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Preface 
The purpose of this book is to provide a comprehensive introduction to error correction 
coding, including both classical block- and trellis-based codes and the recent developments 
in iteratively decoded codes such as turbo codes and low-density parity-check codes. The 
presentation is intended to provide a background useful both to engineers, who need to 
understand algorithmic aspects for the deployment and implementation of error correction 
coding, and to researchers, who need sufficient background to prepare them to read, un- 
derstand, and ultimately contribute to the research literature. The practical algorithmic 
aspects are built upon a firm foundation of mathematics, which are carefully motivated and 
developed. 

Pedagogical Features 

Since its inception, coding theory has drawn from a rich and interacting variety of mathemat- 
ical areas, including detection theory, information theory, linear algebra, finite geometries, 
combinatorics, optimization, system theory, probability, algebraic geometry, graph theory, 
statistical designs, Boolean functions, number theory, and modern algebra. The level of 
sophistication has increased over time: algebra has progressed from vector spaces to mod- 
ules; practice has moved from polynomial interpolation to rational interpolation; Viterbi 
makes way for BCJR. This richness can be bewildering to students, particularly engineering 
students who are unaccustomed to posing problems and thinking abstractly. It is important, 
therefore, to motivate the mathematics carefully. 

Some of the major pedagogical features of the book are as follows. 

While most engineering-oriented error-correction-coding textbooks clump the major 
mathematical concepts into a single chapter, in this book the concepts are developed 
over several chapters so they can be put to more immediate use. I have attempted 
to present the mathematics “just in time,” when they are needed and well-motivated. 
Groups and linear algebra suffice to describe linear block codes. Cyclic codes mo- 
tivate polynomial rings. The design of cyclic codes motivates finite fields and as- 
sociated number-theoretical tools. By interspersing the mathematical concepts with 
applications, a deeper and broader understanding is possible. 

For most engineering students, finite fields, the Berlekamp-Massey algorithm, the 
Viterbi algorithm, BCJR, and other aspects of coding theory are initially abstract 
and subtle. Software implementations of the algorithms brings these abstractions 
closer to a meaningful reality, bringing deeper understanding than is possible by 
simply working homework problems and taking tests. Even when students grasp the 
concepts well enough to do homework on paper, these programs provide a further 
emphasis, as well as tools to help with the homework. The understanding becomes 
experiential, more than merely conceptual. 

Understanding of any subject typically improves when the student him- or herself 
has the chance to teach the material to someone (or something) else. A student 
must develop an especially clear understanding of a concept in order to “teach” it 
to something as dim-witted and literal-minded as a computer. In this process the 
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computer can provide feedback to the student through debugging and program testing 
that reinforces understanding. 

In the coding courses I teach, students implement a variety of encoders and decoders, 
including Reed-Solomon encoders and decoders, convolutional encoders, turbo code 
decoders, and LDPC decoders. As a result of these programming activities, students 
move beyond an on-paper understanding, gaining a perspective of what coding the- 
ory can do and how to put it to work. A colleague of mine observed that many 
students emerge from a first course in coding theory more confused than informed. 
My experience with these programming exercises is that my students are, if anything, 
overconfident, and feel ready to take on a variety of challenges. 

In this book, programming exercises are presented in a series of 13 Laboratory Exer- 
cises. These are supported with code providing most of the software “infrastructure,” 
allowing students to focus on the particular algorithm they are implementing. 

These labs also help with the coverage of the course material. In my course I am 
able to offload classroom instruction of some topics for students to read, with the 
assurance that the students will learn it solidly on their own as they implement it. 
(The Euclidean algorithm is one of these topics in my course.) 

Research in error control coding can benefit from having a flexible library of tools 
for the computations, particularly since analytical results are frequently not available 
and simulations are required. The laboratory assignments presented here can form 
the foundation for a research library, with the added benefit that having written major 
components, the researcher can easily modify and extend them. 

It is in light of these pedagogic features that this book bears the subtitle Mathematical 
Methods and Algorithms. 

There is sufficient material in this book for a one- or two-semester course based on the 
book, even for instructors who prefer to focus less on implementational aspects and the 
laboratories. 

Over 150 programs, functions and data files are associated with the text. The programs 
are written in Matlab,’ C, or C++. Some of these include complete executables which 
provide “tables” of primitive polynomials (over any prime field), cyclotomic cosets and 
minimal polynomials, and BCH codes (not just narrow sense), avoiding the need to tabulate 
this material. Other functions include those used to make plots and compute results in the 
book. These provide example of how the theory is put into practice. Other functions include 
those used for the laboratory exercises. The files are highlighted in the book by the icon 

as in the marginal note above. The files are available at the website 

h t tp : / / f tp .wi ley .com/publ ic / sc i_ tech_med/er ror -cont ro l  

Other aspects of the book include the following: 

‘Matlab is a registered trademard of The Mathworks, Inc. 
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Many recent advances in coding have resulted from returning to the perspective of 
coding as a detection problem. Accordingly, the book starts off with a digital com- 
munication framework with a discussion of detection theory. 

Recent codes are capable of nearly achieving capacity. It is important, therefore, to 
understand what capacity is and what it means to transmit at capacity. Chapter 1 also 
summarizes information theory, to put coding into its historical and modem context. 
This information theory also is used in the EXIT chart analysis of turbo and LDPC 
codes. 

Pedagogically, Hamming codes are used to set the stage for the book by using them 
to demonstrate block codes, cyclic codes, trellises and Tanner graphs. 

Homework exercises are drawn from a variety of sources and are at a variety of 
levels. Some are numerical, testing basic understanding of concepts. Others provide 
the opportunity to prove or extend results from the text. Others extend concepts or 
provide new results. Because of the programming laboratories, exercises requiring 
decoding by hand of given bit sequences are few, since I am of the opinion that is 
better to know how to tell the computer than to do it by hand. I have drawn these 
exercises from a variety of sources, including problems that I faced as a student and 
those which I have given to students on homework and exams over the years. 

Number theoretic concepts such as divisibility, congruence, and the Chinese remain- 
der theorem are developed. 

At points throughout the book, connections between the coding theoretic concepts and 
related topics are pointed out, such as public key cryptography and shift register 
sequences. These add spice and motivate students with the understanding that the 
tools they are learning have broad applicability. 

There has been considerable recent progress made in decoding Reed-Solomon codes 
by re-examining their original definition. Accordingly, Reed-Solomon codes are 
defined both in this primordial way (as the image of a polynomial function) and also 
using a generator polynomial having roots that are consecutive powers of a primitive 
element. This sets the stage for several decoding algorithms for Reed-Solomon codes, 
including frequency-domain algorithms, Welch-Berlekamp algorithm and the soft- 
input Guruswami-Sudan algorithm. 

'hrbo codes, including EXIT chart analysis, are presented, with both BCJR and 
SOVA decoding algorithms. Both probabilistic and likelihood decoding viewpoints 
are presented. 

LDPC codes are presented with an emphasis on the decoding algorithm. Density 
evolution analysis is also presented. 

Decoding algorithms on graphs which subsume both turbo code and LDPC code 
decoders, are presented. 

A summary of log likelihood algebra, used in soft-decision decoding, is presented. 

Space-time codes, used for multi-antenna systems in fading channels, are presented. 

Courses of Study 

A variety of courses of study are possible. In the one-semester course I teach, I move quickly 
through principal topics of block, trellis, and iteratively-decoded codes. Here is an outline 
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of one possible one-semester course: 

Chapter 1 : Major topics only. 

Chapter 2: All. 

Chapter 3: Major topics. 

Chapter 4: Most. Leave CRC codes and LFSR to labs. 

Chapter 5: Most. Leave Euclidean algorithm to lab; skip CRT; skip RSA. 

Chapter 6:  Basic topics. 

Chapter 12: Most. Skip puncturing, stack-oriented algorithms and trellis descriptions of 

Chapter 13: Most. Skip the V.34 material. 

Chapter 14: Basic definition and the BCJR algorithm. 

Chapter 15: Basic definition and the sum-product decoder. 

block codes 

A guide in selecting material for this course is: follow the labs. To get through all 13 labs, 
selectivity is necessary. 

An alternative two-semester course could be a semester devoted to block codes followed 
by a semester on trellis and iteratively decoded codes. A two semester sequence could move 
straight through the book, with possible supplements from the research literature on topics 
of particular interest to the instructor. 

The reader should be aware that theorems, lemmas, and corollaries are all numbered 
sequentially using the same counter in a chapter. Examples, definitions, figures, tables, and 
equations each have their own counters. Definitions, proofs and examples are all terminated 
by the symbol 0. 

Use of Computers 

The computer-based labs provide a means of working out some of the computational details 
that otherwise might require drudgery. There are in addition many tools available, both for 
modest cost and for free. The brief tutorial comptut . pdf provides an introduction to 
gap and magma, both of which can be helpful to students doing homework or research in 
this area. 

Acknowledgments 

In my mind, the purposes of a textbook are these: 

1. To provide a topographical map into the field of study, showing the peaks and the im- 
portant roads to them. (However, in an area as rich as coding theory, it is unfortunately 
impossible to be exhaustive.) 

2. To provide specific details about important techniques. 

3. To present challenging exercises that will strengthen students’ understanding of the 

4. To have some reference value, so that practitioners can continue to use it. 

material and present new perspectives. 
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5. To provide references to literature that will lead readers to make their own discoveries. 
(With a rapidly-changing field, the references can only provide highlights; web-based 
searches have changed the nature of the game. Nevertheless, having a starting point 
in the literature is still important.) 
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cannot be mapped out in a single book. Every conference and every issue of the IEEE 
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merely to select what parts of the map to include and to present them in a pedagogically 
useful way. In so doing, I have aimed to choose tools for the general practitioner and student. 
Other than that selective role, no claim of creation is intended; I hope I have given credit as 
appropriate where it is due. 

This book is a result of teaching a course in error correction coding at Utah State 
University for over a decade. Over that time, 1 have taught out of the books [33], [373], 
and [203], and my debt to these books is clear. Parts of some chapters grew out of lecture 
notes based on these books and the connections will be obvious. I have felt compelled to 
include many of the exercises from the first coding course I took out of [203]. These books 
have defined for me the sine qua non of error-correction coding texts. I am also indebted 
to [220] for its rich theoretical treatment, [303] for presentation of trellis coding material, 
[350] for discussion of bounds, [141] for exhaustive treatment of turbo coding methods, and 
to the many great researchers and outstanding expositors whose works have contributed to 
my understanding. 

I am grateful for the supportive environment at Utah State University that has made it 
possible to undertake and to complete this task. Students in coding classes over the years 
have contributed to this material, and the students in ECE 7670 class of Spring 2005 have 
combed carefully through the text. Stewart Weber and Ray Rallison have improved my C++ 
code. Thanks to Ojas Chauhan, who produced the performance curves for convolutional 
codes. I am especially grateful to John Crockett, who gave a particularly careful reading 
and contributed to the EXIT charts for LDPC codes. He also did the solutions for the first 
three chapters of the solutions manual. With all the help I have had in trying to produce 
clean copy, I alone am responsible for any remaining errors. 

To my six wonderful children - Leslie, Kyra, Kaylie, Jennie, Kiana, and Spencer - 
and my wife Barbara, who have seen me slip away too often and too long to write, I express 
my deep gratitude for their trust and patience. In the end, all I do is for them. 
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Logan, UT, Mar. 2005 



This Page Intentionally Left Blank



Preface vii 

List of Program Files xxxi 

List of Laboratory Exercises XXXii 

List of Algorithms d V  

List of Figures XI 

List of Tables xlii 

List of Boxes Xliii 

Part I Introduction and Foundations 1 

A Context for Error Correction Coding 2 
1.1 F’urpose of This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 
1.2 Introduction: Where Are Codes? . . . . . . . . . . . . . . . . . . . . . . .  2 
1.3 The Communications System . . . . . . . . . . . . . . . . . . . . . . . . .  4 
1.4 Basic Digital Communications . . . . . . . . . . . . . . . . . . . . . . . .  9 

1.4.1 Binary Phase-Shift Keying . . . . . . . . . . . . . . . . . . . . . .  10 
1.4.2 More General Digital Modulation . . . . . . . . . . . . . . . . . .  11 

1.5 Signal Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 
1.5.1 The Gaussian Channel . . . . . . . . . . . . . . . . . . . . . . . .  14 
1 S.2 MAP and ML Detection . . . . . . . . . . . . . . . . . . . . . . .  16 
1.5.3 Special Case: Binary Detection . . . . . . . . . . . . . . . . . . .  18 
1.5.4 Probability of Error for Binary Detection . . . . . . . . . . . . . .  19 
1 S.5 Bounds on Performance: The Union Bound . . . . . . . . . . . . .  22 
1.5.6 The Binary Symmetric Channel . . . . . . . . . . . . . . . . . . .  23 
1 S.7 The BSC and the Gaussian Channel Model . . . . . . . . . . . . .  25 

1.6 Memoryless Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25 
1.7 Simulation and Energy Considerations for Coded Signals . . . . . . . . . .  26 
1.8 Some Important Definitions . . . . . . . . . . . . . . . . . . . . . . . . . .  27 

1.8.1 Detection of Repetition Codes Over a BSC . . . . . . . . . . . . .  28 
Soft-Decision Decoding of Repetition Codes Over the AWGN 

1.8.3 Simulation of Results . . . . . . . . . . . . . . . . . . . . . . . . .  33 
1.8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33 

1.9 HammingCodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34 
1.9.1 Hard-Input Decoding Hamming Codes . . . . . . . . . . . . . . .  35 
1.9.2 Other Representations of the Hamming Code . . . . . . . . . . . .  36 

An Algebraic Representation . . . . . . . . . . . . . . . . . . . . .  37 
A Polynomial Representation . . . . . . . . . . . . . . . . . . . .  37 

1 

1.8.2 . . .  32 



xiv CONTENTS 

A Trellis Representation . . . . . . . . . . . . . . . . . . . . . . .  38 
The Tanner Graph Representation . . . . . . . . . . . . . . . . . .  38 

1.10 The Basic Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39 

1.12 A Bit of Information Theory . . . . . . . . . . . . . . . . . . . . . . . . .  40 
1.12.1 Definitions for Discrete Random Variables . . . . . . . . . . . . . .  40 

Entropy and Conditional Entropy . . . . . . . . . . . . . . . . . .  40 
Relative Entropy. Mutual Information. and Channel Capacity . . . .  41 

1.12.2 Definitions for Continuous Random Variables . . . . . . . . . . . .  43 
1.12.3 The Channel Coding Theorem . . . . . . . . . . . . . . . . . . . .  45 
1.12.4 “Proof“ of the Channel Coding Theorem . . . . . . . . . . . . . . .  45 
1.12.5 Capacity for the Continuous-Time AWGN Channel . . . . . . . . .  49 
1.12.6 Transmission at Capacity with Errors . . . . . . . . . . . . . . . .  51 
1.12.7 The Implication of the Channel Coding Theorem . . . . . . . . . .  52 

1.11 Historical Milestones of Coding Theory . . . . . . . . . . . . . . . . . . .  40 

Lab 1 Simulating a Communications Channel . . . . . . . . . . . . . . .  53 
Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53 
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53 

Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54 
Use of Coding in Conjunction with the BSC . . . . . . . . . . . . . . . . .  53 

Programming Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54 
Resources and Implementation Suggestions . . . . . . . . . . . . . . . . .  54 

1.13 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56 
1.14 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60 

Part I1 Block Codes 61 

2 Groups and Vector Spaces 62 
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62 
2.2 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62 

2.2.1 Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65 
2.2.2 Cyclic Groups and the Order of an Element . . . . . . . . . . . . .  66 
2.2.3 Cosets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67 
2.2.4 Lagrange’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . .  68 
2.2.5 Induced Operations; Isomorphism . . . . . . . . . . . . . . . . . .  69 
2.2.6 Homomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72 

2.3 Fields: A Prelude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73 
2.4 Review of Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . .  75 
2.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80 
2.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82 

3 Linear Block Codes 83 
3.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83 
3.2 The Generator Matrix Description of Linear Block Codes . . . . . . . . . .  84 

3.2.1 Rudimentary Implementation . . . . . . . . . . . . . . . . . . . . .  86 
3.3 The Parity Check Matrix and Dual Codes . . . . . . . . . . . . . . . . . .  86 

3.3.1 Some Simple Bounds on Block Codes . . . . . . . . . . . . . . . .  88 
3.4 Error Detection and Correction over Hard-Input Channels . . . . . . . . . .  90 



CONTENTS xv 

3.4.1 Error Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90 
3.4.2 Error Correction: The Standard Array . . . . . . . . . . . . . . . .  90 

3.6 Hamming Codes and Their Duals . . . . . . . . . . . . . . . . . . . . . . .  97 
3.7 Performance of Linear Codes . . . . . . . . . . . . . . . . . . . . . . . . .  98 

3.7.1 Error detection performance . . . . . . . . . . . . . . . . . . . . .  99 
3.7.2 Error Correction Performance . . . . . . . . . . . . . . . . . . . .  100 
3.7.3 Performance for Soft-Decision Decoding . . . . . . . . . . . . . .  103 

3.8 Erasure Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  104 
3.8.1 Binary Erasure Decoding . . . . . . . . . . . . . . . . . . . . . . .  105 

3.9 Modifications to Linear Codes . . . . . . . . . . . . . . . . . . . . . . . .  105 
3.10 Best Known Linear Block Codes . . . . . . . . . . . . . . . . . . . . . . .  107 
3.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107 
3.12 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112 

113 
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113 
4.2 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113 
4.3 Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  114 

4.3.1 Rings of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . .  115 
4.4 QuotientRings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116 
4.5 IdealsinRings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118 
4.6 Algebraic Description of Cyclic Codes . . . . . . . . . . . . . . . . . . . .  120 
4.7 Nonsystematic Encoding and Parity Check . . . . . . . . . . . . . . . . . .  122 
4.8 Systematic Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124 
4.9 Some Hardware Background . . . . . . . . . . . . . . . . . . . . . . . . .  126 

4.9.1 Computational Building Blocks . . . . . . . . . . . . . . . . . . .  126 
4.9.2 Sequences and Power series . . . . . . . . . . . . . . . . . . . . .  127 
4.9.3 Polynomial Multiplication . . . . . . . . . . . . . . . . . . . . . .  128 

Last-Element-First Processing . . . . . . . . . . . . . . . . . . . .  128 
First-Element-First Processing . . . . . . . . . . . . . . . . . . . .  128 

4.9.4 Polynomial division . . . . . . . . . . . . . . . . . . . . . . . . . .  129 
Last-Element-First Processing . . . . . . . . . . . . . . . . . . . .  129 

4.9.5 Simultaneous Polynomial Division and Multiplication . . . . . . .  132 
First-Element-First Processing . . . . . . . . . . . . . . . . . . . .  132 

4.10 Cyclic Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133 
4.1 1 Syndrome Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  137 
4.12 Shortened Cyclic Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Method 1: Simulating the Extra Clock Shifts . . . . . . . . . . . .  144 
Method 2: Changing the Error Pattern Detection Circuit . . . . . .  147 

4.13 Binary CRC Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  147 
4.13.1 Byte-Oriented Encoding and Decoding Algorithms . . . . . . . . .  150 
4.13.2 CRC Protecting Data Files or Data Packets . . . . . . . . . . . . .  153 

Appendix 4.A Linear Feedback Shift Registers . . . . . . . . . . . . . . . . . . .  154 
Appendix 4.A. 1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . .  154 
Appendix 4.A.2 Connection With Polynomial Division 
Appendix 4.A.3 Some Algebraic Properties of Shift Sequences . . . . . . .  

3.5 Weight Distributions of Codes and Their Duals . . . . . . . . . . . . . . .  95 

4 Cyclic Codes, Rings, and Polynomials 

143 

. . . . . . . . . . .  157 
160 



CONTENTS xvi 

Lab 2 Polynomial Division and Linear Feedback Shift Registers . . .  161 
Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  161 
Preliminary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  161 
Programming Part: BinLFSR . . . . . . . . . . . . . . . . . . . . . . . .  161 
Resources and Implementation Suggestions . . . . . . . . . . . . . . . . .  161 
Programming Part: BinPolyDiv . . . . . . . . . . . . . . . . . . . . . .  162 
Follow-On Ideas and Problems . . . . . . . . . . . . . . . . . . . . . . . .  162 

Lab 3 CRC Encoding and Decoding . . . . . . . . . . . . . . . . . . . . .  162 
Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163 
Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163 
Programming Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163 
Resources and Implementation Suggestions . . . . . . . . . . . . . . . . .  163 

4.14 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  165 
4.15 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  170 

5 Rudiments of Number Theory and Algebra 171 
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  171 
5.2 Number Theoretic Preliminaries . . . . . . . . . . . . . . . . . . . . . . .  175 

5.2.1 Divisibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  175 

5.2.3 The Sugiyama Algorithm . . . . . . . . . . . . . . . . . . . . . . .  182 
5.2.4 Congruence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  184 
5.2.5 The q!~ Function . . . . . . . . . . . . . . . . . . . . . . . . . . . .  185 
5.2.6 Some Cryptographic Payoff . . . . . . . . . . . . . . . . . . . . .  186 

Fermat's Little Theorem . . . . . . . . . . . . . . . . . . . . . . .  186 
RSA Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . .  187 

5.3 The Chinese Remainder Theorem . . . . . . . . . . . . . . . . . . . . . . .  188 
5.3.1 The CRT and Interpolation . . . . . . . . . . . . . . . . . . . . . .  190 

The Evaluation Homomorphism . . . . . . . . . . . . . . . . . . .  190 
The Interpolation Problem . . . . . . . . . . . . . . . . . . . . . .  191 

5.4 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  193 
5.4.1 An Examination of IR and C . . . . . . . . . . . . . . . . . . . . .  194 
5.4.2 Galois Field Construction: An Example . . . . . . . . . . . . . . .  196 
5.4.3 Connection with Linear Feedback Shift Registers . . . . . . . . . .  199 

5.5 Galois Fields: Mathematical Facts . . . . . . . . . . . . . . . . . . . . . .  200 
5.6 Implementing Galois Field Arithmetic . . . . . . . . . . . . . . . . . . . .  204 

5.6.1 Zech Logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . .  204 
5.6.2 Hardware Implementations . . . . . . . . . . . . . . . . . . . . . .  205 

5.7 Subfields of Galois Fields . . . . . . . . . . . . . . . . . . . . . . . . . . .  206 
5.8 Irreducible and Primitive polynomials . . . . . . . . . . . . . . . . . . . .  207 
5.9 Conjugate Elements and Minimal Polynomials . . . . . . . . . . . . . . . .  209 

5.9.1 Minimal Polynomials . . . . . . . . . . . . . . . . . . . . . . . . .  212 
5.10 Factoring x" - 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  215 
5.1 1 Cyclotomic Cosets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217 

Programming the Euclidean Algorithm . . . . . . . . . . . . . . .  223 

5.2.2 The Euclidean Algorithm and Euclidean Domains . . . . . . . . . .  177 

Appendix 5.A How Many Irreducible Polynomials Are There? . . . . . . . . . . .  218 
. . . . .  222 

Lab 4 
Appendix 5.A.1 Solving for Zm Explicitly: The Moebius Function 



CONTENTS xvii 

Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  223 
Preliminary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  223 
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  223 
Programming Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  223 

Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  224 
Preliminary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  224 
Programming Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  224 

5.12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  225 
5.13 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  234 

Lab 5 Programming Galois Field Arithmetic . . . . . . . . . . . . . . . .  224 

6 BCH and Reed-Solomon Codes: Designer Cyclic Codes 235 
6.1 BCHCodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  235 

6.1.1 Designing BCH Codes . . . . . . . . . . . . . . . . . . . . . . . .  235 
6.1.2 TheBCHBound . . . . . . . . . . . . . . . . . . . . . . . . . . .  237 
6.1.3 Weight Distributions for Some Binary BCH Codes . . . . . . . . .  239 
6.1.4 Asymptotic Results for BCH Codes . . . . . . . . . . . . . . . . .  240 

6.2 Reed-Solomon Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  242 
6.2.1 Reed-Solomon Construction 1 . . . . . . . . . . . . . . . . . . . .  242 
6.2.2 Reed-Solomon Construction 2 . . . . . . . . . . . . . . . . . . . .  243 
6.2.3 Encoding Reed-Solomon Codes . . . . . . . . . . . . . . . . . . .  244 
6.2.4 MDS Codes and Weight Distributions for RS Codes . . . . . . . . .  245 
Decoding BCH and RS Codes: The General Outline . . . . . . . . . . . . .  247 
6.3.1 Computation of the Syndrome . . . . . . . . . . . . . . . . . . . .  247 
6.3.2 The Error Locator Polynomial . . . . . . . . . . . . . . . . . . . .  248 
6.3.3 ChienSearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  248 

6.4 Finding the Error Locator Polynomial . . . . . . . . . . . . . . . . . . . .  250 

6.4.2 Berlekamp-Massey Algorithm . . . . . . . . . . . . . . . . . . . .  253 

Simplifications for Binary Codes . . . . . . . . . . . . . . . . . . .  259 
6.5 Non-Binary BCH and RS Decoding . . . . . . . . . . . . . . . . . . . . .  261 

6.5.1 Forney’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . .  262 
6.6 Euclidean Algorithm for the Error Locator Polynomial . . . . . . . . . . .  266 

Erasure Decoding for Nonbinary BCH or RS codes . . . . . . . . . . . . .  267 
6.8 Galois Field Fourier Transform Methods . . . . . . . . . . . . . . . . . . .  269 

6.8.1 Equivalence of the Two Reed-Solomon Code Constructions . . . .  274 
6.8.2 Frequency-Domain Decoding . . . . . . . . . . . . . . . . . . . .  275 

6.9 Variations and Extensions of Reed-Solomon Codes . . . . . . . . . . . . .  276 
6.9.1 Simple Modifications . . . . . . . . . . . . . . . . . . . . . . . . .  276 

6.9.3 GoppaCodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  278 
Decoding Alternant Codes . . . . . . . . . . . . . . . . . . . . . .  280 
The McEliece Public Key Cryptosystem . . . . . . . . . . . . . . .  280 

Lab 6 Programming the Berlekamp-Massey Algorithm . . . . . . . . .  281 
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  281 
Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  281 

6.3 

6.4.1 

6.4.3 
6.4.4 

Simplifications for Binary Codes and Peterson’s Algorithm . . . . .  251 

Characterization of LFSR Length in Massey’s Algorithm . . . . . .  255 

6.7 

6.9.2 Generalized Reed-Solomon Codes and Alternant Codes . . . . . . .  277 

6.9.4 
6.9.5 



CONTENTS xviii 

Preliminary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  281 
Programming Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  281 
Resources and Implementation Suggestions 

Lab 7 programming the BCH Decoder . . . . . . . . . . . . . . . . . . .  283 
Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  283 
Preliminary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  283 
Programming Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  283 
Resources and Implementation Suggestions . . . . . . . . . . . . . . . . .  283 
Follow-On Ideas and Problems . . . . . . . . . . . . . . . . . . . . . . . .  284 

Lab 8 Reed-Solomon Encoding and Decoding . . . . . . . . . . . . . .  284 
Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  284 
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  284 
Programming Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  284 

Appendix 6.A Proof of Newton’s Identities . . . . . . . . . . . . . . . . . . . . .  285 
6.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  287 
6.1 1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  291 

293 
7.1 Introduction: Workload for Reed-Solomon Decoding . . . . . . . . . . . .  293 
7.2 Derivations of Welch-Berlekamp Key Equation . . . . . . . . . . . . . . .  293 

7.3 Finding the Error Values . . . . . . . . . . . . . . . . . . . . . . . . . . .  300 
7.4 Methods of Solving the WB Key Equation . . . . . . . . . . . . . . . . . .  302 

7.4.1 Background: Modules . . . . . . . . . . . . . . . . . . . . . . . .  302 
7.4.2 The Welch-Berlekamp Algorithm . . . . . . . . . . . . . . . . . .  303 
7.4.3 Modular Solution of the WB Key Equation . . . . . . . . . . . . .  310 

7.6.1 Bounded Distance, ML, and List Decoding . . . . . . . . . . . . .  322 
Error Correction by Interpolation . . . . . . . . . . . . . . . . . . .  323 

7.6.3 Polynomials in ?Lvo Variables . . . . . . . . . . . . . . . . . . . .  324 
Degree and Monomial Order . . . . . . . . . . . . . . . . . . . . .  325 
Zeros and Multiple Zeros . . . . . . . . . . . . . . . . . . . . . . .  328 

7.6.4 The GS Decoder: The Main Theorems . . . . . . . . . . . . . . . .  330 
The Interpolation Theorem . . . . . . . . . . . . . . . . . . . . . .  331 
The Factorization Theorem . . . . . . . . . . . . . . . . . . . . . .  331 
The Correction Distance . . . . . . . . . . . . . . . . . . . . . . .  333 
The Number of Polynomials in the Decoding List . . . . . . . . . .  335 
Algorithms for Computing the Interpolation Step . . . . . . . . . .  337 
Finding Linearly Dependent Columns: The Feng-Tzeng Algorithm 338 
Finding the Intersection of Kernels: The Katter Algorithm . . . . .  342 

7.6.6 A Special Case: m = 1 and L = 1 . . . . . . . . . . . . . . . . . .  348 
7.6.7 The Roth-Ruckenstein Algorithm . . . . . . . . . . . . . . . . . .  350 

What to Do with Lists of Factors? . . . . . . . . . . . . . . . . . .  354 
7.6.8 Soft-Decision Decoding of Reed-Solomon Codes . . . . . . . . . .  358 

Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  358 

. . . . . . . . . . . . . . . . .  282 

7 Alternate Decoding Algorithms for Reed-Solomon Codes 

7.2.1 The Welch-Berlekamp Derivation of the WB Key Equation . . . . .  294 
7.2.2 Derivation From the Conventional Key Equation . . . . . . . . . .  298 

7.5 
7.6 

ErasureDecoding withthe Welch-Berlekamp Key Equation . . . . . . . . .  321 
The Guruswami-Sudan Decoding Algorithm and Soft RS Decoding . . . . .  322 

7.6.2 

7.6.5 



CONTENTS xix 

A Factorization Theorem . . . . . . . . . . . . . . . . . . . . . . .  360 
Mapping from Reliability to Multiplicity . . . . . . . . . . . . . .  361 
The Geometry of the Decoding Regions . . . . . . . . . . . . . . .  363 
Computing the Reliability Matrix . . . . . . . . . . . . . . . . . .  364 

7.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  365 
7.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  368 

8 Other Important Block Codes 369 
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  369 
8.2 Hadamard Matrices. Codes. and Transforms . . . . . . . . . . . . . . . . .  369 

8.2.1 Introduction to Hadamard Matrices . . . . . . . . . . . . . . . . .  369 
8.2.2 The Paley Construction of Hadamard Matrices . . . . . . . . . . .  371 
8.2.3 Hadamard Codes . . . . . . . . . . . . . . . . . . . . . . . . . . .  374 

8.3 Reed-Muller Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  375 
8.3.1 Boolean Functions . . . . . . . . . . . . . . . . . . . . . . . . . .  375 
8.3.2 Definition of the Reed-Muller Codes . . . . . . . . . . . . . . . . .  376 
8.3.3 Encoding and Decoding Algorithms for First-Order RM Codes . . .  379 

Encoding RM (1. m) Codes . . . . . . . . . . . . . . . . . . . . .  379 
Decoding RM(1, m )  Codes . . . . . . . . . . . . . . . . . . . . .  379 
Expediting Decoding Using the Fast Hadamard Transform . . . . .  382 
The Reed Decoding Algorithm for RM(r. m) Codes, I 2 1 . . . . .  384 
Details for an RM(2. 4) Code . . . . . . . . . . . . . . . . . . . .  384 

8.3.5 Other Constructions of Reed-Muller Codes . . . . . . . . . . . . .  391 
Building Long Codes from Short Codes: The Squaring Construction . . . .  392 

8.3.4 

A Geometric Viewpoint . . . . . . . . . . . . . . . . . . . . . . .  387 

8.4 
8.5 Quadratic Residue Codes . . . . . . . . . . . . . . . . . . . . . . . . . . .  396 
8.6 Golaycodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  398 

8.6.1 Decoding the Golay Code . . . . . . . . . . . . . . . . . . . . . .  400 
Algebraic Decoding of the $23 Golay Code . . . . . . . . . . . . .  400 
Arithmetic Decoding of the 524 Code . . . . . . . . . . . . . . . .  401 

8.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  403 
8.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  404 

9 Bounds on Codes 406 
9.1 The Gilbert-Varshamov Bound . . . . . . . . . . . . . . . . . . . . . . . .  409 
9.2 The Plotkin Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  410 
9.3 The Griesmer Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  411 
9.4 The Linear Programming and Related Bounds . . . . . . . . . . . . . . . .  413 

9.4.1 Krawtchouk Polynomials . . . . . . . . . . . . . . . . . . . . . . .  415 
9.4.2 Character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  415 
9.4.3 Krawtchouk Polynomials and Characters . . . . . . . . . . . . . .  416 

9.5 The McEliece-Rodemich-Rumsey-Welch Bound . . . . . . . . . . . . . . .  418 
9.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  420 
9.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  424 



xx CONTENTS 

10 Bursty Channels. Interleavers. and Concatenation 425 
10.1 Introduction to Bursty Channels . . . . . . . . . . . . . . . . . . . . . . .  425 
10.2 Interleavers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  425 
10.3 An Application of Interleaved RS Codes: Compact Discs . . . . . . . . . .  427 
10.4 Productcodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  430 
10.5 Reed-Solomon Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  431 
10.6 Concatenated Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  432 
10.7 Fire Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  433 

10.7.1 Fire Code Definition . . . . . . . . . . . . . . . . . . . . . . . . .  433 
10.7.2 Decoding Fire Codes: Error Trapping Decoding . . . . . . . . . . .  435 

10.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  437 
10.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  438 

11 Soft-Decision Decoding Algorithms 439 

1 1.2 Generalized Minimum Distance Decoding . . . . . . . . . . . . . . . . . .  441 
11.1 Introduction and General Notation . . . . . . . . . . . . . . . . . . . . . .  439 

1 1.2.1 Distance Measures and Properties . . . . . . . . . . . . . . . . . .  442 
1 1.3 The Chase Decoding Algorithms . . . . . . . . . . . . . . . . . . . . . . .  445 
11.4 Halting the Search: An Optimality Condition . . . . . . . . . . . . . . . .  445 
1 1.5 Ordered Statistic Decoding . . . . . . . . . . . . . . . . . . . . . . . . . .  447 
1 1.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  449 
1 1.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  450 

Part I11 Codes on Graphs 

12 Convolutional Codes 452 
12.1 Introduction and Basic Notation . . . . . . . . . . . . . . . . . . . . . . .  452 

12.1.1 TheState . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  456 
12.2 Definition of Codes and Equivalent Codes . . . . . . . . . . . . . . . . . .  458 

12.2.1 Catastrophic Encoders . . . . . . . . . . . . . . . . . . . . . . . .  461 
12.2.2 Polynomial and Rational Encoders . . . . . . . . . . . . . . . . . .  464 
12.2.3 Constraint Length and Minimal Encoders . . . . . . . . . . . . . .  465 
12.2.4 Systematic Encoders . . . . . . . . . . . . . . . . . . . . . . . . .  468 

12.3 Decoding Convolutional Codes . . . . . . . . . . . . . . . . . . . . . . . .  469 
12.3.1 Introduction and Notation . . . . . . . . . . . . . . . . . . . . . .  469 
12.3.2 The Viterbi Algorithm . . . . . . . . . . . . . . . . . . . . . . . .  471 
12.3.3 Some Implementation Issues . . . . . . . . . . . . . . . . . . . . .  481 

The Basic Operation: Add-Compare-Select . . . . . . . . . . . . .  481 
Decoding Streams of Data: Windows on the Trellis . . . . . . . . .  481 
Output Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . .  482 
Hard and Soft Decoding; Quantization . . . . . . . . . . . . . . . .  484 
Synchronization Issues . . . . . . . . . . . . . . . . . . . . . . . .  486 

12.4 Some Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . .  487 
12.5 Error Analysis for Convolutional Codes . . . . . . . . . . . . . . . . . . .  491 

12.5.1 Enumerating Paths Through the Trellis . . . . . . . . . . . . . . . .  493 
Enumerating on More Complicated Graphs: Mason’s Rule . . . . .  496 



CONTENTS xxi 

12.5.2 Characterizing the Node Error Probability P, and the Bit Error Rate 
Pb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  498 

12.5.3 A Bound on Pd for Discrete Channels . . . . . . . . . . . . . . . .  501 
Performance Bound on the BSC . . . . . . . . . . . . . . . . . . .  503 

12.5.4 A Bound on Pd for BPSK Signaling Over the AWGN Channel . . .  503 
12.5.5 Asymptotic Coding Gain . . . . . . . . . . . . . . . . . . . . . . .  504 

12.6 Tables of Good Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  505 
12.7 Puncturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  507 

Puncturing to Achieve Variable Rate . . . . . . . . . . . . . . . . .  509 
12.8 SuboptimalDecodingAlgorithmsforConvolutionalCodes . . . . . . . . .  510 

12.8.1 Tree Representations . . . . . . . . . . . . . . . . . . . . . . . . .  511 
12.8.2 The Fano Metric . . . . . . . . . . . . . . . . . . . . . . . . . . .  511 
12.8.3 The Stack Algorithm . . . . . . . . . . . . . . . . . . . . . . . . .  515 
12.8.4 The Fano Algorithm . . . . . . . . . . . . . . . . . . . . . . . . .  517 
12.8.5 Other Issues for Sequential Decoding . . . . . . . . . . . . . . . .  520 

12.9 Convolutional Codes as Block Codes . . . . . . . . . . . . . . . . . . . . .  522 
12.10 Trellis Representations of Block and Cyclic Codes . . . . . . . . . . . . . .  523 

12.10.1 Block Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  523 
12.10.2 Cyclic Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  524 
12.10.3 Trellis Decoding of Block Codes . . . . . . . . . . . . . . . . . . .  525 

Programming Convolutional Encoders . . . . . . . . . . . . . . .  526 
Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  526 
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  526 
Programming Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  526 

Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  528 
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  528 
Programming Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  528 

12.1 1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  529 
12.12 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  533 

13 'Ikellis Coded Modulation 535 
13.1 Adding Redundancy by Adding Signals . . . . . . . . . . . . . . . . . . .  535 
13.2 Background on Signal Constellations . . . . . . . . . . . . . . . . . . . . .  535 
13.3 TCM Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  537 

The General Ungerboeck Coding Framework . . . . . . . . . . . .  544 
13.3.2 The Set Partitioning Idea . . . . . . . . . . . . . . . . . . . . . . .  545 

13.4 Some Error Analysis for TCM Codes . . . . . . . . . . . . . . . . . . . . .  546 
13.4.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . . .  546 

A Description of the Error Events . . . . . . . . . . . . . . . . . .  548 
13.4.3 Known Good TCM Codes . . . . . . . . . . . . . . . . . . . . . .  552 

13.5 Decodmg TCM Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  554 
13.6 Rotational Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  556 

Differential Encoding . . . . . . . . . . . . . . . . . . . . . . . . .  558 
Constellation Labels and Partitions . . . . . . . . . . . . . . . . . .  559 

13.7 Multidimensional TCM . . . . . . . . . . . . . . . . . . . . . . . . . . . .  561 

12.7.1 

12.8.6 A Variation on the Viterbi Algorithm: The M Algorithm . . . . . .  521 

Lab 9 

Lab 10 Convolutional Decoders: The Viterbi Algorithm . . . . . . . . . .  528 

13.3.1 

13.4.2 



CONTENTS xxii 

13.7.1 Some Advantages of Multidimensional TCM . . . . . . . . . . . .  562 
13.7.2 Lattices and Sublattices . . . . . . . . . . . . . . . . . . . . . . . .  563 

Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . .  563 
Common Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . .  565 
Sublattices and Cosets . . . . . . . . . . . . . . . . . . . . . . . .  566 
The Lattice Code Idea . . . . . . . . . . . . . . . . . . . . . . . .  567 
Sources of Coding Gain in Lattice Codes . . . . . . . . . . . . . .  567 
Some Good Lattice Codes . . . . . . . . . . . . . . . . . . . . . .  571 

13.8 The V.34 Modem Standard . . . . . . . . . . . . . . . . . . . . . . . . . .  571 
Lab 11 Trellis-Coded Modulation Encoding and Decoding . . . . . . . .  578 

Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  578 
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  578 
Programming Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  578 

13.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  578 
13.10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  580 

Part IV Iteratively Decoded Codes 581 

14 lbrbo Codes 582 
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  582 
14.2 Encoding Parallel Concatenated Codes . . . . . . . . . . . . . . . . . . . .  584 
14.3 Turbo Decoding Algorithms . . . . . . . . . . . . . . . . . . . . . . . . .  586 

14.3.1 The MAP Decoding Algorithm . . . . . . . . . . . . . . . . . . . .  588 
14.3.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  588 
14.3.3 Posterior Probability . . . . . . . . . . . . . . . . . . . . . . . . .  590 
14.3.4 Computing at and pt . . . . . . . . . . . . . . . . . . . . . . . . .  592 

14.3.6 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  594 
14.3.7 Summary of the BCJR Algorithm . . . . . . . . . . . . . . . . . .  596 
14.3.8 A MatrixNector Formulation . . . . . . . . . . . . . . . . . . . . .  597 
14.3.9 Comparison of the Viterbi and BCJR Algorithms . . . . . . . . . .  598 
14.3.10 The BCJR Algorithm for Systematic Codes . . . . . . . . . . . . .  598 
14.3.11 Turbo Decoding Using the BCJR Algorithm . . . . . . . . . . . . .  600 

The Terminal State of the Encoders . . . . . . . . . . . . . . . . .  602 
14.3.12 Likelihood Ratio Decoding . . . . . . . . . . . . . . . . . . . . . .  602 

Log Prior Ratio Ap. . . . . . . . . . . . . . . . . . . . . . . . . .  603 
Log Posterior A,. . . . . . . . . . . . . . . . . . . . . . . . . . . .  605 

14.3.13 Statement of the Turbo Decoding Algorithm . . . . . . . . . . . . .  605 
14.3.14 Turbo Decoding Stopping Criteria . . . . . . . . . . . . . . . . . .  605 

The Cross Entropy Stopping Criterion . . . . . . . . . . . . . . . .  606 
The Sign Change Ratio (SCR) Criterion . . . . . . . . . . . . . . .  607 
The Hard Decision Aided (HDA) Criterion . . . . . . . . . . . . .  608 

14.3.15 Modifications of the MAP Algorithm . . . . . . . . . . . . . . . .  608 
The Max-Log-MAP Algorithm . . . . . . . . . . . . . . . . . . . .  608 

14.3.16 Corrections to the Max-Log-MAP Algorithm . . . . . . . . . . . .  609 
14.3.17 The Soft Output Viterbi Algorithm . . . . . . . . . . . . . . . . . .  610 

14.4 On the Error Floor and Weight Distributions . . . . . . . . . . . . . . . . .  612 

14.3.5 Computing yr . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  593 

(0) 



CONTENTS xxiii 

14.4.1 The Error Floor . . . . . . . . . . . . . . . . . . . . . . . . . . . .  612 
14.4.2 Spectral Thinning and Random Interleavers . . . . . . . . . . . . .  614 
14.4.3 On Interleavers . . . . . . . . . . . . . . . . . . . . . . . . . . . .  618 

14.5 EXIT Chart Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  619 
14.5.1 TheEXITChart . . . . . . . . . . . . . . . . . . . . . . . . . . . .  622 
Block Turbo Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  623 

14.7 Turbo Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  626 
14.7.1 Introduction to Turbo Equalization . . . . . . . . . . . . . . . . . .  626 
14.7.2 The Framework for Turbo Equalization . . . . . . . . . . . . . . .  627 

Lab 12 Turbo Code Decoding . . . . . . . . . . . . . . . . . . . . . . . . .  629 
Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  629 
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  629 
Programming Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  629 

14.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  629 
14.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  632 

15 Low-Density Parity-Check Codes 634 
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  634 
15.2 LDPC Codes: Construction and Notation . . . . . . . . . . . . . . . . . . .  635 
15.3 Tanner Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  638 
15.4 Transmission Through a Gaussian Channel . . . . . . . . . . . . . . . . . .  638 
15.5 Decoding LDPC Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . .  640 

15.5.1 The Vertical Step: Updating q m n ( x )  . . . . . . . . . . . . . . . . .  641 
15.5.2 Horizontal Step: Updating rmn (x) . . . . . . . . . . . . . . . . . .  644 
15.5.3 Terminating andInitializing the Decoding Algorithm . . . . . . . .  647 
15.5.4 Summary of the Algorithm . . . . . . . . . . . . . . . . . . . . . .  648 
15.5.5 Message Passing Viewpoint . . . . . . . . . . . . . . . . . . . . .  649 
15.5.6 Likelihood Ratio Decoder Formulation . . . . . . . . . . . . . . .  649 

15.6 Why Low-Density Parity-Check Codes? . . . . . . . . . . . . . . . . . . .  653 
15.7 The Iterative Decoder on General Block Codes . . . . . . . . . . . . . . . .  654 
15.8 Density Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  655 
15.9 EXIT Charts for LDPC Codes . . . . . . . . . . . . . . . . . . . . . . . .  659 
15.10 Irregular LDPC Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  660 

15.10.1 Degree Distribution Pairs . . . . . . . . . . . . . . . . . . . . . . .  662 
15.10.2 Some Good Codes . . . . . . . . . . . . . . . . . . . . . . . . . .  664 
15.10.3 Density Evolution for Irregular Codes . . . . . . . . . . . . . . . .  664 
15.10.4 Computation and Optimization of Density Evolution . . . . . . . .  667 
15.10.5 Using Irregular Codes . . . . . . . . . . . . . . . . . . . . . . . .  668 

15.1 1 More on LDPC Code Construction 668 
15.1 1.1 A Construction Based on Finite Geometries . . . . . . . . . . . . .  668 
15.1 1.2 Constructions Based on Other Combinatoric Objects . . . . . . . .  669 

15.12 Encoding LDPC Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . .  669 
15.13 A Variation: Low-Density Generator Matrix Codes . . . . . . . . . . . . .  671 
15.14 Serial Concatenated Codes; Repeat-Accumulate Codes . . . . . . . . . . .  671 

15.14.1 Irregular RA Codes . . . . . . . . . . . . . . . . . . . . . . . . . .  673 
Lab 13 Programming an LDPC Decoder . . . . . . . . . . . . . . . . . . .  674 

Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  674 

14.6 

. . . . . . . . . . . . . . . . . . . . . .  



xxiv CONTENTS 

Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  674 
Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  675 
Numerical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . .  675 

15.15 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  676 
15.16 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  679 

16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  680 
16.2 Operations in Semirings . . . . . . . . . . . . . . . . . . . . . . . . . . . .  681 
16.3 Functions on Local Domains . . . . . . . . . . . . . . . . . . . . . . . . .  681 
16.4 Factor Graphs and Marginalization . . . . . . . . . . . . . . . . . . . . . .  686 

Marginalizing on a Single Variable . . . . . . . . . . . . . . . . . .  687 
16.4.2 Marginalizing on All Individual Variables . . . . . . . . . . . . . .  691 

16.5 Applications to Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . .  694 
16.5.1 Blockcodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  694 
16.5.2 ModificationstoMessagePassingfor Binary Variables . . . . . . .  695 
16.5.3 Trellis Processing and the FonvardBackward Algorithm . . . . . .  696 
16.5.4 Turbo Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  699 
Summary of Decoding Algorithms on Graphs . . . . . . . . . . . . . . . .  699 

16.7 Transformations of Factor Graphs . . . . . . . . . . . . . . . . . . . . . . .  700 
16.7.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  700 
16.7.2 Stretching Variable Nodes . . . . . . . . . . . . . . . . . . . . . .  701 
16.7.3 Exact Computation of Graphs with Cycles . . . . . . . . . . . . . .  702 

16.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  706 
16.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  708 

16 Decoding Algorithms on Graphs 680 

16.4.1 

16.6 

Part V Space-Time Coding 709 

17 Fading Channels and Space-Time Codes 710 
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  710 
17.2 Fading Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  710 

17.2.1 Rayleigh Fading . . . . . . . . . . . . . . . . . . . . . . . . . . .  712 
. . . . . . . .  714 

17.3.1 The Narrowband MIMO Channel . . . . . . . . . . . . . . . . . .  716 
17.3.2 Diversity Performance with Maximal-Ratio Combining . . . . . . .  717 

17.4 Space-Time Block Codes . . . . . . . . . . . . . . . . . . . . . . . . . . .  719 
17.4.1 The Alamouti Code . . . . . . . . . . . . . . . . . . . . . . . . . .  719 
17.4.2 A More General Formulation . . . . . . . . . . . . . . . . . . . . .  721 
17.4.3 Performance Calculation . . . . . . . . . . . . . . . . . . . . . . .  721 

Real Orthogonal Designs . . . . . . . . . . . . . . . . . . . . . . .  723 
EncodingandDecodingBasedonOrthogonalDesigns . . . . . . .  724 
Generalized Real Orthogonal Designs . . . . . . . . . . . . . . . .  726 

17.4.4 Complex Orthogonal Designs . . . . . . . . . . . . . . . . . . . .  727 
Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  728 

Space-Time Trellis Codes . . . . . . . . . . . . . . . . . . . . . . . . . . .  728 
17.5.1 Concatenation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  729 

17.6 How Many Antennas? . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  732 

17.3 Diversity TransmissionandReception: TheMIMOChannel 

17.5 



CONTENTS XXV 

17.7 Estimating Channel Information . . . . . . . . . . . . . . . . . . . . . . .  733 
17.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  733 
17.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  734 

A Log Likelihood Algebra 735 
A.l Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  737 

References 

Index 

739 

750 



This Page Intentionally Left Blank



List of Program Files 
comptut.pdf 

qf . m 
bpskprobp1ot.m 
bpskpr0b.m 
repcodepr0b.m 
testrepcode.cc 
repc0des.m 
mindist . m 
hamcode74pe.m 
nchoosektest.m 
p1otcapcmp.m 
cawgnc2 . m 
cbawgnc2.m 
h2 . m 
plotcbawn2.m 
cbawgnc . m 
cawgnc . m 
phi1og.m 
phifun . m 
gauss j 2 
Hammspher e 
genstdarray.~ 
progdetH15.m 
progdet . m 
polyadd . m 
polysub . m 
polymu1t.m 
polydiv . m 
po1yaddm.m 
po1ysubm.m 
polymu1tm.m 
primitive.txt 
BinLFSR . h 
BinLFSR.cc 
testBinLFSR.cc 
MakeLFSR 
BinPo1yDiv.h 
BinPolyDiv.cc 

qf . c 
Introduction to gap and magma . . . . . . . . . . . . . .  x 
Q function . . . . . . . . . . . . . . . . . . . . . . . . . .  20 
Q function . . . . . . . . . . . . . . . . . . . . . . . . . .  20 

. . . . . . . . . . .  21 
Plot probability of error for BPSK . . . . . . . . . . . . .  21 
Compute error probability for (n. 1) repetition codes . . . .  32 
Test the repetition code performance . . . . . . . . . . . .  33 
Plot results for repetition code . . . . . . . . . . . . . . . .  33 
Findminimumdistanceusingexhaustivesearch . . . . . .  34 
Probability of error for (7. 4) Hamming code . . . . . . . .  36 
Compute (“k) and test fork < 0 . . . . . . . . . . . . . . .  36 
Capacity of the AWGN channel and BAWGNC channel . . 45 
Compute capacity of AWGN channel . . . . . . . . . . . .  45 
ComputethecapacityoftheBAWGNchannel . . . . . . .  45 
Compute the binary entropy function . . . . . . . . . . . .  45 
Plot capacity for AWGN and BAWGN channels . . . . . .  51 
Compute capacity for BAWGN channel . . . . . . . . . .  51 
Compute capacity for AWGN channel . . . . . . . . . . .  51 
Compute the log 4 function associated with the BAWGNC 51 
Compute the q5 function associated with the BAWGNC . . 51 
Gaussian elimination over GF(2) . . . . . . . . . . . . . .  86 
Compute the number of points in a Hamming sphere . . . .  89 
Generate a standard array for a code . . . . . . . . . . . .  91 
Probability of error detection for (15. 11) Hamming (code . 100 
Probability of error detection for (3 1. 21) Hamming (code . 100 
Add polynomials . . . . . . . . . . . . . . . . . . . . . .  116 
Subtract polynomials . . . . . . . . . . . . . . . . . . . .  116 
Multiply polynomials . . . . . . . . . . . . . . . . . . . .  116 
Divide polynomials (compute quotient and remainder) . . .  116 
Add polynomials modulo a number . . . . . . . . . . . . .  116 
Subtract polynomials modulo a number . . . . . . . . . . .  116 
Multiply polynomials modulo a number . . . . . . . . . .  116 
Table of primitive polynomials . . . . . . . . . . . . . . .  155 
(lab. complete) Binary LFSR class . . . . . . . . . . . . .  162 
(lab. complete) Binary LFSR class . . . . . . . . . . . . .  162 
(lab. complete) Binary LFSR class tester . . . . . . . . . .  162 
(lab. complete) Makefile for tester . . . . . . . . . . . . .  162 
(lab. complete) Binary polynomial division . . . . . . . . .  162 
(lab. incomplete) Binary polynomial division . . . . . . . .  162 

Set up to plot prob . of error for BPSK 

testBinPolyDiv . cc(1ab. complete) Binary polynomial division test . . . . . .  162 
gcd . c A simple example of the Euclidean algorithm . . . . . . .  181 
crt9amma.m Compute the gammas for the CRT . . . . . . . . . . . . .  189 



xxviii List of Program Files 

fromcrt . m 
tocrt . m 
testcrt . m 
test crp . m 
tocrtpo1y.m 
fromcrtpolym . 
crtgammapo1y.m 
pr imf ind 
cyclomin 
ModAr . h 
ModAr . cc 
ModArnew.cc 
testm0darnew.c~ 
testmodarl.cc 
polynomia1T.h 
polynomialT.cc 
testpolyl.cc 
testgcdpo1y.c~ 
gcdpoly.cc 
GF2 . h 
GFNUM2m . h 
GFNUM2m.cc 
testgfnum.cc 
bchwei9ht.m 
bchdesigner 
reedso1wt.m 
masseym0dM.m 
erase . mag 
testBM . cc 
Chiensearch.h 
Chiensearch.cc 
testChien.cc 
BCHdec . h 
BCHdec . cc 
testBCH.cc 
RSenc . h 
RSenc . cc 
RSdec . h 
RSdec . cc 
testRS . cc 
rsenc0de.c~ 
rsdecode.cc 
bsc . c 
testpxy.cc 
c0mputekm.m 
computeLm.cc 
computeLm.m 

Convert back from CRT representation to an integer . . . .  189 

An example of CRT calculations . . . . . . . . . . . . . .  189 
Test a polynomial CRT calculation . . . . . . . . . . . . .  189 
Compute the CRT representation of a polynomial . . . . .  189 
Compute a polynomial from a CRT representation . . . . .  189 

Executable: Find primitive polynomials in GF(p)[x] . . .  209 
Executable: Cyclotomic cosets and minimal polynomials . 217 

(lab. complete) Modulo arithmetic class . . . . . . . . . .  223 
Templatized Modulo arithmetic class . . . . . . . . . . . .  223 
Templatized Modulo arithmetic class tester . . . . . . . . .  223 
(lab. complete) Test Modulo arithmetic class . . . . . . . .  223 
(lab. complete) Templatized polynomialclass . . . . . . .  223 
(lab. comp1ete)Templatizedpolynomialclass . . . . . . .  223 
(lab. complete) Demonstrate templatized polynomial class . 223 
(lab. complete) Test the polynomial GCD function . . . . .  224 
(lab. incomplete) Polynomial GCD function . . . . . . . .  224 
(lab. complete) GF(2) class . . . . . . . . . . . . . . . . .  224 
(lab. complete) Galois field GF(2m) class . . . . . . . . .  224 
(lab. incomplete) Galois field GF(2m) class . . . . . . . .  224 
(lab. complete) Test Galois field class . . . . . . . . . . . .  224 
Weight distribution of BCH code from weight of dual . . .  240 
Executable: Design a t-error correcting binary BCH code 241 
Compute weight distribution for an (n. k) RS code . . . . .  246 
Return the shortest LFSR for data sequence . . . . . . . .  258 
Erasure decoding example in magma . . . . . . . . . . . .  268 
(lab. complete) Test the Berlekamp-Massey algorithm . . .  282 
(lab. complete) Chien Search class . . . . . . . . . . . . .  283 
(lab. incomplete) Chien Search class . . . . . . . . . . . .  283 
(lab. complete) Test the Chien Search class . . . . . . . . .  283 
(lab. complete) BCHdec decoder class . . . . . . . . . . .  283 
(lab. incomplete) BCHdec decoder class . . . . . . . . . .  283 
(lab. complete) BCHdec decoder class tester . . . . . . . .  283 
(lab. complete) RS encoder class header . . . . . . . . . .  284 
(lab. complete) RS encoder class . . . . . . . . . . . . . .  284 
(lab. complete) RS decoder class header . . . . . . . . . .  284 
(lab. incomplete) RS decoder class . . . . . . . . . . . . .  284 
(lab. complete) Test RS decoder . . . . . . . . . . . . . . .  284 
(lab. complete) Encode a file of data using RS encoder . . .  285 
(lab. complete) Decode a file of data using RS decoder . . 285 
Executable: Simulate a binary symmetric channel . . . . .  285 
Demonstrate concepts relating to 2-variable polynomials . 325 
Compute K m  for the Guruswami-Sudan decoder . . . . . .  333 
Compute the maximum list length for GS(m) decoding . . 337 
Compute the maximum list length for GS(m) decoding . . 337 

Computethe CRTrepresentationof aninteger . . . . . . .  189 

Compute the gammas for the CRT representation . . . . .  189 

(lab. complete) Modulo arithmetic class . . . . . . . . . .  223 



List of Program Files xxix 

testft . m 
f engt zeng . m 
invmodp . m 
testGSl.cc 
kotter . cc 
testGS3.c~ 
testGS5.c~ 
kotterl.cc 
testGS2.c~ 
rothruck.cc 
r0thruck.h 
Lbarex . m 
c0mputetm.m 
c0mputeLbar.m 
computeLm.m 
pi2ml 
genrm . cc 
rmdecex . m 
hadex . m 
testfht.cc 
fht . cc 
fht . m 
rmdecex2.m 
testQR . cc 
go1aysimp.m 
testGolay.cc 
go1ayrith.m 
plotbds . m 
simplex1.m 
pivottab1eau.m 
reducefree.m 
rest0refree.m 
krawtch0uk.m 
1pboundex.m 
utiltkm.cc 
utiltkm . h 
concodequant.m 
chernoff1.m 
p1otconprob.m 
f inddfree 
teststack.m 
stacka1g.m 
f anomet . m 
f anoalg . m 
BinConv . h 
BinConvF1R.h 
BinConvFIR.cc 

Test the Feng-Tzeng algorithm . . . . . . . . . . . . . . .  341 
Poly . such that the first 1 + 1 columns are lin . dep . . . . . .  341 
Compute the inverse of a number modulo p . . . . . . . .  341 
Test the GS decoder (Kotter part) . . . . . . . . . . . . . .  346 
Kotter interpolation algorithm . . . . . . . . . . . . . . . .  346 
Test the GS decoder . . . . . . . . . . . . . . . . . . . . .  347 
Test the GS decoder . . . . . . . . . . . . . . . . . . . . .  350 
Kotter algorithm with rn = 1 . . . . . . . . . . . . . . . .  350 
Test the Roth-Ruckenstein algorithm . . . . . . . . . . . .  354 
Roth-Ruckenstein algorithm (find y-roots) . . . . . . . . .  354 
Roth-Ruckenstein algorithm (find y-roots) . . . . . . . . .  354 
Average performance of a GS(rn) decoder . . . . . . . . .  357 
Compute Tm. error correction capability for GS decoder . . 357 
Avg . no . of codewords in sphere around random pt . . . . .  357 
Compute maximum length of list of G F ( m )  decoder . . .  357 
Koetter-Vardy algorithm to map reliability to multiplicity . 362 
Create a Reed-Muller generator matrix . . . . . . . . . . .  376 
RM(1. 3) decoding example . . . . . . . . . . . . . . . .  381 
Computation of H8 . . . . . . . . . . . . . . . . . . . . .  382 
Test the fast Hadamard transform . . . . . . . . . . . . . .  383 
Fast Hadamard transform . . . . . . . . . . . . . . . . . .  383 
Fast Hadamard transform . . . . . . . . . . . . . . . . . .  383 
RM(2. 4) decoding example . . . . . . . . . . . . . . . .  387 
Example of arithmetic for QR code decoding . . . . . . . .  397 
DeriveequationsforalgebraicGolaydecoder . . . . . . .  401 
Test the algebraic Golay decoder . . . . . . . . . . . . . .  401 
Arithmetic Golay decoder . . . . . . . . . . . . . . . . . .  402 
Plot bounds for binary codes . . . . . . . . . . . . . . . .  407 
Linear program solution to problems in standard forni . . .  413 
Main function in simplex1 . m . . . . . . . . . . . . . .  413 
Auxiliary linear programming function . . . . . . . . . . .  413 
Auxiliary linear programming function . . . . . . . . . . .  413 
Compute Krawtchouk polynomials recursively . . . . . . .  415 
Solve the linear programming for the LP bound . . . . . .  418 
Sort and random functions . . . . . . . . . . . . . . . . .  440 
Sort and random functions . . . . . . . . . . . . . . . . .  440 
Compute the quantization of the Euclidean metric . . . . .  486 
Chernoffboundsforconvolutionalperformance . . . . . .  502 
Plot performance bounds for a convolutional code . . . . .  504 
Executable: Find dfiee for connection coefficients . . . . .  506 
Test the stack algorithm . . . . . . . . . . . . . . . . . . .  515 
The stack algorithm for convolutional decoding . . . . . .  515 
Compute the Fano metric for convolutionally coded data . . 5 15 
The Fano algorithm for convolutional decoding . . . . . .  517 
(lab. complete) Base class for binary convolutional encoder 526 
(lab. complete) Binary feedforward convolutional encoder . 526 
(lab. incomplete) Binary feedforward convolutional encoder 526 



xxx List of Program Files 

BinConvI1R.h (lab. complete) Binary recursive convolutional encoder . . 526 
BinConvI IR . cc (lab. incomplete) Binary recursive convolutional encoder . 526 
testconvenc (lab. complete) Test convolutional encoders . . . . . . . .  526 
Convdec . h (lab. complete) Convolutionaldecoderclass . . . . . . . .  528 
Convdec.cc (lab. incomplete) Convolutionaldecoderclass . . . . . . .  528 
BinConvdecOl . h (lab. complete) Binary conv . decoder class. BSC metric . . 528 
BinConvdecO 1 . h (lab. complete) Binary conv . decoder class. BSC metric . . 528 
BinConvdecBPSK . h (lab. complete) Bin . conv . decoder. soft metric with BPSK 528 
BinConvdecBPSK . cc (lab. complete) Bin . conv . decoder. soft metric with BPSK 528 
testconvdec.cc 
makeB . m 
tcmtl . cc 
tcmrot2.c~ 
1attstuff.m 
voln . m 
latta2 . m 
latt z2m 
BCJR.h 
BCJR . cc 
testbcjr.cc 
testturbodec2.c~ 
makgenfr0mA.m 
gauss j2 . m 
Agall . m 
Agall . txt 
writesparse.m 
ldpc . m 
ga1decode.m 
1dpclogdec.m 
psifunc.m 
densevl . m 
densevtest.m 
Psi . m 
Psiinv . m 
threshtab.m 
1dpcsim.mat 
exit1 . m 
loghist . m 
exit3 . m 
dotraject0ry.m 
exit2 . m 
d0exitchart.m 
getinf . m 
getinf s . m 
sparseHno4.m 
Asmall.txt 
galdec . h 

(lab. comp1ete)Test theconvolutionaldecoder . . . . . . .  529 
Make the B matrix for an example code . . . . . . . . . .  549 
Test the constellation for a rotationally invariant code . . .  549 
Test the constellation for a rotationally invariant code . . .  557 
Generator matrices for A2. D4. E6. E8. A16. A24 . . . . .  563 
Compute volume of n-dimensional unit-radius sphere . . .  563 
Plot A2  lattice . . . . . . . . . . . . . . . . . . . . . . . .  568 
Plot Z2 lattice . . . . . . . . . . . . . . . . . . . . . . . .  568 
(lab. complete) BCJR algorithm class header . . . . . . . .  629 
(lab. incomplete) BCJR algorithm class . . . . . . . . . .  629 
(lab. complete) Test BCJR algorithm class . . . . . . . . .  629 
(lab. complete) Test the turbo decoder . . . . . . . . . . .  629 
Find systematic generator matrix for a parity check matrix . 635 
Gauss-Jordan elimination over GF(2) on a matrix . . . . .  635 
A parity check matrix for an LDPC code . . . . . . . . . .  637 
Sparse representation of the matrix . . . . . . . . . . . . .  637 
Write a matrix into a file in sparse format . . . . . . . . . .  637 
Demonstrate LDPC decoding . . . . . . . . . . . . . . . .  648 
LDPC decoder (nonsparse representation) . . . . . . . . .  648 
Log-likelihood LDPC decoder . . . . . . . . . . . . . . .  652 
Plotthe q functionusedindensityevolution . . . . . . . .  656 
An example of density evolution . . . . . . . . . . . . . .  658 
Plot density evolution results . . . . . . . . . . . . . . . .  658 
Plot the q functionused in density evolution . . . . . . . .  658 
Compute W1 used in density evolution . . . . . . . . . .  658 
Convert threshold table to &/No . . . . . . . . . . . . . .  658 
LDPC decoder simulation results . . . . . . . . . . . . . .  660 
Plot histograms of LDPC decoder outputs . . . . . . . . .  660 
Find histograms . . . . . . . . . . . . . . . . . . . . . . .  660 
Plot mutual information as a function of iteration . . . . .  660 
Mutualinformationas afunctionofiteration . . . . . . . .  660 
Plot EXIT chart . . . . . . . . . . . . . . . . . . . . . . .  660 
Take mutual information to EXIT chart . . . . . . . . . . .  660 
Convert data to mutual information . . . . . . . . . . . . .  660 

. . .  668 
675 

Convertmultiple datato mutualinformation . . . . . . . .  660 
Make a sparse check matrix with no cycles of girth 4 
(lab. complete) A matrix in sparse representation . . . . . .  
(lab. complete) LDPC decoder class header . . . . . . . .  675 



List of Program Files XXXi 

galdec. cc 
galtest.cc 
ldpc . m 
ga1decode.m 
galtest2.c~ 
A1-2. txt 
A1-4. txt 
testgd12.m 
gdl .m 
fyx0 .m 
fadep1ot.m 
jakes .m 
fadepbp1ot.m 

(lab, incomplete) LDPC decoder class . . . . . . . , . . . 675 
(lab, complete) LDPC decoder class tester . . . . . . . . . 675 
(lab, complete) Demonstrate LDPC decoding . . . , . . . 675 
(lab, complete) LDPC decoder (not sparse representation) . 675 
(lab, complete) Prob. of error plots for LDPC code . I . . . 675 
(lab, complete) Rate 1/2 parity check matrix, sparse format 675 
(lab, complete) Rate 1/4 parity check matrix, sparse format 675 
Test the generalized distributive law . . . . . . . . . . . . 695 
A generalized distributive law function . . . . . . . . . . . 695 
Compute f ( y l x )  for the GDL framework . . . . . . , . . . 695 
Plot realizations of the amplitude of a fading channel . . . 7 12 
Jakes method for computing amplitude of a fading channel 7 12 
Plot BPSK performance over Rayleigh fading channel . . . 714 



List of Laboratory Exercises 
Lab 1 
Lab 2 
Lab 3 
Lab 4 
Lab 5 
Lab 6 
Lab 7 
Lab 8 
Lab 9 
Lab 10 
Lab 11 
Lab 12 
Lab 13 

Simulating a Communications Channel . . . . . . . . . . . . . . . . . . .  53 
PolynomialDivisionandLinear Feedbackshift Registers . . . . . . . . . .  161 
CRC Encoding and Decoding . . . . . . . . . . . . . . . . . . . . . . . .  162 
Programming the Euclidean Algorithm . . . . . . . . . . . . . . . . . . .  223 
Programming Galois Field Arithmetic . . . . . . . . . . . . . . . . . . . .  224 
Programming the Berlekamp-Massey Algorithm . . . . . . . . . . . . . .  281 
Programming the BCH Decoder . . . . . . . . . . . . . . . . . . . . . . .  283 
Reed-Solomon Encoding and Decoding . . . . . . . . . . . . . . . . . . .  284 
Programming Convolutional Encoders . . . . . . . . . . . . . . . . . . . .  526 
Convolutional Decoders: The Viterbi Algorithm . . . . . . . . . . . . . . .  528 
Trellis-Coded Modulation Encoding and Decoding . . . . . . . . . . . . .  578 
Turbo Code Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . .  629 
Programming an LDPC Decoder . . . . . . . . . . . . . . . . . . . . . . .  674 



List of Algorithms 
1.1 Hamming Code Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35 
1.2 Outline for simulating a digital communications channel . . . . . . . . . . . . .  53 
1.3 Outline for simulating ( n .  k)-coded digital communications . . . . . . . . . . .  53 
1.4 Outline for simulating (n.  k) Hamming-coded digital communications . . . . .  54 
4.1 152 
4.2 162 

Fast CRC encoding for a stream of bytes 
Binary linear feedback shift register . . . . . . . . . . . . . . . . . . . . . . . .  

4.3 Binary polynomial division . . . . . . . . . . . . . . . . . . . . . . . . . . . .  162 
5.1 Extended Euclidean Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . .  181 
5.2 Modulo Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  223 
5.3 Templatized Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  223 
5.4 Polynomial GCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  223 
5.5 GF(2"') arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  224 
6.1 Massey's Algorithm (pseudocode) . . . . . . . . . . . . . . . . . . . . . . . .  258 
6.2 Massey's Algorithm for Binary BCH Decoding . . . . . . . . . . . . . . . . . .  259 
6.3 Test Berlekamp-Massey algorithm . . . . . . . . . . . . . . . . . . . . . . . .  282 
6.4 Chien Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  283 
6.5 BCH Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  283 
6.6 Reed-Solomon Encoder Declaration . . . . . . . . . . . . . . . . . . . . . . .  284 
6.7 Reed-Solomon Decoder Declaration . . . . . . . . . . . . . . . . . . . . . . .  284 
6.8 Reed-Solomon Decoder Testing . . . . . . . . . . . . . . . . . . . . . . . . . .  284 
6.9 Reed-Solomon File Encoder and Decoder . . . . . . . . . . . . . . . . . . . .  285 
6.10 Binary Symmetric Channel Simulator . . . . . . . . . . . . . . . . . . . . . . .  285 
7.1 Welch-Berlekamp Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . .  308 
7.2 Welch-Berlekamp Interpolation, Modular Method . . . . . . . . . . . . . . . .  316 

Welch-Berlekamp Interpolation, Modular Method v . 2 . . . . . . . . . . . . . .  319 
7.4 Welch-Berlekamp Interpolation. Modular Method v . 3 . . . . . . . . . . . . . .  321 

The Feng-Tzeng Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . .  341 
Kotters Interpolation for Guruswami-Sudan Decoder . . . . . . . . . . . . . . .  346 

Roth-Ruckenstein Algorithm for Finding y-roots of Q ( x ,  y) . . . . . . . . . . .  353 
Koetter-Vardy Algorithm for Mapping from l7 to M . . . . . . . . . . . . . . .  362 
Decoding for RM(1, m )  Codes . . . . . . . . . . . . . . . . . . . . . . . . . .  381 

8.2 Arithmetic Decoding of the Golay 924 Code . . . . . . . . . . . . . . . . . . .  402 
11.1 Generalized Minimum Distance (GMD) Decoding . . . . . . . . . . . . . . . .  441 
1 1.2 Chase-2 Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  445 
11.3 Chase-3 Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  445 
11.4 Ordered Statistic Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . .  449 
12.1 The Viterbi Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  475 
12.2 The Stack Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  515 
12.3 Base Class for Binary Convolutional Encoder . . . . . . . . . . . . . . . . . .  526 
12.4 Derived classes for FIR and IIR Encoders . . . . . . . . . . . . . . . . . . . . .  526 
12.5 Test program for convolutional encoders . . . . . . . . . . . . . . . . . . . . .  526 

. . . . . . . . . . . . . . . . . . . . .  

7.3 

7.5 
7.6 
7.7 Guruswami-Sudan Interpolation Decoder with m = 1 and L = 1 . . . . . . .  349 
7.8 
7.9 
8.1 



xxxiv List of Algorithms 

12.6 Base Decoder Class Declarations . . . . . . . . . . . . . . . . . . . . . . . . .  528 
12.7 Convolutional decoder for binary (0. 1) data . . . . . . . . . . . . . . . . . . . .  528 
12.8 Convolutional decoder for BPSK data . . . . . . . . . . . . . . . . . . . . . . .  528 
12.9 Test the convolutional decoder . . . . . . . . . . . . . . . . . . . . . . . . . .  529 
14.1 The BCJR (MAP) Decoding Algorithm. Probability Form . . . . . . . . . . . .  596 
14.2 The Turbo Decoding Algorithm. Probability Form . . . . . . . . . . . . . . . .  601 
14.3 BCJR algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  629 
14.4 Test the turbo decoder algorithm . . . . . . . . . . . . . . . . . . . . . . . . .  629 
15.1 Iterative Decoding Algorithm for Binary LDPC Codes . . . . . . . . . . . . . .  648 
15.2 Iterative Log Likelihood Decoding Algorithm for Binary LDPC Codes . . . . .  652 
15.3 LDPC decoder class declarations . . . . . . . . . . . . . . . . . . . . . . . . .  675 
15.4 Matlab code to test LDPC decoding . . . . . . . . . . . . . . . . . . . . . . . .  675 
15.5 Make performance plots for LDPC codes . . . . . . . . . . . . . . . . . . . . .  675 



List of Figures 

1.1 The binary entropy function H z ( p )  . . . . . . . . . . . . . . . . . . . . . . . .  4 
1.2 A general framework for digital communications . . . . . . . . . . . . . . . . .  6 
1.3 Signal constellation for BPSK . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 
1.4 Juxtaposition of signal waveforms . . . . . . . . . . . . . . . . . . . . . . . .  11 
1.5 Two-dimensional signal space . . . . . . . . . . . . . . . . . . . . . . . . . .  12 
1.6 8-PSK signal constellation . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 

1.8 Conditional densities in BPSK modulation . . . . . . . . . . . . . . . . . . .  18 
1.9 Distributions when two signals are sent in Gaussian noise . . . . . . . . . . .  20 
1.10 Probability of error for BPSK signaling . . . . . . . . . . . . . . . . . . . . .  21 
1.1 1 Probability of error bound for 8-PSK modulation . . . . . . . . . . . . . . . .  22 
1.12 A binary symmetric channel . . . . . . . . . . . . . . . . . . . . . . . . . . .  23 

1.14 Energy for a coded signal . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26 
1.15 27 
1.16 A (3, 1) binary repetition code . . . . . . . . . . . . . . . . . . . . . . . . . .  29 

1.18 32 
1.19 37 
1.20 The trellis of a (7, 4) Hamming code . . . . . . . . . . . . . . . . . . . . . .  39 
1.21 39 

1.23 48 
1.24 52 

1.7 Correlation processing (equivalent to matched filtering) . . . . . . . . . . . .  15 

1.13 Communication system diagram and BSC equivalent . . . . . . . . . . . . . .  25 

Probability of error for coded bits, before correction . . . . . . . . . . . . . .  

1.17 A representation of decoding spheres . . . . . . . . . . . . . . . . . . . . . .  30 
Performance of the (3, 1) and (1 1, 1) repetition code over BSC . . . . . . . .  
Performance of the (7, 4) Hamming code in the AWGN channel . . . . . . . .  

The Tanner graph for a (7, 4) Hamming code . . . . . . . . . . . . . . . . . .  
1.22 Capacities of AWGNC, BAWGNC, and BSC . . . . . . . . . . . . . . . . . .  46 

Relationship between input and output entropies for a channel . . . . . . . . .  
Capacity lower bounds on Pb as a function of SNR . . . . . . . . . . . . . . .  

1.25 Regions for bounding the Q function . . . . . . . . . . . . . . . . . . . . . .  57 

2.1 An illustration of cosets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67 
2.2 A lattice partitioned into cosets . . . . . . . . . . . . . . . . . . . . . . . . . .  72 

3.1 Error detection performance for a (1 5. 11) Hamming code . . . . . . . . . . . .  100 
3.2 Demonstrating modifications on a Hamming code . . . . . . . . . . . . . . . .  107 

4.1 A circuit for multiplying two polynomials. last-element first . . . . . . . . . . .  128 
4.2 High-speed circuit for multiplying two polynomials. last-element first . . . . . .  129 
4.3 A circuit for multiplying two polynomials. first-element first . . . . . . . . . . .  129 
4.4 High-speed circuit for multiplying two polynomials. first-element first . . . . .  130 
4.5 A circuit to perform polynomial division . . . . . . . . . . . . . . . . . . . . .  131 
4.6 A circuit to divide by g ( x )  = x 5  + x + 1 . . . . . . . . . . . . . . . . . . . . .  131 
4.7 Realizing h ( x ) / g ( x )  (first-element first). controller canonical form . . . . . . .  133 
4.8 Realizing h ( x ) / g ( x )  (first-element first). observability form . . . . . . . . . . .  134 
4.9 Realization of H ( x )  = (1 + x ) / (  1 + x 3  + x4). controller form . . . . . . . . .  134 
4.10 Realization of H ( x )  = (1 + x)/( l  + x 3  + x4). observability form . . . . . . . .  134 



xxxvi LIST OF FIGURES 

4.1 1 Nonsystematic encoding of cyclic codes . . . . . . . . . . . . . . . . . . . . .  135 
4.12 Circuit for systematic encoding using g(x) . . . . . . . . . . . . . . . . . . . .  136 
4.13 Systematic encoder for (7. 4) code with generator g(x) = 1 + x + x3 . . . . . .  136 
4.14 A systematic encoder using the parity check polynomial . . . . . . . . . . . . .  137 
4.15 A systematic encoder for the Hamming code using h(x) . . . . . . . . . . . . .  137 
4.16 A syndrome computation circuit for a cyclic code example . . . . . . . . . . . .  139 
4.17 Cyclic decoder with r ( x )  shifted in the left end of syndrome register . . . . . .  140 
4.18 Decoder for a (7, 4) Hamming code, input on the left . . . . . . . . . . . . . . .  141 
4.19 Cyclic decoder when r ( x )  is shifted in right end of syndrome register . . . . . .  143 
4.20 Hamming decoder with input fed into right end of the syndrome register . . . .  144 
4.21 Meggitt decoders for the (31, 26) Hamming code . . . . . . . . . . . . . . . . .  145 
4.22 Multiply r ( x )  by p ( x )  and compute the remainder modulo g(x) . . . . . . . . .  146 
4.23 Decoder for a shortened Hamming code . . . . . . . . . . . . . . . . . . . . .  147 
4.24 Linear feedback shift register . . . . . . . . . . . . . . . . . . . . . . . . . . .  154 
4.25 Linear feedback shift register with g(x) = 1 + x + x2 + x4 . . . . . . . . . . .  155 
4.26 Linear feedback shift register with g(x) = 1 + x + x4 . . . . . . . . . . . . . .  156 
4.27 Linear feedback shift register, reciprocal polynomial convention . . . . . . . . .  158 
4.28 Another LFSR circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  169 
4.29 An LFSR with state labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  169 

5.1 LFSR labeled with powers of (Y to illustrate Galois field elements . . . . . . . .  200 
5.2 Multiplication of p by (Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  205 
5.3 Multiplication of an arbitrary /3 by a4 . . . . . . . . . . . . . . . . . . . . . . .  205 
5.4 Multiplication of /I by an arbitrary field element . . . . . . . . . . . . . . . . .  206 
5.5 Subfield structure of GF(224) . . . . . . . . . . . . . . . . . . . . . . . . . . .  207 

6.1 Chien search algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  249 

7.1 295 
7.2 Comparing BD. ML. and list decoding . . . . . . . . . . . . . . . . . . . . . .  323 
7.3 333 
7.4 Fraction of errors corrected as a function of rate . . . . . . . . . . . . . . . . .  335 

7.6 356 
7.7 Convergence of M to lT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  363 
7.8 Computing the reliability function . . . . . . . . . . . . . . . . . . . . . . . . .  364 

Remainder computation when errors are in message locations . . . . . . . . . .  

K ,  as a function of m for a (32. 8) Reed-Solomon code . . . . . . . . . . . . .  

7.5 AnexampleoftheRoth.RuckensteinAlgorithmoverGF(5) . . . . . . . . . .  355 
An example of the Roth-Ruckenstein Algorithm over GF(5) (cont’d) . . . . . .  - 

8.1 
8.2 
8.3 

8.5 
8.6 

An encoder circuit for a R M (  1. 3) code . . . . . . . . . . . . . . . . . . . . . .  379 
Signal flow diagram for the fast Hadamard transform . . . . . . . . . . . . . . .  384 

388 

390 
Parity check geometric descriptions for vectors of the R M ( 2 .  4) code . . . . . .  391 

Binary adjacency relationships in three and four dimensions . . . . . . . . . . .  
8.4 Planesshadedtorepresenttheequationsorthogonalonbitm34 . . . . . . . . .  388 

Parity check geometric descriptions for vectors of the R M ( 2 .  4) code . . . . . .  

9.1 407 
9.2 A linear programming problem . . . . . . . . . . . . . . . . . . . . . . . . . .  413 
9.3 Finding Stirling’s formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  422 

Comparison of lower bound and various upper bounds . . . . . . . . . . . . . .  



LIST OF FIGURES MMvii 

10.1 A 3 x 4 interleaver and deinterleaver . . . . . . . . . . . . . . . . . . . . . . .  426 
10.2 A cross interleaver and deinterleaver system . . . . . . . . . . . . . . . . . . .  428 
10.3 The CD recording and data formatting process . . . . . . . . . . . . . . . . . .  429 
10.4 The error correction encoding in the compact disc standard . . . . . . . . . . .  429 
10.5 The product code C 1 x C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  431 
10.6 A concatenated code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  432 
10.7 Deep-space concatenated coding system . . . . . . . . . . . . . . . . . . . . .  433 
10.8 Error trapping decoder for burst-error correcting codes . . . . . . . . . . . . . .  436 

11.1 Signal labels for soft-decision decoding . . . . . . . . . . . . . . . . . . . . . .  440 

12.1 A rate R = 1 /2 convolutional encoder . . . . . . . . . . . . . . . . . . . . . .  453 
12.2 A systematic R = 112 encoder . . . . . . . . . . . . . . . . . . . . . . . . . .  454 
12.3 A systematic R = 213 encoder . . . . . . . . . . . . . . . . . . . . . . . . . .  455 
12.4 A systematic R = 213 encoder with more efficient hardware . . . . . . . . . . .  455 
12.5 Encoder, state diagram. and trellis for G(x)  = [ l  + x2. 1 + x + x2] . . . . . . .  458 
12.6 State diagram and trellis for a rate R = 2/3 systematic encoder . . . . . . . . .  459 
12.7 A feedforward R = 213 encoder . . . . . . . . . . . . . . . . . . . . . . . . .  460 
12.8 A less efficient feedforward R = 2/3 encoder . . . . . . . . . . . . . . . . . .  461 
12.9 Processing stages for a convolutional code . . . . . . . . . . . . . . . . . . . .  469 
12.10 Notation associated with a state transition . . . . . . . . . . . . . . . . . . . . .  472 
12.1 1 The Viterbi step: Select the path with the best metric . . . . . . . . . . . . . . .  474 
12.12 Path through trellis corresponding to true sequence . . . . . . . . . . . . . . . .  476 
12.13 Add-compare-select Operation . . . . . . . . . . . . . . . . . . . . . . . . . .  481 
12.14 A two-bit quantization of the soft-decision metric . . . . . . . . . . . . . . . .  485 
12.15 Quantization thresholds for 4- and 8-level quantization . . . . . . . . . . . . . .  487 
12.16 Bit error rate for different constraint lengths . . . . . . . . . . . . . . . . . . .  488 
12.17 Bit error rate for various quantization and window lengths . . . . . . . . . . . .  489 
12.18 Viterbi algorithm performance as a function of quantizer threshold spacing . . .  490 
12.19 BER performance as a function of truncation block length . . . . . . . . . . . .  490 
12.20 Error events due to merging paths . . . . . . . . . . . . . . . . . . . . . . . . .  491 
12.21 ltyo decoding examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  492 
12.22 The state diagram and graph for diverginghemerging paths . . . . . . . . . . .  494 
12.23 Rules for simplification of flow graphs . . . . . . . . . . . . . . . . . . . . . .  495 
12.24 Steps simplifying the flow graph for a convolutional code . . . . . . . . . . . .  495 
12.25 State diagram labeled with input/output weight and branch length . . . . . . . .  496 
12.26 A state diagram to be enumerated . . . . . . . . . . . . . . . . . . . . . . . . .  497 
12.27 Performance of a (3, 1) convolutional code with dfree = 5 . . . . . . . . . . . .  505 

12.29 A tree representation for a rate R = 1 /2 code . . . . . . . . . . . . . . . . . . .  512 
516 

12.28 Trellises for a punctured code . . . . . . . . . . . . . . . . . . . . . . . . . . .  509 

12.30 Stack contents for stack algorithm decoding example . . . . . . . . . . . . . . .  
12.31 FlowchartfortheFanoalgorithm . . . . . . . . . . . . . . . . . . . . . . . . .  519 
12.32Thetrellisofa(7,4)Hammingcode. . . . . . . . . . . . . . . . . . . . . . .  524 
12.33 A systematic encoder for a (7.4. 3) Hamming code . . . . . . . . . . . . . . .  524 
12.34 A trellis for a cyclically encoded (7,4, 3) Hamming code . . . . . . . . . . . . .  525 
12.35 State diagram and trellis . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  527 

PSK signal constellations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  537 13.1 



xxxviii LIST OF FIGURES 

13.2 QAM Signal constellations (overlaid) . . . . . . . . . . . . . . . . . . . . . . .  537 
13.3 Three communication scenarios . . . . . . . . . . . . . . . . . . . . . . . . . .  538 
13.4 Set partitioning of an 8-PSK signal . . . . . . . . . . . . . . . . . . . . . . . .  539 
13.5 R = 2/3 trellis coded modulation example . . . . . . . . . . . . . . . . . . . .  540 
13.6 542 
13.7 An 8-state trellis for 8-PSK TCM . . . . . . . . . . . . . . . . . . . . . . . . .  543 
13.8 Block diagram of a TCM encoder . . . . . . . . . . . . . . . . . . . . . . . . .  544 
13.9 Set partitioning on a 16-QAM constellation . . . . . . . . . . . . . . . . . . . .  545 
13.10 Partition for 8-ASK signaling . . . . . . . . . . . . . . . . . . . . . . . . . . .  546 
13.1 1 A correct path and an error path . . . . . . . . . . . . . . . . . . . . . . . . . .  548 
13.12 Example trellis for four-state code . . . . . . . . . . . . . . . . . . . . . . . . .  549 
13.13 Trellis coder circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  552 
13.14 TCM encoder for QAM constellations . . . . . . . . . . . . . . . . . . . . . .  553 
13.15 Mapping of edge (i, j )  to edge (f$(i), f $ ( j ) )  . . . . . . . . . . . . . . . . . .  556 
13.16 Encoder circuit for rotationally invariant TCM code . . . . . . . . . . . . . . .  557 
13.17 Trellis for the rotationally invariant code of Figure 13.16 . . . . . . . . . . . .  558 
13.18 32-cross constellation for rotationally invariant TCM code . . . . . . . . . . . .  558 
13.19 A portion of the lattice Z2 and its cosets . . . . . . . . . . . . . . . . . . . . .  564 
13.20 Hexagonal lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  565 
13.21 Z2 and its partition chain and cosets . . . . . . . . . . . . . . . . . . . . . . . .  568 
13.22 Block diagram for a trellis lattice coder . . . . . . . . . . . . . . . . . . . . . .  569 
13.23 Lattice and circular boundaries for various constellations . . . . . . . . . . . . .  570 
13.24 16-state trellis encoder for use with V.34 standard . . . . . . . . . . . . . . . .  572 
13.25 Trellis diagram of V.34 encoder . . . . . . . . . . . . . . . . . . . . . . . . . .  573 
13.26 The 192-point constellation employed in the V.34 standard . . . . . . . . . . . .  575 
13.27 Partition steps for the V.34 signal constellation . . . . . . . . . . . . . . . . . .  576 
13.28 Orbits of some of the points under rotation . . . . . . . . . . . . . . . . . . . .  576 

A TCM encoder employing subset selection and a four-state trellis . . . . . . .  

14.1 Decoding results for a (37.21. 65536) code . . . . . . . . . . . . . . . . . . . .  583 
14.2 Block diagram of a turbo encoder . . . . . . . . . . . . . . . . . . . . . . . . .  585 
14.3 Block diagram of a turbo encoder with puncturing . . . . . . . . . . . . . . . .  586 
14.4 Example turbo encoder with G(x)  = 1/1+ x 2  . . . . . . . . . . . . . . . . . .  587 
14.5 Block diagram of a turbo decoder . . . . . . . . . . . . . . . . . . . . . . . . .  587 
14.6 Processing stages for BCJR algorithm . . . . . . . . . . . . . . . . . . . . . . .  589 
14.7 One transition of the trellis for the encoder . . . . . . . . . . . . . . . . . . . .  590 
14.8 A log likelihood turbo decoder . . . . . . . . . . . . . . . . . . . . . . . . . .  604 
14.9 Trellis with metric differences and bits for SOVA . . . . . . . . . . . . . . . . .  612 
14.10 State sequences for an encoding example . . . . . . . . . . . . . . . . . . . . .  616 
14.11 Arrangements of nl = 3 detours in a sequence of length N = 7 . . . . . . . . .  616 
14.12 A 6 x 6 "square" sequence written into the 120 x 120 interleaver . . . . . . . .  618 
14.13 Variables used in iterative decoder for EXIT chart analysis . . . . . . . . . . . .  620 
14.14 Qualitative form of the transfer characteristic ZE = T(ZA) . . . . . . . . . . . .  622 
14.15 Trajectories of mutual information in iterated decoding . . . . . . . . . . . . .  623 
14.16 Turbo BCH encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  624 
14.17 Structure of an implementation of a parallel concatenated code . . . . . . . . .  624 
14.18 A trellis for a cyclically encoded (7,4, 3) Hamming code . . . . . . . . . . . . .  625 
14.19 Framework for a turbo equalizer . . . . . . . . . . . . . . . . . . . . . . . . . .  627 



LIST OF FIGURES xxxix 

14.20 Trellis associated with a channel with L = 2 . . . . . . . . . . . . . . . . . . .  628 
14.21 Example for a (3.2. 2) parity check code . . . . . . . . . . . . . . . . . . . . .  631 

15.1 Bipartite graph associated with the parity check matrix A . . . . . . . . . . . .  638 
15.2 A parity check tree associated with the Tanner graph . . . . . . . . . . . . . . .  640 
15.3 A subset of the Tanner graph . . . . . . . . . . . . . . . . . . . . . . . . . . .  642 
15.4 The two-tier tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  644 
15.5 The trellis associated with finding rmn(x)  . . . . . . . . . . . . . . . . . . . . .  646 
15.6 Processing information through the graph determined by A . . . . . . . . . . .  650 
15.7 Conditional independence among the sets of bits . . . . . . . . . . . . . . . . .  651 
15.8 Illustration of the decoding performance of LPDC codes . . . . . . . . . . . . .  654 
15.9 Comparisonof hard-decisionHamminganditerativedecoding . . . . . . . . .  655 
15.10 The function Q(x> compared with tanh(x/2) . . . . . . . . . . . . . . . . . . .  657 
15.11 Behavior of density evolution for a R = 1/3 code . . . . . . . . . . . . . . . .  658 
15.12 Messages from bits to checks and from checks to bits . . . . . . . . . . . . . .  659 

661 
15.14 Decoder information at various signal-to-noise ratios . . . . . . . . . . . . . . .  661 
15.15 EXIT charts at various signal-to-noise ratios . . . . . . . . . . . . . . . . . . .  662 
15.16 Result of permutation of rows and columns . . . . . . . . . . . . . . . . . . . .  670 

672 
15.18 A repeat-accumulate encoder . . . . . . . . . . . . . . . . . . . . . . . . . . .  672 
15.19 The Tanner graph for a (3. 1) RA code with two input bits . . . . . . . . . . . .  673 
15.20 Tanner graph for an irregular repeat-accumulate code . . . . . . . . . . . . . .  674 

15.13 Histograms of the bit-to-check information for various decoder iterations . . . .  

15.17 Serially concatenated codes and their iterative decoding . . . . . . . . . . . . .  

16.1 Factor graph for some examples . . . . . . . . . . . . . . . . . . . . . . . . . .  687 
16.2 Factor graph for a DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  687 
16.3 Graphical representations of marginalization . . . . . . . . . . . . . . . . . . .  688 
16.4 Conversion from factor graph to expression tree . . . . . . . . . . . . . . . . .  689 
16.5 Message passing in the sum-product algorithm . . . . . . . . . . . . . . . . . .  692 
16.6 Steps of processing in the sum-product algorithm . . . . . . . . . . . . . . . . .  692 
16.7 The factor (Tanner) graph for a Hamming code . . . . . . . . . . . . . . . . . .  694 
16.8 Graph portions to illustrate simplifications . . . . . . . . . . . . . . . . . . . .  696 
16.9 A trellis and a factor graph representation of it . . . . . . . . . . . . . . . . . .  697 
16.10 Message designation for forwardhackward algorithm . . . . . . . . . . . . . .  698 
16.1 1 The factor graph for a turbo code . . . . . . . . . . . . . . . . . . . . . . . . .  700 
16.12 Demonstration of clustering transformations . . . . . . . . . . . . . . . . . . .  701 
16.13 Stretching transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  702 
16.14 Eliminating an edge in a cycle . . . . . . . . . . . . . . . . . . . . . . . . . . .  703 
16.15 Transformations on the DFT factor graph . . . . . . . . . . . . . . . . . . . . .  705 

17.1 Multiple reflections from transmitter to receiver . . . . . . . . . . . . . . . .  711 
17.2 Simulation of a fading channel . . . . . . . . . . . . . . . . . . . . . . . . .  713 
17.3 Diversity performance of quasi-static, flat-fading channel with BPSK . . . . .  714 
17.4 Multiple transmit and receive antennas across a fading channel . . . . . . . .  715 
17.5 Two receive antennas and a maximal ratio combiner receiver . . . . . . . . . .  717 
17.6 A two-transmitantennadiversityscheme: the Alamouticode . . . . . . . . .  719 
17.7 A delay diversity scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . .  728 
17.8 729 8-PSK constellation and the trellis for a delay-diversity encoder . . . . . . . . .  



xl LIST OF FIGURES 

17.9 Space-time codes with diversity 2 for 4-PSK having 8. 16. and 32 states . . . . .  730 
17.10 Space-time codes with diversity 2 for 8-PSK having 16 and 32 states . . . . . .  731 
17.11 Performance of codes with 4-PSK that achieve diversity 2 . . . . . . . . . . . .  732 
17.12 Performance of codes with 8-PSK that achieve diversity 2 . . . . . . . . . . . .  732 

A.l Log likelihood ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  735 



List of Tables 

1.1 Historical Milestones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41 

3.1 The Standard Array for a Code . . . . . . . . . . . . . . . . . . . . . . . . .  92 

4.1 Codewordsin thecode Generated by g ( x )  = 1 + x2 + x 3  +x4  . . . . . . .  123 
4.2 Computation Steps for Long Division Using a Shift Register Circuit . . . . .  132 
4.3 Computing the Syndrome and Its Cyclic Shifts . . . . . . . . . . . . . . . .  139 
4.4 Operation of the Meggitt decoder. Input from the Left . . . . . . . . . . . .  142 
4.5 Operation of the Meggitt Decoder. Input from the Right . . . . . . . . . . .  146 
4.6 CRC Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  150 
4.7 152 
4.8 LFSR Example with g ( x )  = 1 + x + x2 + x4 and Initial State 1 . . . . . . . .  155 
4.9 LFSR Example with g(x) = 1 + x + x2 + x4 . . . . . . . . . . . . . . . . .  155 
4.10 LFSR Example with g ( x )  = 1 + x + x2 + x4 . . . . . . . . . . . . . . . . .  156 
4.11 LFSR example with g(x) = 1 + x + x4 . . . . . . . . . . . . . . . . . . . .  157 
4.12 Barker Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  170 

Lookup Table for CRC-ANSI . Values fort and R ( t )  are expressed in hex . . .  

5.1 Representations of GF(24) Using g(a) = 1 + a + a4 . . . . . . . . . . . .  199 
5.2 Conjugacy Classes over GF(23) with Respect to GF(2) . . . . . . . . . . .  214 
5.3 Conjugacy Classes over GF(24) with Respect to GF(2) . . . . . . . . . . .  214 
5.4 Conjugacy Classes over GF@) with Respect to GF(2) . . . . . . . . . . .  215 
5.5 Conjugacy Classes over GF(42) with Respect to GF(4) . . . . . . . . . . .  216 
5.6 Cyclotomic Cosets modulo 15 with Respect to GF(7) . . . . . . . . . . . . .  218 

6.1 

6.2 

6.3 

6.4 

6.5 
6.6 
6.7 
6.8 

Weight Distribution of the Dual of a Double-Error-Correcting Primitive Binary 
BCH Code of Length n = 2m . 1. rn I: 3. rn Odd . . . . . . . . . . . . . .  240 

Weight Distribution of the Dual of a Double-Error-Correcting Primitive Elinary 
Narrow-Sense BCH Code. n = 2m - 1. rn 2 4. rn Even . . . . . . . . . . .  240 

Weight Distribution of the Dual of a Triple-Error Correcting Primitive Binary 
Narrow-Sense BCH Code. n = 2m - 1. rn I: 5. rn Odd . . . . . . . . . . . .  241 

Weight Distribution of the Dual of a Triple-Error Correcting Primitive ELinary 
Narrow-Sense BCH Code. n = 2m - 1. rn 2 6. rn Even . . . . . . . . . . .  241 

. . . . .  259 

Simplified Berlekamp-Massey Algorithm for a double-error correcting code . . 260 

Berlekamp-Massey algorithm for input sequence { 1. 1. 1. 0. 1 . 0. 0} 
Berlekamp-Massey Algorithm for a Double-Error Correcting Code . . . . .  259 

Berlekamp-Massey Algorithm for a Triple-Error Correcting Code . . . . . .  265 

7.1 Monomials Ordered Under (1.3 ).revlex Order . . . . . . . . . . . . . . . .  326 
7.2 Monomials Ordered Under (1.3 ).lex Order . . . . . . . . . . . . . . . . . .  326 

8.1 Extended Quadratic Residue Codes 9 . . . . . . . . . . . . . . . . . . . . .  398 



xlii LIST OF TABLES 

8.2 Weight Distributions for the 923 and 924 Codes . . . . . . . . . . . . . . . . .  400 

10.1 Performance Specification of the Compact Disc Coding System . . . . . . . .  430 

12.1 Quantized Branch Metrics Using Linear Quantization . . . . . . . . . . . . . .  487 
12.2 508 
12.3 Best Known Convolutional Codes Obtained by Puncturing a R = 1/2 Code . . 510 
12.4 Performance of Fano Algorithm as a Function of A . . . . . . . . . . . . . . .  520 

Comparison of Free Distance for Systematic and Nonsystematic Code . . . . .  

13.1 AverageEnergy Requirementsfor Some QAMConstellations . . . . . . . . .  536 
13.2 Maximum Free-Distance Trellis codes for 8-PSK Constellation . . . . . . . .  554 
13.3 Maximum Free-Distance Trellis Codes for 16-PSK Constellation . . . . . . .  555 
13.4 MaximumFree-Distance Trellis Codes for AM Constellations . . . . . . . . .  555 
13.5 EncoderConnectionsandCodingGainsforQAMTrellisCodes . . . . . . . .  555 
13.6 Attributes of Some Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . .  565 
13.7 Comparison of Average Signal Energy . . . . . . . . . . . . . . . . . . . . . .  569 
13.8 Some Good Multidimensional TCM Codes [303] . . . . . . . . . . . . . . . .  571 

13.10 4D Block Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  574 
13.9 Bit Converter: Sublattice Partition of 4D RectangularLattice . . . . . . . . . .  574 

14.1 a: and Example Computations . . . . . . . . . . . . . . . . . . . . . . . .  597 
14.2 Posterior Input Bit Example Computations . . . . . . . . . . . . . . . . . . .  597 

15.1 Threshold Values for Various LDPC Codes . . . . . . . . . . . . . . . . . . .  659 
15.2 Degree Distribution Pairs for R = 1/2 Codes for Transmission on an AWGN . 664 

16.1 Some Commutative Semirings . . . . . . . . . . . . . . . . . . . . . . . . . .  681 
16.2 Some Special Cases of Message Passing . . . . . . . . . . . . . . . . . . . . .  691 



List of Boxes 
Box 1.1 The Union Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22 
Box 2.1 One-to-one and Onto Functions . . . . . . . . . . . . . . . . . . . . . . .  70 
Box 3.1 Error Correction and Least-Squares . . . . . . . . . . . . . . . . . . . . .  90 
Box 3.2 The UDP Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  105 
Box 4.1 The Division Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . .  114 
Box 5.1 lheriste Galois (1811-1832) . . . . . . . . . . . . . . . . . . . . . . . . .  197 
Box 9.1 0 and o Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  408 
Box 9.2 The Cauchy-Schwartz Inequality . . . . . . . . . . . . . . . . . . . . . . .  411 
Box 12.1 Graphs: Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . .  457 



This Page Intentionally Left Blank



Part I 

Introduction and Foundations 



Chapter 1 

A Context for Error Correction 
Coding 

I will make weak things become strong unto them . . . -Ether 1227 

. . . he denies that any error in the machine is responsible for the so-called errors in the 
answers. He claims that the Machines are self correcting and that it would violate the 
fundamental laws of nature for an error to exist in the circuits of relays. 

- Isaac Asimov 
I, Robot 

1.1 Purpose of This Book 

Error control coding in the context of digital communication has a history dating back to 
the middle of the twentieth century. In recent years, the field has been revolutionized by 
codes which are capable of approaching the theoretical limits of performance, the channel 
capacity. This has been impelled by a trend away from purely combinatoric and discrete 
approaches to coding theory toward codes which are more closely tied to a physical channel 
and soft decoding techniques. 

The purpose of this book is to present error correctioddetection coding in a modern 
setting, covering both traditional concepts thoroughly as well as modern developments in 
soft-decision and iteratively decoded codes and recent decoding algorithms for algebraic 
codes. An attempt has been made to maintain some degree of balance between the math- 
ematics and their engineering implications by presenting both the mathematical methods 
used in understanding the codes as well as the algorithms which are used to efficiently 
encode and decode. 

1.2 Introduction: Where Are Codes? 

Error correction coding is the means whereby errors which may be introduced into digital 
data as a result of transmission through a communication channel can be corrected based 
upon received data. Error detection coding is the means whereby errors can be detected 
based upon received information. Collectively, error correction and error detection cod- 
ing are error control coding. Error control coding can provide the difference between an 
operating communications system and a dysfunctional system. It has been a significant 
enabler in the telecommunications revolution, the internet, digital recording, and space ex- 
ploration. Error control coding is nearly ubiquitous in modern, information-based society. 
Every compact disc, CD-ROM, or DVD employs codes to protect the data embedded in the 
plastic disk. Every hard disk drive employs correction coding. Every phone call made over 
a digital cellular phone employs it. Every packet transmitted over the internet has a pro- 
tective coding “wrapper” used to determine if the packet has been received correctly. Even 
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everyday commerce takes advantage of error detection coding, as the following examples 
illustrate. 

Example 1.1 The ISBN (international standard book number) is used to uniquely identify books. An 
ISBN such as 0-201-36186-8 can be parsed as 

0 - 20 -1-36186- 8 . 
v v - v  

country publisher book no. check 

Hyphens do not matter. The first digit indicates a countryhnguage, with 0 for the United States. The 
next two digits are a publisher code. The next six digits are a publisher-assigned book number. The 
last digit is a check digit, used to validate if the code is correct using what is known as a weighted code. 
An ISBN is checked as follows: The cumulative sum of the digits is computed, then the cumulative 

sum of the cumulative sum is computed. For a valid ISBN, the sum-of-the-sum must be equal to 0, 
modulo 11. The character X is used for the check digit 10. For this ISBN, we have 

cumulative cumulative 
digit sum Sum 

0 0 0 
2 
2 
3 
6 
12 
13 
21 
21 
35 

2 
4 
7 
13 
25 
38 
59 
86 
121 

The final sum-of-the-sum is 121, which is equal to 0 modulo 11 (i.e., the remainder after dividing by 
11  is 0). 0 

Example 1.2 The Universal Product Codes (UPC) employed on the bar codes of most merchandise 
employ a simple error detection system to help ensure reliability in scanning. In this case, the error 
detection system consists of a simple parity check. A W C  consists of a 12-digit sequence, which can 
be parsed as 

9 l6ooq . 
manufacturer item parity 
identification number check 

number 

Denoting the digits as ul, u2 ,  . . . , u12, the parity digit u12 is determined such that 

is a multiple of 10. In this case, 

3(0 + 6 + 0 + 6 +  6 +0) + (1 + 0 + O +  6 + 1 + 8) = 70. 

If, when a product is scanned, the parity condition does not work, the operator is flagged so that the 
object may be re-scanned. 0 
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0.2 0.4 0.6 0.8 1 
P 

Figure 1 . l :  The binary entropy function H , ( p ) .  

1.3 The Communications System 

Appreciation of the contributions of coding and an understanding of its limitations require 
some awareness of information theory and how its major theorems delimit the performance 
of a digital communication system. In fact, information theory is increasingly relevant to 
coding theory, because with recent advances in coding theory it is now possible to achieve 
the performance bounds of information theory, whereas in the past the bounds were more of 
a backdrop to the action on the stage of coding research and practice. Part of this success has 
come by placing the coding problem more fully in its communications context, marrying 
the coding problem more closely to the signal detection problem, instead of treating the 
coding problem mostly as one of discrete combinatorics. 

Information theory treats information almost as a physical quantity which can be mea- 
sured, transformed, stored, and moved from place to place. A fundamental concept of 
information theory is that information is conveyed by the resolution of uncertainty. Infor- 
mation can be measured by the amount of uncertainty resolved. For example, if a digital 
source always emits the same value, say 1, then no information is gained by observing that 
the source has produced, yet again, the output 1. Probabilities are used to mathematically 
describe the uncertainty. For a discrete random variable X (i.e., one which produces discrete 
outputs, such as X = 0 or X = l ) ,  the information conveyed by observing an outcome x 
is - log, P ( X  = x) bits. (If the logarithm is base 2, the units of information are in bits. 
If the natural logarithm is employed, the units of information are in nats.) For example, if 
P ( X  = 1) = 1 (the outcome 1 is certain), then observing X = 1 yields - log2(1) = 0 bits 
of information. On the other hand, observing X = 0 in this case yields - 10g2(0) = 00: 

total surprise at observing an impossible outcome. 
The entropy is the average information. For a binary source X having two outcomes 

occurring with probabilities p and 1 - p ,  the binary entropy function, denoted as either 
H,(X) (indicating that it is the entropy of the source) or H 2 ( p )  (indicating that it is a 
function of the outcome probabilities) is 

H2(X)  = H2(p) = E [ -  log2 P ( X ) ]  = -p10g2(p) - (1 - p )  10g2(l - p )  bits. 

A plot of the binary entropy function as a function of p is shown in Figure 1.1. The peak 
information of 1 occurs when p = i. 
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Example 1.3 A fair coin is tossed once per second, with the outcomes being ‘head’ and ‘tail’ with 
equal probability. Each toss of the coin generates an event that can be described with Hz(0.5) = 1 
bit of information. The sequence of tosses produces information at a rate of 1 bit per second. 

An unfair coin, with P(head) = 0.01 is tossed. The average information generated by each throw 
in this case is H2(0.01) = 0.0808 bits. 

Another unfair coin, with P(head) = 1 is tossed. The information generated by each throw in 
a this case is H2 (1) = 0 bits. 

For a source X having M outcomes X I ,  x2, . . . , XM, with probabilities P(X = x i )  = 
pi, i = 1,2, . . . , M, the entropy is 

M 

H(X) = E [ -  log2 P ( X ) ]  = - pi log2 pi bits. (1.1) 

Note: The “bit” as a measure of entropy (or information content) is different from the “bit” 
as a measure of storage. For the unfair coin having P(head) = 1, the actual information 
content determined by a toss of the coin is 0: there is no information gained by observing 
that the outcome is again 1. For this process with this unfair coin, the entropy rate - that is, 
the amount of actual information it generates -is 0. However, if the coin outcomes were for 
some reason to be stored directly, without the benefit of some kind of coding, each outcome 
would require 1 bit of storage (even though they don’t represent any new information). 

With the prevalence of computers in our society, we are accustomed to thinking in terms 
of “bits” - e.g., a file is so many bits long, the register of a computer is so many bits wide. 
But these are “bits” as a measure of storage size, not “bits” as a measure of actual information 
content. Because of the confusion between “bit” as a unit of information content and “bit” 
as an amount of storage, the unit of information content is sometimes called a Shannon, in 
homage to the founder of information theory, Claude Shannon. 

A digital communication system embodies functionality to perform physical actions on 
information. Figure 1.2 illustrates a fairly general framework for a single digital communi- 
cation link. In this link, digital data from a source are encoded and modulated (and possibly 
encrypted) for communication over a channel. At the other end of the channel, the data 
are demodulated, decoded (and possibly decrypted), and sent to a sink. The elements in 
this link all have mathematical descriptions and theorems from information theory which 
govern their performance. The diagram indicates the realm of applicability of three major 
theorems of information theory. 

There are actually many kinds of codes employed in a communication system. In the 
description below we point out where some of these codes arise. Throughout the book we 
make some connections between these codes and our major focus of study, error correction 
codes. 

i = l  

The source is the data to be communicated, such as a computer file, a video sequence, or 
a telephone conversation. For our purposes, it is represented in digital form, perhaps 
as a result of an analog-to-digital conversion step. Information-theoretically, sources 
are viewed as streams of random numbers governed by some probability distribution. 

‘This mismatch of object and value is analogous to the physical horse, which may or may not be capable of 
producing one “horsepower” of power, 550 ft-lbslsec. Thermodynamicists can dodge the issue by using the SI 
unit of Watts for power, information theorists might sidestep confusion by using the Shannon. Both of these units 
honor founders of their respective disciplines. 
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Figure 1.2: A general framework for digital communications. 

Every source of data has a measure of the information that it represents, which (in 
principle) can be exactly quantified in terms of entropy. 

The source encoder performs data compression by removing redundancy. 

As illustrated in Example 1.3, the number of bits used to store the information from 
a source may exceed the number of bits of actual information content. That is, the 
number of bits to represent the data may exceed the number of mathematical bits - 
Shannons - of actual information content. 

The amount a particular source of data can be compressed without any loss of infor- 
mation (lossless compression) is governed theoretically by the source coding theorem 
of information theory, which states that a source of information can be represented 
without any loss of information in such a way that the amount of storage required 
(in bits) is equal to the amount of information content - the entropy - in bits or 
Shannons. To achieve this lower bound, it may be necessary for long blocks of the 
data to be jointly encoded. 

Example 1.4 For the unfair coin with P(head) = 0.01, the entropy is H(O.O1) = 0.0808. 
Therefore, 10,000 such (independent) tosses convey 808 bits (Shannons) of information, so 
theoretically the information of 10,000 tosses of the coin can be represented exactly using only 

0 808 (physical) bits of information. 

Thus a bit (in a computer register) in principle can represent an actual (mathematical) 
bit of information content, if the source of information is represented correctly. 

In compressing a data stream, a source encoder removes redundancy present in the 
data. For compressed binary data, 0 and 1 occur with equal probability in the com- 
pressed data (otherwise, there would be some redundancy which could be exploited 
to further compress the data). Thus it is frequently assumed at the channel coder that 
0 and 1 occur with equal probability. 
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The source encoder employs special types of codes to do the data Compression, called 
collectively source codes or data compression codes. Such coding techniques in- 
clude Huffman coding, run-length coding, arithmetic coding, Lempel-Ziv coding, 
and combinations of these, all of which fall beyond the scope of this book. 

If the data need to be compressed below the entropy rate of the source, then some kind 
of distortion must occur. This is called lossy data compression. In this case, another 
theorem governs the representation of the data. It is possible to do lossy compression 
in a way that minimizes the amount of distortion for a given rate of transmission. 
The theoretical limits of lossy data compression are established by the rate-distortion 
theorem of information theory. One interesting result of rate-distortion theory says 
that for a binary source having equiprobable outcomes, the minimal rate to which the 
data can be compressed with the average distortion per bit equal to p is 

1 
2 r = 1 - &(p)  p 5 -. (1.2) 

Lossy data compression uses its own kinds of codes as well. 

The encrypter hides or scrambles information so that unintended listeners are unable to 
discern the information content. The codes used for encryption are generally different 
from the codes used for error correction. 

Encryption is often what the layperson frequently thinks of when they think of “cod- 
ing,’’ but as we are seeing, there are many other different kinds of codes. 

The channel coder is the first step in the error correction or error detection process. 

The channel coder adds redundant information to the stream of input symbols in a way 
that allows errors which are introduced into the channel to be corrected. This book 
is essentially dedicated to the study of the channel coder and its corresponding 
channel decoder. 

It may seem peculiar to remove redundancy with the source encoder, then turn right 
around and add redundancy back in with the channel encoder. However, the redun- 
dancy in the source typically depends on the source in an unstructured way and may 
not provide uniform protection to all the information in the stream, nor provide any 
indication of how errors occurred or how to correct them. The redundancy provided 
by the channel coder, on the other hand, is introduced in a structured way, precisely 
to provide error control capability. 

Treating the problems of data compression and error correction separately, rather than 
seeking a jointly optimal source/channel coding solution, is asymptotically optimal (as 
the block sizes get large). This fact is called the source-channel separation theorem 
of information theory. (There has been recent work on combined source/channel 
coding for finite - practical - block lengths, in which the asymptotic theorems are 
not invoked. This work falls outside the scope of this book.) 

Because of the redundancy introduced by the channel coder, there must be more 
symbols at the output of the coder than at the input. Frequently, a channel coder 
operates by accepting a block of k input symbols and producing at its output a block 
of n symbols, with n > k .  The rate of such a channel coder is 

R = k / n ,  
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so that R < 1. 

The input to the channel coder is referred to as the message symbols (or, in the case of 
binary codes, the message bits). The input may also be referred to as the information 
symbols (or bits). 

The modulator converts symbol sequences from the channel encoders into signals ap- 
propriate for transmission over the channel. Many channels require that the signals 
be sent as a continuous-time voltage, or an electromagnetic waveform in a speci- 
fied frequency band. The modulator provides the appropriate channel-conforming 
representation. 

Included within the modulator block one may find codes as well. Some channels 
(such as magnetic recording channels) have constraints on the maximum permissible 
length of runs of 1s. Or they might have a restriction that the sequence must be 
DC-free. Enforcing such constraints employs special codes. Treatment of such 
runlength-limited codes appears in [206]; see also [157]. 

Some modulators employ mechanisms to ensure that the signal occupies a broad band- 
width. This spread-spectrum modulation can serve to provide multiple-user access, 
greater resilience to jamming, low-probability of detection, and other advantages. 
(See, e.g., [386].)  Spread-spectrum systems frequently make use of pseudorandom 
sequences, some of which are produced using linear feedback shift registers as dis- 
cussed in Section Appendix 4.A. 

The channel is the medium over which the information is conveyed. Examples of channels 
are telephone lines, internet cables, fiber-optic lines, microwave radio channels, high 
frequency channels, cell phone channels, etc. These are channels in which information 
is conveyed between two distinct places. Information may also be conveyed between 
two distinct times, for example, by writing information onto a computer disk, then 
retrieving it at a later time. Hard drives, diskettes, CD-ROMs, DVDs, and solid state 
memory are other examples of channels. 

As signals travel through a channel they are corrupted. For example, a signal may have 
noise added to it; it may experience time delay or timing jitter, or suffer from attenua- 
tion due to propagation distance and/or carrier offset; it may be multiply reflected by 
objects in its path, resulting in constructive and/or destructive interference patterns; 
it may experience inadvertent interference from other channels, or be deliberately 
jammed. It may be filtered by the channel response, resulting in interference among 
symbols. These sources of corruption in many cases can all occur simultaneously. 

For purposes of analysis, channels are frequently characterized by mathematical mod- 
els, which (it is hoped) are sufficiently accurate to be representative of the attributes of 
the actual channel, yet are also sufficiently abstracted to yield tractable mathematics. 
Most of our work in this book will assume one of two idealized channel models, 
the binary symmetric channel (BSC) and the additive white Gaussian noise channel 
(AWGN), which are described in Section 1.5. While these idealized models do not 
represent all of the possible problems a signal may experience, they form a starting 
point for many, if not most, of the more comprehensive channel models. The experi- 
ence gained by studying these simpler channels models forms a foundation for more 
accurate and complicated channel models. (As exceptions to the AWGN or BSC 
rule, in Section 14.7, we comment briefly on convolutive channels and turbo equal- 
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ization, while in Chapter 17, coding for quasi-static Rayleigh flat fading channels are 
discussed.) 

Channels have different information-carrying capabilities. For example, a dedicated 
fiber-optic line is capable of carrying more information than a plain-old-telephone- 
service (POTS) pair of copper wires. Associated with each channel is aquantity known 
as the capacity, C, which indicates how much information it can carry reliably. 

The reliable information a channel can carry is intimately related to the use of error 
correction coding. The governing theorem from information theory is Shannon’s 
channel coding theorem, which states essentially this: Provided that the rate R of 
transmission is less than the capacity C ,  there exists a code such that the probability 
of error can be made arbitrarily small. 

As suggested by Figure 1.2, the channel encoding and modulation may be combined 
in what is known as coded modulation. 

The demodulator/equalizer receives the signal from the channel and converts it into a 
sequence of symbols. This typically involves many functions, such as filtering, de- 
modulation, carrier synchronization, symbol timing estimation, frame synchroniza- 
tion, and matched filtering, followed by a detection step in which decisions about the 
transmitted symbols are made. We will not concern ourselves in this book with these 
important details, but will focus on issues related to channel encoding and decoding. 

The channel decoder exploits the redundancy introduced by the channel encoder to correct 
any errors that may have been introduced. As suggested by the figure, demodulation, 
equalization and decoding may be combined. Particularly in recent work, turbo 
equalizers are used in a powerful combination. This is introduced in Chapter 14. 

The decrypter removes any encryption. 

The source decoder provides an uncompressed representation of the data. 

The sink is the ultimate destination of the data. 

As this summary description has indicated, there are many different kinds of codes employed 
in communications. This book treats only error correction (or detection) codes. However, 
there is significant overlap in the mathematical tools employed for error correction codes 
and other kinds of codes. So, for example, while this is not a book on encryption, a couple 
of encryption codes are presented in this book, where they are right near our main topic. 
(In fact, one public key cryptosystem is an error correction coding scheme. See Section 
6.9.5.) And there is a certain duality between some channel coding methods and some 
source coding methods. So studying error correction does provide a foundation for other 
aspects of the communication system. 

1.4 Basic Digital Communications 

The study of modulation/channel/demodulation/detection falls in the realm of “digital com- 
munications,” and many of its issues (e.g., filtering, synchronization, carrier tracking) lie 
beyond the scope of this book. Nevertheless, some understanding of digital communica- 
tions is necessary here, because modern coding theory has achieved some of its successes 
by careful application of detection theory, in particular in maximum aposteriori (MAP) and 
maximum likelihood (ML) receivers. Furthermore, performance of codes is often plotted 
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in terms of signal to noise ratio, which is understood in the context of the modulation of a 
physical waveform. Coded modulation relies on signal constellations beyond simple binary 
modulation, so an understanding of them is important. 

The material in this section is standard for a digital communications course. However, it 
is germane to our treatment here, because these concepts are employed in the development 
of soft-decision decoding algorithms. 

1.4.1 Binary Phase-Shift Keying 

In digital communication, a stream of bits (i.e., a sequence of 1s and 0s) is mapped to a 
waveform for transmission over the channel. Binary phase-shift keying (BPSK) is a form of 
amplitude modulation in which a bit is represented by the sign of the transmitted waveform. 
(It is called “phase-shift’’ keying because the sign change represents a 180” phase shift.) 
Let {. . . , b-2, b-1, bo, b l ,  b2, . . .) represent a sequence of bits, bi E (0, l} which arrive at 
a rate of one bit every T seconds. The bits are assumed to be randomly generated with 
probabilities Pi = P(bj = 1) and Po = P(bi = 0). While typically 0 and 1 are equally 
likely, we will initially retain a measure of generality and assume that P1  # Po necessarily. 
It will frequently be of interest to map the set {0, 1) to the set (- 1, 1). We will denote i i  as 
the fl-valued bit corresponding to the (0, 1)-valued bit bj. Either of the mappings 

may be used in practice, so some care is needed to make sure the proper mapping is under- 
stood. 

be a mapping of bit b, (or 
bi) into a transmitted signal amplitude. This signal amplitude multiplies a waveform 401 ( t ) ,  
where 4 1  (t) is a unit-energy signal, 

hi = (2bi - 1) or hi = -(2bi - 1) 

Here, let ai = 4%(2bi - 1) = -fi(-l)bi = 

J -00 

which has support2 over [0, T ) .  Thus, a bit bj arriving at time i T can be represented by the 
signal aiqq ( t  - i T ) .  The energy required to transmit a single bit bi is 

J -00 

Thus Eb is thus the energy expended per bit. 
It is helpful to think of the transmit- 

-4% 4% ted signals f igo l ( t )  and - f i g o ~ ( t )  as 

“0” “1 “ sional signal space, where the coordinate 
axis is the ‘ ‘(~1” axis. The two points in the 
signal space are plotted with their corre- 
sponding bit assignment in Figure 1.3. The 
points in the signal space employed by the 

modulator are called the signal constellation, so Figure 1.3 is a signal constellation with 
two points (or signals). 

A sequence of bits to be transmitted can be represented by a juxtaposition of go1 (t) 
waveforms, where the waveform representing bit bi starts at time i T .  Then the sequence of 

*Strictly speaking, functions not having this limited support can be used, but assuming support over [0, T) makes 
the discussion significantly simpler. Also, the signal cpi ( t )  can in general be complex, but we restrict attention here 
to real signals. 

I I I b rpl(t) points f i  and -fi in a one-dimen- 

Figure 1.3: Signal constellation for BPSK. 
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Figure 1.4: Juxtaposition of signal waveforms. 

bits is represented by the signal 

Example 1.5 With qq (t) as shown in Figure 1.4(a) and the bit sequence [ 1, 1, 0, 1,0), the signal s ( t )  
0 is as shown in Figure 1.4(b). 

1.4.2 More General Digital Modulation 

The concept of signal spaces generalizes immediately to higher dimensions and to larger 
signal constellations; we restrict our attention here to no more than two dimensions. Let 
q12(t) be a unit-energy function which is orthogonal to q~l(t). That is, 

00 00 

q ~ Z ( t ) ~ d t  = 1 and s_, Vl(t)V2(t)  d t  = 0. L 
(Vl(t) ,  v2(t)) = s_, bOl(t)V2(t) d t .  

In this case, we are defining “orthogonality” with respect to the inner product 

00 

We say that {qq (t), m(t)} form an orthonormal set if they both have unit energy and are 
orthogonal: 

(rp2(t), P 2 ( t ) )  = 1 (col(t>9 P2( t ) )  = 0. 

The orthonormal functions qq (t) and (p2(t) define the coordinate axes of a two-dimensional 
signal space, as suggested by Figure 1.5. Corresponding to every point (XI, y1) of this 
two-dimensional signal space is a signal (i.e., a function of time) s ( t )  obtained as a linear 
combination of the coordinate functions: 

(bol(t), Col(t>) = 1 

= X l V l ( t )  + YlP2(t). 

That is, there is a one-to-one correspondence between “points” in space and their represented 
signals. We can represent this as 

s ( t )  * ( X l ,  Y l ) .  
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Figure 1.5: Two-dimensional signal space. 

The geometric concepts of distance and angle can be expressed in terms of the signal space 
points. For example, let 

(1.4) 
sl(t> = X l V l ( t )  + YlV2( t )  

s 2 ( t )  = X2Vl( t )  + Y 2 V 2 0 )  

(i.e.9 sl(t> * (Xl ,  Y l ) )  

(i.e.7 s2(t> * (x2,  Y2)) 

We define the squared distance between s1 ( t )  and ~ ( t )  as 

00 

d201(t), $20) )  = (sl(t> - s 2 ( t > > 2 d t ,  (1.5) L 
and the inner product between $1 ( t )  and s2(t) as 

Rather than computing distance using the integral (1 3, we can equivalently and more easily 
compute using the coordinates in signal space (see Figure 1 S):  

(1.7) 

This is the familiar squared Euclidean distance between the points (XI, y1) and (x2,  y2).  

Also, rather than computing the inner product using the integral (1.6), we equivalently 
compute using the coordinates in signal space: 

(1.8) 

This is the familiar inner product (or dot product) between the points ( X I ,  y1) and (x2,  y2 ) :  

d2(s1(t>, s 2 ( t ) )  = (Xl - X2l2 + (Yl  - Y2)2. 

b l ( t ) ,  s2(t)) = XlX2 + y1y2 .  

( (Xl ,  Y l ) ,  (x2, y2)) = X l X 2  + y1y2 .  

The point here is that we can use the signal space geometry to gain insight into the nature 
of the signals, using familiar concepts of distance and angle. 

We can use this two-dimensional signal space for digital information transmission as 
follows. Let M = 2m, for some integer m, be the number of points in the signal constellation. 
M-ary transmission is obtained by placing M points (alk, a 2 k ) ,  k = 0, 1, . . . , M - 1, in this 
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Figure 1.6: 8-PSK signal constellation. 

signal space and assigning a unique pattern of m bits to each of these points. These points 
are the signal constellation. Let 

S = {(alk, azk), k = 0,  1,. . . , h'f - I} 

denote the set of points in the signal constellation. 

Example 1.6 Figure 1.6 shows 8 points arranged in two-dimensional space in a constellation known 
as 8-PSK (phase-shift keying). Each point has a three-bit designation. The signal corresponding to 
the point (alk,  U z k )  is selected by three input bits and transmitted. Thus the signal 

s k ( t )  = alkcPl(t) f aZkVZ(t), (alk,  a2k) E s 
carries three bits of information. 

Note that the assignments of bits to constellation points in Figure 1.6 is such that adjacent points 
differ by only one bit. Such an assignment is called Gray code order. Since it is most probable that 

0 

Associated with each signal S k ( t )  = alkql( t )  + U 2 k ( p z ( t )  and signal constellation point 

errors will move from a point to an adjacent point, this reduces the probability of bit error. 

(a ik ,  U 2 k )  E S is a signal energy, 

The average signal energy E,  is obtained by averaging all the signal energies, usually by 
assuming that each signal point is used with equal probability: 

The average energy per signal E ,  can be related to the average energy per bit E b  by 

energy per signal E, 
number of bitshignal m ' 

- _ _  Eb = - 

To send a sequence of bits using M-ary modulation, the bits are partitioned into blocks 
of m successive bits, where the data rate is such that m bits arrive every T, seconds. The ith 
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rn-bit set is then used to index a point (al i ,  a2i) E S.  This point corresponds to the signal 
which is transmitted over the signal interval for the m bits. These signals are juxtaposed to 
form the transmitted signal: 

The point (ali, a2i) is thus the point set at time i. Equation (1.9) can be expressed in its signal 
space vector equivalent, by simply letting si = [ali ,  azi]‘ denote the vector transmitted at 
time i. 

In what follows, we will express the operations in terms of the two-dimensional sig- 
nal space. Restricting to a one-dimensional signal space (as for BPSK transmission), or 
extending to higher-dimensional signal spaces is straightforward. 

In most channels, the signal s ( t )  is mixed with some carrier frequency before trans- 
mission. However, for simplicity we will restrict attention to the baseband transmission 
case. 

1.5 Signal Detection 

1 S.1 The Gaussian Channel 

The signal s ( t )  is transmitted over the channel. Of all the possible disturbances that might 
be introduced by the channel, we will deal only with additive noise, resulting in the received 
signal 

r ( t )  = s ( t )  + n ( t ) .  (1.10) 

In an additive white Gaussian noise (AWGN) channel, the signal n( t )  is a white Gaussian 
noise process, having the properties that 

E [ n ( t ) ]  = 0 Vt ,  

NO 
2 

R,( t )  = E[n(t)n( t  - t)] = - 6 ( t ) ,  

and all sets of samples are jointly Gaussian distributed. The quantity N 0 / 2  is the (two-sided) 
noise power spectral density. 

Due to the added noise, the signal r ( t )  is typically not a point in the signal constellation, 
nor, in fact, is r ( t )  probably even in the signal space - it cannot be expressed as a linear 
combination of the basis functions (pl ( t )  and (p2( t ) .  The detection process to be described 
below corresponds to the geometric operations of (1) projecting r ( t )  onto the signal space; 
and ( 2 )  finding the closest point in the signal space to this projected function. 

At the receiver, optimal detection requires first passing the received signal through a 
filter “matched” to the transmitted waveform. This is the projection operation, projecting 
r ( t )  onto the signal space. To detect the ith signal starting at i T,, the received signal is 
correlated with the waveforms q.q (t - i Ts) and (p2(t  - i T’) to produce the point ( R l i ,  Rzi)  
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Figure 1.7: Correlation processing (equivalent to matched filtering). 

in signal space3 : 

( i  + 1 ) Ts 

r ( t )v i ( t  - iTs) d t ,  

r(t)v2(t  - iT,) d t .  

k (1.11) 
Rli = ( ~ ( t ) ,   PI(^ - iTs) )  = 

( i  + I )  Ts 

l T s  
R2i = ( ~ ( t ) ,  ~ 2 ( t  - i T s ) )  = 

The processing in (1.1 1) is illustrated in Figure 1.7. Using (1.9) and (1. lo), it is straightfor- 
ward to show that 

Rli = U l i  + Nli and R2i = ~ 2 i  + Nzi,  (1.12) 

where ( U l i ,  a2i) is the transmitted point in the signal constellation for the ith symbol. The 
point ( U l i ,  ~ 2 i )  is not known at the receiver - it is, in fact, what the receiver needs to decide 
- so at the receiver (ali, ~ 2 i )  is a random variable. 

The noise random variables Nli and N2i defined by 

( i  + 1 )  Ts ( i+  l)Ts 
v2(t - iT‘)n(t) d t  k N l i  = lTs vl(t - i T s ) n ( t ) d t  and N2i = 

have the following properties: Nli and N2i are Gaussian random variables, with 

E [ N l i ]  = 0 and E[N2i]  = 0 (1.13) 

and4 

(1.14) A 2 NO A NO var[Nli]  = CT = - and var[N2i] = C T ~  = -. 
2 2 

Also, 
E[Ni iNzi ]  = 0;  (1.15) 

3The operation in ( 1 . 1 1 )  can equivalently be performed by passing r ( t )  through filters with impulse response 
qq ( - t )  and cpz(-t) and sampling the output at time t = iT,. This is referred to as a matchedjlter. The matched 
filter implementation and the correlator implementation provide identical outputs. 

A 
4The symbol = means “is defined to be equal to.” 
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that is, Nli and N2i are uncorrelated and hence, being Gaussian, are independent. The 
probability density function (pdf) for Nli or N2i is 

It will be convenient to express (1.12) in vector form. Let Rj = [Rli ,  R2jlT (received 
vector), Si = [ali, azi]' (sent vector), and Ni = [Nli ,  N2j]' (noise vector). Then 

Rj = Si + Ni. 

Then Nj is jointly Gaussian distributed, with 0 mean and covariance matrix 

E[NiNT] = u '[:  = U  2 I = R N .  

Explicitly, the pdf of the vector Ni is 

1 1 1 
exp [ -$n~R;'n] = - exp [ ---<nf + nt,] . 

2n 4- 2nd 202 
PN(n) = 

Let P ( s )  be used to denote P ( S  = s) = Ps(s) for vectors s = [alk, a2klT E S. Let P(slr) 
be used to denote P ( S  = SIR = r) = P s ~ R ( S  = SIR = r) for an observed value of the 
random variable R = r. Note that conditioned on knowing that the transmitted signal is 
S = s, R is a Gaussian random variable with conditional density 

where llr-s112 is the squared Euclidean distance between rands and C is a quantity that does 
not depend on either R or S. The quantity pRls(rls) is called the likelihood&nction. The 
likelihood function p~ 1s (r Is) is typically viewed as a function of the conditioning argument, 
with the observed values r as fixed parameters. 

The signal points E S depends uniquely upon the transmitted bits mapped to the signal 
constellation point. Conditioning upon knowing the transmitted signal is thus equivalent to 
conditioning on knowing the transmitted bits. Thus the notation p(rls) is used interchange- 
ably with p(rlb), when s is the signal used to represent the bits b. For example, for BPSK 
modulation, we could write either p(rls = a) or p(rlb = 1) or even p(rl6 = l), since 
by the modulation described above the amplitude is transmitted when the input bit is 
b = 1 (orb = 1). 

- 

1.5.2 MAP and ML Detection 

Let S denote the transmitted value, where S E S is chosen with prior probability P ( S  = s), 
or, more briefly, P (s). The receiver uses the received point R = r to make a decision about 
what the transmitted signal S is. Let us denote the estimated decision as P = [;I, & I T  E S. 
We will use the notation P(slr) as a shorthand for P ( S  = slr). 

Theorem 1.1 The decision rule which minimizes the probability of error is to choose i to 
be that value of s which maximizes P ( S  = sir), where the possible values of s are those in 
the signal constellation S. That is, 

P = argmax P(s1r). (1.17) 
S€S 
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Proof Let us denote the constellation as S = {s i ,  i = 1,2,  . . . , M). Let p(rlsi) denote the 
pdf of the received signal when S = si is the transmitted signal. Let S2 denote the space 
of possible received values; in the current case S2 = R2. Let us partition the space S2 into 
regions S 2 j 9  where the decision rule is expressed as: set 1 = Sj if r E S 2 j .  That is, 

S2i = {r E S2 : decide1 = s i } .  

The problem, then, is to determine the partitions S 2 j .  By the definition of the partition, the 
conditional probability of a correct answer when S = si is sent is 

Denote the conditional probability of error when signal S = si is sent as Pi ( E ) :  

Pi(€) = P(l # sip = sz). 

Then we have 
P i ( € )  = 1 - P ( a  = s i p  = si) = 1 - p(r1si)dr. Li 

The average probability of error is 

M M 

P(E)  = C Pi(E)P(S = si) = c P ( S  = si) [ 1 - Li p(rlsj) dr] dr 
i = l  i = l  

The probability of a correct answer is 

M M 

j = l  ai i = l  ai 
P(C)  = 1 - P ( E )  = c / p(rlsj)P(S = si)  d r  = c / P ( S  = si Ir)p(r) d r .  

Since p(r) 2 0, to maximize P (C), the region of integration S2i should be chosen precisely 
so that it covers the region where P ( S  = si Ir) is the largest possible. That is, 

S2i = {r : P ( S  = silr) > P ( S  = sjlr), i # j } .  

This is equivalent to (1.17). 

Using Bayes’ rule we can write ( 1.17) as 

Since the denominator of the last expression does not depend on s, we can further write 

This is called the maximum a posteriori (MAP) decision rule. In the case that all the prior 
probabilities are equal (or are assumed to be equal), this rule can be simplified to 

i = argrnaxpRjs(r1s). I S€S 
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r 
t 

(a) Conditional densities. 

(b) Weighted conditional densities. 

Figure 1.8: Conditional densities in BPSK modulation. 

This is called the maximum likelihood (ML) decision rule. 
Note: We will frequently suppress the subscript on a probability density function or dis- 

tribution function, letting the arguments themselves indicate the intended random variables. 
We could thus write p(rls) in place of p~ls(rls). 

Once the decision 3 is made, the corresponding bits are determined by the bit-to- 
constellation mapping. The output of the receiver is thus an estimate of the bits. 

By the form of (1.16), we see that the ML decision rule for the Gaussian noise channel 
selects that point 3 E S which is closest to r in squared Euclidean distance, Ilr - i l l 2 .  

1.5.3 Special Case: Binary Detection 

For the case of binary transmission in a one-dimensional signal space, the signal constellation 
consists of the points S = (a, -a}, corresponding, respectively, to the bit b = 1 or 
b = 0 (respectively, using the current mapping). The corresponding likelihood functions 
are 

These densities are plotted in Figure 1.8(a). We see r 1s = f i  is a Gaussian with mean 
The MAP decision rule compares the weighted densities p ( r  Is = a) P (s = f i) 

and p ( r  1s = -a) P ( s  = -a). Figure 1.8(b) shows these densities in the case that 
P ( s  = -a) > P ( s  = a). Clearly, there is a threshold point t at which 

p(r l s  = &)P(s = f i) = p(rls = - J E b ) P ( s  = -a). 
In this case, the decision rule (1.18) simplifies to 
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11 n ( i . e . ,  bi = 1) if r > t 

s = (  -a (i.e., bi = 0) if r c t. 
(1.19) 

The threshold value can be computed explicitly as 

c2 P ( s = - f i )  r = -  
2 4 5 1 n  P ( s  = 45) . (1.20) 

In the case that P ( s  = a) = P ( s  = -a), the decision threshold is at t = 0, as 
would be expected. 

Binary detection problems are also frequently expressed in terms of likelihood ratios. 
For binary detection, the problem is one of determining, say, if b = 1 or if b = 0. The 
detection rule (1.18) becomes a test between 

p(rlb = 1)P(b = 1) and P(rlb = O)P(b = 0). 

This can be expressed as a ratio, 

p(rlb = l )P(b = 1) 
p(rlb = O)P(b = 0)' 

In the case of equal priors, we obtain the likelihood ratio 

p(rlb = 1) 
p(r (b  = 0) 

L(r) = 

For many channels, it is more convenient to use the log likelihood ratio 

where the natural logarithm is usually used. The decision is made that h = 1 if A(r) > 0 
and 6 = 0 if A(r) .c 0. 

For the Gaussian channel with BPSK modulation, we have 

where L, = 9 is called the channel reliability5. 
The quantity A(r) = L,r can be used as so$ information in a decoding system. The 

quantity sign(A(r)) is referred to as hard information in a decoding system. Most early 
error correction decoding algorithms employed hard information - actual estimated bit 
values - while there has been a trend toward increasing use of soft information decoders, 
which generally provide better performance. 

problems in Gaussian noise, the probabilities can be expressed using the Q ( x )  function, 

1 S.4 Probability of Error for Binary Detection 

Even with optimum decisions at the demodulator, errors can still be made with some prob- 
ability (otherwise, error correction coding would not ever be needed). For binary detection 

which is the probability that a unit Gaussian N - N ( 0 , l )  exceeds x :  

'In some sources (e.g. [134]) the channel reliability Lc is expressedalternatively as equivalent to 2Eb/a2. This 
is in some ways preferable, since it is unitless. 
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a 

P(€ls  = a ) P ( s  = a )  

Figure 1.9: Distributions when two signals are sent in Gaussian noise. 

X 

The Q function has the properties that 

1 
Q(x) = 1 - Q(-X) Q(0) = - Q(-w) = 1 Q(cQ) = 0. 

2 

For a Gaussian random variable Z with mean p and variance o', 2 - N(p ,  02), it is 
straightforward to show that 

Suppose there are two points a and b along an axis, and that 

R = s + N ,  

wheresisoneofthetwopoints,andN - N(0, a2). Thedistributions P(Rls = a ) P ( s  = a )  
and P (  R 1s = b )  P ( s  = b) are plotted in Figure 1.9. A decision threshold t is also shown. 
When a is sent, an error is made when R > t. Denoting & as the error event, this occurs 
with probability 

When b is sent, an error is made when R < t, which occurs with probability 

b - t  
P ( & ~ s  = b )  = P ( R  < t) = 1 - P ( R  > t) = 1 - Q 

The overall probability of error is 

b - t  
= Q (y) P ( s  = a )  + Q (T) P ( s  = b). 

(1.22) 

1 An important special case is when P ( s  = a )  = P ( s  = b) = ?. Then the decision 
threshold is at the midpoint t = (a + b)/2. Let d = Ib - a1 be the distance between the 
two signals. Then (1.22) can be written 

(1.23) 
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\ 

Figure 1.10: Probability of error for BPSK signaling. 

Even in the case that the signals are transmitted in multidimensional space, provided that 
the covariance of the noise is of the form a2Z, the probability of error is still of the form 
(1.23). That is, if 

R = s + N  

are n-dimensional vectors, with N - N(0, (r2Z), and S E {a, b} are two equiprobable 
transmitted vectors, then the probability of decision error is P(&) = Q (&), where d = 
Ila - bll is the Euclidean distance between vectors. This formula is frequently used in 
characterizing the performance of codes. 

For the particular case of BPSK signaling, we have a = -a, b = a, and 
d = 2 a .  The probability P(&) is denoted as Pb, the “probability of a bit error.” Thus, 

(1.24) p b = Q (  t+a ) P ( - & ) + Q (  a-t ~ ) P ( & ) .  
d 

When P ( a )  = P ( - a ) ,  then t = 0. Recalling that the variance for the channel is 
expressed as a2 = y, we have for BPSK transmission 

(1.25) 

I I 

The quantity &/No is frequently called the (bit) signal-to-noise ratio (SNR). 

to-noise ratio in dB (decibel), where 
Figure 1.10 shows the probability of bit error for a BPSK as a function of the signal- 

Eb/No dB = lologlo Eb/No, 

for the case P ( a )  = P ( - a ) .  

I bpskprobp1ot.m 
bpskpr0b.m 
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I rhen, since P ( A  f l  B )  2 0, clearly P ( A  U B )  5 P ( A )  + P ( B ) .  

Box 1.1: The Union Bound 

For sets A and B. we have P ( A  U B )  = P ( A )  

1.5.5 Bounds on Performance: The Union Bound 

For some signal constellations, exact expressions for the probability of error are difficult 
or inconvenient to obtain. In many cases it is more convenient to obtain a bound on the 
probability of error using the union bound. (See Box 1.1 .) Consider, for example, the 8-PSK 
constellation in Figure 1.1 1. If the point labeled so is transmitted, then an error occurs if 
the received signal falls in either shaded area. Let A be the event that the received signal 
falls on the incorrect side of threshold line L 1 and let B be the event that the received signal 
falls on the incorrect side of the line L2. Then 

Pr(symbo1 decoding errorlso sent) = P ( A  U B ) .  

The events A and B are not disjoint, as is apparent from Figure 1.1 1. The exact probability 

Figure 1.1 1 : Probability of error bound for 8-PSK modulation. 

computation is made more dfficult by the overlapping region. Using the union bound, 
however, the probability of error can bounded as 

Pr(symbo1 decoding errorlso sent) I P ( A )  + P ( B )  

The event A occurs with the probability that the transmitted signal falls on the wrong side of 
the line L1; similarly for B .  Assuming that the noise is independent Gaussian with variance 
rs2 in each coordinate direction, this probability is 
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Figure 1.12: A binary symmetric channel. 

where dmin is the minimum distance between signal points. Denote the probability of a 
symbol error by Ps. Assuming that all symbols are sent with equal probability, we have 
Ps = Pr(symbo1 decoding error(s0 sent), where the probability is bounded by 

P, p 2Q (2). (1.26) 

The factor 2 multiplying the Q function is the number of nearest neighbors around each 
constellation point. The probability of error is dominated by the minimum distance between 
points: better performance is obtained with larger distance. As E,/No (the symbol SNR) 
increases, the probability of falling in the intersection region decreases and the bound (1.26) 
becomes increasingly tight. 

For signal constellations larger than BPSK, it common to plot the probability of a symbol 
error vs. the S N R  in E,/No,  where E,  is the average signal energy. However, when the bits 
are assigned in Gray code order, then a symbol error is likely to be an adjacent symbol, so 
that only a single bit error occurs 

Pb M Ps for sufficiently large SNR. (1.27) 

More generally, the probability of detection error for a symbol s which has K neighbors 
in signal space at a distance dmin from it can be bounded by 

(1.28) 

and the bound becomes increasingly tight as the SNR increases. 

1.5.6 The Binary Symmetric Channel 

The binary symmetric channel (BSC) is a simplified channel model which contemplates 
only the transmission of bits over the channel; it does not treat details such as signal spaces, 
modulation, or matched filtering. The BSC accepts 1 bit per unit of time and transmits that 
bit with a probability of error p .  A representation of the BSC is shown in Figure 1.12. An 
incoming bit of 0 or 1 is transmitted through the channel unchanged with probability 1 - p ,  
or flipped with probability p .  The sequence of output bits in a BSC can be modeled as 

Ri = Si + N i ,  (1.29) 

where Ri E (0, 1) are the output bits, Si E {O, 1) are the input bits, Ni E {0,1} represents 
the possible bit errors, where Ni is 1 if an error occurs on bit i. The addition in (1.29) is 
modulo 2 addition, according to the addition table 

o + o = o  0 + 1 = 1  1 + 1 = 0 ,  
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so that if Ni = 1, then Ri is the bit complement of Si. The BSC is an instance of a 
memoryless channel. This means each of the errors Ni is statistically independent of all the 
other Ni . The probability that bit i has an error is P ( N i  = 1) = p,  where p is called the 
BSC crossover probability. The sequence {Ni  , i E Z} can be viewed as an independent and 
identically distributed (i.i.d.) Bernoulli(p) random process. 

Suppose that S is sent over the channel and R is received. The likelihood function 
P(R1S) is 

if R # S. 
P ( R I S )  = (1.30) 

Now suppose that the sequence s = [sl, s2, . . . , s,] is transmitted over a BSC and that 
the received sequence is R = [q, r2, . . . , r,]. Because of independent noise samples, the 
likelihood function factors, 

n 

P(RIS) = n P ( R j l S i ) .  (1.31) 

Each factor in the product is of the form (1.30). Thus there is a factor (1 - p) every time Ri 
agrees with Si , and a factor p every time Ri differs from Si . To represent this, we introduce 
the Hamming distance. 

Definition 1.1 The Hamming distance between a sequence x = 1x1, x2, . . . , x , ]  and a 
sequence y = [y1 , y2, . . . , y n ]  is the number of positions that the corresponding elements 
differ: 

i = l  

n 

(1.32) 

I I 

Here we have used the notation (Iverson's convention [126]) 

1 ifxj  # yi 

0 ifxi = y i .  
[xi # ~ i l  = 

0 
Using the notation of Hamming distance, we can write the likelihood function (1.3 1) as 

P(RIS) = (1 - p)"-dff(R,S) pdx(R3S) 
v- 
number of places number of places 
they are the same they differ 

The likelihood function can also be written as 

1 - P  

dH(R,S) 

P(R1S) = (L) (1 - p)". 

Consider now the detection problem of deciding if the sequence S 1 or the sequence S2 

was sent, where each occur with equal probability. The maximum likelihood decision rule 
says to choose that value of S for which &dH(R3S) (1 - p)" is the largest. Assuming that 

p < i, this corresponds to choosing that value of S for which dH (R, S) is the smallest, that 
is, the vector S nearest to R in Hamming distance. 

We see that for detection in a Gaussian channel, the Euclidean distance is the appropriate 
distance for detection. For the BSC, the Hamming distance is the appropriate distance for 
detection. 
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Figure 1.13: (a) System diagram showing modulation, channel, and demodulation; (b) BSC 
equivalent. 

1 S.7 The BSC and the Gaussian Channel Model 

At a sufficiently coarse level of detail, the modulator/demodulator system with the additive 
white Gaussian noise channel can be viewed as a BSC. The modulation, channel, and 
detector collectively constitute a “channel” which accepts bits at the input and emits bits at 
the output. The end-to-end system viewed at this level, as suggested by the dashed box in 
Figure l.l3(b), forms a BSC. The crossover probability p can be computed based on the 
system parameters, 

p = P(bit out = Olbit in = 1) = P(bit out = llbit in = 0) = Pb = Q(J2b/No). 
In many cases the probability of error is computed using a BSC with an “internal” AWGN 
channel, so that the probability of error is produced as a function of Eb/NO. 

1.6 Memoryless Channels 

A memoryless channel is one in which the output r, at the nth symbol time depends only 
on the input at time n. Thus, given the input at time n, the output at time n is statistically 
independent of the outputs at other times. That is, for a sequence of received signals 

R = (R1, R29. - 1 9  Rm) 
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Figure 1.14: Energy for a coded signal. 

depending on transmitted signals S1,  Sz, . . . , Sm,  the likelihood function 

p ( R 1 ,  R 2 , .  . . , RmIS1, $2, * * * 3 Srn) 

can be factored as 
m 

p ( R 1 ,  R 2 , .  . . , RmJS1, 5’2,. . . , Sm) = n p ( R i l S i ) .  
i= l  

Both the additive Gaussian channel and the binary symmetric channel that have been in- 
troduced are memoryless channels. We will almost universally assume that the channels 
are memoryless channels. The bursty channels discussed in Chapter 10 and the convolutive 
channel introduced in Chapter 14 are exceptions to this. 

1.7 Simulation and Energy Considerations for Coded Signals 

In channel coding, k input bits yield n output bits, where n > k .  Let R = k / n  be the code 
rate. A transmission budget which allocates Eb Jouleshit for the uncoded data must spread 
that energy over more coded bits. Let 

E ,  = REb 

denote the “energy per coded bit.” We thus have E ,  < Eb. Consider the framework 
shown in Figure 1.14. From point ‘a’ to point ‘b,’ there is conventional (uncoded) BPSK 
modulation scheme, except that the energy per bit is E,. Thus, at point ‘b’ the probability 
of error can be computed as 

Since E ,  < Eb, this is worse performance than uncoded BPSK would have had. Figure 
1.15 shows the probability of error of coded bits for R = 1/2 and R = 1/3 error correction 
codes at point ‘b’ in Figure 1.14. At the receiver, the detected coded bits are passed to 
the channel decoder, the error correction stage, which attempts to correct errors. Clearly, in 
order to be of any value the code must be strong enough so that the bits emerging at point 
‘c’ of Figure 1.14 can compensate for the lower energy per bit in the channel, plus correct 
other errors. Fortunately, we will see that this is in fact the case. 
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Figure 1.15: Probability of error for coded bits, before correction. 

Now consider how this system might be simulated in software. It is common to simulate 
the modulator at point 'a' of Figure 1.14 as having fixed amplitudes and to adjust the variance 
a2 of the noise IZ in the channel. One of the primary considerations, therefore, is how to set 

Frequently it is desired to simulate performance at a particular SNR, &/No.  Let y = 
&, /No  denote the desired signal to noise ratio at which to simulate. Frequently, this is 
expressed in dB, so we have 

Recalling that a2 = N0/2 ,  and knowing y ,  we have 

a2. 

= 10(SNRdB)/lO. 

Eb y = -  
202 ' 

so 

- Since Eb = E c / R ,  we have 

It is also common in simulation to normalize, so that the simulated signal amplitude is 
Ec = 1. 

1.8 Some Important Definitions and a Trivial Code: 
Repetition Coding 

In this section we introduce the important coding concepts of code rate, Hamming distance, 
minimum distance, Hamming spheres, and the generator matrix. These concepts are intro- 
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duced by means of a simple, even trivial, example of an error correction code, the repetition 
code. 

Let IF2 denote the set (field) with two elements in it, 0 and 1. In this field, arithmetic 
operations are defined as: 

o + o = o  0 + 1 = 1  1 + 0 = 1  l + l = O  

0 - o = o  0 . 1 = 0  1 . 0 = 0  1 . 1 = 1 .  

An ( n ,  k )  binary code is a set of 2k distinct points in IF;. Another way of putting this: 
Let IF; denote the (vector) space of n-tuples of elements of F2. 

An (n ,  k )  binary code is a code that accepts k bits as input and produces n bits as output. 

Definition 1.2 The rate of an ( n ,  k )  code is 

k 
n 

0 
The ( n ,  1) repetition code, where n is odd, is the code obtained by repeating the 1-bit 

input n times in the output codeword. That is, the codeword representing the input 0 is a 
block of n 0s and the codeword representing the input 1 is a block of n 1s. The code C 
consists of the set of two codewords 

R = - .  

c = {[O,O, .  . . ,O] ,  [ l ,  1 , .  . . )  l]} c F;. 

Letting m denote the message, the corresponding codeword is 

c = [m,m,m,.  . . ,m] .  

n copies 

This is a rate R = l / n  code. 

given by 

Then the encoding operation is 

Encoding can be represented as a matrix operation. Let G be the 1 x n generator matrix 

G =  [1 1 . . .  11. 

c = mG. 

1.8.1 Detection of Repetition Codes Over a BSC 

Let us first consider decoding of this code when transmitted through a BSC with crossover 
probability p < 1/2. Denote the output of the BSC by 

r = c + n ,  

where the addition is modulo 2 and n is a binary vector of length n ,  with 1 in the positions 
where the channel errors occur. Assuming that the codewords are selected with equal 
probability, maximum likelihood decoding is appropriate. As observed in Section 1 S.6, 
the maximum likelihood decoding rule selects the codeword in C which is closest to the 
received vector r in Hamming distance. For the repetition code, this decoding rule can be 
expressed as a majority decoding rule: If the majority of received bits are 0, decode a 0; 
otherwise, decode a 1. For example, take the (7, 1) repetition code and let m = 1. Then the 
codeword is c = [ 1, 1, 1, 1, 1, 1, 11. Suppose that the received vector is 

r = [ l ,  0, 1, l,O, 1, 11. 
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Hamming "sphere" for (O,O,O) 

(a) The code as points in space. (b) The Hamming spheres around the points. 

Figure 1.16: A (3, 1) binary repetition code. 

Since 5 out of the 7 bits are 1, the decoded value is 

riz = 1. 

An error detector can also be established. If the received vector r is not one of the codewords, 
we detect that the channel has introduced one or more errors into the transmitted codeword. 

The codewords in a code C can be viewed as points in n-dimensional space. For example, 
Figure 1.16(a) illustrates the codewords as points (0, 0,O) and (1, 1, 1) in 3-dimensional 
space. (Beyond three dimensions, of course, the geometric viewpoint cannot be plotted, but 
it is still valuable conceptually.) In this geometric setting, we use the Hamming distance 
to measure distances between points. 

Definition 1.3 The minimum distance dfin of a code C is the smallest Hamming distance 
between any two codewords in the code: 

min dH(ci, c j ) .  1 
ci ,cj E c,  ci #Cj 

0 
The two codewords in the (n, 1) repetition code are c l eaAj  a (Hamming) distance n 

In this geometric setting the ML decoding algorithm may be expressed as: Choose the 
apart. 

codeword i? which is closest to the received vector r. That is, 

i? = argmindH(r, c) .  
C€C 

A different decoder is based on constructing a sphere around each codeword. 

Definition 1.4 The Hamming sphere of radius t around a codeword c consists of all vectors 
0 

For example, for the (3, 1) repetition code, the codewords and the points in their Ham- 
which are at a Hamming distance I t from c. 

ming spheres are 

Codeword Points in its sphere 
(0,0,0) ~0,0,0),(0,0,~~,~0,1 ,0),(1 ,O,O) 
(1 9 191) (191, ~ ~ , ~ ~ , ~ , ~ ~ , ~ ~ , ~ , ~ ~ , ~ ~ , ~ , ~ ~ ,  
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Figure 1.17: A representation of decoding spheres. 

as illustrated in Figure l.l6(b). 
When the Hamming spheres around each codeword are all taken to have the same radius, 

the largest such radius producing nonoverlapping spheres is determined by the separation 
between the nearest two codewords in the code, dmin. The radius of the spheres in this case 
is t = L(dmin - 1)/2], where the notation 1x1 means to take the greatest integer 5 x. Figure 
1.17 shows the idea of these Hamming spheres. The black squares represent codewords in 
n-dimensional space and black dots represent other vectors in n-dimensional space. The 
dashed lines indicate the boundaries of the Hamming spheres around the codewords. If a 
vector r falls inside the sphere around a codeword, then it is closer to that codeword than 
to any other codeword. By the ML criterion, r should decode to that codeword inside the 
sphere. When all the spheres have radius t = [(ddn - 1)/2], this decoding rule referred to 
as bounded distance decoding. 

The decoder will make a decoding error if the channel noise moves the received vector r 
into a sphere other than the sphere the true codeword is in. Since the centers of the spheres 
lie a distance at least dmin apart, the decoder is guaranteed to decode correctly provided that 
no more than t errors occur in the received vector r. The number t is called the random 
error correction capability of the code. If dmin is even and two codewords lie exactly dmin 
apart and the channel introduces ddn/2 errors, then the received vector lies right on the 
boundary of two spheres. In this case, given no other information, the decoder must choose 
one of the two codewords arbitrarily; half the time it will make an error. 

Note from Figure 1.17 that in a bounded distance decoder there may be vectors that 
fall outside the Hamming spheres around the codewords, such as the vector labeled v1. If 
the received vector r = vl, then the nearest codeword is c1. A bounded distance decoder, 
however, would not be able to decode if r = v1, since it can only decode those vectors that 
fall in spheres of radius t. The decoder might have to declare a decoding failure in this case. 

A true maximum likelihood (ML) decoder, which chooses the nearest codeword to the 
received vector, would be able to decode. Unfortunately, ML decoding is computationally 
very difficult for large codes. Most of the algebraic decoding algorithms in this book are 
only bounded distance decoders. An interesting exception are the decoders presented in 
Chapters 7 and 11, which actually produce lists of codeword candidates. These decoders 
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are called list decoders. 
If the channel introduces fewer than dmin errors, then these can be detected, since r 

cannot be another codeword in this case. In summary, for a code with minimum distance 
dfin : 

Guaranteed error correction capability: 
Guaranteed error detection capability: 

t = L(dfin - 1)/2] 
d f in  - 1 

Having defined the repetition code, let us now characterize its probability of error per- 
formance as a function of the BSC crossover probability p .  For the (n, 1) repetition code, 
dmin = n, and t = (n  - 1)/2 (remembern is odd). Suppose in particular that n = 3, so that 
t = 1. Then the decoder will make an error if the channel causes either 2 or 3 bits to be in 
error. Using P," to denote the probability of decoding error for a code of length n, we have 

P: = Prob(2 channel errors) + Prob(3 channel errors) 
2 3 = 3p (1 - p) + p3 = 3p2 - 2p . 

If p < i, then P: < p ,  that is, the decoder will have fewer errors than using the channel 
without coding. 

Let us now examine the probability of decoding error for a code of length n. Note that 
it doesn't matter what the transmitted codeword was; the probability of error depends only 
on the error introduced by the channel. Clearly, the decoder will make an error if more than 
half of the received bits are in error. More precisely, if more than t bits are in error, the 
decoder will make an error. The probability of error can be expressed as 

n 

P," = Prob(i channel errors occur out of n transmitted bits). 
i=t+l 

The probability of exactly i bits in error out of n bits, where each bit is drawn at random 
with probability p is6 

so that 

P," = (f)p'(l - p)"-' 
i=t+l 

t+ l  

+ terms of higher degree in p .  

It would appear that as the code length increases, and thus t increases, the probability of 
decoder error decreases. (This is substantiated in Exercise 1.16b.) Thus, it is possible to 
obtain arbitrarily small probability of error, but at the cost of a very low rate: R = l / n  + 0 
as P," + 0. 

Let us now consider using this repetition code for communication over the AWGN 
channel. Let us suppose that the transmitter has P = 1 Watt (W) of power available and 
that we want to send information at 1 bithecond. There is thus Eb = 1 Joule (J) of energy 
available for each bit of information. Now the information is coded using an (n, 1) repetition 

6The binomial coefficient is (1) = - 
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code. To maintain the information rate of 1 bitlsecond, we must send n coded bitslsecond. 
With n times as many bits to send, there is still only 1 W of power available, which must be 
shared among all the coded bits. The energy available for each coded bit, which we denote 
as Ec, is E, = &/n.  Thus, because of coding, there is less energy available for each bit 
to convey information! The probability of error for the AWGN channel (i.e., the binary 
crossover probability for the effective BSC) is 

P = Q(J2E,/No)= Q(JzEb/nNo). 
The crossover probability p is higher as a result of using a code! However, the hope is that 
the error decoding capability of the overall system is better. Nevertheless, for the repetition 
code, this hope is in vain. 

repcodepr0b.m Figure 1.18 shows the probability of error for repetition codes (here, consider only the 
hard-decision decoding). The coded performance is worse than the uncoded performance, 
and the performance gets worse with increasing n. 

1 oo 

-a-- Rep n=l 1, soft 

i P 
I" 0 2 4 6 8 10 

SNR. dB 

Figure 1.18: Performance of the (3, 1) and (11, 1) repetition code over BSC using both 
hard- and soft-decision decoding. 

1.8.2 Soft-Decision Decoding of Repetition Codes Over the AWGN 

Let us now consider decoding over the AWGN using a sof-decision decoder. Since the 
repetition code has a particularly simple codeword structure, it is straightforward to describe 
the soft-decision decoder and characterize its probability of error. 

The likelihood function is 
n 

i=l 

so that the log likelihood ratio 
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can be computed using (1.21) as 

i=l  

Then the decoder decides & = 1 if A(r) > 0, or hi = 0 if A(r) < 0. Since the threshold is 
0 and L ,  is a positive constant, the decoder decides 

m = (  1 if C:='=, Ti > O 

if Cy=1 Ti < 0. O 

The soft-decision decoder performs superior to the hard-decision decoder. Suppose the 
vector (-a, -a, . . . , -a) is sent (corresponding to the all-zero codeword). If 
one of the Ti happens to be greater than 0, but other of the Ti are correspondingly less than 
0, the erroneous positive quantities might be canceled out by the other symbols. In fact, 
it is straightforward to show (see Exercise 1.18) that the probability of error for the (n, 1) 
repetition code with soft-decision decoding is 

That is, it is the same as for uncoded transmission - still not effective as a code, but better 
than hard-decision decoding. 

1.8.3 Simulation of Results 

While it is possible for these simple codes to compute explicit performance curves, it is 
worthwhile to consider how the performance might also be simulated, since other codes 
that we will examine may be more difficult to analyze. The program here illustrates a 
framework for simulating the performance of codes. The probability of error is estimated 
by running codewords through a simulated Gaussian channel until a specified number of 
errors has occurred. Then the estimated probability of error is the number of errors counted 
divided by the number of bits generated. 

Figure 1.18 shows the probability of error for uncoded transmission and both hard- and 
soft-decision decoding of (3 , l )  and (1 1, l)  codes. 

1.8.4 Summary 

This lengthy example on a nearly useless code has introduced several concepts that will be 
useful for other codes: 

The concept of minimum distance of a code. 

The probability of decoder error. 

The idea of a generator matrix. 

The fact that not every code is good!7 

Recognition that soft-decision decoding is superior to hard-input decoding in terms 
of probability of error. 

7Despite the fact that these are very low-rate codes and historically of little interest, repetition codes are an 
essential component of a very powerful, recently introduced code, the repeat accumulate code introduced in 
Section 15.14. 
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Prior to the proof of Shannon's channel coding theorem and the research it engendered, 
communication engineers were in a quandary. It was believed that to obtain totally reliable 
communication, it would be necessary to transmit very slow rates, essentially employing 
repetition codes to catch any errors and using slow symbol rate to increase the energy per 
bit. However, Shannon's theorem dramatically changed this perspective, indicating that it 
is not necessary to slow the rate of communication to zero. It is only necessary to use better 
codes. 

1.9 Hamming Codes 

As a second example we now introduce Hamming codes. These are codes which are much 
better than repetition codes and were the first important codes discovered. Hamming codes 
lie at the intersection of many different kinds of codes, so we will use them also to introduce 
several important themes which will be developed throughout the course of this book. 

A (7,4) Hamming code produces 7 bits of output for every 4 bits of input. Hamming 
codes are linear block codes, which means that the encoding operation can be described in 
terms of a 4 x 7 generator matrix, such as 

r1 1 o 1 o o 01 

0 0 1 1 0 1 0 '  
0 1 1 0 1 0 0  1 G = l  0 0 0 1 1 0 1  

(1.34) 

The codewords are obtained as linear combination of the rows of G, where all the operations 
are computed modulo 2 in each vector element. That is, the code is the row space of G. For 
a message vector m = [ m l ,  m2, m3, m4] the codeword is 

r 
c = mG. 

For example, if m = [ 1, 1 , 0, 01 then 

c=[1,1,0,1,0,0,0]+[0,1,1,0,1,0,0]=[1,0,1,0,1,0,0]. 

mindist .m 1 It can be verified that the minimum distance of the Hamming code is d ~ n  = 3, so the code 
is capable of correcting 1 error in every block of n bits. 

The codewords for this code are 

[O ,O,  o,o, o,o, 01, [ I ,  1,0, 1,0,0,01, [O, 1, 1,0, 1,0,01, E l ,  0, 1, 1, 1,0,01 

[O, 0,  1, 1,0, 1,01, [I ,  1, 1,090, 1,019 [O, 1,0, 1, 1, 1,019 [I ,  o,o, 0,  1, 1,OI 

[O, o,o, 1, 1,0, 11, [I, 1,0,0,  190, 11, [O, 1, 1, 1,0,0, 11, [I, 0, 1,0,0,0,  11 

[O, 0,  1,0, 1, 1, 11, [ I ,  1, 1, 1, 1, 1, 11, 10, 1,0,0,0,  1, 11, [I, o,o, 1,0, 1, 11. 

(1.35) 

The Hamming decoding algorithm presented here is slightly more complicated than for the 
repetition code. (There are other decoding algorithms.) 

Every (n ,  k )  linear block code has associated with it a (n - k )  x n matrix H called the 
parity check matrix, which has the property that 

vHT = 0 if and only if the vector v is a codeword. (1.36) 

The parity check matrix is not unique. For the generator G of (1.34), the parity check matrix 
can be written as 

(1.37) 1 1 0 1 1 1 0 0  

0 0 1 0 1 1 1  
1 0  1 1  1 0 .  
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It can be verified that G H = 0. 
The matrix H can be expressed in terms of its columns as 

H = [hi h2 h3 h4 h5 hg h7]. 

It may be observed that the columns of H consist of the binary representations of the numbers 
1 through 7 = n, though not in numerical order. On the basis of this observation, we can 
generalize to other Hamming codes. Hamming codes of length n = 2m - 1 and dimension 
k = 2m - m - 1 exist for every m 3 2, having parity check matrices whose columns are 
binary representations of the numbers from 1 through n . 

1.9.1 Hard-Input Decoding Hamming Codes 

Suppose that a codeword c is sent and the received vector is 

r = c + n (addition modulo 2). 

The first decoding step is to compute the syndrome 
s = r H T  = (c+n)HT = n H  T . 

Because of property (1.36), the syndrome depends only on the error n and not on the 
transmitted codeword. The codeword information is “projected away.” 

Since a Hamming code is capable of correcting only a single error, suppose that n is all 
zeros except at a single position, 

n = [nl ,  122, n 3 , .  . . , n71 = [0, . . . , 0 ,  l , O ,  . . . , O ]  

where the 1 is equal to ni . (That is, the error is in the ith position.) 
Let us write H~ in terms of its rows: 

Then the syndrome is 

T s = r H  = n H T  = [ n l  n2 ... nn 

The error position i is the column i of H that is equal to the (transpose of) the syndrome s T .  

Algorithm 1.1 Hamming Code Decoding 

1. For the received binary vector r, compute the syndrome s = rHT.  If s = 0, then the decoded 
codeword is 2 = r. 

2. If s # 0, then let i denote the column of H which is equal to sT. There is an error in position 
i of r. The decoded codeword is i. = r + ni, where ni is a vector which is all zeros except for 
a 1 in the ith position. 

This decoding procedure fails if more than one error occurs. 
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Example 1.7 Suppose that the message 

m = Im1, m2, m3, m41 = LO, 1,1,01 

is encoded, resulting in the codeword 

c = [O, 1, 1,0, 1,0,01+ [O, 0, 1, 1,0, 1,0] = [O,  1,0, 1, 1, 1,Ol. 

When c is transmitted over a BSC, the vector 

r = [0, 1, 1, 1, 1, 1,0] 

is received. The decoding algorithm proceeds as follows: 
1. The syndromes = [0, 1, 1, 1, 1, 1, O]HT = [l, 0, 11 is computed. 
2. This syndrome corresponds to column 3 of H. The decoded value is therefore 

The expression for the probability of bit error is significantly more complicated for Hamming 
codes than for repetition codes. We defer on the details of these computations to the 
appropriate location (Section 3.7) and simply plot the results here. The available energy per 
encoded bit is 

E, = Eb(k/n) = 4/7Eb, 

so, as for the repetition code, there is less energy available per bit. This represents a loss of 
1010glo(4/7) = -2.4 dB of energy per transmitted bit compared to the uncoded system. 
Note, however, that the decrease in energy per bit is not as great as for the repetition code, 
since the rate is higher. Figure 1.19 shows the probability of bit error for uncoded channels 
(the solid line), and for the coded bits -that is, the bits coded with energy E ,  per bit - (the 
dashed line). The figure also shows the probability of bit error for the bits after they have 
been through the decoder (the dash-dot line). In this case, the decoded bits do have a lower 
probability of error than the uncoded bits. For the uncoded system, to achieve a probability 
of error of p b  = lop6 requires an SNR of 10.5 dB, while for the coded system, the same 
probability of error is achieved with 10.05 dB. The code was able to overcome the 2.4 dB 
of loss due to rate, and add another 0.45 dB of improvement. We say that the coding gain 
of the system (operated near 10 dB) is 0.45 dB: we can achieve the same performance as 
a system expending 10.5 dB SNR per bit, but with only 10.05 dB of expended transmitter 
energy per bit. 

Also shown in Figure 1.19 is the asymptotic (most accurate for large SNR) performance 
of soft-decision decoding. This is somewhat optimistic, being better performance than 
might be achieved in practice. But it does show the potential that soft-decision decoding 
has: it is significantly better than the hard-input decoding. 

hamcode74pe.m 
ncho0sektest.m 

1.9.2 Other Representations of the Hamming Code 

In the brief introduction to the Hamming code, we showed that the encoding and decoding 
operations have matrix representations. This is because Hamming codes are linear block 
codes, which will be explored in Chapter 3. There are other representations for Hamming 
and other codes. We briefly introduce these here as bait and lead-in to further chapters. 
As these representations show, descriptions of codes involve algebra, polynomials, graph 
theory, and algorithms on graphs, in addition to the linear algebra we have already seen. 
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Asymptotic soft-input decoding 

5 6 7 8 9 1 0 1 1  12 
EJN, (dB) 

Figure 1.19: Performance of the (7,4) Hamming code in the AWGN channel. 

An Algebraic Representation 

The columns of the parity check matrix H can be represented using special symbols. That 
is, we could write 

1 [ 0 0 1 0 1 1 1  

1 0 1 1 1 0 0  
H =  0 1 0  1 1  1 0  

as 

H = [ P l  P2 P3 P4 P5 P6 P7] ,  

where each represents a 3-tuple. Then the syndrome s = r H T  can be represented as 

i=l 

Then s = for some j ,  which indicates the column where the error occurred. This turns 
the decoding problem into a straightforward algebra problem. 

A question we shall take up later is how to generalize this operation. That is, can codes 
be defined which are capable of correcting more than a single error, for whlch finding the 
errors can be computed using algebra? In order to explore this question, we will need to 
carefully define how to perform algebra on discrete objects (such as the columns of H )  
so that addition, subtraction, multiplication, and division are defined in a meaningful way. 
Such algebraic operations are defined in Chapters 2 and 5. 

A Polynomial Representation 

Examination of the codewords in (1.35) reveals an interesting fact: if c is a codeword, then 
so is every cyclic shift of c. For example, the codeword [ 1, 1 , 0, 1 , 0, 0, 01 has the cyclic 
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which are also codewords. Codes for which all cyclic shifts of every codeword are also 
codewords are called cyclic codes. As we will find in Chapter 4, Hamming codes, like most 
block codes of modern interest, are cyclic codes. In addition to the representation using a 
generator matrix, cyclic codes can also be represented using polynomials. For the (7,4) 
Hamming code, there is a generatorpolynomial g ( x )  = x3 + x + 1 and a corresponding 
parity-checkpolynomialh(x) = x 4 + x 2 + x + l ,  whichis apolynomial suchthath(x)g(x) = 
x7 + 1. The encoding operation can be represented using polynomial multiplication (with 
coefficient operations modulo 2). For this reason, the study of polynomial operations and 
the study of algebraic objects built out of polynomials is of great interest. The parity check 
polynomial can be used to check if a polynomial is a code pol nomial: A polynomial r (x) 

check condition: compute r(x)h(x)  modulo x7 + 1. If this is not equal to 0, then r ( x )  is 
not a code polynomial. 

is a code polynomial if and only if r (x)h (x) is a multiple of x Y + 1. This provides a parity 

Example 1.8 The message m = [mo, mi, m2, m3] = [O, 1, 1, 01 can be represented as a polynomial 
as 

2 m ( ~ )  = mo +mix +m2x2 +m3x3 = 0 . 1  + 1 .  + 1 .  + 0 .  x3 = + x 2 .  

The code polynomial is obtained by c ( x )  = m ( x ) g ( x ) ,  or 

2 

2 
4x1 = ( x  + x  )(1 + x  +x3)  = ( x  + x 2  +x4) + ( 2  + x 4  +x5) 

= x + 2x + x 3  + x 4  + x5 = x + x 3  + x 4  + x 5 ,  

(where 2x2 = 0 modulo 2), which corresponds to the code vector c = [0, 1, 0, 1, 1, 1, 01. 0 

A Trellis Representation 

As we will see in Chapter 12, there is a graph associated with a block code. This graph is 
called the Wolf trellis for the code. We shall see that paths through the graph correspond 
to vectors v that satisfy the parity check condition v H T  = 0. For example, Figure 1.20 
shows the trellis corresponding to the parity check matrix (1.37). The trellis states at the kth 
stage are obtained by taking all possible binary linear combinations of the first k columns 
of H .  In Chapter 12, we will develop decoding a algorithm which essentially finds the best 
path through the graph. One such decoding algorithm is called the Viterbi algorithm. Such 
decoding algorithms will allow us to create soft-decision decoding algorithms for block 
codes. 

The Viterbi algorithm is also used for decoding codes which are defined using graphs 
similar to that of Figure 1.20. Such codes are called convolutional codes. 

The Tanner Graph Representation 

Every linear block code also has another graph which represents it called the Tanner graph. 
For a parity check matrix, the Tanner graph has one node to represent each column of H 
(the “bit nodes”) and one node to represent each row of H (the “check nodes”). Edges occur 
only between bit nodes and check nodes. There is an edge between a bit node and a check 
node if there is a 1 in the parity check matrix at the corresponding location. For example, for 
the parity check matrix of (1.37), the Tanner graph representation is shown in Figure 1.21. 
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Figure 1.20: The trellis of a (7,4) Hamming code. 

Algorithms to be presented in Chapter 15 describe how to propagate information through 
the graph in order to perform decoding. These algorithms are usually associated with codes 
which are iteratively decoded, such as turbo codes and low-density parity-check codes. 
These modern families of codes have very good behavior, sometimes nearly approaching 
capacity. 

bit check 
nodes nodes 

Figure 1.2 1 : The Tanner graph for a (7,4) Hamming code. 

1 .I 0 The Basic Questions 

The two simple codes we have examined so far bring out issues relevant for the codes we 
will investigate: 

1. How is the code described and represented? 

2. How is encoding accomplished? 

3. How is decoding accomplished? (This frequently takes some cleverness!) 

4. How are codewords to be represented, encoded, and decoded, in a computationally 
tractable way? 
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5. What is the performance of the code? What are the properties of the code? (e.g., 

6. Are there other families of codes which can provide better coding gains? 

7. How can these codes be found and described? 

8. Are there constraints on allowable values of n,  k ,  and d ~ i , ?  

9. Is there some limit to the amount of coding gain possible? 

How many codewords? What are the weights of the codewords?) 

10. For a given available SNR, is there a lower limit on the probability of error that can 
be achieved? 

Questions of this nature shall be addressed throughout the remainder of this book, presenting 
the best answers available at this time. 

1.1 1 Historical Milestones of Coding Theory 

We present in Table 1.1 a brief summary of major accomplishments in coding theory and 
some of the significant contributors to that theory, or expositors who contributed by bringing 
together the significant contributions to date. Some dates and contributions may not be 
exactly as portrayed here; it is difficult to sift through the sands of recent history. Also, 
significant contributions to coding are made every month, so this cannot be a complete list. 

1.12 A Bit of Information Theory 

The channel coding theorem governs the ultimate limits of error correction codes. To 
understand what it implies, we need to introduce a little bit of information theory and state 
some results. However, it lies beyond the scope of the book to provide a full in-depth 
coverage. 

1.1 2.1 Information Theoretic Definitions for Discrete Random Variables 

Entropy and Conditional Entropy 

We first present information-theoretic concepts for discrete random variables. Let X be 
a discrete random variable taking values in a set A, = {XI, x2, . . . , xm} with probability 
P ( X  = xi) = pi.  We have seen that the entropy is 

H ( X )  = E [ -  log2 P(X)] = - P ( X  = x) logz P ( X  = x) (bits). 
,€AX 

The entropy represents the uncertainty there is about X prior to its measurement; equiva- 
lently, it is the amount of information gained when X is measured. 

Now suppose that Y = f (X) for some probabilistic function f(X). For example, Y 
might be the output of a noisy channel that has X as the input. Let A, denote the set of 
possible Y outcomes. We define H ( X  1 y) as the uncertainty remaining about X when Y is 
measured as Y = y: 

H(XlY) = E[--log2 PXIY(XlY)l = - c PxlY(xlY)log2 PxlY(xlY> (bits). 
,€Ax 
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Table 1.1: Historical Milestones 
Year Milestone Year Milestone 
1948 Shannon publishes “A Mathematical Theorv of 1975 Sugiyama et al. propose the use of the Euclidean 

1950 
1954 

1955 
1957 
1959 
1960 

1961 

1962 

1963 

1966 

1967 

1968 

1969 

1971 

1972 

Communi&ion” [309] 
Hamming describes Hamming codes [137] 
Reed [284] and Muller [248] both present Reed- 
Muller codes and their decoders 
Elias introduces convolutional codes [76] 
Prange introduces cyclic codes [271] 
A. Hocquenghem [151] and ... 
Bose and Ray-Chaudhuri [36] describe BCH codes 
Reed&Solomon produce eponymous codes [286] 
Peterson provides a solution to BCH decoding [261] 
Peterson produces his book [260], later extended and 
revised by Peterson and Weldon [262] 
Gallager introduces LDPC codes [ 1121 
2400 BPS modem commercially available (4-PSK) 
(see [loo]) 
The Fano algorithm for decoding convolutional 
codes introduced [SO] 
Massey unifies the study of majority logic decoding 

Fomey produces an in-depth study of concatenated 
codes [87] and introduces generalized minimum dis- 
tance decoding [88] 
Berlekamp introduces a fast algorithm for 
BCWReed-Solomon decoding [22] 
Rudolph initiates the study of !inite geometries for 
coding [299] 
4800 BPS modem commercially available (8-PSK) 
(see [loo]) 
Berlekamp produces Algebraic Coding Theory [25] 
Gallager produces Information theory and reliable 
communication [ 1 1 11 
Jelinek describes the stack algorithm for decoding 
convolutional codes [165] 
Massey introduces his algorithm for BCH decoding 
L27-21 
Reed-Muller code flies on Mariner deep space 
probes using Green machine decoder 
Viterbi introduces the algorithm for ML decoding of 
convolutional codes [359] 
9600 BPS modem commercially available (16- 

The BCJR algorithm is described in the open litera- 
ture [lo] 

~2241 

QAW (see [loOD 

1977 

1978 

1980 

1981 

1982 

1983 

1984 

1985 

1993 

1994 

1995 

1996 

1998 
1999 

2000 

2002 

2003 

2004 
2005 

algorithm for decoding [324] 
MacWilliams and Sloane produce the encyclopedic 
The Theory of Error Correcting Codes [220] 
Voyager deep space mission uses a concatenated 
RSkonvolutional code (see [231]) 
Wolf introduces a trellis description of block codes 
[3771 
14,400 BPS modem commercially available (64- 
QAW (see [lool) 
Sony and Phillips standardize the compact disc, in- 
cluding a shortened Reed-Solomon code 
Goppa introduces algebraic-geometry codes [123, 
1241 
Ungerboeck describes trellis-coded modulation 
13451 
Lin & Costello produce their engineering textbook 
[2031 
Blahut publishes his textbook [33] 
14,400 BPS TCM modem commercially available 
(128-TCM) (see [loo]) 
19,200 BPS TCM modem commercially available 
(160-TCM) (see [loo]) 
Berrou, Glavieux, and Tbitimajshima announce 
turbo codes [28] 
The 4 linearity of families of nonlinear codes is 
announced [138] 
MacKay resuscitates LDPC codes [218] 
Wicker publishes his textbook [373] 
33,600 BPS modem (V.34) modem is commercially 
available (see [98]) 
Alamouti describes a space-time code (31 
Guruswami and Sudan present a list decoder for RS 
and AG codes [128] 
Aji and McEliece [2] (and others [195]) synthesize 
several decoding algorithms using message passing 
ideas 
Hanzo, Liew, and Yeap characterize turbo algorithms 
in [141] 
Koetter and Vardy extend the GS algorithm for soft- 
decision decoding of RS codes [191] 
Lm&Costello second edition [204] 
Moon produces what is hoped to be avaluable book! 

1973 Fomey elucidates the Viterbi algorithm [89] 

Then the average uncertainty in X ,  averaged over the outcomes Y, is called the conditional 
entropy, H(XIY), computed as 

H(X1Y) = c H(XlY)PY(Y) = - c c PxlY(xlY)PY(Y)logz PxlY(xIY) 
YeAy Y E A y  x e d ,  

= - 1 c ~x,Y(x,Y)log2~xlY(xlY)(bits). 
Y E A y  x e d ,  

Relative Entropy, Mutual Information, and Channel Capacity 

Definition 1.5 An important information-theoretic quantity is the Kullback-Leibler dis- 
tance D ( P  I I Q )  between two probability mass functions, also known as the relative entropy 
or the cross entropy. Let P(X) and Q ( X )  be two probability mass functions on the 
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outcomes in Ax. We define 

o 

Lemma 1.2 D(P I I Q )  2 0, with equality ifand only i f P  = Q ;  that is, ifthe two distribu- 
tions are the same. 

Proof We use the inequality logx 5 x - 1, with equality only at x = 1. This inequal- 
ity appears so frequently in information theory it has been termed the information theory 
inequality. Then 

(information theory inequality) 

= C P ( x )  - Q ( x )  = 0. 

Definition 1.6 The mutual information between a random variable X and Y is the Kullback- 
Leibler distance between the joint distribution P ( X ,  Y )  and the product of the marginals 
P ( X )  P ( Y )  : 

I ( X ;  Y )  = D ( P ( X ,  Y > I I P ( X ) P ( Y ) ) .  (1.38) 

0 
If X and Y are independent, so that P ( X ,  Y )  = P ( X ) P ( Y ) ,  then Z ( X ;  Y )  = 0. That is, 

Using the definitions, it is straightforward to show that the mutual information can also 
Y tells no information at all about X .  

be written as 
Z(X; Y )  = H ( X )  - H ( X 1 Y ) .  

The mutual information is the difference between the average uncertainty in X and the 
uncertainty in X there still is after measuring Y. Thus, it quantifies how much information 
Y tells about X .  Since the definition (1.38) is symmetric, we also have 

Z(X; Y )  = H ( Y )  - H ( Y 1 X ) .  

In light of Lemma 1.2, we see that mutual information Z ( X ;  Y )  can never be negative. 
With the definition of the mutual information, we can now define the channel capacity. 

Definition 1.7 The channel capacity C of a channel with input X and output Y is defined 
as the maximum mutual information between X and Y ,  where the maximum is taken over 
all possible input distributions. 

C = max Z(X; Y ) .  
px ( x )  
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For the BSC with crossover probability p ,  it is straightforward to show (see Exercise 
1.3 1) that the capacity is 

-1 

1.1 2.2 Information Theoretic Definitions for Continuous Random Variables 

Let Y be a continuous random variable taking on values in an (uncountable) set A,, with 
pdf p y ( y ) .  The differential entropy is defined as 

H(Y) = -E[log, PY(Y)I = - PY(Y> log, PY(Y> dY.  Ly 
Whereas entropy for discrete random variables is always nonnegative, differential entropy 
(for a continuous random variable) can be positive or negative. 

Example 1.9 Let Y - N(0, a2). Then 

1 1 
20 2 

1 1 1 
2 2 2 

= I O ~ ~ ( ~ ) ~ E [ Y ~ I  + - log22na2 

= - log2(e) + - log2 2nn2 = - log2 2nea2 (bits). 

It can be shown that, for a continuous random variable with mean 0 and variance u2, the 
Gaussian N(0, a,) has the largest differential entropy. 

Let X be a discrete-valued random variable taking on values in the alphabet A, with 
probability Pr(X = x )  = PX ( x ) ,  x E dx and let X be passed through a channel which 
produces a continuous-valued output Y for Y E dy . A typical example of this is the additive 
white Gaussian noise channel, where 

Y = X + N ,  

and N - N(0, a2). Let 
PXY(X7 Y )  = PYlX(YlX)PX(X) 

denote the joint distribution of X and Y and let 

x e d x  X d X  

denote the pdf of Y .  Then the mutual information Z(X; Y) is computed as 
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Example 1.10 Suppose Ax = {a ,  -a}  (e.g., BPSK modulation with amplitude a) with probabilities 
P ( X  = a) = P ( X  = -a) = 4. Let N - N(0, a 2 )  and let 

Y = X + N .  

Because the channel has only binary inputs, this is referred to as the binary additive white Gaussian 
noise channel (BAWGNC). Then 

(1.39) 

1 00 

@ ( y ,  E b ,  a2) log2 @ ( y ,  Eb,  a2) d y  - - log2 2nea2  (bits), (1.40) =I-L 2 

where we define the function 

When both the channel input X and the output Y are continuous random variables, then the 
mutual information is 

Example 1.11 Let X - N(0, u:) and N - N(0, a,’), independent of X .  Let Y = X + N .  Then 
Y - N(O,a,” + a,’). 
Z(X; Y )  = H ( Y )  - H(Y1X)  = H ( Y )  - H ( X  + N I X )  = H ( Y )  - H ( N I X )  = H ( Y )  - H ( N )  

= - 1 log2 2neay 2 1  - - log2 2nea,, 2 
2 2 

(1.41) 

The quantity a: represents the average power in the transmitted signal X and a,’ represents the 
average power in the noise signal N .  This channel is called the additive white Gaussian noise channel 
(AWGNC). 0 

As for the discrete channel, the channel capacity C of a channel with input X and output 
Y is the maximum mutual information between X and Y ,  where the maximum is over all 
input distributions. In Example 1.10, the maximizing distribution is, in fact, the uniform 
distribution, P ( X  = a )  = P ( X  = -a) = i, so (1.40) is the capacity for the BAWGNC. In 
Example 1.1 1, the maximizing distribution is, in fact, the Gaussian distribution (since this 
maximizes the entropy of the output), so (1.41) is the capacity for the AWGNC. 



1.12 A Bit of Information Theory 45 

1.1 2.3 The Channel Coding Theorem 

The channel capacity has been dejined as the maximum mutual information between the 
input and the output. But Shannon’s the channel coding theorem, tells us what the capacity 
means. Recall that an error correction code has a rate R = k / n ,  where k is the number of 
input symbols and n is the number of output symbols, the length of the code. The channel 
coding theorem says this: 

Provided that the coded rate of transmission R is less than the channel capacity, 
for any given probability of error E specified, there is an error correction code 
of length no such that there exist codes of length n exceeding no for which the 
decoded probability of error is less than E. 

That is, provided that we transmit at a rate less than capacity, arbitrarily low probabilities of 
error can be obtained, if a sufficiently long error correction code is employed. The capacity 
is thus the amount of information that can be transmitted reliably through the channel per 
channel use. 

A converse to the channel coding theorem states that for a channel with capacity C ,  if 
R > C ,  then the probability of error is bounded away from zero: reliable transmission is 
not possible. 

The channel coding theorem is an existence theorem; it tells us that codes exist that 
can be used for reliable transmission, but not how to find practical codes. Shannon’s 
remarkable proof used random codes. But as the code gets long, the decoding complexity of 
a truly random (unstructured) code goes up exponentially with the length of the code. Since 
Shannon’s proof, engineers and mathematicians have been looking for ways of constructing 
codes that are both good (meaning they can correct a lot of errors) and practical, meaning 
that they have some kind of structure that makes decoding of sufficiently low complexity 
that decoders can be practically constructed. 

Figure 1.22 shows a comparison of the capacity of the AWGNC and the BAWGNC 
channels as a function of E , / a 2  (an SNR measure). In this figure, we observe that the 
capacity of the AWGNC increases with S N R  beyond one bit per channel use, while the 
BAWGNC asymptotes to a maximum of one bit per channel use - if only binary data is 
put into the channel, only one bit of useful information can be obtained. It is always the 
case that 

CAWGNC > CBAWGNC. 

Over all possible input distributions, the Gaussian distribution is information maximizing, 
so CAWGNC is an upper bound on capacity for any modulation or coding that might be 
employed. However, at very low SNRs, CAWGNC and CBAWGNC are very nearly equal. 

Figure 1.22 also shows the capacity of the equivalent BSC, with crossover probability 
p = Q ( , / W )  and capacity CBSC = 1 - H2(p).  This corresponds to hard-input 
decoding. Clearly, there is some loss of potential rate due to hard-input decoding, although 
the loss diminishes as the SNR increases. 

1.12.4 “Proof“ of the Channel Coding Theorem 

In this section we present a “proof” of the channel coding theorem. While mathematically 
accurate, it is not complete. The arguments can be considerably tightened, but are suffi- 
cient to show the main ideas of coding. Also, the proof is only presented for the discrete 

p1otcapcmp.m 
cawgnc2 .m 
cbawgnc2.m 
h2 rn 
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1.51 I vi ////j 
- - BSCcapacity 

Figure 1.22: Capacities of AWGNC, BAWGNC, and BSC. 

input/discrete channel case. The intuition, however, generally carries over to the Gaussian 
channel. 

An important preliminary concept is the “asymptotic equipartition property” (AEP). Let 
X be a random variable taking values in a set A,. Let X = ( X I ,  X2, . . . , X,) be an i.i.d. 
(independent, identically distributed) random vector and let x denote an outcome of X. 

Theorem 1.3 (AEP) As n + 00, there is a set of “typical” outcomes I for which 

P(X = x) M 2-”H(X), x E 7,  (1.42) 

By the AEP, most of the probability is “concentrated” in the typical set. That is, a “typical” 
outcome is likely to occur, while an outcome which is not “typical” is not likely to occur. 
Since the “typical” outcomes all have approximately the same probability (1.42), there must 
be approximately 2”H(X) outcomes in the typical set 7.8 

Proof We sketch the main idea of the proof. Let the outcome space for a random variable Y 
be A, = (b l ,  b2, . . . , b ~ ] ,  occurring with probabilities Pi = P(Y = bi). Out of n samples 
of the i.i.d. variable Y, let ni be the number of outcomes that are equal to bj . By the law of 
large  number^,^ when n is large, 

ni 
- 25 Pi. 
n 

(1.43) 

~ 

*This observation is the basis for lossless data compression occurring in a source coder. 
9Thorough proof of the AEP merely requires putting all of the discussion in the formal language of the weak 

law of large numbers. 
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The product of n observations can be written as 

Now suppose that Y is, in fact, a function of a random variable X ,  Y = f ( X ) .  In particular, 
suppose f (x)  = px(x) = P ( X  = x). Then by (1.44), 

~ 1 ~ 2 " ' ~ n  = f (~ l ) f (x2) . . . f (xn)  = n p x ( x i )  
n [z ~ [ l o g 2  px(x)l]" = 2 - n ~ ~ ) .  

i = l  

This establishes (1.42). 0 
Let X be a binary source with entropy H ( X )  and let each X be transmitted through a 

memoryless channel to produce the output Y .  Consider transmitting the sequence of i.i.d. 
outcomes XI, x2, . . . , X n .  While the number of possible sequences is M = 2n, the typical 
set has only about 2nH(X) sequences in it. Let the total possible number of output sequences 
y = yi, y2, . . . , yn be N .  There are about 2nH(Y) 5 N typical output sequences. For each 
typical output sequence y there are approximately 2nH(XIY) input sequences that could have 
caused it. Furthermore, each input sequence x typically could produce 2nH(YIX) output 
sequences. This is summarized in Figure 1.23(a). 

Now let X be coded by a rate-R code to produce a coded sequence which selects, out of 
the 2" possible input sequences, only 2nR of these. In Figure 1.23(b), these coded sequences 
are denoted with filled squares, .. The mapping which selects the 2nR points is the code. 
Rather than select any particular code, we contemplate using all possible codes at random 
(using, however, only the typical sequences). Under the random code, a sequence selected 
at random is a codeword with probability 

Now consider the problem of correct decoding. A sequence y is observed. It can be decoded 
correctly if there is only one code vector x that could have caused it. From Figure 1.23(b), 
the probability that none of the points in the "fan" leading to y other than the original code 
point is a message is 

p = (probability a point x is not a codeword)(tJ'Picd number Of inputs for this y) 

- - (1 - 2n(R-H(X)))2"H(XIY). 

If we now choose R < maxpx(,) H ( X )  - H ( X I Y ) ,  that is, choose R < the capacity C, 
then 

R - H ( X )  + H ( X 1 Y )  < 0 

for any input distribution Px (x). In this case, 

R - H ( X )  = - H ( X I Y )  - Q 
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(a) Basic input output relationship. (b) W represents codewords. 

Figure 1.23: Relationship between input and output entropies for a channel. Each 0 or 
represents a sequence. 

so as n + 00, 

P --+ 1 -2-a --+ 1.  

Thus the probability that none of the points except the original code point leading to y 
is a codeword approaches 1, so that the probability of decoding error - due to multiple 
codewords mapping to a single received vector - approaches 0. 

We remark that if the average of an ensemble approaches zero, then there are elements 
in the ensemble that must approach 0. Thus there are codes (not randomly selected) for 
which the probability of error approaches zero as n + 00. 

There are two other ways of viewing the coding rate requirement. The 2nH(YIX) typical 
sequences resulting from transmitting a vector x must partition the 2"*(') typical output se- 
quences, so that each observed output sequence can be attributed to a unique input sequence. 
The number of subsets in this partition is 
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so the condition R < H ( Y )  - H (Y  1 X) must be enforced. Alternatively, the 2"H(X) typical 
input sequences must be partitioned so that the 2nH(XIY) typical input sequences associated 
with an observation y are disjoint. There must be 2n(H(X) -H(Xly ) )  distinct subsets, so again 
the condition R < H ( X )  - H ( X ( Y )  must be enforced. 

Let us summarize what we learn from the proof of the channel coding theorem: 

As long as R < C ,  arbitrarily reliable transmission is possible. 

The code lengths, however, may have to be long to achieve the desired reliability. The 
closer R is to C ,  the larger we would expect n to need to be in order to obtain some 
specified level of performance. 

Since the theorem was based on ensembles of random codes, it does not specify what 
the best code should be. We don't know how to "design" the best codes, we only 
know that they exist. 

However, random codes have a high probability of being good. So we are likely to 
get a good code simply by picking one at random! 

So what, then, is the issue? Why the need for decades of research in coding theory, if 
a code can simply be selected at random? The answer has to do with the complexity of 
representing and decoding the code. To represent a random code of length n, there must 
be memory to store all the codewords, which requires n2Rn bits. Furthermore, to decode 
a received word y, ML decoding for a random code requires that a received vector y must 
be compared with all 2R" possible codewords. For a R = 1/2 code with n = 1000 (a 
relatively modest code length and a low-rate code), 2500 comparisons must be made for 
each received vector. This is prohibitively expensive, beyond practical feasibility for even 
massively parallel computing systems, let alone a portable communication device. 

Ideally, we would like to explore the space of codes parameterized by rate, probability of 
decoding error, block length (which governs latency), and encoding and decoding complex- 
ity, identifying thereby all achievable tuples of ( R ,  P ,  n, X E ,  XD), where P is the probability 
of error and X E  and XD are the encoding and decoding complexities. This is an overwhelm- 
ingly complex task. The essence of coding research has taken the pragmatic stance of 
identifying families of codes which have some kind of algebraic or graphical structure that 
will enable representation and decoding with manageable complexity. In some cases what 
is sought are codes in which the encoding and decoding can be accomplished readily using 
algebraic methods - essentially so that decoding can be accomplished by solving sets of 
equations. In other cases, codes employ constraints on certain graphs to reduce the encod- 
ing and decoding complexity. Most recently, families of codes have been found for which 
very long block lengths can be effectively obtained with low complexity using very sparse 
representations, which keep the decoding complexity in check. Describing these codes and 
their decoding algorithms is the purpose of this book. 

The end result of the decades of research in coding is that the designer has a rich palette 
of code options, with varying degrees of rate and encode and decode complexity. This book 
presents many of the major themes that have emerged from this research. 

1.12.5 Capacity for the Continuous-Time AWGN Channel 

Let Xi be a zero-mean random variable with E [ X : ]  = a: which is input to a discrete 
AWGN channel, so that 

Ri =Xi i- Ni, 
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where the Ni are i.i.d. Ni - N(0, c,”). The capacity of this channel is 

1 0 2  c = - log,(l + 3) bitskhannel use. 
2 an 

Now consider sending a continuous-time signal x ( t )  according to 
n 

where the vi(t) functions are orthonormal over [0, TI.  Let us suppose that the transmitter 
power available is P watts, 
energy is also expressed as 

so that the energy dissipated in T seconds is E = P T .  This 

E = J(I’ x 2 ( t )  d t  = 2 X f .  
i=l 

We must therefore have 
n 

C X f = P T  
i=l 

or nE[X?]  = P T ,  so that 0,” = P T / n .  
Now consider transmitting a signal x ( t )  through a continuous-time channel with band- 

width W. By the sampling theorem (frequently attributed to Nyquist, but in this context it 
is frequently called Shannon’s sampling theorem), a signal of bandwidth W can be exactly 
characterized by 2W samples/second - any more samples than this cannot convey any 
more information about this bandlimited signal. So we can get 2 W independent channel 
uses per second over this bandlimited channel. There are n = 2 W T symbols transmitted 
over T seconds. 

If the received signal is 
R ( t )  = ~ ( t )  + N ( t )  

where N ( t )  is a white Gaussian noise random process with two-sided power spectral density 
N0/2, then in the discrete-time sample 

Rj = xi + Ni 

where Ri = s,’ R ( t ) ( p j ( t ) d t ,  the variance of Ni is u2 = N 0 / 2 .  The capacity for this 
bandlimited channel is 

C = (k log2 (1 + s) bitskhannel use (2W channel usedsecond) 1 
bitdsecond. 

2PT 

Now using n = 2WT we obtain 

C = W log2(l + PINO W) bitshecond. 

Since P is the average transmitted power, in terms of its units we have 

(1.45) 

energy 
second 

p = -  = (energyhit) ( bitshecond). 
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Since Eb is the energyhit and the capacity is the rate of transmission in bits per second, we 
have P = EbC, giving 

c = Wlog2 (1 + ;g). (1.46) 

Let r]  = C/ W be the spectral efficiency in bits/second/Hz; this is the data rate available for 
each Hertz of channel bandwidth. From (1.46), 

or 

(1.47) 

For BPSK the spectral efficiency is r]  = 1 bit/second/Hz, so (1.47) indicates that it is theo- 
retically possible to transmit arbitrarily reliably at Eb/No = 1, which is 0 dB. In principle, 
then, it should be possible to devise a coding scheme which could transmit BPSK-modulated 
signals arbitrarily reliably at an SNR of 0 dB. By contrast, for uncoded transmission when 
&/No = 9.6 dB the BPSK performance shown in Figure 1.10 has Pb = There is at 
least 9.6 dB of coding gain possible. The approximately 0.44 dB of gain provided by the 
(7,4) Hamming code of Section 1.9 falls over 9 dB short of what is theoretically possible! 

1.12.6 Transmission at Capacity with Errors 

The theoretical tools we need to address these questions are the separation theorem 
and rate-distortion theory. The separation theorem says that we can consider separately 

By the channel coding theorem, zero probability of error is attainable provided that the 
transmission rate is less than the capacity. What if we allow a non-vanishing probability of 
error. What is the maximum rate of transmission? Or, equivalently, for a given rate, wluch 
is the minimum S N R  that will allow transmission at that rate, with a specified probability 
of error? 

and optimally (at least, asymptotically) data compression and error correction. Suppose 
that the source has a rate of r bits/second. First compress the information so that the bits 
of the compressed signal match the bits of the source signal with probability p .  From 
rate distortion theory, this produces a source at rate 1 - H2(p) per source bit (see (1.2)). 
These compressed bits, at a rate r(1 - H2(p)) are then transmitted over the channel with 
vanishingly small probability of error. We must therefore have r(1 - H2(p)) < C. The 
maximum rate achievable with average distortion (i.e., probability of bit error) p ,  which we 
denote as C(P) is therefore 

C C(P) = 
1 - H2(P) * 

Figure 1.24 shows the required SNR Eb/No for transmission at various rates for both the 
BAWGNC and the AWGNC. For any given line in the plot, the region to the right of the plot 
is achievable - it should theoretically be possible to transmit at that probability of error 
at that S N R .  Curves such as these therefore represent a goal to be achieved by a particular 
code: we say that we are transmitting at capacity if the performance falls on the curve. 

We note the following from the plot: 

At very low SNR, the binary channel and the AWGN channel have very similar 
performance. This was also observed in conjunction with Figure 1.22. 
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4 * BAWGNCR=0.5 
+ BAWGNC R=0.75 
* BAWGNC R=0.9 ! - Q  AWGNC R=0.25 
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- 
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Figure 1.24: Capacity lower bounds on Pb as a function of SNR. 

The higher the rate, the higher the required SNR. 

The vertical asymptote (as Pb -+ 0) is the capacity C for that channel. 

1.12.7 The Implication of the Channel Coding Theorem 

The implication of the channel coding theorem, fundamentally, is that for a block code of 
length n and rate R = k / n ,  the probability of a block decoding error can be bounded as 

P ( E )  5 2-nEb(R), (1.48) 

where Eb(R) is a positive function of R for R < C .  Work on a class of codes known as 
convolutional codes - to be introduced in Chapter 12 has shown (see, e.g., [357]) that 

where m is the memory of the code and E, ( R )  is positive for R < C. The problem, as we 
shall see (and what makes coding such a fascinating topic) is that, in the absence of some 
kind of structure, as either n or m grow, the complexity can grow exponentially. 
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Programming Laboratory 1 : 
Simulating a Com mu nicat ions 
Channel 

Objective 

In this lab, you will simulate a BPSK communication sys- 
tem and a coded system with a Hamming code employing 
hard-input decoding rules. 

Background 

Reading: Sections 1.5, 1.7, 1.9. 
In the case of BPSK, an exact expression for the prob- 

ability of error is available, (1.25). However, in many more 
interesting communication systems, a closed form expres- 
sion for the probability of error is not available or is difficult 
to compute. Results must be therefore obtained by simula- 
tion of the system. 

One of the great strengths of the signal-space viewpoint 
is that probability of error simulations can be made based 
only on points in the signal space. In other words, it suffices 
to simulate random variables as in the matched filter output 
(1.12), rather than creating the continuous-time functions as 
in (1.10). (However, for other kinds of questions, a simu- 
lation of the continuous-time function might be necessary. 
For example, if you are simulating the effect of synchro- 
nization, timing jitter, delay, or fading, simulating the time 
signal is probably necessary.) 

A framework for simulating a communication system 
from the signal space point of view for the purpose of com- 
puting the probability of error is as follows: 

Algorithm 1.2 Outline for simulating digital communica- 
tions 

I Initialization: Store the points in the signal constellation. 

z FOR each signal-to-noise ratio y = Eb/No:  
3 Compute No = E b / y  and o2 = No/2. 
4 no: 

Fix Eb (typically Eb = 1). 

5 

6 

7 

8 

9 

10 

I 1  

12 

- - .  

Generate some random bit@) (the “transmitted” bits) 
according to the bit probabilities 
Map the bit@) into the signal constellation 
(e.g.,BPSK or 8-PSK) to create signal s 
Generate a Gaussian random vector n (noise) with 
variance m2 = No12 in each signal direction. 
Add the noise to the signal to create the matched filter output 
signal r = s+ n. 
Perform a detection on the symbol 
(e.g., find closest point in signal constellation to r) 
From the detected symbol, determine the detected bits 
Compare detected bits with the transmitted bits 
Accumulate the number of bits in error 

1 3  UNTIL at least N hit errors have been counted. 
14 The estimated urobabilitv of error at this SNR is 

pe Ft: number of errors counted 
number of bits generated 

isEnd FOR 

As a general rule, the more errors N you count, the 
smaller will be the variance of your estimate of the prob- 
ability of error. However, the bigger N is, the longer the 
simulation will take to run. For example, if the probabil- 
ity of error is near at some particular value of SNR, 
around one million bits must be generated before you can 
expect an error. If you choose N = 100, then 100 million 
bits must be generated to estimate the probability of error, 
for just that one point on the plot! 

Use of Coding in Conjunction with the BSC 

For an (n, k )  code having rate R = k / n  transmitted with 
energy per bit equal to Eb, the energy per coded bit is 
Ec = EbR. It is convenient to fix the coded energy per 
bit in the simulation. To simulate the BSC channel with 
coding, the following outline can be used. 

Algorithm 1.3 Outline for simulating (n, k)-coded digital 
communications 

I Initialization: Store the points in the signal constellation. 

z FOR each signal-to-noise ratio y = Eb/No:  
3 Compute No = E , / ( R y )  and g2 = No/2.  
4 Compute the BSC crossover probability p = Q(-). 
5 DO: 
6 

7 

8 

9 

10 

I I 

12 UNTIL at least N bit errors have been counted. 
13 The estimated probability of error is 

pe ~ number of errors counted 
number of bits generated 

Fix Ec (typically Ec = 1). Compute R .  

Generate a block of k “transmitted” input bits 
and accumulate the number of bits generated 
Encode the input bits to n codeword bits 
Pass the n bits through the BSC 
(Ep each bit with probability p )  
Run the n bits through the decoder to produce k output bits 
Compare the decoded output bits with the input bits 
Accumulate the number of bits in error 

14End FOR 

The encoding and decoding operations depend on the 
kind of code used. In this lab, you will use codes which are 
among the simplest possible, the Hamming codes. 

Since for linear codes the codeword is irrelevant, the 
simulation can be somewhat simplified by assuming that 
the input bits are all zero, so that the codeword is also all 
zero. For the Hamming code, the simulation can be arranged 
as follows: 
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Algorithm 1.4 Outline for simulating (n, k )  Hamming- 
coded digital communications 

I Fix Ec (typically Ec = 1). Compute R .  
z FOR each signal-to-noise ratio y = E b / N o :  
3 Compute No = E c / ( R y )  and o2 = N a p .  
4 Compute the BSC crossover probability p = Q(m). 
5 DO: 
6 

7 

8 

9 

1 0  

1 I 

12 UNTIL at least N bit errors have been counted. 
1 3  Compute the probability of error. 
14End FOR 

Generate r as a vector of n random bits which are 1 
with probability p 
Increment the number of bits generated by k. 
compute the syndrome s = rHT. 
Ifs # 0, determine the error location based on the column 
of H which is equal to s and complement that bit of r 
Count the number of decoded bits (out of k) in r which 
match the all-zero message bits 
Accumulate the number of bits in error. 

The coding gain for a coded system is the difference 
in the SNR required between uncoded and coded systems 
achieving the same probability of error. Usually the coding 
gain is expressed in dF3 . 

Assignment 

Preliminary Exercises Show that if X is a random vari- 
able with mean 0 and variance 1 then 

Y = a X + b  

is a random variable with mean b and variance a2.  

Programming Part 

BPSK Simulation 

1) Write a program that will simulate a BPSK communi- 
cation system with unequal prior bit probabilities. Using 
your program, create data from which to plot the probabil- 
ity of bit error obtained from your simulation for SNRs in 
the range from 0 to 10 dB, for the three cases that Po = 0.5 
(in which case your plot should look much like Figure 1. lo), 
PO = 0.25, and Po = 0.1. Decide on an appropriate value 
of N .  
2) Prepare data from which to plot the theoretical proba- 
bility of error (1.24) for the same three values of Po. (You 
may want to combine these first two programs into a single 
program.) 
3) Plot the simulated probability of error on the same axes 
as the theoretical probability of error. The plots should 
have Eb/NO in dF3 as the horizontal axis and the probabil- 
ity as the vertical axis, plotted on a logarithmic scale (e.g., 
semilogy in Matlab). 

4) Compare the theoretical and simulated results. Com- 
ment on the accuracy of the simulation and the amount of 
time it took to run the simulation. Comment on the impor- 
tance of theoretical models (where it is possible to obtain 
them). 
5) Plot the probability of error for Po = 0.1, Po = 0.25 
and PO = 0.5 on the same axes. Compare them and com- 
ment. 
8-PSK Simulation 
1) Write a program that will simulate an 8-PSK communi- 
cation system with equal prior bit probabilities. Use a signal 
constellation in which the points are numbered in Gray code 
order. Make your program so that you can estimate both the 
symbol error probability and the bit error probability. De- 
cide on an appropriate value of N .  
2) Prepare data from which to plot the bound on the prob- 
ability of symbol error Ps using (1.26) and probability of 
bit error Pb using (1.27). 
3) Plot the simulated probability of symbol error and bit 
error on the same axes as the bounds on the probabilities of 
error. 
4) Compare the theoretical and simulated results. Com- 
ment on the accuracy of the bound compared to the simula- 
tion and the amount of time it took to run the simulation. 
Coded BPSK Simulation 

1) Write a program that will simulate performance of the 
(7,4) Hamming code over a BSC channel with channel 
crossover probability p = Q ( d a )  and plot the prob- 
ability of error as a function of Eb/NO in dB. On the same 
plot, plot the theoretical probability of error for uncoded 
BPSK transmission. Identify what the coding gain is for a 
probability of error Pb = 
2) Repeat this for a (15, 11) Hamming code. (See page 97 
and equations (3.6) and (3.4)) 

Resources and implementation Suggestlons 

A unit Gaussian random variable has mean zero and 
variance 1. Given a unit Gaussian random variable, using 
the preliminary exercise, it is straightforward to generate a 
Gaussian random variable with any desired variance. 

The function gran  provides a unit Gaussian random 
variable, generated using the Box-Muller transformation of 
two uniform random variables. The function granil  re- 
turns two unit Gaussian random variables. This is useful 
for simulations in two-dimensional signal constellations. 
0 There is nothing in this lab that makes the use of C++ im- 
perative, as opposed to C. However, you may find it useful 
to use C++ in the following ways: 

Create an AWGN class to represent a 1-D or 2-D channel. 
0 Create a BSC class. 



Lab 1: Simulating a Communications Channel 55 

0 Create a Hamming code class to take care of encoding 
and decoding (as you learn more about coding algorithms, 
you may want to change how this is done). 
0 In the literature, points in two-dimensional signal con- 
stellations are frequently represented as points in the com- 
plex plane. You may find it convenient to do similarly, using 
the complex number capabilities that are present in C++. 

0 Since the horizontal axis of the probability of error plot is 
expressed as a ratio Eb/NO, there is some flexibility in how 
to proceed. Given a value of Eb/NO, you can either fix NO 
and determine Eb, or you can fix Eb and determine NO. An 
exampleofhow this can bedoneisin testrepcode. cc. 
0 The function ur an generates a uniform random number 
between 0 and 1. This can be used to generate a bit which 
is 1 with probability p .  
0 The Q function, used to compute the theoretical proba- 
bility of error, is implemented in the function qf. 

There are two basic approaches to generating the se- 
quence of bits in the simulation. One way is to generate and 
store a large array of bits (or their resulting signals) then 
processing them all together. This is effective in a language 
such as Matlab, where vectorized operations are faster than 
using for loops. The other way, and the way recommended 
here, is to generate each signal separately and to process it 
separately. This is recommended because it is not necessar- 
ily known in advance how many bits should be generated. 
The number of bits to be generated could be extremely large 
- in the millions or even billions when the probability of 
error is small enough. 

For the Hamming encoding and decoding opera- 
tion, vector/matrix multiply operations over GF(2) are 
required, such as c = mG. ( G F ( 2 )  is addi- 
tion/subtraction/multiplication/division modulo 2.) These 
could be done in the conventional way using nested for 
loops. However, for short binary codes, a computational 
simplification is possible. Write G in terms of its columns 
as 

Then the encoding process can be written as a series of vec- 
torhector products (inner products) 

G =  [g1 8 2  . . .  9.1 

= [mgl m g 2  ... m9.1. 

Let us consider the inner product operation: it consists of 
element-by-element multiplication, followed by a sum. 

Let rn be an integer variable, whose bits represent the 
elements of the message vector m. Also, let g[i] be an in- 
teger variable in C whose bits represent the elements of the 

column gk. Then the element-b element multi lication in- 
volved in the product m g k  cant; written simpyy using the 
bitwise-and operator & in C. How, then, to sum up the ele- 
ments of the resulting vector? One way, of course, is to use 
a for loop, such as: 

/ /  Compute c=m*G, where m is a bit-vector, 
/ /  and G is represented by g[i] 
c = 0; / /  set vector of bits to 0 
for(i = 0; i < n; i++) { 

mg = rn & g[i]; 
/ /  mod-2 multiplication 
/ /  of all elements 
bit surn=O ; 
for(j = 0, mask=l; j < n; j + + )  { 
/ /  mask selects a single bit 

if(mg & mask) { 

bit sum++ ; 
/ /  accumulate if the bit != 0 

I 
mask <<= 1; 
/ /  shift mask over by 1 bit 

I 
bitsum = bitsum % 2; / /  mod-2 sum 
c = c 1 bitsum*(l<<i); 
/ /  assign to vector of bits . . .  

1 

However, for sufficiently small codes (such as in this 
assignment) the inner for loop can be eliminated by pre- 
corn uting the sums. Consider table below. For a given 
numger rn, the last column provides the sum of all the bits 
in m, modulo 2. 

m mminary) E m  s [ m ] = C m  (mod2) 
0 oooo 0 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0001 
0010 
001 1 
0100 
0101 
01 10 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

1 
1 
2 
1 
2 
2 
3 
1 
2 
2 
3 
2 
3 
3 
4 

1 
1 
0 
1 
0 
0 
1 
1 
0 
0 
1 
0 
1 
1 
0 

To use this in a program, precompute the table of bit 
sums, then use this to look up the result. An outline fol- 
lows : 

/ /  Compute the table s ,  having all 
/ /  the bit sums modulo 2 
/ /  ... 

/ /  Compute c=m*G, where 
/ /  m is a bit-vector, and 
/ /  G is represented by g[il 
c = 0; 
for(i = 0; i < n; i++) { 

c = c I s [ m  & g[ill*(l<<i); 
/ /  assign to vector of bits 

1 
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1.1 3 Exercises 

1.1 Weighted codes. Let sl, s2, . . . , sn be a sequence of digits, each in the range 0 5 si < p ,  where 
p is a prime number. The weighted sum is 

W = nsl + (n - l)s2 + (n - 2)s3 + . . * f 2~n-1 + sn. 
The final digit sn is selected so that W modulo p is equal to 0. That is, W = 0 (mod p ) .  W is 
called the checksum. 

(a) Show that the weighted sum W can be computed by computing the cumulative sum sequence 
t1, f 2 , .  . . , tn by 

I1 = ~ 1 ,  t2 = ~1 + ~ 2 ,  . . . , tn = ~1 + $2 + . . S n  

then computing the cumulative sum sequence 

W I  = t l ,  ~2 = t l  +t2,  . . . ,  W n  = tl +tz  + * * . + t n ,  

with W = W n .  

