge density 63 
Line charge, E-field of 94 
Line current, B-field of 213 
Linear media 124, 340 
Lobes 

grating 611 
main 584 

side 584 
Loop antennas 

radiated fields of 599 
radiation resistance of 600
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Loopstick antenna 600 
Lorentz force law 76, 310, 331 
Lorentz, Hendric 77, 82 
Loss tangent 458 
Loss tangents, table of 642 
Lossless media 131 
Lossy media 131 
Magnetic circuits 268 
Magnetic declination 236 
Magnetic field intensity, definition 249 
Magnetic flux density 76 
definition 79 

Magnetic materials 244 
antiferromagnetic 254 
diamagnetic 250 
ferrimagnetic 254 
ferrites 254 
ferromagnetic 252 
paramagnetic 252 
superparamagnetic 255

Magnetic poles 235
Magnetic potential, see Potential, magnetic 
Magnetic susceptibility 250 
Magnetic tapes 267 
Magnetization current 

surface 247 
volume 247, 327 

Magnetization vector 246 
Magnetizing field 245 
Magnetomotive force (mmf) 269 
Magnetostatic boundary value problems 260 

analytical solutions 260 
graphical solutions (curvilinear squares) 263 

Magnetostatic fields 206 
Magnets, permanent 253, 265 
Marconi, Guglielmo 4 
Marcuvitz, N. 518, 523, 525, 542 
Matched load 367 
Maxwell’s equations 4 

in free space 82 
in simple media 340 
in source-free media 340 
time-harmonic 338-339 
time-varying 330

Maxwell’s equations for electrostatics 
in free space 89 
in material media 142 

Maxwell’s equations for magnetostatics 
in free space 206-207 
in material media 255 

Maxwell, James Clerk 3, 73, 82, 326 
Metals 127
Meter, unit of length 8
Method of images see Images, method of

Michell, John 3 
Microstrip lines 350, 648 
Microstrip patch antenna 601, 604 
Mobility 123 
Modes

resonator 558 
transmission line 350, 511 
waveguide 351,511 

Monopole antenna 595 
Moore, Richard K., et. al. 461 
Morse, Samuel 4
Motional emf , see Electromotive force, motional

Nahin, Paul J. 327 
Near zone region 576 
Needle plot 11 
Neper 390, 455 
Network analyzer 416 
Neumann formula 293 
Nonuniform arrays 614 
Normal, vector of a surface 20 
Numerical aperture 555

Oersted, Christian 3, 82 
Ohm’s law 3, 123, 124 
Ohm, George S. 3 
Ohm, unit of resistance 123 
Optical communications 5, 553 
Optical fibers 552 

dispersion shifted 557 
etalon filters 485 
multimode 555 

graded index 555 
step index 555 

numerical aperture 555 
single mode 556 
transmission windows 552

Orthogonal coordinate systems , see Coordinate sys
tems, orthogonal

Parabolic reflector antenna 606 
Parallel (orthogonal) vectors 14 
Paramagnetism 252 
Pascal’s triangle 615 
Patch antenna 601, 604 
Pattern multiplication theorem 608, 614 
Pencil beam 606 
Perfect conductor 127, 343 
Permanent magnets 235, 265 
Permeabilities, table of 643 
Permeability 250,332 

complex 339-340 
of free space 74 
relative 250 

Permittivity 138, 332
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Permittivity (corn.) 
complex 339-340, 457 
effective 457 
of free space 72 
relative 138

Perpendicular (orthogonal) vectors 14 
Phase constant 

of a plane wave 
in lossless media 444 
in lossy media 454 

of a transmission line 384, 389 
Phase velocity , see Velocity, phase 
Phasors

scalar quantities 334 
vector quantities 337 

Photovoltaic cells 129 
Physical constants, table of 640 
Physical quantities 635 

definition of 7 
discrete 9 
field 9
fundamental 8 

Piezoelectric effect 133 
Plane of incidence 491 
Plane waves

attenuation constant of 454 
group velocity of 455 
in lossless media 443 
in lossy media 453 
intrinsic impedance 445, 456 
loss

conduction loss 456 
polarization loss 456 

multiple reflections 480, 485 
parameters for good conductors 460 
parameters for loss-loss dielectrics 459 
phase constant of 444, 454 
phase velocity of 444, 455 
polarization 449 

circular 449 
elliptical 451 
linear 449

power density of 466 
circular polarization 468 
linear polarization 467 
lossy media 469 

power transport of 466 
propagation constant of 444, 454 
reflection and absorption by conductors 476 
reflections

normal incidence 470-490 
oblique incidence 490-503 

skin depth 477-478 
wavelength of 444, 455 

Plonsey, R. 43, 49, 55

PN junction 138, 157 
Poisson’s equation 116, 143, 209, 570-571 
Poisson, Sim[code8e]on D. 82 
Polarization charge densities 

surface 135-137 
volume 135-137 

Polarization current 327 
Polarization ellipse 452 
Polarization of waves 449 

circular 449 
elliptical 451 
linear 449 
parallel 495 
perpendicular 491 

Polarization vector 133 
Polarizing angle 497 
Polarizing field 132 
Position vector 31 
Potential 

difference 108 
electric 107-113, 143,568 
electromagnetic 568 
magnetic, scalar 229, 256 
magnetic, vector 208, 227, 256, 568 
relative 113 
retarded 573 
time-harmonic 568 

Power density 
instantaneous 464 
time-average 465

Power dissipation , see Joule’s law or Poynting’s the
orem
Power transport 462 
Poynting vector 

complex 466 
instantaneous 464 
time-average 465 

Poynting’s theorem 462 
Poynting, John Henry 464 
Priestley, Joseph 3 
Propagation constant 

of a plane wave 
in lossless media 444 
in lossy media 454 

of a transmission line 384, 389 
of a waveguide 514 

PSpice3, circuit analysis program 437 
Pupin, Michael 363 
Pyroelectric effect 133

Quality factor (Q) 560 
Quarter wave stack (problem 12-24) 506 
Quarter wave transformer 427, 488 
Quasi-transverse electromagnetic wave 350 
Quiver plot 11
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Radar cross section 626 
Radar range equation 627 
Radars 626 

bistatic 626 
monostatic 626 

Radiation fields 577 
Radiation intensity 583 
Radiation patterns 584 
Radiation resistance 

circular loop 600 
definition 589 
half wave dipole 594 
Hertzian dipole 579 

Radiation zone 577, 583 
Recording head 267 
Recording, magnetic 265 
Reference antenna 586 
Reflection 

angle of 492, 496 
of plane waves 470, 490 
on transmission lines 366, 398 

Reflection coefficient 
current 369 
effective 411 
plane wave

normal incidence 473 
oblique incidence 494, 496 

voltage 368 
Reflectivity 484 
Reflector antennas 604 
Refraction 

index of 493 
Snell’s law of 492 

Relaxation time 140 
Reluctance 269 
Residual flux density 253 
Resistance 125 

radiation 579 
surface 478 

Resonators 558 
dielectric puck 562 
microstrip 562 
rectangular 558 
shunt mounted cavity 562 

Right-hand rule 15 
Robison, John 3

Separation of variables, method of 161, 514 
Shielding

coaxial cable 103,154, 223, 330 
electric 151,192-195 
magnetic 223, 308-310, 595 

Shortly, G. 8
Siemens, unit of conductance 123 
Simple media 124, 340 
Skin depth 460, 477^178 
Slot antennas 601 
Slot lines 350, 649 
Smith chart 416-420 

for admittance calculations 423 
for lossy lines 426 
for VSWR calculation 423 

Smith, P.H. 419 
Smythe. W. R. 216 
Snell’s law 

of reflection 492, 496 
of refraction 492, 496 

Solenoidal vectors 55 
Solenoids 224-226, 256 
Space charge 141 
Space waves 441 
Spark gap 83 
Speed of light 444
Spherically symmetric charge distributions 103-106 
Standing wave ratio 408 
Standing waves 407-409 
Steradian 583 
Stokes theorem 51 
Streetman, Ben 123 
Strip lines 647 
Stub tuners 430-434 
Stutzman, W.L. 594 
Superconductors 5,127, 251 
Superparamagnetic materials 255 
Superposition principle 93 
Surface charge density 62-63 
Surface integrals 34 
Surface resistance 478 
Surface-charge, E-field of 98 
Susceptibility 

electric 133 
magnetic 246 

Symbols, table of 635

Satellite communications 606
Scalar product, see Vector products
Scalar, definition of, 9
Scattering (S) parameters and matrix 414
Schwartz, M. 193
Second, unit of time 8
Semiconductors 5, 67, 243
Separation constants 162

Telegraph 4 
Telephone 4 
Television 4
Tesla, unit of magnetic flux density 77 
Thermocouples 128 
Thiele, G.A. 594 
Thomson, Joseph 77 
Time-domain reflectometry 379
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Time-Harmonic fields 334-340 
Toroids 226, 302 
Torque, magnetic 310 
Total reflection 499
Transformer emf , see Electromotive force, trans
former
Transformers 283 

ideal 283
Transmission coefficient, plane wave 

normal incidence 473 
oblique incidence 494, 496 

Transmission line parameters 644-650 
coaxial lines 646 
microstrip lines 648 
slot lines 649 
strip lines 647 
two-wire lines 647 