(b) Suppose that the digits Sk and Sk+l are interchanged, with Sk # S k + l ,  and then a new 
checksum W’ is computed. Show that if the original sequence satisfies W = 0 (mod p ) ,  
then the modified sequence cannot satisfy W’ = 0 (mod p ) .  Thus, interchanged digits 
can be detected. 

(c) For a sequence of digits of length i p ,  suppose that digit Sk is altered to some s; # Sk, 
and a new checksum W’ is computed. Show that if the original sequence satisfies W = 0 
(mod p ) ,  then the modified sequence cannot satisfy W’ = 0 (mod p ) .  Thus, a single 
modified digit can be detected. Why do we need the added restriction on the length of the 
sequence? 

(d) See if the ISBN 0-13-139072-4 is valid. 
(e) See if the ISBN 0-13-193072-4 is valid. 

1.2 See if the UPCs 0 59280 00020 0 and 0 41700 00037 9 are valid. 
1.3 A coin having P(head) = 0.001 is tossed 10,000 times, each toss independent. What is the 

lower limit on the number of bits it would take to accurately describe the outcomes? Suppose it 
were possible to send only 100 bits of information to describe all 10,000 outcomes. What is the 
minimum average distortion per bit that must be accrued sending the information in this case? 

1.4 Show that the entropy of a source X with M outcomes described by (1.1) is maximized when all 
the outcomes are equally probable: p i  = p2 = . . . = PM. 

1.5 Show that (1.7) follows from (1.5) using (1.4). 
1.6 Show that (1.12) is true and that the mean and variance of N l  j and N2j are as in (1.13) and (1.14). 
1.7 Show that the decision rule and threshold in (1.19) and (1.20) are correct. 
1.8 Show that (1.24) is correct. 
1.9 Show that if X is a random variable with mean 0 and variance 1 that Y = aX + b is a random 

variable with mean b and variance a2.  
1.10 Show that the detection rule for 8-PSK 

T P=argmaxr s 
S€S 

follows from (1.18) when all points are equally likely. 
1.11 Consider a series of M BSCs, each with transition probability p ,  where the outputs of each BSC 

is connected to the inputs of the next in the series. Show that the resulting overall channel is a 
BSC and determine the crossover probability as a function of M. What happens as A4 -+ m? 
Hint: To simplify, consider the difference of (x + y)” and (x - Y ) ~ .  
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1.12 [246] Bounds and approximations to the Q function. For many analyses it is useful to have 
analytical bounds and approximations to the Q function. This exercise introduces some of the 
most important of these. 

Hint: integrate by parts. 
(b) Show that 

(c) Hence conclude that 

(d) Plot these lower and upper bounds on a plot with Q(x) (use a log scale). 

(e) Another useful bound is Q ( x )  5 ie-*’I2. Derive this bound. Hint: Identify [Q(a)I2 as 
the probability that the zero-mean unit-Gaussian random variables lie in the shaded region 
shown on the left in Figure 1.25, (the region [a, 03) x [a, m)). This probability is exceeded 
by the probability that (x, y )  lies in the shaded region shown on the right (extended out to 
00). Evaluate this probability. 

Y 

Figure 1.25: Regions for bounding the Q function. 

1.13 Let V2(n, t )  be the number of points in a Hamming sphere of “radius” t around a binary codeword 
of length n. That is, it is the number of points within a Hamming distance t of a binary vector. 
Determine a formula for V2 (n , t )  . 

1.14 Show that the Hamming distance satisfies the triangle inequality. That is, for three binary vectors 
x, y, and z of length n ,  show that 

dH 6, Z) 5 dH (X, Y) f dH (y, Z). 

1.15 Show that for BPSK modulation with amplitudes &a, the Hamming distance dH and the 
Euclidean distance dE between a pair of codewords are related by dE = 2 m .  

1.16 In this problem, we will demonstrate that the probability of error for a repetition code decreases 
exponentially with the code length. Several other useful facts will also be introduced by this 
problem. 
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(a) Show that 

(b) Justify the steps of the proof of the following fact: 

(c) Show that the probability of error for a repetition code can be written as 

where t = L(n - 1 ) / 2 J .  

(d) Show that 

1.17 [220, p. 141 Identities on (i). We can define 

m! if m is a positive integer 

i fm = O  
otherwise. 

Show that 

(a) ("k) = n !  if k is a nonnegative integer. 

(b) (i) = 0 if n is an integer and k > n is a nonzero integer. 

(c) (i) + ( k i l l )  = (nil). 
n f k - 1  (4 ( - 1 l k ( i n )  = ( k ). 

(e) c;=o (i) = 2n. 

(8) C;=o(-~)k( i )  = o i fn  L 1 .  

(0 E k  even (i) = Ek odd (i) = 2n-' i fn  ? 1. 

1.18 Show that for soft-decision decoding on the (n,  1) repetition code, (1.33) is correct. 

1.19 For the (n, 1) code used over a BSC with crossover probability p ,  what is the probability that an 

1.20 Hamming code decoding. 

error event occurs which is not detected? 

(a) For G in (1.34) and H in (1.37), verify that G H = 0. (Recall that operations are computed 
modulo 2. )  
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1.21 

1.22 

1.23 

1.24 

1.25 

1.26 
1.27 

1.28 

1.29 
1.30 

1.31 

1.32 

(b) Let m = [ 1, 1, 0, 01. Determine the transmitted Hamming codeword when the generator 

(c) Let r = [l ,  1, 1, 1, l , O ,  01. Using Algorithm 1.1, determine the transmitted codeword c. 

(d) The message m = [ l ,  0.0, 11 is encoded to form the codeword c = [ l ,  1,0,0,  1,0,  11. 

of (1.34) is used. 

Also determine the transmitted message m. 

The vector r = [ l ,  0, 1, 0, 1,0,0] is received. Decode r to obtain 2.  Is the codeword 
found the same as the original c? Why or why not? 

For the (7,4) Hamming code generator polynomial g(x)  = 1 + x + x3, generate all possible 
code polynomials c(x) .  Verify that they correspond to the codewords in (1.35). Take a nonzero 
codeword c ( x )  and compute c (x )h(x )  modulo x7 + 1. Do this also for two other nonzero 
codewords. What is the check condition for this code? 

Is it possible that the polynomial g(x) = x4 + x 3  + x2 + 1 is a generator polynomial for a cyclic 
code? 

For the parity check matrix 

H = O l O l O  [b : 1 : :‘I 
draw the Wolf trellis and the Tanner graph. 

Let X be a random variable taking on the values Ax = {a ,  b, c, d }  with probabilities 

1 1 1 1 
2 4 8 8 

P ( X  = a)  = - P ( X  = b) = - P ( X  = C) = - P ( X  = d )  = -. 

Determine H ( X ) .  Suppose that 100 measurements of independent draws of X are made per 
second. Determine what the entropy rate of this source is. Determine how to encode the X data 
to achieve this rate. 

Show that the information inequality logx 5 x - 1 is true. 

Show that for a discrete random variable X ,  H ( X )  2 0. 
Show that Z ( X ;  Y )  0 and that Z ( X ;  Y )  = 0 only if X and Y are independent. Hint: Use the 
information inequality. 

Show that the formulas Z ( X ;  Y )  = H ( X )  - H(X1Y)  and Z ( X ;  Y )  = H ( Y )  - H ( Y 1 X )  follow 
from the definition (1.38). 
Show that H ( X )  1 H(X1Y).  Hint: Use the previous two problems. 

Show that the mutual information Z(X; Y )  can be written as 

For a BSC with crossover probability p having input X and output Y ,  let the probability of the 
inputs be P ( X  = 0) = q and P ( X  = 1) = 1 - q .  

(a) Show that the mutual information is 

Z ( X ;  Y )  = H ( Y )  + plog2 p + (1 - P) log2(1 - P )  

(b) By maximizing over q show that the channel capacity per channel use is 

C = 1 - H2(p) (bits). 

Consider the channel model shown here, which accepts three different symbols. 
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Transmitted Received 
Symbols Symbols 

P 

The first symbol is not affected by noise, while the second and third symbols have a probability 
p of not being corrupted, and a probability q of being changed into the other of the pair. Let 
a = - p  log p - q log q,  and let P be the probability that the first symbol is chosen and let Q be 
the probability that either of the other two is chosen, so that P + 2Q = 1. 

(a) ShowthatH(X) =-PlogP-2QlogQ.  
(b) Show that H(XIY) = 2Qa. 
(c) Choose the input distribution (i.e., choose P and Q) in such a way to maximize Z(X; Y) = 

1.33 Let X - U(-a, a )  (that is, X is uniformly distributed on [-a, a]) .  Compute H(X). Compare 
H(X) with the entropy of a Gaussian distribution having the same variance. 

1.34 Let g(n) denote the pdf of a random variable X with variance u2. Show that 

H ( X )  - H(X1Y)) subject to P + 2Q = 1. What is the capacity for this channel? 

H ( X )  5 - 1 log2 2nea 2 . 
2 

with equality if and only if X is Gaussian. Hint: Let p ( n )  denote the pdf of a Gaussian r.v. with 
variance u2 and consider D(gllp) .  Also, note that logp(x) is quadratic in x .  

1.35 Show that H ( X  + NIX) = H ( N ) .  

1.14 References 

The information age was heralded with Shannon’s work [309]. Thorough coverage of 
information theory appears in [59], [111] and [382]. The books [228] and [357] place 
coding theory in its information theoretic context. Our discussion of the AEP follows [ 151, 
while our “proof“ of the channel coding theorem closely follows Shannon’s original [309]. 
More analytical proofs appear in the textbooks cited above. See also [350]. Discussion 
about tradeoffs with complexity are in [288], as is the discussion in Section 1.12.6. 

The detection theory and signal space background is available in most books on digital 
communication. See, for example, [276, 15,246,2671. 

Hamming codes were presented in [ 1371. The trellis representation was presented first in 
[377]; a thorough treatment of the concept appears in [205l. The Tanner graph representation 
appears in [330]; see also [112]. Exercise 1.16b comes from [350, p. 211. 

The discussion relating to simulating communication systems points out that such sim- 
ulations can be very slow. Faster results can in some cases be obtained using importance 
sampling. Some references on importance sampling are [84,211,308, 3161. 
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Chapter 2 

Groups and Vector Spaces 
2.1 Introduction 

Linear block codes form a group and a vector space. Hence, the study of the properties of 
this class of codes benefits from a formal introduction to these concepts. The codes, in turn, 
reinforce the concepts of groups and subgroups that are valuable in the remainder of our 
study. 

Our study of groups leads us to cyclic groups, subgroups, cosets, and factor groups. 
These concepts, important in their own right, also build insight in understanding the con- 
struction of extension fields which are essential for some coding algorithms to be developed. 

2.2 Groups 

A group formalizes some of the basic rules of arithmetic necessary for cancellation and 
solution of some simple algebraic equations. 

Definition 2.1 A binary operation * on a set is a rule that assigns to each ordered pair of 
elements of the set ( a ,  b)  some element of the set. (Since the operation returns an element 
in the set, this is actually defined as closed binary operation. We assume that all binary 
operations are closed.) 0 

Example 2.1 On the set of positive integers, we can define a binary operation * by a * b = min(a, b). 

Example 2.2 On the set of real numbers, we can define a binary operation * by a * b = a (i.e., the 
first argument). 0 

Example 2.3 On the set of real numbers, we can define a binary operation * by a * b = a + b. That 
0 is, the binary operation is regular addition. 

Definition 2.2 A group (G, *) is a set G together with a binary operation * on G such that: 

G1 The operator is associative: for any a ,  b, c E G ,  (a * b)  * c = a * (b * c). 

G2 There is an element e E G called the identity element such that a * e = e * a = a for 
alla E G.  

6 3  For every a E G, there is an element b E G known as the inverse of a such that 
a * b = e .  The inverse of a is sometimes denoted as a-l (when the operator * is 
multiplication-like) or as -a (when the operator * is addition-like). 



2.2 Groups 63 

1 1 2 3 4 0  
2 2 3 4 0 1  
3 3 4 0 1 2  
4 4 0 1 2 3  

Where the operation is clear from context, the group (G, *) may be denoted simply as G .  
It should be noted that the notation * and a-l are generic labels to indicate the concept. 

The particular notation used is modified to fit the concept. Where the group operation 
is addition, the operator + is used and the inverse of an element a is more commonly 
represented as -a. When the group operation is multiplication, either . or juxtaposition is 
used to indicate the operation and the inverse is denoted as a -l. 

Definition 2.3 If G has a finite number of elements, it is said to be a finite group. The 
0 

This definition of order (of a group) is to be distinguished from the order of an element, 

0 

order of a finite group G, denoted ]GI, is the number of elements in G. 

given below. 0 

Definition 2.4 A group (G, *) is commutative if a * b = b * a for every a ,  b E G. 

Example 2.4 The set (Z, +), which is the set of integers under addition, forms a group. The identity 
element is 0, since 0 + a = a + 0 = a for any a E Z. The inverse of any a E Z is -a. 

0 

As a matter of convention, a group that is commutative with an additive-like operator is said 
to be an Abelian group (after the mathematician N.H. Abel). 

Example 2.5 The set (a, .), the set of integers under multiplication, does not form a group. There is 
a multiplicative identity, 1, but there is not a multiplicative inverse for every element in Z. 0 

This is a commutative group. 

Example 2.6 The set (Q \ {0}, .), the set of rational numbers excluding 0, is a group with identity 
0 

The requirements on a group are strong enough to introduce the idea of cancellation. In a 
group G, if a * b = a * c, then b = c (this is left cancellation). To see this, let a-l be the 
inverse of a in G. Then 

element 1. The inverse of an element a is a-l = l/a. 

a-1 * (a * b )  = .-I * (a * c )  = (a-1 * a )  * c = e * c  = c 

and a-1* (a * b) = (a-' * a )  * b = e * b = b, by the properties of associativity and identity. 
Under group requirements, we can also verify that solutions to linear equations of the 

form a * x = b are unique. Using the group properties we get immediately that x = a-'b. 
If xi and x2 are two solutions, such that a * x1 = b = a * x2, then by cancellation we get 
immediately that XI = x2. 

Example 2.7 Let (Z5, +) denote addition on the numbers {0, 1,2, 3,4} modulo 5. The operation is 
demonstrated in tabular form in the table below: 

Clearly 0 is the identity element. Since 0 appears in eachrow and column, every element has an inverse. 
By the uniqueness of solution, we must have every element appearing in every row and column, as it 
does. By the symmetry of the table it is clear that the operation is Abelian (commutative). Thus we 
verify that (Z5, +) is an Abelian group. 

(Typically, when using a table to represent a group operation a * b, the first operand a is the row 
0 and the second operand b is the column in the table.) 
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In general, we denote the set of numbers 0, 1, . . . , n - 1 with addition modulo n by (Z,, +) 
or, more briefly, Z, . 

Example 2.8 Consider the set of numbers { 1,2, 3,4,5} using the operation of multiplication modulo 
6. The operation is shown in the following table: 

__ 
1 
2 
3 
4 
5 

1 2 3 4 5  
1 2 3 4 5  
2 4 0 2 4  
3 0 3 0 3  
4 2 0 4 2  
5 4 3 2 1  

The number 1 acts as an identity, but this does not form a group, since not every element has a 
multiplicative inverse. In fact, the only elements that have a multiplicative inverse are those that are 
relatively prime to 6, that is, those numbers that don’t share a divisor with 6 other than one. We will 
see this example later in the context of rings. 

Given groups (GI ,  *), (G2, *), . . . , (Gr,  *), the direct product group G1 x G2 x . . -  x Gr 
has elements (q, a2, . . . , a,), where each ai E Gi. The operation in G is defined element- 
by-element. That is, if 

One way to construct groups is to take the Cartesian, or direct, product of groups. 

( q ,  122, . . . ,a,) E G and (bl, b2,. . . , br) E G, 

then 

(~1,~2,...,ar)*(bl,b2,...,br) = (a1 * b l , a 2 * b 2 , . . . , a r  *br). 

Example 2.9 The group (Z2 x Z2, +) consists of two-tuples with addition defined element-by- 
element modulo two. An addition for the group table is shown here: 

This group is called the Klein 4-group. 0 

Example 2.10 This example introduces the idea of permutations as elements in a group. It is inter- 
esting because it introduces a group operation that is function composition, as opposed to the mostly 
arithmetic group operations presented to this point. 

A permutation of a set A is a one-to-one, onto function (a bijection) of a set A onto itself. It is 
convenient for purposes of illustration to let A be a set of n integers. For example, 

A = {1,2, 3,4). 

A permutation p can be written in the notation 

which means that 
1 + 3  2 + 4  3 + 1  4 + 2 .  
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There are n! different permutations on n distinct elements. 
We can think of p as an operator expressed in prefix notation. For example, 

p o l = 3  or p o 4 = 2 .  

Let p1 = p and 

The composition permutation p2 o p1 first applies p 1 ,  then p 2 ,  so that 

1 2 3 4  1 2 3 4  1 2 3 4  
p 2 0 p 1  = ( 4  3 1 2)O(3 4 1 2) = ( 1  2 4 3) 

This is again another permutation, so the operation of composition of permutations is closed under 
the set of permutations. The identity permutation is 

1 2 3 4  
e =  (1 2 3 4) 

There is an inverse permutation under composition. For example, 

1 2 3 4  
p? = (3 4 1 2) 

It can be shown that composition of permutations is associative: for three permutations p 1 ,  p2  and 

Thus the set of all n !  permutations on n elements forms a group, where the group operation is 
function composition. This group is referred to as the symmetric group on n letters. The group is 
commonly denoted by S,, . 

It is also interesting to note that the composition is not commutative. This is clear from this 
example since 

P39 then (P1 0 P2) 0 P3 = P1 0 (P2 0 P3).  

P2OP1 Z P l O P 2 .  
So S4 is an example of a non-commutative group. 

2.2.1 Subgroups 

0 

Definition 2.5 A subgroup ( H ,  *) of a group (G, *) is a group formed from a subset of 
elements in a group G with the same operation *. Notationally, we may write H < G to 
indicate that H is a subgroup of G. (There should be no confusion using < with comparisons 

If the elements of H are a strict subset of the elements of G (i.e., H c G but not 
H = G ) ,  then the subgroup is said to be a proper subgroup. If H = G, then H is an 
improper subgroup of G. The subgroups H = { e )  c G (e is the identity) and H = G are 
said to be trivial subgroups. 

between numbers because the operands are different in each case.) 

Example 2.11 Let G = ( 2 6 ,  +), the set of numbers {0, 1,2, 3,4,5} using addition modulo 6. Let 
H = ({O, 2,4), +), with addition taken modulo 6. As a set, H c G. It can be shown that H forms a 
€YOUP. 

0 Let K = ({0,3), +), with addition taken modulo 6. Then K is a subgroup of G. 

Example 2.12 A variety of familiar groups can be arranged as subgroups. For example, 

(2, +) < (Q, +) < (R, +) < (C, +). 
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Example 2.13 The group of permutations on 4 letters, S4, has a subgroup formed by the permutations 

1 2 3 4  
(1 2 3 4) 

1 2 3 4  
p 2 =  (3 4 1 2) 

1 2 3 4  
p 4 =  (2 1 4 3) 

1 2 3 4  
p 6 =  (3 2 1 4) 

1 2 3 4  
p 1  = (2 3 4 1) 

1 2 3 4  
p3 = (4 1 2 3) 

1 2 3 4  
p s  = (4 3 2 1) 

1 2 3 4  
p 7 =  (1 4 3 2) 

Compositions of these permutations is closed. These permutations correspond to the ways that the 
comers of a square can be moved to other comers by rotation about the center and reflection across 
edges or across diagonals (without bending the square). The geometric depiction of these permutations 
and the group operation table are shown here: 

P4 

__ 
PO 
PI 
P2 
P3 
P4 
PS 
P6 
PI 

PO 
PO 
PI 
P2 
P3 
P4 
P.5 
P6 
d 2  

PI 
P1 
P2 
P3 
PO 
P6 
PI  
P5 
P4 

P2 P3 P4 
P2 P3 P4 
P3 PO P7 
PO P1 P5 
P1 P2 P6 
PS P7 PO 
P4 P6 P2 
PI P4 P3 
P6 P.5 P1 

P.5 P6 
P5 P6 
P6 P4 
P4 P7 
P7 PS 
P2 PI 
PO P3 
P1 PO 
P3 P2 

p7 
P7 
P.5 
P6 
P4 
P3 
P1 
P2 
PO 

- - - * \ - -  
/ ' I  \ ' 

/ I \  -1 . /  I ' \ .I n 

r v  
P1 

Th~s  group is known as D4. D4 has a variety of subgroups of its own. (Can you find them?) 

2.2.2 Cyclic Groups and the Order of an Element 

In a group G with operation * or multiplication operation we use the notation a" to indicate 
a * a  * a * . . . * a ,  with the operand a appearing n times. Thus a' = a ,  a2 = a * a ,  etc. We 
take ao to be the identity element in the group G. We use a-2 to indicate (a-')(a-'),  and 

For a group with an additive operator +, the notation nu is often used, which means 
a + a + a + . . . + a ,  with the operand appearing n times. Throughout this section we use 
the an notation; making the switch to the additive operator notation is straightforward. 

Let G be a group and let a E G. Any subgroup containing a must also contain a 2 ,  a3, 
and so forth. The subgroup must contain e = aa-l ,  and hence a-2, aP3,  and so forth, are 
also in the subgroup. 

Definition 2.6 For any a E G, the set {anln E Z} generates a subgroup of G called the 
cyclic subgroup. The element a is said to be the generator of the subgroup. The cyclic 

0 
Definition 2.7 If every element of a group can be generated by a single element, the group 

0 

Example 2.14 The group (Zs, +) is cyclic, since every element in the set can be generated by a = 2 
(under the appropriate addition law): 

to indicate ( u - ' ) ~ .  

subgroup generated by a is denoted as ( a ) .  

is said to be cyclic. 

2, 2 + 2 = 4 ,  2 + 2 + 2 = 1 ,  2 + 2 + 2 + 2 = 3 ,  2 + 2 + 2 + 2 + 2 = 0 .  
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Figure 2.1: An illustration of cosets. 

In this case we could write Z5 = (2). Observe that there are several generators for Z5. 0 

The permutation group S3 is not cyclic: there is no element which generates the whole 
group. 

Definition 2.8 In a group G ,  with a E G ,  the smallest n such that an is equal to the identity 
in G is said to be the order of a. If no such n exists, a is of infinite order. 0 

The order of an element should not be confused with the order of a group, which is the 
number of elements in the group. 

In Z5, the computations above show that the element 2 is of order 5. In fact, the order 
of every nonzero element in Z5 is 5. 

Example 2.15 Let G = (&j, +). Then 

(2) = [0,2, 4) (3) = [o, 3) (5 )  = {o, 1,2, 3,4, 5 )  = %j. 

It is easy to verify that an element a E 2 6  is a generator for the whole group if and only if a and 6 are 
relatively prime. 0 

2.2.3 Cosets 

Definition 2.9 Let H be a subgroup of (G,  *) (where G is not necessarily commutative) 
and let a E G. The left coset of H ,  a * H ,  is the set {a * h(h E H } .  The right coset of H 

0 
Of course, in a commutative group, the left and right cosets are the same. 
Figure 2.1 illustrates the idea of cosets. If G is the group (R3, +) and H is the white 

plane shown, then the cosets of H in G are the translations of H .  
Let G be a group and let H be a subgroup of G .  Let a * H be a (left) coset of H in 

G.  Then clearly b E a * H if and only if b = a * h for some h E H. This means (by 
cancellation) that we must have 

a - ' * b E H .  

is similarly defined, H * a = {h * alh E H ) .  
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Thus to determine if a and b are in the same (left) coset of H ,  we determine if a-1* b E H .  

Example 2.16 Let G = (Z, +) and let 

SO = 3 2  = {. . . , -6, -3 ,0 ,  3 , 6 , .  . .}. 
Then SO is a subgroup of G. Now let us form the cosets 

S1 = So + 1 = {. . . , -5 ,  -2 ,1 ,4 ,7 , .  I .}. 

and 

Note that neither S1 nor S;! are groups (they do not contain the identity). The sets SO, S1, and S2 
collectively cover the original group, 

S2 = SO + 2 = {. . . , -4, -1 ,2,5,  8 ,  . . .}. 

G = So U S1 U S2. 

Let us check whether a = 4 and b = 6 are in the same coset of So by checking whether 
0 ( -a)  + b E So. Since -a + b = 2 9 SO, a and b are not in the same coset. 

2.2.4 Lagrange’s Theorem 

Lagrange’s theorem prescribes the size of a subgroup compared to the size of its group. 
This little result is used in a variety of ways in the developments to follow. 

Lemma 2.1 Every coset of H in a group G has the same number of elements. 

Proof We will show that every coset has the same number of elements as H .  Let a * h 1 E 
a * H andlet a * h2 E a * H be two elements inthe coseta * H .  If a * h i  = a * h2 then by 
cancellation we must have h 1 = h2. Thus the elements of a coset are uniquely identified 

0 
We summarize some important properties about cosets: 

Reflexive An element a is in the same coset as itself. 

Symmetric If a and b are in the same coset, then b and a are in the same coset. 

Transitive If a and b are in the same coset, and b and c are in the same coset, then a and c 

Reflexivity, symmetricity, and transitivity are properties of the relation “in the same coset.” 

Definition 2.10 A relation which has the properties of being reflexive, symmetric, and 
0 

An important fact about equivalence relations is that every equivalence relation partitions 

by the elements in H .  

are in the same coset. 

transitive is said to be an equivalence relation. 

its elements into disjoint sets. Let us consider here the particular case of cosets. 

Lemma 2.2 The distinct cosets of H in a group G are disjoint. 

Proof Suppose A and B are distinct cosets of H ;  that is, A # B . Assume that A and B are 
not disjoint, then there is some element c which is common to both. We will show that this 
implies that A c B .  Let b E B .  For any a E A ,  a and c are in the same coset (since c is in 
A). And c and b are in the same coset (since c is in B ) .  By transitivity, a and b must be in 
the same coset. Thus every element of A is in B ,  so A c B .  Turning the argument around, 
we find that B c A. Thus A = B .  

0 This contradiction shows that distinct A and B must also be disjoint. 
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Theorem 2.3 Lagrange’s theorem Let G be a group offinite order and let H be a subgroup 
of G. Then the order of H divides’ the order of G. That is, I H I divides I GI. 

Proof The set of cosets partition G into disjoint sets, each of which has the same number 
of elements, I H I. These disjoint sets completely cover G, since every element g E G is in 
some coset, g * H .  So the number of elements of G must be equal a multiple of 1 H 1 .  0 
Lagrange’s theorem can be stated more succinctly using a notation which we now introduce: 

Definition 2.11 The vertical bar I means divides. We write a 1 b if a divides b (without 
remainder). 0 

Then Lagrange’s theorem can be written: If I G I < 00 and H < G, then I H I I I GI. 
One implication of Lagrange’s theorem is the following. 

Lemma 2.4 Every group of prime order is cyclic. 

Proof Let G be of prime order, let a E G, and denote the identity in G by e.  Let H = ( a ) ,  
the cyclic subgroup generated by a .  Then a E H and e E H .  But by Theorem 2.3, the order 
of H must divide the order of G. Since G is of prime order, then we must have I H I = 1 GI; 
hence a generates G, so G is cyclic. 

2.2.5 Induced Operations; Isomorphism 

Example 2.17 Let us return to the three cosets SO, S1, and S2 defined in Example 2.16. We thus have 
a set of three objects, S = {SO, S1, S2). Let us define an addition operation on S as follows: for A ,  B 
and C E S, 

A + B = C if and only if a + b = c for any a E A ,  b E B and some c E C. 

That is, addition of the sets is defined by representatives in the sets. The operation is said to be the 
induced operation on the cosets. For example, 

S1 + S2 = So, 

taking as representatives, for example, 1 E S1,2 E S2 and noting that 1 + 2 = 3 E SO. Similarly, 

S1 + S1 = S2, 

taking as representatives 1 E $1 and noting that 1 + 1 = 2 E S2. Based on this induced operation, an 
addition table can be built for the set S: 

S1 S2 So 

It is clear that this addition table defines a group, which we can call (S, +). Now compare this addition 
table with the addition table for 253: 

lThat is, divides without remainder 
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I Box 2.1: One-to-one and Onto Functions 

Definition 2.13 A function #J : G + 6 is said to be one-to-one if #J(a) = #J(b) 
implies a = b for every a and b in G. That is, two distinct values a, b E G with 
a # b do not map to the same value of 4. A one-to-one function is also called a 

A contrasting example is #J(x) = x2, where #J : R + R, which is not one-to-one 
since 4 = #J (2) and 4 = #J (-2). 

Definition 2.14 A function #J : G + 4 is said to be onto if for every g E 6, 
there is an element a E G such that #(a) = g. An onto function is also called 

That is, the function goes onto everything in 6. A contrasting example is #J ( x )  = 
x2, where #J : R + R, since the point g = -3 is not mapped onto by #J from 
any point in R. 

Definition 2.15 A function which is one-to-one and onto (i.e., surjective and 

Bijective functions are always invertible. If #J : G -+ 9 is bijective, then 
IGJ = \GI (the two sets have the same cardinality). 

surjective function. 0 

an injective function. 0 

injective) is called bijective. 0 

Structurally, the two addition tables are identical: entries in the second table are obtained merely 
by replacing Sk with k ,  for k = 0, 1, 2. We say that the group (S, +) and the group (23, +) are 
isomorphic. 

Definition 2.12 Two groups (G, *) and (6, 0) are said to be (group) isomorphic if there 
exists a one-to-one, onto function #J : G -+ G called the isomorphism such that for every 
a,  b E G, 

(2.2) u * b) = #(a) 0 #J(b) . #JL L-,-! 

operation operation 
in G in Q 

The fact that groups G and 6 are isomorphic are denoted by G 2' 6. 0 
We can thus write S Z Z3 (where the operations are unstated but understood from context). 

Whenever two groups are isomorphic they are, for all practical purposes, the same thing. 
Different objects in the groups may have different names, but they represent the same sorts 
of relationships among themselves. 

Definition2.16 Let (G, *) beagroup, HasubgroupandletS = {Ho = H, HI, H2,. . . , HM] 
be the set of cosets of H in G. Then the induced operation between cosets A and B in S 
is defined by 

A * B = C if andonlyifa * b = c 

for any a E A,  b E B and some c E C, provided that this operation is well defined. The 
operation is well defined if for every a E A and b E B ,  a * b E C; there is thus no ambiguity 

For commutative groups, the induced operation is always well defined. However, the 
reader should be cautioned that for noncommutative groups, the operation is well defined 

in the induced operation. 0 
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HZ 5 

only for normal subgroups.2 

2 2 5 3 0 4 1  
5 2 1 0  3 1 4 

Example 2.18 Consider the group G = (26, +) and let H = {0,3}. The cosets of H are 

HO = {0 ,3)  H1 = 1 + H = {1,4} Hz = 2 +  H = {2,5}. 

Then, under the induced operation, for example, H2 + H2 = Hi  since 2 + 2 = 4 and 4 E Hi .  We 
could also choose different representatives from the cosets. We get 

5 + 5 = 4  

in G. Since 5 E H2 and 4 E H i ,  we again have H2 + H2 = H i .  If by choosing different elements 
from the addend cosets we were to end up with a different sum coset, the operation would not be well 
defined. Let us write the addition table for Zg reordered and separated out by the cosets. The induced 
operation is clear. We observe that Ho, Hi  and H2 themselves constitute a group, with addition table 
also shown. 

+ 0 3 1 4 2 5  I Ho I H1 I HZ 

0 

Theorem 2.5 If H is a subgroup of a commutative group (G,  *), the induced operation * 
on the set of cosets of H satisJes 

(a * b)  * H = (a * H )  * (b  * H ) .  

The proof is explored in Exercise 2.13. This defines an operation. Clearly, H itself acts as 
an identity for the operation defined on the set of cosets. Also, by Theorem 2.5, (a * H )  * 
(a-1* H )  = (a *a- ' )  * H = H ,  so every coset has an inverse coset. Thus the set of cosets 
of H form a group. 

Definition 2.17 The group formed by the cosets of H in a commutative3 group G with the 
induced operation is said to be the factor group of G modulo H, denoted by G /  H .  The 
cosets are said to be the residue classes of G modulo H. 0 

In the last example, we could write 2 3  2 &/Ha.  From Example 2.17, the group of 
cosets was also isomorphic to Z3, so we can write 

2 / 3 2  z 2 3 .  

In general, it can be shown that 
Z / n Z  2 Z,. 

2A subgroup H of a group G is normal if g-l H g  = H for all g E G. Clearly all Abelian groups are normal. 
30r  of a normal subgroup in a noncommutative group. 
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0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

. o . o q b  

n - h 

. O . O O  

. O . O O  

CI 0 0 0 0 

c10  0 0 0 

c10  0 0 0 

c3 0 0 0 0 

0 . 0 .  

4. n n - - 
0 . 0 .  

0 . 0 .  

Figure 2.2: A lattice partitioned into cosets. 

Example 2.19 A lattice is formed by taking all possible integer linear combinations of a set of basis 
vectors. That is, let v l ,  v2, . . . , v, be a set of linearly independent vectors, let V = [vl , v2, . . . , vn] . 
Then a lattice is formed from these basis vectors by 

A = {VZ : z E Z”}. 

For example, the lattice formed by V = [A 71 is the set of points with integer coordinates in the plane, 

denoted as Z2. 
For the lattice A = Z2, let A’ = 2Z2 be a subgroup. Then the cosets 

So = A’ (denoted by 0 )  S1 = (1 ,O) + A’ (denoted by 0 )  

S;! = (0, 1) + A’ (denoted by 0) S3 = (1 ,  1) + A’ (denoted by 0) 

are indicated in Figure 2.2. It is straightforward to verify that 

AIA’ 2 z2 x z2. 

Such decompositions of lattices into subsets find application in trellis coded modulation, as we 
shall see in Chapter 13. 

2.2.6 Homomorphism 

For isomorphism, two sets G and G are structurally the same, as defined by (2.2), and they 
have the same number of elements (since there is a bijective function 4 : G -+ G). From an 
algebraic point of view, G and G are identical, even though they may have different names 
for their elements. 

Homomorphism is a somewhat weaker condition: the sets must have the same algebraic 
structure, but they might have different numbers of elements. 

Definition 2.18 The groups ( G ,  *) and (6 ,o)  are said to be (group) homomorphic if there 
exists a function (that is not necessarily one-to-one) 4 : G + 6 called the homomorphism 
such that 

= 4(a )  0 (2.3) - 
operation operation 

in G in 6 



2.3 Fields: A Prelude 73 

0 

Example 2.20 Let G = (Z, +) and let B = (Z,, +). Let 4 : G -+ B be defined by @(a) = a 
mod n, the remainder when a is divided by n. Let a, b E Z. We have (see Exercise 2.32) 

4(a + b) = 4(a) + W). 

Thus (Z, +) and (Z,, +) are homomorphic, although they clearly do not have the same number of 
elements. 0 

Theorem 2.6 Let ( G ,  *) be a commutative group and let H be a subgroup, so that G / H  
is the factor group. Let 4 : G + G / H  be dejned by #(a)  = a * H .  Then 4 is a 
homomorphism. The homomorphism 4 is said to be the natural or  canonical homomorphism. 

Proof Let a ,  b E G .  Then by Theorem 2.5 

0 

Definition 2.19 The kernel of a homomorphism 4 of a group G into a group 6 is the set 
0 of all elements of G which are mapped onto the identity element of 6 by 4. 

Example 2.21 For the canonical map Z + Z, of Example 2.20, the kernel is nZ, the set of multiples 
of n. 0 

2.3 Fields: A Prelude 

We shall have considerably more to say about fields in Chapter 5, but we introduce the 
concept here since fields are used in defining vector spaces and simple linear block codes. 

Definition 2.20 A field (F, +, .) is a set of objects F on which the operations of addition 
and multiplication, subtraction (or additive inverse), and division (or multiplicative inverse) 
apply in a manner analogous to the way these operations work for real numbers. 

In particular, the addition operation + and the multiplication operation . (or juxtaposi- 
tion) satisfy the following : 

F1 Closure under addition: For every a and b in F, a + b is also in F. 

F2 Additive identity: There is an element in F, which we denote as 0, such that a + 0 = 
O+a=afo reve rya  EF.  

F3 Additive inverse (subtraction): For every a E F, there exists an element b in F such that 
a + b = b + a = 0. The element b is frequently called the additive inverse of a and 
is denoted as -a. 

F4 Associativity: (a + b) + c = a + (b + c)  for every a ,  b, c E F. 
F5 Commutativity: a + b = b + a for every a, b E F. 
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The first four requirements mean that the elements of F form a group under addition; with 
the fifth requirement, a commutative group is obtained. 

..................................................................................................... 

F6 Closure under multiplication: For every a and b in F, a . b is also in F. 
F7 Multiplicative identity: There is an element in IF, which we denote as 1, such that 

a .  1 = 1 . a  = a foreverya E IF witha # 0. 

F8 Multiplicative inverse: For every a E F with a # 0, there is an element b E F such that 
a . b = b . a = 1. The element b is called the multiplicative inverse, or reciprocal, of 
a and is denoted as a-l. 

F9 Associativity: (a . b) . c = a . (b . c) for every a,  b, c E IF. 
F10 Commutativity: a . b = b . a for every a ,  b E IF. 

Thus the non-zero elements of F form a commutative group under multiplication. 
..................................................................................................... 

F11 Multiplication distributes over addition: a . (b + c) = a . b + a . c 

The field (IF, f, .) is frequently referred to simply as IF. A field with q elements in it may 
be denoted as F,. 0 

Example 2.22 The field with two elements in it, IF2 = Zz = GF(2) has the following addition and 
multiplication tables 

- - 
“exclusive or” “and” 

The field GF(2) is very important to our work, since it is the field where the operations involved in 
binary codes work. However, we shall have occasion to use many other fields as well. 

Example 2.23 The field IF5 = Z5 = GF(5)  has the following addition and multiplication tables: 4 4 

0 0 0 0 0 0  
1 0 1 2 3 4  
2 0 2 4 1 3  
3 0 3 1 4 2  

~ 4 0 4 3 2 1  

0 1 2 3 4  
0 1 2 3 4  
1 2 3 4 0  
2 3 4 0 1  
3 4 0 1 2  
4 0 1 2 3  

0 

There are similarly constructed fields for every prime p ,  denoted by either G F ( p )  or IF,. 

Example 2.24 A field with four elements can be constructed with the following operation tables: 

Fly-+ 

2 2 3 0 1  2 0 2 3 1  
3 3 2 1 0  3 0 3 1 2  

(2.4) 
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This field is called GF(4) .  Note that it is definitely not the same as (Z4, +, .) ! (Why not?) We learn 
in Chapter 5 how to construct such a field. 

0 

Just as for groups, we can define the concepts of isomorphism and homomorphism. Two 
fields ( F ,  +, -)  and (3, +, -) are (field) isomorphic if there exists a bijective function 4 : 
F +. F such that for every a,  b E F ,  

4W) = * - 4(*) = 4(a> + 4(b)  - 
operation operation operation operation 

in F in 3 in F in 3 

For example, the field 3 defined on the elements { - 1, l }  with operation tables 

+p* 
is isomorphic to the field G F ( 2 )  defined above, with 4 mapping 0 + -1 and 1 + 1. 
Fields F and 3 are homomorphic if such a structure-preserving map 4 exists which is not 
necessarily bijective. 

2.4 Review of Linear Algebra 

Linear block codes are based on concepts from linear algebra. In this section we review 
concepts from linear algebra which are immediately pertinent to our study of linear block 
codes. 

Up to this point, our examples have dealt primarily with binary alphabets having the 
symbols (0, 1). As your algebraic and coding-theoretic skills are deepened you will learn 
that larger alphabets are feasible and often desirable for good codes. However, rather than 
present the algebra first and the codes second, it seems pedagogically worthwhile to present 
the basic block coding concepts first using binary alphabets and introduce the algebra for 
larger alphabets later. For the sake of generality, we present definitions in terms of larger 
alphabets, but for the sake of concrete exposition we present examples in this chapter using 
binary alphabets. For now, understand that we will eventually need to deal with alphabets 
with more than two symbols. We denote the number of symbols in the alphabet by q ,  where 
q = 2 usually in this chapter. Furthermore, the alphabets we use usually form a finite field, 
denoted here as IF,, which is briefly introduced in Box 12.1 and thoroughly developed in 
Chapter 5. 

Definition 2.21 Let V be a set of elements called vectors and let IF be a field of elements 
called scalars. An addition operation + is defined between vectors. A scalar multiplication 
operation . (or juxtaposition) is defined such that for a scalar a E F and a vector v E V, 
a . v E V. Then V is a vector space over F if + and . satisfy the following: 

V1 V forms a commutative group under +. 
V2 For any element a E IF and v E V, a .  v E V .  

Combining V1 and V 2 ,  we must have a . v + b . w E V for every v, w E V and 
a,  b E IF. 
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V3 The operations + and . distribute: 

( a + b ) . v = a - ~ + b - ~  and u * ( u + v ) = u * u + u * v  

for all scalars a, b E F and vectors v, u E V. 

V4 The operation . is associative: (a . b) . v = a . (b . v) for all a, b E F and v E V 

F is called the scalar field of the vector space V. 0 

Example 2.25 

1. The set of n-tuples (uo, ul, . . . , un-l), with elements vi E R forms a vector space which we 
denote as Rn, with addition defined element-by-element, 

(UO, ~ 1 , .  . . ,  un-1) + ( ~ 0 3  ~ 1 , .  . + un-1) = (UO + UO, ~1 + ~ 1 , .  * * 9 un-1 + ~ n - 1 1 ,  

and scalar multiplication defined by 

a .  (UO, ~ 1 , .  . ., Un-1) = (avo, aul , .  . . , ~ ~ n - 1 ) .  (2.5) 

2. The set of n-tuples of (UO, ul , . . . , ~ ~ - 1 )  with elements ui E IF2 forms a vector space which 
we denote as IF;. There are 2n elements in the vector space IF;. For n = 3, the elements of the 
vector space are 

(O,O,  0) (O,O, 1) (0, 1,O) (0, 1,1) 
(1 ,0 ,0)  (1,0, 1) ( 1 , L  0)  (1, 1, 1) 

3. In general, the set V = IF: of n-tuples of elements of the field IF, with element-by-element 
addition and scalar multiplication as in (2.5) constitutes a vector space. We call an n-tuple of 
elements of IF, simply an n-vector. 

0 

Definition 2.22 Let v1, v2, . . . , Vk be vectors in a vector space V and let 4 1 ,  a2, . . . , ak be 
scalars in P. The operation 

UlVl + a2v2 + ' .  ' akvk 

is said to be a linear combination of the vectors. 
Notationally, observe that the linear combination 

UlVl + a2v2 + ' * 'akvk 

can be obtained by forming a matrix G by stacking the vectors as columns, 

G = [V1 V2 * * .  vk] 

then forming the product with the column vector of coefficients: 

Alternatively, the vectors vi can be envisioned as row vectors and stacked as rows. The 
linear combination can be obtained by the product with a row vector of coefficients: 
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Definition 2.23 Let V be a vector space. A set of vectors G = (vl ,  v 2 ,  . . . , Vk}, each 
in V ,  is said to be a spanning set for V if every vector v E V can be written as a linear 
combination of the vectors in G. That is, for every v E V, there exists a set of scalars 

For a set of vectors G, the set of vectors obtained from every possible linear combination 
0 

It may be verified that the span of a set of vectors is itself a vector space. In light of the 
notation in (2.6), it is helpful to think of G as a matrix whose columns are the vectors v i ,  

and not simply as a set of vectors. If G is interpreted as a matrix, we take span(G) as the set 
of linear combinations of the columns of G. The space obtained by the linear combination 
of the columns of a matrix G is called the column space of G.  The space obtained by the 
linear combination of the rows of a matrix G is called the row space of G. 

It may be that there is redundancy in the vectors of a spanning set, in the sense that not 
all of them are needed to span the space because some of them can be expressed in terms 
of other vectors in the spanning set. In such a case, the vectors in the spanning set are not 
linearly independent: 

Definition 2.24 A set of vectors v 1 ,  v 2 ,  . . . , Vk is said to be linearly dependent if a set of 
scalars (al, a2, . . . , ak} exists, with not all ai = 0 such that 

al ,  a2, . . . , Uk such that V = U l V l  + Q V 2  + . . . -k Ukvk.  

of vectors in G is called the span of G, span(G). 

a l v l  f a2v2 + . . . f UkVk = 0. 

A set of vectors which is not linearly dependent is linearly independent. 0 
From the definition, if a set of vectors { v l ,  . . . , Vk) is linearly independent and there 

exists a set of coefficients {ai, . . . , a k }  such that 

U l V l  + a2v2 + . . . + a k v k  = 0, 

then it must be the case that a 1  = a2 = . . = a k  = 0. 

Definition 2.25 A spanning set for a vector space V that has the smallest possible number 
of vectors in it is called a basis for V. 

The number of vectors in a basis for V is the dimension of V.  
Clearly the vectors in a basis must be linearly independent (or it would be possible to 

form a smaller set of vectors). 

Example 2.26 Let V = Fi, the set of binary 4-tuples and let 

be a set of vectors. 

It can be verified that W is a vector space. 
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The set G is a spanning set for W, but it is not a spanning set for V .  However, G is not a basis for 
W; the set G has some redundancy in it, since the third vector is a linear combination of the first two: 

[i] = I] + [;I 
The vectors in G are not linearly independent. The third vector in G can be removed, resulting in the 
set 

Gf = [I] . [ i]l 
which has span(Gf) = W. 

No spanning set for W has fewer vectors in it than does G’, so dim(W) = 2. 0 

Theorem 2.7 Let V be a k-dimensional vector space dejned over a scalarjeld with ajni te  
number of elements q in it. Then the number of elements in V is I V I = qk.  

Proof Every vector v in V can be written as 

v = alvl + a2v2 + . . . + Q V k .  

Thus the number of elements in V is the number of distinct k-tuples (al, u2, . . . , a k )  that 
0 can be formed, which is qk .  

Definition 2.26 Let V be a vector space over a scalar field IF and let W c V be a vector 
space. That is, for any w1 and w2 E W ,  awl + bw2 E W for any a ,  b E IF. Then W is 

0 called a vector subspace (or simply a subspace) of F .  

Example 2.27 The set W in Example 2.26 is a vector space, and is a subset of V .  So W is a vector 
subspace of V. 

0 

We now augment the vector space with a new operator called the inner product, creating 
an inner product space. 

Definition 2.27 Let u = (uo, u 1 , .  . . , un-1) and v = (vo, v1, . . . , vn-1) be vectors in a 
vector space V,  where ui, vi E IF. The inner product is a function the accepts two vectors 
and returns a scalar. It may be written as (u, v) or as u . v. It is defined as 

Note, as specified by Theorem 2.7, that W has 4 = 22 elements in it. 

n-1 

( u , v ) = u . v = ~ u j . v i .  
i =O 

I7 
It is straightforward to verify the following properties: 

1. Commutativity: u . v = v . u 

2. Associativity: a . (u . v) = (a . u) . v 

3. Distributivity: u . (v + w) = u . v + u . w. 
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In physics and elementary calculus, the inner product is often called the dot product and is 
used to describe the physical concept of orthogonality. We similarly define orthogonality 
for the vector spaces of interest to us, even though there may not be a physical interpretation. 

Definition 2.28 Two vectors u and v are said to be orthogonal if u . v = 0. When u and v 
0 

Combining the idea of vector subspaces with orthogonality, we get the concept of a dual 
space: 

Definition 2.29 Let W be a k-dimensional subspace of a vector space V. The set of all 
vectors u E V which are orthogonal to all the vectors of W is called the dual space of W 
(sometimes called the orthogonal complement of W or nullspace), denoted W'. (The 
symbol W' is sometimes pronounced "W perp," for "perpendicular.") That is, 

are orthogonal, this is sometimes denoted as u I v. 

W' = {u E v : u . w = o for all w E w). 

0 
Geometric intuition regarding dual spaces frequently may be gained by thinking in three- 

dimensional space B3 and letting W be a plane through the origin and W' a line through 
the origin orthogonal to the plane. 

Example 2.28 Let V = I$ and let W be as in Example 2.26. Then it can be verified that 

Note that 

and that dim(W') = 2. 

This example demonstrates the important principle stated in the following theorem. 

Theorem 2.8 Let V be ajnite-dimensional vector space of n-tuples, IF", with a subspace 
W of dimension k. Let U = W' be the dual space of W. Then 

dim(W') = dim(V) - dim(W) = n - k. 

Proof Let gl , g2, . . . , gk be a basis for W and let 

G = [gl g2 gk]. 

This is a rank k matrix, meaning that the dimension of its column space is kand the dimension 
of its row space is k. Any vector w E W is of the form w = Gx for some vector x E IFk. 
Any vector u E U must satisfy uTGx = 0 for all x E F k .  This implies that uTG = 0. 
(That is, u is orthogonal to every basis vector for W .) 

Let [hl, h2, . . . , hr) be a basis for W', then extend this to a basis for the whole n- 
dimensional space, {hi, h2, . . . , h,, fl , fz, . . . , fnMr). Every vector v in the row space of G 
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is expressible (not necessarily uniquely) as v = bT G for some vector b E V. But since 
(hi, h2, . . . , hr , fl , f2, . . . , fn-+} spans V, b must be a linear combination of these vectors: 

b = alhl + ~2h2  + 3 * * arhr + ar+lfl + . . . + anfn-r. 

SO a vector v in the row space of G can be written as 

v =alhTG+a2h2TG+...+a,f~ -,G, 

from which we observe that the row space of G is spanned by the vectors 

{hTG, h;G,. . . , hTG,frG,. . .,fT-rG}. 

Thevectors {hl, h2, . . . , hr} arein W’, so that hTG = Ofori = 1,2, . . . , r .  The remaining 
vectors {f:G, . . . , f,’-,G} remain to span the k-dimensional row space of G. Hence, we 
must have n - r 1 k. Furthermore, these vectors are linearly independent, because if there 
is a set of coefficients {a i}  such that 

al(ffG) + - - - U ~ - ~ ( ~ : - , . G )  = 0, 

then 

But the vectors fi are not in W’, so we must have 

(alf; + . . . + anvrf:-,)G = 0. 

T alf: + . * * + an-rfn-r = 0. 

Since the vectors {fi} are linearly independent, we must have a1 = a2 = . . . = anPr = 0. 
0 Therefore, we must have dimspan([frG, . . . , f,_,G}) = k, so n - r = k. T 

2.5 Exercises 

2.1 A group can be constructed by using the rotations and reflections of a regular pentagon into itself. 
The group operator is “followed by” (e.g., a reflection p “followed by” a rotation r ) .  This is a 
permutation group, as in Example 2.10. 

(a) How many elements are in this group? 
(b) Construct the group (i.e., show the “multiplication table” for the group). 
(c) Is it an Abelian group? 
(d) Find a subgroup with five elements and a subgroup with two elements. 
(e) Are there any subgroups with four elements? Why? 

2.2 Show that only one group exists with three elements “up to isomorphism.” That is, there is only 
one way of filling out a binary operation table that satisfies all the requirements of a group. 

2.3 Show that there are two groups with four elements, up to isomorphism. One of these groups is 
isomorphic to Z4. The other is called the Klein 4-group. 

2.4 Prove that in a group G ,  the identity element is unique. 
2.5 Prove that in a group G,  the inverse a-1 of an element a is unique. 
2.6 Let G = (%16, +), the group of integers modulo 16. Let H = (4), the cyclic group generated by 

the element 4 E G. 

(a) List the elements of H .  

(b) Determine the cosets of G/  H .  
(c) Draw the “addition” table for G / H .  
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2.7 
2.8 
2.9 

2.10 

2.11 

2.12 
2.13 
2.14 
2.15 

(d) To what group is G/  H isomorphic? 

Show that if G is an Abelian group and 6 is isomorphic to G, then 6 is also Abelian. 
Let G be a cyclic group and let 
Let G be a cyclic group with generator a and let B be a group isomorphic to G. If 4 : G + B is 
an isomorphism, show that for every x E G, #(x) is completely determined by # ( a ) .  
An automorphism of a group G is an isomorphism of the group with itself, q5 : G + G. Using 
Exercise 2.9, how many automorphisms are there of 22?  of 26? of &3? of 217? 

[lo61 Let G be a finite Abelian group of order n, and let r be a positive integer relatively prime 
to n (i.e., they have no factors in common except 1). Show that the map $r : G + G defined 
by 4 r  (a)  = a‘ is an isomorphism of G onto itself (an automorphism). Deduce that the equation 
x r  = a always has a unique solution in a finite Abelian group G if r is relatively prime to the 
order of G. 
Show that the induced operation defined in Definition 2.16 is well defined if G is commutative. 
Prove Theorem 2.5. 
Show for the lattice with coset decomposition in Figure 2.2 that A/A’ ‘2 2 2  x Z2. 

Let G be a cyclic group with generator a and let 4 : G + G’ be a homomorphism onto a 
group G’. Show that the value of 4 on every element of G is determined by the value of the 
homomorphism 4 ( a ) .  

be isomorphic to G. Show that 6 is also a cyclic group. 

2.16 Let G be a group and let a E G. Let 4 : Z -+ G be defined by +(n)  = a‘. Show that 4 is a 

2.17 Show that if G, G’ and G” are groups and 4 : G + G’ and @ : G’ + G” are homomorphisms, 

2.18 Consider the set S = (0,  1,2 ,3}  with the operations 

homomorphism. Describe the image of 4 in G. 

then the composite function + o 4 : G + G’’ is a homomorphism. vF 
2 2 3 0 1  2 0 2 3 1  
3 3 0 1 2  3 0 3 1 2  

Is this a field? If not, why not? 

Does (24,  +, .) form a field? 
2.19 Construct the addition and multiplication tables for (24, +, .) and compare to the tables in (2.4). 

2.20 Use the representation of GF(4) in (2.4) to solve the following pair of equations: 

2 x + y = 3  

x + 2 y = 3 .  

2.21 Show that the vectors in a basis must be linearly independent. 
2.22 Let G = {vl , v2, . . . , vk} be a basis for a vector space V. Show that for every vector v E V, 

2.23 Show that if u is orthogonal to every basis vector for W ,  then u I W .  

2.24 The dual space WL of W is the set of vectors which are orthogonal to every vector in W. Show 

2.25 Show that the set of binary polynomials (i.e., polynomials with binary coefficients, with operations 

2.26 What is the dimension of the vector space spanned by the vectors 

there is a unique representation for v as a linear combination of the vectors in G. 

that the dual space WL of a vector space W c V is a vector subspace of V. 

in GF(2)) with degree less than r forms a vector space over GF(2) with dimension r .  

over GF(2)? 
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2.27 Find a basis for the dual space to the vector space spanned by 

((1, 1, 1,0,0), (0, 1, 1,1, O), ( O , O ,  1, 1, 111. 

2.28 Let S = (vl ,  v2, . . . , vn] be an arbitrary basis for the vector space V. Let v be an arbitrary vector 
in v; it may be expressed as the linear combination 

V = a1 Vl + ~ 2 v 2  + . . . + & V n .  

Develop an expression for computing the coefficients (ai 1 in this representation. 

y + z and z + x? 

space. 

subspace of S. 

that #(a + b) = @(a) + 4 ( b ) .  

of length n with elements from the set (-1, 1). Show that d ~ ( x ,  y) = y. 

2.29 Is it true that if x, y and z are linearly independent vectors over G F ( q )  then so also are x + y, 

2.30 Let V be a vector space and let v l ,  v2, . . . , Vk E V. Show that span([vl, v2, . . . , vk]) is a vector 

2.31 Let U and V be linear subspaces of a vector space S. Show that the intersection U n V is also a 

2.32 Let G = (Z, +) and let f=? = (Zn, +). Let 4 : G -+ 8 be defined by @(a) = a mod n.  Show 

2.33 In this exercise, let x - y denote the inner product over the real numbers. Let x and y be vectors 

2.6 References 

Group theory is presented in a variety of books; see, for example, [31] or [106]. Our 
summary of linear algebra was drawn from [373,33] and [246]. Some of the exercises were 
drawn from [373] and [106]. 



Chapter 3 

Linear Block Codes 
3.1 Basic Definitions 

Consider a source that produces symbols from an alphabet A having q symbols, where A 
forms a field. We refer to a tuple (CO, cl, . . . , cn-l) E An with n elements as an n-vector 
or an n-tuple. 

Definition 3.1 An (n, k) block code C over an alphabet of q symbols is a set of qk n-vectors 
called codewords or code vectors. Associated with the code is an encoder which maps a 

0 
For a block code to be useful for error correction purposes, there should be a one-to-one 

correspondence between a message m and its codeword c.  However, for a given code C,  
there may be more than one possible way of mapping messages to codewords. 

A block code can be represented as an exhaustive list, but for large k this would be 
prohibitively complex to store and decode. The complexity can be reduced by imposing 
some sort of mathematical structure on the code. The most common requirement is linearity. 

Definition 3.2 A block code C over a field F, of q symbols of length n and qk codewords 
is a q-ary linear (n, k) code if and only if its qk codewords form a k-dimensional vector 
subspace of the vector space of all the n-tuples Fi. The number n is said to be the length of 
the code and the number k is the dimension of the code. The rate of the code is R = k/n. 

0 
In some literature, an (n, k) linear code is denoted using square brackets, [n, k]. 
For a linear code, the sum of any two codewords is also a codeword. More generally, 

any linear combination of codewords is a codeword. 

Definition 3.3 The Hamming weight wt(c) of a codeword c is the number of nonzero 
components of the codeword. The minimum weight Wmin of a code C is the smallest 

0 
Recall from Definition 1.3 that the minimum distance is the smallest Hamming distance 

message, a k-tuple m E dk, to its associated codeword. 

Hamming weight of any nonzero codeword: Wmin = minc,c,c#O wt(c). 

between any two codewords of the code. 

Theorem 3.1 For a linear code C, the minimum distance d i n  satisjies dmin = Wmin. That 
is, the minimum distance of a linear block code is equal to the minimum weight of its nonzero 
codewords. 

Proof The result relies on the fact that linear combinations of codewords are codewords. If 
ci and cj are codewords, then so is ci - cj . The distance calculation can then be “translated 
to the origin”: 

d m i n  = min dH(c i , c j )  = min d H ( C i  - c j , c j  - c j )  = min w(c) .  
ci , cj EC, cj #Cj  C i , C j E C , C i # C j  C€C,C#O 
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0 
An (n ,  k )  code with minimum distance dmin is sometimes denoted as an (n ,  k ,  &in) code. 

As described in Section 1.8.1, the random error correcting capability of a code with 
minimum distance dfin is t = L(dfin - 1) /2]. 

3.2 The Generator Matrix Description of Linear Block Codes 

Since a linear block code C is ak-dimensional vector space, there exist k linearly independent 
vectors which we designate as go, gl ,  . . . , gk-1 such that every codeword c in C can be 
represented as a linear combination of these vectors, 

C =mogo +mlgl +. . .+  mk-lgk-1, (3.1) 

where mi E IF,. (For binary codes, all arithmetic in (3.1) is done modulo 2; for codes of 
IF,, the arithmetic is done in IF, .) Thinking of the gi as row vectors' and stacking up, we 
form the k x n matrix G. 

G =  

gk-1 

Let 
m = [mo ml ... mk-11. 

c = mG, 
Then (3.1) can be written as 

and every codeword c E C has such a representation for some vector m. Since the rows 
of G generate (or span) the (n ,  k) linear code C, G is called a generator matrix for C. 
Equation (3.2) can be thought of as an encoding operation for the code C. Representing the 
code thus requires storing only k vectors of length n (rather than the q k  vectors that would 
be required to store all codewords of a nonlinear code). 

Note that the representation of the code provided by G is not unique. From a given 
generator G, another generator G' can be obtained by performing row operations (nonzero 
linear combinations of the rows). Then an encoding operation defined by c = mGr maps 
the message m to a codeword in C,  but it is not necessarily the same codeword that would 
be obtained using the generator G. 

Example 3.1 The (7,4) Hamming code of Section 1.9 has the generator matrix 

(3.3) 

To encode the message m = [I 0 0 11, add the first and fourth rows of G (modulo 2) to obtain 

c = [ l  1 0 0 1 0 11. 

'Most signal processing and communication work employs column vectors by convention. However, a venerable 
tradition in coding theory has employed row vectors and we adhere to that through most of the book. 
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Another generator is obtained by replacing the first row of G with the sum of the first two rows of G :  

1 0 1 1 1 0 0  

0 0 0 1 1 0 1  

Form the corresponding codeword is 

c ’ = m G ’ = [ l  0 1 0 0 0 13. 

This is a different codeword than c, but is still a codeword in C. 

Definition 3.4 Let C be an ( n ,  k) block code (not necessarily linear). An encoder is sys- 
tematic if the message symbols mo, ml, . . . , mk-1 may be found explicitly and unchanged 
in the codeword. That is, there are coordinates io, i l ,  . . . , ik-1 (which are most frequently 
sequential, io, io + 1, . . . , io + k - 1) such that ci0 = mo, cil = m l ,  . . . , cik-l = mk-1. 

For a linear code, the generator for a systematic encoder is called a systematic generator. 
0 

It should be emphasized that being systematic is a property of the encoder and not a 
property of the code. For a linear block code, the encoding operation represented by G is 
systematic if an identity matrix can be identified among the rows of G. Neither the generator 
G nor G’ of Example 3.1 are systematic. 

Frequently, a systematic generator is written in the form 

9 (3.4) 

P0,O P0,l . * * P0,n-k-l 1 0 0 ... 0 
P1,O p1,1 ... P1,n-k-1 0 1 0 ... 0 

G = [P Ik] = P2,O P2,1 ’ . ‘  p2,n-k-1 0 0 1 . - *  0 

Pk-l,O Pk-l,l ’ . ’  Pk-1,n-k-1 0 0 0 * ‘ *  

c = m [ ~  I k ]  = [mP m]. 

where Zk is the k x k identity matrix and P is a k x (n - k) matrix which generatesparity 
symbols. The encoding operation is 

The codeword is divided into two parts: the part m consists of the message symbols, and 
the part mP consists of the parity check symbols. 

Performing elementary row operations (replacing a row with linear combinations of 
some rows) does not change the row span, so that the same code is produced. If two 
columns of a generator are interchanged, then the corresponding positions of the code are 
changed, but the distance structure of the code is preserved. 

Definition 3.5 Two linear codes which are the same except for a permutation of the com- 
ponents of the code are said to be equivalent codes. 

0 
Let G and G‘ be generator matrices of equivalent codes. Then G and G’ are related by 

1 ;  

the following operations: 

1. Column permutations, 

2. Elementary row operations. 
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Given an arbitrary generator G ,  it is possible to put it into the form (3.4) by performing 
Gaussian elimination with pivoting. 

Example 3.2 For G of (3.3), an equivalent generator in systematic form is 

gaussj2 .m) For the Hamming code with this generator, let the message be m = [mo, m i ,  m2, m3] and let the 
corresponding codeword be c = [CO, c1, . . . , cs] . Then the parity bits are obtained by 

CO = mo + m2 + m3 

cl =mo+ml  +m2 

c 2 = m i + m 2 + m 3  

and the systematically encoded bits are c3 = mo, c4 = m i .  c5 = m2 and cg = m3. 

3.2.1 Rudimentary Implementation 

Implementing encoding operations for binary codes is straightforward, since the multiplica- 
tion operation corresponds to the and operation and the addition operation corresponds to 
the exclusive - o r  operation. For software implementations, encoding is accomplished 
by straightforward matridvector multiplication. This can be greatly accelerated for binary 
codes by packing several bits into a single word (e.g., 32 bits in an unsigned int of 
four bytes). The multiplication is then accomplished using the bit exclus ive-or opera- 
tion of the language (e.g., the - operator of C). Addition must be accomplished by looping 
through the bits, or by precomputing bit sums and storing them in a table, where they can 
be immediately looked up. 

0 

3.3 The Parity Check Matrix and Dual Codes 

Since a linear code C is a k-dimensional vector subspace of IF:, by Theorem 2.8 there must 
be a dual space to C of dimension n - k. 

Definition 3.6 The dual space to an (n, k) code C of dimension k is the (n ,  n - k) dual 
0 

As a vector space, C' has a basis which we denote by {ha, hi, . . . , hn-k-i}. We form 
code of C,  denoted by C'. A code C such that C = C' is called a self-dual code. 

a matrix H using these basis vectors as rows: 

H =  

hn-k-1 

This matrix is known as the parity check matrix for the code C.  The generator matrix and 
the parity check matrix for a code satisfy 

IGHT. 
The parity check matrix has the following important property: 
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Theorem 3.2 Let C be an (n, k )  linear code over F, and let H be a parity check matrix for 
C. A vector v E IF: is a codeword if and only if 

vHT = O .  

That is, the codewords in C lie in the (left) nullspace of H .  

(Sometimes additional linearly dependent rows are included in H, but the same result still 
holds.) 

Proof Let c E C. By the definition of the dual code, h . c = 0 for all h E C’. Any row 
vector h E CL can be written as h = xH for some vector x. Since x is arbitrary, and in fact 
can select individual rows of H, we must have chr = 0 for i = 0, 1 , . . . , n - k - 1. Hence 
cHT = 0. 

Conversely, suppose that vHT = 0. Then vhr = 0 for i = 0, 1, . . . , n - k - 1, so that 
v is orthogonal to the basis of the dual code, and hence orthogonal to the dual code itself. 
Hence, v must be in the code C. 0 

When G is in systematic form (3.4), a parity check matrix is readily determined: 

H = [Zn-k - P T ] .  (3.6) 

(For the field P2, - 1 = 1, since 1 is its own additive inverse.) Frequently, a parity check 
matrix for a code is obtained by finding a generator matrix in systematic form and employing 
(3.6). 

Example 3.3 For the systematic generator GI’ of (3.5), a parity check matrix is 

1 0 0  1 0 1 1  

0 0 1  0 1 1 1  
0 1 0  1 1 1 0 1 .  (3.7) 

It can be verified that GttHT = 0. Furthermore, even though G is not in systematic form, it still 
generates the same code so that G H T  = 0. H is a generator for a (7,3) code, the dual code to the 
(7,4) Hamming code. 0 

The condition cH = 0 imposes linear constraints among the bits of c called the parity 
check equations. 

Example 3.4 The parity check matrix of (3.7) gives rise to the equations 

CO f C3 + Cg + C6 = 0 

C l  + c3 + c4 + c5 = 0 

C2 + C4 + C5 -k Cfj = 0 

or, equivalently, some equations for the parity symbols are 

CO = C3 + Cg + Cfj 

C l  = c3 + c4 + c5 
C2 = C4 f C5 -k Cfj. 

A parity check matrix for a code (whether systematic or not) provides information about 
the minimum distance of the code. 
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Theorem 3.3 Let a linear block code C have a parity check matrix H .  The minimum 
distance dmin of C is equal to the smallest positive number of columns of H which are 
linearly dependent. That is, all combinations of dmin - 1 columns are linearly independent, 
so there is some set of dmin columns which are linearly dependent. 

Proof Let the columns of H be designated as ho, hi, . . . , h,-1. Then since c H T  = 0 for 
any codeword c, we have 

O=coho+clhl +...+cn-lhn-1. 

Let c be the codeword of smallest weight, w = wt(c) = dmin, with nonzero positions only 
at indices i l ,  i2, . . . , i,. Then 

cil hi, + cizhi, + . . . C i w h i w  = 0. 

Clearly, the columns of H corresponding to the elements of c are linearly dependent. 
On the other hand, if there were a linearly dependent set of u < w columns of H ,  then 

0 there would be a codeword of weight u. 

Example 3.5 For the parity check matrix H of (3.7), the parity check condition is 

1 0 0- 
0 1 0  
0 0 1  

0 1 1  
1 1 1  
1 0 1  

c H T  = [CO, cl,  ~ 2 ,  c3, c4, c5, c6] 

, ,  I 1  , 1  

The first, second, and fourth rows of H are linearly dependent, and no fewer rows of H T  are linearly 
dependent. 

- - cO[l, 0, 01 + c1[0, 1 ,  01 + c2[0, 0% 11 + C3[1, 1, 01 + C4[0 1 11 fCs[l 1 11 + C6[1 0 11 

3.3.1 Some Simple Bounds on Block Codes 

Theorem 3.3 leads to a relationship between d d n ,  n,  and k :  

Theorem 3.4 The Singleton bound. 
bounded by 

The minimum distance for an ( n ,  k )  linear code is 

dmin 5 n - k + 1. (3.8) 

Note: Although this bound is proved here for linear codes, it is also true for nonlinear codes. 
(See [220].) 

Proof An (n ,  k )  linear code has a parity check matrix with n - k linearly independent 
rows. Since the row rank of a matrix is equal to its column rank, rank(H) = n - k.  Any 
collection of n - k + 1 columns must therefore be linearly dependent. Thus by Theorem 

0 
A code for which dmin = n - k + 1 is called a maximum distance separable ( M D S )  code. 

3.3, the minimum distance cannot be larger than n - k + 1. 

Thinking geometrically, around each code point is a cloud of points corresponding to 
non-codewords. (See Figure 1.17.) For a q-ary code, there are ( q  - 1)n vectors at a 
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Hamming distance 1 away from a codeword, (q  - l)2(;) vectors at a Hamming distance 2 
away from a codeword and, in general, (q  - 1)‘ (‘f) vectors at a Hamming distance 2 from a 
codeword. 

Example 3.6 Let C be a code of length n = 4 over GF(3) ,  so q = 3. Then the vectors at a Hamming 
distance of 1 from the [0, 0, 0, 01 codeword are 

[I ,  o,o, 01, [O, 1,0,01, [O, 0,  1,01, [O, o,o, 11 
[2,0,0,01, [O, 2,0,01, [O, 0,2,01, [O,O, 0,21. 

0 

The vectors at Hamming distances 5 t away from a codeword form a “sphere” called the 
Hamming sphere of radius t .  The number of codewords in a Hamming sphere up to radius 
t for a code of length n over an alphabet of q symbols is denoted Vq(n,  t ) ,  where 

t 

v,<n, t )  = c (;& - w.  (3.9) 

The bounded distance decoding sphere of a codeword is the Hamming sphere of radius t = 
L(din  - 1)/2] around the codeword. Equivalently, a code whose random error correction 
capability is t must have a minimum distance between codewords satisfying d ~ n  2 2t + 1. 

The redundancy of a code is essentially the number of parity symbols in a codeword. 
More precisely we have 

r = n -log, M ,  

where M is the number of codewords. For a linear code we have M = q k ,  so r = n - k .  

j =O 

Theorem 3.5 (The Hamming Bound) A t-random error correcting q-ary code C must 
have redundancy r satisfying 

r 2 log, Vq(n,  t ) .  

Proof Each of M spheres in C has radius t .  The spheres do not overlap, or else it would 
not be possible to decode t errors. The total number of points enclosed by the spheres must 
be 5 qn . We must have 

MVq(n, t )  I qn 

so 
q n / M  2 V&, t ) ,  

from which the result follows by taking log, of both sides. 0 
A code satisfying the Hamming bound with equality is said to be a perfect code. Actu- 

ally, being perfect codes does not mean the codes are the best possible codes; it is simply a 
designation regarding how points fall in the Hamming spheres. The set of perfect codes is 
actually quite limited. It has been proved (see [220]) that the entire set of perfect codes is: 

1. The set of all n-tuples, with minimum distance = 1 and t = 0. 

2. Odd-length binary repetition codes. 

3. Binary Hamming codes (linear) or other nonlinear codes with equivalent parameters. 

4. The binary (23, 12,7) Golay code G23. 

5. The ternary (i.e., over GF(3)) (11,6,5) code G11 and the (23,llS)code G23. These 
codes are discussed in Chapter 8. 
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Box 3.1: Error Correction and Least-Squares 

The hard-input decoding problem is: Given r = mG + e, compute m. Readers 
familiar with least-squares problems (see, e.g., [246]) will immediately rec- 
ognize the structural similarity of the decoding problem to least-squares. If a 
least-squares solution were possible, the decoded value could be written as 

m = rGT(GGT)-', 

reducing the decoding problem to numerical linear algebra. Why cannot least- 
squares techniques be employed here? In the first place, it must be recalled 
that in least squares, the distance function d is induced from an inner product, 
d ( x ,  y)  = (x - y ,  x - Y ) ' / ~ ,  while in our case the distance function is the 
Hamming distance - which measures the likelihood - which is not induced 
from an inner product. The Hamming distance is a function IF: x IF: + N, while 
the inner product is a function IF: x IF: + IF: : the codomains of the Hamming 
distance and the inner product are different. 

3.4 Error Detection and Correction over Hard-Input Channels 

Definition 3.7 Let r be an n-vector over F, and let H be a parity check matrix for a code 
C. Thevector 

-1 (3.10) 

0 
By Theorem 3.2, s = 0 if and only if r is a codeword of C. In medical terminology, a 

syndrome is a pattern of symptoms that aids in diagnosis; here s aids in diagnosing if r is a 
codeword or has been corrupted by noise. As we will see, it also aids in determining what 
the error is. 

is called the syndrome of r. 

3.4.1 Error Detection 

The syndrome can be used as an error detection scheme. Suppose that a codeword c in a 
binary linear block code C over IF, is transmitted through a hard channel (e.g., a binary code 
over a BSC) and that the n-vector r is received. We can write 

r = c + e ,  

where the arithmetic is done in IF,, and where e is the error vector, being 0 in precisely the 
locations where the channel does not introduce errors. The received vector r could be any 
of the vectors in IF:, since any error pattern is possible. Let H be a parity check matrix for 
C. Then the syndrome 

s = rHT = (c + e)HT = eHT. 

From Theorem 3.2, s = 0 if r is a codeword. However, if s # 0, then an error condition has 
been detected we do not know what the error is, but we do know that an error has occurred. 

3.4.2 Error Correction: The Standard Array 

Let us now consider one method of decoding linear block codes transmitted through a hard 
channel using maximum likelihood (ML) decoding. As discussed in Section 1.8.1, ML 
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decoding of a vector r consists of choosing the codeword c E C that is closest to r in 
Hamming distance. That is, 

2 = argmindH(c, r). 
C € C  

Let the set of codewords in the code be {co, c1, . . . , C M - ~ } ,  where M = qk. Let us take 
co = 0, the all-zero codeword. Let Vi denote the set of n-vectors which are closer to the 
codeword Cj than to any other codeword. (Vectors which are equidistant to more than one 
codeword are assigned into a set Vi at random.) The sets { Vi , i = 0, 1, . . . , M - 1) partition 
the space of n-vectors into M disjoint subsets. If r falls in the set Vi, then, being closer to 
Ci than to any other codeword, r is decoded as ci . So, decoding can be accomplished if the 
Vi sets can be found. 

The standardarray is a representation of the partition { Vj }. It is a two-dimensional array 
in which the columns of the array represent the Vi . The standard array is built as follows. 
First, every codeword Cj belongs in its own set Vj . Writing down the set of codewords thus 
gives the first row of the array. Now, from the remaining vectors in Ft , find the vector el of 
smallest weight. This must lie in the set VO, since it is closest to the codeword co = 0. But 

d ~ ( e 1  + ci, ci> = &(el, 01, 

for each i ,  so the vector el + ci must also lie in Vi for each i. So el + Ci is placed into each 
Vj . The vectors el + ci are included in their respective columns of the standard array to form 
the second row of the standard array. The procedure continues, selecting an unused vector 
of minimal weight and adding it to each codeword to form the next row of the standard 
array, until all q" possible vectors have been used in the standard array. In summary: 

1. Write down all the codewords of the code C. 

2. Select from the remaining unused vectors of IF; one of minimal weight, e. Write e in 
the column under the all-zero codeword, then add e to each codeword in turn, writing 
the sum in the column under the corresponding codeword. 

3. Repeat step 2 until all q" vectors in JF: have been placed in the standard array. 

Example 3.7 For a (7,3) code, a generator matrix is 

1 0 1 1 1 1 0 0  

1 1 0 1 0 0 1  

The codewords for this code are 

rowl OOOooO0 I 0111100 1011010 1100110 1101001 1010101 0110011 oO01111 

From the remainin 7 tuples, one of minimal weight is selected take (1000000). The second row 
is obtained by adding &,to each codeword 

rowl 0000000 I 0111100 1011010 1100110 1101001 1010101 0110011 0001111 
row2 1oooOOO I 1111100 0011010 0100110 0101001 0010101 1110011 1001111 

Now proceed until all 2" vectors are used, selecting an unused vector of minimum weight and 

(The horizontal lines in the standard array separate the error patterns of different weights.) 0 

We make the following observations: 

adding it to all the codewords. The result is shown in Table 3.1. 
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row1 oooO000 
row2 1oO0oO0 
row3 0100000 
row4 0010000 
row5 0001000 
row6 0000100 
row7 oO00010 
row8 0000001 
row9 1100000 
row 10 1010000 
row 11 0110000 
row 12 1001000 
row 13 0101000 
row 14 0011000 
row 15 1000100 
row16 1110000 

Table 3.1 : The Standard Array for a Code 

011 1100 
111 1100 
001 1100 
0101100 
0110100 
0111000 
01 11 110 
0111101 
1011100 
1101100 
0001 100 
1110100 
0010100 
0100100 
1111000 
1001100 

1011010 
0011010 
1111010 
1001010 
1010010 
1011110 
1011000 
1011011 
0111010 
0001010 
1101010 
0010010 
1110010 
1000010 
0011 110 
0 10 10 10 

1100110 
0100110 
1o00110 
11 101 10 
1101110 
1100010 
1100100 
11001 11 
00001 10 
0110110 
1010110 
0101110 
1001110 
11111 10 
0100010 
0010110 

1101001 
0101001 
1001001 
1111001 
1100001 
1101101 
1101011 
1101000 
0001001 
01 1 100 1 
1011001 
0100001 
1000001 
1110001 
0101101 
0011001 

1010101 
0010101 
1110101 
1000101 
1011101 
1010001 
1010111 
1010100 
0110101 
0000101 
1100101 
0011101 
11 11 101 
1001101 
0010001 
0100101 

0110011 
11 1001 1 
0010011 
0100011 
0111011 
01 101 11 
01 10001 
0110010 
1010011 
11oO011 
000001 1 
111101 1 
0011011 
0101011 
11101 11 
1000011 

oO01111 
1001111 
0101 11 1 
001 1 1 1 1 
00001 11 
0001011 
0001101 
0001 1 10 
1101111 
1011 11 1 
0111111 
10001 11 
0100111 
0010111 
1001011 
1111111 

1. There are qk codewords (columns) and qn possible vectors, so there are qn-k rows in 
the standard array. We observe, therefore, that: an (n ,  k) code is capable of correcting 
qn-k different error patterns. 

2. The difference (or sum, over GF(2))  of any two vectors in the same row of the 
standard array is a code vector. In a row, the vectors are Ci + e and C j  + e. Then 

(Ci+e) - (c j+e)  = C i - C j ,  

which is a codeword, since linear codes form a vector subspace. 

we have 
3. No two vectors in the same row of a standard array are identical. Because otherwise 

e + Ci = e + C j ,  with i # j ,  

which means ci = cj, which is impossible. 

4. Every vector appears exactly once in the standard array. We know every vector must 
appear at least once, by the construction. If a vector appears in both the Zth row and 
the mth row we must have 

el + Ci = em + cj 

for some i and j .  Let us take 1 < m. We have 

em = el +ci - C .  J - - el + ck 

for some k .  This means that em is on the Zth row of the array, which is a contradiction. 

The rows of the standard array are called cosets. Each row is of the form 

e + C  = { e + c :  c E C}. 

That is, the rows of the standard array are translations of C. These are the same cosets we 
met in Section 2.2.3 in conjunction with groups. 

The vectors in the first column of the standard array are called the coset leaders. They 
represent the error patterns that can be corrected by the code under this decoding strategy. 
The decoder of Example 3.7 is capable of correcting all errors of weight 1 ,7  different error 
patterns of weight 2, and 1 error pattern of weight 3. 
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To decode with the standard array, we first locate the received vector r in the standard 
array. Then identify 

r = e + c  

for a vector e which is a coset leader (in the left column) and a codeword c (on the top row). 
Since we designed the standard array with the smallest error patterns as coset leaders, the 
error codeword so identified in the standard array is the ML decision. The coset leaders are 
called the correctable error patterns. 

Example 3.8 For the code of Example 3.7, let 

r = [O, 0, 1, l,O, 1, 11 

(shown in bold in the standard array) then its coset leader is e = [0, 1,0, 1, 0, 0, 01 and the codeword 
is c = [0, 1, 1,0, 0, 1, 11, which corresponds to the message m = [0, 1, 11, since the generator is 
systematic. 13 

Example 3.9 It is interesting to note that for the standard array of Example 3.7, not all (i) = 21 
patterns of 2 errors are correctable. Only 7 patterns of two errors are correctable. However, there is 
one pattern of three errors which is correctable. 

The minimum distance for this code is clearly 4, since the minimum weight of the nonzero 
codewords is 4. Thus, the code is guaranteed to correct only L(4 - 1)/2] = 1 error and, in fact it 
does correct all patterns of single errors. (3 

As this decoding example shows, the standard array decoder may have coset leaders with 
weight higher than the random-error-correcting capability of the code t = L(dmin - 1)/2]. 

Definition 3.8 A complete error correcting decoder is a decoder that given the received 
word r, selects the codeword c which minimizes dH(r, c). That is, it is the ML decoder for 
the BSC channel. 0 

If a standard array is used as the decoding mechanism, then complete decoding is 
achieved. On the other hand, if the rows of the standard array are filled out so that aZE 
instances of up to t errors appear in the table, and all other rows are left out, then a bounded 
distance decoder is obtained. 

Definition 3.9 A t-error correcting bounded distance decoder selects the codeword c 
given the received vector r if dH(r, c) 5 t. If no such c exists, then a decoder failure is 
declared. 0 

This observation motivates the following definition. 

Example 3.10 In Table 3.1, only up to row 8 of the table would be used in a bounded distance decoder, 
which is capable of correcting up to t = L(ddn - 1)/2] = L(4 - 1)/2] = 1 error. A received vector 
r appearing in rows 9 through 16 of the standard array would result in a decoding failure. 0 

A perfect code can be understood in terms of the standard array: it is one for which 
there are no “leftover” rows: all (7 )  error patterns of weight t and all lighter error patterns 
appear as coset leaders in the table, with no “leftovers.” What makes it “perfect” then, is 
that the bounded distance decoder is also the ML decoder. 

The standard array can, in principle, be used to decode any linear block code, but suffers 
from a major problem: the memory required to represent the standard array quickly become 
excessive, and decoding requires searching the entire table to find a match for a received 
vector r. For example, a (256,200) binary code - not a particularly long code by modern 
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standards - would require 2256 vectors of length 256 bits to be stored in it 
and every decoding operation would require on average searching through half of the table. 

A first step in reducing the storage and search complexity (which doesn't go far enough) 
is to use syndrome decoding. Let e + c be a vector in the standard array. The syndrome 
for this vector is s = (e + c) H = eHT. Furthermore, every vector in the coset has the 
same syndrome: (e + c ) H T  = eHT. We therefore only need to store syndromes and their 
associated error patterns. This table is called the syndrome decoding table. It has q"-k rows 
but only two columns, so it is smaller than the entire standard array. But is still impractically 
large in many cases. 

1.2 x 

With the syndrome decoding table, decoding is done as follows: 

1. Compute the syndrome, s = rHT 

2. In the syndrome decoding table look up the error pattern e corresponding to s. 

3. Then c = r + e. 

Example 3.11 For the code of Example 3.7 a parity check matrix is 

r l  o o o o 1 1 1  
0 1 0 0 1 0 1  
0 0 1 0 1 1 0 '  

The syndrome decoding table is 

Error Syndrome 
0000000 0000 
1000000 1000 
0100000 0100 
0010000 0010 
0001000 0001 
0000100 0111 
0000010 1011 
0000001 1101 
1100000 1100 
1010000 1010 
0110000 0110 
1001000 1001 
0101000 0101 
0011000 0011 
1000100 1111 
1110000 1110 

Suppose that r = [0, 0, 1 ,  1,0, 1 ,  11, as before. The syndrome is 

s = r H T = [ O  1 0 1 1 ,  

(in bold in the table) which corresponds to the coset leader e = [0 1 0 1 0 0 01. The 
decoded codeword is then 

t = [O,O, 1,1,0,1,11 +LO, 1,0, 1,0,0,01 = [O, 1, 1,0,0,  1 ,  11, 

as before. 0 

Despite the significant reduction compared to the standard array, the memory requirements 
for the syndrome decoding table are still very high. It is still infeasible to use this technique 
for very long codes. Additional algebraic structure must be imposed on the code to enable 
decoding long codes. 
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3.5 Weight Distributions of Codes and Their Duals 

The weight distribution of a code plays a significant role in calculating probabilities of error. 

Definition 3.10 Let C be an (n, k )  code. Let Ai denote the number of codewords of weight 
i in C. Then the set of coefficients [Ao, A1, . . . , An} is called the weight distribution for 
the code. 

It is convenient to represent the weight distribution as a polynomial, 

A ( z )  = A0 + A l z  + A2z2 + * * * + An?"' (3.1 1) 

0 
The weight enumerator is (essentially) the z-transform of the weight distribution se- 

This polynomial is called the weight enumerator. 

quence. 

Example 3.12 For the code of Example 3.7, there is one codeword of weight 0. The rest of the 
codewords all have weight 4. So A0 = 1, A4 = 7. Thus 

A(z) = 1 + 7z4. 

There is a relationship, known as the MacWilliams identity, between the weight enumerator 
of a linear code and its dual. This relationship is of interest because for many codes it is 
possible to directly characterize the weight distribution of the dual code, from which the 
weight distribution of the code of interest is obtained by the MacWilliams identity. 

Theorem 3.6 (The MacWilliams Identity). Let C be an (n, k )  linear block code over F, 
with weight enumerator A ( z )  and let B ( z )  be the weight enumerator of C'. Then 

06 turning this around algebraically, 

(3.12) 

(3.13) 

The proof of this theorem reveals some techniques that are very useful in coding. We give 
the proof for codes over P2, but it is straightforward to extend to larger fields (once you 
are familiar with them). The proof relies on the Hadamard transform. For a function f 
defined on IF;, the Hadamard transform f of f is 

V € F $  V € F $  

where the sum is taken over all 2n n-tuples v = (vo, v l ,  . . . , vn- l ) ,  where each Uj E IF;. 

Lemma 3.7 I f C  is an (n ,  k )  binary linear code and f is afunction dejined on IF;, 

Here IC I denotes the number of elements in the code C. 
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Proof of lemma. 

U € C  U€C v a ;  v€F; U€C 

= c f(") ~ ( - l ) ( ~ J )  + c f(v) E ( - l ) ( U J ) ,  

V€CL U€C V€C\{O} U€C 

where IF; has been partitioned into two disjoint sets, the dual code CL and the nonzero 
elements of the code, C \ {O}. In the first sum, (u, v) = 0, so the inner sum is ICI. In the 
second sum, for every v in the outer sum, (u, v) takes on the values 0 and 1 equally often 
as u varies over C in the inner sum, so the inner sum is 0. Therefore 

Proof of Theorem 3.6. Note that the weight enumerator can be written as 

C€C 

Let f(u) = zwt(u). Taking the Hadamard transform we have 

f (u )  = c ( - l ) (~J)zwt(v) .  

V € F %  

Writing out the inner product and the weight function explicitly on the vectors u = (uo, u 1,  

. . . , un-i)  and v = (vo, v1, . . . , vn-1) we have 

n-1 n-1 

The sum over the 2" values of v E IF; can be expressed as n nested summations over the 
binary values of the elements of v: 

1 1  1 n-1 

uo=O u1 =O u,-l =O i d  

Now the distributive law can be used to pull the product out of the summations2, 

n-1 1 

i=O ui=O 

If ui = 0 then the inner sum is 1 + z .  If ui = 1 then the inner sum is 1 - z. Thus 

*The distributive law reappears in a generalized way in Chapter 16. We make the interesting observation here 
that the use of the distributive law gives rise to a "fast" Hadamard transform, analogous to and similarly derived 
as the fast Fourier transform. 
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Now applying Lemma 3.7 we obtain 

3.6 Hamming Codes and Their Duals 

We now formally introduce a family of binary linear block codes, the Hamming codes, and 
their duals. 

Definition 3.11 For any integer rn 2 2, a (2m - 1, 2m - rn - 1,3) binary code may be 
defined by its rn x n parity check matrix H ,  which is obtained by writing all possible binary 
m-tuples, except the all-zero tuple, as the columns of H. For example, simply write out the 
rn-bit binary representation for the numbers from 1 to n in order. Codes equivalent to this 

0 construction are called Hamming codes. 
For example, when m = 4 we get 

1 H = [  0 0 0 1 1 1 1 0 0 0 0 1 1 1 1  

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1  
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1  

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1  
1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  

as the parity check matrix for a (15, l l )  Hamming code. However, it is usually convenient 
to reorder the columns -resulting in an equivalent code - so that the identity matrix which 
is interspersed throughout the columns of H appears in the first rn columns. We therefore 
write 

0 0 1 0  

1 0 0 0  1 1 0 1 1 0 1 0 1 0 1  
0 1 0 0  1 0 1 1 0 1 1 0 0 1 1  

0 0 0 1  0 0 0 0 1 1 1 1 1 1 1  

H = [  

1 2 4 8  3 5 6 7 9 10 I I  12 13 14 15 

It is clear from the form of the parity check matrix that for any rn there exist three columns 
which add to zero; for example, 

so by Theorem 3.3 the minimum distance is 3; Hamming codes are capable of correcting 1 
bit error in the block, or detecting up to 2 bit errors. 

An algebraic decoding procedure for Hamming codes was described in Section 1.9.1. 
The dual to a (2m - 1, 2m - m - 1) Hamming code is a (2m - 1, rn) code called a 

simplex code or a maximal-length feedback shift register code. 

Example 3.13 The parity check matrix of the (7,4) Hamming code of (3.7) can be used as a generator 
of the (7,3) simplex code with codewords 
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0000000 100101 1 
0101 110 001011 1 
1100101 101 1 loo 
01 11001 11 10010 

Observe that except for the zero codeword, all codewords have weight 4. 0 

In general, all of the codewords of the (2m - 1, m )  simplex code have weight 2m-' (see Ex- 
ercise 3.12) and every pair of codewords is at a distance 2m-' apart (which is why it is called 
a simplex). For example, for the m = 2 case, the codewords {(000), (101), (Oll), (110)) 
form a tetrahedron. Thus the weight enumerator of the dual code is 

B(z) = 1 + (2m - 1)z2"-'. (3.14) 

From the weight enumerator of the dual, we find using (3.13) that the weight distribution 
of the Hamming code is 

1 

n + l  
A(z) = - [(l + z)" + n( l  - z)(l - z2)("-1)'2 I. (3.15) 

Example 3.14 For the (7,4) Hamming code the weight enumerator is 

A(z) = 8 1 [(l + z17 + 7(1 - z)(l - z213] = 1 + 7z3 + 72 4 7  + z . (3.16) 

Example 3.15 For the (15,ll) Hamming code the weight enumerator is 

1 
16 

A(z) = -((I +z)15 + 15(1 - Z)(l - Z217) 

(3.17) = 1 + 35z3 + 1 0 5 ~ ~  + 1 6 8 ~ ~  + 280z6 + 4 3 5 ~ ~  + 435z8 + 2 8 0 ~ ~  + 168~" 

+ 105z" + 3 . 5 ~ ' ~  + zI5. 

U 

3.7 Performance of Linear Codes 

There are several different ways that we can characterize the error detecting and correcting 
capabilities of codes at the output of the channel decoder [373]. 

P(E) is the probability of decoder error, also known as the word error rate. This is 
the probability that the codeword at the output of the decoder is not the same as the 
codeword at the input of the encoder. 

&(E) or Pb is the probability of bit error, also known as the bit error rate. This is the 
probability that the decoded message bits (extracted from a decoded codeword of a 
binary code) are not the same as the encoded message bits. Note that when a decoder 
error occurs, there may be anywhere from 1 to k message bits in error, depending on 
what codeword is sent, what codeword was decoded, and the mapping from message 
bits to codewords. 

Pu (E) is the probability of undetected codeword error, the probability that errors oc- 
curring in a codeword are not detected. 
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Pd(E)  is the probability of detected codeword error, the probability that one or more 
errors occurring in a codeword are detected. 

Pub is the undetected bit error rate, the probability that a decoded message bit is in error 
and is contained within a codeword corrupted by an undetected error. 

Pdb is the detected bit error rate, the probability that a received message bit is in error 
and is contained within a codeword corrupted by a detected error. 

P ( F )  is the probability of decoder failure, which is the probability that the decoder is 
unable to decode the received vector (and is able to determine that it cannot decode). 

In what follows, bounds and exact expressions for these probabilities will be developed. 

3.7.1 Error detection performance 

All errors with weight up to dmin - 1 can be detected, so in computing the probability of 
detection only error patterns with weight &in or higher need be considered. If a codeword 
c of a linear code is transmitted and the error pattern e happens to be a codeword, e = c', 
then the received vector 

r = c + c '  

is also a codeword. Hence, the error pattern would be undetectable. Thus, the probability 
that an error pattern is undetectable is precisely the probability that it is a codeword. 

We consider only errors in transmission of binary codes over the BSC with crossover 
probability p .  (Extension to codes with larger alphabets is discussed in [373].) The proba- 
bility of any particular pattern of j errors in a codeword is p j  (1 - p)"-'. Recalling that A j  
is the number of codewords in C of weight j ,  the probability that j errors form a codeword 
is A j  p j  ( 1  - p)"- j .  The probability of undetectable error in a codeword is then 

n 

P u ( E )  = A j p j ( 1  - p ) " - j .  (3.18) 
j=&i, 

The probability of a detected codeword error is the probability that one or more errors occur 
minus the probability that the error is undetected: 

Computing these probabilities requires knowing the weight dstribution of the code, which 
is not always available. It is common, therefore, to provide bounds on the performance. A 
bound on Pu ( E )  can be obtained by observing that the probability of undetected error is 
bounded above by the probability of occurrence of any error patterns of weight greater than 
or equal to Since there are (7) different ways that j positions out of ~t can be changed, 

(3.19) 

A bound on Pd ( E )  is simply 
P d ( E )  5 1 - ( 1  - p)" .  
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probdetH15.m 
probdet .m 

Example 3.16 For the Hamming (7,4) code with A (z) = 1 + 7z3 + 7z4 + z7, 

3 Pu(E) = 7 p  (I - pl4 + 7p4(1 - p13 + p 7 .  

If p = .01 then Pu(E) 6.79 x lop6. The bound (3.19) gives P u ( E )  < 3.39 x 0 

The corresponding bit error rates can be bounded as follows. The undetected bit error 
rate Pub can be lower-bounded by assuming the undetected codeword error corresponds to 
only a single message bit error. Pub can be upper-bounded by assuming that the undetected 
codeword error corresponds to all k message bits being in error. Thus 

1 
- P u ( E )  I: I P u ( E ) .  
k 

1 
- P d ( E )  I: pdb I: P d ( E ) .  k 

Similarly for Pdb : 

Example 3.17 Figure 3.1 illustrates the detection probabilities for a BSC derived from a BPSK 
system, withp = Q(,/-), for aHamming (15,ll) code. The weight enumerator is in (3.17). 
For comparison, the probability of an undetected error for the uncoded system is shown, in which 
any error is undetected, so Pu,uncoded = I - (1 - Puncod&, where Puncoded = ~(4-1. 
Note that the upper bound on Pu is not very tight, but the upper bound on Pd is tight - they are 
indistinguishable on the plot, since they differ by Pu(E), which is orders of magnitude smaller than 
Pd ( E ) .  The uncoded probability of undetected error is much greater than the coded Pu. 0 

loo * g 1 

+ P"(E) 

d Pd(E) 

- +- . Pu(E) upper bound 

- + . P&E) upper bound 

+ PJE) uncoded 
I I 

Figure 3.1: Error detection performance for a (15,l l)  Hamming code. 

3.7.2 Error Correction Performance 

An error pattern is correctable if and only if it is a coset leader in the standard array for 
the code, so the probability of correcting an error is the probability that the error is a coset 
leader. Let ai denote the number of coset leaders of weight i . The numbers c q ,  a1 , . . . , an 
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are called the coset leader weight distribution. Over a BSC with crossover probability 
p ,  the probability of j errors forming one of the coset leaders is a, p j  (1 - p)"-j. The 
probability of a decoding error is thus the probability that the error is not one of the coset 
leaders 

n 

This result applies to any linear code with a complete decoder. 

Example 3.18 For the standard array in Table 3.1, the coset leader weight distribution is 

U p  = 0.01, then P ( E )  = 0.0014. 0 

Most hard-decision decoders are bounded-distance decoders, selecting the codeword c 
which lies within a Hamming distance of L(dmin - 1)/2] of the received vector r. An exact 
expression for the probability of error for a bounded-distance decoder can be developed as 
follows. Let Pi] be the probability that a received word r is exactly Hamming distance 1 
from a codeword of weight j .  

Lemma 3.8 [373, p .  2491 

Proof Assume (without loss of generality) that the all-zero codeword was sent. Let c be 
a codeword of weight j ,  where j # 0. Let the coordinates of c which are 1 be called the 
1-coordinates and let the coordinates of c which are 0 be called the 0-coordinates. There 
are thus j 1-coordinates and n - j 0-coordinates of c. Consider now the ways in which 
the received vector r can be a Hamming distance 1 away from c. To differ in 1 bits, it must 
differ in an integer r number of 0-coordinates and 1 - r 1-coordinates, where 0 5 r 5 1. 
The number of ways that r can differ from c in r of the 0-coordinates is ("i'). The total 
probability of r differing from c in exactly r 0-coordinates is 

The number of ways that rcan differ from cin 1 -r of the 1-coordinates is (j-({-rl)) = (lir). 
Since the all-zero codeword was transmitted, the 1 - r coordinates of r must be 0 (there 
was no crossover in the channel) and the remaining j - (1 - r) bits must be 1. The total 
probability of r differing from c in exactly 1 - r 1-coordinates is 

( 1 r) pj-l+r (1 - p)l-'. 

The probability P/ is obtained by multiplying the probabilities on the 0-coordinates and the 
1-coordinates (they are independent events since the channel is memoryless) and summing 
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over r : 

0 
The probability of error is now obtained as follows. 

Theorem 3.9 For a binary (n,  k )  code with weight distribution { A i ) ,  the Probability of 
decoding error for a bounded distance decoder is 

n 

(3.20) 

Proof Assume that the all-zero codeword was sent. For a particular codeword of weight 
j # 0, the probability that the received vector r falls in the decoding sphere of that codeword 
is 

Then the result follows by adding up over all possible weights, scaled by the number of 
0 

The probability of decoder failure for the bounded distance decoder is the probability that 
the received codeword does not fall into any of the decoding spheres, 

codewords of weight j ,  A j . 

l(dmin-1)/2J 

P ( F )  = 1 - c ( ; ) p j ( l  - p y - j  - P ( E ) .  + 
i , probability of 

j =O 

probability of falling in the 
falling in correct incorrect 
decoding sphere decoding sphere 

Exact expressions to compute Pb ( E )  require information relating the weight of the mes- 
sage bits and the weight of the corresponding codewords. This information is summarized 
in the number B j  , which is the total weight of the message blocks associated with codewords 
of weight j .  

Example 3.19 For the (7,4) Hamming code, 83 = 12,84 = 16, and 87 = 4. That is, the total 
weight of the messages producing codewords of weight 3 is 12; the total weight of messages producing 

0 codewords of weight 4 is 16. 

Modifying (3.20) we obtain 
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(See hamcode74pe. m.) Unfortunately, while obtaining values for B j  for small codes 
is straightforward computationally, appreciably large codes require theoretical expressions 
which are usually unavailable. 

The probability of decoder error can be easily bounded by the probability of any error 
patterns of weight greater than L(dmin - 1)/2] : 

An easy bound on probability of failure is the same as the bound on this probability of error. 
Bounds on the probability of bit error can be obtained as follows. A lower bound is 

obtained by assuming that a decoder error causes a single bit error out of the k message 
bits. An upper bound is obtained by assuming that all k message bits are incorrect when the 
block is incorrectly decoded. This leads to the bounds 

1 
-P(E) I Pb(E) I P(E). k 

3.7.3 Performance for Soft-Decision Decoding 

While all of the decoding in this chapter has been for hard-input decoders, it is interesting to 
examine the potential performance for soft-decision decoding. Suppose the codewords of 
an (n, k, ddn)  code C are modulated to a vectors using BPSK having energy E, = REb per 
coded bit and transmitted through an AWGN with variance c2 = No/2. The transmitted 
vector s is a point in n-dimensional space. In Exercise 1.15, it is shown that the Euclidean 
distance between two BPSK modulated codewords is related to the Hamming distance 
between the codewords by 

dE = 2JE,dH. 

Suppose that there are K codewords (on average) at a distance dmin from a codeword. By 
the union bound (1.28), the probability of a block decoding error is given by 

Neglecting the multiplicity constant K ,  we see that we achieve essentially comparable 
performance compared to uncoded transmission when 

- E b  for uncoded = RdminEb for coded. 
NO No 

The asymptotic coding gain is the factor by which the coded Eb/No can be decreased to 
obtain equivalent performance. (It is called asymptotic because it applies only as the SNR 
becomes large enough that the union bound can be regarded as a reasonable approximation.) 
In this case the asymptotic coding gain is 

Rdmin. 

Recall that Figure 1.19 illustrated the advantage of soft-input decoding compared with 
hard-input decoding. 
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3.8 Erasure Decoding 

An erasure is an error in which the error location is known, but the value of the error is not. 
Erasures can arise in several ways. In some receivers the received signal can be examined 
to see if it falls outside acceptable bounds. If it falls outside the bounds, it is declared as an 
erasure. (For example, for BPSK signaling, if the received signal is too close to the origin, 
an erasure might be declared.) 

Example 3.20 Another way that an erasure can occur in packet-based transmission is as follows. 
Suppose that a sequence of codewords c1, c2, . . . , C N  are written into the rows of a matrix 

then the columns are read out, giving the data sequence 

[ C I O ~  ~ 2 0 3 . .  . ,  ~ ~ 0 1 3  Cell, ~ 2 1 3 .  . . ,  ~ ~ 1 1 3  [c122 ~ 2 2 9 . .  . ,  ~ ~ 2 1 , .  . . , [ c ln - l ,  c2n-13. .  . ,  c ~ n - 1 1 .  

Suppose that these are now sent as a sequence of n data packets, each of length N ,  over a channel 
which is susceptible to packet loss, but where the loss of a packet is known at the receiver (such as the 
internet using a protocol that does not guarantee delivery, such as UDP). At the receiver, the packets 
are written into a matrix in column order - leaving an empty column corresponding to lost packets 
- then read out in row order. Suppose in this scheme that one of the packets, say the third, is lost in 
transmission. Then the data in the receiver interleaver matrix would look like 

where the gray boxes indicate lost data. While a lost packet results in an entire column of lost data, 
it represents only one erased symbol from the de-interleaved codewords, a symbol whose location is 
known. 0 

Erasures can also sometimes be declared using concatenated coding techniques, where an 
outer code declares erasures at some symbol positions, which an inner code can then correct. 

Consider the erasure capability for a code of distance df in .  A single erased symbol 
removed from a code (with no additional errors) leaves a code with a minimum distance at 
least df in  - 1. Thus f erased symbols can be “filled” provided that f < dfin.  For example, 
a Hamming code with dmin = 3 can correct up to 2 erasures. 

Now suppose that there are both errors and erasures. For a code with d ~ n  experiencing 
a single erasure, there are still n - 1 unerased coordinates and the codewords are separated 
by a distance of at least dfin - 1. More generally, if there are f erased symbols, then the 
distance among the remaining digits is at least d f i n  - f .  Letting tf denote the random error 
decoding distance in the presence of f erasures, we can correct up to 
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I Box 3.2: The UDP Protocol 

UDP -user datagram protocol - is one of the protocols in the TCP/IF' protocol 
suite. The most common protocol, TCP, ensures packet delivery by acknowledg- 
ing each packet successfully received, retransmitting packets which are garbled 
or lost in transmission. UDP, on the other hand, is an open-ended protocol which 
does not guarantee packet delivery. For a variety of reasons, it incurs lower 
delivery latency and as a result, it is of interest in near real-time communication 
applications. The application designer must deal with dropped packets using, 
for example, error correction techniques. 

errors. If there are f erasures and e errors, they can be corrected provided that 

2e + f < d d n .  (3.21) 

Since correcting an error requires determination of both the error position and the error 
value, while filling an erasure requires determination only of the error value, essentially 
twice the number of erasures can be filled as errors corrected. 

3.8.1 Binary Erasure Decoding 

We consider now how to simultaneously fill f erasures and correct e errors in a binary 
code with a given decoding algorithm [373, p. 2291. In this case, all that is necessary is to 
determine for each erasure whether the missing value should be a one or a zero. An erasure 
decoding algorithm for this case can be described as follows: 

1. Place zeros in all erased coordinates and decode using the usual decoder for the code. 

2. Place ones in all erased coordinates and decode using the usual decoder for the code. 

3. Find which of co and c1 is closest to r. This is the output code. 

Call the resulting codeword co. 

Call the resulting codeword c1. 

Let us examine why this decoder works. Suppose we have (2e + f )  < d d n  (so that correct 
decoding is possible). In assigning 0 to the f erased coordinates we thereby generated eo 
errors, eo 5 f ,  so that the total number of errors to be corrected is (eo + e ) .  In assigning 1 
to the f erased coordinates, we make el errors, el 5 f ,  so that the total number of errors to 
be corrected is (el + e). Note that eo + el = j ,  so that either eo or el is less than or equal 
to f/2. Thus either 

2(e + eo) F 2(e + f/2) or 2(e + el)  i 2(e + f/2), 

and 2(e + f/2) < ddn, so that one of the two decodings must be correct. 

example, decoding of Reed-Solomon codes is discussed in Section 6.7. 
Erasure decoding for nonbinary codes depends on the particular code structure. For 

3.9 Modifications to Linear Codes 

We introduce some minor modifications to linear codes. These are illustrated for some 
particular examples in Figure 3.2. 
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Definition 3.12 An ( n ,  k ,  d )  code is extended by adding an additional redundant coordinate, 
0 producing an (n  + 1, k ,  d + 1) code. 

Example 3.21 We demonstrate the operations by modifying a (7,4, 3) Hamming code. The parity 
check matrix for an extended Hamming code, with an extra check bit that checks the parity of all the 
bits, can be written 

0 0  1 0  1 1  1 0 .  

1 0 0 1 0 1 1 0  

1 1 1 1 1 1 1 1  1 H = [  0 1 0 1 1 1 0 0  

1 
1 G = [  0 1 1  1 0 0  1 0 .  

The last row is the overall check bit row. By linear operations, this can be put in equivalent systematic 
form 

1 0 0 0 1 1 0 1  
0 1 0 0 0 1 1 1  
0 0 1 0 1 1 1 0  
0 0 0 1 1 0 1 1  

H =  [ 
with the corresponding generator 

0 

1 0 1 1 1 0 0 0  
1 1 1 0 0 1 0 0  

1 1 0 1 0 0 0 1  

See Figure 3.2. 

Definition 3.13 A code is punctured by deleting one of its parity symbols. An (n ,  k )  code 
0 

Puncturing an extended code can return it to the original code (if the extended symbols 
are the ones punctured.) Puncturing can reduce the weight of each codeword by its weight 
in the punctured positions. The minimum distance of a code is reduced by puncturing if 
the minimum weight codeword is punctured in a nonzero position. Puncturing an (n ,  k ,  d )  
code p times can result in a code with minimum distance as small as d - p .  

Definition 3.14 A code is expurgated by deleting some of its codewords. It is possible to 
expurgate a linear code in such a way that it remains a linear code. The minimum distance 

0 

Example 3.22 If all the odd-weight codewords are deleted from the (7,4) Hamming code, an even- 
weight subcode is obtained. 

0 

becomes an (n  - 1, k )  code. 

of the code may increase. 

Definition 3.15 A code is augmented by adding new codewords. It may be that the new 

Definition 3.16 A code is shortened by deleting a message symbol. This means that a row 
is removed from the generator matrix (corresponding to that message symbol) and a column 
is removed from the generator matrix (corresponding to the encoded message symbol). An 
(n ,  k )  code becomes an (n - 1, k - 1) code. 

Definition 3.17 A code is lengthened by adding a message symbol. This means that a 
row is added to the generator matrix (for the message symbol) and a column is added to 
represent the coded message symbol). An (n ,  k )  code becomes an (n  + 1, k + 1) code. 0 

code is not linear. The minimum distance of the code may decrease. 

Shortened cyclic codes are discussed in more detail in section 4.12. 
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'$:.tit 
coordinates 

Hamming (2m - 1, 2m - 1 - rn, 3) 

Extend b adding 
an overallparity check 

1 1 0 1 0 0 0  
0 1 1 0 1 0 0  
1 1 1 0 0 1 0  
1 0 1 0 0 0 1  

1 0 0 1 0 1 1  

0 0 1 0 1 1 1  

Extended Hammin 
(2m 3 2m - 1 - rn, $1 

1 0 1 1 1 0 0 0  

Even wei ht subcode 
(2m-1,%-2-m,4) 

1 1 0 1 1 1 0 0  
1 1  0 0 1 0  

0 1 1 1 0 0 1  

r l  o o o 1 1  01 
4 

Shorten 
the code 1 lH=i  0 0 0 1 1 0 1  

0 1 0 0 0 1 1  
0 0 1 0 1 1 1  

1 1 0 1 0 0 0 1  

1 0 0 0 1 1 0 1  
0 1 0 0 0 1 1 1  

0 0 0 1 1 0 1 1  1 H = [  0 0 1 0 1 1 1 0  

Figure 3.2: Demonstrating modifications on a Hamming code. 

3.10 Best Known Linear Block Codes 

Tables of the best known linear block codes are available. An early version appears in [220]. 
More recent tables can be found at [37]. 

3.1 1 Exercises 

3.1 Find, by trial and error, a set of four binary codewords of length three such that each word is at 
least a distance of 2 from every other word. 

3.2 Find a set of 16 binary words of length 7 such that each word is at least a distance of 3 from every 
other word. Hint: Hamming code. 

3.3 Perhaps the simplest of all codes is the binary parity check code, a (n , n - 1) code, where k = n - 1. 
Given amessage vector m = (mo, m i ,  . . . , mk- l ) ,  the codeword is c = (mo, mi, . . . , mk-1, b), 
where b = Ck-l m (arithmetic in GF(2))  is the parity bit. Such a code is called an even parity 
code, since a l ~ ~ % e ~ o r d s  have even parity - an even number of 1 bits. 

(a) Determine the minimum distance for this code. 

(b) How many errors can this code correct? How many errors can this code detect? 

(c) Determine a generator matrix for this code. 

(d) Determine a parity check matrix for this code. 
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3.4 
3.5 

3.6 

3.7 

3.8 

(e) Suppose that bit errors occur independently with probability p c .  The probability that a 
parity check is satisfied is the probability that an even number of bit errors occur in the 
received codeword. Verify the following expression for this probability: 

1 + (1 - 2pcY  
2 

i=O.z even 

For the (n, 1) repetition code, determine a parity check matrix. 
[373] Let p = 0.1 be the probability that any bit in a received vector is incorrect. Compute 
the probability that the received vector contains undetected errors given the following encoding 
schemes: 

(a) No code, word length n = 8. 

(b) Even parity (see Exercise 3), word length n = 4. 
(c) Odd parity, word length n = 9. (Is this a linear code?) 
(d) Even parity, word length = n. 

[204] Let C1 be an (nl, k ,  d l )  binary linear systematic code with generator G1 = [ P I  
C2 be an (n2, k ,  d2) binary linear systematic code with generator G2 = [Pz 
parity check matrix for an (n 1 + n2, k )  code as 

Zk]. Let 
Zk]. Form the 

Show that this code has minimum distance at least dl + d2. 

The generator matrix for a code over GF(2)  is given by 

1 [ 0 0 1 0 1 1  

1 1 1 0 1 0  
G =  1 0  0 1 1  1 .  

Find a generator matrix and parity-check matrix for an equivalent systematic code. 
The generator and parity check matrix for a binary code are given by 

(3.22) 1 [::::::I [ 0 1 0 0 1 1  

1 1 0 1 1 0  
G =  0 1 1  1 0  1 H =  1 0  1 0  1 1 .  

This code is small enough that it can be used to demonstrate several concepts from throughout 
the chapter. 

Verify that H is a parity check matrix for this generator. 
Draw a logic diagram schematic for an implementation of an encoder for the nonsystematic 
generator G using ‘and‘ and ‘xor’ gates. 
Draw a logic diagram schematic for an implementation of a circuit that computes the 
syndrome. 
List the vectors in the orthogonal complement of the code. 
Form the standard array for this code. 
Form the syndrome decoding table for this code. 
How many codewords are there of weight 0, 1, . . . , 6 ?  Determine the weight enumerator 
A ( z ) .  
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(h) Using the generator matrix in (3.22), find the codeword with m = [ l ,  1,0] as message bits. 
(i) Decode the received word r = [ 1, 1, 1, 0, 0, 11 using the generator of (3.22). 
(i) Determine the weight enumerator for the dual code. 
(k) Write down an explicit expression for Pu ( E )  for this code. Evaluate this when p = 0.01. 
(1) Write down an explicit expression for Pd ( E )  for this code. Evaluate this when p = 0.01. 

(m) Write down an explicit expression for P ( E )  for this code. Evaluate this when p = 0.01. 
(n) Write down an explicit expression for P ( E )  for this code, assuming a bounded distance 

(0) Write down an explicit expression for P ( F )  for this code. Evaluate this when p = 0.01. 
(p) Determine the generator G for an extended code, in systematic form. 
(q) Determine the generator for a code which has expurgated all codewords of odd weight. 

decoder is used. Evaluate this when p = 0.01. 

Then express it in systematic form. 

3.9 [203] Let a systematic (8,4) code have parity check equations 

co = m i  + m2 + m3 

cl = m o + m i + m 2  

c 2 = m o + m i + m g  

c3 = r n o + m 2 + m g .  

(a) Determine the generator matrix G in for this code in systematic form. Also determine the 

(b) Using Theorem 3.3, show that the minimum distance of this code is 4. 
(c) Determine A ( z )  for this code. Determine B ( z ) .  
(d) Show that this is a self-dual code. 

parity check matrix H .  

3.10 Show that a self-dual code has a generator matrix G which satisfies GGT = 0. 
3.11 Given a code with a parity-check matrix H ,  show that the coset with syndrome s contains a vector 

3.12 Show that all of the nonzero codewords of the (2m - 1, m )  simplex code have weight 2m-'. Hint: 

3.13 Show that (3.13) follows from (3.12). 
3.14 Show that (3.15) follows from (3.14) using the MacWilliams identity. 
3.15 Let f ( u 1 ,  u2) = ulu2,  for ui E F2. Determine the Hadamard transform f of f. 
3.16 The weight enumerator A ( z )  of (3.11) for a code C is sometimes written as W A ( X ,  y )  = 

of weight w if and only if some linear combination of w columns of H equals S. 

Start with m = 2 and work by induction. 

. .  
C;=o Ajxn-' y' . 

(a) Show that A ( z )  = W A ( X ,  y ) l x = l , y = z .  

(b) Let WB ( x ,  y )  = C;=o B ~ x " - ~  y i  be the weight enumerator for the code dual to C. Show 

1 

that the MacWilliams identity can be written as 

w B ( X , y ) =  - w A ( X + y , x - y )  
qk 

(3.23) 
1 

(c) In the following subproblems, assume a binary code. Let x = 1 in (3.23). We can write 

or 

w A ( X ,  y )  = F W B ( X  + y ,  X - y ) .  

n 
(3.24) 

' l n  
A j y ' = - 2n-k 

i =O i =O 

Set y = 1 in this and show that Cr=o 3 = 1. Justify this result. 

Bi (1 + (1 - y )" 
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(d) Now differentiate (3.24) with respect to y and set y = 1 to show that 

If I31 = 0, this gives the average weight. 

(e) Differentiate (3.24) u times with respect to y and set y = 1 to show that 

i =O 

0 n i O  
x" n z 0  

. We have the following generalization of the product Hint: Define (x)$ = 

rule for differentiation: 

(0 Now set y = 1 in (3.23) and write 

n n 

Differentiate u times with respect to x and set x = 1 to show that 

3.17 

3.18 

3.19 

3.20 

3.21 
3.22 

Let C be a binary (n,  k )  code with weight enumerator A ( z )  and let z be the extended code of 
length n + 1, 

Determine the weight enumerator for z. 
[204] Let C be a linear code with both even- and odd-weight codewords. Show that the number 
of even-weight codewords is equal to the number of odd-weight codewords. 

Show that for a binary code, Pu ( E )  can be written as: 

(b) and P u ( E )  = 2k-"B(1 - 2p)  - (1 - p ) n .  

[373] Find the lower bound on required redundancy for the following codes. 

(a) A single-error correcting binary code of length 7. 
(b) A single-error correcting binary code of length 15. 
(c) A triple-error correcting binary code of length 23. 

(d) A triple-error correcting 4-ary code (i.e., q = 4) of length 23. 

Show that all odd-length binary repetition codes are perfect. 

Show that Hamming codes achieve the Hamming bound. 



3.11 Exercises 111 

3.23 Determine the weight distribution for a binary Hamming code of length 3 1. Determine the weight 
distribution of its dual code. 

3.24 The parity check matrix for a nonbinary Hamming code of length n = (qm - l)/(q - 1) and 
dimension k = (qm - l)/(q - 1) - m with minimum distance 3 can be constructed as follows. 
For each q-ary m-tuple of the base-q representation of the numbers from 1 to qm - 1, select those 
for which the first nonzero element is equal to 1. The list of all such m-tuples as columns gives 
the generator H. 

(a) Explain why this gives the specified length n. 
(b) Write down a parity check matrix in systematic form for the (5,3) Hamming code over the 

(c) Write down the corresponding generator matrix. Note: in this field, every element is its 

3.25 [204] Let G be the generator matrix of an (n, k) binary code C and let no column of G be all 

field of four elements. 

own additive inverse: 1 + 1 = 0 , 2  + 2 = 0 , 3  + 3 = 0. 

zeros. Arrange all the codewords of C as rows of a 2k x n array. 

Show that no column of the array contains only zeros. 
Show that each column of the array consists of Zk-' zeros and 2k-1 ones. 
Show that the set of all codewords with zeros in particular component positions forms a 
subspace of C. What is the dimension of this subspace? 
Show that the minimum distance dmin of this code must satisfy the following inequality, 
known as the Plotkin bound: 

n2k-1 
dmin 5 - 

2k - 1 '  
3.26 [204] Let r be the ensemble of all the binary systematic linear (n, k) codes. 

(a) Prove that a nonzero binary vector v is contained in exactly 2(k-1)(n-k) of the codes in r 

(b) Using the fact that the nonzero n-tuples of weight d - 1 or less can be in at most 
or it is in none of the codes in r . 

(n, k) systematic binary linear codes, show that there exists an (n, k) linear code with 
minimum distance of at least d if the following bound is satisfied: 

d-1 

i=l 

(c) Show that there exists an (n, k) binary linear code with minimum distance at least d that 
satisfies the following inequality: 

d 

i =O 

This provides a lower bound on the minimum distance attainable with an (n , k) linear code 
known as the Gilbert-Varshamov bound. 

3.27 Define a linear (5,3) code over GF(4) by the generator matrix 

G = O  1 0  1 2 .  [: : : : :I 
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(a) Find the parity-check matrix. 
(b) Prove that this is a single-error-correcting code. 
(c) Prove that it is a double-erasure-correcting code. 
(d) Prove that it is a perfect code. 

3.28 [203] Let H be the parity check matrix for an (n, k )  linear code C. Let C’ be the extended code 
whose parity check matrix H‘ is formed by 

0 
0 

0 
1 
- 

H 

1 1 ... 1 

(a) Show that every codeword of C’ has even weight. 
(b) Show that C’ can be obtained from C by adding an extra parity bit called the overall parity 

3.29 The [ulu + v] construction: Let Ci,  i = 1 , 2  be linear binary (n, k i )  block codes with generator 

bit to each codeword. 

matrix Gi and minimum distance di . Define the code C by 

c = IC1 IC1 + c21 = {[ulu + vl : u E c1, v E C2}. 

(a) Show that C has the generator 

(b) Show that the minimum distance of C is 

3.1 2 References 

The definitions of generator, parity check matrix, distance, and standard arrays are standard; 
see, for example, [203, 3731. The MacWilliams identity appeared in [219]. Extensions to 
nonlinear codes appear in [220]. The discussion of probability of error in Section 3.7 is 
drawn closely from [373]. Our discussion on modifications follows [373], which, in turn, 
draws from [25]. Our analysis of soft-input decoding was drawn from [15]. Classes of 
perfect codes are in [337]. 



Chapter 4 

Cyclic Codes, Rings, and 
Polynomials 
4.1 Introduction 

We have seen that linear block codes can be corrected using the standard array, but that for 
long codes the storage and computation time can be prohibitive. Furthermore, we have not 
yet seen any mechanism by which the generator or parity check matrix can be designed 
to achieve a specified minimum distance or other criteria. In this chapter, we introduce 
cyclic codes, which have additional algebraic structure to make encoding and decoding 
more efficient. Following the introduction in this chapter, additional algebraic tools and 
concepts are presented in Chapter 5, which will provide for design specifications and lead 
to efficient algebraic decoding algorithms. 

Cyclic codes are based on polynomial operations. A natural algebraic setting for the 
operations on polynomials is the algebraic structure of a ring. 

4.2 Basic Definitions 

Given a vector c = (co, c1, . . . , cn-2, cn-l)  E G F ( q ) n ,  the vector 

c' = (cn-1, cot c1, . . . , cn-2) 

is said to be a cyclic sh@ of c to the right. A shift by r places to the right produces the 
vector (Cn-r ,  ~ n - ~ + i , .  . . , ~ ~ - 1 ,  C O ,  ci, . . . , C n - r - 1 ) .  

Definition 4.1 An ( n ,  k )  block code C is said to be cyclic if it is linear and if for every 
codeword c = (co, c1 , . . . , cn-l) in C, its right cyclic shift c' = ( ~ ~ - 1 ,  co, . . . , cn-2) is also 
in C. 0 

Example 4.1 We observed in Section 1.9.2 that the Hamming (7,4) code is cyclic; see the codeword 
list in (1.35). 0 

The operations of shifting and cyclic shifting can be conveniently represented using poly- 
nomials. The vector 

c = (cot c1,. . . , cn-1) 

is represented by the polynomial 

c ( x )  = co + q x  + . . . + cn- lxn- l ,  

(co, c1, . . . , cn-1) * co + c1x + . * .  + cn-lx"-l. 

using the obvious one-to-one correspondence. We write this correspondence as 
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Box 4.1: The Division Algorithm 

Let p ( x )  be a polynomial of degree IZ and let d(x) be a polynomial of degree 
m. That is, deg(p(x)) = IZ and deg(d(x)) = m. Then the "division algorithm" 
for polynomials asserts that there exist polynomials q (x) (the quotient) and r (x) 
(the remainder), where 0 5 deg(r(x)) < m and 

P(X> = q(x)d(x) + r ( x ) .  

The actual "algorithm" is polynomial long division with remainder. We say that 
p ( x )  is equivalent to r ( x )  modulo d(x) and write this as 

p ( x )  = r ( x )  mod d ( x )  

or 
p ( x )  (mod d ( x ) )  = r ( x ) .  

If r ( x )  = 0, then d ( x )  divides p ( x ) ,  which we write as d(x) I p ( x ) .  If d ( x )  does 
not divide p ( x )  this is denoted as d ( x ) i p ( x ) .  

A (noncyclic) shift is represented by polynomial multiplication: 

2 
X C ( X )  = COX + c1x + * . . + Cn- lX"  

so 
2 (0, C O ,  ~ 1 ,  . . . , cn-1) + COX + c1x + . . . + C n - l X n .  

To represent the cyclic shift, we move the coefficient of x" to the constant coefficient position 
by taking this product modulo X" - 1. Dividing x c ( x )  by X" - 1 using the usual polynomial 
division with remainder (i.e., the "division algorithm;" see Box 4.1), we obtain 

2 x c ( x )  = c,-1 (x" - 1) + (cox + c1x + . . f + c"4xn-l + cn-l)  + i 

quotient remainder 

so that the remainder upon dividing by x n  - 1 is 

x c ( x )  (mod X" - 1) = cn-l + COX + . . . + cn-2x"-l. 

4.3 Rings 

We now introduce an algebraic structure, the ring, which is helpful in our study of cyclic 
codes. We have met the concept of a group in Chapter 2 . Despite their usefulness in a 
variety of areas, groups are still limited because they have only one operation associated 
with them. Rings, on the other hand, have two operations associated with them. 

Definition 4.2 A ring ( R ,  +, .) is a set R with two binary operations + (addition) and . 
(multiplication) defined on R such that: 

R1 ( R ,  +) is an Abelian (commutative) group. We typically denote the additive identity 
as 0. 
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R2 The multiplication operation . is associative: (a . b)  . c = a . (b . c) for all a ,  b ,  c E R .  

R3 The left and right distributive laws hold: 

a(b  + c )  = ab + ac, 

(a + b)c = (ac) + (bc). 

A ring is said to be a commutative ring if a . b = b . a for every a ,  b E R .  
The ring ( R ,  +, .) is frequently referred to simply as R. 
A ring is said to be a ring with identity i f .  has an identity element. This is typically 

denoted as 1. 0 
Notice that we do not require that the multiplication operation form a group: there may 

not be multiplicative inverses in a ring (even if it has an identity). Nor is the multiplication 
operation necessarily commutative. All of the rings that we deal with in this book are rings 
with identity. 

Some of the elements of a ring may have a multiplicative inverse. An element a in a 
ring having a multiplicative inverse is said to be a unit. 

Example 4.2 The set of 2 x 2 matrices under usual definitions of addition and multiplication form a 
ring. (This ring is not commutative, nor does every element have an inverse.) 0 

Example 4.3 (&j, +, .) forms a ring. 

0 1 2 3 4 5  0 0 0 0 0 0 0  
1 0 1 2 3 4 5  

3 4 5 0 1 2  3 0 3 0 3 0 3  
4 5 0 1 2 3  4 0 4 2 0 4 2  

0 1 2 3 4 5  

1 2 3 4 5 0  
2 3 4 5 0 1  2 0 2 4 0 2 4  

5 0 1 2 3 4  ! 5 0 5 4 3 2 1  

It is clear that multiplication under &j does not form a group. But .&j still satisfies the requirements 
to be a ring. 0 

Definition 4.3 Let R be a ring and let a E R .  For an integer n ,  let nu denote a + a  + . . . + a 
with n arguments. If a positive integer exists such that nu = 0 for all a E R, then the 
smallest such positive integer is the characteristic of the ring R .  If no such positive integer 

0 exists, the R is said to be a ring of characteristic 0. 

Example 4.4 In the ring &j, the Characteristic is 6. In the ring (Zn ,  +, a ) ,  the characteristic is n. In 
the ring Q, the characteristic is 0. 

4.3.1 Rings of Polynomials 

Let R be a ring. A polynomial f ( x )  of degree n with coefficients in R is 

i=O 

where a, # 0. The symbol x is said to be an indeterminate. 

Definition 4.4 The set of all polynomials with an indeterminate x with coefficients in a 
ring R ,  using the usual operations for polynomial addition and multiplication, forms a ring 

0 called the polynomial ring. It is denoted as R [ x ] .  
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po1yadd.m 
po1ysub.m 
polymu1t.m 
po1ydiv.m 
po1yaddn.m 
po1ysubm.m 
polymu1tm.m 

Example 4.5 Let R = (26, +, .) and let S = R [ x ]  = &[XI. Then some elements in S are: 0, 1, x, 
1 + x, 4 + 2x, 5 + 4x, etc. Example operations are 

(4 + 2x) + (5  + 4x) = 3 

(4 + 2x)(5 + 4x) = 2 + 2x + 2 . 2 .  

Example 4.6 Z2[x] is the ring of polynomials with coefficients that are either 0 or 1 with operations 
modulo 2. As an example of arithmetic in this ring, 

(1 + x)(l + x )  = 1 + x  + x  + 2 = 1 +x2 ,  

since x + x = 0 in Z2. 0 

It is clear that polynomial multiplication does not, in general, have an inverse. For example, 
in the ring of polynomials with real coefficients R[x], there is no polynomial solution f ( x )  
to 

f ( X ) ( X 2  + 3x + 1)  = x3 + 2x + 1. 

Polynomials can represent a sequence of numbers in a single collective object. One rea- 
son polynomials are of interest is that polynomial multiplication is equivalent to convolution. 
The convolution of the sequence 

a = Iao, al, a2, . . . , G I  
with the sequence 

can be accomplished by forming the polynomials 

b = Ib07 bl,  b29.. . > brn} 

U ( X >  = + U ~ X  + a2x2 + . . . + anXn 
b(x )  = bo + blx + b2x2 + * .  + bmxm 

c ( x )  = a(x )b (x ) .  
and multiplying them 

Then the coefficients of 

c ( x )  = CO + C1.x + c2x2 + . . . + Cn+rnXn+rn 

are equal to the values obtained by convolving a * b. 

4.4 Quotient Rings 

Recall the idea of factor groups introduced in Section 2.2.5: Given a group and a subgroup, 
a set of cosets was formed by “translating” the subgroup. We now do a similar construction 
over a ring of polynomials. We assume that the underlying ring is commutative (to avoid 
certain technical issues). We begin with a particular example, then generalize. 

Consider the ring of polynomials G F ( 2 ) [ x ]  (polynomials with binary coefficients) and 
a polynomial x3 - 1 . l  Let us divide the polynomials up into equivalence classes depending 
on their remainder modulo x3 + 1. For example, the polynomials in 

so = { 0 , ~ 3  + 1,~4+., .5 + x 2 , x 6  + x 3 , .  . .) 
’In a ring of characteristic 2, x n  - 1 = x” + 1. However, in other rings, the polynomial should be of the form 

x” - 1.  
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all have remainder 0 when divided by x3 + 1. We write So = (x3 + I) ,  the set generated by 
x3  + 1. The polynomials in 

s1 = {1,~3,.4+. + 1,x5 + x 2 +  1 , ~ 6 + . 3  + I ,  . . . I  
all have remainder 1 when divided by x3 + 1. We can write 

3 s1 = 1 + so = 1 + (x + 1). 

Similarly, the other equivalence classes are 

s2 = [x,x3 + x  + 1, x 4 5  , x  +x2 +x ,x6  + x3 + x ,  . . .} 

s3 = {x + 1,x3 + x , x 4 +  1,x5 +x2 + x  + 1,x6 +x3 + x  + 1 , .  . .} 

s4 = [x2,x3 +x2 + 1, x4 +x2 + x,  x , x  + x3 +x2, .  . .) 

= x + S o  

= x + 1 +so 
5 6  

= x2 + so 

= 2 + 1 + so 

= x2 + x + so 

= 2 + x + 1 + so 

s5 = { x 2 + 1 , x 3 + x 2 , x 4 + x 2 + x + 1 , x 5 + 1 , x  6 3 2  + x  + x  + l , . . . )  

= {X2 + X ,  X3 + X 2  f X  + 1, X4 fX2,  X5 + X ,  X6 + X 3  + X 2  + X ,  . . .} 

s7 = [x2 + x  + 1, x3 + x2 + x,  x4 + x2 + 1, x5 + x + 1, x6 + x3 + 2 + x  + 1 , .  . .} 

Thus, So, S1,. . . , S7formthecosetsof (GF(2)[x], fjmodulothesubgroup (x3+1).These 
equivalence classes exhaust all possible remainders after dividing by x + 1. It is clear that 
every polynomial in GF(2)[x] falls into one of these eight sets. 

Just as we defined an induced group operation for the cosets of Section 2.2.5 to create the 
factor group, so we can define induced ring operations for both + and - for the equivalence 
classes of polynomials modulo x3 + 1 by operation on representative elements. This gives 
us the following addition and multiplication tables. 

Let R = {So, S1, . . . , S7}. From the addition table, ( R ,  +) clearly forms an Abelian group, 
with SO as the identity. For the multiplicative operation, S1 clearly acts as an identity. 
However, not every element has a multiplicative inverse, so ( R  \ SO, .) does not form a 
group. However, ( R ,  +, .) does define a ring. The ring is denoted as GF(2)[x]/(x3 + 1) 
or sometimes by GF(2)[x]/(x3 + 1), the ring ofpolynomials in GF(2)[x] rnoduZox3 + 1. 
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We denote the ring G F ( 2 ) [ x ] / ( x n  - 1) by Rn. We denote the ring F q [ x ] / ( x n  - 1) as Rn,q. 

Each equivalence class can be identified uniquely by its element of lowest degree. 

so f, 0 

s2 f, x S 3 + x + l  

s1 f, 1 

s4 e x 2  s5 f , X 2 + l  

sfj + + x 2 + x  s7 t) x 2  + x + 1 

Let R = {0, 1 ,  x, x + 1, x 2 ,  x 2  + 1, x 2  + x ,  x 2  + x + 1). Define the addition operation 
in R as conventional polynomial addition, and the multiplication operation as polynomial 
multiplication, followed by computing the remainder modulo x 3  + 1. Then (R, +, -) forms 
a ring. 

Definition 4.5 Two rings ( R ,  +, .) and (R, +, .) are said to be (ring) isomorphic if there 
exists a bijective function 4 : G + G called the isomorphism such that for every a ,  b E R ,  

(4.1) a . b)  = # ( a )  4(*) = - #(a> + 4@)  4(- \---d 

operation operation operation operation 
in R in R in R in R 

Ring homomorphism is similarly defined: the function 4 no longer needs to be bijective, 

Clearly the rings R (where operation is by representative elements, defined in the tables 

Note that we can factor x3 + 1 = (x + 1)(x2 + x + 1). Also note from the table that in 

but (4.1) still applies. 0 

above) and R (defined by polynomial operations modulo x 3  + 1) are isomorphic. 

R ,  S3S7 = So. Equivalently, in R, 

(x + 1)(x2 + x + 1) = 0. 

This is clearly true, since to multiply, we compute the conventional product (x  + 1)(x2 + 
x + 1 )  = x3 + 1, then compute the remainder modulo x3 + 1 ,  which is 0. We shall make 
use of analogous operations in computing syndromes. 

More generally, for a field F, the ring of polynomials F [ x ]  can be partitioned by a 
polynomial f ( x )  of degree rn into a ring consisting of qm different equivalence classes, 
with one equivalence class for each remainder modulo f ( x ) ,  where q = IF(. This ring is 
denoted as I F [ x ] / ( f ( x ) )  or F [ x ] / f ( x ) .  A question that arises is under what conditions this 
ring is, in fact, a field? As we will develop much more fully in Chapter 5, the ring F[x]/f (x) 
is a field if and only if f ( x )  cannot be factored over F [ x ] .  In the example above we have 

x3 + 1 = ( x  + 1)(x2 + x + I), 

so x 3  + 1 is reducible and we do not get a field. 

4.5 Ideals in Rings 

Definition 4.6 Let R be a ring. A nonempty subset I C R is an ideal if it satisfies the 
following conditions: 

I1 Z forms a group under the addition operation in R .  
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I2 Foranya E I andanyr  E R , a r  E I .  

0 

Example 4.7 

1. For any ring R,  0 and R are (trivial) ideals in R. 

2. ThesetZ = (0,x5+x4+x3+x2+x+1}fomsanidealin~g. Forexample,letl+x+x2 E Rg. 
Then 

( l + x + x  2 5  )(x + x  4 + x  3 + x  2 + x + 1 ) = x 7 + x 5 + x 4 + x 3 + x 2 + 1  (rnodx6+1) 

= 2 +x4 + x 3  + x 2  + x  + 1 E I .  

Example 4.8 Let R be a ring and let R [ q ,  x2, . . . , x n ]  be the ring of polynomials in the n indeter- 
minates xi, x2, . . . , x n .  

Ideals in a the polynomial ring R [ x l ,  . . . , x n ]  are often generated by a finite number of polyno- 
mials. Let f 1 ,  f 2 ,  . . . , fs  be polynomials in R [ x l ,  . . . , x n ] .  Let ( f i  , f2 ,  . . . , f s )  be the set 

That is, it is the set of all polynomials which are linear combinations of the { f i } .  The set (fi , . . . , f s )  

is an ideal. 
Thus, an ideal is similar to a subspace, generated by a set of basis vectors, except that to create a 

subspace, the coefficients are scalars, whereas for an ideal, the coefficients are polynomials. 0 

The direction toward which we are working is the following: 

1 Cyclic codes form ideals in a ring of polynomials. 1 
In fact, for cyclic codes the ideals are principal, as defined by the following. 

Definition 4.7 An ideal I in a ring R is said to be principal if there exists some g E I 
such that every element a E I can be expressed as a product a = mg for some m E R .  For 
a principal ideal, such an element g is called the generator element. The ideal generated 
by g is denoted as (g): 

( g )  = [hg : h E R }  . 

0 

Theorem 4.1 Let I be an ideal in IF4[x]/(x" - 1). Then 

1. There is a unique monic polynomial g ( x )  E I of minimal degree.2 

2. I is principal with generator g ( x ) .  

3. g ( x )  divides ( x n  - 1) in IF4[xl. 

2A polynomial is monic if the coefficient of the leading term - the term of highest degree - is equal to 1 
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Proof There is at least one ideal (so the result is not vacuous, since the entire ring is an 
ideal). There is a lower bound on the degrees of polynomials in the ideal. Hence there must 
be at least one polynomial in the ideal of minimal degree, which may be normalized to be 
monic. Now to show uniqueness, let g(x) and f ( x )  be monic polynomials in I of minimal 
degree with f # g. Then h(x) = g(x) - f ( x )  must be in I since I forms a group under 
addition, and h (x) must be of lower degree, contradicting the minimality of the degree of g 
and f. 

To show that I is principal, we assume (to the contrary) that there is an f ( x )  E I that is 
not a multiple of g (x). Then by the division algorithm 

f(x> = m ( x > g ( x >  + 4x1 

with deg(r) < deg(g). But m ( x ) g ( x )  E I (definition of an ideal) and r = f - mg E I 
(definition of ideal), contradicting the minimality of the degree of g, unless r = 0. 

To show that g(x) divides (x" - l), we assume to the contrary that g ( x )  does not divide 
(x" - 1). By the division algorithm 

X" - 1 = h ( x ) g ( x )  + r ( x )  

with 0 I deg(r) < deg(g). But h ( x ) g ( x )  E I and r ( x )  = (x" - 1) - h ( x ) g ( x )  is the 
additive inverse of h ( x ) g ( x )  E I ,  and so is in I, contradicting the minimality of the degree 

If a monic polynomial g(x) divides (x" - l), then it can be used to generate an ideal: 

In the ring IF, [x]/(x" - l), different ideals can be obtained by selecting different divisors 

of g. 0 

I = ( g ( x ) ) .  

g(x) of X" - 1. 

Example 4.9 By multiplication, it can be shown that in G F ( 2 ) [ x ] ,  

x7 + 1 = (x + 1)(x3 + + 1)(n3 + 2 + 1) .  

In the ring G F ( 2 ) [ x ] / ( x 7  + l), there are ideals corresponding to the different factorizations of x7 + 1, 
so there are the following nontrivial ideals: 

(x  + 1) (x3 + x + 1) ( x 3  + x2 + 1 )  

( ( x  + 1)(n3 tx + 1)) ((x + 1)(x3 + x 2  + 1)) ( ( x 3  + x  + 1)(x3 + 2 +  1)) .  

0 

4.6 Algebraic Description of Cyclic Codes 

Let us return now to cyclic codes. As mentioned in Section 4.1, cyclic shifting of a polyno- 
mial c ( x )  can be represented by x c ( x )  modulo X" - 1. Now think of c ( x )  as an element of 
G F ( q ) [ x ] / ( x "  - 1). Then in that ring, x c ( x )  is a cyclic shift, since operations in the ring 
are defined modulo x" - 1. Any power of x times a codeword yields a codeword so that, 
for example, 

(Cn-1 ,  CO, ~ 1 , .  . . *  cn-2)  * X C ( X >  

(Cn-2 ,  Cfl-1, CO, * . . I Cn-3)  * x c(x> 2 
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where the arithmetic on the right is done in the ring G F ( q ) [ x ] / ( x "  - 1). Furthermore, 
multiples of these codewords are also codewords, so that a l x c ( x )  is a codeword for a1 E 
G F ( q ) ,  a2x2c(x)  is a codeword for a2 E G F ( q ) ,  etc. Furthermore, any linear combination 
of such codewords must be a codeword (since the code is linear. Let C be a cyclic code over 
G F ( q )  and let c ( x )  E G F ( q ) [ x ] / ( x "  - 1) be a polynomial representing a codeword in C. 
If we take a polynomial a ( x )  E G F ( q ) [ x ] / ( x "  - 1) of the form 

a ( x )  = a0 + a1x + * .  . + an-1x"-1 

then 
c ( x  >a ( x  1 

is simply a linear combination of cyclic shifts of c ( x ) ,  which is to say, a linear combination 
of codewords in C. Thus c ( x ) a ( x )  is also a codeword. Since linear codes form a group 
under addition we see that a cyclic code is an ideal in G F ( q ) [ x ] / ( x n  - 1). From Theorem 
4.1, we can immediately make some observations about cyclic codes: 

An (n ,  k )  cyclic code has a unique minimal monic polynomial g ( x ) ,  which is the 
generator of the ideal. This is called the generator polynomial for the code. Let the 
degree of g be n - k ,  

g ( x >  = go + g l x  + g2x2 + . . . + gn-kxn-k, 

and let r = n - k (the redundancy of the code). 

Every code polynomial in the code can be expressed as a multiple of the generator 

c ( x >  = m ( x ) g ( x > ,  

where m ( x )  is a message poZynomiaZ. The degree of m ( x )  is (strictly) less than k ,  

m ( x >  = m0 +mix + + mk-1xk-l .  

There are k independently selectable coefficients in m ( x ) ,  so the dimension of the 
code is k .  Then c ( x )  = m ( x ) g ( x )  has degree 5 n - 1, so that n coded symbols can 
be represented: 

c ( x )  = co + c1x + (72x2 + * + C"-lxn-l 

= (go + g l x  + . . . + gn-kxn-k)(mo + mix + m2x2 + . . . + mk-lxk-'>.  

The generator is a factor of x" - 1 in G F ( q ) [ x ] .  

Example 4.10 We consider cyclic codes of length 15 with binary coefficients. By multiplication it 
can be verified that 

.15 - 1 = (I + x ) ( ~  + + x2)(1 + + x4)(1 + + x 2  + x3 + x4)(1 + x3 + x4). 

So there are polynomials of degrees 1, 2,4,4,  and 4 which can be used to construct generators. The 
product of any combination of these can be used to construct a generator polynomial. If we want a 
generator of, say, degree 10, we could take 

g ( x )  = (1 + x + x 2 )  (1 + x + x4) (1 + x + x2 + x3 + 2). 

g ( x )  = (1 + x)(l + x + x4) 

If we want a generator of degree 5 we could take 
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or 
g ( x ) = ( l + x ) ( l  + x + x 2 + x 3 + x 4 ) .  

In fact, in this case, we can get generator polynomials of any degree from 1 to 15. So we can construct 
the (n, k) codes 

(15, l), (15,2), . . . , (15, 15). 

0 

4.7 Nonsystematic Encoding and Parity Check 

A message vector m = [mo ml . . . rnk-11 corresponds to a message polynomial 

m ( x )  = rno + f * * + mk-lxk-1. 

Then the code polynomial corresponding to m ( x )  is obtained by the encoding operation 
of polynomial multiplication: 

4x1 = m ( x > g ( x )  

= (mog(x)  + m1xg(x) + . - -mk- lxk - 'g (x ) ) .  

This is not a systematic encoding operation; systematic encoding is discussed below. The 
encoding operation can be written as 

c(x> = [mo ml m2 ... mk-11 

This can also be expressed as 

(where empty locations are equal to 0) or 

c = mG, 
where G is a k x n matrix. A matrix such as this which is constant along the diagonals is 
said to be a Toeplitz matrix. 

Example 4.11 Let n = 7 and let 

g(x) = (x3 + x + l)(x + 1) = 1 + x2 + x3 + x4, 
so that the code is a (7 ,3)  code. Then a generator matrix for the code can be expressed as 

1 [ 0 0 1 0 1 1 1  

1 0 1 1 1 0 0  
G = 0 1 0 1 1 1 0 .  

The codewords in the code are as shown in Table 4.1. 
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Table 4.1: Codewords in the Code Generated by g(x )  = 1 + x 2  + x3  + x4 
m m ( x  >g ( x  1 code polynomial codeword 
(0,090) Og(x) 0 0000000 
(1,0,0) M x )  1 +x2+x3 +x4 1011100 
(0,1,0) x + x3 +x4 +x5 0101110 
(1,190) (x + l)g(x) 1 + x  +x2 +x5 1110010 
(0,0,1) x2g(x)  x2 + x4 + x5 + x6 0010111 
(1,0,1) (x2  + l)g(x) 1 + x3 + x5 + x6 1001011 
(0,191) (x2  + x>g(x)  x + x2 + x3 + x6 0111001 
(l,l ,l) ( x2+x  + l)g(x) 1 + x  +x4+x6 1100101 

For a cyclic code of length n with generator g(x) ,  there is a corresponding polynomial 
h(x )  of degree k satisfying h(x)g(x)  = X" - 1. This polynomial is called the parity check 
polynomial. Since codewords are exactly the multiples of g(x) ,  then for a codeword, 

c(x)h(x)  = m(x)g(x)h(x)  = m(x)(xn  - 1) = 0 (in GF(q)[x] / (x"  - 1)). 

Thus a polynomial r ( x )  can be examined to see if it is a codeword: r (x )  is a codeword if 
and only if r (x )h (x )  (mod x" - 1) is equal to 0. 

As for linear block codes, we can define a syndrome. This can be accomplished several 
ways. One way is to define the syndrome polynomial corresponding to the received data 
r ( x )  as 

s (x )  = r (x )h (x )  (mod X" - 1). (4.2) 

s (x )  is identically zero if and only if r ( x )  is a codeword. 
Let us construct a parity check matrix corresponding to the parity check polynomial 

h(x) .  Let c (x )  represent a code polynomial in C, so c(x)  = m(x)g(x)  for some message 
m(x)  = mo + mlx  + . . . mk-1xk-'. Then 

c(x)h(x)  = m(x)g(x)h(x)  = m(x)(x" - 1) = m(x)  - m(x)x".  

Since m ( x )  has degree less than k ,  then powers x k ,  xk+l, . . . , x"-' do not appear3 in 
m(x)  - m(x)x".  Thus the coefficients of x k ,  x k f l ,  . . . , x"-l in the product c(x)h(x)  must 
beO. Thus 

5 hicl-j = 0 for I =  k ,  k + 1, . . . , n - 1. (4.3) 
i =O 

This can be expressed as 

= 0. (4.4) 

1-1 I] 
3This "trick" of observing which powers are absent is a very useful one, and we shall see it again. 
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Thus the parity check matrix H can be expressed as the (n  - k )  x n Toeplitz matrix 

1 h k - 2  . . * h0 p k  hLh' h k - 1  h k - 2  . . .  h0 

Example 4.12 For the (7,4) cyclic code of Example 4.1 1 generated by g(x) = x4 + x 3  + x 2  + 1, the 
parity check polynomial is 

X I  + 1 
h ( x )  = = x3  + x 2  + 1. 

x4 + x 3  + x2 + 1 

The parity check matrix is 
1 1 0 1  

It can be verified that G H T  = 0 (in GF(2) ) .  

4.8 Systematic Encoding 

0 

With only a little more effort, cyclic codes can be encoded in systematic lmn .  We take the 
message vector and form a message polynomial from it, 

m = (rno, rn l ,  . . . , r n k - 1 )  t, m(x> = rno + r n l x  + . . + r n k - l X k - ' .  

x n - k r n ( x )  = r n 0 x n - k  + r n l x " - k + l  + . . * + r n k - l x n - 1 .  

(O,O, . . . , o ,  mot r n l ,  . . . , r n k - 1 )  t, x " - k r n ( x ) .  

Now take the message polynomial and shift it to the right n - k positions: 

Observe that the vector corresponding to this is - 
n-k 

Now divide xnFkrn(x )  by the generator g ( x )  to obtain a quotient and remainder 

X " - k r n ( X )  = q ( x ) g ( x )  + d ( x ) ,  

where q (x) is the quotient and d ( x )  is the remainder, having degree less than n - k. We use 
the notation R,( , ) [ - ]  to denote the operation of computing the remainder of the argument 
when dividing by g(x). Thus we have 

d ( x )  = R g ( x ) [ x n - k r n ( X ) ] .  

By the degree of d(x), it corresponds to the code sequence 

(do, d l ,  . . . o,o, .  . . ,o) t, d ( x ) .  

Now form 
x n - k r n ( x )  - d ( x )  = q ( x ) g ( x ) .  
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Since the left-hand side is a multiple of g(x), it must be a codeword. It has the vector 
representation 

(-do, - d l , .  . . , -dn-k-l, WZo, WZl, . . . , m k - 1 )  t, X n - k W Z ( X )  - d(X). 
The message symbols appear explicitly in the last k positions of the vector. Parity symbols 
appear in the first n - k positions. This gives us a systematic encoding. 

Example 4.13 We demonstrate systematic coding in the (7,3) code from Example 4.11. Let m = 
(I, 0, 1) ff m ( x )  = 1 + 2. 

4 1. Compute 
2. Employ the division algorithm: 

= x m ( x )  = x4 + x6. 

4 + x 6  = (1  s X  +x2)(i + x 2  + x 3  +x4)  + ( 1  + x ) .  

The remainder is (1 + x )  . 
3. Then the code polynomial is 

c ( x )  = x " - k m ( x )  - d(x) = (1  + x )  + (x4 + x 6 )  ff (1, 1,0,0,  1,0, 1). + 
m 

A systematic representation of the generator matrix is also readily obtained. Dividing 
x ~ - ~ ~ ~  by g(x) using the division algorithm we obtain 

q j ( x ) g ( x )  + bi(x) ,  i = 0,  1,. . . , k - 1, p - k + i  = 

where bi(x) = bi ,o  + b i , I x  + . . . + bi,n-k-lX n-k-1 

- b i ( x )  = qi(x)g(x), 

is the remainder. Equivalently, 
xn-k+i 

so Xn-k+i - bi(x) is a multiple of g(x) and must be a codeword. Using these codewords 
for i = 0, 1, . . . , k - 1 to form the rows of the generator matrix, we obtain 

-bo,o -bo,l 1 . .  -bO,n-k-l 1 0 0 ... 0 
- b l , o  - b l , l  . . .  -bl,n-k-l O 1 O ... 

G = -b2,0 -b2,1 . . . -bZ,n-k-l O O 1 ... :I. 1 

I H =  1. 0 0 1 ... 0 b0,2 b1,2 b2,2 . . . 

-bk-l,O -bk- l , l  ... -bk- lp-k- l  0 0 0 

bk-1,2 . 

0 bo,o b1,o b2 ,o  ... bk-1,O 

bi,i b2 , l  ... b k - i , i  

I :  
The corresponding parity check matrix is 

1 0 0 * * *  

0 1 0 . . .  0 bo, l  

O O O . . .  1 b0,n-k-1 b1,n-k-1 b2,n-k-1 ... bk-  1,n-k- 1 

Example 4.14 Let g(x) = 1 + x + x 3 .  The bi (x) polynomials are obtained as follows: 

= g(x) + (1 + x )  3 i = O :  x 

i = l :  x 4 = x g ( x )  + (x + x2> 

i = 2 : x5= ( x 2  + l ) g ( x )  + ( I  + x  + x 2 )  

i = 3 : x6= (x3 + x + l)g(x) + (1 + 2) 

bo(x) = 1 + x 

b l ( x )  = x + x 2  

b2(x) = 1 + x + x2 

b3(x) = 1 + x2 
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The generator and parity matrices are 

1 0 0  1 0 1 1  

0 0 1  0 1 1 1  
1 1 1 0 1 .  

For systematic encoding, error detection can be readily accomplished. Consider the systematically- 
encoded codeword 

c = (-do, - d l , .  . . , -dn-k-l,rno,rnl,.  . . , mk-1) = (-d,m). 

We can perform error detection as follows: 

1. Estimate a message based on the systematic message part of r.  Call this m’. 

2. Encode m’. Compare the parity bits from this to the received parity bits. If they don’t 
match. then an error is detected. 

4.9 Some Hardware Background 

One of the justifications for using cyclic codes, and using the polynomial representation 
in general, is that there are efficient hardware configurations for performing the encoding 
operation. In this section we present circuits for computing polynomial multiplication and 
division. In Section 4.10, we put this to work for encoding operations. Some of these 
architectures are also used in conjunction with the convolutional codes, to be introduced in 
Chapter 12. 

4.9.1 Computational Building Blocks 

The building blocks employed here consist of three basic elements. We express the opera- 
tions over an arbitrary field IF. 

One-bit memory storage The symbol is a storage element which holds one symbol in 
the field IF. (Most typically, in the field G F ( 2 ) ,  it is one bit of storage, like a D flip- 
flop.) The holds its symbol of information (either a 0 or a 1) until a clock signal 
(not portrayed in the diagrams) is applied. Then the signal appearing at the input 
is “clocked” through to the output and also stored internally. In all configurations 
employed here, all of the elements are clocked simultaneously. As an example, 
consider the following system of five elements: 

0 0  D D D D 

This cascaded configuration is called a ship register. In this example, the connection 
on the left end is permanently attached to a “ 0 .  If the storage elements are initially 
loaded with the contents (1, 0, 1, 0, O), then as the memory elements are clocked, the 
contents of the shift register change as shown here: 
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This is frequently represented in tabular form: 

Initial: 1 0 1 0 0 
Shiftl: 0 1 0 1 0 
Shift 2: 0 0 1 0 1 
Shift3: 0 0 0 1 0 
Shift4: 0 0 0 0 1 
Shift 5 :  0 0 0 0 0 

Further clockings of the system result in no further changes: the state (the contents 
of the memory elements) of the system remains in the all-zero state. 

Adder The symbol @has two inputs and one output, which is computed as the sum of 

Multiplication The symbol @ has one input and one output, which is computed as the 
product of the input and the number gi (in the field F). For the binary field the 
coefficients are either 0 or 1, represented by either no connection or a connection, 
respectively. 

the inputs (in the field P). 

4.9.2 Sequences and Power series 

In the context of these implementations, we represent a sequence of numbers {ao, ai, a2, 

. . . , a,} by a polynomial y ( x )  = a0 + alx + . . . + anXn = Cy=o aixi. Multiplication by 
x yields 

which is a representation of the sequence {0, ao, a i ,  . . . , an} - a right-shift or delay of the 
sequence. The x may thus be thought of as a “delay” operator (just as z-l in the context 
of Z-transforms). Such representations are sometimes expressed using the variable D (for 
“delay”) as y (0) = a0 + a1 D + . . . + a, D”. This polynomial representation is sometimes 
referred to as the D-transform. Multiplication by D (= x) represents a delay operation. ) 

There are two different kinds of circuit representations presented below for polynomial 
operations. In some operations, it is natural to deal with the last element of a sequence first. 
That is, for a sequence (ao, a l ,  . . . , U k } ,  represented by a(x )  = a0 + aix f .  . . + akxk, first 

X Y ( X )  = U O X  + a1x2 + . . * + anxn+l ,  
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uk enters the processing, then U k - 1 ,  and so forth. This seems to run counter to the idea of x 
as a “delay,” where temporally a0 would seem to come first. But when dealing with a block 
of data, it is not a problem to deal with any element in the block and it is frequently more 
convenient to use this representation. 

On the other hand, when dealing with a stream of data, it may be more convenient to 
deal with the elements “in order,” first uo, then u l ,  and so forth. 

The confusion introduced by these two different orders of processing is exacerbated 
by the fact that two different kinds of realizations are frequently employed, each of which 
presents its coefficients in opposite order from the other. For (it is hoped) clarity, represen- 
tations for both last-element-first and first-element-first realizations are presented here for 
many of the operations of interest. 

4.9.3 Polynomial Multiplication 

Last-Element-First Processing 

Let u ( x )  = a0 + u l x  + . . . U k X k  and let h ( x )  = ho + h l x  + . . . + h r x r .  The product 

b ( x )  = u ( x ) h ( x )  

= Uoho f ( U o h l  + U 1 h o ) X  + ’. * f ( U k h r - 1  + U k - l h r ) x r f k - ’  a k h r X r + k  

can be computed using a circuit as shown in Figure 4.1. (This circuit should be familiar to 
readers acquainted with signal processing, since it is simply an implementation of a finite 
impulse response filter.) The operation is as follows: The registers are first cleared. The 
last symbol u k  is input first. The first output is u k h , ,  which is the last symbol of the product 
u ( x ) h ( x ) .  At the next step, Uk-1 arrives and the output is U k - l h r  + U k h r - 1 .  At the next 
step, U k - 2  arrives and the output is ( U k - 2 h r  + u k - l h r - l  + U k h r - 2 ) ,  and so forth. After a0 

is clocked in, the system is clocked r times more to produce a total of k + r + 1 outputs. 
A second circuit for multiplying polynomials is shown in Figure 4.2. This circuit has the 

first) 

Figure 4.1 : A circuit for multiplying two polynomials, last-element first. 

advantage for hardware implementation that the addition is not cascaded through a series 
of addition operators. Hence this configuration is suitable for higher-speed operation. 

First-Element-First Processing 

The circuits in this section are used for filtering streams of data, such as for the convolutional 
codes described in Chapter 12. 

Figure 4.3 shows a circuit for multiplying two polynomials, first-element first. Note that 
the coefficients are reversed relative to Figure 4.1. In this case, a0 is fed in first, resulting 
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*. 0 

... 
(last-element 
first) 

Figure 4.2: A circuit for multiplying two polynomials, last-element first, with high-speed 
operation. 

(first-element 
first) 

*. 
first) 

Figure 4.3: A circuit for multiplying two polynomials, first-element first. 

in the output aoho at the first step. At the next step, a1 is fed in, resulting in the output 
aohl + alho, and so forth. 

Figure 4.4 shows another high speed circuit for multiplying two polynomials, first- 
element first. 

It may be observed that these filters are FIR (finite impulse response) filters. 

4.9.4 Polynomial division 

Last-Element-First Processing 

Computing quotients of polynomials, and more importantly, the remainder after &vision, 
plays a significant role in encoding cyclic codes. The circuits of this section will be applied 
to that end. 

Figure 4.5 illustrates a device for computing the quotient and remainder of the polyno- 

dx)' 
where the dividend d ( x )  represents a sequence of numbers 

d ( x )  = do + dlx + d2x2 + . * . + dnx", 
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I I - 0  0 0 I I I 

(first-element 

first) ($ 6 6 
(first-element 
first) 

Figure 4.4: A circuit for multiplying two polynomials, first-element first, with high-speed 
operation. 

and the divisor g ( x )  represents a sequence of numbers 

g ( x )  = go + g l x  + g2x2 + * + g p x p .  

The coefficient g ,  is nonzero; for binary polynomials the coefficient -gF1 has the value of 
1. The polynomial g (x) is sometimes called the connection polynomial. The remainder 
r (x) must be of degree 5 p - 1, since the divisor has degree p :  

r ( x )  = ro + I 1 X  + . . . + r p - l x p - l ,  

q ( x )  = qo + q1x + . . * + q n - , x n - p .  

and the quotient q (x) can be written 

Readers familiar with signal processing will recognize the device of Figure 4.5 as an im- 
plementation of an all-pole filter. 

The division device of Figure 4.5 operates as follows: 

1. All the memory elements are initially cleared to 0. 

2. The coefficients of d ( x )  are clocked into the left register for p steps, starting with dn,  
the coefficient of xn in d ( x ) .  This initializes the registers and has no direct counterpart 
in long division as computed by hand. 

3. The coefficients of d ( x )  continue to be clocked in on the left. The bits which are 
shifted out on the right represent the coefficients of the quotient d ( x ) / g ( x ) ,  starting 
from the highest-order coefficient. 

4. After all the coefficients of d ( x )  have been shifted in, the contents of the memory 
elements represent the remainder of the division, with the highest-order coefficient 
rp-l on the right. 

Example 4.15 Consider the division of the polynomial d(x) = x 8  + x7 + x5 + x + 1 by g(x) = 
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r p  -2 r p - 1  

Figure 4.5: A circuit to perform polynomial division. 

* 

Figure 4.6: A circuit to divide by g(x) = x5 + x + 1. 

x 5  + x + I. The polynomial long division is 

The circuit for performing this division is shown in Figure 4.6. The operation of the circuit is detailed 
in Table 4.2. The shaded components of the table correspond to the shaded functions in the long 
division in (4.5). The Input column of the table shows the coefficient of the dividend polynomial 
d(x), along with the monomial term xi that is represented, starting with the coefficient of x 8 .  The 
Register column shows the shift register contents, along with the polynomial represented. As the 
algorithm progresses, the degree of the polynomial represented by the shift register decreases down 
to a maximum degree of p - 1. 

Initially, the shift register is zeroed out. After 5 shifts, the shift registers hold the top coefficients 
of d(s ) ,  indicated by A in the table, and also shown highlighted in the long division. The shift register 
holds the coefficient of the highest power on the right, while the long division has the highest power 
on the left. With the next shift, the divisor polynomial g(x) is subtracted (or added) from the dividend. 
The shift registers then hold the results B. The operations continue until the last coefficient of d(x )  
is clocked in. After completion, the shift registers contain the remainder, ~ ( x ) ,  shown as D. Starting 

0 from step 5, the right register output represents the coefficients of the quotient. 
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~ 

9 

Table 4.2: Computation Steps for Long Division Using a Shift Register Circuit 

Output Symbol on 
ith Shift Shift Register Contents After i Shifts 

polynomial polynomial 
bits representation bit term 

0 0 0 0 0  
1 0 0 0 0  
1 1 0 0 0  
0 1 1 0 0  
1 0 1 1 0  

0 1 0 1 1 A :  1 x3 

1 1 1 0 1 8 :  1 x2 

l 0 l l 0 C :  0 x 1  
1 1 0 1 1  x + x 2 + x 4 + x 5  1 xo 

4.9.5 Simultaneous Polynomial Division and Multiplication 

First-Element-First Processing 

Figure 4.7 shows a circuit that computes the output 

where 
h ( x )  ho + hlx + . . . + hrx' 

go + glx + . . . + grx' 
-- - 
g(x> 

with go = 1. (If go = 0, then a non-causal filter results. If go # 0 and go # 1, then a 
constant can be factored out of the denominator.) This form is referred to as the controller 
canonical form or theJirst companion form in the controls literature [109, 1811. Figure 
4.8 also computes the output 

This form is referred to as the altemativeJirst companion form or the obsentability form in 
the controls literature. 

Example 4.16 Figure 4.9 shows the controller form for a circuit implementing the transfer function 

l + x  
H ( x )  = 

1 +.3 + x 4 '  

For the input sequence a(x) = 1 + x + x2 the output can be computed as 

l + x  - (1 + x  +x2)(1 + x )  - 1 + x 3  

I + x 3  +x4 - 1 +x3 +x4 1 + x 3  +x4 
- b(n) = a(x) 

= 1 + X 4 + , 7 + X ~ + X ~ O + . . .  , 
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0 1  1 1  1000 
1 1 1 O(x) 1100 
2 1 1 O ( x 2 )  1110 
3 o 1 0 ( ~ 3 )  1111 
4 0 0 1 (x4) 0111 

first) 

6 0 0 0 (x6) 0001 
7 0 1 1 (x7) 1000 
8 0 0 l (x8)  0100 
9 0 0 O ( x 9 )  0010 
10 0 1 1 (X'O) 1001 

0 . .  

0 . .  

k U k  output next state 
0000 

0 1  1 1101 
1 1 O(x) 0111 
2 1 O ( x 2 )  0010 
3 o 0 ( ~ 3 )  0001 
4 0 1 (x4) 1100 

... 

k U k  output next state 

6 0 0 ( x 6 )  0011 
5 o 0 (2) 0110 

7 0 1 (x7) 1101 
8 0 l(x8) 1010 
9 0 O(x9) 0101 
10 0 1 ( x 1 0 )  1110 

Figure 4.7: Realizing h ( x ) / g ( x )  (first-element first), controller canonical form. 

as can be verified using the long division 1 + .3 + .4 1 + .3 . The operation of the circuit with this 
input is detailed in the following table. The column labeled 'b' shows the signal at the point 'b' in 
Figure 4.9. 

I 

k U k  b output next state 1 1  k U k  b output next state 
0000 II 5 o o o(A 0011 

4.10 Cyclic Encoding 

+ x " - ~  be the generator for a cyclic code. Let g ( x )  = 1 + g l x  + . . . + g n - k - 1 X  

Nonsystematic encoding of the message polynomial m ( x )  = mo + mix  + . . . + m k - 1 X k - '  

n - k - 1  
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(first-element 
first) 

a(x> 

0 . 0  

(first-element 
first) 

Figure 4.8: Realizing h ( x ) / g ( x )  (first-element first), observability form. 

Figure 4.9: Circuit realization of H ( x )  = (1 + x)/( l  + x3 + x4), controller form. 

can be accomplished by shifting m ( x )  (starting from the high-order symbol mk-1) into 
either of the circuits shown in Figures 4.1 or 4.2, redrawn with the coefficients of g ( x )  in 
Figure 4.1 1. 

To compute a systematic encoding, the steps are: 

1. Compute xn-km (x) 
2. Divide by g ( x )  and compute the remainder, d ( x ) .  

3. Compute xn-km(x)  - d ( x ) .  

Figure 4.12 shows a block diagram of a circuit that accomplishes these steps. The connection 
structure is the same as the polynomial divider in Figure 4.5. However, instead of feeding 
the signal in from the left end, the signal is fed into the right end, corresponding to a shift of 

Figure 4.10: Circuit realization of H ( x )  = (1 + x)/(l + x3 + x4), observability form. 
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Input 

0 

m a .  

... 

Register contents 

0 0 0  (initial state) 
1 1 1 0  
1 1 0 1  
1 0 1 0  

0 0 1 (paritybits,d(x) = x2) 

Figure 4.1 1 : Nonsystematic encoding of cyclic codes. 

x n P k .  This shifted signal is then divided by the feedback structure. The steps of operation 
are as follows: 

1. With the gate “open” (allowing the signal to pass through) and the switch in position 
A, the message symbols mk-1, mk-2, . . . , mo are fed (in that order) into the feedback 
system and simultaneously into the communication channel. When the message has 
been shifted in, the n - k symbols in the register form the remainder - they are the 
parity symbols. 

2. The gate is “closed,” removing the feedback. The switch is moved to position B. (For 
binary field, the - 1 coefficients are not needed.) 

3. The system is clocked n - k times more to shift the parity symbols into the channel. 
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Figure 4.12: Circuit for systematic encoding using g(x). 

Figure 4.13: Systematic encoder for the (7,4) code with generator g(x) = 1 + x + x3. 

Systematic encoding can also be accomplished using the parity check polynomial h (x) = 
ho + h l x  + . . . f hkxk.  Since hk = 1, we can write the condition (4.3) as 

k-1 

C l -k  = - x h i c r - i  I = k ,  k + 1 , .  . . , n - 1. (4.6) 
i=O 

Given the systematic part of the message C n - k  = mo, cn-k+1 = m l ,  . . . , cn-l = mk-1, 

the parity check bits co, c1, . . . , Cn-k-1  can be found from (4.6). A circuit for doing the 
computations is shown in Figure 4.14. The operation is as follows. 

1. With gate 1 open (passing message symbols) and gate 2 closed and with the syndrome 
register cleared to 0, the message m ( x )  = mo + m l x  + ... + mk-1xk-l is shifted 
into simultaneously the registers and into the channel, starting with the symbol mk-1. 

At the end of k shifts, the registers contain the symbols mo, m 1, . . . , mk-1, reading 
from left to right. 

2. Then gate 1 is closed and gate 2 is opened. The first parity check digit 

cn-k-1 = -(hOcn-l + hlCn-2  + . . * + h k - l c n - k )  

= -(mk-i + himk-2 +.  . . + hk-imo) 
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.. ‘*E D D 

... 

Figure 4.14: A systematic encoder using the parity check polynomial. 

gate 2 

I t  
gate 1 

Figure 4.15: A systematic encoder for the Hamming code using h ( x ) .  

is produced and appears at the point labeled A. Cn-k-1 is simultaneously clocked into 
the channel and into the buffer register (through gate 2). 

3. The computation continues until all n - k parity check symbols have been produced. 

Example 4.18 For the (7,4) code generator g(x) = x 3  + x + 1, the parity check polynomial is 

XI - 1 

x 3 + x + 1  
h(x) = = x4 + x2 + x + 1. 

Figure 4.15 shows the systematic encoder circuit. (The -1 coefficient is removed because of the 
binary field.) Suppose m ( x )  = x + x2 + x3. The bits (O,l,l,l) are shifted in (with the 1 bit shifted 
first). Then the contents of the registers are shown here. 

~ Registers 1 O u r  
0 1 1 1 (initial) 
1 0 1 1  
0 1 0 1  
0 0 1 0  

c = (O,O, 1, 0, 1, 1, l) ,  
The sequence of output bits is 

which is the same as produced by the encoding in Example 4.17. 0 

4.1 1 Syndrome Decoding 

We now examine the question of decoding binary cyclic codes. Recall that for any linear 
code, we can form a standard array, or we can use the reduced standard array using syn- 
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Polynomial 
r ( x ) = x + x 2 + x 4 + x 5 + x 6  
r(')(x) = 1 + x2 + x3 + x5 + x6 

r ( 2 ) ( x )  = 1 + x + x3 + x4 + x6 

r'3'(x) = l + x  + x 2 + x 4 + x 5  

r'4'(x) = x + x 2  +x3 + x 5  + x 6  

r'5'(x) = 1 + x 2  +x3 +x4 +x6 
r@'(x)  = 1 + x + x3 + x4 + x5 

Syndrome 
s ( x ) = x  
s ( l ) ( x )  = x2 

s@)(x )  = 1 + x 
s(3)(x)=x + x 2  

s'4'(x) = 1 + x  + x 2  

s'5'(x) = 1 + x 2  
s@'(x) = 1 

dromes. For cyclic codes it is possible to exploit the cyclic structure of the codes to further 
decrease the memory requirements. 

Recall that the syndrome was initially defined as s ( x )  = r (x )h(x )  (mod x" - 1). 
However, we can define the syndrome an alternative way. Since a codeword must be a 
multiple of g(x), when we divide r ( x )  by g ( x ) ,  the remainder is zero exactly when r (x) is 
a codeword. Thus we can employ the division algorithm to obtain a syndrome. We write 

r ( x )  = q(x)g(x) + s(x), 

where q (x) is the quotient (which is usually not used for decoding) and s (x) is the remainder 
polynomial having degree less than the degree of g(x): 

n-k-1 s ( X )  = SO + S I X  + . . . + S n - k - l X  

Thus, to compute the syndrome we can use polynomial division. A circuit such as that in 
Figure 4.5 can be used to compute the remainder. 

We have the following useful result about cyclic codes and syndromes. 

Theorem 4.2 Let s ( x )  be the syndrome corresponding to r (x ) ,  so r ( x )  = q(x)g(x) + s (x ) .  
Let r( ' )  (x) be the polynomial obtained by cyclically right-shifting r (x) and lets(') (x) denote 
its syndrome. Then s(l)(x) is the remainder obtainedwhen dividingxs(x) by g ( x ) .  In other 
words, syndromes of shifts of r ( x )  (modx" - 1) are shifts ofs(x) (modg(x)). 

Proof With r ( x )  = ro + r1x f .  . . rn-lx"-l the cyclic shift r( ' ) (x)  is 

r ( l ) (x )  = rn-l + rox + . + rn-2xn-', 

which can be written as 

Using the division algorithm and the fact that x n  - 1 = g(x)h(x) ,  

where s ( l ) ( x )  is the remainder from dividing r ( l ) ( x )  by g(x). Rearranging, we have 

r( ' ) (x)  = x r ( x )  - rn-1(P - 1). 

q(')(x)g(x) + s ( ' ) (x)  = x[q(x)g(x) + - rn-lg(x)h(x),  

x s ( x )  = [ q ( l ) ( x )  + rn-lh(x) - xq(x ) ]g (x )  + s ( ' ) (x ) .  

0 
By induction, the syndrome s ( ' ) (x )  that corresponds to cyclically shifting r ( x )  i times to 
produce r ( ' ) (x )  is obtained from the remainder of x's (x)  when divided by g(x). This can 
be accomplished in hardware simply by clocking the circuitry that computes the remainder 
s (x) i times: the shift register motion corresponds to multiplication by x, while the feedback 
corresponds to computing the remainder upon division by g (x) . 

Example 4.19 Forthe(7,4)codewithgeneratorg(x) = x3+x+1,1etr(x) = x+x2+x4+x5+x6 
be the received vector. That is, r = (0, 1, 1,0, 1, 1, 1). Then the cyclic shifts of r(x) and their 
corresponding syndromes are shown here. 

Thus s(l)(x) is the remainder from dividing x s ( x )  by g(x), as claimed. 

Polynomial I syndrome 
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. . . . . . . . . . .. . . . . . 

Figure 4.16 shows the circuit which divides by g ( x ) ,  producing the remainder s(x )  = so + s l x  +s2x2 
in its registers. Suppose the gate is initially open and r ( x )  is clocked in, producing the syndrome s ( x ) .  
Now the gate is closed and the system is clocked 6 more times. The registers contain successively the 
syndromes s(i) ( x )  corresponding to the cyclically shifted polynomials r - @ )  ( x ) ,  as shown in Table 4.3. 

0 

(turn off gate) 

rq gate 

Figure 4.16: A syndrome computation circuit for a cyclic code example. 

Table 4.3: Computing the Syndrome and Its Cyclic Shifts 

Clock Input I Registers I Syndrome 
Initial: 1 0  0 0 1  

1 1 
2 1 
3 1 
4 0 
5 1 
6 1 
7 0 

1 0 0  
1 1 0  
1 1 1  
1 0 1  
0 0 0  
1 0 0  
0 1 0  

8 
9 
10 
11 
12 
13 

0 0 1  
1 1 0  
0 1 1  
1 1 1  
1 0 1  
0 0 0  

s ( x )  = x 

s(l)(x) = x2 
s'2'(x) = 1 + x  
s '3 ' (x )  = x + x2 

s'4'(x) = 1 + x + x2  

s'5) ( x )  = 1 + x2 
s @ ) ( x )  = 0 (syndrome adjustment) 

We only need to compute one syndrome s for an error e and all cyclic shifts of e, so the 
size of the syndrome table can be reduced by n. Furthermore, we can compute the shifts 
necessary using the same circuit that computes the syndrome in the first place. 

This observation also indicates a means of producing error correcting hardware. Con- 
sider the decoder shown in Figure 4.17. This decoder structure is called a Meggitt decoder. 

The operation of the circuit is as follows. The error pattern detection circuit is a com- 
binatorial logic circuit that examine the syndrome bits and outputs a 1 if the syndrome 
corresponds to an error in the highest bit position, e,-1 = 1. 

With gate 1 open and gate 2 closed and with the syndrome register cleared to 0, 
the received vector is shifted into the buffer register and the syndrome register for n 
clocks. At the end of this, the syndrome register contains the syndrome for r ( x ) .  
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g ( x )  connections 

Syndrome register (n  - k stages) 

I S ndrome ... 
Xodification I I 1 

gate 2 I Error pattern 
detection circuit 

corrected 

Figure 4.17: Cyclic decoder when r ( x )  is shifted in the left end of the syndrome register. 

Now gate 1 is closed and gate 2 is opened. The error pattern detection circuit outputs 
en-l = 1 if it has determined that the (current) highest bit position is in error, so 
that e ( x )  = xn- ' .  The modified polynomial, denoted by r l ( x ) ,  is r l ( x )  = ro + 
r1.x + . . . + (m-1 + en- l )xn- l .  Now cyclically shift rl (x) to produce 

s i l ) ( x )  is the remainder of 11(')(x) divided by g ( x ) .  Since the remainder of x r ( x )  is 
s ( l ) ( x )  and the remainder of xx"-l is 1, the new syndrome is 

rI  ( 1 )  (x) = (m-1 + en- l )  + rox + . . . + r,_2xn-l.  The corresponding syndrome 

Therefore, the syndrome register can be adjusted so that it reflects the modification 
made to r (x) by adding a 1 to the left end of the register. (If only single error correction 
is possible, then this update is unnecessary.) 

The modified value is output and is also fed back around through gate 2. 

Decoding now proceeds similarly on the other bits of r ( x ) .  As each error is detected, 
the corresponding bit is complemented and the syndrome register is updated to reflect 
the modification. Operation continues until all the bits of the buffer register have been 
output. 

At the end of the decoding process, the buffer register contains the corrected bits. 
The key to decoding is designing the error pattern detection circuit. 

Example 4.20 Consider again the decoder for the code with generator g(x) = x3 + x + 1. The 
following table shows the error vectors and their corresponding syndrome vectors and polynomials. 
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1 1 I 

Error pattern 
detectlon circuit 

6 5 4 3 2  1 0  

gate 2 

Figure 4.18: Decoder for a (7,4) Hamming code, input on the left. 

error error polynomial syndrome syndrome polynomial 
0000000 e ( x )  = 0 000 s ( x )  = 0 
1000000 e ( x )  = 1 100 s(x) = 1 
0100000 e ( x )  = n 010 s ( x )  = x 
OOIOOOO e ( x )  = x2 00 1 s ( x )  = x2 

OOOIOOO e ( x )  = x3 110 s ( x )  = 1 + x  
OOOOIOO e ( x )  = x4 01 1 s ( x )  = x + x2 
OOOOOIO e ( x )  = x5 111 s ( x )  = 1 + x  + x 2  
OOOOOOI e ( x )  = x6 101 s ( x )  = 1 + x 2  

(From this table, we recognize that the received polynomial r ( x )  in Example 4.19 has an error in the 
second bit, since s ( x )  = x is the computed syndrome). However, what is of immediate interest is the 
error in the last position, e = (0000001) or e ( x )  = x6, with its syndrome s(x )  = 1 + x2. In the 
decoder of Figure 4.18, the pattern is detected with a single 3-input and gate with the middle input 
inverted. When this pattern is detected, the outgoing right bit of the register is complemented and the 
input bit of the syndrome register is complemented. The decoding circuit is thus as shown in Figure 
4.18. 

Suppose now that T ( X )  = x + x2 + x4 + x5  + x 6 ,  as in Example 4.19. As this is shifted in, the 
syndrome s ( x )  = x is computed. Now the register contents are clocked out, producing in succession 
the syndromes shown in Table 4.3. At clock tick 12 (which is 5 ticks after the initial the pattern was 
shifted in), d5)(x) = 1 + x2 appears in the syndrome register, signaling an error in the right bit of 
the register. The bit of the buffer register is complemented on its way to output, which corresponds 
to the second bit of the received codeword. The next syndrome becomes 0, corresponding to a vector 
with no errors. The corrected codeword is thus 

c(x) = x2 + x 4  + x 5  + x6, 

corresponding to a message polynomial m(x> = x + x2 + x3.  
The overall operation of the Meggitt decoder of Figure 4.18 is shown in Table 4.4. The input is 

shifted into the syndrome register and the buffer register. (The erroneous bit is indicated underlined.) 
After being shifted in, the syndrome register is clocked (with no further input) while the buffer register 
is cyclically shifted. At step 12, the syndrome pattern is detected as corresponding to an error in the 
right position. This is corrected. The syndrome is simultaneously adjusted, so that no further changes 
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are made in the last two steps. 

Table 4.4: Operation of the Meggitt decoder, Input from the Left 

101 
000 

6 
7 
8 
9 
10 
11 
12 
13 
14 

01 1 

000 
000 

buffer 
register 
1000000 
1 100000 
1 1 10000 
01 11000 
101 1100 
- 1101 110 
01101 11 
10~1011 
110~101 
11 10110 
01 1 lol l  
101 1101 (error corrected) 
0101110 
0010111 

In some cases, the Meggitt decoder is implemented with the received polynomial shifted 
in to the right of the syndrome register, as shown in Figure 4.19. Since shifting r ( x )  into 
the right end of the syndrome register is equivalent to multiplying by x"-~, the syndrome 
after r ( x )  has been shifted in is s ("-@(x) ,  the syndrome corresponding to ~ - ( " - ~ ) ( x ) .  Now 
decoding operates as before: if s ( " - ~ ) ( x )  corresponds to an error pattern with e ( x )  with 
e,-l = 1, then bit r,-1 is corrected. The effect of the error must also be removed from 
the syndrome. The updated syndrome, denoted sPpk)(n)  is the sum of ~("-~)(x) and the 
remainder resulting from dividing x " - ~ - '  b y g ( x ) .  Since has degree less than the 
degree of g ( x ) ,  this remainder is, in fact, equal to x"-~-'. The updated syndrome is thus 

$ - k )  (x) = s (n-k)  (..) + X(n-k-l)* 

This corresponds to simply updating the right coefficient of the syndrome register. 

Example 4.21 When the error pattern e ( x )  = x 6  is fed into the right-hand side of the syndrome 
register of a (7,4) Hamming code, it appears as x 3 x 6  = x9. The remainder upon dividing x9 by g(x) 
is xt3) ( x )  = R,(,)[x9] = x2. Thus, the syndrome to look for in the error pattern detection circuit is 

0 

If this decoder is used with the received polynomial r ( x )  = n + x 2  + x4 + x5 + x6 
(as before), then the syndrome register and buffer register contents are as shown in Table 
4.5. Initially the received polynomial is shifted in. As before, the erroneous bit is shown 
underlined. After step n = 7, the syndrome register is clocked with no further input. At 
step 12, the syndrome pattern detects the error in the right position. This is corrected in the 
buffer register adjusted in the syndrome register. 

x2. Figure 4.20 shows the corresponding decoder circuit. 
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Syndrome 
~ ( x )  connections modification 

JI ... 
I 

Syndrome register (n - k stages) t] I 
I I ... I '  I 

I 
gate 2 I I Error pattern 

detection circuit 

I I I I 
corrected 

Buffer register 

Figure 4.19: Cyclic decoder when r (x) is shifted into the right end of the syndrome register. 

Example 4.22 We present decoders for the (31,26) Hamming code generated by g ( x )  = 1 +x2 +x5. 
Figure 4.21(a) shows the decoder when the received polynomial is shifted in on the left. The error 

pattern e(x) = x30 results in the syndrome s(x) = ~ , ( , ) [ x ~ O l  = x4 + x ;  
Figure 4.21(b) shows the decoder when the received polynomial is shifted in on the right. The 

error pattern e ( x )  = x30 results in the shifted syndrome 

4.12 Shortened Cyclic Codes 

Shortened block codes were introduced in Section 3.9. In this section we deal in particular 
about shortened cyclic codes [204]. Let C be an (n ,  k )  cyclic code and let C' c C be the 
set of codewords for which the 1 high-order message symbols are equal to 0. That is, the 
symbols mk-1, mk-i+l, . . . , mk-2, mk-1 are all set to 0, so all messages are of the form 

k-1-1 m ( x )  = mo + m l x  + . . . + m k - l - 1 ~  . 
There are 2k-1 codewords in C', forming a linear (n  - 1, k - 1 )  subcode of C. The minimum 
distance of C' is at least as large as that of C. C' is called a shortened cyclic code. 

The shortened cyclic code C' is not, in general, cyclic. However, since C is cyclic, the 
encoding and decoding of C' can be accomplished using the same cyclic-oriented hardware 
as for C, since the deleted message symbols do not affect the parity-check or syndrome 
computations. However, care must be taken that the proper number of cyclic shifts is used. 

Let r ( x )  = ro + rlx + . . . + rn-l-lxn-'-l be the received polynomial. Consider a 
decoder in which r ( x )  is clocked into the right end of the syndrome register, as in Figure 4.19. 
Feeding r (x) into the right end of the corresponds to multiplying r (x) by x ~ - ~ .  However, 
since the code is of length n - 1, what is desired is multiplication by = x " - ~ + ' .  
Thus, the syndrome register must be cyclically clocked another 1 times after r (x) has been 
shifted into the register. While this is feasible, it introduces an additional decoder latency 
of 1 clock steps. We now show two different methods to eliminate this latency. 
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I 
Syndrome 
Modification 

6 5 4 3 2  1 0  

gate 2 

* 
Corrected 
output 

Figure 4.20: Hamming decoder with input fed into the right end of the syndrome register. 

Method 1 : Simulating the Extra Clock Shifts 

In this method, I (x) is fed into the syndrome computation register in such a way in n - k 
shifts the effect of n - k + 1 shifts is obtained. 

Using the division algorithm to divide x ~ - ~ + ' ~ ( x )  by g ( x )  we obtain 

I ( X )  = q1(x)g(x) + P k + l )  (x), (4.7) 

(x) is the remainder and is the desired syndrome for decoding the digit rn-l-1. 

p - k + l  

where 
Now divide x ~ - ~ ~ ~  b Y 

Xn-k+l - - q2(x)g(x) + P ( X > .  

where p(x)  = po + pix +. . . + pn-k-lXn-k-i is the remainder. This can also be expressed 
as 

(4.8) 
(for binary operations). Multiply (4.8) by r ( x )  and use the (4.7) to write 

From this equation, it is seen that the desired syndrome s ( ~ - ~ + ~ ) ( x )  can be obtained by 
multiplying I (x) by p ( x )  then computing the remainder modulo g (x). Combining the first- 
element-first circuits of Figures 4.1 and 4.5 we obtain the circuit shown in Figure 4.22. 

p ( x )  = Xn-k+z  + q2(x)g(x) 

p ( x ) r ( x )  = [q1(x) + q2(x)r(x)lg(x) + P k + l )  (x). 

The error pattern detection circuit for this implementation is the same as for the unshort- 
ened code. 

Example 4.23 Consider the Hamming (7,4) code generated by g() = 1 + x + x 3  whose decoder is 
shown in Figure 4.20. Shortening this code by 1 = 2, a (5,2) code is obtained. To find p ( x )  we have 

p ( x )  = Rg(x)[xn-k+l ]  = R,(,)[X 5 2  ] = x + x + 1. 
Figure 4.23 shows the decoder for this code. 0 
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gate 2 

F F F z ; g e c t e d  3 I-bit buffer register 

gate 2 

(a) Input from the left end. 4 gate 1 

1 

I pate 2 I 
I "  I 

31-bit buffer register 

data 
gate 2 

(b) Input from the right end. 

Figure 4.2 1 : Meggitt decoders for the (3 1,26) Hamming code. 
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Table 4.5: Operation of the Meggitt Decoder, Input from the Right 

step 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

input 
1 
1 
1 
0 
1 
1 
0 

- 

- 

_F_ 

syndrome 
register 

110 
101 
010 
00 1 
000 
110 
01 1 
111 
101 
100 
010 
00 1 
000 
000 

buffer 
register 
1000000 
1100000 
11 10000 
01 11000 
101 1100 
- 1101110 
01101 11 
10~101 1 
110~101 
11 10110 
01 11011 
101 1101 (error corrected) 
0101110 
0010111 

Figure 4.22: Multiply r ( x )  by p (x) and compute the remainder modulo g (x). 
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I I 

Error pattern 
detechon circuit 

gate 2 

Figure 4.23: Decoder for a shortened Hamming code. 

Method 2: Changing the Error Pattern Detection Circuit 

Another way to modify the decoder is to change the error pattern detection circuit so that 
it looks for patterns corresponding to the shifted input, but still retains the usual syndrome 
computation circuit. The error pattern detection circuit is designed to produce a 1 when 
the syndrome register corresponds to a correctable error pattern e ( x )  with an error at the 
right-position, that is, at position x n - l - l .  When this happens, the received digit rn-l-l is 
corrected and the effect of the error digit en-l-l is removed from the syndrome register via 
syndrome modification. 

Let e ( x )  = xn-'-'. Since this is input on the right end, this is equivalent to xn-l- lxn-k = 
x2n-r-k-1. The syndrome pattern to watch for is obtained by CJ (x) = Rg(x)[x2n-z-k-1 I. 

Example 4.24 Consider again the (7,4) Hamming code shortened to a (5,2) code. The error pattern 
at position xn-'-' = x4 appearing on the right-hand side as x2n-z-k-1 = x7. The syndrome to 
watch for is 

= R , ( , ) [ ~ ~ I  = 1. 

0 

4.13 Binary CRC Codes 

The term Cyclic Redundancy Check (CRC) code has come to be jargon applied to cyclic 
codes used as error detection codes: they indicate when error patterns have occurred over a 
sequence of bits, but not where the errors are nor how to correct them. They are commonly 
used in networking in conjunction with protocols which call for retransmission of erroneous 
data packets. Typically CRCs are binary codes, with operations taking place in GF(2). A 
CRC is a cyclic code, that is, the code polynomials are multiples of a generator polynomial 
g(x) E GF(2)[xl. 

CRCs are simply cyclic codes, so the same encoding and decoding concepts as any other 
cyclic code applies. In this section, however, we will introduce an efficient byte-oriented 
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algorithm for computing syndromes. 
We use the notation R,(,)[.] to denote the operation of computing the remainder of the 

argument when dividing by g(x). The entire cyclic encoding operation can thus be written, 
as described in Section 4.8, as 

C ( X )  = x ' ~ ( x )  + Rg(,)[x'm(~)l. 

Example 4.25 Letg(x) = x16+x15+x2+1 andm(x) = x ~ ~ + x ~ ~ + ~ ~ ~  + X ~ ~ + X ~ + X ~ + X ~ + X + ~  

corresponding to the message bits 

m=[O,1,1,0,1,1,0 ,1 ,0 ,0 ,1 ,0 ,0 ,1 ,1 ,11 

= [m15, m14, ' '  ' I m l ,  mo]. 

The vector m is written here with mo on the right. Since deg(g(x)) = n - k = 16, to encode we first 
multiply m ( x )  by x16: 

x16m(x) = X3O + 2 9  + XZ7 + 2 6  + 2 4  + 2 1  + x18 + x*7 + x16,  (4.9) 

then divide by g(x)  to obtain the remainder 

d ( x )  = X I 4  + X I 3  + X I 1  +.lo +x9 +x7 +x6 +x4  +x2. (4.10) 

The code polynomial is 

c ( x )  = x'6m(x) + d ( x )  

= x30 + 2 9  + 2 7  + x26 + 2 4  + 2 1  + .18 + 2 7  + ,16 

+ X I 4  + X I 3  + X I 1  + X I 0  + 2 +x7 +x6 +x4  + x 2  

The operation can also be represented using bit vectors instead of polynomials. From (4.9), 

x16m(x) ff [O, 1, l , O ,  1,1,0, 1,0,0,  1,0,0,  1, 1 ,  110, o,o,o,  o,o,o, 0,  o,o, 0, o,o, O , O , O ]  

(with the highest power of x corresponding to the bit on the left of this vector) and from (4.10), 

d ( x )  f, [ O , O , O , O ,  o ,o ,o ,o ,o ,o ,  0,0,0,0,0,010, 1 ,1 ,0 ,1 ,1 ,1 ,0 ,1 ,1 ,0 ,1 ,0 ,  1,0,01 

Adding these two vectors we find 

c=[0 ,1 ,1 ,0 ,1 ,1 ,0 ,1 ,0 ,0 ,1 ,0 ,0 ,1 ,1 ,1~0 ,1 ,1 ,0 ,1 ,1 ,1 ,0 ,1 ,1 ,0 ,1 ,0 ,1 ,0 ,0 ]  

The message vector m is clearly visible in the codeword c.  

Suppose now that the effect of the channel is represented by 

r ( x )  = c ( x )  + e(x). 

To see if any errors occurred in transmission over the channel, r (x) is divided by g(x) to 
find s (x) = Rg(,) [r (x)]. The polynomial s (x) is the syndrome polynomial. Note that 

s ( x )  = Rg(,)[r(x)l = Rg(,)[c(X) + &)I = R g ( x ) [ ~ ( ~ ) I  + Rg(x)[e(x)l = Rg(,)[e(x>l, 

since Rg(,) [c(x)] = 0 for any code polynomial c ( x ) .  
If s ( x )  # 0, then e ( x )  # 0, that is, one or more errors have occurred and they have been 

detected. If s ( x )  = 0, then it is concluded r ( x )  has not been corrupted by errors, so that the 
original message m (x) may be immediately extracted from I (x). 
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Note, however, that if an error pattern occurs which is exactly one of the code polyno- 
mials, say e ( x )  = CI (x) for some code polynomial cl ( x ) ,  then 

J(X)  = R g ( x ) [ C ( X )  + C l ( X > l  = R g ( x ) [ C ( X ) l +  R g ( x ) [ C l ( X ) I  = 0. 

In other words, there are error patterns that can occur which are not detected by the code: 
an error pattern is undetectable if and only if e ( x )  is a code polynomial. 

Let us consider how many such undetected error patterns there are. 

Suppose there is a single bit in error, e ( x )  = x i  for 0 <_ i 5 n - 1. If the polynomial 
g ( x )  has more than one nonzero term it cannot divide x i  evenly, so there is a nonzero 
remainder. Thus all single-bit errors can be detected. 

Suppose that g ( x )  has (1  + x) as a factor. Then it can be shown that all codewords 
have even parity, so that any odd number of bit errors can be detected. 

A burst error of length B is any error pattern for which the number of bits between 
the first and last errors (inclusive) is B .  For example, the bit sequence . . .,O,O,l,l,O,l, 
l,O,l,O,. . .has a burst error of length 7. 

Let e ( x )  be an error burst of length r = II - k or less. Then 

n - k - 1 )  e ( x )  = xi(l + elx + . . . + en-k-1.x 

for some i, 0 p i 5 k. Since g ( x )  is of degree n - k and has a non-zero constant 
term, that is 

+ P - k ,  n-k-1 g(x) = 1 + glx +. . . + g n - k - l x  

then R g ( , ) [ e ( x ) ]  cannot be zero, so the burst can be detected. 

Consider now a burst of errors of length n - k + 1 ,  with error polynomial e ( x )  = 
x'(1 + e l x + . . . e , - k - l X  n-k-l  + x ~ - ~ ) .  There are 2n-k-1 possible error patterns of 
this form for each value of i .  Of these, all but error bursts of the form e ( x )  = x ' g ( x )  
are detectable. The fraction of undetectable bursts of length n - k + 1 is therefore 
2 - ( n - k - l )  

For bursts of length 1 > n - k + 1 starting at position i, all 2'-2 of the bursts are 
detectable except those of the form 

e ( x )  = x i a ( x ) g ( x )  

for some a ( x )  = a0 + a lx  + . . - a i - n + k - l x  '-n+k-l  with a0 = al-nfk-1 = 1. The 
number of undetectable bursts is 21-nfk-2,  so the fraction of undetectable bursts is 
2 - n + k .  

Example 4.26 Let g ( x )  = x 1 6  + x15 + x 2  + 1. This can be factored as g ( x )  = (1 +x)(l +x + x 15), 
so the CRC is capable of detecting any odd number of bit errors. It can be shown that the smallest 
integer rn such that g(x) divides 1 + x m  is rn = 32767, So by Exercise 4.37, the CRC is able to detect 
any pattern of two errors - a double error pattern -provided that the code block length n 5 32767. 
All burst errors of length 16 or less are detectable. Bursts of length 17 are detectable with probability 
0.99997. Bursts of length 2 18 are detectable with probability 0.99998. 

Table 4.6 [373, p. 1 2 3 1 ,  [281] lists commonly used generator polynomials for CRC codes 
of various lengths. 
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Table 4.6: CRC Generators 

CRC Code Generator Polvnomial 
CRC-4 
CRC-7 
CRC-8 
CRC- 12 
CRC-ANSI 
CRC-CCITT 
CRC-SDLC 
CRC-24 
CRC-32a 
CRC-32b 

4.1 3.1 Byte-Oriented Encoding and Decoding Algorithms 

The syndrome computation algorithms described above are well-adapted to bit-oriented 
hardware implementations. However, CRCs are frequently used to check the integrity 
of files or data packets on computer systems which are intrinsically byte-oriented. An 
algorithm is presented here which produces the same result as a bit-oriented algorithm, but 
which operates on a byte at a time. The algorithm is faster because it deals with larger pieces 
of data and also because it makes use of parity information which is computed in advance 
and stored. It thus has higher storage requirements than the bitwise encoding algorithm but 
lower operational complexity; for a degree 16 polynomial, 256 two-byte integers must be 
stored. 

Consider a block of N bytes of data, as in a file or a data packet. We think of the first 
byte of data as corresponding to higher powers of x in its polynomial representation, since 
polynomial division requires dealing first with highest powers of x. This convention allows 
the file to be processed in storage order. The data are stored in bytes, as in 

do, 4 , .  . ., dN-1, 

where di represents an 8-bit quantity. For a byte of data di, let di,7, di$, . . , di,o denote the 
bits, where di,o is the least-significant bit (LSB) and 4 7  is the most significant bit (MSB). 
The byte di has a corresponding polynomial representation 

7 bi+l(x) = d i , 7 ~  + di,6X6 + * * . + di,lX + di,O. 

The algorithm described below reads in a byte of data and computes the CRC parity 
check information for all of the data up to that byte. It is described in terms of a CRC 
polynomial g ( x )  of degree 16, but generalization to other degrees is straightforward. For 
explicitness of examples, the generator polynomial g(x) = x l6 +x l5 +x2 + 1 (CRC-ANSI) 
is used throughout. Let m"](x) denote the message polynomial formed from the 8i bits of 
the first i data bytes {do, dl , . . . , dj-l}, 

m"](X) = d0,7X8i-1 + d0,6X8i-2 + . . . + di-l,lx + dj-l,O, 



4.13 Binary CRC Codes 151 

and let p [ ' ] ( x )  denote the corresponding parity polynomial of degree 5 15, 

p[i l (x)  = p &  15 + p14x [il 14 + . . . + p y x  + po [il . 

By the operation of cyclic encoding, 

16 [i] P[il(x) = R g ( x ) [ X  m ( X I 1 9  

x m (XI = q(x)g(x) + P [ ~ ] ( x )  
that is, 

16 [i] 
(4.1 1) 

for some quotient polynomial q (x). 
Let us now augment the message by one more byte. This is done by shifting the 

current message polynomial eight positions (bits) and inserting the new byte in the empty 
bit positions. We can write 

m[i+ll(x) = x 8 m [il (x) + bi+l(x) , - -  
Shift 8 positions add new byte 

where bi+1 (x) represents the new data. The new parity polynomial is computed by 

(4.12) 16 8 [i] ( ~ 1 1  = Rg(x)[x (X m (XI + h+l(x) ) I .  
p['+'](x) = Rg(,)[X 16, [i+ll 

Using (4.11), we can write (4.12) as 

P [ ~ + ' ] ( x )  = Rg(x)[x8g(x>q(x) + X~P"](X) + x16bi+l(~)1 

p[ i+l?x)  = Rg(,,[x8g(x)q(x)1 + Rg(,)[x8p['](x) + X16bi+l (x ) l ,  

P[i+ll(x) = Rg(x)[x8p[il(x) + x16bi+l(x)l 

This can be expanded as 

or 

since g(x) evenly divides x 8 g ( x ) q ( x ) .  The argument can be expressed in expanded form 
as 

X ~ ~ [ " ( X )  + xl6bi+1 (x) = pl5x [il 23 + pyjx22 + . . . + pr1x9 + pi1x8 

+ d i , 7 ~ ~ ~  + dj,6X22 + . . . + di,1xl7 + di,0xl6 

[il 23 

[il 15 [il 14 

= ( 4 7  + p 1 5 ) X  + (di,6 + p r i ) ~ ~ ~  + * * * + (di,o + ~ F ] ) X ' ~  
+ p7 x + pg x + . . . + p p x g .  

[il NOW let t j  = di,j + pj+8 for j = 0, 1, . . . ,7. Then 

X8p[ ' ] ( x )  +x'6bj+l(x) = t7x23 + t 6 X 2 2  +. . . f + p.5"]X15 + pt1X'4  +. . . f pt1x8. 

The updated parity is thus 

p[i+ll(x) = Rg(x)[t7X 23 + t 6 X 2 2  + ' .  . + + p y 1 X 1 5  + p t 1 X 1 4  + . * * + ptlx81 

= Rg(x ) [ t7X  23 + t 6 X 2 2  + '.. + t 0 X l 6 ]  + R g ( ~ ) [ p y ] X ~ ~  + p F 1 X 1 4  + ... + p p 3 1  
= R g ( ~ ) [ t 7 X ~ ~  + t 6 X 2 2  f . . . + tOX 16 ] + p7 [il X 15 + p i  11 X 14 +. * .  f p i 1 X 8 ,  

where the last equality follows since the degree of the argument of the second R g ( x )  is less 
than the degree of g (x) . 
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a 003c 
12 006c 
la 805f 
22 OOcc 
2a 80ff 
32 80af 
3a 009c 
42 018c 
4a 81bf 
52 81ef 
5a Oldc 
62 814f 
6a 017c 
72 012c 
7a 8llf 
82 03Oc 
8a 833f 
92 836f 
9a 035c 
a2 83cf 
aa 03fc 
b2 03ac 
ba 839f 
c2 828f 
ca 02bc 
d2 02ec 
da 82df 
e2 024c 

Table 4.7: Lookup Table for CRC-ANSI. Values for t and R ( t )  are expressed in hex. 

b 
13 
lb 
23 
2b 
33 
3b 
43 
4b 
53 
5b 
63 
6h 
73 
7b 
83 
8b 
93 
9b 
a3 
ab 
b3 
bb 
c3 
cb 
d3 
db 
e3 

0000 8CQ5 
8033 0036 

10 8063 11 0066 

2 800f I 3 OOOa 
8039 
8069 

8055 
00c6 
80f5 
80a5 
0096 
0186 
81b5 
81e5 
Old6 
8145 
0176 
0126 
8115 
0306 
8335 
8365 
0356 
83c5 
03f6 
03a6 
8395 
8285 
02b6 
02e6 
82d5 
0246 
8275 

18 0050 
20 8Oc3 
28 OOfo 
30 OOaO 
38 8093 
40 8183 
48 OlbO 
50 Ole0 
58 81d3 
60 0140 
68 8173 
70 8123 
78 0110 
80 8303 
88 0330 
90 0360 
98 8353 
a0 03cO 
a8 83f3 
bO 83a3 
b8 0390 
c0 0280 
c8 82b3 
do 82e3 
d8 02d0 
eO 8243 
e8 0270 

19 
21 
29 
31 
39 
41 
49 
51 
59 
61 
69 
71 
79 
81 
89 
91 
99 
a1 
a9 
bl  
b9 
cl  
c9 
dl  
d9 
el  
e9 

005a 
8Oc9 
OOfa 
ooaa 
8099 
8189 
Olba 
Olea 
81d9 
014a 
8179 
8129 
01 la 
8309 
033a 
036a 
8359 
03ca 
83t9 
83a9 
039a 
028a 
82b9 
82e9 
02da 
8249 p 827f 1 027a 

822f 022a 
021c 8219 

f R ( f )  
4 801h 
c 0028 
14 0078 
lc 804b 
24 OOd8 
2c 80eb 
34 80bb 
3c 0088 
44 0198 
4c 81ab 
54 81fb 
5c Olc8 
64 815b 
6c 0168 
74 0138 
7c 810b 
84 0318 
8c 832b 
94 837b 
9c 0348 
a4 83db 
ac 03e8 
b4 03b8 
bc 838b 
c4 829b 
cc 02a8 
d4 02f8 
dc 82cb 
e4 0258 
ec 826b 
f4 823h 
fc 0208 

There are 28 = 256 possible remainders of the form 

f 
5 
d 
15 
Id 
25 
2d 
35 
3d 
45 
4d 
55 
5d 
65 
6d 
75 
7d 
85 
8d 
95 
9d 
a5 
ad 
b5 
bd 
c5 
cd 
d5 
dd 
e5 
ed 
f5 

- R(t) 
OOle 
802d 
807d 
004e 
80dd 
OOee 
OObe 
808d 
819d 
Olae 
Olfe 
81cd 
015e 
816d 
813d 
OlOe 
831d 
032e 
037e 
834d 
03de 
83ed 
83bd 
0388 
029e 
82ad 
82fd 
02ce 
825d 
026e 
023e 

fd 8206 

f R(f )  
6 0014 
e 8027 
16 8077 
le  0044 
26 Sod7 
2e OOe4 
36 OOb4 
3e 8087 
46 8197 
4e Ola4 
56 Olf4 
5e 81c7 
66 0154 
6e 8167 
76 8137 
7e 0104 
86 8317 
8e 0324 
96 0374 
9e 8347 
a6 03d4 
ae 83e7 
b6 83b7 
be 0384 
c6 0294 
ce 82a7 
d6 82f7 
de 02c4 
e6 8257 
ee 0264 
f6 0234 
fe 8207 

f 
17 
If 
27 
2f 
37 
3f 
47 
4f 
57 
5f 
67 
6f 
77 
7f 
87 
8f 
97 
9f 
a7 
af 
b7 
bf 
c7 
cf 
d7 
df 
e7 
ef 
f7 

t R ( t )  
7 8011 

0022 
0072 
8041 
OOd2 
8Oel 
80bl 
0082 
0192 
81al 
81fl 
Olc2 
8151 
0162 
0132 
8101 
0312 
8321 
8371 
0342 
83dl 
03e2 
03b2 
8381 
8291 
02a2 
02f2 
82cl 
0252 
8261 
8231 

ff 0202 

(4.13) 

For each 8-bit combination t = ( t7 ,  t6, . . . , to), the remainder in (4.13) can be computed 
and stored in advance. For example, when t = 1 (i.e., to = 1 and other ti are 0) we find 

16 
Rg(x)[X 1 = Xl5  + x2 + 1, 

which has the representation in bits [1,0,0,0, O,O,O,O, O,O,O,O, 0,1,0,1], or in hex, 8005. 
Table 4.7 shows the remainder values for all 256 possible values oft ,  where the hex number 
R ( t )  represents the bits of the syndrome. Let ?;(x) = t7x23 + t6x22 + . .. + t0xl6 and let 
R ( t )  = Rg(x)[ t"(~)]  (i.e., the polynomial representedby the data inTable 4.7). The encoding 
update rule is summarized as 

The algorithm described above in terms of polynomials can be efficiently implemented in 
terms of byte-oriented arithmetic on a computer. The parity check information is represented 
in two bytes, c r  c 1 and c r  c0, with c r  c 1 representing the high-orderparity byte. Together, 
[crcl ,  crcO] forms the two-byte (16 bit) parity. Also, let R ( t )  denote the 16-bit parity 
corresponding to the t, as in Table 4.7. The operation 69 indicates bitwise modulo-2 addition 
(i.e., exclusive or). The fast CRC algorithm is summarized in Algorithm 4.1. 



4.13 Binarv CRC Codes 153 

Algorithm 4.1 Fast CRC encoding for a stream of bytes 

Input: A sequence of bytes do, dl,  . . . , dN. 
I 

2 F o r i = O t o N :  
3 

4 

5 End 
6 Output: Return the 16-bit parity [crcl ,  crcO]. 

Example 4.27 A file consists of two bytes of data, do = 39 and dl = 109, or in hexadecimal notation, 
do '2716 and dl = 6016. This corresponds to the bits 

0110 1101 00100111 
--' 

di do 

Initialization: Clear the parity information: Set [crcl ,  crco] = [O,O]. 

Compute t = dN-j @ c r c l  
[crcl ,  crcO] = [crcO,O] @ R ( t )  

with the least-significant bit on the right, or, equivalently, the polynomial 

x14 + X I 3  + X I 1  + X I 0  + x *  +x5 +x2 + x  + 1. 

(It is the same data as in Example 4.25.) The steps of the algorithm are as follows: 
I crc1, crcO = [O,O] 
2 i=O: 
3 

4 

2 i = l :  
3 

4 

6 Return 6ED416. 

t = dl@ c r c l  = 6D16 + 0 = 6D16 
[crcl ,  crcO] = [crcO, 01 @ R ( t )  = [O, 0]@816D16 

t =do @ c r c l  = 2716 @ 8116 = A616 
[crcl ,  crcO] = [crcO, 01 @ R ( t )  = [6D16,0]@03D416 = 6ED416 

The return value corresponds to the bits 

01 10 11 10 1101 0100 

which has polynomial representation 

p(x) = x14 + X I 3  + X I 1  + X1O + x9 + x7 + x6 + x4 + x2. 

This is the same parity as obtained in Example 4.25. 0 

4.13.2 CRC Protecting Data Files or Data Packets 

When protecting data files or data packets using CRC codes, the CRC codeword length is 
selected in bytes. As suggested in Example 4.26, for the CRC-16 code the number of bits 
in the codeword should be less than 32767, so the number of bytes in the codeword should 
be less than 4095. That is, the number of message bytes should be less than 4093. Let 
K denote the number of message bytes and let N denote the number of code bytes, for 
example, N = K + 2. 

The encoded file is, naturally, longer than the unencoded file, since parity bytes is 
included. In encoding a file, the file is divided into blocks of length K .  Each block of data is 
written to an encoded file, followed by the parity bytes. At the end of the file, if the number 
of bytes available is less than K, a shorter block is written out, followed by its parity bytes. 

In decoding (or checking) a file, blocks of N bytes are read in and the parity for the 
block is computed. If the parity is not zero, one or more error has been detected in that 
block. At the end of the file, if the block size is shorter, the appropriate block length read in 
is used. 
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Figure 4.24: Linear feedback shift register. 

Appendix 4.A Linear Feedback Shift Registers 

Closely related to polynomial division is the linear feedback shift register (LFSR). This is 
simply a divider with no input - the output is computed based on the initial condition of 
its storage elements. With proper feedback connections, the LFSR can be used to produce 
a sequence with many properties of random noise sequences (for example, the correlation 
function approximates a S function). These pseudonoise sequences are widely used in spread 
spectrum communication and as synchronization sequences in common modem protocols. 
The LFSR can also be used to provide an important part of the representation of Galois 
fields, which are fundamental to many error correction codes (see Chapter 5). The LFSR 
also re-appears in the context of decoding algorithms for BCH and Reed-Solomon codes, 
where an important problem is to determine a shortest LFSR and its initial condition which 
could produce a given output sequence. (See Chapter 6). 

Appendix 4.A.1 Basic Concepts 

A binary linear feedback shift register (LFSR) circuit is built using a polynomial division 
circuit with no input. Eliminating the input to the division circuit of Figure 4.5, we obtain 
the LFSR shown in Figure 4.24. Since there is no input, the output generated is due to the 
initial state of the registers. Since there are only a finite number of possible states for this 
digital device, the circuit must eventually return to a previous state. The number of steps 
before a state reappears is called the period of the sequence generated by the circuit. A 
binary LFSR with p storage elements has 2 P  possible states. Since the all-zero state never 
changes it is removed from consideration, so the longest possible period is 2P - 1. 

Example 4.28 Figure 4.25 illustrates the LFSR with connection polynomial g(x) = 1 + x  + x 2  +x4. 
Table 4.8 shows the sequence of states and the output of the LFSR when it is loaded with the initial 
condition (1, 0, 0, 0); The sequence of states repeats after 7 steps, so the output sequence is periodic 
with period 7. Table 4.9 shows the sequence of states for the same connection polynomial when the 
LFSR is loaded with the initial condition (1, 1, 0, 0), which again repeats after 7 steps. Of the 15 
possible nonzero states of the LFSR, these two sequences exhaust all but one of the possible states. 
The sequence for the last remaining state, corresponding to an initial condition (1,0, 1, I), is shown 

0 in Table 4.10; this repeats after only one step. 

Example 4.29 Figure 4.26 illustrates the LFSR with connection polynomial g(x) = 1 + x + x4. 
Table 4.11 shows the sequence of states and the output of the LFSR when it is loaded with the initial 
condition (1,0,0,0). In this case, the shift register sequences through 15 states before it repeats. 0 
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I Count State 
0 1 0 0 0  
1 0 1 0 0  
2 0 0 1 0  
3 0 0 0 1  
4 1 1 1 0  
5 0 1 1 1  
6 1 1 0 1  
7 1 0 0 0  

Figure 4.25: Linear feedback shift register with g ( x )  = 1 + x + x 2  + x 4 .  

output 
0 
0 
0 
1 
0 
1 
1 
0 

I Count State 
0 1 1 0 0  
1 0 1 1 0  
2 0 0 1 1  
3 1 1 1 1  
4 1 0 0 1  
5 1 0 1 0  
6 0 1 0 1  
7 1 1 0 0  

Definition 4.8 A sequence generated by a connection polynomial g ( x )  of degree n is said 
0 

Thus, the output sequence of Example 4.29 is a maximal-length sequence, while the 
output sequences of Example 4.28 are not. A connection polynomial which produces a 
maximal-length sequence is a primitive polynomial. A program to exhaustively search for 
primitive polynomials modulo p for arbitrary (small) p is pr i m f  ind. 

to be a maximal length sequence if the period of the sequence is 2" - 1. 

The sequence of outputs of the LFSR satisfy the equation 

P - 1  

output 
0 
0 
1 
1 
1 
0 
1 
0 

(4.14) 
j =O 

This may be seen as follows. Denote the output sequence of the LFSR in Figure 4.24 by 
( ym} .  For immediate convenience, assume that the sequence is infinite {. . . , y - 2 ,  y-1,  yo,  
y1,  y2,  . . .} and represent this sequence as a formal power series 

primitive.txt 
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Table 4.10: LFSR Example with g ( x )  = 1 + x + x 2  + x 4  and Initial State 1 + x 2  + x 3  
Count State output 

1 0 1 1  

Figure 4.26: Linear feedback shift register with g ( x )  = 1 + x + x 4 ,  

Consider the output at point ‘a’ in Figure 4.24. Because of the delay x ,  at point ‘a’ the signal 
is 

gox Y ( x  1 Y 

where the factor x represents the delay through the memory element. At point ‘b’, the signal 
is 

g0x2y (x> + glxY ( X I  

(g0xP + g1xP-’ + - . . g p - l x ) Y ( x ) ,  

Continuing likewise through the system, at the output point ‘d’ the signal is 

which is the same as the output signal: 

(g0xP + g1xp-’ + . . * g p - l x ) Y ( x )  = y ( x ) .  (4.15) 

Equation (4.15) can be true only if coefficients of corresponding powers of x match. This 
produces the relationship 

(4.16) 

Letting g* = g p - j ,  (4.16) can be written in the somewhat more familiar form as a convo- 
lution, 

J 

P 

(4.17) 
j = l  

Equation (4.17) can also be re-written as 

D 

(4.18) 
j =O 

with the stipulation that go* = 1. 
The polynomial g*(n)  with coefficients gs = gp-j  is sometimes referred to as the 

reciprocal polynomial. That is, g * ( x )  has its coefficients in the reverse order from g ( x ) .  
(The term “reciprocal” does not mean that h ( x )  is a multiplicative inverse of g ( x ) ;  it is just 
a conventional name.) The reciprocal polynomial of g ( x )  is denoted as g * ( x ) .  If g ( x )  is 
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Table 4.1 1 : LF! examp 
Count 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

with g(x) = 1 
State 

1 0 0 0  
0 1 0 0  
0 0 1 0  
0 0 0 1  
1 1 0 0  
0 1 1 0  
0 0 1 1  
1 1 0 1  
1 0 1 0  
0 1 0 1  
1 1 1 0  
0 1 1 1  
1 1 1 1  
1 0 1 1  
1 0 0 1  
1 0 0 0  

x +x4 

output 
0 
0 
0 
1 
0 
0 
1 
1 
0 
1 
0 
1 
1 
1 
1 
0 

md initial state 1 

a polynomial of degree p with non-zero constant term (i.e., go = 1 and gp = l), then the 
reciprocal polynomial can be obtained by 

g*(x) = xPg(l/x). 

It is clear in this case that the reciprocal of the reciprocal is the same as the original polyno- 
mial. However, if go = 0, then the degree of xPg(l/x) is less than the degree of g(x) and 
this latter statement is not true. 

With the understanding that the output sequence is periodic with period 2P - 1, so that 
y-1 = y 2 ~ - 2 ,  (4.18) is true for all i E Z. Because the sum in (4.18) is equal to 0 for all i ,  
the polynomial g*(x) is said to be an annihilator of y ( x ) .  

Example 4.30 For the coefficient polynomial g(x) = 1 + x + x2 + x4, the reciprocal polynomial is 
g*(x) = 1 + x 2  + x3 + x4 and the LFSR relationship is 

yi = yi-2 + yi-3 + yi-4 for all i E Z. (4.19) 

For the output sequence of Table 4.8 [O, 0, 0, 1,0, 1, 1, 0, . . .}, it may be readily verified that (4.19) 
is satisfied. 0 

The LFSR circuit diagram is sometimes expressed in terms of the reciprocal polynomials, 
as shown in Figure 4.27. It is important to be careful of the conventions used. 

Appendix 4.A.2 Connection With Polynomial Division 

The output sequence produced by an LFSR has a connection with polynomial long division. 
To illustrate this, let us take g(x) = 1 + x + x2 + x4, as in Example 4.28. The reciprocal 
polynomialis g*(x) = 1 + x 2  + x 3  +x4. Let the dividend polynomial be d(x) = x 3 .  (The 
relationship between the sequence and the dividend are explored in Exercise 4.43.) The 
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Figure 4.27: Linear feedback shift register, reciprocal polynomial convention. 

power series obtained by dividing d(x) by g * ( x ) ,  with g * ( x )  written in order of increasing 
degree, is obtained by formal long division: 

x 3 +  x 5 + x 6  * -  

1 + x2 + x3 + x q x 3  

x3+ x 5 + x 6 + x 7  

x5+ x6+ x7 

x5+ x 7 + x * + x 9  

x6+ x8+x9 

x6+ x*+ x9+ xlo 

The quotient polynomial corresponds to the sequence {O, 0, 0, 1, 0, 1, 1, . . .}, the same as 
the output sequence shown in Table 4.8. 

Let yo,  y i  , . . . be an infinite sequence produced by an LFSR, which we represent with 
y ( x )  = yo + y i x  + y2x2 + . . . = ynxn.  Furthermore, represent the initial state of 
the shift register as y-1,  y-2,  . . . , Y - ~ .  Using the recurrence relation (4.17) we have 

00 

C O P  P 00 

Y ( X >  = 7, g f y n - j x n  = 1 g f x j  C yn-jxn-J 
n=O j = 1  j=1 n =O 

so that 
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and y-4 = 1. From (4.20) we find 

- x 3  x3 
y(x) = - - 

s * ( x )  1 + x 2 + x 3  +x4'  

as before. 0 

Theorem 4.3 Let y (x) be produced by a LFSR with comection polynomial g (x) of degree 
p .  Ify(x) isperiodic withperiod N then g*(x)  I (xN - l )d (x ) ,  where d (x )  is apolynomial 
of degree < p. 

Proof By the results above, y(x) = 
y(x) is periodic then 

for a polynomial d ( x )  with deg(d(x)) < p .  If g ( x )  

Y(X> = (yo + ylx + * * .  + yN-lXN-') + XN(YO + y1x + * .  . + yN-1XN-') 

2N + x  (yo + YlX + ... + yN-lXN-l) + ... 
= (yo + y1x + . * * + YN, xN-1) ( 1 + X N  + X Z N  + . . . ) 

N-1) (YO + Y l X  + . . . + YN-lX - - - 
X N  - 1 

so 
d ( x )  
g*(x) XN - 1 

(YO + ylx + * * . + Y N - I ~ ~ - ' )  - 

or g*(x)(yo + ylx +.  
For a given d(x), the period is the smallest N such that g*(x) 1 (xN - l )d(x) .  

+ yN-lxN-') = -d(x)(xN - l), establishing the result. 0 

Example 4.32 The polynomial g * ( x )  = 1 + x2  + x 3  + x4 can be factored as 

g * ( x )  = (1 + x ) ( l  + x  +x3). 

Taking N = 1 and d(x) = 1 + x + x 3  we see that y ( x )  has period 1. This is the sequence shown in 
0 Table 4.10. We note that g * ( x )  I x7 - 1, so that any d(x) of appropriate degee will serve. 

As a sort of converse to the previous theorem, we have the following. 

Theorem 4.4 I f g * ( x )  1 x N  - 1, then y(x) = & isperiodic withperiod N or some divisor 
of N .  

N 1  Proof Let q(x) = = yo + ylx + . . y ~ - l x ~ - l .  Then 

= (yo + y1x + . . * YN- 1 xN-l ) + X N  (yo + y1x + . . . YN- 1 x N-l ) + . . . , 
which represents a periodic sequence. 0 

Theorem 4.5 Ifthe sequence y(x) produced by the connection polynomial g (x )  of degree 
p has period 2 P  - 1 -that is, y(x) a maximal-length sequence - then g*(x)  is irreducible. 
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Proof Since the shift register moves through 2 P  - 1 states before repeating, the shift 
register must progress through all possible nonzero conditions. Therefore, there is some 
“initial condition” corresponding to d ( x )  = 1. Without loss of generality we can take 

Suppose that g * ( x )  factors as a*(x)b*(x), where deg(a*(x)) = pi and deg(b*(x)) = 
Y ( X >  = l/g*(x). 

p2, with p1 + p2 = p .  Then 

4x1 d(x) 
g * ( x )  a*(x)b*(x) a*(x) b*(x) 

-+- - - 1 - 1 
y(x) = - - 

by partial fraction expansion. c ( x ) / a * ( x )  represents a series with period at most 2‘’ - 1 
and d ( x )  b*(x) represents a series with period at most 2’2 - 1. The period of the sum 

the product of the periods: 

- + & d,, is at most the least common multiple of these periods, which must be less than 

(2P’ - 1)(2PZ - 1) = 2p - 3. 

But this is less than the period 2 P  - 1, so g * ( x )  must not have such factors. 0 
As mentioned above, irreducibility does not imply maximal-length. The polynomial g * ( x )  = 
1 + x + x2 + x3 + x4 divides x5 + 1. But by Theorem 4.4, y ( x )  = l/g*(x) has period 5 ,  
instead of the period 15 that a maximal-length sequence would have. What is needed for 
the polynomial to be primitive. 

Appendix 4.A.3 Some Algebraic Properties of Shift Sequences 

Let y(x) be a sequence with period N .  Then y (x) can be considered an element of R N  = 
GF(2)[x]/(xN - 1). Let g ( x )  be a connection polynomial and g * ( x )  be its reciprocal. Let 
w(x) = g * ( x ) y ( x ) ,  where computation occurs in the ring R N ,  and let w(x) = wo + w1x + 
. . . + W N - I X ~ - ’ .  The coefficient zui of this polynomial is computed by 

j =O 

However, by (4.18), this is equal to 0. That is, g* ( x )  y (x) = 0 in the ring RN . In this case, we 
say that g* (x) annihilates the sequence y (x). Let V (g *) be the set of sequences annihilated 
by g* (x). We observe that V (g*)  is an ideal in the ring R, and has a generator h* (x) which 
must divide x N  - 1. The generator h*(x )  is the polynomial factor of (xN - l)/g*(x) of 
smallest positive degree. If ( X N  - l)/g*(x) is irreducible, then h*(x )  = ( X N  - l)/g*(x). 

Example 4.33 Let g ( x )  = 1 + x + x 2  + x4, as in Example 4.28. Then g * ( x )  = 1 + x 2  + x 3  + x4. 
This polynomial divides x7 + 1: 

The polynomial y ( x )  = h * ( x )  corresponds to the output sequence 1,0, 1, 1,0,0,0 and its cyclic 
shifts, which appears in Table 4.8. 

The polynomial y ( x )  = (1 + x)h* ( x )  = 1 + x +x2 + x4 corresponds to the sequence 1, 1, 1,0, 1 
and its cyclic shifts, which appears in Table 4.9. 

The polynomial y ( x )  = (1 + x + x3) * h * ( x )  = I + x + x 2  + ~ 3 x 4  + x5  + x6 corresponds to 
the sequence 1, 1, 1, 1, 1, 1 and its cyclic shifts. This sequence appears in Table 4.10. This sequence 

0 also happens to have period 2. 
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Example 4.34 For the generator polynomial g(x) = 1 +x+x4 and its reciprocal g* (x) = 1 +x3 +x4. 
This polynomial divides x l5 + 1: 

The polynomial y(x) = h*(x)  corresponds to the sequence 1 ,0 ,0 ,  1, 1, 0, 1,0,  1, 1, 1, 1, which 
appears in Table 4.11. 0 

Programming Laboratory 2: 

Polynomial Division and Linear 
Feedback Shift Registers 

Objective 

Computing quotients and remainders in polynomial divi- 
sion is an important computational step for encoding and 
decoding cyclic codes. In this lab, you are to create a C++ 
class which performs these operations for binary polynomi- 
als. You will also create an LFSR class, which will be used 
in the construction of a Galois field class. 

Preliminary Exercises 

Reading: Section 4.9, Appendix 4.A.1. 

1) Let g(x) = x4 + x3 + x + 1 and d(x) = x8 + x7 + 
x5 + x 4  + x 3  + x  + 1. 

a) Perform polynomial long division of d ( x )  and g(x), 
computing the quotient and remainder, as in Example 
4.15. 

b) Draw the circuit configuration for dividing by g ( x ) .  

c) Trace the operation of the circuit for the g(x) and 
d ( x )  given, identifying the polynomials represented by 
the shift register contents at each step of the algorithm, as 
in Table 4.2. Also, identify the quotient and the remainder 
produced by the circuit. 

2) For the connection polynomial g(x) = x4 + x3 + x + 
1, trace the LFSR when the initial register contents are 
(1,0,0,0), as in Example 4.28. Also, if this does not ex- 
haust all possible 15 states of the LFSR, determine other 
initial states and the sequences they generate. 

Programming Part: BinLFSR 
Create a C++ class BinLFSR which implements an LFSR 
for a connection polynomial of degree < 32. Create a con- 
structor with arguments 

BinLFSR(int g, int n, int initstate=l); 

The first argument g is a representation of the con- 
nection polynomial. For example, g = 0x1 7 represents 
the bits 1 0  11 1, which represents the polynomial g(x) = 
x4 + x2 + x + 1. The second argument n is the degree 
of the connection polynomial. The third argument has a 
default value, corresponding to the initial state (1 ,O,O,. . . ,O). 
Use a single unsigned int internally to hold the state of 
the shift register. The class should have member functions 
as follows: 

BinLFSR(v0id) { g=n=state=mask=maskl=O;l 
/ /  default constructor 

BinLFSR(int g, int n, int initstate=l); 
/ /  constructor 

-BinLFSR ( ) { 1 ; 
/ /  destructor 

void setstate(int state); 
/ /  Set the initial state of the LFSR 

unsigned char step(void1; 
/ /  Step the LFSR one step, 
/ /  and return 1-bit output 

unsigned char step(int &state); 
/ /  Step the LFSR one step, 
/ /  return 1-bit output 
/ /  and the new state 

/ /  Step the LFSR nstep times, 
/ /  returning the array of 1-bit outputs 

void steps(int nstep, unsigned char *outputs); 

Test the class as follows: 

1) Use the LFSR class to generate the three sequences of 
Example 4.28. 
2) Use the LFSR class to generate the output sequence and 
the sequence of states shown in Table 4.11. 

Resources and implementation Suggestions 
The storage of the polynomial divider and LFSR could be 
implemented with a character array, as in 

unsigned char *storage = new unsigned char[nl; 

Shifting the registers would require a f o r  loop. How- 
ever, since the degree of the coefficient polynomial is of 
degree c 32, all the memory can be contained in a single 
4-byte integer, and the register shift can be accomplished 
with a single bit shift operation. 

0 The operator << shifts bits left, shifting 0 into the least 
significant bits. Thus, if a=3, then a<<2 is equal to 12. The 
number l ~ m  is equal to 2m for m ?- 0. 
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0 The operator > > shifts bits right, shifting in 0 to the most 
significant bit. Thus, if a=13, then a ~ 2  is equal to 3. 

0 Hexadecimalconstants can be writtenusing Oxnnnn, as 
in OxFF (thenumber255), or 0x1 0 1 (thenumber 257). Oc- 
tal constants can be written using Onnn, as in 0123, which 
has the bit pattern 001 010 011. 
0 The bitwise and operator & can be used to mask bits off. 
For example, if a = 0x123, then in b = a & OxFF;, 
b is equal to 0 x2 3. To retain the lowest m bits of a number, 
maskitwith ( ( 1 c c m ) - 1 ) .  

0 The algorithms can be implemented either by shifting 
right using >> or by shifting left using <<. For a few rea- 
sons, it makes sense to shift left, so that the input comes 
into the least significant bit and the output comes out of the 
most significant bit. This may be initially slightly confus- 
ing, since the pictures portray shifts to the right. 
0 As a tutorial, the code for the LFSR is explicitly por- 
trayed. 

BinLFSR.cc 
testBinLFSR.cc 
MakeLFSR 

The class declarations are given in BinLFSR. h. The class 
definitions are given in BinLFSR. cc. In this case, the 
definitions are short enough that it would make sense to 
merge the . cc file into the . h file, but they are sepa- 
rated for pedagogical  reason^.^ A simple test program 
is testBinLFSR. cc. A very simple makefile (if you 
choose to use make) is in MakeLFSR. 

Programming Part: BinPolyDiv 
Create a C++ class BinPolyDiv which implements a 
polynomial divisorh-emainder circuit, where the degree of 
g ( x )  is i 32. The constructor has arguments representing 
the divisor polynomial and its degree: 

BinPolyDiv(unsigned char *g, int p ) ;  

The class should have member functions div and 
remainder which compute, respectively, the quotient and 
the remainder, with arguments as follows: 

int div(unsigned char *d, / /  dividend 
int ddegree, 
unsigned char *q,  
int &quotientdegree, 
int &remainderdegree); 

int remainder(unsigned char *d, 
int n, 
int &remainderdegree); 

The dividend d is passed in as an unsigned char 
array, one bit per character, so that arbitrarily long dividend 
polynomials can be accommodated. The remainder is re- 
turned as a single integer whose bits represent the storage 
register, with the least-significant bit representing the coef- 
ficient of smallest degree of the remainder. Internally, the 
remainder should be stored in a single unsigned int. 

Test your function on the polynomials g(x)  = x4 + 
x 3 + x + l a n d d ( x )  = x 8 + x 7 + x 5 + x 4 + x 3 + x + 1  
from the Preliminary Exercises. Also test your function on 
the polynomials from Example 4.15. 

Algorithm 4.3 BinPolyDiv 
File: BinPolyDiv. h 

BinPolyDiv.cc 
testBinPo1yDiv.c~ 

Follow-On Ideas and Problems 

A binary (0, 1) sequence { y n ]  can be converted to a binary 
f l  sequence zn by zn = ( -1 )Yn .  For a binary f l  se- 
quence [ t o ,  z 1 ,  . . . , Z N - l }  with period N ,  define the cyclic 
autocorrelation by 

N-1 

r z ( t )  = - C ZiZ(( i+r))$ 
i=o 

where ( ( i  + t)) denotes i + T modulo N .  
Using your LFSR class, generate the sequence with con- 

nection polynomial g ( x )  = 1 + x + x4 and compute and 
plot r Z ( t )  for t = 0, 1, . . . , 15. (You may want to make 
the plots by saving the computed data to a file, then plotting 
using some convenient plotting tool such as Matlab.) You 
should observe that there is a single point with correlation 
1 (at T = 0) and that the correlations at all other lags has 
correlation - 1 f N .  

The shape of the correlation function is one reason 
that maximal length sequences are called pseudonoise se- 
quences: the correlation function approximates a 8 function 
(with the approximation improving for longer N ) .  

As a comparison, generate a sequence with period 7 us- 
ing g(x)  = 1 + x  + x 2  +x4 and plot r Z ( t )  for this sequence. 

4The comment at the end of this code is parsed by the emacs editor in the ccc mode. This comment can be used by the compile 
command in emacs to run the compiler inside the editor. 
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Programming Laboratory 3: 

CRC Encoding and Decoding 

Objective 

In this lab, you become familiar with cyclic encoding and 
decoding, both in bit-oriented and byte-oriented algorithms. 

Preliminary 

Reading: Section 4.13. 
Verify that the remainder d ( x )  in (4.10) is correct by 

dividing X ' ~ ~ ( X )  by g(x). (You may want to do this both 
by hand and using a test program invoking BinPolyDiv, 
as a further test on your program.) 

Programming Part 

1) Write a C++ class CRC 1 6  which computes the 16-bit 
parity bits for a stream of data, where (x) is a enerator 
polynom@l of degree 16. The a l g o r i k  shoulf use the 
olynomal &vision idea (that is, a bit-onented algonthm. 

!'ou may probably want to make use of a BinPolyDiv 
object from Lab 2 in our class). Here is a class declaration 
you might find usefuE 

class CRC16 { 
protected: 

public : 
BinPolyDiv div; / /  the divider object 

CRC16(int crcpoly); / /  constructor 
int CRC(unsigned char *data, int len); 
/ /  Compute the CRC for the data 
/ /  data=data to be encoded 
/ /  len = number of bytes to be encoded 
/ /  Return value: the 16 bits of 
/ /  parity 
/ /  (data[Ol is associated with the 
/ /  highest power of x"n) 

1;  

Test your program first using Example 4.25. 
2) Write a standalone program crcenc which encodes 
a file, making use of your CRC16  class. Use g(x) = 
x16 + x15 ,+ x2 + 1. The program should accept three 
command line arguments: 

crcenc K filein fileout 

where K is the message block length (in bytes), f i 1 e i n 
is the input file, and f i l eou t  is the encoded file. 
3) Write a standalone program crcdec which decodes a 
file, making use of your CRC class. The program should 
accept three arguments: 

crcdec K filein fileout 

whereKisthemessageblocklength(inbytes), f i l e i n  
is an encoded file, and f i l eou t  is a decoded file. 

4) Test crcenc and crcdec by first encoding then de- 
coding a file, then comparing the decoded file with the orig- 
inal. (A simple compare program is crnpsimple.) The 
decoded file should be the same as the original file. Use a 
message block length of 1024 bytes. Use a file of 1,000,000 
random bytes created using the rnakerand program for the 
test. 

5) Test your programs further by passing the encoded data 
through a binary symmetric channel using the bs c program. 
Try channelcrossoverprobabilities ofO.oooO1, 0.001, 0.01, 
and 0.1. Are there any blocks of data that have errors that 
are not detected? 
6) Write aclass FastCRC16 whichusesthebyte-oriented 
algorithm to compute the parity bits for a generator g(x) of 
degree 16. A sample class definition follows: 

class FastCRC16 { 
protected: 

static int *crctable; 
unsigned char crc0, crcl; 
/ /  the two bytes of parity 

FastCRC16(int crcpoly); / /  constructor 
int CRC(unsigned char *data, int len); 
/ /  Compute the CRC for the data 
/ /  data[O] corresponds to the 
/ /  highest powers of x 

public : 

I ;  

The table of parity values (as in Table 4.7) should be 
stored in a static class member variable (see the discussion 
below about static variables). The constructor for the class 
should allocate space for the table and fill the table, if it has 
not already been built. 

7) Test your program using the data in Example 4.27. 

8) Write a standalone program fastcrcenc which en- 
codesafileusingFastCRC16. Use&) =x16 + x 1 5  + 
x2 + 1. The program should have the same arguments as 
the program c r  cenc. Test your program by encoding some 
data and verify that the encoded file is the same as for a file 
encoded using crcenc. 

9 )  Write a decoder program f a s t  c r  cde c which decodes 
using Fast CRC 1 6 .  Verify that it decodes correctly. 
10) Compare the encoding rates of crcenc and 
fastcrcenc. How much faster is the byte-oriented al- 
gorithm? 

Resources and Implementation Suggestions 

Static Member Variables A static member variable of 
a class is a variable that is associated with the class. How- 
ever, all instances of the class share that same data, so the 
data is not really part of any articular object. To see why 
these might be used, suppose &at you want to build a system 
that has two FastCRC16 objects in it: 
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FastCRC16 CRCl(g); / /  instantiate two objects 
FastCRC16 CRCZ(g); 

The Fast  CRC 1 6  algorithm needs the data from Table 4.7. 
This data could be represented using member data as in 
class FastCRC16 1 
protected: 

int *crctable; 
unsigned char crc0, crcl; 
/ /  the two bytes of parity 

FastCRC16(int crcpoly); / /  constructor 
int CRCtunsigned char *data, int len); 

public: 

) ;  

However, there are two problems with this: 

1) Each object would have its own table. This wastes stor- 
age space. 
2) Each object would have to construct its table, as part of 
the constructor routine. This wastes time. 
As an alternative, the lookup table could be stored in a static 
member variable. Then it would only need to be constructed 
once (saving computation time) and only stored once (sav- 
ing memory). The tradeoff is that it is not possible by this 
arrangement to have two or more different lookup tables in 
the same system of software at the same time. (There are 
ways to work around this problem, however. You should try 
to think of a solution on your own.) 

The declaration s t a t i c  i n t  *c rc t ab le ;  which 
appears in the ,h file does not define the variable. There 
must be a defimtion somewhere, in a C++ source file that 
is only compiled once. Also, since it is a static object, in 
a sense external to the class, its definition must be fully 
scoped. Here is how it is defined: 
/ /  File: FastCRC.cc 

/ /  . . .  
#include "FastCRC . h" 
int *FastCRClG::crctable=O; 

This defines the pointer and initializes it to, 0. allocation 
of space for the table and computation of its contents is 
accomplished by the constructor: 
/ /  Constructor for FastCRC16 object 
FastCRClG::FastCRClG(int crcpoly) 
i 

if(FastCRClG::crctable==O) ( 
/ /  the table has not been allocated yet 
FastCRC16::crctable = new int[256]; 
/ /  Now build the tables 

1 

Static member variables do not necessarily disappear 
when an object goes out of scope. We shall use static mem- 
ber variables again in the Galois field arithmetic implemen- 
tation. 

Command Line Arguments For operating systems 
which provide a command-line interface, reading the com- 
mand line arguments into a program is very straightfor- 
ward. The arguments are passed in to the main routine 
using the variables a rgc  and argv. These may then be 
parsed and used. a rgc  is the total number of arguments 
on the command line, including the program name. If there 
is only the program name (with no other arguments), then 
argc==l .  argv is an array of pointers to the string com- 
mands. argv [ 0 ] is the name of the program being run. 

As an example, to read the arguments for crcenc K 
f i l e i n  f i l e o u t ,  you could use the following code: 

/ /  Program crcenc 

/ /  . . .  

main (int argc, char *argv [ ] ) 
t 

int K; 
char *infname, *outfname; 

/ /  ... 
if (argc!=l) ( 
/ /  check number of arguments is as expected 

cout << "Usage: " << argv[O] << 
"K inf ile outf ile" << endl; 

exit(-1); 
1 
K = atoi(argv[ll); 
/ /  read blocksize as an integer 
infname = argv[2]; 
/ /  pointer to input file name 
outfname = argv[3]; 
/ /  pointer to output file name 
/ /  . . .  

1 

Picking Out All the Bits in a File To write the bit- 
oriented decoder a1 orithm, you need to pick out all the bits 
in an array of data.%ere is some sample code: 

/ /  d is an array of unsigned characters 
/ /  with 'len' elements 
unsigned char bits[E]; 
/ /  an array that hold the bits of one byte of d 

for(int i = 0; i < len; i++) 
/ /  work through ail the bytes of data 
for(int j = 7; j >= 0; j--) { 

/ /  work through the bits in each byte 
bits[j] = (data[i]&(l<<j)) != 0; 

1 
/ /  bits now has the bits of d[i] in it 
/ /  . . .  

1 
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4.1 4 Exercises 

4.1 
4.2 

4.3 

4.4 

4.5 

4.6 

4.7 

4.8 

4.9 

List the codewords for the (7,4) Hamming code. Verify that the code is cyclic. 
In a ring with identity (that is, multiplicative identity), denote this identity as 1. Rove: 

The multiplicative identity is unique. 
If an element a has both a right inverse b (i.e., an element b such that ab = 1) and a left 
inverse c (i.e., an element c such that ca = l), then b = c.  In this case, the element a is 
said to have an inverse (denoted by a - ’ ) .  Show that the inverse of an element a,  when it 
exists, is unique. 
Ifa has a multiplicative inverse a- l ,  then (a-l)-l = a. 

The set of units of a ring forms a group under multiplication. (Recall that a unit of a ring 
is an element that has a multiplicative inverse). 
If c = ab and c is a unit, then a has a right inverse and b has a left inverse. 
In a ring, a nonzero element a such that ax = 0 for x # 0 is said to be a zero divisor. Show 
that if a has an inverse, then a is not a zero divisor. 

Construct the ring R4 = GF(2)[x]/(x4 + 1). That is, construct the addition and multiplication 
tables for the ring. Is R4 a field? 
Let R be a commutative ring and let a E R.  Let I = {b  E R : ab = 0).  Show that I is an ideal 
of R .  
An element a of a ring R is nilpotent if an = 0 for some positive integer n. Show that the set of 
all nilpotent elements in a commutative ring R is an ideal. 
LetAandBbeidealsinaringR.ThesumA+BisdefinedasA+B = ( a + b : a  E A , ~  E B}.  
Show that A + B is an ideal in R .  Show that A c A + B .  
Show that in the ring Z15 the polynomial p ( x )  = x 2  - 1 has more than two zeros. In a field there 
would be only two zeros. What may be lacking in a ring that leads to “too many” zeros? 
In the ring R4 = GF(2)[x]/(x4 + l), multiply a(x)  = 1 + x 2  + x 3  and b(x)  = x + x 2 .  Also, 
cyclically convolve the sequences (1, 0, 1, 1) and (0, 1, l}. What is the relationship between these 
two results? 
For the (15,ll) binary Hamming code with generator g(x)  = x4 + x + 1: 

(a) Determine the parity check polynomial h(x) .  
(b) Determine the generator matrix G and the parity check matrix H for this code in nonsys- 

(c) Determine the generator matrix G and the parity check matrix H for this code in systematic 

(d) Let m ( x )  = x + x 2  + x 3 .  Determine the code polynomial c ( x )  = g ( x ) m ( x ) .  
(e) Let m(x)  = x + x 2  + x 3 .  Determine the systematic code polynomial c(x)  = x ” - ~ ~ ( x )  + 

(f) For the codeword c ( x )  = 1 + x + x 3  + x4 + x5 + x9 +. lo  + x l 1  + x13,  determine the 

(g) For the codeword c(x)  = 1 + x + x3 + x4 + x5 + x9 + + x l 1  + x13,  determine the 

(h) Let r ( x )  = x14 +.lo + x5 + x 3 .  Determine the syndrome for ~ ( x ) .  
(i) Draw the systematic encoder circuit for this code using the g(x)  feedback polynomial. 
(i) Draw the decoder circuit for this circuit with r ( x )  input on the left of the syndrome register. 

(k) Draw the decoder circuit for this circuit with r ( x )  input on the right of the syndrome register. 

tematic form. 

form. 

Rgc,)[xn-km(x)],  where Rg( , ) [  ] computes the remainder after division by g(x).  

message if nonsystematic encoding is employed. 

message if systematic encoding is employed. 

Determine in particular the error pattern detection circuit. 

Determine in particular the error pattern detection circuit. 
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(1) Let r ( x )  = x13 + 

(m) Let r ( x )  = x13 + 
+ x9 + x 5  + x2 + 1. Trace the execution of the Meggitt decoder 

+ x9  + x5  + x2 + 1. Trace the execution of the Meggitt decoder 

with the input on the left, analogous to Table 4.4. 

with the input on the right, analogous to Table 4.5. 

4.10 Let f ( x )  be a polynomial of degree rn in F[x], where F is a field. Show that if a is a root of f ( x )  
(so that f ( a )  = O), then ( x  - a )  I f ( x ) .  Hint: Use the division algorithm. Inductively, show that 
f ( x )  has at most rn roots in IF. 

4.1 1 The following are code polynomials from binary cyclic codes. Determine the highest-degree 
generator g ( x )  for each code. 

(a) c(x> = 1 +x4  + x 5  

(b) c ( x )  = l + x + ~ ~ + x ~ + x ~ + x ~ + x ~ + x ~ + x ~ + x ~ + x ~ ~ + x ~ ~  + x " + x ~ ~ + x ~ ~  

(c) c ( x )  =x13+x12+x9+x~+x4+x3+,2+1 

(d) ~ ( x )  = x 8  + 1 
(e) c(x)  = x10 + x 7  + x 5  +x4 + x 3  + x 2  + x  + 1 

4.12 Let g(x)  = go + g l x  + . . . + gn-kXn-k be the generator for a cyclic code. Show that go # 0. 

4.13 Show that g(x )  = 1 + x  +x4 + x 5  +x7 + x 8  +x9 generates abinary (21,12) cyclic code. Devise 
a syndrome computation circuit for this code. Let r (x) = 1 +x4 + x l6 be a received polynomial. 
Compute the syndrome of r ( x ) .  Also, show the contents of the syndrome computation circuit as 
each digit of r ( x )  is shifted in. 

4.14 [204] Let g ( x )  be the generator for a binary (n, k )  cyclic code C. The reciprocal of g(x) is defined 
as 

g*(x)  = xn-kg(l/x). 

(In this context, "reciprocal" does not mean multiplicative inverse.) 

(a) As a particular example, let g(x )  = 1 + x 2  +x4 + x 6  + x7 + x l 0 .  Determine g * ( x ) .  The 

(b) Show that g*(x)  also generates an (n, k )  cyclic code. 
(c) Let C* be the code generated by g * ( x ) .  Show that C and C* have the same weight distri- 

bution. 

(d) Suppose C has the property that whenever c ( x )  = co + c lx  + c,-lx"-l is a codeword, so 
is its reciprocal c*(x)  = cn-l + ~ n - 2 ~  + . . . + coxn-'. Show that g(x)  = g*(x). Such 
a code is said to be a reversible cyclic code. 

following subproblems deal with arbitrary cyclic code generator polynomials g ( x ) .  

4.15 [204] Let g(x)  be the generator polynomial of a binary cyclic code of length n. 

(a) Show that if g(x)  has x + 1 as a factor then the code contains no codevectors of odd weight. 
Hint: The following is true for any ring F[x]: 

I 1 - xn- l  = (1 - x)(l + x + x2 + . . . + 2 - 1 )  I. 
I I 

(b) Show that if n is odd and x + 1 is not a factor of g ( x ) ,  then the code contains the all-one 

(c) Show that the code has minimum weight 3 if n is the smallest integer such that g(x)  divides 

codeword. 

x" - 1. 

4.16 Let A ( z )  be the weight enumerator for a binary cyclic code C. with generator g(x). Suppose 
furthermore that x + 1 is not a factor of g(x). Show that the code generated by j ( x )  = ( x  + l)g(x) 
has weight enumerator A ( z )  = i [ A ( z )  + A ( - z ) ] .  
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4.17 

4.18 

4.19 

4.20 

4.21 

4.22 

4.23 

4.24 

4.25 

4.26 
4.27 

4.28 

Let g ( x )  be the generator polynomial of an (n, k )  cyclic code C. Show that g ( x h )  generates an 
(hn, hk) cyclic code that has the same minimum weight as the code generated by g ( x ) .  

Let C be a (2m - 1, 2m - m - 1) Hamming code. Show that if a Meggitt decoder with input on the 
right-hand side is used, as in Figure 4.19, then the syndrome to look for to correct the digit rn-l 

is s ( x )  = Hint: g(x) divides x2m-1 + 1. Draw the Meggitt decoder for this Hamming 
code decoder. 

[33] The code of length 15 generated by g ( x )  = 1 + x4 + n6 + x7 + x8 is capable of correcting 
2 errors. (It is a (15,7) BCH code.) Show that there are 15 correctable error patterns in which the 
highest-order bit is equal to 1. Devise a Meggitt decoder for this code with the input applied to 
the right of the syndrome register. Show that the number of syndrome patterns to check can be 
reduced to 8. 

Let g ( x )  be the generator of a (2m - 1, 2m - m - 1) Hamming code and let j(x) = (1 + x ) g ( x ) .  
Show that the code generated by i ( x )  has minimum distance exactly 4. 

(a) Show that there exist distinct integers i and j such that x i  +xj is not a codeword generated 

(b) Choose an integer k such that the remainder upon dividing xk by g(n) is not equal to Y 1 ( x ) .  

(c) Choose an integer I such that when x' is divided by g(x) the remainder is r2 (x ) .  Show that 

(d) Show that x i  + X J  + nk + x' = [42(x) + q 3 ( x ) ] g ( x )  and that x i  + xj + xk + n1 is a 

[204] An error pattern of the form e ( x )  = x i  + xi+l is called a double-adjacent-error pattern. 
Let C be the (2m - 1, 2m - m - 2) cyclic code generated by g ( x )  = (x + l)p(x), where p ( x )  
is a primitive polynomial of degree m. 
Show that no two double-adjacent-error patterns can be in the same coset of a standard array for 
C. Also show that no double-adjacent error pattern and single error pattern can be in the same 
coset of the standard array. Conclude that the code is capable of correcting all the single-error 
patterns and all the double-adjacent-error patterns. 

[204] Let c(x) be a code polynomial in a cyclic code of length n and let c(')(x) be its ith cyclic 
shift. Let 1 be the smallest positive integer such that c(') (x) = c (x ) .  Show that I is a factor of n. 

Verify that the circuit shown in Figure 4.1 computes the product a ( x ) h ( x ) .  

Verify that the circuit shown in Figure 4.2 computes the product a(x)h(x). 

Verify that the circuit shown in Figure 4.3 computes the product a(x)h (x). 
Verify that the circuit shown in Figure 4.4 computes the product a(x)h ( x ) .  

Let h(x) = 1 + x 2  + x 3  + x4. Draw the multiplier circuit diagrams as in Figures 4.1,4.2,4.3, 
and 4.4. 

Let r (n) = 1 + x 3  + x4 + n5 be the input to the decoder in Figure 4.20. Trace the execution of 
the decoder by following the contents of the registers. If the encoding is systematic, what was 
the transmitted message? 

by g ( x ) .  Write xi + xj = 41 ( x ) g ( x )  + rl (x). 

Write xi + xj + xk = q2(x)g(x) + r 2 ( x )  

1 is not equal to i ,  j ,  or k .  

multiple of ( x  + l)g(x) 

4.29 Cyclic code dual. 

(a) Let C be a cyclic code. Show that the dual code C' is also a cyclic code. 
(b) Given a cyclic code C with generator polynomial g ( x ) ,  describe how to obtain the generator 

polynomial for the dual code C'. 

4.30 As described in Section 3.6, the dual to a Hamming code is a (2m - 1, m )  maximal-length code. 
Determine the generator matrix for a maximal-length code of length 2m - 1 .  
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4.3 1 Let C be an (a ,  k )  binary cyclic code with minimum distance d h n  and let C' c C be the shortened 
code for which the 1 high-order message bits are equal to 0. Show that C' has 2k-' codewords 
and is a linear code. Show that the minimum distance dAn of C' is at least as large as 

4.32 For the binary (31,26) Hamming code generated using g(x) = 1 +x2 + x 5  shortened to a (28,23) 
Hamming code. 

(a) Draw the decoding circuit for the (28,23) shortened code using the method of simulating 

(b) Draw the decoding circuit for the (28,23) shortened code using the method of changing the 

extra clock shifts. 

error pattern detection circuit. 

4.33 Explain why CRC codes can be thought of as shortened cyclic codes. 

4.34 Let g(x)  = 1 + x2 + x4 + x5.  Determine the fraction of all burst errors of the following lengths 
that can be detected by acyclic code using this generator: (a) burst length= 4; (b) burst length= 5; 
(c) burst length = 6; (d) burst length = 7; (e) burst length = 8. 

4.35 Let g(x) = x8 + x7 + x6 + x4 + x2 + 1 be the generator polynomial for a CRC code. 

(a) Let m ( x )  = 1 + x + x3 + x6 + x7 + x12 + x16 + x2'. Determine the CRC encoded 
message c (x ) .  

(b) The CRC-encodedpolynomial ~ ( x )  = x 2  + x 3  + x 5  +x6 +x7 + x 8  +x10 + x l l  +x14 + 
x17 + x20 + x23 + x26 + x28 is received. Has an error been made in transmission? 

4.36 Verify the entry for t = 3 in Table 4.7. Also verify the entry for t =dc. 

4.37 A double error pattern is one of the form e ( x )  = x i  + xJ ,  for 0 5 i i j 5 n - 1. If g(x)  does 
not have x as a factor and does not evenly divide 1 + x J P z ,  show that any double error pattern is 
detectable. 

4.38 A file containing the two bytes do = 56 = 3816 and dl = 125 =7D16 is to be CRC encoded 
using the CRC-ANSI generator polynomial g ( x )  = x16 + x15 + x2 + 1. 

(a) Convert these data to a polynomial m(x) .  

(b) Determine the CRC-encoded data c ( x )  = x r m ( x )  + R g ( , ) [ x r m ( x ) ]  and represent the 

(c) Using the fast CRC encoding of Algorithm 4.1, encode the data. Verify that it corresponds 

encoded data as a stream of bits. 

to the encoding obtained previously. 

4.39 The output sequence of an LFSR with connection polynomial g ( x )  can be obtained by formal 
division of some dividend d ( x )  by g*(x). Let g(x) = 1 + x + x4. Show by computational 
examples that when the connection polynomial is reversed (i.e., reciprocated), the sequence 
generated by it is reversed (with possibly a different starting point in the sequence). Verify this 
result analytically. 

4.40 Show that (4.16) follows from (4.15). Show that (4.17) follows from (4.16). 

4.41 Show that the circuit in Figure 4.28 produces the same sequence as that of Figure 4.24. (Of the 
two implementations, the one in Figure 4.24 is generally preferred, since the cascaded summers 
of Figure 4.28 result in propagation delays which inhibit high-speed operations.) 

4.42 Figure 4.29 shows an LFSR circuit with the outputs of the memory elements labeled as state 
variables X I  through x p  . Let 

~ [ k ]  = 

x p  [kl 
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Figure 4.28: Another LFSR circuit. 

Figure 4.29: An LFSR with state labels. 

(a) Show that for the state labels as in Figure 4.29 that the state update equation is 

where M is the companion matrix 

0 0 0 0 ... 0 -go 
1 0 0 0 ". 0 

M = 0 0 1 0  1 O O ;;; ::: 1. 
0 0 0 0  -gp-1 

(b) The characteristic polynomial of a matrix is p ( x )  = det(xI - M ) .  Show that 

2 p ( x )  = go + g1x + g2x + * * * + g p  = g ( x ) .  

(c) It is a fact that every matrix satisfies its own characteristic polynomial. That is, p ( M )  = 0. 
(This is the Cayley-Hamilton theorem.) Use this to show that if g ( x )  I (1 -xk) then M k  = I .  

(d) The period k of an LFSR with initial vector x[O] is the smallest k such that M k  = I .  
Interpret this in light of the Cayley-Hamilton theorem, if p ( x )  is irreducible. 

(e) A particular output sequence {xp [O], xp [ 11, . . . , } is to be produced from this LFSR. De- 
termine what the initial vector x[O] should be to obtain this sequence. (That is, what is the 
initial value of the LFSR register?) 



170 Cyclic Codes, Rings, and Polynomials 

4.43 Given a sequence y ( x )  produced by dividing by the reciprocal polynomial of g(x ) ,  

determine what d(x)  should be to obtain the given y ( x ) .  

The sequence {0, 1,0,0,  1, 1,0, l , O ,  1,1, 1 ,  1,. . .} is generated by the polynomial g*(x )  = 
1 + x 3  + x4. Determine the numerator polynomial d ( x ) .  

4.44 Show that the set of sequences annihilated by a polynomial g*(x)  is an ideal. 
4.45 [199] A Barker code is a binary-valued sequence {bn} of length n whose autocorrelation function 

has values of 0, 1, and n. Only nine such sequences are known, shown in Table 4.12. 

(a) Compute the autocorrelation value for the Barker sequence {b5}. 

(b) Contrast the autocorrelation function for a Barker code with that of amaximal-length LFSR 
sequence. 

Table 4.12: Barker Codes 
n t b n l  
2 [1,11 
2 [-1,11 
3 [1,1,-11 
4 [1,1,-1,11 
4 [1,1,1,-11 
5 [1,1,1,-1,11 
7 [ l,l,l,-1,-l,l,-11 
11 [l,l,l,-1,-1,-l,l,-1,-l,l,-11 
13 [l,l,l,l,l,-1,-l,l,l,-l,l,-l,l] 

4.1 5 References 

Cyclic codes were explored by Prange [271, 272, 2731. Our presentation owes much to 
Wicker [373], who promotes the idea of cyclic codes as ideals in a ring of polynomials. 
The Meggitt decoder is described in [237]. Our discussion of the Meggitt decoder closely 
follows [203]; many of the exercises were also drawn from that source. 

The tutorial paper [281] provides an overview of CRC codes, comparing five different 
implementations and also providing references to more primary literature. 

Much of the material on polynomial operations was drawn from [262]. The table of 
primitive polynomials is from [386], which in turn was drawn from [262]. An early but 
still important and thorough work on linear feedback shift registers is [120]. See also 
[ 1 19,1181. The circuit implementations presented here can take other canonical forms. For 
other realizations, consult a book on digital signal processing, such as [253], or controls 
[ 109,18 11. The paper [387] has some of the fundamental algebraic results in it. An example 
of maximal length sequences to generate modem synchronization sequences is provided in 
[ 1601. The paper [301] has descriptions of correlations of maximal length sequences under 
decimation. 



Chapter 5 

Rudiments of Number Theory 
and Algebra 
5.1 Motivation 

We have seen that the cyclic structure of a code provides a convenient way to encode and 
reduces the complexity of decoders for some simple codes compared to linear block codes. 
However, there are several remaining questions to be addressed in approaching practical 
long code designs and effective decoding algorithms. 

1. The cyclic structure means that the error pattern detection circuitry must only look 
for errors in the last digit. This reduces the amount of storage compared to the 
syndrome decoding table. However, for long codes, the complexity of the error 
pattern detection circuitry may still be considerable. It is therefore of interest to have 
codes with additional algebraic structure, in addition to the cyclic structure, that can 
be exploited to develop efficient decoding algorithms. 

2. The decoders presented in chapter 4 are for binary codes: knowing the location of 
errors is sufficient to decode. However, there are many important nonbinary codes, 
for which both the error locations and values must be determined. We have presented 
no theory yet for how to do this. 

3. We have seen that generator polynomials g ( x )  must divide x n  - 1. Some additional 
algebraic tools are necessary to describe how to find such factorizations over arbitrary 
finite fields. 

4. Finally, we have not presented yet a design methodology, by which codes having a 
specified minimum distance might be designed. 

This chapter develops mathematical tools to address these issues. In reality, the amount 
of algebra presented in this chapter is both more and less than is needed. It is more than 
is needed, in that concepts are presented which are not directly called for in later chapters 
(even though their presence helps puts other algebraic notions more clearly in perspective). 
It is less than is needed, in that the broad literature of coding theory uses all of the algebraic 
concepts presented here, and much more. An attempt has been made to strike a balance in 
presentation. 

Example 5.1 We present another example motivating the use of the algebra over finite fields [25]. 
This example will preview many of the concepts to be developed in this chapter, including modulo 
operations, equivalence, the Euclidean algorithm, irreducibility, and operations over a finite field. 

We have seen in Section 1.9.2 that the decoding algorithm for the Hamming code can be expressed 
purely in an algebraic way: finding the (single) error can be expressed as finding the solution to a 
single algebraic equation. It is possible to extend this to a two-error-correcting code whose solution 
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is found by solving two polynomial equations in two unknowns. We demonstrate this by a particular 
example, starting from a Hamming (31,26) code having a parity check matrix 

0 0 0 ... 1 1  

H =  [: 0 0 : 0 : I 11. 
The 5-tuple in the ith column is obtained from the binary representation of the integer i .  As in Section 
1.9.2, we represent the 5-tuple in the ith column as a single “number,” denoted by y j ,  so we write 

1 0 1  0 1  

H = [YI Y2 Y3 . . .  Y30 M I ] .  

Let us now attempt to move beyond a single error correction code by appending 5 additional rows 
to H .  We will further assume that the 5 new elements in each column are some function of column 
number. That is, we assume that we can write H as 

H =  (5.1) 

The function f(i) = [ f i ( i ) ,  f 2 ( i ) ,  f3(i), f4(i), f5(i)lT has binary components, so f i ( i )  E (0, 1) . 
This function tells what binary pattern should be associated with each column. Another way to express 
this is to note that f maps binary 5-tuples to binary 5-tuples. We can also use our shorthand notation. 
Let f ( y )  be the symbol represented by the 5-tuple (fl(i), f 2 ( i ) ,  f 3 ( i ) ,  f4(i), f5(i)), where i is the 
integer corresponding to yi = y .  Using our shorthand notation we could write (5.1) as 

= [ f ( Y 1 )  Y1 f ( Y 2 )  y2 f ( Y 3 )  Y3 ” ’  . .. f (Y30)  y30 f ( Y 3 1 )  ~ 3 1 1 .  

The problem now is to select a function f so that H represents a code capable of correcting two errors, 
and does so in such a way that an algebraic solution is possible. To express the functions f we need 
some way of dealing with these yi 5-tuples as algebraic objects in their own right, with arithmetic 
defined to add, subtract, multiply, and divide. That is, the yi need to form ajeld,  as defined in Section 
2.3, or (since there are only finitely many of them) a jn i fe jdd .  Addition in the field is straightforward 
we could define addition element-by-element. But how do we multiply in a meaningful, nontrivial 
way? How do we divide? 

The key is to think of each 5-tuple as corresponding to a polynomial of degree 5 4. For example: 

(O,O,  0, 0,O) ff 0 

(O,O, 0,  0, 1) ff 1 

(O,O, 0, 1 , O )  ff x 

(0, 0, 1 , 0 , 0 )  ff x 2  

( 1 , 0 , 1 , 0 , 1 ) ~ ~ ~ + ~ ~ + 1 .  
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Note that each coefficient of the polynomials is binary; we assume that addition is modulo 2 (i.e., 
over GF(2)). Clearly, addition of polynomials accomplishes exactly the same thing as addition of the 
vectors. (They are isomorphic.) 

How can we multiply? We want our polynomials representing the 5-tuples to have degree 5 4, 
and yet when we multiply the degree may exceed that. For example, 

3 4 3  (x + + l)(x + + + 1) = .7 + x6 + .s + .4 + .2 + I. 

To reduce the degree, we choose some polynomial M ( x )  of degree 5, and reduce the product modulo 
M ( x ) .  That is, we divide by M ( x )  and take the remainder. Let us take M ( x )  = x5 + x2 + 1. When 
we divide x7 + x6 + x5 + x4 + x2 + 1 by M(x) we get a quotient of x2 + x + 1, and a remainder of 
x3 + x2 + x. We use the remainder: 

(x 3 + x  + I ) ( ~  4 3  + x  + x  + 1) = x7 + P  f x S  +x4 +x2  + 1 

= x3 + x 2  + X  (mod 2 + x 2  + 1). 

Our modulo operations allows us now to add, subtract, and multiply these 5-tuples, considered as 
polynomials modulo some M ( x ) .  Can we divide? More fundamentally, given a polynomial a ( x ) ,  is 
there some other polynomial s ( x )  - we may consider it a multiplicative inverse or a reciprocal - 
such that 

a(x)s(x) = 1 mod M ( x ) .  

The answer lies in the oldest algorithm in the world, the Euclidean algorithm. (More details later!) 
For now, just be aware that if M ( x )  is irreducible - it cannot be factored - then we can define 
division so that all of the 5-tuples yi have a multiplicative inverse except (0, 0, 0, 0,O). 

Let us return now to the problem of creating a two-error-correcting code. Suppose that there are 
two errors, occurring at positions ii and i2. Since the code is linear, it is sufficient to consider 

r=(O,O, ..., 1 1 , O , . . . , O )  
-’...?+ 

ii i2 

We find 

with 

rHT = (sl,s2) 

If the two equations in (5.2) are functionally independent, then we have two equations in two unknowns, 
which we could solve for yil and yiz which, in turn, will determine the error locations il and i2. 

Let us consider some possible simple functions. One might be a simple multiplication: f ( y )  = 
ay.  But this would lead to the two equations 

Vil + Viz = S l  ayi, + ayiz = s29 

representing the dependency s2 = as1 ; the new parity check equations would tell us nothing new. 
We could try f ( y )  = y + a;  This would not help, since we would always have s2 = $1. 
Let us try some powers. Say f ( y )  = y2.  We would then obtain 

2 
Yil + Yi2 = $1 Yil + Y; = s2. 

These looks like independent equations, but we have to remember that we are dealing with operations 
modulo 2. Notice that 
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We have only the redundant sf = q: the second equation is the square of the first and still conveys 
no new information. 

Try f ( y )  = y 3 .  Now the decoder equations are 

3 3  Yil + Yi2 = Sl vi, + yi2 = 52. 

These are independent! 
Now let's see what we can do to solve these equations algebraically. In a finite field, we can do 

conventional algebraic manipulation, keeping in the back of our mind how we do multiplication and 
division. 

We can write 

3 2 2 
s2 = ~ i ,  + ~i ' ,  = (yil + yi2)(yil - yil ~ i 2  + Y;) = ~1 ( ~ i ,  + yil ~ i 2  + Y;) = ~1 (yil yi2 - s;) 

(where the signs have changed with impunity because these values are based on GF(2) ) .  Hence we 
have the two equations 

s2 

S l  
Yil + Yiz = $1 l/il ~ i 2  = s t  + - 

if sl # 0. We can combine these two equations into a quadratic: 

or 

or 

For reasons to be made clear later, it is more useful to deal with the reciprocals of the roots. Let 
z = y.-'. We then have the equation 

El 

q(z) = 1 + S l Z  + (.: + ;) z2 = 0. 

The polynomial q ( z )  is said to be an error locatorpolynomial: the reciprocals of its roots tell the yi, 
and yi2, which, in turn, tell the locations of the errors. 

If there is only one error, then yil = sl and y: = s2 and we end up with the equation 1 +sl y-' = 
0. If there are no errors, then sl = s2 = 0. 

Let us summarize the steps we have taken. First, we have devised a way of operating on 5-tuples 
as single algebraic objects, defining addition, subtraction, multiplication, and division. This required 
finding some irreducible polynomial M ( x )  which works behind the scenes. Once we have got this, 
the steps are as follows: 

1. We compute the syndrome r H  T .  

2. From the syndrome, we set up the error locator polynomial. We note that there must be some 
relationship between the sums of the powers of roots and the coefficients. 

3. We then find the roots of the polynomial, which determine the error locations. 

For binary codes, knowing where the error is suffices to correct the error. For nonbinary codes, there 
is another step: knowing the error location, we must also determine the error value at that location. 
This involves setting up another polynomial, the error evaluation polynomial, whose roots determine 
the error values. 

The above steps establish the outline for this and the next chapters. Not only will we develop 
more fully the arithmetic, but we will be able to generalize to whole families of codes, capable of 
correcting many errors. However, the concepts are all quite similar to those demonstrated here. 
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(It is historically interesting that it took roughly ten years of research to bridge the gap between 
Hamming and the code presented above. Once this was accomplished, other generalizations followed 
quickly.) 0 

5.2 Number Theoretic Preliminaries 

We begin with some notation and concepts from elementary number and polynomial theory. 

5.2.1 Divisibility 

Definition 5.1 An integer b is divisible by a nonzero integer a if there is an integer c 
such that b = ac. This is indicated notationally as a I b (read “a divides b”). If b is  not 
divisible by a we write aXb. Let a(x)  and b(x)  be polynomialsin F [ x ]  (that is, thering of 
polynomials with coefficients in F )  where F is a field and assume that a (x) is not identically 
0. Then b(x)  is divisible by a polynomial a(x )  if there is some polynomial c ( x )  E F [ x ]  

0 such that b(x )  = a(x )c (x ) ;  this is indicated by a(x)  I b(x) .  

Example 5.2 For a(x) and b(x) in R[x], with 

3 5  
4 7  

b(x)  = 112 + 96x + 174x2 + 61x3 + 42x4 and a(x) = -x2 + --x + 2 

we have a(x) I b(x) since b(x) = 28(2 + x + 2x3)a(x). 
The following properties of divisibility of integers are straightforward to show. 

Lemma 5.1 [250] For integers, 

1. a 1 b implies a 1 bc for any integer c. 

2. a1 b and bl c imply a I c. 

3. a 1 b and a I c imply a I (bs + ct)  for any integers s and t. 

4. a (  b and b (  a imply a = f b .  

5. a I b , a > O a n d b > O i m p l y a ~ b .  

6. i fm # 0, then a I b ifand only i fma I mb 

7. ifac I bc then a 1 b. 

8. $a I b and C I  d then acl bd. 

These properties apply with a few modijications topolynomials. Property (4 )  is diflerent for 
polynomials: i fa (x )  I b(x)  and b (x )  I a(x )  then a(x )  = cb(x),  where c is a nonzem element 
of thejeld of coeficients. Property (5) is also different forpolynomials: a(x)  1 b(x )  implies 
deg(a(x)) 4 deg(b(x)). 

An important fact regarding division is expressed in the following theorem. 

Theorem 5.2 (Division algorithm) For any integers a and b with a > 0, there exist unique 
integers q and r such that 

b = q a + r ,  
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where 0 5 r < a. The number q is the quotient and r is the remaindel: 
For polynomials, for a (x) and b(x )  in F [x], F a je ld ,  there is a unique representation 

b (x )  = q ( x ) a ( x )  + r ( x ) ,  

where deg(r (x)) < deg(a(x)). 

Proof 1250, p. 51 We provide a partial proof for integers. Form the arithmetic progression 

. . . , b - 3a, b - 2a, b - a ,  b ,  b + a, b + 2a, b + 3a,. . . 

extending indefinitely in both directions. In this sequence select the smallest non-negative 
element and denote it by r ;  this satisfies the inequality 0 5 r < a and implicitly defines q 
by r  = b - q a .  0 

Example 5.3 With b = 23 and a = 7 we have 

23 = 3.7 + 2. 

The quotient is 3 and the remainder is 2. 0 

Example 5.4 With b(x) = 2x3 + 3x + 2 and n ( x )  = x2 + 7 in R[x], 

b(x)  = (2x)(x2 + 7) + (-lln + 2) 

Definition 5.2 If d 1 a and d I b then d is said to be a common divisor of a and b.  
A common divisor g > 0 such that every common divisor of a and b divides g is called 

the greatest common divisor (GCD) and is denoted by (a, b) . 
Integers a and b with a greatest common divisor equal to 1 are said to be relatively 

prime. The integers a1 , a2, . . . , ak are pairwise relatively prime if (ai, a j )  = 1 for i # j .  
If d (x) I a(x) and d ( x )  I b(x) then d (x) is said to be a common divisor of a ( x )  and b(x ) .  

If either a (x) or b(x )  is not zero, the common divisor g(x) such that every common divisor 
of a ( x )  and b(x )  divides g(x) is referred to as the greatest common divisor (GCD) of a(x) 
and b ( x )  and is denoted by (a(x), b ( x ) ) .  

The GCD of polynomials (a(x) ,  b ( x ) )  is, by convention, normalized so that it is a monk 
polynomial. 

If the greatest common divisor of a(x )  and b ( x )  is a constant (which can be normalized 
to 1). then a(x)  and b(x )  are said to be relatively prime. 

Example 5.5 If a = 24 and b = 18 then, clearly, (u,  b) = (24, 18) = 6. 0 

Example 5.6 By some trial and error (to be reduced to an effective algorithm), we can determine that 
(851, 966) = 23. 

Example 5.7 With a(x)  = 4x3 + lox2 + 8x + 2 and b(x)  = 8x3 + 14x2 + 7x + 1 in R[x], it can 
be shown that 

2 3  1 (a (x> ,  b(x)) = x + 5" + 5. 
0 
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Useful properties of the greatest common divisor: 

Theorem 5.3 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

For any positive integer m, (ma, mb) = m(a, b). 

As a consequence of the previous result, i fd  I a and d 1 b and d > 0 then 

( z ,  $) = $(a ,  b) .  

I f (a ,  b )  = g then (a /g ,  b / g )  = 1. 

I f (a ,  c )  = (b ,  c )  = 1, then (ab, c)  = 1 

I f c /  ab and (b,  c )  = 1 then C I  a. 

Every divisor d of a and b divides (a ,  b). This follows immediatelyfrom (3 )  in Lemma 
5.1 (or from the definition). 

(a ,  b )  = la1 ifand only i fa  I b. 

(a ,  (b ,  c ) )  = ( ( a ,  b ) ,  c)  (associativity). 

(ac,  bc) = \cl(a, b )  (distributivity). 

5.2.2 The Euclidean Algorithm and Euclidean Domains 

The Euclidean algorithm is perhaps the oldest algorithm in the world, being attributed to 
Euclid over 2000 years ago and appearing in his Elements. It was formulated originally to 
find the greatest common divisor of two integers. It has since been generalized to apply to 
elements in an algebraic structure known as a Euclidean domain. The powerful algebraic 
consequences include a method for solving a key step in the decoding of Reed-Solomon 
and BCH codes. 

To understand the Euclidean algorithm, it is perhaps most helpful to first see the Eu- 
clidean algorithm in action, without worrying formally yet about how it works. The Eu- 
clidean algorithm works by simple repeated division: Starting with two numbers, a and 
b, divide a by b to obtain a remainder. Then divide b by the remainder, to obtain a new 
remainder. Proceed in this manner, dividing the last divisor by the most recent remainder, 
until the remainder is 0. Then the last nonzero remainder is the greatest common divisor 
(a, b). 

Example 5.8 Find (966, 851). Let a = 966 and b = 851. Divide a by b and express in terms of 
quotient and remainder. The results are expressed in equation and “long division”form: 

966 = 851.1 + 115 

Now take the divisor (851) and divide it by the remainder (115): 

1 
851 (966 

85 1 
115 
- 

851 = 115.7+46 

7 1  
115 p ( 9 6 6 -  

805 851 
46 115 
-- 
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Now take the divisor (1 15) and divide it by the remainder (46): 

1 1 5 = 4 6 . 2 + 2 3  

2 7 1  
46mw)966 

' 92 '805 '851 
23 46 115 
--- 

Now take the divisor (46) and divide it by the remainder (23): 

46 = 2 3 . 2  + 0 

2 2 7 1  
23 FpP/966 

23 92 805 851 
0 23 46 115 

--.__- 

The remainder is now 0; the last nonzero remainder 23 is the GCD: 

(966, 851) = 23. 

Example 5.9 In this example, we perform computations over Z 5 [ x ] ,  that is, operations modulo 
5 .  Determine (a(x), b ( x ) )  = (x7 + 3x6 + 4x4 + 2x3 + x2 + 4, x6 + 3x3 + 2x + 4), where 
a(x), b(x)  E &,[XI. 

(x7 + 3x6 $ 4 2  +2x3 +x2 +4)  = (x + 3)(x6 + 3x3 + 2x +4) + (x4 + 3x3 +4x2 +2)  

(x6 + 3x3 + 2x + 4) = (x2 + 2x)(x4 + 3x3 + 4x2 + 2) + (3x2 + 3x + 4) 

(x4 + 3x3 +4x2 + 2) = (2x2 +4x + 3)(3x2 + 3x +4) + 0 

(5.3) 

With the degee of the last remainder equal to zero, we take the last nonzero remainder, 3x2 + 3x + 4 
and normalize it to obtain the GCD: 

g(x )  = 3-1 (3x2 + 3~ + 4) = 2(3x2 + 3x + 4) = x2 + x + 3. 

The Euclidean algorithm is established with the help of the following theorems and lemmas. 

Theorem 5.4 I f g  = ( a ,  b )  then there exist integers s and t such that 

g = ( a ,  b) = as + br. 

Forpolynomials, i f g (x )  = (a (x), b(x)), then there are polynomials s ( x )  and t ( x )  such that 

g(x) = a ( x ) s ( x )  + b ( x ) t ( x ) .  

Proof 12501 We provide the proof for the integer case; modification for the polynomial case 
is straightforward. 

Consider the linear combinations as  + br where s and r range over all integers. The set 
of integers E = {as + br, s E Z, r E Z) contains positive and negative values and 0. Choose 
so and to so that as0 + bto is the smallest positive integer in the set: 1 = as0 + bto > 0. We 
now establish that 1 I a;  showing that I 1 b is analogous. By the division algorithm, a = lq + r 
with 0 p r < 1. Hence r = a - ql = a - q(as0 + bto) = a(1 - qso) + b(-qro), so r 
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itself is in the set E .  However, since 1 is the smallest positive integer in R ,  r must be 0, so 
a =Iq ,o r I l a .  

Since g is the GCD of a and b, we may write a = gm and b = gn for some integers m 
and n. Then 1 = as0 + bto = g(ms0 + nto), so g I 1.  Since it cannot be that g < 1 ,  since g 
is the greatest common divisor, it must be that g = 1. 0 
From the proof of this theorem, we make the following important observation: the greatest 
common divisor g = ( a ,  b) is the smallest positive integer value of as + bt as s and t range 
over all integers. 

Lemma 5.5 For any integer n, (a ,  b) = (a ,  b + an). 
For any polynomial n(x) E F [ x ] ,  (a@),  b(x ) )  = (a@) ,  b ( x )  + a ( x ) n ( x ) ) .  

Proof Let d = (a ,  b) and g = ( a ,  b + an). By Theorem 5.4 there exist so and to such that 
d = as0 + bto. Write this as 

d = ~ ( $ 0  - nto) + (b + an)to = as1 + (b + an)to. 

It follows (from Lemma 5.1 part (3)) that g 1 d. We now show that d 1 g .  Since d 1 a and d 1 b 
we have that d 1 (an + b). Since g is the GCD of a and an + b and any divisor of a and 
an + b must divide the GCD, it follows that d 1 g. Since d I g and g I d,  we must have g = d .  

(For polynomials, the proof is almost exactly the same, except that it is possible that 
0 

We demonstrate the use of this theorem and lemma by an example. 
g(x) = d ( x )  only if both are monic.) 

Example 5.10 Determine g = (966, 851); this is the same as in Example 5.8, but now we keep track 
of a few more details. By the division algorithm, 

966 = 1 .851+ 115. (5.4) 

By Lemma 5.5, 

g = (851,966) = (851,966 - 1 . 851) = (851, 115) = (115, 851). 

Thus the problem has been reduced using the lemma to one having smaller numbers than the original, 
but with the same GCD. Applying the division algorithm again, 

851 =7 .115+46  (5.5) 

hence, again applying Lemma 5.5, 

(115, 851) = (115, 851 - 7 * 115) = (115, 46) = (46, 115). 

Again, the GCD problem is reduced to one with smaller numbers. Proceeding by application of the 
division algorithm and the property, we obtain successively 

115 = 2 .46 + 23 

(46, 115) = (46, 115 - 2.46) = (46,23) = (23,461 

46 = 2 .23  + 0 

(23,46) = 23. 

(5.6) 

Chaining together the equalities we obtain 

(966,851) = 23. 
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We can find the s and t in the representation suggested by Theorem 5.4, 

(966, 851) = 966s + 851t, 

by working the equations backward, substituting in for the remainders from each division in reverse 
order 

2 3 ~ 1 1 5 - 2 . 4 6  “23” from (5.6) 

“46” from (5.5) 

“1 15” from (5.4) 

= 115 - 2 .  (851 -7.115) = -2.851 + 15.115 

= -2.851 + 15(966 - 1 .851) = 15.966 - 17.851 

so s = 15 and t = -17. 0 

Example 5.11 It can be shown that for the polynomials in Example 5.9, 

t(x) = 2x3 + zX + 2. s(x) = 3x 2 + x  

Having seen the examples and the basic theory, we can now be a little more precise. In 
fullest generality, the Euclidean algorithm applies to algebraic structures known as Euclidean 
domains: 

Definition 5.3 [106, p. 3011 A Euclidean domain is a set D with operations + and . 
satisfying: 

1. D forms a commutative ring with identity. That is, D has an operation + such that 
( D ,  +) is a commutative group. Also, there is a commutative operation “multiplica- 
tion,” denoted using . (or merely juxtaposition), such that for any a and b in D ,  a . b 
is also in D. The distributive property also applies: a . (b  + c )  = a . b + a . c for any 
a ,  b, c E D. Also, there is an element 1, the multiplicative identity, in D such that 
a .  1 = 1 . a  = a .  

2. Multiplicative cancellation holds: if ab = cb and b # 0 then a = c. 

3. Every a E D has a valuation u(a) : D +- N U (-00) such that: 

(a) u(a)  2 0 for all a E D. 
(b) u(a) 5 v(ab) for all a, b E D ,  b # 0. 
(c) For all a ,  b E D with u(a) > v(b) there is a q E D (quotient) and r E D 

(remainder) such that 
a = q b + r  

with u(r) < u(b) or r = 0. v(b) is never -m except possibly when b = 0. 
The valuation u is also called a Euclidean function. 

0 
We have seen two examples of Euclidean domains: 

1. The ring of integers under integer addition and multiplication, where the valuation is 
v(a) = la1 (the absolute value). Then the statement 

a = q b + r  

is obtained simply by integer division with remainder (the division algorithm). 
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2. Let F be a field. Then F [XI is a Euclidean domain with valuation function v(a (x)) = 
deg(a(x)) (the degree of the polynomial a(x) E F[x]). It is conventional for this 
domain to take v(0) = -m. Then the statement 

a(x> = q(x)b(x) + r(x) 
follows from polynomial division. 

The Euclidean algorithm can be stated in two versions. The first simply computes the GCD. 

Theorem 5.6 (The Euclidean Algorithm) Let a and b be nonzero elements in a Euclidean 
domain. Then by repeated application of the division algorithm in the Euclidean domain, 
we obtain a series of equations: 

a = bqi + rl 

b = riq2 + rz 

rl = rZq3 f r3 

r1 # Oand v(r1) < v(b)  

rz # 0 and v(rz )  < v(r1) 

r3 # 0 and v(r3) < u(rz) 

rj-2 = r j - lq j  + rj  

rj-1 = rjqj+l  + 0 

rj  # 0 and v(r j )  < v(rj -1)  

(rj+l = 0) .  
Then (a, b )  = rj ,  the last nonzero remainder of the division process. 

That the theorem stops after a finite number of steps follows since every remainder must 
be smaller (in valuation) than the preceding remainder and the (valuation of the) remainder 
must be nonnegative. That the final nonzero remainder is the GCD follows from property 
Lemma 5.5. 

This form of the Euclidean algorithm is very simple to code. Let La/b] denote the 
“quotient” without remainder of a / b ,  that is, a = La/b]b + r .  Then recursion in the 
Euclidean algorithm may be expressed as 

for i = 1,2,  . . . (until termination) with 1-1 = a and ro = b. 
The second version of the Euclidean algorithm, sometimes called the extended Eu- 

clidean algorithm, computes g = (a, b) and also the coefficients s and t of Theorem 5.4 
such that 

as + bt = g.  

The values for s and t are computed by finding intermediate quantities si and tj satisfying 

asj + btj = rj (5.8) 

at every step of the algorithm. The formula to update sj and tj is (see Exercise 5.18) 

sj = si-2 - qisj-1 

ti = tj-2 - qjtj-1, 

s-1 = 1 so = o  
t-1 = o  to = 1. 

for i = 1,2,  . . . (until termination), with 

The Extended Euclidean Algorithm is as shown in Algorithm 5.1. 

(5.9) 

(5.10) 

gcd. c 1 
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Algorithm 5.1 Extended Euclidean Algorithm 

1 Initialization: Sets and t as in (5.10). 
z Letr-1 = a,ro = b,s-l = 1,so = O , t - l  =0,  to = l , i  = O  
3 while(ri # 0) { Repeat until remainder is 0 
4 i = i + l  
5 qi = [ri-2/ri-l J Compute quotient 
6 ri = ri-2 - qiri-1 Compute remainder 
7 

9 1  

10 Return: s = si-1, t = ti-1, g = ri-1 

si = si-2 - qisi-1 Compute s and t values 
8 = ti-2 - qjtj-1 

The following are some facts about the GCD which are proved using the Euclidean 
algorithm. Analogous results hold for polynomials. (It is helpful to verify these properties 
using small integer examples.) 

Lemma 5.7 

1. For integers, ( a ,  b )  is the smallestpositive value of as + bt, where s and t range over 
all integers. 

2. Ifas + bt = 1 for some integers s and t ,  then (a,  b)  = 1; that is, a and b are relatively 
prime. Thus a and b are relatively prime if and only if there exist s and t such that 
as + bt = 1. 

5.2.3 An Application of the Euclidean Algorithm: The Sugiyama Algorithm 

The Euclidean algorithm, besides computing the GCD, has a variety of other applications. 
Here, the Euclidean algorithm is put to use as a means of solving the problem of finding the 
shortest LFSR which produces a given output. This problem, as we shall see, is important 
in decoding BCH and Reed-Solomon codes. (The Berlekamp-Massey algorithm is another 
way of arriving at this solution.) 

We introduce the problem as a prediction problem. Given a set of 2p  data points 
{b t ,  t = 0,  1, . . . , 2 p  - l} satisfying the LFSR equation' 

P 

bk = - C t j b k - j ,  k = P ,  p + I ,  . . . ,2P - 1 (5.11) 
j=l 

we want to find the coefficients { t j )  so that (5.11) is satisfied. That is, we want to find 
coefficients to predict bk using prior values. Furthermore, we want the number of nonzero 
coefficients p to be as small as possible, so that t ( x )  has the smallest degree possible 
consistent with (5.1 1). Equation (5.11) can also be written as 

P 
C t j b k - j  = 0 ,  
j =O 

k = p , p +  1, ..., 2 p -  1, 

'Comparison with (4.17) shows that this equation has a - where (4.17) does not. 
expressed over G F ( 2 ) .  

(5.12) 

This is because (4.17) is 
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where to = 1. One way to find the coefficients { t j } ,  given a set of measurements { b j } ,  is to 
explicitly set up and solve the Toeplitz matrix equation 

There is no guarantee, however, that solution of this set of equations will yield t(x) of 
shortest degree. The Sugiyama algorithm is an efficient way of solving this equation which 
guarantees that t (x) has minimal degree. Put another way, the Sugiyama algorithm provides 
a means of synthesizing LFSR coefficients, given a sequence of its outputs. 

The convolution (5.12) can be written in terms of polynomials. Let 

2p-1  P 

i=O i = l  

Then the condition (5.12) is equivalent to saying that the kth coefficient of the polynomial 
product b ( x ) t  ( x )  is equal to zero for k = p, p + 1, . . . ,2p  - 1. Another way of saying this 
is that 

b ( x ) t ( x )  = r ( x )  - x 2 p s ( x ) ,  (5.13) 
where r ( x )  is a polynomial with deg(r(x)) < p and x 2 P s ( x )  is a polynomial whose first 
term has degree at least 2p. 

Example 5.12 In this example, computations are done in Zg. The sequence [ 2 , 3 , 4 , 2 , 2 , 3 } ,  corre- 
sponding to the polynomial b ( x )  = 2 + 3x + 4x2 + 2x3 + 2x4 + 3 2 ,  can be generated using the 
coefficients t i  = 3 ,  t2 = 4,  t3 = 2, so that t ( x )  = 1 + 3x + 4x2 + 2 x 3 .  We have p = 3. Then in 
Z s b l ,  

b ( x ) t ( x )  = 2 + 4x + x 2  + x6 + x7 + x 8  = ( 2  + 4x + x 2 )  + x6(1  + x + x 2 ) .  (5.14) 

Note that the terms x 3 ,  x4 and x5 are missing. We identify 

2 I ( X )  = 2 + 4 x  + x 2  s ( x )  = - ( 1  + x  + x  ). 

Equation (5.13) can be written as 

x 2 P s ( x )  + b ( x ) t ( x )  = r ( x ) .  (5.15) 

The problem can now be stated as: given a sequence of 2p observations {bo, b l ,  b 2 , .  . . , 
b2p-1 1 and its corresponding polynomial representation b ( x ) ,  find a solution to (5.15). When 
stated this way, the problem appears underdetermined: all we know is b ( x )  and p .  However, 
the Euclidean algorithm provides a solution, under the constraints that deg(t (x)) I p and 
deg(r(x)) < p. We start the Euclidean algorithm with r - l ( x )  = x2P and ro(x)  = b ( x ) .  
The algorithm iterates until the first i such that 

deg(ri(x)) < p .  
Then by the definition of the Euclidean algorithm, it must be the case that the s i ( x )  and 
t i ( x )  solve (5.15). The algorithm then concludes by normalizing ti ( x )  so that the constant 
term is 1. While we don't prove this here, it can be shown that this procedure will find a 
solution minimizing the degree of t (x) . 



184 Rudiments of Number Theory and Algebra 

Example 5.13 Given the sequence {2, 3,4, 2,2,3}, where the coefficients are in 255, calling the gcd 
function with a ( x )  = x6 and b(x)  = 2 + 3x + 4x2 + 2x3 + 2x4 + 3x5 results after three iterations in 

ri(x) = 3 + x  +4x2 si(x) = 1 + x  +x2  ti(x) = 4 + 2 x  + x 2  +3x3. 

Normalizing ti ( x )  by scaling by 4-1 = 4 we find 

t ( x ) =  1 + 3 x + 4 x 2 + 2 x 3  

r ( x ) = 2 + 4 x + x 2  

s ( x )  = 4 + 4.x + 4x2 = -(1 + x + 2).  
These correspond to the polynomials in (5.14). 

One of the useful attributes of the Sugiyama algorithm is that it determines the coefficients 
(ti,  . . . , t p }  satisfying (5.12) with the smallest value of p .  Put another way, it determines 
the t ( x )  of smallest degree satisfying (5.13). 

Example 5.14 To see this, consider the sequence {2, 3,2,3,  2,3]. This can be generated by the 
polynomial tl (x) = 1 + 3x + 4x2 + zx3, since 

b ( ~ ) t l ( ~ )  = 2 + 42 + 4x2 + 3x6 + x7 + x8 = (2 + 4x + 4x2) +x6(3 + x + x 2 ) ,  

However, as a result of calling the Sugiyama algorithm, we obtain the polynomial 

t(x) = 1 + x ,  

so 
b ( x ) t ( x )  = 2 + 3x6. 

It may be observed (in retrospect) that the sequence of coefficients in b happen to satisfy bk = -bk-l, 

0 consistent with the t (x) obtained. 

5.2.4 Congruence 

Operations modulo an integer are fairly familiar. We frequently deal with operations on a 
clock modulo 24, “If it is 1O:OO now, then in 25 hours it will be 11:00,” or on a week modulo 
7, “If it is Tuesday, then in eight days it will be Wednesday.” The concept of congruence 
provides a notation to capture the idea of modulo operations. 

Definition 5.4 If an integer m # 0 divides a - b,  then we say that a is congruent to b 
modulo m and write a = b (mod m).  If a polynomial m ( x )  # 0 divides a(x)  - b(x ) ,  then 
we say that a ( x )  is congruent to b(x)  modulo m ( x )  and write a ( x )  = b(x )  (mod m ( x ) ) .  

In summary: 

I a = b (mod m) if andonlyif ml (a - b) .  1 (5.16) 

Example 5.15 

1. 7 = 20 (mod 13). 
2. 7 = -6 (mod 13). 
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Congruences have the following basic properties. 

Theorem 5.8 [250, Theorem2.1,Theorem2.3, Theorem2.4]Forintegersa, b, c ,  d, x ,  y ,  m: 

1. a = b  ( m o d m ) e S b = a  ( m o d m ) + b - a = O  (modm). 

2. Zfa 3 b (mod m )  and b = c (mod m )  then a = c (mod m).  

3. Zfa 3 b (mod m )  and c = d (mod m )  then ax + cy = bx + dy (mod m).  

4. Zfa 3 b (mod m )  and c = d (mod m )  then ac = bd (mod m).  From this itfollows 

5. Zfa = b (mod m )  anddl m andd > 0 then a E b (mod d). 

6. Zfa 3 b (mod m )  then for c > 0, ac = bc (mod mc). 

7. ax = ay (mod m) ifand only i f x  E y (mod m/(a ,  m ) ) .  

8. Zfax = ay (mod m )  and ( a ,  m )  = 1 then x = y (mod m).  

9. Zfa = b (mod m )  then (a ,  m )  = (b, m).  

that i fa  E b (mod m )  then a" = b" (mod m).  

From the definition, we note that if n I a ,  then a E 0 (mod n ) .  

5.2.5 The $ Function 

Definition 5.5 The Euler totient function $ ( n )  is the number of positive integers less 
than n that are relatively prime to n .  This is also called the Euler $ function, or sometimes 
just the 4 function. 0 

Example 5.16 

1. 4(5)  = 4 (the numbers 1,2,3,4 are relatively prime to 5). 
2. 4 (4) = 2 (the numbers 1 and 3 are relatively prime to 4). 
3. 4(6)  = 2 (the numbers 1 and 5 are relatively prime to 6). 

It can be shown that the $ function can be written as 

where the product is taken over all primes p dividing n.  

Example 5.17 
4(189) = 4 ( 3 . 3 . 3  . 7 )  = 189(1 - 1/3)(1 - 1/7) = 108. 

@(a) = 1$(2~) = 64(1 - 1/2) = 32. 

We observe that: 

1. $ ( p ) = p - l i f p i s p r i m e .  

2. For distinct primes p1 and p2,  

4(PlP2) = (P1 - 1)@2 - 1). (5.17) 
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3. +(pm> = pm-’(p  - 1) for p prime. 

4. + ( p m q n )  = pm-’qn-’(p - l)(q - 1) for distinct primes p and q. 

5. For positive integers m and n with (m, n) = 1, 

4(mn> = 4(m)4(n). (5.18) 

5.2.6 Some Cryptographic Payoff 

With all the effort so far introducing number theory, it is interesting to put it to work on a problem 
of practical interest: public key cryptography using the RSA algorithm. This is really a topic distinct 
from error correction coding, but the application is important in modem communication and serves 
to motivate some of these theoretical ideas. 

In a symmetric public key encryption system, a user B has a private “key” which is only known 
to B and a public “key” which may be known to any interested party, C. A message encrypted by one 
key (either the public or private) can be decrypted by the other. 

For example, if C wants to send a sealed letter so that only B can read it, C encrypts using B’s 
public key. Upon reception, B can read it by deciphering using his private key. Or, if B wants to send 
a letter that is known to come from only him, B encrypts with his private key. Upon receipt, C can 
successfully decrypt only using B’s public key. 

Public key encryption relies upon a “trapdoor”: an operation which is exceedingly difficult to 
compute unless some secret information is available. For the RSA encryption algorithm, the secret 
information is number theoretic: it relies upon the difficulty of factoring very large integers. 

Fermat’s Little Theorem 

Theorem 5.9 

I .  (Fermat’s little theorem)2 If p is a prime and i fa  is an integer such that (a ,  p )  = 1 (i.e., p 
does not divide a), then p divides ap-’ - 1. Stated another way, i fa  $ 0  (mod p) ,  

ap-’ = 1 (mod p ) .  

2. (Euler’s generalization of Fennat’s little theorem) I f n  and a are integers such that (a ,  n) = 1, 
then 

a4(’) = 1 (mod n ) ,  

where + is the Euler +function. For any prime p ,  @ ( p )  = p - 1 and we get Fennat’s little 
theorem. 

Example 5.18 

1. Let p = 7 and a = 2. Thenap - 1 = 63 and pi 26 - 1. 

2. Compute the remainder of 81°3 when divided by 13. Note that 

103 = 8 . 1 2  + 7. 

Then with all computations modulo 13, 

81°3 = (812)8(87) (18)(87) = (-5)7 (-5)6(-5) (25) 3 (-5) = (-1) 3 ( -5 )  5. 

Proof of Theorem 5.9. 

2Fermat’s little theorem should not be confused with “Fermat’s last theorem,” proved by A. Wiles, which states 
that x” + y” = z” has no solution over the integers if n > 2. 
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1. The nonzero elements in the group Z,, { 1,2,  . . . , p - I} form a group of order p - 1 under 
multiplication. By Lagrange's theorem (Theorem 2.3), the order of any element in a group 
divides the order of the group, so for a E Z, with a # 0, ap-l = 1 in Z,. If a E Z and 
a $! Z,, write a = (6 + kp)  for some k E Z and for 0 5 ii < p ,  then reduce modulo p .  

2. Let Gn be the set of elements in Zn that are relatively prime to n. Then (it can be shown that) 
Gn forms a group under multiplication. Note that the group G,  has @(a) elements in it. Now 
let a E Zn be relatively prime to n. Then a is in the group Gn. Since the order of an element 
divides the order of the group, we have a$(n) = 1 (mod n). If a # Zn,  write a = (6 + kn) 
where ?i E Z, . Then reduce modulo n. 

RSA Encryption 

Named after its inventors, Ron Rivest, Adi Shamir, and Leonard Adleman [293], the RSA encryption 
algorithm gets its security from the difficulty of factoring large numbers. The steps in setting up the 
system are: 

Choose two distinct random prime numbers p and q (of roughly equal length for best security) 
and compute n = pq. Note that @(n) = ( p  - l)(q - 1). 
Randomly choose an encryption key e ,  an integer e such that the GCD (e,  ( p  - l)(q - 1)) = 1. 
By the extended Euclidean algorithm, there are numbers d and f such that de - f ( p  - l)(q - 
1) = 1, or 

de = 1 + ( p  - l)(q - 1)f. 

That is, d = e-l (mod ( p  - l)(q - 1)). 

private key. The factors p and q of IZ are never disclosed. 
Publish the pair of numbers {e ,  n }  as the public key. Retain the pair of numbers (d ,  n} as the 

To encrypt (say, using the public key), break the message m (as a sequence of numbers) into 
blocks mi of length less than the length of n. Furthermore, assume that (mi, n )  = 1 (which is highly 
probable, since n has only two factors). For each block mi, compute the encrypted block ci by 

ci = ml (mod n). 

(If e < 0, then find the inverse modulo n.) To decrypt (using the corresponding private key) compute 

Since (mi ,  n) = 1, 

so that 
d ci (mod n) = m i ,  

as desired. 

(and computing powers) is easy and straightforward, factoring very large integers is very difficult. 
To crack this, a person knowing n and e would have to factor n to find d. While multiplication 

Example 5.19 Let p = 47 and q = 71 and n = 3337. (This is clearly too short to be of cryptographic 
value.) Then 

The encryption key e must be relatively prime to 3220; take e = 79. Then we find by the Euclidean 
algorithm that d = 1019. The public key is (79, 3337). The private key is (1019, 3337). 

( p  - l)(q - 1) = 3220. 
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To encode the message block rn 1 = 688, we compute 

cl = (688)79 (mod 3337) = 1570. 

To decrypt this, exponentiate 

C! = (1570)1019 (mod 3337) = 688. 

In practical applications, primes p and q are usually chosen to be at least several hundred digits long. 
This makes factoring n = p q  exceedingly difficult! 

5.3 The Chinese Remainder Theorem 

The material from this section is not used until Section 7.4.2. In its simplest interpretation, 
the Chinese Remainder Theorem (CRT) is a method for finding the simultaneous solution 
to the set of congruences 

x =a1 (mod m l )  x -a2 (modm2) . . .  x = a r  (modm,). (5.19) 

However, the CRT applies not only to integers, but to other Euclidean domains, including 
rings of polynomials. The CRT provides an interesting isomorphism between rings which 
is useful in some decoding algorithms. 

One approach to the solution of (5.19) would be to find the solution set to each congruence 
separately, then determine if there is a point in the intersection of these sets. The following 
theorem provides a more constructive solution. 

Theorem 5.10 I fm 1, m2, . . . , m, arepairwise relativelyprime elements withpositive valu- 
ation in a Euclidean domain R, and a 1, a2, . . . , ar are any elements in the Euclidean domain, 
then the set of congruences in (5.19) have common solutions. Let m = m 1m2 . . . mr. Ifxo 
is a solution, then so is x = xo + km for any k E R. 

Proof Let m = ngZ1 mi .  Observe that ( m / m j ,  m j )  = 1 since the mis are relatively 
prime. By Theorem 5.4, there are unique elements s and t such that 

(m/mj ) s  + mjt  = 1, 

which is to say that 
( m / m j ) s  - 1 (mod m j ) .  

Let bj = s in this expression, so that we can write 

(m/mj)b j  = 1 (mod mj) .  

Also (m/m,)bj = 0 (mod mi)  if i # j since mi 1 m. Let 

r 

xo = x ( m / m j ) b j a j .  

(5.20) 

(5.21) 
j=1 

Then 
xo = (m/mi)biai 3 aj (mod mi) .  
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Uniqueness is straightforward to verify, as is the fact that x = xo + km is another solution. 
0 

It is convenient to introduce the notation Mi = m/mi .  The solution (5.21) can be written 
as xo = Cg=l yjaj ,  where 

y .  1 -  - -b. j - -Mjb j  (5.22) 
m 

m j  

with bj determined by the solution to (5.20). Observe that yj depends only upon the set of 
moduli {mi} and not upon x. If the y j s  are precomputed, then the synthesis of x from the 
{aj} is a simple inner product. 

Example 5.20 Find a solution x to the set of congruences 

x = O  (mod 4) x = 2  (mod 27) x = 3  (mod 25) 

Since the moduli mi are powers of distinct primes, they are pairwise relative prime. Then m = 
mlm2m3 = 2700. Using the Euclidean algorithm it is straightforward to show that (m/4)bl = 1 
(mod 4) has solution bl = -1. Similarly 

b2 = 10 b3 = -3. 

The solution to the congruences is given by 

x = (m/4)(-1)(0) + (m/27)(10)(2) + (m/25)(-3)(3) = 1028. 

Example 5.21 Suppose the Euclidean domain is R[x] and the polynomials are 

ml(X) = (x - 1) m2(x) = (x - 2)2 m3(x)  = (x - 3)3. 

These are clearly pairwise relatively prime. We find that 

m ( x )  = ml(x)m2(x)mg(x) = x6 - 14x5 + 80x4 - 238x3 + 387x2 - 324x + 108. 

If 
f ( x )  = x5 + 4x4 + 5x3 + 2x2 + 3x + 2, 

then we obtain 

u ~ ( x )  = 17 u ~ ( x )  = 2 7 9 ~  - 406 u3(x)  = 533x2 - 2211x + 2567. 

The CRT provides a means of representing integers in the range 0 5 x < m, where 
m = m1m2 . . mr and the mi are painvise relatively prime. Let R / ( m )  denote the ring of 
integers modulo m and let R / ( m i )  denote the ring of integers modulo mi. Given a number 
x E R / ( m ) ,  it can be decomposed into an r-tuple [XI, x2, . . . , x,] by 

x =xi (mod mi) ,  i = 1,2,  ..., r, 

where X i  E R/(mj) .  Going the other way, an r-tuple of numbers [xi, x2, . . . , x,] with 
0 5 X j  < mj can be converted into the number x they represent using (5.21). If we let 
x = [xi, x2, . . . , x,], then the correspondence between a number x and its representation 
using the CRT can be represented as 

x f) &. 

crtgamma.m 
fromcrt .m 
tocrt .m 
testcrt .m 

testcrtp.m 
tocrtpo1y.m 
fromcrtpo1y.m 
crtgammapo1y.r 
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We also denote this as 
x_ = CRT(X) x = CRT-~(XJ. 

Ring operations can be equivalently computed in the original ring R/(m), or in each of the 
rings R/(mi) separately. 

Example 5.22 Let m i  = 4, m2 = 27, m3 = 25. Let x = 25; then x = [ l ,  25,Ol. Let y = 37; 
then y = [I, 10, 121. The sum z = x + y = 62 has g = [2,8, 121, which represents x_ + z, added 
element by element, with the first component modulo 4, the second component modulo 27, and the 
third component modulo 25. 

The product z = x . y = 925 has z = [l, 7,0], corresponding to the element-by-element product 
(modulo 4,27, and 25, respectively). 0 

More generally, we have a ring isomorphism by the CRT. Let ni : R/(rn) +- R/(mi), i = 
1,2, . . . , r denote the ring homomorphismdefined by ni (a)  = a (mod mi). We define the 
homomorphism x : R f (m) +- R fml  x R/m2 x . . . x R/mr by x = ni x n2 x . . . x n,, 
that is, 

x ( a )  = (a  modm1,a modm2,. . . , a  modm,) (5.23) 

Then x defines a ring isomorphism: both the additive and multiplicative structure of the 
ring are preserved, and the mapping is bijective. 

Example 5.23 Using the same polynomials as in Example 5.21, let 

f1(x) = x5 + 4x4 + 5x3 + 2x2 + 3x + 2. 

Then using the CRT, 

fi (x) tf (17, 2 7 9 ~  - 406, 533x2 - 2211 + 2567) = f (x). -1 

Also let 
f 2 ( ~ )  = x3 + 2x2 tf (3, 20x - 24, 11x2 - 27x + 27) = f2(x). 

Then 

fi  (x) + f2(x) = x5 + 4x4 + 6x3 + 4x2 + 3x + 2 tf (20, 299x - 430, 544x2 - 2238x + 2594). 

0 

5.3.1 The CRT and Interpolation 

The Evaluation Homomorphism 

Let IF be a field and let R = IF[x]. Let f (x) E R and let m 1 ( x )  = x - u 1. Then computing 
the remainder of f(x) modulo x - u1 gives exactly f(u1). 

Example 5.24 Let f ( x )  = x4 + 3x3 + 2x2 + 4 E R[X] and let m i @ )  = x - 3. Then computing 
f(x)/m 1 (x) by long division, we obtain the quotient and remainder 

f(x) = (x - 3)(x3 + 6x2 + 20x + 60) + 184. 

But we also find that 
f(3) = 184. 

So f ( x )  mod (x - 3) = 184 = f ( 3 ) .  0 
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Thus we can write 
f ( x )  mod ( x  - u )  = f ( u ) .  

The mapping nj : F[x] + F defined by 

n i ( f ( x > )  = f ( u i )  = f (x)  (mod (X - U i ) )  

is called the evaluation homomorphism. It can be shown that it is, in fact, a homomorphism: 
for two polynomials f ( x ) ,  g(x)  E F[x], 

n i ( f ( x >  + g(x>) = n i ( f ( x > >  + n i ( g ( x > >  n i ( f ( x )g (x>> = ri(f(x))nik(x)). 

The interpolation Problem 

Suppose we are given the following problem: Given a set of points (u i , ai), i = 1,2, . . . , r , 
determine an interpolating polynomial f ( x )  E F[x] of degree < I such that 

f(u1)  = a l ,  f (u2)  = ~ 2 9 . .  * > f ( U r >  = ar. (5.24) 

Now let f(x) = fo + f i x  + . . . + fr-1Xr-'. Since deg(f(x)) < r ,  we can think of f ( x )  
as being in F[x]/(x' - 1). Also let mi(x )  = x - ui E F[x] for i = 1,2,  . . . , r where the 
u1, u2, . . . , u, E F are pairwise distinct. Then the mi (x) are painvise relatively prime. 

By the evaluation homomorphism, the set of constraints (5.19) can be expressed as 

f ( x )  = a1 (mod m l ( x ) )  f ( x )  = a2 (mod m 2 ( x ) )  f ( ~ )  = a, (mod mr(X)). 

So solving the interpolation problem simply becomes an instance of solving a Chinese 
Remainder problem. 

The interpolating polynomial is found using the CRT. Let m ( x )  = n i = l  ( x  - ui). By 
the proof of Theorem 5.10, we need functions b j ( x )  such that 

( rn (x ) /mj (x ) )b j (x )  = 1 (mod m j )  

( m ( x ) / m j ( x ) ) b j ( x )  = 0 (mod mk). 
and 

That is, 

[j>+j(x -u i ) ]  b j ( x )  3 1 (mod m j ) ,  

and 

b j ( x )  = 0 (mod mk) 

fork # j .  Let 

and let 

r 

(5.25) 



192 Rudiments of Number Theory and Algebra 

Since 

we see that bj (x) satisfies the necessary requirements. By (5.21), the interpolating polyno- 
mial is then simply 

l j ( u j )  = 1 and l j ( u k )  = 0, j # k, 

r 

This form of an interpolating polynomial is called a Lagrange interpolator. The basis 
functions li (x) are called Lagrunge interpolunts. By the CRT, this interpolating polynomial 
is unique modulo rn (x). 

The Lagrange interpolator can be expressed in another convenient form. Let 
r 

i= l  

Then the derivative3 is 
r 

k=l  i#k 

so that 
rn’(Uj)  = n ( U j  - Ui). 

i # j  

(See also Definition 6.5.) The interpolation formula (5.26) can now be written as 

(5.27) 
rn(x) 1 

(X - u i )  m ’ ( u i )  * 
f ( x )  = c a j - - -  

i = l  

Example 5.25 An important instance of interpolation is the discrete Fourier transform (DFT). Let 
f ( x )  = f o + f l x + .  . . + f N - 1 x N - ’ , w i t h x  = z-l,betheZ-transformofacomplexcyclicsequence. 
Then f ( x )  E @ [ x ] / ( x N  - l), since it is apolynomial of degree 5 N - 1. Let m ( x )  = x N  - 1. The 
N roots of rn ( x )  are the complex numbers e- i j2n/N,  i = 0,  1, . . . , N - 1. Let w = e - j 2 K / N  ; this 
is a primitive N-th  root of unity. Then the factorization of m(n) can be written as 

N - 1  

m ( x )  = X N  - 1 = n ( x  - m i ) ,  

i=O 

where the factors are painvise relative prime. Define the evaluations 

N - 1  

Fk = T k ( f ( X ) )  = f ( d )  = f j m i k ,  k = 0, 1, .  . . , N - 1. 
i =O 

Expressed another way, Fk = f ( x )  (mod x - mk) .  The coefficients (jk} may be thought of as 
existing in a “time domain,” while the coefficients { Fk] may be thought of as existing in a “frequency 
domain.” 

For functions in the “time domain,” multiplication is polynomial multiplication (modulo x - 1). 
That is, for polynomials f ( x )  and g ( x ) ,  multiplication is f ( x ) g ( x )  (mod x N  - l), which amounts 
to cyclic convolution. 

3 0 r  formal derivative, if the field of operations is not real or complex 
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For functions in the “transform domain,” multiplication is element by element. That is, for 
sequences (Fo, F1, . . . , F N - ~ )  and (Go, G I ,  . . . , G N - ~ ) ,  multiplication is element by element as 
complex numbers: 

(FoGo, F l G i , .  . . I F N - I G N - I ) .  

Thus, the ring isomorphism validates the statement: (cyclic) convolution in the time domain is equiv- 
alent to multiplication in the frequency domain. 

5.4 Fields 

Fields were introduced in Section 2.3. We review the basic requirements here,in comparison 
with a ring. In a ring, not every element has a multiplicative inverse. In a field, the familiar 
arithmetic operations that take place in the usual real numbers are all available: ( F ,  +) is 
an Abelian group. (Denote the additive identity element by 0.) The set F \ {O] (the set 
F with the additive identity removed) forms a commutative group under multiplication. 
Denote the multiplicative identity element by 1. Finally, as in a ring the operations + and . 
distribute: a . (b  + c )  = a . b + a  1 c for all a ,  b ,  c E F .  

In a field, all the elements except the additive identity form a group, whereas in a ring, 
there may not even be a multiplicative identity, let alone an inverse for every element. Every 
field is a ring, but not every ring is a field. 

Example 5.26 (Z5, +, .) forms a field; every nonzero element has a multiplicative inverse. So this 
set forms not only a ring but also a group. Since this field has only a finite number of elements in it, 
it is said to be a finite field. 

However, (Z6, +, .) does not form a field, since not every element has a multiplicative inverse. 

One way to obtain finite fields is described in the following. 

Theorem 5.11 The ring ( Z p ,  f, .) is aJield ifand only i f p  is aprime. 

Before proving this, we need the following definition and lemma. 

Definition 5.6 In a ring R ,  if a ,  b E R with both a and b not equal to zero but ab = 0, then 
a and b are said to be zero divisors. 0 

Lemma 5.12 In a ring Zn, the Zero divisors are precisely those elements that are not 
relatively prime to n. 

Proof Let a E Zn be not equal to 0 and be not relatively prime to n .  Let d be the greatest 
common divisor of n and a .  Then a ( n / d )  = (a/d)n,  which, being a multiple of n, is equal 
to 0 in Zn. We have thus found a number b = n/d such that ab = 0 in Zn, so a is a zero 
divisor in Z, . 

Conversely, suppose that there is an a E Z, relatively prime to n such that ab = 0. 
Then it must be the case that 

ab = kn 

for some integer k .  Since n has no factors in common with a ,  then it must divide b,  which 
means that b = 0 in Z,. 0 
Observe from this lemma that if p is a prime, there are no divisors of 0 in Z,. We now turn 
to the proof of Theorem 5.1 1. 
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Proof of Theorem 5.1 1. 
We have already shown that if p is not prime, then there are zero divisors and hence 

(Z,, +, .) cannot form a field. Let us now show that if p is prime, (Z,, +, -) is a field. 
We have already established that (Z, , +) is a group. The key remaining requirement is to 

establish that (Z,\{O), .) forms a group. The multiplicative identity is 1 and multiplication 
is commutative. The key remaining requirement is to establish that every nonzero element 
in Z, has a multiplicative inverse. 

Let { 1,2,  . . . , p - 1) be a list of the nonzero elements in Z,, and let a E Z, be nonzero. 
Form the list 

{la, 2a,.  . . , ( p  - 1)a). (5.28) 

Every element in this list is distinct, since if any two were identical, say ma = nu with 
m # n,  then a(m - n )  = 0, which is impossible since there are no zero divisors in Z,. 
Thus the list (5.28) contains all nonzero elements in Z, and is a permutation of the original 

0 list. Since 1 is in the original list, it must appear in the list in (5.28). 

5.4.1 An Examination of R and Q: 

Besides the finite fields (Z, , +, a )  with p prime, there are other finite fields. These fields 
are extensionJields of Z,. However, before introducing them, it is instructive to take a look 
at how the field of complex numbers C can be constructed as a field extension from the field 
of real numbers R 

Recall that there are several representations for complex numbers. Sometimes it is 
convenient to use a “vector” notation, in which a complex number is represented as (a, b). 
Sometimes it is convenient to use a “polynomial” notation a + bi, where i is taken to be 
a root of the polynomial x 2  + 1. However, since there is some preconception about the 
meaning of the symbol i, we replace it with the symbol a, which doesn’t carry the same 
connotations (yet). In particular, a is not (yet) the symbol for 2/--i-. You may think of 
a + ba as being a polynomial of degree 5 1 in the “indeterminate” a. There is also a polar 
notation for complex numbers, in which the complex number is written as a + ib = reie 
for the appropriate r and 8. Despite the differences in notation, it should be borne in mind 
that they all represent the same number. 

Given two complex numbers we define the addition component-by-component in the 
vector notation (a, b) and (c, d ) ,  where a ,  b,  c and d are all in R, based on the addition op- 
eration of the underlying field R. The set of complex number thus forms a two-dimensional 
vector space of real numbers. We define 

(a, b) + (c, d )  = (a + c ,  b + d) .  (5.29) 

It is straightforward to show that this addition operation satisfies the group properties for 
addition, based on the group properties it inherits from R. 

Now consider the “polynomial notation.” Using the conventional rules for adding poly- 
nomials, we obtain 

u + ba + c + da = (a  + C) + (b + d)a ,  

which is equivalent to (5.29). 
How, then, to define multiplication in such a way that all the field requirements are 

satisfied? If we simply multiply using the conventional rules for polynomial multiplication, 

(a + b a ) ( ~  + d a )  = uc + (ad + bc)a + bda2, (5.30) 
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we obtain a quadratic polynomial, whereas complex numbers are represented as polynomials 
having degree 5 1 in the variable a. 

Polynomial multiplication must be followed by another step, computing the remainder 
modulo some other polynomial. Let us pick the polynomial 

g(a) = 1 +a2 

to divide by. Dividing the product in (5.30) by g(a) 

bd 

a2 + llbda2+ (ad + bc)a+ ac 

bda2+ bd 

(ad + bc)a+ uc - bd 

we obtain the remainder (ac - bd) + (ad + bc)a. Summarizing this, we define the product 
of (a  + ba) by (c + da) by the following two steps: 

1. Multiply (a + ba) by (c  + da)  as polynomials. 

2. Compute the remainder of this product when divided by g(a)  = a2 + 1. 

That is, the multiplication is defined in the ring lR[a]/g(a), as described in Section 4.4. 

polynomial arithmetic: by this two-step procedure we have obtained the familiar formula 
Of course, having established the pattern, it is not necessary to carry out the actual 

(a + ba) . (C + da) = (UC - bd) + (ad + bc)a 

or, in vector form, 
( a ,  b) . ( c ,  d )  = (UC - bd, ad + bc). 

As an important example, suppose we want to multiply the complex numbers (in vector 
form) (0, 1 )  times (0, l),  or (in polynomial form) a times a. Going through the steps of 
computing the product and the remainder we find 

a .a = -1. (5.31) 

In other words, in the arithmetic that we have defined, the element a satisfies the equation 

a2 + 1 = 0. (5.32) 

In other words, the indeterminate a acts like the number m. This is a result of the fact 
that multiplication is computed modulo the polynomial g(a) = a2 + 1: the symbol a is 
(now by construction) a root of the polynomial g ( x ) .  To put it another way, the remainder 
of a polynomial a2 + 1 divided by a2 + 1 is exactly 0. So, by this procedure, any time 
a2 + 1 appears in any computation, it may be replaced with 0. 

Let us take another look at the polynomial multiplication in (5.30): 

(a + ba)(c + da)  = ac + (ad + bc)a + bda2. (5.33) 

Using (5.31), we can replace a2 in (5.33) wherever it appears with expressions involving 
lower powers of a. We thus obtain 

(a + ba)(c + da) = uc + (ad + bc)a + bd(-1) = (UC - bd) + (ad + bc)a, 
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as expected. If we had an expression involving a3 it could be similarly simplified and 
expressed in terms of lower powers of a: 

a3 = a. ,2 = (y . (-1) = -a. 

Using the addition and multiplication as defined, it is (more or less) straightforward to 
show that we have created a field which is, in fact, the field of complex numbers C. 

As is explored in the exercises, it is important that the polynomial g(a) used to define 
the multiplication operation not have roots in the base field R. If g(a!) were a polynomial so 
that g(b)  = 0 for some b E R, then the multiplication operation defined would not satisfy 
the field requirements, as there would be zero divisors. A polynomial g ( x )  that cannot be 
factored into polynomials of lower degree is said to be irreducible. By the procedure 
above, we have taken a polynomial equation g(a) which has no real roots (it is irreducible) 
and created a new element a! which is the root of g(a),  defining along the way an arithmetic 
system that is mathematically useful (it is a field). The new field C, with the new element 
a! in it, is said to be an extension field of the base field R. 

At this point, it might be a tempting intellectual exercise to try to extend C to a bigger 
field. However, we won't attempt this because: 

1. The extension created is sufficient to demonstrate the operations necessary to extend 
a finite field to a larger finite field; and (more significantly) 

2. It turns out that C does not have any further extensions: it already contains the roots 
of all polynomials in @ . [ X I ,  so there are no other polynomials by which it could be 
extended. This fact is called the fundamental theorem of algebra. 

There are a couple more observations that may be made about operations in C. First, we 
point out again that addition in the extension field is easy, being simply element by element 
addition of the vector representation. Multiplication has its own special rules, determined 
by the polynomial g(a!). However, if we represent complex numbers in polar form, 

a + ba! = i-lej'l c + da! = r2eJQ2, 

then multiplication is also easy: simply multiply the magnitudes and add the angles: 

r , e j Q ~  . r2ej02 = r l r 2 e J ( Q ~ f 0 2 ) .  

Analogously, we will find that addition in the Galois fields we construct is achieved by 
straightforward vector addition, while multiplication is achieved either by some operation 
which depends on a polynomial g, or by using a representation loosely analogous to the 
polar form for complex numbers, in which the multiplication is more easily computed. 

5.4.2 Galois Field Construction: An Example 

A subfield of a field is a subset of the field that is also a field. For example, Q is a subfield 
of R. A more potent concept is that of an extension field. Viewed one way, it simply turns 
the idea of a subfield around: an extension field E of a field F is a field in which F is a 
subfield. The field F in this case is said to be the base field. But more importantly is the 
way that the extension field is constructed. Extension fields are constructed to create roots 
of irreducible polynomials that do not have roots in the base field. 

Definition 5.7 A nonconstant polynomial f ( x )  E R [ x ]  is irreducible over R if f ( x )  
cannot be expressed as a product g ( x ) h ( x )  where both g ( x )  and h(x) are polynomials of 
degree less than the degree of f ( x )  and g ( x )  E R [ x ]  and h ( x )  E R [ x ] .  
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Box 5.1: Everiste Galois (1811-1832) 

The life of Galois is a study in brilliance and tragedy. At an early age, Galois 
studied the works in algebra and analysis of Abel and Lagrange, convincing him- 
self (justifiably) that he was a mathematical genius. His mundane schoolwork, 
however, remained mediocre. He attempted to enter the Ecole Polytechnique, 
but his poor academic performance resulted in rejection, the first of many 
disappointments. At the age of seventeen, he wrote his discoveries in algebra in 
a paper which he submitted to Cauchy, who lost it. Meanwhile, his father, an 
outspoken local politician who instilled in Galois a hate for tyranny, committed 
suicide after some persecution. Some time later, Galois submitted another paper 
to Fourier. Fourier took the paper home and died shortly thereafter, thereby 
resulting in another lost paper. As a result of some outspoken criticism against 
its director, Galois was expelled from the normal school he was attending. Yet 
another paper presenting his works in finite fields was a failure, being rejected 
by the reviewer (Poisson) as being too incomprehensible. 

Disillusioned, Galois joined the National Guard, where his outspoken nature 
led to some time in jail for a purported insult against Louis Philippe. Later he was 
challenged to a duel -probably a setup - to defend the honor of a woman. The 
night before the duel, Galois wrote a lengthy letter describing his discoveries. 
The letter was eventually published in Revue EncylopZdique. Alas, Galois was 
not there to read it: he was shot in the stomach in the duel and died the following 
day of peritonitis at the tender age of twenty. 

In this definition, the ring (or field) in which the polynomial is irreducible makes a 
difference. For example, the polynomial f ( x )  = x 2  - 2 is irreducible over Q, but over the 
real numbers we can write 

so f ( x )  is reducible over R. 
We have already observed that (Z,, +, .) forms a field when p is prime. It turns out 

that all finite fields have order equal to some power of a prime number, p m .  For m > 1, the 
finite fields are obtained as extension fields to Z, using an irreducible polynomial in Z, [XI 
of degree m.  These finite fields are usually denoted by G F ( p m )  or G F ( q )  where q = p m ,  
where G F stands for “Galois field,” named after the French mathematician Everiste Galois. 

We demonstrate the extension process by constructing the operations for the field 
G F ( z 4 ) ,  analogous to the way the complex field was constructed from the real field. 
Any number in G F Q ~ )  can be represented as a 4-tuple ( a ,  b ,  c, d ) ,  where a ,  b ,  c, d E 
GF(2) .  Addition of these numbers is defined to be element-by-element, modulo 2: For 
(ai ,a2,  a3, a4) E GF(24)  and ( b i ,  b2, b3, b3) E G F ( z 4 ) ,  where aj E GF(2)  and bi E 
GF(2) ,  

(a i ,a2 ,a3 ,a4)+(b i ,b~ ,b3 ,b4)  = (a1 + b i , a 2 + b 2 , ~ 3 + b 3 , ~ 4 + b 4 ) .  

f ( x )  = (x + &)(x - &I, 

Example 5.27 Add the numbers (1,  0, 1, 1) + (0, 1, 0, 1). Recall that in GF(2) ,  1 + 1 = 0, so that 
we obtain 

( L O ,  1 ,  1) + (0, 1,0, 1) = (1, 1, 1,O).  
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To define the multiplicative structure, we need an irreducible polynomial of degree 4. 
The polynomial g(x) = 1 + x + x4 is irreducible over GF(2) .  (This can be verified since 
g(0) = 1 and g(1) = 1, which eliminates linear factors and it can be verified by exhaustion 
that the polynomial cannot be factoredinto quadratic factors.) In the extension field G F ( z 4 ) ,  
define a to be root of g: 

a + a + l = O ,  4 

or 
4 a =1+a. (5.34) 

A 4-tuple (a, b,  c ,  d )  representing a number in GF(24) has a representation in polynomial 
form 

Now take successive powers of a beyond a4: 

a + ba + ca2 + da3. 

4 a = l + a ,  

a5 = a(a4) = a + a2, 

a - a  (a )-a +a3, 6 - 2 4 - 2  (5.35) 

a I = a  3 4  (a ) = a  3 ( 1 + a ) = a 3 + 1 + a ,  

and so forth. In fact, because of the particular irreducible polynomial g ( x )  which we 
selected, powers of a up to a14 are all distinct and a15 = 1. Thus all 15 of the nonzero 
elements of the field can be represented as powers of a. This gives us something analogous 
to a “polar” form; we call it the “power” representation. The relationship between the vector 
representation, the polynomial representation, and the “power” representation for GF(24)  
is shown in Table 5.1. The fact that a 4-tuple has a corresponding representation as a power 
of a is denoted using *. For example, 

(0,1, 0, 0)  * 5 (0, 1, 1,O) * a . 
The Vector Representation (integer) column of the table is obtained from the Vector Repre- 
sentation column by binary-to-decimal conversion, with the least-significant bit on the left. 

Example 5.28 In G F ( z ! ~ )  multiply the Galois field numbers 1 + a + a3 and a + a2. Step 1 is to 
multiply these “as polynomials” (where the arithmetic of the coefficients takes place in GF(2) ) :  

3 (1 + a  + a  1 .  (a +a2) = a +a3 +a4 +a5. 

Step 2 is to reduce using Table 5.1 or, equivalently, to compute the remainder modulo a4 + a + 1: 
+ a 3  +a4 +a5  = a  + a 3  + (1 + a )  + (a + a 2 )  = 1 + a  + a 2  +a3.  

SO in ~ ~ ( 2 ~ 1 ,  

In vector notation, we could also write 

3 (1 + a + a  1.  (a + a 2 )  = 1 + a + a 2  + a 3 .  

(1, 1,0, 1). (0, 1, 1 , O )  = (L1, 1, 1). 

This product could also have been computed using the power representation. Since (1, 1, 0, 1) ++ a7 
and (0, 1, 1 , O )  ++ a5, we have 

(1, l , O ,  1) * (0, 1, 1,O) tf a7a5 = a12 * (1 ,  1, 1, 1). 

The product is computed simply using the laws of exponents (adding the exponents). 0 
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Table 5.1: Power, Vector, and Polynomial Representations of G F Q ~ )  as an Extension Using 
g(a)  = 1 + a  + a 4  

Vector Power Zech 
Polynomial Vector Representation Representation Logarithm Logarithm 

Representation Representation (integer) a" n Z(n) 

1 1 0 0 0  1 1 =a0 0 - 
a 0 1 0 0  2 a 1 4 

a2 0 0 1 0  4 a2 2 8 
a3 0 0 0 1  8 a3 3 14 

- - - 0 0 0 0 0  0 

1 +a 1 1 0 0  3 a4 4 1 
a+a2 0 1  1 0  6 a5 5 10 

l+a +a3 1 1 0 1  11 a7 7 9 
1 +a2 1 0 1 0  5 a8 8 2 

a +a3 0 1 0 1  10 a9 9 7 
l+a+a2 1 1 1 0  7 a10 10 5 

a+a2+ a3 0 1 1 1  14 a11 11 12 
l+a!+a2+ a3 1 1 1 1  15 a 12 12 11 

1 + a!3 1 0 0 1  9 a14 14 3 

a2+ a3 0 0 1  1 12 a6 6 13 

1 +a2+a3 1 0 1 1  13 a! 13 13 6 

The Zech logarithm is explained in Section 5.6. 

Example 5.29 In G F Q ~ ) ,  compute a12 . a5. In this case, we would get 

. ,5 = a!17. 

However since a l 5  = 1, 
.J = - 15 2 - 2 - a  a! - a .  

0 

We compute aaab = a' by finding c = (a + b)  (mod p M  - 1). 
Since the exponents are important, a nonzero number is frequently represented by the 

exponent. The exponent is referred to as the logarithm of the number. 
It should be pointed that this power (or logarithm) representation of the Galois field 

exists because of the particular polynomial g(a) which was chosen. The polynomial is not 
only irreducible, it is also primitive which means that successive powers of a up to 2m - 1 
are all unique, just as we have seen. 

While different irreducible polynomials can be used to construct the field there is, in 
fact, only one field with q elements in it, up to isomorphism. 

Tables which provide both addition and multiplication operations for G F ( z 3 )  and 
GF(24)  are provided inside the back cover of this book. 

5.4.3 Connection with Linear Feedback Shift Registers 

The generation of a Galois field can be represented using an LFSR with g ( x )  as the connec- 
tion polynomial by labeling the registers as 1, a,  a2 and a3, as shown in Figure 5.1. Then 
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as the LFSR is clocked, successive powers of a are represented by the state of the LFSR. 
Compare the vector representation in Table 5.1 with the LFSR sequence in Table 4.1 1. The 
state contents provide the vector representation, while the count provides the exponent in 
the power representation. 

1 ff ff2 a3 

Figure 5.1: LFSR labeled with powers of a to illustrate Galois field elements. 

5.5 Galois Fields: Mathematical Facts 

Having presented an example of constructing a Galois field, we now lay out some aspects 
of the theory. 

We first examine the additive structure of finite fields, which tells us what size any finite 
field can be. Recalling Definition 4.3, that the characteristic is the smallest positive integer 
m such that m(1) = 1 + 1 + .. . + 1 = 0, we have the following. 

Lemma 5.13 The characteristic of aJield must be either 0 or aprime number. 

Proof If the field has characteristic 0, the field must be infinite. Otherwise, suppose that 
the characteristic is a finite number k .  Assume k is a composite number. Then k(  1) = 0 
and there are integers m # 1 and n # 1 such that k = mn. Then 

0 = k(1) = (mn)(l) = m(l)n(l) = 0. 

But a field has no zero divisors, so either m or n is the characteristic, violating the minimality 
of the characteristic. 0 
It can be shown that any field of characteristic 0 contains the field Q. 

On the basis of this lemma, we can observe that in a finite field GF(q), there are p 
elements ( p  a prime number) (0, 1 , 2  = 2(1), . . . , (p  - 1) = (p  - 1)(1)} which behave 
as a field (i.e., we can define addition and multiplication on them as a field). Thus Z, 
(or something isomorphic to it, which is the same thing) is a subfield of every Galois field 
GF(q). In fact, a stronger assertion can be made: 

Theorem 5.14 The order q of everyJiniteJield GF(q) must be apower of aprime. 

Proof By Lemma 5.13, every finite field GF(q) has a subfield of prime order p .  We will 
show that GF(q) acts like a vector space over its subfield GF(p).  

E GF(q), with /31 # 0. Form the elements a181 as a1 varies over the elements 
{0, 1 , .  . . , p- l}inGF(p) .  Theproductalp1 takesonpdistinctvalues. (Forifxj31 = y/31 
we must have x = y ,  since there are no zero divisors in a field.) If by these p products we 
have “covered” all the elements in the field, we are done: they form a vector space over 
GF(P). 

Let 
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If not, let ,!?2 be an element which has not been covered yet. Then form al,!?~ + 4 2  as 
a1 and a2 vary independently. This must lead to p 2  distinct values in G F ( q ) .  If still not 
done, then continue, forming the linear combinations 

aiSi + a2P2 +.. *am/& 

until all elements of GF(q)  are covered. Each combination of coefficients {al, a2, . . . , a m }  
corresponds to a distinct element of G F ( q ) .  Therefore, there must be pm elements in 

This theorem shows that all finite fields have the structure of a vector space of dimension 
m over a finite field 23,. For the field G F ( p m ) ,  the subfield G F ( p )  is called the ground 
field. 

This proof raises an important point about the representation of a field. In the con- 
struction of GF(24) in Section 5.4.2, we formed the field as a vector space over the basis 
vectors 1, a, a2 and a3. (Or, more generally, to form G F ( p m ) ,  we would use the elements 
{ 1, a, a2, . . . , am-’} as the basis vectors.) However, another set of basis vectors could be 
used. Any set of m linearly independent nonzero elements of G F ( p m )  can be used as a 
basis set. For example, for GF(24) we could construct the field as all linear combinations 
of { 1 + a, a + a2, 1 + a3, a + a2 + a3}. The multiplicative relationship prescribed by the 
irreducible polynomial still applies. While this is not as convenient a construction for most 
purposes, it is sometimes helpful to think of representations of a field in terms of different 
bases. 

GF(q) .  0 

Theorem 5.15 I f x  and y are elements in a$eld of characteristic p ,  

(x + y ) P  = x p  + y p .  

This rule is sometimes called “freshman exponentiation,” since it is erroneously employed 
by some students of elementary algebra. 

Proof By the binomial theorem, 

P 

i=O 

For a prime p and for any integer i fl and i # p ,  p I (4) so that (4) = 0 (mod p ) .  Thus all 
the terms in the sum except the first and the last are p times some quantity, which are equal 

0 
This theorem extends by induction in two ways: both to the number of summands and 

to 0 since the characteristic of the field is p .  

to the exponent: If X I ,  x2,  . . . , Xk are in a field of characteristic p ,  then 

/ k  \p ’  k 

(5.36) 

for all r 0. 

Definition 5.8 Let /3 E GF(q) .  The order4 of ,!?, written ord(#?) is the smallest positive 
0 

We now consider some multiplicative questions related to finite fields. 

integer n such that B” = 1. 

4The nomenclature is unfortunate, since we already have defined the order of a group and the order of an element 
within a group. 
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Definition 5.9 An element with order q - 1 in GF(q)  (i.e., it generates all the nonzero 
0 

In other words, a primitive element has the highest possible order. 
We saw in the construction of GF(z4)  that the element we called a! has order 15, making 

it a primitive element in the field. We also saw that the primitive element enables the "power 
representation" of the field, which makes multiplication particularly easy. The questions 
addressed by the following lemmas are: Does a Galois field always have a primitive element? 
How many primitive elements does a field have? 

elements of the field) is called a primitive element. 

Lemma 5.16 vj3 E G F ( q )  and j3 # 0 then ord(j3) I (q  - 1). 

Proof Let t = ord(j3). The set {B, P 2 , .  . . , j3' = 1) forms a subgroup of the nonzero 
elements in G F ( q )  under multiplication. Since the order of a subgroup must divide the 

0 order of the group (Lagrange's theorem, Theorem 2.3), the result follows. 

Example 5.30 In the field GF(Z4), the element a3 has order 5, since 

(a3)5 = a15 = 1, 

and 5 I 15. In fact, we have the sequence 

Lemma 5.17 Let j3 E GF(q) .  j3" = 1 ifand only iford(j3) 1 s. 

Proof Let t = ord(B). Let s be such that BS = 1. Using the division algorithm, write 
s = at + r where 0 5 r < t .  Then 1 = Bs = B"'j3' = j3'. By the minimality of the order 
(it must be the smallest positive integer), we must have r = 0. 

Conversely, if ord(j3) 1 s, then j3" = #I@ = (j3')q = 1, where t = ord(/3) and q = s / t .  
n u 

Lemma 5.18 Ifa! has orders and j3 has order t and (s, t )  = 1, then aj3 has order st. 

Example 5.31 In GF(Z4>, a3 and a5 have orders that are relatively prime, being 5 and 3 respectively. 
It may be verified that a3a5 = a8 has order 15 (it is primitive). 

Proof First, 
(a!j3)$t = (a"'(j3'>$ = 1. 

Might there be a smaller value for the order than st? 
Let k be the order of aj3. Since ( c ~ j 3 ) ~  = 1, ak = j 3 - k .  Since a!" = 1, ask = 1, and 

hence j 3 F k  = 1. Furthermore, dk = j3-'k = 1. By Lemma 5.17, s I tk.  Since (s, t )  = 1, 
k must be a multiple of s. 

Similarly, j3-"k = 1 and so t I sk. Since (s, t )  = 1, k must be a multiple of t .  
Combining these, we see that k must be a multiple of st .  In light of the first observation, 

o we have k = st. 
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Lemma 5.19 In a jn i te je ld ,  iford(a) = t and B = ai, then 

Proof If ord(a) = t ,  then as = 1 if and only if t 1 s (Lemma 5.17). 
Let ord(B) = u. Note that i / ( i ,  t )  is an integer. Then 

pt/l(i,f) = ( a i ) t / ( 4 t )  = ( a t ) i / ( i , j )  = 1 

Thus u I t / ( i ,  t ) .  We also have 
(a')* = 1 

so t I iu .  This means that t / ( i ,  t )  1 u.  Combining the results, we have u = t / ( i ,  t ) .  0 

Theorem 5.20 For a Galoisjeld G F ( q ) ,  i f t  I q - 1 then there are + ( t )  elements of order 
t in G F ( q ) ,  where @ ( t )  is the Euler totientfunction. 

Proof Observe from Lemma 5.16 that if t / ( q  - 1, then there are no elements of order t in 
G F ( q ) .  So assume that t 1 q - 1; we now determine how many elements of order t there 
are. 

Let a be an element with order t .  Then by Lemma 5.19, if B = a' for some i such that 
(i, t )  = 1, then j3 also has order t .  The number of such i s  is + ( t ) .  

Could there be other elements not of the form ai having order t? Any element having 
order t is a root of the polynomial xf - 1. Each element in the set {a, a2,  a3,  . . . , a'} is a 
solution to the equation x ' - 1 = 0. Since a polynomial of degree t over a field has no more 
than t roots (see Theorem 5.27 below), there are no elements of order t not in the set. 0 
The following theorem is a corollary of this result: 

Theorem 5.21 There are +(q  - 1) primitive elements in G F ( q ) .  

Example 5.32 In G F ( 7 ) ,  the numbers 5 and 3 are primitive: 

5l = 5, 52 =4, 53 = 6, 54 = 2, 55 = 3, 56 = 1. 
3 1 = 3 ,  3 2 = 4 ,  3 3 = 6 ,  3 4 = 4 ,  3 5 =5, 36=1. 

We also have @(q - 1) = @(6)  = 2, so these are the only primitive elements. 0 

Because primitive elements exist, the nonzero elements of the field G F ( q )  can always be 
written as powers of a primitive element. If a E G F ( q )  is primitive, then 

2 3 &-2,,4-1 = 1) Ia,a ,a , * . * I  

is the set of all nonzero elements of G F ( q ) .  If we let G F ( q ) *  denote the set of nonzero 
elements of G F ( q ) ,  we can write 

GF(q)*  = (a ) .  

If B = a' is also primitive (i.e., ( i ,  q - 1) = l), then the nonzero elements of the field are 
also generated by 

that is, GF(q)*  = ( B ) .  Despite the fact that these are different generators, these are not 
different fields, only different representations, so (a) is isomorphic to ( B ) .  We thus talk of 
the Galois field with q elements, since there is only one. 

IB, B2, B 3 , .  . . , F2, p 4 - l  = 11, 
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Theorem 5.22 Every element of thefield G F ( q )  satisfies the equation xq - x = 0. Fur- 
thermore, they constitute the entire set of roots of this equation. 

Proof Clearly, the equation can be written as x ( x 4 - l  - 1) = 0. Thus x = 0 is clearly a 
root. The nonzero elements of the field are all generated as powers of a primitive element 
a. For an element B = ai E G F ( q ) ,  8 q - l  = (ai)q-' = ( ~ 4 - l ) ~  = 1. Since there are q 
elements in G F (q) ,  and at most 4 roots of the equation, the elements of G F ( 4 )  are all the 
roots. 0 
An extension field E of a field F is a splitting field of a nonconstant polynomial f (x) E P[x] 
if f ( x )  can be factored into linear factors over E ,  but not in any proper subfield of E .  
Theorem 5.22 thus says that G F ( q )  is the splitting field for the polynomial x q  - q .  

As an extension of Theorem 5.22, we have 

Theorem 5.23 Every element in afield G F ( q )  satisfies the equation 

xqn - x  = o  
for every n 2 0. 

Proof When n = 0 the result is trivial; when n = 1 we have Theorem 5.22, giving xq = x. 

The proof is by induction: Assume that xqn-' = x. Then (xq"-')q = x 4  = x, or xqn = x. 
0 

A field G F ( p )  can be extended to a field G F ( p m )  for any m > 1. Let q = p m .  The field 
G F ( q )  can be further extended to a field GF(q' )  for any r ,  by extending by an irreducible 
polynomial of degree r in G F ( q ) [ x ] .  This gives the field GF(pm') .  

5.6 Implementing Galois Field Arithmetic 

Lab 5 describes one way of implementing Galois field arithmetic in a computer using two 
tables. In this section, we present a way of computing operations using one table of Zech 
logarithms, as well as some concepts for hardware implementation. 

5.6.1 Zech Logarithms 

In a Galois field GF(2m) ,  the Zech logarithm z (n)  is defined by 

,z(n) = 1 + ffn , n = 1 , 2  ,..., 2"'-2. 

Table 5.1 shows the Zech logarithm for the field G E ' ( ~ ~ ) .  For example, when n = 2, we 
have 

1+ff2=ff8 

so that z (2 )  = 8.  
In the Zech logarithm approach to Galois field computations, numbers are represented 

using the exponent. Multiplication is thus natural. To see how to add, considerthe following 
example: 

The first step is to factor out the term with the smallest exponent, 

a3 +a5.  

~ ( 1 +  a2). 
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Now the Zech logarithm is used: 1 + a2 = az(2) = a8. So 

3 + = a 3 ( 1  + a 2 )  = a3a8 = ,.P. 
The addition requires one table lookup and one multiply operation. It has been found that 
in many implementations, the use of Zech logarithms can significantly improve execution 
time. 

5.6.2 Hardware Implementations 

We present examples for the field GF(24) generated by g(x) = 1 + x + x4. Addition is 
easily accomplished by simple mod-2 addition for numbers in vector representation. 

Multiplication of the element B = bo + bla + b2a2 + b3a3 by the primitive element a 
is computed using a4 = 1 + a as 

= boa + bla2 + b2a3 + b3a4 = b3 + (bo + b3)a + bla2 + b2a3. 

These computations can be obtained using an LFSR as shown in Figure 5.2. Clocking the 
registers once fills them with the representation of a/?. 

Figure 5.2: Multiplication of /? by a. 

Multiplication by specific powers of a can be accomplished with dedicated circuits. For 
example, to multiply B = bo + bla + b2a2 + b3a3 by a4 = 1 + a, we have 

Pa4 = B + .B = (bo + b3) + (bo + bl + b3)a + (bl + b2)a2 + (b2 + b3)a3, 

which can be represented as shown in Figure 5.3. 

Figure 5.3: Multiplication of an arbitrary /3 by a4 

Finally, we present a circuit which multiplies two arbitrary Galois field elements. Let 
#? = bo + bia + b2a2 +b3a3 and let y = co + cla + c2a2 + c3a3. Then B y  can be written 
in a Horner-like notation as 

BY = (((c3B)a + C 2 B b  + C l m  + COB. 

Figure 5.4 shows a circuit for this expression. Initially, the upper register is cleared. Then at 
the first clock the register contains c3B. At the second clock the register contains c3Ba+c2B, 
where the multiplication by a comes by virtue of the feedback structure. At the next clock 
the register contains (c3Ba + c2B)a + c1B. At the final clock the register contains the entire 
product. 
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Figure 5.4: Multiplication of B by an arbitrary field element. 

5.7 Subfields of Galois Fields 

Elements in a base field GF(q)  are also elements of its extension field GF(qm).  Given an 
element B E GF(qm)  in the extension field, it is of interest to know if it is an element in 
the base field G F (4). The following theorem provides the answer. 

Theorem 5.24 An element ,6 E GF(qm)  lies in GF(q)  ifand only ifBq = B.  

Proof If B E GF(q) ,  then by Lemma 5.16, ord(B) I (q  - l), so that 84 = B.  
Conversely, assume 84 = B .  Then /3 is a root of xq - x = 0. Now observe that all q 

elements of GF(q)  satisfy this polynomial and it can only have q roots. Hence B E GF(q) .  

By induction, it follows that an element B E GF(q") lies in the subfield GF(q)  if 84" = /? 
for any n >_ 0. 

Example 5.33 The field GF(4) is a subfield of GF(256). Let a be primitive in GF(256). We desire 
to find an element in GF(4) C GF(256). Let j3 = Then, invoking Theorem 5.24 

4 ,85.4 - ,255,85 - - B. p =  - 

So ,b E GF(4) and GF(4) has the elements {0, 1, B,  B2] = {0, 1, a85, a170]. 0 

Theorem 5.25 GF(qk)  is a subjield of G F ( q j )  ifand only i fkl  j .  

The proof relies on the following lemma. 

Lemma 5.26 I f n ,  r, and s are positive integers and n 2 2, then ns - 1 I n' - 1 ifand only 
i f s l  r. 

Proof of Theorem 5.25. If kl j ,  say j = mk, then GF(qk)  can be extended using an 
irreducible polynomial of degree m over GF(qk)  to obtain the field with (49" = q j  
elements. 

Conversely, let GF(qk)  be a subfield of GF(q j )  and let B be a primitive element in 
GF(qk) .  ThenBqk-l = 1. As an element of the field GF(qk) ,  it must also be true (see, e.g., 
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Theorem 5.22) that ,9q'-' = 1. From Lemma 5.17, it must be the case that qk - 1 I q j  - 1 
0 

As an example of this, Figure 5.5 illustrates the subfields of GF(2%). 

and hence, from Lemma 5.26, it follows that k I j .  

/ \ /  
GF(26) GF(z4) 

Figure 5.5: Subfield structure of GF(224). 

5.8 Irreducible and Primitive polynomials 

We first present a result familiar from polynomials over complex numbers. 

Theorem 5.27 A polynomial of degree d over a field F has at most d roots in any field 
containing F. 

This theorem seems obvious, but in fact over a ring it is not necessarily true! The quadratic 
polynomial x2 - 1 has four roots in Z15, namely 1,4, 11 and 14 [25]. 

Proof Every polynomial of degree 1 (i.e.. a linear polynomial) is irreducible. Since the 
degree of a product of several polynomials is the sum of their degrees, a polynomial of 
degree d cannot have more than d linear factors. By the division algorithm, (x - j3) is a 
factor of a polynomial f ( x )  if and only if f (j3) = 0 (see Exercise 5.47). Hence f (x) can 
have at most d roots. 0 

While any irreducible polynomial can be used to construct the extension field, com- 
putation in the field is easier if a primitive polynomial is used. We make the following 
observation: 

Theorem 5.28 Let p be prime. An irreducible mth-degree polynomial f (x) E G F ( p ) [ x ]  
dividesxpm-l - 1. 

Example 5.34 ( x 3  + x + 1) 1 (x7 + 1) in GF(2)  (this can be shown by long division). 0 

It is important to understand the implication of the theorem: an irreducible polynomial 
divides xPrn - 1, but just because a polynomial divides xPm - 1 does not mean that it is 
irreducible. (Showing irreducibility is much harder than that!) 
Proof Let GF(q) = GF(pm) be constructedusing the irreduciblepolynomial f (x), where 
a denotes the root of f ( x )  in the field: f (a )  = 0. By Theorem5.22, a is aroot of x p r n - l  - 1 
in GF(q). Using the division algorithm write 

(5.37) X P m - l  - 1 = g(x1.f (x) + r ( x ) ,  
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where deg(r(x)) < m. Evaluating (5.37) at x = a in G F ( q )  we obtain 

0 = 0 + r(a). 

But the elements of the field GF(q)  are represented as polynomials in a of degree < m, so 
0 since r (a) = 0 it must be that r (x) is the zero polynomial, r (x) = 0. 

A slight generalization, proved similarly using Theorem 5.23, is the following: 

Theorem 5.29 I f f  [XI E G F ( q )  [ X I  is an irreducible polynomial of degree m, then 
k 

f (x4 -XI 

for  any k such that m I k. 

Definition 5.10 An irreducible polynomial p ( x )  E G F ( p ) [ x ]  of degree m is said to be 
primitive if the smallest positive integer n for which p ( x )  divides x" - 1 is n = pm - 1. 0 

Example 5.35 Taking f ( x )  = x 3  + x + 1, it can be shown by exhaustive checking that f ( x )  lyx4 + 1, 
f (x) ,4'x5 + 1, and f ( x ) l y x 6  + 1, but f (x) /  x7 + 1. In fact, 

x7 - 1 = (x3 + x  + 1)(x4 + x 2 + x  + 1). 

Thus f ( x )  is primitive. 0 

The following theorem provides the motivation for using primitive polynomials. 

Theorem 5.30 The roots of an mth degree primitive polynomial p ( x )  E G F ( p ) [ x ]  are 
primitive elements in G F ( p m ) .  

That is, any of the roots can be used to generate the nonzero elements of the field G F ( p m ) .  

Proof Let a be a root of an mth-degree primitive polynomial p ( x ) .  We have 

1 = p ( x ) q ( x )  X P m - l  - 

for some q (x). Observe that 

aPm-l  - 1 = p ( a ) q ( a )  = Oq(a) = 0, 

a p m - l  = 1. 
from which we note that 

Now the question is, might there be a smaller power t of a such that a' = l ?  If this were 
the case, then we would have 

a - 1 = 0 .  

There would therefore be some polynomial x' - 1 that would have a as a root. However, 
any root of xi - 1 must also be a root of xPm-' - 1, because ord(a) I p m  - 1. To see this, 
suppose (to the contrary) that ord(a)i(pm - 1. Then 

p m  - 1 = kord(a) + r  

t 

for some r with 0 < r < ord(a). Therefore we have 

1 = a ~ m - l  = akord(cr)+r - r 
- - a ! ,  
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which contradicts the minimality of the order. 
Thus, all the roots of xt - 1 are the roots of x p r n - l  - 1, so 

X t  - l / x p m - l  - 1. 

We show below that all the roots of an irreducible polynomial are of the same order. This 
means that p ( x )  1 xr - 1. But by the definition of a primitive polynomial, we must have 

0 
All the nonzero elements of the field can be generated as powers of the roots of the 

t = p m  - 1. 

primitive polynomial. 

Example 5.36 The polynomial p ( x )  = x 2  + x + 2 is primitive in GF(5) .  Let a represent a root of 
p ( x > ,  so that a2 + a + 2 = 0, or a2 = 4a + 3. The elements in GF(5)  can be represented as powers 
of a as shown in the following table. 

0 a0 = 1 a l = a  2 = 4 a + 3  a 3 = k + 2  
a 4 = 3 a + 2  a5=4a+4 a 6 = 2  a7 = 2a  a8 = 3a + 1 
a 9 = 3 a + 4  a l O = a + 4  , 1 1 = 3 a + 3  a12=4  a13 =& 
a i 4 = a + 2  d 5 = , + 3  d 6 = 2 a + 3  a 1 7 = a + 1  & 3 = 3  
d 9 = 3 ,  a 2 0 = 2 a + 4  & = h + i  , 2 2 = 4 a ! + i  , 2 3 = 2 , , + 2  

As an example of some arithmetic in this field, 

(3a  + 4) + (4a + 1 )  = 201 

(3a  + 4 ) ( 4 a  + 1) = a9a22 = a31 = (a24)( ,7)  = 2a .  

0 

The program pr imf  i n d  Find primitive polynomials in G F ( p ) [ x ] ,  where the prime 
p can be specified. It does this by recursively producing all polynomials (or all of those 
of a weight you might specify) and evaluating whether they are primitive by using them 
as feedback polynomials in an LFSR. Those which generate maximal length sequences are 
primitive. 

5.9 Conjugate Elements and Minimal Polynomials 

From chapter 4, we have seen that cyclic codes have a generator polynomial g(x) dividing 
xR - 1. Designing cyclic codes with a specified code length n thus requires the facility to 
factor x n  - 1 into factors with certain properties. In this section we explore aspects of this 
factorization question. 

It frequently happens that the structure of a code is defined over a field G F ( q m ) ,  but it 
is desired to employ a generator polynomial g(x) over the base field G F ( q ) .  For example, 
we might want a binary generator polynomial - for ease of implementation - but need to 
work over a field G F ( 2 m )  for some m. How to obtain polynomials having coefficients in 
the base field but roots in the larger field is our first concern. The concepts of conjugates 
and minimal polynomials provide a language to describe the polynomials we need. 

We begin with a reminder and analogy from polynomials with real coefficients. Suppose 
we are given a complex number X I  = ( 2  + 3i). Over the (extension) field C, there is a 
polynomial x - (2 + 3i) E @ [ X I  which has x1 as a root. But suppose we are asked to find 
the polynomial with real coefficients that has x1 as a root. We are well acquainted with the 

primfind.c 
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fact that the roots of real polynomials come in complex conjugate pairs, so we conclude 
immediately that a real polynomial with root XI must also have a root x2 = (2 - 3i). We 
say that x2 is a conjugate root to X I .  A polynomial having these roots is 

(x  - (2  + 3i ) ) (x  - (2  - 3i)) = x 2  - 4x + 13. 
Note in particular that the coefficients of the resulting polynomials are in R, which was the 
base field for the extension to C. 

This concept of conjugacy has analogy to finite fields. Suppose that f(x) E G F ( q ) [ x ]  
has a E G F ( q m )  as a root. (That is, the polynomial has coefficients in the base$eZd, while 
the root comes from an extension field.) What are the other roots of f (x) in this field? 

Theorem5.31 Let G F ( q )  = GF(p')  for some r 1 1. Let f(x) = Cf=, f j x j  E 

G F ( q ) [ x ] .  Thatis, f i  E GF(q) .  Then 

f W") = [ f  (x114" 

for any n 1 0. 

Proof 

d 

= C f j  ( ~ q " > j  (by Theorem 5.24) 
j =O 

= f (xq").  

Thus, if j3 E G F ( q m )  is a root of f (x) E G F ( q ) [ x ] ,  then 84" is  also a root of f(x). This 
motivates the following definition. 

Definition 5.11 Let j3 E GF(q").  The conjugates of j3 with respect to a subfield G F ( q )  
are j3, /?q,j34 , j3q , . . . . (This list must, of course, repeat at some point since the field is 
finite.) 

The conjugates of j3 with respect to G F ( q )  form a set called the conjugacy class of j3 

2 3  

with respect to G F ( q ) .  0 

Example 5.37 
1. Let a E ~ ( 2 ~ )  be primitive. The conjugates of a are 

2 4 23 a,  a2, (a2 ) = a , (a ) = a. 

= a3,  an element not in the conjugacy class of a. The conjugates of j3 are 

SO the conjugacy class of a is {a, a2, a41. 

Let 

B = 013, ( a 3 ) 2  = a6, (a3)Z2 = a12 = a7a5 = a5, (a3p3 = ($4 = &,3 = a3. 

So the conjugacy class of B is ( a 3 ,  a6, a5].  
The only other elements of C F ( z 3 )  are 1, which always forms its own conjugacy class, and 0, 
which always forms its own conjugacy class. 
We observe that the conjugacy classes of the elements of GF(23> form a partition of GF(23) .  
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2. Let 8 E GF(16) be an element such that ord(p) = 3. (Check for consistency: since 3 1 15, 
there are 4(3) = 2 elements of order 3 in GF(16).) The conjugacy class of 8 is 

/3,82, p2  = 84  = #?. 

SO there are 2 elements in this conjugacy class, 18, 821. 

Let a E GF(24) be primitive. Pick a and list its conjugates with respect to GF(2): 

3. Find all the conjugacy classes in GF(24) with respect to GF(2).  

a ,  2, a 4 , 2 ,  a16 = a 

so the first conjugacy class is {a, a2, a4, a8) .  Now pick an element unused so far. Take a3 
and write its conjugates: 

a3, (a3)2 = a6, (a3)4 = a12, (a3)8 = a9, (a3)16 = a3, 

a5, (a32  = a10, (a5)4 = as 

a7, (a7)2 = a14, (a7)4 = a13, (a7)8 = a l l ,  (a7)16 = a7, 

so the next conjugacy class is {a3. a6,  a9,  a12}. Take another unused element, as: 

so the next conjugacy class is {a5, a"}. Take another unused element, a7: 

so the next conjugacy class is {a7, a14, a13, a l l } .  The only unused elements now are 0, with 
conjugacy class (0}, and 1, with conjugacy class { 1). 

Let a be primitive in GF(24). The conjugacy classes with respect to GF(4) are: 

4. Find all the conjugacy classes in GF(24) with respect to GF(4). 

{a ,a4)  ia2, 2 1  ia3, d2)  a9} {a7, d3)  {a1o} {a11, 

Definition 5.12 The smallest positive integer d such that n I qd - 1 is called the multi- 
plicative order of q modulo n . 

0 

Lemma 5.32 Let j3 E G F ( q m )  have ord(j3) = n and let d be the multiplicative order of q 
modulo n. Then j3q = j3. The d elements f?, 8 4 ,  j39 , . . . , j3qd-' are all distinct. 

d 

d 
Proof Since ord(j3) = n andnl qd - 1, j3q -' = 1, so j3qd = B.  

To check distinctness, suppose that Bqk = j3qi for 0 5 i < k < d .  Then j3q -4' = 1, 
which by Lemma 5.17 implies that n 1 qk - q', that is, qk = q' (mod n) .  By Theorem 5.8, 
item 7 it follows that qk-' = 1 (mod n / ( n ,  q' ) ) ,  that is, qk-' = 1 (mod n)  (since q is a 
power of a prime, and n I qd - 1). By definition of d ,  this means that d I k - i ,  which is not 
possible since i < k < d .  

0 

k 

'This is yet another usage of the word "order." 
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5.9.1 Minimal Polynomials 

In this section, we examine the polynomialin GF(q)[x]  which has an element j3 E GF(qm)  
and all of its conjugates as roots. 

Definition 5.13 Let j3 E GF(qm) .  The minimal polynomial of j3 with respect to GF(q)  
is the smallest-degree, nonzero, monic polynomial p ( x )  E GF(q)[x]  such that p(j3) = 0. 

Returning to the analogy with complex numbers, we saw that the polynomial with 
f ( x )  = x 2  - 4x + 13 with real coefficients has the complex number x1 = 2 + 3i as a root. 
Furthermore, it is clear that there is no real polynomial of smaller degree which has x 1 as a 
root. We would say that x2  - 4x + 13 is the minimal polynomial of 2 + 3i with respect to 
the real numbers. 

Some properties for minimal polynomials: 

Theorem 5.33 [373, Theorem 3-21 For each j3 E GF(qm)  there exists a unique monic 
polynomial p ( x )  of minimal degree in GF(q) [x]  such that: 

1. p ( B )  = 0. 

2. The degree of p ( x )  I m. 

3. Ifthere is a polynomial f ( x )  E GF(q)[x]  such that f ( j 3 )  = 0 then p ( x )  1 f ( x ) .  

4. p ( x )  is irreducible in GF(q)[x] .  

Proof Existence: Given an element j3 E GF(qm) ,  write down the (m  + 1 )  elements 
1, j3, P 2 , .  . . , ,B" which are elements of GF(qm).  Since GF(qm)  is a vector space of 
dimension m over GF(q) ,  these m + 1 elements must be linearly dependent. Hence there 
exist coefficients ai E GF(q)  suchthatao+alj3+. . .+ampm = 0; theseare the coefficients 
of a polynomial f ( x )  = Ey!o aid  which has j3 as the root. (It is straightforward to make 
this polynomial monic.) This also shows that the degree of f ( x )  5 m. 

Uniqueness: Suppose that there are two minimal polynomials of j3, which are normalized 
to be monic; call them f ( x )  and g(x) .  These must both have the same degree. Then there 
is a polynomial r ( x )  having deg(r(x)) < deg(f(x)) such that 

f ( x >  = g(x> + r (x ) .  

Since j3 is a root of f and g ,  we have 

0 = f ( B >  = g ( B )  + r(j3). 

so that r(j3) = 0. Since a minimal polynomial f ( x )  has the smallest nonzero degree 
polynomial such that f ( j 3 )  = 0, it must be the case that r ( x )  = 0 (i.e., it is the zero 
polynomial), so f ( x )  = g(x) .  

Divisibility: Let p ( x )  be a minimal polynomial. If there is a polynomial f ( x )  such that 
f ( j 3 )  = 0, we write using the division algorithm 

f ( x >  = p(x )q (x )  + r ( x ) ,  

where deg(r) < deg(p). But then f ( j 3 )  = p(j3)q(j3) + r ( p )  = 0, so r(j3) = 0. By the 
minimality of the degree of p ( x ) ,  r ( x )  = 0, so p ( x )  1 f ( x ) .  

Irreducibility: If p ( x )  factors, so p ( x )  = f ( x ) g ( x ) ,  then either f ( j 3 )  = 0 or g(j3) = 0, 
0 again a contradiction to the minimality of the degree of p(x ) .  
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We observe that primitive polynomials are the minimal polynomials for primitive elements 
in a finite field. 

Let p ( x )  E G F ( q ) [ x ]  be a minimal polynomial for B.  Then 8 4 ,  B q 2 ,  . . . , pqd-' are 
also roots of p ( x ) .  Could there be other roots of p ( x ) ?  The following theorem shows that 
the conjugacy class for B contains all the roots for the minimal polynomial of B. 

Theorem 5.34 [25, Theorem 4.4101 Let #? E G F ( q m )  have order n and let d be the multi- 
plicative order of q mod n. Then the coeficients of the polynomial p ( x )  = nfz; (x - B q i )  

are in G F (4). Furthermore, p ( x )  is irreducible. That is, p ( x )  is the minimal polynomial 
for B. 

Proof From Theorem 5.31 we see that p ( B )  = 0 implies that p(Bq) = 0 for p ( x )  E 
G F (4) [ X I .  It only remains to show that the polynomial having the conjugates of B as its 
roots has its coefficients in G F ( q ) .  Write 

d-1 d-1 

[p(x)]4 = n ( x  - p i ) q  = n ( X 4  - pi+') (by Theorem 5.15) 
i=O i=O 

d 0 
d d-1 

= n ( x q  - pqi) = n ( x q  - pqi> (since = /i~ = /P ). 
i=l i =O 

Thus [p(x)]q = p(x4 ) .  Now writing p ( x )  = z$o pixi  we have 

and 

(5.38) 

d 

p ( x 4 )  = C pix? (5.39) 
i=O 

The two polynomials in (5.38) and (5.39) are identical, so it must be that pq = pi ,  so 

If p ( x )  = g ( x ) h ( x ) ,  where g(x) E G F ( q ) [ x ]  and h ( x )  E G F ( q ) [ x ]  and are monic, 
then p ( B )  = 0 implies that g(B) = 0 or h(B)  = 0. If g(B)  = 0, then g(/3q) = g ( / 3 q 2 )  = 

* = g(Bqd-') = 0. g thus has d roots, SO g ( x )  = p ( x ) .  Similarly, if h(B)  = 0, then it 
0 

pi E G F ( q ) .  

follows that h ( x )  = p ( x ) .  

As a corollary, we have the following. 

Corollary 5.35 [373, p. 581 Let f (x) E G F ( q ) [ x ]  be irreducible. Then all of the roots of 
f (x) have the same ordel: 

Proof Let G F ( q m )  be the smallest field containing all the roots of the polynomial f ( x )  and 
let B E G F ( q m )  be a root of f ( x ) .  Then ord(/?) 1 qm - 1 (Lemma 5.16). By the theorem, 

the roots of f (x) are the conjugates of @ and so are of the form {B ,  8 4 ,  p q 2 , .  . .}. Since 
q =prforsomer,itfollowsthat(q,qm-1)= l . A l s o , i f t I q m - l , t h e n ( q , t ) = l .  By 
Lemma 5.19 we have 

= ord(B). k ord(B) ord(Bq ) = 
( q k 9  ord(B)) 



214 Rudiments of Number Theory and Algebra 

111 
{a,  a2,  a41 
{a3, a6, as} 

Table 5.2: Conjugacy Classes over G F ( 2 3 )  with Respect to G F ( 2 )  

M o ( x )  = x + 1 
2 

Ml(X1 = ( x  - a ) ( x  3 - a  ) ( x  -a4) = x 3  + x +  1 
M 3 ( x )  = ( x  - a ) ( x  - a S ) ( x  - a6) = x3 + x 2  + 1 .  

Conjugacy Class I Minimal Polynomial 
[01 I M - ( x )  = x  

Table 5.3: Conjugacy Classes over G F Q ~ )  with Respect to G F ( 2 )  

Conjugacy Class 
101 
1 1 1  

{a,  a2, a4, a81 

Minimal Polvnomial 
M- ( x )  = x 
M o ( x )  = x + 1 
M l ( X )  = ( x  - a ) ( x  - a 2 ) ( x  - a 4 ) ( x  - a8) 

M 3 ( x )  = ( x  - a  ) ( x  - a  ) ( x  - a 9 ) ( x  - a12) 

M s ( x )  = ( x  - a S ) ( x  - ,lo) = x 2  + x + 1 
M 7 ( x )  = ( x  - a 7 ) ( x  - a " ) ( x  - a ' 3 ) ( x  - a14) 

= x 4 + x + i  

= x4 + x3 + x 2  + x + 1 

= x 4  + x 3  + 1 

3 6 

Since this is true for any k ,  each root has the same order. 

Example 5.38 According to Theorem 5.34, we can obtain the minimal polynomial for an element 
j3 by multiplying the factors ( x  - 8 4 ' ) .  In what follows, you may refer to the conjugacy classes 
determined in Example 5.37. 

1. Determine the minimal polynomial for each conjugacy class in GF(8)  with respect to GF(2) .  
To do the multiplication, a representation of the field is necessary; we use the representation 
using primitive polynomial g ( x )  = x 3  + x + 1. Using the conjugacy classes we found before 
in GF(8) ,  we obtain the minimal polynomials shown in Table 5.2. 

2. Determine the minimal polynomial for each conjugacy class in GF(Z4) with respect to GF(2) .  
Use Table 5.1 as a representation. The minimal polynomials are shown in Table 5.3. 

3. Determine theminimal polynomial for each conjugacy class in GF(2') withrespect to GF(2) .  
Using the primitive polynomial x 5  + x 2  + 1, it can be shown that the minimal polynomials are 
as shown in Table 5.4. 

4. Determine the minimal polynomials in GF(4') with respect to GF(4) .  Use the representation 
obtained from the subfield GF(4)  = [O, 1 ,  a5, a"} c GF(16) from Table 5.1. The result is 
shown in Table 5.5. 

As this example suggests, the notation Mi (x) is used to denote the minimal polynomial of 
the conjugacy class that ui is in, where i is the smallest exponent in the conjugacy class. 

It can be shown that (see [200, p. 961) for the minimal polynomial m ( x )  of degree d in 
a field of G F ( q m )  that dl m.  



5.10 Factoring X" - 1 215 

Table 5.4: Conjugacy Classes over GF(z5)  with Respect to GF(2)  

Minimal Polynomial 
M - ( x )  = x 
&(x) = x + 1 
M1 ( X I  = (x - a)(x - a2)(x - a4)(x - d ) ( X  - a16) 

M3(x )  = (x - a  )(x -a% - a'2)(x - a'7)(x - 2 4 )  

M5(x)  = ( x  - a )(x - a )(x - a'O)(x - a'8)(x - 2 0 )  

M7(x)  = (x - a 7 ) ( x  - a'4)(x - a 

M l l ( X )  = (x - a") (x  - a'3)(x - a21)(x - a22)(x - 2 6 )  

15 23 ~ 1 5 ( x )  = (x - a )(x - a  )(x - a27)(x - a29)(x - a39 

=x5 + x 2 + 1  

= .5 + .4 + x 3  +,2 + 1 

= x5 + x4 + x2 + x + 1 

= x5 + x3 +x2 + x + 1 

= x 5  + x 4  + x 3  + x  + 1 

3 

5 9 

19 25 28 )(x - a )(x - a ) 

= + x 3  + 1 

5.10 Factoring - 1 

We now have the theoretical tools necessary to describe how to factor x" - 1 over arbitrary 
finite fields for various values of n. When n = qm - 1, from Theorem 5.22, every element 
of GF(qm)  is a root of xqm-l - 1, so 

(5.40) 

for a primitive element a E GF(qm).  To provide a factorization of xqm-l - 1 over the 
field GF(q) ,  the factors in (x - a')  (5.40) can be grouped together according to conjugacy 
classes, which then multiply together to form minimal polynomials. Thus xqm-' - 1 can 
be expressed as a product of the minimal polynomials of the nonzero elements. 

Example 5.39 

1.  The polynomial x7 - 1 = x23-1 - 1 can be factored over G F ( 2 )  as a product of the minimal 
polynomials shown in Table 5.2. 

x7 - 1 = (x + 1)(x3 + + 1)(x3 + x2 + 1 )  

2. The polynomial x15 - 1 = x24-1 - 1 can be factored over GF(2)  as a product of the minimal 
polynomials shown in Table 5.3. 

.15 - 1 = (x + I ) ( ~ ~  + + 1 ) ( x 4  + x3 + x2 + + 1 ) ( x 2  + + 1 ) ( x 4  + x3  + 1 ) .  

We now pursue the slightly more general problem of factoring x n  - 1 when n # qm - 1. 
An element B # 1 such that ,B" = 1 is called an nth root of unity. The first step is to 
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Table 5.5: Conjugacy Classes over GF(42) with Respect to GF(4) 

Minimal Polvnomial 

determine field GF(qm) (that is, to determine m)  in which nth roots of unity can exist. 
Once the field is found, factorization is accomplished using minimal polynomials in the 
field. 

Theorem 5.20 tells us that if 
nlq" - 1, (5.41) 

then there are $ ( n )  elements of order n in GF(qm).  Finding a field GF(qm) with nth roots 
of unity thus requires finding an m such that n 1 qm - 1, which is usually done by trial and 
error. 

Example 5.40 Determine an extension field GF(3m) in which 13th roots of unity exist. We see that 
0 

Once the field is found, we let p be an element of order n in the field G F ( q m ) .  Then /3 is a 
root of x" - 1 in that field, and so are the elements p 2 ,  p 3 ,  . . . , p"-'. That is, 

13 1 33 - 1, so that 13th roots exist in the field GF(33). 

n-1 

X" - 1 = n ( x  - pi ) .  
i=O 

The roots are divided into conjugacy classes to form the factorization over GF(q) .  

Example 5.41 Determine an extension field GF(2m) in which 5th roots of unity exist and express 
the factorization in terms of polynomials in GF(2)[x]. Using (5.41) we check: 

5J(2 - 1) 5J(22 - 1) 5i((Z3 - 1) 51 (24 - 1). 

So in GF(16) there are primitive fifth roots of unity. For example, if we let = a3, a primitive, then 
65 = a15 = 1. 

The roots of x5 - 1 = x 5  + 1 in GF(16) are 

which can be expressed in terms of the primitive element a as 

3 6 9 1 2  l , a  , a  , a  , a  . 
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Using the minimal polynomials shown in Table 5.3 we have 

2 + 1 = ( x  + 1 ) k f 3 ( X )  = (x + 1)(x4 + x 3  + x 2  + + I). 

Example 5.42 We want to find a field GF(2m) which has 25th roots of unity. We need 

251 (2m - 1). 

By trial and error we find that when m = 20,25 1 2'" - 1. Now let us divide the roots of 220 - 1 into 
conjugacy classes. Let j3 be a primitive 25th root of unity. The other roots of unity are the powers of 
j3: Po, #?I, p2, . . . , j324. Let us divide these powers into conjugacy classes: 

Letting Mi (x) E GF(2) [x ]  denote the minimal polynomial having /?I for the smallest i as a root, we 
0 have the factorization x2' + 1 = Mo(x)M1 ( x ) M g ( x ) .  

Example 5.43 Let us find a field GF(7m) in which x15 - 1 has roots; this requires an m such that 

151 7m - 1 .  

m = 4 works. Let y be a primitive 15th root of unity in GF(74). Then yo ,  y l ,  . . . , y14 are roots of 
unity. Let us divide these up into conjugacy classes with respect to GF(7):  

3 6 1 2 9  10 111, { y ,  y 7 ,  Y49 = Y4, Y73 = V l 3 1 ,  IY2 ,  Y14? Y 8 ?  Y 1 l l ,  (v 9 Y 1 Y v Y 1 9  ( Y 5 1 ?  1Y 1 

Thus x15 - 1 factors into six irreducible polynomials in GF(7). 0 

5.1 1 Cyclotomic Cosets 

Definition 5.14 The cyclotomic cosets modulo n with respect to G F (4) contain the expo- 
nents of the n distinct powers of a primitive nth root of unity with respect to GF(q) ,  each 
coset corresponding to a conjugacy class. These cosets provide a shorthand representation 
for the conjugacy class. 0 . 
Example 5.44 For Example 5.43, n = 15 and q = 7. The cyclotomic cosets and the corresponding 

0 conjugacy classes are shown in Table 5.6. 

I cvclomin. cc  I - >  ~ ~~ J 

"Tables" of cyclotomic cosets and minimal polynomials are available using the program 
c y c 1 omi n. 
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Table 5.6: Cyclotomic Cosets modulo 15 with Respect to G F ( 7 )  

I Coniueacv Class Cvclotomic Cosets 

Appendix 5.A How Many Irreducible Polynomials Are There? 

The material in this appendix is not needed later in the book. However, it introduces several valuable 
analytical techniques and some useful facts. 

A finite field GF(qm) can be constructed as an extension of GF(q)  if an irreducible polynomial 
of degree m over GF(q)  exists. The question of the existence of finite fields of order any prime power, 
then, revolves on the question of the existence of irreducible polynomials of arbitrary degree. Other 
interesting problems are related to how many such irreducible polynomials there are. 

To get some insight into the problem, let us first do some exhaustive enumeration of irreducible 
polynomials with coefficients over GF(2). Let I,, denote the number of irreducible polynomials of 
degree n .  The polynomials of degree 1, x and x + 1, are both irreducible, so I1 = 2. The polynomials 
of degree 2 are 

x 2  (reducible) 

x2 + x = x(x + 1) (reducible) 

x 2  + 1 = (x + 1)2 (reducible) 

x2 + x + 1 (irreducible). 

so  12 = 1. 
In general, there are 2n polynomials of degree n. Each of these can either be factored into products 

of powers of irreducible polynomials of lower degree, or are irreducible themselves. Let us count how 
many different ways the set of binary cubics might factor. It can factor into a product of an irreducible 
polynomial of degree 2 and a polynomial of degree 1 in 12 I1 = 2 ways: 

x ( x 2 + x + l )  (x + 1Xx2 + x  + 1). 

It can factor into a product of three irreducible polynomials of degree 1 in four ways: 

x3 n2(x + 1) x(x + 112 (x + 113 

The remaining cubic binary polynomials, 

x 3 + x + l  and x 3 + x 2 + 1  

must be irreducible, so 13 = 2. 
This sort of counting can continue, but becomes cumbersome without some sort of mechanism to 

keep track of the various combinations of factors. This is accomplished using a generating function 
approach. 

Definition 5.15 A generating function of a sequence Ao, A l ,  A2, . . . is the formal power series 

co 
A ( z )  = Akzk. 

k=O 
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0 
The generating function is analogous to the z-transform of discrete-time signal processing, allow- 

ing us to formally manipulate sequences of numbers by polynomial operations. Generating functions 
A ( z )  and B ( z )  can be added (term by term), multiplied (using polynomial multiplication) 

and (formal) derivatives computed, 

00 00 

if A ( z )  = C Akzk then A'(z) = kAkzk-l l  
k=O k = l  

with operations taking place in some appropriate field. 
The key theorem for counting the number of irreducible polynomials is the following. 

Theorem 5.36 Let f (z) and g ( z )  be relativelyprime, monic irreduciblepolynomials over G F(q)  of 
degrees m and n, respectively. Let ck be the number of monic polynomials of degree k whose only 
irreducible factors are f (x) and g ( x ) .  Then the moment generating function for ck is 

1 1 
C(z) = -- 

I - z m  I - z n '  

Thatis, ck = xi  BiAk-i, where Ai istheithcoefJicientinthegeneratingfunctionA(z) = l / ( l - z m )  
and Bi is the ith coefJicient in the generating function B ( z )  = 1/(1 - zn) .  

Example 5.45 Let f (x) = x and g ( x )  = x + 1 in GF(2)[x] .  The set of polynomials whose factors 
are f (x) and g ( x )  are those with linear factors, for example, 

P @ )  = (f ( x ) ) " ( g ( x ) ) b ,  a, b I. 0. 

According to the theorem, the weight enumerator for the number of such polynomials is 

1 

( 1  - 2 1 2 .  

This can be shown to be equal to 

(5.42) 

That is, there are 2 polynomials of degree 1 (f ( x )  and g ( x ) ) ,  3 polynomials of degree 2 (f ( x ) g ( x ) ,  
0 f ( x ) ~  and g ( x ) 2 ) ,  4 polynomials of degree 3, and so on. 

Proof Let Ak be the number of monk polynomials in G F ( q ) [ x ]  of degree k which are powers of 
f (x). The kth power of f (x) has degree km, so 

1 i f m l k  
A k = (  0 otherwise. 

We will take A0 = 1 (corresponding to f (x)' = 1). The generating function for the Ak is 

A ( z )  = 1 + z m  + z 2 m  + * a .  

1 -- - 
1 - z m '  
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A ( z )  is called the enumerator by degree of the powers of f ( z ) .  

of g ( x ) ;  arguing as before we have B ( z )  = 1/(1 - z'). 

observe that if deg(g(x)b) = nb = i ,  then deg( f ( .x )~)  = ma = k - i for every 0 5 i 5 k .  Thus 

Similarly, let Bk be the number of monic polynomials in G F ( q ) [ x ]  of degree k which are powers 

With Ck the number of monk polynomials of degree k whose only factors are f (n) and g(x), we 

or, equivalently, 
C ( z )  = A ( z ) B ( z ) .  

The theorem can be extended by induction to multiple sets of polynomials, as in the following corollary. 

Corollary 5.37 Let S1,  S2,  . . . , SN be sets ofpolynomials such that any two polynomials in different 
sets are relatively prime. The set of polynomials which are products of a polynomial from each set 
has an enumerator by degree nEl Ai ( z ) ,  where Ai ( z )  is the enumerator by degree ofthe set S i .  

Example 5.46 For the set of polynomials formed by products of x ,  x + 1 andx2 +x + 1 E G F ( 2 ) [ x ] ,  
the enumerator by degree is 

1 + 22 + 4z2 + 6z3 + 924 + 2 1  (&) s= 
That is, there are 6 different ways to form polynomials of degree 3, and 9 different ways to form 
polynomials of degree 4. (Find them!) 

Let Zm be the number of monic irreducible polynomials of degree m.  Applying the corollary, the set 
which includes I1 irreducible polynomials of degree 1, 12 irreducible polynomials of degree 2, and 
so forth, has the enumerator by the degree 

Let us now extend this to a base field G F ( q ) .  We observe that the set of all monic polynomials 
in G F ( q ) [ z ]  of degree k contains q k  polynomials in it. So the enumerator by degree of the set of 
polynomials of degree k is 

Furthermore, the set of all products of powers of irreducible polynomials is precisely the set of all 
monic polynomials. Hence, we have the following. 

Theorem 5.38 125, Theorem 3.321 

(5.43) 
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Equation (5.43) does not provide a very explicit formula for computing I,. However, it can be 
manipulated into more useful forms. Reciprocating both sides we obtain 

00 

(1 - q z )  = 17 (1 - z")'". 
m=l 

Taking the formal derivative of both sides and rearranging we obtain 

(5.44) 

(5.45) 

Multiplying both sides by z and expanding both sides of (5.45) in formal series we obtain 

co 00 co co co 
C(qzlk = C mlm C(zmlk = C m I m  C zk = C C m I m z  k . 
k = l  m = l  k=l  m = l  k:k#O k=lm:mlk 

m lk 

Equating the kth terms of the sums on the left and right sides of this equation, we obtain the following 
theorem. 

Theorem 5.39 
qk = C m I m ,  (5.46) 

m Ik 

where the sum is taken of all m which divide k, including 1 and k. 

This theorem has the following interpretation. By Theorem 5.29, in a field of order q,  the product 

of all distinct monic polynomials whose degrees divide k divides xq - x. The degree of xq - x is 
qk ,  the left-hand side of (5.46). The degree of the product of all distinct monic polynomials whose 
degrees divide k is the sum of the degrees of those polynomials. Since there are Im distinct monic 
irreducible polynomials, the contribution to the degree of the product of those polynomials is mlm.  
Adding all of these up, we obtain the right-hand side of (5.46). This implies the following: 

k k 

k 
Theorem 5.40 [25, Theorem 4.4151 In aJield of order q, xq -x factors into the product of all monic 
irreducible polynomials whose degrees divide k. 

Example 5.47 Let us take q = 2 and k = 3. The polynomials whose degrees divide k = 3 have 
degree 1 or 3. The product of the binary irreducible polynomials of degree 1 and 3 is 

3 x(x + l)(x + + 1)(x3  + x 2  + 1) = .* + x. 

Theorem 5.39 allows a sequence of equations to be built up for determining Im for any m.  Take 
for example q = 2: 

k = 1: 2 = (1)Zl - 11 = 2  

k = 2: + 12 = 1 

k = 3: -+ I3 = 2. 

4 = (1)11 + 212 

8 = (1)Ii + 313 



222 Rudiments of Number Theory and Algebra 

Appendix 5.A.1 Solving for Zm Explicitly: The Moebius Function 

However, equation (5.46) only implicitly determines Zm. An explicit formula can also be found. 
Equation (5.46) is a special case of a summation of the form 

(5.47) 

in which f ( k )  = qk and g(m) = m Z m .  Solving such equations for g(m)  can be accomplished using 
the number-theoretic function known as the Moebius (or Mobius) function p. 

Definition 5.16 The function p ( n )  : Z+ + Z+ is the Moebius function, defined by 

i f n  = 1 
if n is the product of r distinct primes 
if n contains any repeated prime factors. 

0 

Theorem 5.41 The Moebius function satisjies the following formula: 

(5.48) 

The proof is developed in Exercise 81. This curious “delta-function-like” behavior allows us to 
compute an inverse of some number-theoretic sums, as the following theorem indicates. 

Theorem 5.42 Moebius inversion formula I f f  (n) = g(d) then 

g(n)  = C C L ( d ) f  (n ld ) .  
dln 

Proof Let d 1 n. Then from the definition of f ( n ) ,  we have 

Multiplying both sides of this by p(d) and summing over divisors d of n we obtain 

The order of summation can be interchanged as 

By (5.48), & ( n / k )  p(d) = 1 if n / k  = 1, that is, if n = k ,  and is zero otherwise. So the double 
0 

Returning now to the problem of irreducible polynomials, (5.46) can be solved for Zm using the 

summation collapses down to a g(n) .  

Moebius inversion formula of Theorem 5.42, 

(5.49) 



Lab 4: Programming the Euclidean Algorithm 223 

Programming Laboratory 4: 

Programming the Euclidean 
Algorithm 

Objective 

The Euclidean algorithm is important both for modular 
arithmetic in general and also for specific decoding algo- 
rithms for BCWReed-Solomon codes. In this lab, you are 
to implement the Euclidean algorithm over both integers 
and polynomials. 

Preliminary Exercises 

Reading: Sections 5.2.2,5.2.3. 

1) InZg[x],determineg(x) = (Zx5 +3x4+4x3+3x2+ 
2x + 1, x4 + Zx3 + 3x2 + 4x + 3) and also s ( x )  and t(x) 
such that 

2) Compute (x3 + 2x2 + x + 4, x2 + 3x + 4, operations 
in R[x], and also find polynomials s ( x )  and t(x) such that 

Background 
Code is rovided which implements modulo arith- 
metic in Ke class ModAr, implemented in the files 
indicated in Algorithm 5.2. 

Algorithm 5.3 Templatized 

File: polynomialT. h 
Polynomials 

polynomialT.cc 
testpolyl.cc 

Programming Part 
1) Write a C or C++ function that performs the Euclidean 
algorithm on integers a and b, r e w n g  g, s, and.t such that 
g = as + bt. The function should have declarabon 

void gcd(int a, int b, int &g, int & s ,  int &t); 

Test your algorithm on (24,18), (851,966), and other 
pairs of integers. Verify in each case that as + bt = g. 
2) Write a function that computes the Euclidean al orithm 
on olynomialT<TYPE>. The function shoufd have 
dec&ation 

template <class Tz void 
gcd(const polynomialT<T> &a, 
const polynomialT<T> &b, polynomialT<T> &g, 
polynomialT<T> & s ,  polynomialT<T> &t); 

Also, write a program to test your function. Al- 
gorithm 5.4 shows a test program and the framework 
for the program, showing how to instantiate the func- 
tion with ModAr and double polynomial arguments. 

Algorithm 5.4 Polynomial GCD 
File: testpolygcd. cc 

gcdpoly.cc 

Algorithm 5.2 Modulo Arithmetic 
File: ModAr . h 

ModAr . cc 
testmodar1.c~ 
M0dArnew.h 
testmodarnew.cc 

Code is also rovided which implements olynomial arith- 
metic in the cpass polynomialT,using &e files indicated 
in Algorithm 5.3. This class is tem latized, so that the co- 
efficients can come from a vqety o! fields or rings. For ex- 
ample, if you want a polynomal with double coefficients 
or int coefficients or ModAr coefficients, the objects are 
declared as 

polynomialT<double> pl; 
polynomialT<int> p2; 
polynomialT<ModAr> p3; 

Test your algorithm as follows: 

a) Compute (3x7 + 4x6 + 3x4 + x 3  + 1, 4x4 + x 3  + x) 
and t(x) and s ( x )  for polynomials in Z=j[x]. Verify that 
a(x ) s (x )  + b(x ) t (x )  = g(x). 
b) Compute (Zx5 + 3x4 + 4x3 + 3x2 + 2x + 1, x4 + 
Zx3 + 3x2 + 4x + 3) and s ( x )  and t(x) for polynomials 
in Zg[x]. Verify that a(x)s (x)  4- b ( x ) t ( x )  = g(x). 
c) Compute (2+8x+ lox2 +4x3, 1 +7x+14x2 + 8 x 3 )  
and s ( x )  and t ( x )  for polynomials in R[x]. For polyno- 
mials with real coefficients, extra care must be taken to 
handle roundoff. Verify that a(x)s  (x) +b(x)t (x) = g(x). 

3) Write a function which applies the Sugiyama algorithm 
to a sequence of data or its polynomial representation. 
4) Test your algorithm over Zg[x] by finding the shortest 
polynomial generating the sequence (3,2,3, 1,4,0,4,3}. 
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Having found t (x), compute b(x)t  (x) and identify r (x) and 
s ( x )  and verify that they are consistent with the result found 
by the Sugiyama algorithm. 

5 )  In Zg[x], verify that the sequence (3 ,2 ,1 ,0 ,4 ,3 ,2 ,  l} 

can be generated using the polynomial ti (x) = 1 + 2x + 
4x2 + 2x3 + x4. Then use the Sugiyama algorithm to find 
the shortest polynomial t ( x )  generating the sequence and 
verify that it works. 

Programming Laboratory 5: 
Programming Galois Field Arithmetic 

Objective 

Galois fields are fundamental to algebraic blockcodes. This 
lab provides a tool to be used for BCH and Reed-Solomon 
codes. It builds upon the LFSR code produced in lab 2. 

Preliminary Exercises 

Reading: Section 5.4. 
Write down the vector, polynomial, and power repre- 

sentations of the field G F Q ~ )  generated with the polyno- 
mial g(x) = 1 + x + x3. Based on this, write down the 
tables v2p and p2v for this field. (See the implementation 
suggestions for the definition of these tables.) 

Programming Part 

Create a C++ class GFNUM2m with overloaded operators to 
implement arithmetic over the field GF(2'") for an arbitrary 
rn < 32. This is similar in structure to class ModAr class, 
except that the details of the arithmetic are different. 

Test all operations of your class: + I  -, * , / , * , +=, 

g(x) = 1 + x + x4 by comparing the results the computer 
provides with results you calculate by hand. Then test for 
GF(23) generated by g(x) = 1 + x + x3. 

The class GFNUM2m of Algorithm 5.5 provides the dec- 
larations and definitions for the class. In this representation, 
the field elements are represented intrinsically in the vector 
form, with the vector elements stored as the bits in a sin- 
gle int variable. This makes addition fast (bit operations). 
Multiplication of Galois field elements is easier when they 
are in exponential form and addition is easier when they are 
in vector form. Multiplication here is accomplished by con- 
verting to the power representation, adding the exponents, 

_= , *- - I  /=, *=, ==( !=forthefieldgeneratedby 

then converting back to the vector form. In GFNUM2m, all of 
the basic field operations are present except for completing 
the construction operator in i t gf which builds the tables 
v2p and p2v. The main programming task, therefore, is 
to build these tables. This builds upon the LFSR functions 
already written. 

Algorithm 5.5 GF(2m) 
File: GFNUM2m. h 

GFNUM2m.cc 
t e s t gf num . cc 

To make the conversion between the vector and power 
representations, two arrays are employed. The array v2p 
converts from vector to power representation and the array 
p2v converts from power to vector representation. 

Example 5.48 In the field GF(24) represented in Table 
5.1, the field element (1,0, 1, 1) has the power represen- 
tation a7. The vector (1,0, 1, 1) can be expressed as an in- 
teger using binary-to-decimal conversion (LSB on the right) 
as 11. We thus think of 11 as the vector representation. The 
number v2p [ 11 ] converts from the vector representation, 
11, to the exponent of the power representation, 7. 

Turned around the other way, the number a7 has the 
vector representation (as an integer) of 11. The number 
p2v [ 7 ] converts from the exponent of the power repre- 
sentation to the number 1 1. The conversion tables for the 
field are 

4 11 14 
4 2  3 12 15 
5 8 6 13 13 13 
6 5 12 14 11 9 
7 10 11 15 12 - 
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0 

To get the whole thing working, the arrays p2v and v2p 
need to be set up. To this end, a static member function 
initgf (int m, int g) is created. Given the degree 
of the extension m and the coefficients of g(x) in the bits of 
the integer g, initgf sets up the conversion arrays. This 
can take advantage of the LFSR programmed in lab 2. Start- 
ing with an initial LFSR state of 1, the v2p and p2v arrays 
can be obtained by repeatedly clocking the LFSR: the state 
of the LFSR represents the vector representation of the Ga- 
lois field numbers, while the number of times the LFSR has 
been clocked represents the power representation. 

There are some features of this class which bear remark- 
ing on: 

The output format (when printing) can be specified in 
either vector or power form. In power form, something like 
A ^  3 is printed; in vector form, an integer like 8 is printed. 
The format can be specified by invoking the static member 
function setouttype, as in 

GFNUM2m::setouttype(vector); 

GFNUM2m::setouttype(power); 
/ /  set vector output format 

/ /  set power output format 

The v2p and p2v arrays are stored as static arrays. This 
means that (for this implementation) all field elements must 
come from the same size field. It is not possible, for exam- 
ple, to have some elements to be G F ( Z 4  ) and other elements 
to be G F ( 2 8 ) .  (You may want to give some thought to how 
to provide for such flexibility in a memory efficient manner.) 

0 A few numbers are stored as static data in the class. The 
variable g f m  represents the number m in G F ( 2 m ) .  The 
variable gf N represents the number 2m - 1. These should 
be set up as part of the initgf function. These numbers 
are used in various operators (such as multiplication, divi- 
sion, and exponentiation). 
0 Near the top of the header are the lines 

extern GFNUM2m ALPHA; 

extern GFNUM2m& A; 
/ /  set up a global alpha 

/ /  and a reference to alpha 
/ /  for shorthand 

These declare the variables ALPHA and A, the latter of 
which is a reference to the former. These variables can be 
used to represent the variable a in your programs, as in 

GFNUM2m a; 
a = (A-4) + (A-8);// 

/ /  a is alpha-4 + alpha-a 

The deJinitions of these variables should be provided in 
the GFNUM2m. cc file. 

Write your code, then extensively test the arithmetic us- 
ing G F ( z 4 )  (as shown above) and G F ( 2 8 ) .  For the field 
G F ( 2 8 ) ,  use the primitive polynomial p ( x )  = 1 + x 2  + 
x3 + x4 + x 8 :  

GFNUM2m::initgf(8,0xllD); 
/ /  1 0001 1101 
/ /  x A a  + x-4 + X-3 + X-2 + 1 

5.1 2 Exercises 

5.1 Referring to the computations outlined in Example 5.1: 

5.2 

5.3 

5.4 
5.5 

5.6 

(a) Write down the polynomial equivalents for y1, n, . . . , y31. (That is, find the binary 

(b) Write down the polynomial representation for y;, using operations modulo M ( x )  = 1 + 

(c) Explicitly write down the 10 x 31 binary parity check matrix H in (5.1). 

representation for yi and express it as a polynomial.) 

x2  + x5 .  

Prove the statements in Lemma 5.1 that apply to integers. 

[250] Let s and g > 0 be integers. Show that integers x and y exist satisfying x + y = s and 
( x ,  y) = g if and only if gl s. 

[250] Show that if rn > n, then (a2" + 1) I (a2" - 1). 

Wilson's theorem: Show that if p is a prime, then ( p  - l)! = -1 (mod p ) .  

Let f ( x )  = 
f ( x )  = g(x)q(x) + r ( x ) ,  where deg(r(x)) < deg(g(x)). 

+ x9  + x5  + x4 and g(x) = x2  + x + 1 be polynomials in G F ( 2 ) [ x ] .  Write 
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5.7 

5.8 

5.9 
5.10 

5.11 

5.12 

5.13 

5.14 

5.15 

Uniqueness of division algorithm: Suppose that for integers a > 0 and b there are two represen- 
tations 

b = qia  + ri b = q2a + 1-2, 

with 0 5 r l  < a and 0 5 r2 -= a. Show that r l  = r2. 

Let Ra[b] be the remainder of b when divided by a, where a and b are integers. That is, by the 
division algorithm, b = q a  + Ra[b].  Prove the following by relating both sides to the division 
algorithm. 

(a) Ra[b + cl = Ra[&[bl + Ra[cll. 

(b) Ra [bcl = Ra [Ra [blRa [ell. 

(c) Do these results extend to polynomials? 

Find the GCD g of 6409 and 42823. Also, find s and t such that 6409s + 42823t = g. 

Use the extendedEuclidean algorithmover Z, [XI to find&) = (a@), b(x)) and the polynomials 
s ( x )  and t(x) such that a(x)s ( t )  + b(x)t(x) = g ( x )  for 

3 

6 5  
(a) a ( x )  = x + x + 1, b(x) = x 2  + x + 1 for p = 2 and p = 3. 

(b) a ( x )  = x + x + x + 1, b(x) = x4 + x3, p = 2 and p = 3. 

Let a E Zn. Describe how to use the Euclidean algorithm to find an integer b E Z n  such that 
ab = 1 in Zn, if such a b exists and determine conditions when such a b exists. 

Show that all Euclidean domains with a finite number of elements are fields. 

Prove the GCD properties in Theorem 5.3. 

Let a and b be integers. The least common multiple (LCM) m of a and b is the smallest 
positive integer such that a1 m and b /  m.  The LCM of a and b is frequently denoted [a, b] 
(For polynomials a(x )  and b(x), the LCM is the polynomial m ( x )  of smallest degree such that 
a(x) 1 m ( x )  and b(x) 1 m ( x ) .  

(a) If s is any common multiple of a and b (that is, a 1 r and b I r )  and m = [a, b] is the least 

(b) Show that form > 0, [ma, mb] = m[a,  b]. 

(c) Show that [a, b](a, b) = lab1 

common multiple of a and b, then m I s. Hint: division algorithm. 

Let C1 and C2 be cyclic codes generated by g1 (x) and g 2 ( x ) ,  respectively, with g1 (x) # g2(x) .  
Let C3 = C1 n C2. Show that C3 is also a cyclic code and determine its generator polynomial 
g3(x). If dl and d2 are the minimum distances of C1 and C2, respectively, what can you say about 
the minimum distance of C3? 

5.16 Show that c:I; i -2  = 0 (mod p ) ,  where p is a prime. Hint: The sum of the squares of the 

5.17 [360] Show that {as + bt : s, t E Z} = {k (a ,  b) : k E Z} for all a, b E Z. 
5.18 Show that the update equations for the extended Euclidean algorithm in (5.9) are correct. That 

is, show that the recursion (5.9) produces si and ti satisfying the equation asi + bti = ri for all i. 
Hint: Show for the initial conditions given in (5.10) that (5.8) is satisfied for i = -1 and i = 0. 
Then do a proof by induction. 

5.19 [33] A matrix formulation of the Euclidean algorithm. For polynomials a ( x )  and b(x) ,  use 
the notation ~ ( x )  = L#] b(x) + r ( x )  to denote the division algorithm, where q ( x )  = 

is the quotient. Let deg(a(x)) > deg(b(x)). Let a(O)(x) = a(x) and do)(,) = b(x) and 

first n natural numbers is n(n + 1)(2n + 1)/6. 

( X )  



5.12 Exercises 227 

A(')(x) = [i :]. Let 

(b) Show that d K ) ( x )  = 0 for some integer K .  

(c) Show that [a(Ki(x)] = 

(d) Showthat 

[;::,'I. Conclude that any divisor of both a(n) and b(x) 

also divides # ) ( x ) .  Therefore (a(x) ,  b ( x ) )  I d K ) ( x ) .  

Henceconcludethata(K)(x) 1 a(x )  and#(n) 1 b(x),andthereforethat#)(x) 1 (a(x) ,  b ( x ) ) .  

(el Conclude that #)(n) = y ( a ( x ) ,  b(x)) for some scalar y .  Furthermore show that 
~ ( ~ ) ( x )  = A ( K )  l1 ( x ) a ( x )  + A r t ) ( x ) b ( x ) .  

5.20 [360] More on the matrix formulation of the Euclidean algorithm. Let 

(a) pG[(;)] = R(')  [;::;I , 0 5 i 5 K ,  where K is the last index such that r~ ( x )  # 0. 

(c) Show that any common divisor of ri and rj+l is a divisor of r~ and that rK I rj and r K  I rj+l 

(dl sjtj+l - si+ltj = (-l) i+l,  SO that ( s j ,  ti) = 1. Hint: determinant of 

(e) sja + tib = r i ,  -1 5 i 5 K .  

for -1 5 i < K .  

(0 (ri, ti) = (a ,  ti) 

5.21 [234] Properties of the extended Euclidean algorithm. Let qi,  r i ,  s j ,  and ti be defined as in 
Algorithm 5.1. Let n be the values of i such that rn = 0 (the last iteration). Using proofs by 
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induction, show that the following relationships exist among these quantities: 

tjrj-1 - tj-lrj = (-1)'u 

sjrj-1 - sj-lrj = (-l)i+'b 

sjtj-1 - S j - l t j  = (-l)i+l 

sja + tib = ri 

0 s i s n  

o 5 i 5 n 

O s i l n  
- 1 s i s n  

l s i s n  

O i i c n  

deg(sj) + deg(ri-1) = deg(b) 

deg(tj) + deg(rj-1) = deg(a) 

5.22 Continued fractions and the Euclidean algorithm. Let uo and ul  be in a field IF or ring of 
polynomials over a field IF[x]. A continued fraction representation of the ratio uo/ul  is a fraction 
of the form 

(5.50) 
1 u0 -=a ( )+  

U l  1 
a1 + 1 

a 2 + * * *  
1 

aj-1+ - 
Q j  

For example, 
51 1 
- = 2 +  - 
22 1 '  

3 + ?  

The continued fraction (5.50) can be denoted as (ao, a l ,  . . . , aj). 
(a) Given uo and u1, show how to use the Euclidean algorithm to find the ao, a1 , . . . , aj in 

the continued fraction representation of uo/ul. Hint: by the division algorithm, ug = 
ulao + u2. This is equivalent to uo/u l  = a0 + l/(ul/u2). 

(b) Determine the continued fraction expansion for uo = 966, ul = 815. Verify that it works. 
(c) Let u o ( x ) ,  ul(x) E Zg[xl, where uo(x)  = 1 + 2x + 3x2 + 4x3 + 3x5 and ul(x) = 

1 + 3x2 + 2x3. Determine the continued fraction expansion for u o ( x ) / u l  (x). 

5.23 [234] Pad6 Approximation and the Euclidean Algorithm. Let A(x) = a0 + a lx  + a2x2 + + . . 
be a power series with coefficients in a field F. A (p, u) Pad6 approximant to A(x) is a rational 
function p(x)/q(x) such that q(x)A(x) = p ( x )  (mod xN+l), where p + u = N and where 
deg(p(x) 5 p and deg(q(x)) 5 u. That is, A(x) agrees with the expansion p ( x ) / q ( x )  for terms 
uptoxN. ThePad6conditioncanbewrittenasq(x)AN(x) = p(x) (mod xN+l), whereAN(x) 
is the Nth truncation of A(x), 

AN(x) = uo + a l x  + . . .  + U N X ~  

(a) Describe how to use the Euclidean algorithm to obtain a sequence of polynomials r j  (x) 
and t j  (x) such that ti ( x ) A ~ ( x )  = r j  (x) (mod xN+l). 

(b) Let p + u = deg(a(x)) - 1, with p 2 deg((a(x), b(x)). Show that there exists a unique 
index j such that deg(r,) 5 p and deg(tj) 5 u. Hint: See the last property in Exercise 
5.21 

(c) Let A(x) = l+2x+x3+3x7+x9+.. . beapowerseries. DetermineaPad6approximation 
with p = 5 and u = 3; that is, an approximation to the truncated series Ag(x) = 1 + 2x + 
x3 + 3x7. 

5.24 Let I1 and 12 be ideals in F[x] generated by g1 (x) and g2(x), respectively. 
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(a) The least common multiple of g1 ( x )  and gZ(x) is the polynomial g ( x )  of smallest degree 
such that g1 ( x )  I g ( x )  and g z ( x )  I g ( x ) .  Show that I1 n Zz is generated by the least common 
multiple of g l  ( x )  and g 2 ( x ) .  

(b) Let I1 + 12 mean the smallest ideal which contains I1 and Zz. Show that I1 + 12 is generated 
by the greatest common divisor of gl(x) and g2(x) .  

5.26 
5.27 

5.28 

5.29 
5.30 

5.31 

5.32 

5.33 

5.34 

5.35 

5.36 

5.37 

5.25 Using the extended Euclidean algorithm, determine the shortest linear feedback shift register that 
could have produced the sequence [l,  4 ,2 ,2 ,4 ,  11 with elements in 2 5 .  

Prove statements (1) - (9) of Theorem 5.8. 
If x is an even number, then x = 0 (mod 2). What congruence does an odd integer satisfy? What 
congruence does an integer of the form x = 7k + 1 satisfy? 
[250] Write a single congruence equivalent to the pair of congruences x = 1 (mod 4) and x = 2 
(mod 3). 
Compute: +(190), +(191), +(192). 
[250] Prove the following divisibility facts: 

(a) n6 - 1 is divisible by 7 if (n,  7) = 1 
(b) n7 - n is divisible by 42 for any integer n. 
(c) n12 - 1 is divisible by 7 if (n ,  7) = 1. 
(d) dk - 1 is divisible by 7 if (n, 7) = 1, k a positive integer. 
(e) n13 - n is divisible by 2,3 ,5 ,7 ,  and 13 for any positive integer n. 

Show that 

where the product is taken over all primes p dividing n. Hint: write n = pi'  p p  . . . p p  . 
In this exercise, you will prove an important property of the Euler + function: 

d In 

where the sum is over all the numbers d that divide n. 

(a) Suppose n = p e ,  where p is prime. Show that (5.51) is true. 
(b) Now proceed by induction. Suppose that (5.51) is true for integers with k or fewer distinct 

prime factors. Consider any integer N with k + 1 distinct prime factors. Let p denote 
one of the prime factors of N and let pe  be the highest power of p that divides N .  Then 
N = pen, where n has k distinct prime factors. As d ranges over the divisors of n, the set 
d, p d ,  p'd, . . . , ped ranges over the divisors of N. Now complete the proof. 

Let Gn be the elements in 2, that are relatively prime to n. Show that G n  forms a group under 
multiplication. 
RSA Encryption: Let p = 97 and q = 149. Encrypt the message rn = 1234 using the public key 
{ e ,  n} = {35,14453}. Determine the private key ( d ,  n}. Then decrypt. 
A message is encrypted using the public key {e ,  n} = {23,64777}. The encrypted message is 
c = 1216. Determine the original message rn. (That is, crack the code.) 
Find all integers that simultaneously satisfy the congruences x = 2 (mod 4), x ZE 1 (mod 9) 
andx = 2 (mod 5). 
Find a polynomial f ( x )  E 2 5  [XI simultaneously satisfying the three congruences 

(mod (x - 2)2) f ( x )  = 2 

f ( x )  = x 2  + 3 x  + 2 

(mod x - 1) f ( x )  = 3 + 2x 

(mod ( x  - 3)3) 
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5.38 

5.39 

5.40 

5.41 

5.42 

5.43 
5.44 

5.45 

Evaluation homomorphism: Show that f ( x )  (mod x - u )  = f ( u ) .  Show that n : F[x] + F 
defined by nu (f(x)) = f ( u )  is a ring homomorphism. 
Determine a Lagrange interpolating polynomial f ( x )  E R[x] such that 

f(1) = 3 f(2) = 6 f ( 3 )  = 1. 

Let (xi, y i ) ,  (x2, ~ 2 1 , .  . . , ( X N ,  Y N )  be points. 

(a) Write down the Lagrange interpolants Zi (x) for these points. 

(b) Write down a polynomial f ( x )  that interpolates through these points. 

An interesting identity. In this exercise you will prove that for p i ,  p2, . . . , p~ all distinct, the 
following identity holds: 

N N  

- 1  Pi c n =- 
i=l n=l,n#i 

in any field. 

(a) Verify the identity when N = 2 and N = 3. 
(b) Let f ( x )  = x N - l .  FindaLagrangeinterpolatingpolynomialg(x)forthepoints(pl, p y - ' ) ,  

(c) Determine the ( N  - 1)st derivative of g(x), g(N-')(x). 
(d) Determine the ( N  - 1)st derivative of f ( x ) ,  f ( N - ' ) ( x ) .  

(e) Show that the identity is true. 
(f) Based on this identity, prove the following facts: 

N - 1  
(p23 p r - ' ) ,  . . . , ( P N  3 p N  1. 

i. z E ~  FIn=l,n#i N 
ii. m 1 ci=1 N ( - l ) N - i ( Y ) i N  = 1. 

iii. xE1 nn=l,n#i N 

V. Ci=1 ITn=l,n+i + = 1 9  x z 1 .  

= 1. 

5 = 1 .  

iv. czl(--1)i-1(7) = 1. 

vi. Czl FInN=l.*#i iqqqT = 1 for allx # 0. 

N N  

Let Zj (x) be a Lagrange interpolant, as in (5.25). Show that Cg=l Zj (x) = 1. 

Show that x5 + x3 + 1 is irreducible over GF(2). 
Determine whether each of the following polynomials in GF(2)[x] is irreducible. If irreducible, 
determine if it is also primitive. 

(a) x2 + 1 (g) x5 + x3 + x2 + x + 1 
(b) x2 + x  + 1 (e) x 4 + x 2 + x 2 + x + 1 .  (h) x 5 + x 2 + l  
(c) x 3 + x + 1  (f) x 4 + x 3 + x + 1  (i) x 6 + x 5 + x 4 + x + 1  

(d) x 4 + x 2 + l  

Let p(x) E GF(2)[x] be p ( x )  = x4 + x3 + x2 + x + 1. This polynomial is irreducible. Let this 
polynomial be used to create a representation of GF(24). Using this representation of GF(24), 
do the following: 

(a) Let (Y be a root of p(x). Show that (Y is not a primitive element. 
(b) Show that B = (Y + 1 is primitive. 
(c) Find the minimal polynomial of = (Y + 1. 
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5.46 Solve the following set of equations over G F Q ~ ) ,  using the representation in Table 5.1. 

5 a x + a  y + z = a  

a2x + a3y +a% = a4 
a % + y + a z = a  9 10 . 

5.47 Show that (x - j3) is a factor of a polynomial f ( x )  if and only if f ( j 3 )  = 0. 
5.48 Create a table such as Table 5.1 for the field GF(23)  generated by the primitive polynomial 

5.49 Construct the field GF(8)  using the primitive polynomial p ( x )  = 1 + x 2  +x3, producing a table 

5.50 Extension of GF(3):  

x3 + x + 1, including the Zech logarithms. 

similar to Table 5.1. Use j3 to represent the root of p ( x ) :  p3 + p2 + 1 = 0. 

(a) Prove that p ( x )  = x 2  + x + 2 is irreducible in GF(3) .  
(b) Construct the field GF(32)  using the primitive polynomial x 2  + x + 2. 

5.51 Let g(x) = (x2 - 3x + 2) E R[x]. Show that in R [ x ] / ( g ( x ) )  there are zero divisors, so that this 

5.52 Let f ( x )  be a polynomial of degree n over GF(2) .  The reciprocal of f(X) is defined as 
does not produce a field. 

f*b) = x " f ( l / x )  

(a) Find the reciprocal of the polynomial 

f ( x )  = 1 + x + x 5 .  

(b) Let f ( x )  be a polynomial with nonzero constant term. Prove that f ( x )  is irreducible over 

(c) Let f(x) be a polynomial with nonzero constant term. Prove the f ( x )  is primitive if and 
GF(2)  if and only if f * ( x )  is irreducible over GF(2) .  

only if f * ( x )  is primitive. 

5.53 Extending Theorem 5.15. Show that 

i=l i=l 

Show that 
( x  + y)P' = xp' + yp' . 

5.54 Prove Lemma 5.26. 
5.55 Show that, over any field, xs - 1 I x" - 1 if and only if s 1 r .  

5.56 [25, p .  291 Let d = (m,  n). Show that (x" - 1, x" - 1) = x - 1. Hint: Let rk denote the 
remainders for the Euclidean algorithm over integers computing (m,  n ) ,  with rk-2 = qkrk- 1 +rk ,  
and let be the remainder for the Euclidean algorithm over polynomials computing ( x m  - 
1, xn - 1). Show that 

d 
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5.57 The set of Gaussian integers Z[i] is made by adjoining i = to Z: 

Z[i] = {a  + bi : U ,  b E Z}. 

(This is analogous to adjoining i = to R to form C.) For a E Z[i], define the valuation 
function v(a)  = au*, where * denotes complex conjugation. v(a)  is also called the norm. Z[i] 
with this valuation forms a Euclidean domain. 

(a) Show that v(u) is a Euclidean function. Hint: Let a = a1 + u2i and b = bl + b2i, 
a / b  = Q + i s  with Q, S E Q and q = q1 + iq2,q1,42 E Z be the nearest integer point 
to ( a / b )  and let r = a - bq. Show that u ( r )  < u(b) by showing that u(r ) /u (b )  < 1. 

(b) Show that the units in Z[i] are the elements with norm 1. 
(c) Compute the greatest common divisors of 6 and 3 + i in Z[i]. Express them as linear 

5.58 The trace is defined as follows: For j3 E GF(p'), Tr(B) = j3 + j3P + j3P + . . . + j 3 P r - ' .  Show 

combinations of 6 and 3 + i . 
2 

that the trace has the following properties: 

(a) For every j3 E GF(p'), Tr(j3) E GF(p). 

(b) There is an element j3 E G F ( p ' )  such that Tr(j3) # 0. 

(c) The trace is a GF(p)-linear function. That is, for j3, y E G F ( p )  and 61,S2 E GF(p ' ) ,  

Tr[BSi + ~ 6 2 1  = B Td611 + Y Tr[S21. 

5.59 Square roots in finite fields: Show that every element in GF(2m) has a square root. That is, for 

5.60 [360, p. 2381 Let q = p m  and let t be a divisor of q - 1, with prime factorization t = 

every j3 E GF(2m), there is an element y E GF(2m) such that y2 = j3. 

p;' p: . . . pFr. Prove the following: 

(a) For a E G F ( q )  with a # 0, ord(a) = t if and only if at = 1 and at/J" # 1 for 

(b) GF(q) contains an element j3i of order pfi  for i = 1,2,  . . . , r .  

(c) If a E GF(q) and j3 E GF(q) have (ord(a), ord(j3)) = 1, then ord(aj3) = ord(a) ord(j3). 
(d) G F ( q )  has an element of order t . 
(e) GF(q) has a primitive element. 

i = 1 , 2  , . . . ,  r. 

5.61 Let f (x)  = (x - q ) ' l  . . . (x - ul)'l. Let f ' ( x )  be the formal derivative of f ( x ) .  Show that 

5.62 The polynomial f(x) = x2 - 2 is irreducible over Q[x] because 2/2 is irrational. Prove that 2/2 

5.63 Express the following as products of binary irreducible polynomials over GF(2)[x]. (a) x7 + 1. 

5.64 Construct all binary cyclic codes of length 7. 
5.65 Refer to Theorem 4.1. List all of the distinct ideals in the ring G F ( ~ ) [ x ] / ( x ' ~  - 1) by their 

5.66 [373] List by dimension all of the binary cyclic codes of length 31. 
5.67 [373] List by dimension all of the 8-ary cyclic codes of length 33. Hint: 

(f(x), f'(x)) = (x - a1)rl-l . . . (x - u p - 1 .  

is irrational. 

(b) x15 + 1. 

generators. 

x33 - 1 = (x + 1)(x2 + x + 1 ) ( P  + x7 + x5 + x3 + l)(x'O + x9 + x5 + x + 1) 

(XI0 +x9 $ 2  +x7 +x6 +x5 +x4  + x 3  + x 2  + x  + 1).  
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5.68 

5.69 

5.70 

5.71 

5.72 

5.73 

5.74 

5.75 

5.76 

List the dimensions of all the binary cyclic codes of length 19. Hint: 

18 
x19 + 1 = (x + 1) p. 

i SO 

Let p be an element of GF(2m), with j3 # 0 and p # 1. Let q ( x )  be the minimal polynomial of 
B. What is the shortest cyclic code with q ( x )  as the generator polynomial? 
Let p E GF(q) have minimal polynomial m(x)  of degree d .  Show that the reciprocal xdm(l/x) 
is the minimal polynomial of p-1. 
Let a! E GF(2lo) be primitive. Find the conjugates of a! with respect to GF(2), GF(4), and 
G F (32). 
In the field GF(9) constructed with the primitive polynomial x2 + x + 2 (see Exercise 5.50), 
determine the minimal polynomials of all the elements with respect to GF(3) and determine the 
cyclotomic cosets. 
[373] Determine the degree of the minimal polynomial of j3 with respect to GF(2) for a field 
element p with the following orders: (a) ord(B) = 3. Example: {j3, p2, p4 = p } ,  so there 
are two conjugates. Minimal polynomial has degree 2. (b) ord(p) = 5 (c) ord(j3) = 7. (a) 
ord(B) = 9 
For each of the following polynomials, determine a field GF(2m) where the polynomials can be 
factored into polynomials in GF(2)[x]. Determine the cyclotomic cosets in each case and the 
number of binary irreducible polynomials in the factorization. 

(a) x9 + 1 

(3) X1l + 1 

(c) x13 + 1 
(d) x17 + 1 

(el x19 + 1 

(0 x29 + 1 

Let g ( x )  be the generator of a cyclic code over G F ( q )  of length n and let q and n be relatively 
prime. Show that the vector of all 1s is a codeword if and only if g(1) # 0. 
Let g ( x )  = x9 + P2x8 + x6 + x 5  + p2x2 + p2 be the generator for a cyclic code of length 15 
over GF(4), where p = p2 + 1 is primitive over GF(4). 

(a) Determine h (x) . 
(b) Determine the dimension of the code. 
(c) Determine the generator matrix G and the parity check matrix H for this code. 
(d) Let r ( x )  = j3x3 + p2x4. Determine the syndrome for r ( x ) .  

(e) Draw a circuit for a systematic encoder for this code. 
(f) Draw a circuit which computes the syndrome for this code. 

5.77 [373] Let ( f ( x ) ,  h(x)) be the ideal I c GF(2)[x]/(xn - 1) formed by all linear combinations 
of the form a ( x ) f ( x )  + b ( x ) g ( x ) ,  where a(x), b(x) E GF(2)[x]/(xn - 1). By Theorem4.1, I 
is principal. Determine the generator for I .  

5.78 Let A(z)  = xr=oAnzn  and B(z) = cr=o Bnzn be generating functions and let C(z)  = 

A(z)B(z) .  Using the property of a formal derivative that A'(z) = CEO nAnz"-l, show that 
C'(z) = A'(z)B(z) + A(z)B ' ( z ) .  By extension, show that if C(z)  = Ai(z),  show that 

5.79 Show how to make the transition from (5.44) to (5.45). 
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5.80 Show that: 

(a) For an LFSR with an irreducible generator g ( x )  of degree p ,  the period of the sequence is 
a factor of 2P - 1. 

(b) If2P - 1 is prime, then every irreducible polynomial of degree p produces a maximal-length 
shift register. 
Incidentally, if 2n - 1 is a prime number, it is called a Mersenne prime. A few values of 
n which yield Mersenne primes are: n = 2,3,5,7,  13, 17, 19,31,61,89. 

5.81 Prove Theorem 5.41. 
5.82 Using Exercise 5.32 and Theorem 5.42, show that 

dJ(n) = CCL(d)(n/d) .  
dln 

5.83 Let q = 2. Use (5.49) to determine I i 1 Z 2 , 1 3 ,  14, and 15. 

5.1 3 References 

The discussion of number theory was drawn from [250] and [360]. Discussions of the 
computational complexity of the Euclidean algorithm are in [ 1871 and [360]. The Sugiyama 
algorithm is discussed in [324] and [234]. Fast Euclidean algorithm implementations are 
discussed in [34]. Continued fractions are discussed in [250]; Pad6 approximation appears 
in [234, 239, 3601 A delightful introduction to applications of number theory appears in 
[304]. Modern algebra can be found in [106,360,373,31,25]. More advanced treatments 
can be found in [155,162], while a thorough treatment of finite fields is in [200,201]. Zech 
logarithms and some of their interesting properties are presented in [304]. Our discussion 
of hardware implementations is drawn from [203], while the format of the add/multiply 
tables inside the back cover is due to [274]. Discussion of irreducible polynomials was 
drawn closely from [25]. The RSA algorithm was presented first in [293]; for introductory 
discussions, see also [360] and [304]. The algebraic approach using the Chinese Remainder 
Theorem for fast transforms in multiple dimensions is explored in [277]. 



Chapter 6 

BCH and Reed-Solomon Codes: 
Designer Cyclic Codes 
The most commonly used cyclic error correcting codes are the BCH and Reed-Solomon 
codes. The BCH code is named for Bose, Ray-Chaudhuri, and Hocquenghem (see the 
references at the end of the chapter), who published work in 1959 and 1960 which revealed a 
means of designing codes over GF(2)  with a specified design distance. Decoding algorithms 
were then developed by Peterson and others. 

The Reed-Solomon codes are also named for their inventors, who published in 1960. It 
was later realized that Reed-Solomon (RS) codes and BCH codes are related and that their 
decoding algorithms are quite similar. 

This chapter describes the construction of BCH and RS codes and several decoding 
algorithms. Decoding of these codes is an extremely rich area. Chapter 7 describes other 
“modern” decoding algorithms. 

6.1 BCHCodes 

6.1.1 Designing BCH Codes 

BCH codes are cyclic codes and hence may be specified by a generator polynomial. A BCH 
code over G F ( q )  of length n capable of correcting at least t errors is specified as follows: 

Determine the smallest m such that G F ( q m )  has a primitive nth root of unity p .  
Select a nonnegative integer b . Frequently, b = 1. 

Write down a list of 2t consecutive powers of B :  
p b ,  pb+’ ,  . . . , Bb+-l .  

Determine the minimal polynomial with respect to G F ( q )  of each of these powers 
of p .  (Because of conjugacy, frequently these minimal polynomials are not distinct.) 

The generator polynomial g(x) is the least common multiple (LCM) of these minimal 
polynomials. The code is a (n ,  n - deg(g(x)) cyclic code. 

Because the generator is constructed using minimal polynomials with respect to G F ( q ) ,  
the generator g(x) has coefficients in GF(q) ,  and the code is over G F ( q ) .  

Definition 6.1 If b = 1 in the construction procedure, the BCH code is said to be narrow 
0 

Two fields are involved in the construction of the BCH codes. The “small field G F ( q )  
is where the generator polynomial has its coefficients and is the field where the elements of 
the codewords are. The “big field” GF(qm) is the field where the generator polynomial has 
its roots. For encoding purposes, it is sufficient to work only with the small field. However, 
as we shall see, decoding requires operations in the big field. 

sense. If n = q m  - 1 then the BCH code is said to be primitive. 
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Example 6.1 Let n = 3 1 = 25 - 1 for a primitive code with m = 5 and let j3 be a root of the primitive 
polynomial x 5  + x 2  + 1 in GF@). (That is, j3 is an element with order n.) 

Let us take b = 1 (narrow sense code) and construct a single-error correcting binary BCH code. 
That is, we have t = 1. The 2t consecutive powers of j3 are j3, 8'. The minimal polynomials of j3 and 
p2 with respect to GF(2) are the same (they are conjugates). Let us denote this minimal polynomial 
by Mi (x). Since j3 is primitive, Mi (x) = x 5  + x2 + 1 (see Table 5.4). Then 

g(x) = M l ( X )  = 2 + x 2  + 1. 

Since deg(g) = 5,  we have a (31,26) code. (This is, in fact, a Hamming code.) 0 

Example 6.2 As before, let n = 31, but now construct a t = 2-error correcting code, with b = 1, 
and let j3 be a primitive element. We form 2t = 4 consecutive powers of j3: j3, p2, p3 ,  p4. Dividing 
these into conjugacy classes with respect to GF(2), we have {j3, p2, p4], {p3 } .  Using Table 5.4 we 
find the minimal polynomials 

M~(x) = 2 + 2  + 1 M 3 ( x )  = x5 + x4 + 2 + 2 + 1 

= .lo + x9 + x8 + x 6  + 2 + x3 + 1. 
This gives a (31, 31 - 10) = (31,21) binary cyclic code. 0 

Example 6.3 As before, let n = 31, but now construct a t = %error correcting code, with b = 1. 
We form 2t = 6 consecutive powers of j3: 

Divided into conjugacy classes with respect to GF(2), we have 

{ A  P 2 ,  D4I3 { P 3 >  P I 7  {B51.  

Denote the minimal polynomials for these sets as M1 (x), M3 (x) and M5 (x), respectively. Using 
Table 5.4 we find that the minimal polynomials for elements in these classes are 

M ~ ( ~ )  = x 5 + x 2 + l  M3(x) = x 5  + x4 + x 3  +2  + 1 M 5 ( x )  = 2 +x4 + x 2  + x  + 1 

so the generator is 

g(x) = LCM[M1 M3 (XI, M5 (x)I = Mi (x)M3 (x)M5 (x) 
11 10 + x = X l 5  + x +x9 + .* + x7 + x 5  + 2 + x 2  + x + 1 

This gives a (31, 31 - 15) = (31, 16) binary cyclic code. 0 

Example 6.4 Construct a generator for a quaternary, narrow-sense BCH 2-error correcting code of 
length n = 51. For a quaternary code we have q = 4. The smallest rn such that 51 I qm - 1 is 
m = 4, so the arithmetic takes place in the field GF(44) = GF(256). Let a! be primitive in the 
field GF(256). The element j3 = a5 is a 51st root of unity. The subfield GF(4) in GF(256) can be 
represented (see Example 5.33) using the elements {0, 1, d5, d 7 0 ] .  The 2t consecutive powers of 
j3 are j3, j3', ,!I3, b4. Partitioned into conjugacy classes with respect to GF(4), these powers of j3 are 
{j3, p4], ID2), {b3} .  The conjugacy classes for these powers of j3 are 
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with corresponding minimal polynomials 

p1 ( x )  = x4 + ,170x3 + 2 + x + ,170 

P2(X) = x4 + ,S5X3 + 2 + 2 5  

p 3 ( x )  = x4 + a170x3 + x 2  + ,170, + 1. 

These are in G F ( 4 ) [ x ] ,  as expected. The generator polynomial is 

6.1.2 The BCH Bound 

The BCH bound is the proof that the constructive procedure described above produces codes 
with at least the specified minimum distance. 

We begin by constructing a parity check matrix for the code. Let c ( x )  = rn(x)g(x)  be 
a code polynomial. Then, for i = b,  b + 1 ,  . . . , b + 2t - 1 ,  

since these powers of /3 are, by design, the roots of g ( x ) .  Writing c ( x )  = co + c1x + . . . + 
Cn-1xn-' we have 

c(p'> = m ( p ' ) g ( p ' )  = m(p' )o  = 0,  

~0 + C ~ B '  + c 2 ( p ' l 2  + + c n - l ( p i > n - l  = o i = b, b + I , .  . . , b + 2t - 1. 
The parity check conditions can be expressed in the form 

= O  i = b , b + l ,  ..., b + 2 t - 1 .  

Let 6 = 2t + 1 ;  6 is called the design distance of the code. Stacking the row vectors for 
different values of i we obtain a parity check matrix H, 

(6.1) 

p 2 b  ... p ( n - l P  

p2(b+1) . . . p ( n - l ) ( b + l )  

p2(b+6-3) . . . p(n-l)(b+6-3)  

p2(b+6-2) . . . p(n-l)(b+6-2)  

H =  

With this in place, there is one more important result needed from linear algebra to prove 
the BCH bound. 

A Vandermonde matrix is a square matrix of the form 

v = V ( x 0 ,  X I , .  . . , xn-1)  = 
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or the transpose of such a matrix. 

Lemma 6.1 
det(V) = n (xk - x j ) .  

05 j <k in-1  

Thus, as long as the xi are all distinct, the Vandermonde matrix is invertible. 

Proof The determinant is a polynomial function of the elements of the matrix of total degree 

1 + 2 + . . . + n - 1 = n(n - 1)/2.  

We note that if any xi = xo, i # 0, then the determinant is equal to 0, since the determinant 
of a matrix with two identical columns is equal to 0. This suggests that we can think of the 
determinant as a polynomial of degree n - 1 in the variable xo. Thus we can write 

det(V) = ( X O  - xl>(xo - ~ 2 ) .  . . ( X O  - xn-l)po(xl, ~ 2 ,  . . ., xn-11, 

where po is some polynomial function of its arguments. Similarly, we can think of det(V) 
as a polynomial in X I  of degree n - 1, having roots at locations xo, x2, . . . , xn-1: 

det(V) = ( X I  - xo>(xl - ~ 2 )  . . . ( X I  - xn-l)pl(xo, ~ 2 9  . ., xn-1). 

This applies to all the elements, so 

det(V) = n (xk - xj)P(xo, x i , .  . . , xn-1) 
0s j <ksn-l  

for some function p which is polynomial in its arguments. The product 

n (xk - x j )  
0 s  j < k i n - l  

has total degree 
(n  - 1) + n - 2 +  . . .  + 1 = n(n - 1)/2.  

Comparing the degrees of both sides, we see that p = 1. 0 

Theorem 6.2 (The BCH Bound) Let C be a q-ary (n ,  k )  cyclic code with generatorpoly- 
nomial g (x ) .  Let G F ( q m )  be the smallest extensionjield of G F ( q )  that contains a prim- 
itive nth root of unity and let j3 be a primitive nth root of unity in that jield. Let g ( x )  
be the minimal-degree polynomial in G F (4) [ X I  having 2t consecutive roots of the form 
g(Bb> = g ( B b f l )  = g(j3b+2) = . . . = g(j3b+2f-1). Then the minimum distance of the code 
satisfies dmin >_ 6 = 2t + 1; that is, the code is capable of correcting at least t errors. 

In designing BCH codes we may, in fact, exceed the design distance, since extra roots as 
consecutive powers of j3 are often included with the minimal polynomials. For RS codes, 
on the other hand, the minimum distance for the code is exactly the design distance. 
Proof Let c E C, with corresponding polynomial representation c (x ) .  As we have seen in 
(6.1), a parity check matrix for the code can be written as 

j32b ... p(n-l)b 

g2(b+l) . . . p(n-l)(b+l) 

j32(b+6-3) . . . p(n-l)(b+S-3) 
j32(b+S-2) . . . p(n-l)(b+S-2) 
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By Theorem 3 . 3 ,  the minimum distance of a linear code C is equal to the minimum positive 
number of columns of H which are linearly dependent. Also, the minimum distance of a 
code is the smallest nonzero weight of the codewords. 

We do a proof by contradiction. Suppose there is a codeword c of weight w c 6. We 
write the nonzero components of c as [ C i , ,  Ciz ,  . . . , C i W l T  = dT. Then since H c  = 0, we 

have 

pii pii b p i z ( b + l )  pi2b pi3(b+1) pi3b . . . . . . p i w ( b + l ) ]  p i w b  [ :! 1 
= 0. 

pii (b+6-3) piz(b+6-3) pi3(b+6-3) . . . piw(b+6-3)  
Ciw-l 

p i i ( b f 8 - 2 )  piz(b+6-2)  p"(b+6-2) . . . piW(b+6-2)  
ciw 

From the first w rows, we obtain 
p i z b  pi3b . . . p i w b  

p i z ( b + l )  pi3(b+1) . . . p iw(b+U 1 [ 1 = 0. 
p i l (b+w-2)  piz(b+w-2)  pig(b-tW-2) . . . p iW(b+w-2)  

Ciw- l  
p i i (b+w-1)  pi2(b+w-l)  p i3 (b+w- l )  . . . p i w ( b + w - l )  

Ciw 

1 ... 1 

Let H' be the square w x w matrix on the LHS of this equation. Since d # 0, we must have 
that H' is singular, so that det(H') = 0. Note that 

det(H') = piib+izb+.-+iwb det 

p i i ( w - 2 )  p i z (w-2 )  . . . ~ i ~ ( w - 2 )  

pi1 (w-1 )  p i z (w-1 )  . . . p i w ( w - l )  

But the latter matrix is a Vandermonde matrix: its determinant is zero if and only if j3 iJ  = p i k  

for some j and k ,  j # k .  Since 0 5 i k  < n and p is of order n, the p i k  elements along 
the second row are all distinct. There is thus a contradiction. We conclude that a codeword 

0 
It should be mentioned that there are extensions to the BCH bound. In the BCH bound, 

only a single consecutive block of roots of the generator is considered. The Hartman-Tzeng 
bound and the Roos bound, by contrast, provide bounds on the error correction capability 
of BCH codes based on multiple sets of consecutive roots. For these, see [ 1 4 3 ,  1 4 4 , 2 9 6 1 .  

6.1.3 Weight Distributions for Some Binary BCH Codes 

While the weight distributions of most BCH codes are not known, weight distributions for 
the duals of all double and triple-error correcting binary primitive BCH codes have been 
found [ 1 8 6 ] ,  [220, p. 4 5 1 ,  p. 6 6 9 1 ,  [ 2 0 3 ,  pp. 177-1781. From the dual weight distributions, 
the weight distributions of these BCH codes can be obtained using the MacWilliams identity. 

with weight w < 6 cannot exist. 

Example 6.5 In Example 6.2 we found the generator for a double-error correcting code of length 
n = 31 = 25 - 1 tobe 

g ( x )  = x 1 0  +x9 + x 8  + x 6  + x 5  + x 3  + I. 

From Table 6.1, we obtain 
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Table 6.1 : Weight Distribution of the Dual of a Double-Error-Correcting Primitive Binary 
BCH Code of Length n = 2m - 1, m 2 3, m Odd 

Codeword Weight i Number of Codewords of Weight i. B; 

Table 6.2: Weight Distribution of the Dual of a Double-Error-Correcting Primitive Binary 
Narrow-Sense BCH Code, n = 2" - 1, m 2 4, m Even 

Codeword Weight i 
0 1 

Number of Codewords of Weight i , Bi 

Codeword Number of Codewords 
Weight i of Weight i, Bi 

0 1 
12 310 
16 527 
20 186 

The corresponding weight enumerator for the dual code is 

B ( x )  = 1 + 3 1 0 ~ ' ~  + 5 2 7 ~ ' ~  + 1 8 6 ~ ~ ' .  