Transmission line types 
balanced 349
coaxial (see also Coaxial lines) 349, 646 
fin lines 350
microstrip lines 350, 648 
Quasi-TEM 645 
slot lines 350, 649 
strip lines 647 
TEM 645
two-wire (see also Two-wire lines) 349, 647 

Transmission lines
attenuation constant of 363, 384, 389-390 

conductor component 393 
dielectric component 393 

characteristic admittance of 430 
characteristic impedance of 384, 391 
characteristic resistance of 359 
circuit equations of 351 
dispersion of 357, 362-363, 396-397 
effective dielectric constant of 645 
effective reflection coefficient on 411 
equivalent circuits of 402^106 
impedance matching techniques 427 
impedance transformation formulas for 400^101 
input impedance of 399 
open circuit load 401^102 
short circuit load 401 
loading coils for dispersion reduction 364 
matched load, definition 367 
Nondistorting case 363 
parameters for low loss lines 392-393 
phase constant of 384, 389 
power transport on 361 
propagation constant of 384 
reflection coefficient on 368, 399 
standing waves on 407 
time-harmonic waves on 382-434 

lossless lines 385

lossy lines 389 
reflections 398-399 

transients on 355-383 
lossless lines 356 
lossy lines 362 
nonlinear loads 380 
pulse response 374 
reactive loads 376 
resistive loads 366 
rise time 372 
step response 369 

two-wire 185, 306 
unit cells of 354 
velocity of 358 

group 396 
phase 386-387 

wave equations for 357, 383 
wavelength on 387 

Transverse electric (TE) waves 511 
Transverse electromagnetic (TEM) waves 350, 448, 
511
Transverse magnetic (TM) waves 512 
Triple product, see Vector products 
Two-wire line 349, 647 

capacitance of 185 
inductance of 306

Unintentional radiators 594, 604 
see also shielding 

Uniqueness principle 149, 160 
Unit vector 13 
Units 8 

derived 9, 635 
fundamental 8 
MKSA system 8, 634 
prefixes 636 
SI system 8

Vector 
addition 11 
analysis 7 
calculus 33
components 14,15, 638 
identities 639
multiplication by a scalar 12 
products , see Vector products 
projection 14 
streamlines 11 
subtraction 12 

Vector integrals 
line (contour) 34 
surface 34 
volume 34 

Vector products 
cross (vector) 15,19, 25, 28
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Vector products (cont.)
dot (scalar) 13,19,25, 28, 637 
triple 16 

Vectors
definition 10 
discrete 10 
field 11 
position 31 
unit 13 

Velocity
group 394-397, 455, 527 
of light 444
phase 386,444, 455, 527 

Verdeyen, J.T. 133 
Volt, unit of voltage 77 
Volta, Alessandro 3, 82 
Voltage 108-109 

definition 109
Voltage standing wave ratio (VSWR) 408 

Wave
evanescent 501, 514 
space 441 
standing 477 
surface 501 
uniform plane 443 

Wave equations 357, 383, 442 
Wave impedance 

effective 486 
in waveguides 530 

Waveguide couplers 539 
directional 540 

Waveguide filters 543 
Waveguide modes 351, 512 

EH 512 
HE 512
transverse electric (TE) 511 
transverse magnetic (TM) 512 

Waveguide types 
dielectric 

optical fiber 509 
slab 509, 546 

metal 513 
circular 508, 545 
elliptical 545

rectangular 508, 545 
ridge 508, 546 

Waveguides
attenuation constant of 533 

conductor component 536 
dielectric component 535 

circular, dominant mode of 525 
cutoff frequencies of 514 
dielectric 546 
dispersion of 527 
dominant range of 524 
fiber optic 552 
group velocity of 527 
guide wavelength of 526 
losses of 535 
lumped elements in 541 

capacitive window 542 
inductive window 542 

operation below cutoff 533 
overmoded operation of 540 
phase constant of 526 
phase velocity of 527 
power transport of 532 
radiation from slots 541 
rectangular 

TE modes of 519 
TM modes of 514 

slab
cladding fields of 550 
core fields of 550 
cutoff frequencies of 548-549 

surface currents of 517 
wave impedance of 530 

Wavelength
of a plane wave 444 
on a waveguide 526 
on transmission lines 387 

Wavenumber 442 
Wavenumber vector 447 
Weber, unit of magnetic flux 77 
Wheatstone, Charles 4 
Williams, D. 8 
Wireless communications 2

Zener diode 138
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Time-Harmonic fields 334-340 
Toroids 226, 302 
Torque, magnetic 310 
Total reflection 499
Transformer emf , see Electromotive force, trans
former
Transformers 283 

ideal 283
Transmission coefficient, plane wave 

normal incidence 473 
oblique incidence 494, 496 

Transmission line parameters 644-650 
coaxial lines 646 
microstrip lines 648 
slot lines 649 
strip lines 647 
two-wire lines 647 