Using the MacWilliams identity (3.13) we have 

l + x  

= 1 + 186x5 + 806x6 + 2635x7 + 7905~' + 18910~' + 41602~'' + 8 5 5 6 0 ~ ~ ~  

+ 1 4 2 6 0 0 ~ ~ ~  + 1 9 5 3 0 0 ~ ~ ~  + 2 5 1 1 0 0 ~ ~ ~  + 3 0 1 9 7 1 ~ ~ ~  + 3 0 1 9 7 1 ~ ~ ~  

+ 251100~'~ + 195300~" + 142600~ '~  + 85560~~'  + 4160h21 + 18910~~'  

+ 7 9 0 5 ~ ~ ~  + 2 6 3 5 ~ ~  + 8 0 6 ~ ~ ~  + 1 8 6 ~ ~ ~  + x3'. 

6.1.4 Asymptotic Results for BCH Codes 

The Varshamov-Gilbert bound (see Exercise 3.26) indicates that if the rate R of a block 
code is fixed, then there exist binary (n, k) codes with distance d- satisfying kln 2 R 
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Table 6.3: Weight Distribution of the Dual of a Triple-Error Correcting Primitive Binary 
Narrow-Sense BCH Code, n = 2m - 1, m 2 5,  m Odd 

Codeword Weight i 
0 I 

Number of Codewords of Weight i , Bi 

and d d n / n  2 HT'(1 - R ) .  It is interesting to examine whether a sequence of BCH codes 
can be constructed which meets this bound. 

Definition 6.2 [220, p. 2691 A family of codes over G F ( q )  for a fixed q is said to be good 
if it contains an infinite sequence of codes C1, C2, , . . , , where Ci is an (ni , ki , di) code such 
that both the rate Ri = ki/ni and the relative distance di/ni approach a nonzero limit as 
i + 00. (7 

The basic result about BCH codes (which we do not prove here; see [220, p. 2691) is 
this: 

Theorem 6.3 There does not exist a sequence of primitive BCH codes over G F ( q )  with 
both k / n  and d l n  bounded away from zero. 

That is, as codes of a given rate become longer, the fraction of errors that can be corrected 
diminishes to 0. 

Nevertheless, for codes of moderate length (up to n of a few thousand), the BCH codes 
are among the best codes known. The program bchdesigner can be used to design a 
binary BCH code for a given code length n, design correction capability t ,  and starting 
exponent b. 
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6.2 Reed-Solomon Codes 

There are actually two distinct constructions for Reed-Solomon codes. While these initially 
appear to describe different codes, it is shown in Section 6.8.1 using Galois field Fourier 
transform techniques that the families of codes described are in fact equivalent. Most of 
the encoders and decoders in this chapter are concerned with the second code construc- 
tion. However, there are important theoretical reasons to be familiar with the first code 
construction as well. 

6.2.1 Reed-Solomon Construction 1 

Definition 6.3 Let a! be a primitive element in GF(qm)  and let n = qm - 1. Let m = 
(mo, m l ,  . . . , mk-1) E GF(qm)k  be a message vector and let m ( x )  = mo + m l x  + . . . + 
mk-1xk-' E G F ( q m ) [ x ]  be its associated polynomial. Then the encoding is defined by the 
mapping p : m ( x )  H c by 

a 
(co, c i ,  . . . , cn-i> = p ( m ( x ) )  = (m(l>, m ~ ,  m(a2>,  . . . , m(a"-'>). 

That is, p ( m ( x ) )  evaluates m ( x )  at all the non-zero elements of G F ( q m ) .  
The Reed-Solomon code of length n = qm - 1 and dimension k over GF(qm)  is the 

image under p of all polynomials in G F ( q m ) [ x ]  of degree less than or equal to k - 1. 
More generally, a Reed-Solomon code can be defined by taking n 5 q ,  choosing n 

distinct elements out of GF(qm) ,  a!1, a ! ~ ,  . . . , a!,, known as the support set, and defining 
the encoding operation as 

p ( m ( x > )  = (m(ai>, m(u2), . . . , m ( U n > > .  

The code is the image of the support set under p of all polynomials in GF(qm)  [XI of degree 
less than k. 

0 

Example 6.6 Let G F ( q m )  = GF(23)  = GF(8) .  A (7,  3 )  Reed-Solomon code can be obtained by 
writing down all polynomials of degree 2 with coefficients in GF(8) ,  then evaluating them at the 
nonzero elements in the field. Such polynomials are, for example, m(x) = a! + a3x2 or m ( x )  = 
a!' + a2x  + a4x2 (S3 = 512 polynomials in all). We will see that dmin = 5, so this is a 2-error 
correcting code. 

Some properties of the Reed-Solomon codes are immediate from the definition. 

Lemma 6.4 The Reed-Solomon code is a linear code. 

The proof is immediate. 

Lemma 6.5 The minimum distance of an ( n ,  k) Reed-Solomon code is dmin = n - k + 1. 

Proof Since m ( x )  has at most k - 1 zeros in it, there are at most k - 1 zero positions in 
each nonzero codeword. Thus dmin 2 n - (k - 1). However, by the Singleton bound (see 
Section 3.3.1), we must have ddn  5 n - k + 1. SO ddn  = n - k + 1. 0 
Reed-Solomon codes achieve the Singleton bound and are thus maximum distance separable 
codes. 
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This construction of Reed-Solomon codes came first historically [286] and leads to im- 
portant generalizations, some of which are introduced in Section 6.9.2. Recently a powerful 
decoding algorithm has been developed based on this viewpoint (see Section 7.6). However, 
the following construction has been important because of its relation with BCH codes and 
their associated decoding algorithms. 

6.2.2 Reed-Solomon Construction 2 

In constructing BCH codes, we looked for generator polynomials over G F ( q )  (the small 
field) so we dealt with minimal polynomials. Since the minimal polynomial for an element 
j3 must have all the conjugates of j3 as roots, the product of the minimal polynomials usually 
exceeds the number 2t of roots specified. 

The situation is somewhat different with RS codes. With RS codes, we can operate in 
the bigger field: 

0 
In G F ( q m ) ,  the minimal polynomial for any element j3 is simply (x - j3). The generator 

Definition 6.4 A Reed-Solomon code is a qm-ary BCH code of length qm - 1. 

for a RS code is therefore 

1 9  g(x) = (x - (1I b )(x - & + I )  . . . (x - a b f 2 f - l  

where (11 is a primitive element. There are no extra roots of g(x) included due to conjugates 
in the minimal polynomials, so the degree of g is exactly equal to 2t. Thus n - k = 2t for 
a RS code. The design distance is S = n - k + 1. 

Example 6.7 Let n = 7. We want to design a narrow sense double-error correcting RS code. Let a! 

be a root of the primitive polynomial x 3  + x + 1. The 2t = 4 consecutive powers of a! are a,  ct2, a3 
and a4. The generator polynomial is 

2 3 g ( x )  = ( x  - a)(x - a! ) ( x  - a! ) ( x  - a4) = x4 + a3x3 + x 2  + a x  + 2. 

code with 83 codewords. 0 
Note that the coefficients of g(x) are in GF(8) ,  the extension (“big”) field. We have designed a (7,3) 

Example 6.8 Let n = 24 - 1 = 15 and consider a primitive, narrow sense, three-error correcting 
code over G F ‘ ( ~ ~ ) ,  where the field is constructed modulo the primitive polynomial x4 + x + 1. Let 
a! be a primitive element in the field. The code generator has 

2 3 4 5 6  
a!,a! , a  ,ff , a  ,a! 

as roots. The generator of the (15,9) code is 

2 3 g ( x )  = ( x  - a)(x -a! ) ( x  - a! )(n - a 4 ) ( x  - a5) (x  - a 6 )  

= a6 + a9x + a6x2 + a4x3 + a!l4X4 + cX1Ox5 + x6 

A (15,9) code is obtained. 0 

Example 6.9 Let n = 2 - 1 = 255 and consider a primitive, narrow sense, three-error correcting 
code over GF(28), where the field is represented using the primitive polynomial p ( x )  = 1 + x 2  + 
x 3  + x4 + x 8 .  Let a! be a primitive element in the field. The generator is 

8 

2 3 4 5 6 g ( x ) = ( x - a ! ) ( x - a !  ) ( x - a !  ) ( x - a  ) @ - a  ) ( x - a ! )  

= a21 + ( p x  + ,9,2 + ,137x3 + 2 x 4  + ,167,5 + .6 
This gives a (255,249) code. 

0 
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Codes defined over GF(256), such as this, are frequently of interest in many computer 
oriented applications, because every field symbol requires eight bits - one byte - of data. 

The remainder of this chapter deals with Reed-Solomon codes obtained via this second 
construction. 

6.2.3 Encoding Reed-Solomon Codes 

Reed-Solomon codes may be encoded just as any other cyclic code (provided that the 
arithmetic is done in the right field). Given a message vector m = (mo, ml ,  . . . , mk-1) and 
its corresponding message polynomial m ( x )  = mo + m l x  + . . + mk-1xk-', where each 
mi E G F ( q ) ,  the systematic encoding process is 

c ( x )  = m(x)xn-k - Rg(X) [m(x)xn-k ]  

where, as before, R g ( x )  [-I denotes the operation of taking the remainder after division by 
A x ) .  

Typically, the code is over GF(2m)  for some m. The message symbols mi can then be 
formed by grabbing m bits of data, then interpreting these as the vector representation of 
the G F (2m) elements. 

Example 6.10 For the code from Example 6.8, the 4-bit data 

5 2 ,  1 ,6 ,8 ,3 ,  10, 15,4 

are to be encoded. The corresponding message polynomial is 

m(x) = 5 + 2x + x 2  + 6x3 + 8x4 + 3x5 + lox6 + 15x7 + 4x8 

Using the vector to power conversion 

5 = 01012 ff a8 2 = 00102 t, a 1 = 00012 t, 1 

and so forth, the message polynomial (expressed in power form) is 

8 m(x)  = a + ax + x 2  + a5x3 + a3x4 + a4x5  + ,925 + a12x7 + 2 x 8 .  

The systematically encoded code polynomial is 

c ( x )  = as  + a2x + a14x2 + a3x3 + a5x4 + ax5 + a8.8 + ax7 + x8 + a 5 x 9  + a3x10 + a4x11 

+ a 9 d 2  + a12x13 + ,224 

where the message is explicitly evident. 

and p o 1 y n orni a 1 T : 
The following code fragment shows how to reproduce this example using the classes GFNUM2rn 

int k=9; 
int n=15; 
GFNUM2m::initgf(4,0~13); / /  1 0011 = dA4+d+l 
POLYC(GFNUM2mr m, t5,2,1,6,8,3,10,15,41); / /  the message data 
polynomialT<GFNUM2m> c; / /  code polynomial 
/ /  
/ /  . . .  build the generator g 

c = (m<<(n-k)) + (m<<(n-k))% 9; / /  encode operation: pretty easy! 

cout << "message=" << m << endl; 
cout << "code=" << c << endl; 
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Using groups of m bits as the vector representation of the Galois field element is particularly 
useful when m = 8, since 8 bits of data correspond to one byte. Thus, a computer data file 
can be encoded by simply grabbing k bytes of data, then using those bytes as the coefficients 
of m(x) :  no conversion of any sort is necessary (unless you want to display the answer in 
power form). 

6.2.4 MDS Codes and Weight Distributions for RS Codes 

We observed in Lemma 6.5 that Reed-Solomon codes are maximum distance separable 
(MDS), that is, d d n  = n - k + 1. Being MDS gives sufficient theoretical leverage that the 
weight distribution for RS codes can be explicitly described. We develop that result through 
a series of lemmas [220, p. 31 81. 

Lemma 6.6 A code C is MDS if and only if every set of n - k columns of its parity check 
matrix H are linearly independent. 

Proof By Theorem 3.3, a code C contains a code of weight w if and only if w columns of 
H are linearly dependent. Therefore C has d ~ n  = n - k + 1 if and only if no n - k or fewer 

0 columns of H are linearly dependent. 

Lemma 6.7 Ifan (n, k )  code C is MDS, then so is the (n ,  n - k)  dual code C'. That is, C' 
has dmin = k + 1. 

Proof Let H = [hi h.] be an (n - k )  x n parity check matrix for C. Then H is 
a generator matrix for C'. Suppose that for some message vector m there is a codeword 
c = mH E C' with weight 5 k. Then c has zero elements in 2 n - k positions. Let the 
zero elements of c have indices { i l ,  i2, . . . , i n - k } .  Write 

. . . 

H = [hl h2 ... hn]. 

Then the zero elements of c are obtained from 
A -  

0 = m [hi, hi, ... hi,-,] = mH. 

We thus have a (n - k)  x (n - k )  submatrix fi of H which is singular. Since the row-rank 
of a matrix is equal to the column-rank, there must therefore be n - k columns of H which 
are linearly dependent. This contradicts the fact that C has minimum distance n - k + 1, so 
the minimal weight codeword of C' must be d ~ n  > k .  By the Singleton bound, we must 
h a v e d ~ ,  = k + 1. 0 

Lemma 6.8 Every k columns of a generator matrix G of an MDS are linearly independent. 
(This means that any k symbols of the codeword may be taken as systematically encoded 
message symbols.) 

Proof Let G be the k x n generator matrix of an MDS code C. Then G is the parity check 
matrix for C'. Since C' has minimum distance k + 1, any combination of k rows of G 
must be linearly independent. Thus any k x k submatrix of G must be nonsingular. So by 
row reduction on G, any k x k submatrix can be reduced to the k x k identity, so that the 

0 corresponding k message symbols can appear explicitly. 
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Lemma 6.9 The number of codewords in a q-ary (n,  k )  MDS code C of weight dmin = 
n - k + 1 is An-k+l = (q  - l)k-i+l). 

Proof By Lemma 6.8, select an arbitrary set of k coordinates as message positions for a 
message m of weight 1. The systematic encoding for these coordinates thus has k - 1 zeros 
in it. Since the minimum distance of the code is n - k + 1, all the n - k parity symbols 
therefore must be nonzero. Since there are (n-i+l) = &) different ways of selecting the 
zero coordinates and q - 1 ways of selecting the nonzero message symbol, 

An-k+l = (4 - 1) - 

0 

Lemma 6.10 (Weight distribution for MDS codes) The number of codewords of weight j 
in a q-ary (n ,  k )  MDS code is 

( 1. 

Proof Using (3.25) from Exercise 3.16, generalized to q-ary codes we have 

Since Ai = 0 for i = 1, . . . , n - k and Bi = 0 for i = 1, . . . , k, this becomes 

(;)+ f Y i ) A i = q k - j C ) ,  j = O , l ,  ..., k - 1 .  
i=n-k+l 

Setting j = k - 1 we obtain 

as in Lemma 6.9. Setting j = k - 2 we obtain 

Proceeding similarly, it may be verified that 

Letting j = n - k + r ,  it is straightforward from here to verify (6.2). 0 
Complete weight enumerators for Reed-Solomon codes are described in [35]. 
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6.3 Decoding BCH and RS Codes: The General Outline 

There are many algorithms which have been developed for decoding BCH or RS codes. In 
this chapter we introduce a general approach. In chapter 7 we present other approaches 
which follow a different outline. 

The algebraic decoding BCH or RS codes has the following general steps: 

1. Computation of the syndrome. 

2. Determination of an error locatorpolynomial, whose roots provide an indication of 
where the errors are. There are several different ways of finding the locator polyno- 
mial. These methods include Peterson's algorithm for BCH codes, the Berlekamp- 
Massey algorithm for BCH codes; the Peterson-Gorenstein-Zierler algorithm for RS 
codes, the Berlekamp-Massey algorithm for RS codes, and the Euclidean algorithm. 
In addition, there are techniques based upon Galois-field Fourier transforms. 

3. Finding the roots of the error locator polynomial. This is usually done using the Chien 
search, which is an exhaustive search over all the elements in the field. 

4. For RS codes or nonbinary BCH codes, the error values must also be determined. 
This is typically accomplished using Fomey 's algorithm. 

Throughout this chapter (unless otherwise noted) we assume narrow-sense BCH or RS 
codes, that is, b = 1. 

6.3.1 Computation of the Syndrome 

Since 
g ( a )  = g ( a 2 )  = . . . = g(a2') = 0 

c(a) = . . . = c(a2t) = 0. 

it follows that a codeword c = (CO, . . . , cn- l )  with polynomialc(x) = co f .  . . + cn-lX"- '  

has 

For a received polynomial r ( x )  = c ( x )  + e ( x )  we have 

n- 1 

sj = r ( a j )  = e (a j>  = C e k a j k ,  j = 1 ,2 , .  . ., 2t.  

The values S1, S2,  . . . , S2r are called the syndromes of the received data. 

error values in these locations eij # 0. Then 

k=O 

Suppose that r has u errors in it which are at locations i 1, iz, . . . , i v ,  with corresponding 

U U 

Let 
XI = a'/. 

Then we can write 
U 
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For binary codes we have ejl = 1 (if there is a non-zero error, it must be to 1). For the 
moment we restrict our attention to binary (BCH) codes. Then we have 

!J 

sj = Ex/.  
I=1 

If we know X I ,  then we know the location of the error. For example, suppose we know that 
X1 = a4. This means, by the definition of X I  that i l  = 4; that is, the error is in the received 
digit r4. We thus call the X1 the error locators. 

The next stage in the decoding problem is to determine the error locators X I  given the 
syndromes S,  . 

6.3.2 The Error Locator Polynomial 

From (6.4) we obtain the following equations: 

S2t = x y  + x,2t + . . . + x f .  
The equations are said to be power-sum symmetricfunctions. This gives us 2t equations in 
the u unknown error locators. In principle this set of nonlinear equations could be solved 
by an exhaustive search, but this would be computationally unattractive. 

Rather than attempting to solve these nonlinear equations directly, a new polynomial is 
introduced, the error locator polynomial, which casts the problem in a different, and more 
tractable, setting. The error locator polynomial is defined as 

!J 

A(x) = n(l - X I X )  = AUxu + AU-1Xu-' + * . .  + AlX + Ao, (6.6) 

where A0 = 1. By this definition, if x = X,' then A ( x )  = 0; that is, the roots of the error 
locator polynomial are at the reciprocals (in the field arithmetic) of the error locators. 

1=1 

Example 6.11 Suppose in G F (  16) we find that x = a4 is a root of an error locator polynomial A(x). 
0 Then the error locator is (a4)-' = al l ,  indicating that there is an error in r l l .  

6.3.3 Chien Search 

Assume for the moment that we actually have the error locator polynomial. (Finding the 
error locator polynomial is discussed below.) The next step is to find the roots of the error 
locator polynomial. The field of interest is G F ( q m ) .  Being a finite field, we can examine 
every element of the field to determine if it is a root. There exist other ways of factoring 
polynomials over finite fields (see, e.g., [25,360]), but for the fields usually used for error 
correction codes and the number of roots involved, the Chien search may be the most 
efficient. 

Suppose, for example, that u = 3 and the error locator polynomial is 

A(x) = A0 + Alx + A2x2 + A3x3 = 1 + A ~ x  + A2x2 + A3x3. 
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We evaluate A(x) at each nonzero element in the field in succession: x = 1, x = a, 
x = a2, . . . , x = a4m-2. This gives us the following: 

A(1) = 1 + Ai(1) + A2(1)2 + A3(1)3 

A(a)  = 1 + Ai(a )  + A ~ ( u ) ~  + A3(a)3 

A(a2)  = 1 + Al(a2) + A2(a2)2 + 

A(a4m-2)  = 1 + A ~ ( u ~ ~ - ~ )  + A2(a4m-2)2 + A ~ ( G X ~ " - ~ ) ~ .  

The computations in this sequence can be efficiently embodied in the hardware depicted in 
Figure 6.1. A set of u registers are loaded initially with the coefficients of the error locator 
polynomial, A1 , A2, . . . , A,,. The initial output is the sum 

U 

A = C A j  = A(x) - 11,=1. 

If A = 1 then an error has been located (since then A(x) = 0). At the next stage, each register 
is multiplied by a j ,  j = 1,2,  . . . , v, so the register contents are Ala ,  A2a2, . . . , A,,a'. 
The output is the sum 

j=1 

V 

A = C A j a j  = A(x) - llx=a. 
j= l  

The registers are multiplied again by successive powers of a, resulting in evaluation at cz2 .  
This procedure continues until A ( x )  has been evaluated at all nonzero elements of the field. 

A .. 
I ..- 

Figure 6.1 : Chien search algorithm. 

If the roots are distinct and all lie in the appropriate field, then we use these to determine 
the error locations. If they are not distinct or lie in the wrong field, then the received word is 
not within distance t of any codeword. (This condition can be observed if the error locator 
polynomial of degree v does not have v roots in the field that the operations take in; the 
remaining roots are either repeated or exist in an extension of this field.) The corresponding 
error pattern is said to be an uncorrectable error pattern. An uncorrectable error pattern 
results in a decoder failure. 
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6.4 Finding the Error Locator Polynomial 

Let us return to the question of finding the error locator polynomial using the syndromes. 
Let us examine the structure of the error locator polynomial by expanding (6.6) for the case 
v = 3: 

A ( x > =  l - x ( X 1  + X 2 + X 3 ) + x 2 ( X 1 X 2 + X 1 X 3  + X ~ X ~ ) - X ~ X ~ X Z X ~  

= A0 + x A 1 +  x 2 A 2  + x 3 A 3  

so that 

In general, for an error locator polynomial of degree v we find that 

That is, the coefficient of the error locator polynomial Ai is the sum of the product of all 
combinations of the error locators taken i at a time. Equations of the form (6.7) are referred 
to as the elementary symmetricfunctions of the error locators (so called because if the error 
locators { X i }  are permuted, the same values are computed). 

The power-sum symmetric functions of (6.5) provide a nonlinear relationship between 
the syndromes and the error locators. The elementary symmetric functions provide a non- 
linear relationship between the coefficients of the error locator polynomial and the error 
locators. The key observation is that there is a linear relationship between the syndromes 
and the coefficients of the error locator polynomial. This relationship is described by the 
Newton identities, which apply over any field. 

Theorem 6.11 The syndromes (6.5) and the coeficients of the error locatorpolynomial are 
related by 
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That is, 

k = l :  S l + A l = O  

k = 2 :  S2+AlS1+2A2=0  

For k > v, there is a linear feedback shiji register relationship between the syndromes and 
the coeflcients of the error locator polynomial, 

(6.10) 

The theorem is proved in Appendix 6.A. 
Equation (6.10) can be expressed in a matrix form 

. .  

The v x v matrix, which we denote M v ,  is a Toeplitz matrix, constant on the diagonals. 
The number of errors v is not known in advance, so it must be determined. The Peterson- 
Gorenstein-Zierler decoder operates as follows. 

1. Set v = t .  

2.  Form Mu and compute the determinant det(M,) to determine if Mu is invertible. If 

3. If Mu is invertible, solve for the coefficients A1, A2, . . . , A,.  

it is not invertible, set v t v - 1 and repeat this step. 

6.4.1 Simplifications for Binary Codes and Peterson’s Algorithm 

For binary codes, Newton’s identities are subject to further simplifications. nS, = 0 if n is 
even and nSj = S j  if n is odd. Furthermore, we have S2j = Sj”, since by (6.4) and Theorem 
5.15 

V / u  \ 2  
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We can thus write Newton’s identities (6.9) as 

S 1 + A l  = O  

S3 + A1S2 + A 2 S 1 +  A3 = 0 

S2t-1 + A1S2t-2 + * * -  + AtSf-1 = 0, 

which can be expressed in the matrix equation 

1 0 0 0 ... 0 0  
s 2  s 1  1 0 . * .  0 0 
s4 s3 s 2  s1 * . *  0 0  

S2t-4 S2t-5 S2t-6 S2t-7 * . *  ff-2 st-3 
,S2t-2 S2t-3 S2t-4 S2t-S * . *  st st-1 

] , (6.11) 

4 2 r - 1  

or A h  = -S. If there are in fact t errors, the matrix is invertible, as we can determine 
by computing the determinant of the matrix. If it is not invertible, remove two rows and 
columns, then try again. Once A is found, we find its roots. This matrix-based approach to 
solving for the error locator polynomial is called Peterson’s aZgorithm for decoding binary 
BCH codes. 

For small numbers of errors, we can provide explicit formulas for the coefficients of 
A ( x ) ,  which may be more efficient than the more generalized solutions suggested below 
[238]. 

1-error correction A 1 = S1. 

2-error correction A1 = S1, A 2  = (S3 + S!)/(Sl). 

3-error correction A 1  = S1, A 2  = (S:S3 + S5)/(S: + S3), A3 = (S: + S3) + S1A2. 

4 error correction 
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For large numbers of errors, Peterson’s algorithm is quite complex. Computing the 
sequence of determinants to find the number of errors is costly. So is solving the system 
of equations once the number of errors is determined. We therefore look for more efficient 
techniques. 

Example 6.12 Consider the (3 1,21) 2-error correcting code introduced in Example 6.2, with generator 
g ( x )  = x 10 + x 9 + x 8 + x6 + x 5  + x 3  + 1 having roots at a, a2, a3 and a4. Suppose the codeword 

c ( x )  = l+x 3 4 5 6  + x  + x  + x  + x ~ + x ~ ~ + x ~ ~ + x ~ ~ + x ~ ~ + x ~ ~ + x ~ ~ + x ~ ~ + x ~ ~ + x ~ ~ + ~ ~ ~  

is transmitted and 

r ( x )  = l + x  3 5 6  + x  + x  + x * + x ~ ~ + x ~ ~ + x ~ ~ + x ~ ~ + ~ ~ ~ + ~ ~ ~ + x ~ ~ + x ~ ~ + x ~ ~  

is received. The syndromes are 

3 4 s1 = r(a) = a17 s2 = r(a2)  = a3 s3 = r (a  ) = 1 s4 = r (a  ) = a6, 

Using the results above we find 

so that A ( x )  = 1 + a17x + a22x2.  The roots of this polynomial (found, e.g., using the Chien search) 
are at x = a13 and x = a27. Specifically, we could write 

A(x) = a 2 2 ( ~  + al3)(x + a27). 

The reciprocals of the roots are at 
4 and 18, 

and a4, so that the errors in transmission occurred at locations 

e ( x )  = x4 + x18. 

It can be seen that r ( x )  + e ( x )  is in fact equal to the transmitted codeword. 0 

6.4.2 Berlekamp-Massey Algorithm 

While Peterson’s method involves straightforward linear algebra, it is computationally com- 
plex in general. Starting with the matrix A in (6.11), it is examined to see if it is singular. 
This involves either attempting to solve the equations (e.g., by Gaussian elimination or 
equivalent), or computing the determinant to see if the solution can be found. If A is sin- 
gular, then the last two rows and columns are dropped to form a new A matrix. Then the 
attempted solution must be recomputed starting over with the new A matrix. 

The Berlekamp-Massey algorithm takes a different approach. Starting with a small 
problem, it works up to increasingly longer problems until it obtains an overall solution. 
However, at each stage it is able to re-use information it has already learned. Whereas as the 
computational complexity of the Peterson method is 0 (u3), the computational complexity 
of the Berlekamp-Massey algorithm is O(u2).  

We have observed from the Newton’s identity (6.10) that 
U 

5’. J -  - ->:AiSj-i ,  j = v + 1 , ~  + 2 ,  ..., 2t.  (6.12) 
i = l  
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This formula describes the output of a linear feedback shift register (LFSR) with coefficients 
Al,  Az, . . . , A". In order for this formula to work, we must find the A j  coefficients in 
such a way that the LFSR generates the known sequence of syndromes S1, S2, . . . , Szr. 
Furthermore, by the maximum likelihood principle, the number of errors v determined 
must be the smallest that is consistent with the observed syndromes. We therefore want to 
determine the shortest such LFSR. 

In the Berlekamp-Massey algorithm, we build the LFSR that produces the entire se- 
quence {Sl, S2,. . . , Szt} by successively modifying an existing LFSR, if necessary, to 
produce increasingly longer sequences. We start with an LFSR that could produce S1. 
We determine if that LFSR could also produce the sequence {Si, Sz}; if it can, then no 
modifications are necessary. If the sequence cannot be produced using the current LFSR 
configuration, we determine a new LFSR that can produce the longer sequence. Proceed- 
ing inductively in this way, we start from an LFSR capable of producing the sequence 
(Sl, S2, . . . , &-I}  and modify it, if necessary, so that it can also produce the sequence 
{ S1, S2,  . . . , Sk } . At each stage, the modifications to the LFSR are accomplished so that the 
LFSR is the shortest possible. By this means, after completion of the algorithm an LFSR 
has been found that is able to produce {Sl , S2, . . . , S2t} and its coefficients correspond to 
the error locator polynomial A (x) of smallest degree. 

Since we build up the LFSR using information from prior computations, we need a 
notation to represent the A(x) used at different stages of the algorithm. Let Lk denote the 
length of the LFSR produced at stage k of the algorithm. Let 

Ack1(x) = 1 + Arklx +. . . + AF!xLk 

be the connection polynomial at stage k ,  indicating the connections for the LFSR capable 
of producing the output sequence {Sl, S2, . . . , sk}. That is, 

L1 

, k. (6.13) 
i=l 

Note: It is important to realize that some of the coefficients in AFkl(x) may be zero, so 
that Lk may be different from the degree of ACkl (x). In realizations which use polynomial 
arithmetic, it is important to keep in mind what the length is as well as the degree. 

At some intermediate step, suppose we have a connection polynomial A[k-'](x) of 
length Lk-1 that produces {Sl, Sz,  . . . , &-I} for some k - 1 < 2t .  We check if this 
connection polynomial also produces s k  by computing the output 

Lk-l 

i k  = - C AZk-l1Sk-i. 
i=l 

If & is equal to s k ,  then there is no need to update the LFSR, so h r k l ( x )  = ALk-'I(x) and 
Lk = Lk-1. Otherwise, there is some nonzero discrepancy associated with A[k-'](x), 

i=l i=O 

In this case, we update the connection polynomial using the formula 
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where A is some element in the field, 1 is an integer, and A[m-'l(x) is one of the prior 
connection polynomials produced by our process associated with nonzero discrepancy d,. 
(Initialization of this inductive process is discussed in the proof of Theorem 6.13.) Using 
this new connection polynomial, we compute the new discrepancy, denoted by dk, as 

i=O i =O 

Now, let 1 = k - m .  Then, by comparison with the definition of the discrepancy in (6.14), 
the second summation gives 

i =O 

Thus, if we choose A = -d;'dk, then the summation in (6.16) gives 

d; = dk - dGidkdm = 0. 

So the new connection polynomial produces the sequence { S1, S2, . . . , s k  } with no discrep- 
ancy. 

6.4.3 Characterization of LFSR Length in Massey's Algorithm 

The update in (6.15) is, in fact, the heart of Massey's algorithm. If all we need is an algorithm 
to find a connection polynomial, no further analysis is necessary. However, the problem 
was to find the shortest LFSR producing a given sequence. We have produced a means of 
finding an LFSR, but have no indication yet that it is the shortest. Establishing th s  requires 
some additional effort in the form of two theorems. 

Theorem 6.12 Suppose that an LFSR with connectionpolynomial A[k-'](x)  of length Lk-i 
produces the sequence { Si , Sz,  . . . , s k -  1 }, but not the sequence [Sl , S2, . . . , S k } .  Then any 
connection polynomial that produces the latter sequence must have a length Lk satisfying 

Lk k - Lk-1. 

Proof The theorem is only of practical interest if Lk-1 < k - 1; otherwise it is trivial to 
produce the sequence. Let us take, then, Lk-1 < k - 1. Let 

ALk-lI(x) = 1 + Ar-']x + . . . + AfkIflXLk-l 

represent the connection polynomial which produces {Si, . . . , & - I }  and let 

Atkl(x)  = 1 + Ark1x + . . * + Af;xLk 

denote the connection polynomial which produces [Sl , S2,  . . . , sk}. Now we do a proof by 
contradiction. 

Assume (contrary to the theorem) that 

Lk 5 k - 1 - Lk-1. (6.17) 
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From the definitions of the connection polynomials, we observe that 

and 
Lb 

- c A i k l S j - i  = S j  j = L k  + 1, L k  + 2, . . . , k. (6.19) 
i=l  

In particular, from (6.19), we have 

i=l 

The values of Si involved in this summation range from Sk-1 to S k - L k .  The indices of these 
Values form a set (k - L k ,  k - L k  + 1, . . . , k - 1). By the (contrary) assumption made in 
(6.171,wehavek-Lk p Lk-1+1,sothatthesetofindices{k-Lk,k-Lk+l,. . ., k - 1 )  
are a subset of the set of indices { L k - l +  1, 2, . . . , k - l} appearing in (6.18). Thus 
each s k - i  appearing on the right-hand side of (6.20) can be replaced by the summation 
expression from (6.18) and we can write 

i=l i=l  j = 1  

Interchanging the order of summation we have 

Lb-1 Lb 

Now setting j = k in (6.18), we obtain 

Lk-I  

(6.21) 

(6.22) 

In this summation the indices of S form the set {k - L k - 1 ,  . . . , k - 1). By the (contrary) 
assumption (6.171, L k  + 1 5 k - L k - 1 ,  so the sequence of indices {k - L k - 1 ,  . . . , k - 1) 
is a subset of the range L k  + 1, . . . , k of (6.19). Thus we can replace each s k - i  in the 
summation of (6.22) with the expression from (6.19) to obtain 

Lk- I 

i=l  j = l  

Comparing (6.21) with (6.23), the double summations are the same, but the equality in 
the first case and the inequality in the second case indicate a contradiction. Hence, the 
assumption on the length of the LFSRs must have been incorrect. By this contradiction, we 
must have 

L k  3 k - L k - 1 .  

If we take this to be the case, the index ranges which gave rise to the substitutions leading 
to the contradiction do not occur. 0 
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Since the shortest LFSR that produces the sequence [Sl, S2, . . . , Sk} must also produce the 
first part of that sequence, we must have Lk 2 Lk-1. Combining this with the result of the 
theorem, we obtain 

Lk 2 maX(Lk-1, k - Lk-1). (6.24) 

We observe that the shift register cannot become shorter as more outputs are produced. 
We have seen how to update the LFSR to produce a longer sequence using (6.15) and 

have also seen that there is a lower bound on the length of the LFSR. We now show that 
this lower bound can be achieved with equality, thus providing the shortest LFSR which 
produces the desired sequence. 

Theorem 6.13 In the update procedure, ifArk](x) # Alk-ll(x), then a new LFSR can be 
found whose length satisfies 

Lk = maX(Lk-1, k - Lk-1). (6.25) 

Proof We do a proof by induction. To check when k = 1 (which also indicates how to get 
the algorithm started), take LO = 0 and A[O](x) = 1. We find that 

dl = S1. 

If S1 = 0, then no update is necessary. If S1 # 0, then we take ArmI(x) = A[O](x) = 1, so 
that I = 1 - 0 = 1. Also, take d ,  = 1. The updated polynomial is 

A['](x) = 1 + Six, 

which has degree L 1 satisfying 

L1 = max(L0,l - Lo) = 1. 

In this case, (6.13) is vacuously true for the sequence consisting of the single point [Sl). 

with L,-1 < Lk-1 that can produce the sequence [Sl, S2, . . . , 
[Sl, S2, . . . , Sm} .  Then 

Now let A[m-'](~), m < k - 1, denote the lust connection polynomial before Ark-'](x) 
but not the sequence 

L, = Lk-1; 

hence, in light of the inductive hypothesis (6.25), 

L ,  = m - L,-1 = Lk-1, or L,-1 - m = -&-I. (6.26) 

By the update formula (6.15) with 1 = k - m, we note that 

Lk = max(Lk-1, k - m + L,-1). 

Using Lm-1 - m from (6.26) we find that 

Lk = maX(Lk-1, k - Lk-1). 

0 
In the update step, we observe that the new length is the same as the old length if Lk-1 _> 
k - Lk-1, that is, if 

2Lk-1 2 k. 

In this case, the connection polynomial is updated, but there is no change in length. 
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The shift-register synthesis algorithm, known as Massey’s algorithm, is presented first 
in pseudocode as Algorithm 6.1, where we use the notations 

C ( X )  = ALkl(x) 

to indicate the “current” connection polynomial and 

p ( x )  = ALm-’](x) 

to indicate a “previous” connection polynomial. Also, N is the number of input symbols 
( N  = 2t for many decoding problems). 

Algorithm 6.1 Massey’s Algorithm 

Input: s1, $2, . . . , S N  
Initialize: 
L = 0 (the current length of the LFSR) 
c(x) = 1 (the current connection polynomial) 
p ( x )  = 1 (the connection polynomial before last length change) 
1 = 1 (1 is k - m, the amount of shift in update) 
dm = 1 (previous discrepancy) 
fork = 1 to N 

d = s k  + c:=, C i s k - j  (compute discrepancy) 
if (d  = 0) (no change in polynomial) 

else 
1 = 1 + 1  

if (2L ? k) then (no-length change in update) 
C(X) = C(X) - dd;’x‘p(x)  
1 = 1 + 1  

else (update c with length change) 
t (x) = c(x) (temporary storage) 
C(X) = C(X) - dd;’x‘p(x)  
L = k - L  
A x )  = t ( x )  

1 = 1  
end 

end 
end 

Example 6.13 For the sequence S = { 1, 1, 1 , 0, 1 , 0, 0) the feedback connection polynomial obtained 
by a call to m a s  s e y is [ 1, 1 , 0, 1 }, which corresponds to the polynomial 

c ( ~ )  = 1 + x  +x3. 

Thus the elements of S are related by 

sj = sj-1 + S j - 3 ?  

for j ? 3. Details of the operation of the algorithm are presented in Table 6.5. 
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Table 6.5: 
~1 .1 .1 .0 .1 .0 .0~ .  

Evolution of the Berlekamp-Massey Algorithm for the Input Sequence 

2 1 0 l + x  1 1  2 1  
3 1 0 l + x  1 1  3 1  
4 0 1 1+X+X3 3 l + x  1 1 
5 1 0 1 + x + x 3  3 l + x  2 1 

7 0 0 1+X+X3 3 l + x  4 1 
6 0 0 1 + x + x 3  3 l + x  3 1 

Example 6.14 For the (31,21) binary double-error correcting code with decoding in Example 6.12, 
let us employ the Berlekamp-Massey algorithm to find the error locating polynomial. Recall from 
that example that the syndromes are S1 = a17,  S2 = a3, S3 = 1, and S4 = a6. Running the 
Berlekamp-Massey algorithm over GF(32) results in the computations shown in Table 6.6. The final 
connection polynomial c ( x )  = 1 + a17x + a22x2 is the error location polynomial previously found 
using Peterson's algorithm. (In the current case, there are more computations using the Berlekamp- 
Massey algorithm, but for longer codes with more errors, the latter would be more efficient.) 

Table 6.6: Berlekamp-Massey Algorithm for a Double-Error Correcting Code 
k s k  dk C ( X )  L P b )  1 dm 
1 417 a17 1 + 4 ' 7 x  1 1  1 417 

2 4 3  0 1 + 4 ' 7 x  1 1  2 417 

3 1 4 8  1 + a ' 7 x + a 2 2 x 2  2 1 + a 1 7 x  1 4 8  

4 a6 0 1 + a ' 7 x + 4 2 2 x 2  2 1 + a ' 7 x  2 4 8  

6.4.4 Simplifications for Binary Codes 

Consider again the Berlekamp-Massey algorithm computations for decoding a BCH code, 
as presented in Table 6.6. Note that dk is 0 for every even k. This result holds in all cases 
for BCH codes: 

Lemma 6.14 When the sequence of input symbols to the Berlekamp-Massey algorithm are 
syndromes from a binary BCH code, then the discrepancy dk is equal to 0 for  all even k 
(when 1-based indexing is used). 

As a result, there is never an update for these steps of the algorithm, so they can be merged 
into the next step. This cuts the complexity of the algorithm approximately in half. A 
restatement of the algorithm for BCH decoding is presented below. 

Algorithm 6.2 Massey's Algorithm for Binary BCH Decoding 

Input: S1, S2, . . . , SN, where N = 2t 
Initialize: 
L = 0 (the current length of the LFSR) 
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C ( X )  = 1 (the current connection polynomial) 
p ( x )  = 1 (the connection polynomial before last length change) 
1 = 1 (1 is k - m, the amount of shift in update) 
dm = 1 (previous discrepancy) 
fork = 1 to N in steps of 2 

d = s k  + c:=, ci Sk-i (compute discrepancy) 
if (d = 0) (no change in polynomial) 

else 
1 = 1 + 1  

if (2L 2 k )  then (no-length change in update) 
1 1  C ( X )  = C ( X )  - dd& x P ( X )  

1 = 1 + 1  
else (update c with length change) 

t ( x )  = C ( X )  (temporary storage) 
C ( X )  = C ( X )  - dd&’x’p(x) 
L = k - L  
P ( X )  = t ( x )  
dm = d 
1 = 1  

end 
end 
2 = 1 + 1; (accounts for the values of k skipped) 

end 

Example 6.15 Returning to the (31,21) code from the previous example, if we call the BCH-modified 

we obtain the results in Table 6.7. Only two steps of the algorithm are necessary and the same error 
0 

Berlekamp-Massey algorithm with the syndrome sequence S1 = 

locator polynomial is obtained as before. 

S2 = (Y 3 , S3 = 1, and S4 = a6, 

Table 6.7: Berlekamp-Massey Algorithm for a Double-Error Correcting code: Simplifica- 
tions for the Binary Code 

k Sk d k  C ( X >  L P ( X >  1 d m  

o ,17 ,17 1 + a 1 7 x  1 1  2 a17  

2 1 1 + a 1 7 x + a 2 2 x 2  2 1 + a 1 7 x  2 

The odd-indexed discrepancies are zero due to the fact that for binary codes, the syn- 
dromes S j  have the property that 

( S j > 2  = ~ 2 j .  (6.27) 

We call this condition the syndrome conjugacy condition. Equation (6.27) follows from 
(6.4) and freshman exponentiation. 

For the example we have been following, 
3 2  6 s; = (a ) = a  = s4. 17 2 sf = (a ) = a 3  = s 2  

Example 6.16 We now present an entire decoding process for the three-error correcting (15,5) binary 
code generated by 

g(X) = 1 + X  + X 2  + x 4  + + X 8  + X 1 o .  
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Suppose the all-zero vector is transmitted and the received vector is 

r = (0, 1,0,  1,0 ,0 ,0 ,0 ,  1 ,  0, 0, 0, 0,  0,O). 

Thenr(x)  = x + x 3  +x8. 

Step 1 Compute the syndromes. Evaluating r ( x )  at x = a ,  a2 ,  . . . , a6 we find the syndromes 

s 1 = J 2  s 2 = a 9  s3=a  s4=a3 s5 = o  s6 = a6. 

Step 2 Compute the error locator polynomial. 
A call to the binary Berlekamp-Massey algorithm yields the following computations. 

3 ,3 a2 1 + , 1 2 ~ + , 5 ~ 2  2 1+a% 2 a 2  

5 0 a 2  1 + , 1 2 x + a 1 0 x 2 + a 1 2 x 3  3 1 + a l 2 x + f f 5 , 2  2 a 2  

The error locator polynomial is thus 

A ( x )  = 1 + + .lox2 + a12x3. 

Step 3 Find the roots of the error locator polynomial. Using the Chien search function, we find roots 
at a7, and a14. Inverting these, the error locators are 

XI =a8 x 2 = a 3  x 3 = a ,  

indicating that errors at positions 8, 3, and 1. 
Step 4 Determine the error values: for a binary BCH code, any errors have value 1. 
Step 5 Correct the errors: Add the error values (1) at the error locations, to obtain the decoded vector 

0 
of all zeros. 

6.5 Non-Binary BCH and RS Decoding 

For nonbinary BCH or RS decoding, some additional work is necessary. Some extra care 
is needed to find the error locators, then the error values must be determined. 

From (6.3) we can write 

~2~ = ei, X? + ei2Xf + . . . + e i , ~ ? .  

Because of the ej, coefficients, these are not power-sum symmetric functions as was the 
case for binary codes. Nevertheless, in a similar manner it is possible to make use of an 
error locator polynomial. 

Lemma 6.15 The syndromes and the coeflcients of the error locator polynomial A ( x )  = 
A0 + Alx 4- . . . + Avx" are related by 

A u S j - v  + Au-1Sj -v+l  + * * .  + A1Sj-1 + Sj = 0. (6.28) 
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Proof Evaluating the error locator polynomial A(x) = n:==, (1 - X i X )  at an error locator 
XI 3 

Multiplying this equation by ej, X{ we obtain 

e i l X / A ( X r l )  = ejl(A,X/-’  + A,-1X1 

A(X,’) = 0 = AuXC” + AU-1X:-’ + ... + AIXF1 + Ao. 

j + l - u  +.  - .  + AlX;-’ + AoX;) = 0 (6.29) 

Summing (6.29) over 1 we obtain 

U 
0 = C eil (AUX/-’  + A,-l x j + l - u  + . . * + AIX;-’ + AoX:) 

l=1 
1J U U 

1=1 i=l 1=1 1=1 

In light of (6.3), the latter equation can be written as 

AuSj-, + Au-1Sj-v+l + * . *  + AISj-1 + AoSj = 0. 

0 
Because (6.28) holds, the Berlekamp-Massey algorithm (in its non-binary formulation) 

can be used to find the coefficients of the error locator polynomial, just as for binary codes. 

6.5.1 Forney’s Algorithm 

Having found the error-locator polynomial and its roots, there is still one more step for 
the non-binary BCH or RS codes: we have to find the error values. Let us return to the 
syndrome, 

!J 

1=1 

Knowing the error locators (obtained from the roots of the error locator polynomial) it is 
straightforward to set up and solve a set of linear equations: 

However, there is a method which is computationally easier and in addition provides us a key 
insight for another way of doing the decoding. It may be observed that the matrix in (6.30) 
is essentially a Vandermonde matrix. There exist fast algorithms for solving Vandermonde 
systems (see, e.g., [121]). One of these which applies specifically to this problem is known 
as Forney ’s algorithm. 

Before presenting the formula, a few necessary definitions must be established. A 
syndrome polynomial is defined as 

2t-1 

S(x) = s1 + s2x + s3x2 ’ . . + &n2t-l = c S j + l X j .  (6.31) 
j =O 
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Also an error-evaluator polynomial Q ( x )  is defined' by 

1 a ( x )  = S(x )A(x )  (mod I (6.32) 

This equation is called the key equation. Note that the effect of computing modulo x~~ is 
to discard all terms of degree 2t or higher. 

Definition 6.5 Let f ( x )  = f o  + f i x  + f2x2 + . . . + ftx' be a polynomial with coefficients 
in some field IF .  The formal derivative f ' ( x )  of f ( x )  is computed using the conventional 
rules of polynomial differentiation: 

f ' ( x )  = f l  + 2 f i x  + 3 f3x2 + . . . + t f tx '- l ,  (6.33) 

where, as usual, m f i  for m E Z and f i  E IF  denotes repeated addition: 

mfi = f i  + fi + . . . + fi . 
i-.-y----/ 

m summands 

0 
There is no implication of any kind of limiting process in formal differentiation: it 

simply corresponds to formal manipulation of symbols. Based on this definition, it can be 
shown that many of the conventional rules of differentiation apply. For example, the product 
rule holds: 

If f ( x )  E IF[x], where IF is a field of characteristic 2, then f ' ( x )  has no odd-powered terms. 
[ f  (x)g(x)l' = f ' ( x )g(x> + f (x>g'(x). 

Theorem 6.16 (Forney's algorithm) The error values for a Reed-Solomon code are com- 
puted by 

(6.34) 

where A'(x) is the formal derivative of A(x) .  

Proof First note that over any ring, 
2t-1 

( 1 - X 2 f ) = ( 1 - X ) ( 1 + X + X 2 + - + X 2 t - 1 )  = ( I -  x )  c x j .  (6.35) 
j =O 

Observe: 
Q ( x )  = S(x )A(x )  (mod x2') 

2r-1 v 

V 2t-1 

1=1 j =O i=l 

- Xix)  (mod x2'). 
j =O 

'Some authors define S(x )  = Six + S2x2 + . . . + &x2', in which case they define Q ( x )  = (1 + S ( x ) ) A ( x )  
(mod x2'+')  and obtain eik = - X k Q ( X ~ ' ) / A ' ( X L ' ) .  
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From (6.35), 
2r-1 

( 1  - X l X )  C ( X 1 X ) j  = 1 - (xlx)2' 

j =O 

Since ( X I X ) ~ '  (mod = 0 we have 
v 

S ( X ) A ( X )  (mod x2') = C e i l X 1  n(l - X i x ) .  
/=1 i#l 

Thus 
v 

1=1 i #l 

The trick now is to isolate a particular eik on the right-hand side of this expression. 
Evaluate s2 ( x )  at x = X k '  : 

v 

1=1 i #/ 

Every term in the sum results in a product that has a zero in it, except the term when I = k ,  
since that term is skipped. We thus obtain 

a(x,') = eikXk n ( 1  - XiX; ' ) .  
i #k 

We can thus write 
w;9 

t?ik = 
X k  n i # k ( l  - x i x i ' ) '  

Once Q ( x )  is known, the error values can thus be computed. 
computational simplifications. 

The formal derivative of A ( x )  is 

Then 

i #k 

Substitution of this result into (6.36) yields (6.34). 

(6.36) 

However, there are some 

- X i X ) .  

17 

Example 6.17 WorkingoverGF(8) inacode wheret = 2, suppose S ( x )  = a6+a3x+a4x2+a3x3. 
We find (say using the B-M algorithm and the Chien search) that the error locator polynomial is 

A ( X )  = 1 + a2x  + a x 2  = (1 + a3x) (1  + d x ) .  

That is, the error locators (reciprocals of the roots of A ( x ) )  are X1 = a3 and X2 = a5. We have 

Q ( x )  = (a6+a3x+a 4 2  x +a 3 3  x )(1+a2x+ax2) (mod x 4 )  = (a6+x+a4x5) (mod x 4 )  = a6+x 
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Using the error locator X 1  = a3 we find 

e3 = a4 + a5(a3)-1 = a 

e5 = a 4 + a5(a5)-1= 2. 
and for the error locator X 2  = a5, 

The error polynomial is e ( x )  = ax3 + ~ 5 x 5 .  0 

Example 6.18 We consider the entire decoding process for (15,9) code of Example 6.8, using the 
message and code polynomials in Example 6.10. Suppose the received polynomial is 

r ( x )  = a8 + a 2 x  + ,13,2 + a3x3 + a5x4 + a x 5  + 2 x 6  + a x 7  + ,,8 + (2x9 + ,320 

+ a 4 P  + a9x12 + a V 3  + ,5,14. 
(Errors are in the underlined positions.) 

The syndromes are 

s1 = r (a)  = a13 s2 = r(a2)  = a4 s3 = r(a3) = a8 

s4 = r(a4) = a2 s5 = r(a5) = a3 & = r(a6) = a8 

so 
S ( x )  = a13 + a4x + a8x2 + 2 x 3  + a3x4 + 2 3 x 5  

and the error locator polynomial determined by the Berlekamp-Massey algorithm is 

A ( x )  = 1 + a3x + a1'x2 + a9x3. 

The details of the Berlekamp-Massey computations are shown in Table 6.8. 

Table 6.8: Berlekamp-Massey Algorithm for a Triple-Error Correcting Code 
k s k  dk C ( X >  L P ( X )  1 dm 
1 413 413 1 +a'3x 1 1  1 4 1 3  

2 a4 413 1 +a% 1 1  2 413 

3 4 8  a! 1 +46x+43x2 2 1 +a% 1 4  
4 a2 a5 1 +a12x+a'2x2 2 1 +a% 2 4  
5 a3 do  1 +a12x +a8x2+x3 3 1 +a% +a'2x2 1 410 

6 c8 a5 1 +a3x+a11x2+u9x3 3 1 +cd2x+(u '2~2 2 cx10 

The roots of A ( x )  are at a ,  a7 and a13, so the error locators (the reciprocal of the roots) are 

x1 =a14 x 2 = 2  x3=a2,  

corresponding to errors at positions 14,8, and 2. The error evaluator polynomial is 

! 2 ( x ) = a  13 + x + a V .  
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Then the computations to find the error values are: 

x 1  = d4 : s2(x;l) = a6 A ' ( x ; ~ )  = a5 e14 = a  

~2 = a 8  : Q(X; ' )  = a2 A ' ( x ; ~ )  = a13 eg = a  4 

~3 = a2 : ~ 2 x 3 ~ )  = a13 A ' ( x ; ~ )  = a11 e2 = a  2 

The error polynomial is thus 

and the decoded polynomial is 

e ( x )  = a  2 2  x + a  4 8  x +ax14 

a8 + a2x  + d 4 x 2  + .3x3 + 2 x 4  + ax5 + a8x6 + ax7 + 2 + a5x9 + a 3 P  

+ a 4 x 1 1  + a9x12 + a W 3  + , 2 2 4 .  

which is the same as the original codeword c(x) .  0 

6.6 Euclidean Algorithm for the Error Locator Polynomial 

We have seen that the Berlekamp-Massey algorithm can be used to construct the error 
locator polynomial. In this section, we show that the Euclidean algorithm can also be 
used to construct error locator polynomials. This approach to decoding is often called the 
Sugiyama algorithm [324]. 

We return to the key equation: 

Q ( x )  = S(x)A(x) (mod x21). (6.37) 

Given only S(x) and t ,  we desire to determine the error locator polynomial A (x) and the error 
evaluator polynomial C2 (x). As stated, this problem seems hopelessly underconstrained. 
However, recall that (6.37) means that 

O(x>(x2' )  + A(x)S(x) = S2(x) 

for some polynomial O(x) .  (See (5.16).) Also recall that the extended Euclidean algorithm 
returns, for a pair of elements ( a ,  b) from a Euclidean domain, a pair of elements (s, t )  such 
that 

as + bt = c, 

where c is the GCD of a and b. In our case, we run the extended Euclidean algorithm to 
obtain a sequence of polynomials O [ k ] ( ~ ) ,  ACk](x) and C2CkI(x) satisfying 

O C k 1 ( ~ ) ~ 2 r  + A ' k l ( ~ ) S ( ~ )  = Qtkl(x). 

This is exactly the circumstance described in Section 5.2.3. Recall that the stopping criterion 
there is based on the observation that the polynomial we are here calling C2 (x) must have 
degree < t .  

The steps to decode using the Euclidean algorithm are summarized as follows: 

Compute the syndromes and the syndrome polynomial S(x) = S1 + S2x + . . . + 
s2rx2r-l. 

Run the Euclidean algorithm with a(x) = x2r and b(x) = S(x), until deg(ri (x)) < t .  
Then Q ( x )  = r j ( x )  and A(x) = t j ( x ) .  

Find the roots of A(x) and the error locators Xi. 
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4. Solve for the error values using (6.34). 

Actually, since A ( x )  has A0 = 1, it may be necessary to normalize, A ( x )  = ti (X)/ti (0). 

Example 6.19 For the syndrome polynomial 

S(x) = a!13 + a4x + a8x2 + a2x3 + a3x4 + 2 x 5  

of the triple-emor correcting polynomial of Example 6.18, let 

4 x 1  = x6 b(x) = S(x). 

Then calling the Euclidean algorithm to stop when the degree of i i  ( x )  is less than 3 yields 

14 6 
S j ( X )  = a! + a! x + 2 x 2  

ti (x) = 1 + a3x + 
ri (x) = a! 

+ a9x3 
13 + x + a2x2. 

The error locator polynomial is 

A(x) = t i ( x ) =  1+a!3~+a!11~2+a9x3 ,  

as before. 0 

In terms of computational efficiency, it appears that the Berlekamp-Massey algorithm 
procedure may be slightly better than the Euclidean algorithm for binary codes, since the 
Berlekamp-Massey deals with polynomials no longer than the error locator polynomial, 
while the Euclidean algorithm may have intermediate polynomials of higher degree. How- 
ever, the computational complexity is probably quite similar. Also, the error evaluator 
polynomial s2 ( x )  is automatically obtained as a useful byproduct of the Euclidean algo- 
rithm method. 

6.7 Erasure Decoding for Nonbinary BCH or RS codes 

Erasures and binary erasure decoding were introduced in Section 3.8. Here we describe 
erasure decoding for nonbinary BCH or RS codes. 

Let the received word r have v errors and f erasures, with the errors at i 1, i2, . . . , i, and 
the erasures at j 1 ,  j 2 ,  . . . , j f .  We employ error locators as before, X I ,  X Z ,  . . . , X u ,  with 
Xk = atk.  Now introduce erasure locators 

y1 =a]' y2 = aJZ . . . Y f  = a J f .  

The decoder must find: the errors locators X k ,  the error values eik at the error locations, and 
values at the erasures fjk . 

We begin by creating an erasure locator polynomial, 

r(x) = - Yl.X>, 
f 

1=1 

which is known, since the erasure locations are known. 
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Since received symbol values are necessary to compute the syndromes, it is convenient to 
(temporarily) fill in the erased symbol locations with zeros. Then (assuming for convenience 
a narrow sense code) 

V f 

= C e j k X L  + C f i k y ; ,  I = 1,2,  .. . , 2 t  
zeros at erasures k,l k=l 

As before, we create a syndrome polynomial, 

2r-1 

l=O 

and create the key equation 

A(x) [ r ( x ) S ( x ) ]  = Q ( x )  (mod x2 ' ) .  

Letting 
E(x) = r ( x ) S ( x )  (mod xZr) 

be used to represent the data that are known once the syndromes are computed, we can write 
the key equation as 

A ( x ) Z ( x )  = Q ( x )  (mod x2'). 

This key equation has exactly the same form as that in (6.32). Thus, any of the decoding 
algorithms already introduced can be used to solve the key equation for A(x) (e.g., the 
Berlekamp-Massey algorithm or the Euclidean algorithm), using E(x) in place of S ( x )  
in these algorithms. If the Berlekamp-Massey algorithm is used, then the input is the 
coefficients Eo, E 1 ,  & - I ,  in place of S 1 ,  S 2 ,  . . . , &. If the Euclidean algorithm is used, 
set a(x)  = x2' and b(x) = E(x) and stop when 

Once A ( x )  is known, its roots are found (as usual). The error and erasure values can then 
be found using a modification of Forney's algorithm. The polynomial 

@(XI = A ( x ) r ( x ) ,  

called the combined error/erasure locator polynomial is computed. Then 

Q ( Y L l )  W k l )  
Qf (X , ' )  Qf(YL1) .  

and fjk = -- erk = - 

[ erase .mag J Example 6.20 For a triple-error correcting (t = 3) Reed-Solomon code over GF(16), suppose that 

T ( X )  = a 5 x 1 '  + a6x9 + Ex7 + Ex6 + a 1 1 x 5  + x4 + a1 'x3  + a6x2  + a12, 

where E denotes that the position is erased. The erasure locations are thus at j l  = 7 and j 2  = 6, the 
erasure locators are Y1 = a7 and Y2 = a6. The erasure locator polynomial is 

r ( x ) = ( i - a 6 x ) ( i - a 7 x ) = i + a  10 x + a  13 2 . 

Let 
f ( x )  = r ( x )  lerasures removed 

= a 5 x l 1  + a6x9 + a112 + x4 + a11x3  + a 6 2  + a 1 2 .  
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The syndromes are 

2 s1 = ?(a) = 1 s;! = ?(a ) = 0 s3 = f(a3) = a9 

s 4  = ?(a4) = a!12 ss = ?(a5)  = CX2 s6 = ?(a6) = a8, 

so S(X) = 1 + a 9 x 2  + aI2x3 + a 2 x 4  + a 8 x 5 .  Let 

E(x) = r ( x ) S ( x )  mod x2' = a13x5 + a2x4 + a 6 x 3  + a!10x2 + a l 0 x  + 1 

By Berlekamp-Massey or Euclid, we find that 

A(x) = 1 + a!"x, 

which has aroot atx = a4, so there is an error at i l  = 11 andX1 = a l l .  We find 

Q ( x )  = A ( x ) % ( x )  mod x2r = a7x7 + + 1 

and 
@(x)  = A(x)r(x) = a 9 x 3  + x 2  + a14x + 1 .  

The error value is 

The decoded polynomial is 

E ( X )  = a6x9 + ax7 + d 4 X 6  + a112 + x4 + a11x3 + a6x2 + a12 

6.8 Galois Field Fourier Transform Methods 

Just as a discrete Fourier transform can be defined over real or complex numbers, so it 
is possible to define a Fourier transform over a sequence of Galois field numbers. This 
transform yields valuable insight into the structure of the code and new decoding algorithms. 

Recall (see, e.g., [253]) that the discrete Fourier transform (DFT) of a real (or complex) 
vector x = (xo, x i ,  . . . , xn-1)  is the vector X = ( X o ,  X i ,  . . . , X n - 1 )  with components 

n-1 

j =O 

(where i = &i) and that the inverse DFT computes the elements of x from X by 
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The quantity e-2Riln is a primitive nth root of unity, that is, a complex number with order 
n. In a similar way, we can define a discrete Fourier transform of length n over a finite field 
having an element of order n. 

Definition 6.6 Let v = ( v g ,  v1, . . . , u n - l )  be a vector over G F ( q )  of length n such that 
n q m  - 1 for some positive integer m.  Let a E G F ( q m )  have order n.  The Galois Field 
Fourier Transform (GFFT) of v is the vector V = (VO, V1, . . . , Vn-1) with components 

n-1 

vj = C a i j v j  j = 0, I , .  . . , n  - 1. (6.38) 
i=O 

We write V = F[v] and v + V to denote the Fourier transform relationship between v and 
0 V, where the type of Fourier transform (a GFFT) is obtained from the context. 

Theorem 6.17 In a field G F ( q )  with characteristic p ,  the inverse GFFT of the vector 
V = (Vo, V1, . . . , Vn-l) is the vector v with components 

n-1 

j =O 

where n-l  is the multiplicative inverse of n modulo p .  

Proof [373, p. 1941 Note that ct is a root of x" - 1. We can write 

xn - 1 = (n - 1)(x"-1 + x n - 2  + * .  . + x + 1). 

Evaluating x n  - 1 at x = ar for some integer r we have 

- 1 = (an)' - 1 = 0. 

If r f 0 (mod n ) ,  then a' must be a zero of (xn- l  + x " - ~  + - .  . + x + 1). We therefore 
have 

n-1 

Z a r j  = O  r $ 0  (modn). 
j  =O 

When r = 0 (mod n)  we get 

n-1 n-1 

Ca'j = El = n (mod p ) .  
j =O j  =O 

Substituting (6.38) into (6.39), 

n-1 n-1 n-1 

v.  J -  - C ,-ij C vk 
j  =O j =O k=O 

n-1 n-1 

k=O j=O 

= vjn (mod p ) .  

Multiplying both sides by n-l (mod p )  we obtain the desired result. 
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Cyclic convolution of the sequences a = (ao, a l ,  . . . , an-l) and b = (bo, bl, . . . , bn-1) is 
denoted by 

c = a @ b ,  

where o denotes cyclic convolution. The elements of c in the convolution are given by 
n-1 

k=O 

where ((i  - k ) )  is used as a shorthand for (i  - k )  (mod n) .  That is, the indices in i - k “wrap 
around” in a cyclic manner. One of the most important results from digital signal processing 
is the convolution theorem; as applied to the DFT it says that the D l T  of sequence obtained 
by cyclic convolution of a and b is the element-by-element product of the DFTs of a and b. 
An identical result holds for the GFFT. 

Theorem 6.18 If 
a e A  

b e B  

c e c  
are all sequences of length n in a jn i t e j e ld  G F ( q )  such that n I 4”’ - 1 for some m, then 

Cj = A j B j  j = O , l ,  ..., n - 1  

ifand only if 

(cyclic convolution) - that is, 

c = a @ b  

n-1 

Ci  = akb((i-k)). 
k=O 

Furthermore, 

if and only if 

that is, 

c, = ajb,  j = 0, 1, . . . , n - 1 

C = n-’A @ B; 

n-1 

k=O 

Proof [373, p. 1951 We prove the first part of the theorem. We compute the inverse GFFT 
of c: 

n-1 n-1 

n-1 /n-1 \ n-1 n-1 

j=O \k=O 1 k=O j = O  

n-1 

= x a k b ( ( i - k ) ) -  
k=O 
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Let us now turn our attention from vectors to polynomials. 

Definition 6.7 The spectrum of the polynomial (codevector) v ( x )  = vo + v ~ x  + . - * + 
0 

We refer to the original vector v = (vo, u1, . . . , vn-1) as a vector in the "time domain" 
(even though time has nothing to do with it) and its corresponding transform V as being in 
the "frequency domain." 

vn-lxn-l  is the GFFT of v = (vo, 2 1 1 , .  . . , ~ ~ - 1 ) .  

Given a polynomial v ( x ) ,  note that 

n-1 

v ( a j )  = vo + v1aj + vza2J + * * .  + u n - l a ( n - l ) j  = c vjaij = vj. (6.40) 

Thus, the j th  component of the GFFT of v is obtained by evaluating v ( x )  at x = a'. Let 
us also define a polynomial based on V = (Vo, V1, . . . , Vn-1) by 

i =O 

V ( x )  = vo + v1x + v2x2 + . * * + vn-1x"-l 

Then 

n-1 

V (&)  = vo + vla-i + v2(y-2i + . . . + Vn-la-(n-1)i - - c Via-'j = nvi. (6.41) 
j  =O 

Based on (6.40) and (6.41), we can immediately prove the following theorem. 

Theorem 6.19 aj is a zero of v ( x )  ifand only ifthe jthfrequency component of the spectrum 
of v ( x )  equals zero. 

is a Zero of V ( x )  ifand only ifthe ith time component vj of the inverse transform v 
of V equals zero. 

Recall the basic idea of a minimal polynomial: a polynomial p ( x )  has its coefficients in 
the base field G F ( 4 )  if and only if its roots are conjugates of each other. We have a similar 
result for the GFFP 

Theorem 6.20 [373, p. 1961 Let V be a vector of length n over GF(qm),  where n 1 qm - 
1 and GF(qm)  has characteristic p. The inverse transform v of V contains elements 
exclusively from the subjeld G F(q )  if and only if 

vq (mod p )  Vqj(modn), j = 0, 1 , .  . . , n  - 1. 
I 

Proof Recall that in GF(p ' ) ,  

(a + b)p' = up' + bPr . 
Also recall that an element f i  E GF(qm)  is in the subfield G F ( q )  if and only if f i q  = f i .  

Let vi E GF(q) .  Then 

/ n - 1  \ q  n-1 n-1 

/ i=o i =O 
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Conversely, assume V p  = V q j  (mod n )  . From the definition of the GFFT, 

and 

hence 
n-1 n-I 

i d  i =O 

Let k = q j  (mod n).  Since n = q m  - 1, q and n must be relatively prime, so that as j 
ranges from 0 to n - 1, k takes on all values in the same range, so we conclude the zli = us. 

0 

Example 6.21 Let us illustrate the idea of the spectrum of a polynomial by considering the spectra of 
the minimal polynomials in G F(8) .  The conjugacy classes and their minimal polynomials are shown 
here: 

Conjugacy Class Minimal Polynomial 
(01 M - ( X )  = x 

{a0} 
{a,  a2, a41 
( a 3 , a 5 , a 6 ]  

Mo(x) = x + 1 
M~ = (x - a) (x  - a2) (x  - a 4 )  = .3 + + 1 
M 3 ( x )  = (x - a  3 )(x - a 6 ) ( x  - a 5 )  = x 3  + x2 + 1 

Now let us find the GFFT of the sequences obtained from the coefficients of the polynomials: 

2 3 4 5 6  M - ( x )  : F(0100000) = (.')go = (1, a,  01 , a  , a , a  , a  ) 

~(ioiiooo) = (1 + a 2 j  + a3j):=0 = (I, a4, a, 0, 01 2 , o,o). 

M ~ ( ~ )  : ~(1100000) = (1 + ~ , i ) q = ~  = (o,& d ,  5 4 2  , , a  

: ~ ( i i o i o o o )  = (1 + a j  + a3j):=0 = (1,0,0, 014, 0, a2, a )  

~ ~ ( 4  : 

Note that the positions of the zeros in the spectra correspond to the roots of the minimal polynomials. 
0 

We can now state the BCH bound in terms of spectra: 

Theorem 6.21 [373, p .  1971Let n 1 q m  - 1 for some m. A q-ary n-tuple with weight 5 6 - 1 
that also has 6 - 1 consecutive zeros in its spectrum must be the all-zero vector That is, 
the minimum weight of the code is 2 6. 

Proof Let c have weight v, having exactly nonzero coordinates at i l ,  i 2 ,  . . . , i , .  Define the 
locator polynomial A(x)  whose zeros correspond to the nonzero coordinates of c: 

A(x) = (1 - X U - " ) ( ~  - ~ ~ l l - " ) .  (1 - = A0 + Alx + * .  . + A,x". 

We regard this polynomial as a polynomial in the frequency domain. The inverse transform 
of A(x) (i.e., its coefficient sequence) is a time domain vector X that has zero coordinates 
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in the exact positions where c has nonzero coordinates. Also, at the positions where C i  = 0, 
the hi are not zero. Thus cjhi = 0 for all i . By the convolution theorem we must therefore 
h a v e C @ h  = O .  

Assume c has weight 5 6 - 1, while C has 6 - 1 consecutive zeros (possibly consecutive 
by "wrapping around" the end of the vector C in a cyclic manner). From the definition, 
A0 = 1. Cyclic convolution in the frequency domain gives us 

n-1 

k=O 

so 

Substituting the sequence of S - 1 zeros into Ci gives Ci = 0; proceeding forward from 
that index shows that all the Cis are 0, so that C = 0. 0 

Based on our transform interpretation, we have the following definition (construction) for 
a Reed-Solomon code: A Reed-Solomon code can be obtained by selecting as codewords 
all vectors whose transforms have S - 1 = 2t consecutive zeros. That is, a vector c is 
a codeword in a code with minimum distance 2t + 1 if its transform C = F[c] has a 
consecutive sequence of 2t zeros (where the sequence of zeros starts from some fixed index 
in the transform vector). 

This definition of the code can be used to establish another encoding mechanism for 
Reed-Solomon codes. Given a message sequence m = (mo, m l ,  . . . , mk-I), form the 
vector 

Then the corresponding codeword is 

c = F-l [C] , 

However, this encoding is not systematic. 

6.8.1 Equivalence of the Two Reed-Solomon Code Constructions 

In Section 6.2, two seemingly inequivalent constructions were presented for Reed-Solomon 
codes. Based on Theorem 6.21, a Reed-Solomon codeword has a consecutive sequence of 
2t = dmin - 1 zeros in its GFFT. We furthermore know that the minimum distance of a 
Reed-Solomon code is d ~ n  = n - k + 1. We now show that the codewords constructed 
according to Construction 1 (Section 6.2.1) have a consecutive sequence of n - k zeros in 
their spectrum, as required. 

Let m ( x )  = mo + m l x  + . . . + mk-1xk-l and let the codeword constructed according 
to Construction 1 be 

c = (m(l),m(a), . . . ,m(a"-l)) ,  

(6.42) 
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Now compute the GFFT of c as 
n-1 

where the index - j  is to be interpreted cyclically (which is legitimate, since an = 1). 
Substituting from (6.42) into the transform, 

n-1 k-1 k - 1  rn-1 1 

i=O 1=0 1=0 Li=o J 
The inner summation is 0 if 1 # j (mod n).  This is the case for - j  = k, k + 1, . . . , n - 1, 
which is n - k consecutive values of j .  Thus, there are n - k consecutive zeros in the GFFT 
of every codeword. 

6.8.2 Frequency-Domain Decoding 

We present in this section one way of using the GFFT to decode a BCH or Reed-Solomon 
code. Let r = c + e be a received vector and let R, C, and E denote the corresponding 
transformed vectors. By the linearity of the transform we have 

R = C + E ,  

where 
n-I 

i=O 

Assume the code is a narrow sense code. Then the first 2t coordinates of C are equal to 
zero, so that R j  = Ej for j = 0, 1, . . . ,2t - 1. (These are the syndromes for the decoder.) 
Completion of the decoding requires finding the the remaining n - 2t coordinates of E, after 
which we can find e by inverse GFFT. 

Let A(x) = fly=1 (1 - X l x ) ,  treating the coefficients as a spectrum A. The inverse 
transform X = 3-' [A] yields a vector which has zeros at the coordinates corresponding to 
the zeros of A ( x ) ,  so X has a zero wherever e is nonzero. Thus 

h i e i = O ,  i = O , l ,  . . . ,  n - 1 .  

Translating the product back to the frequency domain, we have by the convolution formula 
A O E = O , o r  

n-1 

C A k E ( ( j - k ) )  = 0, j = 0, 1,.  . . , T Z  - 1. 
k=O 

Now assume that u errors have occurred, so that the degree of A(x) is u. Then Ak = 0 for 
k > u. We obtain the familiar LFSR relationship 

11 

or, since Ao = 1, 
v 

(6.43) 
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This expresses an LFSR relationship between the transformed errors E j and the coefficients 
of the error locator polynomial. Given the 2t known values of the transformed errors 
{Eo, E l ,  . . . , Ezt-I},  the error locator polynomial can be found using any of the methods 
described previously (such as the Berlekamp-Massey algorithm or the Euclidean algorithm). 
Knowing the Ai coefficients, the remainder of the Ej  values can be found using (6.43). 
Then knowing E, the error vector in the “time” domain can be found by an inverse Fourier 
transform: e = F-’ [El. Note that unless a fast inverse Fourier transform is available, this 
is essentially the same as a Chien search. 

6.9 Variations and Extensions of Reed-Solomon Codes 

In this section we briefly describe several variations on Reed-Solomon and BCH codes. 
More detail can be found in [220]. 

6.9.1 Simple Modifications 

Several simple modifications are possible, of the sort described in Section 3.9. 
An (n, k )  Reed-Solomon code can bepunctured by deleting any of its symbols, resulting 

in a (n - 1, k )  code. 
An (n, k )  Reed-Solomon code C can be extended by adding additional parity check 

symbols. A code is singly extended by adding a single parity symbol. Interestingly enough, 
a single-extended Reed-Solomon code is still MDS. To see this, let c = (co, c l ,  . . . , cq-2) 

be a codewords from a (q  - 1, k )  q-ary narrow-sense t-error correcting code and let 

q--2 

cq-1 = - C c j  

be an overall parity check digit. Then an extended codeword is (co, c1, . . . , cg-l) .  To see 
that this extended code is still MDS, we must show that the distance has, in fact, increased. 
To thls end, suppose that c has, in fact, minimum weight ddn in C. Let c(x) be corresponding 
code polynomial. The generator for the code is 

j =O 

2 2t g ( x )  = (x - a) (x  - a ) * . . (x - a ). 

Now 
a-2 

c(1) = c c i .  
i=O 

If c(1) # 0, then cq-i # 0, so the new codeword in the extended code has minimum 
distance dmin + 1. If c(1) = 0, then c(x) must be of the form c(x) = u ( x ) ( x  - l)g(x) for 
some polynomial u ( x ) .  That is, c ( x )  is a code polynomial in the code having generator 

g’(x) = (x - l)(x - a)(x - a2). . . (x - 2). 
By the BCH bound, this code must have minimum distance dd, ,  + 1. Since the new code 
is (n + 1, k )  with minimum distance dmin + 1, it is MDS. 

It is also possible to form a double-extended Reed-Solomon code which is MDS [220]. 
However, these extended codes are not, in general, cyclic. 



6.9 Variations and Extensions of Reed-Solomon Codes 277 

6.9.2 Generalized Reed-Solomon Codes and Alternant Codes 

Recall that according to Construction 1 of Reed-Solomon codes, codewords are obtained 
by 

c = (m( l ) ,  m(a),  . . . ,m(a"-')). (6.44) 

Now choose a vector v = (v1, v2, . . . , v n )  whose elements are all nonzero. Then a gener- 
alization of (6.44) is 

c = (vlm(l>, vzm(a) ,  . . . , vnm(an-'>>. 

Somewhat more generally, we have the following. 

Definition 6.8 Let a! = (a1, a2, . . . , an) be n distinct elements of G F ( q m )  and let v = 
( ~ 1 ,  v2, . . . , v,) have nonzero (but not necessarily distinct) elements from G F ( q m ) .  Then 
the generalized RS code, denoted by GRSk(a!, v), consists of all vectors 

( v lm(a l ) ,  v2m(a2), * * * 9 vnm(an>> 

as m ( x )  ranges over all polynomials of degree < k. 0 
The G R & ( a ,  v) code is an (n, k) code and can be shown (using the same argument as 

The parity check matrix for the GRSk(a!, v) code can be written as 
for Construction 1) to be MDS. 

Y1 y2 . . .  

, y - l  
n Yn 1 H = [  W Y l  a2y2 - * -  

, y - l  
1 Y 1  q l Y 2  ... 

1 
(6.45) 

Here, y = ( y l ,  y2 ,  . . . , y n )  with yi E GF(qm) and yi # 0, is such that G R & ( a ,  v)' = 
GRSn-k(a, Y). 

If H = X Y  is a parity check matrix, then for an invertible matrix C, I? = CXY is an 
equivalent parity check matrix. 

While the elements of codewords of a GRSk(a!, v) code are in general in GF(qm),  it is 
possible to form a code from codewords whose elements lie in the base field G F ( q ) .  

Definition 6.9 An alternant code A(a, y) consists of all codewords of GRSk(a!, v) 
whose components all lie G F ( q ) .  (We say that A(a, y) is the restriction of GRSk(a!, v) 
to GF(q) . )  That is, &(a!, y) is the set of all vectors c E GF(q)" such that Hc = 0, for H 
in (6.45). Another way of saying this is that A is the subfield subcode of GRSk(a,  v). 0 

Since we have an expression for a parity check matrix for the GRS code, it is of interest 
to find a parity check matrix for the alternant code. That is, we want to find a parity check 
matrix over G F ( q )  corresponding to the parity check matrix H over G F ( q m ) .  This can 
be done as follows. Pick a basis al ,  a2, . . . , am for GF(q") over G F ( q ) .  (Recall that 
GF(qm) can be written as a vector space of elements of G F ( q ) . )  A convenient basis set is 
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{l, a, a2,  . . . , am-'),  but any linearly independent set can do. Then, for each element Hij 

of H, write 
m 

E=l 

where each hijl E GF(q) .  Now define H to be the (n  - k)m x n matrix obtained from H 
by replacing each entry Hij by the column vector of components in (hijl, hij2, . . . , hijm), 
so that 

- 
H =  

It can be argued that the dimension of the code must satisfy k 2 n - mr.  
One of the important properties about alternant codes is the following: 

Theorem 6.22 [220, p .  3341 &(a, y) has minimum distance dmin 2 n - k + 1. 
Proof Suppose c is a codeword having weight 5 r = n - k .  Then H c  = XYc = 0. Let 
b = Yc. Since Y is diagonal and invertible, wt(b) = wt(c). Then Xb = 0. However, X is 

0 
In summary, we have a code of length n,  dimension k 2 n - mr and minimum distance 
d,,,i,, 2 n - r .  

The family of alternant codes encompasses a variety of interesting codes, depending on 
how the field and subfield are chosen. BCH and Reed-Solomon codes are alternant codes. 
So are Goppa codes, which are described next. 

a full-rank Vandermonde matrix, so this is impossible. 

6.9.3 Goppa Codes 

Goppa codes start off with a seemingly different definition but are, in fact, instances of 
alternant codes. 

Definition 6.10 Let L = [a1,a2,. ..,a,} where each ai E GF(qm).  Let G(x)  E 
GF(qm)[x]  be the Goppa polynomial, where each ai E L is not a root of G .  That is, 
G(ai)  # 0 for all ai E L. For any vector a = (a l ,  a2, . . . , a n )  with elements in GF(q)  , 
associate the rational function 

n 

Ra(x) = C G- 
i=l 

ai 

Then the Goppa code r(L, G )  consists of all vectors a E GF(4)" such that 

Ra(x)  0 (mod G ( x ) ) .  

If G(x)  is irreducible, then r ( L ,  G )  is an irreducible Goppa code. 

(6.46) 

0 
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As we will see, Goppa codes have good distance properties: d ~ n  ? deg(G) + 1. 
Goppa codes are linear codes. The parity check matrix can be found using (6.46), which 

can be re-expressed as: &(x) = 0 in the ring GF(qm)[x] /G(x) .  Note that in this ring, 
x - ai does have an inverse, since it does not divide G(x).  The inverse is 

(6.47) 

as can be shown by observing that 

by applying the definition of =. Let G(x)  = 
long division and collection of terms that 

gix' with gr # 0. It can be verified by 

+ g 2 ( ~  + ai) + gl. 

(6.48) 

Substituting (6.47) into (6.46), we have that a is in r ( L ,  G )  if and only if 

(6.49) 

us apolynomiul (and not just modulo G(x)). Since the polynomial must be 0, the coefficients 
of each x i  must each be zero individually. Substituting (6.48) into (6.49) and equating each 
of the coefficients of xr-l, , . . . , 1 toO,weseethataisinr(Z, G)ifandonlyif H a  = 0, 
where 

H =  

I ( g l  + a 1 8 2 + . . . + a ; - l g r ) G ( a l ) - '  ' 1 .  ( g l  +a,g :!+...+a~-'gr)G(an)-' 

1 G(ai)- = 0 Lai (3x1 - 
X - aj 

i=l 

gr G (a1 1-l ... glG(an)-' 
(gr-1 + algr)G(aI)-' ... (gr-1 + angr)G(an)-' 

ar-l ,r-1 2 " '  an r - 1 1  
1 
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or H = C X Y .  Since C is lower triangular with a nonzero along the diagonal, C is invertible. 
It follows that an equivalent parity check matrix is 

1 .  G(al)-' . . . G (an >-l 

G(al)-' . . * anG(an1-l - 
H = X Y =  L ~ ; - ' G ( c x ~ ) - '  . * *  a;-'G(an)-' 

We observe from the structure of the parity check matrix (compare with (6.45)) that the 
Goppacodeisanalternantcode,withy = (G(al)- ' ,  . . . , G(an)-'). Infact,itcanbeshown 
that the r ( L ,  G )  code can be obtained as the restriction to GF(q)  of the GRSn-,(a, v) 
code, where 

G (ai 1 
V j  = 

nj+<ai -a,). 

6.9.4 Decoding Alternant Codes 

Efficient algorithms exist for decoding alternant codes [220, Section 12.91. These exactly 
parallel the steps used for decoding Reed-Solomon codes: (1) A syndrome is computed (the 
details are somewhat different than for RS codes); (2) An error locator polynomial is found, 
say, using the Berlekamp-Massey or the Euclidean algorithm; (3) The roots are found; and 
(4) Error values are computed if necessary. A decoding algorithm for Goppa codes also 
appears in 12561. 

6.9.5 Cryptographic Connections: The McEliece Public Key Cryptosystem 

In this section we present another connection between error correction coding and cryptog- 
raphy. In this case, we show how an error correction code can be used to make a public key 
encryption system. The original system was based on Goppa codes (hence its inclusion in 
this context), but other codes might also be used. 

The person A wishing to communicate picks an irreducible polynomial G ( x )  of degree 
t over GF(2m) "at random" and constructs the generator matrix G for the (n ,  k )  Goppa 
code using G(x) .  This code is capable of correcting any pattern of up to t errors. Note that 
there are efficient decoding algorithms for this code. 

Now A scrambles the generator G by selecting a random dense invertible k x k matrix S 
and a random n x n permutation matrix P. He computes 6 = SG P. A message m would 
be encoded using this generator as 

E = (mS)GP = (mG)P.  

Since P simply reorders the elements of the codeword corresponding to the message m, 
the code with generator 6 has the same minimum distance as the code with generator G. 
The public key for this system is the scrambled generator 6. The private key is the set 
(S, G, PI. 

Encryption of a message m is accomplished using the public key by computing 

e = m G + z ,  

where z is a random "noise" vector of length n and weight t .  e is transmitted as the encrypted 
information. 
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Because the encoding is not systematic and there is noise added, the message is not 
explicitly evident in e. The encrypted message m could be discovered if e could be decoded 
(in the error correction coding sense). However, the scrambled matrix z! no longer has the 
algebraic structure that provides an efficient decoding algorithm. Optimal decoding without 
some structure to exploit can have NP-complete complexity [24]. Hence, a recipient of e 
can recover m only with extreme effort. 

Decryption of e knowing (S, G ,  P ) ,  however, is straightforward. Knowing P ,  first 
compute 6 = eP-' . Note that while the noise is permuted, no additional noise terms are 
added. Now decode using a fast Goppa decoder, effectively getting rid of the noise z, to 
obtain the scrambled message m = mS. Finally, invert to obtain m = mS-'. 

Programming Laboratory 6: 
Programming the Berlekamp-Massey 
Algorithm 

Background 

Reading: Sections 6.4.2, 6.4.3,6.4.4. 
The Berlekamp-Massey algorithm provides one of the 

key steps in the decoding of BCH or Reed-Solomon codes. 
Specifically, it provides a means to determine the error- 
locating polynomial given the syndromes. 

We have encountered LFSRs in previous labs: in binary 
form in Lab 2 and in the context of the Sugiyama algorithm 
in Lab 4 .  The problem addressed by the Berlekamp-Massey 
algorithm is to find the coefficients {cl , c2, . . . , c u }  satisfy- 
ing (6.12) with the smallest u.  (The Sugiyama algorithm 
introduced in Lab 4 provides another solution to this same 
problem.) The LFSR coefficients are represented in a poly- 
nomial, the connection polynomial 

2 c(x)  = 1 + c1x + c2x + . . . + cux'. 

The Berlekamp-Massey algorithm is described in Algorithm 
6.1 on page 258. Simplifications for binary BCH codes are 
presented in Algorithm 6.2 on page 259. 

Assignment 

Preliminary Exercises 

1) For operations in Z5, work through the Berlekamp- 
Massey algorithm for the sequence { 2 , 3 , 4 , 2 , 2 , 3 } .  Verify 
that the sequence of connection polynomials is 

Initial: c =  1 L = O  
k = l  c = 1 + 3 x  L = l  
k = 2  c = l + x  L = l  

L = 2  
k = 4  c = 1 + 2 x  L = 2  
k = 5  c = 1 + 2 x + 2 x 2 + 2 x 3  L = 3  
k = 6  c = 1 + 3 x + 4 x 2 + 2 x 3  L = 3  

k = 3  c = l + x + 4 x  2 

2) For operations in G F ( 2 ) ,  work through the Berlekamp- 
Massey algorithm for the sequence { 1 ,  1 ,  1, 0, 1, 0, 0). Ver- 
ify that the sequence of connection polynomials is 

Initial: 
k = l  
k = 2  
k = 3  
k = 4  
k = 5  
k = 6  
k = 7  

c = l  L = O  
c = l + x  L = l  
c = l + x  L = l  
c = l + x  L = l  
c = l + x + x 3  L = 3  
c = l + x + x 3  L = 3  
c = l + x + x 3  L = 3  
c = l + x + x 3  L = 3  

3) For operations in G F ( 2 4 ) ,  work through the 
Berlekamp-Massey algorithm for the sequence 
10, a3,  a4, a7}. Verify that the sequence of connection 
polynomials is 

Initial: c = 1 L = O  
k = l  c = l  L = O  

k = 3  c = 1 + a x + a 3 x 2  L = 2  
k = 4  c = l + ( ~ x + a ~ O x ~  L = 2  

k = 2  c = l + a 3 , 2  L = 2  

Programming Part 

1) Write a function berlmass which: Either 

0 Accepts a sequence of numbers of arbitrary type and re- 
turns a connection polynomial for an LFSR generating that 
sequence. The function should have the following declara- 
tion: 

template <class T> polynomialT<T> 
berlmass(const T* s ,  int n); 
/ I  Accept a sequence s of type T and length n 
/ /  (s[Ol .. . sLn-11) 
/ I  and return a connection polynomial c of 
/ I  shortest length generating that sequence. 

0 Or, accepts an array of numbers of arbitrary type and an 
argument into which the coefficients of the connection poly- 
nomial are written. The function should have the following 
declaration: 
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template <class T >  void 
berlmass2(const T* s, int n, T* c, int& L )  
/ /  s = input coefficients s[Ol,s[ll, . . .  s[n-11 
/ /  c = connection polynomial coefficients. 
/ /  (Must be allocated prior to calling) 
/ /  L = degree of connection polynomial 

You may want to create a class BCH which encapsulates one 
of these functions. (See the discussion below.) The dif- 
ference between these is that the first form deals explicitly 
with the polynomial, while the second deals only with the 
coefficients. Tradeoffs between these are discussed below. 
2) Test your function using the examples from the prelim- 
inary exercises. 

Algorithm 6.3 Test BM Algorithm 
File: testBM. cc 

3) Over GF(16) verify that the sequence 
{a8, a, aI3, a2, a5 ,  a l l }  is generated by the LFSR with 
connection polynomial 1 + a', + a 2 x 2 .  

4) Over GF(16) verify that the sequence 
{O, 0, a5, 0,1, a''} is produced by 1 + a10x2 + a 5 x 3 .  

5) Write a function berlmassBCH which accepts data 
satisfying the syndrome conjugacy condition (6.27) and 
computes the connection polynomial using the reduced 
complexity algorithm. Test your algorithm by verifying 
that: 

a) For the sequence 11, 1, a", 1, a", a'} the connec- 
tion polynomial is 1 + x + a5x3, with computations over 

b) For the sequence {a14, a13, 1, a", a5 ,  l} the con- 
nection polynomial is 1 + aI4x + a1'x2 + ~ 1 ~ x 3 ,  with 
computations over ~ ~ ( 2 4 ) .  

G F (24). 

Resources and Implementation Suggestions 

Two implementations are suggested for the algorithms, one 
which employs polynomials and the other which employs 
arrays. The polynomial implementation is somewhat eas- 
ier to write than the array implementation, since the single 
statement 

c = c - ( p  <i shift)*(d/dm); 

suffices to provide the update in (6.15). The algorithm out- 
lined in Algorithm 6.1 can thus be almost literally translated 
into C++. 

mial c(x)  is less than the expected de ee L. However, L 
should not be modified. The mpact o&s is that when the 
discrepancy is computed, the actual degree of c ( x )  should 
be used, not L.  The discrepancy can be computed as in the 
following piece of code: 

/ /  compute the discrepancy 
/ /  in the polynomial implementation 
d = s[kl; 
for(j=l; j <= c.getdegree0; j+t) ( / /  sum 

\ 
d t= c[j]*s[k-j]; 

The other thing to be aware of is that there is internal 
memory allocation and deallocation that takes place when- 
ever a polynomialT is assigned to a polynomialT of 
different degree. This introduces an operational overhead 
to the algorithm. 

Which brings up the array form: By implementing the 
operations explicitly using arrays, the overhead of memory 
management can be (almost) eliminated and only a little 
more work is necessary. For example, the update formula 
(6.15) can be represented using a simple loop: 

/ /  update the polynomial 
for(j = shift; j <= L; j t t )  { 

c[j] -= p[j-shift]*ddm; 
/ /  Compute: c = c - (p<< shift)*(d/dm); 

1 

The function must have passed to it an array of sufficient 
size to hold the polynomial. Also, it must allocate arrays of 
sufficient size to represent the largest possible t and p poly- 
nomials, then de-allocate them on exit. However, there is a 
caution associated with this implementation: if the function 
is called repeatedly, the prior data in c does mess up the 
computations. Additional care is necessary to ensure that 
terms that should be 0 actually are - the simple loop above 
does not suffice for this purpose. 

This brings up the final implementation suggestion: the 
function would be most cleanly represented using a class 
with internal storage allocation. Then the necessary inter- 
nal space could be allocated once upon instantiation of an 
object then used repeatedly. You may therefore want to 
write it this way (and use arrays internally). 
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Programming Laboratory 7: 
Programming the BCH Decoder 

ObJectlve 

In this lab you implement a BCH decoder and thoroughly 
test it. 

Preliminary Exercises 

Reading: Sections 6.3,6.4. 

1) For the field G F ( z 4 )  generated by 1 + x + x4, show 
that the minimal polynomials of a ,  a3,  and a5 are 

M ~ ( ~ )  = 1 f x  +x4 

M 3 ( x )  = 1 + x  + x 2 + x 3  +x4 

M5(x) = 1 + x + x2. 
2) Show that the generator for a (15,5) three-error correct- 
ing binary BCH code is 

3) Determine the actual minimum weight of this code. 

Programming Part 

1) Write a class Chiensearch which implements the 
Chien search algorithm over GF(2m).  In the interest of 
speed, the class constructor should allocate space necessary 
for the registers as well as space for the computed roots. A 
member function should accept an error locator polynomial 
(or an array of its coefficients) and compute all the roots of 
the polynomial. 

Algorithm 6.4 Chien Search 
File: Chiensearch. h 

Ch1enSearch.c~ 
testChien.cc 

Test your algorithm by verifying that over G F ’ ( ~ ~ )  the 
roots of the error locator polynomial 

A(x) = 1 + x + u5x3 

are at a3, and a12. 

2) Build a BCH decoder class which decodes a vector of 
n binary elements. 

3) Thoroughly test your decoder on the (15,5) BCH code 
with generator 

over the field GF(24) .  You should correct all patterns of up 
to three errors. The test program in Algorithm 6.5 provides 
an exhaustive test of all patterns of three errors (with some 
duplication). 

Your finished decoder should finish without any uncor- 
rected errors. It is important to make sure that you are able 
to successfully decode all error patterns. This test is likely 
to shake out several minor problems with the functions you 
have written. After all errors are corrected, you can be quite 
confident in the functions you have written. 

Algorithm 6.5 BCH Decoder 
File: BCHdec . h 

BCHdec. cc 
testBCH.cc 

4) Modify the BCH decoder to use the reduced-complexity 
Berlekamp-Massey algorithm for BCH syndromes (the one 
described in Section 6.4.4) to find the error locator polyno- 
mial from the syndromes. Ensure that your decoder is still 
able to decode all patterns of up to three errors. 
5 )  Modify the BCH decoder to use the Sugiyama algorithm 
from lab 4 to find the error locator polynomial from the syn- 
dromes. Ensure that your decoder is still able to decode all 
patterns of up to three errors. 

Resources and Implementation Suggestions 

1) The syndromes are numbered s l ,  s2 ,  . . . , szt ,  whereas 
the discussion surrounding the Berlekamp-Massey algo- 
rithm used zero-based indexing, y o ,  y1, . . . , ~ 2 ~ - 1 .  There 
is no difficulty here: simply interpret y j  = sj+l and call 
the Berlekamp-Massey algorithm with an array such that 
the first element contains the first syndrome. 
2) If you represent the received vector as a polynomial 
polynomialT<GFNUM2m>, then evaluating it to com- 
pute the syndromes is very straightforward using the ( ) 

operator in class polynomiall. 
If you choose to represent it as an array (to avoid mem- 

ory management overhead), for efficiency the polynomial 
evaluation should be done using Homer’s rule. As an ex- 
ample, to evaluate a cubic polynomial, you would not want 
to use 
p = C[O] + c[l]*x + C[2]*X*X + c[31*x*x*x; 

since multi lications are wasted in repeatedly computing 
products of% Instead, it is better to wnte in nested form as 
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p = ( (C[3I*XtC[2] )*x+c[ll )*x+c[O]; 

This nesting can be efficiently coded as 

p = c[j=nl; 
while(j>O) 

p = p*x + c[--jl; 

3) If you use an array implementation of the Berlekamp- 
Massey algorithm (in contrast to a p o l y n o m i a l T  imple- 
mentation) you may need to take special care that the coeffi- 
cients of the connection polynomial are zeroed out properly. 

Follow-On Ideas and Problems 

The BCH codes described in this lab are narrow sense, 
in that the roots of the polynomial g(x) contain the list 
p,  82, . . . , p 2 f  for a primitive element 8. A non-narrow 
sense BCH code uses the roots 

for an arbitrary b. Describe how the decoding algorithm is 
modified for non-narrow sense BCH codes. 

Programming Laboratory 8: 
Reed-Solomon Encoding and 
Decoding 

Objective 

In this lab you are to extend the binary BCH decoder im- 
plemented in lab 7 to nonbinary Reed-Solomon codes. In 
addition, instead of simply decodingrandom errors, you will 
create a systematic encoder. 

Background 

Reading: Sections 6.3,6.4, 6.5,6.6. 

Programming Part 

1) Create a class R S e n c  which implements a Reed- 
Solomon encoder for primitive, narrow-sense codes. Verify 
that the function works by encoding the data as in Example 
6.10. Your class declaration might be as in R S e n c  . h. 

the Chien search to find the error locators and the Forney 
algorithm to find the error values. You should be able to 
use much of the code that you have written previously (the 
Berlekamp-Massey algorithm, the Chien search from the 
BCH lab) as well as create new code for the Forney algo- 
rithm. A declaration for the class might be as in R S d e c  . h. 

Algorithm 6.7 Reed-Solomon De- 
coder Declaration 
File: R S d e c  . h 

R S d e c  . cc 

After creating an R S d e c  object, a call to the decode 
member function converts the array r to the decoded array 
dec. 

3) Test your decoder by decoding 10000 patterns of up to 
three errors for the (255,249) code over the field GF(28)  
using p ( x )  = x8 + x4 + x3 + x2 + 1. A program which 
does this testing is t e s t R S .  cc. 

Algorithm 6.6 Reed-Solomon En- 
coder Declaration 
File: R S e n c .  h 

R S e n c .  cc 

Algorithm 6.8 Red-Solomon De- 
coder Testing 
File: t e s t R S  . cc 

~ ~~ ~ ~~~~~ 

2) Create a class R S d e c  which implements a Reed- 
Solomon decoder for primitive, narrow-sense codes. Use 
the Berlekamp-Massey algorithm to find A(x), followed by 

4) After you have tested and debugged your decoder, re- 
place the Berlekamp-Massey algorithm with the Euclidean 
algorithm to determine A(x) and Q ( x ) .  Test the resulting 
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algorithm as before, ensuring that many random patterns of 
up to three errors are decoded. 

5) After you have tested and debugged your encoder and 
decoder objects, you are ready to use them to protect data 
files on the computer. rsencode is program to encode 
data using a (255,255 - 2t) Reed-Solomon code, where 
t defaults to 3, but can be set using a command-line argu- 
ment. The corresponding decoderprogramis r sdecode. 

In the program, special care is taken to handle the last 
block of data, writing out the length of the block if it is less 
than 255. 

Starting with this source code, use your encoder and 
decoder objects to build complete encoder and decoder pro- 
grams, rsencode and rsdecode. Test your encoders 
and decoders on short files (< 249 bytes) and longer files. 
Test the program when the encoded data is corrupted (say, 
using the bsc program). 

Algorithm 6.9 Reed-Solomon File 
Encoder and Decoder 
File: rsencode. cc 

rsdec0de.c~ 

Algorithm 6.10 Binary Symmetric 
Channel Simulator 
File: bsc. c 

Appendix 6.A Proof of Newton's Identities 

Newton's identities relate the coefficients of a polynomial to the power sum identities ob- 
tained from the roots of the polynomial. We derive them here in the general case, then make 
application to the error locator polynomial. 

Let 

f(x) = (X - xI)(x - ~ 2 )  . . . (X - xn) 
= x" - up"-l + 02x n-2  + . . * + (-l)n-lon-lx + ( - l l n ~ n .  

The power sums are Sk = xf + x; + . . . + x,k, 
symmetric functions are 

k = 1 , 2 ,  . . . , n,  and the elementary 

Theorem 6.23 (Newton's Identities) The elementary symmetricfunctions CTk and thepower 
sum symmetricfunctions Sk are related by 

S k - a l S k - l f . . . + ( - l ) k - l a k _ l S l + ( - l )  k k a k = O  l < k e n  
(6.50) 

Sk - ulSk-1 f ' .  ' + (-1)"-'Dn-lSk-n+l + (-l)nSk-nDn = 0 k > n.  

Proof Let a; be the ith elementary symmetric function in n variables and let sf be the 
symmetric power sum function in n variables. Also, let = 1 and a? = 0 if i -= 0 or 
i > n. Then the two Newton's identities (6.8) are subsumed into the single relationship 

s; - ars;-l + . . . + (-l)k-lcri-lsT + (-l)kkm[ = 0 for allk 2 1, ( 6 . 5 1 )  
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or, more concisely, 
k-1 

[ ( - l )J~;-~o;"  + (-l)kka," = 0 for all k 2 1. (6.52) 1 
j =O 

The proof of (6.51) relies on the observations that 

s r  = s P - ' + x i ,  m = 1 ,2  ,..., n (6.53) 

and c~r = +x,aim_T', i = I , .  . . , n; m = 0 , .  . . , n. (6.54) 

The former equation is by definition and the latter is by the multiplication operation. We 
do induction on the number of variables. When m = n = 1,  (6.52) implies s: = a:, which 
is true by direct computation. Assume (6.52) is true for n - 1; we obtain the inductive 
hypothesis 

(6.55) 

Then for n, using (6.53) and (6.54), 

axc+e=A a x d f  f = B  

k-1 k- 1 

j =O j =O 
i , i  i 

b x c  b x d  

C 

The terms in A are equal to zero by (6.55). The terms in B are 

= - y ( - 1 ) k - l  n-1 
*k- 1 

using (6.55) again. The terms in C cancel each other except for one term, so that 

c = (- p x n a ; : ; .  

Thus B + C = 0 and cfzk ~g-~a;" + (-l)kka," = 0. 

Since f ( x )  is of the form f ( x )  = n:==, ( x  -Xi) and A ( x )  is of the form A(x) = n:==, ( 1  - 
X i X ) ,  it follows that A ( x )  = x " f ( l / x ) ,  so that Ai = ( - l ) i D j .  This gives the form of the 
Newton identities shown in (6.8). 
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6.1 0 Exercises 
6.1 For a binary, narrow-sense, triple error-correcting BCH code of length 15: 

(a) Compute a generator polynomial for this code. 
(b) Determine the rate of the code. 
(c) Construct the parity check matrix and generator matrix for this code. 

6.2 Find the generator g(x) for a narrow-sense, binary double-error correcting code of blocklength 

6.3 Find a generator polynomial for a narrow-sense, double-error correcting binary BCH code of 

6.4 Find a generator for a narrow-sense, double-error correcting quaternary BCH code of length 21. 
6.5 Compute the weight distribution of a double-error-correcting binary BCH code of length n = 15. 
6.6 Construct a narrow-sense Reed-Solomon code of length 15 and design distance 3. Find the 

generator polynomial and the parity-check and generator matrices. How does the rate of this 
code compare with the rate of the code found in Exercise 1.1 ? 

6.7 Compute the weight distribution of an (8,3) 8-ary MDS code. 
6.8 Show that when a MDS code is punctured, it is still MDS. Hint: Puncture, then use the Singleton 

bound. 
6.9 Show that when a MDS code is shortened, it is still MDS. Hint: Let C be MDS and let Cj be the 

subset of codewords in C which are 0 in the ith position. Shorten on coordinate i, and use the 
Singleton bound. 

6.10 [204] Show for a binary BCH t-error correcting code of length n that, if 2t + 11 n, then the 
minimum distance of the code is exactly 2t + 1. Hint: Write n = q(2t + 1) and show that 
(x" + l)/(xq + 1) is a code polynomial of weight exactly 2t + 1. See Exercise 5.55. 

6.1 1 Find g(x) for a narrow-sense, double-error correcting RS code using cr E G w 4 )  as the primitive 
element. For this code, suppose the received data produces the syndromes S1 = cr4, S2 = 0, 
S3 = a8 and S4 = a2. Find the error locator polynomial and the error locations using the 
Peterson-Gorenstein-Zierler decoder. 

6.12 For a triple-error correcting, primitive, narrow-sense, binary BCH code of length 15, suppose that 

n = 63. 

length 21. 

(a) Determine the syndromes S1, S2, S3, S4, S5, and S6. 
(b) Check that S2 = Sf, S4 = S$, and S6 = S:. 
(c) Using the Peterson-Gorenstein-Zierler algorithm, determine the error locator polynomial 

(d) Find the error locator polynomial using the (nonbinary) Berlekamp-Massey algorithm. 

(e) Find the error locator polynomial using the binary Berlekamp-Massey algorithm. Provide 

( f )  Find the error locator polynomial using the Euclidean algorithm (the Sugiyama algorithm). 

6.13 For a triple-error correcting, primitive, narrow-sense, binary BCH code of length 15, suppose that 

and the decoded codeword. 

Provide the table illustrating the operation of the Berlekamp-Massey algorithm. 

the table illustrating the operation of the Berlekamp-Massey algorithm. 

Show the steps in the operations of the algorithm. 

r ( x )  = x13 + x 9  +x4  +x3 + 1.  

(a) Determine the syndromes S1, S2, S3, S4, S5, and S6. 

(b) Check that S2 = Sf, S4 = S$, and S6 = Sz. 



288 BCH and Reed-Solomon Codes: Designer Cyclic Codes 

6.14 

6.15 

6.16 

6.17 

6.18 

6.19 

(c) Find the error locator polynomial A (x) using the (nonbinary) Berlekamp-Massey algorithm. 
Provide the table illustrating the operation of the Berlekamp-Massey algorithm. Also, find 
the factorization of A ( x ) ,  and determine the error locations and the decoded codeword. 

(d) Find the error locator polynomial using the binary Berlekamp-Massey algorithm. Provide 
the table illustrating the operation of the Berlekamp-Massey algorithm. Compare the error 
locator polynomial with that found using the Berlekamp-Massey algorithm. 

(e) Find the error locator polynomial using the Euclidean algorithm (the Sugiyama algorithm). 
Show the steps in the operations of the algorithm. Compare with the error locator polyno- 
mial found using the Berlekamp-Massey algorithm. 

For a triple-error correcting, narrow-sense, Reed-Solomon code of length 15, suppose that 

(a) Determine the syndromes S1,  S2,  S3,  S4, S5, and &j. 

(b) Find the error locator polynomial A(x) using the Berlekamp-Massey algorithm. Provide 
the table illustrating the operation of the Berlekamp-Massey algorithm. Also, find the 
factorization of A(x) and determine the error locations. 

(c) Determine the error values using Forney’s algorithm and determine the decoded codeword. 
(d) Find the error locator polynomial using the Euclidean algorithm (the Sugiyama algorithm). 

Show the steps in the operations of the algorithm. Compare with the error locator polyno- 
mial found using the Berlekamp-Massey algorithm. 

For a triple-error correcting, narrow-sense, Reed-Solomon code of length 15, suppose that 

I ( X )  = + a 3 x 7  + ax6 + a 7 x 5  + Ex4 + Ex3  + a 4 x 2  + a9x +ag, 

where E denotes that the position is erased. 

(a) Determine the erasure locator polynomial r ( x ) .  

(b) Determine P ( x )  and the syndromes S1 ,  S2 ,  S3, S4, S5, and Sfj. 
(c) Find E((x). 

(d) Using the Berlekamp-Massey or Euclidean algorithm determine A(x) and find the error 

(e) Determine the error and erasure values using Forney’s algorithm, and determine the decoded 

The decoding algorithms described in this chapter assume that narrow-sense codes are used. 
Carefully describe what changes would have to be made in the decoder if a non-narrow sense 
code is used. In particular: 

locations. 

codeword. 

(a) How do computations change for finding the error locating polynomial A(x)?  

(b) How does the Forney algorithm change for finding the error values? 

The Berlekamp-Massey algorithm (Algorithm 6.1) requires division in the field, that is, finding a 
multiplicative inverse. This can be more complex than multiplication or addition. Is it possible 
to modify the algorithm so that it still produces an error locator polynomial, but does not require 
any divisions? 
Let C be the (2m - 1, k )  Reed-Solomon code with minimum distance d .  Show that C contains 
the primitive (2m - 1, k )  binary BCH code C’ of length 2m - 1 with design distance d. This is 
an example of a subfield subcode. 
[204] Is there a binary t-error-correcting BCH code of length n = 2m + 1 for rn 5 3 and t < 2m-1. 
If so, determine its generator polynomial. 
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6.20 

6.21 

6.22 

6.23 

6.24 

[204] Let b = -t. A BCH code with designed distance d = 2t + 2 whose generator polynomial 
has ,!I-', . . . , j 3 - ' ,  1 ,  j3, . . . , B' and their conjugates as roots. Show that this is a reversible cyclic 
code. (See Exercise 4.14a.) Also, show that if t is odd, then the minimum distance of this code 
is at least 2t + 4. 
[204] A t-error correcting Reed-Solomon code of length n = 2m - 1 over GF(2m) has the 
following parity check matrix. 

,&n-1) 

,2t(n- 1 )  I ?  1 a a2 ... 

H = [ ;  :: :: :I: 
H' = I' 0 4. where 01 is primitive in GF(2"). Now form the parity check matrix 

0 1  

0 0  
1 0  

Show that the code with parity check matrix H' also has minimum distance 2t + 1 .  Hint: Consider 
2t x 2t submatrices. For submatrices including the first columns, think of the cofactor expansion. 

Let m(x)  = mg + mlx + . . . + mk-1xk-l E GF(2m)[x] .  Form the polynomial 

c ( x )  = m(1) + m(O1)x + m(O12)x2 + .  * .  + m(a!2m-2)x2m-2. 

Show that c(x) has a, a2,  . . . , ct2m-k-1 as roots. What can you conclude about the set of all 
{ c ( x ) ]  as m ( x )  varies? 
Letv = [vg, q ,  . . . , vn- l ] ,  ui E GF(q)beasequenceandletv(x) = v ~ + v l n + ~ . . + v ~ - l x ~ - ~ .  
Let V .  - v ( a j )  = Cyzi v ja i j ,  j = 0,1,. . . , n - 1 ,  where a! is a primitive nth root of unity. 
The Mattson-Solomon polynomial (see [220, p. 2391 is defined as 

I -  

n-1 n 

A ( z )  = An- j z j  = 1 Ajz"-'. 
j =O j = l  

(a) Show that A0 = An. 
(b) Show that the aj can be recovered from A ( z )  by ai = n - l A ( a i ) .  
(c) Show that if the aj are binary valued and operations take place in a field GF(2m),  then 

(d) Show that if c(x) = R , ~ ~ + l [ a ( x ) b ( x ) ]  (that is, the product modulo x" + l), then C ( z )  = 
R p + i [ A ( ~ ) ~ l  = A W .  

A ( z ) O B ( z ) ,  where Odenotestheelement-by-elementproduct, A(z )OB(z )  = ny:: Aj Bizi ,  
and conversely. 

Using the definition of the formal derivative in (6.33) for operations over the commutative ring 
with identity R [ x ] ,  where R is a ring: 

(a) Show that [f(x)g(x)l' = f ' ( x ) g ( x )  + f(x)g'(x). 
(b) Show that if f 2 ( x )  I g ( x )  then f ( x )  1 g ' ( x ) .  

(c) Showthat ( f 1 f 2 ) ( ~ )  = Cr=o (r)fi f 2  
(4 Show that ( f 1 . h .  . * fr)' = CI=1 4' njzj f j .  

(i) ( n - i )  ,where()(") denotesthenthformalderivative. 
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(e) From the latter conclude that with f = f i  f 2 .  f r .  

f l = f r +  ...+-. f :  
f f l  f r  

This is a partial fraction decomposition of f '/ f .  
(f) Let u be a simple root of f  ( x )  and let g ( x )  = f ( x ) / ( x  - u). Show that f ' ( u )  = g(u). 

(g) Show that if f has a repeated root at u, then (x  - u)  is a factor of ( f ,  f '). 

6.25 Prove Lemma 6.14. Hint: Use the fact that S2,, = S: for binary codes. 
6.26 Express Massey's algorithm in a form appropriate for using 0-based indexing; that is, when the 

syndromes are numbered So, S1, . . . , S N - ~ ,  where N = 2t. 
6.27 Compute the GFFT in GF(8)  of the vector represented by the polynomial v ( x )  = 1 + a 2 x  + 

a 3 x 4  + a 6 x 5 .  Also, compute the inverse GFFT of V ( x )  and ensure that v ( x )  is obtained. 
6.28 Let {q}  be a sequence of length n ,  [u i }  = {ao, a l ,  . . . , a n - l } .  Let {a( ( i - l ) ) }  denote the cyclic 

shift of the sequence {ai} .  Let {aj}  ++ { A j }  denote that there is a GFFT relationship between the 
sequences. Prove the following properties of the GFFT. 

Cyclic shift property: ~ a ( ( j - l ) ) }  ++ { a j ~ j }  

Modulation property: {a 'a i }  t, { A ( ( j + l ) ) }  

6.29 Determine the GFFT of the vector vi = arz. Determine the GFFT of the vector vi = p s i - l ;  that 
is, it has value vi = /3 when i = 1 and value vj  = 0 when i # 1. Assume 0 5 1 < n .  

6.30 List the minimal polynomials over G F (  16). Compute the GFFT of the corresponding vectors and 
note the positions of the zeros of the spectra compared to the roots of the minimal polynomials. 

6.31 Computing the GFFT. Let vi E GF(2m),  i = 0, 1 ,  . . . , n - 1. Let 

n-1 
v .  - - p J . 2  c p-(j-j) '  (pi2 vi). (6.56) 

Show when ,5 is a square root of a that V ,  of (6.56) equal to V j  of (6.38). That is, (6.56) can be 
used to compute the GFFT. This is called the Bluestein chup algorithm. The chirp transform 
can be computed as a pointwise product of vi by followed by a cyclic convolution with j3-I'. 

6.32 Describe how to obtain a (mn, mk) binary code from a (n,  k )  code over GF(2m).  Let d be the 
minimum distance of the ( n .  k )  code and let dm be the minimum distance of the (mn, mk) code. 
HOW does dm/(mn) compare with d / n  in general? 

i =O 

.2  

6.33 Let M i ( x )  be the minimal polynomial of a i ,  where ai is aprimitive element in GF(2"). Let 

and let V ( h * )  be the set of sequences of length 2" - 1 which are annihilated by h*(x ) .  Show 
that for any two sequences a ,  b E V ( g * ) ,  wt(a + b) > 2k. 

6.34 (Justesoncodes) LetCbean(n, k)Reed-SolomoncodeoverGF(qm). Letc = (co, c l ,  . . . , Cn-1)  

be a codeword in C. Form the 2 x n matrix by 

Replace each G F ( q m )  element of this matrix by a GF(q)  m-tuple, resulting in a 2m x N matrix. 
The set of such matrices produces the Justeson codes, a q-ary code whose codewords have length 
2mN obtained by stacking up the elements of the matrix into a vector. 
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(a) Show that the Justeson code is linear. 

(b) Explain why at least n - k + 1 of the columns of a matrix M are nonzero. 

(c) Explain why no two nonzero columns can be the same. 

(d) Let I be an integer satisfying 

Show that the minimum distance of the Justeson code is lower-bounded by 

Hint: In a 2m-tuple there are (2y)  ways of picking i nonzero places and q - 1 different 
nonzero values. The minimum distance greater than or equal to the sum of the weights of 
the columns. 
It can be shown that [33] asymptotically d,,-,i,/n >_ 0.11(1 - 2R), where R = k/2n is the 
rate of the code. Thus Justeson codes have a fractional distance bounded away from 0 if 
R < 112. 

6.35 Newton’s identities: Show that a? = 
6.36 Newton’s identities: Let 

+ xnai”_T1 is true. 

f ( x )  = ( x  - q ) ( x  - x2) * .  . ( x  - x n ) .  

f ( x )  = xn - a1xn-l + 02xn-2 +.  ’ + ( -~ )~ - ‘nn- lx  + (-1Inan. 

Show that f ( x )  can be written in terms of the elementary functions by 

Hint: Give an inductive proof using the identity (6.54). 

6.1 1 References 

Reed-Solomon codes were presented first in [286]; these are, of course, structurally similar 
to the BCH codes announced in [151] and [36]. The first decoding algorithms were based 
on solving Toeplitz systems; this is the essence of the Peterson decoding algorithm [261]. 
The generalization to nonbinary codes appears in [ 1251. The Berlekamp-Massey algorithm 
was presented in [25] and [222]. The Forney algorithm appears in [86] and the Chien search 
appears in [49]. More information about weight distributions of BCH codes appears in 
[186]. The theoretical aspects of these codes are considerably richer than this chapter can 
contain and could cover several chapters. Interested readers are referred to [220] 

There are many other decoding algorithms to explore for these codes. It is possible to 
scale the Berlekamp-Massey algorithm so that no divisions are required to produce an error- 
locator polynomial [38]; this may be of interest in hardware implementations. However, 
computing the error value still requires divisions. Decoding algorithms based on finite-field 
Fourier transforms have been developed; for a thorough survey see [33]. See also [372] for 
a systolic decoding algorithm and [285] for an algorithm based on Fermat transforms. A 
work which shows the underlying similarity of the Euclidean algorithm-based methods and 
the Berlekamp-Massey based methods is [52]. 

Blahut [33] has made many of the contributions to Galois field Fourier transform methods 
for coding theory; the presentation here closely follows [373]. Berlekamp-Massey algorithm 



292 BCH and Reed-Solomon Codes: Designer Cvclic Codes 

is presented in [222]; our presentation closely follows that of [246]. A very theoretical 
description of BCH and RS codes appears in [220], with considerable material devoted to 
MDS codes. 

The discussion of Newton’s identities is suggested by an exercise in [60]. The discussion 
of alternant and Goppa codes is summarized from [220]. A decoding algorithm for Goppa 
codes appears in [256]. McEliece public key cryptosystem was presented in [229]. 



Chapter 7 

Alternate Decoding Algorithms for 
Reed-Solomon Codes 
7.1 Introduction: Workload for Reed-Solomon Decoding 

In this chapter we present two alternatives to the decoding algorithms presented in chapter 6.  
The first is based upon a new key equation and is called remainder decoding. The second 
method is a list decoder capable of decoding beyond the design distance of the code. 

A primary motivation behind the remainder decoder is that implementations of it may 
have lower decode complexity. The decode complexity for a conventional decoding algo- 
rithm for an (n,  k )  code having redundancy p = n - k is summarized by the following 
steps: 

1. Compute the syndromes. p syndromes must be computed, each with a computational 
cost of 0 (n), for a total cost of 0 (pn) .  Furthermore, all syndromes must be computed, 
regardless of the number of errors. 

2. Find the error locator polynomial and the error evaluator. This has a computation cost 
O(p2)  (depending on the approach). 

3. Find the roots of the error locator polynomial. This has a computation cost of 0 (pn) 
using the Chien search. 

4. Compute the error values, with a cost of 0 (p2).  

Thus, if p < n / 2 ,  the most expensive steps are computing the syndromes and finding the 
roots. In remainder decoding, decoding takes place by computing remainders instead of 
syndromes; the remaining steps retain similar complexity. This results in potentially faster 
decoding. Furthermore, as we demonstrate, it is possible to find the error locator polynomial 
using a highly-parallelizable algorithm. The general outline for the new decoding algorithm 
is as follows: 

1. 

2. 

3. 

4. 

7.2 

Compute the remainder polynomial r ( x )  = R ( x )  mod g(x), with complexity O(n)  
(using very simple hardware). 

Compute an error locator polynomial W(x) and an associated polynomial N ( x ) .  The 
complexity is 0 (p2). Architectures exist for parallel computation. 

Find the roots of the error locator polynomial, complexity 0 ( p n ) .  

Compute the error values, complexity O(p2). 

Derivations of Welch-Berlekamp Key Equation 

We present in this section two derivations of a new key equation called the Welch-Berlekamp 
(WB) key equation. The first derivation uses the definition of the remainder polynomial. The 
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second derivation shows that the WB key equation can be obtained from the conventional 
Reed-Solomon key equation. 

7.2.1 The Welch-Berlekamp Derivation of the WB Key Equation 

The generator polynomial for an (n,  k) RS code can be written as 

b f d - 2  

i =b 

which is a polynomial of degree d - 1, where d = dmin = 2t + 1 = n - k + 1. We 
denote the received polynomial as R ( x )  = c (x )  + E ( x ) .  We designate the first d - 1 
symbols of R (x) as check symbols, and the remaining k symbols as message symbols. This 
designation applies naturally to systematic encoding of codewords, but we use it even in the 
case that systematic encoding is not employed. Let L ,  = {0, 1, . . . , d - 2 )  be the index 
set of the check locations, with corresponding check locators L a c  = {ak, 0 5 k 5 d - 2 } .  
Also, let L,  = [ d  - 1, d ,  . . . , n - 1) denote the index set of the message locations, with 
corresponding message locators L a m  = {ak, d - 1 5 k 5 n - 1). 

We define the remainderpolynomial as 

r ( x )  = R ( x )  mod g ( x )  

and write r ( x )  in terms of its coefficients as 

d-2 
r ( x )  = C r j x  i . 

i=O 

The degree of r ( x )  is 5 d - 2. This remainder can be computed using conventional LFSR 
hardware that might be used for the encoding operation, with computational complexity 
O b ) .  

Lemma7.1 r ( x )  = E ( x )  mod g ( x ) a n d r ( a k )  = E(ak) fork  E [b ,b+l ,  ..., b + d - 2 } .  

Proof Since R(x)  = m(x)g (x )  + E ( x )  for some message polynomial m ( x ) ,  the remainder 
polynomial does not depend upon the transmitted codeword. Thus 

r ( x )  = E ( x )  mod g ( x ) .  

Wecanwrite E ( x )  = q ( x ) g ( x ) + e ( x )  forsomedivisorpolynomialq(x). Thus E ( x )  = e ( x )  
mod g ( x ) .  Then E ( a k )  = q ( a k ) g ( a k ) + e ( a k )  = e(ak)  = r ( a k )  fork E {b, b+ 1 ,  . . . , b+ 
d - 2 ) .  0 

Notation: At some points in the development, it is convenient to use the notation rk = 
r [akl  to indicate the remainder at index k (with locator ak). Similarly, we will use Y [ a k ]  
to indicate an error value at index k. 

Single error in a message location. To derive the WB key equation, we assume initially 
that a single error occurs. We need to make a distinction between whether the error location 
e is a message location or a check location. Initially we assume that e E L ,  with error 
value Y .  We thus take E ( x )  = Y x e ,  or the (error position, error value) = (ae,  Y )  = ( X ,  Y ) .  
The notation Y = Y [ X ]  is also used to indicate the error value at the error locator X .  
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r ( x )  E i x )  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

check message 
locations locations 

Figure 7.1: Remainder computation when errors are in message locations. 

When e E L,, then the modulo operation Yxe  mod g(x) "folds" the polynomial back 
into the lower order terms, as pictured in Figure 7.1. Evaluating r ( x )  at generator root 
locations we have by Lemma 7.1, 

r (a  k ) = E ( a k ) = Y ( a k ) " = Y X t  k k E { b , b + l ,  ..., b + d - 2 } ,  (7.1) 

where X = ae is the error locator. It follows that 

r(&) - Xr(ak-1) = Y X k  - x y x k - l  = 0 , k € { b + I , b + 2  ,..., b + d - 2 ) .  

Define the polynomial u ( x )  = r ( x )  - X r ( a - ' x ) ,  which has degree less than d - 1. Then 
u(x) has roots at ab+l, ab+2 , . . a ,  ab+d-2, so that u ( x )  is divisible by the polynomial 

b+d-2 d-2 

i=b+l i=O 

which has degree d - 2. Thus u ( x )  must be a scalar multiple of p ( x ) ,  

u ( x )  = a&) (7.2) 

for some a E G F ( q ) .  Equating coefficients between u ( x )  and p ( x )  we obtain 

r i ( l - X a - ' ) = a p i ,  i = O , l ,  ..., d - 2 .  

That is, 

r i ( a ' - X ) = a a ' p i ,  i = O , l ,  ..., d - 2 .  (7.3) 

We define the error locator polynomial as Wm(x) = x - X = x - ae. (This definition is 
different from the error locator we defined for the conventional decoding algorithm, since 
the roots of W, (x) are the message locators, not the reciprocals of message locators.) Using 
W, (x), we see from (7.3) that 

(7.4) 

Since the error is in a message location, e E L,, W, (ui)  is not zero for i = 0, 1 ,  . . . , d - 2. 
We can solve for ri as 

riWm(ai) = aa'p i ,  i = 0, 1, .  . . , d - 2. 

ri = aa'p i /W,(a ' ) .  (7.5) 

We now eliminate the coefficient a from (7.5).  The error value Y can be computed using 
(7.1), choosing k = b: 
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Define 

Pi 
, x E L a m ,  

i=O (aZ - x) 

which can be pre-computed for all values of x E L a m .  Then 

Y = f f f ( X )  

or a = Y / f ( X ) .  We thus write (7.4) as 

Ya’pi 

f ( X I  wm (ai)  ’ 
ri = (7.6) 

Multiple errors in message locations. Now assume that there are v 2 1 errors, with 
error locators X i  E L a m  and corresponding error values Yi = Y [ X i ]  for i = 1,2,  . . . , v. 
Corresponding to each error there is a “mode” yielding a relationship r (ak) = YiXb, each 
of which has a solution of the form (7.6). Thus by linearity we can write 

Now define the function 
v 

Yi 
F ( x )  = c f ( X i ) ( X  - X i )  i=l 

having poles at the error locations. This function can be written as 

(7.8) 

where 

is the error locator polynomial for the errors among the symbol locations and where Nm(x) is 
the numerator obtained by adding together the terms in F ( x ) .  It is clear that deg(Nm (x)) < 
deg( Wm (x)). Note that the representation in (7.8) corresponds to a partial fraction expansion 
of N m ( x ) /  Wm(x) .  Using this notation, (7.7) can be written 

rk = p k a k F ( a k )  = pkakNm(ak) /Wm(ak)  

or 

(7.9) 
rk 

Pkak 
Nm(ak)  = -Wm(ak),  k E L ,  = {0, 1, . . . , d - 2). 

N m  (x) and Wm(x) have the degree constraints deg(Nm (x)) < deg( Wm (x)) and deg( W, (x)) p 
[(d - 1)/21 = t ,  since no more than t errors can be corrected. Equation (7.9) has the form 
of the key equation we seek. 
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k E  L,={O,l ,..., d-2 ) .  N ( a  k ) = -W(ak), rk 

P k a k  

Errors in check locations For a single error occurring in a check location e E L,, then 
r ( x )  = E(x) - there is no “folding” by the modulo operation. Then u(x) = r ( x )  - 
Xr(a - ’x )  must be identically 0, so the coefficient a in (7.2) is equal to 0. We can write 

(7.12) 

Y k = e  
0 otherwise. 

r k =  [ 
If there are errors in both check locations and message locations, let E m  = { i l  , i z ,  . . . , i,, ) C 
Lm denote the error locations among the message locations and let E ,  = +I ,  . . . , i v }  c 
L, denote the error locations among the check locations. Let Earn = {all, a’*, . . . , a’”] ) 
and E,c = {a’”l+’, . . . , a’} denote the corresponding error locators. The (enor location, 
error value) pairs for the errors in message locations are ( X i ,  Yi), i = 1,2,  . . . , v1. The 
pairs for errors in check locations are ( X i ,  Y j ) ,  i = v1 + 1, . . . , u.  Then by linearity, 

Yi Y j  if error locator X j  = ak is in a check location 
W I  

k 

rk = pka c f ( X j ) ( U k  - X i )  + [ 0 otherwise. 
1 = 1  

(7.10) 
Because of the extra terms added on in (7.10), equation (7.9) does not apply when k E E,, 
so we have 

(7.11) 

To account for the errors among the check symbols, let W,(x) = n i E L , ( x  - ai) be the 
error locator polynomial for errors in check locations. Let 

N(x) = Nm(x)Wc(x) and W(x) = W,(x)W,(x). 

rk 

Pkak  
Nm(ak) = -Wm(ak), k E L, \ Ec. 

Since N(ak) = W(ak) = 0 fork E E,, we can write 

Example 7.1 Consider a (15,9) triple-error correcting RS code over GF(16) generated by 1 +x +x4 
with b = 2. The generator for the code is 

g(x) = d2 + d 4 x  + ,-‘ox2 + a7x3 + ax4  + d l x 5  + x6. 

p ( x )  = * l o  + a9x + U-’lX2 + a6x3 + ,9,4 + 2. 

The function p ( x )  is 
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The function f(x) evaluated at message locators is tabulated as 

x :  a6 ,7 ,8 ,9 , lo  ,11 ,12 ,13 a 1 4  

f ( x ) :  1 a8 a12 a2 a11 a7 a7 a8 a5 

Suppose the received data is R ( x )  = a5x4 + a7x9 + a8x12 (three errors). Then 

2 
~ ( x )  = R ( x )  (mod g ( x ) )  = a + ax + a6x3 + a3x5. 

The ( x i ,  y i )  data appearing in the key equation are 

i 1 2 3 4 5 6  
xi 1 a a2 a 3  a 4  a5 

yi a7 a 6  0 a 1 2  0 a 1 3  

Hereafter we will refer to the N ( x )  and W ( x )  as N1 (x) and W2(x),  referring to the first 
(WB) derivation. 

7.2.2 Derivation From the Conventional Key Equation 

A WB-type key equation may also be obtained starting from the conventional key equation 
and syndromes. Let us denote the syndromes as 

d -2 

Si = R(ab+')  = ~ - ( a ~ + ~ )  = r j ( a b + ' ) j ,  i = 0, 1, . . . , d - 2. 
j =O 

The conventional error locator polynomial is A(x) = n;==,(l - X i x )  = A0 + h l x  + 
. . . + Auxu where A0 = 1; the Welch-Berlekamp error locator polynomial is W ( x )  = n;='=, (x -Xi) = Wo + W i x  +. . . +xu.  These are related by Ai = Wu-i. The conventional 
key equation can be written as (see 6.10) 

i =O 

Writing this in terms of coefficients of W we have 

W S  I k+z ' - 0  - k = 0 , 1 ,  ..., d - 2 - ~ ,  
i=O 

or 
u d-2 

Rearranging, 

(7.15) 
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equation (7.14) can be written as 
d - 2  

C f j a j k = O ,  k = 0 , 1 ,  ..., d - 2 - ~ ,  
j =O 

which corresponds to the Vandermonde set of equations 

1 1 

= o  
. . .  ,d-3 

,2(d-3) 

,(d-2-u)(d-3) 

r i  1 ... 

with (d - 1 - u )  x (d - 1 )  matrix V .  The bridge to the WB key equation is provided by 
the following lemma. 

Lemma 7.2 [63] Let V be a rn x r matrix with r > rn having Vandennonde structure 

with the { u i }  all distinct. For any vector z in the nullspace of V (satisfying V z  = 0), there 
exists a unique polynomial N ( x )  of degree less than r - rn such that 

i = l , 2  ,..., r, N(u i )  zj = - 
F ’ ( u ~ )  ’ 

where F ( x )  = n : = , ( x  - ui). 

Proof A vector z in the nullspace must satisfy 
r 

C u ! z i = o ,  j = 0 , 1 ,  ..., r n - 1 .  (7.16) 

Let N ( x )  be a polynomial of degree -= r - m. Then the highest degree of polynomials of 
the form 

is less than r - 1. Now let us construct an interpolating function 4j ( x )  such that for 

u1,  u 2 , .  . . , U r ,  @ j ( U i )  = u{N(ui ) ,  for each j = 0, 1 , .  . . , rn - 1. Using the Lagrange 
interpolating function (5.27), we can write 

i=l 

x j ~ ( x > ,  j = 0,1,. . . , m - 1 

(7.17) 

Since it is the case that # j ( x )  = x j N ( x )  has degree less than r - 1,  the coefficient of the 
monomial of degree r - 1 on the right-hand side of (7.17) must be equal to 0. Since the 
leading coefficient of F ( x )  is 1 ,  the leading coefficient of F ( x ) / ( x  - ui)  is 1. Thus 

= 0 ,  j = O , l ,  ..., m - 1 .  
i=l 
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Thus if z i  = N(ui ) /F’ (u i ) ,  the nullspace relationship (7.16) is satisfied. 
The dimension of the nullspace of V is r -rn. The dimension of the space of polynomials 

of degree < r - rn is r - rn. There must therefore be a one-to-one correspondence between 
0 

Returning to the key equation problem, by this lemma, there exists a polynomial N ( x )  of 
degree less than v such that f j  = N(aj ) /gL(a’ ) ,  where 

vectors in the nullspace of V and the polynomials N ( x ) .  Thus N ( x )  is unique. 

d-2 

go(x) = H ( X  -a‘). 
i =O 

Thus from (7.15), 

This gives rise to a form of the key equation, 

(7.18) 

with deg(iV(x)) < deg(W(x)) 5 L(d - 1)/2]. We call this the Dabiri-Blake (DB) form of 
the WB key equation. We can also write this in terms of the original generator polynomial 

(7.19) 

With xi+l = ai and yi+l = rkg’(ab+k)ab(2-dCk), this can be expressed in the form (7.13). 

I N(ak)  = rkg;)(a k )a kb W ( a k ) ,  k = 0,  1 , .  . . , d - 2 I 

g ( x ) :  1 N(a!k) = rkg’(a b+k )a! b(2-d+k) W ( a k ) ,  k = 0, 1 , .  . . , d - 2.  I 

Example 7.2 For the same code and R ( x )  as in Example 7.1, the ( x i ,  y i )  data are 

i 1 2 3 4 5 6  
xi  1 a a2 a3 a4 a5 

yz a9 a* 0 a14 0 1 

We will refer to the N ( x )  and W (x) derived using the DB method as Nz(x)  and W2(x).  

7.3 Finding the Error Values 

We begin with the key equation in the W B  form, (7.12). Assuming that the error locator 
W ( x )  has been found - as discussed in Section 7.4 - we consider here how to compute 
the error values Yi corresponding to an error locator X i ;  we denote this as Y [ X i ] .  For an 
error location in a message location, we have from (7.7) and (7.8) 

(7.20) 
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where we use Ecm = Ec U E m  to denote the set of all error locations. Multiplying both 
sides of (7.20) by W ( x )  and evaluating at x = Xk, we obtain 

UXkl ni&k - Xi) 
= Nl (Xk), f (Xk) 

since the factor ( x  - Xk) in the denominator of (7.20) cancels the corresponding factor in 
W1 ( x ) ,  but all other terms in the sum are zero since they have factors of zero in the product. 

Now taking the formal derivative, we observe that 

(7.21) 

When the error is in a check location, Xj = ak fork E E,, we must revert to (7.10), 

(7.22) 

Now consider the error values for the DB form of the WB equation, (7.18). It is shown 
in Exercise 7.6 that 

d-3 
g~(ab+k)ab(k+2-d)pka,k = -e = &(d-2) I-I(ar+l - 1 

i=O 

so that 

It is shown in Exercise 7 that f(ak)g(ab+k) = -eab(d-l-k).  From these two facts we can 
express the error locators for the DB form as 

(7.23) 

(7.24) 
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7.4 Methods of Solving the WB Key Equation 

The key equation problem can be expressed as follows: Given a set of points (Xi, y i ) ,  i = 
1,2 ,  . . . , m over some field F, the problem of finding polynomials N ( x )  and W(x) with 
deg(N(x)) < deg(W(x)) satisfying 

N ( x i )  = W ( x i ) y i ,  i = 1 , 2 , .  . . , m (7.25) 

is called a rational interpolation problem’, since in the case that W(xj) # 0 we have 

N ( x i )  

W(xi)’ 
yi = - 

A solution to the rational interpolation problem provides a pair [ N ( x ) ,  W(x)] satisfying 
(7.25). 

We present two different algorithms for solving the rational interpolation problem. Either 
of these algorithms can be used with the data from either of the two forms of the key equations 
derived in Section 7.2. 

7.4.1 Background: Modules 

An additional algebraic structure is used in the algorithm below. In preparation for what 
follows, we pause to introduce this structure, which is a module. Modules are to rings what 
vector spaces are to fields. That is, they act like vector spaces, but they are built out of rings 
instead of fields. More formally, we have the following: 

Definition 7.1 [61] A module over a ring R (or R-module) is a set M together with a 
binary operation (usually denoted as addition) and an operation of R on M called scalar 
multiplication with the following properties: 

M1 M is an Abelian group under addition. 

M2 Forallu E Rand f , g  E M , a ( f  + g )  = a f  +ag E M .  

M 3 F o r a l l u , b ~ R a n d a l l f  E M , ( a + b ) f  = u f + b f  E M .  

M4 For all a ,  b E R and f E M, (ab) f = a(bf) E M .  

M5 If 1 is the multiplicative identity in R, then 1 f = f for all f E M .  

For f ,  g E M and u ,  b E R, we say that a f  + bg is an R-linear combination of f and g. 
A submodule of a module M is a subset of M which is closed under addition and scalar 

0 
Thus, the structure appears to be exactly that of a vector space (see Section 2.4). How- 

multiplication by elements of R. 

ever, there are a few important distinctions, as the following example shows. 

Example 7.3 Let R = F[n, y ,  z ] ,  where F is some field and R is the ring of polynomials in the three 
variables x, y ,  and z .  Let 

fl = [3] f2 = [!I f3 = [o z - Y ] .  

‘Strictly speaking, this is a weak rational interpolation problem, since in the form it is written it does not have 
to address concerns when W ( x i )  = 0. 
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Let M be the module generated by R-linear combinations of f l ,  f2, and f3. We could denote this as 
M = (fl,  f2, f3) .  This set is minimal, in the sense that (fj, f j )  does not generate M .  However, they 
are linearly dependent, since 

We thus have a minimal generating set which is not linearly independent. This phenomenon cannot 
0 

zf1 - yf2 fxf3 = 0. 

occur in any vector space. 

Definition 7.2 If a module M over a ring R has a generating set which is R-linearly 
independent, then M is said to be a free module. The number of generating elements is 
the rank of the module. 17 

Example 7.4 Let R = F[x] be a ring of polynomials and let M = Rm be the module formed by 
columns of rn polynomials. This is a free module. The standard basis for this module is 

7.4.2 The Welch-Berlekamp Algorithm 

In this section we describe a method of solving the rational interpolation problem which 
is structurally similar to the Berlekamp-Massey algorithm, in that it provides a sequence 
of solution pairs which are updated in the event that there is a discrepancy when a new 
point is considered. We are interested in a solution satisfying deg(N(x)) < deg(W(x)) and 
deg(W(x)) I m/2. 

Definition 7.3 The rank of a solution [ N ( x ) ,  W ( x ) ]  is defined as 

rank[N(x), W ( x ) ]  = max{2deg(W(x)), 1 + 2deg(N(x))]. 

0 
We construct a solution to the rational interpolation problem of rank 5 m and show that 

it is unique. By the definition of the rank, the degree of N ( x )  is less than the degree of 
W ( x > .  

A polynomial expression for the interpolation problem (7.25) is useful. Let P ( x )  be an 
interpolating polynomial such that P ( x i )  = yi, i = 1,2, . . . , m .  For example, P ( x )  could 
be the Lagrange interpolating polynomial, 

m 
l X l , k + i  (X - xk) 

P ( X >  = C Yi 
i=l l - I L , k f i  (Xi - X k ) .  

By the evaluation homomorphism (see Section 5.3.1), the equation N ( x i )  = W(Xi)yi  is 
equivalent to 

Since this is true for each point (xi, y i )  and since the polynomials (x - Xi), i = 1,2, . . . , m 
are pairwise relatively prime, by the ring isomorphism introduced in conjunction with the 
Chinese remainder theorem we can write 

N ( x )  = W ( x ) P ( x )  (mod lT(x)), (7.26) 

N ( x )  = W ( x ) P ( x )  (mod (x - xi)). 
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where 
m 

n(x) = n ( x  - X i ) .  

i=l  

Definition7.4 Suppose [ N ( x ) ,  W(x)] is a solution to (7.25) andthat N ( x )  and W ( x )  share a 
common factor f ( x ) ,  such that N ( x )  = n ( x ) f ( x )  and W(x) = w ( x ) f ( x ) .  If [n(x) ,  w(x)] 
is also a solution to (7.25), the solution [ N ( x ) ,  W(x)] is said to be reducible. A solution 
which has no common factors of degree > 0 which may be factored out leaving a solution 
is said to be irreducible. 0 

It may be that an irreducible solution does have common factors of the form (x - yi), 
but which cannot be factored out while satisfying (7.26). 

We begin with an statement regarding the existence of the solution. 

Lemma 7.3 There exists at least one irreducible solution to (7.26) with rank 5 m. 

Interestingly, this proof makes no use of any particular algorithm to construct a solution - 
it is purely an existence proof. 

Proof Let S = { [ N ( x ) ,  W(x)] : rank(N, W) 5 m} be the set of polynomials meeting the 
rank specification. For [ N ( x ) ,  W(x)] E S and [ M ( x ) ,  V(x)] E S and f a scalar value, 
define 

“(XI, W(X)l + [ M ( x ) ,  V(X)l = “(XI + M ( x ) ,  W ( x )  + V(X) l  

f“(x), W(X>l = [ f N ( x ) ,  fW(x)l. 
(7.27) 

We thus make S into a module over P[x]. The dimension of S is m + 1 ,  since a basis 
for the N ( x )  component is 

{ l , X , .  . . I  xL(m-1)’2J} 

and a basis for the W ( x )  component is 

(1 + L(m - 1)/21 dimensions) 

{Lx, * .  * ,  x im/21 } (1 + Lm/21 dimensions) 

so the dimension of the Cartesian product is 1 + [(m - 1)/2] + 1 + Lm/21 = m + 1. 

quotient Q ( x )  and remainder R ( x )  with deg(R(x)) < m such that 

N ( x )  - W ( X ) ~ ( X )  = Q ( x ) n ( x )  + R ( x ) .  

By (7.26) and by the division algorithm for every [ N ( x ) ,  W ( x ) ]  E S there exists a 

Now define the mapping E : S -+ {h E F[x]l deg(h) < m) by 

E(“(x) ,  W(X)l) = R ( x )  (7.28) 

(the remainder polynomial). The dimension of the range of E is m. Thus, E is a linear 
mapping from a space of dimension m + 1 to a space of dimension m, so the dimension 
of its kernel is > 0. But the kernel is exactly the set of solutions to (7.26). There must 

0 
The Welch-Berlekamp algorithm finds a rational interpolant of minimal rank by building 

successive interpolants for increasingly larger sets of points. First a minimal rank rational 
interpolant is found for the single point (XI ,  yl). This is used to construct a rational inter- 
polant of minimal rank for the pair of points {(XI, yl), (x2, y2)), and so on, until a minimal 
rank interpolant for the entire set of points {(XI, yl), (x2, y2), . . . , (x,, ym)} is found. 

therefore exist at least one solution to (7.26) with rank 5 m. 
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Definition 7.5 We say that [ N ( x ) ,  W(x)] satisfy the interpolation(k) problem if 

N ( X j )  = W(xi)yi i = 1 ,2 , .  . . , k. (7.29) 

0 
The Welch-Berlekamp algorithm finds a sequence of solutions [Nlk], WLk]] of minimum 

rank satisfying the interpolation(k) problem, for k = 1,2,  . . . , m. We can also express the 
interpolation(k) problem as 

N ( x )  = W(x)Pk(x) (mod Wx)), 

where &(x) = n,=, (x - Xi) and &(X) is a polynomial that interpolates (at least) the first 
k points, P ( x i )  = y i ,  i = 1,2, . . . , k. 

As with the Berlekamp-Massey algorithm, the Welch-Berlekamp algorithm propagates 
two solutions, using one of them in the update of the other. For the Welch-Berlekamp 
algorithm, the two sets of solution maintain the property that they are complements of each 
other, as defined here. 

Definition 7.6 Let [ N ( x ) ,  W(x)] and [ M ( x ) ,  V(x)] be two solutions of interpolation(k) 
such that 

rank[N(x), W(x)] + rank[M(x), V(x)] = 2k + 1 

N(x)V(x) - M(x)W(x) = frI(x) 

k 

and 

for some scalar f .  Then [ N ( x ) ,  W(x)] and [ M ( x ) ,  V(x)] are complementary. cl 
The key results to construct the algorithm are presented in Lemmas 7.4 and 7.6. 

Lemma 7.4 Let [ N ( x ) ,  W(x)] be an irreducible solution to the interpolation(k) problem 
with rank p k. Then there exists at least one solution to the interpolation(k) problem which 
is a complement o f [ N ( x ) ,  W(x)]. 

Proof Define the set similar to that in Lemma 7.3, 

S = I[M(x), V(x)ll rank[M(x), V(x)l I 2k + 1 - rank(N(x), W ( x ) ) } .  

It may be verified that, under the operations defined in (7.27), S is a module of dimension 
2k + 2 - rank(N(x), W ( x ) ) .  Let K be the kernel of the mapping E defined in (7.28). Since 
dim(X(E)) = k and dim(S) = 2k + 1 - rank(N(x), W(x)), we must have dim(K) = 
dim@) - dim(R(E)) = k + 1 - rank(N(x), W(x)). We now show that there is an element 
[ M ( x ) ,  V(x)] E K which is not of the form [g(x)N(x), g(x)W(x)]. Let 

T = {[g(x)N(x), g(x)W(x)] : g is a polynomial such that 

rank[g(x)N(x), g(x)W(x)l I 2k + 1 - rank[N(x), W(x)ll. 

Then T c S. By the definitions we have 

rank[g(x)N(x), g(x)W(x)l 5 2k + 1 - r an" (x ) ,  W(x)l 

rank[g(x)N(x), g(x)W(x)l = 2 deg(g(x)) + rank[N(x), Wb) l  

deg(g(x)) I k - rank[N(x), W(x)l, 

and 

so that 
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which therefore bounds the dimension of the subspace T .  Since K has dimension s k + 
1 - rank[N(x), W(x)l, there must be a point [M(x), V(x)] E K \ T such that 

ran“(x) ,  W(x)l + rank[M(x), V(x)l 5 2k + 1. (7.30) 

Since [M(x), V(x)] # T ,  [M(x), V(x)] is not reducible to [N(x), W(x)]. We now need 
another lemma. 

Lemma 7.5 If[N(x), W(x)] is an irreducible solution to the interpolation(k) problem and 
[M(x), V(x)] is another solution such that rank[N(x), W(x)] + rank[M(x), V(x)] 5 2k, 
then [M(x), V(x)] can be reduced to [N(x), W(x)]. 

The proof of this lemma is developed in the exercises. Since we have argued that [M(x), V(x)] 
is not reducible to [N(x), W(x)], by this lemma we must have that the inequality in (7.30) 
must be satisfied with equality: 

rank[N(x), W(x)] + rank[M(x), V(x)] = 2k + 1. 

Therefore, one of rank[N(x), W(x)] and rank[M(x), V(x)] is even and the other is odd. 
So it must be that either 

2k + 1 = rank[N(x), W(x)] + rank[M(x), V(x)] = (1 + 2deg(N(x)) + 2deg(V(x))) 

> 2deg(W(x)) + (1 + 2deg(M(x))) 

(in which case deg(N(x)V(x)) = k and deg(W(x)M(x)) < k) or 

2k + 1 = rank[N(x), W(x)l + rank[M(x), V(x)] = 2deg(W(x)) + 1 + 2deg(M(x)) 

> 1 + 2deg(N(x)) + 2deg(V(x)) 

(in which case deg(M(x)W(x)) = k and deg(N(x)V(x)) < k) so that, in either case, 

deg(N(x)V(x) - M(x)W(x)) = k. 

Since l?k (x) for the interpolation(k) problem has degree k, it must be the case that N ( x )  V(x) - 
M(x) W(x> = f &(x) for some scalar f. 

Lemma 7.6 If[N(x), W(x)] is an irreducible solution to the interpolation(k)problem and 
[ M ( x ) ,  V(x)] is one of its complements, then for any a, b E IF with n # 0, [bM(x) - 
aN(x), bV(x) - aW(x)] is also one of its complements. 

Proof Since [N(x), W(x)] and [M(x), V(x)] are solutions, it must be that 

N(x) = W(x)P(x) (mod l?(x)) M(x) = V(x)P(x) (mod n(x)).  

Multiplying the first equation by a and the second equation by b and subtracting the first 
from the second yields 

bM(x) - aN(x) 3 (bV(x) - aW(x))P(x) (mod n(x)) 
so that [bM(x) - aN(x), bV(x) - aW(x)] is a solution. We now show that it is comple- 
mentary. 

It is straightforward to show that [bM(x) -aN(x), bV(x) -a W(x)] cannot be reduced to 
[N(x), W(x)] (since [M(x), V(x)] cannot bereducedto [ N ( x ) ,  W(x)] by complementarity 
and Lemma 7.5). By lemma 7.5 we must therefore have 

rank[N(x), W(x)] + rank[bM(x) - aN(x>, bV(x) - aW(x)] = 2k + 1. 
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Lemma 7.5 also implies that there exists only one irreducible solution to the interpolation(k) 
problem with rank 5 k, and that this solution must have at least one complement. 

We are now ready to state and prove the theorem describing the Welch-Berlekamp 
algorithm. 

Theorem 7.7 Suppose that [ N t k ] ,  Wtk]]  and [Mtk],  V f k ] ]  are two complementary solutions 
of the interpoZation(k) problem. Suppose aZso that [ N t k l ,  Wtkl]  is the solution of lower 
rank. Let 

(7.31) 

(These are analogous to the discrepancies of the Berlekamp-Massey algorithm. ) Ifbk = 0 
(the discrepancy is 0, so no update is necessary) then 

[Ntk l (x ) ,  Wrkl(x) l  and [ (x  - xk+1)Mrk1(x), (x  - x k + ~ ) V [ ~ ~ ( x ) l  

are two complementary solutions of the interpolation(k+ l)probZem, and [Ntk](x) ,  Wtkl ( x ) ]  
is the solution of lower rank. 

[ (x  -xk+i)Ntkl(x),  ( x  -xk+1)Wtk1(x)] and [bkMLkl(x) -akNtkl(x),  bkNtkl - ~ k W [ ~ ] ( x ) ]  

are two complementary solutions. The solution with lower rank is the solution to the 
interpolation(k + 1 )  problem. 

Proof Since [NikI(x), Wrkl(x)] and [M[k](x) ,  VLk](x)] are complementary, 

Ifbk # 0 (the discrepancy is not 0, so an update is necessary), then 

rank[Ntkl ( x ) ,  Wtkl ( x ) ]  + rank[Mtkl ( x ) ,  VLkl ( x ) ]  = 2k + 1 

and 
k 

N [ ~ ] ( x ) v [ ~ ] ( x )  - M [ ~ ] ( x )  w [ ~ ] ( x )  = f n ( x  - xi)  
i=l 

for some scalar f. 

problem. For [ (x  - xk+l)Mlkl(x), ( x  - ~ k + l ) V [ ~ ] ( x ) ]  we must have 
If bk = 0: It is clear that [NlkI(x),  Wrkl(x)] is a solution to the interpolation(k + 1) 

(x  - xk+l)Mtkl(x) = ( x  - xk+1)Vtk1(x)Pk+l(x) (mod h + i ( x ) ) ,  

which is clearly true since MLkl(x) = Vtkl(x)Pk(x)  (mod l&(x)). When x = xk+i, then 
bothsidesareo. Sincerank[(x-xk+l)M[kl(x), (~- -xk+1)V[~](x>]  = rank[Mtkl(x), VLkl(x)l+ 
2 we have 

rank[Ntkl(x), Wrk l ( x ) ]  + rank[(x - xk+1)Mtk1(x), ( x  - ~ k + i ) V [ ~ ] ( x ) ]  = 2k + 1 + 2 
= 2 ( k  + 1) + 1. 

Furthermore, 

k+l 

(X - Xk+l)Ntkl(x)Vtkl(x) - ( X  - Xk+l)MLkl(X)Wtkl(X) = f n ( ~  - x i )  
i=l 
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so that [NLk](x), W[kl (x )]  and [(x - x k + ~ ) M [ ~ I ( x ) ,  (x - x k + ~ ) V [ ~ ] ( x ) ]  arecomplementary. 

NLk](x) = W[kl (~ )Pk+l  (mod &(x)) (7.32) 

Ifbk # 0: Since [ ~ [ k l ( x ) ,  W [ " ] ( X ) I  satisfies 

it follows that 

(x - xk+1)NLk1(x) = (x - xk+l)W[kl(x)Pk+l (mod lIk+l(x)), (7.33) 

sinceitholdsby (7.32)forthefirst kpointsandforthepoint (xk+l, yk+l). both sidesof (7.33) 
are 0. Thus [(x - xk+l)N[k](x) ,  (x - xk+l) Wrk] ( x ) ]  is a solution to the interpolation(k + 1) 
problem. 

That [bkMLk] (x) - u ~ N [ ~ ]  (x), bk V[kl  (x) -ak WLk] ( x ) ]  is a solution to the interpolation(k) 
problem follows since 

Mck1(x )  = V [ k l ( x ) P k + ~ ( ~ )  

Multiplying the first of these equivalences by bk and the second by ak and subtracting gives 
the solution for the first k points. 

To show that [bkMCkI(x) - ~ k N [ ~ ] ( x ) ,  bkVLk](x) - U ~ W [ ~ ] ( X ) ]  is also asolution at the 
point (&+I, yk+l), substitute ak and bk into the following to show that equality holds: 

(mod &(x)) and N L k l ( x )  = W[kl(x)Pk+l(x) (mod nk(x)). 

bkMfkl ( X k + l )  - ak"kl ( X k + l )  = (bk VLkl ( X k + l )  - ak WLkl (Xk+l ) )Yk+l.  

It is clear from the inductive hypothesis that 

deg[(x - xk+i)N[kl(x),  (x - x k + ~ ) W [ ~ ] ( x > l  

+ deg[bkMM (x) - (x), bkVrkl (x) - a k  W[kl  ( x ) ]  = 2(k + 1) + 1 

and that 

(x - xk+l)N[kl(x)(bkV[kl(x) - U k W [ k ] ( X ) )  

k f l  

- ( ~ ~ M [ ~ I ( X )  - u ~ N [ ~ ' ( x ) ) ( x  - x ~ + ~ ) w [ ~ ] ( x )  = f E(x -xi> 
i=l 

for some scalar f. Hence these two solutions are complementary. 0 
Based on this theorem, the Welch-Berlekamp rational interpolation function is shown 

in Algorithm 7.1. 

Algorithm 7.1 Welch-Berlekamp Interpolation 

Input: (xi, y i ) ,  i = 1, . . . , m 
Returns: IN["] (x), W["](x)]  of minimal rank satisfying the interpolation problem. 
Initialize: 

f o r i = O t o m - 1  
"OI(x) = 0; V [ O ] ( X )  = 0; W[Ol(x) = 1; M[Ol(x)  = 1; 

bi = "'](Xi+i) - yi+l W[il(xi+l) (compute discrepancy) 
if(bi = 0) then (no change in [ N ,  W ]  solution) 

"i+lI(,) = ~ [ i + . ' l ( ~ )  = W [ ~ I ( ~ ) ;  

M"+'](X) = (x - xi+l)M["(x);  V[i+' ] (X)  = (x - x i + l ) V [ q x )  
else (update to account for discrepancy) 

a.  z -  - ~ [ i l ( ~ .  z+l) - yj+l V[']((xi+l); (compute other discrepancy) 
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Example 7.5 Using the code and data from Example 7.1, the Welch-Berlekamp algorithm operates 
as follows. Initially, N[O](x) = 0, W[O](x) = 1, M[O](x)  = 1, and V[O](x) = 0. 

Using the Chien search, it can be determined that the error locator W ( x )  = a4 +a14x2 +a9x3 
has roots at a4, a9 and a12. For the error location X = a4 (a check location), using (7.22) the error 
value is found to be 

For the error location X = a9 (a message location), using (7.21) the error value is found to be 

N(a9) 7 N ( X )  Y [ X ]  = f(X)- = a2- 
W'(X)  W'(a9) 

= a .  

Similarly, for the error location X = a12, the error value is Y [ X ]  = a*. The error polynomial is thus 

E ( x )  = a5x4 + (27x9 + a 8 P  

and all errors are corrected. 0 

Example 7.6 Using the same code and the data from Example 7.2, the Welch-Berlekamp algorithm 
operates as follows. 
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Using the Chien search, it can be determined that the error locator W ( x )  = a13 +a7x +a8x2 +a3x3 
has roots at a4, a9 and a12. For the error location X = a4 (a check location), the error value is found 
using (7.24) to be 

= a5 
N l ( x ) X - b , b ( d - l )  N’ ( X ) X - b a 2 ( 6 )  

Y [ a  4 ] = 7.4 - = o -  
W ’ ( X ) g ( X a b )  W ’ ( X ) g ( X a 2 )  

For the error location X = a9 (a message location), the error value is found using (7.23) to be 

N ( x ) X - b , b ( d - l )  ~ ( , 9 ) , - 1 8 , 2 ( 6 )  
= a 7 .  - Y [ X ]  = - 

Wl(  X ) g  ( X a b )  W ’ ( a 9 ) g  ( a 9 a 2 )  

Similarly, for the error location x = a ‘ 2 ,  the error value is Y [ X I  = a’. The error polynomial is thus 

E ( x ) = a  x + a  x + a  n 5 4  7 9  8 1 2  

and all errors are corrected. 0 

7.4.3 A Modular Approach to the Solution of the 
Welch-Berlekamp Key Equation 

In this section we present an alternative approach to the solution of the Welch-Berlekamp 
key equation, due to [63], which makes use of modules and the concept of exact sequences. 
This solution is interesting theoretically because it introduces several important and powerful 
algebraic concepts. In addition, as shown in [63], it is suitable for representation in a parallel 
pipelined form for fast decoding. 

The problem, again, is to find polynomials N ( x )  and W ( x )  satisfying the rational inter- 
polation problem 

(7.34) 

with deg(N(x)) < deg( W ( x ) )  and deg(W(x)) minimal. We observe that the set of solutions 
to (7.34), without regard to the degree requirements, can be expressed more abstractly as 
the kernel of the homomorphism 

(7.35) 

Any pair of polynomials (w(x), n(x)) in the kernel of # j  yields a solution to (7.34) at x i .  
By the Chinese remainder theorem, the equations in (7.34) can be collectively expressed 

as a congruence 
N ( x )  = W ( x ) P ( x )  (mod n(x)) (7.36) 

where P ( x )  is any interpolating polynomial, P ( x j )  = y j ,  i = 1,2, . . . , m, and n(x) = ny.l (x - xi). Our approach is to develop a linear space of solutions [w(x), n(x)] without 
regard to the minimality of degree, then to establish a means of selecting a point out of that 
space with minimal degree. The approach is made somewhat more general by defining a 
module as follows. 

Definition 7.7 For fixed D ( x )  and G ( x ) ,  let M be the module consisting of all pairs 
[ w ( x ) ,  n(x)] satisfying 

G ( x ) n ( x )  + D ( x ) w ( x )  = 0 (mod n(x)). (7.37) 

0 
The module M corresponds to the space of solutions of (7.36) when G ( x )  = 1 and 

N ( x i )  = W ( x i ) y i ,  i = 1 , 2 , .  . . , m 

# j  : F[x] + F defined by # j ( w ( x ) ,  n(x)) = n ( x i )  - w ( x i ) y j .  

D ( x )  = - P ( x ) .  
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(7.38) 

(7.39) 

Lemma 7.8 M is a free F[x]-module of rank 2 having a basis vectors 

[n ( X I  6 ( X I  n ( X I  Y ( ~ 1 1  [ - G (x> /A ( x )  I D ( X I  /A ( x ) l ,  

where 
= GCD(G(x) ,  D ( x ) ) ,  @ ( X I ,  n ( x ) )  = 1 

and 
S ( x ) ( D ( x ) / U x ) )  + ~ ( x ) ( G ( x ) / V x ) )  = 1. 

Proof It is straightforward to verify that (7.37) holds for 

[w ( X  1, n ( X  11 = [- G ( X  1 /A ( X  1, D (x 1 /A ( X  11 

[w(x>,  n b ) l  = [ n ( x V ( x ) ,  n ( x > Y ( x > l ,  
and for 

so these bases are in M. 
We must show that an arbitrary element [w(x), n(x)]  E M can be expressed as a 

F[x]-linear combination of these basis vectors. Since [ w ( x ) ,  n ( x ) ]  E M, G ( x ) n ( x )  + 
D ( x ) w ( x )  = 0 (mod 

Consider the matrix 

By (7.39), det(A) = 

(7.40) 

1, so that A-’ is also a polynomial matrix. There therefore exist 
polynomials n*(x)  and w* ( x )  such that 

[w(x>,  n(x) l  = [w*(x) ,  n*(x) lA.  

Substituting this into (7.40), 

(7.41) 

6 ( x )  Y ( x )  D ( x )  = 0 (mod n ( x ) ) ,  
[w*(x ) ’  n*(x)l [ - G ( x ) / h ( x )  D(x) /A(x)]  [ G ( x ) ]  

or, using (7.39) again, 

[w*(x) ,  n*(x)]  [“!)I = 0 (mod n ( x ) ) .  

Thus w*(x)A(x) = 0 (mod n ( x ) ) ,  so that by (7.38) n ( x )  1 w*(x). Thus there i s  apolyno- 
mial G ( x )  such that w*(x)  = n ( x ) G ( x ) .  Equation (7.41) can thus be written as 

indicating that an arbitrary element [n(x) ,  w ( x ) ]  can be expressed as a F[x]-linear combi- 
nation of the basis vectors. 

0 
It is convenient to represent the set of basis vectors for 34 as rows of a matrix. We use W to 
represent a basis matrix. Then any point [ w ( x )  , n ( x ) ]  can be represented as 

[W), n(x>l = [ a ( x ) ,  b(x) lQ 

for some [ a ( x ) ,  b ( x ) ]  E F[xI2. 
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Lemma 7.9 For any matrix W whose rows form a basis of M, det(W) = alT(x) ,  where 
a E IF is not zero. 

Conversely, ifthe rows of@ E F[x]2x2 are in nlc and det @ = a n ( x ) f o r  some nonzero 
a! E IF, then is a basis matrix for M. 

Proof For the matrix W in (7.42), 

n 
h 

det(\Y) = -[D6 + Gy]  = n(x) 

by (7.39). Let W' be any other basis matrix. Then there must be a matrix T such that 

W' = TW \Y = T-lW'. 

Since T is invertible, it must be that det(T) is a unit in F[x], that is, det(T) E IF. Thus 
det(W) = det(TW) = det(T) det(Q) = an(x) .  

To prove the converse statement, for a matrix Q, whose rows are in M, there must be a 
matrix T such that @ = TW. Then 

an(x)  = det(Q,) = det(T) det(Q) = det(T)Il(x) 

so that det(T) = a, which is a unit. Thus T is invertible and W = T-'@. By this we 
observe that Q, must be a basis matrix. 0 

Let us return to the question of finding the intersection of the modules which are the 
kernels of & defined in (7.35). To this end, we introduce the notion of an exact sequence. 

Definition 7.8 Let R be a ring [such as F[x]] and let '31, 23 and 8 be R-modules. Let f 
and g be module homomorphisms, f : '31 + 23 and g : 23 + 8. The sequence 

(nf93234n 

is said to be exact if im(f) = ker(g). 0 
As an example, let Mi be the module of rank two that is the kernel of 4i and let Wi (x) 

be a 2 x 2 basis matrix for the Mj . Define +i (w (x) , n (x)) = [ w (x) , n (x)] Wi (x) . Then 

is an exact sequence. 
The main idea in the intersection-finding algorithm is embodied in the following lemma. 

Lemma7.10 Let 
%323h73 

be exact and let 42 : 93 + 8' be another module homomorphism. Then 

ker(4i) n ker(42) = $(ker(42 0 11.)). 

Proof Consider the function 42 o $ : '31 4 8'. Since ker(42 o +) c '31, it follows that 
+(ker(42 o +)) c im(+), which by exactness is equal to ker(41). Thus $(ker(42 o +) c 
ker (41 1. 

Furthermore, bydefinition,42(+(ker(&o@))) = (0}, that is, +(ker(&o+)) E ker(42). 
Combining these we see that 

(7.43) +(ker(42 0 $1) c ker(41) fl ker(42). 
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By definition, 

so that 

42 0 +(+-l  0rer(41) n ker(42))) = (01 

@ - ' ( k e r ~ i )  n ker(42)) c ker(42 0 +I 

ker(4i) n ker(42) c q(ker(42 0 +)I. 

or, applying @ to both sides, 

(7.44) 

Combining (7.43) and (7.44) we see that 

ker(4i) n ker(42) = Wer(4z  0 +I). 
0 

This lemma extends immediately: If T& + % + B is exact and $i : '23 + B', i = 
1,2,  . . . , rn are module homomorphisms, then 

ker(&) rl ker(42) r l  . . . r l  ker(4,) = @(ker(@2 o @) n ker(43 o +) n. . . rl ker(4, o @)). 

1cI 41 

Consider the solution of the congruence 

Gin(x) + Diw(x) = 0 (mod x -xi), i = 1,2,. . . , m (7.45) 

for given Gi and Di . Define the homomorphisms for this problem as 

4i(W(x), n(x>)  = Gin(xi) + DiW(xi) = [W(xi), n(xi>l [z]  7 (7.46) 

and 

The module of solutions of (7.45) for a particular value of i is denoted as Mi. 

Lemma 7.11 For di and +i as just defined, the sequence 

F[x]2 4 F[x]2 3 F 

is exact. 

Proof We consider the case that Di # 0. By substitution of the elements (w(x), n(x)) from 

each row of the matrix defined in (7.47), 'Pi (x) = [ -Gi Di], into (7.46) it is clear 

that the rows are two elements of ker(4i). Also, the determinant of the matrix is equal to 
-Di (X - x i ) .  Thus by Lemma 7.9, 'Pi (x) is a basis matrix for the module Mi = ker(&). 

0 
Each homomorphism & can be written as 

(x  -Xi) 0 

The case when Di = 0 follows similarly, making use of the fact that Di = 0. 



314 Alternate Decoding Algorithms for Reed-Solomon Codes 

so that (Di , Gi) characterizes the homomorphism. Let #Io1 = 4i , i = 1,2,  . . . , m represent 
the initial set of homomorphisms, with initial parameters (DY], GY]) = (Di, Gi). The 
superscript indicates the iteration number. 

In the first step of the algorithm, a homomorphism 4jl is chosen from the set 

such that Di[O1 # 0. (The second subscript in 4jl also denotes the iteration number.) The 
homomorphism @ j ,  of (7.47), described by the matrix Wfl(y),  is formed, 

* j  I 41, 

[I1 - [OI 

By Lemma 7.1 1, the sequence F[xI2 --+ F[xI2 --+ F is exact. Now define 

4i - 4i 0 ~ j l .  

Then from Lemma 7.10 

3uc = @j1 (ker(4;'l) n ker(&]) n . . . n ker(#])). 

The interpolation problem is therefore equivalent to finding a basis for 

ker(4l'l) n ker(&]) n . . . n ker(4,'I). 

(7.48) 

(7.49) 

We can write 

(7.50) 

- 

(7.51) 

Thus the homomorphisms are defined by (DI", GI1]), where 

When i = j1 we have 

(7.52) 

(7.53) 

so that ker(q551l) = F[xI2. (That is, d[:] maps all pairs of polynomials to 0.) This means 
that among the modules listed in (7.44) there is a trivial module, reducing the number of 
nontrivial modules to deal with by one. It also means that the equation is satisfied for index 
i = j 1 .  
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At the next step, a single homomorphism @::I is chosen from the set [I1 , @2 [I1 , . . . , 
&’] such that D‘.’], defined by (7.52), is nonzero. The corresponding homomorphism +j2 

is also formed via its matrix representation, 
12. 

This choice of j 2  gives rise to a new set of homomorphisms {@i2]] by 

@i PI - - @ j  I11 0+j2, 

@i P I  - - @ i  [OI o + j l o + j 2 ,  

i = 1 , 2  ,..., m. 

Then from (7.48), 

so that 

i = 1 , 2  ,..., m 

From (7.53) it follows immediately that GF1 = DE1 = 0. It is also straightforward to show 
that 

12 

Thus ker(d‘2’) = ker(@) = F[xl2, and the equations corresponding to the indices j 1  and 
j 2  are satisdkd. The number of nontrivial modules under consideration is again reduced by 
one. Furthermore, by Lemma 7.10, 

M = +jl o +j2 (ker(@I2]) n ker(@fl) n . . . n ker(&])). 

We continue iterating in this manner until iteration number I 5 rn at which the set of 
DF1 = 0 for all i = 1,2,  . . . , m. Now consider the set of homomorphisms {@?I, @!I, . . . , 9, [11 1. 
Define 

M[‘I = ker(@fl) n ker(@tl) n . . . n ker(&]) c F[xI2 

and let 
+ = +jl 0 $j2 0 . .  . 0 $jl. 

M = +(M[q.  
By Lemma 7.10, 

BY construction, D;] = o for i = 1,2,  . . . , m. Since 

111 [I1 “I @i ( ~ ( x ) ,  n(x)) = Gi n(xi) - Dj w(xi), i = 1 ,2 , .  . . , m ,  

the pair (1,O) E MI1], which implies that + (1,O) E M. We have thus found a solution 
to the interpolation problem! It remains, however, to establish that it satisfies the degree 
requirements. This is done by keeping track of how the homomorphism + is built. 
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We can write + ( w ( x ) ,  n ( x ) )  as 

Let 

and 
i 

(7.54) 

(7.55) 

Use Q ( x )  = Q [ ' ] ( X ) .  Then + ( w ( x ) ,  n ( x ) )  = [ w ( x ) ,  n ( x ) l Q ( x ) .  Let us write this as 

Our culminating lemma indicates that this construction produces the desired answer. 

Lemma 7.12 Let [ Q l , l ( x ) ,  Q2,2(x)1 be the image of(1,O) under the mapping +. That is, 

Proof The fact that ( Q 1 , 1 ,  Q 1 , 2 )  satisfies the interpolation equations has been shown by their 
construction. It remains to be shown that the degree requirements are met. The following 
conditions are established: 

This is immediate when i = 1. The remainder are proved by induction. For example, 

deg(Qz;']) = 1 + deg(Qt]z) I 1 + L(i - 1)/2J = [ i /21 .  

This and the other inductive steps make use of the facts that 

1 + ~ i / 2 1  = r(i + 11/21 l ( i  + 1)/2J = ri/21. 

0 

The solution to the WE! equation can thus be computed using the following algorithm. 
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Algorithm 7.2 Welch-Berlekamp Interpolation, Modular Method, v. 1 

I Input: Points ( x i ,  y i ) ,  i = 1,2 ,  . . . , m. 

2 Initialization: Set G~[OI  = 1, D!'] = - y j ,  i = 1,2,  . . . , m, q [ O I  = 

3 for s = 1 tom 
4 

5 

Returns: N ( x )  and W ( x )  satisfying N ( x i )  = W ( x i ) y i ,  i = 1,2, . . . , m. 

Choose j s  such that D[s--'] # 0. If no such js, break. 
for k = 1 to rn (may be done in parallel) 

Js 

7 end (for) 

9 end(for) 
10 W ( x )  = q],, N ( x )  = q;. 

As pointed out in the comment on line 5, computation of the new parameters G and D 
in line 6 may be done in parallel. 

Example 7.7 For the ( x i ,  y i )  data of Example 7.1, the execution of the algorithm is as follows (using 
1-based indexing): 

s = 1: (Diol} = {a7, m6, 0, a12, 0, a13}. Choose: j 1  = 1. q [ ' ] ( x )  = 

s = 2: {Di[']} = (0, a", a7, a2,  a7, a'}. Choose: j2 = 2. \IrL2](x) = 

[21 - 2 4 2 1 4  s = 3: {Di } - (O,O,  a , a  , a  , a  }. Choose: j 3  = 3. qL3](x) = 

s = 4: {Di3]}  = (0, 0 ,  0, m12,  m4,  a2}. Choose: j 4  = 4. 

s = 5: {$I} = {O, O ,O,  0, a4, 0) .  Choose: j5 = 5. 

1 a4 + m8x + ,132 

1 + a4, + ,9,2 
@ I ( , )  = [a 2 

f:&:9fa7x3 

s = 6: {of5]} = {0, 0, 0 ,  0, 0 ,  m2}.  Choose: j6 = 6. 

1 [ a3 + a9x + ,122 + m9x3 a9 + a l l x  + , 1 3 2  + a13,3 

a4 + m13x + a14x2 + a9x3 a2 + a6x + a11x2 
d61(,) = 

At the end of the iteration we take 

W ( x )  = * l , J ( X )  = a4 + a13x + ,142 + a9x3 N ( x )  = \Y1,2(x) = a2 + a6x + al1x2  

These are the same ( N ( x ) ,  W ( n ) )  as were found in Example 7.5. The roots of W ( n )  and the error 
values can be determined as before. 0 
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At the end of the algorithm, we have 

Q ( x )  = \y['l(x) 

This algorithm produces a (D!],  GIs]) pairs satisfying 

Thus ker(4;:) = F[xI2 for s = 1,2,  . . . , l .  By Lemma 7.10, 

ker(#j,) n ker(4,J n ... fl ker(4j,) = @(F[xI2). (7.56) 

Now consider @(O,  1) = (Q2,1 (x), Q2,2(x)) (that is, it is the second row of the matrix 
Q ( x ) .  By (7.56), +(O, 1) E ker(4j,) f l  ker(4j2) n.. . n ker(4jl); that is, it solves all of the 
equations 

(7.57) 

Furthermore, we know by construction that the first row of the @(x) matrix satisfies the 
equations 

(7.58) 

(Note that these are the original (Di, Gi) pairs which are not zero, not the modified 
(D!], G ~ J )  pairs.) 

Like the Welch-Berlekamp algorithm, Algorithm 7.2 requires the propagation of four 
polynomials. However, we now show that it is possible to generate a solution using only 
two polynomials. This is done by showing how to compute the error values using only two 
elements in the Q (x) matrix. We show how to compute the error values for the DB form of 
the key equation. (Extension to the WB form of the key equation is straightforward.) 

Dj5'P2,1(~j,) + Gj,rQ2,2(~js) = 0 s = 192, . . . ,1. 

DjsQ1,l(Xj,) + Gj,?Q1,2(~j~) = 0 s = 192, . . ., 1. 

Lemma 7.13 [63, p.  8791 Define 

(7.59) 

Proof We consider separately the cases that the error is in a message location or a check 
location. Recall that the Xk, k = 1,2,  . . . , m defined in the interpolation problem represent 
check locations. Suppose first the error is in a message location, with locator xi. From 
(7.54) and (7.55) we have 

1 

det(Q(x)) = 'P1,1(x)Q2,2(x) - QI,~(x)Qz,J(x)  = ( - 1 ) ' n  D:-'](x - xj,). (7.60) 

By definition, the x j ,  are all in check locations, so the right-hand side of the equation is not 
zero at x = xi. But since xi is an error location, we must have 'P1,1 (xi) = 0. We thus obtain 

s=l 

(7.61) 
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Recalling that the error value for a message location is (see (7.23)) 

-b Wd- l )  * 1 , 2 ( X j ) X i  -bab(d-l) 
- - N2(xi)xi a 

Y [ x ~ ]  = - 
Wl (xi )g (xi ab> *;, l (Xi)g(Xiab)  

and substituting from (7.61), the result follows. 
Now consider the case that xi is a check location. From (7.58), when *1,1 (xi) = 0, we 

must have*l,z(xi) = 0. Asobservedin(7.57), ( * ~ , J ( x ) ,  *2,2(x)) satisfies theinterpolation 
problem (7.18) for ak E {x i s ,  s = 1,2, .  . . , I } .  The function (h(x), h(x)) satisfies it 
(trivially) for other values of ak that are check locations, since it is zero on both sides of the 
interpolation equation. Thus (h(x)*2,1(x), h(x)\Ir2,2)(~)) satisfies (7.18). Thus 

b b b(2-d) 
h(xi)*2,2(xi) = h(~i)*2,1(xi)r[xiIg’(xia )xi a . 

It can be shown that *2,1 ( x i )  # 0 and that h(xi)  # 0 (see Exercise 7.1 l), so that 

-b b(d-2) 
*2,2(xi)xj a 

r[xj]  = 
*2,1 (xi g’ (abxi 1 

. 

Now substitute into (7.24): 

Since by this lemma the only polynomials needed to compute the error values are * 1 , 1  (x) 
and W2,1 (x) (the first column of @ ( z ) ) ,  we only need to propagate these. This gives rise to 
the following decoding algorithm. 
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Algorithm 7.3 Welch-Berlekamp Interpolation, Modular Method, v. 2 

I Input: Points ( x i ,  y i ) ,  i = 1,2, . . . , rn from DB form of key equation. 
Returns: *2,1 ( x )  and * 1 , 1  ( x )  which can be used to find error values. 

z Initialization: Set Gi[O1 = 1, D/ol  = - y i ,  i = 1,2,  . . . , rn, *ioi = 1; *$oi = 0. 
3 for s = 1 torn 
4 

s 

Choose j ,  such that D'f--'] # 0. If no such j , ,  break. 
for k = 1 to rn (may be done in parallel) 

Js 

7 end(for) 

Example 7.8 For the ( x i ,  y i )  data in Example 7.2 (which form is necessary, since the method is 
based on the error values computed for the DB form), the algorithm operates as follows (using 1- 
based indexing). 

s = 1: {D/o'} = {a9,a8,  0, a'4,0,  l}. Choose: j 1  = 1. ( * ~ , J ( x ) ,  * 2 , 1 ( x ) )  = ( 1 ,  1 + x )  

s = 2. {Di[']} = {O, a12, a 9 ,  a4, a9,  a7].  Choose: j 2  = 2. p P l , l ( x ) ,  * 2 , 1 ( x ) )  = (a12x,  a + X I  
s = 3 .  {Di [211={0 ,0 ,a  6 8 6 3  ,a , a  , a  }.Choose: j 3 = 3 .  ( * 1 , 1 ( ~ ) , * 2 , 1 ( x ) )  = ( a 7 + a x , a 1 4 x +  

, 1 2 2 ,  ) 

x 2 , a 1 ~ + a 3 x  f a x 2 , )  

2 x 2 ,  a10 + a 4 x  + a 5 2  + x 3 )  

a 3 x 3 ,  a2 + a 8 x  + a112 + a 8 x 3 )  

s = 4. {DI3]} = {O,O, 0,  a3 ,  a", a8}. Choose: j 4  = 4. ( * I , I ( x ) ,  *2,1(x)) = (a6 + a8x + 

s = 5 .  {D14]] = {0,0,0,0,a '4 ,0] .  Choose: j 5  = 5. (*1,1(x) ,  * ~ , J ( x ) )  = (a12 + a4x + 

s = 6. {D141} = ( O , O ,  O , O ,  0, a3}.  Choose: j 6  = 6. (*1,1(x) ,  * ~ , J ( x ) )  = (a13 + a7x + a8x2 + 

The roots of *1,1(x)  = + a7x  + a8x2 + a3x3 are at a4, a9 and a12. Using (7.59) the error 
0 

One last simplification is now developed for this algorithm. As we shall show, there are 
some computations which Algorithm 7.3 performs which turn out to be unnecessary. If we 
can postpone some of them until it is certain that they are needed, unnecessary computations 
can be avoided. This idea was originally suggested as using queues in [23]. 

value are found to be a5, a7 and a8, respectively. 

Let 
Qs = ( k  E [1 ,2 , .  . . , 2 t }  : 0; = 0 and Gi  = 0) 

and let 
Cs = (k  E (1,2, .  . . , 2 t }  : 0; = 0 and G; # O}. 

For a k E C2, we can (by normalization if necessary) assume without loss of generality that 
Gi  = 1. 
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Let j ,  be such that Dg-'] # 0 (that is, j ,  # F-' and j ,  $ P-') and let k E ZS-' 

such that D f - ' ]  = 0 and GF-'] = 1. Then 

so that for all k E V-', G i  = 0 and DF1 = Djs ['-'I # 0. Hence k $ X'. Therefore, at 

the (s + 1)st step of the algorithm, if C'-' # 0, js+l  can be chosen from F-'. So let 
j,+1 E V-'. Fork E F-' with k # j,+1, 

so that Df"] = 0 and GIs+'' # 0. From this, k E Xsf '  and j,+1 E fits+'. 
Thus, the for loop in lines 5-7 of Algorithm 7.3 can exclude those values of k that are 

in X'-' U Xs U as, since over the next two iterations computations involving them are 
predictable (and eventually they may not need to be done at all). This leads to the following 
statement of the algorithm. 

Algorithm 7.4 Welch-Berlekamp Interpolation, Modular Method, v. 3 

I Input: Points (xi, yi), i = 1,2,  . . . , rn. 

z Initialization: Set C O  = z-1 = QO = 0, GIO] = 1, ~ i [ O l  = -yi, i = 1,2,  . . . , m, qioi = 1; tp?! = 0. 
3 for s = 1 torn 
4 

Returns: *2,1 (x) and *1,1 (x) which can be used to find error values. 

If Cs-2 # 0 choose j s  E CS-'. Otherwise, choose j ,  such that D[?'] # 0. 
If no such j , ,  break. 
fork = 1 to rn such that k @ Cs-2 U CS-' U Qs-' (may be done in parallel) 

I s  

5 

6 [ D f ' ]  = [ -G[!-'] Js  

7 end (for) 
GrS1 (xk - x j S )  

10 end (for) 

7.5 Erasure Decoding with the Welch-Berlekamp Key Equation 

In the event that some of the positions in R ( x )  are erased, the algorithms can be modified 
as follows. Let the erasure locator polynomial be r(x) = n , ( x  - af), where the ei are in 
this case the erasure locations. 

For the Welch-Berlekamp algorithm of Section 7.4.2, erasure/error decoding proceeds 
exactly as in the case of errors-only decoding, except that initial W polynomial is set equal 
to the erasure locator polynomial, W[OI(x) = r(x). The formulas for computing the error 
and erasure values are exactly the same as for errors-only decoding. 
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For the Dabiri-Blake decoding, Algorithm 7.2, think of W ( x )  as consisting of two 
factors, one factor due to errors and the other due to erasures, 

Then the interpolation problem is written as 

N ( x i )  = W ( x i ) y i  = W l ( X i ) r ( X i ) y i .  

Now let j$ = r ( x i ) y i  and run Algorithm 7.2 on the data (Xi ,  j i ) ,  except that the initialization 
qio; (x) = r (x )  is performed. The error value computations are unchanged. 

7.6 The Guruswami-Sudan Decoding Algorithm and 
Soft RS Decoding 

The algebraic decoders presented to this point in the book are bounded distance decoders, 
meaning they are capable of decoding up to to = [(dmin - 1) /2 ]  errors. In the remainder of 
this chapter we discuss a list decoding approach to Reed-Solomon (and related) codes which 
is capable of decoding beyond to errors. A list decoder generally returns several possible 
decoded messages. However, for many codes the size of the list is usually small, so that 
only one decoded message is usually returned. An extension of this decoding algorithm 
provides a means for algebraic soft decision decoding of Reed-Solomon codes. 

7.6.1 Bounded Distance, ML, and List Decoding 

Consider an (n, k ,  d )  Reed-Solomon code C. Three different decoding paradigms can be 
employed in decoding such codes. 

In bounded distance (BD) decoding, the following problem is solved: For a distance e 
such that 2e + 1 5 dmin, given a received vector r, find a codeword c E C which is 
within a Hamming distance e of r. There exist many efficient algorithms exist for 
solving this (all of the algorithms in chapter 6 are BD decoders), and for a t-error 
correcting code the answer is unique when t 2 e .  However, if r lies at a distance 
greater than [(dmin - 1)/2] from any codeword, a decoding failure will result. 

In maximum likelihood (ML) decoding (also known as nearest codeword problem), 
the codeword c which is closest to r is selected. Provided that the number of errors e 
satisfies 2e + 1 5 d d n ,  the ML and BD algorithms decode identically. However, ML 
decoding may be able to decode beyond L(ddn - 1) /2 ]  errors. The ML decoding 
problem, however, is computationally difficult in general [24]. 

In list decoding the problem is to find all codewords c E C which are within a given 
distance e of the received word r. 

The Guruswami-Sudan (GS) algorithm is essentially a list-decoding algorithm, providing 
lists of all codewords within a distance tm of the received word r. Whereas the BD decoder 
is able to correct a fraction t = of the errors, the Guruswami-Sudan algorithm 
is able to correct a up to tGS = rn - d% - 11 errors, so that the fraction is (asymptotically) 
t = 1 - a. Thus the GS algorithm has better error correction capability for every code 
rate R. 

= 
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drmn_l 

(a) BD decoding: Codeword in (b) ML decoding: Nearest code- 
same Hamming sphere as r. word tor  decoding (possibly be- 

yond Hamming sphere). 

(c) List decoding: All code- 
words within a given Hamming 
distance of r 

Figure 7.2: Comparing BD, ML, and list decoding. 

7.6.2 Error Correction by Interpolation 

The motivating idea behind the GS decoding algorithm can be expressed as follows. Under 
Construction 1 of Reed-Solomon codes, a set of data points (xi, cj ) ,  i = 1, . . . , n are 
generated with a polynomial relationship ci = m ( x i )  for some polynomial m (x) which has 
at most degree k - 1. A set of points ( x i ,  ci) are produced. The cj are corrupted by some 
noise process, producing points (xi, y i )  in which as many as e of the ri are in error. The 
problem now is to fit a polynomial p ( x ) ,  of degree < k through the data points, such that 
p (x i )  = y i .  However, since some of the points are in error, we seek an interpolating match 
only for n - e of the data points, so I{i : p ( x j )  = yj)l  n - e.  Then, based on this 
interpolating polynomial, the points in error are recovered. That is, if i is the index of a 
point in error, then we say that the recovered value is i i  = p(x j ) .  

The Guruswami-Sudan decoding is based generally on this idea of interpolation. The 
interpolating polynomial is constructed as a polynomial in two variables, Q ( x ,  y)  which 
satisfies the interpolating condition Q ( x i ,  y j )  = 0. In addition to simply interpolating, an 
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interpolation multiplicity mi is introduced which defines the order of the interpolation at 
each point. This is roughly equivalent to specifying the value of the function and its rni - 1 
derivatives in the interpolating polynomial. This interpolation multiplicity improves the 
correction capability. Furthermore, as we will see in Section 7.6.8, we will see that the 
interpolating multiplicity can be used for soft decision decoding of RS codes. From the 
bivariate polynomial Q ( x ,  y) the polynomials p ( x )  are extracted by factorization, which 
will satisfy the property p(x i )  = yi for a sufficiently large number of locations ( x i ,  y i ) .  Then 
each polynomial p ( x )  represents a possible transmitted codeword and the set of polynomials 
is the list of possible decoded codewords. 

There are thus two main steps to the decoding algorithm: 

The interpolation step The decoder constructs a two-variable polynomial 

(7.62) 

such that Q ( x i ,  y i )  = 0 for i = 1,2 ,  . . . , n (with a certain multiplicity of the zero, 
to be discussed below), and for which the “degree” (actually, the weighted degree) of 
Q ( x ,  y )  is as small as possible. 

Explaining and justifying this step will require a discussion of the concept of the 
degree of multivariable polynomials, which is presented in Section 7.6.3. 

The problem can be set up and solved using straightforward linear algebra. However, 
a potentially more efficient (and interesting) algorithm due to Kotter [ 1931 is presented 
in Section 7.6.5. An algorithm accomplishing the solution, which is an extension of 
the Berlekamp-Massey algorithm to vectors, is presented in Section 7.6.5. 

The factorization step The decoder then finds all factors of Q ( x ,  y )  of the form y - 
p ( n ) ,  where p ( x )  is a polynomial of degree v or less. This step produces the list of 
polynomials 

L = { P l ( X ) ,  p 2 ( x ) ,  . . ., PL(X)) 

that agree with (xi, y i )  in at least tm places. That is, I{i : p j ( x i )  = yi}l tm for 
every p j  E C. 
An algorithm due to Roth and Ruckenstein [297] which performs the factorization 
by reducing it to single-variable factorization (amenable, e.g., to root-finding via the 
Chien search) is presented in Section 7.6.7. 

The quantity tm is the designed decoding radius. The larger tm is, the more potential 
errors can be corrected. The quantity tm depends in a nondecreasing way on mi; that is 

to 5 t l  5 t2 ... , and there is a multiplicity rno such that tmo = tm,+l = ... = ~ G S  that 
describes the maximum error correction capability of the decoding algorithm. 

7.6.3 Polynomials in Two Variables 

In this section, we describe the concepts associated with polynomials in two variables 
which are necessary to understand the algorithm. We will see that for a polynomial p ( x )  of 
degree v such that ( y  - p ( x ) )  1 Q ( x ,  y )  it is natural to consider the (univariate) polynomial 

A 
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Q ( x ,  p ( x ) ) .  For Q ( x ,  y) as in (7.62), this gives 

dx d~ 

Q(x, P ( x ) )  = r x a i , j x i p ( x ) ’ ,  
z=o j=o 

which is a polynomial in x of degree dx + vdy.  It is thus natural to define the degree of 
Q (x, y) as d, + udy . This is called the (1, u )  weighted degree of Q (x , y). 

Degree and Monomial Order 

For a polynomial in a single variable, the notion of degree is straightforward. For polyno- 
mials defined over multiple variables, however, there is some degree of flexibility available 
in defining the order of the polynomials. Various algorithms (and their complexity) depend 
on the particular order employed. (For a full discussion of the degree of multinomials, the 
reader is referred to [60, section 2.21.) 

Let IF be a field and let IF[x, y] denote the commutative ring of polynomials in the 
variables x and y with coefficients from F .  A polynomial Q ( x ,  y) E F[x, y] can be written 
as 

i, jr0 

in which only a finite number of coefficients are nonzero. 

Example 7.9 Let F = R and let 

Q(x, y )  = 3 x 3 y  + 4xy3 + 5x4 

Looking forward to the upcoming definitions, we ask the questions: What is the degree of Q ( x ,  y)? 
What is the leading term of Q(x , y )? How is Q (x , y ) to be written with the terms ordered in increasing 
“degree”? 0 

To address the questions raised in this example, it will be convenient to impose an ordering 
on the set of monomials 

MIX, y] = {x’yj : i, j 2 0 )  c F[X, y]. 

That is, we want to be able to say when a monomial xil yjl is “less than” xi2yj2. Let N2 
denote the set of pairs of natural numbers (pairs of nonnegative integers). 

Definition 7.9 A monomial ordering is a relation “<” on M[x, y] with the following 
properties. 

M 0 1  For (al, a2) E N2 and (bl ,  b2) E N2, if a1 f bl and a2 5 b2 then xalyaz 5 xblyb2. 

M02 Therelation “<” is a total ordering. That is, if a = (al, a2) E N2 and b = (bi, b2) E 

M03 Forany(a1, a2), (bl ,  bz)and(cl, c2) E N2,ifxa’ya* 5 xblyb2,thenxaIya2xc1 Y -  ‘2 < 

(That is, the monomial xal ya2 “comes before” the monomial xbl yb2.) 

N2 are distinct, then either xal ya2 < xbl yb2 or xbl yb2 < xal ya2. 

xbi y b 2 X ~ ~  yc2. 

0 
Of the many possible monomial orderings one might consider, those which will be most 

important in this development are the weighted degree (WD) monomial orderings. Each 
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Table 7.1 : Monomials Ordered Under ( 1, 3)-revlex Order 

Monomial: @ j ( x , y )  1 x x2 x3  y x4 xy x5 x2y x6 x3y y2 x7 x4y xy2 
Weight: (w-revlex): 0 1 2 3 3 4 4 5 5 6 6 6 7 7 7 

j :  0 1  2 3 4  5 6 7  8 9 1 0 1 1 1 2 1 3  14 

Monomial: @j(x,  y) 
Weight: (w-revlex): 8 8 8 9 9 9 9 10 10 10 10 11 11 11 11 

i :  15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

x8 x5y x2y2 x9 x6y x3y2 y3 x10 x7y x4y2 xy3 x l1  x8y x5y2 x2y3 

Table 7.2: Monomials Ordered Under (1,3)-lex Order 

Monomial: @j(x ,y)  1 x x 2  y x3 xy x4 x2y x5 y2 x3y x6 xy2 x4y x7 
Weight: (w-lex): 0 1 2 3 3  4 4 5  5 6 6  6 7 7 7  

j :  0 1 2 3  4 5 6 7  8 9 10 11 12 1 3 1 4  

Monomial: @j(x,  y) x2y2 x5y x8 y3 x3y2 x6y x9 xy3 x4y2 x7y x10 x2y3 x5y2 x8y x l 1  
Weight: (w-lex): 8 8 8 9 9 9 9 10 10 10 10 11 11 11 11 

i :  15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

WD monomial order is characterized by a fixed pair w = (u ,  v) of non-negative integers 
where not both are 0. Then the w-degree of the monomial x i  y j is defined as 

deg, x c y J  = ui + v j .  

The WD monomial order is sufficient to define a partial order on M [ x ,  y]. However 
there may be ties under this order, since there are monomials $l(x,  y )  and 42(x,  y )  with 
&(x ,  y)  # 42(x,  y )  with deg, 4 l ( x ,  y )  = deg, 42(x,  y) ,  so that it is not yet an order. 
There are two common ways to break such ties. 

Definition 7.10 In w-lexicographic (or w-lex) order, if u i l  + vj1 = ui2 + vj2, we say 
that xc lyJ '  < xi2yj2 if il  < i 2 .  In w-reverse lexicographic (or w-revlex) order, if 
uil + vj1 = ui2 + vj2, we say that x i l y j l  < xizyjz if il > i2. These orderings are denoted 
by < wlex and < wrevlex. 0 

Example7.10 Letw= (1,3). Let@l(x,y)  =x2y3;thendeg,@1 = 11. Let@2(x,y)=x8y;then 
deg, 42 = 11, so there is a tie in the degree. Under w-lex order, @l(x,  y) <wlex @2(x, y). Under 
w-revlex order, 42(x, Y) <wrevlex @I (x, y). 

By a fixed monomial order < a set of monomials {&] can be uniquely ordered: 

. .  

1 = 4 0 ( x , y )  <41(X,Y) <42(X,Y) < .. .  . 

Example 7.11 Let w = (1,3). Table 7.1 shows the first 30 monomials @j  (x, y) ordered in w-revlex 
order, along with the w-degree of the monomial and the order index j .  The first 30 monomials ordered 
in w-lex order are shown in Table 7.2. 0 

For purposes of characterizing the performance of the decoder, it is useful to know how 
many monomials there are up to a given weighted degree. 
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Lemma 7.14 Let C(v, 1 )  be the number of monomials of weighted (1, v)-degree less than 
or equal to 1. Then 

C(V, 1) = (13 + 1) (I + 1 - ; I;]) . 

Furthermore, 
1 1 + 2  12 

C ( v , l )  - - > -. 
v 2 2v 

(7.63) 

(7.64) 

Example 7.12 Some values of C(3,l) computed using (7.63) are 

1 1 2 3 4 5 6 7  8 9 1 0 1 1  
C(3,l) 2 3 5 7 9 12 15 18 22 26 30 
bound 0.5 1.67 2.5 4 5.83 8 10.5 13.33 16.5 20 23.83 

These can be compared with the data in Table 7.1 or Table 7.2. 0 

Proof For a fixed j2, the monomials xJlyJ* of (1, v)-degree less than or equal to 1 is 
1 + 1 - vj2. The largest y-degree of a monomial of (1, v)-degree less than 1 is [ l / v ] .  The 
total number of monomials of (1, v)-degree 5 1 is thus 

The bound follows since 

Apolynomial Q(x, y) = Ci,j20 aj,jx'yj with themonomialsorderedby afixedmono- 
mial ordering can be written uniquely as 

J 

j =O 

for some set of coefficients {a j ) ,  with a J # 0. The integer J is called the rank of Q(x, y), 
denoted rank( Q ( x  , y )) . The monomial 4 J ( X  , y) is called the leading monomial of Q (x , y ), 
denoted LM( Q (x, y)). The coefficient a J is called the leading coefficient of Q (x, y ) .  The 
weighted degree of the leading monomial of Q(x, y) is called the weighted degree of 
Q(x, y), or w-degree, denoted degw(Q(x, y)): 

degw(Q(x, Y)) = deg, LM(Q(x, Y)) = mm{deg,4j(x, Y) : aj # 0) 

We also say that the y-degree of Q(x, y) is the degree of Q( 1, y) as a polynomial in y. 

Example 7.13 Let w = (1, 3) and let < be the w-revlex ordering. When 

Q ( x ,  y )  = 1 + x y  +x4y  + x 2 y 3  + x + y + x 8 y  
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is written with monomials ordered in increasing degree under <, we have 

Q(x, y) = 1 + x + y + xy + x4y + x8y + x2y3. 

They-degreeof Q(x, y)is3. TheLM(Q) = x2y3,rank(Q) = 29(refertoTable7.l)anddegw(Q) = 
11 .  

When Q (x , y ) is written under w-lex ordering, 

Q(x, y) = 1 S X  + y  + x y  + x 4 y  +x2y3 +x8y, 

and LM( Q) = x 8 y  and rank( Q) = 28 (refer to Table 7.2). 

Having defined an order on monomials, this can be extended to a partial order on polyno- 
mials. 

Definition 7.11 For two polynomials P(x, y ) ,  Q(x, y )  E F[x, y ] ,  we say that P ( x ,  y )  < 
Q(x, y )  if LM(P(x, y ) )  < LM(Q(x, y ) ) .  (This is a partial order on F[x, y ] ,  since distinct 

0 polynomials may have the same leading monomial.) 

Zeros and Multiple Zeros 

In the GS decoder, we are interested in fitting an interpolating polynomial with a multiplicity 
of zeros. We define in this section what we mean by this. 

We first make an observation about zeros at 0 of polynomials in one variable. 

Definition 7.12 Form 5 n, the polynomial 

n 

Q<X) = a m X m  + um+lxm+l + . . . + a,xn = C arxr, 
r=m 

where a0 = a1 = . . = u,-l = 0, is said to a zero of order or multiplicity m at 0. We 

Let Dr denote the rth formal derivative operator (see Section 6.5.1). Then we observe 
write ord(Q; 0) = m.  

that 
Q(0) = Dl Q(0) = * * .  = Dm-l Q(0) = 0. 

So the order of a zero can be expressed in terms of derivative conditions in this case. 
Let us generalize this result to zeros of order m at other locations. We say that Q(x) has 

a zero of order m at a if Q(x + a)  has a zero of order m at 0. This can be expressed using 
a kind of Taylor series, which applies over any field, known as Hasse's theorem. 

Lemma 7.15 [145] If Q(x) = Cz0 aixi E F[x], then for  any a E F, 
n 

r=O 

where 

Qr(x) = 5 ( i ) u i x i - r ,  r 
i=O 

andwhere we take (:) = 0 ifr =- i. 



7.6 The Guruswami-Sudan Decoding Algorithm and Soft RS Decoding 329 

The proof follows by straightforward application of the binomial theorem. Qr (x) is called 
the rth Hasse derivative of Q ( x ) .  We will denote Qr (x) by D, Q ( x ) .  In the case that F is 
a field of characteristic 0, then 

(7.65) DrQ<x> = Q r ( x >  = z,Q(x), 
so that Dr does, in fact, act like a differentiating operator, but with a scaling factor of l / r  !. 
We can write 

1 d' 

n 

Q ( x  + a) = C Dr Q(a)x ' .  
r =O 

Thus, if Q ( x )  has a zero of order in at a we must have the first m coefficients of this series 
equal to 0: 

Extending Definition 7.12 we have the following: 

Definition 7.13 Q ( x )  has a zero of order (or multiplicity) m at (11 if 

Q ( a )  = D l Q ( a )  = ... = Dm-1 Q(u) = 0. 

Q ( ( ~ I )  = D1 Q ( a )  = . . . = D m - 1 ( ~ )  = 0. 

This is denoted as ord( Q ;  a)  = m.  
These concepts extend to polynomials in two variables. 

0 

Definition 7.14 Let Q ( x ,  y )  E F[x, y ]  and let a and B be such that Q ( a ,  B )  = 0. Then we 
say that Q has a zero at (a, B ) .  

Let Q (x , y )  = xi, 2o ai, j x i  y j . We say that Q has a zero of multiplicity m (or order 
m) at (0,O) if the coefficients ai, j = 0 for all i + j < m. When Q has a zero of order m at 
(0,O) we write ord(Q : 0,O) = m. 

Similarly, we say that Q ( x ,  y) has a zero of order m at (a, p ) ,  denoted as ord( Q ;  a, B )  = 
0 m,  if Q(x +a, y + B )  has a zero of order m at (0,O). 

Example 7.14 Q ( x ,  y )  = x 4 y  + x 3 y 2  + x 4 y 4  has a zero of order 5 at (0,O). 
Q ( x ,  y )  = x + y has a zero of order 1 at (0,O). 
Q(x, y )  = ( x  - ~ ) ~ ( y  - p )  + (x  - ~ ! ) ~ ( y  - p)2 + ( x  - ~ ) ~ ( y  - j3)4 has a zero of order 5 at 

We observe that a zero of order m requires that (mll) = m(m + 1)/2 coefficients are 0. For 
example, for a zero of order 3 at (O,O), the ("') = 6 coefficients 

(a,  0). 0 

ao,o, a0,1, a0,2, Q,O, a,1, a2,o 

are all zero. 
Lemma 7.15 is extended in a straightforward way to two variables. 

Lemma 7.16 ZfQ(x, Y )  = ai , jxzy j ,  then 

where 
(7.66) 



330 Alternate Decoding Algorithms for Reed-Solomon Codes 

Again, the proof is by straightforward application of the binomial theorem. We will denote 

Qr,s(x,  Y )  = o r , s Q < x ,  Y ) ;  (7.67) 

this is sometimes called the (r, s)th Hasse (mixed partial) derivative of Q ( x ,  y ) .  
Based on this notation, we observe that if ord( Q : a, /3) = m, then 

Dr,sQ(a ,  /3) = 0 for all r ,  s such that r + s < m ,  (7.68) 

which is a total of ("l') constraints. 

Example 7.15 We demonstrate some Hasse derivatives over F = GF(5).  

D 1 , p  = 1 

D0,Ix = 0 

D1,OY = 0 

D0,lY = 1 

5 0  
D2,0x5 = (2) (0)x5-2  = lox3 = 0 (over GF(5))  

We note that Dr,s acts very much like a partial differentiation operator, except for the division l / r ! x !  
suggested by (7.65). 

7.6.4 The GS Decoder: The Main Theorems 

With the notation of the previous section, we can now describe the GS decoder in greater de- 
tail. Foran(n, k)RScodeoverthefieldFwithsupportset(seeSection6.2.1)(~1, x 2 , .  . . , x, )  
and a positive integer m ,  the GS(m) decoder accepts a vector r = ( y l ,  y2, . . . , y n )  E Fn as 
an input and produces a list of polynomials {PI, p2,  . . . , p ~ ]  as the output by the following 
two steps: 

Interpolation step: The decoder constructs a nonzero two-variable polynomial of the form 
C 

Q ( X ,  Y >  = C a j # j ( X ,  Y )  
j =O 

of minimal (1, v)-degree which has a zero of order m at each of the points ( x i ,  yi), i = 
1,2,  . . . , n. Here, the # j  ( x ,  y) are monomials of the form x p y q ,  ordered according 
to the (1, v)-revlex monomial order such that 40 < 41 < . . . . 
Related to this step are two fundamental questions: Does such a polynomial exist? 
How can it be constructed? 

Factorizationstep: The polynomial Q ( x ,  y )  is factored by finding a set of polynomials 
p ( x )  such that y - p ( x )  I Q ( x ,  y ) .  We form the set of such polynomials, called the 
y-roots of Q ( x ,  y ) ,  

L = {AX) E U x I  : (Y - P ( x ) ) I  Q ( x ,  Y ) } .  

Questions related to this step are: How does this relate to the error correction capability 
of the code? How is the factorization computed? How many polynomials are in L? 

As we will see, it is also possible to employ a different interpolation order mi at each point 
(x i ,  y j ) .  This is developed further in Section 7.6.8. 
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The Interpolation Theorem 

We address the existence of the interpolating polynomial with the following theorem. 

Theorem 7.17 (The Interpolation Theorem) Let 

c 

where the monomials are ordered according to an arbitrary monomial order n e n  a nonzero 
Q ( x ,  y )  polynomial exists that interpolates the points (x i ,  y i ) ,  i = 1,2,  . . . , n with multi- 

(7.70) 

Proof There is a zero of multiplicity m at (xi, yj) if 

D,, ,Q(xi ,  y i )  = 0 for all (r,  s) such that 0 5 r + s < m .  (7.71) 

Using the Hasse partial derivatives defined in (7.66) and (7.67), equation (7.71) can be 
written as 

There are (mi1) linear homogeneous equations (constraints) for each value of i ,  for a total 
of n(";') equations. If C = n ("TI), then there are C + 1 variables ao, a l ,  . . . , ac in (7.69). 

0 

The solution to (7.72) can be computed using straightforward linear algebra, with complexity 
0(C3).  Other algorithms are discussed in Section 7.6.5. 

There must be at least one nonzero solution to the set of linear equations (7.71). 

The Factorization Theorem 

The main results regarding the factorization step are provided by the following lemma and 
theorem. 

Lemma 7.18 Let Q ( x i ,  y i )  have zeros of multiplicity m at thepoints ( X i ,  y i ) ,  i = 1,2,  . . . , n. 
I f p ( x )  is apolynomial such that yi = p ( x i ) ,  then (X - 1 Q ( x ,  P ( x ) ) .  

Proof To gain insight, suppose initially that ( x i ,  y i )  = (0, 0) ,  so 0 = p ( 0 ) .  Thus we can 
write p ( x )  = x F ( x )  for some polynomial F ( x ) .  Then for 

i+j?rn 

(where the sum is over i + j 2 m since Q ( x ,  y )  has zeros of multiplicity m )  it follows that 

Q(x,  = Q ( x , x F ( x ) )  = C a i , j x ' ( x F ( x > ) j ,  

which is divisible by xm. This establishes the result for the point (0,O). 

i+j?m 
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Nowlet (x i ,  y i )  beageneralinputpointwithyi = p ( x i ) .  Let p ( ' ) ( ~ )  = p(X+Xi)-yi ,so 
that p(')(O) = 0. Thus p ( ' ) ( x )  = x ~ ( ~ ) ( x )  for some polynomial j ( i ) ( x ) .  Let Q ( i )  (x, y )  = 
Q ( x  + X i ,  y + y j ) ,  SO Q(j)(O,  0) = 0. The problem has been shifted SO that Q(')(O,O) and 
p( ' )  behave like the results above at (0,O). Thus xi" 1 Q(')(n,  P ( ~ ) ( ~ ) ) .  Shifting back gives 
the desired conclusion. 0 

Theorem 7.19 (The Factorization Theorem) Let Q ( x ,  y )  be an interpolatingpolynomial 
of (1, v)-weighted degree I 1 such that D,, Q ( x i ,  y i )  = Ofor i = 1,2, . . . , n and for all 
r + s < m. (That is, each (x i ,  y i )  is interpolated up to order m.)  Let p ( x )  be a polynomial 
of degree at most v such that yj = p(x j )  for  at least K ,  values of i in {1,2, . . . , n} .  If 
mKm > 1, then (Y - p ( ~ > >  I Qb, Y ) .  

Before proving this theorem, let us put it in context. If p ( x )  is a polynomial of degree less 
than k, then p ( x )  produces a codeword c E C by the mapping 

p ( x >  + (P (Xl ) ,  p(x21, .  . * 7 p(xn>> E c. 
For this codeword, yi = p ( x i )  for at least Km places. Let tm = n - Km . Then c differs from 
the received vector r = ( y l ,  y2, . . . , Y m )  in as many as tm places. Thus, p ( x )  identifies a 
codeword c at a distance no greater than tm from r. This codeword is a candidate to decode 
r. So, if p ( x )  agrees in at least Km places, then by the factorization theorem, p ( x )  is a 
y -root of Q (x , y ) , and is therefore placed on the list of candidate decodings. 

Proof Let g(x) = Q ( x ,  p(x)). By the definition of the weighted degree, and by the fact 
that Q ( x ,  y )  has (1, v)-weighted degree I I, g ( x )  is a polynomial of degree at most 1 .  By 
Lemma 7.18, (x - xi), 1 g ( x )  for each point such that yi = p(Xi) .  Let S be the set of points 
where there is agreement such that yi = p(Xi) ,  that is, S = { i  E 11, . . . , n}  : yi = p(Xj) }  
and let 

s ( x )  = H ( X  - X i ) , .  

ieS 

Then s ( x ) /  g ( x ) .  Since IS] 2 K ,  (by hypothesis), we have degs(x) 2 mK,. We thus 
have a polynomial of degree 2 m K ,  dividing g ( x )  which is of degree < mK,. It must 
therefore be the case that g ( x )  is identically 0, or Q ( x ,  p ( x ) )  = 0. Now think of Q ( x ,  y )  
as a polynomial in y with coefficients in IF[x]. Employ the division algorithm to divide by 

Q ( x ,  Y )  = (Y - P ( ~ ) ) c I ( ~ ,  Y )  + r ( x ) .  
(Y - p ( x > ) :  

Evaluating at y = p ( x )  we have 

0 = Q ( x ,  = r ( x )  

The degree of p ( x )  in Theorem 7.19 is at most v .  Since p ( x )  is to interpolate points as 
yi = p ( x i )  and there is (by the Reed-Solomon encoding process) a polynomial relationship 
of degree < k between the support set and the codewords, we must have deg p ( x )  < k. We 
thus set 

This establishes the weighted order to be used in the algorithm. 



7.6 The Guruswami-Sudan Decoding Algorithm and Soft RS Decoding 333 

The Correction Distance 

Let us now establish a connection between the correction distance t m ,  the multiplicity m,  and 
the maximum (1, v)-weighted degree 1 of Q ( x ,  y ) .  The point of the interpolation theorem 
is that the number of variables in the interpolating polynomial must exceed the number 
of equations (constraints), which is n(m, f l ) .  Recall from Lemma 7.14 that the number of 
monomials of weighted (1, v)-degree 1 is C(v, 1). So by the interpolation theorem (Theorem 
7.17) we must have 

(7.73) 

By the Factorization Theorem (Theorem 7.19) we must also have 

mKm > 1 ormKm S, 1 + 1 OrmK, - 1 2 1. (7.74) 

Since C(v, 1) is increasing its second argument, replacing the second argument with a larger 
value makes it larger. Thus, from (7.73) and (7.74) we have 

For m 2 1 we will define Km to be the smallest value for which (7.75) is true: 

K : C ( v , m K  - 1) > n 

(7.75) 

(7.76) 

From the factorization theorem, Km is the number of agreements between y and a codeword, 
so t, = n - K ,  is the distance between y and a codeword; it is the error correction distance. 
For m = 0, we define Km to be n - to = n - L(n - k)/2J = [(n + v + 1)/21. As the 
following example shows, K,  is non-increasing with m.  

Example 7.16 Figure 7.3 shows K ,  as a function of m for a (32, 8) Reed-Solomon code. There is 
an immediate decrease with m for small values of m, followed by a long plateau. At m = 120, K m  
decreases to its final value - there are no more decreases beyond that. 

Values of K- for n-32, k.8 

- '  I I 

I 
20 40 60 80 100 120 

m 

Figure 7.3: K m  as a function of m for a (32,8) Reed-Solomon code. 

c0mputekm.m 
computetm.cc 

There is a multiplicity mo beyond which Kmo = Kmo+l = . . . - no further decreases 
are possible. We denote this as K,. Since Km is nonincreasing with m ,  t ,  = n - Km 
is nondecreasing with m.  That is, increasing the multiplicity m can increase the error 
correction distance, up till the point too = n - KW is reached, which is the asymptotic 
decoding capability of the GS decoder. 
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We will denote 
K ,  = 1 6 1  + 1 

so that 
too = n  - K ,  = n  - 1 - t,/iKj = n  - 1 - LJ-J. 

The following theorem indicates that the decoding distance of the GS decoder improves 
(or at least does not decrease) with increasing m. (As becomes evident below, the decoder 
algorithmic complexity increases with m, so this improved performance is obtained with 
higher complexity.) 

Theorem 7.20 [230] Km is nonincreasing with m: 

KO 

KO ? K1 

K m  L K w  

Km 1: Km+l 

K ,  ? u + 1 

K ,  = K ,  for all suflciently large m. 

(7.77) 

(7.78) 

(7.79) 

(7.80) 

(7.81) 

Proof We will give only a partial proof. (The remaining results require bounds on C ( v ,  1 )  
which are more fully developed in [230].) Proof of (7.77)2: 

KO = [(n + v + 1)/21 L(n + v + 1)/2] + 1 

2 LJn(v+l>J (arithmetic-geometric inequality) 

? L f i j  + 1 = Koo. 

Proof of (7.81): It must be shown that for all sufficiently large m 

m + l  
C ( v , m K ,  - 1) > n(  ). (7.82) 

Using the bound (7.64) we have 

C(v, m K ,  - 1) 1: 

So (7.82) holds if & $ > 1,  or when 

(mK,  - l ) ( m K ,  + 1) m2K$ 
2 

>- = n  
2v 2v 

(7.83) 

In order for the bound in (7.83) to make sense, the term on the right-hand side must be 
positive, which establishes the lower bound K ,  = L f i ]  + 1. Suppose it were the case 
that K ,  were smaller, say, K ,  = L f i ]  . Then ( 1 6 1  / ( v n )  - 1 )  would be negative. 

0 
For an ( n ,  k) decoder capable of correcting t errors, let t = t / n  denote the fraction of 

errors corrected and let R = k / n  denote the rate. For the conventional t = to decoder, the 

Thus Koo = L f i ]  + 1 is the smallest possible value. 

’The arithmetic-geometric inequality states that for positive numbers ~ 1 . ~ 2 , .  . . , Zm. ( ~ 1 ~ 2  . . . ~ m ) ’ ’ ~  i 
E(z l  1 + z2 + . . . zm); that is, the geometric mean is less than the arithmetic mean. Equality holds only in 
the case that all the zi are equal. 
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0.9 

0.8 

fraction of errors corrected is (asymptotically) TO = (1 - R ) / 2 .  For the Guruswami-Sudan 
algorithm, too = 1 - (asymptotically). Figure 7.4 shows the improvement in fractionof 
errors corrected as a function of rate. The increase in the decoding capability is substantial, 
particularly for low rate codes. 

- 

"0 0.2 0.4 0.6 0.8 1 
R 

Figure 7.4: Fraction of errors corrected as a function of rate. 

The Number of Polynomials in the Decoding List 

The GS algorithm returns a list of polynomials L = { p l ( x ) ,  p2(x), . . . , p ~ ( x ) ] .  The 
transmitted codeword will be in L if the number of channel errors is I tm.  There may be 
other codewords as well, since this is a list decoding algorithm. How many polynomials 
can be in L? (This material is drawn from [230].) 

Recall that Q ( x ,  y) is a polynomial of (1, v)-weighted degree p 1 and that the poly- 
nomials p ( ~ )  are those such that (y - p @ ) )  1 Q ( x ,  y ) .  The maximum number of such 
polynomials is thus the y-degree of Q ( x ,  y ) .  We denote this number as L m .  

Let B(v ,  L) be the rank of the polynomial y L  with respect to the (1, v)-weighted revlex 
order. 

Example 7.17 Using Table 7.1, we have 

L 0 1 2 3 4 5  
B ( 3 , L )  0 4 11 21 34 50 

Then 

Lm = max{L : B(v ,  L )  5 n (" 2' 7 1 .  

(Because if there is a y L m  in a monomial, then x i y L m  has rank > rn(mll) for i > 0.) We 
will develop an analytical expression for Lm and a bound for it. 
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Lemma 7.21 
vL2 (v + 2)L 

2 
B(v ,  L )  = - + 

2 
(7.84) 

Proof Note (e.g., from Table 7.1) that y L  is the last monomial of (1, v)-degree L in revlex 
order, so that 

B ( v ,  L )  = I{ ( i ,  j )  : i + v j  p Lv)l - 1. (7.85) 

Then we have the recursive expression 

B ( v ,  L )  = ( I { ( i ,  j )  : i + vj p ( L  - 1)v)l - 1) + I{ ( i ,  j )  : ( L  - l ) v  + 1 p i + vj p Lv)l 

= B(v ,  L - 1) + VL + 1. 

Then by induction, 

B ( v ,  L - 1) + VL + 1 = 
v(L - 1)2 

vL2 (v + 2)L 

(v + 2)(L - 1) 
2 

= B(v ,  L ) .  

+ V L + 1  + 
2 

2 
-+ 

2 

Define the function r a ( x )  as that value of L such that B ( v ,  L )  p x 5 B ( v ,  L + 1). That is, 

rB(x) = argmax{L E N : B ( v ,  L )  p x). 

Then L ,  = r a ( n ( m i ' ) ) .  Now we have a lemma relating rB to B(v ,  L ) .  

Lemma 7.22 I f B  (v, x )  = f ( x )  is a continuous increasingfunction ofx > 0, taking integer 
values when x is integer, then 

More generally, i f g ( x )  p B ( v ,  x )  5 f ( x ) ,  where both f and g are continuous increasing 
functions of x > 0, then 

Lf-'(x>l 5 rB(X) 5 Lg-'(x)J. (7.86) 

rB (XI = Lf - ' ( X > l .  

Proof Let L = rg (x ) .  By definition of r B ( x )  we have B(v ,  L )  p x. Invoking the 
inequalities associated with these quantities we have 

g ( L )  5 B(v ,  L )  5 x < B ( v ,  L )  + 1 5 f(L + 1). 

r B ( x )  P g- ' (x)  and f - ' ( x )  < r e ( x )  + 1, 

Thus L p g - ' ( x )  and f - ' ( x )  < L + 1. That is, 

or 
f-'(x) - 1 < r g ( x )  p g- ' (x) .  

Since ra ( x )  is integer valued, taking 1.1 throughout we obtain (7.86). 0 
Using (7.84), we have B(v ,  L )  = f(L) = vL2/2 + (v + 2)L/2. If f ( L )  = x ,  then (using 
the quadratic formula) 

Using Lemma 7.22 we reach the conclusion: 
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Theorem 7.23 

I ,  I 

A convenient upper bound is (see Exercise 7.22) 

1 
L, < (rn + 5)&qi. 

I computeLm.cc I c0mputeLm.c 

7.6.5 Algorithms for Computing the Interpolation Step 

As observed in the proof of the Interpolation Theorem (Theorem 7.17), the interpolating 
polynomial can be found by solving the set of 

linear interpolation constraint equations with > C unknowns, represented by (7.72). How- 
ever, brute force numerical solutions (e.g., Gaussian elimination) would have complexity 
cubic in the size of the problem. In this section we develop two other solutions which have, 
in principle, lower complexity. 

Definition 7.15 A mapping D : F[x, y ]  + P is said to be a linear functional if for any 
polynomials Q ( x ,  y )  and P ( x ,  y )  E F[x, y ]  and any constants u ,  v E F, 

D ( u Q ( x ,  Y )  + v P ( x ,  Y ) )  = u D Q ( x ,  Y )  + v D P ( x ,  Y ) .  

The interpolation constraint operations in (7.68) act as Zinearfunctionals. 

The operation 
Q(x9 Y )  * Dr,sQ<aT B )  

is an instance of a linear functional. We will recast the interpolation problem and solve it 
as a more general problem involving linear functionals: Find Q ( x ,  y )  satisfying a set of 
constraints of the form 

D i Q ( x , Y ) = O ,  i = 1 , 2  ,..., C ,  

where each Di is a linear functional. For our problem, each Di corresponds to some D, , ,  
according to a particular order relating i to (r,  s). (But other linear functionals could also 
be used, making this a more general interpolation algorithm.) 

Let us write Q ( x ,  y )  = C:, aj#j (x, y ) ,  where the # j  (x, y )  are ordered with respect 
to some monomial order, and where ac # 0. The upper limit J is bounded by J 5 C ,  
where C is given by (7.70). The operation of any linear functional Di on Q is 

(7.88) 

with coefficients di, j = Di 4 j (X , Y )  . 
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1 1 1  1 1 -  

0 1 0  2 0 
3.2' 0 4.Z3 3 5.Z4 

0 1 0  4 0 

23 3 24 2 . 3  25 

43 2 44 4 . 2  45 

3.42 0 4.43 2 5.44 - 

Finding Linearly Dependent Columns: The Feng-Tzeng Algorithm 

The set of functionals D1, D2, . . . , Dc can be represented as the columns of a matrix D, 

. 

D =  

Example 7.18 Over the field GF(5) ,  we desire to create a polynomial of minimal (1,3)-revlex rank 
through the following points, with the indicated multiplicities: 

Point Multiplicity 
( 1 9 1 )  1 
(2,3) 2 
(472) 2 

There are 1 + (i) + (;) = 1 + 3 + 3 = 7 constraints. These constraints are (using the notation 
Qr,s introduced in (7.66)) 

Qo,o(L 1) = 0 
Q0,0(2,3) = 0 Qo,1(2,3) = 0 Q1,0(2,3) = 0 
Qo,o(4, 2) = 0 Qo,1(4, 2) = 0 Ql,o(4, 2) = 0. 

With seven constraints, some linear combination of the first eight monomials listed in Table 7.1 
suffices. These monomials are 1, x ,  x 2 ,  x 3 ,  y ,  x4, xy, and 2. The polynomial we seek is 

4 5 Q(X, y) = a0 + aix + a2x2 + a3x3 + a4y + a5x + a6XY + a7x . 

This polynomial should satisfy the constraints (using (7.67)) 

D0,Ol = 1 D0,OX = x D0,oy = y . . . D ~ , ~ x ~  = 

D1,Ol = 0 D 1 , O X  = 1 D1,oy = 0 . . . ~ 1 . 0 ~ ~  = 5x4 = o 
D0,11=0 D0,1y=1 D0,1y=1 ... D O , ~ X ~  = 0. 

Now form a matrix V whose columns correspond to the eight monomials and whose rows correspond 
to the seven constraints. 

1 x  
- 1  1 

1 2  
0 0  
0 1  
1 4  
0 0  

- 0  1 

X2 

22 
1 

0 
2 . 2  

0 
2 . 4  

42 
(7.90) 

The condition that all the constraints are simultaneously satisfied, 

D iQ(x ,y )=O,  i = 1 , 2  ,..., C 
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can be expressed using the matrix D as 

V ["I = 0 or d(O)ao + d(')al + . . . + d(J)aJ  = 0, 

so the columns of D are linearly dependent. The decoding problem can be expressed as 
follows: 

aJ 

Interpolation problem 1: Determine the smallest J such that the first J 
columns of V are linearly dependent. 

This is a problem in computational linear algebra, which may be solved by an extension 
of the Berlekamp-Massey (BM) algorithm known as the Feng-Tzeng algorithm. Recall 
that the BM algorithm determines the shortest linear-feedback shift register (LFSR) which 
annihilates a sequence of scalars. The Feng-Tzeng algorithm produces the shortest "LFSR" 
which annihilates a sequence of vectors. 

We will express the problem solved by the Feng-Tzeng algorithm this way. Let 

a12 . * .  

A =  :". a22 . . .  7 = [a1 a2 . . .  aN]. 

The first 1 + 1 columns of A are linearly dependent if there exist coefficients c1, c2, . . . , cl, 

not all zero, such that 
al+l + clar + . . clal = 0. (7.91) 

The problem is to determine the minimum 1 and the coefficients c1, c2, . . . , cl such that the 
linear dependency (7.91) holds. 

Let C ( x )  = co + cix + - . . + cix', where co = 1, denote the set of coefficients in the 
linear combination. Let a(x) = a0 + alx + . . . + aNxN be a representation of the matrix 
A, with a0 = 1 (the vector of all ones) and let a( ' ) (x )  = ai,o + ai,lx + . . . + aj ,NxN be the 
ith row of a(x). We will interpret C(x)a(x) element by element; that is, 

aM1 aM2 ". aMN 

C(x)a(')(x) 
c (x)a(2) (x) 

C(x)a(M)(x) 
C(x)a(x) = [ ; 1- 

Forn = l+1,1+2, . . . , N,let [C(x)a(x)], denotethecoefficient(vector)ofxninC(x)a(x). 
That is, 

1 

[ ~ ( x > a ( x ) l ~  = cOan +cla,-l + - - .  +c[a,-l = Ccjan-j .  

The problem to be solved can be stated as follows: Determine the minimum 1 and a poly- 
nomial C ( x )  with deg C(x) 5 1 such that [C(x)a(x)]l+l = 0. 

The general flavor of the algorithm is like that of the BM algorithm, with polynomials 
being updated if they result in a discrepancy. The algorithm proceeds element-by-element 

j =O 
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through the matrix down the columns of the matrix. At each element, the discrepancy is 
computed. If the discrepancy is nonzero, previous columns on this row are examined to see 
if they had a nonzero discrepancy. If so, then the polynomial is updated using the previous 
polynomial that had the discrepancy. If there is no previous nonzero discrepancy on that 
row, then the discrepancy at that location is saved and the column is considered "blocked" 
- that is, no further work is done on that column and the algorithm moves to the next 
column. 

c ( ! - L j )  j - 1  withct-',i) - - 1, be defined Let c(i-l,j)(x) = c ( i - 1 3 j )  + c ( i - L j ) x  + . . . 
for each column j ,  where j = 1 , 2 , .  . . ,1  + 1, and for i = 1,2, .  . . , M ,  where each 
polynomial C("-'.j) has the property that 

[ ~ ( ~ - - 1 ~ j ) ( ~ ) ~ ( h ) ( ~ ) ]  J . - - a h , j f C 1  ( i - W  U h , j - l + . . . f C ! ' - ' ' j )  J - l  U h J  = 0 forh 5 i - 1. 

That is, in column j at position (i - 1, j )  of the matrix and all previous rows there is no 
discrepancy. The initial polynomial for the first column is defined as C(O3') (x) = 1. The 
discrepancy at position (i, j)  is computed as 

x ,  0 1 J - 1  

d , ,  , = . - a. . ( i - W a . ,  , + . . . + c ( . i - l , j )  J - l  & , l *  ' I  J - 1 . J  

If di,j = 0, then no update to the polynomial is necessary and & j ) ( x )  = I ? ( ~ - ' , ~ ) ( X ) .  If, 
on the other hand, di,j # 0, then an update is necessary. If there is on row i a previous 
column u that had a nonzero discrepancy (that was not able to be resolved by updating the 
polynomial), then the polynomial is updated according to 

(7.92) 

where u is the column where the previous nonzero discrepancy occurred and C(')(x) is the 
polynomial which had the nonzero discrepancy in column u. 

If there is a nonzero discrepancy di,, , but there is no previous nonzero discrepancy on 
that row, then that discrepancy is saved, the row at which the discrepancy occurred is saved, 
p ( j )  = i, and the polynomial is saved, C j ( x )  = d i - l , j ) ( x ) .  The column is considered 
"blocked," and processing continues on the next column with C ( o , J + l ) ( x )  = C( j - l , j ) (x ) .  

The following lemma indicates that the update (7.92) zeros the discrepancy. 

Lemma 7.24 Ifdi, j # 0 and there is a previous polynomial C @ ) ( x )  at column u, so that 
C(')(X) = C( i - - ' ,u ) (x )  and di,u # 0, then the update (7.92) is such that 

Proof We have 

where the second equality follows from a result in Exercise 7.18. 
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Algorithm 7.5 The Feng-Tzeng Algorithm 

This representation is due to McEliece [230] 
I Input: A matrix A of size M x N 
2 Output: A polynomial C of minimal degree annihilating columns of A 
3 Initialize: s = 0 (column counter) 
4 C = 1 (C holds the current polynomial) 
5 dsave = zeros(1,N) (holds nonzero discrepancies) 
6 p = zeros( l,N) (holds row where nonzero discrepancy is) 
7 Begin: 
x while( 1) (loop over columns) 
9 s = s + 1; r = 0; (move to beginning of next column) 
10 c o l u m n b l o c k e d  = 0; 
11 while(1) (loop over rows in this column) 
12 

13 

14 

IS 

r = I + 1; (move to next row) 
drs = [C(x)a(')(x)ls (compute discrepancy here using current poly.) 
if(drs # 0) (if nonzero discrepancy) 

if(there is a u such that p (m) = I) (if a previous nonzero disc. on this row) 

else (no previous nonzero discrepancy on this row) 
16 C(x)  = C(x)  - &CU(x)xs- ' ;  (update polynomial) 
17 

18 

19 

p (s) = r ; (save row location of nonzero discrepancy) 
Cs(x) = C(x);  (save polynomial for this column) 

c o l u m n b l o c k e d  = 1; (do no more work on this column) 
20 

22 end (else) 
23 end (if drs) 
24 

25 end (while (1)) 
26 

27 end (while( 1)) 
28 End 

dsave(s )  = drs; (save nonzero discrepancy for this column) 
21 

if(r 2 M or c o l u m n b l o c k e d = l )  break; end; (end of loop over row) 

if(columnblocked=o) break; end; (end loop over columns) 

It can be shown that the polynomial C ( x )  produced by this algorithm results in the minimal 
number of first columns of A which are linearly dependent [83]. 

Example 7.19 We apply the algorithm to the matrix 2, of (7.90) in Example 7.18. The following 
matrix outlines the steps of the algorithm. 

0 
0 

0 
0 I 0 

0 

L 
0 
0 
0 

bf 
2, 
0 

0 

h 0 

21 

testft .m 
fengt2eng.m 
invmodp . rn 

The initially nonzero discrepancies are shown in this matrix; those which are in squares resulted in 
polynomials updated by (7.92) and the discrepancy was zeroed. 
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a: Starting with C ( x )  = 1, a nonzero discrepancy is found. There are no previous nonzero 

b: Nonzero discrepancy found, but the polynomial was updated using previous nonzero discrep- 

c: Nonzero discrepancy found and no update is possible. Save d 2 ) ( x )  = 4x + 1 and the 

d: Nonzero discrepancy found, but updated polynomial computed (using polynomial at c) C ( x )  = 

e: Nonzero discrepancy found; no update possible. Save d 3 ) ( x )  = 2x2 + 2x + 1 and the 
discrepancy and and jump to next column. 

f Update polynomial: C ( x )  = x3 + 3x2 + 1 
g: save c ( ~ ) ( x )  = x 3  + 3x2 + 1 
h: Update polynomial: C ( x )  = 2x4 + 4 x 3  + 3x2 + 1 
i: Save c ( ~ ) ( x )  = 2x4 + 4x3 + 3x2 + 1 
j: Update polynomial: C ( x )  = 3x5 + 3x3 + 3x2 + 1 
k Update polynomial: C ( x )  = x 5  + 4x4 + 3x3 + 1x2 + 1 
1: Save d 6 ) ( x )  = x5 + 4x4 + 3x3 + 1x2 + 1 
m: Update polynomial C ( x )  = x6 + 4x4 + 3x3 + x 2  + 1 
n: Update polynomial C ( x )  = 3x5 + 3x3 + 3x2 + 1 
0: Update polynomial C ( X )  = x6 + 4x5 + 3x4 + 3x3 + 3x2 + 1 
p: Update polynomial C ( x )  = 3x6 + 3x4 + 3x2 + 1 
q: Save c ( ~ ) ( x )  = 3x6 + 3x4 + 3x2 + 1 
r: Update polynomial C ( x )  = 2x7 + 4x6 + 3x2 + 1 
s: Update polynomial C ( X )  = x7 + zX5 + 4x4 + 2x2 + 1 

discrepancies on this row, so C ( ' ) ( x )  = 1 is saved and we jump to the next column. 

ancy on this row (at a): C ( x )  = 4x + 1. 

discrepancy and jump to next column. 

2x2 + 2 x  + 1. 

Returning to the interpolation problem of Example 7.18, we obtain from the coefficients of C ( x )  
the coefficients of the polynomial 

Q ( x ,  y )  = 1 +Ox + 2x2  + 4 x 3  + O y  + 2x4 +Oxy +x5.  

It can be easily verified that this polynomial satisfies the interpolation and multiplicity constraints 
specified in Example 7.18. 0 

The computational complexity goes as the cube of the size of the matrix. One view of 
this algorithm is that it is simply a restatement of conventional Gauss-Jordan reduction and 
has similar computational complexity. 

Finding the Intersection of Kernels: The Kotter Algorithm 

Let FL [ x ,  y] c F [ x ,  y] denote the set of polynomials whose y-degree is 5 L.  (The variable 
y is distinguished here because eventually we will be looking for y-roots of Q ( x ,  y).) Then 
any Q ( x ,  y )  E F L [ x ,  y] can be written in the form 

L 

k=O 

for polynomials qk(X) E F [ x ] .  FLEX, y] is an F[x]-module (see Section 7.4.1): for any 
polynomials a(x)  and b(x )  in F [ x ]  and polynomials Q ( x ,  y) and P ( x ,  y) in FL[x, y], 

( a ( ~ > f ' ( x ,  Y> + b ( x ) Q < x ,  Y)) E F L [ ~ ,  YI 
since the y-degree of the linear combination does not change. 
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For a linear functional D, we will generically write KD as the kernel of D: 

K D  = ker D = { Q ( x ,  y) E F[x, y] : D Q ( x ,  y) = 0). 

For a set of linear functionals D1, Dz, . . . , Dc defined on FL[x, y], let K1, Kz, . . . , Kc be 
their corresponding kernels, so that 

Ki = ker Dj = ( Q ( x ,  y) E F[x, y] : DjQ(x ,  y) = 0). 

Then a solution to the problem 

Di Q ( x ,  y) = 0 for all i = 1,2, . . . , C (7.93) 

lies in the intersection of the kernels K = K1 n Kz n .  . . Kc. We see that the interpolation 
problem can be expressed as follows: 

Interpolation Problem 2: Determine the polynomial of minimal rank in K 

To find the intersection constructively, we will employ cumulative kernels, defined as fol- 
lows: KO = FL[x, y] and 

- 
K ~ = K ~ - ~ ~ K ~  = z c 1 n - . . n K  i .  

That is, Fi is the space of solutions of the first i problems in (7.93). The solution of the 
interpolation is a polynomial of minimum (1, v)-degree in Kc.  

We will partition the polynomials in FL[x, y] according to the exponent of y. Let 

sj = { Q ( x ,  y) E FL[x, y] : LM(Q) = x’yj for some i )  

be the set of polynomials whose leading monomial has y-degree j .  Let gj,j be the minimal 
element of n Sj , where here and throughout the development “minimal” or “mid’ means 
minimal rank, with respect to agiven monomial order. Then {gc,j}F=o is a set of polynomials 
that satisfy all of the constraints (7.93). 

The Kotter algorithm generates a sequence of sets of polynomials (Go, GI ,  . . . , Gc), 
where 

Gi = (gi,ot gi,l, . . . gi,L), 

and where gi,j is a minimal element of Ki n Sj . (That is, it satisfies the first i constraints 
and the y-degree is j . )  Then the output of the algorithm is the element of G c  of minimal 
order in the set G c  which has polynomials satisfying all C constraints: 

This satisfies all the constraints (since it is in K c )  and is of minimal order. 

given linear functional D ,  define the mapping [-, ‘ID : F[x, y] x F[x, y] + F[x, y1 by 
We introduce a linear functional and some important properties associated it. For a 

[ P ( x ,  Y), Q(x7 Y)lD = ( D Q < x ,  Y))P(X, Y) - (DP(X,  Y))Q(X, Y). 

Lemma 7.25 For all P ( x ,  y), Q ( x ,  y) E F[x, y], [ P ( x ,  y), Q ( x ,  y)]D E ker D. Further- 
more, i f P ( x ,  y) > Q ( x ,  y) (withrespecttosomeJixedmonomia1order)and Q ( x ,  y) # KD, 
then rank[P(x, Y), Q < x ,  Y)lD = rankP(x, Y). 
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Proof We will prove the latter statement of the lemma (the first part is in Exercise 7.19). 
For notational convenience, let a = D Q (x, y )  and b = D P (x, y) . (Recall that a, b E F.) 
I f a  # 0 and P ( x ,  Y )  > Q ( x ,  y ) ,  then [ P ( x ,  y), Qh, y)lo = a P ( x ,  Y )  -bQ(x ,  y),which 
does not change the leading monomial, so that LM[ P (x , y ) , Q (x , y )] D = LMP (x , y ) and 
furthermore, rank[P(x, y ) ,  Q ( x ,  y ) ] ~  = rankP(x, y ) .  0 
The algorithm is initialized with 

2 L Go = (go,o, g0,1, . . . 1  g0,d = (1, Y ,  Y 1 . .  ., Y ). 

Ji = { j  : Di+l(gi,j> # 01 

To form Gi+l given the set Gi, we form the set 

as the set of polynomials in Gj which do not satisfy the i + 1st constraint. If J is not 
empty, then an update is necessary (i.e., there is a discrepancy). In this case, let j * index 
the polynomial of minimal rank, 

j "  = arg min gj,j 
j G J j  

and let f denote the polynomial gj,j*: 

f = mingi,j. (7.94) 
jeJ j  

The update rule is as follows: 

gi, j if j 6 Jj 
gi+l,j = [gi,j, f l ~ i + l  i f j  E Ji but j # j *  (7.95) I [xf, fIoi+, i f j  = j * .  

The key theorem governing this algorithm is the following. 

Theorem 7.26 For i = 0, . . . , C,  

gi,j = min{g : g E Ki n Sj} for j = O,1,. . . , L .  (7.96) 

Proof The proof is by induction on i. The result is trivial when i = 0. It is to be shown 
that 

g i + l , j = m i n { g : g E K i + l n S j }  f o r j = 0 , 1 ,  ..., L 

is true, given that (7.96) is true. We consider separately the three cases in (7.95). 

Case 1: j 6 Ji, SO that gi+l,j = gj,j. The constraint Dj+lgj,j = 0 is satisfied (since 
j @ J i ) ,  SO gi+l,j = gj,j E Kj+l. By the inductive hypothesis, gj+l,j E Ki n Sj. 
Combining these, we have gj+l,j E Kj+l n S j .  Since gj,j is minimal in Kj n Sj, it must 
also be minimal in the set Kj+l n Sj , since the latter is contained in the former. 

Case 2: In this case, 

gi+l, j = [gi, j 7 f l ~ j + i  = (Di+lgi, jlf - (Di+l f)gi, j ,  

which is a linear combination off and gj,j. Since both f and gj,j are in Ki, gj+l,, is also in 
Ki. By Lemma 7.25, gi+l, j E Ki+l. Combining these inclusions, gj+l,j E Ki n Ki+l = 

Ki+l. 
By (7.94), rankgj,j > rankf, so that by Lemma 7.25, rankgj+l,j = rankgj,j. Since 

gi,j E Sj, it  follow^ that gi+l,j E Sj also. And, since gi+l,j has the same rank as gi,j, 
which is minimal in Ki n Sj , it must also be minimal in the smaller set Ki+l n Sj . 

- 
- 
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Case 3: In this case the update is 

gi+l, j = [xf, f l ~ j + l  = (Di+lxf)f - (Di+l fbf 

which is a linear combination of f and xf. But f E Ki by the induction hypothesis. 

in terms of the Hasse partial derivatives of f and f, 
We must show that xf E Ki . Let f ( x ,  y) = xf (x, y). In Exercise 7.21 it is shown that, 

&,s<x, Y) = fr-l,s(X, Y> + xfr,s(x, Y>.  (7.97) 

If fr-l,s(Xj, yj) = 0 and fr,,s(Xj, yj) = 0 for j = 0, 1 , .  . . , i, then f r , s ( ~ j , y j )  = 0, SO 

xf E gi. This will hold provided that the sequence of linear functionals (Do, D1, . . . , D c )  
are ordered such that Dr-1,s always precedes Dr,s. 

Assuming this to be the case, we conclude that f E Ki andxf E Ki, so that gi+l,j E Kj. 
By Lemma 7.25, gi+l,j E Ki+l, SO gi+l,j E Ki n Ki+l = K j + l .  

Since f E Sj (by the induction hypothesis), then xf E Sj (since multiplication by x 
does not change the y-degree). By Lemma 7.25, rank gi+l,j = rankxf, which means that 

Showing that gi+l, j is minimal is by contradiction. Suppose there exists a polynomial 
h E Ki+l n Sj such that h < gi+l,j. Since h E Ki n Sj, we must have f 5 h and 
rankgi+l,j = rankxf. There can be no polynomial f’ E Sj with rank f < rank f’ < 
rankxf, so that it follows that LM(h) = LM(f). By suitable normalization, the leading 
coefficients of h and f can be equated. Now let 

I 

- 

gi+l,j E Sj also. 

I 

f = h -  f. 

By linearity, f E Ei . By cancellation of the leading terms, f < f .  Now Di+l h = 0, since 
h E Ki+l,  but Di+l f # 0, since j E Ji in (7.94). Thus we have a polynomial f such that 
f” E Xi \ Ki+l and f” < f . But f was supposed to be the minimal element of Ki \ Ki+l, 

17 

Let us return to the ordering condition raised in Case 3. We must have an order in which 
( I  - 1, s) precedes (r, s). This is accomplished when the ( I ,  s) data are ordered according 
to (m - 1, 1) lex order: 

by its selection in (7.94). This leads to a contradiction: gi+l,j must be minimal. 

At the end of the algorithm, we select the minimal element out of G c  as Q o ( x ,  y). 
Kotter’s algorithm for polynomial interpolation is shown in Algorithm 7.6. This algo- 

rithm is slightly more general than just described: the point (xi, yi) is interpolated up to 
order mi, where mi can vary with i, rather than having a fixed order m at each point. There 
is one more explanation necessary, regarding line 19. In line 19, the update is computed as 
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Algorithm 7.6 Kotter’s Interpolation for Guruswami-Sudan Decoder 

I Input: Points: ( x i ,  y j ) ,  i = 1, . . . , n; Interpolation order mi;  a ( 1 ,  v) monomial order; L = Lm 
z Returns: Qo(x ,  y )  satisfying the interpolation problem. 
3 Initialize: g j  = y J  for j = 0 to L. 
4 for i = 1 to n (go from i - 1st stage to ith stage) 
s 

6 

7 

9 end(for j )  
10 

I I  i f(J # 0) 
1 2  

C = (mi + l)mi/2 (compute number of derivatives involved) 
for (Y, s) = (0, 0 )  to (mi - 1,O) by (mi - 1,  1) lex order (from 0 to c) 

for j = 0 to L 
8 A, = Dr,sgj ( x i ,  y j )  (compute “discrepancy”) 

J = { j  : A j  # 0} (set of nonzero discrepancies) 

j *  = argmin{gj : j E J }  (polynomial of least weighted degree) 
13 f = g,+ 
14 A = A ‘+ J 
15 for(j E J )  
16 i f ( j  # j*)  
17 g . - Agj - A j  f (update without change in rank) 

J .- 
18 else if(j = j * )  
19 g, = ( x  - x i )  f (update with change in rank) 
20 end (if) 
2 1  end (if j )  
22 end (for J )  
23 end (for (Y, s)) 
24 end (for i )  
2s Qo(x, y )  = min,{gj(x, y ) }  (least weighted degree) 

Example 7.20 Thepoints ( 1 , a 3 ) ,  (a,  a4) ,  ( a 2 , a 5 ) ,  (a3,  a7)and(a4,  a8)aretobeinterpolatedbya 
polynomial Q ( x ,  y )  using the Kotter algorithm, where operations are over GF(24) with l+a+a4 = 0. 
Use multiplicity m = 1 interpolation at each point and the (1,2)-revlex order. 

testGSl.cc 
kotter .cc At each point, there is one constraint, since rn = 1. 

Initial: Go: go(x, Y )  = 1, g l ( x ,  Y )  = y ,  g 2 ( x ,  Y )  = Y 2 ,  g 3 ( x ,  Y )  = Y 3 ,  g4(x, y )  = y4.  
i = 0: (Y, s) = (0, o), (xz, y i )  = ( 1 ,  a3). 

Discrepancies: A0 = g o ( l , a 3 )  = 1, A1 = g 1 ( l , a 3 )  = a3, A2 = g 2 ( l , a 3 )  = a6, 
A3 = g3(1 ,  a3)  = a9, A4 = g 4 ( l ,  a3 )  = a12. J = {0, 1,2,3,4] ,  j *  = 0, f = 1, A = 1 

l2  + y4. G 1 : g 0 = 1 + x , g 1 = a  3 + y , g 2 = a  6 2  + y  , g 3 = a  9 3  + y  , g 4 = a  
i = 1: (Y, s) = (0, 0) ,  ( x t ,  y z )  = (a ,  a 4 ). 

G2: go = a + a4, + x 2 ,  g1 = 7 4  x + a  y ,  82 = 
a 4 3  y ,g4 = (a12 + a13.X) + a4y4. 

i = 2: (I, s) = (0, 01, ( x l ,  y j )  = ( 2 ,  a5). 

G3: go = 3 + 11  x + a10.x2 + x 3 ,  g l  = a7x  + a  4 y , g 2  = a 8 2  x + a  2 2  y , g 3  = (a14 + 

Discrepancies: A0 = a4, A1 = a7, A2 = a14,  A3 = a’, A4 = a13. J = {O, 1 , 2 ,  3,4), 
j * = O , f = I + x , ~ = a 4 .  

+ a14x) + a 4 y 2 ,  g3 = (a3 + a 8 x )  + 

Discrepancies: A0 = a13, A1 = 0, A2 = a*, A3 = a6, A4 = a2. J = {O, 2, 3,4}, j* = 0, 
f = (Y + a4x + x2, A = a13. 

a 7 x + a6x2) + (Y2y3,g4 = (a12 + a x  + a 2 2 )  + a 2 y 4 .  
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i = 3: (r, s) = (0, O ) ,  (Xi, y i )  = (a 3 7  , a ). 

Discrepancies: A0 = a14, A1 = a14, A2 = a7, A3 = a', A4 = a3.  J = (0, 1,2, 3,4}, 
j "  = 1, f = a7x + a4y. 
G4: go = (a2 + a7x + a9x2 + a14x3) + (a3)y,  g l  =  OX + a7x2) + (a 7 4  + (11 X ) Y ,  g2 = 
(a 14 x+a 7 x 2 ) + a  11  y + a y  2 , g 3 = ( a 1 3 + a 5 x + a 5 x 2 ) + a 6 y + a y 3 , g 4 = ( a l l + a 5 x +  

a x 2 )  + a7y + ay4.  

j *  = 0, f = (a2 + a 7 x  + a 9 2  + a14x3) + (a3)y. 

i = 4: (r, s) = (0, O), (Xi, y i )  = (a4,a8). 

Discrepancies: A0 = a", A1 = a', A2 = a", A3 = a2, A4 = a''. J = {O, 1, 2,3,4}, 

G5: go = (a6 + a9, + a5x2 + + a 1 4 ~ 4 )  + (a7 + a3,)y, g l  = (a9 + a 8 x  + a9x2 + 
a6x3)+(a12+x)y,g2 = ( a 1 3 + a 1 2 x + a 1 1 x 2 + a 1 o , 3 ) + a y + a 1 2 y 2 , g 3  = (a 14 +a 3 x +  
a 6 2  x +ax 3 ) + ay + a12y3, g4 = (a2 + a 5 x  + a 6 2  + 2 x 3 )  + a8y + P y 4 .  

Final: Q o ( x ,  y )  = g l ( x ,  y )  = (a9 + a 8 x  + a9x2 + a6x3) + (a12 + x)y .  

0 

Example 7.21 Let C be a (15,i') code over GF(24)  and let rn(x)  = a + a2x + a3x2 + a4x3 + L t e s t ~ s 3 .  cc J 
a5x4 + a6x5 + a7x6 be encoded over the support set (1, a, . . . , a14). That is, the codeword is 

The corresponding code polynomial is 

Suppose the received polynomial is 

That is, the error polynomial is 

e ( x )  = a2x  + a3x3 + a4x5 + a5x7. 

For this code and interpolation multiplicity, let 

The first decoding step is to determine an interpolating polynomial for the points 

with interpolation multiplicity rn = 2 at each point using the (1,6)-revlex degree. 
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Using t e s t G S 3 ,  the final set of interpolating polynomials G c  = (go, 81, g2 ,  g3)  can be shown 
to be 

13 go(x, y )  = (a +ax + a4x2 + a 6 2  + a13x4 + a112 + .lox6 + 2 x 8  + 2 x 9  
+ a 5 x 10 + a 9 P  + ,322  + a6x13 + a3x14 + a 2 P  + ,10,16 + a7x17 

11 18 

1 3 4  7 5  

+ (]I x 

+ a 

+ a8d9 + a3x20 + a14x21 + ,1422) + (a6 + a5x + a 3 2  + 2 x 3  

x + a x + a7x6 + x7 + a7x8 + a11x9 + a14x10 + + a 5 P  

+ a 8 d 3  + a13x14 + a9x15)y + (a13 + a9x + a l1x2  + a7x3 + x4 + ,102 

+ al1x6 + a5x7 + a 5 2  + a7x9)y2 + (1 + a2x + a2x2 + a4x3)y3 

g1(x, y )  = (a13 + a13x + a14x2 + x3 + (23x4 + a 6 2  + a12,6 + a14x7 + 2 x 8  + a6x9 

) + (a2 + a9x + a l l 2  + ax3 + al1x4 + a10x5 + ,525 + ax7 

+ a6x8 + a l O P  + a7x11 + ,lox12 + a13x13 + a4x14)y + (a4 + a5x + ,12,2 
+ d 2 X 3  + al1x4 + a5x5 + a7x6 + ax7)y2 + (a11 +ax + ,14,2)y3 

+ a  4 x 9 + a 10 x 10 + a521  + a 2 P  + a14x13 + a6x14 + , 5 1 5  + a 1 3 p  + .7,17+ 

+ a4x18 + a d 9  + ,721) + (1 + a7x + a 9 2  + a14x3 + a9x4 + a 8 2  + a3x6 

+ a14x7 + a4x8 + a 8 P  + a5x11 + a822  + a11x13 + a2,14)y + (a3x + a 7 2  

+ ,lox3 + a6x4 + a3x5 + d 4 X 7  + x8)y2 + (a9 + a14x + a 1 2 2 ) y 3  

g 3 ( x ,  y )  = (a5 + a9x + , 132  + a2x3 + ax4 + ,142 + a2x6 + ax7 + , 1 2 2  

+ax + a 1 4 P  + a7x11 + , 923  + a5x14 + a5x15 + a 9 p  + a11x17 + a 3 p  

) + (a7 + a7x + a8x2 + J 4 X 3  + x4 + a l l 2  + (27x6 + 2 x 7  + ,523 

+ J 4 X 9  + a12x10 + a 8 P  + a 5 P  + a5x13)y + (a5 + ax + ,lox2 + a11x3 

+ J 3 X 4  + a6x5 + a4x6 + a8x7)y2 + (1 + a8x)y3 

+.8,10 +,7,11 + a 13 x 12 + ax13 + a11x14 + a1ox15 + X I 6  + a9,17 + .14,18 

+ a x 3 19 3 21 + a x 

g2(x,  y )  = (a13 + al l ,  + (25x2 + ,132 + a7x4 + 2 x 5  + a11x6 + a12x7 + a 9 2  

9 

13 19 + a  x 

of weighted degrees 22,20,20, and 19, respectively. The one of minimal order selected is Q ( x ,  y )  = 
g3(x ,  Y ) .  0 

The computational complexity of this algorithm, like the Feng-Tzeng algorithm, goes 
as the cube of the size of the problem, 0 ( m 3 ) ,  with a rather large multiplicative factor. The 
cubic complexity of these problems makes decoding impractical for large values of m. 

7.6.6 A Special Case: m = 1 and L = 1 

We will see below how to take the interpolating polynomial Q ( x ,  y) and find its y-roots. 
This will handle the general case of arbitrary m. However, we treat here an important 
special case which occurs when m = 1 and L = 1. In this case, the y-degree of Q ( x ,  y) 
is equal to 1 and it is not necessary to employ a sophisticated factorization algorithm. This 
special case allows for conventional decoding of Reed-Solomon codes without computation 
of syndromes and without the error evaluation step. 

When L = 1 let us write 

Q ( x ,  Y> = PI(X)Y - Po(x). 
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If it is the case that PI ( x )  1 Po ( x ) ,  let 

Then it is clear that y - p ( x )  I Q ( x ,  y), since 

Pl(X)Y - Po(x> = P l b ) ( Y  - A x ) ) .  

Furthermore, it can be shown that the p ( n )  returned will produce a codeword within a 
distance f L(n - k ) / 2 J  of the transmitted codeword. Hence, it decodes up to the design 
distance. 

In light of these observations, the following decoding algorithm is an alternative to the 
more conventional approaches (e.g.: find syndromes; find error locator; find roots; find error 
values; or: find remainder; find rational interpolator; find roots; find error values). 

Algorithm 7.7 Guruswami-Sudan Interpolation Decoder with m = 1 and L = 1 

I Input: Points: ( x i ,  y i ) ,  i = 1,. . . , n; a (1, k - 1) monomial order 
2 Returns: p ( x ,  y )  as a decoded codeword if it exists 
3 Initialize: go(x ,  y )  = 1, g l ( x ,  y )  = y 
4 for i = 1 to n 
5 

7 

8 if(J # 0) 
9 

1 1  A = A j *  
IZ for(j E J) 
13 if(j # j * )  

IS  

16 

17 end(&) 
18 end(for j )  
19 end(if J) 
20 end(for i) 
21 Q ( x ,  y )  = min,{gj(x, y ) }  (least weighted degree) 
22 Write Q ( x ,  y )  = P l ( x ) y  - Po(x)  
2 3 1 ( X )  = Pg(x)  mod Pl(x). 
24 if(r(x) = 0) 

26 if(degp(x) 5 k - 1) then 
27 p ( x )  is decoded message 
28 end(if) 
29 else 
30 Uncorrectable error pattern 
31 end(if) 

A0 = g g ( x i ,  y i )  (compute discrepancies) 

J = { j  : A j # 0) (set of nonzero discrepancies) 
6 A1 = g I ( X i , Y i )  

j *  = argmin{gj : j E J }  (polynomial of min. weighted degree) 
10 f = gj*  

g . - A g j  - A j  f (update without change in rank) 

g j ,  = ( x  - x i ) f  (update with change in rank) 

J .- 
14 

else if( j = j * )  

25 P ( x )  = P O ( x ) / P l ( x ) .  
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Example 7.22 Consider a (5, 2) RS code over GF(5) ,  using support set (0, 1,2,3,4). Let m ( x )  = 
1 + 4x. Then the codeword 

( m ( ~ ) ,  m ( l ) ,  m(2), m ( 3 ) ,  m(4)) = (LO, 4,3,2) +. c(x) = 1 + 4x2 + 3x3 + zx4. 
Let the received polynomial be r (x) = 1 + 2x + 4x2 + 3x3 + 2x4. The following table indicates the 
steps of the algorithm. 

i ( X , , Y , )  g o ( x 3 y )  Y )  
- 1  Y 

0 ( O J )  x 4+Y 

2 (24) ( 2 + x  + x 2 )  + 3 y  (2 + 4  +4x2) + 3 y  
3 (3,3)  
4 (4,2) 

- 

1 (1,O) 4x $2 (4 + 4x1 + y 

(4 + 4x + 3x2 + x3) + (1 + 3 x ) y  ( 3  + 4x + 3 x 2 )  + (2 + 3 x ) y  
(4 + 3x + 2x2 + 4x3 + x4) + (1 + 4x + 3 x 2 ) y  ( 3  + 4x + 3x2)  + (2 + 3 x ) y  

(An interesting thing happens at i = 2: It appears initially that g o ( x ,  y) = (2 + x + x 2 )  + 3 y  
is no longer in the set So, the set of polynomials whose leading monomial has y-degee 0, because a 
term with y appears in go(x,  y ) .  However, the leading term is actually x2. Similar behavior is seen 
at other steps.) At the end of the algorithm we take 

Q ( x ,  y )  = (2 + 3 x 1 ~  + ( 3  + 4x + 3x2)  = (2 + 3 x ) y  - (2 + x + 2 x 2 ) ,  

so that 
2 + x + 2 x 2  

= 1 +4x, 
2 + 3x 

P(X> = 

which was the original message. 

7.6.7 An Algorithm for the Factorization Step: 
The Roth-Ruckenstein Algorithm 

0 

We now consider the problem of factorization when the y-degree of Q (x, y) 1. Having 
obtained the polynomial Q ( x ,  y) interpolating a set of data points (xi, yi), i = 1,2, . . . , n, 
the next step in the Guruswami-Sudan decoding algorithm is to determine all factors of the 
form y - p ( x ) ,  where p ( x )  is a polynomial of degree 5 u,  such that (y - p ( x ) )  I Q ( x ,  y). 
We have the following observation: 

Lemma 7.27 (y - p ( x ) )  1 Q ( x )  ifand only if Q ( x ,  p ( x ) )  = 0. 

(This is analogous to the result in univariate polynomials that (x - a )  I g(x) if and only if 

Proof Think of Q (x, y) as a polynomial in the variable y with coefficients over iF(x). The 
division algorithm applies, so that upon division by y - p ( x )  we can write 

Q(x ,  Y) = q ( x ,  Y>(Y - p b ) )  + r ( x ) ,  

where the y-degree of r ( x )  must be 0, since the divisor y - p ( x )  has y-degree 1. Evaluating 
at y = p ( x )  we see that Q ( x ,  p ( x ) )  = r ( x ) .  Then Q ( x ,  p ( x ) )  = 0 if and only if r ( x )  = 0 

Definition 7.16 A function p ( x )  such that Q ( x ,  p ( x ) )  = 0 is called a y-root of Q ( x ,  y). 
0 

The algorithm described in this section, the Roth-Ruckenstein algorithm [297], finds 
y-roots. (Another algorithm due to Gao and Shokrollahi [114] is also know to be effective 
for this factorization.) 

= 0.) 

(identically). 0 
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The notation (( Q ( x ,  y))) denotes the coefficient (polynomial) of the highest power of 
x that divides Q ( x ,  y). That is, if x m !  Q ( x ,  y )  but xmfl ,/ Q ( x ,  y), then 

Exmple7.23 IfQ(x, y) = xy,then((Q(x, y))) = y. IfQ(x, y )  = x2y4+x3y5,then((Q(x, y))) = 
0 Y + X Y  . If Q(x, y) = 1 + x2y4 + x 3 y 5 ,  then ((Qcx, y))) = Q(x, y). 

Letp(x) = a o + a i x + a ~ x 2 + . . . + a u x u  beay-rootof Q ( x ,  y). TheRoth-Ruckenstein 
algorithm will determine the coefficients of p ( x )  one at a time. The coefficient a0 is found 
using the following lemma. 

4 5  

Proof If (y - p ( x ) )  I Q(x, y), then (y - p ( x ) )  1 x"Qo(x ,  y) for some m 2 0. But since 
y - p ( x )  and x m  must be relatively prime, it must be the case that (y - p ( x ) )  I Qo(x ,  y), 
so that Q o ( x ,  y) = To(x, y)(y - p ( x ) )  for some quotient polynomial To(x,  y). Setting 
y = p ( 0 )  we have 

Qo(0, Y) = Qo(0, ~ ( 0 ) )  = TO@, p(O))(p(O) - ~ ( 0 ) )  = TO@, p(0))O = 0. 

0 
From this lemma, the set of possible values of the coefficient a0 of p ( x )  are the roots of 
the polynomial Qo(0, y ) .  The algorithm now works by inductively "peeling off' layers, 
leaving a structure by which a1 can similarly be found, then a2, and so forth. It is based on 
the following theorem, which defines the peeling off process and extends Lemma 7.28. 

Theorem 7.29 Let Q o ( x ,  y )  = (( Q ( x ,  y))). Let p o ( x )  = p ( x )  = a0 + a l x  + 
F,[x]. For j 2 1 defne 

. auxu E 

(7.98) 

Proof The proof is by induction: We will show that (y - p j - 1  (x)) 1 Q j - 1  (x , y) if and only 

i f (y  - p j ( x > ) l  Q j < x , y > .  
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+ : Assuming ( y  - pj-l(x))l Q j - l ( x ,  y), we write 

Q j - l < x ,  Y) = (Y - pj- l (x>)u(x,  Y )  

for some quotient polynomial u(x, y). Then from (7.99), 

T j ( x ,  Y) = (XY + aj -1-  pj-l(x))u(xT X Y  + aj-1). 

Since aj-1 - p j - l ( x )  = -xpj(x), 

Tj(x ,  Y )  = X ( Y  - pj(x)>u(xT X Y  + aj-1) 

so that (y - pj(x))l T j ( x ,  y). From (7.100), T j ( x ,  y )  = x " Q j ( X ,  y )  for some m 1: 0, so 
(y-pj(x))l x " Q j ( x ,  y ) .  Sincexm andy-p(x) arerelativelyprime, ( y - p j ( x ) ) /  Q j ( x ,  y ) .  

e : Assuming ( y  - p , (x ) ) l  Q j ( x ,  y) and using (7.100), ( y  - pj(x))j T j ( x ,  y ) .  From 

(7.9913 ( ~ - p j ( x ) ) l  Q j - 1 ( X 3 x y  +aj-1)  sothat 

Q j - l ( x ,  XY + aj-1) = (Y - Pj(X)>u(x,  Y )  (7.101) 

for some quotient polynomial u ( x ,  y). Replace y by ( y  - a j - l ) / x  in (7.101) to obtain 

Q j - l ( x ,  Y) = ((Y - a j - l ) / x  - P ~ ( X ) ) U ( X ,  (Y - a j - l ) / x > .  

The fractions can be cleared by multiplying both sides by some sufficiently large power L 
of x. Then using the fact that p , - l ( x )  = aj-1 + xpj(x) we obtain 

x L Q j - l ( x ,  Y )  = (Y - ~ j - l ( ~ ) ) v ( ~ ,  Y )  

for some polynomial v ( x ,  y ) .  Thus ( y  - p i - 1  (x)) I x L  Qj-1 (x, y )  and so 

(Y - p j - l ( x ) > l  Q j - l c x ,  Y). 

0 
The following lemma is a repeat of Lemma 7.28 and is proved in a similar manner. 

Lemma 7.30 Zf(y-p(x))/ Q ( x ,  y ) ,  theny = p j ( 0 )  isarootoftheequation Qj(0 ,  y) = 0 
f o r j  = 0 ,1 , .  . . ,7J. 

Since p j  (0) = a j ,  this lemma indicates that the coefficient a, can be found by finding the 
roots of the equation Q j  (0, y )  = 0.  

Finally, we need a termination criterion, provided by the following lemma. 

Proof Note that if y 1 Qv+l ( x ,  y), then Qu+l (x, 0) = 0. 
By the construction (7.98), p j ( x )  = 0 for j ? v + 1. The condition y I Q,,+l(x,  y) is 

equivalent to ( y  - p u + l ( x ) )  1 Q , + l ( x ,  y ) .  Thus by Theorem 7.29, it must be the case that 

The overall operation of the algorithm is outlined as follows. 
(Y - P(x))~ Q < x > .  0 
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for each a0 in the set of roots of Qo(0, y) 
for each a1 in the set of roots of Ql(0, y) 

for each a2 in the set of roots of Q2(0, y) 

for each a, in the set of roots of Q,, (0, y) 

end for 
if Q , ( x ,  0) = 0, then (by Lemma 7.311, p ( x )  = a0 + alx + . + auxU is a y-root 

end for 
end for 

end for 

The iterated “for” loops (up to depth u )  can be implemented using a recursive programming 
structure. The following algorithm uses a depth-first tree structure. 

Algorithm 7.8 Roth-Ruckenstein Algorithm for Finding y-roots of Q(x, y) 

I Input: Q(x, y). D (maximum degree of p ( x ) )  
2 Output: List of polynomials p ( x )  of degree 5 D such that ( y  - p ( x ) )  I Q(x, y )  
3 Initialization: Set p ( x )  = 0, u = deg(p) = -1, D = maximum degree (set as internal global) 
4 Set up linked list where polynomials are saved. 
s Set u = 0 (the number of the node; global variable) 
6 call r o t h r u c k t r e e ( Q ( x ,  y ) ,  u ,  p )  

7 Function r o t h r u c k t r e e ( Q ,  u ,  p ) :  
8 Input: Q(x, y ) ,  p ( x )  and u (degree of p )  
9 Output: List of polynomials 
1 0  u = u + 1 (increment node number) 
11 if(Q(x, 0) = 0) 
IZ add p ( x )  to the output list 
I 3  end(if) 
14 else if(u < D )  (try another branch of the tree) 
15 R = list of roots of Q(0, y) 
16 for each (Y E R 
17 

18 

19 

20 end (for) 
21 else (leaf of tree reached with nonzero polynomial) 
zz (no output) 
23 end (if) 
24 end 

Qnew(x, y )  = Q(x, x y  +a) (shift the polynomial) 
p,+l = a (new coefficient of p ( x ) )  
Call ro thruckt ree( ( (Qnew(x,  y ) ) ) ,  u + 1 ,  p )  (recursive call) 

Example 7.24 Let 

Q ( X ,  Y )  = (4 + 4x2 + zx3 + 3x4 + 2 + 3x6 + 4x7) + (1 + 2x + zx2 + 3x4 + 3x6)y+ 

(1 + + zx2 + x 3  + x4)y2  + (4 + zXly3 
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by a polynomial in GF(S) [x ,  y ] .  Figures 7.5 and 7.6 illustrate the flow of the algorithm with D = 2. 

At Node 1, the polynomial Q(0, y )  = 4 + y + y2 + y 3  is formed (see Figure 7.5) and its roots 

At Node 1, the root 1 is selected. Node 2 is called with ( ( Q ( x ,  xy + 1) ) ) .  
At Node 2, the polynomial Q(0, y )  = 3 + 3y2 is formed, with roots {2, 3 } .  

At Node 2, the root 2 is selected. Node 3 is called with (( Q ( x ,  xy + 2) ) ) .  
At Node 3,  the polynomial Q ( x ,  0) = 0, so the list of roots selected to this node { 1 , 2 }  forms 

The recursion returns to Node 2, where the root 3 is selected, and Node 4 is called with 

At Node 4, the polynomial Q(0, y )  = 2 + 3y is formed, with roots { 1). 
At Node 4, the root 1 is selected. Node 5 is called with (( Q ( x ,  xy + 1))). 

At Node 5,  it is not the case that Q ( x ,  0) = 0. Since the level of the tree (3) is greater than D 
(2), no further searching is performed along this branch, so no output occurs. (However, if D 
had been equal to 3,  the next branch would have been called with a root of 2 and a polynomial 
would have been found; the polynomial p ( x )  = 1 + 3x + x2 + 2x3 would have been added to 
the list.) 

The recursion returns to Node 1, where the root 4 is selected and Node 6 is called with 

At Node 6, the polynomial Q(0, y )  = 2 + y is formed, with root {3} .  ( S e e  Figure 7.6.) Node 

At Node 7,  the polynomial Q(0, y )  = 3 + y is formed, with root (2). Node 8 is called with 

At Node 8, Q ( x ,  0) = 0, so the list of roots selected to this node {4 ,3 ,2 ]  forms an output 

0 

are computed as { 1,4} (1 is actually a repeated root). 
testGS2.c~ 
rothruck.cc 
r0thruck.h 

an output polynomial, p ( x )  = 1 + 2x. 

((Qk X Y  + 3) ) ) .  

( ( Q ( x 3  X Y  + 4))). 

7 is called with (( Q ( x ,  xy + 3) ) )  

((Qk X Y  + 2) ) ) .  

polynomial p ( x )  = 4 + 3x + 2x2. 

The set of polynomials produced is { 1 + 2x, 4 + 3x + 2x2}. 

Example 7.25 For the interpolating polynomial Q(x,  y )  of Example 7.21, the Roth-Ruckenstein 
algorithm determines the following y-roots (see t e s  tGS3 . cc): 

p ( x )  E {a! + (Y2X + a3x2 + a4x3 + a5x4 + a6xS + a7x6, 

a7 + a6x + d 4 X 2  + aSx3 + a10x4 + a!10x5 + 2 x 6 ,  

a!12 + a!% + al1x3 + a13x4 + al1xS + a ! V }  = c. 

Note that the original message m(x)  is among this list, resulting in a codeword a Hamming distance 
4 away from the received r ( x ) .  There are also two others (confer the fact that L m  = 3 was computed 
in Example 7.21). The other polynomials result in distances 5 and 6, respectively, away from r ( x ) .  

0 Being further than tm away from r ( x ) ,  these can be eliminated from further consideration. 

What to Do with Lists of Factors? 

The Guruswami-Sudan algorithm returns the message m ( x )  on its list of polynomials C, 
provided that the codeword for m ( x )  is within a distance tm of the received vector. This 
is called the causal codeword.It may also return other codewords at a Hamming distance 
5 t m ,  which are calledpluusible codewords. Other codewords, at a distance > tm from r ( x )  
may also be on the list; these are referred to as noncausal codewords (i.e., codewords not 
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Node 3 

Node 1 

(continued in Figure 7.6) 

Root = 2 

Qb, y )  = (4 + 4x2 + 2x3 + 3x4 + x5 + 
3~6+4X7)+(1+2x +2x2  +32+3,6)y+ 
( i + ~ + 2 ~ 2 + ~ ~  +x4)y2+(4+2x)y3 

Q(0, y )  = 4 +  y + y 2  +4y3 

Roots = { 1,4} 

Node 2 
I I I 

Q ( x ,  y )  = (3 + 3x + 2x2 + x 3  + x4 + 
4x5) + ( x  + 2x2 + 3x5)y + (3 + 2x + 
2x2 + x3 + x4)y2 + (4x + @ly3 

Q(0, Y )  = 3 + 3y2 

Roots: (2,3} 

Q ( x ,  y) = (2 + 4x + 3x2 + x 3  + x4 + 
4x6) + (1 +x +3x2 +3x3 +x4 +3x6)y + 
(4x + 2x3 +x4 + 2 l Y 2  + ( 4 2  + zX3ly3 

Q(0, Y )  = 2 + Y 

Roots: (3} 

Q ( x ,  y )  = (2x+2x2+4x3+4x4+4x5+ 
3x6)y+(3x2+x3 +4x4+,5 +x6)y2+ 
(4x4 + zX5ly3 

I p ( x )  = 1 + 2x I 
Q ( x ,  0)  = 0, so output polynomial: 

Q ( x ,  y )  = (2+3x4)+(3+x+3x2+x3+ 
x4 + 3x5)y + (3x + 3x2 + x4 + x 5 ) y 2  + 
(4x3 + 2x4)y3 

Q(0, Y )  = 2 + 3y 

Roots: (1) 

Node 5 
Root = 1 

Maximum depth reached and Q ( x ,  0) # 

Figure 7.5: An example of the Roth-Ruckenstein Algorithm over G F ( 5 ) .  
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Node 6 

Q ( x ,  y )  = (2 + 4~ + 3x2 + x3 + x4 + 
4x6) + (1 +x +3x2 + 3x3 +x4 +3x6)y + 
(4x + zX3 + .4 + x 5 ) y 2  + ( 4 2  + zX3ly3 

Q(0, Y )  = 2 + Y 

Roots: [3} 

Node 7 
Root = 3 

Q ( x ,  y) = (3+2x2+3x3+4x4+3x5)+ 
(1 +x2+4x3 +2X4+X5+3X6)Y+(4X2+ 

+ + x6)y2 + (4.4 + 2x5)y3 

Q(0, Y )  = 3 + Y 

Roots: [2) 

Node 8 
Root = 2 

Q ( x ,  y )  = (x+2x3+3x4+4x6+2x7)y+ 
(4x4+2  +4X6+3X7 +x8)y2+(4,7+ 
2x8)y3 

Q ( x ,  0) = 0, so output polynomial: 

I p ( x )  = 4+ 3x + 2 x 2  I 

Figure 7.6: An example of the Roth-Ruckenstein Algorithm over GF(5)  (cont’d). 
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caused by the original, true, codeword). We have essentially showed, by the results above, 
that all plausible codewords are in L and that the maximum number of codewords is 5 L,. 

In Example 7.25, it was possible to winnow the list down to a single plausible codeword. 
But in the general case, what should be done when there are multiple plausible codewords 
in L? If the algorithm is used in conjunction with another coding scheme (in a concatenated 
scheme), it may be possible to eliminate one or more of the plausible codewords. Or there 
may be external ways of selecting a correct codeword from a short list. Another approach 
is to exploit soft decoding information, to determine using a more refined measure which 
codeword is closest to r-(x).  But there is, in general, no universally satisfactory solution to 
this problem. 

However, it turns out that for many codes, the number of elements in L is equal to 1: 
the list decoder may not actually return a list with more than one element in it. This concept 
has been explored in [230]. We summarize some key conclusions. 

When a list decoder returns more than one plausible codeword, there is the possibility of 
a decoding failure. Let L denote the number of codewords on the list and let list L’ denote 
the number of noncausal codewords. There may be a decoding error if L’ > 1 .  Let PE 
denote the probability of a decoding error. We can write 

the average number of noncausal codewords on the list. 
Now consider selecting a point at random in the space GF(q)” and placing a Hamming 

sphere of radius tm around it. How many codewords of an ( n ,  k) code, on average, are in 
this Hamming sphere? The “density” of codewords in the space is q k / q ” .  As we have seen 
(Section 3.3.1), the number of points in the Hamming sphere is 

5 (“)GI S - 
s=o 

Therefore, the average number of codewords in a sphere of radius tm around a random point 
is 

It can be shown [230] that z(tm) is slightly less than a rigorous bound on the average number 
of noncausal codewords on the list. 

Example 7.26 [230] For a (32, 8) RS code over GF(32), we have the following results (only values 
of rn are shown that lead to distinct values oft,,,): - .._, 

tm Lrn L ( t m )  
0 12 1 1.36305e-10 
1 14 2 2.74982e-07 
2 15 4 1.02619e-05 
4 16 8 0.000339205 

120 17 256 0.00993659 
Thus, while the list for m = q may have as many as L4 = 8 polynomials, the probability E(t4) is 

very small -the list is very likely to contain only one codeword, which will be the causal codeword. 
It is highly likely that this code is capable of correcting up to 16 errors. (Actually, even for tn = 120, 
the probability of more than codeword is still quite small; however, the computational complexity for 
m = 120 precludes its use as a practical decoding option.) 

computetm.m 
c0mputeLbar.m 
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Example 7.27 [230] For a (32,15) code over GF(32), we have - 
m tm L m  L (tm 1 
0 8 1 5.62584e-06 
3 9 4 0.000446534 

21 10 31 0.0305164 
It is reasonable to argue that the code can correct up to 9 errors with very high probability. 0 

7.6.8 Soft-Decision Decoding of Reed-Solomon Codes 

The Reed-Solomon decoding algorithms described up to this point in the book have been 
hard decision decoding algorithms, making explicit use of the algebraic structure of the 
code and employing symbols which can be interpreted as elements in a Galois field. A 
long outstanding problem in coding theory has been to develop a soft-decision decoding 
algorithm for Reed-Solomon codes, which is able to exploit soft channel outputs without 
mapping it to hard values, while still retaining the ability to exploit the algebraic structure 
of the code. This problem was solved [191] by an extension of the Guruswami-Sudan 
algorithm which we call the Koetter-Vardy (KV) alg~ri thm.~ 

Recall that the GS algorithm has a parameter m representing the interpolation multiplic- 
ity, m.  For most of this chapter, a fixed multiplicity has been employed at each point. It is 
possible, however, to employ a different multiplicity at each point. (In fact, the Algorithm 
7.6 already handles multiple multiplicities.) In the KV algorithm, a mapping is found from 
posterior probabilities (soft information) to the multiplicities, after which the conventional 
interpolation and factorization steps of the GS are used to decode. (The mapping still results 
in some degree of “hardness,” since probabilities exist on a continuum, while the multiplici- 
ties must be integers.) We present here their algorithm for memoryless channels; for further 
results on channels with memory and concatenated channels, the reader is referred to [19 11. 

Notation 

Recall (see Section 1.6) that a memoryless channel can be modeled as an input alphabet 
X, an output alphabet and a set of (XI functions f ( - l x )  : 9 +. R. The channel input 
and output are conventionally viewed as a random variables X and ’41. If Y is continuous 
then f ( - l x )  is a probability density function (for example, for a Gaussian channel, f ( y l x )  
would be a Gaussian likelihood function). If ’41 is discrete then f ( .  Ix) is a probability mass 
function. The memoryless nature of the channel is reflected by the assumption that the joint 
likelihood factors, 

n 

f(ylYy2, ...,yn1x1,~2, .-.,xn> = n f ( y i I x i ) .  
i=l 

It is assumed that the X random variable is uniformly distributed (i.e., that each codeword 
is selected with equal probability). Given an observation y E 9, the probability that some 
(11 E X was transmitted is found using Bayes’ theorem, 

where the assumption of uniformity of X is used. 

3The name Koetter is simply a transliteration of the name Kotter. 
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For Reed-Solomon codes, the input alphabet is the field over which the symbols occur, 
X = G F ( q ) .  We have therefore X = {al ,  a2, . . . , aq}, for some arbitrary ordering of the 
elements of G F (4). 

Let y = ( y l ,  y 2 ,  . . . , y , )  E gn be a vector of observations. We define the posterior 
probabilities 

ni,j = P ( X = a i l Y  = y j ) ,  i = 1,2  ,..., 4, j = 1 ,2  ,..., n 

and form the q x n matrix l7 with elements X i , j .  The matrix l7 is called the reliability 
matrix. It is convenient below to use the notation l7 (a, j )  to refer the element in the row 
indexed by a and the column indexed by j .  It is assumed that the reliability matrix is 
provided (somehow) as the input to the decoding algorithm. 

A second matrix is also employed. Let M be a q x n multiplicity matrix with nonnegative 
elements mi, j ,  where mi, j is the interpolation multiplicity associated with the point (ai, y j ) .  

The key step of the algorithm to be described below is to provide a mapping from the 
reliability matrix l7 to the multiplicity matrix M. 

Definition 7.17 Let M be a multiplicity matrix with elements mi,, .  We will denote by 
Q M ( x ,  y )  the polynomial of minimal (1, k - 1)-weighted degree that has a zero of multi- 
plicity at least mi,j at the point (ai, y j )  for every i, j such that mi,j # 0. 

0 
Recall that the main point of the interpolation theorem is that there must be more degrees 

of freedom (variables) than there are constraints. The number of constraints introduced by 
a multiplicity mi,j is equal to ("'~~+'). The total number of constraints associated with a 
multiplicity matrix M is called the cost of M, denoted C ( M ) ,  where 

i= l  j = 1  

As before, let C ( v ,  1)  be the number of monomials of weighted (1, v)-degree less than or 
equal to 1 .  Then by the interpolation theorem an interpolating solution exists if 

C(v,Z) > C(M). 

Let K,(x)  = min{Z E Z : C(v, 1) > x )  be the smallest (1, v)-weighted degree which has 
the number of monomials of lesser (or equal) degree exceeding x .  Then K k - 1  ( C ( M ) )  is 
the smallest (1, k - 1)-weighted degree which has a sufficiently large number of monomials 
to exceed the cost C ( M ) .  (Confer with K ,  defined in (7.76)). By (7.64), for a given cost 
C ( M )  we must have 

KIJ(C(M))  < J 2 v w f ) .  (7.102) 

It will be convenient to represent vectors in GF(q)n as indicator matrices over the reals, 
as follows. Let v = (v i ,  v2, . . . , v,) E GF(q)" and let [v] denote the q x n matrix which 
has [v]i,j = 1 if V j  = ai, and [v]i,j = 0 otherwise. That is, 

[vli, j = Icyj (vj)? 

1 vj = ai 

0 otherwise. I where Zcyj ( v j )  is the indicator function, Zcyj ( v j )  = 
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Example 7.28 In the field G F ( 3 ) ,  let v = (1,2, 0, 1). The matrix representation is 
;;1 ;;2 y3 "] 

[v]=:i[ 1 0 0 
2 : o  1 0  0 

For two q x n matrices A and B ,  define the inner product 

q n  

( A ,  B )  = tr(ABT) = y y , a i , j b i , j .  
i=l j=1 

Now using this, we define the score of a vector v = (v1, v2, . . . , v,) with respect to a given 
multiplicity matrix M as 

The score thus represents the total multiplicities of all the points associated with the vector 

S M i V )  = (M, [vll. 

V. 

Example 7.29 

example is 

m i , i  m1,2 mi,3   mi^] 
m2,l m2,2 m2,3 m2,4 then the score of the vector v from the last 
m3,l  m3,2 m3,3 m3,4 

A Factorization Theorem 

Our key result is an extension of the factorization theorem for different multiplicities. 

Theorem 7.32 Let C ( M )  be the cost of the matrix M (the number of constraints to sat- 
isfy). Let c be a codeword in a Reed-Solomon (n ,  k) code over G F ( q )  and let p(x) be a 
polynomial that evaluates to c (i.e., c = ( p ( x i ) ,  p ( x 2 ) ,  . . . , p(x , ) )  for code support set 
{xi,  ~ 2 , .  . . , x d .  VSM(C)  > G-i(C(M)),  then (Y - p(x>>l  Q d x ,  Y). 

Proof Let c = (ci, . . . , c,) be a codeword and let p ( x )  be a polynomial of degree < k 
that maps to the codeword: p(xj) = c j  for all x j  in the support set of the code. Let 
g(x) = Q M ( x ,  p(x)). We will show that g ( x )  is identically 0, which will imply that 
(Y - P ( x ) > ~  Q M ~ ,  Y ) .  

Write SM(C) = m i  + m2 + . . . m,. The polynomial Q M ( x ,  y) has a zero of order 
m j  at (Xj, C j )  (by the definition of Q M ) .  By Lemma 7.18, (x - xj)mj I Q M ( x ,  p ( x ) ) ,  for 
j = 1,2, . . . , n. Thus g(x) = Q M ( x ,  p ( x ) )  is divisible by the product 

(x - (n - x2Irn2 . . . (x - x ~ ) ~ "  having degree mi + m2 + - .  . + m, = SM(C), 

so that either deg(g(x)) 2 S M ( C ) ,  or g ( x )  must be zero. 
Since deg p ( x )  5 k - 1, the degree of Q M  (x, p ( x ) )  is less than or equal to the (1, k - 1)- 

weighteddegreeof Q M ( x ,  y). Furthermore, since Q M ( x ,  y)isofminimal(l, k-1)-degree, 
deg1,k-i Q M ( x ,  Y )  i G - l ( C ( M ) ) :  

degg(x) 5 deg1,k-i Q M ~ ,  Y) L &-i(C(M)). 
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By hypothesis we have SM(C) > &-l (C(M)) .  Since we cannot have degg(x) 2 SM(C), 
we must therefore have g ( x )  is zero (identically). As before, we write using the factorization 
theorem 

Q(x ,  Y )  = (Y - p ( x ) ) q ( ~ ,  Y )  + ~ ( x )  
so that at y = p ( x )  we have 

Qb, p(x )>  = g ( x >  = 0 = Oq(x ,  Y )  + r ( x )  

17 
In light of (7.102), this theoremindicates that Q M ( x ,  y)  has a factory - p ( x ) ,  where p(x) 
evaluates to a codeword c, if 

SM(C) 2 J2(k - l)C(M). (7.103) 

so ~ ( x )  = 0, giving the stated divisibility. 

Mapping from Reliability to Multiplicity 

Given a cost C ,  we define the set m(C) as the set of all matrices with nonnegative elements 
whose cost is equal to C :  

l 4  
?lX(C) = {M E Z q x n  : mi,j 2 0 and - 7 mi,j ( r n i , j  + 1) = C}. 

i= l  j = 1  
2 

The problem we would address now is to select a multiplicity matrix M which maximizes 
the score S M ( C )  for a transmitted codeword c (so that the condition SM(C) > Ick-1 ( C ( M ) )  
required by Theorem 7.32 is satisfied). Not knowing which codeword was transmitted, 
however, the best that can be hoped for is to maximize some function of a codeword chosen 
at random. Let 5 = ( X I ,  X 2 ,  . . . , X n )  be a random transmitted vector. The score for this 
vector is S M ( X )  = (M, [XI). We choose to maximize the expected value of this score,4 

E [SM (XI1 = c SM ( X I  p ( X I  

X€3? 

with respect to a probability distribution P ( x ) .  We adopt the distribution determined by the 
channel output (using the memoryless channel model), 

n n 

P ( x )  = P ( x ~ ,  ~ 2 , .  . . , X n )  = n P ( X j  = xjl?jj  = y j )  = n l l ( x j ,  j ) ,  (7.104) 
j = 1  j = 1  

where ll is the reliability matrix. This would be the posterior distribution of Z given the 
observations if the prior distribution of Z were uniform over GF(q)n.  However, the X are, 
in fact, drawn from the set of codewords, so this distribution model is not accurate. But 
computing the optimal distribution function, which takes into account all that the receiver 
knows about the code locations, can be shown to be NP complete [191]. We therefore adopt 
the suboptimal, but tractable, stance. 

The problem can thus be stated as: Select the matrix M E !lX maximizing E [ S M ( X ) ] ,  
where the expectation is with respect to the distribution P in (7.104). We will denote the 
solution as M ( n ,  C ) ,  where 

M ( l 7 ,  C )  = arg max E [ S M ( X ) ] .  
M€lm(C) 

We have the following useful lemma. 

computation is, in general, very complicated. 
4More correctly, one might want to maximize P ( S M ( X )  > ICk-i(C(M))) ,  but it can be shown that this 



362 Alternate Decoding Algorithms for Reed-Solomon Codes 

Proof 
E[~M(X)I = [ X I )  = ( M ,  E[XI)  

by linearity. Now consider the (i, j)th element: 

E[X]i, j  = E[Zai(Xj)] = ( l ) P ( X j  = ai) + (O)P(Xj # ai) = P ( X j  = ai) = n(ai, j ) ,  

where the last equality follows from the assumed probability model in (7.104). 0 
The following algorithm provides a mapping from a reliability matrix l7 to a multiplicity 

matrix M .  

Algorithm 7.9 Koetter-Vardy Algorithm for Mapping from ll to M 

I Input: A reliability matrix ll; a positive integer S indicating the number of interpolation points 
z Output: A multiplicity matrix M 
3 Initialization: Set ll* = l7 and M = 0. 
4 DO: 
5 

6 Setnzj = & 
7 S e t r n . . = r n . . + l  1.1 k J  

B S e t S = S - 1  
9Whi leS>O 

Find the position (i, j )  of the largest element nzj of ll*. 
n*. 

Let % be formed by normalizing the columns of M produced by this algorithm to sum 
to 1. It can be shown that ?i? -+ l3 as S +. 00. That is, the algorithm produces an integer 
matrix which, when normalized to look like a probability matrix, asymptotically approaches 
n. Since one more multiplicity is introduced for every iteration, it is clear that the score 
increases essentially linearly with S and that the cost increases essentially quadratically with 
S. 

Example 7.30 Suppose 

1 
0.1349 0.3046 0.2584 0.2335 
0.2444 0.1578 0.1099 0.1816 
0.2232 0.1337 0.2980 0.1478 . 
0.1752 0.1574 0.2019 0.2307 
0.2222 0.2464 0.1317 0.2064 

Figure 7.7 shows a plot of lla - ll 11 after S iterations as S varies up to 400 iterations. It also shows 
the score and the cost. The M matrix produced after 400 iterations, and its normalized equivalent, are 

M = [I;;;] 22 13 30 15 0.2222 0.1287 0.3000 0.1500 

0.1313 0.3069 0.2600 0.2300 
0.2525 0.1584 0.1100 0.1800 

0.1717 0.1584 0.2000 0.2300 
0.2222 0.2475 0.1300 0.2100 
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Figure 7.7: Convergence of %f to n, and the score and cost as a function of the number of 
iterations. 

Some understanding of this convergence result - why M proportional to n is appropriate 
- can be obtained as follows. We note that the cost C ( M )  can be written as 

1 
C ( M )  = p, M )  + ( M ,  I)), 

where 1 is the matrix of all ones. For sufficiently large M ,  C ( M )  is close to i(M, M ) ,  
which is (1/2) the Frobenius norm of M .  For fixed norm ( M ,  M) , maximizing the expected 
score ( M ,  l7) is accomplished (as indicated by the Cauchy-Schwartz inequality) by setting 
M to be proportional to n. 

The Geometry of the Decoding Regions 

In the bound (7.103), write SM(C) = ( M ,  [c]) and C ( M )  = ( M ,  IT) + ( M ,  1); we thus see 
from Theorem 7.32 that the decoding algorithm outputs a codeword c if 

(', [cl) > m, 
d ( M ,  M )  + ( M ,  1) - 

Asymptotically (as S 4 00 and the normalized + n) we have 

(7.105) 

(where the o(1) term accounts for the neglected (Ti?, 1) term). 

the cosine of the angle B between vectors X and Y is 
Observe that for any codeword c, ([c], [c]) = n.  Recall that in the Hilbert space Wn, 
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In light of (7.105), a codeword c is on the decoder list if 

Asymptotically (n + oo), the codeword is on the list if 

cosB([cl, n) 2 f i  + OU). 

The asymptotic decoding regions are thus cones in Euclidean space Rqn: the central axis 
of the cone is the line from the origin to the point n. Codewords which lie within an angle 
of cos - l f i  of the central axis are included in the decoding list of n. 

Each codeword lies on a sphere S of radius ,/- = fi. To contrast the KV algo- 
rithm with the GS algorithm, the GS algorithm would take a reliability matrix l7 and project 
it (by some nonlinear means) onto the sphere S, and then determine the codewords within 
an angle of c0s-l of this projected point. Conventional decoding is similar, except that 
the angle of inclusion is cos-l(l + R ) / 2  and the decoding regions are nonoverlapping. 

Computing the Reliability Matrix 

We present here a suggested method for computing a reliability matrix for transmission 
using a large signal constellation. 

Consider the constellation shown in Figure 7.8. Let the signal points in the constellation 
be so, . . . , S M - ~  and let the received point be r. Then the likelihood functions f(rlsi) can 
be computed. Rather than use all M points in computing the reliability, we compute using 
only the N largest likelihoods. From the N largest of these likelihoods (corresponding to 
the N closest points in Gaussian noise) f(rlsi,), f(r1si2), . . . , f(rlsiN) we form 

Figure 7.8: Computing the reliability function. 

Using likelihoods computed this way, the authors of [191] have examined codes with 
a rate near 112 for a 256 QAM signal constellation. The soft-decision decoding algorithm 
achieved gains of up to 1.6 dB compared to conventional (hard-decision) decoding of the 
same RS codes. 
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7.7 Exercises 

7.1 [61] Let M be a module over a ring R. 

(a) Show that the additive identity 0 E M is unique. 

(b) Show that each f E M has a unique additive inverse. 

(c) Show that Of = 0, where 0 E R on the left-hand side is the zero element in R and 0 E M 
on the right-hand side is the additive identity element in M. 

7 . 2  Show that an ideal I C R is an R-module. 
7.3 Show that if a subset M c R is a module over R ,  then M is an ideal in R. 
7.4 Let I be an ideal in R. Show that the quotient M = R / I  is an R-module under the quotient 

ring sum operation and the scalar multiplication defined for cosets [ g ]  E R / I  and f E R by 
f k l =  [fgl E RII .  

7.5 Show that the expression leading to (7.19) is true, that is, g;)(ak)akb = g'(ab+k)ab(2-d+k). 

7.6 Show that g'(ab+k)ab(k+2-d)pkak = c fork = 0, 1 ,  . . . , d - 2, where ? is a constant, using 
the following steps. Let g['I(x) = n r = o ( x  -a ' )  and p['I(x) = nrZl ( x  -a') = C;=o pk  [rl x k . 
(That is, these correspond to polynomials with b = 0.) You may prove the result by induction, 
using 

r-1 
g[rl(ak)p[lak = c [ r l  = n ( , r + 1  - , i + l ) ,  k = 0, 1 ,  . . . , r 

i=O 
as the inductive hypothesis. 

(a) Show that g[']'(&) = g[rl'(ak-l ar+k-'-ar-' . 
& I - , y  

grrl'(ak)(ak - ar+') k = 0, 1 ,  . . . , r . Hint: g['+'](x) = I (ar+l  k = r + l  
(b) Show that gLr+l]'(ak) = 

$ 1  ( x )  (x - a r + l ) .  

-pF;lar+l k = O  

1 k = r + l .  
(c) ShowthatpL"] = [ pLll - a r f l p L 1  k = 1 , 2 , .  . . , I .  Hint: p['+'](x) = p['I(x)(x- 

(d) Show that for the case k = r + 1 ,  g [r f l ] ' (ar+l )pF;f i l lar f l  = g [r+ll'((yr+l)&l = 

a r + l ) .  

n;=o ,r+2 - ai+l ~ [ r + 1 1 .  

c [ r + l I .  
(el For the case that k = 0, show (using the inductive hypothesis) that g[r+l ] ' (ao)p[+l lao  = 

(0 For the case that k = 1 , 2 ,  . . . , r, show that g [ r + l ] ( a k ) p L + l l a k  = C['+']. 

(g) Now extend to the case that b # 0. Let g o ( x )  = nfzt(x - a') and g ( x )  = nfLf-2 
and let po(x )  = @z;(x - a')  and p ( x )  = nfzfGf(x - a'). Show that & ( x )  = 

g'(cXbX)CX-b(d-2) and pok = pkab(k-d+2).  Conclude that 

g'(ab+k)pkak+b(k-r) = Cabr = 2; 

(h) Hence show that 
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7.7 Show that f(ak)g(ubfk) = ?ab(d-l-k), k = d - I ,  . . . , n - 1, where 2. is defined in Exercise 
7.6. This may be done as follows: 

(a) Let f o ( x )  = XfI t  

(b) Show that f ( x )  = ~ - ~ f o ( x ) a ~ @ - ~ )  to conclude the result. 

and go(x) = nfz ; (x  - a i ) .  Show that fo(x)go(x) = -t. 
Hint: Lagrange interpolation. 

7.8 Show that (7.23) and (7.24) follow from (7.21) and (7.22) and the results of Exercises 7.6 and 
3- 

7.9 

7.10 

7.11 

7.12 

7.13 

7.14 

7.15 

7.16 

I .  I .  

Work through the steps of Lemma 7.5. 

(a) Explain why there must by polynomials Q l  ( x )  and Q 2 ( x )  such that N ( x )  - W ( x ) P ( x )  = 

(b) Show that ( N V  - M W ) P  = ( M Q l  - N Q 2 ) I l  

(c) Explain why ( lT (x ) ,  P ( x ) )  I N ( x )  and (n(x),  P ( x ) )  I M ( x ) .  (Here, (n(x), P ( x ) )  is the 
GCD.) 

(d) Show that ( N ( x ) V ( x )  - M ( x ) W ( x ) ) P ( x )  = ( M ( x ) Q l ( x )  - N ( x ) Q 2 ( x ) ) n ( x ) .  

(e) Show that 

Q l ( x ) n ( x )  and M ( x )  - V ( x ) P ( x )  = Q ~ ( x ) ~ ( x ) .  

and hence that l7 ( x )  1 ( N ( x )  V ( x )  - M ( x )  W (x ) ) .  

(0 Show that deg(N (x)  V (x) - M  ( x )  W (x ) )  < k .  Hence conclude that N (x )  V (x)  - M ( x )  W ( x )  = 
0. 

(g) Letd(x) = ( W ( x ) ,  V ( x ) )  (the GCD), so that W ( x )  = d(x)w(x) and V ( x )  = d(x)u(x )  for 
relatively prime polynomials u(x)  and w ( x ) .  Show that N ( x )  = h ( x ) w ( x )  and M ( x )  = 
h ( x ) u ( x )  for a polynomial h ( x )  = N ( x ) / w ( x )  = M ( x ) / u ( x ) .  

(h) Show that h ( x ) w ( x )  - d(x)w(x)P(x) = Q l ( x ) n ( x )  and h ( x ) u ( x )  - d ( x ) u ( x ) P ( x )  = 
Q 2 b )  n 

(i) Show that thereexistpolynomials s ( x )  and t ( x )  such that s ( x ) w ( x )  + t ( x ) u ( x )  = 1. Then 
show that h ( x )  - d ( x ) P ( x )  = ( s ( x ) Q l ( x )  + t ( x ) Q 2 ( x ) ) n ( x ) .  

(i) Conclude that ( h ( x ) ,  d ( x ) )  is also a solution. Conclude that deg(w(x)) = 0, so that only 
( M ( x )  , V ( x ) )  has been reduced. 

[ 4 5 ]  Explain how the Euclidean algorithm can be used to solve the rational interpolation problem 
(i.e., how it can be used to solve the Welch-Berlekamp key equation). 
Show that when Xi is an error in a check location that q 2 , 1  ( x i )  # 0 and that h ( x i )  # 0. Hint: I f  
\ V ~ , J ( X ~ )  = 0, show that * 2 , 2 ( x i )  must also be zero; furthermore we have * l , l ( x j )  = 0, which 
implies *1,2(xi)  = 0. Show that this leads to a contradiction, since (x - x i ) 2  cannot divide 
det(* (x) ) .  

Write down the monomials up to weight 8 in the (1,4)-revlex order. Compute C(4, 8) and 
compare with the number of monomials you obtained. 
Write down the polynomials up to weight 8 in the ( I ,  4)-lex order. Compute C(4, 8) and compare 
with the number of monomials you obtained. 
Write the polynomial Q ( x ,  y )  = x 5  + x 2 y  + x 3  + y + 1 E G F ( S ) [ x ,  y ]  with the monomials in 
(1,3)-revlex order. Write the polynomial with the monomials in (1,3)-lex order. 
Let Q ( x ,  y )  = 2 x 2 y + 3 x 3 y 3 + 4 x 2 y 4 .  ComputetheHassederivatives D1,o Q ( x ,  y ) ,   DO,^ Q ( x ,  y), 

For a (16,4)  RS code over GF(16), plot Km as a function of m. 
D i , i Q ( x ,  Y L  D 2 , 0 Q ( x ,  Y ) ,  D 2 , i Q < x 3  Y )  and D 3 , 2 Q ( x ,  Y ) .  
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7.17 

7.18 
7.19 
7.20 
7.21 
7.22 

7.23 

7.24 

A polynomial Q(x, y) E G F ( 5 ) [ x ,  y] is to be found such that: 

Q(2, 3) = 0 Di,oQ(2,3) = 0 

Q(3,4) = O  Do,iQ(3,4)=0 &,oQ(3,4)=0 

(a) Determine the monomials that constitute Q(x, y) in (1,4)-revlex order. 
(b) Determine the matrix 'D as in (7.89) representing the interpolation and multiplicity con- 

Do,iQ(2, 3) = 0 

straints for a polynomial. 

In relation to the Feng-Tzeng algorithm, show that [C(x)a(')(x)xf']n = [ C ( ~ ) a ( ' ) ( x > ] ~ - ~ .  

FromLemma7.25, show that for P ( x ,  y), Q(x, y) E P[x, y1, [ P ( x ,  y), Q(x, y ) ] ~  E ker D. 
Write down the proof to Lemma 7.15. 
Show that (7.97) is true. 
Bounds on Lm : 

(a) Show that 

(b) Show that Lm < (rn + 1)m. 
[230] Let A(u, K) be the rank of the monomial x K  in (1, u)-revlex order. From Table 7.1 we 

K 0 1 2 3 4 5  
K(3,L) 0 1 2 3 5 7 

Show that A(u,  K + 1) = C(u, K). 
Show that A(u,  K) = [{(i, j )  : i + u j  < K } l .  
Show that B ( L ,  u)  = A(uL + 1, u )  - 1. 
Euler's integration formula [ 187, section 1.2.1 1.2, (3)] indicates that the sum of a function 
f ( k )  can be represented in terms of an integral as 

where {x) = x - Lx] is the fractional part of x .  Based on this formula show that 

wherer = K (mod u). 

Show the following bound 

Bounds on Km:  

(a) Show that 

where 

K~ K r (u - r )  
A ( u ,  K) = - + - + - 

2u 2 2v ' 

K2 ( K  + u/2I2 - < A ( K , u )  5 
2u 2u . 

(7.106) 

(7.107) 
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(b) Show that 

(c) Hence show that asymptotically (as m + 00) 

7.8 References 

The original Welch-Berlekamp algorithm appeared in [369]. In addition to introducing 
the new key equation, it also describes using different symbols as check symbols in a 
novel application to magnetic recording systems. This was followed by [23], which uses 
generalized minimum distanceto improve the decoding behavior. The notation we use 
in Section 7.2.1 comes from this and from [247]. A comparison of Welch-Berlekamp key 
equations is in [244]. Our introduction to modules was drawn from [61]; see also [ 162,1551. 

Our discussion of the DB form of the key equation, as well as the idea of “exact se- 
quences” and the associated algorithms, is drawn closely from [63]. Other derivations of 
WB key equations are detailed in [2 141 and [247]. 

The development of the Welch-Berlekamp algorithm from Section 7.4.2 closely follows 
[214]. The modular form follows from [63]. Other related work is in [44] and [45]. 

The idea of list decoding goes back to [77]. The idea of this interpolating recovery is 
expressed in [369]. Work preparatory to the work here appears in [193] and was extended 
in [323], building in turn on [8], to decode beyond the RS design distance for some low rate 
codes. In particular, a form of Theorem 7.19 appeared originally in [8]; our statement and 
proof follows [128]. In [128], the restriction to low-rate codes was removed by employing 
higher multiplicity interpolating polynomials. The Feng-Tzeng algorithm appears in [83], 
which also shows how to use their algorithm for decoding up to the Hartmann-Tzeng and 
Roos BCH bounds. A preceding paper, [82] shows how to solve the multi-sequence problem 
using a generalization of the Euclidean algorithm, essentially producing a Grobner basis 
approach. The algorithm attributed to Kotter [193] is clearly described in [230]. Other 
algorithms for the interpolation step are in [188] and in [252], which puts a variety of 
algorithms under the unifying framework of displacements. 

The factorization step was efficiently expressed in [297]. The description presented of 
the Roth-Ruckenstein algorithm draws very closely in parts from the excellent tutorial paper 
[230]. Alternative factorization algorithms appear in [114, 9, 81, 3791. 



Chapter 8 

Other Important Block Codes 
8.1 Introduction 

There are a variety of block codes of both historical and practical importance which are 
used either as building blocks or components of other systems, which we have not yet seen 
in this book. In this chapter we introduce some of the most important of these. 

8.2 Hadamard Matrices, Codes, and Transforms 

8.2.1 Introduction to Hadamard Matrices 

A Hadamard matrix of order n is an n x n matrix Hn of f 1 such that 

H,H; = nz. 

That is, by normalizing Hn by 1 /,h an orthogonal matrix is obtained. The distinct columns 
of H are painvise orthogonal, as are the rows. Some examples of Hadamard matrices are: 

1 1 1  

1 1 -1 -1 
1 -1 1 -: 1 

H4 = 

1 -1 -1 1 _I 
1 -1 1 -1 1 -1 1 -1 
1 1 -1 -1 1 1 -1 -1 
1 -1 -1 1 1 -1 -1 1 
1 1 1 1 -1 -1 -1 -1 
1 -1 1 -1 -1 1 -1 1 
1 1 -1 -1 -1 -1 1 1 
1 -1 -1 1 -1 1 1 -1 

The operation of computing rH,, where r is a row vector of length n, is sometimes called 
computing the Hadamard transform of r. As we show in Section 8.3.3, there are fast 
algorithms for computing the Hadamard transform which are useful for decoding certain 
Reed-Muller codes (among other things). Furthermore, the Hadamard matrices can be used 
to define some error correction codes. 

It is clear that multiplying a row or a column of Hn by - 1 produces another Hadamard 
matrix. By a sequence of such operations, a Hadamard matrix can be obtained which has 
the first row and the first column equal to all ones. Such a matrix is said to be noml i zed .  

Some of the operations associated with Hadamard matrices can be expressed using the 
Kronecker product. 
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Definition 8.1 The Kronecker product A €3 B of  an m x n matrix A with a p x q matrix 
B is the m p  x nq obtained by replacing every element aij of A with the matrix ajj B. The 
Kronecker product is associative and distributive, but not commutative. 

Example 8.1 Let 

Theorem 8.1 The Kronecker product has the following properties [246, ch. 91: 

1. A €3 B # B €3 A in general. (The Kroneckerproduct does not commute.) 

2. For a scalar x, (xA) €3 B = A €3 (xB) = x ( A  €3 B) .  

3. Distributive properties: 

( A  + B) €3 C = ( A  €3 C) 4- ( B  €3 C). 

A €3 (B + C) = ( A  €3 B) + ( A  €3 C ) .  

4. Associativeproperty: ( A  €3 B )  €3 C = A €3 (B €3 C).  

5. Transposes: ( A  €3 B)T = AT €3 BT. 

6. Trace (for square A and B): tr(A €3 B) = tr(A) tr(B). 

7. I f A  is diagonal and B is diagonal, then A €3 B is diagonal. 

8. Determinant, where A is rn x m and B is n x n: det(A €3 B) = det(A)" det(B)'". 

9. The Kronecker product theorem: 

( A  €3 B)(C €3 D )  = ( A C )  €3 (BW, (8.2) 

provided that the matrices are shaped such that the indicatedproducts are allowed. 

10. Inverses: IfA and B are nonsingular then A €3 B is nonsingularand 

( A  €3 B)O1 = A-' €3 B-' .  (8.3) 

Returning now to Hadamard matrices, it may be observed that the Hadamard matrices 
in (8.1) have the structure 

This works in general: 

Theorem 8.2 I f  Hn is a Hadamard matrix, then so is H2n = H2 €3 Hn, 



8.2 Hadamard Matrices, Codes, and Transforms 371 

Proof By the properties of the Kronecker product, 

&nH& = (H2 8 W ( H 2  8 H d T  = H2HT 8 HnH: = (212) 8 (n1,) 
= 2n(Z2 8 In) = 2nz2,. 

This construction of Hadamard matrices is referred to as the Sylvester construction. By this 
construction, Hadamard matrices of sizes 1, 2, 4 ,  8, 16, 32, etc., exist. However, unless 
a Hadamard matrix of size 6 exists, for example, then this construction cannot be used to 
construct a Hadamard matrix of size 12. As the following theorem indicates, there is no 
Hadamard matrix of size 6. 

Theorem 8.3 A Hadamard matrix must have an order that is either I ,  2, or a multiple of 4. 

Proof [220, p. 441 Suppose without loss of generality that Hn is normalized. By column 
permutations, we can put the first three rows of Hn in the following form: 

1 1 1 1 1 * . -  1 1 1 ... 1 1 1 ... 1 
1 1 ... 1 1 1 ... 1 -1 -1 ... -1 -1 -1 ... -1 
1 1 ... 1 -1 -1 . . .  -1 1 1 * * -  1 -1 -1 ... -1 

- \  / \  

i j k 1 

For example, j is the number of columns such that the first two rows of Hn have ones while 
the third row has negative ones. Since the rows are orthogonal, we have 

i + j - k - Z = O  

i - j + k - Z = O  

i - j - k + Z = O  

(inner product of row 1 with row 2) 

(inner product of row 1 with row 3) 

(inner product of row 2 with row 3), 

which collectively imply i = j = k = 1. Thus n = 4 i ,  so n must be a multiple of 4. (If 
n = 1 or 2, then there are not three rows to consider.) 0 

This theorem does not exclude the possibility of a Hadamard matrix of order 12. However, 
it cannot be obtained by the Sylvester construction. 

8.2.2 The Paley Construction of Hadamard Matrices 

Another method of constructing Hadamard matrices is by the Paley construction, which em- 
ploys some number-theoretic concepts. This allows, for example, creation of the Hadamard 
matrix Hl2. While in practice Hadamard matrices of order 4k are most frequently em- 
ployed, the Paley construction introduces the important concepts of quadratic residues and 
the Legendre symbol, both of which have application to other error correction codes. 

Definition 8.2 For all numbers a such that ( a ,  p )  = 1 ,  the number a is called a quadratic 
residue modulo p if the congruence x = a (mod p )  has some solution x . That is to say, 
a is the square of some number, modulo p .  If a is not a quadratic residue, then a is called 

If a is a quadratic residue modulo p ,  then so is a + p ,  so we consider as distinct residues 
a quadratic nonresidue. 0 

only these which are distinct modulo p .  
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Example 8.2 The easiest way to find the quadratic residues modulo a prime p is to list the nonzero 
numbers modulo p ,  then square them. 

Let p = 7. The set of nonzero numbers modulo p is {1,2, 3,4,5,6]. Squaring these numbers 
modulo p we obtain the list (12, 22, 32, 42, 5 2 ,  62} = {1,4,2,2,4,  1). So the quadratic residues 
modulo 7 are {1,2,4}. The quadratic nonresidues are {3,5,6}. The number 9 is a quadratic residue 
modulo 7, since 9 = 7 + 2, and 2 is a quadratic residue. 

Now let p = 11. Forming the list of squares we have 

The quadratic residues modulo 11 are (1,3,4,  5,9}. 0 

Theorem 8.4 Quadratic residues have the following properties: 

I .  There are ( p  - 1)/2 quadratic residues modulo p for an oddprime p.  

2. The product of two quadratic residues or two quadratic nonresidues is always a 
quadratic residue. The product of a quadratic residue and a quadratic nonresidue is 
a quadratic nonresidue. 

3. I f p  is of the form 4k  + 1, then -1 is a quadratic residue modulo p.  I f p  is of the 
form 4k  + 3, then - 1 is a nonresidue modulo p.  

The Legendre symbol is a number theoretic function associated with quadratic residues. 

Definition 8.3 Let p be an odd prime. The Legendre symbol x p ( x )  is defined as 

0 if n is a multiple of p 

1 
- 1 if x is a quadratic nonresidue modulo p .  

if x is a quadratic residue modulo p 

The Legendre symbol x p  (x) is also denoted as . (9 0 

Example 8.3 Let p = 7. The Legendre symbol values are 

~ 0 1 2  3 4  5 6 
x7(x): 0 1 1 -1 1 -1 -1 

When p = 11 the Legendre symbol values are 

x : O 1  2 3 4 5  6 7 8 9 1 0  
x11(x): 0 1 -1 1 1 1 -1 -1 -1 1 -1 

The key to the Paley construction of Hadamard matrices is the following theorem. 

Lemma 8.5 [220, p.  461 For any c f 0 (mod p ) ,  

D-1  
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- 1  1 1  1 1  1 1  1 ’  
1 -1 1 1 -1 1 -1 -1 
1 -1 -1 1 1 -1 1 -1 

1 1 -1 -1 -1 1 1 -1 
1 -1 1 -1 -1 -1 1 1 
1 1 -1 1 -1 -1 -1 1 
1 1 1 -1 1 -1 -1 -1 - 

1 -1 -1 0 1 1 -1 -1 -1 -1 -1 

0 1 1 -1 1 -1 -1 
-1 0 1 1 -1 1 -1 
-1 -1 0 1 1 -1 1 

-1 1 -1 -1 0 1 1 
1 -1 1 -1 -1 0 1 
1 1 -1 1 -1 -1 0 

Proof From Theorem 8.4 and the definition of the Legendre symbol, x p  (xy ) = xp (x) xp (y ) . 
Since b = 0 contributes nothing to the sum in (8.4), suppose b # 0. Let z = (b + c)b-’ 
(mod p). As b runs from 1,2, . . . , p - 1, z takes on distinct values in 0,2,3, . . . , p - 1, 
but not the value 1. Then 

P-1 P-1 P-1 P-1 

P-1 

z=o 
= c xp(z> - Xp(1) = 0 - Xp(1) = -1, 

where the last equality follows since half of the numbers z from 0 to p - 1 have xp (z) = - 1 

With this background, we can now define the Paley construction. 

and the other half x p  (z) = 1, by Theorem 8.4. 

1. First, construct the p x p Jacobsthal matrix J p .  with elements 4ij given by q i j  = 
xp(j - i) (with zero-based indexing). Note that the first row of the matrix is xp(j), 
which is just the Legendre symbol sequence. The other rows are obtained by cyclic 
shifting. 

2. Second, form the matrix 

where 1 is a column vector of length p containing all ones. 

Example 8.4 Let p = 7. For the first row of the matrix, see Example 8.3. 

Example 8.5 We now show the construction of H12. The 11 x 11 Jacobsthai matrix is 

J11 = 

- 0  1 - 1  1 1  1 - 1 - 1 - 1  1 - 1  
-1 0 1 -1 1 1 1 -1 -1 -1 1 

1 -1 0 1 -1 1 1 1 -1 -1 -1 
-1 1 -1 0 1 -1 1 1 1 -1 -1 
-1 -1 1 -1 0 1 -1 1 1 1 -1 
-1 -1 -1 1 -1 0 1 -1 1 1 1 

1 -1 -1 -1 1 -1 0 1 -1 1 1 
1 1 -1 -1 -1 1 -1 0 1 -1 1 
1 1 1 -1 -1 -1 1 -1 0 1 -1 

-1 1 1 1 -1 -1 -1 1 -1 0 1 
- 1 - 1  1 1  1 - 1 - 1 - 1  1 - 1  0 
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and the Hadamard matrix is 

1 1 1 1 1 1 1 1 1 1 1 1  
1 -1 1 -1 1 1 1 -1 -1 -1 1 -1 
1 -1 -1 1 -1 1 1 1 -1 -1 -1 1 
1 1 -1 -1 1 -1 1 1 1 -1 -I -1 I 1 -1 1 -1 -1 1 -1 1 1 1 -1 -1 
1 -1 -1 1 -1 -1 1 -1 1 1 1 -1 

H12 = I 1 -1 -1 -1 1 -1 -1 1 -1 1 1 1 
1 1 -1 -1 -1 1 -1 -1 1 -1 1 1 
1 1 1 -1 -1 -1 1 -1 -1 1 -1 1 
1 1 1 1 -1 -1 -1 1 -1 -1 I -1 
1 -1 1 1 1 -1 -1 -1 1 -1 -1 1 i 1 1 -1 1 1 1 -1 -1 -1 1 -1 -1 

(8.5) 

The following lemma establishes that the Paley construction gives a Hadamard matrix. 

Lemma 8.6 Let Jp be a p x p Jacobsthal matrix. Then J p  Jp' = pZ - U and Jp  U = 
U Jp = 0, where U is the matrix of all ones. 

Proof Let P = Jp Jp'. Then 

P - 1  

pii = C q:k = p - 1 (since x,2(x) = 1 for x + 01 
k=O 

D - 1  D-1  

k=O k=O 
P - 1  

= xp(b)Xp(b + c )  = -1 (subs. b = k - i, c = i - j ,  then use Lemma 8.5). 
b=O 

Also, JpU = 0 since each row contains ( p  - 1 ) / 2  elements of 1 and ( p  - 1 ) / 2  elements 
of -1. 0 
Now 

ButfromLemma8.6, J + ( J , - l ) ( J p ' - Z )  = U f p l - U - U -  J p -  Jp'+I = ( p f 1 ) Z .  

so Hp+lHpT+1 = ( P  + l U p + l .  

8.2.3 Hadamard Codes 

Let An be the binary matrix obtained by replacing the 1s in a Hadamard matrix with Os, and 
replacing the -1s with 1s. We have the following code constructions: 

By the orthogonality of Hn, any pair of distinct rows of An must agree in n / 2  places 
and differ in n / 2  places. Deleting the left column of An (since these bits are all the 
same and do not contribute anything to the code), the rows of the resulting matrix 
forms a code of length n - 1 called the Hadamard code, denoted An, having n 
codewords and minimum distance n / 2 .  This is also known as the simplex code. 

By including the binary-complements of all codewords in An we obtain the code Bn 
which has 2n codewords of length n - 1 and a minimum distance of n / 2  - 1. 
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Starting from An again, if we adjoin the binary complements of the rows of A,, we 
obtain a code with code length n, 2n codewords, and minimum distance n/2. This 
code is denoted e. 

This book does not treat many nonlinear codes. However, if any of these codes are con- 
structed using a Paley matrix with n > 8, then the codes are nonlinear. (The linear span 
of the nonlinear code is a quadratic residue code.) Interestingly, if the Paley Hadamard 
matrix is used in the construction of A, or B,, then the codes are cyclic, but not necessarily 
linear. If the codes are constructed from Hadamard matrices constructed using the Sylvester 
construction, the codes are linear. 

8.3 Reed-Muller Codes 

Reed-Muller codes were among the first codes to be deployed in space applications, being 
used in the deep space probes flown from 1969 to 1977 [373, p. 1491. They were probably 
the first family of codes to provide a mechanism for obtaining a desired minimum distance. 
And, while they have been largely displaced by Reed-Solomon codes in volume of practice, 
they have a fast maximum likelihood decoding algorithm which is still very attractive. They 
are also used as components in several other systems. Furthermore, there are a variety 
of constructions for Reed-Muller codes which has made them useful in many theoretical 
developments. 

8.3.1 Boolean Functions 

Reed-Muller codes are closely tied to functions of Boolean variables and can be described 
as multinomials over the field GF(2) [284]. Consider a Boolean function of m variables, 
f(u1, u2, . . . , Urn), which is a mapping from the vector space V, of binary rn-tuples to the 
binary numbers (0, 1). Such functions can be represented using a truth table, which is an 
exhaustive listing of the input/output values. Boolean functions can also be written in terms 
of the variables. 

Example 8.6 The table below is a truth table for two functions of the variables ul , u2, u3 and u4. 

u 4 = 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1  
u 3 =  0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
u 2 =  0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
u 1 =  0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

f 1 =  0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 

f 2 =  1 1 1 1 1 0 0 1 1 0 1 0 1 1 0 0 

fl(V1, u2, u3, u4) = V l  + u2 + V3 + u4 

It can be verified (using, e.g., methods from elementary digital logic design) that 

and that 
f2(u1, u2, V3, V4) = 1 + u1u4 + vlu3  + V2u3. 

0 

The columns of the truth table can be numbered from 0 to 2rn- 1 using a base-2 representation 
with u1 as the least-significant bit. Then without ambiguity, the functions can be represented 
simply using their bit strings. From Example 8.6, 

f l  = (01 101001 10010110) 
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I genrm.cc I 

f2  = (1111100110101100). 

The number of distinct Boolean functions in m variables is the number of distinct binary 
sequences of length 2 m ,  which is 22m. The set M of all Boolean functions in m variables 
forms a vector space that has a basis 

{ 1 , u l , V 2 ,  ..., ~m,~l~2,~1~3,...,Um-1Um,"' ,VlV2U3.. .Vm]. 

Every function f in this space can be represented as a linear combination of these basis 
functions: 

f =a01 + a l v l  + a 2 ~ 2  + . . . a m u r n  + ~ l 2 ~ l ~ 2 + . . . + ~ 1 2 . . . m ~ 1 ~ 2 ' . . ~ m .  

Functional and vector notation can be used interchangeably. Here are some examples 
of some basic functions and their vector representations: 

1 f, 1 = 1111111111111111 

Ul f, V l  = 0101010101010101 

u2 t, v 2  = 0011001100110011 
u3 f, v 3  = 00001 11 100001 11 1 

u4 f, v4 = 000000001 11 11 11 1 

UlU2 f, V l V 2  = 0001000100010001 

~1 u2 u3 ~4 t, ~ 1 ~ 2 ~ 3  ~4 = 000000000000000 1. 

As this example demonstrates, juxtaposition of vectors represents the corresponding Boolean 
'and' function, element by element. A vector representing a function can be written as 

f =a01 + a l v l  + a 2 ~ 2 + * . . a m ~ m  + ~ 1 2 ~ 1 ~ 2  + . . . + a l 2 , , , m ~ l v 2 . . . v , .  

8.3.2 Definition of the Reed-Muller Codes 

Definition 8.4 [373, p. 1511 The binary Reed-Muller code R M ( r ,  m )  of order r and length 
2m consists of all linear combinations of vectors f associated with Boolean functions f that 
are monomials of degree p r in m variables. 

Example8.7 TheRM(1,3)codehaslength23 = 8. Themonomialsofdegree< lare(l, v l ,  v2, vg}, 
with associated vectors 

l + l =  (I 1 1 1 1 1 1 1) 
v3 * v 3  = (0 0 0 0 1 1 1 1) 
v 2 * v 2 =  (0 0 1 1 0 0 1 1) 
Vl * v 1 =  (0 1 0 1 0 1 0 1). 

It is natural to describe the code using a generator matrix having these vectors as rows, 

0 0  1 1  0 0  1 1 '  

1 1 1 1 1 1 1 1  

0 1 0 1 0 1 0 1  1 G = [  0 0 0 0 1  1 1  1 

This is an (8,4,4) code; it is single-error correcting and double-error detecting. This is also the 
extended Hamming code (obtained by adding an extra parity bit to the (7,4) Hamming code). 0 
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Example 8.8 The R M ( 2 , 4 )  code has length 16 and is obtained by linear combinations of the mono- 
mials up to degree 2, which are 

( 1 ,  v l ,  v29 V 3 ,  v4, v l v 2 ,  vlv3, Vlv4, V2V3, v2v4, V3v41 

with the following corresponding vector representations: 

1 =  (1  1 1 1 1 1 1 1 1 
v 4 =  (0 0 0 0 0 0 0 0 1 
v 3 =  (0 0 0 0 1 1 1 1 0 
v 2 =  (0 0 1 1 0 0 1 1 0 
v 1 =  (0 1 0 1 0 1 0 1 0 

v3v4= (0 0 0 0 0 0 0 0 0 
~ 2 ~ 4 =  (0 0 0 0 0 0 0 0 0 
V Z V ~ =  (0 0 0 0 0 0 1 1 0 
V I V ~ =  (0 0 0 0 0 0 0 0 0 
v 1 ~ 3 =  (0 0 0 0 0 1 0 1 0 
v1v2= (0 0 0 1 0 0 0 1 0 

1 1 1 1 1 1 1 )  
1 1 1 1 1 1 1 )  
0 0 0 1 1  1 1 )  
0 1 1 0 0 1 1 )  
1 0 1 0 1 0 1 )  
0 0 0 1 1  1 1 )  
0 1 1 0 0 1 1 )  
0 0 0 0 0 1 1 )  
1 0 1 0 1 0 1 )  
0 0 0 0 1 0  1) 
0 0 1 0  0 0 1). 

This is a (16, 1 1 )  code, with minimum distance 4. 

In general for an R M ( r ,  m )  code, the dimension is 

k = 1 + (7)  + (;) + . . . + (;). 
The codes are linear, but not cyclic. 

As the following lemma states, we can recursively construct an R M ( r  + 1, m + 1) code 
- twice the length - from an RM(r, m )  and RM(r  + 1, m )  code. In this context, the 
notation (f, g) means the concatenation of the vectors f and g. 

Lemma8.7 RM(r+ l ,m+l )  = [(f,f+g)foraZZf E RM(r+l,m)andg E R M ( r , m ) ] .  

Proof The codewords of R M ( r  + 1, m + 1) are associated with Boolean functions in m + 1 
variables of degree F r + 1. If c(v1, . . . , v m + l )  is such a function (i.e., it represents a 
codeword) we can write it as 

c ( ~ I ,  1 . .  9 v m + l )  = f ( v 1 , .  . - 9  v m )  + v m + l g ( v l , .  . ., Urn), 

where f is a Boolean function in m variables of degree 5 r + 1, and hence represents a 
codeword in RM(r + 1, m),  and g is a Boolean function in m variables with degree 5 r ,  
representing a Boolean function in R M (r,  m ) .  The corresponding functions f and g are thus 
in R M ( r  + 1, - m) and R M ( r ,  m ) ,  respectively. 

NOW let f ( ~ ,  UZ,. . . , V m + l )  = f ( u 1 ,  u 2 , .  . . , v m )  + 0 . vm+l represent a codeword 
in R M ( r  + 1 , m  + 1) and let i (u1 ,  v2 , .  . ., V m + l )  = v m + l g ( v l ,  u2 , .  . . , u,) represent a 
codeword in RM(r  + 1, m + 1). The associated vectors, which are codewords in R M ( r  + 
1, m + 11, are 

f = (f, f) and 8 = (0, g). 

Their linear combination (f, f + g) must therefore also be a codeword in R M ( r  + 1, m + 1). 
0 

We now use this lemma to compute the minimum distance of an R M ( r ,  m )  code. 
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Theorem 8.8 The minimum distance of RM(r ,  m )  is 2m-r. 

Proof By induction. When m = 1 the R M ( 0 ,  1 )  code is built from the basis [ l } ,  giving rise 
to two codewords: it is the length-2 repetition code. In this case d i n  = 2. The RM(1 ,  1 )  
code is built upon the basis vectors [ l ,  u l }  and has four codewords of length two: 00, 01, 
1 0 , l l .  Hence dmin = 1 .  

As an inductive hypothesis, assume that up to m and for 0 5 r 5 m the minimum 
distance is 2m-r. We will show that dmin for RM(r ,  m + 1 )  is 2m-r+1. 

Let f and f’ be in RM(r ,  m )  and let g and g’ be in R M ( r  - 1 ,  m). By Lemma 8.7, the 
vectors c1 = (f, f + g) and c2 = ( f ’ ,  f’ + g’) must be in RM(r ,  m + 1 ) .  

If g = g’ then d(c1, c2) = d ( ( f ,  f + g), (f’, f ’  + g)) = d ( ( f ,  f’), (f, f’)) = 2 d ( f ,  f’) 2 
22“‘-‘ by the inductive hypothesis. If g # g’ then 

d(c1, ~ 2 )  = w(f - f’) + w(g - g’ + f - f’). 
Claim: w(x + y) 2 w(x) - w(y). Proof Let wxy  be the number of places in which the 
nonzero digits of x and y overlap. Then w(x + y) = (w(x) - w x y )  + (w(y) - w x y ) .  But 
since 2w(y) _> 2wxy, the result follows. 

By this result, 

d(c1, ~ 2 )  2 w(f - f’) + w(g - g’) - w(f - f’) = w(g - g’). 

But g - g’ E R M ( r  - 1 ,  m) ,  so that w(g - g’) 2 2m-(r-1) = 2m-r+1. 0 
The following theorem is useful in characterizing the duals of RM codes. 

Theorem 8.9 For 0 5 r 5 m - 1 ,  the R M ( m  - r - 1 ,  m )  code is dual to the RM(r ,  m )  
code. 

Proof [373, p. 1541 Let a be a codeword in R M ( m  - r - 1 ,  m )  and let b be a codeword 
in RM(r ,  m ) .  Associated with a is a polynomial a(u1, u2, . . . , V m )  of degree 5 m - I - 1; 
associated with b is a polynomial b(u1, u2, . . , , V m )  of degree 5 r .  The product polynomial 
has degree 5 m - 1 ,  and thus corresponds to a codeword in the R M ( m  - 1 ,  m )  code, with 
vector representation ab. Since the minimum distance of RM(m - r - 1 ,  m )  is 2+’ and 
the minimum distance of R M ( m  - 1 ,  m )  is 2m-r, the codeword ab must have even weight. 
Thus a .  b = 0 (mod 2). From this, R M ( m  - r - 1, m )  must be a subset of the dual code 
to RM(r ,  m ) .  Note that 

dim(RM(r, m ) )  + dim(RM(m - r - 1 ,  m ) )  

= 1 + (7) + . . . + (;) + 1 + C) + (;) + . . . + ( m ) 
m - r - 1  

= 1 + ( ’ l ) + . - - ( ; ) + ( ; ) + (  m - 1  )+(  m - 2  )+. . .+(  r + l  m ,  

m 

i =O 

By the theorem regarding the dimensionality of dual codes, Theorem 2.8, RM(m -r - 1 ,  m )  
0 

It is clear that the weight distribution of RM(1 ,  m )  codes is A0 = 1 ,  A2m = 1 and A2,,-1 = 
2m+1 - 2. Beyond these simple results, the weight distributions are more complicated. 

must be the dual to RM(r ,  m ) .  



8.3 Reed-Muller Codes 379 

8.3.3 Encoding and Decoding Algorithms for First-Order RM Codes 

In this section we describe algorithms for encoding and decoding RM(1, m )  codes, which 
are ( 2 m ,  m + 1, 2m-1) codes. In Section 8.3.4 we present algorithms for more general RM 
codes. 

Encoding RM(1, m )  Codes 

Consider the RM(1,3) code generated by 

Lo 1 0  1 0  1 0  11  

The columns of G consist of the numbers (1, 0, 0,O) through (1, 1, 1, 1) in increasing binary 
counting order (with the least-significant bit on the right). This sequence of bit values can 
thus be obtained using a conventional binary digital counter. A block diagram of an encoding 
circuit embodying this idea is shown in Figure 8.1. 

3-bit binary digital counter 

Figure 8.1 : An encoder circuit for a R M (1 ,3)  code. 

Decoding RM( 1, m )  Codes 

The idea behind the decoder is to compare the received sequence r with every codeword in 
RM( 1, m )  by means of correlation, then to select the codeword with the highest correlation. 
As we shall show, because of the structure of the code these correlations can be computed 
using a Hadamard transform. The existence of a fast Hadamard transform algorithms makes 
this an efficient decoding algorithm. 

Let r = (ro, 1 1 ,  . . . , 1 2 m - 1 )  be the received sequence, and let c = (co, c1, . . . , ~ 2 m - 1 )  
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be a codeword. We note that 

2 m - 1  2 m - 1  2 m - 1  

i=O i=O 

2"-1 

i=O 
(8.7) 

i=O 

where @ denotes addition modulo 2 and d(ri ,  ci)  is the Hamming distance between the 
arguments. A sequence which minimizes d(r, c) has the largest number of positive terms 
in the sum on the right of (8.7) and therefore maximizes the sum. 

Let 3(r) be the transformation that converts binary {O, l} elements of r to binary f l  
values of a vector R according to 

3(r) = F(r0, r1, . . . , r2m-1) = R = ((-l)ro, (-l)rl , .  . . , (-1)"2"-1 1. 

We refer to R as the bipolar representation of r. Similarly define 3 ( c )  = C = (Co, C1, . . . , C 2 m  -. 

We define the correlation function 

2 m - 1  

T = cor(R, C )  = cor((Ro, R 1 , .  . . , R p - i ) ,  (Co, Ci, . . . , Cp-1)) = C RiCi. 
i =O 

By (8.7), the codeword c which minimizes d(r ,  c) maximizes the correlation cor(R, C ) .  
The decoding algorithm is summarized as: Compute Ti = cor(R, Ci), where Ci = 

3 ( c i )  for each of the 2"+' codewords, then select that codeword for which cor(R, C i )  is 
the largest. The simultaneous computation of all the correlations can be represented as a 
matrix. Let Ci be represented as a column vector and let 

Then all the correlations can be computed by 

Recall that the generator matrix for the R M (  1, m)  code can be written as 

We actually find it convenient to deal explicitly with those codewords formed as linear 
combinations of only the vectors v1, v1, . . . , vm, since 1 + c complements all the elements 
of c, which corresponds to negating the elements of the transform C .  We therefore deal with 
the 2m x 2" matrix H p  . Let us examine one of these matrices in detail. For the R M (  1,3) 
code with G as in (8.6), the matrix Hs can be written as 
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0 1 2 3 4 5 6 7  - 
1 1 1 1 1 1 1 1  
1 -1 1 -1 1 -1 1 -1 
1 1 -1 -1 1 1 -1 -1 
1 -1 -1 1 1 -1 -1 1 
1 1 1 1 -1 -1 -1 -1 
1 -1 1 -1 -1 1 -1 1 
1 1 -1 -1 -1 -1 1 1 

L 1 -1 -1 1 -1 1 1 -1 

Examination of this reveals that, with this column ordering, column 1 corresponds to 3(v I ) ,  

column 2 corresponds to 3(v2) ,  and column 4 corresponds to 3(v3). In general, the ith 
column corresponds to the linear combination of i l v l +  i2v2 + i3v3, where i has the binary 
representation 

i = i l  + 2i2 + 4i3. 

We write the binary representation as i = (i3, i2, i1)2. In the general case, for an 2m x 2m 
Hadamardmatrix,weplace3(~~=l ijvj) intheithcolumnwherei = (im, i m - l , .  . . , i1)2. 

The computation RH is referred to as the Hadamard transform of R. 
The decoding algorithm can be described as follows: 

Algorithm 8.1 Decoding for R M (  1, m) Codes 

I Input: r = (ro, rl , . . . , r2m-1). 
2 Output: A maximum-likelihood codeword 2. 
3 Begin 
4 Find the bipolar representation R = F(r). 
5 Compute the Hadamard transform T = R H p  = (to,  t l ,  . . . , t2m-1) 
6 Find the coordinate ti with the largest magnitude 
7 Let i have the binary expansion (im, i,-l, . . . , i1)2. ( i l  LSB) 
8 if& > 0) (1 is not sent) 
9 C = C y = = l i j v j  

10 else (1 is sent - complement all the bits) 
I I  

12  end (if) 
13 End 

2 = 1 + CY==, i j v j  

Example 8.9 For the R M (  1, 3) code, suppose the received vector is 

r = [ I ,  0, 0, I , O , O ,  1 ,0 ]  . 

The steps of the algorithm follow: 

1. Compute the transform: R = [-1, 1,  1 ,  -1, 1, 1, -1,  11. 

2. Compute T = RH = [2,  - 2 , 2 ,  -2, - 2 , 2 ,  -2, -61. 

3. The maximum absolute element occurs at t7 = -6, so i = 7 = (1, 1 ,  1)2. 

4. Sincet7 < 0 , c  = 1 + v l  + v 2  +v3 = [1,0,0, 1,0, 1 ,  1 .03 .  

rmdecex.m 
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Expediting Decoding Using the Fast Hadamard Transform 

The main step of the algorithm is the computation of the Hadamard transform R H .  This 
can be considerably expedited by using a fast Hadamard transform, applicable to Hadamard 
matrices obtained via the Sylvester construction. This transform is analogous to the fast 
Fourier transform (FFT), but is over the set of numbers f 1. It is built on some facts from 
linear algebra. 

As we have seen, Sylvester Hadamard can be built by 

H2m = H2 @ H2m-I. (8.9) 

This gives the following factorization. 

Theorem 8.10 The matrix H2m can be written as 

(1) (2) . . . (m) H2m = M2m M2rn M2m 9 

where 

M.!$ = 12m-i @ H2 @ Z2i-I, 

and where Z p  is a p x p identity matrix. 

(8.10) 

Proof By induction. When m = 1 the result holds, as may be easily verified. Assume, 
then, that (8.10) holds for m. We find that 

M$+l = 12m+1-i @ H2 @ 121-1 

= (Z2 @ 1 2 m - i )  @ H2 @ 12i-I (by the structure of the identity matrix) 

= 12 @ (12m-i @ H2 @ Z 2 i - I )  (associativity) 

= 12 @ M$? (definition). 

Furthermore, by the definition, Mg;:  = H2 @ 1 2 m .  We have 

(1) (2) ( m + l )  H2m+l = M2m+l M2rn+l . . . M2m+I 

= (12 @ Mi:)) (I2 @ Mi?) . . . (12 @ Mi:)) (H2 @ 1 2 m )  

= (1TH2) @ <M2m M2m (2) . . . M g ) )  (Kronecker product theorem 8.2) 

= H2 @ H2m. 

Example 8.10 By the theorem, we have the factorization 

Ha = M i 1 ) M f ) M i 3 )  = (122 €3 H2 63 Z20)(I21 63 H2 €3 I 2 ~ ) C I 2 0  €3 H2 €3 122) .  

[ hadex.m I Straightforward substitution and multiplication shows that this gives the matrix Ha in (8.8). 
Let R = [Ro ,  R1, . . . , R7]. Then the Hadamard transform can be written 

T = RHs = R(Mg (1) Ms (2 )  M8 (3) ) = R(Z22 63 H2 €3 120)(121 €3 H2 €3 121)(120 €3 H2 €3 122). 
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The matrices involved are 

Mi1) = I4 @ H2 = 

- 1  1 
1 -1 

- 

1 1  
1 -1 

1 1  
1 -1 

1 1  
- 1 -1 

1 0  
0 1  

- 1  0 
0 -1 

1 0  
0 1  
1 0  - 
0 1  

- 

1 0  
0 1  

-1 0 
0 -1  - 

(3) - M8 - H2@14= 

- 1  1 
- 

1 1 
1 1 

1 1 
1 -1 

1 -1 
1 -1 

- 1 -1 - 

t es t fh t .cc  
Figure 8.2 shows the flow diagram corresponding to the matrix multiplications, where arrows 

indicate the direction of flow, arrows incident along a line imply addition, and the coefficients -1 U f h t . m  

along the horizontal branches indicate the gain along their respective branch. At each stage, the two- 
point Hadamard transform is apparent. (At the first stage, the operations of H2 are enclosed in the box 
to highlight the operation.) The interleaving of the various stages by virtue of the Kronecker product 

0 

f h t  . cc 

is similar to the “butterfiy” pattern of the fast Fourier transform. 

The conventional computation of the Hadamard transform R H p  produces 2m elements, 
each of which requires 2m additiodsubtraction operations, for a total complexity of (2”)2. 
The fast Hadamard transform has m stages, each of which requires 2m additiodsubtraction 
operations, for a total complexity of m2m. This is still exponential in m (typical for maximum 
likelihood decoding), but much lower than brute force evaluation. Furthermore, as Figure 
8.2 suggests, parallellpipelined hardware architectures are possible. 

The R M (  1, m) decoding algorithm employing the fast Hadamard transform is referred 
to as the “Green machine,” after its developer at the Jet Propulsion Laboratory for the 1969 
Mariner mission [373]. 
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.......... 

Figure 8.2: Signal flow diagram for the fast Hadamard transform. 

8.3.4 The Reed Decoding Algorithm for RM(r, rn) Codes, r 2 1 

Efficient decoding algorithms for general Rh4 codes rely upon the concept of majority logic 
decoding, in which multiple estimates of a bit value are obtained, and the decoded value 
is that value which occurs in the majority of estimates. We demonstrate this first for a 
RM(2,4) code, then develop a notation to extend this to other RM(r, rn) codes. 

Details for an RM(2,4) Code 

Let us write the generator for the RM(2,4) code as 

G =  

- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1  
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1  
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1  
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1  
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1  
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1  
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1  
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1  
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1  
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1  

We partition the 11 input bits to correspond to the rows of this matrix as 

GO 

= [z] 

Thus the bits in mo are associated with the zeroth order term, the ml bits are associated 
with the first order terms, and the second-order terms are associated with m2. The encoding 
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operation is 

c = (CO, c1, c2, . . . , C15) = mG = [mo, ml,  m21 [g] = moGo +mlGl  fm2G2.  

(8.11) 
The general operation of the algorithm is as follows: Given a received vector r, estimates 

are first obtained for the highest-order block of message bits, m2. Then m2G2 is subtracted 
off from r, leaving only lower-order codewords. Then the message bits for ml  are obtained, 
then are subtracted, and so forth. 

The key to finding the message bits comes from writing multiple equations for the same 
quantity and taking a majority vote. Selecting coded bits from (8.11) we have 

co = mo 

c1 = nzo +ml  

c:!=mo+m2 

c3 = m o + m i  +rn2+m12 .  

Adding these code bits together (modulo 2) we obtain an equation for the message bit m 12: 

co + ci + c2 + c3 = m12. 

We can similarly obtain three other equations for the message bit m 12, 

c4 + C5 + C6 f C7 = m12 

CS + C9 + C10 + C11 = m12 

c12 + ci3 + C14 + C15 = m12. 

Given the code bits co, . . . , ~ 1 5 ,  we could compute m12 four independent ways. However, 
the code bits are not available at the receiver, only the received bits r = (ro, rl, . . . , r15). 

We use this in conjunction with the equations above to obtain four estimates of m 12: 

(1) m12 = ro + ri + r2 + r3 

12 - r4 + r5 + r6 + r7 
n (3) m12 = r8 + r9 + rio + rii 

- 

h ( 4 )  - 
12 - r12 + 113 + 114 + 115. 

Expressions such as this, in which the check sums all yield the same message bit, are said 
to be orthogond' on the message bit. From these four orthogonal equations, we determine 
the value of m12 by majority vote. Given A?;, i = 1,2,3,4,  the decoded value 6 1 2  is 

where maj (- . . ) returns the value that occurs most frequently among its arguments. 
If errors occur such that only one of the A:; is incorrect, the majority vote gives the 

correct answer. If two of them are incorrect, then it is still possible to detect the occurrence 
of errors. 

'This is a different usage from orthogonality in the vector-space sense. 
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(8.12) 

m34 = c3 + c7 + c11 + C15 

Based upon these equations, majority logic decisions are computed for each element of the 
second-order block. These decisions are then stacked up to give the block 

m 2  = (A349 A243 k147 k23,  fit133 fi12). 

We then “peel off’ these decoded values to get 

rf = r - m2G2. 

Now we repeat for the first-order bits. We have eight orthogonal check sums on each of the 
first-order message bits. For example, 

ml = c o + c 1  m i  =C2+C3 m i  = c 4 + c 5  m i  = C6 +c7 

m i  = C 8 + C 9  m l  = c10 + c11 m l  = C12 + C13 m l  = C14 f C15 

We use the bits of r’ to obtain eight estimates, 

= rh + r; 

m(5)  = r8 f + rb 

m y )  = r; + ri mi3) = ri + ri my’ = ri + r; 

mi6’ = ri0 + ril my’ = ri2 + ri3 mr8) = Ti4  + ri5 

then make a decision using majority logic, 
k 1  = maj(mi’), m y ’ ,  . . . , m l  (8) 1. 

Similarly, eight orthogonal equations can be written on the bits m2, m3, and m4, resulting 
in the estimate m l  = ( k 1 ,  k 2 ,  k 3 ,  k 4 ) .  

Having estimated m l ,  we strip it off from the received signal, 
f f  f r = r  - m 1 G 1  

r” = mol + e. 

and look for mo. But if the previous decodings are correct, 

Then mo is obtained simply by majority vote: 

k o  = maj(rff 0,  r f f  1 , .  . . ,&. 
If at any stage there is no clear majority, then a decoding failure is declared. 
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Example 8.11 The computations described here are detailed in the indicated file. Suppose m = 
(00001001000), SO the codeword is c = mG = (010101 1001010110). Suppose the received vector 
is r = (0101011011010110). The bit message estimates are 

12 - ro + ri + r2 + r3 = 0 

12 - r8 + rg + rio + r l i  = 1 

&(I)  - h(2)  - 

&(3) - ,. (4) 

12 - r4 + r5 + rg + r7 = 0 

m12 = r12 + r13 + r14 + ‘15 = 0 

We obtain h i 2  = maj(0, 0, 1,O) = 0. We similarly find 

h i 3  = maj(O,O, 1,O) = O 2 1 4  = maj(1, 0,  0, 0)  = O 

2 2 4  = maj(1, O , O ,  0)  = O 

h23 = maj(1, I, 0.1) = 1 

h34  = maj(l,O, 0,O) = 0, 

so that m2 = (001000). Removing this decoded value from the received vector we obtain 

v3 v4 

r = r - m2G2 = r’ - m 2  v2v3 
‘ I -  b;] = (0101010111010101). 

VlV2 

At the next block we have 

$1 =maj(l, 1, 1, 1,O, I ,  1 , I )  = 1 

h3 = maj(O,O, O,O,  1,0,0,0) = 0 

h 2  =maj(O,O,O,O, l,O,O,O) = O  

h 4  = maj(l,O, O,O,  O,O,  0,O) = 0 

so that m2 = (0001). We now remove this decoded block 

v4 

r” = r’ - m2G1 = r’ - m2 [ = (0000000010000000). 

The majority decision is 40 = 0. The overall decoded message is 

m = (ho, m1, m2) = (00001001000). 

This matches the message sent. 0 

A Geometric Viewpoint 

Clearly the key to employing majority logic decoding on an R M ( r ,  m) code is to find a 
description of the equations which are orthogonal on each bit. Consider, for example, the 
orthogonal equations for m34, as seen in (8.12). Writing down the indices of the checking 
bits, we create the check set 

S34 = { {O ,  4,8,  121,11,5,9, 131, {2,6,10,14), {3,7,11, 1511. 

Now represent the indices in 4-bit binary, 

s34 = {{(0000), (OlOO), (lOOO), ( l lOO)} ,  {(OOOl), (OlOl), ( l O O l ) ,  (1101)}, 

{(OOlO), (O l lO) ,  (lolo), (1110)), {(OOll), (Olll), ( loll) ,  (llll)}}. 

Within each subset there are pairs of binary numbers which are adjacent, differing by a 
single bit. We can represent this adjacency with a graph that has a vertex for each of the 
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(a) Three dimensions. (b) Four dimensions. 

Figure 8.3: Binary adjacency relationships in three and four dimensions. 

numbers from 0000 to 11 1 1, with edges between those vertices that are logically adjacent. 
The graph for a code with n = 3 is shown in Figure 8.3(a). It forms a conventional 3- 
dimensional cube. The graph for a code with n = 4 is shown in Figure 8.3(b); it forms a 
4-dimensional hypercube. The check set S34 can be represented as subsets of the nodes in 
the graph. Figure 8.4 shows these sets by shading the ‘‘plane” defined by each of the fours 
check subsets. Similarly, the check sets for each the bits m 12, m13, etc., form a set of planes. 

Figure 8.4: Planes shaded to represent the equations orthogonal on bit m34. 

With these observations, let us now develop the notation to describe the general situation. 
For a codeword c = (co, c1, . . . , cn-l) ,  let the coordmate ci be associated with the binary m- 
tuple Pi obtained by complementing the binary representation of the index i. For example, co 
is associated with Po = (1 11 1) (since 0 = (0000)2) and C6 is associated with P6 = (1001) 
(since 6 = (01 10)~). We think of the Pi as points on the adjacency graph such as those 
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shown in Figure 8.3. 
Each codeword c in R M ( r ,  m )  forms an incidence vector for a subset of the graph, 

selecting points in the graph corresponding to 1 bits in the codeword. For example, the 
codeword c = (0101011001010110) is an incidence vector for the subset containing the 

Let I = { 1,2, . . . , m } .  We represent the basis vectors for the RM(r ,  m )  code as subsets 
of I .  For example, the basis vector v1 is represented by the set { 1). The basis vector ~ 2 ~ 3  is 
represented by the set {2,3}. The basis vector v2v3v4 is represented by [2,3,4}. With this 
notation, we now define the procedure for finding the orthogonal check sums for the vector 

points {p l ,  p3, p5, p69 p99 9 1 7  p13, p141- 

~ i ,  vi2 * . . vi, [373, p. 1601. 

1. Let S = {Sl,  S2, . . . , S ~ W , }  be the subset of points associated with the incidence 
vector vi, Vjz . . . vi,. 

2. Let { j i ,  j 2 ,  . . . , j m - p }  be the set difference I - {il ,  i2, . . . , ip}. Let T be the subset 
of points associated with the incidence vector vj, vjz . . . vjm-,. The set T is called the 
complementary subspace to S .  

3. The first check sum consists of the sum of the coordinates specified by the points in 
T .  

4. The other check sums are obtained by “translating” the set T by the points in S. That 
is, for each Si E S ,  we form the set T + Si . The corresponding check sum consists 
of the sum of the coordinates specified by this set. 

Example 8.12 Checksums for R M ( 2 , 4 ) .  Let us find checksums for v3v4 = (0000000000001 11 1). 

1. The subset for which v3v4 is an incidence vector contains the points 

S = (p122 p13, p14, pis} = { ( ~ ~ ~ ~ ) ( ~ ~ ~ ~ ) ( ~ ~ ~ ~ ) ( ~ ~ ~ ~ ) } .  

In Figure 8.4, the set S is indicated by the dashed lines. 
2. The difference set is 

{ j l ,  j21 = {1,2,3,41- {3,4) = {1>21, 

which has the associated vector vlv2 = (0001000100010001). This is the incidence vector 
for the set 

T = { p 3 ,  h, p11, = ~ ( ~ ~ ~ ~ ) ( ~ ~ ) ( ~ ~ ~ ~ ) ( ~ ~ ) ~ ~  

In Figure 8.4, the set T is the darkest of the shaded regions. 
3. T represents the checksum m34 = c12 + cg + c4 + co. 

4. The translations of T by the nonzero elements of S are: 

by Pi2 = (0011) + {(llll)(lOll)(Olll)(OOll)} = {PO, p4, pg, p121 

by Pi3 = (0010) -+ {(lllO>(lOlO)(OllO)(OOlO)} = {PI, p5, p9, 

by Pi4 = (0001) + { ( ~ ~ ~ ~ ) ( ~ ~ ~ ~ ) ( ~ ~ ~ ~ ) ( ~ ~ ~ ~ ) }  = {p2, p6, pl0,  p141. 

These correspond to the checksums 

m34 = c15 + cll + c7 + c3 

m34 = c13 +c9 +c5 + c i ,  

m34 = C 1 4  + C 1 0  + C 6  + C 2  

which are shown in the figure as shaded planes. 
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Figure 8.5: Geometric descriptions of parity check equations for second-order vectors of 
the R M ( 2 , 4 )  code. 

Figure 8.5 indicates the check equations for all of the second-order vectors for the R M ( 2 , 4 )  code. 
Now let us examine check sums for the first-order vectors. 

1. For the vector v4 = (OOOOoooOl 1 11 11 11) the set S is 

S = {PS, p9, p10, p11, p12, p132 p14, Pl.51 

= ( ( O l l l ) ,  ( O l l O ) ,  ( O l O l ) ,  ( O l o o ) ,  ( O O l l ) ,  (OOlO), (OOOl), (OOOO)}. 

These eight points are connected by the dashed lines in Figure 8.6(a). 

2. The difference set is 

[1,2, 3,4}- [41 = 11,Z 31, 

which has the associated vector ~ 1 ~ 2 ~ 3  = (OOoooOOlOOOOOOOl), which is the incidence vector 
for the set 

T = [4, P15} = ((lOOO), (OOOO)}. 

The corresponding equation is m4 = Cg + co, The subset is indicated by the widest line in 
Figure 8.6(a). 

3. There are eight translations of T by the points in S. These are shown by the other wide lines 
in the figure. 

0 
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OOOI 1001 OOOI IWI  

Figure 8.6: Geometric descriptions of parity check equations for first-order vectors of the 
R M ( 2 , 4 )  code. 

8.3.5 Other Constructions of Reed-Muller Codes 

The lulu + vI Construction The lulu + vI introduced in Exercise 3.29 may be used to 
construct Reed-Muller codes. In fact, 

R M ( r ,  m )  = {[ulu + v] : u E RM(r ,  m - 1), v E R M ( r  - 1, m - 1)} 

having generator matrix 

A Kronecker Construction Let G(2,2) = [ 11 . Define the rn-fold Kronecker product 

of G(2,2) as 
G ( 2 m , 2 m )  = G(2,2) 8 G(2,2) 8 * * * 8 G(2,2), 

m operands 
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which is a 2m x 2m matrix. Then the generator for the R M ( r ,  m )  code is obtained by 
selecting from G(2m,2m) those rows with weight greater than or equal to 2m-r.  

8.4 Building Long Codes from Short Codes: 
The Squaring Construction 

There are several ways of combining short codes together to obtain codes with different 
properties. Among these are the [ulu + v] construction (outlined in Exercise 3.29) and 
concatenation (described in Section 10.6). In this section we present another one, called the 
squaring construction [220,204]. 

We begin by examining partitions of codes into cosets by subcodes. Let Co = C be a 
binary linear (n ,  ko) block code with generator G and let C1 c Co be a (n, kl) subcode of 
Co. That is, C1 is a subgroup of Co. Recall that a coset of C1 is a set of the form 

CI + c1 = {CI + c : c E el}, 

where c1 E Co is a coset leader. We will take the nonzero coset leaders in C \ C1. From 
Section 2.2.5, recall that Co/CI forms a factor group, partitioning Co into 2ko-kl disjoint 
subsets each containing 2kl codewords. Each of these subsets can be represented by a 
coset leader. The set of coset leaders is called the coset representative space. The coset 
representative for the coset C1 is always chosen to be 0. Denote this coset representative 
space by [Co/C1]. The code C1 and the set [C/Cl] share only the zero vector in common, 

Without loss of generality, let Go = G be expressed in a form that k l  rows of Go can 
be selected as a generator GI for C1. The 2ko-kl codewords generated by the remaining 
ko - k l  rows of Go \ GI can be used as to generate representatives for the cosets in C/CI. 
Let Go\l = Go \ GI (that is, the set difference, thinking of the rows as individual elements 
of the set). The 2ko-kl codewords generated by Go\l form a (n ,  k - kl )  subcode of Co. 

Every codeword in C can be expressed as the sum of a codeword in C1 and a vector in 
[Co/Cl]. We denote this as 

c1 n [c/cli = 0. 

co = c1 63 [CO/Cll = {u + v : u E Cl, v E [CO/C11). 

The set-operand sum cB is called the direct sum. 

Example 8.13 While the squaring construction can be applied to any linear block code, we demon- 
strate it here for a Reed-Muller code. Consider the RM( 1, 3) code with 

1 [ 0 1 0 1 0 1 0 1  

1 1 1 1 1 1 1 1  
0 0 1 1 0 0 1 1  
0 0 0 0 1 1 1 1  

G = G o =  

Let C1 be the (8 ,3 )  code generated by the first k l  = 3 rows of the generator Go, 

1 [ 0 0 0 0 1  1 1 1  

1 1 1 1 1 1 1 1  
G I =  0 0 1 1 0 0 1 1 . 

The cosets in C/C1 are 

LO, 0, 0 ,  0, 0 ,  0, 0,Ol + c1, LO, 1,0, 1,0,  1,0, 11 + c1 
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The coset representatives are 

[COIC11 = “O,O, o,o, o,o, O,OI , [O ,  1,0, 1,0, 1,0, 131 

generated by the rows of the matrix 

Go\i = Go \ G I  = LO, 1,0, 1,0, 1,0, 11. 

0 

One-level squaring is based on C1 and the partition Co/C1. Let (Co/C1 l 2  denote the code 
&/i of length 2n obtained by the squaring construction, defined as 

Cop = ICo/C1 l 2  = {(a + x, b + x) : a, b E C1 and x E [Co/C1]}. (8.13) 

Since there are 2ko-k1 vectors in [Co/Cl] and 2k1 choices each for a and b, there are 
2ko-k12kl 2kl = 2ko+kl codewords in Co/1. The code Q/1 is thus a (n, ko + kl) code. 
Let 

m = [mi ,o ,mi , i ,  ..., mi,kl-i,m2,o,m2,1, ..., m2,kl-i,m3,0,ms,i, ..., m3,k,,-kl-il 

be a message vector. A coded message of the form c = (a + x, b + x) from (8.13) can be 
obtained by 

c = m  [ :I] Lm@o/l 

so the matrix 6 0 / 1  is the generator for the code. The minimum weight for the code is 
doll = min(2d0, d l ) .  

We can express the generator matrix 6 0 / 1  in the following way. For two matrices M1 
and M2 having the same number of columns, let M1 @ M2 denote the stacking operation 

GO\l GO\l 

This is called the matrix direct sum. Let 12 be the 2 x 2 identity. Then 

12 €3 G1 = [Ggi 4 f 
where €3 is the Kronecker product. We also have 

Then we can write 
@o/i = 12 8 GI @ [I 11 €3 Go\i. 

Example 8.14 Continuing the previous example, the generator for the code ICo/C1 l 2  is 

QSO/l = 

- 1 1 1 1 1 1 1 1  0 0 0 0 0 0 0 0  
0 0 1 1 0 0 1 1  0 0 0 0 0 0 0 0  
0 0 0 0 1 1 1 1  0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0  1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  0 0 1 1 0 0 1 1  
0 0 0 0 0 0 0 0  0 0 0 0 1 1 1 1  

0 1 0 1 0 1 0 1  0 1 0 1 0 1 0 1  
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We can further partition the cosets as follows. Let C2 be a (n, k2) subcode of C1 with 
generator G2, with 0 5 k2 5 k l .  Then each of the 2ko-kl cosets cl + C1 in the partition 
CO/CI can be partitioned into 2k1-k2 cosets consisting of the following codewords 

cl + d p  + C2 = {cl + d p  + c : c E C2} 

for each 1 in 0 ,1 ,2 ,  . . . , 2k-kl and each p in 1,2, . . . , 2k1-k2, where d, is a codeword in 
C1 but not in C2. This partition is denoted as C/Ci/C2. We can express the entire code as 
the direct sum 

co = [C/ClI @ [Cl/C21 a3 cz. 
Let G1\2 denote the generator matrix for the coset representative space [CI/C~].  Then 
G1\2 = G I  \ G2. 

Example 8.15 Let C2 be generated by the first two rows of GI ,  so 

1 G 2 = [  0 0 1 1 0 0 1 1  
1 1 1 1 1 1 1 1  

There are two cosets in C1/C2, 

[O, o,o,o,  0, 0 ,  0,01+ c2, [O, 0, 0, 0, 1, 1, 1, 11 + c2. 

The set of coset representatives [Cl /C2] is generated by 

Two-level squaring begins by forming the two one-level squaring construction codes C.011 = 
ICo/CI l 2  and C1p = lC1/C2l2, with generators 80 /1  and 81/2, respectively, given by 

@0/1 = [: 11] 
GO\l GO\l 

(8.14) 

Note that C1p is a subcode (subgroup) of Co/1. The coset representatives for Co/1/C1/2, 

which are denoted by [Co/l/C1/2], form a linear code. Let 8 ~ , ,  \cl,2 denote the generator 
matrix for the coset representatives [Co/l/Cl/2]. Then form the code C0/1/2 = ICo/C1/C2I4 

by 
C0/1/2 = ICo/C1/C214 = {(a + x, b + x) : a, b E C112 and x E [C0/1/C1~211. 

That is, it is obtained by the squaring construction of Co/1 and C0/1/C1/2. The generator 
matrix for C0/1/2 is 

@0/1/2 = p .P,2] . 
@1\2 81\2 

This gives a (4n, ko + 2k1 + k2) linear block code with minimum distance 

d0/1/2 = min(4do92di, d2). 
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Writing 6 0 / 1  and 6 1 / 2  as in (8.14), rearranging rows and columns and performing some 
simple row operations, we can write 60/1/2 as 

@0/1/2 = 

which can be expressed as 

G2 
0 
0 
0 

GO\l 

G1\2 
0 
0 

Note that 

are the generator matrices for the zeroth and first order Reed-Muller codes of length 4. 

generators Gj, minimum distance dj, and dimensions k l ,  k2, . . . , km satisfying 
More generally, let CI, C2, . . . , Cm be a sequence of linear subcodes of C = Co with 

co 2 c 1  2 . . .  1 c, 
k 3 kl 2 - * .  2 km 2 0. 

Then form the chain of partitions 

c o / c l , c o / c l / c 2 ,  ..., c o /Cl / -** /cn l ,  

co = [C/Cll @ [Cl/C21 @ . * * @ [C*-l/Cml. 

such that the code can be expressed as the direct sum 

Assume that the generator matrix is represented in a way that Go 2 G 1  . - 2 Gm. Let 
Gj\i+l denote the generator matrix for the coset representative space [Ci/Cj+l], with 

rank(Gj/j+l) = rank(Gi) - rank(Gj+l) 

and Gi\ j+l  = Gi \ Gi+l .  Then higher-level squaring is performed recursively. From the 
codes 

A 2m-I 
@o/I / . . . /~-I  = Ico/C1/. . * /cm-l I 

and the code 
A 

61/2/ ...I m = I C ~ / C ~ / .  . . / e m  12"-' 9 

form the code 
A 

@O/l/.../m = [Co/Cl/ . . * 
= {(a + X, b + X) : a, b E 81/2/  - . / m  , x E [@0/1/. . . /m-l/61/2/. . . /mI).  
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The generator matrix can be written (after appropriate rearrangement of the rows) as 

m 

@ o / I /  .../ rn = Z2m @ Gm @ ~ G R M ( ~ .  m )  @ Gr\r+1, 
r=O 

where G R M ( ~ ,  m )  is the generator of the RM(r ,  m )  code of length 2m. 

8.5 Quadratic Residue Codes 

Quadratic residue codes are codes of length p ,  where p is a prime with coefficients in 
G F ( s ) ,  where s is a quadratic residue of p .  They have rather good distance properties, 
being among the best codes known of their size and dimension. 

We begin the construction with the following notation. Let p be prime. Denote the set 
of quadratic residues of p by Q p  and the set of quadratic nonresidues by N p .  Then the 
elements in G F ( p )  are partitioned into sets as 

G F ( P )  = Q p  U N p  U {Ole 

As we have seen G F ( p )  is cyclic. This gives rise to the following observation: 

Lemma 8.11 A primitive element of G F ( p )  must be a quadratic nonresidue. That is, it is 
in N p .  

Proof Let y be a primitive element of G F ( p ) .  We know yp-' = 1, and p - 1 is the 
smallest such power. Suppose y is a quadratic residue. Then there is a number cr (square 
root) such that cr2 = y . Taking powers of cr, we have c r 2 ( P - l )  = 1. Furthermore, the powers 
cr, c2, c r 3 ,  . . . , c 2 ( P - l )  can be shown to all be distinct. But this contradicts the order p of 
the field. 

So a primitive element y E G F ( p )  satisfies y e  E Q p  if and only if e is even, and y e  E N p  
if and only if e is odd. The elements of Q p  correspond to the first ( p  - 1) /2  consecutive 
powers of y 2 ;  that is, Q p  is a cyclic group under multiplication modulo p ,  generated by y 2 .  

The quadratic residue codes are designed as follows. Choose a field G F ( s )  as the field 
for the coefficients, where s is a quadratic residue modulo p .  We choose an extension 
field G F ( s m )  so that it has a primitive pth root of unity; from Lemma 5.16 we must have 
pi s"' - 1. (It can be shown [220, p. 5191 that if s = 2, then p must be of the form 
p = 8k f 1.) 

Let be a primitive pth root of unity in G F ( s m ) .  Then the conjugates with respect to 
G F ( s )  are 

The cyclotomic coset is { 1, s, s2, s3, . . . , }. Since s E Q p  and Q p  is a group under multi- 
plication modulo p ,  Q p  is closed under multiplication by s. So all of the elements in the 
cyclotomic coset are in Q p .  Thus Q p  is a cyclotomic coset or the union of cyclotomic 
cosets. 

B ' ,  B S ,  BS2 ,  B S 3 , .  * * 

Example 8.16 Let p = 11, which has quadratic residues Q p  = (1 ,3 ,4 ,  5 ,9} .  Let s = 3. A field 
having a primitive 11th root of unity is GF(35). Let E CF(35) be a primitive 11th root of unity. 
The conjugates of j3 are: 

P ,  P 3 ,  B9 ,  P2I  = 5 ,  P81 = P4, 
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so the cyclotomic coset is 

which is identical to Q p .  

Now let B be a primitive pth root of unity in GF(sm) .  Because of the results above, 

11>3,9,5,4),  

0 

q(x )  = n (x - P i )  

n ( x )  = n (x - Pi>  

i C Q p  

is a polynomial with coefficients in G F (s) . Furthermore, 

i c N p  

also has coefficients in GF(s) .  We thus have the factorization 

x p  - 1 = q(x)n(x) (x  - 1) .  

Let R be the ring G F ( s ) [ x ] / ( x P  - 1) .  

(8.15) 

Definition 8.5 [220, p. 4811 For a prime p ,  the quadratic residue codes of length 9, g,  31' 
and are the cyclic codes (or ideals of R )  with generator polynomials 

q ( x ) ,  (x - l ) q ( x ) ,  n(x>,  (x - l>n(x>,  

respectively. The codes 9 and N have dimension i ( p  + 1 ) ;  the codes have 
dimension i ( p  - 1). The codes 9 and N are sometimes called augmented QR codes, while 

and 

- 
9 and are called expurgated QR codes. 0 

Example 8.17 Let p = 17 and s = 2. The field GF(28)  has a primitive 17th root of unity, which is 
@ = a15. The quadratic residues modulo 17 are { 1,2 ,4 ,8 ,9 ,  13, 15, 16). Then 

QR codes tend to have rather good distance properties. Some binary QR codes are the best 
codes known for their particular values of n and k. A bound on the distance is provided by 
the following. 

Theorem 8.12 The minimum distance d of the codes 9 or N satisjies d2  ? p. IJ; addition- 
ally, p = 41 - 1 forsomel, thend2 - d + 1 ? p. 

The proof relies on the following lemma. 

Lemma 8.13 Let $(x) = q ( x n ) ,  where n E N p  (where the operations are in the ring R). 
Then the mots of $(x) are in the set (ai ,  i E N p } .  That is, $(x) is a scalar multiple of n(x) .  
Similarly, n (xn)  is a scalar multiple of q ( x ) .  
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Proof Let p be a generator of the nonzero elements of G F ( p ) .  From the discussion around 
Lemma 8.11, Q is generated by even powers of p and N p  is generated by odd powers of p.  

Write i(x) = (x" - a') .  Let m E N p .  Then for any m E N p ,  

j(a") = n (arn" - a". 
i e N p  

But since m E N p  and n E N p ,  mn E N p  (being both odd powers of p.  So a' = am" for 
0 

The effect of evaluation at q (x") is to permute the coefficients of q (x). 

Proof of Theorem 8.12. [220, p. 4831. Let a(x) be a codeword of minimum nonzero 
weight d in 9. Then by Lemma 8.13, the polynomial Z(x) = a(x") is a codeword in N. 
Since the coefficients of Z ( x )  are simply a permutation (and possible scaling) of those of 
a(x), Z(x) must be a codeword of minimum weight in N. The product a(x)Z(x) must be a 
multiple of the polynomial 

some value of i, so am is a root of 4 (x). 

Thus a(x)Z(x) has weight p .  Since a(x) has weight d ,  the maximum weight of a(x)Z(x) 
is d2. We obtain the bound d 2  2 p .  

If p = 4k - 1 then n = 1 is a quadratic nonresidue. In the product a(x)Z(x) = 
a(x)a(x-') there are d terms equal to 1, so the maximum weight of the product is d 2  - d + 1. 

n 
U 

Table 8.1 summarizes known distance properties for some augmented binary QR codes, 
with indications of best known codes. In some cases, d is expressed in terms of upper and 
lower bounds. 

Table 8.1: Extended Quadratic Residue Codes 9 [220,373] 
n k d  n k  d n k  d 
8 4 4" 74 37 14 138 69 14-22 
18 9 6" 80 40 16" 152 76 20 
24 12 8" 90 45 18" 168 84 16-24 
32 16 8" 98 49 16 192 96 16-28 
42 21 10* 104 52 20* 194 97 16-28 

72 36 12 128 64 20 
48 24 12* 114 57 12-16 200 100 16-32 

* Indicates that the code is as good as the best known for this n and k 

While general decoding techniques have been developed for QR codes, we present only 
a decoding algorithm for a particular QR code, the Golay code presented in the next section. 
Decoding algorithms for other QR codes are discussed in [2201, [287], [283], and [75]. 

8.6 Golay Codes 

Of these codes it was said, "The Golay code is probably the most important of all codes, 
for both practical and theoretical reasons." [220, p. 641. While the Golay codes have not 
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- 1  
1 
1 
1 
1 
1 

1 
1 
1 
1 

- 1  

G =  

supported the burden of applications this alleged importance would suggest, they do lie at 
the confluence of several routes of theoretical development and are worth studying. 

Let us take p = 23 and form the binary QR code. The field GF(211) has a primitive 
23rd root of unity. The quadratic residues are 

and the corresponding generators for L! and N are 

Q p  = {1 ,2 ,3 ,4 ,6 ,8 ,9 ,  12, 13, 16, 18) 

q(x) = n (x - p i )  = 1 + x  + x 5  +x6 +x7 +x9 + x" 
i € Q p  

n(x)= l + x 2 + x 4 + x ~ + x 6 + x 1 0 + x l l .  

This produces a (23,12,7) code, the Golay code 523.  It is straightforward to verify that this 
code is a perfect code: the number of points out to a distance t = 3 is equal to 

1 1 1  1 1 1  1 

1 1 1 1  1 1 1  

- 
1 1 1  1 1 1  1 

1 1 1 1  1 1 1  
1 1 1 1  1 1 1  

1 1 1 1  1 1 1  
1 1 1 1 1  1 1  

1 1 1  1 1 1  1 
1 1 1 1  1 1 1  

1 1 1 1  1 1 1  
1 1 1 1 1  1 1 

1 1  1 1  1 1  1 1  1 1  1 1 -  

(8.16) 

We note the following facts about 524. 

In this representation, the 11 x 11 ATl matrix on the upper right is obtained from the 
transpose of 12 x 12 Hadamard matrix of Paley type (8.5) by removing the first row 
and column of H12, then replacing - 1 by 1 and 1 by 0. Since the rows of H12 differ 
in six places, the rows of ATl differ by six places. Because of the identity block, the 
sum of any two rows of G has weight 8. 

If u and v are rows of G (not necessarily distinct), then wt(u . v) = 0 (mod 2). So 
every row of G is orthogonal to every other row. Therefore, G is also the parity check 
matrix H of 524. Also 9 is dual to itself 524 = 5i4. Such a code is call self-dual. 
Every codeword has even weight: If there were a codeword u of odd weight then 
wt(u . u) = 1. Furthermore, since every row of the generator has weight divisible by 
4, every codeword is even. 

The weight distributions for the (23, 12) and the (24, 12) codes are shown in Table 
8.2. 
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Table 8.2: Weight Distributions for the 923 and 924 Codes [373] 

923: i: 0 7 8 11 12 15 16 23 
Ai: 1 253 506 1288 1288 506 253 1 

Q24: i: 0 8 12 16 24 
Aj: 1 759 2576 759 1 

8.6.1 Decoding the Golay Code 

We present here two decoding algorithms for the Golay code. The first decoder, due to 
[75], is algebraic and is similar in spirit to the decoding algorithms used for BCH and Reed- 
Solomon codes. The second decoder is arithmetic, being similar in spirit to the Hamming 
decoder presented in Section 1.9.1. 

Algebraic Decoding of the 923 Golay Code 

The algebraic decoder works similar to those we have seen for BCH codes. An algebraic 
syndrome is first computed, which is used to construct an error locator polynomial. The 
roots of the error locator polynomial determine the error locations, which for a binary code 
is sufficient for the decoding. Having minimum distance 7, 923 is capable of correcting up 
to three errors. 

Let /3 be a primitive 23rd root of unity in GF(211). Recall that the quadratic residues 
modulo 23 are Q p  = {1,2,3,4,6,8,9, 12, 13, 16, 18) and the generator polynomial is 

g(x )  = fl ( x  - B’ ) .  
i E  Q p  

Thus B,  B3, and B9 are all roots of g(x) ,  and hence of any codeword c ( x )  = m ( x ) g ( x ) .  Let 
c ( x )  be the transmitted codeword, and let r ( x )  = c ( x )  + e ( x )  be the received polynomial. 
We define the syndrome as 

sj = r ( @ )  = e(B’>. 

If there are no errors, then sj = 0 for i E Q p .  Thus, for example, if $1 = $3 = s9 = 0, no 
errors are detected. If there is a single error, e ( x )  = xJI , then 

s1 = B J I ,  s3 = 83’1, s9 = 8 9 ” .  

When this condition is detected, single-error correction can proceed. 
Suppose there are two or three errors, e ( x )  = xJl + xJz + x j 3 ,  Let z1 = B j l ,  z2 = BJz 

and z3 = 8’3 be the error locators, where z3 = 0 in the case of only two errors.) The 
syndromes in this case are 

sj = z’; + z; + z;. 
Define the error locator polynomial as 

3 2 + 01X L ( x )  = (X - z l ) ( X  - ZZ)(X - 23) = x + a 2 X  + 03, 
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where, by polynomial multiplication, 

0 1  = 21 + 22 + 23 

02  = 2122 + 2123 + 2223 

0 3  = 212223. 

The problem now is to compute the coefficients of the error locator polynomial using the 
syndrome values. By substitution of the definitions, it can be shown that 

9 2 2 4 s7 = sIs3 f 0285 + 03sl  S9 + S1 = a2S7 + 03S3 

3 
$1 + $3 = 0 3  + 02Sl.  

5 
S5 = S1 + 0283 + 03s: 

By application of these equivalences (see golay s i m p .  m) it can be shown that 

(8.17) 

The quantity D thus has a cube root in GF(211). From (8.17) we obtain 02  = s: + D'J3; 
similarly for 03.  Combining these results, we obtain the following equations: 

0 1  = s1 

An example of the decoder is shown in t e s t G o l a y  . cc. 

Arithmetic Decoding of the QU Code 

In this section we present an arithmetic coder, which uses the weight structure of the syn- 
drome to determine the error patterns. 

Besides the generator matrix representation of (8.16), it is convenient to employ a sys- 
tematic generator. The generator matrix can be written in the form 

G =  

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

= [I12 B ] .  

1 1 1 1 1 1 1 1 1 1 1  
1 1 1  1 1 1  1 
1 1  1 1 1  1 1 
1 1 1 1  1 1 1  
1 1 1 1  1 1 1  
1 1 1  1 1 1  1 
1 1  1 1 1  1 1  
1 1 1 1  1 1 1  
1 1 1 1  1 1 1  
1 1 1 1  1 1 1  
1 1  1 1  1 1 1  
1 1 1  1 1 1  1 

It may be observed that B is orthogonal, 

B ~ B  =I. 

Let r = c + e and let e = (x, y), where x and y are each vectors of length 12. Since the code 
is capable of correcting up to three errors, there are only a few possible weight distributions 
of x and y to consider: 

wt(x) 5 3 

wt(x) 5 2 

wt(x) 5 1 
wt(x) = 0 

wt(y) = 0 

wt(y) = 1 

wt(y) = 2 
wt(y) = 3. 

go1aysimp.m I 
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Since the code is self-dual, the generator matrix is also the parity check matrix. We can 
compute a syndrome by 

T T s = Gr = G(e ) = G[x, yIT = xT + ByT. 

If y = 0, then s = xT. If s has weight 5 3, we conclude that y = 0. The error pattern is 
e = (x, 0) = (sT, 0). 

Suppose now that wt(y) = 1, where the error is in the ith coordinate of y and that 
wt(x) I 2. The syndrome in this case is 

T S = X  + b z ,  

where bi is the i th column of B. The position i is found by identifying the position such that 
wt(s + bj) = wt(x) L: 2. Having thus identified i, the error pattern is e = ((s + b,)T, yi). 
Here, the notation yz is the vector of length 12 having a 1 in position i and zeros elsewhere. 

Ifwt(x) = Oandwt(y) = 2 o r 3  thens = b, + b j  o r s  = b, + b, + bk. Since B is an 
orthogonal matrix, 

B ~ S  = B ~ ( B Y ~ )  = yT. 

The error pattern is e = (0, (BTs)T). 
Finally, if wt(x) = 1 and wt(y) = 2, let the nonzero coordinate of x be at index i f  Then 

T T  B ~ S  = B (X +  BY^) = B ~ X ~  + B ~ B ~ ~  = r: + yT, 

where r, is the ith row of B. The error pattern is e = (xi, (BTs)T + ri). 
Combining all these cases together, we obtain the following decoding algorithm. 

go1ayarith.m 

Algorithm 8.2 Arithmetic Decoding of the Golay 924 Code 

(This presentation is due to Wicker [373]) 
I Input: r = e + c, the received vector 
z Output: c, the decoded vector 
3 Compute s = Gr (compute the syndrome) 
4 if wt(s) 5 3 
5 e =  (sT,O) 
6 eke if wt(s + bi) 5 2 for some column vector bj 
7 

8 else 
9 Compute B ~ S  

10 ifwt(BTs) 5 3 
e = (0, ( ~ ~ s ) ~ )  

iz  else ifwt(BTs + r:) 5 2 for some row vector ri 
13 e = (xi, + ri) 
14 else 
15 

16 end 
17 end 
18 c = r f e  

e = ((s + bi)T y j )  

Too many errors: declare uncorrectable error pattern and stop. 

A Matlab implementation that may be used to generate examples is in golayar ith . m 
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8.7 Exercises 

8.1 Verify items 1, 9, and 10 of Theorem 8.1. 
8.2 Show that 

are Hadamard matrices. 
8.3 Prove the first two parts of Theorem 8.4. 
8.4 Compute the quadratic residues modulo 19. Compute the values of the Legendre symbol ~ 1 9 ( x )  

8.5 The Legendre symbol has the following properties. Prove them. In all cases, take (a, p )  = 1 and 

(a) x p ( a )  = a(P-')12 (mod p ) .  Hint: if Xp(a)  = 1 then x 2  = a (mod p )  has a solution, 

forx = 1,2, . . . ,  18. 

(b, p )  = 1. 

say xo.  Then a(P-')l2 = xl-'. Then use Fermat's theorem. 

(b) X p W X p ( b )  = Xp (a@. 
(c) a = b (mod p )  implies that x p ( a )  = xp(b). 

(d) xp(a2) = 1. xp(a2b) = ~ p ( b ) .  xp(l) = 1. xp(-l) = (-1)(p-')l2. 

8.6 Construct a Hadamard matrix of order 20. 
8.7 Construct the Hadamard codes A20,2320 and '220. Which of these are linear codes? Which are 

cyclic? 
8.8 Construct a generator and parity check matrix for RM(2,4). 
8.9 Show that RM(r ,  rn) is a subcode of R M ( r  + 1, m).  

8.10 Show that RM(0,  rn) is a repetition code. 

8.11 Show that R M ( m  - 1, rn) is a simple parity check code. 
8.12 Show that if c E R M ( r ,  m ) ,  then (c, c) E RM(r ,  m + 1). 

8.13 For each of the following received sequences received from RM(1,3) codes, determine the 
transmitted codeword c. 

(a) r= [1 ,0 ,1 ,0 ,1 ,1 ,0 ,1 ] .  
(b) r=[O,1 ,0 ,0 ,1 ,1 ,1 ,1] .  

8.14 Prove that all codewords in RM(1, m) have weight 0, 2m-1 or 2m. Hint: By induction. 
8.15 Show that the RM(1,3) and RM(2,5) codes are self-dual. Are there other self-dual Rh4 codes? 

8.16 Forthe RM(1,4) code: 

(a) Write the generator G. 

(b) Determine the minimum distance. 
(c) Write down the parity checks for $4, $3, $2, $1 and $0. 

(d) Decode the received vector r = [0, 1, 1, 1,0,  1, 1, 0, 1,0,0, 1, 1,0,0,  11, if possible. 
(e) Decode the received vector r = [I, 1, 1, 1,0,  1, 1,0, 1, 1, 1, 1, 0, 0, 0, 01, if possible. 
(f) Decode the received vector r = [ l ,  1, 1, 1,0,0,  1, 1,0, 1,0,  1, 1, 0, 1, 01, if possible. 

8.17 Verify the parity check equations for Figure 8.6(a) and (b). 
8.18 For the inverse Hadamard transform: 

(a) Provide a matrix decomposition analogous to (8.10). 
(b) Draw the signal flow diagram for the fast inverse Hadamard computation. 
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8.19 

8.20 

8.21 

8.22 

8.23 

8.24 
8.25 

8.26 
8.27 
8.28 

8.29 

(c) Implement your algorithm in Matlab. 

Construct the generator for a RM(2,4) code using the [ulu + v] construction. 
Using the [ulu + v] construction show that the generator for a RM(r ,  m) code can be constructed 
as 

1. GRM(r, m - 2) GRM(r, m - 2) G R M ( ~ ,  m - 2) GRM(r, m - 2) 
0 GRM(Y - 1, m - 2) 0 GRM(I - 1, m - 2)  

0 GRM(r - 1, m - 2)  
0 0 GRM(r - 2, m - 2) 

GRM(r - 1, m - 2) G = [  0 0 

Construct the generator for a RM(2,4) code using the Kronecker construction. 

Let G = [: : y : y :] be the generator for a (7,4) Hamming code Co. Let G1 

be formed from the first two rows of G .  Let G2 be formed from the first row of G. 

1 1 0 1 0 0 0  

0 0 0 1 1 0 1  

(a) Identify Go\l and the elements of [Co/C1]. 
(b) Write down the generator 60/1 for the code Coil. 
(c) Write down the generator 6 1/2 for the code C112. 
(d) Write down the generator 60/1/2 for the code Co/1/2. 

Quadratic residue code designs. 

(a) Find the generator polynomials for binary quadratic residue codes of length 7 and dimen- 
sions 4 and 3. Also, list the quadratic residues modulo 7 and compare with the cyclotomic 
coset for B .  

(b) Are there binary quadratic residue codes of length 1 l ?  Why or why not? 

(c) Find the generator polynomials for binary quadratic residue codes of length 23 and di- 
mensions 12 and l l .  Also, list the quadratic residues modulo 23 and compare with the 
cyclotomic coset for j3. 

Find quadratic residue codes with s = 3 of length 11 having dimensions 5 and 6. 
Show that n(x) defined in (8.15) has coefficients in GF(s) .  

In decoding the Golay code, show that the cube root of D may be computed by finding x = D 1365. 

Show that the Golay (24,12) code is self-dual. 
Let r = [ l ,  1, 1, 1,0,  1, 1, 1, 1, 1, 1, O,O,  0, 1, 1, l,O, l , O ,  0, 1, 1, 11 be areceived vector from 
a Golay (24, 12) code. Determine the transmitted codeword using the arithmetic decoder. 
Let r = [ l ,  1, 1,0, 1, 1, 1, 1, 1, 1,0,0,0,  1, 1, 1,0, 1,0,0,  1, 1, 11 be the received vector from a 
Golay (23, 12) code. Determine the transmitted codeword using the algebraic decoder. 

8.8 References 

This chapter was developed largely out of course notes based on [373] and closely follows 
it. The discussion of Hadamard matrices and codes is drawn from [220] and [373]. A 
more complete discussion on quadratic residues may be found in [250]. Considerably more 
detail about Reed-Muller codes is available in [220]. The Reed-Muller codes were first 
described in [248], with work by Reed immediately following [284] which reinforced the 
Boolean function idea and provided an efficient decoding algorithm. The graph employed 
in developing the Reed-Muller decoding orthogonal equations is an example of a Euclidean 
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geometry E G ( m ,  r ) ,  a finite geometry. This area is developed and explored, giving rise 
to generalizations of the majority logic decoding, in [203, Chapter 81. Chapter 7 of [203] 
also develops majority logic decoding for cyclic codes. Majority logic decoding can also be 
employed on convolutional codes [203, Chapter 131, but increasing hardware capabilities 
has made this less-complex alternative to the Viterbi algorithm less attractive. 

The Golay codes are covered in lavish and fascinating detail in Chapters 2, 16 and 20 
of [220]. Interesting connections between 924 and the 24-dimensional Leech lattice are 
presented in [56]. 

Another type of decoder which has worked well for the Golay code is an error trapping 
decoder. Such decoders employ the cycle structure of the codes, just as the Meggitt decoders 
do, but they simplify the number of syndromes the decoder must recognize. A thorough 
discussion of error trapping decoders is in [203] and [185]. Other Golay code decoders 
include conventional coset decoding; a method due to Berlekamp [350, p. 351; and majority 
logic decoding [220]. 



Chapter 9 

Bounds on Codes 
Let C be an (n,  k )  block code with minimum distance d over a field with q elements with 
redundancy r = n - k .  There are relationships that must be satisfied among the code length 
n ,  the dimension k ,  the minimum distance d ~ i n ,  and the field size q .  We have already met 
two of these: the Singleton bound of theorem 3.4, 

d 5 n - k  + 1 = r + 1, 

and the Hamming bound of Theorem 3.5, 

r I log, vq (n  7 t )  9 

where V,(n, t )  is the number of points in a Hamming sphere of radius t = [(d - 1)/2J, 

(see (3.9)). In this chapter we present other bounds which govern the relationships among 
the parameters defining a code. In this, we are seeking theoretical limits without regard 
to the feasibility of a code for any particular use, such as having efficient encoding or 
decoding algorithms. This chapter is perhaps the most mathematical of the book. It does 
not introduce any good codes or decoding algorithms, but the bounds introduced here have 
been of both historical and practical importance, as they have played a part in motivating 
the search for good codes and helped direct where the search should take place. 

Definition 9.1 Let A, (n, d )  be the maximum number of codewords in any code over G F ( q )  
0 

For a linear code the dimension of the code is k = log, A,(n, d ) .  
Consider what happens as n gets long in a channel with probability of symbol error 

equal to p,.  The average number of errors in a received vector is np,. Thus, in order 
for a sequence of codes to be asymptotically effective, providing capability to correct the 
increasing number of errors in longer codewords, the minimum distance must grow at least 
as fast as 2np,. We will frequently be interested in the relative distance and the rate k / n  as 
n -+ 00. 

Definition 9.2 For a code with length n and minimum distance d ,  let 6 = d / n  be the 
relative distance of the code. 0 

Definition 9.3 Let’ 

of length n with minimum distance d. 

For a code with relative distance 6, the distance is d 6n = 6n + O(1).  

1 

‘The lim sup is the least upper bound of the values that its argument function returns to infinitely often. Initially 
it may be helpful think of lim sup as “sup” or “max.” 



407 

For a linear code, log, A, (n ,  d )  is the dimension of the code and A log, A, (n ,  d )  is the 
code rate, so a, (6) is the maximum possible code rate that an arbitrarily long code can have 

0 
The functions A, (n ,  d )  and aq (6) are not known in general, but upper and lower bounds 

on these functions can be established. For example, the Singleton bound can be expressed 
in terms of these functions as 

and, asymptotically, 

while maintaining a relative distance 6. We call this the asymptotic rate. 

n-d+l A,(n ,  & 5 4 

a,(S) 5 1 - 6. 

Many of the bounds presented here are expressed in terms of a, ( 8 ) .  A lower bound is 
the Gilbert-Varshamov bound (sometimes called the Varshamov-Gilbert bound). As upper 
bounds on aq (a), we also have the Hamming and Singleton bounds, the Plotkin bound, the 
Elias bound, and the McEliece-Rodemich-Rumsey-Welch bound (in two forms). Figure 
9.1 shows a comparison of the lower bound and these upper bounds. Codes exist which fall 
between the lower bound and the smallest of the upper bounds, that is, in the shaded region. 

0.8 McEliece-Rodemich- 
Rumsey-Welch 

0.6 - 

0.4 - 

0.2 - 

n -  

' A / Hammincr 

"0 0.2 0.4 0.6 0.8 1 
6 

Figure 9.1 : Comparison of lower bound (Gilbert-Varshamov) and various upper bounds. 

A function which figures into some of the bounds is the entropy function. The binary 
entropy function H2 was introduced in Section 1.3. Here we generalize that definition. 

Definition 9.4 Let p = (q - l) /q.  Define the entropy function H, on [O, p ]  by 

Hq(X) = x lOg,(q - 1) - x log, x - (1 - X) lOg,(l - x), x E (0, p]  

and H,(O) = 0. 0 
The entropy and the number of points in the Hamming sphere are asymptotically related. 

Lemma 9.1 Let0 5 x 5 p = (q  - l) /q.  Then 
1 

lim -log, V,(n, Lxnl) = H,(x). 
n+cc n (9.3) 
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Box 9.1: 0 and o Notation 

The 0 and o notation are used to represent "orders" of functions. Roughly, 
these may be interpreted as follows [152]: 

f = O ( l ) a s x + x o e ~  f isboundedasx-+xo. 

f = o(1) asx  -+ XO + f + 0 as x + no. 

f = O(g) as x + xo + f / g  is bounded as x + xo. 
f = o(g) asx -+ xo + f / g  -+ Oasx + xg. 

It follows from the definitions that o(1) + o(1) = o(1) and O(x") + O ( x m )  = 
0 (Xmax(n I m) 1. 

Proof First we need a way to approximate the binomial. Stirling's formula (see Exercise 
9.10) says that 

n! = &nne-n + o(1). 

Thus 

1 
2 

logn! =log&+ (n + -)logn - n  +o( l )  =nlogn - n  + O(1ogn). (9.4) 

Now let m = Lxn]. Then by (9.1), 

The last term of the summation is the largest over this index range. Also, it is clear that 

m-1 

m i=O 

We thus obtain 

(n)(q m 
- 1)" i v,(n,m) 5 (1 + m ~ ( ~ ) ( q  m - 1)". 

Take log, throughout and divide through by n to obtain 

1 1 n log, (:> + log,(q - 1) 5 -log, n Vq(n, m> 

1 
n n 

As n -+ 00, $log,(l + m) -+ 0. Using the fact that 

i - log,(l + m )  + log,(q - 1). (9.5) 

= 6 + o(l) ,  we obtain 

+ log,(q - 1) n+oo n (:> 1 
lim - log, V,(n, m)  = lim - log, 

n + w  n 

1 
= lim - log, (i) + s log,(q - 1) + o(1). 

n+oo n 
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Using (9.4) we have 

1 
lim -log, V,(n, m )  

n+oo n 
= log, n - S log, m - (1 - 8) log,@ - m )  + 6 log,(q - 1) + o(1) 

=logqn-610gqS-610gqn-(1 -S)logp(l-6)-(1-6)log,n 

+ 6log,(q - 1) + o(l)  

= -Slog,S-(1-S)log,(1-6)+6log,(q- 1 )+o( l )=Hp(8)+o( l ) .  

0 

9.1 The Gilbert-Varshamov Bound 

The Gilbert-Varshamov bound is a lower bound on A ,  (n,  d ) .  

Theorem 9.2 For natural numbers n and d ,  with d 5 n, 

Proof [350] Let C be a code of length n and distance d with the maximum number of 
codewords . Then of all the qn possible n-tuples, there is none with distance d or more 
to some codeword in C. (Otherwise, that n-tuple could be added to the code and C would 
not have had the maximum number of codewords.) Thus, the Hamming spheres of radius 
d - 1 around the codewords cover all the n-tuples, so that the sum of their volumes is 2 the 
number of points. That is, 

ICIV,(n, d - 1) 2 qn.  

This is equivalent to (9.6). 0 
For a linear code, the Gilbert-Varshamov bound can be manipulated as follows: 

log, A,(n, d )  2 n -log, Vq(n, d - 1) 

or 
IZ - log, Aq(n, d )  5 log, Vq(n, d - 1). 

The correction capability satisfies d = 2t + 1. The redundancy can be written as r = 
n - k = n - log, Aq(n, d ) .  We obtain 

(9.7) 

The Gilbert-Varshamov bound can thus be viewed as an upper bound on the necessary 
redundancy for a code: there exists a t-error correcting q-ary code with redundancy r 
bounded as in (9.7). 

r 5 log, V,(n, 2 t ) .  

The Gilbert-Varshamov bound also has an asymptotic form. 
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Proof [350] Using (9.2), (9.6) and Lemma 9.1 we have 

1 1 
aq(6 )  = limsup -log, A,(n, L6nl) 2 lim (1 - -log, Vq(n, an)) = 1 - Hq(6). 

n + w  n n + w  n 

0 
The Gilbert-Varshamov bound is a lower bound: it should be possible to do at least 

as well as this bound predicts for long codes. However, for many years it was assumed 
that a, (6) would, in fact, be equal to the lower bound for long codes, since no families of 
codes were known that were capable of exceeding the Gilbert-Varshamov bound as the code 
length increased. In 1982, a family of codes based on algebraic geometry was reported, 
however, which exceeded the lower bound [342]. Unfortunately, algebraic geometry codes 
fall beyond the scope of this book. (See [341] for a comprehensive introduction to algebraic 
geometry codes, or [349] or [274]. For mathematical background of these codes, see [321].) 

9.2 The Plotkin Bound 

Theorem 9.4 Let C be a q-ary code of length n and minimum distance d .  Then ifd > pn, 

where p = (q  - l) /q.  

Proof [350] Consider a code C with M codewords in it. Form a list with the M codewords 
as the rows, and consider a column in this list. Let qj denote the number of times that the j th  

symbol in the code alphabet, 0 5 j < q,  appears in this column. Clearly, 
Let the rows of the table be arranged so that the qo codewords with the 0th symbol 

are listed first and call that set of codewords Ro, the q1 codewords with the 1st symbol 
are listed second and call that set of codewords R1, and so forth. Consider the Hamming 
distance between all M ( M  - 1) pairs of codewords, as perceived by this selected column. 
For pairs of codewords within a single set Rj ,  all the symbols are the same, so there is no 
contribution to the Hamming distance. For pairs of codewords drawn from different sets, 
there is a contribution of 1 to the Hamming distance. Thus, for each of the q j codewords 
drawn from set Rj , there is a total contribution of M - qj to the Hamming distance between 
the codewords in Rj and all the other sets. Summing these up, the contribution of this 
column to the sum of the distances between all pairs of codewords is 

qj = M. 

0-1 0-1 a-1 a-1 

j =O j=O j=O j =O 

Now use the Cauchy-Schwartz inequality (see Box 9.2 and Exercise 9.6) to write 

Now total this result over all n columns. There are M(M - 1) pairs of codewords, each a 
distance at least d apart. We obtain 
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Box 9.2: The Cauchy-Schwartz Inequality 

For our purposes, the Cauchy-Schwartz inequality can be expressed as follows 
(see [246] for extensions and discussions): Let a = (al, u2, . . . , a n )  and 
b = (61 , b2, . . . , 6,) be sequences of real or complex numbers. Then 

I n  n 

or 
d 

d - np 
M I - .  

Since this result holds for any code, since the C was arbitrary, it must hold for the code with 
A,(n, d )  codewords. 0 
Equivalently, 

The Plotkin bound provides an upper bound on the distance of a code with given length n 
and size M .  

9.3 The Griesmer Bound 

Theorem 9.5 For a linear block (n, k )  q-ary code C with minimum distance d ,  

k-  1 

i =O 

Proof Let N ( k ,  d )  be the length of the shortest q-ary linear code of dimension k and 
minimum distance d .  Let C be an ( N ( k ,  d), k ,  d )  code and let G be a generator matrix of 
the code. Assume (without loss of generality, by row and/or column interchanges andor 
row operations) that G is written with the first row as follows: [ 1 l G I . *  1 1 0  oGi-  0 1  

G =  , 

where G1 is (k  - 1) x d and G2 is ( k  - 1) x ( N ( k ,  d )  - d ) .  Claim: G2 has rank k - 1. 
Otherwise, it would be possible to make the first row of G2 equal to 0 (by row operations). 
Then an appropriate input message could produce a codeword of weight < d ,  by canceling 
one of the ones from the first row with some linear combination of rows of G 1 ,  resulting in 
a codeword of minimum distance < d .  

Let Gz be the generator for an ( N ( k ,  d )  - d ,  k - 1, d l )  code C'. We will now determine 
a bound on dl . 

Now let [uolv] (the concatenation of two vectors) be a codeword in C, 

[uolvl = moG, 
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where v E C' has weight dl and where mo is a message vector with 0 in the first position, 

mo = [0, m 2 , .  . . , mk]. 

Let zo be the number of zeros in uo, zo = d - wt(u0). Then we have 

wt(uo) + dl = (d  - Z O )  + dl 3 d .  

Let mi = [i, m2, . . . , mk],  for i E G F ( q ) ,  and let 

ui = miG. 

Let z i  be the number of zeros in ui, zi  = d - wt(u0). As i varies over the elements in 
G F ( q ) ,  eventually every element in Ui  will be set to 0. Thus 

4-1 

i =O 

Writing down the weight equation for each i we have 

dl + d  - Z O  2 d 

dl f d  - ~ 1 2  d 

dl + d - zq-1 2 d .  

Summing all these equations, we obtain 

or 

dl 2 w q i .  

G2 therefore generates an ( N ( k ,  d )  - d ,  k - 1, r d / q l )  code. We conclude that 

Now we simply proceed inductively: 

k-2  

i=O 
k-  1 

i =O 

Since N ( k ,  d )  < n for any actual code, the result follows. 
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9.4 The Linear Programming and Related Bounds 

The linear programming bound takes the most development to produce of the bounds in- 
troduced so far. However, the tools introduced are interesting and useful in their own right. 
Furthermore, the programming bound technique leads to one of the tightest bounds known. 
We introduce first what is meant by linear programming, then present the main theorem, 
still leaving some definitions unstated. This is followed by the definition of Krawtchouk 
polynomials, the character (needed for a couple of key lemmas), and finally the proof of the 
theorem. 

Let x be a vector, c a vector, b a vector, and A a matrix. A problem of the form 

maximize C*X 

subject to Ax 5 b (9.9) 

(or other equivalent forms) is said to be a linear programming problem. The maximum 
quantity c*x from the solution is said to be the value of the linear programming problem. 

Example 9.1 Consider the following problem. 

maximize x l  + x~ 
subject to xl + 2x2 5 10 

15 
2 

- X I  + 5x2 5 45 

X l  L 0 x2 2 0. 

Figure 9.2 illustrates the geometry. The shaded region is thefeasible region, the region where all the 
constraints are satisfied. The function x i  + x2 increases in the direction shown, so that the point in 
the feasible region maximizing x l  + x2 is as shown. 

Figure 9.2: A linear programming problem. 

The solution to this problem is xi = 4, x2 = 3 and the value is x i  + x2 = 7. 

The feasible region always forms a polytope and, due to the linear nature of the function 
being optimized, the solution is always found on a vertex or along an edge of the feasible 
region. Linear programming problems arise in a variety of applied contexts and algorithmic 
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methods of solving them are well established. (See [246] and the references therein for an 
introduction.) 

The linear programming bound applies to both linear and nonlinear codes. 

Definition 9.5 Let C be a q-ary code with M codewords of length n. Define 

1 
A .  - - l [ (c ,  d)lc E C,  d E C,  dH(c, d) = i } l .  

That is, Aj is the (normalized) number of codewords in the code at a distance i from each 
other. The sequence (Ao, A1, . . , A,) is called the distance distribution of the code. For 

0 
In Section 9.4.1, we will introduce a family of polynomials Kk(X), known as Krawtchouk 

‘-A4 

a linear code, the distance distribution is the weight distribution. 

polynomials. The theorem is expressed in terms of these polynomials as follows. 

Theorem 9.6 [350] (Linear programming bound) For a q -ary code of length n and mini- 
mum distance d 

Aq(n, d )  I M ,  

where M is value of the linear programming problem 

n 

maximize C A ~  
i=O 

subject to A0 = 1, 

n 

z A j K k ( i )  > O f o r k ~ { O , I ,  ..., n}  
i =O 

Aj 2 0 for i E [0 ,1 ,  . . . , n } .  

Furthermore, i fq  = 2 and d is even, then we may take Ai = 0 for odd i .  

Solution of the linear programming problem in this theorem not only provides a bound on 
Aq(n,  d ) ,  but also the distance distribution of the code. 

Let us begin with an example that demonstrates what is involved in setting up the linear 
programming problem, leaving the Kk (i) functions still undefined. 

Example 9.2 Determine a bound on A2(14,6) for binary codes. 

since the minimum distance is 6, we also have A2 = A4 = 0. All the Ai are 
Xf=o Ai Kk (i) 1 0 in the theorem becomes 

Since q = 2, we have A1 = A3 = A5 = A7 = A9 = A11 = A13 = 0. Furthermore 
0. The condition 
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9.4.1 Krawtchouk Polynomials 

The Krawtchouk polynomials mentioned above and used in the linear programming bound 
are now introduced. 

Definition 9.6 The Krawtchouk polynomial Kk (x  ; n , q )  is defined by 

k \ 

\ J /  ' j =O 

where (1) = x(x  - 1) .  * * (x  - j + 1) 
forn E R. 

j !  

Usually, Kk(x; n ,  q )  is used in the context of a fixed n and q ,  so the abbreviated notation 

Some of the important properties of Krawtchouk polynomials are developed in Exercise 
&(x)  is used. 0 

9.16. I krawtch0uk.m 

9.4.2 Character 

We also need the idea of a character. 

Definition 9.7 Let (G, +) be a group and let ( T ,  .) be the group of complex numbers which 
have absolute value 1, with multiplication as the operation. A character is a homomorphism 
x : G + T .  That is, for all gl, g2 E G, 

(9.11) 

0 

x(g1 + g2) = x ( g d x ( g 2 ) .  

If x (g) = 1 for every g E G, then x is called the principal character. 
It is straightforward to show that x (0) = 1, where 0 is the identity of G. 
The lemma which we need for our development is the following. 

Lemma 9.7 I f x  is a characterfor (G, +), then 

I G I i f  x is the principal character 
0 otherwise. 

Proof If x is principal, the first part is obvious. 
Let h be an arbitrary element of G .  Then 

x ( h ) C x ( g ) = C x ( h + g ) = C x ( k ) ,  
geG geG keG 

where the first equality follows from the homomorphism (9.11) and the second equality 
follows since h + g sweeps out all elements of G as g sweeps over all the elements of G. 
We thus have 

(X(h)  - 1) c x ( g >  = 0. 
geG 

Since h was arbitrary, then if x is not principal it is possible to choose an h E G such that 
0 ~ ( h )  # 1. We must therefore have CgeG x ( g )  = 0. 
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Example 9.3 The character property of Lemma 9.7 is actually familiar from signal processing, under 
a slightly different guise. Let G = &, the set of integers modulo n, and let x l ( g )  = e - j2z1g /n  for 
p E G. Then 

Thus, xi (8) is principal if I = 0, and not principal if 2 # 0. 

Now let G be the additive group in G F (4).  Let w = ejZnfq be a primitive qth root of unity 
in @. We want to define a character by 

x(g> = wg 

for g E GF(q), but g is not an integer. However, for the purposes of defining a character, 
we can interpret the elements of GF(q) as integers. The only property we need to enforce 
is the homomorphism property, wgl+g2 = wgI wg2, which will follow if we make the integer 
interpretation. Thus, we can interpret the alphabet over which a q-ary code exists as Z/qZ Z 
Z q ,  which we will denote as Q. 

Note that this character is not principal, so that, by Lemma 9.7, 

or 

gEQ\IO) 

Also note that 

(9.12) 

(9.13) 

Let (x, y) be the conventional inner product (see Definition 2.27) 
n 

i=l 

9.4.3 Krawtchouk Polynomials and Characters 

We now present an important lemma which relates Krawtchouk polynomials and characters. 

Lemma 9.8 [350] Let w be a primitive qth root of unity in C and let x E Q" be a jixed 
codevector with weight i. Then 

c w(XJ) = Kk(i ) .  
Y E Q " :  
wt(y) = k 

Proof Assume that all the weight of x is in the first i positions, 

x = [XI, x2, . . . , x;, o,o, . . . , O ] ,  

with x i  through xi not equal to 0. In the vector yof weight k, choose positions h 1, hz, . . . , hk 
such that 

0 < hi < h2 < ...  < hj 5 i < hj+l < .  < hk 5 n 
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with yhk # 0. That is, the first j nonzero positions of y overlap the nonzero positions of x. 
Let D be the set of all words of weight k that have their nonzero coordinates at these k fixed 
positions. Then 

,(X,Y) = c ,xhi Yhl f " ' f x h j Y h j  fO+."fO 

Y E D  YED 

= c . . . c Y h I f " . + x h j Y h j f O f . . . f O  

Yhl  EQ\fOl Yh,EQ\IOI c woe.*  oo c W n h j Y h j  

Yhl  EQ\fOl Yh €Q\W Y h j + l  cQ\fOl YhkEQ\{OI 

= c W X h i Y h i  .. . 

= (-l)j(q - 1>"-', 

where the last equality follows from (9.12) and (9.13). 
The set D may be chosen in (j) GI;) different ways for each fixed position j .  We have 

c ,(X,Y) = c C , ( X > Y )  = 
k - j  

Y E Q " :  Different YED j =O 
wt@) = k choices of 

D 

= e ( i ) ( n - i ) ( - l ) j ( q -  k - j  l ) k - j  = Kk(i) ,  
j =O 

by the definition of the Krawtchouk polynomial. 0 
The final lemma we need in preparation for proving the linear programming bound is 

the following. 

Lemma 9.9 Let {Ao, A1, . . . , A n }  be the distance distribution of a code C of length n with 
M codewords. Then 

n 

c A i K k ( i )  1: 0. 
i =O 

Proof From Lemma 9.8 and the definition of Ai we can write 
n n .  

wt(z) = k 

wt(z) = k 
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We are now ready to prove the linear programming bound. 

Proof of Theorem 9.6. Lemma 9.9 shows that the distance distribution must satisfy 
n 

x A i K k ( i )  2 0. 
i=O 

Clearly the Ai are nonnegative, A0 = 1 and the Ai = 0 for 1 5 i < d to obtain the 
distance properties. By definition, we also have ~ ~ = o  Ai = M, the number of codewords. 
Hence, any code must have its number of codewords less than the largest possible value of 

For binary codes with d even we may take the Ai = 0 for i odd, since any codeword 
with odd weight can be modified to a codeword with even weight by flipping one bit without 

0 

C;=o Ai = M .  

changing the minimum distance of the code. 

I 1pboundex.m I 

Example 9.4 Let us return to the problem of Example 9.2. Now that we know about the Krawtchouk 
polynomials, the inequalities in (9.10) can be explicitly computed. These become 

k = 0 : 1 + A6 + 4 3  + A10 + A12 + A14 2 0 

k = 1 : 

k = 2 : 

14 + 2A6 - 2Ag - 6A10 - 10A12 - 14A14 

91 - 5A6 - 5A8 + llA10 +43A12 +91A14 

0 

0 

k = 3 : 

k = 4 : 

k = 5 : 

k = 6 : 

k = 7 : 

364 - l2A6 + l2A8 + 4A10 - 100A12 - 364414 p 0 

1001 + 9246 + 9A8 - 39Alo + 121A12 + 1001A14 2 0 

2002 + 3OA6 - 3OA8 + 38Alo - 22412 - 2002A14 

3003 - 5A6 - 5Ag + 27~410 - 165412 + 3OO3A14 2 0 

3432 - 4OA6 + 40A8 - 721410 + 264412 - 3432414 2 0. 

0 

The other inequalities are duplicates, by symmetry in the polynomials. Also note that the k = 0 
inequality is implicit in maximizing A6 + A8 +. . - + A14, so it does not need to be included. Solving 
the linear programming problem, we obtain the solution 

& = 4 2  A g = 7  Ale= 14 A 1 2 = O  A14=0. 

Hence A2(14,6) i 1 + 42 + 7 + 14 = 64. 

9.5 The McEliece-Rodemich-Rumsey-Welch Bound 

The McEliece-Rodemich-Rumsey-Welch bound is a bound that is quite tight. It applies 
only to binary codes and is derived using the linear programming bound. 

Theorem 9.10 (The McEliece-Rodemich-Rumsey-Welch bound) For a binary code, 

(9.14) 

The proof is subtle and makes use of some properties of JSrawtchoukpolynomials introduced 
in Exercise 9.16, an extension of the linear programming bound in Exercise 9.17, as well 
as other properties that follow from the fact that Krawtchouk polynomials are orthogonal. 
What is provided here is a sketch; the reader may want to fill in some of the details. 
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Proof [227,350] Let t be an integer in the range 1 5 t I 
[0, n]. Define the polynomial 

and let a be a real number in 

1 
a ( x )  = - (Kr (a )Kt+ l (x )  - Kr+l (a )Kf (x ) )2 .  (9.15) 

Because the {Kk (x)} form an orthogonal set, they satisfy the Christoffel-Darboux formula 

a - x  

k 
Kk+l(X)Kk(Y) - Kk(X)Kk+l(Y) - 2 - 

Y - X  

(see [246, p. 2241 for an introduction, or a reference on orthogonal polynomials such as 
[llo]). Using (9.16), equation (9.15) can be written as 

Since & ( X )  is a polynomial in x of degree k, it follows that a ( x )  is a polynomial in x of 
degree 2t + 1. Then a ( x )  can also be written as a series in {Kk(X)} as 

2t f l  

k=O 

(since both are polynomials of degree 2t + 1). Let B(x) = a(x)/ao = 1 + ct=',' BkKk(X). 
We desire to choose a and t such that B (x) satisfies the conditions of the theorem in Exercise 
9.17: Bk p 0 and B ( j )  5 0 for j = d ,  d + 1, . . . , n. 

Note that if a 5 d,  then by (9.15) a ( j )  5 j for j = d ,  d+ 1 ,  . . . , n, so the only thing to be 
verified is whether ai 2 0, i = 1, . . . , n and a0 > 0. This is established using the interlacing 
property of the roots of the Krawtchouk polynomials: Kt+l  (x) has t + 1 distinct real zeros on 
(0, n). Denote these as xl(l+'), . . . , x z ' ) ,  with xf") < xtfl) < . . . < xt(::'). Similarly 

Kt  (x) has t distinct real zeros on (0, n), which we denote as xlf ), . . . , xr(t) and order similarly. 
These roots are interlaced: 

0 < q + l )  < X;f) < .F+*) < $1 < . . . < xr(t) < xt(::') < n. 

(This interlacing property follows as aresult of the orthogonality properties of the Krawtchouk 
polynomials; see [ 1 101 .) 

So choose t such that xlf) < d and choose a between xf+l) and xlf) in such a way that 
Kt  (a )  = -Kt+l(a) > 0. Then a ( x )  can be written in the form a ( x )  = c c k l K k ( x ) K l ( x )  
where all the ckl 2 0. Thus the ai 2 0. It is clear that a0 = -&(: )Kt (a)Kt+l (a)  > 0. 

Thus, the theorem in Exercise 9.17 can be applied: 

(9.18) 

We now invoke another result about orthogonal polynomials. It is known (see [ 1 lo]) 
that as n + 00, if t + 00 in such a way that t l n  + t for some 0 < t < i, then x; ' ) /n  + 
i - d m .  So let n + 00 and d l n  + 6 in such a way that t l n  -+ i - d m .  
Talung the logarithm of (9.18), dividing by n and using the results of Lemma 9.1, the result 
follows. 111 
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In [227], a slightly stronger bound is given (which we do not prove here): 

(9.19) 

where 

g ( x )  = H2((1 - &=3/2). 

The bound (9.14) actually follows from this with u = 1 - 2s. For 0.273 I: S I: i, the 
bounds (9.14) and (9.19) coincide, but for S < 0.273 (9.19) gives a slightly tighter bound. 

Another bound is obtained from (9.19) when u = 0. This gives rise to the Elias bound 
for binary codes. In its more general form, it can be expressed as follows. 

Theorem 9.11 (Elias bound) For a q-ary code, 

aq@) I 1 - Hq(P - Jrn) 0 5 I p ,  

where p = (q - l)/q. 

The Elias bound also has a nonasymptotic form: Let r 5 pn, where p = (q - l)/g. Then 
[350, p. 651 

pnd 9" 
Aq(n' dl  r2 - 2pnr + pnd Vq(n, r ) '  

The value of r can be adjusted to find the tightest bound. 

9.6 Exercises 

9.1 Using the Hamming and Gilbert-Varshamov bounds, determine lower and upper bounds on the 
redundancy r = n - k for the following codes. 

(a) A single-error correcting binary code of length 7. 
(b) A single-error correcting binary code of length 15. 

(c) A triple-error correcting binary code of length 23. 

(d) A triple-error correcting ternary code of length 23. 

(e) A triple-error correcting 4-ary code of length 23. 

(0 A triple-error correcting 16-ary code of length 23. 

9.2 With H2(x) = -x log2 x - (1 - x) log2(1 - x ) ,  show that 

9.3 With H2(x) as defined in the previous exercise, show that for any h in the range 0 5 h 5 4, 

Hint: Use the binomial expansion on (A + (1 - A))" = 1; truncate the sum up to An and use the 
fact that (A/(I - A))' < (A/(I - A))*". 
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9.4 [331 Prove: In any set of M distinct nonzero binary words of length n having weight at most nh, 
the sum of the weights W satisfies 

w 2 nh(M - ~ " ~ 2 ( * ) )  

for any h E (0, 1/2). Hint: Use the fact that zgO G) 5 2nH2(h). Then argue that for each h 

there are at least M - 2"*2(*) words of weight exceeding nh. 

9.5 For binary codes, show that A2(n, 21 - 1) = A2(n + 1,21). 
9.6 Using the Cauchy-Schwartz inequality, show that 

9.7 What is the largest possible number of codewords of a ternary (q = 3) code having n = 13 and 

9.8 Examine the proof of Theorem 9.4. Under what condition can equality be obtained in (9.8)? 
9.9 Prove the asymptotic Plotkin bound: 

d = 9? 

a q ( 6 ) = O i f p ( 6 <  1 

aq(S) 5 1 - S / p  if 0 5 6 5 p .  

Hint: For the second part, let n' = [ (d  - l ) / p ] .  Show that 1 5 d - pn' 5 1 + p. Shorten a 
code of length n with M codewords to a code of length n' with M' codewords, both having the 
same distance. Show that M' 2 qn'-nM and apply the Plotkin bound. 

9.10 [136,30] Stirling's formula. In this problem, you will derive the approximation 

n! x nne-"&. 

(a) Show that 

logxdx = n l o g n - n + 1 .  1" 
(b) Use the trapezoidal rule, as suggested by Figure 9.3(a), to show that 

1 
2 

logx dx 2 logn! - - logn, 

where the overbound is the area between the function log n and its trapezoidal approxima- 
tion. Conclude that 

n! 5 .",-",hie. 

(c) Using the integration regions suggested in Figure 9.3(b), show that 

~ " l o g n d x j l o g n ! + - - - l o g n  1 1  
8 2  

and that 
n! 2 nne-",hie7f8.  

In this integral approximation, for the triangular region, use a diagonal line tangent to the 
function at 1. 
In the approximation 

n! w n"e-"&C, (9.20) 
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(a) Under bound. (b) Over bound. 

Figure 9.3: Finding Stirling’s formula. 

we thus observe that 
e7I8 5 c 5 e.  

It will turn out that C = & works as n + 00. To see this, we take a nonobvious detour. 
Define the function 

(d) Show that Ik = Ik-2 - I k / ( k  - I), and hence that Ik = (k  - 1)Ik-2 /k  for k 2 2.  Hint: 

(e) Show that I0 = n / 2  and I1 = 1 .  

cos k ( x )  = cosk-2(x) ( l  - sin2x). 

(f) Show that 12k-l > I2k > 12k+l, and hence that 

I2k I2k+l 

I2k- 1 I2k- 1 
1 > -  > -. 

(g) Show that 
1 > 2 k [ - - - - . . .  2 k - 1 2 k - 3  - 3 I 2 j 7 >  2k 

2k 2 k - 2  2 2 2 k + 1 ’  

(h) Show that 

(i) Now substitute (9.20) for each factorial to show that 

6 )  Show that C + G a s  k + 00. 

9.11 Show that asymptotically, the Hamming bound can be expressed as 

aq(S) 5 1 - Hq(SI2).  
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9.12 Use the Griesmer bound to determine the largest possible value of k for a (13, k ,  5 )  binary code. 
9.13 Use the Griesmer bound to determine the largest possible value of k for a (14, k ,  9) ternary code. 
9.14 Find a bound on the length of shortest triple-error correcting (d = 7) binary code of dimension 5. 
9.15 Let d = Zk-’. Determine N ( k ,  d). Is there a code that reaches the bound? (Hint: simplex.) 
9.16 Properties of Krawtchouk polynomials. 

(a) Show that for x E {O, 1, . . . , k } ,  

00 c K k ( X ) Z k  = (1 + (q  - l)z)n-n(l - Z Y .  

k=O 
(9.21) 

(b) Show that K k ( x )  is an orthogonal polynomial with weighting function (y)(q - l)i,  in that 

(9.22) 

(c) Show that for q = 2, 
k Kk(X) = (-1) Kk(n - X). 

(d) Show that 

(e) Use this result to show another orthogonality relation. 

n 

C Kl( i )K i  ( k )  = 61kqn.  
i =O 

(f) One way to compute the Krawtchouk polynomials is to use the recursion 

( k  + l)Kk+l(X) = ( k  + (4 - l ) ( n  - k )  - q x ) K n ( x )  - (4  - l ) (n  - k + l ) K k - l ( X ) ,  

which can be initialized with KO@) = 1 and K1 (x) = n(q - 1) - qx  from the definition. 
Derive this recursion. Hint: Differentiate both sides of (9.21) with respect to z, multiply 
both sides by (1  4- (q  - l)z)(l - z )  and match coefficients of zk. 

(g) Another recursion is 

Kk(X) = Kk(X - 1) - (4 - l )Kk- l (X)  - K k - l ( X  - 1). 

Show that this is true. Hint: In (9.21), replace x by x - 1. 

9.17 [350] (Extension of Theorem 9.6) Theorem: Let B(x) = 1 + X i = 1  & K k ( x )  be a polynomial 
2 0 for 1 5 k 5 n such that B ( j )  5 0 for j = d ,  d + 1 , .  . . , n. Then Aq(n, d )  5 b(0). with 

Justify the following steps of the proof: 

(a) C:=d AiBW I 0. 
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(e) Hence conclude that A q ( n ,  d )  5 B(0). 

(0 Now put the theorem to work. Let q = 2 ,  n = 21 + 1 and d = 1 + 1. Let B ( x )  = 
1 + B(l)Kl(X) + B(2)K2(X) .  

i. Show that B ( x )  = 1 + Bl(n - 2x) + B2(2x2 - 2nx + i n ( n  - 1)). 
ii. Show that choosing to set B ( d )  = B(n)  = 0 leads to B1 = (n + 1) /2n and 82 = l / n .  

iii. Show that the conditions of the theorem in this problem are satisfied. 
iv. Hence conclude that Aq(21 + 1 , l  + 1) 5 21 + 2. 

9.18 Let x be a character, x : G -+ T .  Show that x(0) = 1, where 0 is the identity of G. 
9.19 Show that (9.17) follows from (9.15) and (9.16). 

9.7 References 

Extensive discussions of bounds appear in [220]. Our discussion has benefited immensely 
from [350]. The Hamming bound appears in [ 1371. The Singleton bound appears in [3 141. 
The Plotkin bound appears in [266]. The linear programming bound was developed in [68]. 

An introduction to orthogonal polynomials is in [246]. More extensive treatment of 
general facts about orthogonal polynomials is in [ 1 101. 



Chapter 10 

Bursty Channels, Interleavers, and 
Concatenation 
10.1 Introduction to Bursty Channels 

The coding techniques introduced to this point have been appropriate for channels with 
independent random errors, such as a memoryless binary symmetric channel, or an AWGN 
channel. In such channels, each transmitted symbol is affected independently by the noise. 
We refer to the codes that are appropriate for such channels as random error correcting 
codes. However, in many channels of practical interest, the channel errors tend to be 
clustered together in “bursts.” For example, on a compact disc, a scratch on the media may 
cause errors in several consecutive bits. On a magnetic medium such as a hard disk or a 
tape, a blemish on the magnetic surface may introduce many errors. A wireless channel may 
experience fading over several symbol times, or a stroke of lightning might affect multiple 
digits. In a concatenated coding scheme employing a convolutional code as the inner code, 
a single incorrect decoding decision might give rise to a burst of decoding errors. 

Using a conventional random error correcting block code in a bursty channel leads to 
inefficiencies. A burst of errors may introduce several errors into a small number codewords, 
which therefore need strong correction capability, while the majority of codewords are not 
subjected to error and therefore waste error correction capabilities. 

In this chapter we introduce techniques for dealing with errors on bursty channels. 
The straightforward but important concept of interleaving is presented. The use of Reed- 
Solomon codes to handle bursts of bit errors is described. We describe methods of con- 
catenating codes. Finally, Fire codes are introduced, which is a family of cyclic codes 
specifically designed to handle bursts of errors. 

Definition 10.1 In a sequence of symbols, a burst of length 1 is a sequence of symbols 
0 confined to 1 consecutive symbols of which the first and last are in error. 

For example, in the error vector 

e = ( 0 0 0 0  1 1 0 1 0 1  1 0 0 1 0 0  1 0 1  0 0 0 0 0 0 0 )  

is a burst of length 15. 

all bursts up to length 1. 
A code C is said to have burst-error-correcting capability I if it is capable of correcting 

10.2 lnterleavers 

An interleaver takes a sequence of symbols and permutes them. At the receiver, the 
sequence is permuted back into the original order by a deinterleaver. Interleavers are 
efficacious in dealing with bursts of errors because, by shuffling the symbols at the receiver, 
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I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

I Interleaver I 

I 

I 
I 

I 1 E: I Deinterleaver I 

I columns 

I Read I 
I across I 
I rows I 

I I xo>xl,x2,...,xll 

I x10 Xll 

L _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I  

I 

I 
I 

I 

1- 
I 
I 
I 

Figure 10.1: A 3 x 4 interleaver and deinterleaver. 

a burst of errors appearing in close proximity may be broken up and spread around, thereby 
creating an effectively random channel. 

A common way to interleave is with a block interleaver. This is simply an N x M 
array which can be read and written in different orders. Qpically the incoming sequence 
of symbols is written into the interleaver in row order and read out in column order. Figure 
10.1 shows a 3 x 4 interleaver. The input sequence xo, X I ,  . . . , x 1 1  is read into the rows of 
array, as shown, and read off as the sequence 

X O ,  X47 X8, X1, X5, X99 X 2 ,  x67 X l 0 ,  X 3 ,  X7, X11.  

Frequently, the width M is chosen to be the length of a codeword. 

Example 10.1 We present here an application of interleaving. The UDP (user datagram protocol) 
internet protocol is one of the TCP/IP protocol suite which does not guarantee packet delivery, but 
experiences lower network latency. In this protocol, each packet carries with it a sequential packet 
number, so that any missing packets may be identified. Because of its lower latency, UDP is of interest 
in near real-time internet applications. Error correction coding can be used to significantly increase 
the probability that all packets are correctly received with only a moderate decrease in rate. 

The data stream is blocked into message blocks of 249 bytes and the data are encoded with a 
(255,249) Reed-Solomon code having = 7 and capable of correcting 6 erasures. The codewords 
are written into an N x 255 matrix as rows and read out in column order. Each column is transmitted 
as a data packet of length N. 

Suppose that the third packet associated with this interleaving block, corresponding to the third 
column, is lost in transmission, as suggested by the shading on this matrix. 
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By the protocol, the fact that the third packet is lost i s  known. When the data are written into the 
matrix for deinterleaving, the missing column is left blank and recorded as an erasure. Then each of 
the N codewords is subjected to erasure decoding, recovering the lost byte in each codeword. For 
this code, up to six packets out of N may be lost in transmission (erased) and fully recovered at the 
receiver. 0 

In general, when a burst of length 1 is deinterleaved, it causes a maximum of rZ/N1 
errors to occur among the received codewords. If the code used can correct up to t errors, 
a decoding failure may occur if the burst length exceeds Nt + 1. 

The efficiency y of an interleaver can be defined as the ratio of the length of the smallest 
burst of errors that exceeds the correction capability of a blockcode to the amount of memory 
in the interleaver. Based on our discussion, for the block interleaver the efficiency is 

N t + 1  t 

Another kind of interleaver is the cross interleaver or convolutional interleaver [282], 
which consists of a bank of delay lines of successively increasing length. An example 
is shown in Figure 10.2. This figure shows the input stream, and the state of the inter- 
leaver at a particular time as an aid in understanding its operation. The cross interleaver 
is parameterized by ( M ,  D), where M is the number of delay lines and D the number 
of samples each delay element introduces. It is clear that adjacent symbols input to the 
interleaver are separated by M D  symbols. If M is chosen to be greater than or equal to 
the length of the code, then each symbol in the codeword is placed on a different delay 
line. If a burst error of length 1 occurs, then rZ/(MD + 1)1 errors may be introduced 
into the deinterleaved codewords. For a t-error correcting code, a decoding failure may 
be possible when 1 exceeds ( M D  + l)(t - 1) + 1. The total memory of the interleaver is 
(0 + 1 + 2 + . . . + ( M  - 1))D = D M ( M  - 1)/2. The efficiency is thus 

y = - x - - - .  
N M  M 

( M D  + l)( t  - 1) + 1 2t x- 
= D M ( M  - 1)/2 M - 1 '  

Comparison with the block interleaver shows that cross interleavers are approximately twice 
as efficient as block interleavers. 

While block interleaving can be accomplished in a straightforward way with an array, 
for cyclic codes there is another approach. If C is a cyclic code of length n with generator 
g(x), then the code obtained after interleaving with an M x n interleaver matrix is also 
cyclic, with generator polynomial g ( x M ) .  The encoding and syndrome computation can 
thus be implemented in conventional fashion using shift registers [203, p. 2721. 

10.3 An Application of Interleaved RS Codes: Compact Discs 

By far the most common application of RS codes is to compact discs. The data on the 
compact disc (CD) is protected with a Reed-Solomon code, providing resilience to scratches 
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Figure 10.2: A cross interleaver and deinterleaver system. 

on the surface of the disc. (Of course, scratches may still impede CD playback, as many 
listeners can attest, but these problems are more often the result of tracking problems with 
the read laser and not the problem of errors in the decoding stream read.) Because this 
medium is so pervasive, it is important to be familiar with the data representation. This 
presentation also brings out another important point. The error correction is only one aspect 
of the data processing that takes place. To be of practical value, error correction coding must 
work as a component within a larger system design. In addition to basic error correction 
provided by Reed-Solomon codes, protection against burst errors due to scratches on the 
disc is provided by the use of a cross interleaver. The data stream is also formatted with 
an eight-to-fourteen modulation (EFM) code which prevents excessively long runs of ones. 
This is necessary because the laser motion control system employs a phase-locked loop 
(PLL) which is triggered by bit transitions. If there is a run of ones that is too long, the PLL 
may drift. Details on the data stream and the EFM code are in [159]. Our summary here 
follows [373]. 

The overall block diagram of the CD recording process is shown in Figure 10.3. The 
1.41 Mbps sampled data stream passes through an error correction system resulting in a 
data rate of 1.88 Mbps. The encoder system, referred to as CIRC, uses two interleaved, 
shortened, Reed-Solomon codes, C1 and C2. Both codes are built on codes over GF(256). 
The eight-bit symbols of the field fit naturally with the 16-bit samples used by the A/D 
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Figure 10.4: The error correction encoding in the compact disc standard. 

converter. However, the codes are significantly shortened: C1 is a (32,28) code and C2 is a 
(28,24) code. For every 24 input symbols there are 32 output symbols, resulting in a rate 
R = 24/32 = 3/4. Both codes have minimum distance 5. 

Encoding The outer code, C2, uses 12 16-bit samples to create 24 8-bit symbols as its 
message word. The 28-symbol codeword is passed through a (28,4) cross interleaver. The 
resulting 28 interleaved symbols are passed through the code C1, resulting in 32 coded output 
symbols, as shown in Figure 10.4. 

Decoding At the decoder (in the CD player), the data that reaches the CIRC decoder first 
passes through the outer decoder C1. Since C1 has minimum distance 5, it is capable of 
correcting two errors, or correcting one error and detecting two errors in the codeword, or 
detecting up to four errors. If the C1 decoder detects a high-weight error pattern, such as 
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Table 10.1: Performance Specification of the Compact Disc Coding System [159, p. 571 

Maximum completely 
correctable burst length 

Maximum interpolatable burst 
length in the worst case 

Sample interpolation rate 

% 4000 bits (% 2.5 mm track length) 

x 12,300 data bits 
(x 7.7 mm track length) 

One sample every 10 hours 
at a bit error rate (BER) of 
1000 samples per minute at BER of 

less than one every 750 hours 
at BER=10-3. 
Negligible at BER p low4 

Undetected error samples 
(producing click in output) 

Code rate R = 314 

Implementation One LSI chip plus 
one random-access memory of 2048 bytes. 

a double error pattern or any error pattern causing a decoder failure, the decoder outputs 
28 erased symbols. The deinterleaver spreads these erased symbols over 28 C2 codewords, 
where the erasure correction capability of the C2 code can be used. 

The C2 decoder can correct any combination of e errors and f erasures satisfying 2e + 
f < 5. Since C1 is likely to be able to produce error-free output, but will declare erasures 
when there seem to be too many errors for it to correct, the C2 decoder is frequently built to 
be an erasures-only decoder. Since erasure decoding involves only straightforward linear 
algebra (e.g., Forney’s algorithm) and does not require finding an error locater polynomial, 
this can be a low-complexity decoder. In the rare event that a vector is presented having 
more than four erasures that C2 is not able to correct the C2 decoder outputs 24 erasures. In 
this case, the playback system uses an “error concealment” system which either mutes the 
corresponding 12 samples of music or performs some kind of interpolation. 

The performance specifications for this code are summarized in Table 10.1. 

10.4 Product Codes 

Let C1 be an ( n l ,  k l )  linear block code and let C2 be an (n.2, k 2 )  linear block code over 
GF(q) .  An (nln2, klk2) linear code called the product code, denoted C1 x C2, can be 
formed as diagrammed in Figure 10.5. A set of k1k2 symbols is written into a k2 x kl array. 
Each of the k2 rows of the array is (systematically) encoded using code C1, forming nl 
columns. Each of the n 1 columns of the array is then (systematically) encoded using code 
C2, forming an n2 x n1 array. Because of linearity, it does not matter whether the encoding 
procedure is reversed (C2 encoding followed by C1 encoding). 

Theorem 10.1 rfC1 has minimum distance dl and C2 has minimum distance d2, then the 
product code C1 x C2 has minimum distance dld2. 

Proof The minimum weight cannot be less than dld2: Each nonzero row of the matrix in 
Figure 10.5 must have weight 2 dl and there must be at least d2 nonzero rows. 
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Figure 10.5: The product code C1 x C2. 

To show that there is a codeword of weight dld2, let c1 be a codeword in C1 of minimum 
weight and let c2 be a codeword in C2 of minimum weight. Form an array in which all 
columns corresponding to zeros in c1 are zeros and all columns corresponding to ones in c1 
are c2. 0 

Using the Chinese remainder theorem it is straightforward to show [220, p. 5701 that if C1 

and C2 are cyclic and (n 1, n2) = 1, then C1 x Cz is also cyclic. 
The product code construction can be iterated. For example, the code C1 x C2 x C3 can 

be produced. It may be observed that by taking such multiple products, codes with large 
distance can be obtained. However, the rate of the product code is the product of the rates, 
so that the product code construction produces codes with low rate. 

We do not present a detailed decoding algorithm for product codes here. However, 
decoding of codes similar to product codes is discussed in chapter 14. Product codes are 
seen there to be an instance of turbo codes, so a turbo code decoding algorithm is used. 
However, we discuss here the burst error correction capability of product codes [203, p. 
2751. Suppose C1 has burst error correction capability I 1  and C2 has burst error correction 
capability 12. Suppose that the code is transmitted out of the matrix row by row. At the 
receiver the data are written back into an array in row by row order. A burst of  length n 112 or 
less can affect no more than 12 + 1 consecutive rows, since when the symbols are arranged 
into the array, each column is affected by a burst of length at most 12. By decoding first 
on the columns, the burst can be corrected, so the burst correction capability of the product 
code is at least nll2. Similarly, it can be shown that bursts of length at least nzli can be 
corrected, so the overall burst error correction capability of the code is max(n 112, n211). 

10.5 Reed-Solomon Codes 

Reed-Solomon codes and other codes based on larger-than-binary fields have some intrinsic 
ability to correct bursts of binary errors. For a code over a field G F(2m), each coded symbol 
can be envisioned as a sequence of m bits. Under this interpretation, a (n, k )  Reed-Solomon 
code over GF(2m) is a binary (mn, mk)  code. 

The RS code is capable of correcting up to t symbols of error. It does not matter that a 
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single symbol might have multiple bits in error - it still is a single symbol error from the 
perspective of the RS decoder. A single symbol might have up to m bits in error. Under 
the best of circumstances then, when all the errors affect adjacent bits of a symbol, a RS 
code may correct up to mt bits in error. This means that RS codes are naturally effective 
for transmitting over bursty binary channels: since bursts of errors tend to cluster together, 
there may be several binary errors contributing to a single erroneous symbol. As an example 
[203, p. 2781, a burst of length 3m + 1 cannot affect more than 4 symbols, so a RS code 
capable of correcting 4 errors can correct any burst of length 3m + 1. Or any burst of length 
m + 1 cannot affect more than two bytes, so the 4-error correcting code could correct up 
to two bursts of length m + 1. In general, a t-error correcting RS code over GF(2'") can 
correct any combination of 

t 

1 + U + m - 2)/mJ 

or fewer bursts of length I ,  or correcting a single burst up to length ( t  - l)m + 1. And, 
naturally, it also corrects any combination of t  or fewer random errors. 

10.6 Concatenated Codes 

Concatenated codes were proposed by Forney [87] as a means of obtaining long codes (as 
required by the Shannon channel coding theorem for capacity-approaching performance) 
with modest decoding complexity. The basic concatenation coding scheme is shown in 
Figure 10.6. The inner code is conventionally a binary code. The outer code is typically 
a (n2, k2)  Reed-Solomon code over GF(2k). The outer code uses k2 k-tuples of bits from 
the inner code as the message sequence. In the encoding, the outer code takes kk2 bits 
divided into k-tuples which are employed as k2 symbols in GF(29  and encodes them as a 
Reed-Solomon codeword (cot c1, . . . , cn,).  These symbols, now envisioned as k-tuples of 
binary numbers, are encoded by the inner encoder to produce a binary sequence transmitted 
over the channel. 