Transmission line types 
balanced 349
coaxial (see also Coaxial lines) 349, 646 
fin lines 350
microstrip lines 350, 648 
Quasi-TEM 645 
slot lines 350, 649 
strip lines 647 
TEM 645
two-wire (see also Two-wire lines) 349, 647 

Transmission lines
attenuation constant of 363, 384, 389-390 

conductor component 393 
dielectric component 393 

characteristic admittance of 430 
characteristic impedance of 384, 391 
characteristic resistance of 359 
circuit equations of 351 
dispersion of 357, 362-363, 396-397 
effective dielectric constant of 645 
effective reflection coefficient on 411 
equivalent circuits of 402^106 
impedance matching techniques 427 
impedance transformation formulas for 400-401 
input impedance of 399 
open circuit load 401^102 
short circuit load 401 
loading coils for dispersion reduction 364 
matched load, definition 367 
Nondistorting case 363 
parameters for low loss lines 392-393 
phase constant of 384, 389 
power transport on 361 
propagation constant of 384 
reflection coefficient on 368, 399 
standing waves on 407 
time-harmonic waves on 382-434 

lossless lines 385

lossy lines 389 
reflections 398-399 

transients on 355-383 
lossless lines 356 
lossy lines 362 
nonlinear loads 380 
pulse response 374 
reactive loads 376 
resistive loads 366 
rise time 372 
step response 369 

two-wire 185, 306 
unit cells of 354 
velocity of 358 

group 396 
phase 386-387 

wave equations for 357, 383 
wavelength on 387 

Transverse electric (TE) waves 511 
Transverse electromagnetic (TEM) waves 350, 448, 
511
Transverse magnetic (TM) waves 512 
Triple product, see Vector products 
Two-wire line 349, 647 

capacitance of 185 
inductance of 306

Unintentional radiators 594, 604 
see also shielding 

Uniqueness principle 149,160 
Unit vector 13 
Units 8 

derived 9, 635 
fundamental 8 
MKSA system 8, 634 
prefixes 636 
SI system 8

Vector 
addition 11 
analysis 7 
calculus 33
components 14,15, 638 
identities 639
multiplication by a scalar 12 
products , see Vector products 
projection 14 
streamlines 11 
subtraction 12 

Vector integrals 
line (contour) 34 
surface 34 
volume 34 

Vector products 
cross (vector) 15, 19, 25, 28



672 INDEX

Vector products (cont.) 
dot (scalar) 13, 19, 25, 28, 637 
triple 16 

Vectors
definition 10 
discrete 10 
field 11 
position 31 
unit 13 

Velocity
group 394-397, 455, 527 
of light 444
phase 386,444, 455, 527 

Verdeyen, J.T. 133 
Volt, unit of voltage 77 
Volta, Alessandro 3, 82 
Voltage 108-109 

definition 109
Voltage standing wave ratio (VSWR) 408 

Wave
evanescent 501,514 
space 441 
standing 477 
surface 501 
uniform plane 443 

Wave equations 357, 383, 442 
Wave impedance 

effective 486 
in waveguides 530 

Waveguide couplers 539 
directional 540 

Waveguide filters 543 
Waveguide modes 351, 512 

EH 512 
HE 512
transverse electric (TE) 511 
transverse magnetic (TM) 512 

Waveguide types 
dielectric 

optical fiber 509 
slab 509, 546 

metal 513 
circular 508, 545 
elliptical 545

rectangular 508, 545 
ridge 508, 546 

Waveguides
attenuation constant of 533 

conductor component 536 
dielectric component 535 

circular, dominant mode of 525 
cutoff frequencies of 514 
dielectric 546 
dispersion of 527 
dominant range of 524 
fiber optic 552 
group velocity of 527 
guide wavelength of 526 
losses of 535 
lumped elements in 541 

capacitive window 542 
inductive window 542 

operation below cutoff 533 
overmoded operation of 540 
phase constant of 526 
phase velocity of 527 
power transport of 532 
radiation from slots 541 
rectangular 

TE modes of 519 
TM modes of 514 

slab
cladding fields of 550 
core fields of 550 
cutoff frequencies of 548-549 

surface currents of 517 
wave impedance of 530 

Wavelength
of a plane wave 444 
on a waveguide 526 
on transmission lines 387 

Wavenumber 442 
Wavenumber vector 447 
Weber, unit of magnetic flux 77 
Wheatstone, Charles 4 
Williams, D. 8 
Wireless communications 2

Zener diode 138



Cylindrical Coordinates

Spherical Coordinates



Vector Identities

Gradient, Divergence, Curl, and Laplacian Operations
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