The inner code is frequently a convolutional code. The purpose of the inner code is 
to improve the quality of the "superchannel" (consisting of the inner encoder, the channel, 
and the inner decoder) that the outer RS code sees so that the RS code can be used very 
effectively. When the Viterbi decoder (the inner decoder) makes a decoding error, it typically 
involves a few consecutive stages of the decoding trellis, which results in a short burst of 
errors. The bursts of bit errors which tend to be produced by the inner decoder are handled 
by the RS decoder with its inherent burst-error correction capability. 

Figure 10.6: A concatenated code. 
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Example 10.2 [373, p. 4321 Figure 10.7 shows the block diagram of a concatenated coding system 
employed by some NASA deep-space missions. The outer code is a (255,223) Reed-Solomon code 
followed by a block interleaver. The inner code is a rate 1/2 convolutional code, where the generator 
polynomials are 

Rate1/2dfree=10 g o ( x ) = l + x + x 3 + x 4 + x 6  g 1 ( x ) = 1 + x 3 + x 4 + x 5 + x 6 .  

The RS code is capable of correcting up to 16 8-bit symbols. The dfree path through the trellis traverses 
7 branches, so error bursts most frequently have length seven, which in the best case can be trapped 
by a single RS code symbol. 

To provide for the possibility of decoding bursts exceeding 16 x 8 = 128 bits, a symbol interleaver 
is placed between the RS encoder and the convolutional encoder. Since it is a symbol interleaver, burst 
errors which occupy a single byte are still clustered together. But bursts crossing several bytes are 
randomized. Block interleavers holding from 2 to 8 Reed-Solomon codewords have been employed. 
By simulation studies [133], it is shown that to achieve a bit error rate of with interleavers of 
sizes of 2,4, and 8, respectively, an Eb/No  of 2.6 dB, 2.45 dB, and 2.35 dB, respectively, are required. 
Uncoded BPSK performance would require 9.6 dB; using only the rate 1/2 convolutional code would 
require 5.1 dB, so the concatenated system provides approximately 2.5 dB of gain compared to the 
convolutional code alone. 0 

Figure 10.7: Deep-space concatenated coding system. 

10.7 Fire Codes 

10.7.1 Fire Code Definition 

Fire codes, named after their inventor [85],  are binary cyclic codes designed specifically to 
be able to correct a single burst of errors. They are designed as follows. Let p ( x )  be an 
irreducible polynomial of degree m over GF(2). Let p be the smallest integer such that 
p ( x )  divides x p  + 1. p is called the period of p ( x ) .  Let 1 be a positive integer such that 
1 p rn and p 121 - 1. Let g(x) be the generator polynomial defined by 

(10.1) g(x) = ( 2 1 - 1  + l)p(x). 

Observe that the factors p ( x )  and x21-l + 1 are relatively prime. The length n of the code 
is the least common multiple of 21 - 1 and the period: 

n = LCM(21- 1, p )  

and the dimension of the code is k = n - m - 21 + 1. 
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Example 10.3 Let p ( x )  = 1 + x + x4. This is a primitive polynomial, so p = z4 - 1 = 15. Let 
1 = 4 and note that 21 - 1 = 7 is not divisible by 15. The Fire code has generator 

I g(x) = (x + 1)(1 + x  +x4)  = 1 + x  + x 4  +x7  +2 +xll  

with length and dimension 

~t = LCM(7,15) = 105 and k = 94. 

The burst error correction capabilities of the Fire code are established by the following 
theorem. 

Theorem 10.2 The Fire code is capable of correcting any burst up to length 1.  

Proof [203, p. 2621 We will show that bursts of different lengths reside in different cosets, 
so they can be employed as coset leaders and form correctable error patterns. Let a ( x )  and 
b(x) be polynomials of degree 1 1  - 1 and 12 - 1, representing bursts of length 1 1  and 12, 

respectively, 
a(x> = 1 + alx + a2x2 + . . . + a', - 2 x ' 1 - ~  + x'1-l 

b ( x )  = 1 + b l x  + b2x2 + . . . + b/2-2~'2-2 + x12-l, 

with 1 1  5 1 and 12 5 1.  Since a burst error can occur anywhere within the length of the code, 
we represent bursts as x ' a ( x )  and x j b ( x ) ,  where i and j are less than n and represent the 
starting position of the burst. 

Suppose (contrary to the theorem) that x i a ( x )  and x j b ( x )  are in the same coset of the 
code. Then the polynomial 

U ( X )  = x ' a ( x )  + x'b(x)  

must be a code polynomial in the code. We show that this cannot occur. Without loss of 
generality, take i 5 j .  By the division algorithm, dividing j - i by 21 - 1 we obtain 

(10.2) j - i  = q(21-  1) + b  

for some quotient q and remainder b, with 0 5 b < 21 - 1. Using this, we can write 

U ( X )  = x ' ( u ( x )  + x b b ( x ) )  + xi+bb(x)(xq(2'-')  + 1). (10.3) 

Since (by our contrary assumption) u ( x )  is a codeword, it must be divisible by g ( x )  and, 
since the factors of g ( x )  in (10.1) are relatively prime, v(x) must be divisible by x2'-l + 1. 
Since d 2 ' - l )  + 1 is divisible by x2'-l + 1, it follows that a(x )  + x b b ( x )  is either divisible 
by x2'-l + 1 or is 0. Let us write 

U(X) + x b b ( x )  = d(X)(x2"-' + 1) (10.4) 

for some quotient polynomial d (x). Let S be the degree of d (x). The degree of d ( x )  (x 2'-1 + 
1) is 6 + 21 - 1. The degree of a(x )  is 11 - 1 < 21 - 1, so the degree of a(x )  + x b b ( x )  
must be established by the degree of x b b ( x ) .  That is, we must have 

b + 12 - 1 = 21 - 1 + 6. (10.5) 

Since 11 I: 1 and 12 5 1,  subtracting 12 from both sides of (10.5) we obtain 

b 2 11 + 6. 
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From this inequality we trivially observe that 

b > 11 - 1 and b > d .  

Writing out a ( x )  + xbb(x) we have 

U ( X )  + Xbb(X) = 1 + a l x  + a2x2 +. . . + a[,-&i-2 + x'1- l  

+ xb(l  + blx + b2x2 + . . . + b12-2x12-2 + x12-') 

so that x b  is one of the terms in a(x) + xbb(x). On the other hand, since S < b < 21 - 1, 
the expression d(x)(x2'-' + 1) from (10.4) does not have the term xb, contradicting the 
factorization of (10.4). We must therefore have d ( x )  = 0 and a ( x )  + xbb(x) = 0. In order 
to cancel the constant terms in each polynomial we must have b = 0, so we conclude that 

U ( X )  = b(x). 

Since b must be 0, (10.2) gives 
j - i = q(21- 1). (10.6) 

Substituting this into (10.3) we obtain 

V ( X )  = xib(x)(xj-i + 1). 

Now the degree b(x) is 12 - 1 < 1, so deg(p(x)) < m = deg(p(x)). But since p ( x )  is 
irreducible, b(x)  and p ( x )  must be relatively prime. Therefore, since v ( x )  is (assumed to 
be) a code polynomial, x j - i  + 1 must be divisible by p ( x )  (since it cannot be divisible by 
x2' - l  + 1). Therefore, j - i must be a multiple of p.  By (10.6), j - i must also be multiple 
of 21 - 1. So j - i must be a multiple of the least common multiple of 22 - 1 and m. But 
this least common multiple is n.  We now reach the contradlction which leads to the final 
conclusion: j - i cannot be a multiple of n ,  since j and i are both less than n. 

We conclude, therefore, that v ( x )  is not a codeword, so the bursts x i a ( x )  and xjb(x) 
0 are in different cosets. Hence they are correctable error patterns. 

10.7.2 Decoding Fire Codes: Error Trapping Decoding 

There are several decoding algorithms which have been developed for Fire codes. We present 
here the error trapping decoder. Error trapping decoding is a method which works for 
many different cyclic codes, but is particularly suited to the structure of Fire codes. 

Let r ( x )  = c ( x )  + e ( x )  be a received polynomial. Let us recall that for a cyclic code, 
the syndrome may be computed by dividing r ( x )  by g(x), e ( x )  = q(x)g(x) + s ( x ) .  The 
syndrome is a polynomial of degree up to n - k - 1, 

n-k-1 s ( x )  = SO f SIX + ' ' ' + Sn-k- lX 

Also recall that if r ( x )  is cyclically shifted i times to produce T - ( ~ ) ( x ) ,  the syndrome s ( ~ ) ( x )  
may be obtained either by dividing T ( ~ ) ( x )  by g(x), or by dividing x i s ( x )  by g(x). Suppose 
that an 1 burst-error correcting code is employed and that the errors occur in a burst confined 
to the I digits, 

n-k-1 + . . . + e n - k - l x  n-k- l+ l  e(X) = f?n-k-[Xn-k-l + e n - k - l + l X  

Then the syndrome digits Sn-k-1, S n - k - l + l ,  . . . , Sn-k-1 match the error values and the 
syndrome digits so, $ 1 ,  . . . , Sn-k-1-1 are zeros. 
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I A 

Buffer register gate 4 

I output 

Figure 10.8: Error trapping decoder for burst-error correcting codes [203, p. 2601. 

If the errors occur in a burst of 1 consecutive positions at some other location, then after 

.n-k-l of r ( i ) ( ~ ) .  Then the corresponding syndrome s(')(x) of T ( ~ ) ( x )  matches the errors 
at positions x ~ - ~ - ' ,  ~ " - ~ - ' + l  , * * * ,  p - k - 1  of r ( i )  (x) and the digits at positions xo, x ', . . . , 
X n - k - l - l  are zeros. This fact allows us to "trap" the errors: when the condition of zeros is 
detected among the lower syndrome digits, we conclude that the shifted errors are trapped 
in the other digits of the syndrome register. 

An error trapping decoder is diagrammed in Figure 10.8. The operation is as follows: 

some number i of cyclic shifts, the errors are shifted to the positions x ~ - ~ - ' ,  x'-~-'+' , . . . ,  

~2031 

1. With gate 1 and gate 2 open, the received vector r ( x )  is shifted into the syndrome 
register, where the division by g(x) takes place by virtue of the feedback connections, 
so that when r ( x )  has been shifted in, the syndrome register contains s(x). r ( x )  is 
also simultaneously shifted into a buffer register. 

2. Successive shifts of the syndrome register occur with gate 2 still open. When the left 
n - k - 1 memory elements contain only zeros, the right 1 stages are deemed to have 
"trapped" the burst error pattern and error correction begins. The exact correction 
actions depends upon how many shifts were necessary. 

If the n - k - 1 left stages of the syndrome register are all zero after the i th shift 
for 0 5 i I n - k - I, then the errors in e(x) are confined only to the parity 
check positions of r (x), so that the message bits are error free. There is no need 
to correct the parity bits. In this case, gate 4 is open, and the buffer register is 
simply shifted out. If, for this range of shifts the n - k - 1 left stages are never 
zero, then the error burst is not confined to the parity check positions of r ( x ) .  

If the n - k - 1 left stages of the syndrome register are all zero after the (n - 
k - I + i)th shift, for 1 5 i I 1, then the error burst is confined to positions 
p - 1  , . . . )  xn-1, xo, . . . , x I - i - 1  or r ( x ) .  (This burst is contiguous in a cyclic 
sense.) In this case, 1 - i right digits of the syndrome buffer register match 
the errors at the locations xo, xl, . . . , x'-~-' of r ( x ) ,  which are parity check 
positions and the next i stages of the syndrome register match the errors at 
locations x n - ' ,  . . . , x ~ - ~ ,  xn- ' ,  which are message locations. The syndrome 
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register is shifted 1 - i times with gate 2 closed (no feedback) so that the errors 
align with the message digits in the buffer register. Then gate 3 and gate 4 are 
opened and the message bits are shifted out of the buffer register, being corrected 
by the error bits shifted out of the syndrome register. 
If the n - k - 1 left stages of the syndrome register are never all zeros by the time 
the syndrome register has been shifted n - k times, the bits are shifted out of the 
buffer register with gate 4 open while the syndrome register is simultaneously 
shifted with gate 2 open. In the event that then - k -1 left stages of the syndrome 
register become equal to all zeros, the digits in the 1 right stages of the syndrome 
register match the errors of the next 1 message bits. Gate 3 is then opened and 
the message bits are corrected as they are shifted out of the buffer register. 
If the n - k - I left stages of the syndrome register are never all zeros by the 
time the k message bits have been shifted out of the buffer, an uncorrectable 
error burst has been detected. 

10.8 Exercises 

10.1 Let an (n, k )  cyclic code with generator g ( x )  be interleaved by writing its codewords into an 
M x n array, then reading out the columns. The resulting code is an (Mn, kn)  code. Show that 
this code is cyclic with generator g ( x M ) .  

10.2 Let G1 and G2 be generator matrices for C1 and C2, respectively. Show that G1 €3 G2 is a 
generator matrix for C1 x C2, where €3 is the Kronecker product introduced in chapter 8. 

10.3 Let C1 and C2 be cyclic codes of length n l  and n2, respectively, with (nl ,  n2) = 1. Form the 
product code C1 x C2. In this problem you will argue that C1 x C2 is also cyclic. Denote the 
codeword represented by the matrix 

1 coo co1 ... COnz-1 

C l l  '.. C1 nz-1 

Cn1-10  C n , - l l  ... CnI -1 nz-1 

by the polynomial 

where c ( x ,  y )  E P[x]/(xnl - 1, ynz - 1). That is, in the ring where xnl = 1 and yn2 = 1 
(since the codes are cyclic). Thus nc(x, y) and yc(x, y) represent cyclic shifts of the rows and 
columns, respectively, of c. 

(a) Show that there exists a function Z( i ,  j )  such that for each pair (i, j )  with 0 5 i < n 1 and 
0 5 j < n2, Z( i ,  j) is a unique integer in the range 0 5 I ( i ,  j) < nln2, such that 

Z(i ,  j )  = i 
Z( i ,  j )  = j 

(mod n l )  
(mod n2). 

(b) Using Z(i,  j ) ,  rewrite c ( x ,  y )  in terms of a single variable z = x y  by replacing each x i  y J  

(c) Show that the set of code polynomials d(z) so obtained is cyclic. 
by ~ ' ( ~ , j )  to obtain the representation d(z). 

10.4 For each of the following (M, D) pairs, draw the cross interleaver and the corresponding dein- 
terleaver. Also, for the sequence xo, x i ,  x2, . . . , , determine the interleaved output sequence. 
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10.5 [203] Find a generator polynomial of a Fire code capable of correcting any single error burst of 
length 4 or less. What is the length of the code? Devise an error trapping decoder for this code. 

10.9 References 

The topic of burst-error correcting codes is much more fully developed in [203] where, 
in addition to the cyclic codes introduced here, several other codes are presented which 
were found by computer search. Fire codes were introduced in [85]. The cross interleaver 
is examined in [282]. Error trapping decoding is also fully developed in [203]; it was 
originally developed in [184,240,241,298,185]. The compact disc system is described in 
[158]. A thorough summary is provided in [159]. Product codes are discussed in [220, ch. 
181. Application to burst error correction is described in [203]. Cyclic product codes are 
explored in [39,202]. The interpretation of Reed-Solomon codes as binary (mn, mk) codes 
is discussed in [220]. Decoders which attempt binary-level decoding of Reed-Solomon 
codes are in [243] and references therein. 



Chapter 11 

Soft-Decision Decoding Algorithms 
11.1 Introduction and General Notation 

Most of the decoding methods described to this point in the book have been based on discrete 
field values, usually bits obtained by quantizing the output of the matched filter. However, 
the actual value of the matched filter output might be used, instead of just its quantization, 
to determine the reliability of the bit decision. For example, in BPSK modulation if the 
matched filter output is very near to zero, then any bit decision made based on only that 
output would have low reliability. A decoding algorithm which takes into account reliability 
information or uses probabilistic or likelihood values rather than quantized data is called a 
soft-decision decoding algorithm. Decoding which uses only the (quantized) received bit 
values and not their reliabilities is referred to as hard-decision decoding. As a general rule 
of thumb, soft-decision decoding can provide as much as 3 dB of gain over hard-decision 
decoding. In this short chapter, we introduce some of the most commonly-used historical 
methods for soft-decision decoding, particularly for binary codes transmitted using BPSK 
modulation over the AWGN channel. Some modem soft-decision decoding techniques are 
discussed in the context of turbo codes (chapter 14) and LDPC codes (chapter 15). 

Some clarification in the terminology is needed. The algorithms discussed in the chapter 
actually provide hard output decisions. That is, the decoded values are provided without 
any reliability information. However, they rely on “soft” input decisions - matched filter 
outputs or reliabilities. They should thus be called soft-input hard-output algorithms. A 
soft-output decoder would provide decoded values accompanied by an associated reliability 
measure, or a probability distribution for the decoded bits. Such decoders are called soft- 
input, soft-output decoders. The turbo and LDPC decoders provide this capability. 

Let C be a code and let a codeword c = (co, c1, . . . , cn-l)  E C be modulated as the 
vector 

S = ( t o ,  ? I , .  . . , Zn-1)  

(assuming for convenience a one-dimensional signal space; modifications for two- or higher- 
dimensional signal spaces are straightforward). We will denote the operation of modulation 
- mapping into the signal space for transmission -by M, so that we can write 

E = M(c). 

The modulated signal Z. is passed through a memoryless channel to form the received vector 
r = (ro, q ,  . . . , m-1). For example, for an AWGN 

r’ - c“. 
t - z +ni, 

where ni - N(0, u2), with u2 = N 0 / 2 .  
The operation of “slicing” the received signal into signal constellation values, the detec- 

tion problem, can be thought of as an “inverse” modulation. We denote the “sliced” values 
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as ui.  Thus 
L J ~  = M-'(Ti) 

or 
v = M-'(r). 

If the ri values are sliced into discrete detected values V j  and only this information is used 
by the decoder, then hard-decision decoding occurs. 

Example 11.1 For example, if BPSK modulation is used, then ti = M(ci j = &(2ci - 1 j is the 
modulated signal point. The received values are sliced into detected bits by 

In this case, as described in Section 1.5.7, there is effectively a BSC model between transmitter and 
receiver. Figure 1 1 .1  illustrates the signal labels. 

(matched filter 
outputs) y or 

Modulate Channel Slice 

Figure 1 1 . 1  : Signal labels for soft-decision decoding. 

It is possible to associate with each sliced value vi a reliability z j ,  which indicates the quality 
of the decision. The reliabilities are ordered such that zj > z j  if the ith symbol is more 
reliable - capable of producing better decisions -than the j th  symbol. If the channel is 
AWGN, then 

zi = IriI E R 

can be used as the reliability measure, since the absolute log likelihood ratio 

(11 .1)  
p(rz ICZ = 0) 

is proportional to Iri I. Associated with each channel is a distance measure. For the BSC, 
the appropriate distance measure is the Hamming distance, 

u t i l tk rn .cc  
u t  i It krn . h 

n-1 

dH(v, C> = C[ui + cil. 
However, for soft-decision decoding over the AWGN, the Euclidean metric between the 
(soft) received vector and the transmitted codeword 

dE(r, ti) = dE(r, M(c)) = ((r - till2. 

i=O 

is more appropriate. (See Section 1 . 5  for further discussion.) 
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A key idea in soft-decision decoding is sorting the symbols in order of reliability. When 
the symbols are sorted in order of decreasing reliability, then the first sorted symbols are 
more likely to be correct than the last sorted symbols. The set of symbols which have the 
highest reliability (appearing first in the sorted list) are referred to as being in the most 
reliable positions and the set of symbols appearing at the end of the sorted list are said to 
be in the least reliable positions. 

11.2 Generalized Minimum Distance Decoding 

Recall (see Section 3.8) that an erasure-and-error decoder is capable of correcting twice 
as many erasures as errors. That is, a code with minimum Hamming distance &in can 
simultaneously correct e errors and f erasures provided that 2e + f 5 - 1. The 
generalized minimum distance (GMD) decoder devised by Forney [88] makes use of this 
fact, deliberately erasing symbols which have the least reliability, then correcting them using 
an erasure-and-error decoder. The GMD decoding considers all possible patterns of up to 
f I - 1 erasures in the least reliable positions. The decoder operates as follows. 

Algorithm 11.1 Generalized Minimum Distance (GMD) Decoding 

Initialize: For the (soft) received sequence r = (ro, rl , . . . , rn- l ) ,  form 

Sort the reliabilities to find the dmin - 1 least reliable positions 
if dmin is even: 

the hard-decision vector v = (VO,  v l ,  . . . , ~ ~ - 1 )  and the reliabilities zj = Irj 1. 

for j=1tod, , - , in-1by2 
erase the j least reliable symbols in v to form a modified vector B 
Decode and Select the best codeword 

- 1 by 2 
erase the j least reliable symbols in v to form a modified vector 8 
Decode and Select the best codeword 

else if dmin is odd: 
for j = 0 

end if 

Decode and Select the best codeword 
Decode 8 using an erasures-and-errors decoding algorithm to obtain a codeword c. 
Compute the soft-decision (e.g., Euclidean) distance between M(c) and r, dE(r, M(c)), 
and select the codeword with the best distance. 

As discussed in Exercise 2, the correlation discrepancy A can be computed instead of 
the distance. 

Since hard-decision values are actually used in the erasures-and-errors decoding algo- 
rithm, an algebraic decoder can be used, if it exists for the particular code being decoded. 
(The Chase algorithms described below are also compatible with algebraic decoding algo- 
rithms.) Note that for dmin either even or odd, there are only + 1)/2J different vectors 
that must be decoded. 

While the GMD algorithm is straightforward and conceptually simple, justifying it in 
detail will require a bit of work, which follows in the next section. 
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11.2.1 Distance Measures and Properties 

There are two theorems which will establish the correctness of the GMD algorithm, which 
will require some additional notation. We first generalize the concept of Hamming distance. 
In defining the Hamming distance between elements of a codeword c and another vector v,  
there were essentially two “classes” of outcomes, those where ui matches ci, and those where 
vi does not match ci. We generalize this by introducing J reliability classes C1, C2, . . . , C J ,  

each of which has associated with it two parameters pcj  and pej  such that 

0 5 Bcj  5 Be j  5 1. 

We also introduce the weight of the class, aj = /lei - p c j .  Then Bej is the “cost” when Ui 
is in class j and ui # ci, and BCj is the “cost” when vi is in class j and ui = ci. It is clear 
that 0 5 a; 5 1. 

We write 

Then the generalized distance dG (v, c) is defined as 

il-1 

dG(v, C> = C d G ( v i ,  Ci> .  (11.2) 

(Note that this is not a true distance, since it is not symmetric in v and c.) Now let n,; be 
the number of symbols received correctly (i.e., vi = ci)  and put into class Cj .  Let nej be 
the number of symbols received incorrectly (so that ui # ci) and put into class Cj . Then 
(1 1.2) can be written as 

i=O 

.I 

(11.3) 

Example 11.2 For conventional, errors-only decoding, there is only one reliability class, C1, having 
= 0 and pel = I ,  so eq = 1. In this case, the generalized distance specializes to the Hamming 

distance. 
Introducing erasures introduces a second reliability class C2 having &2 = j3e2 = 0, or a2 = 0. 

Symbols in the erasure class can be considered to be equally distant from all transmitted symbols. 0 

A class for which aj = 1 is said to be fully reliable. 

a correct decoded value. 
The first theorem provides a basis for declaring when the decoding algorithm can declare 

Theorem 11.1 [88] For a code having minimum distance dmin, ifc is sent and n,, and nej 

are such that 

CT(1 - a j )nc ;  + (1 + aj)nejl  < dmin, 
J 

(11.4) 
j= l  

then 
dG(V, C> < dG(V, C’) 

for all codewords c’ # c. That is, v is closer to c in the dG measure than to all other 
codewords. 
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Note that for errors-only decoding, this theorem specializes as follows: if 2 n e l  < d d n ,  then 
dH(r, c) < dH(r, c’), which is the familiar statement regarding the decoding capability of 
a code, with ne1 the number of correctable errors. For erasures-and-errors decoding, the 
theorem specializes as follows: if 2ne1 + (nc2  + n e 2 )  < dmin then &(v, C) < &(v, c’). 
Letting f = nc2  + ne2  be the number of erasures, this recovers the familiar condition for 
erasures-and-errors decoding. 

Proof Let c’ be any codeword not equal to c. Partition the n symbol locations into sets such 
that 

SO if ci = c; 

i E Scj  if ci # C: and ~i = C i  and V i  E C j  I Sej if ci # c: and vi # ci and U i  E C j .  

Clearly we must have ) S c j )  5 n c j  and ISej I 5 n e j .  

Fori E S O , & ( V ~ , C ; )  ? O = d ~ ( c i , c ; ) .  

For i E S c j ,  dG(Vi, C:) = Bej  = d ~ ( c { ,  C i )  - 1 + Bej  

For i E S e j ,  dG(Vi, C:) 2 Bcj  = d ~ ( C i ,  C i )  - 1 + B c j .  

Summing both sides of these equalitieshnequalities over j = 1, . . . , J ,  we obtain 

n-1 

~ G ( V ,  C’) 2 dH(C, C’) - c[(1 - Bej>Isc j I  

n- 1 

(1 - B c j > l s e j l l  

i=O 

L dmin - C[(1- B e j ) n c j  + (1 - ~ c j ) n e j > l .  

i =O 

If, as stated in the hypothesis of the theorem, 

then 

This theorem allows us to draw the following conclusions: 

If generalized distance dG is used as a decoding criterion, then no decoding error will 
be made when ncj and nej are such that (1 1.4) is satisfied. 

Let us say that c is within the minimum distance of v if (1 1.4) is satisfied. 

distance of any received word v. 
The theorem also says that there can be at most one codeword within the minimum 

Thus, if by some means a codeword c can be found within the minimum distance of the 
received word v, then it can be concluded that this is the decoded value. 

The next theorem will determine the maximum number of different decoded values 
necessary and suggest how to obtain them. 
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Let the classes be ordered according to decreasing reliability (or weight), so that aj 2 ak 
if j c k. Let 

be the vector of all class weights. Let 

Let 

a =  ( a l , a 2 , . . . , a J )  

Rb = {0,  1 , 2 , .  . . , b }  and E b  = { b  + 1, b + 2, b + 3 , .  . . , J ] .  

a b = { l , l ,  ..., l , o , o ,  ..., o}. - 
b ones 

Theorem 11.2 [88] Let the weights be ordered according to decreasing reliabilizjt If 
J 

C [ ( 1  - aj)ncj + (1 + a j > n e j l  < dmin, 
j = 1  

then there is some integer b such that 
b J 

j = l  i=b+l 

Since erased symbols are associated with a class having aj = 0, which would occur last 
in the ordered reliability list, the import of the theorem is that if there is some codeword 
such that the inequality (1 1.4) is satisfied, then there must be some assignment in which 
(only) the least reliable classes are erased which will enable an erasures-and-errors decoder 
to succeed in findmg that codeword. 
Proof Let 

J 

f(a> = C[(1- aj )nc j  + (1 + a j l n e j l .  

j=1 

b Note that f ( a b )  = 2 Cjz1 n,j + C:=b+l  (ncj + n e j ) .  The proof is by contradiction. 
Suppose (contrary to the theorem) that f ( a b )  2 ddn .  Let 

ho = 1 -a1 hb = (Yb - a b + l  1 5 b 5 J - 1 h~ =a.J. 

By the ordering, 0 p hb 5 1 for 0 p b p 1, and hb = 1 .  
Now let 

.I 

Then 
J J 

f(a) = f c h b a b  = c h b f ( a b )  2 dmin c h b  = dmin. 
( b r 0  ) b=O b=O 

Thus if f ( a b )  1 d for all b ,  then f(a) 2 d .  But the hypothesis of the theorem is that 
f (a)  < d ,  which is a contradiction. Therefore, there must be at least one b such that 

Let us examine conditions under which an erasures-and-errors decoder can succeed. 
The decoder can succeed if there are apparently no errors and d d n  - 1 erasures, or one error 
and dmin - 3 erasures, and SO forth up to to errors and dmin - 2t0 - 1 erasures, where to is 
the largest integer such that 2t0 5 dhn - 1. These possibilities are exactly those examined 
by the statement of the GMD decoder in Algorithm 1 1.1. 

f ( a b )  < d .  
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11.3 The Chase Decoding Algorithms 

In [46], three other soft-decision decoding algorithms were presented, now referred to 
as Chase-1, Chase-2, and Chase-3. These algorithms provide varying levels of decoder 
capability for varying degrees of decoder effort. 

In the Chase-1 algorithm, all patterns of up to d- - 1 errors are added to the received 
signal vector v to form w = v + e. Then w is decoded, if possible, and compared using a 
soft-decision metric to r. The decoded codeword closest to r is selected. However, since 
all patterns of up to dmin - 1 errors are used this is very complex for codes of appreciable 
length or distance, so Chase-1 decoding has attracted very little interest. 

In the Chase-2 algorithm, the [dmin/2] least reliable positions are identified from the 
sorted reliabilities. The set E consisting of all errors in these Ld-/2J least reliable positions 
is generated. Then the Chase-2 algorithm can be summarized as follows. 

Algorithm 11.2 Chase-2 Decoder 

Initialize: For the (soft) received sequence r = (ro, q,  . . . , rn- l ) ,  form the hard-decision vector 
v = (UO, ul , . . . , un-l)  and the reliabilities zi = Iri I. 
Identify the Ldmin/2J least reliable positions 
Generate the set E of error vectors (one at a time, in practice) 
for each e E E 

Decode v + e using an errors-only decoder to produce the codeword c 
Compute dE (r, M(c)) and select the candidate codeword with the best metric. 

end for 

to the GMD. 
The Chase-3 decoder has lower complexity than the Chase-2 algorithm, and is similar 

Algorithm 11.3 Chase-3 Decoder 

Initialize: For the (soft) received sequence r = (ro, q ,  . . . , rn-1), form the hard-decision vector 
v = (UO, u l ,  . . . , un-l)  and the reliabilities zi = Iri 1. 
Sort the reliabilities to find the Ldfin - 11 least reliable positions 

Generate a list of at most Ldmin/2 + 1J sequences by modifying v: 
If dmin is even, modify v by complementing no symbols, then the least reliable symbol, then the three 
least reliable symbols, . . ., the dmin-l least reliable symbols. 
If dmin is odd, modify v by complementing no symbols, then the two least reliable symbols, then the 
four least reliable symbols, . . ., the d h - 1  least reliable symbols. 
Decode each modified v into a codeword c using an error-only decoder. 
Compute dE(r, M(c)) and select the codeword that is closest. 

11.4 Halting the Search: An Optimality Condition 

The soft-decision decoding algorithms presented so far require searching over an entire list 
of candidate codewords to select the best. It is of interest to know if a given codeword is 
the best that is going to be found, without having to complete the search. In this section we 
discuss an optimality condition appropriate for binary codes transmitted using BPSK which 
can be tested which establishes exactly this condition. 

Let r be the received vector, with hard-decision values v. Let c = (co, c1, . . . , cn-l) be 
a binary codeword in C and let 6 = (20, Zl,  . . . , Znn-l) be its bipolar representation (i.e.., for 
BPSK modulation), with Zi = 2ci - 1. In this section, whenever we indicate a codeword c 



446 Soft-Decision Decoding Algorithms 

its corresponding bipolar representation E is also implied. We define the index sets Do(c) 
and D1 (c) with respect to a codevector c by 

and 

Let n(c)  = ID1 (c) 1 ;  this is the Hamming distance between the transmitted codeword c and 
the hard-decision vector v. 

It is clear from the definitions that riEi < 0 if and only if ui # ci. In Exercise 2, the 
correlation discrepancy h(r ,  E )  is defined as 

Do(c) = ( i  : 0 5 i < n andci = ui}  D ~ ( c )  = { i  : 0 5 i < n andci # ui}. 

i:rii.i <O 

Based on the index sets just defined, h can be expressed as 

iEDI (c )  

As discussed in Exercise 2, ML decoding seeks a codeword c such that h(r ,  E )  is minimized: 
a ML codeword c* is one satisfying 

h(r,E*) 5 min h ( r , c ) .  
C € C , C # C *  

While determining the minimum requires search over all c E C, we will establish a tight 
bound A* on mincEc,c#c*(h(r, c)) such that h(r ,  c) 5 h* represents a sufficient condition 
for the optimality of the candidate codeword in the list of candidate codewords generated 
by a reliability-based decoding algorithm such as those presented above. 

Let the indices in Do(c) be written as 

Do(c) = {El, 1 2 7  . . . *  h - n ( c ) l ,  

Irl; I < lrEj I. 

where the indices are ordered such that for i < j ,  the reliabilities are ordered as 

Let Df)(c) denote the first j indices in the ordered set, 

D ( j )  0 ( 1 = U l , l 2 , .  - . ,  l j } .  (11.5) 

For j i 0, define Df)(c) = 0, and for j 2 n - n ( c ) ,  define Df)(c) = Do(c). 
Let wi be the ith weight in the weight profile of the code C. That is, wg = 0, w1 = dfin, 

and w1 < w2 < . . . < wm for some m. That is, w,  is the weight of the heaviest codeword 
in C. For a codeword c E C, let 

and define 

qi = W i  - n(c)  

and 
R ( C ,  w j )  = (c’ E C ~ H ( c ,  c’) < ~ j } .  

ThesetR(c, wj)isthesetofcodewordswithinadistancewj-1 ofc. Whenj = l ,R(c,  w1) 
is simply the codeword {c}. When j = 2, R ( c ,  w2) is the codeword c and all codewords in 
C which are at a distance ddn from c. 

With this notation, we are now ready for the theorem. 



11.5 Ordered Statistic Decoding 447 

Theorem 11.3 [204, p .  4041 Let r be the received vector, with corresponding hard-decision 
vector V. For a codeword c E C and a nonzero weight wj in the weight projile of C, if the 
correlation discrepancy h(r, M(c)) satisjies 

h(r, M(c)) 5 G(r, Wj), 

then the maximum likelihood codeword CML for r is contained in R(c, wj). 

The theorem thus establishes a sufficient condition for R(v, wj) to contain the maximum 
likelihood codeword for r . 
Proof Let c‘ be a codeword outside R(c, wj). Then, by the definition of R, dH(C, c‘) 2 Wj. 
The theorem is established if we can show that h(r, M(c’)) p h(r, M(c)), since this would 
show that c’ has lower likelihood than c. Thus no codeword outside R(r, wj) is more likely 
than c, so that the maximum likelihood codeword must be in R(c, Wj). 

Define 
no1 = JDo(c) n Dl(c’)I and 

From the definitions of Do and D1, it follows that dH(c, c’) = no1 + n10. As we have just 
observed, we must also have 

wj L d H ( C ,  c’) = no1 + nio. 

nlo = IDl(c) n Do(c’)). 

(11.6) 

It also follows that 

IDl(c’>I 2 IDo(c) n Dl(c’>I 2 wj -n10 
2 Wj - lDl(c)I (11.7) 

= wj - n(c), 

where the first inequality is immediate from the nature of intersection, the second from 
(1 1.6), and the third from the definition of n 10 and the intersection. Now we have 

= G(C, Wj) (bydefinition) 

2 h(c, C) (by hypothesis). 

We thus haveh(r, c’) 2 h(r, c): no codewordoutside R(r, wj) is morelikely thanc. Hence 
0 

For j = 1, this theorem says that the condition h(r, M(c)) < G(c, wl) guarantees that 
c is, in fact, the maximum likelihood codeword. This provides a sufficient condition for 
optimality, which can be used to terminate the GMD or Chase algorithms before exhausting 
over all codewords in the lists these algorithms produce. 

c m  must lie in R(r, Wj). 

11.5 Ordered Statistic Decoding 

The GMD and Chase algorithms make use of the least reliable symbols. By contrast, ordered 
statistic decoding [ 1041 uses the most reliable symbols. 
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Let C be an (n ,  k )  linear block code with k x n generator matrix 

G =  [go gl * * .  gn-11. 

Let r be the received vector of matched filter outputs, with corresponding hard-decoded 
values v. Let z denote the corresponding reliability values and let E = (To ,  Zi, . . . , Zn-i> 
denote the sorted reliability values, with TO 2 Z1 2 . . . 2 Zn-1. This ordering establishes 
a permutation mapping n1, with 

z = Zl(Z). 

In ordered statistic decoding, the columns of G are reordered by the permutation mapping 
to form a generator matrix GI, where 

- 

Gt = ~1 (G) = [gb gi . * . &-I] . 

Now a most reliable basis for the codeword is obtained as follows. The first k linearly 
independent columns of G' (associated with the largest reliability values) are found. Then 
these k columns are used as the first k columns of a new generator matrix G", in reliability 
order. The remaining n - k columns of G" are placed in decreasing reliability order. This 
ordering establishes another permutation mapping 1t2, such that 

G" = n2(Gt) = n2(ni(G)). 

Applying n2 to the ordered reliabilities Z results in another reliability vector 2, 

ii = ?T2(Z) = TTZ(?Tl(Z)) 

satisfying 

Now perform elementary row operations on G" to obtain an equivalent generator matrix G 
in systematic form, 

Z1 > 2 2 2 - . . L & a n d & + l  > & + 2 > - . . 2 : & 1 .  

rl o ... o pl,l ... Pl,n-kl 

L O  0 ". 1 Pk,l ' * .  Pk,n-kA 

Let c" denote the code generated by G. The code c" is equivalent to C (see Definition 3.5). 
The next decoding step is to use the k most reliable elements of v. Let us denote these 

as i$ = [n2(n1 (v))11:k = (;I, 62, . . . , Zk). Since these are the most reliable symbols, these 
symbols should contain very few errors. Since G is systematically represented, we will take 
these symbols as the message symbols for a codeword. The corresponding codeword C in 
c" is obtained by 

2 = f k 6  E c". 
Finally, the codeword P in the original code C can be obtained by unpermuting by both 
permutations: 

P = n;'(n,l(q) E c. 
This gives a single candidate decoded value. Then P is compared with r by computing 
dE(r, M(P)) (at least, this is the appropriate distance for the AWGN channel). 



11.6 Exercises 449 

Now some additional search is performed. Fix a “search depth parameter” I 5 k .  For 
each i in 1 p i 5 I, make all possible changes of i of the k most reliable symbols in f k .  

Denote the modified vector as i$. For each such Ti,  find the corresponding codeword 

and its corresponding codeword i? = ncl(nF1(C’)) E C. Then compute dE(r, M(i?)). 
Select the codeword i? with the best metric. The number of codewords to try is If=, (f). 

The ordered statistic decoding algorithm is summarized below. 

Algorithm 11.4 Ordered Statistic Decoding 

Initialize: For the (soft) received sequence r = (rg,  r1, . . . , rfl-l), form the hard-decision vector 
v = (vo, q, . . . , v f l - l )  and the reliabilities z i  = Iri 1. 
Sort the reliabilities by q ,  such that 

such that To 1 2 1  2 . . . 2 T f l - l  

Order the columns of G to produce G’ = nl (G). 
Find the first k linearly independent columns of G’ and retain the order of the other columns. Let 
G” = nz(G’) have these first k linearly independent columns. 
Reduce GI‘ by row operations to produce e. 
Let i k  = rr2(nl(v))l:k. 
for i = 0 to I 

z = q ( z )  

form all patterns of i errors and add them to the most reliable positions of Vk to form $6 
for each such i i ,  find E’ = Vie and the corresponding i? = zrl  (nTl(Zr’)) 

for each L’, compute dE(r, M(t)) and retain the codeword with the smallest distance. 

When I = k ,  then the algorithm will compute a maximum likelihood decision, but the 
decoding complexity is O(29 .  However, since the vector f k  contains the most reliable 
symbols, it is likely to have very few errors, so that making a change in only a small number 
of locations is likely to produce the ML codeword. It is shown in [lo41 (see also [204, p. 
4331) that for most block codes of length up to n = 128 and rates R I that i = L&in/4] 
achieves nearly ML decoding performance. 

11.6 Exercises 

11.1 Show that for a signal transmitted over an AWGN, the absolute log likelihood ratio (1 1.1) is 

11.2 Let Z: is a BPSK signal transmitted through an AWGN to produce a received signal r. 
proportional to Iri I. 

(a) Show that, as far as ML decoding is concerned, dE(r, Zr) is equivalent to m(r, V) = 
-1 vi = o  
1 vi = 1. 

ri i;i, where Gi = 

(b) Show that m(r, i )  can be written as 

where 
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Thus, minimizing dE(r,  S) is equivalent to minimizing A(r, 5) .  h(r ,  5 )  is called the 
correlation discrepancy. 

11.3 [204, p. 4061 In this exercise, a sufficient condition for determining the optimality of a codeword 
based on two codewords is derived. Let cl , c2 E C. Define 

61 = wl - n ( q )  62 = wi - n(c21, 

where n(c)  = I{i : 0 5 i < n and ci # q}l is the Hamming distance between c and v, and wi 
is the i th weight in the weight profile of the code. Assume that the codewords are ordered such 
that 61 ? 6 2 .  Also define 

~ 0 0  = D O ( C ~ )  n ~ O ( c 2 )  ~ 0 1  = DOW n w c 2 ) .  

Let X ( 4 )  denote the first q indices of an ordered index set X ,  as was done in (1 1.5). Define 

Also define 
G(c1,  ~ 1 ~ ~ 2 ,  w l )  = C IriI. 

ie.l(cl ,CZ) 

Let c be the codeword among c1, c2, which has the smaller discrepancy. 
Show that: If k(c ,  c )  5 G(c1,  w l ,  c2, w l ) ,  then c is the maximum likelihood codeword for r. 

11.4 [204] In GMD decoding, only L(dmin + 1)/2J erasure patterns in the d d n  - 1 least reliable 
positions are examined. Explain why not all d d n  - 1 possible erasure patterns are considered. 

11.7 References 

Generalized minimum distance decoding was presented first in [88]. The statement of the 
algorithm presented here follows [204]. The Chase decoding algorithms were presented 
in [46]; our statement of Chase-3 is essentially identical to that in [204]. Generalizations 
of the Chase algorithm presented in [lo31 circumscribe Chase-2 and Chase-3, and are 
capable of achieving bounded distance decoding. An iterative method of soft decision 
decoding which is capable of finding the ML codeword is proposed in [183, 1821. Our 
discussion of the optimality criterion very closely follows [204, section 10.31, which in turn 
is derived from [327]. Chapter 10 of [204], in fact, provides a very substantial discussion 
of soft-decision decoding, including topics not covered here such as reduced list syndrome 
decoding [317, 3181, priority-first search decoding [139, 140, 73, 16, 3481, and majority- 
logic decoding [224, 1921. Soft-decision decoding is also discussed in this book in chapter 
15 for LDPC codes, chapter 12 using the trellis representation of codes, chapter 7 for Reed- 
Solomon codes, and chapter 14 for turbo codes. 
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Chapter 12 

Convolutional Codes 
12.1 Introduction and Basic Notation 

Convolutional codes are linear codes that have additional structure in the generator matrix 
so that the encoding operation can be viewed as a filtering - or convolution - operation. 
Convolutional codes are widely used in practice, with several hardware implementations 
available for encoding and decoding. A convolutional encoder may be viewed as nothing 
more than a set of digital filters - linear, time-invariant systems - with the code sequence 
being the interleaved output of the filter outputs. Convolutional codes are often preferred 
in practice over block codes, because they provide excellent performance when compared 
with block codes of comparable encodeldecode complexity. Furthermore, they were among 
the earliest codes for which effective soft-decision decoding algorithms were developed. 

Whereas block codes take discrete blocks of k symbols and produce therefrom blocks 
of n symbols that depend only on the k input symbols, convolutional codes are frequently 
viewed as stream codes, in that they often operate on continuous streams of symbols not 
partitioned into discrete message blocks. However, they are still rate R = kjn codes, 
accepting k new symbols at each time step and producing n new symbols. The arithmetic 
can, of course, be carried out over any field, but throughout this chapter and, in fact, in most 
of the convolutional coding literature, the field G F ( 2 )  is employed. 

We represent sequences and transfer functions as power series in the variable x.' A 
sequence {. . . , m-2, m-1, mo, m l ,  m2, . . .} with elements from a field F is represented as 
a formal Laurent series m ( x )  = CE-, rnlx'. The set of all Laurent series over F is a 
field, which is usually denoted as F [ [ x l ] .  Thus, m ( x )  E F [ [ x ] ] .  

For multiple input streams we use a superscript, so rn(')(x) represents the first input 
stream and rn(2)(x)  represents the second input stream. For multiple input streams, it is 
convenient to collect the input streams into a single (row) vector, as in 

m ( x >  = [rn(')(x)  m ( 2 ) ( ~ ) ]  E ~ " ~ 1 1 ~ .  

A convolutional encoder is typically represented as sets of digital (binary) filters. 

Example 12.1 Figure 12.1 shows an example of a convolutional encoder. (Recall that the D blocks 
represent 1-bit storage devices, or D flip-flops.) The input stream mk passes through two filters 
(sharing memory elements) producing two output streams 

cf) = mk + mk-2 and cf' = mk + m k - l +  mk-2. 

These two streams are interleaved together to produce the coded stream C k .  Thus, for every bit of 
input, there are two coded output bits, resulting in a rate R = 1/2 code. 

'The symbol D is sometimes used instead of x .  The Laurent series representation may be called the D-transform 
in this case. 
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mk I mk-1 mk-2 Ck 
1 

Figure 12.1 : A rate R = 1 /2 convolutional encoder. 

It is conventional to assume that the memory elements are initialized with all zeros at the beginning 

For the input stream m = { 1, 1, 0, 0, 1,0, l}, the outputs are 
of transmission. 

c(l) = 11, 1, 1, 1, 1,0,0,0,  1) and c ( ~ )  = {1,0,0, 1, 1, 1,0,  1, 1) 

and the interleaved stream is 

c = {11,10, 10,11, 11,01,00,01, 11) 

(where commas separate the pairs of outputs at a single input time). We can represent the transfer 
functionfrominputm(x) tooutput c(')(x) asg(l)(x) = 1+x2, andthetransferfunctionfromm(x) to 
output d2) (x) as g(2)(x) = 1 + x + x 2 .  The input stream m = { 1, 1, 0, 0, 1, 0, 1) can be represented 
as m ( x )  = 1 + x + x4 + x6 E G F ( 2 ) [ [ x ] ] .  The outputs are 

c'l'(x) = m(x)g1  (x) = (1 + x + x4 + x6)(1 + 2) = 1 + x + x 2  + x3 + x4 + x8 
c'2'(x) = m ( x ) g 2 ( x )  = (1 + x + x4 + x6)(1 + x + x 2 )  = 1 + x3 + x4 + x5 + x7 + 2. 

0 

A rate R = k / n  convolutional code has associated with it an encoder, a k x n matrix 
transfer function G(x) called the transferfunction matrix. For the rate R = 1/2 code of 
this example, 

G a ( x ) = [ 1 + x 2  1 + x + x 2 ] .  
The transfer function matrix of a convolutional code does not always have only polyno- 

mial entries, as the following example illustrates. 

Example 12.2 Consider the convolutional transfer function matrix 

Since there is a 1 in the first column the input stream appears explicitly in the interleaved output data; 
this is a systematic convolutional encoder. 

A realization (in controller form) for this encoder is shown in Figure 12.2. For the input sequence 
m ( x )  = 1 + x + x2 + x3 + x4 + 2, the first output is 

c ( ' ) (x )  = m(x) = 1 + x + x 2  + x3 + x4 + x 8  

and the second output is 

(1 + x + x 2  + x3 +x4 + x8)(1+ x + 2) 
1 + x 2  

C @ ' ( X )  = = 1 + x3 +x4  +x5 +x7 + x 8  + . . . 

as can be verified by long division. 
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Figure 12.2: A systematic R = 1/2 encoder. 

An encoder that has only polynomial entries in its transfer function matrix is said to be 
a feedforward encoder or an FIR encoder. An encoder that has rational functions in its 
transfer function matrix is said to be a feedback or IIR encoder. 

For a rate R = k / n  code with k > 1, there are k input message sequences (usually 
obtained by splitting a single message sequence into k streams). Let 

m(x> = [ ~ ( ' ) ( x ) , ~ ( ~ ) ( x ) ,  . . . , ~ ( k ) ( x ) ~  

and 

(12.1) 

The output sequences are represented as 

c(x) = [c(')(x), d2)(x), . . . , c(")(x)] = m(x)G(x). 
A transfer function matrix G(x) is said to be systematic if an identity matrix can be identified 
among the elements of G(x). (That is, if by row and/or column permutations of G ( x ) ,  an 
identity matrix can be obtained.) 

Example 12.3 For a rate R = 2/3 code, a systematic transfer function matrix might be 

(12.2) 

with a possible realization as shown in Figure 12.3. This is based on the controller form of Figure 
4.7. Another more efficient realization based on the observability form from Figure 4.8, is shown in 
figure 12.4. In this case, only a single set of memory elements is used, employing linearity. With 
m ( x )  = [ l  + x 2  + x 4  + x 5  + x 7  +.  . . , x 2  + x 5  + x 6  + x 7  + . . . I ,  theoutput is 

c ( x )  = [ l  + x 2  +x4 + x 5  + x 7  + * . .  9 x 2  + x 5  + x 6  f.7 + . . . , x + x 3  + x 5  + . . * 1. 

~ ~ 1 , 0 , 1 , 0 , 1 , 1 , 0 , 1  I . . .  } ,{0 ,0 ,1 ,0 ,0 ,1 ,1 ,1 ,  ... } ,{0 ,1 ,0 ,1 ,0 ,1 ,0 ,0  ,..., }] 

(100,001,110,001,100,111,010, llO}. 

The corresponding bit sequences are 

which, when interleaved, produce the output sequence 
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I 

Figure 12.3: A systematic R = 213 encoder. 

Figure 12.4: A systematic R = 213 encoder with more efficient hardware. 

For feedforward encoders, it is common to indicate the connection polynomials as vectors 
of numbers representing the impulse response of the encoder, rather than polynomials. The 
transfer function matrix G(x)  = [l + x2, 1 + x + x2] is represented by the vectors 

g(') = [loll and g(') = [ l l l ] .  

These are often expressed compactly (e.g., in tables of codes) in octal form, where triples of 
bits are represented using the integers from 0 to 7. In this form, the encoder is represented 
using g( ' )  = 5 ,  g(') = 7. 

For an impulse response g ( j )  = [gf', gF), . . . , g, 1, the output at time i due to the 
input sequence mi is 

( j  ) 

1 =o 

which is, of course, a convolution sum (hence the name of the codes). For an input sequence 
m, the output sequence can be written as c(j) = m * g ( j ) ,  where * denotes discrete-time 
convolution. The operation of convolution can also be represented using matrices. Let 
m = [mo, m l ,  m2, . . .]. Then for g ( j )  = [&I, g y ) ,  . . . , g, 3, the convolution c = mg(j) Ci) 
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can be represented as 

where empty entries in the matrix indicate zeros. 
For a rate 1 /2 code, the operation of convolution and interleaving the output sequences is 

represented by the following matrix, where the columns of different matrices are interleaved: 

(12.3) 
It is the shift (Toeplitz) structure of these generator matrices that gives rise to some of the 
desirable attributes of convolutional codes. 

For a k-input, n-output code with impulse response vectors g ( L j ) ,  i = 1,2, . . . , k and 
j = 1,2, . . . , n, where g( ' ,J)  is the impulse response of the encoder connecting input i with 
output j ,  the output can be written as 

t 

q=l  l=O 

A matrix description of the these codes can also be given, but the transfer function matrix 
G ( x )  is usually more convenient. 

We always deal with delayfree transfer function matrices, for which it is not possible 
to factor out a common multiple x i  from G ( x ) .  That is, it is not possible to write G ( x )  = 
x"(x) for some i > 0 and any G ( x ) .  

12.1.1 The State 

A convolutional encoder is a state machine. For both encoding and decoding purposes, it is 
frequently helpful to think of the state diagrams of the state machines, that is, a representation 
of the temporal relationships between the states portraying statehext-state relationships as 
a function of the inputs and the outputs. For an implementation with u memory elements, 
there are 2" states in the state diagram. 

Another representation which is extremely useful is a graph representing the connections 
from states at one time instant to states at the next time instant. The graph is a bipartite 
graph, that is, a graph which contains two subsets of nodes, with edges running only between 
the two subsets. By stacking these bipartite graphs to show several time steps one obtains a 
graph known as a trellis, so-called because of its resemblance to a trellis that might be used 
for decorative purposes in landscaping. 

It may be convenient for some implementations to provide a table indicating the statehext 
state information explicitly. From the statehext state table the state/previous state informa- 
tion can be extracted. 
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Box 12.1: Graphs: Basic Definitions 

Graph concepts are used throughout the remainder of the book. 
definitions summarize some graph concepts [375]. 

The following 
A graph G is a pair ( V ,  E ) ,  

where V is a nonempty finite set of vertices or nodes often 
called the vertex set and E is a finite family of unordered 
pairs of elements of V called edges. (A family is like a set, 
but some elements may be repeated.) In the graph here, the 
vertex set is V = {a ,  b, c ,  d ]  and the edge family is E = 

A loop is an edge joining a vertex to itself. If the edge 
family is in fact a set (no repeated elements) and there are 
no loops then the graph is a simple graph. 
Two vertices of a graph G are adjacent if there is an edge 
joining them. We also say that adjacent nodes are neighbors. 
The two vertices are said to be incident to such an edge. Two 
distinct edges of a graph are adjacent if they have at least one 
vertex in common. The degree of a vertex is the number of 
edges incident to it. 
The vertex set V of a bipartite graph can be split into two 
disjoint sets V = V1 U V;! in such a way that every edge of 
G joins a vertex of V1 to a vertex of V2. 

{ { a ,  a } ,  {a ,  bl, {a,  bl, {a, bl, { a ,  4, Ib, 4, {c ,  4, Id,  41 .  C 

A graph 

W V 2 v '  
A bipartite graph 

C 

A directed graph 

A -  walk through a graph G ( V ,  E )  is a finite sequence of edges 
{ U O ,  1111, {q, u;!] ,..., {um- l ,  urn], where each ui E V and each {vi, u j }  E E .  The 
length of a walk is the number of edges in it. If all the edges are distinct the walk is a 
trail; if all the vertices are also distinct (except possibly uo = Um) the walk is a path. A 
path or trail is closed if uo = urn. A closed path containing at least one edge is called a 
circuit. The girth of a graph is the number of edges in its shortest circuit. 
A graph is connected if there is a path between any pair of vertices u,  w E V. A connected 
graph which contains no circuits is a tree. A node of a tree is a leaf if its degree is equal 
to 1. 
A directed graph (digraph) G is a pair (V, E ) ,  where E is a finite family 
of ordered pairs of elements of V .  Such graphs are frequently represented us- 
ing arrows to represent edges. In the directed graph here, the edge set is E = 

{ (a ,  a), (a, b) ,  (b, a) ,  (b, a),  (a ,  c ) ,  (b, c), (c ,  4, (d, 41 .  

Example 12.4 Consider again the convolutional encoder of Example 12.1 with transfer function 
matrix G ( x )  = [ 1 + x2, 1 + x + x2]. A realization and its corresponding state diagram are shown in 
Figure 12.5(a) and (b). The state is indicated as a pair of bits, with the first bit representing the least 
significant bit (lsb). The branches along the state diagram indicate input/output values. One stage 
of the trellis (corresponding to the transition between two time instants) is shown in Figure 12.5(c). 
Three trellis stages are shown in Figure 12.5(d). 0 

Example 12.5 For the rational systematic encoder with matrix transfer function 

G ( x ) =  [' 91, 
O 1 1 + X 3  

(12.4) 

with the circuit realization of Figure 12.4, the state diagram, and trellis are shown in Figure 12.6. 
In the state diagram, the states are represented as integers from 0 to 7 using the numbers (a ,  b, c )  
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v 1/01 

(a) Encoder. (b) State Diagram. 

State Next 
(lsb,msb) State 

00 

10 

01 01 

11 
1/01 

11 

State 
(lsb,msb) 

00 
o/oo 0100 

10 

01 

11 

t t + l  t + 3  t + 4  

(c) One stage of trellis. (d) Three stages of trellis. 

Figure 12.5: Encoder, state diagram, and trellis for G ( x )  = [l + x2, 1 + x + x 2 ] .  

corresponding to the registers shown on the circuit. (That is, the lsb is on the right of the diagram this 
time.) Only the state transitions are shown, not the inputs or outputs, as that would excessively clutter 
the diagram. The corresponding trellis is also shown, with the branches input/output information 
listed on the left, with the order of the listing corresponding to the sequence of branches emerging 
from the corresponding state in top-to-bottom order. 

0 

12.2 Definition of Codes and Equivalent Codes 

Having now seen several examples of codes, it is now time to formalize the definition and 
examine some structural properties of the codes. It is no coincidence that the code sequences 
(dl)(x), d 2 ) ( x ) >  are the same for Examples 12.1 and 12.2. The sets of sequences that lie in 
the range of the transfer function matrices G, (x) and Gb ( x )  are identical: even though the 
encoders are different, they encode to the same code. (This is analogous to having different 
generator matrices to represent the same block code.) 
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inputloutput 
00/000 
10/100 
01/010 
1111 10 

(a) State diagram 

state 

10/101 
00/001 
111111 
01/011 

01/010 
11/110 oo/ooo 
10/100 

01/011 
11/111 
00/001 
10/101 

1111 10 
01/010 
10/100 
00/000 

111111 
01/011 
10/101 
00/00 1 

(c) Trellis. 

State 
0 
1 
2 
3 
4 
5 
6 
7 

Next State 
0 1 2 3  
4 5 6 7  
1 0 3 2  
5 4 7 6  
2 3 0 1  
6 7 4 5  
3 2 1 0  
7 6 5 4  

(b) Staternext State Information. 

Figure 12.6: State diagram and trellis for a rate R = 2/3 systematic encoder. 
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Figure 12.7: A feedforward R = 213 encoder. 

We formally define a convolutional code as follows: 

Definition 12.1 [303, p. 941 A rate R = k/n code over the field of rational Laurent series 
F[[x]] over the field F is the image of an injective linear mapping of the k-dimensional 
Laurent series m(x) E F[[x]lk into the n-dimensional Laurent series c ( x )  E F[[x]ln. 0 

In other words, the convolutional code is the set { c ( x ) )  of all possible output sequences 
as all possible input sequences {m(x)] are applied to the encoder. The code is the image set 
or (row) range of the linear operator G ( x ) ,  not the linear operator G ( x )  itself. 

Example 12.6 Let 

(12.5) 

and note that 

(where G 1 (x) was defined in (12.2)) and consider the encoding operation 

where 

Corresponding to each m(x) there is a unique m’(x) ,  since T2(x) is invertible. Hence, as rn’(x) varies 
over all possible input sequences, m ( x )  also varies over all possible input sequences. The set of output 
sequences { c ( x ) }  produced is the same for G2(x) as G1 ( x ) :  that is, both encoders produce the same 
code. 

Figure 12.7 shows a schematic representation of this encoder. Note that the implementation of 
both G1 (x) (of Figure 12.4) and G2(x) have three one-bit memory elements in them. The contents of 
these memory elements may be thought of as the sfuate of the devices. Since these are binary circuits, 
there are 23 = 8 distinct states in either implementation. 

Example 12.7 Another encoder for the code of Example 12.1 is 

(12.6) 
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Figure 12.8: A less efficient feedforward R = 2/3 encoder. 

where, it may be observed, 

The encoding operation 

m(x)G3(x)  = m(x)T3(x)Gi(x)  = m’(x)Gi(x) ,  

with m’(x) = m(x)T3 (x), again results in the same code, since T3(x) is invertible. 
The schematic for G3 (x) in Figure 12.8 would require more storage blocks than either G 1 (x) or 

0 G ~ ( x ) :  it is not as efficient in terms of hardware. 

These examples motivate the following definition. 

Definition 12.2 Two transfer function matrices G ( x )  and G’(x)  are said to be equivalent if 
they generate the same convolutional code. Two transfer function matrices G ( x )  and G’(x)  

These examples also motivate other considerations: For a given a code, is there always 
a feedforward transfer matrix representation? Is there always a systematic representation? 
What it the “minimal” representation, requiring the least amount of memory? As the 
following section reveals, another question is whether the representation is catastrophic. 

12.2.1 Catastrophic Encoders 

Besides the hardware inefficiency, there is another fundamental problem with the encoder 
G3(x) of (12.6). Suppose that the input is 

are equivalent if G ( x )  = T(x)G’ (x )  for an invertible matrix T ( x ) .  

m(x> = [o &], 
where, expanding the formal series by long division, 

1 

1 + x  
- = l + x + x 2 + 2 + . . .  
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The input sequence thus has infinite Hamming weight. The corresponding output sequence 
is 

C(X) = m(x)Gg(x)  = [X 1 01, 

a sequence with total Hamming weight 2. Suppose now that c(x) is passed through a channel 
and that two errors occur at precisely the locations of the nonzero code elements. Then the 
received sequences is exactly zero, which would decode (under any reasonable decoding 
scheme) to m(x) = [0 01. Thus, a j n i t e  number of errors in the channel result in an 
injnite number of decoder errors. Such an encoder is called a Catastrophic encoder. It may 
be emphasized, however, that the problem is not with the code but the particular encoder, 
since Gl(x), G ~ ( x )  and G3(x) all produce the same code but, G1(x) and G ~ ( x )  do not 
exhibit catastrophic behavior. 

Letting wt(c(x)) denote the weight of the sequence c ( x ) ,  we have the following defini- 
tion: 

Definition 12.3 [303, p.971 An encoder G(x) for a convolutional code is catastrophic if 
there exists a message sequence m(x) such that wt(m(x)) = 00 and the weight of the coded 

To understand more of the nature of catastrophic codes, we introduce the idea of a right 
inverse of a matrix. 

Definition 12.4 Let k < n. A right inverse of a k x n matrix G is a n x k matrix G-' such 
that GG-' = & k ,  the k x k identity matrix. (This is not the same as the inverse, which 
cannot exist when G is not square.) A right inverse of G can exist only if G is full rank. 

sequence wt(m(x)G(x)) < 00. 0 

Example 12.8 For G1 (x) of (12.2), a right inverse is 

For G2(x) of (12.5), a right inverse is 

X 

G2(x)-' = [:2 1 + x 2  3] .  

l + x + x  

For G3 (x) of (12.6), a right inverse is 

1 l + x  1 + x 2  
G3(x)-'= 1 + n + ~ 3 + , 4  [ x + x 2  l + x  ] . 

0 

Note that Gl(x1-l and G2(x)-l are polynomial matrices - they have only polynomial 
entries - while G3 (x)-' has non-polynomial entries - some of its entries involve rational 
functions. 

Example 12.9 It should be observed that right inverses are not necessarily unique. For example, the 
matrix [l + x2,  1 + x + x2] has the right inverses 

[l + x  XI  and 11 

Of these, one has all polynomial elements. 0 
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Definition 12.5 A transfer function matrix with only polynomial entries is said to be a 
polynomial encoder (i.e., it uses FIR filters). More briefly, such an encoder is said to be 
polynomial. A transfer function matrix with rational entries is said to be a rational encoder 

0 
For an encoder G ( x )  with right inverse G(x)- ' ,  the message may be recovered (in 

a theoretical sense when there is no noise corrupting the code - this is not a decoding 
algorithm!) by 

c(x)G(x) - '  = m(x)G(x)G(x)-'  = m(x). (12.7) 

Now suppose that c ( x )  has finite weight, but m(x) has infinite weight: from (12.7) this can 
only happen if one or more elements of the right inverse G(x)-' has an infinite number 
of coefficients, that is, they are rational functions. It turns out that this is a necessary and 
sufficient condition: 

(i.e., it uses IIR filters), or simply rational. 

Theorem 12.1 A transferfunction matrix G ( x )  is not catastrophic ifand only i f  it has a 
right inverse G(x)-' having only polynomial entries. 

From the right inverses in Example 12.8, we see that G 1 ( x )  and G z ( x )  have polynomial right 
inverses, while G3(x) has non-polynomial entries, indicating that G3 (x) is a catastrophic 
generator. 

Definition 12.6 A transfer function matrix G ( x )  is basic if it is polynomial and has a 
polynomial right inverse. 0 

G2(x) is an example of a basic transfer function matrix. 

Example 12.10 Another example of a transfer function matrix for the code is 

(12.8) 

The invariant factor decomposition (presented below) can be used to show that this is basic. However, 
for sufficiently small matrices finding a right inverse may be done by hand. We seek a polynomial 
matrix such that 

Writing out the implied equations we have 

a ( l +  x + x 2  + x 3 )  + b(1 + x) + cx = 1 

d( l  + x  + x 2  +x3) +e(l  + x )  + f x  = o 

ax + b = 0 

d x  + e  = 1. 

From the second we obtain b = ax; substituting this into the first we find a(1 + x 3 )  + cx = 1. By 
setting c = x 2  and a = 1 we can solve this using polynomials. 

From the fourth equation we obtain e = 1 + dx, so that from the third equation 

d(1 + x  + x 2 + x 3 )  + (1  +dx)( l  + x )  + fx = 0 

ord ( l+x3)+fx  = 1+x.  Thisyieldsd = 1 andf =x2+1 .  Thisgivesapolynomialrightinverse, 
so G4(x) is basic. Note that the encoder requires four memory elements in its implementation. 
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Two basic encoders G ( x )  and G’(x)  are equivalent if and only if G ( x )  = T(x)G’ (x ) ,  

1. T ( x )  is not only invertible (as required by mere equivalence), 

2. But also det(T(x)) = 1, 

where 

so that when the right inverse is computed all the elements remain polynomial. 

12.2.2 Polynomial and Rational Encoders 

We show in this section that every rational encoder has an equivalent basic encoder. The 
implication is that it is sufficient to use only feedforward (polynomial) encoders to represent 
every code. There is, however, an important caveat: there may not be an equivalent basic 
(or even polynomial) systematic encoder. Thus, if a systematic coder is desired, it may be 
necessary to use a rational encoder. This is relevant because the very powerful behavior of 
turbo codes relies on good systematic convolutional codes. 

Our results make use of the invariant factor decomposition of a matrix [162, section 
3.71. Let G ( x )  be a k x n polynomial matrix. Then2 G ( x )  can be written as 

G ( x )  = A ( x ) r ( x ) B ( x ) ,  

where A ( x )  is a k x k polynomial matrix and B ( x )  is a n x n polynomial matrix and where 
det(A(x)) = 1, det(B(x)) = 1 (ie., they are unimodular matrices); and r(x) is the k x n 
diagonal matrix 

1 Y1 (XI 

Y 2 b )  

Yk (X) _I 

~ i ( x >  I Yi+l 

I r (x )  = 

The nonzero elements yi ( x )  of r(x) are polynomials and are called the invariant factors 
of G (x). (If any of the yi ( x )  are zero, they are included in the zero block, so k is the number 
of nonzero elements.) Furthermore, the invariant factors satisfy 

(Since we are expressing a theoretical result here, we won’t pursue the algorithm for actually 
computing the invariant factor decomposition3); it is detailed in [162]. 

Extending the invariant factor theorem to rational matrices, a rational matrix G ( x )  can 
be written as 

G(x)  = A ( x ) r ( x ) B ( x ) ,  

where A (x) and B ( x )  are again polynomial unimodular matrices and r ( x )  is diagonal with 
rational entries ai ( X ) / B i  (x), such that Yi (x) = cxi (x) 1 ai+l (x) and Bi+l (x) I 

Let G ( x )  be a rational encoding matrix, with invariant factor decomposition G(x)  = 
A ( x )  r (x) B ( x ) .  Let us decompose B ( x )  into the blocks 

(x). 

‘The invariant factor decomposition has a technical requirement: The factorization in the ring must be unique, 
up to ordering and units. This technical requirement is met in our case, since the polynomials form a principal 
ideal domain, which implies unique factorization. See, e.g., [106, Chapter 321. 

3”he invariant factor decomposition can be thought of as a sort of singular value decomposition for modules. 
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where G'(x) is k x n. Then, since the last k columns of r(x) are zero, we can write 

1 
Since A ( x )  and I"(x) are nonsingular matrices, G ( x )  and G'(x) are equivalent encoders: 
they describe the same convolutional code. But G'(x)  is polynomial (since B ( x )  is poly- 
nomial) and since B ( x )  is unimodular (and thus has a polynomial inverse) it follows that 
G'(x) has a polynomial right inverse. We have thus proved the following: 

Theorem 12.2 Every rational encoder has an equivalent basic transferfunction matrix. 

The proof of the theorem is constructive: To obtain a basic encoding matrix from a rational 
transfer function G ( x ) ,  compute the invariant factor decomposition G ( x )  = A ( x ) r ( x ) B ( x )  
and take the first k rows of B ( x ) .  

12.2.3 Constraint Length and Minimal Encoders 

Comparing the encoders for the code we have been examining, we have seen that the 
encoders for G l ( x )  or G2(x) use three memory elements, while the encoder G3(x) uses 
four memory elements. We investigate in this section aspects of the question of the smallest 
amount of memory that a code requires of its encoder. 

Let G ( x )  be a basic encoder (so that the elements of G ( x )  are polynomials). Let 

Vi = m v  deg(gij (XI) 
J 

denote the maximum degree of the polynomials in row i of G ( x ) .  This is the number of 
memory elements necessary to store the portion of a realization (circuit) of the encoder 
corresponding to input i .  The number 

k 
u = c u i  

i= l  

(12.9) 

represents the total amount of storage required for all inputs. This quantity is called the 
constraint length of the encoder. 

Note: In other sources (e.g., [373]), the constraint length is defined as the maxi- 
mum number of bits in a single output stream that can be affected by any input bit (for 
a polynomial encoder). This is taken as the highest degree of the encoder plus one: 
u = 1 + maxi,j deg(gi,j(x)). The reader should be aware that different definitions are 
used. Ours suits the current purposes. 

We make the following definition: 

Definition 12.7 A minimal basic encoder is a basic encoder that has the smallest constraint 
0 

Typically we are interested in minimal encoders: they require the least amount of hard- 
ware to build and they have the fewest evident states. We now explore the question of when 
an encoder is minimal basic. 

length among all equivalent basic encoders. 
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The first theorem involves a particular decomposition of the decoder matrix. We demon- 
strate first with some examples. Let G(x)  = G ~ ( x )  from (12.2). Write 

(12.10) 1 x2 0 1 0  l o x  
G 2 ( x ) =  [. 1 xo] = [ x 2  .] [l 0 01 + [o 1 01. 

As another example, when G(x)  = G4(x) from (12.8) 

l + x  1 0  "1 1 + x + x 2 + x 3  
G4(x) = [ 

- [x3  I "  0 o ] + [ l + x + x 2  l + x  "1 
0 1 0 .  

- 
x 1 0 0  

(12.11) 

In general, given a basic encoder G(x)  we write it as 

Gh + &x) = A(x)Gh + 6 ( x ) ,  (12.12) ... 1 G ( x )  = 

1 
where Gh is a binary matrix with a 1 indicating the position where the highest degree term 
x'i occurs in row i and each row of 6 ( x )  contains all the terms of degree less than ui . Using 
this notation, we have the following: 

Theorem 12.3 [175] Let G(x)  be a k x n basic encoding matrix with constraint length v. 
The following statements are equivalent: 

(a) G ( x )  is a minimal basic encoding matrix. 

(b) The maximum degree p among the k x k subdeterminants of G(x)  is equal to the overall 

(c )  Gh isfull rank. 

To illustrate this theorem, consider the decomposition of G4(x) in (12.11). The 2 x 2 
subdeterminants of G ~ ( x )  are obtained by taking the determinant of the two 2 x 2 submatrices 
of G4(x),  

d e t [ 1 + X + X 2 + x 3  X '''1 1 d e t [ l T x  G],  
the maximum degree of which is 3. Also, we note that Gh is not full rank. Hence, we 
conclude that G ~ ( x )  is not a minimal basic encoding matrix. 

Proof To show the equivalence of (b) and (c): Observe that the degree of a subdeterminant 
of G(x)  is determined by the k x k submatrices of A(x)Gh (which have the largest degree 
terms) and not by ?;(x). The degree of the determinants of the k x k submatrices of G ( x )  
are then determined by the subdeterminants of A (x) and the k x k submatrices of Gh. Since 
det A(x) # 0, if Gh is full rank, then at least one of its k x k submatrices has nonzero 
determinant, so that at least one of the determinants of the k x k submatrices of A(X)Gh 
has degree p equal to deg A(x)  = v. On the other hand, if Gh is rank deficient, then none 
of the determinants of the submatrices of A(x)Gh can be equal to the determinant of A(x). 

To show that (a) implies (b): Assume that G(x)  is minimal basic. Suppose that 
rank(Gh) < k .  Let the rows of G(x)  be denoted by g l ,  g 2 ,  . . . , g k ,  let the rows of Gh 

constraint length v. 
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be denoted by hi, h2, . . . , hk, and let the rows of 6 ( x )  be denoted by g1, g2, . . . , g k .  Then 
the decomposition (12.12) is 

By the rank-deficiency there is a linear combination of rows of Gh such that 

gi = X u i h i  + gj .  

hi, + hi2 + * .  . +hid = 0 

for some d i k .  Assume (without loss of generality) that the rows of G(x) are ordered such 
thatvl 2.v2L...>vk.TheithrowofA(x)GhisxUihi . Adding 

xUil [hi, + hi3 + . . * + h i d ]  

to the ilst row of A(x)Gh (which is xuihi) reduces it to an all-zero row. Note that 

xUii[hi2 +hi3 + . . . + h i d ]  = ~ % - % ~ ~ i 2 h .  12 + X u i l - u i 3 ~ u i 3 h .  13 + . . . + x ’ i i - u i d ~ u i d h i d .  

Now consider computing G’(x) = T(x)G(x), where T ( x )  is the invertible matrix 

T = i l :  

i2 i3 . 
1 

1 

id 

, 

with an identity on the diagonal. This has the effect of adding 
x ” i l  -ui2 gi2 + xvil -Ui3 gi3 + . . . + x”il --V’ 

‘d gi, 

to the ilst row of G(x), which reduces the highest degree of the ilst row of G(x) (because 
the term xuil hi, is eliminated) but leaves other rows of G(x) unchanged. But G’(x) is 
an equivalent transfer function matrix. We thus obtain a basic encoding matrix G’(x) 
equivalent to G(x) with an overall constraint length less than that of G(x). This contradicts 
the assumption that G(x) is minimal basic, which implies that Gh must be full rank. From 
the equivalence of (b) and (c), p = v. 

Conversely, to show (b) implies (a): Let G’(x) be a basic encoding matrix equivalent to 
G(x). ThenG’(x) = T(x)G(x), whereT(x)isakxkpolynomialmatrixwithdet T ( x )  = 1. 
The maximum degree among the k x k subdeterminants of G’(x) is equal to that of G(x) 
(since det T ( x )  = 1). Hence, rank(Gh) is invariant over all equivalent basic encoding 
matrices. Since rank(Gh) is less than or equal to the overall constraint length, if p = v, it 

The proof is essentially constructive: given a non-minimal basic G(x), a minimal basic 
follows that G(x)  is minimal basic. 

encoder can be constructed by finding rows of Gh such that 

hi, + hi2 hi3 + . * .  + hid = 0, 

where the indices are ordered such that vid 2 vij , 1 5 j < d, then adding 

xUid-’i1 gi, + . . . ~ u i d - u i d - l  gid- ,  

to the idth row of G ( x ) .  

(12.13) 
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Example 12.11 Let G ( x )  = G4(x), as before. Then 

hi = [l 0 01 h2 = [l 0 01 

so that hl + h2 = 0. We have i l  = 2 and i2 = 1.  We thus add 

x3-lg2 = x ~ [ x  1 01 = [.3 01 

to row 1 of G(x)  to obtain the transfer function matrix 

“1 0 
[ l + ; C x 2  1 + x + x 2  

1 = 

to obtain an equivalent minimal basic encoder. 0 

Comparing G ~ ( x )  with G 2 ( x ) ,  we make the observation that minimal basic encoders are 
not unique. 

As implied by its name, the advantage of a basic minimal encoder is that it is “smallest” 
in some sense. It may be built in such a way that the number of memory elements in the 
device is the smallest possible and the number of states of the device is the smallest possible. 
There is another advantage to minimal encoders: it can be shown that a minimal encoder is 
not catastrophic. 

12.2.4 Systematic Encoders 

Given an encoder G ( x ) ,  it may be turned into a systematic decoder by identifying a full-rank 
k x k submatrix T ( x ) .  Then form 

G’(x) = T ( x ) - ’ G ( x ) .  

Then G’(x) is of the form (perhaps after column permutations) 

G’(x) = [ I k , k  P k , n - k ( X ) ]  9 

where P k , n - k ( x )  is a (generally) rational matrix. The outputs produced by P k , n - k  - that 
is, the non-systematic part of the generator - are frequently referred to as the parity bits, 
or check bits, of the coded sequence. 

Example 12.12 [175] Suppose 

l + x  x 
G ( x )  = 

and T ( x )  is taken as the first two columns: 

1 
l r x ]  

l + x  x 1 
T ( x )  = [ “ 2  1] T -  ( x )  = 

1 + x  + x 3  

Then 
1 +x +x* fX3 

G’(x)  = T-l (x)G(n)  = 
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m - 

Historically, polynomial encoders (i.e., those implemented using FIR filters) have been 
much more commonly used than systematic encoders (employing IIR filters). However, 
there are some advantages to using systematic codes. First, it can be shown that every 
systematic encoding matrix is minimal. Second, systematic codes cannot be catastrophc 
(since the data appears explicitly in the codeword). 

For a given constraint length, the set of systematic codes with polynomial transfer 
matrices has generally inferior distance properties compared with the set of systematic 
codes with rational transfer matrices. In fact, it has been observed [357, p. 2521 that for 
large constraint lengths u, the performance of a polynomial systematic code of constraint 
length K is approximately the same as that of a nonsystematic code of constraint length 
K (1 - k/n). (See Table 12.2) For example, for a rate R = 1 / 2  code, polynomial systematic 
codes have about the performance of nonsystematic codes of half the constraint length, 
while requiring exactly the same optimal decoder complexity. Because of these reasons, 
recent work in turbo codes has relied almost exclusively on systematic encoders. 

X Signal 
Append Convolutional 

a 
Mapper 

(e.g. BPSK) 

zero-state Encoder 

(Optional) R = k / n  

forcingsequence 

12.3 Decoding Convolutional Codes 

12.3.1 Introduction and Notation 

Several algorithms have been developed for decoding convolutional codes. The one most 
commonly used is the Viterbi algorithm, which is a maximum likelihood sequence estimator 
(MLSE). A variation on the Viterbi algorithm, known as the soft-output Viterbi algorithm 
(SOVA), which provides not only decoded symbols but also an indication of the reliability of 
the decoded values, is presented in Section 14.3.17 in conjunction with turbo codes. Another 
decoding algorithm is the maximum a posteriori (MAP) decoder frequently referred to as 
the BCJR algorithm, which computes probabilities of decoded bits. The BCJR algorithm is 
somewhat more complex than the Viterbi algorithm, without significant performance gains 
compared to Viterbi codes. It is, however, ideally suited for decoding turbo codes, and 
so is also detailed in chapter 14. It is also shown there that the BCJR and the Viterbi are 
fundamentally equivalent at a deeper level. 

Suboptimal decoding algorithms are also occasionally of interest, particularly when the 
constraint length is large. These provide most of the performance of the Viterbi algorithm, 
but typically have substantially lower computational complexity. In Section 12.8 the stack 
algorithm (also known as the ZJ algorithm), Fano’s algorithm, and the M-algorithm are 
presented as instances of suboptimal decoders. 

To set the stage for the decoding algorithm, we introduce some notation for the stages 
of processing. Consider the block diagram in Figure 12.9. The time index is denoted by 
t ,  which indexes the times at which states are dstinguished in the state diagram; there are 
thus k bits input to the encoder and n bits output from the encoder at each time step t. 

Channel 

n 

Figure 12.9: Processing stages for a convolutional code. 
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The input - message - data may have a sequence appended to drive the state 
to 0 at the end of some block of input. At time t there are k input bits, denoted 
as mi‘) or $, i = 1,2, . . . , k. The set of k input bits at time t is denoted as 
mt = (mt ( I ) ,  4 2 )  , . . . , rn?) and those with the (optional) appended sequence are XI. 
An input sequence consisting of L blocks is denoted as x: 

x = {xo, X I ,  . . . , XL-I}.  

The corresponding coded output bits are denoted as cf), i = 1,2, . . . , n, or collec- 
tively at time t as cf . The entire coded output sequence is c = {co, c1, . . . , C L - ~ } .  

The coded output sequence is mapped to a sequence of M symbols selected from a 
signal constellation with Q points in some signal space, with Q = 2P. We must have 
2nL (the number of coded bits in the sequence) equal to 2pM, so that M = nL/p. 
For convenience in notation, we assume that p = 1 (e.g., BPSK modulation), so that 
M = L ;  we use M as identical to L in this development, although it does not have to 
be. 

The mapped signals at time t are denoted as a:), i = 1,2, . . . , n. The entire coded 
sequence is a = {ao, al, . . . , aL-1} 

The symbols at pass through a channel, resulting in a received symbol r;) ,  i = 
1,2, . . . , n, or a block rl. We consider explicitly two channel models: an AWGN 
and a BSC. For the AWGN we have 

2 2 No $) = + nf ) ,  where nji) - N(0, a ), and where a = -. 
2 

For the AWGN the received data are real- or complex-valued. For the BSC, the 
mapped signals are equal to the coded data, at = ct .  The received signal is 

(0 (i) (0 r, = ct e n t  , wherent - 13(pc), 

where @ denotes addition modulo 2 and pc  is the channel crossover probability and 
B(pc) indicates a Bernoulli random variable. For both channels it is assumed that 
the n?) are mutually independent for all i and t ,  resulting in a memoryless channel. 
We denote the likelihood function for these channels as f(rt lat). For the AWGN 
channel, 

where 1) . denotes the usual Euclidean distance, 
n 
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where [ r f )  # a,(’)] returns 1 if the indicated condition is true and dH(ft, at) is the 
Hamming distance. 

Since the sequence of inputs uniquely determines the sequence of outputs, mapped 
outputs, and states, the likelihood function can be equivalently expressed as f(rlc) 

Maximizing the likelihood is obviously equivalent to minimizing the negative log 
likelihood. We deal with negative log likelihood functions and throw away terms 
and/or factors that do not depend upon the conditioning values. For the Gaussian 
channel, since 

or f(rla> or f(rlI‘u0, Ql, * * * ,  Q L D .  

we use 
2 

llrt - at II 
as the “negative log likelihood” function. For the BSC, since 

(12.14) 

Pc 
-logf(rtlat) = -&(rt,at)log- -nlog(l  -pc)  

1 - Pc 
we use 

dH (rt at) (12.15) 

as the “negative log likelihood” (since log(p,/(l - pc)) < 0). 

More generally, the affine transformation 

4- 1% f(rt la) - bl ( 12.16) 

provides a function equivalent for purposes of detection to the log likelihood func- 
tion for any a > 0 and any b. The parameters a and b can be chosen to simplify 
computations. 

The state at time t in the trellis of the encoder is denoted as Qt. States are represented 
with integer values in the range 0 5 qt < 2”, where u is the constraint length for the 
encoder. (We use 2” since we are assuming binary encoders for convenience. For a 
q-ary code, the number of states is q”.) It is always assumed that the initial state is 
q o  = 0. 

As suggested by Figure 12.10, quantities associated with the transition from state p 
to state q are denoted with ( P . 4 ) .  For example, the input which causes the transition 
from state qt = p to the state Wt+l = q is denoted as x(P,q). (If the trellis had 
different structure at different times, one might use the notation xt(P”).) The code bits 
output sequence as a result of this state transition is c(P.4) and the mapped symbols 
are a(P,q). 

A sequence of symbols such as {xo, XI, . . . , xr} is denoted as xi. 

12.3.2 The Viterbi Algorithm 

The Viterbi algorithm was originally proposed by Andrew Viterbi [358] ,  but its optimality as 
a maximum likelihood sequence decoder was not originally appreciated. In [89] it was es- 
tablished that the Viterbi algorithm computes the maximum likelihood code sequence given 
the received data. The Viterbi algorithm is essentially a shortest path algorithm, roughly 
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time t time t + 1 

i 

Figure 12.10: Notation associated with a state transition. 

analogous to Dijkstra’s shortest path algorithm (see, e.g., [305, p. 4151) for computing the 
shortest path through the trellis associated with the code. The Viterbi algorithm has been 
applied in a variety of other communications problems, including maximum likelihood se- 
quence estimation in the presence of intersymbol interference [96] and optimal reception of 
spread-spectrum multiple access communication (see, e.g., [354]). It also appears in many 
other problems where a “state” can be defined, such as in hidden Markov modeling (see, 
e.g., [67]). See also [246] for a survey of applications. The decoder takes the input sequence 
r = {ro, rl , . . .) and determines an estimate of the transmitted data {ao, a1 , . . .) and from 
that an estimate of the sequence of input data (xo, X I ,  . . .}. 

The basic idea behind the Viterbi algorithm is as follows. A coded sequence (co, c1, . . .], 
or its signal-mapped equivalent (ao, al, . . .}, corresponds to a path through the encoder 
trellis. Due to noise in the channel, the received sequence r may not correspond exactly to 
a path through the trellis. The decoder finds a path through the trellis which is closest to the 
received sequence, where the measure of “closest” is determined by the likelihood function 
appropriate for the channel. In light of (12.14), for an AWGN channel the maximum 
likelihood path corresponds to the path through the trellis which is closest in Euclidean 
distance to r. In light of (12.15), for a BSC the maximum likelihood path corresponds to 
the path through the trellis which is closest in Hamming distance to r. Naively, one could 
find the maximum likelihood path by computing separately the path lengths of all of the 
possible paths through the trellis. This, however, is computationally intractable. The Viterbi 
algorithm organizes the computations in an efficient recursive form. 

For an input xt the output ct depends on the state of the encoder Qt, which in turn depends 
upon previous inputs. This dependency among inputs means that optimal decisions cannot 
be made based upon a likelihood function for a single time f(rtIxt). Instead, optimal 
decisions are based upon an entire received sequence of symbols. The likelihood function 
to be maximized is thus f(rlx), where 

The fact that the channel is assumed to be memoryless is used to obtain the last equality. It 
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is convenient to deal with the log likelihood function, 

L-1 

1% f(rlx> = C log f(rtlxt). 
t =o 

Consider now a sequence f6-I = {go, 21, . . . , f t - l }  which leaves the encoder in state 
@t = p at time t .  This sequence determines a path - or sequence of states - through the 
trellis for the code, which we denote (abstractly) as l7, or ITt(%;-'). Thus 

nt = {@o, @l ,  f .  * 9 %I. 
The log likelihood function for this sequence is 

t-1 
t-1 -r-1 

log f(ro 1x0 ) = C l o g  f(riIfi). 

Let Mt-l  ( p )  = - log f(r;-'/f;-,-') denote the path metric for the path nt through the 
trellis defined by the sequence%;-;-' and terminating in state p .  (We could write Mt-l  ( p ;  l7,) 
or Mt-1 ( p ;  %;-I) to indicate that the metric depends on the path but this leads to an awkward 
notation.) The negative sign in this definition means that we seek to minimize the path metric 
(to maximize the likelihood). 

Now let the sequence 26 = {go, $1 ,  . . . , ft } be obtained by appending the input ft to 
2b-l and suppose the input ft is such that the state at time t + 1 is Wt+1 = q.  The path 
metric for this longer sequence is 

Mr(q) = - C l o g f ( r i I f i )  = - Clogf(r i I f i ) - logf(r t~l t )  = Mt-l(p)-logf(rttat>. 

Let pt(r t ,  ft) = - log f (rt 1%) denote the negative log likelihood for this input. As pointed 
out in (12.16), we could equivalently use 

pt(r t ,  f t )  = a [ -  logf(r,If(P,q)) - b] ,  (1 2.17) 

for any a > 0. The quantity pf (rt ,ft) is called the branch metric for the decoder. Since 
f, moves the trellis from state p at time t to state q at time t + 1, we can write pt (rt, 2,) as 
pt (rt, f(P,q)). Then 

i=O 

t r-1 

i=O i =O 

t-1 

M t ( q )  = C pt(ri, %i> + pt ( r t ,  2,) = ~t-i(p) + Ccr(rt, @ ' q ) ) .  

That is, the path metric along a path to state q at time t is obtained by adding the path metric 
to the state p at time t - 1 to the branch metric for an input which moves the encoder from 
state p to state q. (If there is no such input then the branch metric is 00.) 

With this notation, we now come to the crux of the Viterbi algorithm: What do we do 
when paths merge? Suppose Mt-l  ( p i )  is the path metric of a path ending at state p i  at time 
t and Mt-l(p2) is the path metric of a path ending at state p2 at time t .  Suppose further 
that both of these states are connected to state q at time t + 1, as suggested in Figure 12.1 1. 
The resulting path metrics to state q are 

Mt-l(pl) + pt ( r t ,  and Mt-l(p2) + pt(r t ,  f ( p 2 , q ) ) .  

i=O 
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Path through trellis 
leading to state q t  = p1 

time t I time t 

Path through trellis 
leading to state Wt = p2 

Figure 12.11: The Viterbi step: Select the 

tl 

path with the best metric. 

The governing principle of the Viterbi algorithm is this: To obtain the shortest path through 
the trellis, the path to state q must be the shortest possible. Otherwise, it would be possible to 
find a shorter path through the trellis by finding a shorter path to state q.  (This is Bellman's 
principle of optimality; see, e.g., [17].) Thus, when the two or more paths merge, the 
path with the shortest path metric is retained and the other path is eliminated from further 
consideration. That is, 

~ ( q )  = m i n { ~ ~ - l ( p l )  + p I ( r t ,  @l% ~ - 1 ~ 7 2 )  + kr(rI, g(P23q) ) )  

and the path with minimal length becomes the path to state q. This is called the survivor 
path. 

Since it is not known at time t c L which states the final path passes through, the paths 
to each state are found for each time. The Viterbi algorithm thus maintains the following 
data: 

A path metric to each state at time t .  

A path to each state at time t .  

The Viterbi algorithm is thus summarized as follows: 

1. For each state q at time t + 1, find the path metric for each path to state q by adding 
the path metric Mt-l  ( p )  of each survivor path to state p at time t to the branch metric 
pLt (rt, % ( p - q ) ) .  

2. The survivor path to q is selected as that path to state q which has the smallest path 
metric. 

3. Store the path and path metric to each state q.  

4. Increment t and repeat until complete. 

In the event that the path metrics of merging paths are equal, a random choice can be made 
with no negative impact on the likelihood. 
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More formally, there is the description in Algorithm 12.1. In this description, the path to 
state q is specified by listing for each state its predecessor in the graph. Other descriptions 
of the path are also possible. The algorithm is initialized reflecting the assumption that the 
initial state is 0 by setting the path metric at state 0 to 0 and all other path metrics to 00 (i.e., 
some large number). 

Algorithm 12.1 The Viterbi Algorithm 

I Input: A sequence ro, rl , . . . , rL-1 

z Output: The sequence i o ,  fl, . . . , % ~ - l  which maximizes the likelihood f(r;-l I%-’). 
3 Initialize: Set M ( 0 )  = 0 and M ( p )  = 00 for p = 1,2,  . . . , 2 ”  - 1 (initial path costs) 
4 

5 Sett = O  
6 Begin 
7 For each state q at time t + 1 
n 

9 

Set l T p  = 0 for p = 0, 1, . . . , 2”  - 1 (initial paths) 

Find the path metric for each path to state q:  
for each pi connected to state q corresponding to input %(Pi 341, compute 

10 Select the smallest metric M ( q )  = mini mi and the corresponding predecessor state p .  
I I  Extend the path to state q:  I l q  = [ l T p  p1 
1 2  end (for) 

14if t < L - 1, goto line 6. 
15 Termination: 
16 If terminating in a known state (e.g. 0) 

17 If terminating in any state 

18 End 

mi =  pi) + F t ( r t ,  i(pi,q))). 

13 t = t + 1 

Return the sequences of inputs along the path to that known state 

Find final state with minimal metric; Return the sequence of inputs along that path to that state. 

The operations of extending and pruning that constitute the heart of the Viterbi algorithm 
are summarized as: 

M t ( q >  = minkMt-l(p) + pt(rt, ?(P:q)J 
P 

Extend all paths at time t 
tostateq ... , 

Then choose smallest cost 

(12.18) 

Example 12.13 Consider the encoder 

G(x) = [x2  + 1 x 2  + x  + 11 

of Example 12.1, whose realization and trellis diagram are shown in Figure 12.5, passing the data 
through a BSC. When the data sequence 

m = [I ,  I , O , O ,  1,0, I ,  0,  . . .] 
= [mo, m i ,  m2, m3, m4, m5, m6, m 7 ? .  . .] 

c = [11, 10, 10, 11, 11,01, 00,01,. . .] 

is applied to the encoder, the coded output bit sequence is 

= [CO,  c1, c2, c3, c4, c.55 c6, c7, . . .]. 
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For the BSC, we take the mapped data the same as the encoder output at = ct  . The output sequence 
and corresponding states of the encoder are shown here, where \Ira = 0 is the initial state. 

t Input mk Output ct State q t + l  

0 1 11 1 
1 1 10 3 
2 0 10 2 
3 0 11 0 
4 1 11 1 
5 0 01 2 
6 1 00 1 
7 0 01 2 

The sequence of states through the trellis for this encoder is shown in Figure 12.12; the solid line 
shows the state sequence for this sequence of outputs. The coded output sequence passes through a 

t = O  t = l  t = 2  t = 3  t = 4  t = 5  t = 6  t = 7  

Figure 12.12: Path through trellis corresponding to true sequence. 

channel, producing the received sequence 

r = [11 I O Q O ~ Q I I O I O O O I  . . . I  = [rO,rl,r2,rg,rq,rg,rg,r7, . . . I .  
The two underlined bits are flipped by noise in the channel. 

t = 0: The received sequence is ro = 11. We compute the metric to each state at time t = 1 by 
finding the (Hamming) distance between ro and the possible transmitted sequence co along the 
branches of the first stage of the trellis. Since state 0 was known to be the initial state, we end 
up with only two paths, with path metrics 2 and 0, as shown here: 

The algorithm proceeds as follows: 

ro = 11 
0 .;............. 2 

...' 0 1 '  

2 '  a 

3 '  a 

t = O  t = l  
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t = 1: The received sequence is rl = 10. Again, each path at time t = 1 is simply extended, adding 
the path metric to each branch metric: 

rl = 10 

3 '  ' "a 0 

t = O  t = l  t = 2  

t = 2: The received sequence is r2 = 00. Each path at time t = 2 is extended, adding the path metric 
to each branch metric of each path. 

r2 = 00 
0 ............ 

1 '  

2 '  

3 '  
t=O t = l  t = 2  t = 3  

There are now multiple paths to each node at time t = 3. We select the path to each node with 
the best metric and eliminate the other paths. This gives the diagram as follows: 

r2 = 00 
0 * - -  ..... ............................ ' 3 

* a  *' 2 

. a  1 

.... --..1 

... . ~. ... 1 '  

2 '  

3 '  

. .  . . .  . .  . -. : 
% . .  ' ' %  .*' 

I .  . ,  . : ' *...* 

t = O  t = l  t = 2  t = 3  
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t = 3: The received sequence is r3 = 10. Each path at time t = 3 is extended, adding the path metric 
to each branch metric of each path. 

r3 = 10 

~, . .  . : ' *...... 3 '  

t = O  t = l  t = 2  t = 3  t = 4  

Again, the best path to each state is selected. We note that in selecting the best paths, some of the 
paths to some states at earlier times have no successors; these orphan paths are deleted now in our 
portrayal: 

r3 = 10 

t = O  t = l  t = 2  t = 3  t = 4  

t = 4: The received sequence is r4 = 11. Each path at time t = 4 is extended, adding the path metric 
to each branch metric of each path. 

r4 = 11 

0 '  

1 '  

2 '  

3 '  
t = O  t = l  t = 2  t = 3  t = 4  t = 5  

In this case, we note that there are multiple paths into state 3 which both have the same path metric; 
also there are multiple paths into state 2 with the same path metric. Since one of the paths must be 
selected, the choice can be made arbitrarily (e.g., at random). After selecting and pruning of orphan 
paths we obtain: 
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r 4  = 11 

0 .... ' ' 

1 '  .', ' 

2 '  \ '  

t = O  t = l  t = 2  t = 3  t = 4  t = 5  

t = 5: The received sequence is r5 = 01. 

r5 = 01 

t = O  t = l  t = 2  t = 3  t = 4  t = 5  t = 6  

After selecting and pruning: 
r5 = 01 

' ' ' e.. ........ " 2 

' -..* 2 ' ,I. < . ' ~  I. 

*' -, . '  -.-* 2 

............ I. ............ ' 3 

, .  , .  .*. . . * -. , .  , .  . ,  .. 
I.. f .  , .  

. . . . .  *. 
, -  . ,  
, _' 
,. , .  , I  

, _  
, .  

, a  

1 '  -*. 

2 '  

3 '  ' ' 

. '  .8' a '  

. .  
% ,  

I : 

t = O  t = l  t = 2  t = 3  t = 4  t = 5  t = 6  

t = 6: The received sequence is r6 = 00. 

r6  = 00 

t = O  t = l  t = 2  t = 3  t = 4  t = 5  t = 6  t = 7  
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After selecting and pruning: 

r 6  = 00 

t = O  t = l  t = 2  t = 3  t = 4  t = 5  t = 6  t = 7  

t = 7: The received sequence is r7 = 01. 

r7  = 01 

t = O  t = l  t = 2  t = 3  t = 4  t = 5  t = 6  t = 7  t = 8  

After selecting and pruning: 

1-7 = 01 

--. 0 0 ............ 3 

t = O  t = l  t = 2  t = 3  t = 4  t = 5  t = 6  t = 7  t = 8  

The decoding is finalized at the end of the transmission (the 16 received data bits) by selecting the 
state at the last stage having the lowest cost, traversing backward along the path so indicated to the 
beginning of the trellis, then traversing forward again along the best path, reading the input bits and 
decoded output bits along the path. This is shown with the solid line below; input/output pairs are 
indicated on each branch. 
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ADD I + 

COMPARE 

t = O  t = l  t = 2  t = 3  t = 4  t = 5  t = 6  t = 7  t = 8  

Note that the path through the trellis is the same as in Figure 12.12 and that the recovered input bit 
sequence is the same as the original bit sequence. Thus, out of this sequence of 16 bits, two bit errors 
have been corrected. 0 

SELECT - 

12.3.3 Some Implementation Issues 

The Basic Operation: Add-Compare-Select 

The basic operation of the Viterbi algorithm is Add-Compare-Select (ACS): Add the branch 
metric to the path metric for each path leading to a state; compare the resulting path metrics 
at that state; and select the better metric. A schematic of this idea appears in Figure 12.13. 
High-speed operation can be obtained in hardware by using a bank of 2” such ACS units in 
parallel. A variation on this theme, the compare-select-add (CSA) operation, is capable of 
somewhat improving the speed for some encoders. The algorithm employing CSA is called 
the direrential Viterbi algorithm; see [lo51 for a description. 

Path metric to 
state p2 ADD 

Path metric 
from state 

state q 
Pi to 

Figure 12.13: Add-compare-select Operation. 

Decoding Streams of Data: Windows on the Trellis 

In convolutional codes, data are typically encoded in a stream. Once the encoding starts, it 
may continue indefinitely, for example until the end of a file or until the end of a data trans- 
mission session. If such a data stream is decoded using the Viterbi algorithm as described 
above, the paths through the trellis would have to have as many stages as the code is long. 
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For a long data stream, this could amount to an extraordinary amount of data to be stored, 
since the decoder would have to store 2” paths whose lengths grow longer with each stage. 
Furthermore, this would result in a large decoding latency: strictly speakmg it would not 
be possible to output any decoded values until the maximum likelihood path is selected at 
the end of the file. 

Fortunately, it is not necessary to wait until the end of transmission. Consider the paths 
in Example 12.13. In this example, by t = 4, there is a single surviving path in the first 
two stages of the trellis. Regardless of how the Viterbi algorithm operates on the paths as it 
continues through the trellis, those first two stages could be unambiguously decoded. 

In general, with very high probability there is a single surviving path some number of 
stages back from the “current” stage of the trellis. The initial stages of the survivor paths 
tend to merge if a sufficient decoding delay is allowed. Thus, it is only necessary to keep 
a “window” on the trellis consisting of the current stage and some number of previous 
stages. The number of stages back that the decoding looks to make its decision is called 
the decoding depth, denoted by r. At time t the decoder outputs a decision on the code 
bits Ct-r. While it is possible to make an incorrect decoding decision on a finite decoding 
depth, this error, called the truncation error, is typically very small if the decoding depth 
is sufficiently large. It has been found (see, e.g., [90, 1491) that if a decoding depth of 
about five to ten constraint lengths is employed, then there is very little loss of performance 
compared to using the full length due to truncation error. 

It is effective to implement the decoding window using a circular queue of length r 
to hold the current window. As the window is “shifted,” it is only necessary to adjust the 
pointers to the beginning and end of the window. 

As the algorithm proceeds through the stream of data, the path metrics continue to 
accumulate. Overflow is easily avoided by periodically subtracting from all path metrics 
an equal amount (for example, the smallest path metric). The path metrics then show the 
differential qualities of each path rather than the absolute metrics (or their approximations), 
but this is sufficient for decoding purposes. 

Output Decisions 

When a decision about the output Ct-r is to be made at time t ,  there are a few ways that 
this can be accomplished [373]: Output Ct-r on a randomly selected survivor path; Output 
Ct-r on the survivor path with the best metric; Output Ct-r that occurs most often among 
all the survivor paths; Output c1-r on any path. In reality, if r is sufficiently large that all 
the survivor paths have merged r decoding stages back, then the performance difference 
among these alternatives is very small. 

When the decision is to be output, a survivor path is selected (using one of the methods 
just mentioned). Then it is necessary to determine the Ct-r. There are a couple of ways of 
accomplishing this, the register exchange and the traceback. 

In the register exchange implementation, an input register at each state contains the 
sequence of input bits associated with the surviving path that terminates at that state. A 
register capable of storing the kr bits is necessary for each state. As the decoding algorithm 
proceeds, for the path selected from state p to state q ,  the input register at state q is obtained 
by copying the input register for state p and appending the k input bits resulting in that state 
transition. (Double buffering of the data may be necessary, so that the input registers are 
not lost in copying the information over.) When an output is necessary, the first k bits of 
the register for the terminating state of the selected path can be read immediately from its 
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input register. 

Example 12.14 For the decoding sequence of Example 12.13, the registers for the register exchange 
algorithm are shown here (boxed) for the first five steps of the algorithm. 

............ ........................ 0 0 l El ' 

. .  . .  
' ' 111 .-.* 2 '  2 '  

3 '  3 *  ' a 

t = O  t = l  t = O  t = l  t = 2  

............ ......... ........ -.-*  0 ..- 1ooo1 

1 '  

2 '  

3 '  
t = O  

0 *-.. 

1 '  

2 '  

3 '  
t = O  

0 *-., 

1 '  

2 '  

3 '  
t = O  

... . " ,*m 
;'pg 

*-..- ....... .(1111 

. .  ... . .  . -. . .  . . . . .  . . *  
a .. 3.- 

. ,  
, a  

a . : 
t = l  t = 2  t = 3  

a a ' ,a 

.' , 
a .  

' .......... - ? *  '.*' 
. ,  . -  . ,. 

t = l  t = 2  t = 3  t = 4  

a ............ ' a ..*' @ 
. >  
. I  . ,' 

t = l  t = 2  t = 3  t = 4  t = 5  

The number of initial bits all the registers have in common is the number of branches of 
the path that are shared by all paths. These common input bits are shown in bold above. In 
some implementations, it may be of interest to output only those bits corresponding to path 
branches which have merged. 
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In the traceback method, the path is represented by storing the predecessor to each state. 
This sequence of predecessors is traced back r stages. The state transition qt-r to \Vt-r+1 

determines the output ct-r and its corresponding input bits Xt-r .  

Example 12.15 The table 

State Previous StateAnput 
010 010 Of0 2 0  210 010 010 210 

1: 011 011 211 211 011 011 w1 011 
- 110 310 310 110 110 110 110 

3: - 111 311 211 111 311 1/1 311 

shows the previous state traceback table which would be built up by the decoding of Example 12.13. 
For example, at time t = 8, the predecessor of state 0 is 2, the predecessor of state 1 is 0, and so forth. 
Starting from state 2 (having the lowest path cost), the sequence of states can be read off in reverse 
order from this table (the bold entries): 

2 + 1 + 2 - + 1 - + 0 - + 2 - + 3 - + 1 - + 0 .  

Thus the first state transition is from state 0 to state 1 and the input at that time is a 1. 
The inputs for the entire sequence can also be read off, starting at the right, 11001010. 0 

In the traceback method, it is necessary to trace backward through the trellis once for each 
output. (As a variation on the theme, the predecessor to a state could be represented by the 
input bits that lead to that state.) 

In comparing the requirements for these two methods, we note that the register exchange 
method requires shuffling registers among all the states at each time. In contrast, the 
traceback method requires no such shuffling, but it does require working back through the 
trellis to obtain a decision. Which is more efficient depends on the particular hardware 
available to perform the tasks. Typically, the traceback is regarded as faster but more 
complicated. 

Hard and Soft Decoding; Quantization 

Example 12.13 presents an instance of hard-decision decoding. If the outputs of a Gaussian 
channel had been used with the Euclidean distance as the branch metric, then softdecision 
decoding could have been obtained. Comparing soft decision decoding using BPSK over 
an AWGN with hard decision decoding over a BSC, in which received values are converted 
to binary values with a probability of error of p c  = Q(,/m) (see Section 1.5.6), it has 
been determined that soft-decision decoding provides 2 to 3 dB of gain over hard-decision 
decoding. 

For a hard-decision metric, kt (rt , x(P,q)) can be computed and stored in advance. For 
example, for an n = 2 binary code, there are four possible received values, 00, 01, 10, 11, 
and four possible transmitted values. The metric could be stored in a 4 x 4 array, such as 
the following. 

2 0  
2 1 0  
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-1 1 

Figure 12.14: A two-bit quantization of the soft-decision metric. 

Soft-decision decoding typically requires more expensive computation than hard-decision 
decoding. Furthermore, soft-decision decoding cannot exactly precompute these values to 
reduce the ongoing decoding complexity, since rt takes on a continuum of values. Despite 
these disadvantages, it is frequently desirable to use soft-decision decoding because of its 
superior performance. A computational compromise is to quantize the received value to a 
reasonably small set of values, then precompute the metrics for each of these values. By 
converting these metrics to small integer quantities, it is possible to efficiently accumulate 
the metrics. It has been found [I481 that quantizing each r;') into 3 bits (eight quantization 
levels) results in a loss in coding gain of around only 0.25 dB. It is possible to trade metric 
computation complexity for performance, using more bits of quantization to reduce the loss. 

As noted above, if a branch metric p is modified by F = up + b for any a > 0 and 
any real b, an equivalent decoding algorithm is obtained; this simply scales and shifts the 
resulting path metrics. In quantizing, it may be convenient to find scale factors which make 
the arithmetic easier. 

A widely used quantizer is presented in Section 12.4. 

Example 12.16 A two-bit quantizer. In a BPSK-modulated system the transmitted signal amplitudes 
are a = 1 or a = -1. The received signal rt is quantized by a quantization function Q[.] to obtain 
quantized values 

qr = Q[rtl 

using quantization thresholds at f l  and 0, as shown in Figure 12.14, where the quantized values are 
denoted as 00, 01 , 10 and 11. These thresholds determine the regions T4 .  That is, 

(This is not an optimal quantizer, merely convenient.) For each quantization bin we can compute the 
likelihood that rt falls in that region, given a particular input, as 

For example, 
1 -1 

Suppose the likelihoods for all quantized points are computed as follows. 
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P(qtla) 
a = l  
a = -1 

qt = 00 01 10 11 
0.02 0.14 0.34 0.5 
0.5 0.34 0.14 0.02 

-1.619(log P(qtla -log P(OO11)) 

(the factor a = 1.619 was found by a simple computer search and b was chosen to make the smallest 

-log(P(qtla)) 
a = l  
a = - 1  

qt = 00 01 10 11 
3.5066 2.0402 1.0788 0.6931 
0.6931 1.0788 2.0402 3.5066 

a = -1 I 0 1 2 5  
Although the signal is quantized into two bits, the metric requires three bits to represent it. With 

additional loss of coding gain, this could be reduced to two bits of metric (reducing the hardware 
required to accumulate the path metrics). For example, the first row of the metric table could be 
approximated as 3,2, 1,O. 

Note that, by the symmetry of the pdfand constellation, bothrows of the table have the same values, 
so that in reality only a single row would need to be saved in an efficient hardware implementation. 0 

4- log(P(qr la) - b) 
a = l  
a = -1 

Synchronization Issues 

The decoder must be synchronized with the stream of incoming data. If the decoder does 
not know which of the n symbols in a block initiates a branch of the trellis, then the data 
will be decoded with a very large number of errors. Fortunately, the decoding algorithm 
can detect this. If the data are correctly aligned with the trellis transitions, then with high 
probability, one (or possibly two) of the path metrics are significantly smaller than the other 
path metrics within a few stages of decoding. If this does not occur, the data can be shifted 
relative to the decoder and the decoding re-initialized. With at most n tries, the decoder can 
obtain symbol synchronization. 

Many carrier tracking devices employed in communication systems experience a phase 
ambiguity. For a BPSK system, it is common that the phase is determined only up to &n, 
resulting in a sign change. For QPSK or QAM systems, the phase is often known only up to 
a multiple of n/2 .  The decoding algorithm can possibly help determine the absolute phase. 
For example, in a BPSK system if the all ones sequence is not a codeword, then for a given 
code sequence c, 1 + c cannot be a codeword. In this case, if decoding seems to indicate 
that no path is being decoded correctly (i.e., no path seems to emerge as a strong candidate 
compared to the other paths), then the receiver can complement all of its zeros and ones 
and decode again. If this decodes correctly the receiver knows that it has the phase off by 
n. For a QPSK system, four different phase shifts could be examined to see when correct 
decoding behavior emerges. 

qr = 00 01 10 11 
5.0028 2.109 0.618 0 
0 0.618 2.109 5.0028 
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12.4 Some Performance Results 

Bit error rate characterization of convolutional codes is frequently accomplished by simula- 
tion and approximation. In this section, we present performance as a function of quantiza- 
tion, constraint length, window length, and codeword size. These results generally follow 
[148], but have been recomputed here. 

Quantization of the metric was discussed in the previous section. In the results here, a 
simpler quantized metric is used. Assume that BPSK modulation is employed and that the 
transmitted signal amplitude a is normalized to f 1. The received signal I is quantized to m 
bits, resulting in M = 2m different quantization levels, using uniformly spaced quantization 
thresholds. The distance between quantization thresholds is A. Figure 12.15 shows 4-level 
quantization with A = 1 and 8-level quantization using A = 0.5 and A = 4. Rather than 
compute the log likelihood of the probability of falling in a decision region, in this approach 
the quantized q value itself is used as the branch metric if the signal amplitude 1 is sent, 
or the complement M - q - 1 is used if -1 is sent. The resulting integer branch metric 
is computed as shown in Table 12.1. This branch metric is clearly suboptimal, not being 
an affine transformation of the log likelihood. However, simulations have shown that it 
performs very close to optimal and it is widely used. Obviously, the performance depends 
upon the quantization threshold A employed. For the 8-level quantizer, the value A = 0.4 
is employed. For the 16-level quantizer, A = 0.25 is used, and for the 4-level quantizer, 
A = 1 is used. We demonstrate below the dependence of the bit-error rate upon A. 

3 1  2 1 I 0  

1 I 1 
-1.0 0 1.0 

7 6 1 5  4 3 2 1  1 0  
I 1 I I I 1 I 

-1.5 -1.0 -0.5 0 0.5 1.0 1.5 

7 1 6  5 4 3 2 1 1 0  

-1.0 0 1 .o 
I I I I I )  

Figure 12.15: Quantization thresholds for 4- and 8-level quantization. 

Table 12.1 : Quantized Branch Metrics Using Linear Quantization 

Amplitude Branch Metric p 

0 1 2 3 4 5 6 7  

Figure 12.16(a) shows the bit error rate as a function of SNR for codes with constraint 
lengths (here employing K = 1 + max deg(gj) as the constraint length) of K = 3, K = 5 
and K = 7 using 8-level uniform quantization with A = 0.42. The generators employed 
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1 o - ~  

a 
5 
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5 lo4 
67 
iij 
c 
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(a) 8-level quantization, K = 3, 5, 7. (b) l-bit (hard) quantization, K = 3 through 8. 

Figure 12.16: Bit error rate as a function of Eb/No of R = 1/2 convolutional codes with 
32 bit window decoding (following [148]). 

in this and the other simulations are the following: 

K gl(x) g2(x) &ee 
3 l + x 2  1 + x  + x 2  5 
4 1 + x + x 3  1 + x + x 2 + x 3  6 
5 1 + ~ 3 + . 4  1 + x + x 2 + x 4  7 
6 l + x 2 + x 4 + x 5  1 + x + x 2  + x3 + x5 8 
7 1 +x2 +x3 + X 5  + x 6  1 + x  + x 2  +x3 + x 6  10 
8 1 + x 2 + x 5 + x 6 + x 7  1 + x + x 2 + x 3 + x 4 + x 7  10 

The Viterbi decoder uses a window of 32 bits. As this figure demonstrates, the performance 
improves with the constraint length. Figure 12.16(b) shows l-bit (hard) quantization for 
K = 3 through 8. 

Comparisons of the effect of the number of quantization levels and the decoding win- 
dow are shown in Figure 12.17. In part (a), the performance of a code with K = 5 is 
shown with 2, 4, 8, and 16 quantization levels. As the figure demonstrates, there is very 
little improvement from 8 to 16 quantization levels; 8 is frequently chosen as an adequate 
performancekomplexity tradeoff. In part (b), again a K = 5 code is characterized. In this 
case, the effect of the length of the decoding window is shown for two different quantiza- 
tion levels. With a decoding window of length 32, most of the achievable performance is 
attained. 
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(a) 2-, 4-, 8- and 16-level quantization, 
decoding window 32. 

(b) Deccding window length W = 8,16, and 32; Quan- 
tization levels Q = 2 and 8. 

Figure 12.17: Bit error rate as a function of Eb/No of R = 1/2, K = 5 convolutional code 
with different quantization levels and decoding window lengths (following [ 1481). 

Figure 12.18 shows the effect of the quantizer threshold spacing A on the performance 
for an 8-level quantizer with a K = 5,  R = 112 code and a K = 5, R = 1/4 code. The plots 
are at SNRs of 3.3 dB, 3.5 dB, and 3.7 dB (reading from top to bottom) for the R = 1/2 
code and 2.75 dB, 2.98 dB, and 3.19 dB (reading from top to bottom) for the R = 1/4 code. 
(These latter SNRs were selected to provide roughly comparable bit error rate for the two 
codes.) These were obtained by simulating, counting 20,000 bit errors at each point of data. 

A convolutional code can be employed as a block code by simply truncating the sequence 
at a block length N (see Section 12.9). This truncation results in the last few bits in the 
codeword not having the same level of protection as the rest of the bits, a problem referred 
to as unequal error protection. The shorter the block length N ,  the higher the fraction 
of unequally protected bits, resulting in a higher bit error rate. Figure 12.19 shows BER 
for maximum likelihood decoding of convolutional codes truncated to blocks of length 
N = 200, N = 2000, as well as the "conventional" mode in which the codeword simply 
streams. 
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Figure 12.19: BER performance as a function of truncation block length, N = 200 and 
N = 2000, for 2- and 8-level quantization. 
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12.5 Error Analysis for Convolutional Codes 

While for block codes it is conventional to determine (or estimate) the probability of decoding 
a block incorrectly, the performance of convolutional codes is largely determined by the 
rate and the constraint length. It is not very meaningful to determine the probability of a 
block in error, since the block may be very long. It is more useful to explore the probability 
of bit error, or the bit error rate, which is the average number of message bits in error in 
a given sequence of bits divided by the total number of message bits in the sequence. We 
shall denote the bit error rate by Pb. In this section we develop an upper bound for Pb [357]. 

Consider how errors can occur in the decoding process. The decision mechanism of the 
Viterbi algorithm operates when two paths join together. If two paths join together and the 
path with the lower (better) metric is actually the incorrect path, then an incorrect decision 
is made at that point. We call such an error a node error and say that the error event occurs 
at the place where the paths first diverged. We denote the probability of a node error as Pe. 
A node error, in turn, could lead to a number of input bits being decoded incorrectly. 

Since the code is linear, it suffices to assume that the all-zero codeword is sent: With 
dH(r, c) the Hamming distance between c and r, we have dH(r, c) = dH(r + c, c + c) = 
dH(r + c, 0). Consider the error events portrayed in Figure 12.20. The horizontal line 
across the top represents the all-zero path through the trellis. Suppose the path diverging 
from the all-zero path at a has a lower (better) metric when the paths merge at a'. This 
gives rise to an error event at a. Suppose that there are error events also at b and d. Now 
consider the path diverging at c: even if the metric is lower (better) at c', the diverging path 
from c may not ultimately be selected if its metric is worse than the path emerging at b.  
Similarly the path emerging at d may not necessarily be selected, since the path merging at 
e may take precedence. This overlapping of decision paths makes the exact analysis of the 
bit error rate difficult. We must be content with bounds and approximations. 

a' b c c' b'd e d' e' 

\ /  d 
\I 

Figure 12.20: Error events due to merging paths. 

The following example illustrates some of these issues. 

Example 12.17 Consider again the convolutional code from Example 12.1, with 

G ( x )  = [l + x 2 ,  1 + x  +x2]. 

Suppose that the input sequence is x = [0, 0,  0, 0 ,  . . .] with the resulting transmitted sequence 
c = [00, 00, 00, 00, . . .], but that the received sequence after transmission through a BSC is r = 
[ l l ,  01,00, . . .]. A portion of the decoding trellis for this code is shown in Figure 12.21. After three 
stages of the trellis when the paths merge, the metric for the lower path (shown as a dashed line) is 
lower than the metric for the all-zero path (the solid line). Accordingly, the Viterbi algorithm selects 
the erroneous path, resulting in a node error at the first node. However, while the decision results 
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2(0) = 3 
ro = 11 r l  = 0 1  r2 = 00 

o/oo o/oo o/oo - - 
I 

00 

10 

01 

11 

Total distance along diverging path=5 11 

(a) Diverging path of distance 5. 

(b) Diverging path of distance 6. 

Figure 12.2 1 : Two decoding examples. 

in three incorrect branches on the path through the trellis, the input sequence corresponding to this 
selected path is [ 1, 0, 01, so that only one bit is incorrectly decoded due to this decision. 

As the figure shows, there is a path of metric 5 which deviates from the all-zero path. The 
probability of incorrectly selecting this path is denoted as Ps.  This error occurs when the received 
sequence has three or more errors (1s) in it. In general, we denote 

Pd = Probability of a decoding error on a path of metric d. 

For a deviating path of odd weight, there will be an error if more than half of the bits are in error. The 
probability of this event for a BSC with crossover probability p c  is 

Pd = 5 c ) p l ( l -  pc)d-i  (withd odd). 
i=(d+l ) /2  

(12.19) 

Suppose now the received signal is r = [lo, 10, 10,001. Then the trellis appears as in Figure 
12.210). In this case, the path metrics are equal; one-half of the time the decoder chooses the 
wrong path. If the incorrect path is chosen, the decoded input bits would be [ 1, 1, 0, 01, with two bits 
incorrectly decoded. The probability of the event of choosing the incorrect path in this case is P6, 
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where 

( ) d/2(1 - p c ) d / 2  + - pc)d - i  (withd even) (12.20) 
1 d  

pd = 5 d,2 Pc 
i=d/2+l  

is the probability that more than half of the bits are in error, plus 
half the bits are in error. 

times the probability that exactly 
0 

We can glean the following information from this example: 

Error events can occur in the decoding algorithm when paths merge together. If the 
erroneous path has lower (better) path metric than the correct path, the algorithm 
selects it. 

Merging paths may be of different lengths (number of stages). 

This trellis has a shortest path of metric 5 (three stages long) which diverges from the 
all-zero path then remerges. We say there is an error path of metric 5. There is also 
an error path of metric 6 (four stages long) which deviates then remerges. 

When an error path is selected, the number of input bits that are erroneously decoded 
depends on the particular path. 

The probability of a particular error event can be calculated and is denoted as P d .  

The error path of metric 5 was not disjoint of the error path of metric 6, since they 
both share a branch. 

In the following sections, we first describe how to enumerate the paths through the trellis. 
Then bounds on the probability of node error and the bit error rate are obtained by invoking 
the union bound. 

12.5.1 Enumerating Paths Through the Trellis 

In computing (or bounding) the overall probability of decoder error, it is expedient to have 
a method of enumerating all the paths through the trellis. This initially daunting task is 
aided somewhat by the observation that, for the purposes of computing the probability of 
error, since the convolutional code is linear it is sufficient to consider only those paths which 
diverge from the all-zero path then remerge. 

We develop a transfer function method which enumerates all the paths that diverge from 
the all-zero path then remerge. This transfer function is called the path enumerator. We 
demonstrate the technique for the particular code we have been examining. 

Example 12.18 Figure 12.22(a) shows the state diagram for the encoder of Example 12.1. In Figure 
12.22(b), the 00 state has been “spliti,:, or duplicated. Furthermore, the transition from state 00 to state 
00 has been omitted, since we are interested only in paths which diverge from the 00 state. Any path 
through the graph in Figure 12.22(b) from the 00 node on the left to the 00 node on the right represents 
a path which diverges from the all-zero path then remerges. In Figure 12.22(c), the output codeword 
of weight i along each edge is represented using D” (For example, an output of 11 is represented by 
D2; an output of 10 is represented by D’ = D and an output of 00 is represented by Do = 1.) For 
convenience the state labels have been removed. 

The labels on the edges in the graph are to be thought of as transfer functions. We now employ 
the conventional rules for flow graph simplification as summarized in Figure 12.23 
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011 1 
01 00 

010 1 

1/00 P - O  

(a) State diagram. (b) Split state 0. 

(c) Output weight i represented by D i .  

Figure 12.22: The state diagram and graph for diverginghemerging paths. 

Blocks in series multiply the transfer functions. 
Blocks in parallel add the transfer functions. 
Blocks in feedback configuration employ the rule “forward gain over 1 minus loop gain.” 

(For a thorough discussion on more complicated flow graphs, see [221].) For the state diagram of 
Figure 12.22, we take each node as a summing node. The sequence of steps by successively applying 
the simplification rules is shown in Figure 12.24. Simplifying the final diagram, we find 

D5 D - 
T ( D )  = 02-02 = - 

1 - -  1 - 2 0 .  
1-D 

To interpret this, we use the formal series expansion4 (check by long division) 

- 1 + D + D2 + D3 +...  . I 
Expanding T ( D )  we find 

T ( D )  = Ds( l  +2D + (2D)2 + (2D)3 + ...) = Ds +2D6 +4D7 +... + 2kDk+s + .  .. 
Interpreting this, we see that we have: 

4A formal series is an infinite series that is obtained by symbolic manipulation, without particular regard to 
convergence. 
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Blocks in series Blocks in parallel 

AYHTt--- = @ = +Gt-- 
G 

Feedback configuration 

Figure 12.23: Rules for simplification of flow graphs. 

%K* D 

2 
1-D 1 

1-D 

2 

1 - D  

J- 
1-D 1-D 

1 

Figure 12.24: Steps simplifying the flow graph for a convolutional code. 

One diverginghemerging error path at metric 5 from the all-zero path; 
2 error paths of metric 6;  

4 error paths of metric 7, etc. 

Furthermore, the shortest error path has metric 5. 0 

Definition 12.8 The minimum metric of a path diverging from then remerging to the all- 
zero path is called the free distance of the convolutional code, and is denoted as dfiee. The 

0 
In general, we write 
number of paths at that metric is denoted as Nfiee. 

00 

T ( D ) =  a ( d ) D d ,  
d=dfree 

where a(dfiee) = Nfiee. 

Additional information about the paths in the trellis can be obtained with a more expres- 
sive transfer function. We label each path with three variables: D' , where i is the output 
code weight; N" where i is the input weight; and L, to account for the length of the branch. 
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W 
DLN 

Figure 12.25: State diagram labeled with output weight, input weight, and branch length. 

Example 12.19 Returning to the state diagram of Figure 12.22, we obtain the labeled diagram in 
Figure 12.25. Using the same rules for block diagram simplification as previously, the transfer 
function for this diagram is 

D5L3N 
T ( D ,  N ,  L) = 

1 - D L N ( ~  + L ) ‘  
(12.21) 

Expanding this as a formal series we have 

T ( D ,  N ,  L )  = D5L3N + D6L4( l  + L)N2 + D7L5(l + L ) 2 N 3  + ... , (12.22) 

which has the following interpretation: 

There is one error path of metric 5 which is three branches long (from L3) and one input bit is 
1 (from N’) along that path. 

There are two error paths of metric 6: one of them is four branches long and the other is five 
branches long. Along both of them, there are two input bits that are 1. 

There are four error paths of metric 7. One of them is five branches long; two of them are six 
branches long; and one is seven branches long. Along each of these, there are three input bits 
that are 1. 

Etc. 

Clearly, we can obtain the simpler transfer function by T ( D )  = T ( D ,  N ,  L ) l ~ = l , ~ = l .  

When we don’t care to keep track of the number of branches, we write 

T ( D ,  N )  = T ( D ,  N ,  L)I,=l. 

Enumerating on More Complicated Graphs: Mason’s Rule 

Some graphs are more complicated than the three rules introduced above can accommodate. A more 
general approach is Mason’s rule [221]. Its generality leads to a rather complicated notation, which 
we summarize here and illustrate by example (not by proof) [373]. We will enumerate all paths from 
the 0 state to the 0 state in the state diagram shown in Figure 12.26. 

A loop is a sequence of states which starts and ends in the same state, but otherwise does not 
enter any state more than once. We will say that a forward loop is a loop that starts and stops in 
state 0. A set of loops is nontouching if they have no vertices in common. Thus (0, 1,2,4,0) is 
a forward loop. The loop {3,6,5,3) is a loop that does not touch this forward loop. The set of all 
forward loops in the graph is denoted as L = (L1 ,  L2, . . .}. The corresponding set of path gains is 
denoted as F = [ F l ,  F2, . . .}. Let C = [Cl, C2, . . .} denote the set of loops in the graph that does 
not contain the vertex 0. Let .F = [Fl, 75, . , .) be the set of corresponding path gains. (Determining 
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D2 7 D2 

1 
D D D 
D 

Figure 12.26: A state diagram to be enumerated. 

all the loops requires some care.) For the graph in Figure 12.26, the forward loops and their gains are 

L1: [0 ,1 ,3 ,7 ,6 ,5 ,2 ,4 ,0]  F 1 = D 8  
L2 : IO, 1,3,7,6,4,01 F2 = D6 
L 3 :  {0,1,3,6,5,2,4,0) F3=D10 
L4 : tO,1, 3,6,4,01 F4 = D8 
L 5 :  {0,1,2,5,3,7,6 ,4 ,0]  F 5 = D 8  
L 6 :  {0,1,2,5,3,6,4,0} F 6 = D l o  
L7 : {O, 1,2,4,01 F7 = D6 

and the other loops and their gains are 

F1 = D4 
F 2  = D2 
F 3  = D6 
F4 = D4 
3 5  = D4 
F6 = D6 
F6 = D2 
Fa = D2 
F 9  = D2 
F1o = D4 
F11 = D2 

We also need to identify the pairs of nontouching loops in C, the triples of nontouching loops in C, 
etc., and their corresponding product gains. There are ten pairs of nontouching loops in C: 

(132, La) F2Fa = D4 (133% C11) F3F11 = D8 
(C43 La) F 4 F S  = D6 (C4, C11) F4F11 = D6 

(C73 CIO) F7F10 = D6 (c73 c11) F7F11 = D4 
(c63 c11) F 6 F l l  = D8 (137, C9) 3 7 F 9  = D4 

(La, Cii) FsFii = D4 K l O 9  C11) FlOF11 = D6 

There are two triplets of nontouching loops in C, 

(c49 LS ,  c11) F 4 F 8 F l l  = D8 (c7, LlO, c11) F7FlOFll  = D8 

but no sets of four or more nontouching loops in C. 
With these sets collected, we define the graph determinant A as 

A = 1 - C F i  + C FiFj - C FjFjFk + ...  
Li (Ci ,Lj)  (Li ,Lj,Lk) 
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where the first sum is over all the loops in C, the second sum is over all pairs of nontouching loops in 
L, the third sum is over all triplets of nontouching loops in L, and so forth. 

We also define the graph cofactor of the forward path L j ,  denoted as Aj, which is similar to 
the graph determinant except that all loops touching Lj are removed from the summations. This can 
be written as 

Cl Fl A1 T ( D )  = ~ 

A ’  
(12.23) 

where the sum is over all forward paths. 
For our example, we have 

A l = l  A 5 = 1  

(since there are no loops that do not contain vertices in the forward paths L 1 and L5), 

A3 = A 6 =  1 -F11 = 1 - D 2  

(since L3 and L6 do not cross vertex 7 and so do not touch loop L ~ I ) ,  

= 1 - 3 8  = 1 - D~ 

(since L2 does not touch .C8 but it does touch all other loops), and 

A4 = 1 - (F8 + 311) + F8Fll = 1 - 2D2 + D4 

A7 = 1 - ( 3 9  + 3 1 0  + F11) + ( 3 1 0 3 1 1 )  = 1 - 2D2 - D4 + D6.  

The graph determinant is 

A = 1 - (D4 + D2 + D6 + D4 + D4 + D6 + D2 + D2 + D2 + D4 + D2) 

+ (D4 + D8 + D6 + D6 + D8 + D4 + D6 + D4 + D4 + D6)  - ( D 8 +  0’) 

= 1 - SO2 + 2D6. 

Finally, using (12.23) we obtain 
2D6 + DIO 

1 - 5 D 2 + 2 D 6 ’  
T ( D )  = 

12.5.2 Characterizing the Node Error Probability Pe and the Bit Error Rate Pb 

We now return to the question of the probability of error for convolutional codes. Let P j  

denote the set of all error paths that diverge from node j of the all-zero path in the trellis 
then remerge and let pi ,  j E P j  be one of these paths. Let A M ( p i , j ,  0) denote the difference 
between the metric accumulated along path p i , j  and the all-zero path. An error event at 
node j occurs due to path p i , j  if A M ( p j , j ,  0)  < 0. Letting Pe(j) denote the probability of 
an error event at node j, we have 

pe( j>  5 Pr [ C J l a M ( P i , j ,  0) 5 01 , (12.24) 1 
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where the inequality follows since an error might not occur when A M ( p j , j ,  0) = 0. 
The paths p i , j  E P are not all disjoint since they may share branches, so the events 
{ A M ( p i , j ,  0) 5 0) are not disjoint. This makes (12.24) very difficult to compute ex- 
actly. However, it can be upper bounded by the union bound (see Box 1.1 in chapter 1) as 

(12.25) 

Each term in this summation is now apainvise event between the paths pi, j and the all-zero 
path. 

We here develop expressions or bounds on the pairwise events in (12.25) for the case 
that the channel is memoryless. (For example, we have already seen that for the BSC, the 
probability Pd developed in (12.19) and (12.20) is the probability of the pairwise events 
in question.) For a memoryless channel, A M ( p i , j ,  0) depends only on those branches for 
which pi,j is nonzero. Let d be the Hamming weight of p i , j  and let Pd be the probability 
of the event that this path has a lower (better) metric than the all-zero path. Let a(d) be the 
number of paths at a distance d from the all-zero path. The probability of a node error event 
can now be written as follows: 

00 

P e ( j )  5 Pr(enor caused by any of the a(d)  incorrect paths at distance d )  
d=dfree 

00 

(12.26) 
d=dtree 

Any further specification on Pe ( j )  requires characterization of P d .  We show below that 
bounds on Pd can be written in the form 

Pd < Z d  (12.27) 

for some channel-dependent function 2 and develop explicit expressions for 2 for the BSC 
and AWGN channel. For now, we simply express the results in terms of Z .  With this bound 
we can write 

00 

d=dfree 

Recalling that the path enumerator for the encoder is T ( D )  = c T = d f r e e  a ( d )  D d ,  we obtain 
a closed-form expression for the bound 

P e ( j >  < T(D)ID=z. (12.28) 

The bound (12.28) is a bound on the probability of a node error. From this, a bound on the 
bit error rate can be obtained by enumerating the number of bits in error for each node error. 
The derivative 

brings exponents of N down as multipliers for each term in the series. 

Example 12.20 For the weight enumerator of Example 12.18, 

T ( D , N ) = D 5 N + 2 D 6 N 2 + 4 D 7 N 3 + . . .  , 
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i a  
Pb < --T(D,N) 

we have 
~ T ( D ,  N )  = (1)D5 + (2)2D6N + (3)4D7N2 -t 
aN 

(12.29) 

so that a node error on the error path of metric 5 contributes one bit of error; a node error on either of 
0 the error paths of metric 6 contributes two bits of error, and so forth. 

The average number of bits in error along the branches of the trellis is 

a 
aN N = l  
- T ( D ,  N)l = Ddfree(nl + n2 + . . .) + . . . . 

The number n 1 + 122 + a  . . is the number of nonzero message bits associated with codewords 
of weight dfi,,,. Let us denote this number as bdfree = nl + n2 + . . . 
Example 12.21 Suppose 

T ( D , N )  = D 6 N + D 6 N 3 + 3 D 8 N + 5 D 8 N 4 + . * .  

Then there are two codewords of weight 6: one corresponding to a message of weight 1 and one 
corresponding to a message of weight 3. We could write 

T ( D ,  N )  = D6(N + N 3 )  + 3D8N + 5D8N4 + 
Thenbg = 1 + 3 = 4 .  

Then the approximation is 
1 

pb X -bd k free Ddfree . I D=Z 

A lower bound can be found as 
1 

'b  ' i bd f reepdf ree*  

where Pddfree is Pd at d = dfree. 

Example 12.22 For 

. . .  

T ( D , N ) = - = D 5 N + 2 D  D5 6 2  N + 4 D  7 3  N t 
1 - 2DN 

0 

(12.30) 

(12.31) 

the derivative is 
a 

- T ( D , N )  = D 5 + 4 D 6 N + 1 2 D 7 N 2 + . . .  
aN 
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so the probability of error is approximated by 

Pb %5 z5 
or lower bounded by 

Pb 1 Ps. 

12.5.3 A Bound on Pd for Discrete Channels 

In this section we develop a bound on Pd for discrete channels such as the BSC [373, Section 
12.3.11. Let p(ri 11) denote the likelihood of the received signal T i ,  given that the symbol 
corresponding to 1 was sent through the channel; similarly p(ri  lo). Then 

Pd = P ( A M ( p i , j , O )  FOandd~(p i , j ,O)  = d )  

where ( r l ,  r2, . . . , r d ]  are the received signals at the d coordinates where pj,j is nonzero. 
Continuing, 

Let R’ be the set of vectors of elements r = ( r l , r2 ,  . . . , r d )  such that 
d 

i = l  

(12.32) 

(For example, ford = 5 over the BSC, R’ is the set of vectors for which 3 or 4 or 5 of the ri 
are equal to 1.) The probability of any one of these elements is p(ri lo), since we are 
assuming that all zeros are sent. Thus, the probability of any vector in R’ is nf=l p(ri lo). 
The probability Pd can be obtained by summing over all 

d 

the vectors in R‘: 

rcR’i=l 

Since the left-hand side of (12.32) is 2 1 ,  we have 

for any s such that 0 5 s < 1 .  The tightest bound is obtained by minimizing with respect 
to s: 

This is made more tractable (and larger) by summing over the set R of all sequences 
(r1, r 2 , .  . . , r d ) :  

d 
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The order of summation and product can be reversed, resulting in 

d 

This is known as the Chernoff bound. Let 

(12.33) 

Then Pd < Zd. 

when s = 1/2. Then Z = z/p(ri  IO)p(ri 11) and 
If the channel is symmetric, then by symmetry arguments the minimum must occur 

d 

(12.34) 
i=l  ri 

This bound is known as the Bhattacharya bound. 

D'N Example 12.23 Suppose the encoder with T ( D ,  N) = !-2DN is used in conjunction with an asym- 
metric channel having the following transition probabilities: 

r = 1 0.02 0.997. 

Then 

1 chernoff 1 .m The minimum value can be found numerically as Z = 0.1884, which occurs when s = 0.442. 
The node error probability can be bounded using (12.28) as 

= 3.8 p e w  < - 
- D5N 2DN I N = 1 , 0 = 0 . 1 8 8 4  

and the bit error rate is bounded using (12.29) as 

The approximate bit error rate from (12.30) is 
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i a  
Pb < - - T ( D ,  N) 

Performance Bound on the BSC 

For the BSC with crossover probability p , ,  (12.34) can be written as follows: 
d d 

pd < n c J P ( r i / O ) P ( r i / 1 )  = ~ ( ~ P ( o l o ) p ( o ~ l )  4- Jp(l lo)p( l ( l ) )  
i= l  ri i=l 
d 

= ~ G Z - x =  [4P,(l - p c ) l d / 2  = J G F x d .  
i=l 

The expression Z in (12.27) is thus Z = [4p,(l - pc)]1/2. 
Let us now return to P e ( j ) .  Inserting this bound on Pd in (12.26) we obtain 

d=dfree d=dfree 

The closed-form expression for the bound on the probability of error is 

(12.35) 

(12.36) 

(12.37) 

Suppose that the coded bits ct(i) are mapped to a BPSK signal constellation by a:) = 

a ( 2 c , ( ' )  - l), where E,  is the coded signal energy, with E ,  = REb, and Eb is the 
energy per message bit. If the all-zero sequence is sent, then the sequence of amplitudes (-a, -a, -a, . . .) is sent. A sequence which deviates from this path in d lo- 
cations is at a squared distance 2dE, from it. Then Pd is the probability that a d-symbol 
sequence is decoded incorrectly, compared to the sequence for all-zero transmission. That 
is, it is the problem of distinguishing p1 = (-a, -a, -a, . . . , -a) from 
p2 = (a, a, a, . . . , a), where these vectors each have d elements. The Eu- 
clidean distance between these two points is 

dEuclidean(P1, P2) = 2[dEc11/2. 

The probability of a detection error is (see Section 1.5.4) 

To express this in the form Z d  (for use in the bound (12.28)) use the bound Q ( x )  < i e - x 2 / 2  
(see Exercise 1).12. We thus obtain 

1 
2 

pd < -e -dEc/NO 
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Then (12.28) and (12.29) give 

. (12.38) 
1 1  a 

P b  < ---T(D,N) 
1 

~ = ~ - E c l N o  2 k a N  N=l,D=e-EclNO 
p e ( j >  < TT(D)~ 

Another bound on the Q function is [359] 

Q(d-1 i Q ( f i > e - Y / 2 ,  x 2 0, Y 2 0. (12.39) 

Then 

A lower bound can be obtained using (12.31) 

(12.41) 

Example 12.24 For the R = 1/2 code of Example 12.1 with dbee = 5, Figure 12.27 shows the 
bounds on the probability of bit error of the code for both hard- and soft-decision decoders compared 

1plotconprob.m with uncoded performance. For soft decoding, the lower bound and the upper bound of (12.40) 
approach each other for high signal to noise ratios, so the bounds are asymptotically tight. (The bound 
of (12.38) is looser.) Gains of approximately 4 dB at high SNR are evident for soft decision decoding. 

The hard-decision decoding bounds are clearly not as tight. Also, there is approximately 3 dB 
0 less coding gain for the hard-decision decoder. 

12.5.5 Asymptotic Coding Gain 

The lower bound for the probability of bit error for the coded signal (using soft-decision 
decoding) 

can be approximated using the bound Q ( x )  < ge-x2/2 as 

The probability of bit error for uncoded transmission is 

(12.42) 

(12.43) 
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Figure 12.27: Performance of a (3, 1) convolutional code with dfree = 5 .  

The dominant factor in (12.42) and (12.43) for large values of signal-to-noise ratio is deter- 
mined by the exponents. Comparing the exponents in these two using E ,  = REb we see 
that the exponent in the probability of bit error for the coded case is a factor of Rdfiee larger 
than the exponent for the uncoded case. The quantity 

 soft = lologlo Rdfiee 

is called the asymptotic coding gain of the code. For sufficiently large SNR, performance 
essentially equivalent to uncoded performance can be obtained with y dB less SNR when 
coding is employed. A similar argument can be made to show that the asymptotic coding 
gain for hard decision decoding is 

This shows that asymptotically, soft-decision decoding is 3 dB better than hard-decision 
decoding. 

As the SNR increases, the dominant term in computing the bit error rate is the first term 
in T ( x ,  N ) .  As a result the free distance has a very strong bearing on the performance of 
the code. 

12.6 Tables of Good Codes 

Unlike block codes, where many good codes have been found by exploiting the algebraic 
structure of the codes, good convolutional codes have been found mostly by computer 
search. As a result, good codes are known only for relatively short constraint lengths. The 
following tables [251,254, 197,651 provide the best known polynomial codes. It may be 
observed that all of these codes are nonsystematic. 
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There are separate tables for different rates. Within each table, different memory lengths 
L, are used, where 

L = u + l ,  

where u = maxi,j deg(gij(x)) is the degree of the highest polynomial. (This quantity 
is called in many sources the constraint length.) For the rate k / n  codes with k > 1, L 
represents the largest degree and u represents the total memory. 

In these tables, the coefficients are represented using octal digits with the least significant 
bit on the right. Thus, 0 -+ 000, 1 -+ 001,2 + 010, 3 + 011, and so forth. There may 
be trailing zeros on the right. For example, for the rate 1/4 code, the entry with L = 5 has 
generators go = 52, gl = 56, g2 = 66 and g3 = 76. The corresponding bit values are 

go = (101010) g1 = (101 110) g2 = (110110) g3 = (111 110). 

The first coefficient (on the left) is the first coefficient in the en~oder .~  Thus the coded 
output streams are 

finddfree.cc 1 The program f i n d d f  ree finds dkee for a given set of connection coefficients. It has 
been used to check these results. (Currently implemented only fork = 1 codes.) 

R = 1/2 [251, 1971 

4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 - 

64 
46 
65 
554 
712 
561 
4734 
4762 
4335 
42554 
43572 
56721 
441254 
716502 

74 6 
72 7 
57 8 
744 10 
476 10 
753 12 
6624 12 
7542 14 
5723 15 
77304 16 
56246 16 
61713 18 
627324 19 
514576 20 

R = 1/3 [251, 1971 

3 5  7 7 8 
4 54 64 74 10 
5 52 66 76 12 
6 47 53 75 13 
7 554 624 764 15 
8 452 662 756 16 
9 557 663 711 18 
10 4474 5724 7154 20 
11 4726 5562 6372 22 
12 4767 5723 6265 24 
13 42554 43364 77304 24 
14 43512 73542 76266 26 

L g(1) g(2) g(3) dfree 

5T0 use the class BinConvFIR, the left bit must be interpreted as the LSB of a binary number. The function 
octconv returns an integer value that can be used directly in BinConvFIR. 
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4 54 64 64 74 13 
5 52 56 66 76 16 
6 53 67 71 75 18 
7 564 564 634 714 20 
8 472 572 626 736 22 
9 463 535 733 745 24 
10 4474 5724 7154 7254 27 
11 4656 4726 5562 6372 29 
12 4767 5723 6265 7455 32 
13 44624 52374 66754 73534 33 
14 42226 46372 73256 73276 36 
R = 213 [254, 1721 

,&l) ,$12) ,$1,3) 

2 
3 3 5  

1 
3 4  7 

2 
4 5 60 

14 
4 6 64 

30 
5 7 60 

16 
5 8  64 

26 
6 9 52 

05 
6 10 63 

32 

4 8 
2 6 4 
4 7 
1 4 5 
5 7 
30 70 6 
40 74 
30 64 7 
64 74 
34 54 8 
46 74 
12 52 8 
66 44 
06 74 9 
70 53 
15 46 10 
65 61 

R = 314 [254,172] 
g(l,l) g(1,2) g(1,3) g(174) 

p , i )  p , 3 )  p 3 4 )  

,, g(3,i) g(3,2) ,p) p )  dfree 

2 3 4  4 4 4 4 
0 6 2 4 
0 2 5 5 

3 5 6  2 2 6 5 
1 6 0 7 
0 2 5 5 

3 6 6  1 0 7 6 
3 4 1 6 
2 3 7 4 

4 8 70 30 20 40 7 
14 50 00 54 
04 10 74 40 

04 64 20 70 
34 00 60 64 

4 9 40 14 34 60 8 

Table 12.2 presents a comparison of dfiee for systematic and nonsystematic codes (with 
polynomial generators), showing that nonsystematic codes have generally better distance 
properties. Results are even more pronounced for longer constraint lengths. 

12.7 Puncturing 

In Section 3.9, puncturing was introduced as a modification to block codes, in which one 
of the parity symbols is removed. In the context of convolutional codes, puncturing is 
accomplished by periodically removing bits from one or more of the encoder output streams 
[40]. This has the effect of increasing the rate of the code. 

Example 12.25 Let the coded output sequence of a rate R = 1 /2 code be 
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Table 12.2: Comparison of Free Distance as a Function of Constraint Length for Systematic 
and Nonsystematic Codes 

R = 113 [251] 
Systematic Nonsystematic 

3 4  5 
4 4  6 
5 5  7 
6 6  8 
7 6  8 
8 7  10 

R = 112 [251] 
Systematic Nonsystematic 

3 6  8 
4 8  10 
5 9  12 
6 10 13 
7 12 15 
8 12 16 

When the code is punctured by removing every fourth coded symbol, the punctured sequence is 

The - symbols merely indicate where the puncturing takes place; they are not transmitted. The 
punctured sequence thus produces three coded symbols for every two input symbols, resulting in a 
rate R = 213 code. 

Decoding of a punctured code can be accomplished using the same trellis as the unpunctured 
code, but simply not accumulating any branch metric for the punctured symbols. One way 
this can be accomplished is by inserting symbols into the received symbol stream whose 
branch metric computation would be 0, then using conventional decoding. 

The pattern of puncturing is often described by means of a puncturing matrix P. For 
a rate k / n  code, the puncture matrix has n rows. The number of columns is the number of 
symbols over which the puncture pattern repeats. For example, for the puncturing of the 
previous example, 

The element Pij is 1 if the ith symbol is sent in the j th  epoch of the puncturing period. 
While the punctured code can be encoded as initially described - by encoding with the 

lower rate code then puncturing - this is wasteful, since computations are made which are 
promptly ignored. However, since the code obtained is still a convolutional code, it has its 
own trellis, which does not require any explicit puncturing. 

Example 12.26 We demonstrate puncturing for the code which has been a leitmotiffor this chapter, 
with generators g(’) (x) = 1 + x2 and g ( 2 )  (x) = 1 + x + x2. Puncturing is accomplished by deleting 
every other bit of the second output stream (as above). Four stages of the trellis for this punctured 
code are shown in Figure 12.28(a). 

Now draw the trellis for the resulting R = 213 code by taking the input bits two at a time, or two 
stages in the original trellis, and think of this as representing a single transition of the new code. The 
resulting trellis is shown in Figure 12.28(b). 

0 

Besides being used to increase the rate of the code, puncturing can sometimes be used 
to reduce decoding complexity. In decoding, each state must be extended to 2k states at the 
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00 

10 

01 

11 

(a) Trellis for initial punctured code. 

non 

01 I 
010 

(b) Trellis by collapsing two stages of the 
initial trellis into a single stage. 

Figure 12.28: Trellises for a punctured code. 

next time. Thus, the decoding complexity scales exponentially with k.  Given the trellis for 
an unpunctured code with rate R = k / n  with k > 1, if a trellis for an equivalent punctured 
code having k‘ < k input bits can be found, then the decoding complexity can be decreased. 

Suppose, for example, that the encoder having the trellis in Figure 12.28(b) is used. In 
decoding, four successor states must be examined for each state, so that the best of four 
paths to a state must be selected. However, we know that this encoder also has the trellis 
representation in Figure 12.28(a). Decoding on this trellis only has two successor states 
for each state. This results in only a two-way comparison, which can be done using a 
conventional add/compare/select circuit. 

Of course, puncturing changes the distance properties of the code: a good rate R = 2/3 
code is not necessarily obtained by puncturing a good R = 1/2 code. Tables of the best 
R = 3/4 and R = 2/3 codes obtainable by puncturing are presented in [40]. 

12.7.1 Puncturing to Achieve Variable Rate 

Puncturing can also be used to generate codes of various rates using the same encoder. Such 
flexibility might be used, for example, to match the code to the channel in a situation in 
which the channel characteristics might change. Suppose that a rate R = 1/2 encoder is 
used as the “basic” code. As mentioned above, puncturing 1 bit out of every 4 results in a 
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R = 213 code. Puncturing 3 out of every 8 bits results in a R = 415 code. 
If the puncturing is done in such a way that bits punctured to obtain the R = 213 code are 

included among those punctured to obtain the R = 415 code, then the R = 415 codewords 
are embedded in the R = 213 codewords. These codewords are, in turn, embedded in 
the original R = 112 codewords. Such codes are said to be rate compatible punctured 
convolutional (RCPC) codes. Assuming that all the RCPC codes have the same period (the 
same width of the P matrix), then the P matrix of a higher rate code is obtained simply by 
changing one or more of the 1s to 0s. An RCPC code system can be designed so that the 
encoder and the decoder have the same structure for all the different rates. Extensive tables 
of codes and puncturing schedules which produce rate compatible codes appear in [130]. 
Abbreviated tables appear in Table 12.3. 

Table 12.3: Best Known R = 213 and R = 314 Convolutional Codes Obtained by Punc- 
turing a R = 1 /2 Code [ 1981 
I Initial Code I Punctured Code 1 1  Initial Code 1 Punctured Code 

5 

13 

31 

65 

155 

7 

17 

27 

57 

117 

P 

1 0  

i n  

4ree 

5 

13 

31 

65 

155 

7 

17 

27 

57 

117 

~ P 

1 1 0  
1 0 0  

1 1 0  

4 29 

4 1 

4 1 

5 8 

12.8 Suboptimal Decoding Algorithms for Convolutional Codes 

While the Viterbi algorithm is an optimal decoding algorithm, its complexity grows as 2”, 
exponentially with the number of states. The probability bound presented in (1.49) suggests 
that better performance is obtained by codes with longer memory (constraint length). These 
two facts conflict: it may not be possible to build a decoder with a sufficiently long memory 
to achieve some desired level of performance. 

The Viterbi algorithm also has fixed decoding costs, regardless of the amount of noise. 
It would be desirable to have an algorithm which is able to perform fewer computations 
when there is less noise, adjusting the amount of effort required to decode to the severity of 
the need. 

In this section we present two algorithms which address these problems. These algo- 
rithms have decoding complexity which is essentially constant as a function of constraint 
length. Furthermore, the less noisy the channel, the less work the decoders have to do, on av- 
erage. This makes them typically very fast decoders. These positive attributes are obtained, 
however, at some price. These are suboptimal decoding algorithms: they do not always 
provide the maximum-likelihood decision. Furthermore, the decoding time and decoder 
memory required are a random variables, depending on the particular received sequence. 

In recent years, the availability of high-speed hardware has led to almost universal use of 
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Viterbi decoding. However, there are still occasions where very long constraint lengths may 
be of interest, so these algorithms are still of value. Viterbi algorithms can be practically used 
on codes with constraint lengths up to about 10, while the sequential algorithms discussed 
here can be used with constraint lengths up to 50 or more. 

The first algorithm is known as the stack algorithm, or the ZJ algorithm, after Zigan- 
girov (1966) [388] and Jelinek (1969) [ 1651. The second algorithm presented is the Fano 
algorithm (1963) [80]. These are both instances of sequential decoding algorithms [378]. 

12.8.1 Tree Representations 

While the Viterbi algorithm is based on a trellis representation of the code, the sequential 
algorithms are best understood using a tree representation. Figure 12.29 shows the tree for 
the convolutional code with generator G ( x )  = [ 1 + x 2 ,  1 + x + x 2 ]  whose state diagram 
and trellis are shown in Figure 12.5. At each instant of time, the input bit selects either the 
upper branch (input bit = 0) or the lower branch (input bit = 1). The output bits for the code 
are shown along the branches of the tree. By recognizing common states, it is possible to 
“fold” the tree back into a trellis diagram. 

The tree shown in figure 12.29 is for an input sequence of length 4 in the “branching 
portion” of the tree, followed by a sequence of zeros which drives the tree back to the all-zero 
state in the “nonbranching” portion of the tree. The length of the codeword is L branches. 
Each path of length L from the root node to a leaf node of the tree corresponds to a unique 
convolutional codeword. 

Since the size of the tree grows exponentially with the code length, it is not feasible to 
search the whole tree. Instead, a partial search of the tree is done, searching those portions 
of the tree that appear to have the best possibility of succeeding. The sequential decoding 
algorithms which perform this partial search can be described heuristically as follows: Start 
at the root node and follow the branches that appear to best match the noisy received data. 
If, after some decisions, the received word and the branch labels are not matching well, back 
up and try a different route. 

12.8.2 The Fano Metric 

As a general rule, paths of differing lengths are compared as the algorithm moves around 
the tree these in sequential decoding algorithms. A path of length five branches through the 
tree might be compared with a path of length twenty branches. A first step, therefore, is to 
determine an appropriate metric for comparing different paths. The log likelihood function 
used as the branch metric for the Viterbi algorithm is not appropriate to use for the sequential 
algorithm. This is because log likelihood functions are biased against long paths. 

Example 12.27 Suppose the transmitted sequence of a rate R = 1/2 code is 

a = [ l l ,  10, 10, 11, 11,01,00,01] 

and the received sequence is 
r = [Ol, lO,OO, 11, l l ,Ol,  00,011. 

Using the Hamming distance as the path metric, this is to be compared with a partial path of one 
branch, P ( l )  = [00] and a partial path of six branches, a(2) = [ll, 10, 10, 11, 11,011. Letting [rlj 
denote i branches of received data, we have 

dH(tr11, a‘’)) = 1 dH(i1-16, a(2)) = 2. 
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Figure 12.29: A tree representation for a rate R = 1/2 code. 

By not taking into account the fact that branches of different length are being compared, a1 appears 
to be better, since the Hamming distance is smaller. But intuitively, it seems that 2 errors out of 12 

0 bits should be superior to 1 error out of 2 bits. 

The Fano metric is designed to take into account paths of different lengths. Let 

be a partial input sequence of length n j corresponding to a particular path through the tree, 
where each a:) consists of n bit symbols. Accordingly, let us write this as a vector of nni 
bits, 

g(i )  = ,(i) (i) G )  (0 0) , , . . ., = (ao , a l  , .. . , a n i n - l ) .  

Assuming that each encoded bit occurs with equal probability, each sequence ii(i) occurs 
with probability 

p ( i ( 9 )  = (2-k)"' = 2-Rnni. (12.44) 

Suppose that there are M partial sequences to be compared, represented as elements of the 
set X, 

x = { i i y  @), . . . , i ( M ) } .  
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Let nmax be the longest of the partial sequences, 

nmax = max(n1, n2,. . . , nM). 

Let r = (ro, rl , . . . , rL-1) be a received sequence corresponding to a codeword and let 

f = (ro, ri, . . . , rnmaX-i) 

be a "partial" sequence, starting at the beginning of r, but extending only through nmax 
branches. (The tilde is used to represent partial sequences.) Each ri consists of n symbols, 
so we can also write this as a vector of nnmm elements 

f = (ro, r l ,  . . . , rnnma-l). 

From among the sequences in X, the optimal receiver chooses the ii(i) which maximizes 

Assuming (as is typical) that the channel is memoryless, this can be written as 

where the second product arises since there are no known data associated with the sequence 
H(') for j 2 nj . Canceling common terms in the numerator and denominator of (12.45) we 
obtain 

Taking the logarithm of both sides and using (12.44), we have 

Each rj and a:' consists of n symbols, so we can write this as 

We use this as the path metric and denote it as 

~ ( i i ( ~ ) ,  r) = log2 ~ ( i i ( ' )  IF). 

The corresponding branch metric which is accumulated for each new symbol is 

(i) l (r j ,  a:') = log2 P(rj laj ) - log2 P(rj) - R .  
i- 

ML metric path length bias 

This metric is called the Fano metric. As indicated, the Fano metric consists of two parts. 
The first part is the same maximum likelihood metric used for conventional Viterbi decoding. 
The second part consists of a bias term which accounts for different path lengths. Thus, when 
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comparing paths of different lengths, the path with the largest Fano metric is considered the 
best path, most likely to be part of the maximum likelihood path. If all paths are of the same 
length, then the path length bias becomes the same for all paths and may be neglected. 

If transmission takes place over a BSC with transition probability p c ,  then P(r j  = 0) = 
P(r j  = 1) = i. The branch length bias is 

which is > 0 for all codes of rate R < 1. The cumulative path length bias for a path of 
nni bits is nni (1 - R ) :  the path length bias increases linearly with the path length. For the 
BSC, the branch metric is 

Example 12.28 Let us contrast the Fano metric with the ML metric for the data in Example 12.27, 
assuming that pc  = 0.1. Using the Fano metric, we have 

M([OOI, r) = 10g2(l - p c )  + log2 pc + 2(1 - 1/2) = -2.479 

M([11, 10, 10, 11, 11,011, r) = lOlogZ(1 - p c )  + 210g2pc + 12(1 - 1/2) = -2.164. 

Thus the longer path is has a better (higher) Fano metric than the shorter path. 0 

Example 12.29 Suppose that R = 1/2 and pc = 0.1. Then from (12.46), 

0.348 rj = a ,  
-2.82 r j  # a j .  

, W j ,  a j )  = 

It is common to scale the metrics by a constant so that they can be closely approximated by integers. 
Scaling the metric by 1/0.348 results in the metric 

Thus, each bit aj  that agrees with r j  results in a +1 added to the metric. Each bit aj that disagrees 
0 

A path with only a few errors (the correct path) tends to have a slowly increasing metric, 
while an incorrect path tends to have a rapidly decreasing metric. Because the metric 
decreases so rapidly, incorrect paths are not extended far before being effectively rejected. 

For BPSK transmission through an AWGN , the branch metric is 

with r j  results in -8 added to the metric. 

P ( r j ,  a j> = log2 ~ ( r j l a j )  -log, p ( r j >  - R ,  

where p ( r j  laj) is the PDF of a Gaussian r.v. with mean aj and variance a2 = No/2  and 

p(rjlaj  = 1) + p ( r j ( a j  = -1) 
2 P ( r j >  = 
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12.8.3 The Stack Algorithm 

Let 5( i )  represent apath through the tree and let M(C('),, r) represent the Fano metric between 
ii(i) and the received sequence r . These are stored together as a pair (M (5@) , r) , P ( i ) )  called 
a stack entry. 

In the stack algorithm, an ordered list of stack entries is maintained which represents all 
the partial paths which have been examined so far. The list is ordered with the path with the 
largest (best) metric on top, with decreasing metrics beneath. Each decoding step consists 
of pulling the top stack entry off the stack, computing the 2k successor paths and their path 
metrics to that partial path, then rearranging the stack in order of decreasing metrics. When 
the top partial path consists of a path from the root node to a leaf node of the tree, then the 
algorithm is finished. 

Algorithm 12.2 The Stack Algorithm 

I Input: A sequence ro, rl , . . . , rL-1 
z Output: The sequence ao, a1 , . . . , aL-1 
3 Initialize: Load the stack with the empty path with Fano path metric 0: S = (0,O) 
4 Compute the metrics of the successors of the top path in the stack 
5 Delete the top path from the stack 
6 Insert the paths computed in step 4 into the stack, and 

7 If the top path in the stack terminates at a leaf node of the tree, Stop. 
rearrange the stack in order of decreasing metric values. 

Otherwise, goto step 4. 

Example 12.30 The encoder and received data of Example 12.13 are used in the stack algorithm. We 
have 

Figure 12.30 shows the contents of the stack as the algorithm progresses. After 14 steps of the 
algorithm, the algorithm terminates with the correct input sequence on top. (The metrics here are not 

r = [I1 1000 10 11 01 OOO1 . . .] . 

scaled to integers.) 0 

A major part of the expense of the stack algorithm is the need to sort the metrics at every 
iteration of the algorithm. A variation on this algorithm due to Jelinek [165] known as the 
stack bucket algorithm avoids some of this complication. In the stack bucket algorithm, 
the range of possible metric values (e.g., for the data in Figure 12.30, the range is from 
0.7 to -9.2) is partitioned into fixed intervals, where each interval is allocated a certain 
number of storage locations called a bucket. When a path is extended, it is deleted from its 
bucket and a new path is inserted as the top item in the bucket containing the metric interval 
for the new metric. Paths within buckets are not reordered. The top path in the nonempty 
bucket with the highest metric interval is chosen as the path to be extended. Instead of 
sorting, it only becomes necessary to determine which bucket new paths should be placed 
in. Unfortunately, the bucket approach does not always choose the best path, but only a 
"very good" path, to extend. Nevertheless, if there are enough buckets that the quantization 
into metric intervals is not too coarse, and if the received signal is not too noisy, then the 
top bucket contains only the best path. Any degradation from optimal is minor. 

Another practical problem is that the size of the stack must necessarily be limited. For 
long codewords, there is always the probability that the stack fills up before the correct 

test stack .m 
stacka1g.m 
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Step 1 Step 2 Step 3 Step 4 Step 5 
0.7 [l] 1.4 [ l l ]  -1.1 [111] -0.39 [1110] 0.31 [11100] 

-5.6 [0] -4.9 [lo] -1.1 [110] -1.1 [110] -1.1 [110] 
-5.6 (01 -4.9 [lo] -4.9 [lo] -4.9 [lo] 

-5.6 [O] -5.6 [O] -5.6 [O] 
-6.7 [1111] -6 [11101] 

-6.7 [ l l l l ]  
Step 6 

-1.1 [110] 
-2.2 [111001] 
-2.2 [111000] 
-4.9 [lo] 
-5.6 [O] 

-6.7 [1111] 
-6 [11101] 

Step 10 
-3.6 [11001 
-3.6 [11011 
-3.9 [111000001 
-3.9 [111000011 
-4.6 [1110011] 
-4.6 [11100101 
-4.9 1101 
-5.6 [O] 

-6 [11101] 
-6.7 [1111] 
-7.8 [1110001] 

Step I 
-2.2 [111000] 
-2.2 [1110011 

-4.9 [lo] 

_ _ _ _ _ -  

-3.6 [1101] 
-3.6 [1100] 

-5.6 [O] 

-6.7 [1111] 
-6 [11101] 

Step 11 
-2.9 [110011 
-3.6 [1101] 
-3.9 [111000011 
-3.9 [11100o0o] 
-4.6 [1110010] 
-4.6 [1110011] 
-4.9 [lo] 
-5.6 [O] 

-6 [11101] 
-6.7 [11111 
-7.8 [11100011 
-9.2 [110001 

Step 13 Step 14 
-1.5 [1100101] -0.77 [11001010] 
-3.6 [1101] -3.6 [1101] 
-3.9 [111000011 -3.9 [11100000] 
-3.9 
-4.6 
-4.6 
-4.9 
-5.6 

-6 
-6.7 
-7.8 
-7.8 
-8.5 
-9.2 

[ 1 1 l00000] 
[1110010] 
[1110011] 
I101 
[OI 
[11101] 
[1111] 
[1110001] 
[1100100] 
[110011] 
[110001 

-3.9 
-4.6 
-4.6 
-4.9 
-5.6 

-6 
-6.7 
-7.1 
-7.8 
-7.8 
-8.5 
-9.2 

[ 1 1 100001] 
11 11001 11 
[1110010] 
[lo1 
[OI 
[11101] 
[1111] 
[11001011] 
[ 1 1 1 OOOl] 
[ 1 100100] 
[l 1001 11 
[11000] 

Step 8 
-1.5 [1110000] 
-2.2 [111001] 
-3.6 [1100] 
-3.6 [1101] 
-4.9 [lo] 
-5.6 [O] 

-6 [11101] 
-6.7 [11111 
-7.8 [1110001] 

step 9 - 
-2.2 [111001] 
-3.6 [1101] 
-3.6 [1100] 
-3.9 [11100001] 
-3.9 [11100000] 
-4.9 [lo] 
-5.6 [O] 

-6 [11101] 
-6.7 111111 
-7.8 [1110001] 

step 12 
-2.2 [110010] 

-3.9 [1110oooo] 
-3.9 [111000011 
-4.6 [lllOOll] 
-4.6 [1110010] 
-4.9 [lo] 
-5.6 [O] 

-6.7 [1111] 

-8.5 [1100111 
-9.2 [110001 

-3.6 [1101] 

-6 [11101] 

-7.8 [1110001] 

Figure 12.30: Stack contents for stack algorithm decoding example: metric, [input list]. 
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codeword is found. This is handled by simply throwing away the paths at the bottom of the 
stack. Of course, if the path that would ultimately become the best path is thrown away at 
an earlier stage of the algorithm, the best path can never be found. However, if the stack 
is sufficiently large the probability that the correct path will be thrown away is negligible. 
Another possibility is to simply throw out the block where the frame overflow occurs and 
declare an erasure. 

12.8.4 The Fano Algorithm 

While the stack algorithm moves around the decoding tree, and must therefore save infor- 
mation about each path still under consideration, the Fano algorithm retains only one path 
and moves through the tree only along the edges of the tree. As a result, it does not require 
as much memory as the stack algorithm. However, some of the nodes are visited more than 
once, requiring recomputation of the metric values. 

The general outline of the decoder is as follows. A threshold value T is maintained by 
the algorithm. The Fano decoder moves forward through the tree as long as the path metric 
at the next node (the “forward” node), denoted by MF, exceeds the threshold and the path 
metric continues to increase (improve). The algorithm is thus a depth-first search. When 
the path metric would drop below the threshold if a forward move were made, the decoder 
examines the preceding node (the “backward” node, with path metric M B ) .  If the path metric 
at the backward node does not exceed the current threshold, then the threshold is reduced 
by A, and the decoder examines the next forward node. If the path metric at the previous 
node does exceed the threshold, then the decoder backs up and begins to examine other 
paths from that node. (This process of moving forward, then backward, then adjusting the 
threshold and moving forward again is why nodes may be visited many times.) If all nodes 
forward of that point have already been examined, then the decoder once again considers 
backing up. Otherwise, the decoder moves forward on one of the remaining nodes. 

Each time a node is visited for the first time (and if it is not at the end of the tree) the 
decoder “tightens” the threshold by the largest multiple of A such that the adjusted threshold 
does not exceed the current metric. (As an alternative, tightening is accomplished in some 
algorithms by simply setting T = M F  .) 

Since the Fano algorithm does backtracking, the algorithm needs to keep the following 
information at each node along the path that it is examining: the path metric at the previous 
node, M B ;  which of the 2k branches it has taken; the input at that node; and also the state 
of the encoder, so that next branches in the tree can be computed. A forward move consists 
of adding this information to the end of the path list. A backward move consists of popping 
this information from the end of the path list. The path metric at the root node is set at 
MB = -CQ; when the decoder backs up to that node, the threshold is always reduced and 
the algorithm moves forward again. 

Figure 12.31 shows the flowchart for the Fano algorithm. The number i indicates the 
length of the current path. At each node, all possible branches might be taken. The metric 
to each next node is stored in sorted order in the array P .  At each node along the path, the 
number ti indicates which branch number has been taken. When ti = 0, the branch with 
the best metric is chosen, when t i  = 1 the next best metric is chosen, and so forth. The 
information stored about each node along the path includes the input, the state at that node, 
and ti. (Recomputing the metric when backtracking could be avoided by also storing P at 
each node.) 

The threshold is adjusted by the quantity A. In general, the larger A is, the fewer the 

fanoa1g.m 
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number of computations are required. Ultimately, A must be below the likelihood of the 
maximum likelihood path, and so must be lowered to that point. If A is too small, then 
many iterations might be required to get to that point. On the other hand, if A is lowered 
in steps that are too big, then the threshold might be set low enough that other paths which 
are not the maximum likelihood path also exceed the threshold and can be considered by 
the decoder. Based on simulation experience [203], A should be in the range of (2,8) if 
unscaled metrics are used. If scaled metrics are used, then A should be scaled accordingly. 
The value of A employed should be explored by thorough computer simulation to ensure 
that it gives adequate performance. 

Example 12.31 Suppose the same code and input sequence as in Example 12.13 is used. The follow- 
ing traces the execution of the algorithm when the scaled (integer) metric of Example 12.29 is used 
with A = 10. The step number n is printed every time the algorithm passes through point A in the 
flow chart. 

n = 1: T = 0 P = [2 - 161 to = 0  

MF p T. Move forward 
First visit: Tighten T 
MF = 2 MB = 0 Node=[l] 

Look forwad MF = 2 

M = 2 T = 0  

n = 2 :  T = O P = [ 4 - 1 4 ] t l  = 0  
Look forward MF = 4 
MF > T. Move forward 
First visit: Tighten T 
MF = 4 MB = 2 Node=[ll] 
M = 4 T = 0  

n = 3: T = 0 P = 1-3 - 31 f2 = 0 
Look forward MF = -3 
MF < T: Look back 
MB = 2  
Mg p T: Move back 
All forward nodes not yet tested. f l  = 1 
MF = -3 MB = 2 Node=[l] 
M = 2 T = 0  

n = 4 :  T = O P = [ 4 - 1 4 ] t l  = I  

MF < T: Look back 

Mg ? T: Move back 
All forward nodes not yet tested. fo = 1 
M F  = -14 MB = 0 Node=[] 
M = O T = O  

Lookforward MF = -14 

Mg = 0  

n = 5: T = 0 P = [2- 161 to = 1 

MF < T: Look back 
Lookforward: MF = -16 

Mg = --OO 

Mg < T :  T = T - A  
MF = -16 MB = --oo Node=[] 
M = O T  = -10 

n = 6 T = -10 P = [2- 161 to = 0  

MF ? T. Move forward 
MF = 2 MB = 0 Node=[l] 

Look forward MF = 2 

M = 2 T  = -10 

n = 7: T = -10 P = [4 - 141 f l  = 0 

MF 2 T. Move forward 
MF = 4 M g  =2Node=[ll] 

Look forward MF = 4 

M = 4 T  = -10 

n = 8: T = -10P = [-3-3]12 = 0  
Look forward MF = -3 
MF ? T. Move forward 
First visit: Tighten T 
MF = -3 Mg = 4Node=[lll] 
M = -3 T = -10 

n = 9: T = -10 P = 1-1 - 191 fg = 0 

MF ? T. Move forward 
First visit: Tighten T 
MF = -1 MB = -3Node=[l110] 

n = 10: T = -10 P = [l  - 171 f4 = 0 
Lookforward MF = 1 
MF p T. Move forward 
First visit: Tighten T 
MF = 1 Mg = -1 Node=[11100] 

n = 11: T = 0 P = [-6 - 61 fs = 0 

MF < T: Lookback 

Look forwad MF = -1 

M = -1 T = -10 

M = l T = O  

Look forward M F  = -6 

MB = -1 
M g < T : T = T - A  
MF = -6 MB = -1 Node=[11100] 
M = 1 T = -10 

n = 12: T = -10 P = 1-6 - 61 ts = 0 

MF ? T. Move forward 
First visit: Tighten T 
MF = -6 Mg = 1 Node=[111001] 

n = 13: T = -10 P = [-13 - 131 

Look forward MF = -6 

M = -6 T = -10 

f6 = 0 
Look forward: MF = -13 
MF < T: Lookback 
Mg = 1 
Mg p T: Move back 
All forward nodes not yet tested. f g  = 1 
MF = -13 Mg = 1 Node=[11100] 

n = 14: T = -10 P =  [-6-6]ts = 1 

MF p T. Move forward 
First visit: Tighten T 
MF = -6 Mg = 1 Node=[l11000] 
M = -6 T = -10 

M = 1 T = -10 

Look forward MF = -6 

n = 15: T = -10 P = [-4-22] f,j = 0 
Look forward M F  = -4 
MF p T. Move forward 
First visit: Tighten T 
MF = -4 MB = -6Node=[1110000] 
M = -4 T = -10 

n = 16: T = -10 P = 1-11 - 111 
t7 = 0 
Look forward: MF = - 11 
M F  < T: Look back 
MB = -6 
Mg p T: Move back 
AU forward nodes not yet tested. t6 = 1 
MF = -11 Mg = -6Node=[ll1000] 
M = -6T = -10 

n = 17: T = -10 P = [-4- 221 f6 = 1 
Look forward MF = -22 
MF < T: Lookback 
Mg = I  
Mg 2 T: Move back 
No more forward nodes 
MB = -1 
MB p T: Move back 
All forward nodes not yet tested. t4 = 1 
M F  = -22 MB = -1 Node=[lllO] 

n = 18: T = -10 P = [l - 171 14 = 1 
Look forward: MF = - 17 
MF < T: Look back 
Mg = -3 
MB ? T: Move back 
All forward nodes not yet tested. f3 = 1 
MF = -17 Mg = -3 Node=[lll] 
M = -3 T = -10 

n = 19: T = -10 P = 1-1 - 191 t3 = 1 

M F  < T: Look back 

Mg ? T: Move back 
All forward nodes not yet tested. fz = 1 
M ~ = - 1 9 M ~ = 4 N o d e = [ l l ]  
M = 4 T = -10 

n = 20: T = -10 P = [-3 - 31 t2 = 1 

MF ? T. Move forward 
First visit: Tighten T 
MF = -3 Mg = 4 Node=[llO] 

M = -1 T = -10 

Look fornard: M F  = -19 

M g  = 4  

Look forward: MF = -3 

M = -3 T = -10 
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next unexamined (examine next 
node unexamined node) 

and find metric 

Initialize: 
i = 0, T = 0, 

M-1 = -m, Mo = 0 

ti = 0 
(to choose best node) 

Corn Ute and sort metrics 
P,r 2k paths from 

current node. Store in P 

(See if there 
are any unexamined 
nodes forward 

no ofthisnode) 

I 

Move forward 
Save t i ,  inputi , 

i = i + l  

End of search? 
I 

First 

Figure 12.31: Flowchart for the Fano algorithm. 
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Number of 
Decoding Correct 

A Steps Decoding 
1 158 Yes 
2 86 Yes 
3 63 no 
4 47 no 
5 40 Yes 
6 33 no 

n = 21: T = -10 p = [-lo - 101 

Look forward M F  = - 10 
M F  ? T. Move forward 
First visit: Tighten T 
M F  = -10 Mg = -3 Node=[llOl] 

f3 = 0 

M = -10 T = -10 

Number of 
Decoding Correct 

A Steps Decoding 
7 31 no 
8 31 no 
9 31 no 

11 16 no 
12 16 no 

10 27 Yes 

n = 22: T = -10 P = [-17 - 171 
fq = 0 
Lookforward M F  = -17 
MF < T: Look back 
Mg = -3 
Mg ? T :  Move back 
All forward nodes not yet tested. 13 = 1 
M F  = -17 Mg = -3 Node=[llO] 
M = -3 T = -10 

n = 23: T = -10 P = [-lo - 101 

Lookforward M F  = -10 
t3 = 1 

M F  2 T. Move forward 
First visit: Tighten T 
MF = -10 Mg = -3 Node=[1100] 
M = -10 T = -10 

n =24: T = -lOP = [-8-26]14 = O  
Look forward: MF = -8 
M F  ? T .  Move forward 
First visit: Tighten T 
MF = -8 Mg = -10 Node=[11001] 
M = -8T = -10 

n = 25: T = -10 P = [-6-24] r5 = 0 
Look forward: M F  = -6 
M F  2 T. Move forward 
First visit: Tighten T 
MF = -6 Mg = -8 Node=[1100101 
M = - 6 T  = -10 

n = 26: T = -10 P = [-4 - 221 r6 = 0 

MF 2 T. Move forward 
First visit: Tighten T 
MF = -4 Mg = -6 Node=[1100101] 

n = 27: T = -10 P =[-2-20]t7 = 0 

MF ? T .  Move forward 
First visit: Tighten T 
M F  = -2 Mg = -4Node=[11001010] 

Look forward: MF = -4 

M = -4 T = -10 

Look forward: MF = -2 

M = -2 T = -10 

For this particular set of data, the value of A has a tremendous impact both on the number of steps 
the algorithm takes and whether it decodes correctly. Table 12.4 shows that the number of decoding 
steps decreases typically as A gets larger, but that the decoding might be incorrect for some values of 
A. 

Table 12.4: Performance of Fano Algorithm on a Particular Sequence as a F inction of A 

In comparing the stack algorithm and the Fano algorithm, we note the following. 

The stack algorithm visits each node only once, but the Fano algorithm may revisit 

The Fano algorithm does not have to manage the stack (e.g.. resort the metrics). 

nodes. 

Despite its complexity, when the noise is low the Fano algorithm tends to decode faster than 
the stack algorithm. However, as the noise increases more backtracking might be required 
and the stack algorithm has the advantage. Overall, the Fano algorithm is usually selected 
when sequential decoding is employed. 

12.8.5 Other Issues for Sequential Decoding 

We briefly introduce some issues related to sequential decoding, although space precludes 
a thorough treatment. References are provided for interested readers. 
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Computational complexity The computational complexity is a random variable, and so 
is described by a probability distribution. Discussions of the performance of the decoder 
appear in [302, 161, 164,901. 

Code design The performance of a code decoded using the Viterbi algorithm is governed 
largely by the free distance dkee. For sequential decoding however, the codewords must have 
a distance that increases as rapidly as possible over the first few symbols of the codeword 
(i.e., the code must have a good column distance function) so that the decoding algorithm 
can make good decisions as early as possible. A large free distance and a small number of 
nearest neighbors are also important. A code having an optimum distance profile is one in 
which the column distance function over the first constraint length is better than all other 
codes of the same rate and constraint length. Tables of codes having optimum distance 
profiles are provided in [ 1741. Further discussion and description of the algorithms for 
finding these codes appear in [169, 170, 171, 172,43, 1731. 

Variations on sequential decoding algorithms In the interest of reducing the statistical 
variability of the decoding, or improving the decoder performance, variations on the de- 
coding algorithms have been developed. In [48], a multiple stack algorithm is presented. 
This operates like the stack algorithm, except that the stack size is limited to a fixed number 
of entries. If the stack fills up before decoding is complete, the top paths are transferred 
to a second stack and decoding proceeds using these best paths. If this stack also fills up 
before decoding is complete, a third stack is created using the best paths, and so forth. In 
[79] and [ 1661, hybrid algebraickequential decoding was introduced in which algebraic 
constraints are imposed across frames of sequentially decoded data. In [129], a generalized 
stack algorithm was proposed, in which more than one path in the stack can be extended 
at one time (as in the Viterbi algorithm) and paths merging together are selected as in the 
Viterbi algorithm. Compared to the stack algorithm, the generalized stack algorithm does 
not have buffer size variations as large and the error probability is closer to that of the Viterbi 
algorithm. 

12.8.6 A Variation on the Viterbi Algorithm: The M Algorithm 

For a trellis with a large number of states at each time instant, the Viterbi algorithm can be 
very complex. Furthermore, since there is only one correct path, most of the computations 
are expended in propagating paths that are not be used, but must be maintained to ensure 
the optimality of the decoding procedure. The M algorithm (see, e.g., [270]) is a subopti- 
mal, breadth-first decoding algorithm whose complexity is parametric, allowing for more 
complexity in the decoding algorithm while decoding generally closer to the optimum. 

A list of M paths is maintained. At each time step, these M paths are extended to M2k 
paths (where k is the number of input bits), and the path metric along each of these paths 
is computed just as for the Viterbi algorithm. The path metrics are sorted, then the best M 
paths are retained in preparation for the next step. At the end of the decoding cycle, the path 
with the best metric is used as the decoded value. While the underlying graphical structure 
for the Viterbi algorithm is a trellis, in which paths merge together, the underlying graphical 
structure for the M algorithm is a tree: the merging of paths is not explicitly represented, 
but better paths are retained by virtue of the sorting operation. The M-algorithm is thus a 
cross between the stack algorithm (but using all paths of the same length) and the Viterbi 



522 Convolutional Codes 

algorithm. If M is equal to the number of states, the M algorithm is nearly equivalent to the 
Viterbi algorithm. However, it is possible for M to be significantly less than the number of 
states with only modest loss of performance. 

Another variation is the T-algorithm. It starts just like the M algorithm. However, 
instead of retaining only the best M paths, in the T algorithm all paths which are within a 
threshold T of the best path at that stage are retained. 

12.9 Convolutional Codes as Block Codes 

In this section, we use m = maxi vj as the maximum amount of memory in any of the 
elements of the transfer function matrix. 

A block code takes a fixed-length block of k symbols and maps it to a block of n symbols. 
Convolutional codes, on the other hand, can operate on an entire “stream” of data: a stream 
of data is simply passed through the filtering system of the convolutional coder. As a result, 
the “block length” of the code is not usually referred to in the context of convolutional codes. 

However, convolutional encoders can be used as encoders for block codes. In fact, 
this perspective allows bounds on block codes to provide useful bounds for convolutional 
codes (see, e.g., [197]). Here are some natural ways that block codes can be obtained from 
convolutional codes. (This discussion applies to polynomial transfer function matrices. 
Some modifications are necessary for creation of the transfer function matrices.) 

Truncation A sequence of L blocks of k-bits can be input to the decoder. This results 
in an (nL ,  nk) decoder. This has the disadvantage that there is little (if any) error 
protection afforded to the last digits input into the encoder [213], resulting in what 
is called unequal error protection. The effect of unequal error protection is shown in 
Figure 12.19. Decoding takes place using the Viterbi algorithm starting in state 0 and 
ending after L stages at any state. 

Zero tail Following L k-bit blocks of bits, a sequence of m k-bit blocks of zeros is input to 
the encoder, driving the state of the encoder to the zero state. The resultant code is an 
((L + m)n, kL) decoder, with rate R = kL/(L + m)n. There is thus a loss of rate, 
but for large block lengths the rate reduction is negligible. Decoding is accomplished 
using the Viterbi algorithm starting in state 0 and ending in state 0. 

Tail biting In a tail-biting codeword, no additional bits are appended to drive the encoder 
to the zero state. Instead, the encoder ends in whatever state it happens to end in after 
the input bits are encoded. There is thus no loss of rate due to the zero-state forcing 
sequence. The encoder is modified to avoid the problem of unequal error protection 
by allowing it to start in any state and not just the 0-state. Then the initial state is 
determined by the terminal bits in the sequence. Then valid codewords are those that 
start and end in the same state. 

For feedforward encoders, the state is determined by the most recent v input bits. The 
final state is thus determined by the last v input bits. Since the initial and final state 
must match, the initial state is also determined by the last v input bits. This allows 
one to view the trellis as a circular trellis: the final state of the trellis wraps around to 
become the initial state of the trellis. (This circular trellis structure initially gave rise 
to the term tail-biting.) 

Decoding a tail-biting code more complicated: the Viterbi algorithm should find a 
path which starts and ends in the same state. In principle, this could require running 
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the decoder 2k times, starting in each possible state, then checking that the best path 
terminates in the same state as the starting state. This is computationally infeasible 
for many codes. Variations on tail biting codes and their decoding algorithms, are 
described in [213]. One variation runs through two passes. In the first pass, decoding 
starts at an arbitrary state (such as the 0 state) and finds the terminal state with the 
best path metric. Then the Viterbi algorithm is run again, starting with the initial state 
as that terminal state. Other alternatives are in [4]. 

12.10 Trellis Representations of Block and Cyclic Codes 

In this section we take a dual perspective to that of the previous section: we describe how 
linear block codes can be represented in terms of a trellis. Besides theoretical insight, the 
trellis representation can also be used to provide a means of soft-decision decoding that does 
not depend upon any particular algebraic structure of the code. These decoding algorithms 
can make block codes “more competitive with convolutional codes” [205, p. 31. 

12.1 0.1 Block Codes 

We demonstrate the trellis idea with a (7,4, 3) binary Hamming code. Let 

1 [ 1 0 1 1 0 0 1  

1 1 1 0 1 0 0  
H = 1 1 0 1 0 1 0 = [hi h2 h 3  h 4  h 5  h 6  h7]  (12.47) 

be the parity check matrix for the code. Then a column vector x is a codeword if and only 
if s = Hx = 0; that is, the syndrome s must satisfy 

We define the partial syndrome by 
r 

Sr+1 = C h i x i  = Sr + h r x r  , 
i= l  

with s1 = 0. Then the sn+l = s. 
A trellis representation of a code is obtained by using sr as the state, with an edge 

between a state Sr and Sr+l if Sr+l = Sr (corresponding to x r  = 0) or if Sr+l = Sr + h r  

(corresponding to Xr = 1). Furthermore, the trellis is terminated at the state sn+i = 0, 
corresponding to the fact that a valid codeword has a syndrome of zero. The trellis has at 
most 2n-k states in it. 

Figure 12.32 shows the trellis for the parity check matrix of (12.47). Horizontal transi- 
tions correspond to X i  = 0 and diagonal transitions correspond to xi = 1. Only those paths 
which end up at s g  = 0 are retained. 

As may be observed, the trellis for a block code is “time-varying’’ - it has different 
connections for each section of the trellis. The number of states “active” at each section of 
the trellis also varies. 
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000 

001 

010 

011 

100 

101 

110 

111 

Figure 12.32: The trellis of a (7,4) Hamming code. 

For a general code, the trellis structure is sufficiently complicated that it may be difficult 
to efficiently represent in hardware. There has been recent work, however, on families of 
codes whose trellises have a much more regular structure. These are frequently obtained by 
recursive constructions (e.g., based on Reed-Muller codes). Interested readers can consult 
[205]. 

12.10.2 Cyclic Codes 
An alternative formulation of a trellis is available for a cyclic code. Recall that a cyclic 
code can be encoded using a linear feedback shift register as a syndrome computer. The 
sequence of possible states in this encoder determines a trellis structure which can be used 
for decoding. We demonstrate the idea again using a (7,4,3) Hamming decoder, this time 
represented as a cyclic code with generator polynomial g(x )  = x 3  + x + 1. 

Figure 12.33 shows a systematic encoder. For the first k = 4 clock instants, switch 1 is 
closed (enabling feedback) and switch 2 is in position ‘a’. After the systematic part of the 
data has been clocked through, switch 1 is opened and switch 2 is moved to position ’b’. 
The state contents then shift out as the coefficients of the remainder polynomial. Figure 

b * 
Switch 2 

d x )  * 

a 

Figure 12.33: A systematic encoder for a (7,4, 3) Hamming code. 

12.34 shows the trellis associated with this encoder. For the first k = 4 bits, the trellis 
state depends upon the input bit. The coded output bit is equal to the input bit. For the last 
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State 

110 

111 

\ / 
Shift message in 

(Input bit = output bit) 

Shift parity out 

(No input bits) 

Figure 12.34: A trellis for a cyclically encoded (7,4,3) Hamming code. 

n - k = 3 bits, the next state is determined simply by shifting the current state. There are 
no input bits so the output is equal to the bit that is shifted out of the registers. 

12.10.3 Trellis Decoding of Block Codes 

Once a trellis for a code is established by either of the methods described above, the code 
can be decoded with a Viterbi algorithm. The time-varying structure of the trellis makes the 
indexing in the Viterbi algorithm perhaps somewhat more complicated, but the principles are 
the same. For example, if BPSK modulation is employed, so that the transmitted symbols 
are ai = 2ci - 1 E {kl}, and that the channel is AWGN, the branch metric for a path taken 
with input xi is (ri - (2xi - 1))2. Such soft decision decoding can be shown to provideup 
to 2 dB of gain compared to hard decision decoding (see, for example [303, pp. 222-2231). 
However, this improvement does not come without a cost: for codes of any appreciable 
size, the number of states 2n-k can be so large that trellis-based decoding is infeasible. 
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Programming Laboratory 9: 

Programming Convolutional 
Encoders 

Objective 

In this lab you are to create a program structure to imple- 
ment both polynomial and systematic rational convolutional 
encoders. 

Background 

Reading: Sections 12.1, 12.2. 

Since both polynomial and systematic ration encoders 
are “convolutional encoders” and they share many attributes. 
Furthermore, when we get to the decoding operations, it is 
convenient to employ one decoder which operates on data 
from either kind of encoder. As a result, it is structurally 
convenient to create a base class BinConv, then create two 
derived classes, BinConvFIR and BinConvIIR. Since 
the details of the encoding operation and the way the state is 
determined differ, each of these classes employs its own en- 
coder function. To achieve this, a virtual function encode 
is declared in the base class, which is then realized sepa- 
rately in each derived class6 Also, virtual member func- 
tions get s tat e and set state are used for reading and 
setting the state of the encoder. These can be used for test- 
ing purposes; they are also used to build information tables 
that the decoder uses. 

The declaration for the BinC0nv.h base class is 
shown here. 

Algorithm 12.3 Base Class for 
Binary Convolutional Encoder 
File: BinConv. h 

The derived classes BinConvFIR and 
BinConvI IR are outlined here. 

Algorithm 12.4 Derived classes for 
FIR and IIR Encoders 
File: BinConvFIR. h 

BinConvI1R.h 
BinConvF1R.c~ 
BinConvIIR.cc 

Programming Part 

1) Write a class BinConvFIR that implements convolu- 
tional encoding for a general polynomial encoder. That is, 
the generator matrix is of the form in (12,1), where each 
g ( ’ ? j ) ( x )  is a polynomial. The class should have an ap- 
propriate constructor and destructor. The class should im- 
plement the virtual functions encode, getstate, and 
setstate, as outlined above. 

Test your encoder as follows: 

a) Using the encoder with transfer function 

1 + x  + x2], G ( x )  = [l + x 2  

verify that the impulse response is correct, that the 
getstate and nextstate functions work as ex- 
pected, and that the statehextstate table is correct. Use 
Figure 12.5. 

The program testconvenc. cc may be helpful. 

Algorithm 12.5 Test program for 
convolutional encoders 
File: testconvenc. cc 

b) The polynomial transfer function +*I (12.48) 
1 0  

G ( x )  = 

has the state diagram and trellis shown in Figure 12.35. 
Verify that for this encoder, the impulse response is cor- 
rect, that the getstate and nextstate functions 
work as expected, and that the statelnextstate table is cor- 
rect. 

2) Write aclass BinConvIIRthat implements a system- 
atic encoder (possibly employing IIR filters). The generator 

‘This is a tradeoff between flexibility and speed. In operation, the virtual functions are called via a pointer, so there is a pointer-lookup 
overhead associated with them. This also means that virtually called functions cannot he inline, even if they are very small. However, 
most of the computational complexity associated with these codes is associated with the decoding operation, which takes advantage of 
precomputed operations. So for our purposes, the virtual function overhead is not too significant. 
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3 

(a) State diagram 

O/OOO 
1/101 
2/010 
3/11 1 

0/101 
1/000 
2/111 
3/010 

0/110 
1/01 1 
2/100 
3/001 

0/011 
1/110 
2/00 1 
3/100 

0/100 
1/001 
2/110 
3/01 1 

o/oo 1 
11100 
2/01 1 
3/110 

0/010 
11111 
2/000 
3/101 

0/111 
1/010 
2/101 
3/000 

(b) Trellis 

Figure 12.35: State diagram and trellis for the encoder in (12.48) 

matrix is of the form for polynomials pi (x) and qi ( x )  . 
Test your class using the recursive systematic encoder 

of (12.2), checking as for the first case. (You may find it 
convenient to find the samples of the impulse by long divi- 
sion.) 
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Programming Laboratory 10: 
Convolutional Decoders: The Viterbi 
Algorithm 

Objective 

You are to write a convolutional decoder class that decodes 
using both hard and soft metrics with the Viterbi algorithm. 

Background 

Reading: Section 12.3 
While there are a variety of ways that the Viterbi algo- 

rithm can be structured in C++, we recommend using a base 
class Convdec . h that implements that actual Viterbi algo- 
rithm and using a virtual function met r i c to compute the 
metric. This is used by derived classes BinConvdecOl 
(for binary 0-1 data) and BinConvBPSK (for BPSKmod- 
ulated data), where each derived class has its own metric 
function. 

The base class Convdec This class is a base class for 
all of the Viterbi-decoded objects. 

Algorithm 12.6 The Base Decoder 
Class Declarations 
File: Convdec . h 

Convdec.cc 

In this class, an object of type BinConv (which could 
be either an FIR or IIR convolutional encoder, if you have 
used the class specification in lab 9) is passed in. The con- 
structor builds appropriate data arrays for the Viterbi al- 
gorithm, placing them in the variables prevstate and 
inputfrom. A virtual member function metric is used 
by derived classes to compute the branch metric. The core 
of the algorithm is used in the member function vit erbi, 
which is called by the derived classes. Some other functions 
are declared: 

showpaths - You may find it helpful while de- 
bugging to dump out information about the paths. 
This function (which you write) should do this for 
you. 
get inpnow - This function decodes the last avail- 
able branch in the set of paths stored, based on the 
best most recent metric. If adv is asserted, the 
pointer to the end of the branches is incremented. 
This can be used for dumping out the decisions when 
the end of the input stream is reached. 

buildprev builds the state/previous state array, 
which indicates the connections between states of 
the trellis. 

The derived class BinConvdecO 1 The first derived 
class is BinConvdecO 1 . h, for binary 0-1 decoding using 
the Hamming distance as the branch metric. 

Algorithm 12.7 Convolutional 
decoder for binary (0,l) data 
File: BinConvdecOl . h 

BinConvdecOl.cc 

This class provides member data outputmat, which 
can be used for direct lookup of the output array given the 
state and the input. Since the output is, in general, a vec- 
tor quantity, this is a three-dimensional array. It is rec- 
ommended that space be allocated using CALLOCTENSOR 
defined in matalloc. h. The member variable data is 
used by the metric function, as shown. The class de- 
scription is complete as shown here, except for the function 
buildoutputmat, which is part of the programming as- 
signment. 

The derived class BinConvdecBPSK The next de- 
rivedclass is BinConvdecBPSK. h, for decoding BPSK- 
modulated convolutionally coded data using the Euclidean 
distance as the branch metric. 

Algorithm 12.8 Convolutional 
decoder for BPSK data 
File: BinConvdecBPSK. h 

BinConvdecBPSK.cc 

As for the other derived class, space is provided for 
outputmat and data; the class is complete as presented 
here except for the function buildoutputmat. 

Programming Part 

1) Finish the functions in Convdec . cc. 
2) Test the binary (0,l) BinConvdecOl de- 
coder for the encoder G(x)  = [l + x2, 1 + 
n + x2] by reproducing the results in Example 
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12.13. The program testconvdec can help. 

Algorithm 12.9 Test the 
convolutional decoder 
File: testconvdec . cc 

3) Test the convolutional decoder BinConvdecBPSK by 
modulating the (0, 1) data. Again, testconvdec can 
help. 
4) Determine the performance of the encoder G ( x )  = 
[ 1 + x 2  1 + x + x 2 ]  by producing an error curve on the 
AWGN channel using BPSK modulation with a soft metric. 
Compare the soft metric performance with hard metric per- 

formance, where the BSC is modeled as having crossover 
probability pc = Q ( 4 m ) .  Compare the two kinds 
codedperformances withuncoded BPSKmodulation. Also, 
plot the bound (12.40) and the approximation (12.42) on the 
same graph. 

How much coding gain is achieved? How do 
the simulation results compare with the theoretical 
bounds/approximations? How do the simulations com- 
pare with the theoretically predicted asymptotic coding 
gain? How much better is the soft-decoding than the hard- 
decoding? 
5) Repeat the testing, but use the catastrophic code with 
encoder G ( x )  = [ l  -t x ,  1 + x 2 ] .  How do the results for 
the noncatastrophic encoder compare with the results for the 
catastrophic encoder? 

12.1 1 Exercises 

12.1 For the R = 1/2 convolutional encoder with 

G ( x )  = [1 + x 2  + x 3  1 + x  + x 3 ]  (12.49) 

(a) Draw a hardware realization of the encoder. 
(b) Determine the convolutional generator matrix G. 
(c) For the input sequence m = [ 1, 0, 1, 1, 0, 1, 11 determine the coded output sequence. 
(d) Draw the state diagram. Label the branches of the state diagram with input/output values. 
(e) Draw the trellis. 
(0 What is the constraint length of the code? 
(g) Determine the Staternext State table. 
(h) Determine the StatelPrevious State table. 
(i) Is this a catastrophic realization? Justify your answer. 
0) Determine the weight enumerator T ( D ,  N ) .  
(k) What is dfree? 
(1) Determine upper and lower bounds on Pb for a BSC using (12.36) and (12.37) and an 

approximation using (12.30). Plot as a function of the signal-to-noise ratio, where p c  = 
Q ( d m ) .  Compare the bounds to uncoded performance. 

(m) Determine upper and lower bounds on Pb for an AWGN channel using (12.40) and (12.41) 
and plot as a function of the signal-to-noise ratio. 

(n) Determine the theoretical asymptotic coding gain for the BSC and AWGN channels. 
Compare with the results from the plots. Also, comment on the difference (in dF3) between 
the hard and soft metrics. 

(0) Express G ( x )  as a pair of octal numbers using both leading 0 and trailing 0 conventions. 
(p) Suppose the output of a BSC is r = [ l l ,  11,00, 01, OO,OO, 10, 10, 10, 111. Draw the 

trellis for the Viterbi decoder and indicate the maximum likelihood path through the 
trellis. Determine the maximum likelihood estimate of the transmitted codeword and the 
message bits. According to this estimate, how many bits of r are in error? 

12.2 For the R = 1/3 convolutional coder with 

G(x)  = [l + x  1 + x 2  1 + x  + x 2 ]  
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Draw a hardware realization of the encoder. 
Determine the convolutional generator matrix G. 
For the input sequence m = [ l ,  0, 1, 1 , 0 ,  1, 11 determine the coded output sequence. 
Draw the state diagram. Label the branches of the state diagram with input/output values. 
Draw the trellis. 
What is the constraint length of the code? 
Determine the Staternext State table. 
Determine the StatePrevious State table. 
Is this a catastrophic realization? Justify your answer. 
Determine the weight enumerator T ( D ,  N ) .  
What is dfiee? 
Express G(x) as a triplet of octal numbers. 

12.3 Find a catastrophic encoder equivalent to G(x) = [l + x2 1 + x + x2] and determine an 
infinite-weight message rn (x) that results in a finite-weight codeword for this catastrophic en- 
coder. 

12.4 Show that G4(x) defined in (12.8) is equivalent to Gz(x) of (12.5). 
12.5 Let G ( x )  be the transfer function matrix of a basic convolutional code. Show that G ( x )  is 

equivalent to a basic transfer function matrix G’(x)  if and only if G’(x) = T ( x ) G ( x ) ,  where 
T ( x )  is a unimodular matrix. 

12.6 Determine a systematic encoder transfer function matrix equivalent to 

l + x  x 

[ 1 1 + x + x 2  
G(x) = 

12.7 For the transfer function matrices 

X and G’(.x) = 
l + x  x 

G(x )  = 

(a) Show that G(x)  is equivalent to G’(x). 
(b) Show that G(x) is a minimal basic encoder matrix. 
(c) Show that G’(x) is not a minimal basic encoder matrix. 
(d) Using the procedure described in association with (12.13), determine a transfer function 

matrix G”(x) which is a minimal basic encoding matrix equivalent to G’(x),  but different 
from G ( x ) .  

12.8 For the code generated by 

1 

G(x)  = 
1+x3 

use elementary row operations to convert the generator matrix to systematic form. Draw a circuit 
realization of the systematic encoder. 

12.9 Catastrophic codes. 

(a) ForarateR = 1/2code,letgl(x) = l + x , g ~ ( x )  =x2+1. Showthatwhenrn(x) = & 
(b) Motivated by this result, prove the following: For a rate l / n  code, if 

that the transmitted sequence has finite weight. Determine GCD(g1 (x), g2(x) ) .  

GCD[gl(x), gZ(x), . . . , gn(x)l = 1, 

then the code is noncatastrophic. 
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12.10 For the catastrophic code with generators gl(x) = 1 + x, g 2 ( x )  = 1 + x 2 :  

(a) Draw the state diagram. 
@) Determine the weight enumerator T ( D ,  N )  for the code. 
(c) What is the minimum free distance of the code? 
(d) How is the catastrophic nature of the code evidenced in the weight enumerator? 

12.1 1 For the generator G(x)  = [1 + x 2 ,  1 + x + x2 + x 3 ] :  

(a) Find the GCD of the generator polynomials. 
(b) Find an infinite-weight message sequence that generates a codeword of finite weight. 

12.12 Prove that dfree is independent of the encoder realization, so that it is a property of the code and 

12.13 Show that the formal series expansion 
not of a particular encoder for the code. 

-- - 1 + x  + x 2 + x 3  +... 1 
1 - x  

is correct. Show the formal series expansions of 

1 D 5 L 3 N  
1 - 2 0  and l - D L N ( l + L ) '  

12.14 Show that the expressions for Pd in (12.19) and (12.20) can be bounded by Pd < [4pc(l - 

12.15 For a BSC where Z = ,/4pc(l - pc) ,  show that (12.27) can be replaced by pd < Zd+' when 

d d / 2  
pc) ldl2.  Hint: Show that x$(d+l)/2 (f)pi(l-  pc)d-i  < xf=(d+1)/2 (i)PC ( l  -pC)d/2 .  

d is odd. Using this result, show that (12.28) can be replaced by 

1 
P e w  < p 1  + Z)T(Z) + (1 - Z)T(-Z)I. 

12.16 [ 1471 An upper bound on dk=. Let K be the number of outputs determining the output of a rate 
R = l / n  code (i.e., K is the constraint length). The code can be represented by a matrix such 
as that in (12.3), in which all rows are obtained by shifting the first row. 

(a) Show that for any binary linear code, if the codewords are arranged as the rows of a matrix, 
then any column is either all zeros or half zeros and half ones. 

(b) Consider the set of all sequences of length no greater than L . Show that the code generated 
by these finite-length sequences has length (K - 1 + L)n symbols. Also show that 
the average weight of all codewords (excluding the all-zero codeword) is Wav(L) 5 
2L-' (K - 1 + 15)n/(2~ - 1). 

(c) Argue that the code has a minimum distance between paths of dfree 5 wav(L). 

12.17 Show that (12.21) and (12.22) are correct. 

12.18 A code with k = 1 has weight enumerator T ( D ,  N )  = &. The codewords are passed 
through a BSC with p - 0 01. Compute upper and lower bounds on the node error probability 
and the bit-enor rate for Viterbi decoding. Repeat this when the code is passed through an 
AWGN channel with Eb/NO = 6 dB. 

c -  .. 

12.19 For a rate R = 1/2 code, suppose the output sequence 

Write down the puncture matrix P 
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12.20 A binary-inputhinary-output channel with input a and output r has transition probabilities 

P ( r  = O(a = 0) = 0.9 

P ( r  = lla = 0) = 0.1 

P ( r  = Ola = 1) = 0.3 

P ( r  = 1la = 1) = 0.7. 

(a) Determine the log likelihoods. 
(b) Scale and shift these values to obtain a set of bit metrics that can be reasonably approxi- 

12.21 A channel has binary inputs and three outputs, 0 and 1, and E ,  where E denotes an erasure. When 
an erasure occurs, the symbol is known to be suspicious and does not influence the decoding 
process - it is erased. (It is a lot like a punctured bit). This channel is called the binary erasure 
channel. The channel has transition probabilities 

mated with not more than 3 bits. 

P(r  = Ola = 0) = 0.6 

P(r  = OJa = 1) = 0.2 

P ( r  = Eta = 0) = 0.3 

P ( r  = Ela = 1) = 0.2 

P ( r  = 1la = 0) = 0.1 

P ( r  = lla = 1) = 0.6 

(a) Determine the log likelihood ratios. 

(b) Scale and shift these values to obtain a set of bit metrics that can be reasonably approx- 
imated with not more than 3 bits, making sure that erased symbols do not contribute 
differentially to the path metric. 

12.22 An AWGN with variance o2 = 2 is used with BPSK-modulated data sending signals with 
amplitudes a = ztl. The received signal rt is quantized to four different values q = Q [ r ]  with 
quantization thresholds at f 1.5 and 0. 

(a) Determine the probabilities P(qt  la) and the log probabilities - log P(qt la). 

(b) Determine a and b so that a(-logP(qtla) - b) can be approximated well by integers 
using at most two bits. 

12.23 A binary inputhinary output channel with input a and output r has 

P ( r  = Ola = 0) = 0.99999 

P ( r  = lla = 0) = 0.00001 

P ( r  = Ola = 1) = 0.05 

P ( r  = lla = 1) = 0.95. 

(a) Determine 2 in the Chernoff bound from (12.33). 
(b) The input to this channel is coded using a convolutional code whose path enumerator is 

given by 
D5N 

T ( D ,  N )  = ~ 

1 - 2ND'  
Using (12.28), determine an upper bound on the node error probability P e ( j ) .  Using 
(12.29) and (12.30), determine an upper bound and an approximation on the bit error rate 

12.24 Chernoff bound. Let X I ,  X2, . . . , X n  be independent random variables with densities pi (x) and 
moment generating functions 4i ($1 = ~ [ e s x i ] .  Let z = C;='=, xi, with moment generating 
function dz(s). Using the following steps, show that 

Pb . 

n 
P(Z L Y) 5 e-SY n 4i(s). 

i= l  

for all s 2 0 such that q5i (s) exists. 

(a) Let $z(s) be the moment generating function for Z .  Show that q'~z(s) = n;='=, &(s). 
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CO) Show that j-", eszfz(z) dz ? Jy" esZfz(z) dz. 
(c) Finish the proof. 

12.25 Show that (12.39) is correct. 
12.26 A rate-compatible punctured convolutional code (RCPC) based on a rate R = 1 /4 convolutional 

code has puncturing period 8 and puncturing matrices 

1 P I = "  1 1 1 1 1 1 1 1  1 1 1 1 1 1 11  P2 = [ 0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 1  1 1 1 1 1 1 1 1  
1 0 1 0 1 0 1 0  

1 1 1 1 1 1 1 1  0 0 0 0 0 0 0 0  

1 1 1 1 0 1 1 1  
1 0 0 0 1 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 1 4 =  [ 

(a) Determine the actual rate when using the puncture matrix P I .  Also for P2 and P3. 
(b) The generators for the convolutional code are g ( l ) ( x )  = 1 + x 3  + x4, g ( 2 ) ( x )  = 1 + 

x + x2 + x4, g ( 3 ) ( x )  = 1 + x 2  + x 3  + x4, and g(4)(x) = 1 + x + x 3  + x4. Draw a 
convolutional encoder capable of transmitting at these three different rates. 

12.27 Determine the branch Fano metric for binary transmission of a rate R = 1/3 code through a 
BSC with pc = 0.1. Then scale the metric so it has nearly integer values. Repeat for pc  = 0.05 
and pc = 0.001. 

12.28 For the asymmetric channel in Exercise 12.20, determine the Fano metric for a rate R = 1/2 
code. Then shift and scale the metric so it has nearly integer values. 

12.29 For the code with generator 

~ ( x )  = [ 1 + ~ 2 + , 3  1 + ~ + ~ 3 1 ,  

thesequencer=[ll, 11, l l , O l ,  ll,OO,OO]isreceivedthroughaBSCwithpc =0.125. Using 
the stack algorithm, determine the transmitted sequence. Repeat using the Fano algorithm. (The 
Matlab code may prove very helpful.) 

12.30 Draw a trellis representing the binary block code with parity check matrix 

I [ 1 0 1 0 1 0  

0 0 0 1 1 1  
H =  0 1 1  0 0 1 .  

12.31 Draw a trellis representation for the cyclic code with generator g ( x )  = x 3  + x 2  + 1 that employs 
a systematic encoder. 

12.1 2 References 

Convolutional codes were introduced in 1955 by Elias [76]. Our presentation overall has 
benefited greatly from [303]. The discussion of structural properties comes from that source, 
which, in turn, closely follows [175]. This, in turn, builds on the landmark paper on the 
algebraic structure of convolutional codes [97]. Catastrophic codes were first discussed in 
[226]. The criterion for catastrophic codes in terms of the GCD of the generators appears 
in [226]. Extensive simulation studies of convolutional codes and error curves appears in 
[148]. The results here were computed by Ojas Chauhan. 
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The Viterbi algorithm was described in [358]. However, it was not until [89] that the 
Viterbi algorithm was shown to be a maximum likelihood sequence estimator. This paper 
also presented the weight enumerator and the graph analysis associated with the performance 
of convolutional codes. 

An important and still very relevant source on convolutional codes is [357]. This book 
presents random coding performance bounds for convolutional codes and shows that con- 
volutional codes have a higher cutoff rate than block codes. A recent book dedicated to 
convolutional codes is [174]. Convolutional codes are also presented in most books on 
coding theory and digital communication theory. 

Puncturing appears to have been first explored in [40]. Tail biting was introduced in 
[213]. Work on short tailbiting codes with many examples of good codes appears in [320]. 
Basic results regarding the structure of tail-biting trellises appears in [189]. The trellis 
representation of a block code was presented first in [ 111 and developed more fully in [377]. 
It has been the topic of a detailed monograph [205]. Readers interested in fully developed 
design methodologies should consult that source. A summary of this work is in [303]. 

The stack algorithm was explored in [388] and [165]. The genre of sequential decoding 
algorithms was explored early on in [378]. The Fano algorithm appeared first in [go]. 
The Fano metric received theoretical foundation as a maximum likelihood metric in [223]. 
A comparison of sequential decoding algorithms appears in [ 115, 1161. A discussion of 
the performance of the M algorithm as a function of M and comparison with the Viterbi 
algorithm is summarized in [303]. 



Chapter 13 

Trellis Coded Modulation 
13.1 Adding Redundancy by Adding Signals 

The error correction codes studied up to this point in the book have added redundancy 
by increasing the number of coded symbols. If the channel is bandlimited so that the 
transmitted symbol rate is fixed, this results in a lower information transmission rate. In the 
very common case that the high transmission rate is of interest (in contrast to minimizing 
transmission power), this reduction in effective information rate is unfortunate. Up until 
the early 1970s it was believed that coding would not greatly benefit channels needing a 
spectral efficiency - the number of bits transmitted per channel use - exceeding 1. 

In 1976, a new method of coding was introduced by Ungerboeck [344,346,347,345] 
which adds redundancy to the coded signal by increasing the number of symbols in the signal 
constellation employed in the modulation. If the average signal energy is fixed, having more 
signals in the signal constellation would tend to decrease the distance between points in the 
signal constellation. The key, therefore, is to combine the coding and modulation into a 
single unit which transmits only constrained sequences of symbols, and to employ a sequence 
detector (i.e., Viterbi algorithm) to detect the sequence. The combination of constrained 
symbol sequences and larger signal constellation gives rise to what is known as trellis coded 
modulation, or TCM. 

13.2 Background on Signal Constellations 

Because TCM is built upon signal constellations, we briefly review concepts related to 
signal constellations. For now, we restrict our attention to one- and two-dimensional signal 
constellations. (A review of the communications concepts in Section 1.4 may prove helpful.) 

A signal constellation S is a discrete set of points, typically a subset of the real line R or 
the plane R2 (sometimes regarded as the complex plane). A one-dimensional constellation is 
used in what is often called amplitude shi$ keying (ASK). A one-dimensional constellation 
with two points fa is more frequently called BPSK (binary phase-shift keying). A 
two-dimensional constellation with all the points lying on a circle is referred as phase- 
shift keying (PSK). The constellation is frequently expressed in terms of the number of 
points, such as 4-PSK, 8-PSK, or 16-PSK. QPSK - quaternary PSK - is a synonym for 
4-PSK. Figure 13.1 shows examples of PSK constellations, scaled so that they all have the 
same signal energy E,.  The minimum distance between signal points is denoted as do. 
A two-dimensional constellation with points on a square grid is frequently referred to as 
quadrature-amplitude modulation (QAM). Figure 13.2 shows overlays of examples of QAM 
constellations, where the minimum distance between points is called do. (The 32-point and 
128-point constellations are referred to as cross constellations, since the points are arranged 
in a cross; this reduces the average energy compared to rectangular constellations.) Other 
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Table 13.1 : Average Energy Requirements for Some QAM Constellations 
Spectral 

Efficiency q 
Constellation (bitshymbol) E,  Eb 

BPSK 1 id:  id: 

QPSK 2 2 0  ' d 2  i d ;  

16-QAM 4 

32-cross 5 5d: d; 

64-QAM 6 id: 

Zd2 
8 0  

4'd2 4' 2 
128-cross 7 2 0 14d0 

85 2 85 2 
256-QAM 8 TdO i d 0  

arrangements are also possible in two dimensions. 
The spectral eficiency Q of a constellation is the number of bits carried by each symbol. 

Assuming the bits are identically distributed, the average symbol energy E ,  is the average 
of the squared distances of the constellation points from the origin. For example, for the 
16-QAM constellation with minimum distance do, 

Es = 16 (4((do/2l2 + (do/2I2) + 8((do/2I2 f (3do/2l2) + 4((3do/2I2 + (3do/2I2)) 
1 

- 5d; - - 
2 '  

Table 13.1 lists average energies and spectral efficiencies for various QAM constellations. 
Also shown is the average energy per bit, where Eb = f E,  . It may be computed that for a 
square constellation with M points, 

M - 1  
6 

d: . E,  = __. (13.1) 

The elements of a point ( a l ,  u2) E S c R2 represent the amplitudes of two basis 
functions, which we denote as 91 ( t )  and q2(t) ,  which are assumed to be orthonormal (unit 
energy and orthogonal) 

00 co 
q?(t)dt  = 1 s_, 91 (t)92(t)  dt  = 0. L 

Furthermore, shifts of the functions by the symbolperiod T are orthogonal, 
co 

pi(t)pi(t  - k T )  dt  = 0 i = 1,2,  for all integer k # 0. L 
The time T is called the symbol time, or sometimes the baud interval. The number of 
symbols transmitted per second, 1 /  T is called the symbol rate or the baud rate. 

The transmitted signal s ( t )  is obtained by juxtaposing a sequence of scaled basis signals, 
each with their own amplitude representing the transmitted symbol 

s(t> = &kVl(t - k T )  + U2,k92(t - k T ) .  
k 
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BPSK 4-PSK (QPSK) 
I 

8-PSK 

I 

128 

'I' 

16-PSK 

a + .  

Figure 13.1: PSK signal constellations. 
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I . -  

I 

I 

Figure 13.2: QAM Signal constellations (overlaid). 

At the receiver the received signal r ( t )  is again projected back onto the signal constella- 
tion plane by matched filtering. Over each symbol interval, a point (rl , r2) is received, then 
the maximum likelihood (ML) detector without coding determines the constellation point 
nearest to (rl , r2) .  

13.3 TCM Example 

With this background on signal constellations, consider the following three scenarios. In 
the first case, Figure 13.3(a), 2 bits select a single signal point in a QPSK constellation, 
resulting in 7 = 2 bits of information per transmitted symbol. In the second case, R = 2/3 
coding is used with the same QPSK constellation. The efficiency is reduced to 7 = 4/3 bits 
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I QPSKModulator I I QPSK Modulatoi 

I 

(a) QPSK, no coding. (b) QPSK, R = 2/3 coding. 

8PSK Modulator I 

2 bits/symbol I- 
I ‘ d ’  I 

V3 bits/symbol - 

(c) SPSK, R = 2/3 coding. 

Figure 13.3: Three communication scenarios. 

of information per transmitted symbol. In the third case, 8-PSK modulation is employed on 
the coded bits, and again there are r]  = 2 bits of information per transmitted symbol. Thus 
the larger signal constellation is able to attain the uncoded data rate. However, if the average 
signal energy E ,  is the same for both the QPSK and 8-PSK, the symbol points are closer 
in the 8-PSK constellation: approximately 4 dB additional signal energy would be required 
to make the minimum distance between 8-PSK points the same as the QPSK points. The 
problem of closer points can be overcome by combining the coding and the modulation. 

Consider coded modulation with the 8-PSK signal constellation with points labeled as 
shown in Figure 13.4 [346]. (The rationale for the labeling by this partitioning mechanism 
is discussed below.) The points on the signal constellation correspond to elements of the 
sets labeled Di . The signal point i as a binary number corresponds to the “set” of points Di, 
with the least significant bit of i on the right. The minimum distance d j  at the j th  partition 
between points in the constellation increases with j .  The constellation is used with the rate 
R = 213 binary convolutional code, with the trellis as shown in Figure 13.5. The outputs 
of the convolutional coder are mapped to points in the signal constellation, resulting in a 
single 8-PSK symbol transmitted for each pair of input bits. We regard the convolutional 
encoder simply as a finite-state machine with a given number of states and specified state 
transitions, used to select points or subsets of the signal constellation. The combination of 
the convolutional coding followed by the mapping is indicated by the labeling of the trellis, 
with the sequence of outputs Di corresponding to the sequence of branches read from top 
to bottom. Thus, for example, if the coder starts in the first state and the top branch is taken, 
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Figure 13.4: Set partitioning of an 8-PSK signal. 
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Figure 13.5: R = 213 trellis coded modulation example. 

the point in the set Do is transmitted; if the second branch is taken from the first state, the 
point in the set D4 is transmitted, and so forth. The trellis structure imposes constraints 
on the sequences of symbols that can be transmitted. For example, starting from state 0, it 
is impossible to transmit the sequence (D4, 0 2 ) .  Thus when determining the performance 
of the system, distances between sequences of symbols much be considered, rather than 
distances between individual points in the signal constellation. 

The optimal decoding algorithm (Viterbi) finds a shortest path through the trellis, that is, 
a sequence of symbols in the trellis which is closest to the sequence observed at the receiver. 
Assuming that the channel is AWGN, the branch metric is related to the squared Euclidean 
distance between received signal points and transmitted signal points along a branch. As in 
the case of convolutional codes, the overall performance of the system is dominated by the 
shortest distance between two paths which diverge the come back together - errors which 
lead to the path metric exceeding half of this distance and result in selecting the incorrect 
path in the Viterbi algorithm. 

Accordingly, let us find the shortest distance between two paths which diverge then re- 
merge. One candidate to consider is the distance between the transmitted symbols (Do,  Do) 
and the symbols along the path ( 0 4 ,  01). The sequence is indicated in Figure 13.5 with 
a dotted line, remerging after two branches. The squared distance between the sequences 
is the sum of the squares of the distances, which can be determined with the help of the 
diagram in Figure 13.4: 

d2((Do, Do), (D4,Di>> = d2(Do, 04) + d2(Do, 01) = d i  + do2 
= 4E,  + (2  - h ) E s  = (6 - h ) E , .  

A second path to consider is represented by the sequence ( 0 2 ,  D6), shown with dashed 
lines, with 

d2((D0,  DO), (D2, 0 6 ) )  = d2(D0, 0 2 )  + D2(D0, 0 6 )  = d: f d: 
= 2E8 4- 2Es = 4Es .  
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A third path (dash-dot line) represented by (D6, 01) has 

d2( (& &dt ( 0 6 ,  01)) = d2(Do, 0 6 )  -k d 2 ( h  01)  = d? f 

= 2Es + (2  - h ) E S  = (4 - h ) E S .  

This is the minimum distance path between any sequences in the trellis. 

Euclidean distance. It is usually denoted as dkee. Thus for this code 
The minimum distance between any sequences in the trellis for a code is called thefree 

dice = (4 - &)Es. 

How does the performance of this coded scheme compare with uncoded 4-PSK that 
transmits information at the same rate? The quantity 

is called the (asymptotic) coding gain for the code. Here, dfree,uncoded is the minimum dis- 
tance between points in the original signal constellation and dfree,coded is the free Euclidean 
distance between nearest sequences of the coded signal. The factor yc = Es,uncoded/Es,coded 
is called the constellation expansion factor; it accounts for the average energy of the con- 
stellations - larger average energy in the coded constellation reduces the coding gain. The 

is called the increased distance factor. In our case, 
the constellation expansion factor is 1 (the PSK constellations require the same energy per 
symbol) and we find the coding gain is 

factor yo = 2 dfree,coded/dfree,uncoded 2 

ThisisfrequentlyexpressedindB, YdB = 10loglo(y) = 1010glo(1.29) = 1.1 dB. Asymp- 
totically (for high SNR), the coded 8-PSK scheme requires 1.1 dB less energy for (essen- 
tially) the same performance as the uncoded QPSK scheme. 

There are other four-state convolutional coding schemes than can provide better coding 
performance. Consider the coding scheme shown in Figure 13.6. In this figure, there are 
two input bits. However, only one of them goes into the convolutional encoder, which is 
a rate R = 1/2 encoder. The two coded output bits are used to select one of four sets of 
constellation points, which are the sets denoted Co, C1, C2, and C3 in Figure 13.4. Each set 
has two symbols. The other input bit is used to select one of the two points within a selected 
set. The result is that the pair of input bits can be used to select a single output symbol. The 
behavior of the convolutional code and the signal mapper is shown by the trellis of Figure 
13.6. The sets selected by the output bits are listed to the left of the trellis. For example, 
from state 0, the output sets Co and C2 can be selected, depending on which branch of the 
trellis is taken. The fact that Co actually consists of two points is shown as parallel paths in 
the trellis between state 0 and state 0. One of the paths corresponds to the point Do E Co; 
the parallel path corresponds to the point D4 E Co. The parallel paths corresponding to 
C2 are similarly labeled, and the other (unlabeled) parallel paths of the trellis have their 
corresponding symbol point assignments. 

What is the minimum distance between diverginghemerging paths for this code? Let 
us consider the path (Co, Co, Co) and the path (C2, C1 , C2), starting from state 0, indicated 
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Figure 13.6: A TCM encoder employing subset selection and a four-state trellis. 

with dashed lines in Figure 13.6. In comparing distances between sets, the distance between 
the nearest points in the sets must be used. The squared distance is 

d2((Co, Co, Co), (C2, Ci, C2)) = d2(Co, C2) + d2(Co, Ci) + d2(Co, C2) 

= d t  + do2 + d? = (6 - z/Z)E,. 

Is this the smallest distance between divergingkemerging paths? There is, in fact, another 
way that paths can diverge and remerge - through the parallel paths. Consider the distance 
between the path Co and Co, where in one case the symbol Do is sent, and in the other case 
the symbol 0 4  is sent. Then the distance is 

d2(Do, 0 4 )  = d; = 4Es, 

which is smaller than the last distance found and is, in fact, the smallest distance between 
diverginghemerging sequences. 

The coding gain for this code compared to uncoded QPSK (transmitting information at 
the same rate) is 

a coding gain of 3 dl3. It can be verified that this is the best possible coding gain for a TCM 
code having four states. 

Let us now consider a convolutional encoder with 8 states, with trellis and encoder as 
shown in Figure 13.7. The coder selects single subsets (the Di). The minimum squared 
distance in this case is 

d2((Do, Do, Do), ( 0 6 ,  D7, 0 6 ) )  = d t  + do2 + df = 4.585ES. 
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Figure 13.7: An 8-state trellis for 8-PSK TCM. 

The coding gain relative to uncoded QPSK is 

From these examples, we may make the following observations. 

TCM relies on signal space enlargement to compensate for coding redundancy, re- 
sulting in equivalent data rates for coded data. 

The trellis-coded modulation concept combines convolutional coding with the signal 
mapping (modulation). Rather than optimizing the coding and modulation separately, 
TCM code design seeks a jointly optimum solution for coding and modulation. 

The finite-state machine structure imposed by the underlying convolutional code im- 
poses constraints between sequences of symbols. The performance depends upon 
distances between sequences of symbols. By proper design, the reduced distance 
between symbols in the enlarged signal constellation or the additional average energy 
in the enlarged constellation can be more than compensated for by effective distance 
between sequences, resulting in net coding gain. 

While these examples have used convolutional codes, actually any finite state machine, 
even a nonlinear state machine, could be used to impose constraints on the sequences 
of allowed symbols. 
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Figure 13.8: Block diagram of a TCM encoder. 

The (asymptotic) performance depends upon the minimum distance between diverg- 
inglremerging paths, where sums of squared Euclidean distances are used (in AWGN). 
This minimum distance is referred to as the free Euclidean distance of the code. The 
(asymptotic) coding gain in dB is computed as 

2 

YdB = log lo ( Es,uncoded) ( *,coded ) = YC,dB -k YD,dB- 
Es,coded dfree,uncoded 

The encoding architecture includes (in general) two stages. The first stage selects sets 
of points, based on the convolutional coder output. The second stage selects a single 
point for transmission from the set. 

The sets which are used in the TCM code can be obtained from a “set partitioning” 
process. 

The subset selection may give rise to parallel paths in the trellis; the number of parallel 
paths is the number of points in the set. 

Finding minimum distance requires consideration of distances between parallel paths, 
as well as other diverging/remerging paths through the trellis. 

As the number of states in the coder increases, increased coding gain is possible. 

13.3.1 The General Ungerboeck Coding Framework 

The general trellis coded modulation idea is shown in Figure 13.8. We take k = k l  + k2 

message bits as inputs. The first kl bits go into a rate R = k l / ( k l  + 1) convolutional 
encoder. The kl + 1 coded bits then select a subset of points. The remaining k2 bits select 
a point from within the subset. The constellation must therefore have 2klfkz+1 points in it. 

In the first example above, k l  = 2 and k2 = 0 and the coder had four states. That is, we 
simply employ a rate 2/3 encoder, then use the output to select signal points. In the second 
example, kl = 1, k2 = 1 and the encoder had four states. In the third example, k l  = 2, 
k2 = 0 and the encoder had eight states. 
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Figure 13.9: Set partitioning on a 16-QAM constellation. 

13.3.2 The Set Partitioning Idea 

The problem now is how to determine the subsets of the signal constellation. An effective 
answer was developed by Ungerboeck, using what he called setpartitioning. We recursively 
divide a constellation into subsets with increasing intraset distance. The Ungerboeck set 
partitioning rules [347] are summarized as follows: 

Signals in the lowest partition of the partition tree are assigned parallel transitions. 

This rule maximizes the distance between symbols assigned to parallel transitions in 
the trellis. 

State transitions that begin and end in the same state should be assigned subsets 
separated by the largest Euclidean distance. 

This ensures that the total distance is at least the sum of the minimum distances 
between signals in these subsets. 

For example, in the 8-PSK example, the 8-PSK constellation was partitioned into two 
4-PSK constellations (the sets Bo and B1 in Figure 13.4). 

The signal points should be used equally often. 

Furthermore, the partitioned constellation should produce subsets that have a higher mini- 
mum distance than the sets above it. 

Figure 13.9 provides an example of set partitioning for a 16-QAM signal constella- 
tion. Figure 13.10 shows a partition for an amplitude shift-keyed system, 8-ASK, a one- 
dimensional constellation. 



546 Trellis Coded Modulation 

/\ 0 . 0 . 0 . 0 O B I  . 0 . 0 . 0 . o B o  

/I c3 
0 0 0 . 0 0 0 .  

C1 
. 0 0 0 . 0 0 0  co A\ 0 0 . 0 0 0 . 0  0 . 0 0 0 . 0 0  

Do / D 4 \  D2 / \ 0 6  D1 / \ D5 D3 / \D7 
.0000000 0000.000 00.00000 000000.0 0.000000 00000.00 000.0000 0000000. 

Figure 13.10: Partition for 8-ASK signaling. 

13.4 Some Error Analysis for TCM Codes 

13.4.1 General Considerations 

The probability of error analysis for TCM codes starts out very similar to that of convolutional 
codes: We employ the union bound to express the probability of node error and bit error rate 
in terms of binary error probabilities, then develop expressions for those error probabilities. 
The problem is complicated, however, by the fact that TCM codes are not, in general, linear, 
even when the underlying state machine is a linear convolutional coder. Additional effort 
to bound the probability of error is therefore needed. 

Denote the “correct” path through the trellis by c.  Let Ipj denote the set of all paths 
that diverge from node j in the trellis and let pj,j E Ipj be an incorrect path that diverges 
at node j ,  then remerges. Let ej,j be the event that pi,j is chosen by the decoding (Viterbi) 
algorithm. The probability of a node error (i.e., the Viterbi algorithm chooses an incorrect 
path) at any node when c is the correct path is 

The average probability of error Fe is obtained by averaging over all correct paths, 

p e  = C p ( c ) p I c = C ~ ( c ) p r  
C C 

- 

where P ( c )  is the probability of the path c .  Since the paths are not disjoint, the probability 
is difficult to compute, so the union bound is employed to obtain a somewhat simpler 
expression, 

C j \ i  / 

If the length 1 of the encoded sequence is very long, then it is probable that a node error 
eventually occurs. In fact, Pe + 1 as 1 -+ 00. A more interesting measure is the rate at 
which node errors occur. We denote 

- 1- 
P = lim - P e .  

l-tw 1 
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Averaged over an infinite trellis, every node has the same characteristics, so the dependence 
on an individual node j can be removed to write 

where ej is the event that an error event starts at an arbitrary time unit. 
We now employ the union bound again to write 

C ei 

The probability h ( e i  Ic) is the probability of the error event ei when c is sent. This is the 
probability of error for a binary defection problem. We denote this probability as Pc+ei. 

Now let dci denote the distance (metric) between the correct path c and the incorrect path 
corresponding to the error event ei . The probability of the error event Pc+ei is a function 
of the distance dci between the correct path c and the error path ej. We write the functional 
dependence in general as Pc+ei = Pdci. The particular functional form depends on the 
particular channel. For example, for the AWGN channel, 

C ei 

- 
This sum can be rearranged as 

p 5 c Ad,i pdci 9 

(13.3) 

(13.4) 
dci 

where Adci is the average number of paths pi that are at a distance dci from c ,  and where the 
sum is over all the distances. The set of pairs (d,j, Adci) is known as the distance spectrum 
of the code [303, p. 1241. The smallest distance dci is the free distance of the code. 

A lower bound on the probability of node error can be obtained by keeping only the first 

2 Adfree Pdfre, 
term of (13.4), - 

where dkee is the minimum of the distances between any correct sequence c and an incorrect 
sequence. 

The discussion above applies to probability of a node error. Each node error causes 
a certain number of bit errors in the decoded message bits. Let Bdci denote the average 
number of bit errors on error paths with distance dci . Since the trellis code encodes k bits 
per symbol, the average bit error rate is bounded by 

dci 

For an AWGN we have, using (13.3), 
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13.4.2 A Description of the Error Events 

For the error analysis of convolutional codes (Section 12.5), it was not necessary to average 
over the set of correct code sequences c,  since it suffices to consider only the all zero 
codeword as the correct codeword. However, TCM is not necessarily a linear code. It may 
be necessary to consider average behavior over all correct paths. In this section we introduce 
some notation to describe how this is done. 

Consider the case illustrated in Figure 13.1 1, where the correct path c passes through 
the states p = po -+ p1 -+ p2 -+ . . . -+ pL-1 -+ p~ and the incorrect path ei consists 
of the states q = qo -+ q1 3 q 2  + . . -+ q ~ - 1  -+ q ~ ,  where qo = po and q L  = p ~ .  To 

Correct path 

\ / /  \ / 

\.' .' 
\ / /  45 

\ / 

\ 

\t - -4 

43 44 

Incorrect path ei 

41 

diverging "parallel" path pairs merging 
path pars path pars 

Figure 13.1 1 : A correct path and an error path. 

describe the error events corresponding to all error paths, we consider all paths ej that deviate 
from the correct path. The two-tuple sequence ( P O ,  qo) -+ ( P I ,  41) -+ . . . -+ ( p ~ ,  q ~ )  
denotes the pair of paths 

PO -+ P I  -+ p2 -+ . . +. pL-1 -+ P L  and qo -+ qi -+ q 2  -+ . . . -+ q ~ - i  -+ q ~ .  

Let S( (p ,  q )  -+ ( p i ,  41)) denote the squared distance accrued (the branch metric) when 
the correct path transitions from state p to state p1 while the incorrect path transitions from 
state q to state 41. If there is no transition ( p ,  q )  -+ ( P I ,  q l ) ,  then 6 ( ( p ,  q )  -+ ( P I ,  91)) is 
defined to be 00. The cumulative squared distance along this path is 

L 
A 2  p ( ( P l - 1 , q l - l )  -+ ( P l ,  41)) = d,i, 

1=1 

where dzi is the squared inter-path distance between the correct path c and the incorrect path 
ei . 
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Example 13.1 Thetrellis andencoder ofFigure 13.12, havingconnectioncoefficients go = 5, gl = 4 
and g2 = 2, are used with the 8-PSK partition shown in Figure 13.4. The following are some branch 
costs for this coder, assuming that the constellation is normalized so that Es = 1. 

Figure 13.12: Example trellis for four-state code. 

makeB.rn 
tcmtl . cc 

We develop an algebraic expression for the set of interpath distances using a power- 
series-like notation. Let x be a “dummy” variable. The squared distance 6 ( ( p ,  q )  + 
( p l ,  41)) is represented as the monomial x s ( ( P , q ) + ( P l , q l ) ) .  Using this notation, products of 
monomials accumulate distances in the exponent. Thus 

We assume that each transition p + p1 occurs with probability 1/2k for a k-input TCM, 
which is the probability of the correct branch c .  

We now define the output transition matrix associated with the encoder and decoder 
by 

The matrix B is indexed by all possible pairs of “from” states ( p ,  q )  and all possible pairs 
of “to” states ( p l ,  ql) .  The elements of the matrix are monomials whose exponent is the 
squared branch metric. 

S((0,O) + (0, 1)) = &Do, 0 2 )  = 2 S((0,O) --f (0,211 =&Do, 0 4 )  = 4 

S((0, 1) + (0,O)) = d 2 ( 0 0 ,  0 s )  = 3.4 S((0, 1) 4 (0, 1)) = d2(Do,  0 7 )  = 0.6 

The corresponding output transition matrix B is 
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00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33 
00- 1 .2 x 4  2 1 2  1 .2 .4 .4 .2 1 .2 .2 x 4  .2 1 - 

02 .2 1 .2 .4 1 .2 x 4  .2 x2 x 4  2 2  1 x 4  .2 1 2 

11 1 1 2  x 4  x 2  x 2  1 .2 x 4  .4 .2 1 2 x 2  x 4  x2 1 

4 20 .2 1 .2 .4 1 x 2  .4 .2 x 2  x 4  .2 1 x 4  x 2  1 2 

22 1 x 2  x 4  .2 x 2  1 .2 .4 x 4  x 2  1 x 2  x 2  .4 2 1 

01 .3.4 .0.6 .0.6 .3.4 .3.4 .3.4 .0.6 .0.6 .0.6 .3.4 .3.4 .0.6 .0.6 .0.6 .3.4 .3.4 

03 
10 

.0.6 .3.4 .3.4 .0.6 .3,4 .3.4 .0.6 .0.6 .3.4 .0.6 .0.6 .3.4 .0.6 .0.6 .3.4 x3.4 

.3.4 .3.4 .0.6 .0.6 .0.6 .3.4 .3.4 .0.6 .0.6 .0.6 .3.4 .3.4 .3.4 .0.6 .0.6 .3.4 

12 .3.4 .3.4 .0.6 .0.6 .3.4 .0.6 .0.6 .3.4 .0.6 .0.6 .3.4 .3.4 .0.6 .3.4 .3.4 .0.6 

1 13 x2 1 x2 x4 1 x2 x4 x2 x2 x4 x2 1 x4 x2 1 x2 B ( x )  = - 

21 .3.4 .3.4 .0.6 .0.6 ,3.4 .0.6 .0.6 .3.4 .0.6 .0.6 .3.4 .3.4 .0.6 .3.4 .3.4 .0.6 

23 
30 
31 x2 1 x2 x4 1 x2 x4 x2 x2 x4 x2 1 x4 x2 1 x2 

.3.4 .3.4 .0.6 .0.6 .0.6 .3.4 .3.4 .0.6 .0.6 .0.6 .3.4 .3.4 .3.4 .0.6 .0.6 .3.4 

.0.6 .3.4 .3.4 .0.6 .3.4 .3.4 .0.6 .0.6 .3.4 .0.6 .0.6 .3.4 .0.6 .0.6 .3.4 .3.4 

32 .3.4 .0.6 .0.6 .3.4 .3.4 .3.4 .0.6 .0.6 .0.6 .3.4 .3.4 .0.6 .0.6 .0.6 .3.4 .3.4 

33 1 .2 .4 .2 .2 1 x 2  x 4  x 4  x 2  1 .2 2 .4 2 1 - 

’ 

Example 13.2 For the matrix B ( x )  of Example 13.1, we have 

01 
02 
03 
10 
12 

1 13 
4 20 

21 
23 
30 
31 
32 

P ( x )  = - 

01 02 03 10 12 13 20 21 23 30 31 32 - .0.6 .0.6 .3.4 .3.4 .0.6 .0.6 .0.6 .3.4 .0.6 .0.6 .0.6 .3.4 

.3.4 .3.4 .0.6 x3.4 .0.6 .0.6 .3.4 .0.6 .3.4 .0.6 .0.6 .3.4 

.3.4 .0.6 .0.6 .0.6 .3.4 .0.6 .0.6 .0.6 .3.4 .3.4 .0.6 .0.6 

.3.4 .0.6 .0.6 .3.4 .0.6 .3.4 .0.6 .0.6 .3.4 .0.6 .3.4 .3.4 

1 .2 .4 1 x 4  .2 x 2  x 4  1 x 4  x 2  1 

1 x 2  x 4  1 x 4  x 2  .2 x 4  1 x 4  2 1 
1 .2 x 4  1 .4 .2 .2 x 4  1 x 4  .2 1 
.3.4 .0.6 .0.6 .3.4 .0.6 .3.4 .0.6 .0.6 .3.4 .0.6 .3.4 .3.4 

.3.4 .0.6 .0.6 .0.6 .3.4 .0.6 .0.6 .0.6 .3.4 .3.4 .0.6 .0.6 

.3.4 .3.4 .0.6 .3.4 .0.6 .0.6 .3.4 .0.6 .3.4 .0.6 .0.6 X ’  3 4 

.0.6 .0.6 .3.4 .3.4 .0.6 .0.6 .0.6 .3.4 .0.6 .0.6 .0.6 .3.4 
1 .2 .4 1 x 4  .2 x2 x 4  1 .4 2 1 

For the output transition matrix, the ( ( p ,  p ) ,  ( 4 ,  4 ) )  entry of the B ( x ) ~  is a polynomial 
in x whose exponents are all the distances between path pairs originating at ( p ,  p )  and 
terminating at (q ,  4 ) ;  the coefficients of the polynomials are the average multiplicities of 
these distances. Thus matrix multiplication can be used to keep track of the distances 
between paths. The B ( x )  matrix can thus be used to compute the distance spectrum for a 
given encoder. 

We now split B ( x )  into matrices corresponding to branches which diverge from a com- 
mon node, branches which are on a “parallel” path, and branches which merge to a common 
node, denoting these as D ( x ) ,  P ( x ) ,  and M ( x ) ,  respectively. Thus the rows of D ( x )  are in- 
dexed by values of ( p ,  q )  which are the same, the rows and columns of P ( x )  are indexed by 
values of ( p ,  q) ,  (PI, 41) which are painvise distinct, and the columns of M ( x )  are indexed 
by values of ( p i ,  41) which are the same. 

Example 13.2 For the matrix B ( x )  of Example 13.1, we have 
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00 11 22 33 

21 .3.4 .0.6 .3.4 .0.6 

23 .3.4 .3.4 .3.4 .3.4 

30 .0.6 .3.4 .0.6 .3.4 

31 x2 x2 x 2  x2 
32 I .3.4 .3.4 .3.4 .3.4 , 

With these matrices we can now describe the set of all error events. An error path 
diverges from a node and only remerges at the end of the error event; in between the error 
path and the correct path are never in the same state at the same time step. The set of all 
metrics of error events of exactly L branches is computed by 

GL(x) = D(x)P(x )~-~M(x)  L 2 2. 

This expression can be used to compute the distance spectrum for the code, although it 
becomes computationally infeasible for codes of even moderate numbers of states, due to 
the size of the matrices involved. (Algorithms based on the Viterbi algorithm are generally 
more efficient ways of actually computing the distance spectrum.) The rows and columns 
of the G L ( x )  matrix are indexed with ( p ,  p )  or (q ,  q )  pairs. The ( ( p ,  p ) ,  (q ,  q ) )  entry of 
GL is an enumerator (or table) of all weighted distances between paths that start at the state 
p and end at the state q and have L branches. Note that 

where 1 is a vector of 2v Is, is the sum of all the elements of the matrix, which contains all 
paths of length L from any state to any state. 

Returning to (1 3.4), let us use the bound 

(see Exercise 1.12) so that 

Since the elements of G L  tabulate all the distances between path segments of length L,  this 
sum can be written as 



552 Trellis Coded Modulation 

00 1 1  
2 2 v  

This can be manipulated as 

(13.5) 

where we have used the matrix identity ( I  - P)- '  = EEo P i ,  analogous to the identity 
for scalars 1 = 1 + p + p 2  + p 3  + . . - .  The identity holds when hmax < 1, the largest 
eigenvalue of P ( x ) .  When the code is noncatastrophic and the SNR is sufficiently large, this 
is the case. The bound (1 3.5) is referred to as the transferfunction bound. Computationally, 
actually computing this bound could be difficult, since it requires computing the inverse of 
a ( N 2  - N )  x ( N 2  - N )  matrix, where N = 2'. 

A tighter bound can be obtained (see, e.g., [303, p.1311) by using a tight union bound 
for path differences up to a certain length, then employing the transfer function bound for 
the tail. 

1 1  
= --lTD(x)(Z - P ( x ) ) - ' M ( x ) l  

2 2v x =exp(-REb /4No)  

1 -P 

13.4.3 Known Good TCM Codes 

Tables 13.2 through 13.5 describe TCM encoders which have been found by computer search 
[345,347,268]. The numbers g i  are connection polynomials in octal format. For example, 
the number g = 23 represents 10 01 1, with the LSB go on the right. The connections are 
used with the systematic convolutional encoder circuit shown in Figure 13.13. The mapping 

ck . . .  mk 

Cki +,' . . .  mkl+1 

Figure 13.13 : Trellis coder circuit. 

from the outputs co, c1, c2 to the signal constellation is that of Figure 13.4, that is, with the 
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c5 * . . .  m5 

c4 * . . .  m4 

m3 . . .  c3 

c2 mki 

ml Cl 

. . .  
w 

CO 

64-QAM 
- - - - - _  

32-cross 

16-QAM 

- _ _ _ _ _  

- - - - - -  

Select 
Subset 

Figure 13.14: TCM encoder for QAM constellations. 

points numbered consecutively around the circle. The asymptotic coding gain is with respect 
to QPSK, with minimum squared distance between signals of 2E, .  The column Adfree is 
the average number of paths at distance dfree. The column Bdfree is the average number of 
bit errors on those paths. The probability of a node error (selecting the wrong path) can be 
approximated by computing the probability of an error due to the shortest path (at distance 
dfree from the path corresponding to sending the all-zero sequence), scaled by the number 
of such paths: 

The probability of bit error is approximately 

Another computer search [385] has yielded the improved 8-PSK designs also shown in 
Table 13.2. While the free distance is the same, the multiplicities Adf,, and values are 
smaller, resulting in smaller error probabilities. This uses the 8-PSK with the points around 
the constellation labeled in a different order, as noted in the table. 

A table of good codes for 16-QAM and larger constellations is shown in Table 13.5. 
The columns labeled Asymptotic Coding Gain show both the coded constellation and the 
constellation used for comparison. The corresponding circuit diagram for this code is 

Selected 
symbol 
___) 
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Table 13.2: Maximum Free-Distance Trellis Codes for 8-PSK Constellation [347,268,303, 
3851 

A0 = 2 sin(n/8) 

Number Coding Gain (a) 
Asymptotic 

of States go 81 g2 dgee/Ao” Adfree Bdfree 8-PSW4-PSK 
4 5 2 - 4.00 1 1 3.0 
8 11 2 4 4.59 2 7 3.6 
8t 17 2 6 4.59 2 5 3.6 
16 23 4 15 5.17 2.25 11.5 4.1 
16t 27 4 12 5.17 2.25 7.5 4.1 
32 45 16 34 5.76 4 22.25 4.6 
32t 43 4 24 5.76 2.375 7.375 4.6 
64 103 30 66 6.34 5.25 31.125 5.0 
64+ 147 12 66 6.34 3.25 14.8755 5.0 
128 277 54 122 6.59 0.5 2.5 5.2 
128f 277 54 176 6.59 0.5 2 5.2 
256 43 5 72 130 7.52 1.5 12.25 5.8 
256+ 435 72 142 7.52 1.5 7.813 5.8 
512 1525 462 360 7.52 0.313 2.75 5.8 
512t 1377 304 350 7.52 0.0313 0.25 5.8 
1024 2701 1216 574 8.10 1.32 10.563 6.1 
1024+ 2077 630 1132 8.10 0.2813 1.688 6.1 
2048 4041 1212 330 8.34 3.875 21.25 6.2 
4096 15201 6306 4112 8.68 1.406 11.758 6.4 
8192 20201 12746 304 8.68 0.617 2.711 6.4 

32768 143373 70002 47674 9.51 0.25 2.5 6.8 
131072 616273 340602 237374 9.85 6.9 

t Usepoint labeling (000), (OOl), (OlO),  (Oll), (110), ( l l l ) ,  (loo), (101). 

shown in Figure 13.14. An interesting feature about this structure is that it can be employed 
with larger signal constellations by using more uncoded bits. The 32-cross and 64-QAM 
constellations are shown in Figure 13.2. The set partition and assignment for most of these 
follow the pattern set in Figure 13.9. Also shown in Table 13.5 are connectors for another 
set of codes with generally lower Adfre, and Bdfr, due to [385]. These are indicated with t. 
These use the labels shown below the table. 

13.5 Decoding TCM Codes 

Optimal decoding is accomplished using a Viterbi algorithm. The general outline is the 
same as for convolutional codes. However, in computing the branch metric associated with 
a received signal rt, the nearest point in the subset for that branch is used. For branches 
with parallel transitions (that is, whose subsets contain more than one point), it is necessary 
to compute the distance between r and every point in the subset. 

In the second step the signal point selected from each subset (in step 1) is used to 
determine a branch cost for a Viterbi algorithm using a squared distance measurement. The 
optimal sequence is that which has the minimum sum of squared distances along the trellis. 
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Table 13.3: Maximum Free-Distance Trellis Codes for 16-PSK Constellation [347] 
A0 = 2sin(n/l6) 

Number 
of States 

4 
8 
16 
32 
64 
128 
256 

80 81 g2 
5 2 -  
13 4 - 
23 4 - 

45 10 - 
103 24 - 
203 24 - 
427 374 176 

Asymptotic 
Coding Gain (dB) 

dgee/Ai Adfree 16-PSW8-PSK 
1.324 4 3.54 
1.476 4 4.01 
1.628 8 4.44 
1.910 8 5.13 
2.000 2 5.33 
2.000 2 5.33 
2.085 8 5.51 

Table 13.4: Maximum Free-Distance Trellis Codes for Amplitude Modulated (One- 
Dimensional) Constellations [347] 

Asympt. Gain (a) (codeduncoded) 
Number 
of States go 81 dgee/At Adfre 4-AM/ 2-AM 8-AhW4-M 

4 5 2  9.0 4 2.55 3.31 
8 13 4 10.0 4 3.01 3.77 
16 23 4 11.0 8 3.42 4.18 
32 45 10 13.0 12 4.15 4.91 
64 103 24 14.0 36 4.47 5.23 
128 235 126 16.0 66 5.05 5.81 
256 515 362 16.0 2 - 5.81 

Table 13.5: Encoder Connections and Coding Gains for Maximum Free-Distance QAM 
Trellis Codes [347][385]-t 

Asympt. Gain (dB) (codeUuncoded) 
Number 1 6 - Q M  32-cross1 6 4 - Q M  

4 5 2 - - 4.0 4.4 3.0 2.8 
O f S b t e S  go gI g2 g3 d:ree Adfree Edfree 8-PSK 16-QAM 32-CroSS 

8 1 1 2 4 -  
8+ 1 3 4 2 6  
16 23 4 16 - 
16T 25 12 6 14 
32 41 6 10 - 
3Zt 47 22 16 34 
64 101 16 64 - 
64? 117 26 74 52 
128 203 14 42 - 
128+ 313 176 154 22 
256 401 56 304 - 
256t 417 266 40 226 
512 1001 346 510 - 

t Use the labeling shown here. 

5.0 3.656 
5.0 3.656 
6.0 9.156 
6.0 9.156 
6.0 2.641 
6.0 2 
7.0 8.422 
7.0 5.078 
8.0 36.36 
8.0 20.328 
8.0 7.613 
8.0 3.273 
8.0 

18.313 5.3 4.0 3.8 
12.344 
53.5 6.1 4.8 4.6 

37.594 
16.063 6.1 4.8 4.6 

6 
55.688 6.8 5.4 5.2 
21.688 
277.361 7.4 6.0 5.8 
100.031 
51.953 7.4 6.0 5.8 
16.391 

7.4 6.0 5.8 

- 
0000 0000 00.0 0000 0000 0000 0000 moo0 
0000 0000 0000 0.00 0000 0000 000. 0000 
00.0 0000 0000 0000 0000 moo0 0000 0000 
0000 0.00 0000 0000 000. 0000 0000 0000 

0000 1000 0100 1100 0010 1010 0110 1110 

0000 0000 0000 0.00 0000 0000 000. 0000 
0000 0000 00.0 0000 0000 0000 0000 moo0 
0000 0.00 0000 0000 000. 0000 0000 0000 
00.0 0000 0000 0000 0000 boo0 0000 0000 

0001 1001 0101 1101 0011 1011 0111 1111 
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13.6 Rotational lnvariance 

A real digital receiver must typically estimate the phase of the received signal. For QAM 
signals, methods exist which can estimate the phase, but only up to a phase uncertainty of a 
multiple of n / 2  radians. This introduces a pn/2phase ambiguity ( p  an integer) which must 
be accommodated in the receiver. When TCM is employed, it may be possible to identify 
if the receiver has the correct decoding phase by examining the likelihoods computed by 
the Viterbi algorithm. If no path emerges as having significantly better likelihood than the 
others, than it is likely that the wrong phase has been selected. The receiver can adjust 
the phase by n / 2  and try again. This procedure, however, takes additional synchronization 
time. Another approach is to transmit the information in such a way that it can be accurately 
recovered regardless of the p n / 2  ambiguity. This can be accomplished by (1) using a TCM 
code which is invariant with respect to rotation; and (2 )  employing differential encoding of 
some of the bits. 

signal constellation. Let a@ be the sequence obtained by rotating each at by a fixed angle 
4: af = ej@at. We have the following: 

Definition 13.1 A TCM code is rotationally invariant with respect to a rotation by C$ if 
a@ is also a valid coded symbol sequence for every valid coded symbol sequence a. 0 

Rotational invariance in TCM can be related to the trellis as follows. Let S denote the 
signal constellation and let Si denote the set of subsets, at some level of signal partitioning, 
which are transmitted along the branches of the trellis. Assume that the partitioning is 
done such that, for each possible phase rotation, each subset Si rotates into another Sj. 
Then the set of subsets is invariant under phase rotation. It turns out that this invariance 
holds automatically for one- and two-dimensional signal constellations [362]. (For example, 
consider the set partitions in Figures 13.4 and 13.9.) For such a rotational invariant set of 
subsets, we have the following. 

Let a = (ao, a1 , a2, . . .) be a sequence of complex coded symbols from a two-dimensional 

Theorem 13.1 [362, 366, 3031 For each transition on the trellis from state i to state j 
associated with a subset A, let B denote the subset obtained when A is rotated by 4, as 
shown in Figure 13.15. 

Then a TCM code is rotationally invariant with respect to a rotation by an angle C$ ifthere 
exists a bijectivefunction f@ : S + S with the property that B is the subset associated with 
the transition from f @ ( i )  to state f @ ( j >  (and so f @ ( i )  + f @ ( j )  is a valid state transition) 
when A is the subset associated with the transition from state i to state j .  

0 0 

Figure 13.15: Mapping of edge ( i ,  j >  to edge ( f @ ( i > ,  f@( j>>.  
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Differential Nonlinear 
encoder trellis coder 

Select 
Signal 
Point 

Figure 13.16: Encoder circuit for rotationally invariant TCM code. 

Proof Let i l ,  i2, i3, . . . denote a sequence of states on a valid path through the trellis. If the 
conditions of the theorem are satisfied, then fb(il), f@(i2), f + ( i 3 ) ,  . . . are also on a valid 

0 
It has been found that using a linear convolutional code as the state machine underlying 
the TCM cannot achieve rotational invariance [263]. Nonlinear trellis codes, however, have 
been found which can achieve rotational invariance [363,364]. We present examples of such 
codes which are widely used in V.32 and V.33 industry standards, referring the interested 
reader to the literature [363,364] for design methodologies. The V.32 standard [32] operates 
at bit rates of 9600 bitdsecond using a symbol rate of 2400 symbols/second (suitable for use 
on a standard telephone line) by achieving up to 4 bits per symbols. To do this, it uses a coded 
signal constellation with 32 points in it (the 32-cross constellation). The V.33 standard [32] 
provides for data rates of up to 14,400 bits/second using 2400 symbols/second by carrying 
six bits per symbol using a 128-point coded signal constellation. This code provides up to 
4 dB of coding gain. 

The encoder of Figure 13.16 is a nonlinear trellis encoder whose trellis is shown in 
Figure 13.17. In this figure, the input that gives rise to output subset Dj can be found by 
taking the two most significant bits of i .  Thus a branch transmitting 0 5  is due to an input 
of ( 6 2 ,  61) = (1, 0), since 5 = 1012. A branch transmitting 0 7  is due to an input of 
( 6 2 ,  & I )  = (1, l),  etc. It can be shown that the code represented by this trellis is invariant, 
in the sense of Theorem 13.1. The corresponding labeled signals and the constellation 
partition are shown in Figure 13.18. We observe that the first two bits (labeled with the 
light font) are invariant with respect to n /2  rotations. However, the last three label bits do 
change with rotation. The code uses differential coding techniques to achieve invariance 
to the changes in the last three bits. The first stage of the encoder takes two input bits and 
differentially encodes them. The differentially encoded bits are used by the trellis coder. 

The overall framework of invariance works as follows. If a transmitted signal point is 
rotated by some multiple of n/2, then the corresponding received signal point is identical 

path, each branch selecting a rotated symbol. 
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Figure 13.17 : Trellis for the rotationally invariant code of Figure 13.16 

11111 00011 

Labels: 
ooiio ioioo oi i io  

oibi ioioo iibi ooioi c4c3 C 2 C l  co 

00000 ill10 01000 10110 11OOo 

ioiii oiiii oiiii ioiii 

iiioo iGio oiioo ii&o ooioo 

oohi iiioi i&i oiioi 

Oil10 loo00 00110 

00111 11011 

Figure 13.18: 32-cross constellation for rotationally invariant TCM code. 

in the first two bits. The last three bits differ because of the rotation. However, because the 
code is rotationally invariant, there is still a valid path through the trellis which can be used 
to decode this rotated sequence of symbols. The input bits for the rotated signals can be 
decoded. Then, since the bits are differentially encoded, so that the sequence of diflerences 
does not change when the signal sequence is rotated, the original bits can be recovered. 

Differential Encoding 

The differential encoder operates as follows. The input bits m I , ~  and m2,t are converted 
to an integer, mt = 2m2,, + mi,i .  The encoder keeps the previous outputs # ~ i , ~ - i ,  rii2,t-1, 
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represented as an integer by Gr-i = 2 & ~ , ~ - 1  + &1,~-1. Then the differential encoder 
computes 

g r  = mt +&-I (mod 4). (13.6) 

The initial memory of the differential encoder is assumed to be set at 0. 

can be recovered as 
Given a received sequence of differentially encoded data r i i ~ , ~ ,  &2, t ,  the original data 

mf = kt - f i t - 1  (mod 4). (13.7) 

Example 13.3 Suppose the sequence of input data ( m ~ , ~ ,  m l , r )  is 

(01)(10)(11)(01)(10)(11) . . . 

The differential encoding proceeds as in the following table. 

Constellation Labels and Partitions 

The sets Di consist of points having the label i in the last three digits in binary notation (in 
bold font in Figure 13.18). Examination of the subsets in figure 13.18 reveals that under 
rotation of n/2, the subset Do maps to D7. and 0 7  maps to D4, and so forth. The sets map 
under n/2 rotations as 

(13.8) 

Example 13.4 The sequence of bits 

(11 01)(01 10)(11 11)(10 01)(00 10)(01 11) 

is to be transmitted, where the 4-tuples represent ( ~ 4 , ~ ,  m3,r,  m2,r,  
the second pair of bits (see the previous example), the sequence of bits (m4, m3, h z ,  21) is 

After differential encoding 

(11 01)(01 11)(11 10)(10 11)(0001)(0100). 

This sequence is presented to the nonlinear trellis coder (starting from state 0) resulting in the following 
output and path through the trellis. 
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D o D ~ D ~ D ~ ~ , D ~  Dg / \ D4 

DlDgD7D3.  ' \ \ *  / I  * ' \  

000 1101 11010 D2 010 DgDoDqD2. ' \ *  
state input output subset next state / \ 

010 0111 01110 D6 000 
000 1110 11100 D4 01 1 

\ 

011 1011 10111 D7 101 DzDqDoDg* '\ 

DiD3DlDg* * - - - *  DI 

DqD2DgDom \* 

DgDlD3Dlm 

\ 
\ D3 101 0001 00011 D3 111 

111 0100 01001 D1 111 \ 
\ 

Now suppose that at the receiver the sequence is received with a n / 2  rotation, so that the points 
of the signal constellation correspond to the following bit patterns: 

DO 
DoDgD2Dq* t--\ D6 

0 4  I 

received bits subset 
11001 D1 
01 101 D5 
11011 0 3  

10 100 D4 
00 000 DO 
01 110 D6 

Of course, the initial state in the trellis is not known initially, but would be discovered by the 

We make the following observations about these bits: 

Viterbi algorithm. 

The first two bits are unchanged by the rotation. This occurs because the symbol labels were 

The subsets represented by the last three bits are obtained by rotating the transmitted subsets 

created so that p n / 2  rotations do not affect the first two bits. 

according to the cyclic translations of (13.8). 

As shown, a valid path through the trellis can be found. However, it does not necessarily start with 
state 0. The Viterbi decoding algorithm must be prepared to start with any state. Furthermore, if the 
initial state is not zero, the differential decoder must be initialized with the data corresponding to the 
rotation which moves to the initial state. Since the path starts at state 7, the differential decoder is 
initialized with (rn2,-1, rn1,-1) = (1, 1). 

The sequence of input bits corresponding to this path is 

(11 00)(01 10)(1101)(10 10)(0000)(01 l l ) ,  

where the last two bits of the 4-tuple are differentially encoded. Using (13.7) to undo the effect of the 
differential decoding on those bits, we obtain the following: 
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(11 01)(01 10)(11 11)(1001)(00 10)(01 l l ) ,  

the same as transmitted originally. Thus even though the signal constellation was rotated due to phase 
ambiguity, the decoder was invariant to such rotations. 

13.7 Multidimensional TCM 

The TCM described up to this point has employed one- or two-dimensional signal con- 
stellations. However, there are several compelling reasons for dealing with constellations 
in more than two dimensions. After presenting some of these reasons, we present one of 
several possible frameworks for mathematical descriptions of signal constellations and their 
partitions in multiple dimensions using lattices and their cosets. These rather general de- 
scriptions are followed by an extended example, the code used in the V.34 (also known as 
V.fast) modem protocol. 

We begin, however, with a discussion of how to obtain multiple dimensions using digital 
signaling. We detail the notation only with even-numbers of dimensions; modification to 
odd-numbers of dimensions is straightforward. 

The 2L-dimensional signal point a = ( a l ,  a2, . . . , a 2 ~ )  can be transmitted by sending 
a sequence of L two-dimensional points over L signaling intervals 

(4, a219 (a39 a41,. . . , (a2L-1,  a2d. 

If the uncoded multi-dimensional constellation is employed with an overall spectral effi- 
ciency of bitshymbol, then there must be 2qL symbols in the multidimensional constella- 
tion. 

Example 13.5 Suppose that a signal is to be transmitted with q = 4 bits/symbol using a4dmensional 
constellation. Then the two symbols required to carry the 4 coordinates must represent 2 x 4 = 8 
bits, so that the constellation must have 2* points in it. 

Now suppose that a TCM is used with a 4-dimensional constellation with a k / ( k  + 1) convolutional 
0 encoder. There must be 29 points in the signal constellation. 

Multidimensional TCM is similar to one- or two-dlmensional TCM: kl  out of k input bits 
are input into a rate k l / ( k l  + 1) trellis encoder. These bits are used to selected one of 2kl+1 
subsets of a 2L-dimensional signal constellation. The remaining k2 = k - kl input bits then 
select a single point out of the subset. This signal point is then transmitted by a sequence 
of L two-dimensional points. A difference from one- or two-dimensional TCM is that the 
trellis encoder circuit is used only every L symbol times. 
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13.7.1 Some Advantages of Multidimensional TCM 

Energy expansion advantage In one- or two-dimensional TCM, the rate k l / ( k l  + 1) 
encoder requires that the number of points in the signal constellation be doubled to preserve 
rate so that there must be 2vL+’ symbols in the constellation to transmit with a spectral 
efficiency of r]  bitshymbol. This roughly doubles the average signal energy, since the 
extra redundancy must be accommodated over a single symbol interval. This results in 
approximately a 3 dB penalty in yc. 

However, in multiple dimensions there is only one redundant bit spread over L symbol 
times, so the energy penalty is reduced. The extra energy required to represent this larger 
signal constellation is shared among L transmitted symbols. For a 4-dimensional signal 
constellation, the penalty in yc is 1.5 dB. 

Sphere-packing advantages To obtain the smallest average signal energy, it is desirable to 
pack the points of the signal constellation as closely as possible while maintaining minimum 
inter-symbol distance requirements. The problem of placing points in a signal constellation 
is thus an instance of the “sphere packing problem.” This can be expressed in familiar 
terms in three dimensions as the problem of packing as many identical spherical oranges 
(maintaining at least a minimum distance between centers) as possible into a crate of given 
dimensions. It can be shown that if the oranges are stacked in layers with one orange resting 
over the interstices formed by the oranges in the layer below, then more oranges can be 
packed into the crate than if the oranges are stacked in ‘Z3” way, in a square lattice with 
the center of each orange over the center of the orange below it. 

In higher dimensions it may be possible to stack points in such a way that the density is 
higher than simply stacking them on a multidimensional rectangular grid. This results in a 
lower average signal energy compared to the rectangular lattice Zn. 

Spectral efficiency If the channel has bandwidth to support r]  bits/symbol but not r]  + 1 
bitdsymbol, it may be possible to squeeze a little more out by using r]  + 6 bitshymbol, for 
some rational number 0 < S < 1. Using multidimensional constellations, it is possible to 
design transmission systems with such fractional spectral efficiencies. 

Rotational invariance For two-dimensional constellations, nonlinear trellis coders must 
be employed to obtain rotational invariance. However, linear encoders can be used in higher 
dimensional TCM. 

Signal shape Signal shape [94,196] slightly reduces the average energy requirements even 
further by selectively using points of smaller energy. This is used in the V.34 modem, as 
described below. 

Peak-to-average power ratio Multidimensional constellations can be designed which 
have a lower peak-to-average power ratio. 

Decoding speed The first step in decoding is to determine the closest point in a subset to 
the received data. For many lattices, efficient algorithms exist for doing this (see, e.g., [57]). 
Furthermore, the state of the trellis must be advanced only every L received signals. These 
factors allow for higher speed decoding. 
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13.7.2 Lattices and Sublattices 

While there are many ways of constructing multidimensional signal constellations, one very 
important way employs lattices and sublattices. We briefly introduce lattices here; extensive 
detail is presented in [56]. 

Basic Definitions 
1attstuff.m 

A lattice A is an (infinite) discrete periodic arrangement of points in RM. A signal 
constellation based on a lattice is obtained by selecting a finite number of points from the 
lattice, possibly with a translation, with the points usually selected in such a way as to 
minimize the average energy in the constellation. 

A lattice may be described by a generator matrix' M ,  where 

with m 2 n, where, following convention, each TOW is a basis vector. Then the lattice is the 
set 

A = {EM : 6 E Z"}; 

that is, integer linear combinations of the basis vectors. Note that a lattice forms a group 
under addition. 

It should be obvious that the generator is not unique. Two generator matrices M and A? 
define equivalent lattices if fi = c U M B ,  where c is a nonzero constant, U is a matrix with 
integer entries and det( U) = f.1 (that is, U is unimodular) and B is orthogonal, B B = I .  
Equivalent lattices are essentially just rotated and/or scaled versions of each other. 

Example 13.6 A portion of the lattice Z2, consisting of points ( n l ,  n2) for ni E Z, is shown in Figure 

13.19(a). It has the generator M = [A i] . A 16-QAM constellation can be obtained, for example, 

by selecting 16 points of A + (1/2, 1/2). The n-dimensional extensions of this lattice, denoted by 
0 Z", are generated by the n x n identity matrix. 

Example 13.7 The hexagonal lattice, known as the A2 lattice, is shown in Figure 13.20(a). It can be 
generated by 

Not so obviously, the hexagonal lattice can also be generated by 

giving a two-dimensional lattice embedded in three dimensions. 0 

'Not to be confused with the generator matrix for a linear block code. 
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(a) Z* lattice. (b) Cosets of the lattice. 

Figure 13.19: A portion of the lattice Z2 and its cosets. 

Figure 13.20(b) shows that around each lattice point a circle (or, in general, a sphere) 
can be drawn which does not intersect with identical spheres around the other lattice points; 
we denote the radius of the largest such sphere by p.  Also, around each point is a region 
known as the fundamental parallelotope (shown shaded). Associated with the generator is 
the Gram matrix A ,  

The determinant of the lattice generated by M is defined to be the determinant of the 
Gram matrix, det A = det A. The volume of the fundamental region of the lattice, or the 
fundamental volume, denoted by V(A), is 

A = M M T .  

V(A) = I det(A)1'/2 = I det(A)1'I2. 

Example 13.8 For the lattice A = Z2" (even-numbered dimensions), the volume of the fundamental 
parallelotope is 

V(A) = I det(A)l'l2 = I det(Z)l'/2 = 1. 

0 

Example 13.9 For the A2 lattice with minimum distance between points equal to 1, the volume of 
the fundamental parallelotope is 

The hexagonal lattice has a smaller fundamental volume than the Z2 lattice with the same minimum 
distance. It thus packs points more efficiently into space. 0 

Another relevant attribute of lattices is the kissing number, usually denoted by t, which is 
the number of nearest neighbors a lattice point has. This has bearing in code design, since 
the asymptotic performance is governed by the number of nearest neighbors a point has. 
For the A2 lattice the kissing number is t = 6 .  For the lattice Z" the kissing number is 
t = 2n. 
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* I *  
t *  0 

(a) Basic lattice. (b) The fundamental parallelotopes around 
the lattice points. 

Figure 13.20: Hexagonal lattice. 

Common Lattices 

Table 13.6 summarizes the attributes of the lattices described here. 

Table 13.6: Attributes of Some Lattices 
Kissing Lattice 
Number Fundamental coding 

Name Dimension t Volume V ( A )  gain Ycg Ycg (dB1 
Z" n 2n 1 1 0 

A2 (hexagonal) 2 6 &I2 1.15 0.63 

D 4  4 24 0.5 1.51 
D n  n (even) 2n(n - 1) 2(1-n/2) 2(1-2/") 3.01(1 - 2/n) 

E8 8 240 1/16 2 3.01 
A16 (Barnes-Wall) 16 4320 2.33 x 2.83 4.51 

1\24 (Leech) 24 196560 5.96 x 4 6.02 

A3 (face-centered cubic) 3 12 &I2 1.26 1 .oo 

E6 6 12 0.2165 1.6654 2.21 

The fundamental volume is computed for a lattice normalized so the minimum distance between points equal to 1 .  

D 4 ,  also known as the checkerboard lattice, is the densest lattice in four dimensions [56, 
p. 91. The lattice points are ( ~ 1 ,  u2, ~ 3 , 2 4 4 )  where the ui are integers and U I  + 
u 2  + u3 + u 4  is an even integer. The center (O,O,O,O) has the points ( k l ,  f l ,  0,O) 
and their permutations as nearest neighbors, so that the kissing number is r = 24. 
Any two distinct points must differ by at least 1 in at least two coordinates, or by 
2 in at least one coordinate, so the minimal distance between centers is 2/2, and 
p = 2/2/2. A generator matrix for this and other lattices mentioned here is provided 
in lattstuff .m. 
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Eg provides the densest lattice packing in eight dimensions [56, p. 1201. The lattice can 
be described as follows: The set of points 

1 
{(ui, u2, . . . , ug) : all ui E Z or all ui E Z + ?, and cxi is even]. 

E 6  is the densest lattice in 6 dimensions [56, p. 1251. Points in this lattice are vectors in 
Eg which are perpendicular to any A2 sublattice V in Eg: 

E6 = (X E Eg : X * ‘u = Oforall ‘u E v}; 
another description is 

E6 = {(Xi, . . . , X g )  E Eg : X1 X g  = X2 + . . . X7 = 0). 

Another description for E 6  is over the Eisenstein integers, the set & = {a  + wb : 
a, b E Z, w = (-1 + i&)/2}. This uses the generator 

M =  1 - 1  0 . [: :ll 

where 8 = a. 
1\16 is the Barnes-Wall lattice [56, p. 1291. This lattice has strong connections with Reed- 

Muller codes of length 16. 

A24 is the Leech lattice [56, p. 13 11. What makes it remarkable is that it can be constructed 
in many ways, with many connections to block error correcting codes. We mention 
only one. The lattice can be generated by all vectors of the form L (F~ ,  f123) (that 
is, 23 ones), where the ~3 may be in any position, and the upper signs are taken on 
the set of coordinates where the binary Golay (24,12) code is 1. 

.J8 

Sublattices and Cosets 

A sublattice of a lattice is a lattice A’ all of whose points lie in the lattice A. The sublattice 
is generated by a matrix M’. 

As a subgroup of a group, there are cosets associated with a sublattice. A coset of a 
lattice A’ is a translation A’ + p of all points in A’ by p. The set of cosets of A produced by 
A’ is denoted A/A’; since the lattice is an Abelian group, A/A‘ is a group. We can write 
the partition of A into cosets as 

A = A’ U {pi + A’} U {p2 + A’] u.. . U IPN-1 + A’} 

for some number N which is the number of cosets. 

Example 13.10 Let A = Z2 and let A’ = 2 Z 2 .  That is, the generator is 

There are four cosets in this lattice, with the following shape designations in Figure 13.19(b): 

So = A’ (denoted by 0 )  

S2 = (0, 1) + A’ (denoted by U) 
S1 = (1 ,O)  + A’ (denoted by 0)  

S3 = (1, 1) + A’ (denoted by 0) 

The set of lattices z2/2z2 is isomorphic to the group ~2 x ~ 2 .  0 
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A partition chain of a lattice, denoted AIA’IA’’ is the set obtained by partitioning A’ and 
each of its cosets by A”, where A‘‘ is a sublattice of A’. 

A commonly used transformation is obtained by stacking 2 x 2 blocks of the form 

which represents a rotation of the lattice by 45” and a scaling by &. The sublattice of A 
formed by this transformation is denoted RA. 

Example 13.11 Figure 13.21(a) shows A = Z2. Figure 13.21(b) shows the cosets in the partition 
12/12’, where A = Z2 and A‘ = RZ2,  where the points in the cosets are designated as 

A ’ =  RZ2 (0) 
A’ + (1,O) (m). 

Figure 13.21(c) shows the cosets in the partition chain A/A’/A’’, where A” = R2A = 2Z2, where 
the points in the four cosets are designated as 

A” = R2Z2 (0) 
A” + (1,O) (0 )  

A” f (0,  1) ( 0 )  

A’’ + (1, 1) (0). 

This four-way partition creates the same partition as that in Figure 13.9. 0 

The Lattice Code Idea 

Figure 13.22 shows the idea behind TCM on lattice cosets. It is very similar to TCM in 
general: a set of coded bits selects a coset (as a subset of the constellation), and a set of 
uncoded bits selects a point within the subset. The performance of the code is determined 
by the minimum distance between points in the coset (corresponding to parallel transitions 
in the trellis) and the minimum distance between diverging paths in the trellis of the encoder. 

Sources of Coding Gain in Lattice Codes 

In addition to gains due to to the distances between sequences obtained using trellis coding, 
the very shape of the lattice constellation contributes gains. Two sources of coding gain can 
be attributed to the use of lattices. The first is referred to as the lattice coding gain. The 
lattice coding gain for an n-dimensional lattice A is a measure of how much more effectively 
points are packed into A compared to the lattice Z”. Let A be a lattice that is normalized so 
that the minimum distance between points is equal to 1, and let the fundamental volume of 
A be V (A). A rectangular lattice, a multiple of Z“ , with this volume would have a minimum 
distance of V(A) l/”. There is thus a gain in energy equal to the ratio of the square of the 
minimum distance of the lattice (which is 1) divided by the square of the minimum distance 
an equal-volume rectangular lattice would have. This is called the lattice coding gain, and 
is denoted by ycg: 

1 
vcg = ~ V(A)2/n ‘ 

Table 13.6 lists coding gains for the lattices described in the previous section. 
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(a) 2 2 .  (b) Cosets of RZ2. 

(c) Cosets of R ~ Z ~  

Figure 13.21: Z2 and its partition chain and cosets. 

The other source of coding gain provided by multidimensional constellations in genera1 
is called the shape gain, ys, which can be obtained by employing a nearly-circular boundary 
on the constellation, instead of natural rectangular or cross boundaries such as shown in 
Figure 13.2. Figure 13.23(a) shows circular boundaries for constellations obtained using 
2’; part (b) shows similar boundaries for constellations built from the A2 lattice. Table 
13.7 shows the comparison of the average energies for these constellations with the average 
energies for the constellations from Table 13.1 .(Possible minor reductions in energy could 
also be obtained by slightly shifting the constellations, but this was not done.) As the table 
shows, there is efficiency gained by employing a constellation spherical with a boundary 
instead of a square or cross boundary. (There is also somewhat higher complexity in the 
decoder.) Gains of about 0.18 dB are possible compared with the square constellation. 
(The gain is not as large for the 32-point constellation, since the cross form is already an 
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Figure 13.22: Block diagram for a trellis lattice coder. 

Table 13.7: Comparison of Average Signal Energy for Circular Boundary Z2 and A2 Con- 
stellations with Regular QAM 

Es ,  Rect. bdy., ES, 

Rect. QAM Circ. Bdy. E s ,  Circ. Bdy. 
M (Table 13.1) Rect. QAM Gain ys (dB) A2 Lattice Gain ysycg (a) 
64 10.5 10.19 0.13 8.85 0.74 
128 20.5(CR) 20.41 0.02 17.68 0.64 
256 42.5 40.79 0.18 35.26 0.81 

approximation to the circular constellation.) Also shown in Table 13.7 are the average 
signal energies and gains when an A2 lattice with circular boundary is employed. The 
shape gain is independent of the lattice gain, so the overall gain is additive (on a dB scale) 
(Y)dB = (ys)dB -k (Ycg)dB. 

The shape gain is for an N-dimensional constellation is 

(N/2)Average energy for circular 2-D lattice 
Average energy for square lattice Ys = 

Nf2 Let Mc denote the size of the 2-dimensional signal constellation, and let M c , ~  = Mc 
denote the size of the N-dimensional constellation. 

circular ZN (N even) constellation2 C of is 
Assuming the minimum distance between points is do = 1, the average energy for a 

where the summation is approximated by an integral and V is the volume of the spherical 
region containing the signal constellation. The number of points in the region can be 
approximated as 

r 

2The results here hold even for other lattices: the fundamental volume cancels out of the ratio. 
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. . . . . . . . . . . . . . . . . . .  _ - - _ _  _ -  . . . . . . _ . . . . . . . . . . . .  

(a) z2 lattice. (b) A2 lattice. 

Figure 13.23: Lattice and circular boundaries for 16,32,64, 128, and 256-point 
constellations. 

The N-dimensional volume element increment in this integral can be expressed in "polar" 
form as [30, pp. 242,2461 

NnN/2 rN-1 
dv = dr 

(N/2) ! 
so that, with the radius of V equal to p ,  

Using the same volume element increment, 

(13.9) 

(1 3.10) 

The average energy for the square lattice can be found using (13.1) as 

Using (13.9) and (13.10), the shape gain is 

N/2 [jvdvINI2 - n(1 + N/2) - 
6sv  l l ~ 1 1 ~ d v / I ~ d v  6[(N/2)!I2lN' Ys M 

When N = 2, y = n /3  = 1.0472 = 0.2 dB. This is apparent in Table 13.7 for N = 256. 
Stirling's approximation to n ! tells us3 

n! M nne+.J2nn. 

Using Stirling's approximation, it can be shown that asymptotically, ys + ne/6 = 1.53 
dB . 

3A very clear derivation of this appears in [136]. 
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Some Good Lattice Codes 

Table 13.8 [303] lists some good codes that have been developed in the literature. 

Table 13.8: Some Good Multidimensional TCM Codes [303] 
Asymptotic 

Partition Number Coding Gain 
A/At d$,, of States (a) N D  Source 

Four dimensions: Add 0.35 dl3 of shape gain 
Z4/RD4 4 8 4.52 44 [365] 
Z4/RD4 4 16 4.52 12 [365] 
241224 4 32 4.52 4 [365] 
Z4/2D4 5 64 6.28 72 [365] 
Z4/2D4 6 128 6.28 728 [347] 
041204 6 16 4.77 152 [42] 
041204 8 64 5.27 828 [42] 

Eight dimensions: Add 0.76 dB of shape gain 
Z8/E8 4 16 5.27 316 [365] 
Z8/E8 4 32 5.27 124 [365] 
Zg/E8 4 32 5.27 60 [365] 

Z ~ / R D ~  4 128 5.27 28 [347] 
RDglREg 8 32 6.02 > 500 [365] 
RDgIREg 8 64 6.02 316 [365] 
RDgIRE8 8 128 6.02 124 [365] 
E8IRE8 8 8 5.27 764 [42] 
E8IRE8 8 16 5.27 316 [42] 
E8 IRE8 8 32 5.27 124 [42] 
E8/RE8 8 64 5.27 60 [42] 

13.8 Multidimensional TCM Example: 
The V.34 Modem Standard 

In this section we discuss the error correction coding which is used for the V.34 modem 
standard. This modem is capable of transmitting up to 33.6 kbhecond over the standard 
telephone system (on some lines). There are many technical aspects to this modem; space 
permits detailing only those related to the error correction coding. A survey and pointers 
to the literature appears in [98]. However, we briefly summarize some of the aspects of the 
modem: 

The modem is adaptive in the symbol rate it employs and the size of the constellation. 
It is capable of sending at symbol rates of 2400, 2743, 2800, 3000, 3200, or 3429 
symbolshecond. (These peculiar-looking choices are rational multiples of the basic 
rate of 2400 symbolshecond.) The symbol rate is selected by a line probing sequence 
employed during initialization which determines the available bandwidth. 

The modem is capable of transmitting variable numbers of bits per symbol. At the 
highest rate, 8.4 bits/symbols are carried. Rate is established at link initialization, 
and rate adjustments can occur during data transmission. 
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Figure 13.24: 16-state trellis encoder for use with V.34 standard [365]. 

Adaptive precoding [339, 142, 99, 781 and decision feedback equalization is also 
employed to compensate for channel dispersion. 

Shaping via shell mapping is employed, which provides modest gains in addition to 
the coding gains. 

Adaptive trellis coding is employed. The main code is a 16-state four-dimensional 
trellis code (to be described below). This code provides 4.66 dB of gain and is 
rotationally invariant. However, two other trellis codes are also included: a 32-state 
four-dimensional code with 4.5 dB of gain and a 64-state four dimensional code 
providing 4.7 dB of gain. These codes are not described here. 

Given the complexity of the modem, it is a technological marvel that they are so readily 
affordable and effective! 

The trellis encoder for the modem is shown in Figure 13.24, with the corresponding 
trellis diagram in Figure 13.25. 

The bit converter in the encoder supports the rotational invariance and is outlined in 
Table 13.9. The 4D block converter supports the shell shaping, controlling the selection of 
“inner” and “outer” constellation points. The operation is detailed below. 

To transmit 17 information bits per signaling interval using 2N = 4-dimensional mod- 
ulation, N = 2 signaling intervals are required. For uncoded transmission, 2‘“ points in 
the signal constellation are necessary. For coded transmission, 2vNNf’ points are necessary. 
The V.34 standard carries 9 = 7 bits per symbol, so 215 points in the signal constellation 
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Figure 13.25: Trellis diagram of V.34 encoder [365]. 

are necessary. The V.34 standard does this using an interesting constellation. The four- 
dimensional constellation consists of the cross product of the 192-point constellation shown 
in Figure 13.26. The 192-point constellation contains a 128-point cross constellation in the 
inner points, plus an additional 64 outer points. The inner points can be used to transmit 
7 uncoded bits per symbol. The outer points are selected as close to the origin as possible 
(outside of the inner constellation) to minimize energy. Each of the A, B ,  C and D sets has 
the same number of points. Also, a rotation of an outer point yields another outer point. 

The 215 points in the constellation are obtained by concatenating a pair of 192-point 
constellations (which would result in a 1922 point constellation, but 1922 > 215), excluding 
those 4D points whose corresponding pair of two-dimensional points are both outer points. 
There are thus 

1922 - 642 = 215 

points in this constellation. The inner points are used three-fourths of the time. By using 
the inner constellation more often, the average power is reduced compared to other (more 
straightforward) constellations. The average power of the constellation can be shown to 
be 28.0625d02, where is the minimum squared Euclidean distance (MSED) of the con- 
stellation. The peak power (which is also the peak power of the inner constellation) is 
60.5di. 

The partition of the constellation proceeds through a sequence of steps which are illus- 
trated in Figure 13.27. 

Each constituent two-dimensional rectangular lattice is partitioned into two families 
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Iln+l I2n+1 &+I 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

Table 13.9: Bit Converter: Sublattice Partition of 4D Rectangular Lattice [365] 

4D 
Sublattice 
(subset) YO, I l n  12; 13; 4DTypes ZOn Zln ZOn+1 Zln+l 

0 0 0 0 0 ( A , A )  0 0 0 0 
0 0 0 1 ( B , B )  0 1 0 1 

1 0 0 1 0 ( C , C )  1 0 1 0 
0 0 1 1 ( D , D )  1 1 1 1 

2 0 1 0 0 ( A , B )  0 0 0 1 
0 1 0 1 ( B , A )  0 1 0 0 

3 0 1 1 0 ( C , D )  1 0 1 1 
0 1 1 1 ( D , C )  1 1 1 0 

4 1 0 0 0 ( A , C )  0 0 1 0 
1 0 0 1 ( B , D )  0 1 1 1 

5 1 0 1 0 ( C , B )  1 0 0 1 
1 0 1 1 ( D , A )  1 1 0 0 

6 1 1 0 0 ( A , D )  0 0 1 1 
1 1 0 1 ( B , C )  0 1 1 0 

7 1 1 1 0 ( C , A )  1 0 0 0 
1 1 1 1 ( D , B )  1 1 0 1 

22, -73, Z2n+1 -%,+I 
0 0  0 0 
0 0  0 1 
0 0  1 0 
0 1  1 0 
1 0  0 0 
1 0  0 1 
0 1  0 0 
0 1  0 1 

AUB and CUD,  where the sublattice A is composed of those points in the constellation 
of Figure 13.26 labeled with the letter 'a,' and similarly for B ,  C, and D .  The MSED 
between these two families is 2d;. 

The two-dimensional families are further partitioned into four sublattices A ,  B ,  C, 
and D ,  with MSED 4 4 .  The sublattices have the property that under a 90" counter- 
clockwise rotation, sublattice A rotates to sublattice D .  Collectively the sublattices 
rotate as 

A +  D +  B +. C +  A .  (13.11) 

Sixteen four-dimensional types are defined by concatenating all pairs of two-dimensional 
sublattices. These types are ( A ,  A ) ,  ( A ,  B ) ,  . . . , ( D ,  0). The MSED between the 
types is 4d;, the same as for the sublattices, since two of the same sublattices can be 
used in a type. 
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Figure 13.26: The 192-point two-dimensional constellation employed in the V.34 standard. 

The 16 types are grouped into eight four-dimensional sublattices, denoted by 0, 
1, . . .  ,7 ,  as denoted in Figure 13.27 and Table 13.9. The MSED between these 
sublattices is still 4d$, which may be verified as follows. The two first constituent 
two-dimensional sublattices in each four-dimensional sublattice are in A U B or CUD, 
and likewise for the second two two-dimensional sublattices. Each of these thus have 
the minimum squared distance of the two-dimensional families, 2dt. Since there are 
two independent two-dimensional components, the MSED is 2di  + 2di. It can be 
verified that the four-dimensional sublattices are invariant under 180" rotation. 

The eight sublattices are further grouped into two four-dimensionalfamilies ui=o i 
and U;=4 i, with MSED 2di. 

3 

Combining the trellis of Figure 13.25 with the decomposition of Figure 13.27, the 

The 4D sublattices associated with a transition from a state or to a state are all different, 

assignments of Table 13.9, satisfy the following requirements: 
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Figure 13.27: Partition steps for the V.34 signal constellation. 
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Figure 13.28: Orbits of some of the points under rotation: all points in an orbit are assigned 
the same bit pattern. 

but all belong to the same family U:=o i or Uy=4 i. 
The MSED between any two allowed sequences in the trellis is greater than 4di.  In 
combination with the first requirement, this means that the free distance of the code is 
established by the MSED of each 4D sublattice, 4di. Compared to uncoded 128-point 
cross signal constellation with average energy 20.5d;, the asymptotic coding gain is 

The assignment makes a rotationally invariant code (using just a linear trellis encoder). 
For a valid transition in the trellis from a state i to a state j ,  let X be the four- 
dimensional subset associated with the transition. Let Y be the four-dimensional 
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subset that is obtained by rotating X by 90". Then Y is associated with the valid 
transition from the state F ( i )  to the next state F ( j )  for some function F .  For this 
particular code, the function is: 

- - 
F : W1,W2,W3,W4, H Wl,W2,W3,W4,, 

where the overbar denotes binary complementation. In combination with the fact 
that the sublattices are invariant with respect to 180" rotations, this makes the code 
rotationally invariant with respect to multiples of 90" rotations. 

The encoding operation is now summarized. Fourteen bits, representing the information 
for two symbol periods, are presented to the encoder. These fourteen input bits are denoted 
by ( Z L ,  . . . ,17J and (11,+1, . . . ,17,+1), where the subscript n denotes bits or symbols 
associated with even-numbered symbols and n + 1 denotes bits or symbols associated with 
odd-numbered symbols. We refer to the pair of symbol intervals at time n and time n + 1 
as a coding epoch. From these fourteen bits, two symbols in the coding epoch are selected 
according to the following steps: 

The encoded bits YO,, 11, and 12; select one of the eight four-dimensional sublat- 
tices. Then the nontrellis-encoded information bit 13; selects one of the two four- 
dimensional types within the sublattice. This is done in such a way that the system 
is transparent to phase ambiguities of multiples of 90". To see this, consider a bit 
pattern YO,11,12~13; and let X denote the associated 4D type from Table 13.9. Let 
s21s31, s22s32, s22s32 denote the bit pairs obtained when the bit pair 12;13; is 
advanced in the circular sequence 

00 + 11 -+ 10 + 00. (13.12) 

Let XI, X2, and X3 denote the types obtained by rotating X counterclockwise by 
successive multiples of 90". Then the 4D types associated with the bit patterns 
Yon11,S21s31, Y0,11nS21S31, and Y0,11,S21S31 are X I ,  X2, and X 3 ,  respec- 
tively. 

Example 13.12 Let YOnZlnZ2hZ3h = 0010. Then (fromTable 13.9) the4D type transmitted 
is X = (C, C). When this is rotated 90°, the type is (see (13.11)) ( A ,  A ) ,  corresponding to 
a transmitted sequence YOnZ1,Z2L 13; = 0000. Note that the last two bits correspond to the 
succession of ( 13.12). 0 

To obtain rotational invariance, the bits 12,13; are obtained as the output of a dif- 
ferential encoder, just as for the V.32 and V.33 standards presented in Section 13.6. 
The pair (13,, 12,) is converted to a number modulo 4 (12, is the LSB), and the 
differential representation (1 3.6) is employed. 

The 4D block encoder serves the purpose of selecting points in the inner and outer 
constellation, ensuring that the outer constellation is not used for both the symbols in 
the coding epoch. The 4D block encoder takes the input bits I ln+l ,  12,+1 and &+I 

and generates two pairs of output bits (Z2,, 23,) and (Z2,+1, Z3,+1) according to 
Table 13.10. The outputs (00) and (01) correspond to points in the inner constellation 
and the output 10 corresponds to points in the outer constellation. (See the labeling 
in Figure 13.26.) Each bit pair can be 00,01, or 10, but they cannot both be 10. 



578 Trellis Coded Modulation 

There are 16 points in the outer group of a 2D lattice (such as A) or in either 
half of the inner part of a 2D subset. These sixteen points are indexed by the bits 
Z4,Z5pZ6pZ7p,wherep = n o r n  + 1. 

The bits 22,23,24,25,26,27, ( p  = n or n + 1) select from a set of four points 
in the signal constellation. To ensure rotational invariance, the four rotations of a 
point are all assigned the same set of bits. Figure 13.28 shows the “orbits” of some 
of the points under rotation. The a, b, c and d points in the orbit are all assigned the 
same label 22,23,Z4,25,26,Z7,; then one of the points in the orbit is selected 
by Zl,ZO,. Since the bits Z2,Z3,24,25,26,27, are rotationally invariant by 
labeling, and the bits Z l,ZO, are invariant by differential encoding, the overall code 
is rotationally invariant. 

The bits ZO,Zl, . . .Z7, (p  = n or n + 1) are used to select two points in the signal 
constellation, corresponding to the two symbols sent in the coding epoch. 

Programming Laboratory 11 : 
Trellis-Coded Modulation Encoding 
and Decoding 

Programming Part 

1) Construct an encoder to implement the trellis code for a 
four-state trellis with an 8-PSK signal constellation. Verify 

Objective 
that it works as expected. 

2) Construct a Viterbi decoder for the trellis code. Verify 
In this laboratory, you will create an encoder and decoder 
for a particular TCM code. 

Background 

Reading: Section 13.3. achieved? 

that it works as expected. 

3) Make a plot of P ( e )  as a function of SNR for the 
code. Compare P ( e )  with P ( e )  for uncoded 4-PSK. Plot 
the theoretical P (e). Is the theoretical coding gain actually 

13.9 Exercises 

13.1 Verify the energy per symbol Es and the energy per bit Eb for BPSK signaling from Table 13.1. 

13.2 For each of the following signal constellations, determine a signal partition. Compute the 
Repeat for 16-QAM and 32-cross signaling. 

minimum distance between signal points at each level of the tree. 

- - - - - - - -  - - - - - - _ -  
d o = ’ +  I- 

* * * * Ao=~-QAM 
* . * *  -7 -5 -3 -1 1 3 5 7 

13.3 [373] The simple TCM encoder shown here 

Select 
subset 
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is used with the 8-AM signal constellation shown in exercise 2. 

(a) Determine the trellis for the encoder. 

(b) Determine a signal partitioning scheme which transmits 2 bitskymbol. 

(c) Determine the squared minimum free distance for the coded system. 

(d) Compute the asymptotic coding gain in dE3 for this system compared with an uncoded 

(e) Determine the output transition matrix B ( x )  for this code and determine the components 

4-AM system. 

D ( x ) ,  P ( x ) ,  and M ( x ) .  

13.4 For the encoder shown here 

Select 

employed with an 8-PSK constellation partitioned as in Figure 13.4: 

(a) Draw the trellis for the convolutional encoder. 

(b) Draw the trellis for the trellis coder, labeling the state transitions with the subsets from 
the constellation. 

(c) Determine the minimum free distance between paths which deviate from the all-zero path, 
both for non-parallel paths and for parallel paths. Determine the minimum free distance 
for the code. Assume E, = 1. 

(d) Determine the coding gain of the system, compared with 4-PSK transmission. 

13.5 The sequence of data ( m ~ , ~ ,  mi,?) consisting of the pairs (O,O), (l,O), (1, l),  (1, l), (O,O), 

(a) Determine the differentially encoded sequence ( k 2 , ~ ,  k1,r). Assume that the differential 
encoder starts with previous input 0. 

(b) The sequence of inputs (m4 , t ,  m3 , t ,  m2,r, consisting of the 4-tuples (0, 1 ,0 ,0) ,  
( l , l , l , O ) ,  ( O , l , l , l j ,  (l,O,l,lj ,(O,O,O,O), ( l , l , O ,  1) ,(1,0,0,  1)ispresentedtothe 
encoder of Figure 13.16. Determine the sequence of output subsets and plot the cor- 
responding path on the trellis, as in Example 13.4. Assume the encoder starts in state 
0. 

(c) Now take this sequence of output signals and rotate them by n/2.  Determine the sequence 
of received signal points. 

(d) Determine the state sequence decoded at the receiver. Assume the decoder is able to 
determine that state 7 is the starting state. 

(e) Determine the sequence of input bits corresponding to this decoded sequence. 

(f) Run the input bits through a differential decoder and verify that the decoded bits match 

(0, l), (0, 1) is applied to the encoder of Figure 13.16. 

the original sequence of transmitted bits. 

13.6 The signal constellation below has 16 points, with the points on a hexagonal lattice with minimum 
distance between points equal to 1. Adjust the center location and the lattice points SO that 
the constellation has minimum average signal energy. Compute the average signal energy 
Es .  Compare this average signal energy with a 16-QAM constellation having equal minimum 
distance. How much energy advantage is there for the hexagonal lattice (in a)? What practical 
disadvantages might the hexagonal constellation have? 
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13.1 0 References 

The idea of combining coding and modulation can be traced at least back to 1974 [225]. 
It was developed into a mature technique by Ungerbock [344, 346, 347, 3451. Important 
theoretical foundations were later laid by Forney [loo, 91, 92, 931. Rotationally invariant 
codes are described in [363,364]. Additional work in this area appears in [263, 264, 3661. 
It was also mentioned in [347]. See also rotational invariance appears in [340, 181 

Our bound on the performance in Section 13.4 follows [303] very closely. See also [383]. 
A random coding bound is also presented there. Other analyses of the code performance 
appear in [29]. A thorough treatment of TCM appears in [204]. Theoretical foundations of 
coset codes appear in [91,92]. 

TCM using lattices is described in [42]. An example of multidimensional TCM using 
an eight dimensional lattice is described in [41]. Issues related to packing points in higher 
dimensional spaces and codes on lattices are addressed in [54,55,53,58,57]. The definitive 
reference related to sphere packings is [56]. The sphere-packing advantage as applied to data 
compression (vector quantization) is described in [210]. A trellis code in six dimensions 
based on the E6 lattice is described in [242]. Lattices also have use in some computer 
algebra and cryptographic systems; in this context an important problem is finding the 
shortest vector in the lattice. For discussions and references, see [360, Chapter 161. A 
concise but effective summary of lattice coding is presented in [5]. Extensive design results 
appear in [264, 265,2041. 
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Chapter 14 

Turbo Codes 
“Tell me how you decode and I’ll be able to understand the code.” When you have no 
particular gift for algebra, ... then think about the decoding side before the encoding 
one. Indeed, for those who are more comfortable with physics than with mathemat- 
ics, decoding algorithms are more accessible than coding constructions, and help to 
understand them. - Claude Berrou [26] 

14.1 Introduction 

Shannon’s channel coding theorem implies strong coding behavior for random codes as the 
code block length increases, but increasing block length typically implies an exponentially 
increasing decoding complexity. Sequences of codes with sufficient structure to be easily 
decoded as the length increases were, until fairly recently, not sufficiently strong to approach 
the limits implied by Shannon’s theorem. However, in 1993, an approach to error correction 
coding was introduced which provided for very long codewords with only (relatively) modest 
decoding complexity. These codes were termed turbo codes by their inventors [27, 281. 
They have also been termed parallel concatenated codes [ 146,3031. Because the decoding 
complexity is relatively small for the dimension of the code, very long codes are possible, 
so that the bounds of Shannon’s channel coding theorem become, for all practical purposes, 
achievable. Codes which can operate within a fraction of a dB of channel capacity are 
now possible. Since their announcement, turbo codes have generated considerable research 
enthusiasm leading to a variety of variations, such as turbo decoding of block codes and 
combined turbo decoding and equalization, which are introduced in this chapter. Actually, 
the turbo coding idea goes back somewhat earlier than the original turbo code announcement; 
the work of [207] and [208] also present the idea of parallel concatenated coding and iterative 
decoding algorithms. 

The turbo code encoder consists of two (or more) systematic block codes which share 
message data via interleavers. In its most conventional realization, the codes are obtained 
from recursive systematic convolutional (RSC) codes - but other codes can be used as 
well. A key development in turbo codes is the iterative decoding algorithm. In the itera- 
tive decoding algorithm, decoders for each constituent encoder take turns operating on the 
received data. Each decoder produces an estimate of the probabilities of the transmitted 
symbols. The decoders are thus soft output decoders. Probabilities of the symbols from 
one encoder known as extrinsic probabilities are passed to the other decoder (in the symbol 
order appropriate for the encoder), where they are used as prior probabilities for the other 
decoder. The decoder thus passes probabilities back and forth between the decoders, with 
each decoder combining the evidence it receives from the incoming prior probabilities with 
the parity information provided by the code. After some number of iterations, the decoder 
converges to an estimate of the transmitted codeword. Since the output of one decoder is 
fed to the input of the next decoder, the decoding algorithm is called a turbo decoder: it is 
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I ”  0 0.5 1 1.5 2 2.5 
E,/N, (dB) 

Figure 14.1: Decoding results for a (37,21,65536) code. 

reminiscent of turbo charging an automobile engine using engine-heated air at the air intake. 
Thus it is not really the code which is “turbo,” but rather the decoding algorithm which is 
“turbo.” 

As an example of what turbo codes can achieve, Figure 14.1 shows the performance 
of a turbo code employing two recursive systematic convolutional (RSC) encoders with 
parity-producing transfer functions 

1 f x 4  
G ( x )  = 

1 + x + x2 + x 3  + x4 
(14.1) 

in a rate R = 1/2 turbo code (i.e., it is punctured) with block length N = 65536 and a 
random interleaver. (The numerator and denominator polynomials are represented using the 
octal numbers 21 = 10 001 and 37 = 11 11 1, respectively, so this code is sometimes referred 
to as a (37,21,65536) code.) The decoding performance for up to 18 decoding iterations is 
shown. Beyond 18 iterations, little additional coding gain is achieved. (These results were 
obtained by counting up to 100 bits in error.) We note that with 18 iterations of decoding, 



584 n r b o  Codes 

performance within about 0.5 dB of the capacity limit is achieved by this code, at least for 
SNRs up to about 0.6 dl3. However, an interesting phenomenon is observed at higher SNRs: 
while the decoding is still good, it fails to improve as dramatically as a function of SNR. At 
a certain SNR, the error curves nearly level off, so the improvement with increasing SNR is 
very modest. This phenomenon is referred to as the errorJlOor and is discussed in Section 
14.4. Briefly, it is due to the presence of low-weight codewords in the code. A bound due 
to the free distance of the convolutional coders is also shown in the plot, which indicates 
the slope of the error floor. The portion of the plot where the error plot drops steeply down 
as a function of SNR is referred to as the waterfall or cliff region. 

In this chapter we discuss the structure of the encoder, present various algorithms for 
decoding, and provide some indication of the structure of the codes that leads to their good 
performance and the error floor. We also introduce the idea of turbo equalization and the 
concept of EXIT analysis for the study of the convergence of the decoding algorithm. 

14.2 Encoding Parallel Concatenated Codes 

The conventional arrangement for the (unpunctured) turbo encoder is shown in Figure 
14.2. It consists of two transfer functions representing the non-systematic components of 
recursive systematic convolutional (RSC) encoders called the constituent encoders, and an 
interleaver, which permutes the input symbols prior to input to the second constituent 
encoder. (It is also possible to use more than two encoder blocks [70], but the principles 
remain the same, so for the sake of specific notation we restrict attention here to only two 
constituent encoders.) As discussed in chapter 12, systematic convolutional codes typically 
work best when the encoder is a feedback (IIR) encoder, so the transfer function of each 
convolutional encoder is the rational function 

Strictly speaking, there is no reason that both constituent transfer functions must be the 
same. However, it is conventional to use the same transfer function in each branch; research 
to date has not provided any reason to do otherwise. 

A block of input symbols x = {XO, X I ,  . . . , XN-l} is presented to the encoder, where 
each xi is in some alphabet d with Id1 elements in it. These input symbols may include 
an appended zero-state forcing sequence, as in Figure 14.6, or it may simply be a message 
sequence, x = m = {mo, m l  , . . . , mN-l} .  In the encoder, the input sequence x is used three 
ways. First, it is copied directly to the output to produce the systematic output sequence 
v,(’) = xt, t = 0 ,  1, . . . , N - 1. Second, the input sequence runs through the first RSC 
encoder with transfer function G ( x ) ,  resulting in a parity sequence {vo ( 1 )  , v2 (1) , . . . , vNV1 (1) }. 

The combination of the sequence {vt (0) } and the sequence {v,(”} results in a rate R = 1/2 

(neglecting the length of the zero-forcing tail, if any) systematically encoded convolutionally 
encoded sequence. Third, the sequence x is also passed through an interleaver or permuter 
of length N ,  denoted by n, which produces the permuted output sequence x’ = n(x). 
The sequence x‘ is passed through another convolutional encoder with transfer function 

sequences are multiplexed together to form the output sequence 

G ( x )  which produces the output sequence d2) = {US’, vi2), . . . , vN-l ( 2 )  }. The three output 
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Convolutional 
Encoder 

Interleaver 0 
Convolutional 

Encoder x’ = n ( X )  

Figure 14.2: Block diagram of a turbo encoder. 

resulting in an overall rate R = 1 /3 linear, systematic, block code. The code has two sets of 
parity information, v(’) and d2) which, because of the interleaving, are fairly independent. 
In an ideal setting, the sets of parity bits would be exactly independent. 

Frequently, in order to obtain higher rates, the filter outputs are punctured before mul- 
tiplexing, as shown in Figure 14.3. Puncturing operates only on the parity sequences - 
the systematic bits are not punctured. The puncturing is frequently represented by a matrix, 
such as 

P = [; !$ 
The first column indicates which bits are output at the even output instants and the second 
column indicates which bits are output at the odd output instants. For example, this puncture 
matrix alternately selects the outputs of the encoding filters. 

Example 14.1 Consider the transfer function G(x) = & incorporated in the turbo encoder of 
Figure 14.4(a), with the trellis stage shown in Figure 14.4(b). Let the interleaver be described by 

n = {S, 3,7 ,6 ,9 ,0 ,2 ,  5, 1,4). 

Then, for example, xb = Xg, xi = x3, etc. Let the input sequence be 

x = [l,  1,0,0, 1,0, 1,0 ,  1, 11 = JO). 
Then the output of the first encoder is 

V( l )  = [I, 1 , L  l,Q, 1 , L  l , Q , O I ,  (14.2) 

and the first encoder happens to be left in state 0 at the end of this sequence. The interleaved bit 
sequence is 

and the output of the second encoder is 

x’ = [ l ,  0, 0, 1, 1, 1, 0, 0, 1, 11 

d2) = [ l ,Q,  1 , L  o,o,o,o,  LLI; (14.3) 
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Figure 14.3: Block diagram of a turbo encoder with puncturing. 

the second encoder is left in state 3. When the three bit streams are multiplexed together, the bit stream 
is 

v = [ l , 1 , 1 ,  l , l , O ,  O , l , l ,  O , l , l ,  1 ,0 ,0 ,  0 ,1 ,0 ,  1 , 1 , 0 , 0 , 1 , 0 ,  l , O , l ,  1,0,1]. 

If the encoded bits are punctured, the underlined parity bits of (14.2) and (14.3) are retained. The 
resulting rate R = 112 encoded bit sequence is 

v = [ l , l ,  1,0, O , l , O , l ,  1 ,0,  o,o, l , l , O , O ,  1,0, 1,1]. 

It should be pointed out that there are also serially concatenated codes with iterative 
decoders. One such code is the repeat accumulate (RA) code, which is introduced in Section 
15.14. 

14.3 Turbo Decoding Algorithms 

The multiplexed and encoded data v are modulated and transmitted through a channel, 
whose output is the received vector r. The received data vector r is demultiplexed into the 
vectors do) (corresponding to do)), r(’) (corresponding to d‘)), and d2) (corresponding to 

The general operation of the turbo decoding algorithm is as follows, as summarized in 
Figure 14.5. The data (do), r(’)) associated with the first encoder are fed to Decoder I. 
This decoder initially uses uniform priors on the transmitted bits and produces probabilities 
of the bits conditioned on the observed data. These probabilities are called the extrinsic 
probabilities, as described below. The output probabilities of Decoder I are interleaved and 
passed to Decoder 11, where they are used as “prior” probabilities in the decoder, along 
with the data associated with the second encoder, which is do) (interleaved) and d2). The 
extrinsic output probabilities of Decoder 11 are deinterleaved and passed back to become 
prior probabilities to Decoder I. The process of passing probability information back and 

@I). 
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Figure 14.4: Example turbo encoder with G ( x )  = 1/1 + x2 
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Figure 14.5: Block diagram of a turbo decoder. 

forth continues until the decoder determines (somehow) that the process has converged, or 
until some maximum number of iterations is reached. 

The heart of the decoding algorithm is a soft-decision decoding algorithm which provides 
estimates of the posterior probabilities of each input bit. The algorithm most commonly 
used for the soft-decision decoding algorithm is the MAP algorithm, also commonly known 
as the BCJR algorithm. In Section 14.3.1 we describe this algorithm for the case of a general 
convolutional code. Then in Section 14.3.10 we describe modifications to the algorithm that 
apply to systematic codes, which sets the stage for the iterative turbo decoding algorithm. 
The MAP algorithm can also be expressed in a log likelihood setting, as described in Section 
14.3.12. A lower-complexity implementation of the MAP algorithm is discussed in Section 
14.3.15. Another decoding algorithm, called the soft-output Viterbi algorithm (SOVA) is 
described in Section 14.3.17, which has even lower computational complexity (but slightly 
worse performance). 
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14.3.1 The MAP Decoding Algorithm 

The maximum a posteriori (MAP) decoding algorithm suitable for estimating bit and/or state 
probabilities for a finite-state Markov system is frequently referred to as the BCJR algorithm, 
after Bahl, Cock, Jelenik, and Raviv who proposedit originally in [ 1 11. The BCJR algorithm 
computes the posterior probability of symbols from Markov sources transmitted through 
discrete memoryless channels. Since the output of a convolutional coder passed through 
a memoryless channel (such as an AWGN channel or a BSC) forms a Markov source, the 
BCJR algorithm can be used for maximum aposteriori probability decoding of convolutional 
codes. In many respects, the BCJR algorithm is similar to the Viterbi algorithm. However, 
the Viterbi algorithm computes hard decisions - even if it is employing soft branch metrics 
- since a single path is selected to each state at each time. This result in an overall decision 
on an entire sequence of bits (or codeword) at the end of the algorithm, and there is no way 
of determining the reliability of the decoder decisions on the individual bits. Furthermore, 
the branch metric is based upon log likelihood values; no prior information is incorporated 
into the decoding process. The BCJR algorithm, on the other hand, computes soft outputs in 
the form of posterior probabilities for each of the message bits. While the Viterbi algorithm 
produces the maximum likelihood message sequence (or codeword), given the observed 
data, the BCJR algorithm produces the a posteriori most likely sequence of message bits, 
given the observed data. (Interestingly, the sequence of bits produced by the MAP algorithm 
may not actually correspond to a continuous path through the trellis.) In terms of actual 
performance on convolutional codes, the distinction between the Viterbi algorithm and the 
BCJR algorithm is frequently insignificant, since the performance of the BCJR algorithm is 
usually comparable to that of the Viterbi algorithm and any incremental improvement offered 
by the BCJR algorithm is offset by its higher computational complexity. However, there 
are instances where the probabilities produced by the BCJR are important. For example, 
the probabilities can be used to estimate the reliability of a decisions about the bits. This 
capability is exploited in the decoding algorithms of turbo codes. As a result, the BCJR 
algorithm lies at the heart of most turbo decoding algorithms. 

We first express the decoding algorithm in terms of probabilities then,in Section 14.3.12, 
we present analogous results for likelihood ratio decoding. The probabilistic description is 
more general, being applicable to the case of nonbinary alphabets. However, it also requires 
particular care with normalization. Furthermore, there are approximations that can be made 
in association with the likelihood ratio formulation that can reduce the computational burden 
somewhat. 

14.3.2 Notation 

We present the BCJR algorithm here in the context of a R = k/n convolutional coder. 
Consider the block diagram of Figure 14.6. The encoder accepts message symbols mi 
coming from an alphabet A - most frequently, A = {0, I} - which are grouped into 
k-tuples mi = [mi , . . . , mi 1. It is frequently convenient to employ convolutional 
encoders which terminate in a known state. To accomplish this, Figure 14.6 portrays the 
input sequence m = [mo, ml , . . . , mL-11 passing through a system that appends a sequence 
of x ~ ,  X L + ~ ,  . . . , XL+”-~, where IJ is the constraint length (or memory) of the convolutional 
coder, which is used to drive the state of the encoder to 0. (For a polynomial encoder, the 
padding bits would be all zeros, but for the recursive encoder, the padding bits are a function 

(0) ( k - 1 )  
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Figure 14.6: Processing stages for BCJR algorithm. 

of the state of the encoder after the last message bit m ~ - l  enters the encoder.) The sequence 

x = [m, XL, X L + I , .  . . , XL+~-I]  

forms the input to the R = k / n  convolutional encoder. We denote the actual length of the 
input sequence by N, so N = L + v if the appended sequence is used, or N = L if not. 
Each block xi is in dk. The output of the encoder is the sequence of blocks of symbols 

v = [vo, v1, . * ., VN-1] 9 

where each block vt contains the n output bits of the encoder for the tth input: 

The encoder symbols vt are mapped to a signal constellation (such as BPSK) to produce 
the output symbols at. The dimension of the at depends on the dimension of the signal 
constellation. For example, if BPSK is employed, we might have u? E {ha), where 
REb = Ec, with at = [a,('), a;'), . . . , a,("-')] and 

(14.4) 

We also use the notation 
4) - (i) - 1 vy - 2v, 

to indicate the f l  modulated signals without the 

white Gaussian noise (AWGN) channel to form the received symbol sequence 

scaling, so a,(i) = a@). 
The sequence of output symbols a = [ao, al, . . . , alv-11 passes through an additive 

r = [ro, rl, . . . , rN-11, 

where 
r t = a t + n t ,  t = 0 , 1 ,  ..., N - 1 ,  

and where ni is a zero-mean Gaussian noise signal with variance a2 = N0/2 in each 
component. 

We denote the discrete time index as t. We denote the state of the encoder at time t by 
qt. There are Q = 2' possible states, where v is the constraint length of the encoder, which 
we denote as integers in the range 0 5 Qt -= 2'. We assume that the encoder starts in state 
0 (the all-zero state) before any message bits are processed, so that Qt = 0 for t 5 0. When 
the zero-forcing sequence is appended, the encoder terminates in state 0, so that QN = 0. 
Otherwise, it is assumed that the encoder could terminate in any state with equal probability. 
The sequence of states associated with the input sequence is (Qo, Qi, . . . , QN). 
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time t time t -t 1 

Figure 14.7: One transition of the trellis for the encoder. 

A portion of the trellis associated with the encoder is shown in Figure 14.7, portray- 
ing a state Qt = p at time t transitioning to a state Qt+i = q at time t + 1. The 
unique input xt which causes this transition is denoted by x(P34). The corresponding 
mapped symbols at produced by this state transition are denoted by a(P,q),  with elements 

Notationally, quantities with the time-index subscript are often random variables or 
their realizations, (e.g., at, a/’), or xt), whereas quantities without the time-index subscript 
are usually not random variables. 

14.3.3 Posterior Probability 

a ( o , P , d ,  a ( L P , d ,  . . . , &-l ,P4?) .  

It is clear that the convolutional code introduces dependencies among the symbols (a t } .  An 
optimal decoder should exploit these dependencies, examining the entire sequence of data to 
determine its estimates of the probabilities of the input bits. The goal of the decoder is thus: 
Determine the a posteriori probabilities of the input P(xt = xlr), that is, the probability 
that the input takes on some value x conditioned upon the entire received sequence r. The 
BCJR algorithm provides an efficient way to compute these probabilities. The first step 
is to determine the probabilities of state transitions; once these are determined finding the 
probabilities of the bits is straightforward. 

The convolutional code introduces a Markov property into the probability structure: 
Knowledge of the state at time t + 1 renders irrelevant knowledge of the state at time t or 
previous times. To exploit this Markovity, we partition the observations into three different 
sets, 

r = r<t U { r t }  U r>?, 

where r<t = {TI: 1 < t }  is the set of “prior” observations, rt is the “current” observation, 
and r,t = (rl: I > t )  is the set of the future observations. Then the posterior probability of 
the transition (qt = p ,  Qt+l = q )  given the observed sequence r is 

(14.5) 

where P denotes a probability mass function and p denotes a probability density function. 

P(Qt = P, %+I = qlr) = p(Qt = p ,  Qt+i = q ,  r>/p(r> 
= p W t  = p ,  q t + l  = q ,  r<t, rt, r,t>/p(r>, 
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We now employ the conditioning factorization 

(14.6) 
P(% = p ,  %+I = qlr) 

= p ( W  = p ,  %+I = q ,  r<f,  rr)p(rzrlWt = p ,  %+i = q ,  r<[, rt>lp(r>. 

Because of the Markov property, we can rewrite the second probability in (14.6) as 

p(r>tI% = p ,  %+I = q ,  r,t, rt) = p(r,tl%+i = q ) ,  (14.7) 

since knowledge of the state at time t + 1 renders irrelevant knowledge about prior states 
or received data. The first factor in (14.6) can be factored further and the Markovity can 
exploited again: 

(14.8) 
14% = P ,  *r+i = q ,  rXr, rt> = p(Qt+i = q ,  rrlW = p ,  r,t)p(W = p ,  rill 

= p(%+i = q ,  rrl% = p ) p ( %  = p ,  rit). 

Substituting (14.7) and (14.8) into (14.6) we obtain 

P(Qt = p ,  %+I = qlr) = p ( %  = p ,  r<dp(%+i = q ,  rtl% = p)p(r>tlQt+i = q)/p(rh 

We denote the factors in this probability as follows: 

1 ar(p> = ~ ( q r  = P ,  r<r) I 
represents the probability of the observations up to time t - 1, with the state ending in state 
p at time t ;  

I Yt(P7 4 )  = P(W+l = 49 rtlW = p>;l 
represents the probability of the transition from state p to state q ,  with the observation at 
time t ;  and 

[B t+ i (q )  = p(r>tIwt+i = q )  I 
is the probability of the future observed sequence r>t, given that it starts at state q at time 
t + 1. Thus we have the posterior probability of the state transition 

We determine recursive techniques for efficiently computing at and Bt below. 
Given the posterior probability of the state transitions, it is straightforward to determine 

the posterior probability of a bit P(xt = xlr). For each input value x in the input alphabet 
A, let S, denote the set of state transitions ( p ,  q )  which correspond to the input xt = x: 

S, = { ( p ,  4):  X(P34) = x}. 

For example, for the trellis of Figure 14.4(b), 

So = I@, 01, (1,2), (2, I), (3,311 s1 = I(0, 3 ,  (1, O), (2,3), (391)). 

(We assume for convenience that the trellis is time-invariant, but decoding on time-varying 
trellises is also possible.) The posterior probability of xt = x is then obtained by summing 
over all state transitions for which x is the input: 

1 
~ ( x t  = xlr) = C P W ~  = p ,  *r+i = q ~ r )  = - C at(p>~t(p,q>Bt+i(q)9 

(P 14) €Sx ( P 4 ) E S x  

(14.9) 
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for all x E dk. Up to this point, we have been including the factor l /p(r)  in all of our 
posterior probability computations. However, it is nothing more than a normalizing factor 
and does not need to be explicitly computed. Since P(xt = xlr) is a probability mass 
function, we have 

C p(xt = xlr) = 1. 
X€A 

Using this fact, we can compute (14.9) without finding p(r) as follows. Let 

F<xt = xlr) = C at(p>~t(p, q)Bt+1(4), x E dk. 
( P  3 4 )  € S X  

That is, F(xt = xlr) is the same as in P(xt = xlr), but without the factor l/p(r). Then 

(14.10) 

It is convenient to express this normalization using an operator. Define the scaling (or 
nomzalizatian) operator N, by 

That is, the normalization of a function f (x) is obtained by dividing f(x) by the sum of 
f(x), summed over the entire domain set of x. The domain of x is implicit in this notation. 
Using the normalization notation, we have 

P(xt = xlr) = NxF(xt = xlr) = N, 1 ar(p>~t(p, 4)Br+1(4). (14.1 1) 
( P . q ) € S x  

14.3.4 Computing af and Br 
Given a t ( p )  for all states p E {O, . . . , Q - l}, the values of at+l ( 4 )  can be computed as 
follows: 

at+i(q) = p(*t+i = 4, r<t+i> = p W + i  = 4 ,  rt, r,?) 

= C p(*t+t = 4 ,  rt, *t = p ,  r<t) 

(definition of w,+l and r,?+l) 

(compute marginal from joint) 
0-1 

p=o 

Q-1 

p =o 
Q-1 

p = o  

= C p(*t = p ,  r,t)p(\Vt+l = 4 ,  rt1qt = p ,  r<?)  (conditioning factorization) 

= C p(*t = P ,  r < t ) p ~ t + l =  4 ,  rtlqt = p >  (by Markovity) 

= at ( P ) Y t ( P ,  4 )  (definition of a and y ) .  

p=o 

That is, 

(14.12) 
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A backward recursion can similarly be developed for Bt ( p ) :  

Bt(p) = p(r>t-lI*r = P )  = p(r>t, rt IQt = p )  

= C p(r>t, rt9 q r + l  = q1wr = p )  

(definition of r>r-.l) 

(marginal from joint) 
Q-1 

q =o 
Q-1  

q=o 
= C p(rr, %+l = q1Qt = P)P(r>tlrt, %+l = q ,  *r = PI 

= c p(rt7 Qt+l = 41% = p)p(r,t IW+l = q )  

(conditioning factorization) 

Q-1  

q =o 
(by Markovity) 

0-1 

(definition of y and B) .  
q =o 

(14.13) 

That is, 

B ~ ( P )  = C yr(p, q)Bt+l(q) 

The a probabilities are computed starting at the beginning of the trellis with the set ao(p ) ,  p = 
0, 1, . . . , Q - 1, and working forward through the trellis. This computation is called the 
forwardpass. The @ probabilities are computed starting at the end of the trellis with the set 
b ~ ( p ) ,  p = 0, 1, . . . , Q - 1, and working backward through the trellis. This computation 
is called the backward pass. Because the computation of a and /3 is such an essential part 
of the BCJR algorithm, it is sometimes also referred to as theforward-backward algorithm. 

(14.14) 
q =o 

The recursions (14.12) and (14.14) are initialized as follows. Since the encoder is known 
to start in state 0, set all of the probability weight in state 0 for ao: 

[ ~ o ( O > ,  a0(1), . . . , ~ o < Q  - 1)l = [ I ,  0, . . . , O I .  (14.15) 

If it is known that the encoder terminates in state 0, set 

[ B N ( O ) ,  B N U ) ,  . . . , BN(Q)I = [I, 0 , .  . . ,01. (14.16) 

Otherwise, since the encoder can terminate in any state with uniform probability, set 

[ B N ( O ) ,  B N ( ~ ) ,  . . . , B N ( ~ v  - 111 = [1/Q, 1 / Q 3 . .  . , 1/Ql. (14.17) 

14.3.5 Computing yt 

The transition probability yt ( p ,  q ) ,  or branch metric for the branch from W t  = p to Wr+l = 
q ,  depends upon the particular distribution of the observations. For an AWGN channel, the 
branch metric can be computed as 

Yt(p9  4 )  = ~ W t + 1  = q 3  rrlQt = P )  = p(rrl*r = P ,  q r + l  = q)P(*r+l = q l q r  = P I .  
(14.18) 
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Knowing qf = p and q t + l  = q ,  that is, the beginning and ending of a state transition, 
completely determines and is determined by the output a(P.4) and the corresponding input 
x(P.4). The probability of the state transition ( p ,  q )  is thus equivalent to the probability of 
the input bit associated with it: 

P ( @ f + l  = qI@t = p )  = P ( X f  = X Q q ,  (14.19) 

where P(xf = x(P.4)) is the a priori probability of the message symbol xt. In conventional 
binary coding, P ( x t  = x) is usually equal to 1/2k; however, we will see below that it is 
helpful to use other interpretations. 

The probability p(rtIqf = p ,  qt+1 = q )  can be written as p(rtla@,4)). For the n- 
dimensional AWGN channel, this is simply the Gaussian likelihood, 

where 11 . 1 1 2  is the conventional squared Euclidean metric, 

n 

i=l 

Substituting (14.19) and (14.20) into (14.18) we obtain, for BPSK modulation, 

14.3.6 Normalization 

Two different kinds of normalization are frequently used in computing the forward-backward 
algorithm. First, normalization is used to simplify the computation of the transition proba- 
bility y .  Second, the normalization is used to numerically stabilize the computation of the 
as and ps. 

For some constant C ,  let y,'(p, q )  = C y t ( p ,  q )  and let ai(p) and & ( p )  be the corre- 
sponding forward and backward probabilities, defined by 

Bi+l(P) = c Y,'(P, 4)8i+&) 
4 

with the same initialization for a6 and /3& as for the unnormalized case. At each stage of 
the propagation, an additional factor C accumulates, so that 

a:(P) = C'at(p> B:(P) = CN-'Bt(P).  

When a' and p' are used in (14.10) or (14.33), the factor C cancels out, resulting in identical 
probability or likelihood values. Since the normalization constant C has no bearing on the 
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detection problem, it may be chosen to simplify the computations. For example, using 
C = 2k(2n02)n/2 in (14.21) yields the normalized branch metric 

If the prior probability P(Xt = x(P,q)) = 1/2k for all t ,  then the factor in front is simply 

The propagation of at and fit involves computing products and sums of small numbers. 
Without some kind of normalization there is a rapid loss in numerical precision in the 
forward and backward passes. It is therefore customary to normalize these probabilities. 
The forward probability a t ( p )  and the backward probability Bf ( p )  are replaced by a i ( p )  
and & ( p )  which are normalized so that 

unity. 

P P 

for each t .  These normalized versions are propagated by 

Q-1 

p=o 
a;+l(d = Af c a:(P)Yr(P, 4) 

Q-1 

q=o 

BI(P) = Bf c Yf(P, 4)8:+1(4), 
where At and Bf are chosen so that (14.22) is satisfied for each t .  That is, 

When using a: and ,!$ in (14.10) or (14.33) the products of the normalization factors cancel 
from the numerator and denominator. While the normalization does not affect the posterior 
probability computation mathematically, it does have a significant impact on the numerical 
performance of the algorithm. 
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14.3.7 Summary of the BCJR Algorithm 

Algorithm 14.1 The BCJR (MAP) Decoding Algorithm, Probability Form 

Initialize: Set ah as in (14.15), and initialize j3h as in (14.16) or (14.17). 
For t = 0, 1, . . . , N - 2 propagate a’: 

Q-1 

p=o 
a]1:+1(4) = Nq c a:(P)V:(P? 4). 

Fort = N - 1, N - 2, . . . , 1 propagate j3’: 

Q-1 

q =o 
B:(P) = N p  c 4)8:+1(4). 

P(Xt = xlr) = N, c a:(P)v:(P, 4)8;+1(4). 

Compute the posterior probability for xt : 

( P 4 ) 4  

Example 14.2 Referring to Example 14.1, the sequence x = [ l ,  1, 0, 0, 1, 0, 1, 0, 1, 11 is input to one 
of the convolutional encoders of Figure 14.4. The systematic and parity bits are multiplexed together 
to produce the coded sequence 

v = [ l , l ,  1 , 1 , 0 , 1 , 0 , 1 ,  l , O , O , l ,  1 , 1 , 0 , 1 ,  1,0,  LO]. 

The corresponding sequence of encoder states is 

vr = [O, 2,3,3,3,1,2,3,3,1,0].  (14.23) 

The sequence v is BPSK modulated with amplitudes f 1 and passed through an AWGN channel with 
o2 = 0.45, resulting in the received data 

r = [ (2.53008, 0.73 1636) (-0.523916, 1.93052) (-0.793262, 0.307327) (- 1.24029, 0.784426) 

(1.83461, -0.968171)(-0.433259, 1.26344)( 1.31717, 0.995695)(- 1 S0301, 2.04413) 

(1.60015, -1.15293)(0.108878, -1.57889)]. (14.24) 

If a decision were made at this point based on the sign of the received signal, the detected bits would 
be 

11, 1, 0, 1, 0, 1, 0,  1 ,  1,0, 0, 1, 1 ,  1, 0,  1, L O ,  1,01, 

where the underlined bit is in error. 
The forward and backward passes are shown in Table 14.1. Note that the maximum probability 

states determined by the as (shown in bold) correspond with the true state sequence of (14.23). The 
maximum likelihood sequence of states determined by the j3s correspond with the true sequence of 
states from *lo down to * 2 ,  but the maximum likelihood state determined by 81 is 81 = 3, whereas 
the true state is = 2; the confusion arises because the rl = (-0.523916, 1.93052) decodes 
incorrectly, and the resulting sequence (0, 1) is a valid output transition on a state leading to Q2 = 3. 

As may be seen from the trellis in Figure 14.4, the input transition sets So and S1 are 

so = {(O,O), (1,2), (2, l), (3,3)) s1 = {(0,2), (1, O), (2,3), (3, 1)). 
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P(xr =0lr) 
P(xt  = llr) 
fr 

Table 14.1: a: and j3: Example Computations 

1.49e-8 1.64e-5 1 1 2.17e-6 1 3.31e-7 1 2.90e-8 1.25e-7 
1 1 2.47e-6 2.58e-5 1 2.13e-5 1 1.55e-7 1 1 
1 1 0 0 1 0 1 0 1 1 

Forward Pass 

Table 14.2: Posterior Input Bit Example Computations 
I t :  1 0  I 1  1 2  I ?  1 4  1 5  I 6  1 7  1 8  1 9  I 

The input bit probabilities can be computed as follows for t = 0: 

~ ( X O  = 1lr) = ao(O)~o(O,  2)81(2) + ao(l)vo(l, 0)8i(O) + ao(2)~0(2,3)81(3) 

+ ao(3)Yo(3, 1)81(1) 

whichresults in ~ ( X O  = 1 Ir) = 0.00295. Similarly, j ( x 0  = OJr) = 4.41 x lo-". After normalizing 
these, we find P(x0 = Olr) = 1.49 x P ( x 0  = 1Ir) = 0.999. Table 14.2 shows the posterior 
bit probabilities (to three decimal places, so there is some roundoff in the probabilities near 1) and 
the posterior estimate of the bit sequence. Note that the estimated bit sequence matches the input 
sequence. 

0 

14.3.8 A MatrixNector Formulation 

For notational purposes it is sometimes convenient to express the BCJR algorithm in a 
matrix formulation (although we do not use this further in this chapter). Let 

at (0)  Bt (0) 

at = [ ] and P t =  [ Bt(l)  ] 
at<Q - 1) Bt ( Q  - 1) 

be vectors of the forward and backward probabilities. Let Gr be the probability matrix with 
elements gt,  i ,  j defined by 

Then the forward update (14.12) can be expressed as 

gt, i , j  = Vt( i ,  j ) .  

at+1 = G ,  a t -  
T 
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The backward update (14.14) can be expressed as 

Pt = GtPt+I. 

To compute (14.9), we need to define a matrix describing transitions in the trellis. Let T ( x )  
be defined with elements t j , j  ( x )  by 

1 if ( i ,  j )  is a state transition with x ( i , j )  = x 
0 otherwise. I ti, j ( x )  = 

For example for the trellis shown in Figure 14.4(b), 

0 0 1 0  1 0 0 0  

0 0 0 1  0 1 0 0  
T(O)= 10 1 0 01 T ( l ) =  10 0 0 1 1 -  

Let 0 denote the element-by-elementproduct of two matrices. Then (14.9) can be expressed 
as 

p ( x t  = xlr) = --&(T(X) o pt)pt+l. 

14.3.9 Comparison of the Viterbi Algorithm and the BCJR Algorithm 

It is interesting to contrast this update formula with the formula for updating the path metric 
in the Viterbi algorithm. In the Viterbi algorithm, the path metric is updated by adding the 
branch metric to the previous path metric. Then the minimum of the path metrics at a state 
is computed. In the BCJR case, the path metric at ( p )  is multiplied by the branch metric 
yr ( p ,  q ) ,  then the branch metrics are summed at each state. Mapping the operations 

min + sumsum t, product 

we obtain the equivalent algorithm. The Viterbi algorithm is sometimes referred to as a 
"min-sum" algorithm and the BCJR algorithm is referred to as a "sum-product'' algorithm. 
(See [2] or Chapter 16 for other examples.) 

14.3.10 The BCJR Algorithm for Systematic Codes 

To finish setting the stage for turbo decoding, we now consider the specialization to the 
case that the convolutional encoder is a systematic R = 1/2 coder, and the signal mapper is 
BPSK, where, to be specific, we use the BPSK signal mapper in (14.4). The encoder output 
is now 

1 

P 0.1 

(0) (1) (1) 
V t  = [ U t  3 U t  1 = [ x t ,  U t  1 

a, = [a,('), a,(')] = &[2v,(O) - 1,2v,(') - 11 = J E , [ 2 x t  - I ,  24') - I]. 

To denote the output corresponding to the transition from Vt = p to Vt+l = q ,  we write 

and the mapped signals are 

a ( P j 4 )  = [a(o,P,q), a ( ' , P , 4 ) ]  = f i [ Z X ( P > 4 )  - 1, 2v( ' ,P .4 )  - 13. 

The received signal vector at time t is 
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where 
(0) - (0) + ny)  rt(') = + ny)*  

ro - at 

The transition probability can be written 

Vr(p,  4 )  = pWt+i = 4, r r l W  = p )  (definition) 

(condition factorization) 

(definition of rt) 

( x ( P 4 )  determines q t + l ) .  

= p(rtI% = P ,  %+l = q)P(%+1 = 41% = PI 

= P"t (0) 9 r p  1 %  = P ,  %+l = 4 ) P W t + l  = 4IW = p )  

= p(r ,  (0) , r,(l)  IW = p ,  q t + l  = q)p(x t  = ~ ( ~ 3 4 ) )  

(14.25) 

The conditioning on the state transition can be equivalently expressed as conditioning on 
the state and the input, since knowing the state and the input determines the next state 
unequivocally: 

p(rt(O), rt(l)I*t = p ,  ~ t + i  = 4 )  = p(r t  ( O )  , rt(')lqt = p ,  X t  = X ( P ~ Q ) ) .  

But r:') and It(') are conditionally independent, given the input, since rjo) depends on the 
input data and not on the state. Thus 

(0) ( 1 )  

(14.26) 
p(r?), r / ' ) ~ ~ t  = p ,  xt> = ~ ( r t  Ixt)p(rr I q r  = p ,  q r + l  = 4 )  

= p(r t  (0) l x t ) p ( r ~ l ) l a ~ l )  = a ( ' , p , q ) ) .  

Substituting (14.26) into (14.25) we obtain 

Vr(p, 4) = A r t  (0) Ixr)p(rt ( 1 )  la, ( 1 )  - - a( l ,P4) )p (x  t - - - x  (P.4)). (14.27) 

Now substitute (14.27) into (14.1 1): 

P(xt = xlr) = N, C crt(p)p(r,(o)Ixt>p(r,(l)lal(l) = a( ' ,p ,q))  p(xt  = X(P'4))Bt+l(4>. 
(p,q)ESx 

(14.28) 
In (14.28), since the sum is over elements in S,, P ( x t  = x(P94) )  is constant and can be 
pulled out of the sum. Also, p(r,(O) Ixt) does not depend on the state, and so can be pulled 
out of the sum. Thus 

( P  > 4 )  ESx I [ 
(14.29) 

P(xt = xlr) = Nxp(rt (0) (xt = x ) P ( x t  = x) c at(p)p(rt(' ' \a~') = a('*P'4))/3t+i(q) 

= N x  Ps, t ( x  ) pp , t (x ) pe, t (x 1. 
In (14.29), we refer to 

(0) Ps, t (x)  = A r t  Ixt = x) 

as the systematic probability, 
P p , t ( x )  = P(xt = x )  

as the prior probability, and 

(14.30) 
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as the extrinsic probability. The word “extrinsic” means’ “acting from the outside,” or 
separate. 

We now describe what the three different probabilities represent. 

Prior The prior Pp,t represents the information available about bits before any decoding 
occurs, arising from a source other than the received systematic or parity data. It is 
sometimes called intrinsic information, to distinguish it from the extrinsic informa- 
tion. In the iterative decoder, after the first iteration the “prior” is obtained from the 
other decoder. 

Systematic The quantity PJ? represents the information about xt explicitly available from 

the measurement of rj’). This is a posterior probability. 

Extrinsic The extrinsic information Pe,t is the information produced by the decoder based 
on the received sequence and prior information, but excluding the information from 
the received systematic bit r,(’) and the prior information related to the bit xt . It is 
thus the information that the code itself provides about the bit xt. 

From (14.12) and (14.14), we note that at and Bt+1 do not depend on xt, but only on 
received data at other times. Also note that p(rj’)/u,(’) = u(’,P,q)) does not depend 
on the received systematic information rj0).  Thus the extrinsic probability is, in fact, 
separate from the information conveyed by the systematic data about x t .  The extrinsic 
probability Pe,r(x) conveys all the information about P ( x t  = x) that is available 
from the structure of the code, separate from information which is obtained from an 
observation of xt (via r,‘”) or from prior information. This extrinsic probability is an 
important part of the turbo decoding algorithm; it is, in fact, the information passed 
between decoders to represent the “prior” probability. 

14.3.1 1 Turbo Decoding Using the BCJR Algorithm 

In the turbo decoding algorithm, the posterior probability computed by a previous stage is 
used as the prior for the next stage. Let us examine carefully which computed probability 
is to be used. For the moment, for simplicity of notation we ignore the interleavers and the 
normalization. 

We will show that the appropriate probability to pass between the encoders is the extrinsic 
probability by considering what would happen if the entire posterior probability P ( x t  = x Ir) 
were used as the prior for the next decoding phase. Suppose we were to take the MAP 
probability estimate P (xt = x Ir) = P8,t (x) P p , t  (x) Pe,f (x) of (14.29) computed by the first 
decoder and use it as the prior P (xt = x) for the second decoder. Then in the MAP decoding 
algorithm for the second decoder, the y computation of (14.27) would be 

But recalling definition of Ps,t we have 

We see that the initial prior information Pp, t  still appears in y ,  even though we have al- 
ready used whatever information it could provide. Furthermore we see in (14.31) that the 

’ Webster’s New World Dictionary 
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probability of the systematic information Ps,t appears twice. If we were to continue this 
iteration between stages m times, Ps,, would appear to the mth power, coming to yield an 
overemphasized influence. Thus P ( X t  = x Ir) is not the appropriate information to pass 
between the decoders. 

Instead, we use the extrinsic probability Pe,* as the information to pass between stages 
as the "prior" probability P ( x f  = x). Using this, yy is computed in the second decoder as 

V ~ ( P ?  4 )  = P(r,(')Ixt)P(rt (2) la, (2 )  = a(z'P'q))pe, , (x(P.4)) .  

We now flesh out the details somewhat. Let the output of the encoder at time t be 

(1) (2) 
Vt = [ X t ,  ~t , uy 1, t = 0, 1,. . . , N - 1, 

where vjm) is the output of encoder m, m = 1,2.  Also, let the received sequence be 

It = [rt (') , r:') , rt ( 2 ) ~ ,  t = 0,1, . . . , N - I .  

There are two MAP decoders employed in the BCJR algorithm, one for each constituent en- 
coder. The first MAP decoder uses the input symbol sequence { (r:'), r;"), t = 0, 1 , . . . , N -  
11, which we also denote (with some abuse of notation) as (do), d l ) ) .  The second MAP 
decoder uses the permuted received sequence {rIr;')) and the received parity information 
from the second encoder rt(2). Denote this information as (lTr('), d2)). Let P(')(xy = x) 
denote the initial prior probabilities used by the first MAP decoder. Initially it is assumed 
that the symbols are equally likely. For binary signaling, P(')(xr = x) = 1/2. 

Let the extrinsic probability produced by decoder j ,  j E {l ,  2}, at the Zth iteration be 
denoted by P$j) (xt = x) . Let the probability that is used as the prior probability in decoder 
j at the Zth information be denoted by P('* j )  (xt = x ) .  Let M denote the number of iterations 
the decoder is to compute. The turbo decoding algorithm can be outlined as follows: 

Algorithm 14.2 The Turbo Decoding Algorithm, Probability Form 

1. Let P('?')(xr = x )  = P(')(x, = x )  (use the initial priors as the input to the first decoder). 
2. For1 = 1 , 2  , . . . ,  M: 

(a) Using ~ ( l - l ? l ) ( x t  = x )  as the prior P ( X ~  = X I ,  compute: 

(Y and p using (14.12), (14.14), and (14.21) (or their normalized equivalents) 
Pe'f; ') (xt = x )  using (14.30) 

(b) Let P(',2) (xy = x )  = l7 Pit; ') (xy = x ) ]  

(c) Using P ( Z , ~ ) ( X ~  = x )  as the prior P ( X ~  = x )  compute: 

(d) If not the last iteration: 

[ 
a and ,fJ using (14.12), (14.14), and (14.21) (or their normalized equivalents) 

Compute P$2)(xy = x )  using (14.30) 

Let ~ ( ' + 1 * 1 ) ( x ~  = x )  = .-1 [ ~ J : ; ~ ' ( x t  = x )  

Using P(',2)(xr = x) as the prior P ( x t  = x )  compute (thepermuted) P ( x t  = xlr) 

Un-permute: P(xt  = xlr) = l7-l [ P ( x t  = xtr)~  

I 
(e) Else if the last iteration: 

using (14.29). 
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In the iterative decoding algorithm, the “a priori” information used by a constituent decoder 
should be completely independent of the channel outputs used by that decoder. However, 
once the information is fed back around to the first decoder, it is re-using information ob- 
tained from the systematic bits used in the second decoder. Thus the prior probabilities used 
are not truly independent of the channel outputs. However, since the convolutional codes 
have relatively short memories, the extrinsic probability for a bit xt are only significantly 
affected by the received systematic bits close to xt. Because of the interleaving employed, 
probability computations for xt in the first decoder employ extrinsic probabilities that are, 
with high probability, widely separated. Thus the dependence on the extrinsic probabilities 
on the systematic data for any given bit x t  is very weak. 

The Terminal State of the Encoders 

It is straightforward to append a tail sequence so that the terminal state of the first encoder is 
0. However, due to interleaving, the state of the second encoder is not known. Discussions 
on how to drive the state of both encoders to zero are presented in [ 168,131. However, it has 
been found experimentally that ignorance of the terminal state of the second encoder leads 
to insignificant differences in decoder performance; it suffices to initialize /3 uniformly over 
the states in the decoder. 

14.3.12 Likelihood Ratio Decoding 

For encoders with a single binary input, the log likelihood ratio is usually used in the 
detection problem. We denote log likelihood ratios (or log probability ratios of any sort) 
using the symbol h. It is convenient to use the mapping from binary values {0,1} to signed 
binary values { 1, - 1 } defined by 

For present purposes, we assume that the Z t  data are mapped to modulated signals by 

Let 

P ( x t  = l lr)  
P ( x t  = olr)’ 

h(xt Ir) = log (14.32) 

where r is the entire observed sequence. Using (14.9), and noting that the l /p ( r )  factor 
cancels in numerator and denominator, the likelihood ratio can be written 

(14.33) 
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Assuming that systematic coding is employed and substituting (14.27) into (14.33) we obtain 

plus the log likelihood ratio of the prior probabilities, 

P(xt = 1) 
P(xt = 0) 

hp,t = log 

plus the extrinsic information he, t ,  

The extrinsic information he,t is the information that is passed from one decoder to the next 
as the turbo decoding algorithm progresses. This extrinsic information can be computed 
from (14.34) by 

he,? = Uxtlr) - hp,t - k , t .  (14.35) 

Based on this, Figure 14.8 illustrates one way of implementing the turbo decoding. The 
conventional MAP output of the decoder (expressed in terms of log likelihood ratio) is 
computed, from which the extrinsic probabilities are computed from (14.35). 

We now examine some manipulations which can simplify the computation of some of 
these log likelihoods. 

Log Prior Ratio hp,r 

The log ratio of the priors 
P ( x t  = 1) 
P ( x t  = 0) 

h p , t  = log 
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Figure 14.8: A log likelihood turbo decoder. 

can be solved for the prior probabilities. Since P ( x t  = 1) + P ( x t  = 0) = 1 and since 

it is straightforward to show that 

(14.37) 

For x E {0, 1) and 2 = 2x - 1 E [- 1, l}, (14.36) and (14.37) can be combined together as 

The factor in brackets does not depend upon the value of xt  and so for many circumstances 
can be regarded as a constant. 
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Log Posterior ~ j o j  

For an AWGN channel with variance a2 and BPSK modulation as in (14.4), A:oj can be 
computed as 

exp[-&(r,(o) - 2 a r , ( O )  
Ajo; = log = log - - = LJ/? p(rr(o'lat(o) = a) 

P('r (0) la, (0) = -a> exp[- (r,(O) + 4 7 2 1  a2 
(14.39) 

where 

is the channel reliability, essentially just the signal to noise ratio. The quantity A:oj = L,r,(') 
is often called the soft channel input. The posterior density can be expressed in terms of the 
channel reliability : 

(14.41) 

where the Ci are constants which do not depend on 2 .  

14.3.13 Statement of the Turbo Decoding Algorithm 

Let us combine the equations from the last section together and express iterations of the turbo 
algorithm. Let A[z~~](xtlr) denote the log likelihood ratio computed at the lth iteration of 
the j th constituent encoder, j E { 1,2}. Similarly, let A t / '  denote the extrinsic probability 
at the lth iteration for the j th  decoder. The basic decomposition is described in (14.34). 
However, in light of the turbo principle, we replace the prior information lip,, with the 
appropriate extrinsic information from the other decoder. Furthermore, we express the log 
posterior A6o; in terms of the soft inputs LCr/'). 

Based on this notation, the turbo decoding algorithm (suppressing the interleavers) can 
be expressed as 

[ I -  1 21 
+ - v 

channel input extrinsic from other new extrinsic 

A['g'](x,lr) = ~,r , ( ' )  + Ae, t  

decoder used as prior 
(14.42) 

channel input extrinsic from other new extrinsic 
decoder used as prior 

for 2 = 1,2, . . . , M, with hLo;21 = 0 to represent uniform prior probabilities. 

14.3.14 Turbo Decoding Stopping Criteria 

The turbo decoding algorithm is frequently run for a fixed number of iterations, which 
is determined by the worst case noise degradation. Most codewords, however, are not 
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corrupted by worst case noise and therefore need fewer iterations to converge. A stopping 
criterion is a way of determining if the decoding algorithm has converged so that iterations 
can be terminated. A properly designed stopping criterion reduces the average number of 
iterations, while maintaining the same probability of bit error performance. 

We introduce here three different stopping criteria. 

The Cross Entropy Stopping Criterion 

From (14.42) it follows that 
K21-  [L11 

h,,t . ~[1321(xtlr) - A['.'] (xtlr) = A,,t  

We define A:,; = A:;:] - A::]. From the likelihood A['~j](xt1r) of (14.42), the probability 
of a bit output can be computed as 

(14.43) 

Let P[',jl(i(r) denote the probability of the entire sequence 2, 

P['J(glr) = ~ [ ' , j l ( z o ,  21, . . . ,?N-I  Ir). 

Under the assumption that the elements in i are statistically independent we have 

N-1 

P['Jl(i\r) = n p['Jl(iklr). 
k=O 

We define the bit estimate at the Zth iteration as 
Our first stopping criterion is based on the cross entropy, also known as the relative 

entropy or the Kullback-Leibler distance introduced in Section 1.12. The cross entropy 
between two probability distributions P and Q taking on values in some alphabet A is 

= sign(A[1,2](xtIr)). 

(14.44) 

The cross entropy is a measure of similarity between the two distributions P and Q. From 
Lemma 1.2 we have that D(PJ 1 Q) = 0 if and only if P = Q, that is, if the distributions are 
identical. 

We use the cross entropy as a measure of similarity between the distributions P[',21 
and P['>l]. Since convergence implies a fixed point of the turbo decoding iterations, at 
convergence we should have = P['>l]. In practice, we determine convergence has 
occurred when the cross entropy becomes sufficiently small. 

We denote the cross entropy at the Ith iteration by T(Z): 

where the expectation is with respect to the probability P[',21(i) .  Under the independence 
assumption, 

(14.45) 
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From the definition of the expectation 

and, using (14.43), it can be shown that 

A[ll 1 + exp[-~[l~~l(xklr)] e,k 

1 + exp[-h['-2l(xkIr)] * 
+ log E P " W k )  [Log ;::::;3 = - 1 + exp[~[',2](nkIr)] 

(14.46) 

We now simplify this expectation using approximations which are accurate near conver- 
gence. We assume that the decisions do not change from among the different decoders, 

sign(h[l*l](xkIr)> = sign(A["21(xkIr)) = 4;'. 
We invoke the approximation log( 1 + x) M x, which is true when Ix I << 1. Then it can be 
shown (see Exercise 9) that 

so 

Taylor series expansion and write 

Substituting this into (14.45) we obtain, using the fact that (k!1)2 = 1, 

Having found this approximate expression, we take as our stopping criterion: Stop if T (1) < 
some threshold. Taking the threshold to be something in the range of 10-2T (1) to 10-4T (1) 
seems appropriate. For example, stopping when T(1) < 10-3T(l) is common. 

It has been found experimentally that using this stopping criterion results in at most a 
few percent error degradation compared to a fixed number of iterations, with the amount of 
degradation being somewhat higher as the number of fixed iterations increases. At the same 
time, there is a significant decrease in the average number of iterations, with the amount of 
improvement being a function of the maximum number of iterations. 

The Sign Change Ratio (SCR) Criterion 

A stopping criterion which is simpler to compute than the cross entropy can be obtained 
as follows. Let C(Z) denote the number of changes of sign of A!,;, t = 0, 1, . . . , N - 1 
compared with At;']. Experimentally it has been found that if C(1) < E N ,  where E is 
typically in the range of 0.005 to 0.03, then the stopping criterion performance is similar to 
that for the cross entropy criterion. 
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The Hard Decision Aided (HDA) Criterion 

A third stopping criterion is obtained by comparing sign(h[z,21 (x t  Ir)) and sign(h['-1,21 (x t  Ir)). 
When the signs are the same for all t E {O, 1, . . . , N - l}, then the decoding stops. 

14.3.15 Modifications of the MAP Algorithm 

The Max-Log-MAP Algorithm 

The MAP algorithm is significantly more complex than the Viterbi algorithm, so that it is of 
interest to reduce the computational complexity of the MAP algorithm, if possible, even at 
the expense of some performance. In this section we introduce the max-log-MAPalgorithm, 
which propagates approximations to logarithms of the a and jl probabilities. This not only 
avoids some potential roundoff properties, but also has lower complexity than the MAP 
algorithm. Unfortunately, the algorithm is only approximate, so that some performance is 
lost. A further modification which recovers the lost performance with a slight increase in 
computational complexity is then discussed. 

Define 

Let us attempt to develop a recursion for computing At+l  (4). From (14.12) we have 

(14.48) 

At this point, an approximation is made in the interest of developing a fast algorithm: 

Using this approximation in (14.48) we obtain 

(14.49) 

(14.50) 

Thus to find At+l  (q) ,  we add a branch cost Tt ( p ,  q )  to A t  ( p ) ,  then compute the maximum 
value of the result over all paths leading to state q.  The selected path to state q can then 
be thought of as the survivor path. The result is exactly the same operation as the Viterbi 
algorithm! The computational complexity is thus essentially the same as for the Viterbi 
algorithm: for each pair of merging paths, two additions and one comparison are required, 
except that the branch cost r is a posterior probability for the log-MAP algorithm and is 
a likelihood for the Viterbi algorithm. In the max-log-MAP algorithm At ( p )  provides the 
(approximation of the logarithm of the) most probable path through the trellis to state p ,  
rather than the probability of any path through the trellis to state p .  
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The recursion for Bf ( 4 )  is obtained as follows: 

(14.51) 

This amounts to a Viterbi algorithm working backward. 
The branch metric rf ( p ,  q )  is computed using (14.27): 

rt(p, q )  = ln(P(xt = x ( p 3 ~ ) ) )  + ln(p(r/O’lxt>> + ln(p(r/’)Ia(’) = a(’,p,*))). 

Using (14.38) and (14.39) (and a similar expression for p(r,(l)lxt = 1)) and throwing away 
unnecessary constants, we can write 

The log posterior h(xt Ir) is, using (14.33), 

C ( P , q ) E ~ ,  ar(p)Yr(p, q)Bt+l(q) 

C(p,q)Eso at(P>Yr(P, 4)Bt+1(4) 

C(P,q)Es, ~ X P  [ A ~ ( P )  + r r ( P ,  4 )  + ~ t + l ( q ) ]  

C(p,q)eso exp [ A t ( P )  + rr (P9 9 )  + Bt+l(S>] 

h(xtlr) = log 

= log 

M max (Ar(p) + rt(pI 4 )  + &+l(q)) - max + r t ( p ,  4 )  + Bt+i(q)). 
(P4)ESI ( P 4 ) E S O  

(14.53) 

This may be interpreted as follows [141, p. 1321: For each bit xt, all the transitions from 
\Irt to \Irf+l are considered, grouped into those which might occur if xf = 1 and those 
which might occur if xf = 0. For each of these groups the transition which maximizes 
A t ( p )  + I‘ t (p ,  q )  + Bf+l(q) is found, then the posterior log likelihood is computed based 
on these two optimal transitions. 

If only the At ( p )  values were needed, the max-log-MAP algorithm would have com- 
plexity essentially the same as the Viterbi algorithm; however, Bf ( p )  must also be computed. 
It has been argued [355] that the complexity of the max-log-MAP algorithm is not more 
than three times that of the Viterbi algorithm. However, the storage requirements are higher, 
since the values of A t @ )  and B t ( p )  must be stored. The storage can be reduced however, 
at the expense of an increase in computational complexity [355, 3561. 

14.3.1 6 Corrections to the Max-Log-MAP Algorithm 

The approximation (14.49) has been shown [295] to result in approximately 0.35 dB of 
degradation compared to exact decoding. Another algorithm is obtained by using the “Ja- 
cobian logarithm”: 

ln(exl + ex*)  = max(x1, x2) + l n ( l+  e- ’xl -x2’ ) .  (14.54) 
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Let us write this as 

ln(ex' + ex*) = max(x1, x2) + f c ( S )  = g(xi, x2), 

where S = 1x1 - x2I and where fc(6) is the "correction" term. Since the fc(6) function 
depends upon only a single variable, it is straightforward to precompute it and determine 
its values in use by table lookup. It has been found [295] that sufficient accuracy can be 
obtained when only eight values of fc(S) are stored for values of 6 between 0 and 5. 

In order to handle multiple term summations, the functions are composed as follows: 

If a lookup table for f, is used, the computational complexity is only sightly higher than 
the max-log-MAP algorithm, but the decoding is essentially exact. 

14.3.17 The Soft Output Viterbi Algorithm 

For turbo decoding, an alternative to MAP-type decoding algorithms (MAP, log-MAP, or 
max-log-MAP) is the soft output Viterbi algorithm (SOVA). This differs from the conven- 
tional Viterbi algorithm in two ways, which in combination make the algorithm suitable for 
use in decoding turbo codes. First, SOVA uses a modified path metric which takes account 
of prior probabilities of the input symbols. Second, SOVA produces a soft output indicating 
the reliability of the decision. 

Before reading this section, the reader is advised to consult Appendix A, which intro- 
duces notation pertaining to arithmetic on log likelihood functions. 

Recall that for the conventional Viterbi algorithm, the branch metric pt (rt , x(Pyq)) = 
log p(rtIx(P3q)) was used (see (12.17)), where p(rtlx(P,q)) is the likelihood of the output 
x(P,q) on the branch from state p at time t to state q at time t + 1, based on the observation 
rt. We can incorporate prior information very simply: Use the logarithm of y t ( p ,  q )  of 
(14.27) as the branch metric, which is the same as r t ( p ,  q )  (here assuming a single parity 
bit and systematic encoding): 
pt(rt, x(p.4)) = log(p(r, (0) 1xt)> + log(p(r:')Iu(') = u( ' ,~ ,q ) ) )  + log(P(xt = x(p'q)>>, 

where the first two terms are equivalent to the log likelihood (for this n = 2 systematic 
code), and the third term represents the prior probabilities. As is evident from (14.52), this 
can be readily computed: 

This has an interesting interpretation. When the channel is good, so that L ,  is large compared 
to the prior reliability Ihp,t(, then the decoder relies more on the channel outputs rt. On 
the other hand, when the channel is poor, so that L ,  is small compared to the reliability 
Ihp,t 1, then the decoder relies more on the reliability. Readers familiar with the Kalman 
filter will notice a similarity to the update of a Kalman filter: the Kalman filter relies more 
on observations when the observations are more reliable. (This attribute is common to all 
Bayesian methods.) Using the new branch metric, the path metric Mt ( p )  is (essentially) 
equal to log p(x;-' Irh-'), where xh-' denotes the sequence of inputs from time 0 to time 
t ,  and rk-l denotes the sequence of observations from time 0 to time t - 1. We thus can 
compute the likelihood ~ 

t-1 t-1 p(xo  Ir0 = CeMr(P) (14.55) 
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Let us consider now how to obtain soft outputs indicating the reliability of the decision 
for binary codes. Suppose that two paths merge at state q at time t + 1, having path metrics 
M:Yl (q)  and M::l (q ) ,  with M:yl ( q )  > M::l (4). The path with metric M:yl ( q )  is thus 
selected as the survivor path. Define the path metric difference as 

The probability of a correct decision is obtained by normalizing the likelihood of the choice 
by the likelihoods of all competing choices. Using (14.55), we obtain 

pt':, (9) eA:+l 
- - P(correct decision at Qt+l = q )  = 

e ~ , ' : : ( 4 )  + e~j:,(4) 1 + eA:+l' 

The log likelihood ratio is 

(14.56) In = A;+l. 

Thus the path metric difference where the paths merge in the Viterbi algorithm is equal to 
the log likelihood ratio of the probability that the decision is correct. 

Application of this concept is somewhat complicated because of delayed decisions. 
Recall that the Viterbi algorithm typically makes a decision about a bit it after some window 
of decoding delay, typically about five constraint lengths. Let us denote the decoding delay 
by 6. At time t ,  a decision is made about a bit 2,-6. Consider the window on the trellis in 
Figure 14.9, where 6 = 6. (For simplicity, not all paths to time t are shown.) The surviving 
path sequence selected at time t ,  denoted as qt, is shown with a bold line; its metric is 
denoted as M!') ( p r ) .  The 6 paths which were discarded by the Viterbi algorithm over this 
window are also shown. Let A: denote the path metric difference between the metric along 
the surviving path \y, and the paths discarded by the Viterbi algorithm at a lag of 1 steps 
back from t ,  1 = 0, 1, . . . , 6  - 1. We here refer to the path which was discarded at time 
t - 1 as the Zth path. Let Zt-6 denote the input bit along the selected path at time t - 6, and 
let Z:-i denote an input bit at time t - i along the lth path. 

If the bit Zfms on discarded path 1 is equal to Z,-8, then we would have made no bit error 
if we would have selected the discarded path. In this case, the reliability of this bit decision 
is 00. If it[-& # Zt-s, then there would be a bit error along the Zth path, which we denote as 

e tdg  = i t - 8  @ xt-6. 

P(correct decision at Qt+l = q )  
1 - P(correct decision at Qt+l = q )  

-1 -1 

Here, @ denotes addition in G F ( 2 ) ,  with identity 1: 

1 @ 1 = 1  1@-1=-1  - 1 @ 1 = - 1  -1@-1=1.  (14.57) 

The log likelihood value of the bit error is, by (14.56), equal to A:. Combining these two 
cases we have 

(14.58) 

Each path provides evidence about the likelihood that Zt-a is correctly decoded. The total 
error resulting from the sum of all possible discarded paths for Zt-s is 

6-1 

1 =o 
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Figure 14.9: Trellis with metric differences and bits for SOVA. 

We take the log likelihood ratio of &-s to be 
8-1 

W t - s )  = -6-8 E V 2 f - s ) .  (14.59) 

where the factor .Zt-8 sets the sign of the likelihood ratio and the sum of the errors represents 
the accumulation of evidence. 

By (A.4) and (14.58), this sum is over only those indices I where .Zt-s # 2:-8. Using 
(14.58) we can write (14.59) as 

l=O 

8-1 

1 =o 
Finally, using the approximation of (A.5), we can write 

A(,G-~) = zt-s min A;. (14.60) 
l€(O,l, ..., 6-11 

The reliability of the bit decision for .Zt-s thus depends on the least reliable path decision 
which determines the path selection. 

Implementation of the SOVA algorithm requires storing not only the path metric to each 
state, but also the metric difference A,. The sequence 2f-i is also updated for each decision. 
When a decision is made, the reliability of the decision is produced according to (14.60). 

14.4 On the Error Floor and Weight Distributions 

In this section we discuss briefly two questions relating to the performance of turbo codes. 
These questions are: Why is there an error floor? and What makes turbo codes so effective? 
Other discussions along these lines appear in [303]. 

14.4.1 The Error Floor 

As observed from the plot in Figure 14.1, there is an error floor associated with turbo codes, 
so that for moderate to high SNRs, the probability of error performance fails to drop off as 



14.4 On the Error Floor and Weight Distributions 613 

rapidly as it does for low SNRs. This can be explained as follows. The probability of bit 
error for a turbo code can be approximated just as for convolutional codes. Thinking of the 
set of codes as block ( N I R ,  N )  codes, there are 2N codewords. Then the probability of bit 
error can be bounded as [303, p. 2431 

where wj is the weight of the message sequence of the ith message and di is the Hamming 
weight of the codeword. Grouping together codewords of the same Hamming weight, the 
bound on the probability of bit error can be written as 

where Nd is the multiplicity of codewords of weight d, and 

- wd 

Nd 
Wd = -, 

where Wd is the total weight of all message sequences whose codewords have weight d. 
Thus I%d is the average weight of the message sequences whose codewords have weight d. 
The quantity dfree is the free distance of the code, the minimum Hamming distance between 
codewords. The upper limit N / R  of the summation comes from neglecting the length of 
the zero-forcing tail, if any. 

As the SNR increases, the first term of the sum in (14.61) dominates. The asymptotic 
performance of the code is thus 

where Nfiee is the number of sequences at a distance dfree from each other and is 
the average weight of the message sequence causing the free-distance codewords. When 
plotted on a log-log scale (e.g., logarithmic probability with &/No in dB), the slope of Pb 
is determined by dfree. If there is a small dfree, then the slope is small. 

The error floor, which appears at higher S N R s ,  is thus ostensibly due to the presence of 
a small dfree, that is, due to low weight codewords. 

Why should there be low weight codewords in a turbo code? We note first that the 
presence of a single 1 in the input sequence x can lead to many nonzero values in its parity 
sequence. If xi = 1 for some t and x is zero at all other positions, then the encoder leaves 
the zero state when xr arrives. Since the encoder is recursive, the remaining sequence of 
input zeros does not drive the encoder to the 0 state, so a sequence of 0s and 1s continues to 
be produced by the encoder. For example, for the encoder whose trellis is shown in Figure 
14.4(b), a 1 followed by a string of 0s produces the parity sequence {l, 0, 1,0, 1, 0, . . .}. 
This alternating sequence output is typical of many recursive encoders. Having a high 
weight code sequence for a low weight input is one reason why recursive encoders are used 
in turbo encoders. If xi = 1 happens to occur near the end of the input sequence, then the 
parity sequence v(l) has low weight. But the interleaver may produce a sequence x’ whose 
nonzero value occurs earlier, resulting in a parity sequence d2) of higher weight. From 
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one point of view, this is one of the sources of strength of turbo encoders: if one of the 
parity sequences has low weight, then there is a reasonable probability that the other parity 
sequence has higher weight. There are thus codewords with high weight. 

Consider now a low-weight input sequence x that results in a low weight parity sequence 
in dl). For example, a sequence of all zeros, followed by a single 1, so that X N - ~  = 1. 
This would result in a parity sequence with wt(v(')) = 1. More generally, there might be 
a single 1 appearing somewhere near the end of x. This would result in a low weight v('). 
When x is permuted, the resulting sequence may have the 1 appearing early in the sequence, 
causing the second encoder to leave the 0 state early on, after which, as mentioned, a parity 
sequence d2) of appreciable weight might be produced. 

But circumstances may make it so that the second parity sequence also results in a low- 
weight codeword. In the first case, suppose that the parity sequence d2) is in fact a { 1, O} 
alternating sequence, and that the parity sequences are now punctured with a puncturing 
phase that punctures all the 1s. All the weight from d2) is removed, so the weight of the 
codeword depends only upon the weight of x and d ' ) ,  which may be very low. 

A low weight codeword could also be obtained another way. If the interleaver is such 
that the single 1 appearing near the end of x also happens to appear near the end of x', then 
regardless of the puncturing, both v(') and d2) are low weight. 

Thus it may occur that a sequence x which produces a low weight d') can, after inter- 
leaving, produce a sequence x' which would also produce a low weight d 2 ) .  At this point 
in the state of the art, methods of designing encoders and/or interleavers which completely 
avoid the low weight codeword problem are unknown. 

14.4.2 Spectral Thinning and Random lnterleavers 

The difficulties of low-weight codewords notwithstanding, turbo codes are outstanding 
performers. This is because, while there are low weight codewords, there are not many 
of them! As mentioned, the interleaver helps ensure that if one parity sequence has low 
weight, the other has higher weight with high probability. 

The distance spectrum of a code is a listing of the ( N d ,  w d )  information as a function 
of the codeword weight d ,  where N d ,  again, is multiplicity of codewords at weight d ,  and 
w d  is the total weight of the message sequences producing codewords of weight d. Turbo 
codes are said to have a sparse distance spectrum if the multiplicities of the lower-weight 
codewords is relatively small. Since each term in the probability bound in (14.6 1) is scaled 
by the multiplicity N d ,  higher multiplicities result in more contribution to the probability of 
error, so that a higher S N R  must be achieved before the probability of error term becomes 
negligible. 

For example, for the (37,21,65536) code, the distance spectrum computed using weight- 
2 message sequences, when the set of turbo codes is averaged over all possible interleavers, 
is [303] 

d N d  w d  

6 4.5 9 
8 11 22 
10 20.5 41 
12 75 150 

(This data was found using the algorithm described in [306].) Note that N d  increases 
relatively slowly with d .  Convolutional codes, on the other hand, frequently are spectrally 
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dense, meaning that Nd increases much more rapidly with d .  
We now argue that the sparse distance spectrum is typical for long interleavers. The 

argument is based on enumerating aspects of the weight behavior of the codes, averaged 
over the set of all possible random interleavers. This argument is referred to as random 
interleaving [19, 3031. The sparse distance spectrum for turbo codes, compared to the 
distance spectrum of convolutional codes, is referred to as spectral thinning. 

To characterize the weight spectrum, define the input redundancy weight enumerating 
function (IRWEF) A (W,  2) [2 11. The IRWEF A ( W ,  2) is defined as 

w z  

where is the number of codewords produced by message sequences x of weight w and 
parity sequences d l )  and d2) of combined weight z .  The quantities W and Z are formal 
variables used in the series expansion. Our interest here is not in the entire IRWEF A (W,  Z), 
but in the relationship between the low weight codewords of the turbo code and A w , z .  This 
requires enumerating possible state sequences in the constituent encoders. 

In the first encoder, a message sequence x of weight w gives rise to a sequence of states 
* ( l ) .  We say that a detour occurs in the state sequence if a contiguous sequence of states 
deviates from the zero state then returns to the zero state. Let nl denote the number of 
detours in \Ir(’) and let 11 denote the total length of the detours. Let dl = 20 + z1  denote 
the weight of the message and first parity word. Similarly, the permuted sequence x’ gives 
rise to a state sequence W(2) in the second encoder; we denote the number of detours and 
the total length of the detours in W(2) by n2 and Z2, respectively. Let d2 = w + 22 denote 
the weight of the message and second parity word. 

Example 14.3 Let x = [0, 1 ,0 ,  0, 0, 1,0, 0, 0, 0, 1, 0, 11 and the interleaved bits x’ = [l, 0, 0, 0, 1, 
1, 0, 0, 0, 0, 1,0,0] be applied to the encoder of Example 14.12. The parity sequences are 

“ ( l )  = [O, 1,0,  1,0,0,0,0, o,o, 1,0,0] “(2) = [1,0, 1,0,0,  1,0,  1,0,  1, l , l ,  11. 

Then dl = 7 and d2 = 12. The combined weight of the parity bits is z = 11. The presence of this 
codeword contributes one codeword “count” to the coefficient A4,12. 

Figure 14.10 shows the state sequences for this codeword. The state sequence \Y(’) has nl = 2 
detours whose total length is Z1 = 8;  the state sequence \Ir(2) has n2 = 2 detours whose total length 
is Z2 = 13. 0 

Suppose the interleaver of length N is chosen at random, so there are N !  possible 
interleavers. If we assume that an interleaver is chosen according to a uniform distribution, 
then the probability of choosing any particular interleaver is 1 / N ! .  Suppose the message 
sequence x has weight w. Then the permuted sequence x’ also has weight w. Since all 1 
bits of x are indistinguishable from each other, and similarly all 0 bits, there are w ! ( N  - w )  ! 
interleavers out of the N !  that could all produce the same permuted sequence x’. The 
probability that the mapping from x to x’ occurs (where both have the same weight) is 

w ! ( N - w ) !  1 

This is also the probability of occurrence of the codeword that results from the input se- 
quences x and x’. 

2The interleaver is different from that example, since the length of the code is different. 
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Figure 14.10: State sequences for an encoding example. 

Figure 14.1 1: Arrangements of nl  = 3 detours in a sequence of length N = 7. 

Consider a sequence x of weight w, with corresponding encoder state sequences *(') 

and q(2) and having parity weights 21 and 22. Since the particular codeword occurs with 
probability l/(:), the contribution to A,,ZI +L2,  averaged over all random interleavers, is 

1 

The sequence of zeros connecting any two distinct state sequence detours has no effect 
on either the weight of the message sequence or its parity sequence. The detours can be 
moved around within the state sequence, without changing their order, without changing 
their contribution to Aw,zl+Z2.  Enumerating all the possible ways that the detours can be 
moved around. there are 

distinct ways that the nl detours can be arranged, without changing their order. Each of 
these therefore results in a contribution to A,,,, f Z 2 .  

Example 14.4 Figure 14.11 shows the different ways that n 1 = 3 detours (each of length 2, so that 
I1 = 6 ) can be arranged, in order, in a sequence of length N = 7. There are 

different arrangements. 0 

This applies to the first constituent encoder. For the second constituent encoder, the number 
of possible arrangements depends on whether the encoder ends in the 0 state. If the second 
encoder ends in the 0 state, then there are 
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ways that the detours in \Ir(2) can be arranged in order, each of which contributes to the 
same Aw,zl+z2.  If the second encoder does not return to the 0 state, then the last of the n2 
“detours” is not a true detour. There are thus 

N - 12 + (n2 - 1) 

ways the detours can be arranged, each of which contributes a codeword count to A w,z l  + z 2 .  

The overall average contribution to A,,,, +z2 for a particular pattern of detours in \Ir(’) 
and \Ir(2) is 

) ( n z - 1  

(N-ftl,+ni) (N-h+nz) 
(14.62) n2 

(3 
if the last “detour” of the second encoder ends in the 0 state, or 

if the second encoder does not end in the 0 state. 
Since our intent here is to explore codewords of low weight, we now assume that n 1 << N ,  

11 << N ,  n2 << N ,  12 << N ,  and w << N .  (Because otherwise there would be either a large 
number of short detours or a few very long detours, either of which would be unlikely to 
result in codewords of low weight.) Under this assumption, the contribution to A w,zl  +z2 of 
(14.62) can be approximated as 

(14.64) 

and (14.63) can be approximated as 

w !  NnI+n2-w-1 (14.65) 

Each detour in the state sequence must be caused by a message sequence whose weight is 
at least 2 (i.e., one message bit to deviate from the 0 state, and one message bit to return back 
to the zero state), so w 3 2max(nl, n2). In (14.64), as the block length (and interleaver 
length) approaches 00, the exponent Nnl+’Q-”’ += 0 unless w = nl + n2 and n1 = 122. In 
(14.65), Nnt+n2-w-1 += 0 as N -+ 00 for any values of nl and 122. Thus the following 
conditions must be met by the codeword in order for the codeword to contribute to A w,zt  +z2 : 

nl!(n2 - l)!  

1. The second encoder must terminate in the all zero state. 

2. Both encoders must make the same number of detours. 

3. Each state detour is caused by a message sequence of weight 2. 

If these conditions are not all met, then asymptotically receives no contribution from 
the codeword. 

The result of this is that, for large enough N ,  Aw,z for low-weight codewords is rather 
small: the conditions simply are not met very often. Thus the distance spectrum for the 
code is “thinned.” 

One result of the thinned spectrum is that there are relatively few codewords of low 
weight, hence relatively few codewords near to other codewords. Thus codewords selected 
at random will, with high probability, be decoded correctly. However, when errors occur, 
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Figure 14.12: A 6 x 6 “square” sequence written into the 120 x 120 interleaver. 

they tend to occur in clusters, since a decoding failure can cause several stages of the trellis 
to be corrupted in the BCJR algorithm. This observation is borne out in simulation: when 
the decoder is run for many iterations at low probability of error, most blocks are completely 
error free and errors, when they occur, tend to appear multiple times in the block. 

14.4.3 On lnterleavers 

The interleaver is a key component of the turbo encoder, since it allows the extrinsic infor- 
mation passed into a decoder to be nearly independent of the observed data in the decoder. 
As we now argue, a rectangular interleaver, which is probably the easiest from an imple- 
mentation point of view, leads to degraded coder performance compared to a (pseudo-) 
random interleaver, because it can lead to a large value of Nfiee. Thus it is important to use 
an interleaver which is closer to a true random interleaver. 

We observe that the interleaved message sequence x’ = lTx has the same weight as 
the original message sequence x. In the general case, the parity sequences dl) and d2) 
are different, however, because the inputs to the constituent convolutional encoders are 
different. Thus if v(l) is a low-weight parity sequence, it may be hoped that d2) has higher 
weight. However, if the interleaved sequence x’ not only has the same weight as x, but is in 
fact equal to x, and if v(’) is low weight, then d2) has the same low weight, resulting in an 
overall low-weight codeword. Furthermore, as we show, a rectangular interleaver provides 
the possibility for many such low-weight codewords, resulting in a large Nfree. 

We give a specific example based on a code using the transfer function in (14.1) in a 
rate R = 1/2 code. Suppose that a rectangular (or square) interleaver is used in the turbo 
encoder, so that the message data x is written row by row, and read out column by column. 
Suppose, to be specific, that a 120 x 120 interleaver is used, resulting in a block code of 
length N = 1202 = 14400 [303]. AS will be shown, Nfiee =28900 for this code. When 
compared with the results for the N = 65536 code using a (pseudo-) random interleaver, 
the performance is about 2 dB worse at a probability of bit error of Some of the 
difference can be attributed to the shorter codeword length, but more significant is the fact 
that Nfiee is so large. 

Consider a message sequence 

x = [  ...) 1 ,0 ,0 ,0 ,0 ,1 ,0 ,0  ) . . . ,  0 ,1 ,0 ,0 ,0 ,0 ,1 ,0  ) . . .  1, 

where there are zeros such that the four ones form a 6 x 6 square in the interleaver, as shown 
in Figure 14.12. Thus the interleaved sequence x’ = llx is equal to x. The encoded parity 
sequence v(’) has weight 4 after puncturing. Since x’ is equal to x, the parity sequence 
v ( ~ )  also has weight 4. The entire codeword has weight 4 + 4 + 4 = 12. There are 
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(120 - 5) x (120 - 5 )  = 13325 different positions where the square pattern can be placed 
in the interleaver. There are also rectangular message patterns of size 11 x 6 , 6  x 11, and 
11 x 11 which also encode to sequences of weight 12. For the 6 x 11 and 11 x 6 patterns, 
the weight depends on the “phase” of the puncturing, depending on which parity sequence 
is punctured first, so only half of the positions result in the codeword of weight 12. There 
are thus 

1 
2 

2 x -(120 - 10) x (120 - 5 )  = 12650 

different input sequences producing a weight-12 codeword. For the 11 x 11 pattern, the 
weight of both sequences is affected by which is punctured first. As a result, only one-fourth 
of the possible input patterns result in a weight-12 codeword, so there are (120 - 10) x 
(120 - 10) = 3025 different codewords producing this pattern. Adding this up, we see that 
there are 28,900 weight-12 codewords. 

It is clear that, for this example, increasing the size of the interleaver only results in 
more minimum codeword patterns, resulting in a larger Nfiee. In fact, NfrW grows roughly 
linearly with N ,  so the effective multiplicity Nfree/ N does not change significantly for larger 
rectangular interleavers. 

While this example was described for a particular code, the principles apply fairly gen- 
erally. Attempts to design some kind of structured interleaver to reduce the implementation 
complexity frequently destroys the very randomness needed to obtain good performance at 
low SNRs. 

14.5 EXIT Chart Analysis 

In this section we introduce the extrinsic information transfer (EXIT) chart, a powerful 
method for analyzing iteratively decoded codes. While we present it here in the context 
of turbo codes, it can also be used for LDPC code analysis (see Section 15.9). The EXIT 
chart provides a means of characterizing a code which is both faster and more insightful 
than simulating the code. It reveals that there is a decoding threshold, an SNR below which 
correct decoding cannot be expected. EXIT analysis can also be used to search for good 
codes, or codes whose decoding converges quickly. It can also be used to approximate the 
probability of error in some regions of the curve. 

The EXIT chart is expressed in terms of a likelihood ratio decoder. For our purposes, it 
will be convenient to use the labeling shown in Figure 14.13. The a priori information is 
labeled as Ai , i = 1 or 2, depending on which decoder is used. The extrinsic information 
is Ej,  the decoder output information is Di, and the soft input information is Zj, with 
Di = Zi + A j + Ei. We will also denote the transmitted information - the i bits - as X. 
The key concept of the EXIT chart is measuring the amount of information that the prior 
A conveys about the transmitted data X and that the extrinsic information E conveys about 
the data information X .  This information is measured using the mutual infomation in the 
form of Z(X; A j )  and Z(X; Ei) .  (Mutual information was introduced in Section 1.12.) TO 
quantify these, it is necessary to model the distributions of the Aj and Ej data. 

The soft output Zi from the channel is obtained from the log likelihood ratio 

(where rt generically represents either systematic or parity information). Following (14.39), 
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Figure 14.13: Variables used in iterative decoder for EXIT chart analysis. 

,(O) 

- 

we have 
z = Lcrt = L,(,,&.Z~ + n ) ,  

where n - N(0, a2), with a2 = No12 and L ,  = 2 a / a 2 .  We can write 

Z = /.Lz% + n z ,  

where /.LZ = 2Ec/a2 and n z  - N(0, a;), where 

2 2 az = 4E,/a = 2 p z .  

That is, we have a? = 2 p z .  A Gaussian distribution having the variance twice the mean is 
said to be consistent. 

We make the following assumptions for the analysis: 

,' - \ El 

Inputs A1 D1 

1. For sufficiently large interleavers, the a priori values Ai are fairly uncorrelated from 
their respective channel observations Zi over many iterations. 

2.  The probability density functions of the extrinsic information Ei - which are the 
prior inputs for the next decoder - approach Gaussian dstributions with increasing 
iterations. 

Mutual Information Between X and A Under these assumptions, we model the ~ p r i o r i  
probability input Ai to an encoder as 

Ai = /.LA& + nA, (14.66) 

where nA is an independent Gaussian random variable with variance a: and zero mean. 
We assume that Ai is also consistent, so CJ; = 2P.4. Then the conditional pdf of A can be 
written as 

r 

(14.67) 
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Using the Kullback-Leibler distance introduced in (14.44), the mutual information Z ( X ;  A )  
can be computed as (see Section 1.12) 

where P X A  is the joint probability distribution of 2 and A,  and px and P A  are the marginal 
distributions. We assume that the 2 occurs with equal probability for s? E (*1} and that, as 
mentioned, A is conditionally Gaussian. Then 

- 4 (Y-+P 
00 e 2 0 ~  

log2(1 + e - Y )  dy. (14.69) 

We will denote this as ZA(C?A) = Z(X; A ) .  Since this is information regarding a binary- 
valued random variable, we have the limits 0 5 Z (X; A )  5 1. We will furthermore define 
the function J(a) = ZA(C?A) l u A = o .  Since this is mutual information, it can be shown that 
J(a) is a monotonic function of c?, so that there is an inverse: 

UA = J-l( lA).  (14.70) 

= ‘ - L c x J  &C?A 

A 

Mutual Information Between X and E We can similarly write the mutual information 
between X and E .  Following (14.68) we have 

. ,  
(14.7 1) 

In this case, we do not consider E to be a Gaussian random variable. Instead, to compute 
ZE, a simulated channel is used to produce data which are passed through a stage of the 
decoder. Then, the extrinsic output of the decoder is used to estimate p~(y1.i) by creating 
a histogram of the extrinsic outputs. This estimated density is numerically integrated to 
produce ZE in (14.7 1). In this simulation, the parameter CTA corresponding to some value of 
ZA via (14.70) is selected, and a Gaussian input vector A is generated according to (14.66), 
which is then passed through the BCJR algorithm at some SNR Eb/NO. There is thus some 
functional relationship between ZA, Eb/ No, and Z E ,  denoted abstractly as 

I E  = T(IA, Eb/NO) 

or, for a fixed Eb/No, simply as 

This function T denotes the “transfer” of information from the prior information A at the 
input of a decoder to the extrinsic information E at the output of the decoder, which, in the 
turbo decoding scheme, is then used as the prior input at the next decoder. 

Figure 14.14 illustrates the qualitative shape of the function T (ZA) for various values of 
S N R .  As the S N R  increases, the ZE available at the output of the decoder increases. 

I E  = T(IA). 
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Figure 14.14: Qualitative form of the transfer characteristic ZE = T(ZA).  

14.5.1 The EXIT Chart 

The plot in Figure 14.14 shows the mutual information ZE at the output of a single decoder 
as a function of the mutual information ZA at the input of the decoder. Let us now consider 
how this curve affects an iterative decoder. The extrinsic information El at the output of 
the first decoder is permuted and used as the prior information A2 at the next decoder. Let 
Z:’ denote the mutual information I (X; A1) at the nth iteration of first the decoder, starting 

with zero a priori knowledge I:’ = 0. Similarly let Zgl = Z(X; E l )  denote the mutual 

information Z(X; El) at the output of the first decoder at the nth iteration, Zgl = Ti(Z:’). 
This is forwarded to the next decoder to become Z E 1  = Zgl. This passes through the second 

decoder to become Izl = T2(ZE1), which in turn is passed back to the first decoder as the 

information.) 
To portray this iteration graphically, the mutual information function ZE, = T(ZA, ) is 

reflected across the line y = x and plotted, so that the abscissa and ordinate of the plot are 
interchanged. Then starting at ZI1 = 0, each ordinate becomes an abscissa for the next 
iteration. Figure 14.15(a) shows the information decoding in a sequence of decoding steps, 
following the arrows. Ultimately (in this case), a point is reached where ZA = 1. If the prior 
information about a bit is sufficiently close to 1, then we conclude that the prior information 
is sufficient to accurately decode the bit. Thus, in this case, the decoder iterates until a 
correct decoding occurs. There is a “channel” or gap between the two curves in Figure 
14.15(a). The decoding proceeds by walking through this channel. 

Figure 14.15(b) shows how the iterative decoding process can break down. In this case 
T (  ZA) is plotted for a lower SNR, producing a function T ( ZA) which crosses the y = x line. 
As a result, the iterations get stuck at the crossover point. The decoder is unable to “exit” 

prior, z ~ + ’ l  = ZE2 [el . (Note that interleaving or de-interleaving does not change the mutual 
I 



14.6 Block n r b o  Coding 623 

c * 

- w 
- - 

l a n  

the channel in the EXIT chart. 
Clearly, there is a threshold phenomenon taking place: for a sufficiently large SNR, 

after a sufficiently large number of iterations the decoder is able to decode correctly. For a 
sufficiently small SNR, the “channel” in the graph shuts down. The decoder never reaches 
the point that there is sufficient information about X in the extrinsic information to be able 
to correctly decode, no matter how many times the decoder iterates. 
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(b) Decoding below threshold. The decoder cannot get 
past the pinchoff point. 

Figure 14.15: Trajectories of mutual information in iterated decoding. The iterations follow 
the arrows. 

Clearly, the farther the EXIT chart is from the line y = x, the faster the ZA will converge 
to 1. When the EXIT chart remains above the line y = x, convergence occurs. However, 
if it remains too near the y = x line, then convergence is slowed. Such a line, having a 
derivative with value nearly equal to 1, is said to be “flat.” 

The EXIT chart reveals something fundamental about the iterative decoding process. 
As the SNR approaches the threshold, the number of decoding iterations must increase, 
because each step through the EXIT chart is smaller. This behavior occurs independent of 
the particular decoding algorithm used, or, as will be discussed in chapter 16, regardless of 
the fact that there are cycles in the associated factor graph. Decoding near capacity seems 
to be intrinsically difficult. 

14.6 Block Turbo Coding 

While the turbo code examples up to this point in the chapter have employed convolutional 
codes as their constituent codes, other block codes may also be used. As an example, Figure 
14.16 illustrates a turbo coder built using parallel concatenated BCH codes in what is called 
Turbo BCH coding. One particular structure for the interleaver is suggested in Figure 14.17. 



624 mrbo Codes 

(1) 
V t  BCH 

Encoder 1 

Xt 
* * 

7 

Puncturing 
and Interleaver 

n Multiplexing 

(2) 
V t  BCH 

Encoder 2 
w * 

x’ = n ( X )  

* 

Figure 14.16: Turbo BCH encoding. 

Figure 14.17: Structure of a particular implementation of a parallel concatenated code. 

In this case, message data are written into a k2 x kl matrix. Data are read out in row order and 
passed to encoder 1, and data are read out in column order - constituting a permuted order 
- and passed through encoder 2. This framework is highly suggestive of the product codes 
introduced in Section 10.4, except that there is no portion of the codeword corresponding 
to the “parity on parity” that is present in a conventional product code. (Compare Figure 
14.17 with Figure 10.5.) 

Decoding of block turbo decoding proceeds as for the convolutional code: a decoder 
is used for each constituent code which produces a soft output in the form of an extrinsic 
probability, which is interleaved (or de-interleaved) and passed into the other decoder as a 
prior. The primary difficulty, then, is how to obtain soft output decoders for the codes. 

Soft decoding of each code can be accomplished using the BCJR algorithm on the trellis 
representation for the code. To make the description explicit, we assume transmission over 
an AWGN. To make the description even more explicit, consider the trellis representation 
for the cyclically encoded (7,4,3) Hamming code with generator g(x) = x 3  + x + 1, shown 
in Figure 14.18 (and also originally in Figure 12.34). Unlike convolutional codes, where 
each branch of the trellis may convey several bits of systematic and/or parity information, 
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Figure 14.18: A trellis for a cyclically encoded (7,4,3) Hamming code. 

each branch of the block code trellis carries only one bit of information, either message bits 
(for the first k stages) or parity bits (for the last n - k stages). The transition probability 
y t ( p ,  q )  is thus simplified compared to (14.27) and (14.52). We can write the transition 
probability as (neglecting uninformative factors) 

prior message or parity 

The likelihood ratio can then be computed as 

(14.72) 

- - A p , t  + h , t  + L , r  9 (14.74) 

where hp,t = A(&) is the prior information, hs,t = L,rt is the channel information, and 
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is the extrinsic information. Note that, unlike the convolutional coded case, the extrinsic 
information depends only on a and /3 probabilities and not on any parity bits transmitted 
with the systematic bits along a branch. Given y r ( p ,  q ) ,  the computation of the a and /3 
probabilities is identical to that for turbo codes based on convolutional codes. 

14.7 Turbo Equalization 

14.7.1 Introduction to Turbo Equalization 

In this section we introduce a decoding technique applicable to a channel model which differs 
significantly from other channel models used throughout this book. Because of the close 
connection of turbo equalization with turbo decoding, it is deemed to be an appropriate topic 
to include here. In the rest of the book, the channel model has been a discrete memoryless 
model, specifically, an adhtive noise channel in which the received signal rr is simply the 
transmitted signal st corrupted by additive noise (typically either Gaussian or Bernoulli): 
rt = st + nt . In this section, however, we consider the case that the channel has a response 
characterized by a transfer function H ( z )  = ho + hlz-’+. - + h ~ z - ~ ,  so that the received 
signal is 

/ L  \ 

Such a channel could arise, for example, in a multipath environment or bandlimited channel. 
The degradation of the received signal due to the channel can be severe, so that it 

is important to compensate in some way for the effect of the channel. Over the years, 
considerable work has been done on receivers for such channels. Various approaches include 
the following: 

1. Linear equalization with a fixed filter f i ( z ) ,  so that r ( z ) f i ( z )  “looks” a lot like the 
transmitted signal s ( z ) .  The equalizer filter can be designed according to several 
criteria, such as zero forcing (cancel all interference, but neglect the influence of 
noise) or minimum mean-square error (minimize the average interference energy) 
[276]. 

2. Decision feedback equalization, a technique in which decisions on previous outputs 

3. Adaptive linear equalizers and decision feedback techniques, in which the receiver 

4. Maximum likelihood sequence estimation (MLSE), in which the channel is regarded 
as having a state determined by the previous L bits, and a Viterbi decoder is used to 
decode [276]. 

5 .  Maximum a posteriori decoding, similar to MLSE, except that the MAP (or BCJR) 
algorithm is run. The latter two methods are arguably optimal, but run into compu- 
tational difficulties because the number of states grows exponentially with the length 
L of the channel response. (Conventional turbo equalization also suffers from this 
problem.) 

are fed back to cancel their influence in the received signal [276]. 

adaptively estimates the coefficients for the receiver (see, e.g., [276]). 

6. Suboptimal variations and interpolations of these ideas (such as [310]). 
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Figure 14.19: Framework for a turbo equalizer. 

Until recently, most work in this area employed a nearly tacit separation principle: the 
equalization and detection was followed by the error correction decoding. However, the 
advent of turbo decoding algorithms has led to the development of turbo equalization, in 
which the channel impairments and the error correction are dealt with in an iterated structure. 

14.7.2 The Framework for Turbo Equalization 

A key observation is that if a convolutional encoder at the transmitter is followed by an 
interleaver, then the convolutive effects experienced as the signal traverses through the 
channel act like a second convolutional encoder, so the overall scheme acts like a serially 
concatenated code, with an interleaver between them. It is thus amenable to turbo decoding. 
Figure 14.19 shows the general framework for a system that can employ turbo decoding. 
The interleaver serves to decorrelate the values, so that extrinsic information computed in 
the decoder is nearly independent of the input values and can be used as a prior. In practice, 
the length of the interleaver is on the order of the length of the channel response. 

In the turbo decoder, the channel response is first accounted for using a MAP equalizer, 
which produces information about the bits in the form of log likelihood ratios, h(xt  Ir). The 
prior information is subtracted, leaving an extrinsic information that is passed through the 
interleaver and on to the convolutional decoder, where it is employed as a prior probability. 
The output of the decoder is again bit information in the form of log likelihood ratios 
h(xl Ir). The prior information associated with this is subtracted off, then the resulting 
extrinsic information is sent back to the equalizer for another iteration. 

All elements of this equalizer should by now be familiar, with the possible exception of 
the MAP equalizer, which is described via an example. 

Suppose fl-valued bits emerging from the convolutional encoder are denoted as fit 
(where, for the moment, we simply think of these as a string of bits, without regard to which 
are message bits and which are parity bits). The modulated bits are af = f i z z .  Suppose 
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Figure 14.20: Trellis associated with a channel with L = 2. 

that the channel has length L = 2, so that the received signal can be written as 

rt = h o a i j ,  + h l f i i j t - I  + h 2 f i i j t - 2 .  

We now form the trellis associated with this channel by defining the state at time t to be the L 
previous bits ( & - I ,  ijr-2). Figure 14.20 shows the trellis associated with this channel. At a 
state p = ( i j t - l ,  iji-2) at time t ,  with the input ijt  = i j ( P s 4 )  leading to the state q = ( S t ,  i j t - l )  

at time t + 1, let the channel output (excluding the noise) be denoted as 

s t b ,  q )  = ho f i i j r  + h i f i i j t - i +  h 2 a i j t - 2 .  

Then for AWGN, the likelihood function is 

Based on this, a transition probability suitable for use with the MAP algorithm is 

Yt(P3 4 )  = p(rtlsr(P3 q ) ) W t  = f i ( P . 4 ) ) .  

This can be subjected to the usual simplifications (e.g., expressed in log form, unimportant 
terms ignored, etc.). 

Once the transition probability y r ( p ,  q )  is established, the remainder of the MAP or 
log-MAP algorithm follows exactly as outlined in Section 14.3.12. The resulting decoder 
produces log likelihoods h(Zt Ir), from which the extrinsic probabilities can be extracted for 
use in the convolutional decoder. 

It is typical for turbo equalizers to have several dB of improvement compared to non- 
turbo equalizers. For a comparative study, we refer the reader to [ 1411. 

Of course, computing the transition probability, and hence the MAP decoding, requires 
knowledge of the channel coefficients {ho, hl , . . . , h L } .  A variety of methods of estimating 
these are known. Many signals are prefaced with a training sequence which can be used 
to establish linear equations for computing the coefficients, using, for example, a minimum 
mean-squared error or least-squares criterion. Channel coefficients can also be estimated 
“blindly” by averaging out the unknown bits using an EM (expectatiodmaximization) type 
algorithm (see, e.g., [310]). Once transmission has begun, previous bits can be used to 
re-estimate the channel coefficients if the channel is time-varying . 
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Programming Laboratory 12: 

Turbo Code Decoding 

Objective 

In this laboratory, you will finalize the decoding algorithms 
for the probabilistic form of the BCJR algorithm and use 
this to construct a turbo decoder. 

Background 

Reading: Sections 14.2, 14.3. 

Programming Part 

1) Using the class definitions and declarations shown 
in Algorithm 14.3, complete the function alphabeta 
to compute 01 and using the forward and backward 
passes. Use normalized computations. Verify that 01 and 
,6 are computed correctly using the program test bc j r, 
comparing the results with Example 14.2. 

Algorithm 14.3 BCJR Algorithm 
File: BCJR. h 

BCJR.cc 
testbcjr.cc 

2) Use your BCJR algorithm in conjunction with 
testturbodec2 to reproduce (part of) the data shown 
in Figure 14.1 for a (37,21,65536) turbo code. Note: Do 
not take the SNR too large, or the computations will take 
excessively long. 

Algorithm 14.4 Test the turbo 
coder 
File: testturbodec2. cc 

de- 

As currently implemented, the interleaver is a very sim- 
ple random interleaver. 

14.8 Exercises 

14.1 A convolutional encoder uses the parity generator G(x)  = 2.  The length of the input 
1 +x +x 

sequence is 10. The interleaver is described by the sequence l7 = (9 ,4 ,2 ,7 ,0 ,6 ,  1, 8 ,  3,5). 

(a) Draw the block diagram for the turbo encoder and the trellis for the convolutional code. 
(b) The sequence x = [ 1, 1,0,0,  1, 0, 1, 0, 1, 11 is input to the turbo encoder. Determine the 

(c) The sequence is punctured to obtain a rate R = 112 code by taking the even bits of vC1) 
output sequences do), dl), d2) and v. 

and the-odd bits of d2). Determine the output sequence v now. 

f i s  exercise is meant to introduce concepts related to turbo decoding. 

Let rt be the output of an AWGN channel. Suppose that BPSK modulation is employed. 
Let the transmitted signal st have energy Eb, where st = fi& and & E {fl}. Let 

Show that 

where Lc = 2 f i / 0 2  and A(&) = log e. 
Suppose that the signal st is sent independently through two different channels, so the 
received values are 

U i t l r t )  = Lcrt + A(.%), (14.75) 

(1) 

(2) 

rt(') = sr + It, 
rj2) = St + n, , 
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where nj') and nj2' are independent. Show that 

h(& I $ ) ,  rj2') = Lc, r y  + Lc*rj2' + A(&). (14.76) 

Now consider the simple (3,2,2) parity check code shown in Figure 14.21(a). The parity 
check p i  (across the rows) is defined by 

p i  = i i 1  63 xi2 

and the parity check for the pi I (down the columns) is defined by 

p;  = x 1 j  63?2i, 

where 63 is the GF(2) addition defined in (14.57). Explain why h(212 63pI Ir) is extrinsic 
information for the bit 211. (Here the conditioning on r denotes conditioning based on 
the entire set of received codeword data.) Denote this extrinsic information as &(21 I ) - ,  
that is, the likelihood ratio of the extrinsic information using the horizontal code parity 
checks. 
Note that, using the H operator defined in (A.3), we can write 

Le(z11)- = hG12 63 ~11') = h(2121r) H h ( ~ l l r ) .  (14.77) 

Suppose the channel input values Lcrt are as shown in Figure 14.21(b). Using (14.77) 
and the approximate formula (A.2), determine the extrinsic information for 211, 212, 221 
and X22 using the horizontal parity bits p i .  That is, determine he(211)-, he(212)-, 

hc(521)-, and &(222)-. Assume uniform priors. Computing this extrinsic information 
constitutes the horizontal stage of decoding. 
For example, for 21 1 ,  we have 

L e ( Z l 1 ) -  = G 1 2  63 pllr)  = h(2121r) H h ( p 1 l r )  

= (Lcri2 + h(212)) H h ( p 1  Ir) 

= Lcr12 H h ( p 1  Ir) 

(using, e.g., (14.75)) 

(assuming uniform priors) 

= 1.5 EE 1.0 FZ 1.0 

These likelihoods are available from Lcrt in Figure 14.21(b). Show that the extrinsic 
information h e ( i i j ) -  is as shown here: 

For the second stage of decoding, determine the extrinsic information after the first vertical 
decoding using the information fromthe first (horizontal) extrinsic information as the prior. 
For example, 

he(xl l ) l  = ~ ( 2 2 1  63 ~1 ~ r )  = ~ ( 2 2 1  IT) EE h(pj  I ~ I  I 

= ( ~ c r 2 1 +  he(z21)-) EE ~ ( p j  ~ r )  
= (4 + (-1)) 2.0 FZ 2.0. 

Show that & ( i l l ) ' ,  he(212)1, he(221)/ ,  and he(222)' are as shown here: 

+2.0 +0.5 E{ 
This completes the vertical stage of decoding. 
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(a) A simple (3, 2, 2) parity 
check code. 

(b) Received values L , q .  

Figure 14.21: Example for a (3 ,2 ,2 )  parity check code. 

(Q The overall information after a horizontal and a vertical stage is 

 xi,; Ir, -, 1) = Lcri; + he(xi;)-  + h e ( i i j ) ' .  

The addition is justified by (14.76), since after t h i s  first complete round the three terms in 
the sum are independent. Show that this information is as shown here: 

+3.5 +2.5 

(g) Decoding can be accomplished by taking the sign of the total likelihoods. Determine the 

(h) If iteration continues, the information he(.fij)l is used as the prior for the next horizontal 
decoded values after this round of decoding. 

stage. Show that at the next stage, the extrinsic information is 

(If iteration continues, then the independence assumption no longer holds, but is invoked 
anyway.) 

14.3 Suppose that a R = k / n  convolutionally encoded sequence is passed through a BSC with 
channel crossover probability pc .  Determine the transition probability yj ( p ,  q )  for this channel. 

14.4 In Example 14.2: 

(a) Compute a; and a; using the received data r in the example. 
(b) Compute pi and using the received data r in the example. 
(c) Using the data provided in Table 14.1, compute P ( x 0  = Olr) and P(x1 = Olr). 

14.5 Show that the log likelihood of the sequence log p(r) = log p(r0N-l) can be written as 

N 

14.6 Given the log probability ratio h = log(P(X = l ) /P(X = 0)), determine P(X = 1) and 
P ( X  = 0). Show that P ( X  = x )  can be written as P(X = x )  = [e-A/2/(1 + e-A)]eiA/2, 
where 2 = 2x - 1. 
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14.7 Show that (14.39) is correct. 
14.8 Show that (14.46) is correct. 
14.9 Show that (14.47) is correct. Hint: Consider separately the cases 

x k  = 1, 

k[l,'l(xklr) >> 0, k[1,21(xklr) >> 0,  

and 

14.10 (Examination of the approximation (14.49).) Let x i  = 1 and make a plot of x2 vs. log(exl + 
eX2)  - x2 for x2 in the range [ 1,201. Comment on where the approximation becomes particularly 
accurate. 

14.11 Show that (14.54) is correct. 
14.12 Show how to obtain the approximation (14.64) from (14.62). 
14.13 Show how (14.69) follows from (14.67) and (14.68). 
14.14 The EXIT chart can be used to estimate the bit error rate after an arbitrary number of iterations. 

(a) Argue that D is Gaussian distributed with variance u; and mean 6212, where 

Using D = Z + A + E 

a; =a ,+oA+uE.  2 2 2  

(b) Show that the probability of bit error is therefore Pb 
(c) Show that 

Q(kd/ag). 

8REb/No + J - ' ( ~ A ) ~  + J - ~ ( I E ) *  
2 

14.9 References 

Turbo codes were originally described in [28, 271; their decoding algorithm was somewhat 
different than that described here, since they used a Gaussian random variable to represent 
the extrinsic probability passed between the decoders. The original BCJR algorithm appears 
in [ 111. The a! and B probabilities are also fundamental in hidden Markov models; see, for 
example, [269,280,67]. The presentation here benefited from the discussion in [ 141, [303], 
and [141]. The latter reference provides an extensive comparison between the various 
decoding algorithms presented here as well as a wealth of information about turbo code 
performance and tradeoff studies. Several tutorial expositions are also available; see, for 
example [315]. A discussion of the weight distributions of turbo codewords appears in [21, 
201. Discussion on the structure of the codewords appears in [294], while some discussion 
of design issues appears in [20]. The paper [69] provides suggested tables of encoder 
polynomials and suggests that the feedback coefficients for the encoder should be a primitive 
polynomial. 

The discussion on spectral thinning was drawn from [303], as was the discussion on 
interleaving. For more on distance spectrum of turbo codes, see [259]. A more extensive 
treatment of interleaving, discussing several different structured approaches to interleavers, 
appears in [146, Chapter 31 and [6,7,72,328]. See also [12, 180, 329,641 for discussions 
on interleaving. 
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The EXIT chart analysis is discussed in [336] and references therein. 
Our discussion of the cross entropy stopping criterion is drawn from [134]. The other 

stopping criteria are described in [311, 3121; see also [3801, [3841, [ l l ,  and 13131. 
The max-log-MAP algorithm appeared first in [295]. The SOVA algorithm is widely 

attributed to [ 1321. It is also described in [ 13 1,1341. The essential equivalence of the SOVA 
and max-log-MAP algorithm is discussed in [102]. 

Turbo block codes are discussed in [134]. Extensive simulation results of Turbo BCH 
codes appear in [141]. For an alternative viewpoint based upon the Chase algorithm, see 
[279] or [278]. 

On turbo equalization, see [343]. For an extensive, self-contained introduction to turbo 
equalization, see [ 1901. The book [ 1411 provides detailed examples of turbo equalization. 
An example of turbo equalization using LDPC codes combined with blind estimation of the 
channel coefficients is in [127]. 

An excellent resource on material related to turbo codes, LDPC codes, and iterative 
decoding in general is the February 2001 issue of the IEEE Transactions on Information 
Theory, which contains many articles in addition to those articles cited here. 



Chapter 15 

Low-Density Parity-Check Codes 
15.1 Introduction 

Low-density parity-check (LDPC) codes were originally proposed in 1962 by Robert Gal- 
lager [112, l 131. LDPC codes (sometimes called Gallager codes [217]) have performance 
exceeding, in some cases, that of turbo codes, with iterative decoding algorithms which 
are easy to implement (with the per-iteration complexity much lower than the per-iteration 
complexity of turbo decoders), and are also parallelizable in hardware. There are other 
potential advantages to LDPC codes as well. In a very natural way, the decoder declares a 
decoding failure when it is unable to correctly decode, whereas turbo decoders must perform 
extra computations for a stopping criterion (and even then, the stopping criterion depends 
upon a threshold that must be established, and the stopping criterion does not establish that 
a codeword has been found). Also, LDPC codes of almost any rate and blocklength can be 
created simply by specifying the shape of the parity check matrix, while the rate of turbo 
codes is governed largely by a puncturing schedule, so flexibility in rate is obtained only 
through considerable design effort. Also, because the validity of a codeword is validated 
if its parity checks, even when errors do occur, they are almost always detected errors (es- 
pecially for long codes). As an additional boon on the commercial side, LDPC codes are 
not patent protected. On the negative side, LDPC codes have a significantly higher encode 
complexity than turbo codes, being generically quadratic in the code dimension, although 
this can be reduced somewhat. Also, decoding may require many more iterations than turbo 
decoding, which has implications for latency. 

It is a curious twist of history that LDPC codes, which are among the best codes in 
the world, should have been largely unnoticed for so long. Among the reasons that the 
codes might have been overlooked are that contemporary investigations in concatenated 
coding overshadowed LDPC codes, and that the hardware of the time could not support 
effective decoder implementations. As a result, LDPC codes remained largely unstudied 
for over thirty years, with only scattered references to them appearing in the literature, 
such as [330, 371, 3701. Recently, however, they have been strongly promoted, beginning 
with the work of MacKay [217,66,215,216]. Both historically and recently, LDPC codes 
have been proved to be capable of closely approaching the channel capacity. In fact, the 
proof of the distance properties of LDPC codes demonstrates such strong performance for 
these codes that it has been termed a “semiconstructive proof of Shannon’s noisy channel 
coding theorem” [217, p. 4001. In particular, using random coding arguments MacKay 
showed that LDPC code ensembles can approach the Shannon capacity limit exponentially 
fast in the length of the code. The powerful capabilities of LDPC codes have led to their 
recent inclusion in several standards, such as IEEE 802.16, IEEE 802.20, IEEE 802.3 and 
DBV-RS2. 
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15.2 LDPC Codes: Construction and Notation 

We use N to denote the length of the code and K to denote its dimension and M = N - K.' 
Throughout this chapter, only binary LDPC codes are considered (although they can be 
constructed over other fields). Since the parity check matrices we consider are generally 
not in systemic form, we usually use the symbol A to represent parity check matrices, 
reserving the symbol H for parity check matrices in systematic form. Following the general 
convention in the literature for LDPC codes, we assume that vectors are column vectors. A 
message vector m is a K x 1 vector; a codeword is a N x 1 vector. The generator matrix G 
is N x K and the parity check matrix A is ( N  - K) x N ,  such that H G  = 0. We denote 
the rows of a parity check matrix as 

The equation aTc = 0 is said to be a linear parity-check constraint on the codeword c. We 
use the notation zm = afc and call zm a parity check or, more simply, a check. 

For a code specified by a parity check matrix A ,  it is expedient for encoding purposes 
to determine the corresponding generator matrix G .  A systematic generator matrix may 
be found as follows. Using Gaussian elimination with column pivoting as necessary (with 
binary arithmetic) determine an M x M matrix A;' so that 

H = A i ' A  = [Z A z ] .  

(If such a matrix A ,  does not exist, then A is rank deficient, r = rank(A) < M .  In this 
case, form H by truncating the linearly dependent rows from A,' A .  The corresponding 
code has R = K I N  > ( N  - M ) / N ,  so it is a higher rate code than the dimensions of A 
would suggest.) Having found H, form 

G = [ y ] .  

Then H G  = 0, so A ,  H G  = AG = 0, so G is a generator matrix for A .  While A may be 
sparse (as discussed below), neither the systematic generator G nor H is necessarily sparse. 

Definition 15.1 A low density parity check code is linear block code which has a very 
sparse parity check matrix. 

For reasons to be made clear below, the parity check matrix should also be such that 
no two columns have more than one row in which elements in both columns are nonzero. 

The weight of a binary vector is the number of nonzero elements in it. The column 
weight of a column of a matrix is the weight of the column; similarly for TOW weight. An 
LDPC generator is regular if the column weights are all the same and the row weights are 
all the same. To generate a regular LDPC code, a column weight wc is selected (typically a 
small integer such as w ,  = 3) and values for N (the block length) and M (the redundancy) 

A matrix is said to be sparse if fewer than half of the elements are nonzero. 

(This corresponds to no cycles of length four in the Tanner graph.) 

lIn other chapters, n, k ,  andm are used to describe the code. In this chapter we use n and m as indices, suggesting 
by them that they index length and redundancy components. 
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are selected. Then an M x N matrix A is generated which has weight wc in each column and 
row weight w,  in each row. Attaining uniform row weight w ,  requires that wcN = WrM. 
This structure says that every bit participates in wc checks and each check involves W r  

bits. Such a regular code is called a (wc ,  w,, N )  code (or a ( w c ,  W r )  code, if a sequence of 
codes of increasing length N is considered). The design rate of a regular ( w c ,  W r )  code is 
R = 1 - w c / w r ,  provided that all the rows are linearly independent. (Because rows may be 
linearly dependent, the actual rate may be somewhat higher than the design rate.) Gallager 
showed that the minimum distance of a typical regular LDPC code increases linearly with 
N provided that w,  2 3. The parity check matrix need not be regular; codes having varying 
column weights are in general superior to regular codes. Irregular codes are introduced in 
Section 15.10. 

The parity check matrix A may be generated at random with the appropriate column 
and row weights (although there are some restrictions on column overlap which should be 
met, as discussed in Section 15.11). We thus have, in constructive fulfillment of Shannon's 
original proof, a random code that is, as we shall see, easily decoded. 

Example 15.1 

(15.1) 1 [ 1 1 0 1 0 0 1 1 1 0  

1 1 1 0 0 1 1 0 0 1  
1 0 1 0 1 1 0 1 1 0  

A =  0 0 1 1  1 0  1 0  1 1  
0 1 0 1 1 1 0 1 0 1  

has column weight wc = 3 and row weight wr = 6. (Strictly speaking, A is not a sparse matrix, since 
more than half of its elements are nonzero. However, it was chosen as a small matrix to illustrate 
the concept of a random matrix with fixed-weight columns. Space considerations preclude explicit 
presentation of more realistic parity check matrices.) 

For a codeword c = [cl, 122, . . . , ~101,  we must have 

Cl + C 2  + C3 + C6 + C7 + C10 = 0, 

Cl + C3 + C5 + C6 + Cg + Cg = 0,  
etc. Thus, bits cl , c2, c3, c6, c7 and c10 participate in check z1. Also, from A it may be observed that 
bit cl is involved in checks z1, z2 and z5. (The italicized elements of A are discussed below.) 

Example 15.2 One way to construct a (wc, wr )  parity check matrix is as follows. Construct the 
matrix Ao, 

A0 = 

ri 1 ... 1 

1 1  ... 1 I 

with N / W r  = M/wc rows and N columns. This defines a (1, w,) regular parity check code, but one 
having minimum distance 2 (why?). Then we form A by stacking permutations of Ao, 
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where each ni(A0) denotes a matrix obtained by permuting the columns of Ao. Obviously, the 
choice of the permutations determines the distance structure of the code. However, a random choice 
of permutation will, on average, produce a good code. (This is an instance of the concentration 
principle, which essentially states that a random code will, with high probability, have behavior like 
the average code.) Gallager showed that if each permutation is chosen at random out of the N !  possible 
permutations, then the average minimum distance increases linearly with N .  Such codes are called 
good codes. This is thus a rather constructive way of achieving Shannon’s original idea of random 
codes. While the code is increasing in size, the column and row weight are fixed, which means that 

0 the decoding complexity (per iteration) remains fixed. 

Example 15.3 An example of an LDPC parity check matrix for a (3,4)-regular LDPC code due to 
Gallager [ 1 131 is 

A =  

Agal1.m I Agall. txt 
\ J 

1 
I I I 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1  
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0  
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0  
0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0  
0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0  
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1  

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0  
0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0  
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0  
o o o l o o o o l o o o o l o o l o o o  
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1  

It can be shown that there are 13 linearly independent rows. The dimension of the code is thus 
0 20 - 13 = 7, so we have a (20,7) code with actual rate R = 0.35. 

In many LDPC codes, N is taken to be quite large (such as N > 10000) while the column 
weight is held at around 3 or 4, so the density of 1s in the matrix is quite low. (A column 
weight of w, = 2 has been found to be ineffective [217].) 

Since the A matrix is sparse, it can be represented efficiently using lists of its nonzero 
locations. In this notation, bits are typically indexed by n or n’ (e.g., c n l )  and the checks are 
typically indexed by m or m’ (e.g., z m ) .  The set of bits that participate in check Zm (i.e., the 
nonzero elements on the mth row of A )  is denoted 

Thus we can write the mth check as 

Zm = C cn. 
neN, 

The set of bits that participate in check zm except for bit n is denoted 

The notation INm I indicates the number of elements in the set N m .  These sets should be 
considered ordered lists, with the ith element of Nm being indicated by N m  (i). 

The set of checks in which bit cn participates (i.e., the nonzero elements of the nth 
column of A )  is denoted 

For a regular LDPC code, 1 Mn I = w,. Let 

Mn = {m : Am, = l}. 

M n - m  = Mn\m 
be the set of checks in which bit cn participates except for check m. 
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Example 15.4 For the parity check matrix of (15. l), 

N1 = [1,2, 3, 6,7, lo}, N2 = {1,3, 5, 6, 8,9}, etc. 

MI  = {1,2,5}, M2 = {1,4,5}, etc. 

N2,1 = 13,5, 6,8,91, N2,3 = 11, $ 6 ,  8,91, etc. 

M2,i = 14,5}, M2,4 = {1,51, etc. 

15.3 Tanner Graphs 

Associated with a parity check matrix A is a graph called the Tanner graph containing two 
sets of nodes. The first set consists of N nodes which represent the N bits of a codeword; 
nodes in this set are called “bit” nodes. The second set consists of M nodes, called “check” 
nodes, representing the parity constraints. The graph has an edge between the nth bit 
node and the mth check node if and only if nth bit is involved in the mth check, that is, if 
A,, = 1. Thus the Tanner graph is a graphical depiction of the parity check matrix. Figure 
15.1 illustrates the graph for A from Example 15.1. A graph such as this, consisting of two 
distinct sets of nodes and having edges only between the nodes in different sets, is called 
a bipartite graph. The Tanner graph is used below to develop insight into the decoding 
algorithm. For the Tanner graph representation of the parity check matrix of a regular code, 
each bit node is adjacent to wc check nodes and each check node is adjacent to w,. bit nodes. 

z1 

22 

z3 

24 

25 

bit check 
nodes nodes 

Figure 15.1: Bipartite graph associated with the parity check matrix A.  (The dashed edges 
correspond to a cycle of length four, as discussed below.) 

15.4 Transmission Through a Gaussian Channel 

The decoding algorithm described below is a soft-decision decoder which makes use of 
channel information. We develop the decoder for codewords transmitted through an additive 
white Gaussian noise (AWGN) channel. When a codeword is transmitted through an AWGN 
channel the binary vector c is first mapped into a transmitted signal vector t. For illustrative 
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purposes, a binary phase-shift keyed (BPSK) signal constellation is employed, so that the 
signal a = a represents the bit 1 and the signal --a represents the bit 0. The energy 
per message bit Eb is related to the energy per transmitted coded bit E ,  by E, = REb, 
where R = k / n  is the rate of the code. The transmitted signal vector t has elements 
tn = (2cn - 1)a. This signal vector passes through a channel which adds a Gaussian noise 
vector u, where each element of v is independent, identically distributed with zero mean 
and variance o2 = N0/2 .  The received signal is 

r = t + v .  (15.2) 

Given the received data, the posterior probability of detection can be computed as 

where it assumed that P(cn = 1) = P ( C n  = 0) = i. In (15.3), the notation P(-) indicates a 
probability mass function and p ( . )  indicates a probability density function. For an AWGN 
channel, 

. (15.4) 
1 

p(rnltn = a)  = -e-&(rn-tn)* 

&a 
Applying (15.4) in (15.3) we obtain 

(15.5) 

We shall refer to P(cn = x Irn) as the channelposterior probability and denote it by pn ( x ) .  

Example 15.5 The message vector m = [l 0 1 0 1IT is encoded using a systematic gener- 
ator G derived from (15.1) to obtain the code vector 

c = [ o  0 0 1 0 1 0 1 0 l]? (15.6) 

Then c is mapped to a signal constellation with amplitude a = 2 to obtain the vector 
T t= [ -2  -2 -2 2 -2 2 -2 2 -2 21 , 

which is transmitted through an AWGN channel with u2 = 2. The vector 

r = [-0.63 -0.83 -0.73 -0.04 0.1 0.95 -0.76 0.66 -0.55 0.58IT 

is received. Using (15.5), it is found that the channel posterior probabilities are 

P ( c  = llr) = [0.22 0.16 0.19 0.48 0.55 0.87 0.18 0.79 0.25 0.76IT. (15.7) 

If r were converted to a binary vector by thresholding the probabilities in (15.7) at 0.5, the estimated 
vector 

would be obtained, which differs from the original code vector at the two underlined locations. 
However, note that at the error locations, the channel posterior probability is only slightly different 
than the threshold 0.5, so that the bits only “weakly” decode to the values 0 and 1, respectively. Other 
bits more strongly decode to their true values. These weak and strong indications are exploited by a 
soft-decision decoder. 0 

[o 0 0 0 1 1  0 1 0  11 
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15.5 Decoding LDPC Codes 

Some insight can be gained into the soft, iterative decoding algorithm we will eventually 
develop by considering a preliminary, iterative, hard decision decoder: 

Hard Decoder: For each bit cn, compute the checks for those checks that are influenced 
by cn. If the number of nonzero checks exceeds some threshold (say, the majority of the 
checks are nonzero), then the bit is determined to be incorrect. The erroneous bit is flipped 
and correction continues. 

This simple scheme is capable of correcting more than one error, as we now explain. 
Suppose that cn is in error and that other bits influencing its checks are also in error. Arrange 
the Tanner graph with cn as a root (neglecting for now the possibility of cycles in the graph). 
In Figure 15.2, suppose the bits in the shaded boxes are in error. The bits that connect to the 
checks connected to the root node are said to be in tier 1. The bits that connect to the checks 
from the first tier are said to be in tier 2. Many such tiers could be established. Then, decode 
by proceeding from the “leaves” of the tree (the top of the figure). By the time decoding on 
Cn is reached, other erroneous bits may have been corrected. Thus bits and checks which 
are not directly connected to cn can still influence cn. 

Usethese - Tier 2 

And these - 

parity checks 

this bit. 

Figure 15.2: A parity check tree associated with the Tanner graph. 

The soft decoder: In the soft decoder, rather than flipping bits (a hard operation), we 
propagate probabilities through the Tanner graph, thereby accumulating evidence that the 
checks provide about the bits. The optimal (minimum probability of decoding error) decoder 
seeks a codeword 2 which maximizes P(clr, Ac = 0) ,  that is, the most probable vector 
which satisfies the parity checks, given set of received data r = [ r l ,  r2, . . . , r ~ ] .  However, 
the decoding complexity for the true optimum decoding of an unstructured (i.e., random) 
code is exponential in K ,  requiring an exhaustive search over all 2 K  codewords. Instead, 
the decoder attempts to find a codeword having bits cn which maximize 

P(c ,  lr, all checks involving bit Cn are satisfied), 

that is, the posterior probability for a single bit given that only the checks on that bit are 
satisfied. As it turns out, even this easier, more computationally localized, task cannot be 
exactly accomplished due to approximations the practical algorithm must make. However, 
the decoding algorithm has excellent demonstrated performance and the complexity of the 
decoding is linear in the code length. 
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The decoding algorithm deals with two sets of probabilities. The first set of probabilities 
is related to the decoding criterion, P(c ,  lr, all checks involving bit c,  are satisfied). We 
denote this by 

q n ( x )  = P(c, = xlr, all checks involving c, are satisfied), x E {0, l}, 

or, using the notation defined in Section 15.2, 

q n ( x )  = P(c ,  = xlr, Iz, = 0, m E M n } ) ,  x E (0, 1). (15.8) 

This probability is referred to as the pseudoposterior probability and is ultimately used to 
make the decisions about the decoded bits. A variant of this probability, called qmn (x), is 
also used, which is 

qmn(x) = P(c ,  = xlr, all checks, except z,, involving c,  are satisfied) 

qmn(x) = P(c ,  = xlr, {z,’ = 0,  m’ E M,,,]). 

The second set of probabilities has to do with the probability of checks given the bits. 
These indicate the probability that a check is satisfied, given the value of a single bit involved 
with that check and the observations associated with that check. This probability is denoted 
by rmn(x),  with rmn(x) = P ( z ,  = Olc, = x, r). 

The quantities qmn (x) and rmn (x) are computed only for those elements A,, of A 
that are nonzero. The decoding algorithm incorporates information from the measured 
data to compute probabilities about the checks, as represented by rmn (x). The information 
about the checks is then used to find information about the bits, as represented by qmn (x), 
This, in turn, is used to update the probabilities about the checks, and so forth. This 
amounts to propagating through the “tree” derived from the Tanner graph. Iteration between 
bit and check probabilities ( 4 s  and rs)  proceeds until all the parity checks are satisfied 
simultaneously, or until a specified number of iterations is exceeded. 

15.5.1 The Vertical Step: Updating qmn(x) 

Consider Figure 15.3(a), which is obtained by selecting an arbitrary bit node cn from the 
Tanner graph and using it as the root of a tree, with the subset of the Tanner graph connecting 
this bit to its checks and the other bits involved inthese checks as nodes in the tree. The 
bits other than c,  which connect to the parity checks are referred to as bits in tier 1 of the 
tree. We shall assume that the bits represented in the first tier of the tree are distinct, and 
hence independent. 

In reality, the portion of the redrawn Tanner graph may not be a tree, since the bits on 
the first tier may not be distinct. For example, Figure 15.3(b) shows a portion of the actual 
Tanner graph from Figure 15.1 with the root c1. In the figure, for example, bit c2 is checked 
by both checks z1 and 25. There is thus a cycle of length four in the graph, indicated by the 
dashed lines. This cycle corresponds to the italicized elements of the matrix A in (15.1). 
Such a cycle means that the bits in the first tier are not independent (as ideally assumed). 
However, for a sufficiently large code, the probability of such cycles is small (at least for 
trees represented out to the first tier). We therefore assume a tree structure as portrayed in 
Figure 15.3(a), with its corresponding independence assumption. 

Under the assumption of independence of bits in the first tier, the checks in the tree 
are statistically independent, given cn . The decoding algorithm uses information that the 
checks provide about the bits, as indicated by the following. 

or, more briefly, 
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Tier 1 

Figure 15.3: A subset of the Tanner graph. (a) Viewed as a tree, with node for c, as the 
root. (b) An actual portion of the Tanner graph, with node for cl as root, showing a cycle. 

Theorem 15.1 For a bit cn involved in parity checks { z m ,  m E MB}, if the checks are 
independent then 

q n ( X )  = aP(cn = xlrn> n P ( z m  = OJcn = X ,  r), (15.9) 
m E M n  

where (11 is a normalizing constant. 

Proof 

Due to independence of bits and noise, the conditional probability P(cn = xlr) can be 
written as P(cn = xlrn>. Under the assumption that the checks are independent, the joint 
probability on the checks can be factored, so that 
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The factor dividing this probability can be obtained by marginalizing: 

P(cn = xlrn) nmcMn P(zm = Olcn = X ,  r) . 
Ex! P(cn = X’Irn) n m , M n  P(zm = OIcn = x’ ,  r)’ 

qn(x) = 

that is, the factor is just a normalization constant, which we denote as a, which ensures that 
0 

In (15.9), q n ( X )  has two probability factors. The factor n , ,~ ,  P(zm = O(c, = x ,  r) 
has been called the extrinsic probability. Like the extrinsic probability used in turbo code 
decoding, it expresses the amount of information there is about cn based on the structure 
imposed by the code. The other factor in (15.9), P(c, Irn), expresses how much information 
there is about cn based on the measured channel output rn corresponding to cn; it has been 
called the intrinsic probability. 

q n  ( x )  is a probability mass function with respect to x .  

As before, let 
rmn(x) = P(zm = Olc, = X ,  r) (15.10) 

denote the probability that the mth check is satisfied, given bit c,. We will derive in Section 
15.5.2 an expression to compute this probability. Using (15.10) and Theorem 15.1 we can 
write 

qn(X) = aP(cn  =  XI^) IJ rmn(x>. (15.11) 

Each bit in tier 1 of the tree has its own set of checks, each with their own corresponding 
checked bits. This leads to a situation as in Figure 15.4. To do decoding on the tree, we again 
invoke an independence assumption: the set of bits connected to a check subtree rooted at 
a bit in the first tier are independent. (As before, cycles in the Tanner graph violate this 
assumption.) The probability of a bit in the first tier of the tree is computed using bits from 
the second tier of the tree. Let n’ be the index of a bit in the first tier connected to the check 
Zm.  Let 

mEMn 

qmn!(x) = P(cnt = x [all checks involving cnt, except for check Zm, are satisfied) 

qmnr(x) = P(cn! = XI{Zm! = 0, m f  E M,!,,), r). 
or, more briefly, 

Then, slightly modifying the results of Theorem 15.1, 

qmn!(x) = aP(C,! = xlm!) n rm!n!(X). (1 5.12) 

If there are wc parity checks associated with each bit, then the computation (15.12) involves 
wc - 1 checks. Using (15.12), the probabilities for bits in the first tier can be computed 
from the checks in the second tier, following which the probability at the root c, can be 
computedusing (15.11). 

Since the product in (15.12) is computed down the columns of the A matrix (across the 
checks), updating qmn ( x )  is called the vertical step of the decoding algorithm. The process 
can be described in words as follows: For each nonzero position (m, n )  of A ,  compute the 
product of rmt,n ( x )  down the nth column of A ,  excluding the value at position (m, n) ,  then 
multiply by the channel posterior probability. There are wcN values of qmn to update, each 
requiring O(w,) operations, so this step has O ( N )  complexity. 

If the graph associated with the code were actually a tree with independence among the 
bits associated with the checks on each tier, this procedure could be recursively applied, 

m’EM,,,, 
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Process from 

Figure 15.4: The two-tier tree. 

starting at the leaf nodes of the tree -those not connected to further checks - and working 
toward the root. The probabilities at the leaf nodes could be computed using the channel 
posterior probabilities p , ( x )  defined in (15.5). Working from leaves toward the root, the 
probability qmn’ ( x )  would be computed for each node c,, on the second-to-last tier, using 
the leaf nodes (the last tier). Then qmnr would be computed for each node on the third-to-last 
tier, using the probabilities obtained from the second-to-last tier, and so forth until the root 
node is reached. 

However, it is time to face reality: The graph associated with the code is not actually 
a tree. The node c, which we have called the root of the tree is not a distinguished root 
node, but is actually an arbitrary node. We deal with this reality by considering each node 
c, in turn as if it were the “root” of a tree. For each c,, we consider each parity check zm,  
m E M ,  associated with it, and compute qmnr(x) as defined in (15.12), involving other 
wc - 1 checks and the other bits of the first tier of the “tree” with that c, as the root. The 
algorithm does not actually propagate information from leaf to root, but instead propagates 
information throughout the graph as if each node were the root. If there were no cycles in 
the tree, the algorithm would, in fact, result in an exact computation at each node of the 
tree. But as bits connect to checks to other bits through the iterations, there must eventually 
be some cycles in the graph. These violate the independence assumptions and lead to only 
approximate, but still very impressive, results. 

15.5.2 Horizontal Step: Updating rmn ( x )  

The probability rmn(x)  = P(zm = Olc, = x ,  r), depends on all of the bits {c,’, n’ E N m }  
that participate in zm,  so an expression involving all of the bits that influence check z m  is 
necessary. The desired probability can be computed by marginalizing, 

P ( z m  = O~C, = X ,  r) = C 
( X n l  . n ’ E N m . n  I 

P ( z m  = 0,  {cnr = x,’, n’ E Nm,,}Icn = X ,  r), 

(15.13) 
where the sum is taken over all possible binary sequences { + r }  with n’ E N m , ,  . (Contin- 
uing Example 15.4, for N2,l = { 3 , 5 , 6 ,  8, 9}, the variables in the sum (x3, x5, X6, Xg, x 9 }  

take on all 25 possible binary values, from (0, 0, 0, 0,O) through (1, 1, 1, 1, l).) The joint 
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probability in (15.13) can be factored using conditioning as 

rmn (XI = C [ P ( z m  = Olcn = X, {cnl = xnl : n’ E N m , n ] ,  r) 
( x , I : n l ~ N ~ , ~ ]  (15.14) 

x P({cnl = Xnl : n’ E N m , n } I r ) ] .  

Under the assumption that the bits {cn1, n’ E N m , n ]  are independent - which is true only 
if there are no cycles in the graph - (15.14) can be written as 

rmn = C [ P ( z m  = Olcn = X, {cnl Xnl : n’ E N m , n l >  
[xnl :nl~Nm,,]  

(1 5.15) 
x n P(CV = WI~) ] ,  

1’ E N m  , n 

where the conditioning on r in the first probability has been dropped since the parity is 
independent of the observations, given the values of the bits. The conditional probability 
in the sum, P ( z m  = O ( c n  = x ,  {c,~ = xn1 : n’ E N m , n } )  is either 0 or 1, depending on 
whether the check condition for the bits in N m  is actually satisfied. Only those terms for 
which C n l e ~ ,  X,I = 0 - or, in other words, for which X n  = xnlE~m,n x , ~  - contribute 
to the probability, so 

(15.16) 

That is, rmn ( x )  is the total probability of sequences { x , I ,  n’ E Nm,,} of length 1Nm.n I whose 
sum is equal to x , where each element X,I  in each sequence occurs with probability P (Cnl I r) . 
At first appearance, (15.16) seems like a complicated sum to compute. However, there are 
significant computational simplifications that can be made using a graph associated with 
this problem. 

For a sequence of bit values { x ~ I ,  n’ E N;n,n] involved in check m, let 

k 

i=l 

be the sum of the first k bits of { X ~ I ] .  Then 

(15.17) 

where L = INm,,I. The sum in (15.17) appears in the index of the sum in (15.16). 
The values of ( ( k )  as a function of k may be represented using the trellis shown in 

Figure 15.5. There are two states in the trellis, 0 and 1, representing the possible values of 
{ ( k ) .  Starting from the 0 state at k = 0, ((1) takes on two possible values, depending on 
the value of X N ~ , ~ ( ~ ) .  Then ((2) takes on two possible values, depending on the value of 
((1) and x~~,,(2). The final state of the trellis represents ( ( L ) .  

Let the values X,I  occur with probability P(x , I )  = P(c,llr). Using this graph, it may 
be observed that rmn (x) is the probability that x = ( ( L ) ,  where the probability is computed 
over every possible path through the trellis. The problem still looks quite complicated. 
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Figure 15.5: The trellis associated with finding rmn (x). The probability of all possible paths 
through the trellis is computed inductively. 

However, due to the structure of the trellis, the probabilities can be recursively computed. 
Note that 

P(F(1) = x) = P(XNm,,(l) =XI = P(CN,,,(l) = xlr). 

Knowing P(((1) = 0) and P(F(1) = 1), the event that F(2) = 0 can occur in two ways: 
either {(l) = 0 and X N ~ , ~ ( ~ )  = 0, or ((1) = 1 and X N , , , ( ~ )  = 1. Similarly, the event that 
t(2) = 1 can occur in two ways. Thus 

P(F(2) = 0) = P(t(1)  = 0, XNm,,(2) = 0) + P ( W )  = 1, XNrn,,(2) = 1) 

P(F(2) = 1) = P(J'(1) = 1, XNm,,(2) = 0) + P(F(1) = 0, XNm,,(2) = 1). 
(15.18) 

By the (assumed) independence of the bits, the joint probabilities in (15.18) can be factored, 
so (15.18) can be written 

P(F(2) = 0) = P(F(1) = O)P(XNm,,(2) = 0) + P(F(1) = 1)P(XNrn,,(2) = 1) 

P(F(2) = 1) = P(F(1) = 1)P(XNm,,(2) = 0) + P(F(1)  = 0>P(XNrn,,(2) = 1). 
(15.19) 

Let wk(x) be the probability 

Then (15.19) can be written 

Wk(X) = P ( { ( k )  = x). 

w2(0) = wl(0)P(xNm,,(2) = 0) + w1(1)P(xNm,,(2) = 1) 

w2(l) = wl(1)P(xNm,,(2) = 0) + w(0)P(XNm,n(2) = 

and, in general (under assumptions of independence) 

W k ( 0 )  = Wk-l(O)P(XNm,,(k) = 0) + wk-l(l)P(xNrn,,(k) = 1) 

Wk(1) = wk-l(l)P(XNm.,(k) = 0) + W k - l ( 0 ) P ( X N m , , ( k )  = 1). 
(15.20) 

The recursion is initialized with wo(0) = 1, wo( 1) = 0. (It may be noted that the recursion 
(15.20) is an instance of the BCJR algorithm. In this case, the w probabilities are directly 
analogous to the forward probabilities of the BCJR algorithm, usually denoted by a.) 

By the recursive computation (15.20), the probabilities of all possible paths through the 
trellis are computed. By the definition of w k ( x ) ,  P ( { ( L )  = x) = W L ( X )  and by (15.161, 

T m n ( 0 )  = W L ( O )  rrnn(1) = w ~ ( 1 ) .  (15.21) 

Now consider computing P(zm = Olc, = x ,  r) for a check node zm in the first tier 
of a multi-tier tree, such as that portrayed in Figure 15.4. The bit probabilities P(xA) = 
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P ( c , ~  Irnt) necessary for the recursion (15.20) are obtained from the bit nodes in tier 1 of the 
tree, which depend also upon check nodes in tier 2, excludmg check Z, . That is, we use 

P(cnl = x Ir) = qmnt(x)  

as the bit probabilities. Then the recursive update rule is written 

W k ( 0 )  = Wk-1 (o)qm,Nm,n(k)(o) + Wk-1 (l)qm,Nm,"(k)(l) 
(15.22) 

Wk(1) = Wk-1 (l)qm,Nm,n(k)(o) + Wk-1 (0)qin,hTm,n(k) (1). 

This computation is used for each iteration of the decoding algorithm. 
The probability update algorithm (15.22) can be extended to codes with larger than 

binary alphabets by creating a trellis with more states. The LDPC decoding algorithm is 
thus applicable to linear codes over arbitrary fields. For binary codes, however, (15.22) can 
be re-expressed in an especially elegant way in terms of differences of probabilities. Let 
Sq,l = qml(0) - qml(l) and 6r,l = r,i(O) - r,i(l). From (15.22), 

W k ( 0 )  - WkU) = (Wk- l (O)  - wk-1(1))(4mNm,,(k)(0) - ~mNm,n(k)(l)). 

~ k ( 0 )  - ~ k ( 1 )  = n(qmNm,n(i)(0) - qmNm,n(i)(l))* 

Inductively, 
k 

i= l  

Using Sr,, = r,,(O) - r,,( l), we have 

(15.23) 

In words what this update says is: For each nonzero element (m,  n )  of A ,  compute the 
product of the 6q,,r across the mth row, except for the value at column n. This step is 
therefore called the horizontal step. The entire update has complexity O ( N ) .  

Having found the Sr,, and using the fact that rmn (0) + r,, (1) = 1, the probabilities 
can be computed as 

rmn(0) = (1 + 6rmn) /2  rrnnU) = (1 - 6rmn)/2 .  (1 5.24) 

15.5.3 Terminating and Initializing the Decoding Algorithm 

As before, let q n ( x )  = P (c, = x / { z ,  : m E M,}). This can be computed as 

4 n  (XI = a n  ~n (x> n rmn (XI 9 

m E M ,  

where a, is chosen so that qn (0) + qn (1) = 1. These pseudoposterior probabilities are used 
to make decisions on x : if q, (1) > 0.5 a decision is made to set c ,̂, = 1. 

Since the decoQng criterion computes P ( c ,  = x Jr, checks involving c,), with each 
bit probability computed separately, it is possible that the set of bit decisions obtained 
by the decoding algorithm do not initially simultaneously satisfy all of the checks. This 
observation can be used to formulate a stopping criterion. If A2 = 0, that is, all checks are 
simultaneously satisfied, then decoding is finished. Otherwise, the algorithm repeats from 
the horizontal step. 

It may happen that A2 = 0 is not satisfied after the specified maximum number of 
iterations. In this case, a decoding failure is declared; this is indicative of an error event 
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which exceeds the ability of the code to correct within that number of iterations. Knowledge 
of a decoding failure is important, but not available with many codes, including turbo codes. 
In some systems, a decoding failure may invoke a retransmission of the faulty codeword. 

The iterative decoding algorithm is initialized by setting qmn(x) = pn(x) .  That is, 
the probability conditional on the checks qmn (x) is set to the channel posterior probability, 
which is what would be used if the Tanner graph were actually a tree. 

15.5.4 Summary of the Algorithm 

Algorithm 1 is a concise statement of the decoding algorithm; the details are discussed in 
the sections below. (This particular formulation of the decoding algorithm is due to [217], 
while concepts from the description are from [ 1131.) 

Algorithm 15.1 Iterative Decoding Algorithm for Binary LDPC Codes 

Input: 
iterations, L.  
Initialization: Set q m n ( x )  = pn(x) for all (m.  n )  with A(m,  n )  = 1. 
Horizontal step: For each ( m ,  n )  with A ( m ,  n )  = 1: 

A ,  the channel posterior probabilities Pn(x) = P(cn = xlm), and the maximum # of 

Compute Sqml = qml(0)  - qml(1) 
Compute 

~ r m n  = n Sqmnr 
br4m,n)  

Compute rmn(l)  = (1 - 6rmn)/2 andrmn(0) = (1 + Srmn)/2. 
Vertical Step: For each ( m ,  n )  with A(m,  n )  = 1: 

Compute 

(15.25) 

q m n ( 0 )  =amnpn(O) n rmrn(0) and qmn(1) = ~ m n p n ( l )  n rmrn(1) 
Im’EMn,m 1 Im‘cMn,m l 

(15.26) 
where a m n  is chosen so qmn (0) + qmn (1) = 1. 
Also compute the “pseudoposterior” probabilities 

qn(0) = a n p n ( O )  n rmrn(0) and qn(1) = a n P n ( l )  n rrnrn(l) 
I m ‘ d 4 b  {m‘EMn} 

where an is chosen so that qn (0) + qn (1) = 1. 
Make a tentative decision: Set 2n = 1 if q n ( l )  > 0.5, else set 
If A t  = 0, then Stop. Otherwise, if #iterations c L ,  loop to Horizontal Step 

= 0. 

Otherwise, declare a decoding failure and Stop. 

This algorithm (or its log likelihood equivalent) is sometimes referred to as the sum- 
product decoding algorithm. 

Example 15.6 

~ I u a l i a i 2 a i i a i d a l r a i e  

ldpc  . m 
For the parity check matrix (15.1) of Example 15.1 and the received probability 

vector of Example 15.5, the decoding proceeds as follows: 
Initialization: Set qmn (x) = pn (x) from (15.7) 

qmn(1) 
-0.22 0.16 0.19 0.87 0.18 
0.22 0.19 0.55 0.87 0.79 0.25 

0.19 0.48 0.55 0.18 
0.16 0.48 0.55 0.87 0.79 

-0.22 0.16 0.48 0.18 0.79 0.25 
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Iteration 1: Horizontal Step: 

0.1 0.086 0.094 
-0.013 -0.012 

0.00067 0.01 
0.00089 0.015 

-0.005 -0.0042 -0.071 

[I):); r: 0.45 0.51 

0.5 

0.5 0.5 

Iteration 1: Vertical Step: 

[ “0;; 0.19 
0.16 
0.17 

0.19 0.14 

6rmn 
-0.079 0.091 

0.075 0.01 
-0.0041 O.OLQ64 
-0.0061 -0.00082 

-0.0044 

rmn(1) 
0.54 0.45 

0.46 0.49 0.49 
0.49 0.5 0.5 
0.49 0.5 0.5 0.5 
0.54 0.5 0.5 

qmnm 
0.87 0.18 

0.56 0.89 0.79 
0.51 0.52 0.16 
0.51 0.51 0.88 0.78 
0.47 0.15 0.79 

-0.11 
0.013 -0.015 

0.00083 -0.00079 
-0.001 -0.0012 
0.0049 -0.0057 

0.5 

0.5 
0.5 

0.26 

0.26 
0.8 

qnfl) (15.27) 
[0.19 0.14 0.17 0.5 0.52 0.88 0.16 0.78 0.26 0.81 

t = [ o  0 0 1 1 1 0 1 0 11 z = [ O  1 1 1 01 

At the end of the first iteration, the parity check condition is not satisfied. The algorithm runs 
through two more iterations (not shown here). At the end, the decoded value 

C = [ O  0 0 1 0 1 0 1 0 11 

is obtained, which exactly matches the transmitted code vector c of (15.6). 
Even though the minimum distance of the code is 4, the code was able to decode beyond the 

0 minimum distance (in this case) and correct two errors. 

15.5.5 Message Passing Viewpoint 

The decoding algorithm can be viewed as an instance of a message passing algorithm. 
Messages are passed among the nodes in the Tanner graph. In the horizontal step, “messages” 
in the form of probability vectors qmn ( x )  are passed to the check nodes, where the messages 
are combined using (15.23). In the vertical step, “messages” in the form of probability 
vectors rmn ( x )  are passed to the bit nodes, where the messages are combined using (15.12). 
The iteration of the algorithm may be viewed as message passing through the graph obtained 
by concatenating several copies of the Tanner graph, as shown in Figure 15.6. 

In the absence of cycles, such message passing algorithms compute exact probabilities 
[258]. However, the presence of cycles in the graph means that the decoding algorithm com- 
putes only approximate solutions. Careful analysis of graphs with cycles, however, [367] 
has shown theoretically that the approximate algorithm still provides effective decoding 
capability; this conclusion is borne out by repeated simulation studies. 

15.5.6 Likelihood Ratio Decoder Formulation 

In this section we re-derive the decoding algorithm, this time in terms of log likelihood 
ratios. This derivation serves to emphasize some of the likelihood arithmetic presented in 
Appendix A and reinforce the concept of extrinsic probability that arose in the context of 
turbo decoding. Computationally, it avoids having to compute normalizations. Furthermore, 
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bits checks bits checks bits 

b 

Direction of Processing 

Figure 15.6: Processing information through the graph determined by A. The dashed line 
illustrates a cycle of length 4. 

the likelihood ratio algorithm is used in the density evolution analysis presented in Section 
15.8. However, it is only applicable to binary codes, so the general formulation above 
has value for nonbinary codes. (The reader is advised to review the log likelihood rule in 
Appendix A before reading this section.) 

By application of Bayes' rule, the numerator can be expressed as 

For a Gaussian channel, we have seen (see, e.g., (14.39)) that 

where L, = 2& f a2 is the channel reliability. We observe that the terms in the sum can 
be identified as 

(15.29) P(cn = llbi, i # nl>  
~ ( c ,  = OI{ri, i # n}) '  

h(cnlr) = L,rn +log 
v 

intrinsic ' I 

extrinsic 
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This set of bits is conditional1 independent 
(assumed to be) ... of this set d b i t s  

f 

Figure 15.7: Conditional independence among the sets of bits. 

where the intrinsic term is determined by the explicit measurement r, affecting the bit c, and 
the extrinsic term is determined by the information provided by all the orher observations 
and the code structure. 

Let us now express the probabilities in the extrinsic term in terms of the parity checks. 
Let zm,, denote the parity check computed using the mth check associated with c,, except 
for c,. That is, 

If c, = 1, then zm,, + c, = 0; that is, zm,, = 1 for all the checks m E M ,  in which c, 
participates. Similarly, if c, = 0, then zm,,  = 0 for all m E M,. We can write (15.29) as 

P ( z ~ , ~  = 1 for all m E M,I{ri, i # n} )  
P(zm,,  =Oforallm ~ M , l { r i , i  # n } ) ’  

h(cnlr) = L,r, + log 

We now invoke the assumption that the graph associated with the code is cycle-free. Then 
the set of bits associated with zm,, are independent of the bits associated with Zm’,n, for 
m’ # m .  (See Figure 15.7.) We thus have 

Let us define the log likelihood ratio 

Then 

Under the assumption that the checks in zm,, are conditionally independent (if there are no 
cycles in the graph), we invoke the tanh rule of (A.l) to write 
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Computation now requires knowing the h(cj 1 {ri , i # n) ,  the conditional likelihoods of the 
bits which connect to the checks of cn.  How are these obtained? They are obtained the 
same way as h(cn): that is, we remove from cn its distinguished role, and treat all bit nodes 
alike. However, we must be careful to deal only with the extinsic information. 

Let 

This can be thought of as the “message” which is passed from the check node m to the bit 
node n .  Then (15.30) can be written 

(15.32) 

This can be thought of as a message that the bit node cn sends to its check nodes. 
If we were to employ an iterative decoder alternating between (15.31) and (15.32), a 

problem would develop. The likelihoods A(c, Ir) each contain the prior information Lcrn, 
which would lead to a bias in qm,n. What we need to do is remove from the “message” that 
bit node n sends to check node m the message that it has already received from that check 
node. This represents the extrinsic information passed by the decoder. 

The log likelihood decoder can now be described. 

Algorithm 15.2 Iterative Log Likelihood Decoding Algorithm for Binary LDPC Codes 

Input: A ,  the received vector r, the maximum # of iterations L,  and the channel reliability Lc. 
Initialization: Set q$!n = 0 for all (m,  n )  with A(m,  n) = 1. 
Set A;’] = Lcrn 
Set the loop counter 1 = 1. 
Check node update: For each (m,  n )  with A ( m ,  n)  = 1: Compute 

Bit node update: For n = 1,2, . . . , N :  Compute 

Make a tentative decision: Set Zn = 1 if hn [ l ]  > 0, else set Zn = 0. 
If Ai? = 0, then Stop. Otherwise, if #iterations .c L ,  loop to Check node update 
Otherwise, declare a decoding failure and Stop. 

(1 5.33) 

(15.34) 

Example 15.7 For the code of Example 15.1 and the received vector of Example 15.5, we obtain the 
following. Initially, 

A[’] = [-1.3 -1.7 -1.5 -0.08 0.2 1.9 -1.5 1.3 -1.1 1.21. 

In the first iteration, 
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-0.0017 0.0016 
0.0023 

-0.21 -0.17 -0.19 0.16 -0.18 
0.027 0.024 -0.15 -0.02 -0.026 0.03 

-0.0013 -0.021 0.0083 -0.0013 
-0.0018 -0.03 0.012 0.0016 0.0021 

0.01 0.0083 0.14 0.0088 -0.0097 0.01 1 

A[’] = [-1.4 -1.8 -1.6 0.011 0.072 2 -1.7 1.3 -1.1 1.41 

rl[’l = 

and 

which corresponds to the probability vector 

p = [0.19 0.14 0.17 0.5 0.52 0.88 0.16 0.78 0.26 0.81. 

This matches exactly the probability vector found by the probability decoder. Other iterations proceed 
0 

The check node update (15.33) can be also simplified using the min-sum approximation 

similarly, yielding identical probability values and decoded values. 

(see Appendix A), at a cost of about 0.5 dB in performance. 

15.6 Why Low-Density Parity-Check Codes? 

LDPC codes have excellent distance properties. Gallager showed that for random LDPC 
codes, the minimum distance &,in between codewords increases with N when column 
and row weights are held fixed [ 112, p. 51, that is, as they become increasingly sparse. 
Sequences of LDPC codes as N -+ 00 have been proved to reach channel capacity [217]. 
LDPC codes thus essentially act like the random codes used in Shannon’s original proof of 
the channel coding theorem. Note, however, that for the nonrandom constructive techniques 
summarized in Section 15.1 1, there may be an error floor (see [291]). 

The decoding algorithm is tractable. As observed, the decoding algorithm has complex- 
ity linearly proportional to the length of the code. Thus we get the benefit of a random code, 
but without the exponential decoding complexity usually associated with random codes. 
These codes thus fly in the face of the now outdated conventional coding wisdom, that there 
are “few known constructive codes that are good, fewer still that are practical, and none at 
all that are both practical and very good.” [217, p. 3991. It is the extreme sparseness of the 
panty check matrix for LDPC codes that makes the decoding particularly attractive. The 
low-density nature of the parity check matrix thus, fortuitously, contributes both to good 
distance properties and the relatively low complexity of the decoding algorithm. 

For finite length (but still long) codes, excellent coding gains are achievable as we 
briefly illustrate. Figure 15.8(a) shows the BPSK probability of error performance for two 
LDPC codes, a rate 1/2 code with ( N ,  K )  = (20000, 10000) and a rate 1/4 code with 
( N ,  K )  = (13298,3296) from [215], compared with uncoded BPSK. These plots were 
made by adding simulated Gaussian noise to a codeword then iterating the algorithm up to 
1000 times. As many as 100000 blocks of bits were simulated to get the performance points 
at the higher SNRs. In all cases, the errors counted in the probability of error are detected 
errors; in no case did the decoder declare a successful decoding that was erroneous! (This is 
not always the case. We have found that for very short toy codes, the decoder may terminate 
with the condition A6 = 0, but 6 is erroneous. However, for long codes, decoding success 
meant correct decoding.) 

Figure 15.8(b) shows the average number of iterations to complete the decoding. (The 
peak number of iterations, not shown, was in many instances much higher.) The high 
number of iterations suggests a rather high potential decoding complexity, even though 
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Rate 112 N-20000 
Rate 113 N-15000 

-Rate 112 Capacity Bound 

4 

(a) Performance for a rate 112 and a rate 1/4 code. (b) Average number of decoding iterations. 

Figure 15.8: Illustration of the decoding performance of LPDC codes and the number of 
iterations to achieve decoding. 

each iteration is readily computed. As suggested by EXIT chart analysis, as the decoding 
threshold is approached, the number of iterations must increase. 

There are, of course, some potential disadvantages to LDPC codes. First, the best code 
performance is obtained for very long codes (as predicted by the channel coding theorem). 
This long block length, combined with the need for iterative decoding, introduces latency 
which is unacceptable in many applications. Second, since the G matrix is not necessarily 
sparse, the encoding operation may have complexity 0 ( N 2 ) .  Some progress in reducing 
complexity is discussed in Section 15.12. 

LDPC codes have an error floor, just as turbo codes do. Some efforts to lower the error 
floor have been made by increasing the girth of the Tanner graph, but this has met with 
only limited success. A tradeoff between decoding thresholds (from the density evolution 
analysis) and the error floor has been observed. Codes having very low error floors tend to 
perform around half a dB worse in terms of their decoding thresholds. However, this has 
not yet led to any design methodologies to reduce error floor. 

15.7 The Iterative Decoder on General Block Codes 

There initially seems to be nothing impeding the use of the sum-product decoder for a 
general linear block code: it simply relies on the parity check matrix. This would mean that 
there is a straightforward iterative soft decoder for every linear block code. In fact, Figure 
15.9 shows the use of the soft decoder on a (7,4) Hamming code. The soft decoding works 
better than conventional hard decoding by about 1.5 dB. 

However, for larger codes a serious problem arises. Given a generator matrix G, the 
corresponding H matrix that might be found for it is not likely to be very sparse, so the 
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Figure 15.9: Comparison of hard-decision Hamming decoding and sum-product (iterative) 
decoding. 

resulting Tanner graph has many cycles in it. In fact, a threshold is reached at some density 
of the parity check matrix at which the decoder seems to break down completely. Also, 
the problem of finding the sparsest representation of a matrix is as computationally difficult 
(NP-complete) as performing a ML decoding. 

15.8 Density Evolution 

Having described LDPC codes and the decoding, we now turn attention to some analytical 
techniques associated with the codes. Density evolution is an analytical technique which 
has been used to understand limits of performance of LDPC decoders. It also provides a 
tool which can be used in the design of families of LDPC codes, since their performance 
can be predicted using density evolution much more rapidly than the performance can 
be simulated. Density evolution introduces the idea of a channel threshold, above which 
the code performs well and below which the probability of error is non-negligible. This 
provides a single parameter characterizing code performance which may be used to gauge 
the performance compared to the ultimate limit of the channel capacity. 

In density evolution, we make a key assumption that the block length N +. 00, under 
which it may be assumed there are no cycles in the Tanner graph. Since the code is linear, 
and we have assumed a symmetric channel, it suffices for this analysis to assume that the 
all-zero codeword c = 0 is sent. We also assume that the LDPC code is regular, with 
IM, I = wc and INnz I = w r  for each n and m. 

Local Convention: We assume furthermore that a bit of zero is mapped to a signal 
amplitude of +a (i.e., 0 + 1 and 1 -+ -1; note that this mapping is consistent with the 
assumption made in Appendix A, but different from the convention used throughout most 
of the book). 

Based on this convention, the received signal is rt = a + n t ,  where nt - N(0, a2). 
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Hence in the likelihood decoding algorithm, the initial likelihood ratio is 

which is Gaussian. The mean and variance of hLol are 

That is, the variance is equal to twice the mean. Thus 

A p  - h/(m['l, 2 m q  

A Gaussian random variable having the property that its variance is equal to twice its mean 
is said to be consistent. Consistent random variables are convenient because they are 
described by a single parameter, the mean. 

Clearly, the initial hio1 are Gaussian, but at other iterations they are not Gaussian. How- 
ever, as h, is computed as the sum of other random variables, a central limit argument can 
be made that it should tend toward Gaussian. Furthermore, numerical experiments confirm 
that they are fairly Gaussian. The messages &!n sent by check nodes are nongaussian, 
but again numerical experiments confirm that they can be approximately represented by 
Gaussians. In the interest of analytical tractability, we assume that all messages are not 
only Gaussian, but consistent. The density evolution analysis tracks the parameters of these 
Gaussian random variables through the decoding process. 

Let p[I1 = E [v:!~] denote the mean of a randomly chosen r#&. (Under the assumption 
that the nodes are randomly chosen and that the code is regular, we also assume that the 
mean does not depend on m or n.) Let m.[lI denote the mean of A!]. We assume that both 
the qz!n and 

[JI 

are consistent random variables, so 

v m , n  ['I - N ( p ,  2p"1) A:] - n/(m['] ,  2m['l). 

Under the local convention (which changes the signs in the tanh rule), by the tanh rule 
(15.31), 

tanh - = n tanh (T) . 
("n) jENm,n 

Taking the expectation of both sides we have 

E [ tanh (%)I = E  [ n t a n h i s ) ] .  

i 4 m . n  
(15.35) 

Now define the function 

*(x) = E[tanh(y/2)] where y - " (x ,  2x) 

tanh ( y  /2)e-(y-x)2/(4X) dy , 
1 0 0  - -FL 

which is plotted in Figure 15.10 compared with the function tanh(x/2). The Q(x)  function 
is monotonic and looks roughly like tanh(x/2) stretched out somewhat.2 

21t has been found [51] that Q ( x )  can be closely approximated by Iu(x) % 1 - e -  4527x0 86+o.0218. 
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Figure 15.10: The function Q ( x )  compared with tanh(xl2). 

Using the Q function we can write (15.35) as 

(15.36) 

The bit update equation (15.32) can be expressed (with some shuffling of the order of 
computation) as 

Taking expectations of both sides we obtain 

Substituting into (15.36), we obtain 

or 

(15.37) 

The recursion is initialized with p[O] = 0. The dynamics are completely determined by the 
row weight wr, the column weight w,, and the SNR E c / a 2 .  

For some values of SNR, the mean p[l] converges to a small fixed point. The Gaussian 
pdf it represents would thus have both positive and negative outcomes, meaning that the h 
represented by this distribution could have negative values, or that (recalling that the all-zero 
codeword is assumed) there is a nonnegligible probability that there are decoding errors. 
On the other hand, for some values of SNR, the mean p[’] tends to infinity. The pdf has all 
of its probability on positive values. Thus, for a sufficiently large number of iterations the 
decoder would decoder correctly. 



658 Low-Density Parity-Check Codes 

0.5 

0.4- 

=- 0.3- 

5 n 
I 

densevl .m 
densevtest.m 

Psi.m 
Psiinv .m 

p1otgauss.m 

I/ EbiNO=1.72 dB, final mean value I/ 
1 ;  
I1 

I t  
4 1  
: I  

~ ~ 

1 1  
1 1  
1 1  

Example 15.8 Let wc = 4 and wr = 6, resulting in a R = 1 - 4/6 = 1/3 code. Recall that 
Ec = REb and u2 = N0/2, so that E,/u2 = 4REb/No. Let Eb/No = 1.72 dB. Then the 
iteration (15.37) achieves a fixed point at p* = liml-too pL1] = 0.3155. The corresponding density 
N(0.3155,0.631) is shown using dashed lines in Figure 15.11(a). The mean is small enough that 
there is a high probability that A[‘] < 0 for any iteration; hence, decoding errors are probable. 

When Eb/NO = 1.764 dB, the mean (15.37) tends to 00: p[‘] + 00 as I + 00. Figure 
15.1 l(a) shows the distributions for iterations 507 through 51 1. Clearly, for high iteration numbers, 
the decoder is almost certain to decode correctly. 

Figure 15.11(b) shows the mean values p[‘] as a function of the iteration number 1 for various 
S N R s .  For sufficiently small SNR, the mean converges to a finite limit, implying a nonzero probability 
of error. As the SNR increases, the mean “breaks away” to infinity after some number of iterations, 
where the number of iterations required decreases with increasing SNR. 

(a) The pdf of h[l] for Eb/No = 1.72 (final), and 
Eb/& = 1.764 (various iterations). 

(b) The mean of the pdf of 
1 for different values of EbINO. 

as a function of iteration 

Figure 15.1 1: Behavior of density evolution for a R = 1/3 code. 

0 

As this example shows, there is a value of Eb/No above which reliable decoding can be 
expected ( ~ [ ’ l  + m) and below which it cannot. This is called the thresholdof the decoder. 

[ threshtab.m Table 15.1 [51] shows a table of thresholds for regular LDPC codes of various rates, as 
well as channel capacity at that rate. (Note: The recursion (15.37) is sensitive to numerical 
variation.) The thresholds are shown both in terms of Eb/No and in terms of a channel 
standard deviation err, where 

2REh 1 ” -- - - 
No ~ 2 ’  

As the table shows, there is a tendency toward decrease (improvement) in the Eb/No thresh- 
old as the rate of the code decreases. However, even within a given rate, there is variation 
depending on the values of we and w r  . It appears that values of we > 3 generally raise the 
threshold. Note that, since the analysis does not take cycles in the graph into account, this 
has nothing to do with problems in the decoding algorithm associated with cycles; it is an 
intrinsic part of the structure of the code. 
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Table 15.1 : Threshold Values for Various LDPC Codes for the Binary AWGN Channel 
wc w r  Rate Threshold oT Threshold E b / &  (dB) Capacity (dB) Gap (dB) 
3 12 0.75 0.6297 2.2564 1.6264 0.63 
3 9 213 
4 10 0.6 
3 6 0.5 
4 8 0.5 
5 10 0.5 
3 5 0.4 
4 6 113 
3 4 0.25 

0.705 1 
0.7440 
0.8747 
0.8323 
0.7910 
1.0003 
1.0035 
1.2517 

1.7856 
1.7767 
1.1628 
1.5944 
2.0365 
0.9665 
1.7306 
1.0603 

1.0595 
0.6787 
0.1871 
0.1871 
0.1871 
-0.2383 
-0.4954 
-0.7941 

0.7261 
1.098 
0.9757 
1.4073 
1.8494 
1.2048 
2.226 
1.8544 

15.9 EXIT Charts for LDPC Codes 

Recall from Section 14.5 that an EXIT chart is a method for representing how the mutual 
information between the decoder output and the transmitted bits changes over turbo decoding 
iterations. EXIT charts can also be established for LDPC codes, as we now describe. 

Consider the fragments of a Tanner graph in Figure 15.12. In these fragments, there are 
bit-to-check messages and check-to-bit messages, denoted as ~ B + C  and ~ c + B ,  respec- 
tively, where the messages are the log likelihood ratios. Let r:; (x) and (x) denote the 
probabilities computed in the horizontal and vertical steps of Algorithm 15.1, respectively, 
at the i th iteration of the algorithm. Using the original probability-based decoding algorithm 
of Algorithm 15.1, the messages from bit nodes (n) to check nodes (m)  or back are 

p B + C  PC+B // 

d d 

Figure 15.12: A portion of a Tanner graph, showing messages from bits to checks and from 
checks to bits. 

Let X denote the original transmitted bits. The mutual information (see Section 1.12) 
between a check-to-bit message p c + ~  and the transmitted data symbol for that bit X is 
denotedas Z(X, p c + ~ )  = ZC+B. Theiterationnumberimayalsobeindicated,asinZC+B. 
The actual mutual information is computed experimentally as follows. Histograms of the 
message data are used to estimate the probability distribution. These histograms are 

[il 
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obtained from the outputs logrmn(l)/rmn(0) of all the check nodes in the Tanner graph. 
(Alternatively a single node could be used, by sending the codeword multiple times through 
the channel with independent noise.) These histograms are normalized to form estimated 
probability density functions, here denoted @(p), of the random variable p c + ~ .  Then these 
estimated density functions are used in the mutual information integral (1.40) wherever 
p ( y l  - a )  appears. Because of symmetry, the likelihood p(y la )  is computedusing @(-p). 
The numerical evaluation of the integral then gives the desired mutual information. 

In a similar way, the mutual information between a bit-to-check message pg+c and 
the transmitted data symbol for that bit X, Z(X, pg+c) = ZB.+C, is computed from the 
histograms of the outputs log qmn ( l) /qmn (0) to estimate the densities in (1.40). 

The first trace of the EXIT chart is now formed by plotting Z:Lg, Zi++! for values 
of i as the decoding algorithm proceeds. The horizontal axis is thus the check-to-bit axis. 
The second trace of the EXIT chart uses Zi++! as the independent variable, but plotted on 

the vertical axis, with ZE++2 - that is, the mutual information at the next iteration - on 
the horizontal axis. The “transfer” of information in the EXIT chart results because the 
check-to-bit message at the output of the i + l th stage becomes the check-to-bit message 
at the input of the next stage. 

Example 15.9 Figure 15.13 shows the density estimated from the histogram of the log likelihood 
ratios L = logrmn(l)/mmn(0) for a (15000, 10000) LDPC code at an SNR of 1.6 dB for various 
iterations of the algorithm. At iteration 0, the log likelihoods from the received signal data are plotted. 
At the other iterations, the log likelihoods of the bit-to-check information are plotted. Observe that 
the histogram has a rather Gaussian appearance (justifying the density evolution analysis of Section 
15.8) and that as the iterations proceed the mean becomes increasingly negative. The decoder thus 
becomes increasingly certain that the transmitted bits are 0. 

Figure 15.14 shows the mutual information as a function of decoder iteration number for bit-to- 
check and check-to-bit information for various SNRs. Perhaps the most interesting is for an SNR of 
0.4 dB: after an initial increase in information, the decoder stalls and no additional increases occur. 
The EXIT chart is essentially obtained by eliminating the iteration number parameter from these two 
plots and plotting them against each other. 

Figure 15.15 shows the EXIT chart for this code at various SNRs. The solid bold line plots the 
points (ZiL B ,  Z;:’&) and the dashed bold line plots the points (Z;:!, Z!!’;), with the horizontal 
axis representing Zc+g and the vertical axis representing Zg+c. The narrow solid line plots the 

two traces of the plot. At an SNR of 0.8 &, the code is fairly close to the decoding threshold, so it 
takes many iterations for the decoder to pass through the channel. At an S N R  of 0.4 dB, the decoder 

SNR of 1.2 dB, the channel is open somewhat wider, so fewer decoding iterations are required, and 

- 
Ololo-owqd 

,_.’ , A ‘  

a l u u l l a 1 2 c ( l l u , l a l * ~ , ~  
<<-.-. ‘Lc 

exit3 .m 
dotraject0ry.m 

progress of the decoding algorithm: the decoder essentially follows the stair-step pattern between the 

is below the decoding threshold: the information is not able to make it through the channel. At an 

at 1.8 dB the channel is open wider still. 
getinf .m 

15.10 Irregular LDPC Codes 

An irregular (or nonuniform) LDPC code has a very sparse parity check matrix in which 
the column weight (resp. row weight) may vary from column to column (resp. row to 
row). Considering that the results in Table 15.1 suggest that for the same rate, different 
columnhow weights per fom differently, the ability to allocate weights flexibly provides 
potentially useful design capability. In fact, the best known LDPC codes are irregular; 
gains of up to 0.5 dB compared to regular codes are attainable [212]. In this section, we 
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Figure 15.13: Histograms of the bit-to-check information for various decoder iterations at 
1.6 dB. 
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Figure 15.14: Decoder information at various signal-to-noise ratios. 
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Figure 15.15: EXIT charts at various signal-to-noise ratios. 

present some results of the design of irregular codes. This is followed by a sketch of the 
density evolution analysis which leads to these results. 

15.10.1 Degree Distribution Pairs 

The distribution of the weights of the columns and rows of the parity check matrix is 
described as follows. We let u i  represent the fraction of edges emanating from a bit (variable) 
node in the Tanner graph for the code and let x i  represent the fraction of edges emanating 
from a check node. Let d,  denote the maximum number of edges connected to a variable 
node and let dc be the maximum number of edges connected to a check node. The polynomial 

i=2 

represents the distribution of variable node weights and 

i =2 
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represents the distribution of check node weights. These are called the variable node and 
check node distributions, respectively. The degree distributions satisfy u( 1) = 1 and x (1) = 
1. The pair ( u ( x ) ,  x (x)) is called a degree distribution pair. For example, for the (3,6) 
regular code, u(x) = x 2  and x (x) = x5. The number of variable nodes is N and the number 
of check nodes is M .  

The number of variable nodes of degree i is (see Exercise 15.12) 

vi vi 

CjzzVJlJ l; u ( x )  dx '  
N = N  

The total number of edges emanating from all nodes is 

E = N c i  = N  
ujli  1 

j 2 2  1; v(x> dx  l; V ( X >  dx * 

Similarly, the number of check nodes of degree i is 

and the total number of edges is 

Equating (15.39) and (15.40) we find 

(15.38) 

(15.39) 

(15.40) 

Under the assumption that the corresponding check equations are all linearly independent, 
the rate of the code is 

Example 15.10 Suppose 73 = 0.5 and 74 = 0.5 and N = IOOO. Then 

~ ( x )  = 0 . 5 ~ ~  + O h 3  

and there are 
0.513 

0.513 + 0.514 
N = 571 

(rounding) variable nodes of degree 3 and 

0.514 
0.513 + 0.514 

N = 429 

variable nodes of degree 4, for a total of 

E = 571.3 +429.4 = 3426 

edges in the graph. 
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x5 0.24123 
X6 0.75877 0.78555 0.7661 1 0.43810 0.22919 
x7 0.21445 0.23389 0.56190 0.77081 
X8 
Y" 

15.10.2 Some Good Codes 

Assuming that the message passing decoder can be analyzed using a density evolution similar 
to that of the regular code, a threshold or can be established such that the mean message 
p['] + 00 if the channel deviation u > ur. This leads to a design optimization problem: 
choose variable and check node distributions u(x) and x ( x )  in such a way as to mmimize 
the corresponding a, (i.e., minimize the SNR at which the code correctly decodes). Some 
results of such an optimization for some values of d, are shown in Table 15.2, along with 
the corresponding threshold ut, the corresponding Eb/No, and the gap to channel capacity. 
Note that in some cases the codes are within significantly less then half a dl3 away from 
capacity (up to the idealizations of the analysis: arbitrarily long block lengths, and cycles 
in the graph do not affect the decoding). 

0.01568 
0.85244 0.63676 0.43011 0.25475 
0.13188 0.36324 0.56989 0.73438 

o.nio87 n7 

@r 
Eb/NO (dB) 

gap(dB) 

. .... 

0.9114 0.9194 0.9304 0.9424 0.9497 0.9540 0.9558 0.9572 0.9580 
0.8058 0.7299 0.6266 0.5153 0.4483 0.4090 0.3927 0.3799 0.3727 
0.6187 0.5428 0.4395 0.3282 0.2612 0.2219 0.2056 0.1928 0.1856 

15.10.3 Density Evolution for Irregular Codes 

We now summarize how the density evolution is described for these irregular codes. We 
present the highlights of the technique, leaving aside some technicalities which are covered 
in [292]. In the current analysis, a more explicit representation of the distribution of the 
messages is needed than the consistent Gaussian approximation made in Section 15.8. 

The decoder algorithms can be summarized as 

(15.41) 

(15.42) 
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Write (15.41) as 
[11 

-)7m n 

2 
tanh - = ( n 

jsNm,n 

and take the log of both sides. In doing this, we have to be careful about the signs. Therefore 
we will separate out the sign, 

Alf-11 

(sgn(aE:,), -log tanh - ) = (- sgn(A:,-,']), log ~ tanh ?I). (15.43) I '" I jsN,,n 

We employ here a somewhat different definition of the sgn function: 

l o  x > o  

0 with probability if x = 0 

1 with probability if x = 0 I sgn(x) = 

11 x < o  

so that sgn(x) = 1 means that n < 0. Then the sum for the signs is performed in Z2 and 
the sum for the magnitude is the ordinary sum in R. 

Now let y be the function 

Y(X> : 1-w +0OI + {O, 11 x [O, 001 

so we can express (15.41) as 

(15.44) 

(15.45) 

The equation (15.45) has the feature that the product is converted to a sum; in the anal- 
ysis below this is useful because sums of independent random variables have convolved 
distributions. 

We describe the evolution in terms of distribution functions: Let F denote the space 
of right-continuous, nondecreasing functions F, defined on R, such that for F, E 3, 
limx.+-oo F, (x) = 0 and limx+.co F, (x) I 1, allowing for the possibility of a point proba- 
bility mass at 00: 

P(z  = 00) = 1 - lim F,(x). 

A function F, E F represents the usual cumulative distribution function of the random 
variable z :  

X+CO 

F,(x) = P ( z  5 x ) .  

We define the left limit of F, as 
F,-x = lim F, ( y ) .  

Y t x  
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so that 1 - F,- (x) = P(z  2 x). Derivatives (more precisely, Radon-Nikodyn derivatives 
[30]) of the distribution functions are probability densities. 

Suppose we have a random variable z with distribution F,. We wish to describe the 
distribution of the random variable y(z)  = (y1 ( z ) ,  y2(z)), with y defined in (15.44). Note 
that any function G(s, x) defined over (0, 1) x [ O , o o )  can be written as 

G(s, X) = Zs,oGO(x) + Zs=lG'(x), 

where is the indicator (or characteristic) function: 

1 i f s = a  
0 i f s # a .  

zs=a = 

Using this notation, we define the distribution of y ( z )  as 

r(Fz)(s, = Is=oro(Fz)(x) + Is=l, rl(Fz)(x) 

where 
rO(F,)(x) = 1 - F,-(-logtanh(x/2)) = P ( z  2 -logtanh(x/2)) 

rl(F,)(x) = FZ(logtanh(x/2)) = P ( z  I logtanh(x/2)). 
and 

It can be shown that 

(15.46) 

lim I'o(F,)(x) - lim rl(F,)(x) = P(z  = 0) .  
x-+OO X'OO 

The function r has an inverse: for a function 
0 1 G(s,x) = ZS=oG (x) + Zs=1G ( x ) ,  

define r-' by 

r-'(G)(X) = Zx,oG0( - l~g t~h(~ /2 ) )  + Zx<oG1(-1ogtanh(-x/2)) (15.47) 

and 
ITi(G)(0) = lim Go(x). 

X'OO 

It can be verified that r-' (r(F)) = F for all F E F. 
For notational convenience, r and r-' are also applied to densities, where it is to be 

understood that the notation is a representation of the operation applied to the associated 
distributions. 

Let G and H be two distributions, 
0 1 0 1 H = Zs,oH + Zs=lH . G = Z,=oG + Zs=lG 

Let €3 denote the operation of convolution on distribution functions. Then we define the 
convolution 63 on G and H by 

G €3 H = L o  ((Go €3 H o )  + (G' 63 Hi)) + Zs=i ((Go €3 H1) + (G' €3 H o ) )  . 
Again for notational convenience we allow the convolution operator to act on densities, 
where it is to be understood that it applies to the associated distributions. We denote 
repeated convolution as @: 

G €3 G 63 . . . €3 G = G B P .  
v 

p factors 
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Let P['] and Q['] be the densities of the random variables At:m and q b n ,  respectively. 

Let the graph associated with the code have the distribution pair (u,  x ) ,  
The corresponding distribution functions are denoted 1 and 1 Q"]. 

i22 i22 

Recall that the fraction of edges connected to a variable node of degree i is ui and the fraction 
of edges connected to a check node is x i .  Thus a randomly chosen edge in the graph is 
connected to a check node of degree i with probability x i .  Therefore, with probability x i ,  

the sum in (15.45) has (i - 1) terms, corresponding to the edges connecting check m with its 
neighbors except bit n.  We now invoke the independence assumption, that these neighboring 
nodes are independent. Combining (15.45) with the definition of the r function, we obtain 

We use the shorthand notation for this 

(15.48) 

(This explains the unusual definition 
for P[l]  is straightforward, since only sums are involved: 

x ix i - ' ,  with the exponent i - 1.) The recursion - 

Again we use the shorthand notation 

P"] = Po QD u(Q"I). 

Combining (15.48) and (15.49) we obtain the overall recursion, 

P"] = p0 QD ~(r-l(~(r(P[-ll)))). 

The original density Po is Gaussian, just as it was in Section 15.8. 

15.1 0.4 Computation and Optimization of Density Evolution 

(15.49) 

(15.50) 

It can be shown that the recursion (15.50) always converges to some fixed distribution, 
although it may be the distribution with its probability mass at 00. It can further be shown 
that the probability of error is a nonincreasing function of the iteration number 1 .  

The convolutions implied in (15.50) can be efficiently computed by quantizing the 
distributions and employing an FFT for fast convolution. This corresponds to a quantized 
message passing algorithm, which is suboptimal compared to exact message passing. Any 
decoding threshold or thus obtained is therefore a lower bound on the actual threshold. 

The basic problem is to choose coefficients { q i }  and { x i }  so that the decoding threshold 
a, is as large as possible. The basic outline for the computation is as follows. Starting 
with a given degree distribution pair ( q ( x ) ,  x ( x ) ) ,  an error probability E and a maximum 
number of iterations L is selected. From this, a maximum admissible channel parameter 
u is selected, which is the largest channel parameter such that the error probability after L 
iterations is is less than E .  Then a hill climbing approach is used. A small change to the 
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sparseHno4.m 

degree distribution pair is introduced. If the change leads to a target error probability after 
L iterations, or if the maximum admissible channel parameter is larger, then the new degree 
distribution pair is accepted, otherwise the old degree distribution pair is retained. The hill 
climbing process repeats until some termination criterion is satisfied. 

Clearly, there is a very large search space. Some acceleration of the search process can 
be obtained by limiting the scope of the search. It has been found that very good degree 
distribution pairs exist with only a few nonzero terms. In particular, it suffices to allow only 
two or three nonzero check node degrees (which may be chosen consecutively) and to limit 
the nonzero variable node degrees to 2 , 3 ,  or d,. 

A variation on this density evolution concept has been used to design rate R = 1 / 2  codes 
which (theoretically) perform to within 0.0045 dB of the capacity limit [50]. Simulations 
of actual codes with block lengths N = lo7 indicate that the actual performance is within 
0.04 dB of capacity. So, while the analysis and design are somewhat idealized, the theory 
matches the practice rather well. 

15.10.5 Using Irregular Codes 

The procedure outlined above determines a degree distribution pair ( ~ ( x ) ,  x ( x ) ) .  This can 
be used to construct an actual code as follows. Choose a code length N (usually quite 
large). Determine the number of variable nodes Ni having i edges and the number of check 
nodes Mi having i edges. Randomly generate a matrix A having the given column and row 
weights. Some iteration of this is probably necessary to avoid cycles of length 4 in the graph 
(and possibly other short cycles). Then the decoding algorithms described above apply to 
this parity check matrix without any change. 

15.1 1 More on LDPC Code Construction 

It is straightforward to generate random LDPC codes: simply generate columns of A at ran- 
dom having the appropriate weight. However, there are some practicalities to be dealt with. 
First, if the columns of A are not linearly independent, some columns can be eliminated, 
which serves to increase the rate of the code by decreasing N .  Second, it is important to 
reduce the number of cycles in the graph associated with the code. Therefore, eliminating 
or regenerating columns which would contribute to short cycles is advised. It can be seen 
that when two columns of A have an overlap of more than 1 bit (as in the italicized elements 
of (15.1)) there is a cycle of length 4 in the iterated graph. For large N ,  this is a very easy 
condition to check for and eliminate in the random generation process. With somewhat 
more work, longer cycles can be detected and removed. 

Besides such random constructions, there have been more recent constructions which 
attempt to introduce additional structure into the parity check matrix and/or the generator 
matrix. While space limitations preclude more than a mention of these results, it is important 
to be aware that such construction techniques exist. The interested reader is encouraged to 
check the references cited below. 

15.1 1.1 A Construction Based on Finite Geometries 

A finite geometry is a collection of “points,” which are rn-tuples, a E GF(q)‘, and “lines,” 
upon which sets of points lie. For constructing LDPC codes, the finite geometry G is 
employed, where G is a finite geometry with N points and M lines with the following 
properties: (1) Every line consists of wr points; (2 )  any two points are connected by exactly 
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one line; (3) every point lies on w, lines; (4) either two lines are parallel (having no point 
in common), or they intersect at exactly one point. 

For such a geometry G, form a binary incidence matrix HG whose rows and columns 
correspond to the lines and points of G, respectively, with hi, j = 1 if and only if the ith line 
of G contains the j th  point of G. Then each row of HG portrays the points of G (and has 
weight w,) and each column portrays the lines of G (and has weight w,). 

Based on this idea, parity check matrices for codes are constructed [ 1941 that offer the 
following potential advantages: 

1. Several different decoding algorithms exist, from one step majority logic decoders 
with low complexity, through the usual sum-product algorithm with higher complex- 
ity. 

2. The code can be extended by splitting each column of H. If done properly, perfor- 
mance within a few dB of capacity can be achieved. 

3. Codes derived from finite geometries may be cyclic or nearly cyclic, structure that 
enables them to be efficiently encoded. 

15.1 1.2 Constructions Based on Other Cornbinatoric Objects 

Several LDPC constructions have been reported based on combinatoric objects. 

Constructions based on Kirkman triple systems are reported in [ 177, 1761, which produce 

Constructions based on Latin rectangles are reported in [352], with reportedly low encode 

(3, k)-regular LDPC codes whose Tanner graph is free of 4-cycles for any k. 

and decode complexity. 

Designs based on Steiner 2-designs is reported in [351] and [179] and [300]. See also 

High rate LDPC codes based on constructions from unital designs are reported in [178]. 

[353]. 

Constructions based on disjoint difference sets permutation matrices for use in conjunction 
with the magnetic recording channel are reported in [319]. 

15.12 Encoding LDPC Codes 

While LDPC codes have an efficient decoding algorithm, with complexity linear in the code 
length, the encoding efficiency is quadratic in the block length, since it requires multipli- 
cation by the generator matrix which is not sparse. This complexity is in contrast to the 
turbo code case, which has linear encode complexity. However, as we present here [289], 
it is possible to encode with a reasonable complexity, provided that some preprocessing is 
performed prior to encoding. 

Before encoding, we perform the following preprocessing steps. By row and column 
permutations, we bring H into the form indicated in Figure 15.16, where the upper right 
comer can be identified as a lower triangular matrix. Because it is obtained only by permu- 
tations, the H matrix is still sparse. We denote the permutatioddecomposition as 

A B T  
. = [ C  D I?] 
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M 

1 

Figure 15.16: Result of permutation of rows and columns. 

and say that H is in approximate lower triangular form. We say that g is the gap of this 
representation. T is a ( M  - g) x (M - g)  lower triangular matrix with ones along the 
diagonal and hence is invertible. Now multiply H on the left by the matrix 

This amounts to doing Gaussian elimination to clear the matrix E ,  which produces the form 

Note that fi is the parity check matrix for an equivalent code. 
For a message vector m of length K ,  we write the codeword as 

c =  [3 
where p1 and p2 represent parity information. The parity check equation fic = 0 gives rise 
to two equations, 

A m  + Bpl + Tp2 = 0 (15.51) 

( - E T - ' A  + C ) m  + ( -ET- 'B  + D)pl  = 0. (15.52) 

Letting X = ( -ET- 'B  + D )  and assuming for the moment that X is nonsingular, we have 
from (15.52) 

pi = -x - ' ( -ET- 'A  + C > m .  

The g x ( N  - M )  matrix - X - ' ( - E T - l A  + C )  can be precomputed and saved, so that 
pi can be computed with a complexity of O ( g ( N  - M)). The complexity can be further 
reduced, as is outlined below. 

Once p1 is known, then p2 can be obtained from (15.51) by 

p2 = -T- ' (Am + B p ) .  

Note that since T-' is lower triangular, p2 can be found by backsubstitution. 
If it turns out that X is singular, then columns of E? can be permuted to obtain a nonsin- 

The process of computing p1 and p2 constitutes the encoding process. The steps for the 
computation as well as their computational complexity are outlined here (assuming that the 
preprocessing steps have already been accomplished). For the sake of clarity, intermediate 
variables are used to show the steps which may not be necessary in a final implementation. 

gular x .  
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Steps to compute p1 = -X-’(-ET-~A + C)m: 

Operation Comment Complexity 
x1 =Am Multiplication by a sparse matrix 0 ( N )  
x2 = T-lxi O ( N )  
~3 = - Ex2 0 ( N )  
x4 = Cm Multiplication by a sparse matrix 0 ( N )  
x5 = x3 +a Addition 0 ( N )  
pi = -X-’x5 Multiplication by dense g x g matrix 0 (g2) 

Solve Tx2 = xi by backsubstitution ( T  is sparse) 
Multiplication by a sparse matrix 

Steps to computep2 = -T-’(ET-’A + C)m. 

Operation Comment Complexity 
x1 = A m  Multiplication by sparse matrix (already done) 0 
x6 = PPl Multiplication by sparse matrix 0 ( N )  
XI = xi + XI Addition 0 “1 
p2 = T-’(x7) Solve Tp2 = x7 by backsubstitution (T is sparse) O ( N )  

The overall algorithm is O ( N  + g2). Clearly, the smaller g (the “gap”) can be made, the 
lower the complexity of the algorithm. A heuristic greedy search method for performing 
the initial permutations is described in [289]. 

15.1 3 A Variation: Low-Density Generator Matrix Codes 

As a variation on the LDPC theme, it is interesting to consider low density generator matrix 
(LDGM) codes. These are codes in which the generator matrix G is very sparse. Let 

G = [ L] be a very sparse generator in systematic form. Then the corresponding parity 

check matrix H = [ - P Z] is also very sparse, so the code is amenable to decoding using 
the sum-product algorithm. The LDGM code is thus straightforward to encode and decode. 

However, it is clear that since G is very sparse the code has low-weight codewords, 
which results in a significant error floor. For this reason, LGDM codes have not been of 
as much interest. It has been shown, however, that a straightforward concatenation of two 
LGDM codes (which is still easy to encode) has good performance when used with an 
iterative decoder between the concatenated stages [ 1221. 

15.1 4 Serial Concatenated Codes; Repeat-Accumulate Codes 

The parallel concatenated codes presented in chapter 14 are not the only types of con- 
catenated codes that can take advantage of iterative decoding algorithms. The (serially) 
concatenated codes introduced in chapter 10 can also be iteratively decoded. Figure 15.17 
shows the encoder and decoder block diagram for an iteratively decoded serial concatenated 
coding scheme. The MAP decoder block operates essentially identical to that for the block 
turbo code of Section 14.6. Note that the outer MAP decoder does not have the received 
data as an input (in contrast to parallel concatenated decoders, for which both decoders use 
received data as an input). 

This discussion about concatenated codes might seem more germane to the chapter on 
turbo codes. But we now present an example of a serially concatenated code whose decoder 
is more in line with the flavor of LDPC decoders. This is the set of codes known as repeat- 
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Figure 15.17: Serially concatenated codes and their iterative decoding. 

, ,  permute accumulator 

Figure 15.18: A repeat-accumulate encoder. 

accumulate (RA) codes. The RA code encoder consists of three trivial encoding blocks, as 
shown in Figure 15.18. 

1. The outer code is an ( n ,  1) repetition code. These are the simplest known error 

2. A pseudorandom interleaver n. 
3. The inner code is a rate-1 recursive convolutional code with generator G(x)  = &. 

This acts as an accumulator, because the output is the mod-2 sum (accumulation) of 
the inputs. 

correction codes, having good distance properties but very low rate. 

While this code could be decoded much like turbo codes using iterated BCJR algorithms, 
we present an alternative point of view here using Tanner graphs. 

Suppose that a systematic RA code is employed, in which the original message bits are 
transmitted along with the accumulator output. This linear code would have a parity check 
matrix, which, in turn, would have a Tanner graph representation. 

Example 15.11 [15, p. 6231 Consider a systematic RA code on K = 2 message bits with a (3, 1) 
repetition code. The interleaver is l7 = (1 ,4 ,6 ,2 ,3 ,5 ) .  The operation of the code is as follows. 'ILvo 
message bits, m 1 and m2 arrive at the encoder and are replicated three times: 

m i ,  mi, m i ,  m2, m2, m2. 

These bits pass through the interleaver, which produces the output sequence 
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Parity bit nodes 

Check nodes 

Interleaver 

Message bit nodes 

Figure 15.19: The Tanner graph for a (3 , l )  RA code with two input bits. 

Then the accumulator produces the running sum output: 

P I  = m i ,  p2 = m2 + p i ,  p3 = m2 + p2 ,  p4 = m i  + p3,  ... 
0 

The Tanner graph for such a code is shown in Figure 15.19. The variable nodes of the graph 
have been split into the (systematic) message bits and the parity bits to help distinguish the 
structure of the graph. The Tanner graph can be interpreted as follows. Reading left-to-right, 
the first check node constrains the parity bit to be equal to the first bit, m 1. Each succeeding 
check node constrains the parity bit to be the sum of the previous parity bit and the next 
input, where the input sequence is determined by the interleaver. This does not define a 
regular code, since each message bit is connected to YZ check nodes and the parity bits are 
connected to one or two check nodes. 

Once we observe the structure of the RA code on the Tanner graph, we may observe 
that, regardless of the length N of the code, the Tanner graph retains its sparseness. Each 
parity bit node is connected to no more than two check nodes and each message bit node is 
connected to n check nodes. 

To obtain the original, nonsystematic RA code, the systematic RA code can be punctured. 
The Tanner graph and decoding does not change, except that the channel observations L,rt 
for the corresponding punctured bits would be zero. 

15.14.1 Irregular RA Codes 

The RA encoder structure presented above can be generalized to an irregular repeat- 
accumulate structure [ 1671. In this code there are K input bits. Instead of repeating all 
K bits an equal number of times, we choose fractions f2, f3, . . . , fq such that 

a 

i=2 

Then the first block of f i  K bits is repeated two times, the next block of f2 K bits is repeated 
three times, and so forth. Furthermore, the parity check nodes are generalized to connect 
to a + 1 nodes, of which a are message bit nodes. This structure is illustrated in Figure 
15.20. From this general structure, assignment of the code parameters can be optimized 
using density evolution, so that the decoding SNR threshold can be minimized. 

While an irregular RA code is simply a special case of an irregular LDPC code, it has 
an important advantage: it can be very efficiently encoded. The RA codes thus provide an 
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Figure 15.20: Tanner graph for  an irregular repeat-accumulate code. 

instance of a code which has linear encode complexity and linear decode complexity, while 
still achieving excellent decoding performance. 

Programming Laboratory 13: 
Programming an LDPC Decoder 

Objective 

You are to implement the decoding algorithm for the low- 
density parity-check code, as described in Algorithm 15.1, 
and test it using (1) a small code, to verify that your algo- 
rithm is working correctly and (2)  a couple of long codes. 

Background 

Reading: Sections 15.2, 15.5. 
Because the parity check matrix for a long code would 

be huge if explicitly represented, it is important to represent 
only the nonzero elements of the sparse matrix. To store a 
sparse matrix in a file, the following format is used. 

N M  
maxcolweight maxrowweight 
co lwt  colwt colwt . . .  colwt 
rowwt rowwt rowwt . . .  rowwt 
Ml(1) Ml(2) Ml(3) . . .  
M2(1) MZ(2) MZ(3) . . .  

N l ( 1 )  Nl(2) Nl(3) Nl(4) Nl(5) Nl(6) . . .  
N2(1) N 2 ( 2 )  N2(3) N2(4) N 2 ( 5 )  NZ(6) . . .  

In this file representation, N and M are the N 
and M parameters for the code, where M = N - 
K ,  maxcolweight and maxrowweight represent 
the maximum weight of the columns (typically 3) and 

maxrowweight represents the maximum weight of the 
rows. The list colwt colwt colwt . . . colwt is 
the list the column weights of each of the N columns of 
A. The list rowwt rowwt . . . rowwt is the list of 
the row weights of each of the M rows of A. Then the list 
Ml(1) M l ( 2 )  M l ( 3 )  . . .  is thel is tof thedataM1,  
that is, the checks that bit 1 participates in (representing 
the first column of A). The other M data describe the other 
columnsofA. T h e n N l ( 1 )  N l ( 2 )  . . .  describeN1, 
the set of bits that participate in check 1, and so forth. As an 
example, the description of the A matrix of (15.1) provided 
in the file Asmall. txt. 

Since the matrices for real codes are very large, it impor- 
tant to use a sparse representation in the internal computer 
representation as well. That is, rather than allocate space 
for a M x N matrix to represent A,  you only need to allocate 
space for a wc x N matrix or a M x w,. matrix (depending 
on how you do your internal representation). 

There are a variety of ways in which you can represent 
the sparse data. It takes some work, however, to represent 
the data in such a way that you can access data in both row- 
oriented and a column-oriented ways, since both directions 
are used in the vertical and horizontal steps. We describe 
here one method to sparsely represent the data. 

Think of the sparse elements in the A matrix “floating” 
to the top of the matrix. With this representation, it is, easy 
to access down the column to do a vertical step. Here is the 
computation of the pseudoposteriors: 

/ /  Vertical step: 
/ /  Work across the columns 
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for(n = 0; n < N; n++) { 

prod0 = 1-pn[nl; prodl = pn[nl; 
/ /  pn represents the channel posterior 
/ /  compute the pseudoposteriors 
/ /  Now work down each column 
for(1 = 0; 1 < Mnlen[n]; 1++) { 

I 
alpha = l/(prodO + prodl); 
qOp [n] = alpha*prodO; qlp [n] = alpha*prodl; 

prod0 *= r0[11 [nl; prodl *= rl[ll I n ] ;  

However, when doing the horizontal ste , it is necessary 
to keep track of which row the com ressed &a comes from. 
This is done by counting the numger of nonzero elements 
above an element, in an array,called na (“number above” . 
The na array is, set to zero initial1 (for every iteration] 
As the elements in a column are use2 the row indexing into 
the “compressed”matrix ski sdown torow na [column]. 
The following code shows tfe horizontal step implemented 
this way: 
I /  Make sure naI1 is set to zero before this step 
/ /  Horizontal step: 
for(row = 0; row < M; row++) ( 

/ /  Copy the data on this row into a 
/ /  temporary array of deltaq values 
for(1 = 0; 1 < Nmlen[row]; 1++) ( 

/ /  for each nonzero value on this row 
idx = Nrn[row] [l]; 
deltaqrll = l-2*ql[na[idxll[idxl; 
/ /  compute delta q 

} 
/ /  Work over nonzero elements of 
/ /  this row, taking products 
for(1 = 0; 1 < Nmlen[row]; 1++) ( 

prod = 1; 
for(k = 0; k < Nmlen[row]; k+t) { 

if(k==l) continue; / /  skip when k==l 
prod *= deltaqrk]; 

} 
/ /  assign the product back into 
/ /  sparse structure 
idx = Nrnlrow] 111 ; 
rl [na [idx]] [idx] = (1-prod) /2; / /  rl value 
rO [na [idxl++l [idx] = (l+prod) /2; / /  rO value 

1 
1 

Assignment 

1) Complete the class galdec by finishing the details on 
the decode member function. Test the decode function 
using the gal t est program, which uses the 5 x 10 parity 
check matrix represented in Asma 11 . t x t . You should ob- 
tain numerical results similar to those in Example 15.6. 

Algorithm 15.3 LDPC class decla- 
ration and definition 
File: galdec. h 

galdec. cc 
ga1test.c~ 

For debugging purposes, it may be helpful to compare with a 
Matlab version of the decoder. Note, however, that this im- 
plementation does not treat the sparse matrices efficiently, 
and so will have trouble scaling to larger codes. 

Algorithm 15.4 Matlab code to test 
LDPC decoding 
File: ldpc .m 

ga1decode.m 

2) Using the program ga 1 test 2, produce the probability 
of error plot and average number of decoding iterations plot 
as in the chapter for a rate 114 and a rate 112 code, defined 
inA1-2. txt and Al-4. txt. 

Algorithm 15.5 Make performance 
plots for LDPC codes 
File: galtest2. cc 

A1-2. txt 
Al-4 .  txt 

Numerical Considerations 

Because the probabilities eventually tend toward either 0 
or 1, some of the computations can be somewhat sensitive. 
Suppose that the numbers ph and pi  are to be normalized 
to form probabilities according to 

Suppose also that pb > p i .  Then the Probabilities can be 
computed as 

1 

This is a stable way of numerically computing the result. If 
p i  > ph, then the result can similarly be written in terms 
of the ratio p h / p ; .  
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15.1 5 Exercises 

15.1 Determine a low-density parity check matrix for the (n, 1) repetition code. Show that there are 
no cycles of girth 4 in the Tanner graph. 

15.2 Let H be a binary matrix whose columns are formed from the (7) rn-tuples of weight 2. 
Determine the minimum nonzero weight of a code that has H as its parity check matrix. Show 
that there are no cycles of girth 4 in the Tanner graph. 

15.3 Let h(x) = 1 + x + x3 + x7. Form a 15 x 15 parity check matrix by the cyclical shifts of the 
coefficients of h(x). Show that there are no cycles of length 4 in the Tanner graph. What is the 
dimension of the code represented by this matrix? 

15.4 For the parity check matrix 

1 1 0 1 0 0 0  
0 1 1 0 1 0 0  

.=[: : ; ; ; : PI 
(a) Construct the Tanner graph for the code. 
(b) Determine the girth of the minimum-girth cycle. 
(c) Determine the number of cycles of length 6. 
(d) Determine a generator matrix for this code. 
(e) Express the N and M lists describing this parity check matrix. 

15.5 Let {q, . . . , cn} be independent bits, ci E (0, 1) and let hi(c) = log -. Let z = Cy=l ci 
be the parity check of the ci . Let 

P(z = 1) 
h(2) = log ___ 

P(z = 0)  

be the likelihood ratio of the parity check. 

Show that 

This is the tanh rule. Thus 

(15.53) 

Let 
ex + 1 
ex - 1 f(x) = log - , x > o .  

Show that f(f(x)) = x for x > 0. 
Plot f (x) .  
Let a, = - nr=l sign(-hj (c)) be the product of the signs of the bit likelihoods. Show 
that (15.53) can be written as 

(15.54) 
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15.6 

15.7 

(e) Show that (15.54) can be written as 

Hint: tanh(z/2) = -. 
(f) Show that if ck is equally likely to be 0 or 1, then h(z)  = 0. Explain why this is reasonable. 
(g) Explain why h(z) FZ - ( - l )z lk~n(c) l ,  where Ihmin(C)I = mini Ihi(C)I. 

Let a m  be the mth row of a parity check matrix A and let Zm be the corresponding parity check. 
That is, for some received vector e,  Zm = eaz . Let am be nonzero in positions i l  , i 2 ,  . . . , i,, 
so that 

Zm = ei, + ei, + . . + ei, . 
Assume that each ej is 1 with probability p c .  Let Zm (w) be the sum of the first w terms in Zm 

and let p z  (w) be the probability that Zm (20) = 1 .  

(a) Showthat pz(w+l)  = pz(w)(l -pc)+(l  - p z ( w ) ) p c ,  withinitialcondition pz (0 )  = 0. 

(b) Show that pz(w) = - i(1- 2 ~ ~ ) " .  

[217] Hard decision decoding on the BSC. Let A be the m x rz parity-check matrix for a code 
and let r be a binary-valued received vector. A simple decoder can be implemented as follows: 

Set C = r (initial codeword guess) 
[*I Let z = cAT (mod 2) (compute checks) 
If z = 0, end. (everything checks - done) 
Evaluate the vote vector v = zA (not modulo 2), which counts for each bit the number of 
unsatisfied checks to which it belongs. The bits o f t  that get the most votes are viewed as the 
most likely candidates for being wrong. So flip all bits 6 that have the largest vote. 
Go to [*I 

(a) Let r = [ 1, 0, 1, 0, 1 ,  0, 0, 1 ,  0, 11. Compute s, v, and the updated C using the parity check 

(b) Repeat for r = [l, 0, 1, 0, 1, 1, 0, 1,0, 11. Continue operation until correct decoding 

(c) Show that v = PA counts the number of unsatisfied checks. 
(d) Some analysis of the algorithm. We will develop an expression for the average number 

of bits changed in an iteration. Let w r  be the row weight of A (assumed fixed) and wc be 
the column weight (assumed fixed). Determine the largest possible number of votes w a 
check can be involved in. 

(e) Let e be the (binary) error vector. Let bit 1 of e participate in check Zm (that is, A,i = 1). 
Show that when el = 0, the probability that bit 2 receives a vote of w is a = P(votel = 
w(el = 0) = [pz(wr - l)]", where pz(w) is the function defined in Exercise 15.6. 

(f) Show that when el = 1, the probability that this bit receives the largest possible number 
of votes w is the probability b = P(votel = wlel = 1) = [l - p z ( w r  - l)]". 

(g) Show that P ( q  = Olvotel = w) IX a(1 - p c )  and P(el = llvotel = w) 0: bpc, where 
pc  is the crossover probability for the channel. 

(h) Hence show that the expected change in the weight of the error vector when a bit is changed 
after one round of decoding is (a(1 - p c )  - bpc)/(a(l - P C )  + ~ P C ) .  

matrix in (15.1). Is the decoding complete at this point? 

occurs. 
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15.8 [113] Consider a sequence of m independent bits in which the j th bit is 1 with probability p j .  
Show that the probability that an even number of the bits in the sequence are 1 is (1  + ny=l (1 - 
2pj))/2. (For an expression when all the probabilities are the same, see Exercise 3.3.) 

15.9 The original Gallager decoder: Let Pil be the probability that in the ith parity check the Zth bit 
of the check is equal to 1 ,  i = 1 , 2 ,  . . . , m, 1 = 1 , 2 ,  . . . , W r .  Show that 

P(cn = Olr, { zm = 0, m E M n } )  - 1 - P(Cn = llr) wc 1 + nyLF'(1 - 2Pjl) 

P(cn = Ilr, {zm = 0, m E Mnl) i=l 1 - fly~''(1 - 2 p i l )  
n - 

P(cn = llr) 
Use Exercise 15.8. 

Let po = pc  be the probability that a bit is received in error. 
15.10 Suppose that each bit is checked by wc = 3 checks, and that Wr bits are involved in each check. 

Suppose that rn is received incorrectly (which occurs with probability PO) .  Show that a 
parity check on this bit is unsatisfied with probability (1 + (1 - 2 p 0 ) ~ ' - ~ ) / 2 .  
Show that the probability that a bit in the first tier is received in error and then corrected 
is p o ( ( 1 +  (1 - ~ p O ) ~ r - 1 ) / 2 ) 2 .  
Show that the probability that a bit in the first tier is received correctly and then changed 
because of unsatisfiedparity checks is (1 - po)((l - (1 - 2 p 0 ) " ' - ~ ) / 2 ) ~ .  
Show that the probability of error p i  of a digit in the first tier after applying the decoding 
process is 

I' [ 1 + (1 -22po)"'-1 I ' + ( l - P o ) [  1 - (1 - 2po)wr-l 
P1 = PO - PO 

and that after i steps the probability of error of processing a digit in the ith tier is 

L L 

15.1 1 A bound on the girth of a graph. The girth of a graph is the length of the smallest cycle. In this 
exercise, you will develop a bound on the girth. Suppose a regular LDPC code of length n has m 
parity checks, with column weight wc and row weight wr . Let 21 be the girth of the associated 
Tanner graph. 

(a) Argue that for any node, the neighborhood of edges on the graph of depth Z - 1 forms 
a tree (i.e., the set of all edges up to 1 - 1 edges away), with nodes of odd depth having 
"out-degree'' wr and nodes of even depth having "out-degree'' wc. 

(b) Argue that the number of nodes at even depths of the tree should be at most equal to n ,  
and that the number of nodes at odd depths is equal to m. 

(c) Determine the number of nodes at depth 0 (the root), at depth 2, at depth 4, at depth 6, 
and so forth. Conclude that the total number of nodes at even depth is 

[(wC - l ) (wr  - 1)1"/~' - 1 
(wc - l ) (wr  - 1) - 1 

1 + wc(wr - 1) ' 

This number must be less than or equal to n. This yields an upper bound on 1. 

15.12 (Irregular codes) Show that (15.38) is true. 

15.13 Show that xjrz  u , / j  = so u ( x )  d x .  
15.14 Show that the decoder algorithm of Algorithm 15.2 can be written as in (15.42) and (15.41). 
15.15 Draw the Tanner graph for a (4, 1) Repeat Accumulate code with three input bits with an 

1 

interleaver ll = (6, 12, 8, 2,3,4,  10, 1,9,  5 ,  11,7). 
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15.1 6 References 

Many references appear throughout this chapter; see especially Section 15.1. Tanner graphs 
and codes built using graphs are discussed in [330]. On the analysis of LDPC codes, the 
paper [290] is highly recommended, which uses density evolution. Density evolution is 
also discussed in [51] (our discussion comes from there) and from [15]. See also [74]. The 
EXIT chart for turbo codes was presented in [334,335]. 

The discussion of irregular LDPC codes comes from [292]. See also [212]. 
One of the potential drawbacks to LDPC codes is the large number of decoding iterations 

that may be required, resulting in increased latency and decoding hardware complexity. An 
approach to reduce the number of iterations is presented in [47,62], in which the messages 
around a cycle in the Tanner graph establish an eigenvalue problem or a least-squared 
problem. 

Our discussion of encoding comes from [289]. Another class of approaches is based on 
iterative use of the decoding algorithm in the encoding process. This could allow for the 
same hardware to be used for both encoding and decoding. These approaches are described 
in [135]. Using the sum-product decoder on general matrices is explored in [245]. An 
excellent resource on material related to turbo codes, LDPC codes, and iterative decoding 
in general is the February 2001 issue of the IEEE Transactions on Information Theory, 
which contains many articles in addition to those articles cited here. Interesting results on 
the geometry of the iterative decoding process are in [156]. 

Repeat accumulate codes are presented in [167]. Our presentation has benefited from 
the discussion in [ 151. 



Chapter 16 

Decoding Algorithms on Graphs 
16.1 Introduction 

In this chapter, the seemingly distinct algorithms applied to turbo codes and to low-density 
parity-check codes are shown to be instances of a more general algorithm for message 
passing on graphs. In fact, this algorithm also circumscribes the Viterbi algorithm and the 
fast Hadamard transform and the fast Fourier transform, which have been employed in this 
book, as well as many other useful algorithms such as the Kalman filter and state space 
models, fast matrix multiplication, directed acyclic graphs, and hidden Markov modeling, 
which are beyond the purview of these pages. 

Somewhat amazingly, the computational efficiency ascribed to all of these algorithms can 
be attributed to the following observation about the distributive law ab f a c  = a (b  + c):  The 
first computation requires two multiplications and one addition, while the second requires 
only one addition and one multiplication. Application of this distributive property arises in 
many contexts, where we want to “marginalize” out some variables. 

Example 16.1 [2] Suppose that f ( x ,  y ,  w) and g ( x ,  z )  are real-valued functions, where x ,  y ,  z and 
w are variables taking values in a finite set A with q elements. Suppose we are to compute 

a ( x ,  w> = c f k  Y ,  w > g ( x ,  z> and B(Y> = c f ( x ,  Y ,  w > g ( x ,  z ) .  

That is, 01(x, w) is obtained by marginalizing out the variables y and z ,  while #?(y)  is obtained by 
marginalizing out the variables x ,  z and w . The marginalization for 01 ( x  , w ) requires summation over 
q2 different values for each of the q2 values of ( x ,  w), for a total complexity of 2q4 (one addition 
and one multiplication for each). The function B ( y )  is obtained by marginalizing over the variables 
x ,  w, and z ,  at a complexity of 2q3 per each of the q values of y ,  for a complexity of 2q4.  The overall 
complexity to compute both the 01 and #? marginalizations is 4q4. 

Contrastingly, by means of the distributive law we can write 

y , z c A  x , z , w ~ A  

Now define the functions a1 ( x ,  w) and a 2 ( x )  by 

All the values of a1 ( x ,  w) can be computed in q3 additions, and all the values of 012 ( x )  can be computed 
in q 2  additions. Then the values a ( x ,  w) = a l ( x ,  w ) a z ( x )  can be computed in q2 multiplications, 
resulting in a total complexity of q3 + 2q2. Employing the distributive law again, we obtain 
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By reusing a2(x), only another 2q3 operations are necessary to compute B(y). The total complexity 
to compute both a ( x ,  w) and B ( y )  is 3q3 + 2q2 operations, compared to the 4q4 operations for the 
direct method. 0 

16.2 Operations in Semirings 

While marginalization seems like a rather specialized operation, the development below 
demonstrates that it arises in a variety of settings. In order for the algorithm to have broad 
applicability, we express it in the framework of a commutative semiring. 

Definition 16.1 A commutative semiring ( K ,  +, -) is a set K together with two binary 
operations + and . which satisfy the following three axioms: 

SR1 The operation + is associative and commutative and there is an additive identity called 
“0” such that k + 0 = k for all k E K .  (No additive inverse is necessary, so this does 
not form a group; this algebraic structure is called a commutative monoid.) 

SR2 The operation ‘‘.” is associative and commutative. There is a multiplicative identity 
called “1” such that 1 . k = k for all k E K .  

SR3 The distributive law holds: (a . b)  + (a . c )  = a . (b  + c ) .  

Often the semiring ( K ,  +, -) is denoted simply by K .  
There are a variety of sets/operations which forminteresting and useful semirings. Some 

of these are summarized in Table 16.1. 

Table 16.1 : Some Commutative Semirings [2] 

Set K “(+, 0)’’ “(-, 1)” Name 
1 A (+, 0) (-, 1) (conventional + and . operations) 
2 
3 
4 
5 
6 
7 
8 
9 
10 

(conventional + and . operations) 
(conventional + and - operations) 

sum-product 
min-product 
max-product 

min-sum 
max-sum 
Boolean 

Whatever semiring we are working in, we generically employ the + or the Z (summa- 
tion) operator to indicate the “+” operation and juxtaposition, ., or l7 to indicate the ‘‘a” 

operator. 

16.3 Functions on Local Domains 

Let xi ,  x2, . . . , x,, be a set of variables such that xi takes on values in a set Ai,  and let 
[Ail = qi. For S = [il, i2,. . . ir} asubsetof [1 ,2 , .  . . , n} ,  wedenotetheCartesianproduct 
Ail x Ajz x . . . x Air by As and denote the variable list { x i , ,  x i2 ,  . , . , x i r }  by x s .  The set 
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A1 x A2 x . . . An is denoted simply by A. The entire set of variables ( x i ,  x2, . . . , Xn) is 
denoted x. 

Let S = {Sl, S2, . . . , SM} be M subsets of (1, . . . , n}. For each i = 1 ,2 , .  . . , M ,  
suppose there is a function ai: Asi -+ K ,  where K is a commutative semiring. The 
function ai is called a local kernel function. When Si = { i l ,  i 2 ,  . . . ir}, then ai is a function 
of the variables xi,, X i 2 ,  . . . , xi,. The set 

Asi = Ail x Ai, x * .  . x Ai, 

is called the conjigurution space of ai; each element of Asi is a particular configuration 
of the variables, assigning a value to each variable xi from the set Ai.  The set Li = 
{xi, , xi,, . . . , xi, } = xsi is called the local domain of the local kernel function. The gZobal 
kemelfunction B : A + K is defined by 

(16.1) 

(where the ll symbol denotes the ‘‘.” operation in the semiring K ) .  
The algorithm to be developed computes marginalfunctions of global kernel functions, 

which we define as follows. Let S c { 1,2,  . . . , n )  be a set of variable indices and let Sc 
denote the complement of the set S relative to the universal set {1,2, . . . , n}. Then the 
S-marginalization is the function Bs : A s  + K defined by 

(16.2) 
XSCEASC 

(where X denotes “+” in the semiring K ) .  In other words, all the variables not in the set 
xs are “summed out.” We also sometimes use the notation P L ( X L ) ,  where L is the local 
domain corresponding to the set S. In addition to the set complement notation xsc E Asc, 
we also use the “summary” notation - (xs} to indicate “every variable not in xs,” where 
the set A s  is implicit: c means thesameas . 

-+SI xsc EASC 

Note: In many instances a normalization of the marginal functions is computed. In this 
case, (16.2) would be more properly written as 

The algorithm to be developed is sometimes called the marginalize a product offinctions 
(MPF) algorithm. It is also called (because semiring 4 in Table 16.1 is a “generic” ring) 
the sum-product algorithm. Other equivalent or nearly equivalent algorithms are called 
“message-passing” or “belief propagation” [258]. We now provide examples showing how 
this framework can be applied to a variety of problems. 

Example 16.2 We express the problem of Example 16.1 using these concepts. Let L 1 = {XI, x2, x4} 
be a local domain and L2 = {XI, x 3 }  be another local domain, where each xi  takes value in a set A 
having q elements. Let 
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Example 16.3 [2] This example demonstrates how marginalization can be used to express a useful 
problem, that of computing the Hadamard transform. (The efficient algorithm to be developed gives 
rise to the fast Hadamard transform.) Let X I ,  x2, x3, y1, y2, y3 be six variables each taking values in 
the set A = [ O ,  1). Let f(y1, y2, y3) be a real-valued function of its arguments. Define the following 
sets, domains, and kernels: 

i Local Domain Lj Local Kernel aj 
1 IYl .Y2,Y31 f(Y1, Y29 Y3) 
2 b l 3  Y11 ( - 1 ) X l Y l  

3 b 2 7  Y21 (-1)X2Y2 

5 {Xl,X2,X31 1 
4 Ix3, Y31 (- 1)X3Y3 

We observe that the local kernel function associated with L5 is the trivial, identity, kernel function. 
Introduction of trivial local kernels is often a useful trick to mapping problems into the “marginalize 
a product of functions” framework. 

The global kernel function is 

B(xl,x2, ~ 3 ,  ~ 1 ,  ~ 2 ,  ~ 3 )  = f(y1, ~ 2 ,  Y ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  

Now let L = {xi, x2, x3}. The marginalization of B with respect to this local domain is 

B~(x1 ,  X 2 , X 3 )  = c f(y1, y2, ~ ~ ~ ~ - ~ ~ x ’ y ’ ~ x 2 y 2 f x 3 y 3  

Yl >Y23Y3EI0>11 

= c f(y1, y2, y3)(-1)x’Y1fx2Y2fx3Y3. 
’”{XI . X 2 , X 3 )  

This is a Hadamard transform of the function f(y1, y2, y3). 

Example 16.4 [195] In this example, we show how the power-of-two discrete Fourier transform 
(DFT) can be expressed in this formalism. Let (WO, w l ,  . . . , WN-1) be a complex-valued N-tuple, 
where N is a power of 2. The DFT is 

N-1 
wk = c wne-J2nnklN, k = 0, 1 , .  . . , N - 1. 

n=O 
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Let us represent n and k as a binary representation using binary-valued variables xi to represent n and 
binary-valued variables yi to represent k .  For the sake of a specific example, suppose that N = 8. 
Then we write 

(16.4) 
where 52 = ej2=IN. We thus identify the following local domain and local kernel functions: 

i Local Domain Li Local Kernel a; 

5 1x1 I YO} (j)--XlYO 
6 b o y  YO1 Q-XOYO 

Then for L = {yl, y2, y3}, the marginalization is 

BL(Y19 Y29 Y3) = 

Example 16.5 [2] Maximum likelihood decoding. We now consider application of these principles 
to error correction, demonstrating the idea with the (7,4,3) Hamming code having parity check matrix 

1 1 0 0 1 1 0 1  

0 0 1 0 1 1 1  
1 0  1 0  1 1 .  (16.5) 

The codewords are transmitted through a memoryless channel, so that for the received vector (y1, y2, 
. . . , y7) the likelihood of a particular codeword (XI, n2, . . . , n7) is 

7 

p(yl,y27 . . . ~ Y ~ I X I , X ~ ,  . . . , ~ 7 )  = np(yiIxi) .  (16.6) 

The maximum likelihood decoder seeks the codeword which maximizes (16.6). Codewords x must 
satisfy the parity check equation Hx = 0. To describe the parity check conditions, we use the “Iverson 
convention” [126, p. 141: If P is a Boolean proposition, then we take [PI to be the (0,  1)-valued 
function indicating the truth of P :  

i=l 

1 if P is true 
0 if P is false. 

[PI = 

We also have 
0 if P is true 
00 if P is false. 

- log[P] = 
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Then the parity check equations give rise to the functions 

The domains and kernels for this problem are as follows: 

is a codeword 

The value of xi for which & ( x i )  is the smallest is the value of the ith component of a maximum- 
likelihood codeword, that is, a codeword for which log p ( y 1 ,  . . . , ~71x1, . . . , x7) is largest. 

As we will see, cycles in the factor graph preclude exact calculation of this marginalization. 
Otherwise, this would generalize to be a computationally efficient means of finding the maximum 
likelihood codeword for an arbitrary linear block code. 0 

Example 16.6 11951 MAP decoding. We consider again a coding problem. Let (xi, . . . , x,) be 
selected according to a uniform probability from a code C of length n and transmitted over a memo- 
ryless channel, whose output is the vector y = (y1, y2, . . . , yn). The posterior distribution p(x\y) is 
proportional to the function p(y lx)p(x). We write 

B(x) 0: P(YlX)P(X), 

representing a global kernel function. 

we have 
Since the prior distribution of the transmitted codeword is assumed to be uniform over the code, 

P(X) = XC(X)/lCI, 

where xc (x) is 1 if x E C, and 0 otherwise. Then we have 

n 
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1 
/ 

=-Xl(xl + x 4 + x 5 + x 7 ) X 2 ( x 2 + X 4 + X 6 + X 7 ) X 3 ( x 3 + X 5 + x 6 + x 7 ) n P ( Y j l x i ) .  
ICI i=l  

The domains and kernels for this are very similar to those for the maximum likelihood case, except 
that we use semiring of conventional addition and multiplication. 

i Local Domain Li Local Kernel a i  

1 IXl1 P(YlIb1) 
2 b 2 1  P(Y21X2) 

Now the marginalization is computed by 

Bi(Xi) = c B(x1,. . . 1  x7). 

-(xi) 

This represents a marginalization of the posterior density, which computes a quantity proportional to 
P(xilY1,. . . ~ 7 ) .  0 

16.4 Factor Graphs and Marginalization 

Factor graphs are a way of representing the computations in the marginalize a product of 
functions operation which reveal how to take advantage of the distributive law to reduce the 
computational complexity. 

Definition 16.2 Factor graphs are bipartite graphs that represent the factorization of the 
global kernel function (16.1), having a variable node (or vertex) for each (single) variable 
xi and a factor node for each local kernel function aj , and an edge connecting a variable 
node xi to a factor node a, if and only if xi is an argument to the function czj . 

Example 16.7 Figure 16.l(a) shows the factor graph for the functions of Example 16.2. The function 
nodes are indicated with filled blocks and the variable nodes are circles. 

B(xl,x2,x3, x43x5) = al(xl)a2(x2)~3!3(xl,x2,x3)~4(x3,x4)"5(x3,x5) (16.7) 

be the global kernel function. The factor graph corresponding to this factorization is shown in Figure 
16.1 (b). 0 
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(a)Factorgraphforasim- 
ple function. (16.7). 

(b) Factor graph for the product in 

Figure 16.1: Factor graph for some examples. 

Figure 16.2: Factor graph for a DFT. 

Example 16.9 The factor graph for the DFT factorization (16.4) is shown in Figure 16.2. The 
functions are 

Cl(X0, Y2) = (-l)xoy2 c2(xo, y1) = j - x o y 1  c3 = O-xoYo 

4 x 2 ,  yo) = (-l)x*yo. b l h ,  Y1) = ( - l ) x ' y l  b2(x1, yo) = j - x ' y o  

0 

16.4.1 Marginalizing on a Single Variable 

Let us now consider the marginalization of the global kernel function of (16.7) to produce 
a function of a single variable. Letting S = { 1) we have 

BS(X1) = c B(X1, x2, x3, x4, x5> 
x2 J 3  J 4 ,  xs 

= c a1(x1)a2(X2)a3(xl7 x2, x3)a4(x3, x4)a5(x3, x5) 

= c al(xl)a2(x2)a3(xl, x2, x3)a4(x3, x4)a5(x3, x5). 

X 2 J 3 J 4 J S  

-(XI 1 

Applying the distributive law, we can write this as 

x2 x3 
(16.8) 
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ff2 
Ic I 

(a) An expression tree representation. (b) Factor graph of figure 16.l(b) drawn 
as a tree with x1 as a root node. 

Figure 16.3: Graphical representations of marginalization. 

This requires fewer computations than the direct method, but raises the question of how this 
distributive structure can be discovered in a general problem. Using the summary notation, 
we can rewrite (16.8) as 

Our next step is to portray the computations in (16.9) as an expression tree, which is a 
graphical representation of how the computations are organized. Figure 16.3(a) shows an 
expression tree representing the computations in (16.9). In the expression tree, leaf nodes 
are either variables or functions. As in the factor graph, edges still indicate functional 
dependency. However, the summaries in (16.9) are also portrayed. (The dashed box around 
a summary notation indicates that there are no other variables to sum out). Now consider 
the factor graph of Figure 16.l(b) redrawn with the X I  node as the root node, as shown 
in Figure 16.3(b). The structural similarity of the graph is evident. The transformations 
to go between the expression tree representation and the factor graph representation are 
summarized in Figure 16.4. 

Observe that in going from the a 4  function node to the x3 variable node, all variables 
except x3 in the a 4  branch of the tree are summed out. Similarly, in going from the a5 node 
to the x3 node of the tree, all variables below the x3 node in the e5 branch of the tree are 
summed out. At the x3 branch, the product of the information coming from the branches 
below is passed to the next higher level of the tree. In going from the a2 branch to the x2 

branch, all other variables except x2 in the branch are summed out (there are none). At the 
a3 node, the information from the branches below is multiplied together. In going from the 
a3 node to the xi node, all variables except x1 are summed out. 

We can think of the passing of information among the levels of parenthesization in the 
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Factor Expression 
graph tree 

Factor Expression 
graph tree 

(a) Conversion at a function node. (b) Conversion at a variable node. 

Figure 16.4: Conversion from factor graph to expression tree. 

equation (16.9) (and the levels of the tree) as message-passing. A message is simply a 
representation of a function or a variable. For functions over discrete variables, the message 
is simply a list of the function values evaluated at all the outcomes. For example, suppose 
that x1 takes the values 0, 1, . . . , q - 1. Then the “message” associated with the function 
al(x1) is the vector (or list) of function evaluations (a! l (O),  a l ( l ) ,  . . . , al(q - 1)). 

We denote the message from a function node a! to a variable node x as The 
message from a variable node x to a function node a! is denoted as pX+.a. Consider again 
the summation in (16.9). In light of the expression tree/factor graph representation, we can 
designate the various parts of the summation as follows: 

B S ( X l >  = 

a l ( X l >  v c (a3(X11x2,x3) v a2(x2) (c  a4(x31x4)) (c  a5(x?,x5>)). 
- 1 ~ 3 )  - b 3  1 Pal + X I  (XI )  -{XI Pa2+x2(XZ) ~ ,, ~ , - Paq-fx3(X3) Pa5 +x3 (X3) 

(XZ) , 
ILx3+a3 (X3) 

L 

/ I C f + X l  (XI )  
L J 

PXI +(XI) 

For example, 

ll.(y5+x3(x3) = c a5(x3, x5) 
- b 3 1  

is the message from function node a5 to variable node x3, as a function of x3. For fi- 
nite domains this can be represented as a vector. For example, if x3 takes on the values 
0, 1, . . . , q - 1, then the message is the vector 
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The point of this example is this: 

The computational organization which puts the distributive law into effect when 
marginalizing to compute /3i (xi) for a single variable node xi is found by draw- 
ing the factor graph as a tree with xi as the root node, then starting at the leaf 
nodes of the tree, pass “messages” toward the root node. 

In the procedure described below, it is also helpful to think of the marginalized function 
/ 3 ( j }  ( x i )  as an implicit node in the factor graph. 

Let us now state explicitly how the messages are formed. We first consider a message 
from a variable node to an adjacent function node, pX j ( y ( x ) .  Let e denote the edge con- 
necting the x node and the a node. The message is formed by computing the product of all 
messages on edges incident to x except the edge e .  Let Nb(x) denote the set of nodes which 
are neighbors (adjacent) to x. Note that a E Nb(x). The set Nb(x) \a consists of all nodes 
that are adjacent to x except a. Then the message is computed by: 

Message from variable node to function node: 

(16.10) 

The message from a function node to a variable node (x) is the product of the local 
kernel function a! with all messages received at a from nodes other than the x node, sum- 
marized (marginalized) for the variable x. As before, let Nb(a) be the set of neighbors of 
the a node (i.e., nodes adjacent to it) and let Nb(a) \ x be this set excluding the x node. 
Then the message is computed by: 

Message from a function node to a variable node: 

The notation a(x,  Nb(a!)) indicates that (11 is a function of the variable x and the other 
variable nodes adjacent to a.  

The algorithm based on these two steps is referred to as the sum-product algorithm 
(bearing in mind that both “sum” and “product” depend upon the semiring invoked for 
the problem) or the message passing algorithm. Following the usual convention, empty 
products are equal to 1.  Summaries C+, over variables which are not in the summand 
simply return the summand. 

(x) and the message 
from a function node to a variable node (x) are functions of the variable x. That is, 
messages in either direction along the edge {x, a} are functions of x. This happens because 
at the function node the variables not associated with the edge {x, a }  are marginalized out, 
while at the variable node all messages are functions of that variable. The two message 
rules (16.10) and (16.11) can be summarized as follows [195]: 

The Message Passing Rule: The message from a node v on an edge e is the 
product of the local kernel function at v (or the unit function if v is a variable 
node) with all messages received at v on edges other than e ,  summarized for the 
variable associated with e.  

Both the message from a variable node to a function node kx  
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To restate: when a node v has messages from all of its neighbors except one, w, then v 
computes its message and sends it to w, using (16.10) if v is a variable node or (16.1 1) if u 
is a function node. 

We may observe that the message passing rules have the important special cases shown 
in Table 16.2. 

Table 16.2: Some Special Cases of Message Passing 
1 Rule 1 By (16. lo), the message sent from a variable node with only one neighbor 

is equal to 1 (because there is an empty product). This is called the trivial 
message. 
By (16.10), a variable node with exactly two neighbors simply passes the 
message from one of its neighbors on to its other neighbor. 
By (1 6.1 l) ,  the message sent from a function node with only one neighbor 
is the function’s value itself. 

Rule 2 

Rule 3 

It is helpful to think of the factor graph as having an additional set of nodes - im- 
plicit nodes - representing the actual marginal functions pj (x j ) .  These nodes don’t send 
messages, but they receive the final message sent from a variable node x j . 

16.4.2 Marginalizing on All Individual Variables 

In some problems, it is desired to compute all the marginal functions #?{jl(xi) at all the 
variable nodes. One way to accomplish this, of course, is to consider each variable node 
in turn as the root node of the factor graph, and to pass messages from the leaf nodes in 
the tree to the respective root nodes. However, this may unnecessarily duplicate many of 
the computations. Instead, it is more efficient take no particular vertex as the root. Each 
vertex v in turn regards a neighbor vertex w as a parent vertex in the tree, processing and 
passing messages along from all its other vertices as they are received, which are regarded 
as children in the tree. Once a vertex u has received messages from all of its adjacent nodes 
except one, it sends its message to that node. The idea is summarized in Figure 16.5. The 
message passing is not deadlocked (unable to get started), since leaf nodes only have one 
neighbor, so they are immediately able to pass their messages to their neighbors. If the graph 
is actually a tree, as are all the examples we have seen so far, then processing moves from the 
leaf nodes to the root. In general, the actual sequence of messages passed among the nodes 
may vary. It may be helpful to think of each node as an independent processor, passing 
messages to a neighbor once all the messages from other neighbors have been received. In 
fact, this viewpoint implemented in hardware can give rise to efficient parallel architectures. 

Example 16.10 The apparent inscrutability of messages sloshing around a factor graph can be alle- 
viated somewhat by considering a sequence of messages for a particular example. We return to the 
factor graph of Figure 16.1(b). Marginalizing on all the variables can be accomplished with six steps 
of message passing. At each step, each node that has messages from all its neighbors except one passes 
its message to that neighbor. Figure 16.6, which shows the factor graph of Figure 16.l(b) redrawn, 
summarizes the steps of the algorithm and includes the “implicit” j3{i) nodes for the marginalized 
functions. The numbers in the circles indicate the step in which the message is passed along the edge. 
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Figure 16.5: Message passing in the sum-product algorithm. 

Figure 16.6: Steps of processing in the sum-product algorithm. 

Step 1 

empty product 

W X g ' f f g ( x 5 )  = 1 
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Step 2 

Step 3 

Step 4 

Step 5 

Step 6 The actual marginal values are computed by thinking of the functions p{i1 (xi) as nodes in 
the graph, adjacent only to the nodes for the xi. Then the marginal functions are computed as the 
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X I  x2 x 3  

Figure 16.7: The factor (Tanner) graph for a Hamming code. 

16.5 Applications to Coding 

Let us now consider application of message passing to some coding problems. 

16.5.1 Block Codes 

Figure 16.7 shows the factor graph for the Hamming code of Example 16.6. This is essen- 
tially the Tanner graph, with the local functions representing parity checks indicated by 
and the local functions representing the channel inputs indicated by a, associated with the 
functions p ( y i  \xi). For brevity, we refer to these local functions here as the y i  functions. 
Let us consider a few of the explicit messages passed on th s  graph and make connections 
to the LDPC decoder. The messages from the yi nodes to the xi nodes are, by rule 1, the 
likelihoods, 

. c ~ ~ ~ + ~ ~  (xi) = p(y i  Ixi) i = 1,2, . . . ,7 .  

By rule 2, the messages / A ~ ~ ~ ~ ~  (xi), i = 1,2,  3 simply pass these likelihoods along. More 
interesting are the messages passed from node x7, which is involved in multiple parity 
checks. For example, 

PX7’XI  (x7) = P y 7 + x , / A x 2 ~ x 7 P x 3 ’ x 7  = P(Y7IX7)P.LX2-tX7/A.X3’X,. 
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This should be compared with (15.12). Structurally they are the same: the message from 
variable node n to check node m corresponds exactly to the qmn (x,) of the LDPC decoder. 

Now consider messages from check nodes to variable nodes. For example, 

P X l + X l ( X l )  = c x 1 ( X l ~ X 4 ~ ~ 5 ~ X 7 ) P X q ' ~ I P X 5 - t x I c L x S ' x , .  

x4 ,XS 3x6 9 X7 

This should be compared with (15.15). The messages from check node m to variable node 
n correspond to rmn (x,) of the LDPC decoder. 

Finally, consider the marginal functions obtained from the message from the node xi to 
j3i (xz). For example, 

cLx7--'87(X7) = P(Y7 l~7)cL~I~x ,cLL.x2 'x7cLx3 'x7 .  

This should be compared with (15.9). The pseudoposterior functions q,(x,) are the marginal 
functions computed by the message passing algorithm. 

The files indicated provide a Matlab implementation of a fairly general message passing 
algorithm. It can be verified that the results of these computations are the same as in Example 
15.6. 

In the general case, the factor graph (i.e., the Tanner graph) has cycles in it. While the 
message passing paradigm is exact for factor graphs without cycles, the presence of cycles 
in the graph leads to a bias, which means that the results computed are not exact. 

16.5.2 Modifications to Message Passing for Binary Variables 

For binary codes, the message passing rules (16.10) and (16.1 1) can frequently be simpli- 
fied. In this case, all the variables are Bernoulli variables, so that the messages represent 
probabilities such as P(xj  = 0) and P(xj  = 1). Furthermore, the functions we consider 
are only check functions. 

Consider the portion of the graph shown in Figure 16.8(a), with a variable node of degree 
3, with incoming message vectors pl = (PO, p1) and p2 = (q0,qi) .  According to (16.10), 
the normalized message vector pxi+ol, which we denote here as var(p0, p i ,  qo,q1) (that is, 
the message from a variable node), is 

Now consider the parity check node with function x (x, y ,  z )  = [x + y + z = 01, where the 
message from x is represented by the probability vector px = ( P O ,  p i )  and the message 
from y is represented by the probability vector py = (qo,q1). The normalized message 
vector from x to z, which we denote as chk(p0, p1, qo, 41) is 

Since the messages are probabilities, they can be more efficiently parameterized by a 
single value, rather than the vector (PO,  p1).  There are three different parameterizations 
which are convenient to use. We describe them and characterize the messages (16.12) and 
(16.13) in these parameterizations [195]. 
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(a) Variable node with degree 3. (b) Parity check node with degree 3. 

Figure 16.8: Graph portions to illustrate simplifications. 

Likelihood ratio Let h(p0, p1)  = p1/po. 

(16.14) 

chk(A1, A2) = px+z = logcosh (” 2 ”) - logcosh ( A2)  (16.15) 

= -2 tanh-’ (tanh(A1/2) tanh(A2/2)) 

This corresponds to the tanh rule. 

Likelihood difference 8(po ,  p1) = po - pi 

81 + 82 
var(81, 82) = cLxj+a = ___ 

1 + 6182 
CW81, 82) = FX’Z = 8182. (16.16) 

In the log likelihood ratio case, there is a convenient approximation. Since for /x  I >> 1, 

log(cosh(x)) % 1x1 - log(2) 

the formula (1 6.15) can be written 

chk(A1,h . )  % I(A1 - W / 2 1 -  I(A1 +Ad/21  = -sign(Ai)sign(Az)min(lAiI, IA2l). 

This corresponds to doing operations in the min-sum semiring. 

16.5.3 Trellis Processing and the Forward/Backward Algorithm 

As we have seen many times, it is frequently convenient to use a trellis description of a 
code. We describe here how such trellises can be given a factor graph description. Figure 
16.9(a) shows a (time-varying, for interest’s sake) trellis, where the state at time t is denoted 
by st and the next state st+1 is determined by st and an input x t .  The transition from st 

to st+l produces the output vt. The states are typically considered hidden. A factor graph 
corresponding to this trellis is shown in Figure 16.9(b). The state variables, being not 
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(a) Trellis. 

State variables 

I I 
(outputs observed through a memoryless channel) 

_ _ _ . _ _ _ _ _ _ _ _ _ _  1 

(b) Corresponding factor graph. 

Figure 16.9: A trellis and a factor graph representation of it. 

directly observable, are indicated with double circles. If the outputs vi are observed through 
a memoryless channel with outputs yi, then an additional set of function nodes is included 
in the factor graph, as shown. 

The local functions Ti (si , x i ,  vi , si+l) describe the state transitions. Associated with 
each function I;: ( x i ,  Xi, vi , si+l) is a set Ti describing the behavior, which consists of allowed 
tuples of the form (si, xi, v i ,  si+l). For example, the table here shows To and Ti for the 
trellis of Figure 16.9(a), where the states at each time instant are numbered from top to 
bottom. 
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Figure 16.10: Message designation for forwardhackward algorithm. 

Then the local kernel function is 

Ti(si,xi,vi,si+l)=[(si,xi,vi,si+l) E El. 
For comparison with the forwardhackward (BCJR) algorithm, we use the following 

designation for messages, as shown in Figure 16.10. 
Message Designation 
~ ~ j i s i + l  (si+l) a(si+l) 

PUi+E (Vi) y(vi) 
psi+] i z  (si+l) B(si+l) 

PT;+n; (Xi) 6 (xi 1 
Let us now consider the message passing algorithm on the factor graph starting at the 

left end. To begin with, the so and xo nodes send the trivial message 1. The vo node passes 
along the message p ( y o  I vo). At this point, the function node To has messages from all but 
one of its edges and can send out a message. 

Then by the message passing rules, 

a(si+l> = C ~ ( s i , x i ,  ~ i ,  si+l>a(si>y(vi)- (16.17) 

The sum receives contributions from those edges e = (si, xi, vi ,  si+l) such that Ti (e) = 1. 
For each such edge e ,  we let a(e)  = a(si)  (the initial state of the edge) and y (e )  = y ( v i ) .  
Let Ei (s) denote the set of edges incident on a state s in the ith section of the trellis. Then 
the sum in (16.17) can be written as 

.‘(si+ll 
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This is equivalent to (14.12) in the BCJR algorithm. 

the message passing rules indicate 
Suppose the trellis proceeds to a state SN. Starting at the right and working backward, 

B(si) = C G(si9 xi, vit si+l>B(si+l>y(vi) .  
m{si I 

This can be written in the form 

ecEj(s j )  

which is equivalent to (14.14) in the BCJR algorithm. Having computed the a! and B at a 
node Tj, we can compute the message 

S(xi)  = C ~ ( s i ,  xi, v i ,  si+l>a(si)B(si+l>y(xi) ,  
-(xi I 

which is equivalent to (14.9). 

for other variables as well, such as the posterior probability for a state si or an output ui . 

plication, the algorithm obtained would be the Viterbi algorithm. 

Using the message passing rules, it is straightforward to derive posterior probabilities 

If we were to employ the min-sum ring, instead of the conventional addition and multi- 

16.5.4 Turbo Codes 

Figure 16.1 1 shows the factor graph corresponding to aparticular turbo code; see Figure 14.2 
for the encoding framework. The form of the graph makes the decoding algorithm clear: 
the forwardbackward message passing algorithm is used on the first encoder. The resulting 
messages are interleaved and passed in to the other decoder, where the forwardhackward 
message passing is again performed. The graph typically has loops in it, through the 
interleaver, so the decoding algorithm is not exact. 

16.6 Summary of Decoding Algorithms on Graphs 

A general, unstructured, parity check matrix describes a Tanner graph, which implies a 
message-passing decoder. However, unless the check matrix is very sparse there are cycles 
on the graph which bias the results. Hence, this decoder is appropriate for LDPC codes. 

The parity check matrix corresponding to convolutional codes has a Toeplitz structure. 
With the introduction of state variables, the factor graph is again amenable to message 
passing decoding. This decoder is appropriate for turbo codes. 

However, there are still many codes that do not fall into either of these categories. Some 
important work in this direction, however, appears in [236]. The process of encoding c(z) = 
rn(z )g(z )  is represented by a filterbank using the Cook-Toom fast convolution algorithm, 
which, by some reorganization, is represented as a critically sampled filter bank. Working 
backward from the filter bank, a parity-checking graph is obtained, which is decomposed 
into stages suitable for iterative decoding. Iterative message passing decoding is feasible, 
resulting in a soft-inputhoft-output Reed-Solomon decoder. 
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Figure 16.1 1 : The factor graph for a turbo code. 

16.7 Transformations of Factor Graphs 

The factor graphs presented so far are adequate for decoding purposes. However, there are 
modifications that can be made to factor graphs that can be used to extend their applicability, 
for example, by eliminating cycles in the graph or dealing with nodes representing multiple 
variables. These give the factor graph technique the ability to represent algorithms such as 
the fast Hadamard transform or the DFT. Two transformations in particular are introduced, 
namely, clustering and stretching. These transformations are presented in [ 1951, which this 
discussion closely follows. 

16.7.1 Clustering 

Clustering is the combining together of two or more nodes into a single node. Either variable 
nodes or function nodes may be clustered together. To cluster the nodes u and w, delete u 
and 20 and any incident edges from the factor graph, introduce a new node representing the 
clustered pair (v, w), and connect this new node to all the nodes that were neighbors of v 
or w in the original graph. 

Variable nodes. If v and w are variable nodes with domains A ,  and A,, respectively, 
the new variable node (u ,  w) has domain A,, x A,, so the size of the message is [A, , (  ( A ,  1. 
This multiplication of the domain sizes can result in a significant increase in computational 
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(a) Fragment of original 
factor graph. 

(b) Clustering the y and z 
variable nodes. nodes. 

(c) Clustering the function 

Figure 16.12: Demonstration of clustering transformations [ 1951. 

complexity. Any function f in the original factor graph that was a function of v or w is 
replaced with a function f ’  that has ( v ,  w) as an argument. 

Example 16.11 [195] Figure 16.12(a) shows a fragment of a factor graph with a cycle. The result of 
clustering the y and z variable nodes is shown in Figure 16.12(b). Here, for example, the relabeled 

0 function ah(x, y ,  z )  is defined as ah@, y ,  z )  = q ( x ,  y ) .  

Function nodes. When v and w are local kernel function nodes, the pair (u ,  w) indicates 
the product of the functions, whose domain is the union of the domains of the original 
functions. The global kernel function for this clustered graph is identical to the global 
kernel function of the original graph. 

Example 16.12 Figure 16.12(c) shows the clustering of three function nodes, resulting in a function 
node 

“ 2 3 5 ( X ,  Y ,  Z )  = a 2 ( x ,  y ) a 3 ( x ,  Z ) a g ( Y ,  Z ) .  

0 

As these examples show, clustering variables can be used to eliminate cycles in a graph. 
If the sum-product algorithm is used on the graph in Figure 16.12(c), then the algorithm 
would be exact, while if used on the graph of Figure 16.12(a) it would not be exact due 
to the cycles. However, the computational complexity in the exact case is higher, because 
there is a larger domain on the merged variable nodes. 

16.7.2 Stretching Variable Nodes 

The influence of a variable node on the functions adjacent to it can be represented by 
“stretching” that variable node to the other variable nodes incident to those functions. Let x 
be a variable node of a graph and let Nb2(x) be the set of nodes which can be reached from 
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ff3 

(a) Factor graph. (b) Stretching x node. (c) Eliminating redun- 
dant x .  

Figure 16.13: Stretching transformations. 

x by a path of length two. Then Nb2(x) is the set of variable nodes that are also arguments 
to the functions that x is. Stretching is accomplished by replacing each node y E Nbz(x) 
with the node (x, y). Functions incident on these modified nodes are simply modified to 
reflect the change in arguments. 

Once a variable x has been stretched to all variable nodes in Nb(x), its influence on 
its adjacent functions is represented by the modified nodes. Thus, the original x node is 
redundant and can, if desired, be removed from the graph. This is another way of eliminating 
cycles from factor graphs. 

Example 16.13 Figure 16.13(a) shows a segment of afactor graph. In Figure 16.13(b), the x variable 
node has been stretched into the y and z variable nodes. In Figure 16.13(c), the variable x is redundant 

0 

Stretching can be carried out further than to Nb2(x). If B is the set of nodes to which 
x has been stretched, then x can be further stretched to any node in Nb2 ( B ) .  Thus, the set 
of edges to which x is stretched forms a connected subgraph of the factor graph. In the 
message-passing algorithm, since x appears in all the variable nodes of the factor graph, it 
is not summarized out. This provides a modeling ability essentially equivalent to that of the 
junction graphs presented in [2 ] .  

When multiple variables are stretched and a variable already exists in the node into 
which it is stretched, it is only necessary to retain one instance of the variable. 

As seen in the last example, stretching can be used as a means of eliminating cycles. If 
a variable node XI is involved in a cycle, then it is first stretched to all the variables in the 
cycle. Let (a, XI) denote the last edge in the cycle and let ((XI, x,), a)  be the penultimate 
edge in the cycle after x1 is stretched. See Figure 16.14. Since a obtains the variable x1 
from the node (XI, x,), the edge (a,  XI) is redundant and may now be eliminated. 

16.7.3 Exact Computation of Graphs with Cycles 

By the methods outlined above, cycles in graphs can be eliminated and exact computation 
can result. A more-or-less constructive way to eliminate cycles is to identify spanning trees 
in the graph, then use the spanning tree to direct how the variables should be stretched. A 
spanning tree T for a connected graph G is a connected cycle-free subgraph of G having 
the same vertex set as G .  Algorithms for finding a spanning tree of a graph are well known 

and is eliminated, breaking the cycle. 
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This edge is now redundant 
and may be removed from the graph 

\. . 

\ 
\ / \ , 

. .  . .  

(a) A cycle in the factor 
graph. remove the last edge. 

(b) Stretch the variable, then 

Figure 16.14: Eliminating an edge in a cycle. 

(see, e g ,  [305]). The spanning tree is not generally unique. To systematically eliminate 
cycles in a graph G ,  identify a spanning tree T ,  noting the edges in the graph G which are 
not in the spanning tree T .  For each such removed edge, stretch the incident variable around 
a cycle in the graph, so that the removed edge is the last edge in the cycle. Then the edge 
may be removed as described above. 

Example 16.14 To clarify this technique, consider the problem of computing the DFT introduced 
in Example 16.4, whose factor graph is shown in Figure 16.2. This graph has cycles, so to obtain 
exact computation a spanning tree must be identified. A particular spanning tree is shown in Figure 
16.15(a), where the dashed lines indicate the edges not included in the spanning tree. Three edges 
were removed, so we must consider three cycles. 

First select the edge (w. XO) which was not used in the spanning tree. Stretch the variable xo, 
which is incident to that edge, around the cycle 

no -+ c2 -+ y1 -+ bl -+ x l  -+ b2 -+ yo + a -+ x2 -+ w -+ xo,  

as shown in Figure 16.15(b). Then the edge (w, XO) is redundant and may be removed. 

(single) variable node x i  around the cycle 
Now select the edge (w , (XO , x l  )) , which was not used in the spanning tree. Stretch the original 

(xo ,  XI) -+ b2 -+ (XO, yo) -+ a -+ (XO, x 2 )  -+ w -+ ( X O ,  XI), 

as shown in Figure 16.15(c). The edge (w, (no, XI)) may be removed. 
Now select the edge (c3, (XO, XI, yo)). Stretch the original variable yo around the cycle 

(no, x i ,  yo) --+ b2 -+ (no, x i )  -+ bi -+ (XO, y1) -+ ~2 -+ xo -+ c3 -+ (XO, X I ,  YO), 

as shown in Figure 16.15(d). 

clustered into two function nodes, as shown in Figure 16.15(e). The functions are 
Then a judicious clustering of functions is selected all of the bi and all of the ci functions are 
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Finally, the factor graph is extracted; the terminal node is to be a function of (yo, y1, y2), so a 

The messages in the transform are passed from left to right. 
special node is created for them, as shown in Figure 16.15(f). 

Since there are generally different spanning trees, different algorithms can be organized. In the 
DFT case, these might correspond, for example, to decimation-in-time, decimation-in-frequency, or 
others. 

0 
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/ 
/ 

"t- -a b b l  I I 

(a) A spanning tree. (b) Stretching xo. 

(c) Stretching XI. (d) Stretching yo. 

(e) Clustering function. 

(f) Factor graph for the DFT. 

Figure 16.15: Transformations on the DFT factor graph. 
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16.8 Exercises 

16.1 Semirings: Show that min(a f b, a + c) = a + min(b, c). 

16.2 Show that rings 5-8 of Table 16.1 are all isomorphic by identifying the isomorphisms among 

16.3 The basic sum-product algorithm: Let f(X, Y) have the following table: 
them. 

~F 
Let p x  = P ( X  = 1) and p y  = P ( Y  = 1). 

(a) Determine pf = P(f(X, Y) = 1) in terms of p x  and p y  

(b) Let l x  = log P(f(X,Y)=l) 
P(f(X, Y ) = O ) .  

and 1, = log w. Determine I f  = log 

16.4 Consider the following computation problem: 

B(xl,x2, . . . , x 9 )  = ~ 1 ( ~ 1 ~ ~ 3 ) ~ 2 ( x l ~ ~ 4 ~ ~ 5 ) ~ 3 ( ~ 1 ~ ~ 6 ~ ~ 7 ) ~ 4 ( ~ 4 ~ ~ 8 , x 9 )  

and 
Bl(X1) = c B ( x 1 3 x 2 3 . .  . 1  x9). 

-XI 

Assume that each xi  comes from an alphabet A with q elements in it. 

(a) Determine the number of computations required to compute 

(b) Draw a tree representation for the computation of B1 (xi). 
(c) Determine the messages on each edge of the tree to compute 

(d) Suppose that in addition to Bl(xl) ,  it is desired to compute 

(xi) if the distributive law 
is not used. 

(xi). What is the compu- 
tational complexity in this case? 

B7(x7) = C B ( X l 4 2 , . . 4 9 )  
-XI 

Determine the messages necessary for this and the additional computational complexity 
for this computation. 

16.5 When normalized computations are employed, we have the marginal functions 

B{i](xi) = N n pELy-+xj(xi) O: n pELy-txj(xi), 

Y d W x i ) \ { B { i l l  ~ ~ W x i ) \ { B ~ i l l  

that is, the product of all messages directed toward x i .  Here N is a normalizing operator. Show 
that the marginal function can be computed as a function proportional to the product of any 
two messages that were passed in opposite directions over any single edge incident on xi. As a 
specific example of this, the following are equivalent ways of computing 88)  (x3) for the factor 
graph of Figure 16.1(b): 

B { 3 ) @ 3 )  = ~ a g + x g ( X 3 ) P x 3 - + a 3 ( X 3 )  = Pa4+x3(X3)CLx3+a4(X3)  

= Pa5-+x3 ( X 3 ) P x 3 + a 5  b 3 ) .  

16.6 Show that (16.3) can be written as (16.4). 
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16.7 Probabilistic functions. Let P(x1, x2, x3, x4) be a joint probability mass function ( p m .  

(a) Show the factor graph representing P(x1, x2, x3, x4). 

(b) The pmf can always be factored as 

P(Xl7 x2, X 3  > X4) = P(Xl )P(X2 1x1 )P(X3 1x1 9 X2)P(X4 1x1 I X23 X3). 

Show the factor graph for this factorization. 
(c) If X I ,  x2, x3 , x4 form a Markov chain, this factorization can be simplified to 

P(X1, x2, x3, x4) = P~xl~P(x2lxl~P~x3lx2~P~x4lx3~. 

Show the factor graph for this factorization. 

channel via p(yj ]xi). Then 
(d) Now suppose that the xi are not directly observable, but are observed through a memoryless 

4 

P ( x l , . . . , x 4 , ~ 1 , . . . . ~ 4 )  = ~ ~ ( x i I x i - 1 ) ~ ( y j t x i ) .  
i=l 

Show the factor graph corresponding to this factorization. 

16.8 For the Tanner graph in Figure 16.7, let pxI +x5 (x5) be the message from parity check node xi 
to bit node x5 and let wx4+xI (x4) be the message from bit node x4 to parity check xi. 

(a) Write the message passing updates for bxl +x5 (x5) and wx4+.x1. 

(b) Write these messages as vectors, such as p x l + x 5  = px1-x5(0)]. Show that the 
PXI +X? (1) 

message passing algorithm can be expressed as a linear relationshp 

p x l + x g  = L I p x 4 + x ~ .  

Determine the matrix L 1 .  

(c) Similarly determine the matrix L2 in the message passing rule 

llXS’X3 = L2/1X,+X5. 

clXS-+,x3 = LPX,+XI. 

(d) Determine a matrix L such that 

16.9 [2] Let Mi be a (qj - 1) x qj matrix, for i = 1,2,  . . . , n. Let the elements of the matrix Mj be 
denoted as Mj [xj-l, xi]. We can express the computation of the product M = Mi M2 . . . Mn 
as a factor graph. When n = 2, M[xo, x21 = Ex, Mi[xo, xi lM2[q7 ~ 2 1 .  

(a) Show that when M = M1M2 . . . Mn, 

XI X2 Xn-1 

(b) Determine n + 1 local domains and local kernels to describe this problem. Hint: At the 

16.10 Derive the rules for binary message passing for both the var and chk rules in (16.12), (16.13), 
and 

local domain n + 1, the local domain is {xo, xn}. 

(16.14), (16.15), and (16.16). Hint: For the log likelihood formulation, tanh(x/2) = 
1-x - -2tanh-l x. 

1% Ifx - 
16.11 Draw the factor graph corresponding to the Hadamard transform of Example 16.3. By clustering, 

eliminate loops in the graph. Write down the message passing equations for this graph and verify 
that it computes the Hadamard transform. 
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16.9 References 

Our description of the sum-product algorithm closely follows [ 1951, while the description 
of semirings comes from [2]. A closer look at the latter, providing constructive ways of 
identifying simplifying rules, is in [257]. The graphical model idea is well explored in 
the February 2001 issue of IEEE Transactions on Information Theory. The connection 
between turbo decoding and this family of algorithms seems to have been observed first 
in [232]. There are actually several different kinds of graphical models employed - in- 
cluding junction trees, Bayesian networks, Markov random fields - which are all more 
or less isomorphic [195] and to which the algorithms described here can be applied. A 
generalization of these graphical models is in [235]. Monographs treating graphical models 
are [374] and [107]. Factor graphs are also treated in the tutorial [209], where the normal 
factor graph or Forney factor graph (FFG) is introduced [95]. With the material of this 
chapter as background, the FFG is a straightforward and useful extension which provides 
for block-diagram-like system modeling. 

For iteratively decoded codes, the sum-product algorithm is inexact due to cycles. Some 
results on graphs with cycles are examined in [233, 381, 367, 108, 3681. A means of 
approximately treating the cycles and accelerating the convergence of LDPC decoding is 
treated in [47]. 
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Space-Time Coding 



Chapter 17 

Fading Channels and Space-Time 
Codes 
17.1 Introduction 

For most of this book the codes have been designed for transmission through either an AWGN 
channel or a BSC. One exception is the convolutive channel, for which turbo equalization 
was introduced in Section 14.7. In this chapter, we introduce a coding technique appropriate 
for Rayleigh flat fading channels. Fading is a multiplicative change in the amplitude of the 
received signal. As will be shown in Section 17.2, fading is mitigated by means of diversity, 
that is, multiple, independent transmissions of the signal. Space-time coding provides a way 
of achieving diversity for multiple transmit antenna systems with low-complexity detection 
algorithms. 

A very important “meta-lesson” from this chapter is that the coding employed in com- 
municating over a channel should match the particular requirements of the channel. In this 
case, space-time codes are a response to the question: Since diversity is important to com- 
municating over a fading channel, how can coding be used to obtain diversity for portable 
receivers? 

A discussion of the fading channel and its statistical model are presented in Section 
17.2. In section 17.3, the importance of diversity in combating fading is presented. Section 
17.4 presents space-time codes, which are able to provide diversity with only a single 
receive antenna and moderate decode complexity. Trellis codes used as space-time codes 
are presented in Section 17.5. 

17.2 Fading Channels 

In the channels most frequently used in this book, communication has been from the trans- 
mitter directly to the receiver, with only additive noise and attenuation distorting the received 
signal. In many communication problems, however, the transmitted signal may be subject 
to multiple reflections. Furthermore, the reflectors and transmitter may be moving with 
respect to each other, as suggested by Figure 17.1. For example, in an urban environment, a 
signal transmitted from a cell phone base station may reflect off of buildings, cars, or even 
trees, so that the signal received at a cell phone may consist only of the superposition of 
reflected signals. In fact, such impediments are very typical of most wireless channels. The 
received signal may thus be represented in the (complex baseband) form 

(17.1) 
n 

n 
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receiver 

Figure 17.1 : Multiple reflections from transmitter to receiver. 

where s ( t )  is the transmitted signal, an(t) is the attenuation on the nth path (which may 
be time-varying), t n ( t )  is the delay on the nth path, and e-jzrfcrn@) represents the phase 
change in the carrier with frequency fc due to the delay, with phase &(t)  = 2 r t t n ( t )  fc. 
a n  ( t ) ,  6% ( t ) ,  and t n  ( t )  can be considered as random processes. The noise n ( t )  is a complex, 
stationary, zero-mean Gaussian random process with independent real and imaginary parts 
and E[n(t)n*(s)] = NoS(t - s). In the limit, if the number of reflectors can be regarded 
as existing over a continuum (e.g., for signals reflecting off the ionosphere), the received 
signal can be modeled as 

r ( t )  = a,(t)e-jeS(')s(t  - t , ( t ) )ds + n(t) .  s 
Frequently, the delays are similar enough relative to the symbol period that for all practical 
purposes the delayed signals s ( t  - t n ( t ) )  are the same, so sn(t  - t n ( t ) )  = s ( t  - t ( t ) )  for 
all n. However, even in this case the changes in phase due to delay can be significant. Since 
fc is usually rather large (in the megahertz or gigahertz range), small changes in delay can 
result in large changes in phase. 

Example 17.1 A signal transmitted at fc = 900 Mhz is reflected from two surfaces in such a way 
that at some particular instant of time, one signal to receiver travels 0.16 m farther than the other 
signal. The time difference is therefore 

0.16 
t = - = 5.33 x 10-10 s 

C 

and the phase difference is 

0 = 2nt fc = 3.0159 radians = 172.8'. 

The change in phase in the carrier results in a factor of ej2n3.0159 x -1 between the two signals - 
the two received signals will almost cancel out! 0 

Fading in this case is thus due primarily to changes in the phase &(t).  The randomly 
varying phase & ( t )  associated with the factor ane-jQfl results in signals that at times add 
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constructively and at times add destructively. When the signals add destructively, then 
fading occurs. 

If all of the delays are approximately equal, say, to a delay t, then 

r( t> = Ca, ( t )e - j ' f i ( ' )s ( t  - t) + n(t> = g( t )s ( t  - t) + n( t ) ,  (17.2) 
n 

n 

is a time-varying complex amplitude factor. The channel transfer function is then T ( t ,  f )  = 
a(t)e-@@), with magnitude response / T ( t ,  f ) l  = Ig(t) l  = a(t) .  Since all frequency com- 
ponents are subjected to the same gain a( t ) ,  the channel is said to induce flat fading. The 
channel model for which the space-time codes of this chapter are applicable is flat fading. 

The effect of fading on the received signal can be severe. For example, suppose that 
90% of the time the signals add constructively, resulting in an SNR at the receiver so that the 
probability of error is essentially 0, but that 10% of the time the channel introduces a deep 
fade, so that the probability of error is essentially 0.5. The probability of error averaged 
over time is then 0.05, much too high for most practical purposes, even though the receiver 
works perfectly most of the time! 

As we shall see, the way to combat fading is through diversity, sending multiple copies of 
the signal in the anticipation that not all of the signals will fade simultaneously. Consider, for 
example, the plot in Figure 17.2, which shows a simulation of i g ( t )  I (in dB) for a particular 
channel for two different realizations of the channel. From the plot, it is clear that both 
of the signals are not necessarily highly attenuated at the same time. If these represented 
two different paths from transmitter to receiver, there is hope that at least one of the paths 
would present a reliable channel. Looked at from another point of view, if at one instant 
of time one channel is bad, at another instant of time, that channel might be good. These 
observations lead to various forms of diversity. 

In time diversity, the transmitter sends the same signal at different times, with sufficient 
delay between symbols that the transmissions experience independent fading. Time diversity 
may be accomplished using error control coding in conjunction with interleaving. 

A second means of diversity is frequency diversity, in which the signal is transmitted 
using carriers sufficiently separated that the channel over which the signals travel experience 
independent fading. This can be accomplished using spread spectrum techniques or multiple 
carriers. 

A third means of diversity is spatial diversity, in which the signal is transmitted from 
or received by multiple antennas, whose spatial separation is such that the paths from 
transmitter antennas to receiver antennas experience independent fading. Spatial diversity 
has the advantage of good throughput (not requiring multiple transmission for time diversity) 
and good bandwidth (not requiring broad bandwidth for frequency diversity), at the expense 
of some additional hardware. Space-time codes are essentially a means of achieving spatial 
diversity. 

17.2.1 Rayleigh Fading 

Since the amplitude factor g ( t )  is the summed effect of many reflectors, it may be regarded 
(by the central limit theorem) as a complex Gaussian random variable. That is, g ( t )  = 
g r  ( t )  + j g Q  ( t )  has gI  ( t )  and gQ ( t )  as independent, identically distributed randomvariables. 
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Figure 17.2: Simulation of a fading channel. 

If there is no strong direct path signal from transmitter to receiver, then these random 
variables are modeled as zero-mean random variables, so gr ( t )  - N(0, .f') and g Q ( t )  - 
N(0, o;), where cr; is the fading variance. It can be shown that the magnitude a = Ig(t) I 
is Rayleigh distributed (see Exercise 2), so 

(17.3) 

A flat fading channel with magnitude distributed as (17.3) is said to be a Rayleigh fading 
channel. 

In the channel model (17.2), it is frequently assumed that t is known (or can be es- 
timated), so that it can be removed from consideration. On this basis, we write (17.2) 
as 

r ( t )  = g( t ) s ( t )  + n( t ) .  

Let this r ( t )  represent a BPSK-modulated signal transmitted with energy per bit Eb. Suppose 
furthermore that g( t )  = a ( t ) e - j @ @ )  is such that the magnitude a( t )  is essentially constant 
over at least a few symbols, and that random phase @ ( t )  varies slowly enough that it can 
be estimated with negligible error. This is the quasistatic model. Then conventional BPSK 
detection can be used. This results in a probability of error (see (1.23)) for a particular value 
of a as 

Pz(a)  = P(bit errorla) = Q ({T) 
The probability of bit error is then obtained by averaging out the dependence on a: 

4 = LW P2(a)fa(a)  do!. 

(17.4) 
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Substituting (17.3) and (17.4) into this integral and integrating by parts (twice) yields 

(17.5) 

where 
- Eb 2 

NO 
In Figure 17.3, the line corresponding tom = 1 illustrates the performance of the narrowband 
fading channel, plotted as a function of r b  (in dB). Clearly, there is significant degradation 
compared to BPSK over a channel impaired only by AWGN. 

Y b  = - E [ a  1. 

Figure 17.3: Diversity performance of quasi-static, flat-fading channel with BPSK modu- 
lation. Solid is exact; dashed is approximation. 

17.3 Diversity Transmission and Reception: The MIMO Channel 

To provide some background for diversity receivers, let us now consider the somewhat 
more general problem of transmission through a general linear multiple-input/multiple- 
output (MIMO) channel. For insight, we first present the continuous-time channel model, 
then a discrete-time equivalent appropriate for detection (e.g., after filtering and sampling). 

Suppose that the signal 

k = - a  

is transmitted from the ith antenna in a system of n antennas, where aik is the (complex) 
signal amplitude drawn from a signal constellation for the kth symbol period, and q(t) is the 
transmitted pulse shape, normalized to unit energy. (See Figure 17.4.) This signal passes 
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Figure 17.4: Multiple transmit and receive antennas across a fading channel. 

through a channel with impulse response h j j ( t )  and is received by the j th  receiver antenna 
out of m antennas, producing 

co 
r j ( t> = s i ( t )  * h " j j ( t )  + n j ( t )  = c U j k [ v ( t  - k T )  * h " j i ( t ) ]  +n j ( t ) .  

k = - w  

Each h j j ( t )  may be the response due to scattering and multipath reflections, just as for a 
single fading channel. The total signal received at the j th  receiver due to all transmitted 
signals is 

c o n  

k=-m i=l 

(assuming that the noise nj ( t )  is acquired at the receiver, not through the separate channels). 
Stacking up the vectors as 

we can write 
00 

r(t> = C ~ ( t  - kT)ak + n(t>, 
k=-m 

where H(t) is the m x n matrix of impulse responses with 
00 

hji ( t )  = q(t)  * i j j ( t )  = g7(t)hjj(t - t ) d t .  s_, 

(17.6) 

If the vector noise process n(t) is white and Gaussian, with independent components, 
then the log likelihood function can be maximized by finding the sequence of vector signals 
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a E S” minimizing 

0a 00 

Ilr(t) - H(t - kT)ak \ I 2  dt 
k=-m 

1 
0a 

llr(t)1I2 - 2 c Re H H ( t  - kT)r(t)dt 
k=-W 

where 1 1 ~ 1 1 ~  = xHx and where denotes the transpose-conjugate and * denotes complex 
conjugation. In this general case, the minimization can be accomplished by a rnaximum- 
likelihood vector sequence estimator, that is, a Viterbi algorithm. Let us denote 

0a 

rk = \ HH(t - kT)r(t)dt (17.7) 
J -Oa 

as the outputs of a matrix matchedjlter, matched to the transmitted signal and channel. 
Substituting (17.6) into (17.7) we can write 

00 

where 

Sk = [* HH(t - k T ) H ( t )  dt 
J-00 

and 
00 

nk = \ H H ( t  - kT)n(t)dt. 
J-0a 

17.3.1 The Narrowband MIMO Channel 

The formulation of the previous section is rather more general than is necessary for our 
future development. Consider now the narrowband MIMO channel, in which the frequency 
response is essentially constant for the signals that are transmitted over the channel. In this 
case, the transmitted waveform p(t) (transmitted by all antennas) is received as 

H(t) = p(t)H. 

The matched filter H H ( - t )  can be decomposed into multiplication by HH followed by 
conventional matched filtering with p(-t). 

Note that the narrowband case can occur in the case of a flat fading channel, where the 
channel coefficients h j i  are randomly time-varying, due, for example, to multiple interfering 
signals obtained by scattering. 

As a specific and pertinent example, suppose that s ( t )  = xk akp(t - k T )  is transmitted 
(ie., there is only a single transmit antenna) over a channel, and two receive antennas are 
used, with 

T l ( t )  = h l d t )  +n1(t) r2(t) = h2s(t) + n2( t ) ,  
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where h~ and h2 are complex and constant over at least one symbol interval. Thus, H = 

[ t:]. The receiver first computes 

HHr(t) = h;hls(t) + h.&s(t) + (h fn l ( t )  + nzn2( t ) )  

= (lh1I2 + Ih2I2>s(t) + (h;nl(t> +n;n2(0),  

then passes this signal through the matched filter p(-t), as shown in Figure 17.5, to produce 
the signal 

rk = (Ihl l 2  + lh2I2)ak + nk, 

where nk is a complex Gaussian random variable with E[nk] = 0 and E[nkn;l = (Ihl l2 + 
lh2I2)N0. Thus the maximum likelihood receiver employs the decision rule 

irk = a r g e l r k  - (lh112 + lhz12)a12. 

This detector is called a maximal ratio combiner, since it can be shown that it maximizes 
the signal to noise ratio. 

Figure 17.5: Two receive antennas and a maximal ratio combiner receiver. 

17.3.2 Diversity Performance with Maximal-Ratio Combining 

Let us now consider the performance of the single-transmitter, m-receiver system using 
maximal ratio combining. Suppose that the signal a E S is sent. The matched filter output 
is 

rk = llh1I2ak + nk, 

where nk = hHn is a complex Gaussian random variable with 
No Cy=l Ihj 1 2 .  Let us define an effective signal to noise ratio as 

where y j  = Ihj I2Eb/No is the effective SNR for the j th  channel. We assume a calibration 
so that the average S N R  is E[yj] = &/No for j = 1,2,  . . . , m. 

Transmitting from a single antenna then recombining the multiple received signals 
through a maximal ratio combiner results in a single-input, single-output channel. For 



718 Fading Channels and SDace-Time Codes 

BPSK transmission (assuming that the channel varies sufficiently slowly that h can be ade- 
quately estimated) the probability of error as a function of the effective signal to noise ratio 
is 

P 2 ( ~ e f f )  = Q(J2Y,ff>. 
As for the case of a single fading channel, the overall probability of error is obtained 
by averaging over channel coefficients. Assume, as for the single fading case, that each 
coefficient hi is a complex Gaussian random variable, so yi is a x 2  distribution with 2 
degrees of freedom. If each hi varies independently (which can be assumed if the receive 
antennas are at least a half wavelength apart) then Yeff is a x 2  distribution with 2rn degrees 
of freedom. The pdf of such a distribution can be shown to be (see, e.g., [255]) 

The overall probability of error is 

p2 = lm fY,ff(t)PZ(t) d t .  

The result of this integral (integrating by parts twice) is 

in-1 
r n - l + k  

k=O 

where 

is the probability of error we foundin (17.5) for single-channel diversity. Figure 17.3 shows 
the result for various values of rn. It is clear that diversity provides significant performance 
improvement. 

At high SNR, the quantity p can be approximated by 

1 
p % -. 

4 ~ e f f  

For rn > 1, the probability of error can be approximated by observing that (1 - P ) ~  % 1, so 

Using the rn = 1 approximation, we find 

p2 23 (&)" (2rnrn- 1). 

(17.8) 

(17.9) 

While the probability of error in an AWGN channel decreases exponentially with the signal 
to noise ratio, in a fading channel the probability of error only decreases reciprocally with 
the signal to noise ratio, with an exponent equal to the diversity rn. We say that this scheme 
has diversity order m. 
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17.4 Space-Time Block Codes 

We have seen that performance in a fading channel can be improved by receiver diversity. 
However, in many systems the receiver is required to be small and portable - such as a 
cell phone or personal digital assistant - and it may not be practical to deploy multiple 
receive antennas. The transmitter at a base station, however, may easily accommodate 
multiple antennas. It is of interest, therefore, to develop means of diversity which employ 
multiple transmit antennas instead of multiple receive antennas. This is what space-time 
codes provide. 

17.4.1 The Alamouti Code 

To introduce space-time codes, we present the Alamouti code, an early space-time code and 
still one of the most commonly used. Consider the transmit diversity scheme of Figure 

Time 1 :  a0 
Time2: -uT 

Transmit 

Information Signal 
Constellation 

(e.g., QAM, 8PSK, etc.) 

- I \  
\ Space-Time 

Encoder 
space --+ time 

Maximum Likelihood 
Detector 

Transmit 
antenna 2 

Figure 17.6: A two-transmit antenna diversity scheme: the Alamouti code. 

17.6. Each antenna sends sequences of data from a signal constellation S. In the Alamouti 
code, a frame of data lasts for two symbol periods. In the first symbol time, antenna 1 
sends the symbol a0 E S while antenna 2 sends the symbol a1 E S. In the second symbol 
time, antenna 1 sends the symbol -a; while antenna 2 sends the symbol a:. It is assumed 
that the fading introduced by the channel varies sufficiently slowly that it is constant over 
two symbol times ( e g ,  the quasistatic assumption applies for the entire duration of the 
codeword). The channel from antenna 1 to the receiver is modeled as ho = ctoe- jh and the 
channel from antenna 2 to the receiver is modeled as h 1 = a1 e-j'#'l. The received signal 
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for the first signal (i.e., the sampled matched filter output) is 

ro = hoao + hlai + no 

and for the second signal is 
rl = -hoaT + hlai  + n1. 

The receiver now employs a combining scheme, computing 

h) = h;;ro + h1rT 

r"1 = hire - hor?. 

Substituting (17.10) and (17.11) into (17.12), we have 

yo = (lho12 + 1h1 12)ao + hcno + bin; 
71 = (]hot2 + lh1I2)ai - hcni + hino. 

(1 7.10) 

(17.1 1) 

(17.12) 

The key observation is that FO depends only on ao, so that detection can take place with 
respect to this single quantity. Similarly, T i  depends only on al,  again implying a single 
detection problem. 

The receiver now employs the maximum likelihood decision rule on each signal sepa- 
rately 

Overall the scheme is capable of sending two symbols over two symbol periods, so this 
represents a rate 1 code. However, it also provides a diversity of 2. Assuming that the total 
transmitter power with two antennas in this coded scheme is equal to the total transmitted 
power of a conventional receiver diversity method, the transmit power must be split into 
two for each antenna. This power split results in a 3 dB performance reduction compared 
to m = 2 using two receive antennas, but otherwise equivalent performance. 

Suppose that, unlike this Alamouti scheme, the combining scheme produced values 
which are a mixture of the transmitted signals. For example, suppose 

t o  = aao + bal+ i i o  
Fl = cao + dal + i i 1  

for some coefficients a ,  b,  c ,  d.  We could write this as 

Then the maximum likelihood decision rule must maximize jointly: 

The search is over the vector of length 2, so that if the constellation has M points in it, then 
the search complexity is O ( M 2 ) .  In the case of rn-fold diversity the complexity rises as 
O(A4"). This increase of complexity is avoided in the Alamouti code case because of the 
orthogonality of the encoding matrix. 

It is important for computational simplicity that a symbol appears in only one combined 
received waveform. The remainder of the development of space-time block codes in this 
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chapter is restricted to considerations of how to achieve this kind of separation, using 
orthogonal designs. 

The Alamouti code has been adopted by the IEEE 802.11a and BEE 802.16a wireless 
standards. 

17.4.2 A More General Formulation 

Let us now establish a more general framework for space-time codes, in which the Alamouti 
scheme is a special case. In the interest of generality, we allow for both transmit and receive 
diversity, with n transmit antennas and m receive antennas. The code frames exist for 1 
symbol periods. (Thus, for the Alamouti scheme, n = 2, m = 1, and I = 2.) At time t ,  the 
symbols cj ( t ) ,  i = 1,2,  . . . , n are transmitted simultaneously from the n transmit antennas. 
The signal r j  ( t )  at antenna j is 

n 

r j ( t )  = C h j , i c j ( t )  +nj ( t> ,  j = 1 ,2 , .  . .,m, 
i=l  

where the C j ( t )  is the coded symbol transmitted by antenna i at time t. The codeword for 
this frame is thus the sequence 

c C I ( ~ ) ,  ~2 (1 ) ,  . . ., cn(l), C I ( ~ ) ,  ~2 (2 ) , .  . . , cn(2), . . CI(O, ~ ~ ( 0 9 . .  - 7 cn(0 (17.13) 

of length nl.  

17.4.3 Performance Calculation 

Before considering how to design the codewords, let us first establish the diversity order for 
the coding scheme. Consider the probability that a maximum-likelihood decoder decides 
in favor of a signal 

e = ei( l>,  e2(l>, . . . , en(1), e1(2), e2(2>, . . . , en(2), . . . , ei(0,  e 2 ( 0 , .  . . , e n ( 0  

over the signal c of (17.13) which was transmitted, for a given channel state. We denote 
this probability as 

P(c + e)hj, i ,  j = 1 , 2 , .  . . , m ,  i = 1 , 2 , .  . . , n). 

Over the AWGN channel, this probability can be bounded (using a boundon the Q function) 

P(c + elhj,j, j = 1,2,  . . . , m, i = 1 , 2 , .  . . , n )  5 exp(-d2(c, e)&/4No), 
by 

where 
rn 1 I n  12 

LethT = [hj,l, hj,2, . . . , hj,n]'andcT = [ c i ( t ) , c2 ( t ) ,  . . . , c,(t)lT andsimilarlyet. Then 

rn r l  1 
d2(c, e) = hT I z(ct - ef)(cf - ef)H I h;. 

Let 



722 Fading Channels and Space-Time Codes 

Then 
m 

d2(c, e) = x h T A ( c ,  e)h?, 
j = 1  

so that 
m 

P(c -+ elhj,i, j = 1 , 2 , .  . . , m, i = 1 , 2 , .  . . , n) 5 nexp(-hTA(c, e)h5 E,/4No). 
j=1 

The matrix A(c, e) can be written as 

A(C, e) = ~ ( c ,  e)BH(c, el, 

where 

(17.14) 

et(1) - c ~ ( l )  et(2) - ct(2) el(0 - ct(U 
e2(l> - ~ ( 1 )  e2(2) - c2(2) . . . e2(0 - c2(0 r ;  en(1) -cn(l) en(2)-cn(2) . . *  en(0 - - c n ( O  

In other words, A(c, e) has B(c, e) as a square root. It is known (see [153]) that any matrix 
having a square root is nonnegative definite; among other implications of this, all of its 
eigenvalues are nonnegative. 

B(c, e) = 

The symmetric matrix A(c, e) can be written as (see, e.g., [246]) 

VA(C, e)VH = D, 

where V is a unitary matrix formed from the eigenvectors of A(c, e) and D is diagonal with 
real nonnegative diagonal elements Ai .  Let Pi = Vh;. Then 

m 

P(c -+ elhj,i, j = 1 ,2 , .  . . ,m, i = 1 ,2 , .  . . , n )  5 nexp(-PrDPjE,14No) 
j=1 

m n 

= n exp( - C hi IBi, j I ~ ~ E J ~ N O ) .  

j=l  i= l  

Assuming the elements of hi are zero mean Gaussian and normalized to have variance 0.5 
per dimension, then the I are Rayleigh distributed with density 

P(IB~,~I> = 2IBi,jIexp(-ISLj1’). 

The average performance is obtained by integrating 

P(c -+ el i / n exp(- 2 hi ISi,j 12~,/4No) n 2 l B i , j  I exp(-~Bi, j 

After some effort, this can be shown to be 

m 

tB1,11. . . d l p n , m l .  

j = 1  i=l i J  



17.4 Space-Time Block Codes 723 

Let r be the rank of A(c, e), so there are n - r eigenvalues of A(c, e) equal to 0. Then 
(17.15) can be further approximated as 

Comparing with (17.9), we see that the probability of error decreases reciprocally with 
the signal-to-noise ratio to the rmth power. We have thus proved the following theorem: 

Theorem 17.1 The order of the diversity for this coding is rm. 

From this theorem we obtain the rank criterion: To obtain the maximum diversity mn, the 
matrix B(c, e) must of full rank for any pair of codewords c and e. 

The factor (n:==, Aj)-” in (17.15) is interpreted as the coding advantage. In combina- 
tion with the diversity from the other factor, we obtain the following two design criteria for 
Rayleigh space-time codes [332]. 

In order to achieve maximum diversity, B(c, e) of (17.14) must be full rank for any 
pair of codewords c and e. The smallest r over any pair of codewords leads to a 
diversity of rm . 

The coding benefit is maximized by maximizing the sum of the determinants of all 
r x r principle cofactors of A(c, e) = B(c, e)B(c, e ) H ,  since this sum is equal to the 
product of the determinants of the cofactors. 

Real Orthogonal Designs 

Let us now turn attention to the problem of designing the transmitted codewords. Recall 
that to minimize decoder complexity, it is desirable to be able to decompose the decision 
problem so that optimal decisions can be made on the basis of a single symbol at a time, as 
was possible for the Alamouti code. This can be achieved using orthogonal designs. For 
the moment, we consider only real orthogonal designs which are associated with real signal 
constellations. 

Definition 17.1 A real orthogonal design of size n is an n x n matrix 0 = O(x 1, x2, . . . , x,) 
with elements drawn from f x l , k x 2 ,  . . . , fx, such that 

n 

OTO = I A I K .  
i = l  

That is, 0 is proportional to an orthogonal matrix. 0 
By means of column permutations and sign changes, it is possible to arrange 0 so that 

the first row has all positive signs. Examples of orthogonal designs are 
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In fact, it is known that these are the only orthogonal designs [117]. Each row of an 
orthogonal design 0 is a permutation with sign changes of the {XI, x2, . . . , Xn}. Let us 
denote the (i, j)th element of 0 as ojj = x C i ( j ) & ( j ) ,  where E j ( j )  is a permutation function 
for the ith row and & ( j )  is the sign of the (i, j )  entry. Observe that permutations in the 
orthogonal matrices above are symmetric so that ~ j ( j )  = ~ i l ( j ) .  By the orthogonality of 
0. 

or 

(17.16) 

Encoding and Decoding Based on Orthogonal Designs 

At the encoder, the symbols a1 , u2, . . . , an are selected from the (for the moment real) signal 
constellation S and used to fill out the n x n orthogonal design 0 (a l ,  a2, . . . , an). At time 
slot t = 1,2,  . , . , n,  the elements of the tth row of the orthogonal matrix are simultaneously 
transmitted using n transmit antennas. The frame length of the code is 1 = n.  At time t ,  the 
j th antenna receives 

n 

rj (t> = C h j,ici ( t )  + n j ( t )  
i=l  
n 

i=l 

Now let 1 = ct (i), or i = 6;' (1). The received signal can be written as 

n 

rj ( t )  = x ~ j , , ~ i ( ~ ~ ~ ~ ( c ~ l ( z ) ) a ~  +nj( t>.  
1=1 

LethT J . t  = [hj,€F~(l)Sf(~;l(l)), . . . , h j , c F ~ ( n ) S t ( c ; l ( n ) ) ]  and aT = [a l ,  . . . ,a,]. Then 

T r j ( t )  = hj,ta + n j ( t ) .  

Stacking the received signals in time, the j th  receive antenna receives 

rj = (1 7.17) 
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The maximum likelihood receiver computes 

in 
2 J(a> = C llrj - Hj,effall 

j=l 

over all vectors a and selects the codeword with the minimizing value. However, rather than 
having to search jointly over all JSln vectors a, each component can be selected indepen- 
dently, as we now show. We can write 

Using (17.16), we see that each Hj,eff is an orthogonal matrix O ( h j , l ,  hj,2, . . . , hj ,n ) ,  so 
that 

m m 

j=1 j=l 

for some scalar K .  Let 
rn 

j=1 

Then minimizing J(a) is equivalent to minimizing 

J’(a) = -2Re[aHv] + IJa1I2K. 

Now let Si = -2 Re alvi + K lai 1 2 .  Minimizing J’(a) is equivalent to minimizing cy=l Si, 
which amounts to minimizing each Si separately. Since each Si depends only on ai, we 
have 

& = argminKlaI2 - 2 R e ~ * ~ i .  

Thus using orthogonal designs allows for using only scalar detectors instead of vector 
detectors. 

Let us now examine the diversity order of these space-time block codes. 

Theorem 17.2 [331] The diversity order for coding with real orthogonal designs is nm. 

Proof The matrix B(c, e) of Theorem 17.1 is formed by 

B(c, e) = O(c) - O(e) = O(c - e). 

Since det(OT(c - e)O(c - e)) = [ X i  Ici - eil2In is not equal to 0 for any c and e # c, 
O(C - e) must be full rank. By the rank criterion, then, the maximum diversity of nm 
obtains. 0 

This encoding and decoding scheme provides a way of sending n message symbols over 
n symbol times, for a rate R = 1 coding scheme. However, as mentioned above, it applies 
only to n = 2,4, or 8. 
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Generalized Real Orthogonal Designs 

In the interest of obtaining more possible designs, we now turn to a generalized real orthog- 
onal design 6. 

Definition 17.2 [33 11 A generalized orthogonal design of size n is a p x n matrix 6 with 
entries 0, &XI, 6 x 2 ,  . . . , f x k  such that G T G  = KZ, where K is some constant. The rate 
of G is R = k / p .  

Example 17.2 The following are examples of generalized orthogonal designs. 

8 3  = -x2 X l  -x4 
-x3 x 4  X l  

-x4 -x3 x2 x3 x 2  1 % =  

81 = 

x 2  x 3  x 4  x 5  
X l  X4 -X3 X6 

-x4 X l  x 2  X I  

X3 -X2 X l  X8 
-X6 -X I  -Xg X l  

X5 -Xg X I  -X2 
Xg X5 -X6 -X3 

- X I  X6 X5 -X4 

x 2  x 3  x 4  X5 X6 
X l  X4 -X3 X6 -X5 

-X4 X I  X2 X I  X8 
X3 -X2 X l  Xg - X I  

-X6 -X7 -Xg X l  X2 

X5 -Xg X I  -X2 X l  

X8 X5 -X6 -X3 X4 
- X I  X6 X5 -X4 -X3 

I 

The encoding for a generalized orthogonal design is as follows. A set of k symbols 
a1 , a2, . . . , Uk arrives at the encoder. The encoder builds the design matrix 6 by setting 
xi = ai. Then for t = 1,2, . . . , p ,  the n antennas simultaneously transmit the n symbols 
from the tth row of 6.  In p symbol times, then, k message symbols are sent, resulting in a 
rate R = k / p  code. 

In the interest of maximizing rate, minimizing encoder and decoder latency, and mini- 
mizing complexity, it is of interest to determine designs having the smallest p possible. A 
design having rate at least R with the smallest possible value of p is said to be delay-optimal. 
(The designs of Example 17.2 yield delay-optimal, rate 1 codes.) 

A technique for constructing generalized orthogonal designs is provided in [33 11. 
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17.4.4 Complex Orthogonal Designs 

We now extend the concepts of real orthogonal designs to complex orthogonal designs. 

Definition 17.3 A complex orthogonal design of size n is a matrix U formed from the 
elements f x l ,  hx2, . . . , f x , ,  their conjugates &xr, fx;, . . . , &x,*, or multiplies of these 
by j = a, such that UHU = + ... + 1x,I2)Z. That is, U is proportional to a 
unitary matrix. 0 

Without loss of generality, the first row can be formed of the elements x i ,  x2, . . . , xn. 
The same method of encoding is used for complex orthogonal designs as for real or- 

thogonal designs: n antennas send the rows for each of n time intervals. 

Example 17.3 The matrix 
time space -+ 

u2 = i [::; :i] 
is a complex orthogonal design. As suggested by the arrows, if the columns are distributed in space 
(across two antennas) and the rows are distributed in time (over different symbol times) this can be 
used as a space-time code. In fact, this is the Alamouti code. 0 

Unfortunately, as discussed in Exercise 6,  complex orthogonal designs of size n exist only 
for n = 2 or n = 4. The Alamouti code is thus, in some sense, almost unique. 

Definition 17.4 [331] A generalized complex orthogonal design is a p x n matrix U 
whose entries are formed from 0, f n l  , hxr,  . . . , k x k ,  &x{ or their product with j = a 

A generalized orthogonal design can be used to create a rate R = k / p  space-time code 

We turn therefore to generalized complex orthogonal designs. 

suchthatUHU = (1x1I2 +.- .(xkl2)Z. 0 

using n antennas, just as for orthogonal designs above. 

Example 17.4 The following are examples of generalized complex orthogonal designs. 

X l  x2 x3 
-x2 Xl -x4 : 1 
-x3 x4 Xl -x2 I -x4 -x3 x2 

These provide R = 1/2 coding using 3 and 4 antennas, respectively. 
A rate R = 3/4 code using an orthogonal design is provided by [338] is 

Xl -x; 

x2 x; -xi . " I ,  u4= [ x3 0 x; -x2 
0 -x3 x2 Xl 

Higher rate codes are also known using linear processing orthogonal designs, which form 
matrices not by individual elements, but by linear combinations of elements. These produce 
what are known as generalized complex linear processing orthogonal designs. 
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Example 17.5 Examples of linear processing designs producing R = 314 codes are 

for n = 3 and n = 4 antennas, respectively. 0 

Future Work 

Several specific examples of designs leading to low-complexity decoders have been pre- 
sented in the examples above. However, additional work in high-rate code designs is still a 
topic of ongoing research. 

17.5 Space-Time Trellis Codes 

Trellis codes can also be used to provide diversity. We present here several examples from 
the literature. 

Example 17.6 Consider the coding scheme presented in Figure 17.7. This is an example of delay 
diversity, which is a hybrid of spatial diversity and time diversity. The signal transmitted from two 
antennas at time t consists of the current symbol at and the previous symbol at- 1. The received signal 
is rt = hoar + hiat-1 + nr. If the channel parameters {ho ,  h i ]  is known, then an equalizer can be 
used to detect the transmitted sequence. 

transmit 1 v- 
transmit 2 

Delay 

- - - - -  - - -/-/->y+ L"' 
. . . 

/ 
c . 

Figure 17.7: A delay diversity scheme. 

Because the encoder has a memory element in it, this can also be regarded as a simple trellis 
code, so that decoding can be accomplished using the Viterbi algorithm. If this encoder is used in 
conjunction with an 8-PSK signal constellation then there are 8 states. The trellis and the output 
sequence are shown in Figure 17.8. The outputs listed beside the states are the pair (ak-l? ak) for 
each input. (A similar four-state trellis is obtained for a 4-PSK using delay diversity.) 

For a sequence of symbols a1 , a2, . . . , an, a delay diversity coder may also be written as a space- 
time block code, with codeword 

The two zeros in the first and last columns ensure that the trellis begins and ends in the 0 state. By 
viewing this as a space-time block code, the rank-criterion may be employed. The matrix B(a, e) = 
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A(a) - A(e) is, by the linearity of the coding mechanism, equal to A(a’), where a’ = a - e. The 
columns containing the first and last elements of a’ are linearly independent, so B has full rank: This 
code provides a diversity of m = 2 at 2 bits/second/Hz. 

4 0 0  

6 

00,O 1,02,03,O4,05,06,07 

10,11,12,13,14,15,16,11 

20,21,22,23,%,25,26,27 

30.3 1,32,33,34,35,36,37 

40,4 1,42,43,44,45,46,47 

50.5 1,52,53,54,55,56,51 

60,6 1,62,63,64,65,66,61 

70,11,12,73,74,15,76,11 

Figure 17.8: 8-PSK constellation and the trellis for a delay-diversity encoder. 

Example 17.7 In the trellis of Figure 17.8, replace the output mappings with the sequences 

state 0: 00, 01,02, 03,04, 05,06,07 
state 1: 50,51,52, 53,54,55,56, 57 
state 2: 20,21,22, 23,24, 25,26, 27 
state 3: 70,71,72,73,74, 75,76, 77 
state 4: 40,41,42,43,44,45,46,47’ 
state5 10, 11, 12, 13, 14, 15, 16, 17 
state 6: 60,61,62, 63,64,65,66,67 
state 7: 30,31,32,33,34, 35,36, 37 

This corresponds to a delay diversity code, with the additional modification that the delayed symbol 
is multiplied by -1 if it is odd { 1,3,5,7}. It has been observed [249] that this simple modification 

0 provides 2.5 dB of gain compared to simple delay diversity. 

Example 17.8 Figure 17.9 shows space-time codes for4-PSK(transmitting 2 bitslsecondlHz) using 8, 
16, and 32 states. Each of these codes provides a diversity of 2. Figure 17.1 l(a) shows the probability 
of error performance (obtained via simulation) for these codes when used with two transmit antennas 
and two receive antennas. Figure 17.11(b) shows the performance with two transmit antennas and 
one receive antenna. 0 

Example 17.9 Figure 17.10 shows space-time codes for 8-PSK (transmitting 3 bits/second/Hz) using 
16 and 32 states (with the code in Example 17.7 being an 8-state code). Each of these codes provides 
a diversity of 2. Figure 17.12(a) shows the probability of error performance (obtained via simulation) 
for these codes when used with two transmit antennas and two receive antennas. Figure 17.12(b) show 
the performance with two transmit antennas and one receive antenna. 

17.5.1 Concatenation 

Concatenation is also frequently employed in space-time coded systems. In this case, the 
outer code is frequently a TCM system whose symbols are transmitted via an inner space- 
time coded system. 
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00,01,02,03 

10,11,12,13 

20,21,22,23 

30,31,32,33 

22,23,20,21 

32,33,30,31 

02,03,00,01 

12,13,10,11 

00,01,02,03 

12,13,10,11 

20,21,22,23 

32,33,30,31 

20,2 1,22,23 

32,33,30,31 

00,01,02,03 

12,13,10,11 

02,03,00,01 

10, 1 1 ,12,13 

22,23,20,21 

30,31,32,33 

22,23,20,21 

30,3 1,32,33 

02,03,00,01 

10,11,12,13 

00,01,02,03 

11,12,13,10 

22,23,20,21 

33,30,31,32 

20,2 1,22,23 

33,30,31,32 

02,03,00,01 

13,10,11,12 

33,30,31,32 

00,01,02,03 

11,12,13,10 

22,23,20,21 

13,10,11,12 

20,2 1,22,23 

31,32,33,30 

02,03,00,01 

22,23,20,21 

33,30,31,32 

00,01,02,03 

13,10,11,12 

02,03,00,01 

13,10,11,12 

20,21,22,23 

31,32,33,30 

1 1,12,13,10 

22,23,20,21 

33,30,3 1,32 

00,01,02,03 

31,32,33,30 

02,03,00,01 

13,10,11,12 

20,21,22,23 

Figure 17.9: Space-time codes with diversity 2 for 4-PSK having 8,16, and 32 states [332]. 
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00,01,02,03,04,05,06,01 

51,52,53,54,55,56,57,50 

22,23,24,25,26,21,20,21 

73,74,15,76,11,70,11,72 

#,45,46,47,40,41,42,43 

15,16,11,10,11,12,13,14 

66,61,60,61,62,63,64,65 

37,30,31,32,33,34,35,36 

15,16,11,10,11,12,13,14 

66,61,60,6 1,62,63,64,65 

31,30,3 1,32,33,34,35,36 

00,01,02,03,04,05,06,07 

51,52,53,54,55,56,51,50 

22,23,24,25,26,27,20,21 

13,14,75,16,71,10,11,72 

#,45,46,47,40,41,42,43 

00,01,02,03,04,05,06,01 

5 1,52,53,54,55,56,51,50 

22,23,24,25,26,21,20,21 

73,14,15,16,17,70,7 1 ,I2 

44,45,46,41,40,4 1,42,43 

15,16,11,10,11,12,13,14 

66,67,60,6 1,62,63,64,65 

31,30,3 1,32,33,34,35,36 

37,30,3 1,32,33,34,35,36 

00,01,02,03,~,0S,06,07 

5 1,52,53,54,55,56,51,50 

22,23,24,25,26,27,20,21 

13,74,15,16,11,10,11,12 

44,45,46,41,40,4 1,42,43 

15,16,17,10,11,12,13,14 

66,61,60,61,62,63,64,65 

22,23,24,25,26,21,20,21 

73,14,15,16,11,10,11,12 

44,45,46,41,40,41,42,43 

15,16,17,10,11,12,13,14 

66,61,60,61,62,63,64,65 

37,30,31,32,33,34,35,36 

00,01,02,03,O4,05,06,01 

5 1,52,53,54,55,56,51,50 

5 1,52,53,54,55,56,51,50 

22,23,24,25,26,21,20,21 

73,14,15,16,11,10,71 ,I2 

44,45,46,47,40,41,42,43 

15,16,11,10,11,12,13,14 

66,61,60,61,62,63,64,65 

31,30,31,32,33,34,35,36 

00,01,02,03,O4,05,06,01 

Figure 17.10: Space-time codes with diversity 2 for 8-PSK having 16 and 32 states [332]. 
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Figure 17.1 1: Performance of codes with 4-PSK that achieve diversity 2 [332]. 
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Figure 17.12: Performance of codes with 8-PSK that achieve diversity 2 [332]. 

17.6 How Many Antennas? 

We cannot cannot continue to add antennas without reaching a point of diminishing returns. 
One argument for the number of antennas is based on channel capacity. It has been proved 
[101, 3331 that the capacity of a multiantenna system with a single receive antenna is a 
random variable of the form log,( 1 + (xZn/2n)SNR), where xin is a x2 random variable 
with 2n degrees of freedom (e.g.. formed by summing the squares of 2n independent zero- 
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mean, unit-variance Gaussian random variables). By the law of large numbers, as n + 00, 

%x2,, 1 2  + 2 ( E [ X 2 ]  1 + E [ X 2 ] )  = 1 where X - N(0, 1). 

In practice, the limit begins to be apparent for n ? 4, suggesting that more than four 
transmit antennas will provide little additional improvement over four antennas. It can also 
be argued that with two receive antennas, n = 6 transmit antennas provides almost all the 
benefit possible. 

However, there are systems for which it is of interest to employ both interference suppres- 
sion and diversity. In these cases, having additional antennas is of benefit. A “conservation 
theorem” [15, p. 5461 says that 

diversity order + number of interferers = number of receive antennas. 

As the number of interferers to be suppressed increases, having additional antennas is of 
value. 

17.7 Estimating Channel Information 

All of the decoders described in this chapter assume that the channel parameters in the form 
of the hi,i is known at the receiver. Estimating these is viewed for our purposes as signal 
processing beyond the scope of this book, so we say only a few words regarding the problem. 

It is possible to send a “pilot” signal which is known by the receiver, and from this 
pilot to estimate the channel parameters if the channel is sufficiently static. However, a 
pilot signal consumes bandwidth and transmitter power and reduces the overall throughput. 
Another approach is to use differential space-time codes [154, 1501, where information is 
coded in the change of symbols, but at the expense of a 3 dB penalty. 

Another approach is to blindly estimate the channel parameters, without using the trans- 
mitted symbols. This is developed in [326]. 

17.8 Exercises 

17.1 Consider a transmission scheme in which n transmit antennas are used. The vector a = 
[a l ,  a2, . . . , anlT is transmitted to a single receiver through a channel with coefficients h: 
so that r = hHa + n, where h = [ h i ,  h2, . . . , hnlT and where n is zero-mean AWGN with 
variance cr2. Diversity can be obtained by sending the same symbol a from each antenna, so that 
a = aw, for some “steering vector” w. The received signal is thus r = hHwu + n. Show that 
the weight vector w of length llwll = 1 which maximizes the S N R  at the receiver is w = h/llhll 
and determine the maximum SNR. 

17.2 Show that if G = X + j Y ,  where X - N(0,a;) and Y - N(O,o;), then 2 = IGI = 

d m  has density 
-2 /2o j  z > o  

otherwise. 

17.3 ShowthatifG =X+jY,whereX-N(O,~;)andY -N(O,a;),thenA = IGI2 = X 2 + Y 2  
has density 
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A is said to be a chi-squared ( x 2 )  random variable with two degrees of freedom. 
17.4 Show that (17.5) is correct. 
17.5 Using the 4 x 4 orthogonal design 04 ,  show that the matrix H j , , f f  of (17.17) is proportional to 

an orthogonal matrix. 
17.6 Let U be a complex orthogonal design of size n. Show that by replacing each complex variable 

xi = + jx? in the matrix with the 2 x 2 matrix [ xi' '! xi 1, that a 2n x 2n real matrix 0 is 

formed that is a real orthogonal design of size 2n. 
Conclude that complex orthogonal designs of size n exist only if n = 2 or n = 4. 

17.7 Show that a modified delay diversity scheme which uses codewords formed by 

an a1 a2 an-1 * * .  an-1 an 1 A = [  a1 a2 ... 

which is a tail-biting code, does not satisfy the rank criterion and hence does not achieve full 
diversity. 

17.8 [15] For the set of space-time codes 

(a) Find the diversity order of each code, assuming that the transmitted symbols are selected 
independently and uniformly from a 4-QAM alphabet and that the receiver has a single 
antenna. 

(b) Determine which of these codes allows for scalar detection at the receiver. 
(c) For those codes having full diversity, determine the coding gain. 

17.9 References 

Propagation modeling, leading to the Rayleigh channel model, is described in [ 1631; see 
also [322], [15] and [275]. The Jakes model which produced Figure 17.2 is described in 
[163]. Our discussion of MIMO channels, and the discussion of diversity following from it, 
was drawn from [ 151. Additional coding-related discussions relating to multiple-receiver 
diversity appear in [71, 325, 307, 361, 3761. 

The Alamouti scheme is described in [3]. The generalization to orthogonal designs is 
described in [33 11. The rank criterion is presented following [332]. This paper also presents 
a thorough discussion of space-time trellis codes and hybrid codes capable of dealing with 
either slow or fast fading channels. 

The paper [332] presents many designs of space-time trellis codes, as does [249]. Com- 
bined interference suppression and space-time coding is also discussed in the latter. 



Appendix A 

Log Likelihood Algebra 
In this appendix we present an algebra for the log likelihood of binary variables, leading to 
a rule for combining log likelihoods called the tanh rule [ 134, 1311. This algebra pertains 
to many aspects of soft decision decoding in the book, aspects which may be covered with 
varying order of presentation. Rather than duplicate this material in each pertinent context, 
it has been placed here. 

Let 2 be a binary-valued random variable taking on values in the set { 1, - l}. We may 
think of X as being a mapping from a variable x taking on values in {0, l}, with 2 = 1 - 2x. 
(Note that this is a different convention than used throughout most of the book.) The log 
likelihood ratio of 2 is 

P ( 2  = 1) 
P ( 2  = -1). 

h(2)  = log 

The logarithm is the natural logarithm. From the log likelihood ratio, the probability can be 
easily recovered as 

Figure A.l shows h(x)  as a function of P ( x  = 1). The sign of h ( i )  is the hard decision of 
the value of 2. We can take Ih(2)l as a measure of the reliability. Values of 2 for which 
there is certainty, P ( 2  = 1) = 1 or P ( 2  = 1) = 0, have lh(2)l = 00. 

Figure A. 1 : Log likelihood ratio. 

Suppose now that we regard the 2 as elements in G F ( 2 ) ,  with the identity being 1 and 
let @ denote the addition operation on these elements: 

1 @ 1 = 1  1 @ - 1 = - 1  - l @ l = - 1  - 1 @ - 1 = 1 .  
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Lemma A.1 If21 and 2 2  are statistically independent, then 

The proof is Exercise 1 .  Using the relations 

+' = 2 t a d - l x  ex - 1 
tanh(x/2) = - and log - 

ex + 1 I - x  

we have the following result, which can be verified by straightforward expansion: 

Lemma A.2 

1 + tanh(h(21/2)) tanh(h(2~/2)) 
1 - tanh(h(21/2)) tanh(h(22l2)) 

= log 

= 2 tanh-' (tanh(h(21/2)) tanh(h(22/2))) . 
This can be re-expressed in a form which is interestingly symmetric: 

tanh -A(21 @ 22) = tanh(h(21/2)) tanh(h(izl2)). c ) 
Equation (A. 1) is referred to as the tanh rule. 

21 and 22 are statistically independent): 
The log likelihood ratio of the sum has the following important approximation (when 

(A.2) A(& @ 22) = sign(h(21)) sign(h(22)) min(Wi>I ,  IJ422)l). 

We now define a special algebra for log likelihood ratios. We define the operator W by 

(A.3) 

(A.4) 

These conditions have the following interpretations: The reliability of 2@ (some other 
element with infinite reliability) is the same reliability as 2. The reliability of 2@ (some 
other element which is totally unreliable) is the negative of the reliability of I. The reliability 
of I@ (some other element of completely ambiguous reliability), h = 0, is completely 
ambiguous. 

The H operator has an identity and is commutative and associative, but no inverse exists : 
two unreliable elements cannot add up to the reliable element co. 

We use to denote the G F ( 2 )  series such as 

with 
h(2)  W 00 = A(?) h(2)  R -GC = -h( i )  A(2) W 0 = 0. 

i=p 

'The operator thus defines operations for a commutative monoid. 
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and to denote a H-series: 

By extending (A.3) by induction, 

If Z1,22, . . . , Z J are independent binary-valued random variables, applying Lemma A.2 
inductively we obtain 

and 
J J 

tanh (i z A ( Z j ) )  = n tanh(h(Zj)/2). 
j= l  j=1 

The reliability can be approximated, as in (A.2), by 

J / J  

The reliability of the sum H is therefore determined by the smallest reliability of the terms 
in the sum. 

A.l Exercises 

A. 1 Show that Lemma A. 1 is true. 

A.2 In some cases, it is convenient to deal with (0,  1}-valued random variables. Let x i  and x2 be 
{O, 1)-valued variables. Define 

P ( x  = 1) 
h ( x )  = log - 

P ( x  = 0)‘ 

Addition operations, denoted here as +, are now over GF(2) ,  with identity 0. 

Analogous to Lemmas A. 1 and A.2, show that 

eh(xl )  + &(x2) 

1 + eh(xl)+h(xZ) 
h(x1 + x 2 )  = log 
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and 
1 + tanh(-h(xi)/2) tanh(-h(x2)/2) 

*(XI + x2) = -log 
1 - tanh(-h(xi)/2) tanh(-h(x2)/2) 

= -2 tanh-' (tanh(-~(xi)/2) tanh(-~(x2)/2)) 

tanh(-h(xl + x2)/2) = tanh(-h(xi)/2) tanh(-h(x2)/2). 
so that 

A.3 Show that the following tunh rule is true: For independent (0, 1)-valued random variables 

or 

A.4 In conjunction with the tanh rule of (A.6), we define the function 

ex + 1 
ex - 1 

f(x) = log - = - log(tanh(x/2)). 

(a) Show that f(f(x)) = 1. That is, f ( x )  is its own inverse. 

(b) Show that the tanh rule (A. 1) can be expressed as 
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101,322,450 

10 

detection,cyclic codes, 149 

C 
canonical homomolphism, 73 
capacity, 9 

Cartesian product, 64,682 
catastrophic code, 461,462,530 
Cauchy-Schwartz inequality, 41 1 
causal codeword, 354 
cawgnc .m, 51 
cawgnc2 .m, 45 
Cayley-Hamilton theorem, 169 
cbawgnc .m, 51 
cbawgnc2 .m,45 
CD, 41 
central limit theorem, 712 

BSC, 59 



Index 751 

channel capacity, 42 
BSC, 43 
of MIMO channel, 732 

channel coding theorem, 9,45 
LDPC codes and, 634 
turbo codes and, 582 

channel reliability, 19,605 
character (of a group), 415 
characteristic polynomial, 169 
Chase decoding algorithms, 445 
Chauhan, Ojas, 533 
checksum, 56 
Chernoff bound, 502,532 
chernoff l .m,502 
x p ( x ) .  372 
chi-squared random variable, 734 
Chien search, 248 
C h i e n s e a r c h .  cc ,  283 
C h i e n s e a r c h .  h, 283 
Chinese remainder theorem, 188 
chirp algorithm, 290 
x 2  distribution, 718,734 
Christoffel-Darboux formula, 419 
circuits, see realizations 
clustering in factor graphs, 700 
code 

Alamouti, 719 
altemant, 277 
BCH, 235 
best known, 107 
convolutional, 452 
CRC, 147 
dual, 86 
Fire, 433 
generalized RS, 277 
Golay, 398 
Goppa, 278 
Hadamard, 374 
Hamming, 34,53 
Justeson, 290 
LDPC, 635 
maximal-length, 97 
MDS, 245 
parity check, 107 
quadratic residue, 396 
Reed-Muller, 376 
Reed-Solomon, 242 
repeat accumulate (RA). 

671,672 
repetition, 28 
self-dual, 109,399 
simplex, 97,374 
space-time block, 719 
space-time trellis, 728 
TCM, 535 
turbo, 584 

coding gain, 36 
asymptotic, 103 

column distance function, 521 
column space, 77 
commutative, 63 
compact disc, 427 
companion matrix, 169 
compare-select-add, 481 
complete decoder, 93 
comptut  . pd f ,x  
computekm.m, 333 
computeLbar .m, 357 
cornputelm. cc.337 
computeLrn.m,337,357 

computetm.m, 357 
concatenated codes, 432 
concentration principle, 637 
concodequan t  .m,486 
conditional entropy, 41 
congruence, 184 
conjugacy class, 210 
conjugate elements, 209 
conjugate of field element, 210 
connection polynomial, 130 
consistent random variables, 620, 

constellation expansion factor, 541 
constituent encoder, 584 
constraint length, 465 
continued fraction, 228 
Convdec. cc ,  528 
Convdec . h, 528 
convolutional code, 452 

656 

equivalent, 46 1 
feedforwardfeedback en- 

coder, 454 
Markov property, 590 
tables of codes, 506 

Cook-Toom algorithm, 699 
correction distance 

correlation, 162 
correlation discrepancy, 450 
coset, 67 

of standard may, 92 
coset leader weight distribution, 

CRC (cyclic redundancy check) 

byte oriented algorithm, 150 

stopping criteria, 606 

of GS decoder, 333 

101 

code, 147 

cross entropy, 41 

crtgamma.m, 189 
cr tgammapoly .m, 189 
cryptography, 7 

McEliece public key, 280 
RSA public key, 186 

burst detection, 149 
definition, 113 
encoding, 133 

cyclic code, 38 

cyclic group, 66 
cyclic redundancy check (CRC), 

cyclic shift, 113 
cyclomin,  217 
cyclotomic coset, 217 

147 

D 
D-transform, 127,452 
dB scale, 21 
DBV-RS2,634 
decibel, 21 
decoder failure, 30,93,249 

LDPC decoder, 648 
decoding depth, 482 
d e n s e v l  .m, 658 
d e n s e v t e s t  .m, 658 
density evolution, 655 

derivative 
irregular codes, 664 

formal, 263,289 
Hasse, 329,330 

derivative, formal, 219 

design distance, 237 
design rate, 636 
detected bit error rate, 99 
detection 

binary, 18 
dfree, 495 
difference sets, 669 
differential encoder, 558 
differential Viterbi algorithm, 481 
digraph, 457 
Dijkstra’s algorithm, 472 
dimension 

of linear code, 83 
of vector space, 17 

direct product, 64 
direct sum, 392 

matrix, 393 
directed graph, 457 
discrete Fourier transform (DlT), 

192,269,271,683 
factor graph, 687,703 

displacement, 368 
distance distribution, 414 
distance spectrum, 547,614 
distributive law, 74,76, 115 

diversity, 710,712 
generalized, 680 

delay, 728 
frequency, 7 12 
spatial, 712 
time, 712 

diversity order, 718 
space-time code, 723 

divides, 69, 175 
divisible, 175 
division algorithm, 175 

polynomial, 114 
d o e x i t c h a r t  .m, 660 
d o t r a  j ec t0 ry .m.  660 
double error pattern, 168 
double-adjacent-error pattern, 167 
D(PIlQ),42 
dual code, 86 

dual space, 79 
cyclic generator, 167 

E 
Eb. 10 
Ec,  26 
edge, 457 
eigenmessage, 679 
eight-to-fourteen code, 428 
Eisenstein integer, 566 
elementary symmetric functions, 

250 
Elias bound, 420 
encryption 

RSA, 187 
entropy, 4,40 

differential, 43 
function, q-ary, 407 
function, binary, 4,420 

equivalence relation, 68 
equivalent 

block codes, 85 
convolutional code, 461 

erase.mag.268 
erasure decoding, 104 

binary, 105 
Reed-Solomon codes, 267 
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Welch-Berlekamp decod- 
ing, 321 

error detection, 90 
error floor, 584, 653,654, 671 
error locator polynomial, 247,248 
error rate, 98 
error trapping decoder, 435 
Euclidean algorithm, 177,368 

continued fractions and, 228 
extended, 181 
LFSR and, 182 
matrix formulation, 226, 

Pad6 approximations and, 

properties, 227 
Reed-Solomon decoding, 

to find error locator, 266 

227 

228 

266 

Euclidean distance, 12 
Euclidean domain, 180 
Euclideanfunction, 180 
Euler q5 function, 185,229 
Euler integration formula, 367 
Euler’s theorem, 186 
evaluation homomotphism, 190, 

191 
exact sequence, 312 
EXIT chart, 619 

exit1 .m, 660 
exit 2 . m, 660 
exit3 .m, 660 
expurgated block code, 106 
extended code, 106 

Reed-Solomon, 276 
extension field, 196 
extrinsic information, 603 
extrinsic probability, 582,600 

LDPC decoder, 643 

LDPC code, 660 

F 
factor graph 

definition, 686 
Fomey, 708 
normal, 708 

factor group, 71 
factorization step, GS decoder, 324, 

330 
factorization theorem, 332 
fadepbplot .m,714 
fadeplot .m,712 
fading channel, 710 

flat, 712 
quasistatic, 713 
Rayleigh, 712, 713 

family (set), 457 
Fano algorithm, 511,517 
Fanometric,511,513 
fanoalg.m,517 
fanomet .m,515 
fast Hadamard transform, 382 
feedback encoder, 454 
feedforward encoder, 454 
Feng-Tzeng algorithm, 338 
f engt zeng . m, 341 
Fermat’s little theorem, 186 
fht . cc, 383 
f ht . m, 383 
field, 73, 193 

finite, 193 
filter bank, 699 
finddfree, 506 
finite field, 193 
linite geometry, 668 
finite impulse response, 129 
Fire code, 433 
flow graph simplification, 494 
formal derivative, 232,263,289 
formal series, 494 
Fomey factor graph, 708 
Fomey’s algorithm, 262 
forward pass 

BCJR algorithm, 593 
forward-backward algorithm, 593 

factor graph representation, 
696 

free distance, 495 
free Euclidean distance, 541 
free module, 303 
frequency domain decoding, 275 
frequency domain vector, 272 
freshman exponentiation, 201 
fromcrt .m, 189 
fromcrtpolym., 189 
fundamental parallelotope, 564 
fundamental theorem of algebra, 

fundamental volume, 564 
fyxO.m.695 

196 

G 
galdec. cc, 675 
galdec. h, 675 
galdecode. m, 648,675 
Gallager codes, 634 
Galois biography, 197 
Galois Field 

example, 196 
Galois field Fourier transform, 269 
galtest. cc, 675 
galtest2. cc, 675 
y (BCJR algorithm), 593 

Gaussian integers, 232 
gauss j2 ,86 
gauss j 2 .m, 635 
GCD (greatest common divisor), 

176 
gcd. c, 181 
gcdpoly . cc, 224 
gdl . m, 695 
generalized minimum distance, 

generalized Reed-Solomon code, 

generating function, 218 
generator 

matrix, 84 
matrix, lattice, 563 
of cyclic group, 66 
of principal ideal, 119 

gap, x 

368,441 

277 

polynomial, 121 
genrm. cc, 376 
genstdarray.c, 91 
getinf .m,660 
get inf s . m, 660 
GF(16) table, 198 
G Q ) ,  197 
GF2. h, 224 

GFFT, 269 
GFNUM2m. cc, 224 
GFNUM2m. h, 224 
Gilbert-Varshamov bound, 11 1, 

409 
girth 

of a graph, 457,678 
GMD (generalized minimum dis- 

Golay code, 398 
tance) decoding, 368 

algebraic decoder, 400 
arithmetic decoder, 401 

go1ayrith.q 402 
golaysimp .m, 401 
good codes, 637 
Goppa code, 278 
Grobner basis, 368 
Gram matrix, 564 
graph 

algorithms, 680 
bipartite, 456,457, 638 
definitions, 456 
simple, 457 
Tanner, 638 
tree, 457 
trellis, 456 

order, 13 
Gray code, 23 

greatest common divisor, 176 
Green machine, 383 
Griesmer bound, 41 1 
ground field, 201 
group 

cyclic, 66 
definition, 62 

Guruswami-Sudan algorithm, 322 

H 
H ( X )  (entropy), 5,40 
Hz(x) ,  4 
h2.m,45 
Hadamard 

code, 374 
matrix, 369 
transform, 95,369,683 
transform, decoding, 379 
transform, fast, 382 

Hadamard code, 374 
hadex. m, 382 
hamcode74pe .m, 36 
Hamming bound, 89,406 

asymptotic, 422 
Hamming code, 34,53,97 

decoder, 141 
dual, 97 
encoder circuit, 135 
extended, 377 
message passing decoder, 

654,694 
Tanner graph, 39,694 

Hamming distance, 24 
Hamming sphere, 29,89,406 
Hamming weight, 83 
Hammsphere, 89 
hard-decision decoding 

Hartman-Tzeng bound, 239,368 
Hasse 

derivative, 329,330 
theorem, 328 

convolution code, 484 
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hill climbing, 667 
historical milestones, 40 
homomorphism, 72 
horizontal step, 644 
Homer’s rule, 283 
Huffman code, 6 

I 
I(X, Y ) ,  42 
i.i.d., 24,46 
ideal of ring 

definition, 118 
principal, 119 

identity, 62 
IEEE wireless standard, 721 
impomnce sampling, 60 
increased distance factor, 541 
induced operation, 69 
inequality 

arithmetic-geometric, 334 
Cauchy-Schwartz, 411 
information, 59 

information inequality, 59 
information theory, 40 
information theory inequality, 42 
injective, 70 
inner product, 11,78 
input redundancy weight enumerat- 

ing function (IRWEF), 6 15 
interference suppression, 734 
interleaver, 425 

block, 426 
convolutional, 427 
cross, 427 
turbo code, 584,614 

interpolating polynomial, 191 
interpolation, 190 

interpolation theorem, 331 
intersection of kernels, 342 
invariant factor decomposition, 464 
inverse, 62 
invmodp . m, 341 
irreducible, 159 
irreducible polynomial, 196,207 

IRWEF, 615 
ISBN, 3 
isomorphism, 70 

ring, 118 

step, GS decoder, 324, 330 

number of, 218 

J 
Jacobian logarithm, 609 
Jacobsthal matrix, 373 
Jakes method, 712 
jakes . rn, 712 
Justeson codes, 290 

K 
Kalman filter, 610 
kernel, 304,310,312 

function, local, 682 
of homomorphism, 73 

global, 682 

Welch Berlekamp, 297 

kernel function 

key equation, 263,266,268 

Kirkman triple, 669 
Klein 4-group, 64, 80 
Kotter algorithm, 342 

kot t er . cc, 346 
kotterl . cc, 350 
Krawtchoukpolynomial, 415,416 

krawtchouk.m.415 
Kronecker 

properties, 423 

construction of Reed- 
Muller, 391 

product, 370 
properties, 370 

Kronecker product theorem, 370 
Kullhack-Leibler distance, 41, 606, 

62 1 

L 
Lagrange interpolation, 192,303 
Lagrange’s theorem, 68 
latency, 426 
latin rectangle, 669 
latta2 .m, 568 
lattice, 72, 563 

code, 567 
lattstuff.m,563 
lattz2m,568 
Lament series, 452 
Lbarex .m, 357 
LCM (least common multiple), 235 
LDGM codes, 671 
LDPC code, 634 

arbitrary alphabet, 647 
comhinatoric constructions, 

concentration principle, 637 
decode threshold, 658 
definition, 635 
density evolution, 655 
difference set, 669 
eigenmessage, 679 
EXIT chart, 660 
fast encoding, 669 
finite geometry, 668 
irregular, 660 
iterative hard decoder, 677 
Kirkman triple, 669 
latin rectangle, 669 
Steiner designs, 669 
sum product decoding, 648, 

use of BCJR with, 646 

669 

678 

ldpc . m, 648,675 
1dpclogdec.m. 652 
ldpcsim.mat, 660 
leading coefficient, 327 
leading monomial, 327 
leading term, 119 
least common multiple, 226, 229 
least-squares, 90 
left inverse, 165 
Legendre symbol, 372,403 
Lempel-Ziv coding, 6 
lengthened block code, 106 
lexicographic order, 326 
LFSR, 154, 170,234,290 

likelihood 
for extension field, 199 

function, 16 
ratio, 19 

limsup, 407 
linear code 

definition, 83 

dimension, 83 
generator matrix, 84 
rate, 83 

linear combination, 76 
linear feedback shift register, see 

LFSR 
linear function, 232 
linear programming, 413 

hound, 414 
linearly dependent, 77 
list decoder, 31,293,322 
local kernel function, 682 
log likelihood 

algebra, 735 
arithmetic, 611 
ratio, 19 

loghist .m,660 
low density generator matrix codes, 

671 
low density parity check, see LDPC 
lpboundex .m, 418 

M 
M algorithm, 521 
MacWilliams identity, 95,109 
magma, x 
majority logic decoding, 384 
rnakeB . m,-549 
MakeLFSR, 162 
makgenfrornA.m,635 
MAP 

algorithm, 588 
decoding, factor graph rep- 

detection, 17 

(MPF), 682 

resentation, 685 

marginalize product of functions 

marginalizing, 680 
Markov property 

Markov source, 588 
Mason’s rule, 494,498 
masseymodM.m,258 
matched filter, 15 

Mattson-Solomon polynomial, 289 
max-log-MAP algorithm, 608 
maximal ratio combiner, 7 17 
maximal-length 

convolutional codes, 590 

matrix, 716 

sequence, 155,159 
shift register, 234 

maximal-length code, 97,167 
maximum a posteriori detection, 17 
maximum distance separable 

maximum likelihood 
(MDS), 88 

decoder, 30,322 
decoder, factor graph repre- 

sentation. 684 
detection, 18 
sequence estimator, 469 

maximum-likelihood sequence esti- 
mator 

vector, 716 
McEliece public key, 280 
MDS code, 88,245,246,287 

extended RS, 276 
generalized Reed-Solomon, 

weight distribution, 246 
277 

Meggitt decoder, 139 
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memoryless channel, 25 
Mersenne prime, 234 
message passing, 649,689 
message passing rule, 690 
message-passing, 682 
metric quantization, 484 
milestones, historical, 40 
MIMO channel, 714 

m i n d i s t  .m, 34 
minimal basic convolutional en- 

coder, 465 
minimal basic encoder, 465 
minimal polynomial, 209, 212 
minimum distance, 29 
ML detection, see maximum likeli- 

MLFSR code, 97 
ModAr . cc,  223 
ModAr . h, 223 
ModArnew. cc ,  223 
module 

definition, 302 
free, 303 

Moebius function, 222 
moment generating function, 532 
monic, 119 
monoid, 681,736 
monomial ordering, 325 
multiplicative order, 21 1 
multiplicity matrix, 359 
multiplicity of zero, 328 
mutual information, 42,619 

narrowband, 716 

hood detection 

N 
narrow sense BCH, 235 
narrowband MIMO channel, 716 
natural homomorphism, 73 
n c h o o s e k t e s t  .m, 36 
Newton identities, 250,285 
nilpotent, 165 
node error, 491 
normal factor graph, 708 
normalization 

alpha and beta, 595 
probability, 592 

nullspace, 79,87 
Nyquist sampling theorem, 50 

0 
one-to-one, 70 
onto, 70 
ord, 328 
order 

multiplicative, 211 
of a field element, 201 
of a finite group, 63 
of a group element, 67 
of zero, 328 

ordered statistic decoding, 447 
orthogonal, 1 1,79 

on a bit, 385 
orthogonal complement, 79 
orthogonal design 

complex, 727 
generalized complex, 721 
generalized real, 726 
real, 723 

orthogonal matrix, 563 
orthogonal polynomial, 419 

orthonormal, 11 
output transition matrix, 549 

P 
P ( E ) ,  98 
Pad6 approximation, 228,234 
Paley construction, 371 
parallel concatenated code, 582, 

584 
parity, 85 

parity check 
overall, 106 

code, 107 
equations, 87 
matrix, 34,86 
polynomial, 123 
probability, 678 
symbols, 85 

partial syndrome, 523 
partition, 68 
partition chain, 567 
Path 

algorithm, shortest, 472 
enumerator, 493 
in graph, 457 
merging, 474 
metric, 473 
survivor, 474 

pb, 98 
Pb(E),  98 
Pd(E),  99 

peak-to-average power ratio, 562 
perfect code, 89,93 
permutation, 64 
permuter, 584 
perp, 79 
Peterson's algorithm, 25 1 
q5 function, 185,229 
p h i f u n  .m, 51 
ph i log .m,51  
pi2ml.362 
p i v o t t a b l e a u . m ,  413 
p l o t b d s  .m, 407 
p l o t  capcmp . m, 45 
p lo t cbawn2  .m, 51 
p l o t c o n p r o b  .m, 504 
Plotkin bound, 1 1 1,410 

polyadd.m, 116 
polyaddm.m, 116 
polydiv.m,  116 
po lymul t  .m, 116 
polymu1tm.m. 116 

pdb 3 99 

asymptotic, 421 

polynomial 
irreducible, 196 
Krawtchouk, 415 
minimal, 212 
orthogonal, 423 
primitive, 208 

polynomial division 
circuits, 129 

polynomial encoder, 463 
polynomial multiplication 

circuits, 128 
polynomial ring, 115 
po lynomia lT .  cc ,  223 
po lynomia lT .  h, 223 
polysub.m,  116 
polysubm.m, 116 

power sum symmetric functions, 

p r imf  ind ,  209 
p r imf  i n d ,  209 
primitive BCH code, 235 
primitive element, 202, 396 
primitivepolynomial, 155,160,208 

table of, 209 
p r i m i t i v e . t x t ,  155 
principal character, 415 
principal ideal, 119 
probability of hit error, 98 
probability of decoder error, 98 
probability of decoder failure, 99 
probability of undetected codeword 

error, 98 
product code, 430 
p r o g d e t  .m, 100 
progdetH15.m, 100 
pseudonoise, 154 
pseudorandom sequence, 8 
P s i  . m, 658 
psifunc.m.656 
Psi inv.m,658 
Pu(E), 98 

puncture 

250 

Pub. 99 

block code, 106 
convolutional code, 507 
matrix, 508 
Reed-Solomon, 276 

Q 
Q function, 20 

bounds, 57,503,504 
QAM (quadrature-amplitude mod- 

QAM constellation 

qf . c, 20 
qf .m,20 
quadratic residue, 371 

quadrature-amplitude modulation 

quantization of metric, 484 
quotient ring, 116 

ulation), 535 

energy requirements, 536 

code, 396 

(QAM), 535 

R 
R-linear combination, 302 
random code, 637 
random error correcting 

capability, 30,93 
codes, 425 

rank criterion, 723 
rank of polynomial, 327 
rate, 28 

asymptotic, 407 
of convolutional code, 452 
of linear code, 83 

rate compatible punctured codes, 
510,533 

rate-distortion theory, 7.51 
rational encoder, 463 
rational interpolation, 302 
Rayleigh density, 713, 733 
Rayleigh fading, 712 

channel, 713 
real orthogonal design, 723 
realizations 

controller form, 132.453 
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division, 130 
firstelement first, 132 
multiplication 

first-element first, 129 
last-element first, 128 

multiplication and division 
first-element first, 132 

observability form, 132,454 
polynomial multiplication, 
128 

reciprocal polynomial, 166,231 
recursive systematic convolutional 

(RSC), 582,584 
reducefree .m,413 
reducible solution, 304 
redundancy, 89 
Reed-Muller code, 376 
Reed-Solomon code, 242 

burst correction, 43 1 
decoder workload, 293 
generalized, 277 
Guruswami-Sudan Decoder, 

pipelined decoder algo- 

programming, 284 
soft output decoder, 358 
soft-input soft-output de- 

weight distribution, 246 

322 

rithm, 310 

coder, 699 

reedsolwt .m,246 
reflexive property, 68 
register exchange, 482 
relative distance, 406 
relative enrropy, 41, 606 
relatively prime, 176 
reliability, 440,735 

matrix, 359 
reliability class, 442 
remainder decoding, 293 
repcodeprob.m, 32 
repcodes .m, 33 
repeat-accumulate (RA) code, 586, 

repetition code, 28,676 
residue class, 71 
restorefree.m,413 
restriction to G F ( q ) ,  277 
reversible code, 166,289 
right inverse 

67 1 

in a ring, 165 
of a matrix, 462 

characteristic, 115 
delinition, 114 
polynomial, 115 
quotient, 116 

rmdecex .m,381 
rmdecex2 .m,387 
Roos hound, 239,368 
root of unity, 215 
rotational invariance, 556,562 

TCM codes, 556 
Roth-Ruckenstein algorithm, 350 
rothruck. cc, 354 
rothruck. h, 354 
row space, 77 
RSAencryption, 186,187 
RSdec. cc, 284 
RSdec. h, 284 

ring 

rsdecode. cc. 285 
RSenc. cc, 284 
RSenc. h, 284 
rsencode. cc, 285 
runlength-limited codes, 8 

s 
scaling, 592 
self-dual code, 86,399,403,404 
semiring, 681 
separation theorem, 7,51 
sequential decoding, 5 1 1 
serially concatenated code, 586, 

67 1 
set partitioning, 545 
Shannon sampling theorem, 50 
shape gain, 568 
shortened block code, 106 
signal constellation, 10,535 
signal energy, 13 
signal shape, 562 
signal space, 10 
signal-to-noise ratio (SNR), 21 
simplex code, 97, 109, 374,423 
simplex1 .m,413 
Singleton hound, 88,406 
SISO decoding 

Reed Solomon, 699 
turbo code, 587 

S N R  (signal to noise ratio), 21 
soft-decision decoding, 439 

BCJR algorithm, 588 
convolution code, 484 
LDPC, 640 
performance, 103 
soft input, 32 
soft output Viterbi algo- 

rithm, 610 
turbo code, 582,587 

soft-input, hard-output (SMO), 439 

sort 

source code, 6 
source coding theorem, 6 
sourcelchannel coding, 7 
SOVA, 469,610 
space-time code 

Snr 65 

soft-input, soft-output (SISO), 439 

for soft detection, 441 

block, 719 
trellis, 728 

spanning set, 77 
spanning tree, 702 
sparse matrix, 635 
sparseHno4 .m, 668 
spectral efficiency, 536 

spectral thinning, 6 14 
spectrum, 272 
sphere packing, 562 
splitting field, 204 
spread-spec-, 8 
squaring construction, 392 
stackalgorithm, 511,515 

stack bucket, 515 
stackalg . m, 515 
standard 

TCM advantage, 562 

802.11.721 
ISBN, 3 
V.32, V.33,557 

V.34, 561, 571 
standard array, 91 
Steiner designs, 669 
Stirling formula, 408,570 

stretching, 701 
subcode, 143 
subfield, 206 

subgroup, 65 

sublattice, 566 
subspace of vector space, 78 
Sugiyama algorithm, 182,266 
sum-product algorithm, 690 

LDPC codes, 648 
summary notation, 682 
support set, 242 
surjective, 70 
survivor path, 474 
Sylvester consbuction, 371 
symmetric p u p ,  65 
symmetric property, 68 
synchronization 

derivation, 421 

subcode, 277,288 

proper, 65 

of convolutional decoders, 
486 

syndrome, 90 
BCH, RS, 247 
decoding, 94 
polynomial, 123 

convolutional code, 453, 

definition, 85 
encoding, cyclic codes, 124 

systematic 

469 

T 
T algorithm, 522 

tail biting code, 522 
t anhde ,  676,696,707,735,736 

tail biting, 734 

0-1 valued variables, 737, 
738 

Tanner graph, 38,638 
TCM 

multidimensional, 561 
Ungerboeck framework, 
544 

tcmrot2. cc, 557 
tcmtl.cc.549 
TCP/IP protocol, 426 
testBCH. cc, 283 
testbcjr .cc,629 
testBinLFSR.cc, 162 
testBinPolyDiv. cc, 162 
testBM. cc,282 
testChien.cc,283 
testconvdec.~~, 529 
testconvent, 526 
testcrp.m, 189 
testcrt .m, 189 
testfht.cc,383 
testft.m,341 
test gcdpoly . cc, 224 
testgd12.m,695 
testgfnum. cc, 224 
testGolay.cc,401 
testGSl . cc, 346 
testGS2. cc, 354 
testGS3. cc, 347 



756 Index 

testGS5.cc,350 
testmodarl . cc, 223 
testmodarnew. cc, 223 
testpolyl . cc, 223 
testpxy.cc,325 
testQR.cc,397 
testrepcode. cc, 33 
testRS.cc,284 
teststack .m,515 
testturbodec2 .cc,629 
threshtab .m, 658 
tier of parity checks, 640 
time domain vector, 272 
tocrt .m, 189 
tocrtpoly.m, 189 
Toeplitz matrix, 122,251 
total order, 325 
totient function, 185 
trace (of a field element), 232 
traceback, 483 
uansfer function 

bound, 552 
matrix, 453 
of graph, 493 

transitive property, 68 
trellis, 456 

for block code, 38,523 
time-varvinz. 696 

_ 1  

trellis coded modulation, 535, see 
TCM 

triangle inequality 

truncation error, 482 
turbo code, 582 

Hamming distance and, 57 

block coding, 623 
decoding, 601 
error floor, 612 
EXIT chart, 619 
extrinsic information, 603 

hard decision aided termina- 

interleaver, 584 
likelihood ratio decoding, 

parallel concatenated code, 

primitive polynomials and, 

sign change ratio, 607 
stopping criteria, 605, 606 
terminal state, 602 

tion, 608 

602 

582 

632 

turbo equalization, 626 
typical set, 46 

U 
UDP protocol, 104,105,426 
undetected bit error rate, 99 
unequal error protection, 489, 522 
Ungerboeck coding framework, 

unimodnlar matrix, 464,563 
union hound, 22 

544 

block code performance 

convolutional code perfor- 

TCMperformance, 546,547 

and, 103 

mance, 499 

unit of a ring, 115 
up to isomorphism, 80 
UPC, 3 
utiltkm.cc,440 
ut i It km . h, 440 

V 
V.32 standard, 557 
V.33 standard, 557 
V.34 standard, 561,571 
valuation, 180 
Vandermonde matrix, 237 

variable-rate error control, 509 
vector space definition, 15 
vertex, 457 
vertical step, 641 
Viterbi algorithm, 469,47 1 

hard decisions, 588 
soft metric, 485 
soft ontpnt, 610 

voln . m, 563 
Vq (n. t ) .  57, 89 

W 
waterfall region, 584 
weight, 635 
weight distribution, 95 

BCH code, 239 
RS code, 245 

weight enumerator, 95 
weight profile, 446 
weighted code, 3, 56 
weighted degree, 325,327 

order, 326 
Welch-Berlekamp algorithm, 293, 

303 
well defined, 70 
Wilson’s theorem, 225 
Wolf trellis, 38, 523 
writesparse.m,637 

Y 
y-root, 350 

z 
Zech logarithm, 204 
zero 

multiplicity of, 329 
zero divisor, 165, 193 
zero state forcing sequence, 588 
ZJ algorithm, 511,515 


	Error Correction Coding Mathematical Methods and Algorithms
	Contents
	Preface
	List of Program Files
	List of Laboratory Exercises
	List of Algorithms
	List of Figures
	List of Tables
	List of Boxes
	Part I Introduction and Foundations
	1 A Context for Error Correction Coding
	1.1 Purpose of This Book
	1.2 Introduction: Where Are Codes?
	1.3 The Communications System
	1.4 Basic Digital Communications
	1.4.1 Binary Phase-Shift Keying
	1.4.2 More General Digital Modulation

	1.5 Signal Detection
	1.5.1 The Gaussian Channel
	1.5.2 MAP and ML Detection
	1.5.3 Special Case: Binary Detection
	1.5.4 Probability of Error for Binary Detection
	1.5.5 Bounds on Performance: The Union Bound
	1.5.6 The Binary Symmetric Channel
	1.5.7 The BSC and the Gaussian Channel Model

	1.6 Memoryless Channels
	1.7 Simulation and Energy Considerations for Coded Signals
	1.8 Some Important Definitions
	1.8.1 Detection of Repetition Codes Over a BSC
	1.8.2 Soft-Decision Decoding of Repetition Codes Over the AWGN
	1.8.3 Simulation of Results
	1.8.4 Summary

	1.9 Hamming Codes
	1.9.1 Hard-Input Decoding Hamming Codes
	1.9.2 Other Representations of the Hamming Code
	An Algebraic Representation
	A Polynomial Representation
	A Trellis Representation
	The Tanner Graph Representation


	1.10 The Basic Questions
	1.11 Historical Milestones of Coding Theory
	1.12 A Bit of Information Theory
	1.12.1 Definitions for Discrete Random Variables
	Entropy and Conditional Entropy
	Relative Entropy, Mutual Information, and Channel Capacity

	1.12.2 Definitions for Continuous Random Variables
	1.12.3 The Channel Coding Theorem
	1.12.4 “Proof” of the Channel Coding Theorem
	1.12.5 Capacity for the Continuous-Time AWGN Channel
	1.12.6 Transmission at Capacity with Errors
	1.12.7 The Implication of the Channel Coding Theorem

	Lab 1 Simulating a Communications Channel
	Objective
	Background
	Use of Coding in Conjunction with the BSC
	Assignment
	Programming Part
	Resources and Implementation Suggestions

	1.13 Exercises
	1.14 References


	Part II Block Codes
	2 Groups and Vector Spaces
	2.1 Introduction
	2.2 Groups
	2.2.1 Subgroups
	2.2.2 Cyclic Groups and the Order of an Element
	2.2.3 Cosets
	2.2.4 Lagrange’s Theorem
	2.2.5 Induced Operations; Isomorphism
	2.2.6 Homomorphism

	2.3 Fields: A Prelude
	2.4 Review of Linear Algebra
	2.5 Exercises
	2.6 References

	3 Linear Block Codes
	3.1 Basic Definitions
	3.2 The Generator Matrix Description of Linear Block Codes
	3.2.1 Rudimentary Implementation

	3.3 The Parity Check Matrix and Dual Codes
	3.3.1 Some Simple Bounds on Block Codes

	3.4 Error Detection and Correction over Hard-Input Channels
	3.4.1 Error Detection
	3.4.2 Error Correction: The Standard Array

	3.5 Weight Distributions of Codes and Their Duals
	3.6 Hamming Codes and Their Duals
	3.7 Performance of Linear Codes
	3.7.1 Error detection performance
	3.7.2 Error Correction Performance
	3.7.3 Performance for Soft-Decision Decoding

	3.8 Erasure Decoding
	3.8.1 Binary Erasure Decoding

	3.9 Modifications to Linear Codes
	3.10 Best Known Linear Block Codes
	3.11 Exercises
	3.12 References

	4 Cyclic Codes, Rings, and Polynomials
	4.1 Introduction
	4.2 Basic Definitions
	4.3 Rings
	4.3.1 Rings of Polynomials

	4.4 Quotient Rings
	4.5 Ideals in Rings
	4.6 Algebraic Description of Cyclic Codes
	4.7 Nonsystematic Encoding and Parity Check
	4.8 Systematic Encoding
	4.9 Some Hardware Background
	4.9.1 Computational Building Blocks
	4.9.2 Sequences and Power series
	4.9.3 Polynomial Multiplication
	Last-Element-First Processing
	First-Element-First Processing

	4.9.4 Polynomial division
	Last-Element-First Processing

	4.9.5 Simultaneous Polynomial Division and Multiplication
	First-Element-First Processing


	4.10 Cyclic Encoding
	4.11 Syndrome Decoding
	4.12 Shortened Cyclic Codes
	Method 1: Simulating the Extra Clock Shifts
	Method 2: Changing the Error Pattern Detection Circuit

	4.13 Binary CRC Codes
	4.13.1 Byte-Oriented Encoding and Decoding Algorithms
	4.13.2 CRC Protecting Data Files or Data Packets

	Appendix 4.A Linear Feedback Shift Registers
	Appendix 4.A.1 Basic Concepts
	Appendix 4.A.2 Connection With Polynomial Division
	Appendix 4.A.3 Some Algebraic Properties of Shift Sequences

	Lab 2 Polynomial Division and Linear Feedback Shift Registers
	Objective
	Preliminary Exercises
	Programming Part: BinLFSR
	Resources and Implementation Suggestions
	Programming Part: BinPolyDiv
	Follow-On Ideas and Problems

	Lab 3 CRC Encoding and Decoding
	Objective
	Preliminary
	Programming Part
	Resources and Implementation Suggestions

	4.14 Exercises
	4.15 References

	5 Rudiments of Number Theory and Algebra
	5.1 Motivation
	5.2 Number Theoretic Preliminaries
	5.2.1 Divisibility
	5.2.2 The Euclidean Algorithm and Euclidean Domains
	5.2.3 The Sugiyama Algorithm
	5.2.4 Congruence
	5.2.5 The ø Function
	5.2.6 Some Cryptographic Payoff
	Fermat's Little Theorem
	RSA Encryption


	5.3 The Chinese Remainder Theorem
	5.3.1 The CRT and Interpolation
	The Evaluation Homomorphism
	The Interpolation Problem


	5.4 Fields
	5.4.1 An Examination of R and C
	5.4.2 Galois Field Construction: An Example
	5.4.3 Connection with Linear Feedback Shift Registers

	5.5 Galois Fields: Mathematical Facts
	5.6 Implementing Galois Field Arithmetic
	5.6.1 Zech Logarithms
	5.6.2 Hardware Implementations

	5.7 Subfields of Galois Fields
	5.8 Irreducible and Primitive polynomials
	5.9 Conjugate Elements and Minimal Polynomials
	5.9.1 Minimal Polynomials

	5.10 Factoring xn &#150; 1
	5.11 Cyclotomic Cosets
	Appendix 5.A How Many Irreducible Polynomials Are There?
	Appendix 5.A.1 Solving for Im Explicitly: The Moebius Function

	 Lab 4 Programming the Euclidean Algorithm
	Objective
	Preliminary Exercises
	Background
	Programming Part

	Lab 5 Programming Galois Field Arithmetic
	Objective
	Preliminary Exercises
	Programming Part

	5.12 Exercises
	5.13 References

	6 BCH and Reed-Solomon Codes: Designer Cyclic Codes
	6.1 BCH Codes
	6.1.1 Designing BCH Codes
	6.1.2 The BCH Bound
	6.1.3 Weight Distributions for Some Binary BCH Codes
	6.1.4 Asymptotic Results for BCH Codes

	6.2 Reed-Solomon Codes
	6.2.1 Reed-Solomon Construction 1
	6.2.2 Reed-Solomon Construction 2
	6.2.3 Encoding Reed-Solomon Codes
	6.2.4 MDS Codes and Weight Distributions for RS Codes

	6.3 Decoding BCH and RS Codes: The General Outline
	6.3.1 Computation of the Syndrome
	6.3.2 The Error Locator Polynomial
	6.3.3 Chien Search

	6.4 Finding the Error Locator Polynomial
	6.4.1 Simplifications for Binary Codes and Peterson’s Algorithm
	6.4.2 Berlekamp-Massey Algorithm
	6.4.3 Characterization of LFSR Length in Massey’s Algorithm
	6.4.4 Simplifications for Binary Codes

	6.5 Non-Binary BCH and RS Decoding
	6.5.1 Forney’s Algorithm

	6.6 Euclidean Algorithm for the Error Locator Polynomial
	6.7 Erasure Decoding for Nonbinary BCH or RS codes 
	6.8 Galois Field Fourier Transform Methods 
	6.8.1 Equivalence of the Two Reed-Solomon Code Constructions
	6.8.2 Frequency-Domain Decoding

	6.9 Variations and Extensions of Reed-Solomon Codes
	6.9.1 Simple Modifications
	6.9.2 Generalized Reed-Solomon Codes and Alternant Codes
	6.9.3 Goppa Codes
	6.9.4 Decoding Alternant Codes
	6.9.5 The McEliece Public Key Cryptosystem

	Lab 6 Programming the Berlekamp-Massey Algorithm
	Background
	Assignment
	Preliminary Exercises
	Programming Part
	Resources and Implementation Suggestions

	Lab 7 Programming the BCH Decoder
	Objective
	Preliminary Exercises
	Programming Part
	Resources and Implementation Suggestions
	Follow-On Ideas and Problems

	Lab 8 Reed-Solomon Encoding and Decoding
	Objective
	Background
	Programming Part

	Appendix 6.A Proof of Newton’s Identities
	6.10 Exercises
	6.11 References

	7 Alternate Decoding Algorithms for Reed-Solomon Codes
	7.1 Introduction: Workload for Reed-Solomon Decoding
	7.2 Derivations of Welch-Berlekamp Key Equation
	7.2.1 The Welch-Berlekamp Derivation of the WB Key Equation
	7.2.2 Derivation From the Conventional Key Equation

	7.3 Finding the Error Values
	7.4 Methods of Solving the WB Key Equation
	7.4.1 Background: Modules 
	7.4.2 The Welch-Berlekamp Algorithm
	7.4.3 Modular Solution of the WB Key Equation

	7.5 Erasure Decoding with the Welch-Berlekamp Key Equation
	7.6 The Guruswami-Sudan Decoding Algorithm and Soft RS Decoding
	7.6.1 Bounded Distance, ML, and List Decoding
	7.6.2 Error Correction by Interpolation
	7.6.3 Polynomials in Two Variables
	Degree and Monomial Order
	Zeros and Multiple Zeros

	7.6.4 The GS Decoder: The Main Theorems
	The Interpolation Theorem
	The Factorization Theorem
	The Correction Distance
	The Number of Polynomials in the Decoding List

	7.6.5 Algorithms for Computing the Interpolation Step 
	Finding Linearly Dependent Columns: The Feng-Tzeng Algorithm
	Finding the Intersection of Kernels: The K&#246;tter Algorithm

	7.6.6 A Special Case: m = 1 and L = 1
	7.6.7 The Roth-Ruckenstein Algorithm
	What to Do with Lists of Factors?

	7.6.8 Soft-Decision Decoding of Reed-Solomon Codes
	Notation
	A Factorization Theorem
	Mapping from Reliability to Multiplicity
	The Geometry of the Decoding Regions
	Computing the Reliability Matrix


	7.7 Exercises
	7.8 References 

	8 Other Important Block Codes
	8.1 Introduction
	8.2 Hadamard Matrices, Codes, and Transforms
	8.2.1 Introduction to Hadamard Matrices
	8.2.2 The Paley Construction of Hadamard Matrices
	8.2.3 Hadamard Codes

	8.3 Reed-Muller Codes
	8.3.1 Boolean Functions
	8.3.2 Definition of the Reed-Muller Codes
	8.3.3 Encoding and Decoding Algorithms for First-Order RM Codes
	Encoding RM (1, m) Codes
	Decoding RM (1, m) Codes
	Expediting Decoding Using the Fast Hadamard Transform

	8.3.4 The Reed Decoding Algorithm for RM (r, m) Codes, r &#8807; 1
	Details for an RM (2, 4) Code
	A Geometric Viewpoint

	8.3.5 Other Constructions of Reed-Muller Codes

	8.4 Building Long Codes from Short Codes: The Squaring Construction
	8.5 Quadratic Residue Codes
	8.6 Golay Codes
	8.6.1 Decoding the Golay Code
	Algebraic Decoding of the g23 Golay Code
	Arithmetic Decoding of the g24 Code


	8.7 Exercises
	8.8 References

	9 Bounds on Codes
	9.1 The Gilbert-Varshamov Bound
	9.2 The Plotkin Bound
	9.3 The Griesmer Bound
	9.4 The Linear Programming and Related Bounds
	9.4.1 Krawtchouk Polynomials
	9.4.2 Character
	9.4.3 Krawtchouk Polynomials and Characters

	9.5 The McEliece-Rodemich-Rumsey-Welch Bound
	9.6 Exercises
	9.7 References

	10 Bursty Channels, Interleavers, and Concatenation
	10.1 Introduction to Bursty Channels
	10.2 Interleavers
	10.3 An Application of Interleaved RS Codes: Compact Discs
	10.4 Product Codes
	10.5 Reed-Solomon Codes
	10.6 Concatenated Codes
	10.7 Fire Codes
	10.7.1 Fire Code Definition
	10.7.2 Decoding Fire Codes: Error Trapping Decoding

	10.8 Exercises
	10.9 References

	11 Soft-Decision Decoding Algorithms
	11.1 Introduction and General Notation
	11.2 Generalized Minimum Distance Decoding
	11.2.1 Distance Measures and Properties

	11.3 The Chase Decoding Algorithms
	11.4 Halting the Search: An Optimality Condition
	11.5 Ordered Statistic Decoding
	11.6 Exercises
	11.7 References


	Part III Codes on Graphs
	12 Convolutional Codes
	12.1 Introduction and Basic Notation
	12.1.1 The State

	12.2 Definition of Codes and Equivalent Codes
	12.2.1 Catastrophic Encoders
	12.2.2 Polynomial and Rational Encoders
	12.2.3 Constraint Length and Minimal Encoders
	12.2.4 Systematic Encoders

	12.3 Decoding Convolutional Codes
	12.3.1 Introduction and Notation
	12.3.2 The Viterbi Algorithm
	12.3.3 Some Implementation Issues
	The Basic Operation: Add-Compare-Select
	Decoding Streams of Data: Windows on the Trellis
	Output Decisions
	Hard and Soft Decoding; Quantization
	Synchronization Issues


	12.4 Some Performance Results
	12.5 Error Analysis for Convolutional Codes
	12.5.1 Enumerating Paths Through the Trellis
	Enumerating on More Complicated Graphs: Mason’s Rule

	12.5.2 Characterizing the Node Error Probability Pe and the Bit Error Rate Pb
	12.5.3 A Bound on Pd for Discrete Channels
	Performance Bound on the BSC

	12.5.4 A Bound on Pd for BPSK Signaling Over the AWGN Channel
	12.5.5 Asymptotic Coding Gain

	12.6 Tables of Good Codes
	12.7 Puncturing
	12.7.1 Puncturing to Achieve Variable Rate

	12.8 Suboptimal Decoding Algorithms for Convolutional Codes
	12.8.1 Tree Representations
	12.8.2 The Fano Metric
	12.8.3 The Stack Algorithm
	12.8.4 The Fano Algorithm
	12.8.5 Other Issues for Sequential Decoding
	12.8.6 A Variation on the Viterbi Algorithm: The M Algorithm

	12.9 Convolutional Codes as Block Codes
	12.10 Trellis Representations of Block and Cyclic Codes
	12.10.1 Block Codes
	12.10.2 Cyclic Codes
	12.10.3 Trellis Decoding of Block Codes

	Lab 9 Programming Convolutional Encoders
	Objective
	Background
	Programming Part

	Lab 10 Convolutional Decoders: The Viterbi Algorithm
	Objective
	Background
	Programming Part

	12.11 Exercises
	12.12 References

	13 Trellis Coded Modulation
	13.1 Adding Redundancy by Adding Signals
	13.2 Background on Signal Constellations
	13.3 TCM Example
	13.3.1 The General Ungerboeck Coding Framework 
	13.3.2 The Set Partitioning Idea

	13.4 Some Error Analysis for TCM Codes
	13.4.1 General Considerations
	13.4.2 A Description of the Error Events 
	13.4.3 Known Good TCM Codes

	13.5 Decoding TCM Codes
	13.6 Rotational Invariance
	Differential Encoding
	Constellation Labels and Partitions

	13.7 Multidimensional TCM
	13.7.1 Some Advantages of Multidimensional TCM
	13.7.2 Lattices and Sublattices
	Basic Definitions
	Common Lattices
	Sublattices and Cosets
	The Lattice Code Idea
	Sources of Coding Gain in Lattice Codes
	Some Good Lattice Codes


	13.8 The V.34 Modem Standard
	Lab 11 Trellis-Coded Modulation Encoding and Decoding
	Objective
	Background
	Programming Part

	13.9 Exercises
	13.10 References


	Part IV Iteratively Decoded Codes
	14 Turbo Codes
	14.1 Introduction
	14.2 Encoding Parallel Concatenated Codes
	14.3 Turbo Decoding Algorithms
	14.3.1 The MAP Decoding Algorithm
	14.3.2 Notation
	14.3.3 Posterior Probability
	14.3.4 Computing &#945;t and &#946;t
	14.3.5 Computing &#947;r
	14.3.6 Normalization
	14.3.7 Summary of the BCJR Algorithm
	14.3.8 A Matrix/Vector Formulation
	14.3.9 Comparison of the Viterbi and BCJR Algorithms
	14.3.10 The BCJR Algorithm for Systematic Codes
	14.3.11 Turbo Decoding Using the BCJR Algorithm
	The Terminal State of the Encoders

	14.3.12 Likelihood Ratio Decoding
	Log Prior Ratio &#955;p, t
	Log Posterior &#955;s, t

	14.3.13 Statement of the Turbo Decoding Algorithm
	14.3.14 Turbo Decoding Stopping Criteria
	The Cross Entropy Stopping Criterion
	The Sign Change Ratio (SCR) Criterion
	The Hard Decision Aided (HDA) Criterion

	14.3.15 Modifications of the MAP Algorithm
	The Max-Log-MAP Algorithm

	14.3.16 Corrections to the Max-Log-MAP Algorithm
	14.3.17 The Soft Output Viterbi Algorithm

	14.4 On the Error Floor and Weight Distributions
	14.4.1 The Error Floor
	14.4.2 Spectral Thinning and Random Interleavers
	14.4.3 On Interleavers

	14.5 EXIT Chart Analysis
	14.5.1 The EXIT Chart

	14.6 Block Turbo Coding
	14.7 Turbo Equalization
	14.7.1 Introduction to Turbo Equalization
	14.7.2 The Framework for Turbo Equalization

	Lab 12 Turbo Code Decoding
	Objective
	Background
	Programming Part

	14.8 Exercises
	14.9 References

	15 Low-Density Parity-Check Codes
	15.1 Introduction
	15.2 LDPC Codes: Construction and Notation
	15.3 Tanner Graphs
	15.4 Transmission Through a Gaussian Channel
	15.5 Decoding LDPC Codes
	15.5.1 The Vertical Step: Updating qmn (x)
	15.5.2 Horizontal Step: Updating rmn (x)
	15.5.3 Terminating and Initializing the Decoding Algorithm
	15.5.4 Summary of the Algorithm
	15.5.5 Message Passing Viewpoint
	15.5.6 Likelihood Ratio Decoder Formulation

	15.6 Why Low-Density Parity-Check Codes?
	15.7 The Iterative Decoder on General Block Codes
	15.8 Density Evolution
	15.9 EXIT Charts for LDPC Codes
	15.10 Irregular LDPC Codes
	15.10.1 Degree Distribution Pairs
	15.10.2 Some Good Codes
	15.10.3 Density Evolution for Irregular Codes
	15.10.4 Computation and Optimization of Density Evolution
	15.10.5 Using Irregular Codes

	15.11 More on LDPC Code Construction
	15.11.1 A Construction Based on Finite Geometries
	15.11.2 Constructions Based on Other Combinatoric Objects

	15.12 Encoding LDPC Codes
	15.13 A Variation: Low-Density Generator Matrix Codes
	15.14 Serial Concatenated Codes; Repeat-Accumulate Codes
	15.14.1 Irregular RA Codes

	Lab 13 Programming an LDPC Decoder
	Objective
	Background
	Assignment
	Numerical Considerations

	15.15 Exercises
	15.16 References

	16 Decoding Algorithms on Graphs
	16.1 Introduction
	16.2 Operations in Semirings
	16.3 Functions on Local Domains
	16.4 Factor Graphs and Marginalization
	16.4.1 Marginalizing on a Single Variable
	16.4.2 Marginalizing on All Individual Variables

	16.5 Applications to Coding
	16.5.1 Block Codes
	16.5.2 Modifications to Message Passing for Binary Variables
	16.5.3 Trellis Processing and the Forward/Backward Algorithm
	16.5.4 Turbo Codes

	16.6 Summary of Decoding Algorithms on Graphs
	16.7 Transformations of Factor Graphs
	16.7.1 Clustering
	16.7.2 Stretching Variable Nodes
	16.7.3 Exact Computation of Graphs with Cycles

	16.8 Exercises
	16.9 References


	Part V Space-Time Coding
	17 Fading Channels and Space-Time Codes
	17.1 Introduction
	17.2 Fading Channels
	17.2.1 Rayleigh Fading

	17.3 Diversity Transmission and Reception: The MIMO Channel
	17.3.1 The Narrowband MIMO Channel
	17.3.2 Diversity Performance with Maximal-Ratio Combining

	17.4 Space-Time Block Codes
	17.4.1 The Alamouti Code
	17.4.2 A More General Formulation
	17.4.3 Performance Calculation
	Real Orthogonal Designs
	Encoding and Decoding Based on Orthogonal Designs
	Generalized Real Orthogonal Designs

	17.4.4 Complex Orthogonal Designs
	Future Work


	17.5 Space-Time Trellis Codes
	17.5.1 Concatenation

	17.6 How Many Antennas?
	17.7 Estimating Channel Information
	17.8 Exercises
	17.9 References

	A Log Likelihood Algebra
	A.l Exercises


	References
	Index




