

Error Correction Coding
Mathematical Methods and Algorithms

Todd K. Moon
Utah State University

@ E ! C I E N C E
A JOHN WILEY & SONS, INC., PUBLICATION

This Page Intentionally Left Blank

Error Correction Coding

This Page Intentionally Left Blank

Error Correction Coding
Mathematical Methods and Algorithms

Todd K. Moon
Utah State University

@ E ! C I E N C E
A JOHN WILEY & SONS, INC., PUBLICATION

Copyright 0 2005 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Section 107 or 108 of the
1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment
of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-
8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to
the Permissions Department, John Wiley & Sons, Inc., 11 1 River Street, Hoboken, NJ 07030, (201) 748-601 1, fax (201) 748-
6008.

Limit of LiabilityDisclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book,
they make no representation or warranties with respect to the accuracy or completeness of the contents of this book and
specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created
or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for
your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any
loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department within the U.S. at 877-
762-2974, outside the U.S. at 3 17-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, however, may not be
available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Moon, Todd K.
Error correction coding : mathematical methods and algorithms /Todd K.

Moon.
p. cm.

Includes bibliographical references and index.

1. Engineering mathematics. 2. Error-correcting codes (Information theory)
ISBN 0-471-64800-0 (cloth)

I. Title.

TA331 .M66 2005
62 1.382'0285'572-dc22 200403 1019

Printed in the United States ofAmerica

1 0 9 8 7 6 5 4 3 2 1

Error Correction Coding

This Page Intentionally Left Blank

Preface
The purpose of this book is to provide a comprehensive introduction to error correction
coding, including both classical block- and trellis-based codes and the recent developments
in iteratively decoded codes such as turbo codes and low-density parity-check codes. The
presentation is intended to provide a background useful both to engineers, who need to
understand algorithmic aspects for the deployment and implementation of error correction
coding, and to researchers, who need sufficient background to prepare them to read, un-
derstand, and ultimately contribute to the research literature. The practical algorithmic
aspects are built upon a firm foundation of mathematics, which are carefully motivated and
developed.

Pedagogical Features

Since its inception, coding theory has drawn from a rich and interacting variety of mathemat-
ical areas, including detection theory, information theory, linear algebra, finite geometries,
combinatorics, optimization, system theory, probability, algebraic geometry, graph theory,
statistical designs, Boolean functions, number theory, and modern algebra. The level of
sophistication has increased over time: algebra has progressed from vector spaces to mod-
ules; practice has moved from polynomial interpolation to rational interpolation; Viterbi
makes way for BCJR. This richness can be bewildering to students, particularly engineering
students who are unaccustomed to posing problems and thinking abstractly. It is important,
therefore, to motivate the mathematics carefully.

Some of the major pedagogical features of the book are as follows.

While most engineering-oriented error-correction-coding textbooks clump the major
mathematical concepts into a single chapter, in this book the concepts are developed
over several chapters so they can be put to more immediate use. I have attempted
to present the mathematics “just in time,” when they are needed and well-motivated.
Groups and linear algebra suffice to describe linear block codes. Cyclic codes mo-
tivate polynomial rings. The design of cyclic codes motivates finite fields and as-
sociated number-theoretical tools. By interspersing the mathematical concepts with
applications, a deeper and broader understanding is possible.

For most engineering students, finite fields, the Berlekamp-Massey algorithm, the
Viterbi algorithm, BCJR, and other aspects of coding theory are initially abstract
and subtle. Software implementations of the algorithms brings these abstractions
closer to a meaningful reality, bringing deeper understanding than is possible by
simply working homework problems and taking tests. Even when students grasp the
concepts well enough to do homework on paper, these programs provide a further
emphasis, as well as tools to help with the homework. The understanding becomes
experiential, more than merely conceptual.

Understanding of any subject typically improves when the student him- or herself
has the chance to teach the material to someone (or something) else. A student
must develop an especially clear understanding of a concept in order to “teach” it
to something as dim-witted and literal-minded as a computer. In this process the

viii Preface

computer can provide feedback to the student through debugging and program testing
that reinforces understanding.

In the coding courses I teach, students implement a variety of encoders and decoders,
including Reed-Solomon encoders and decoders, convolutional encoders, turbo code
decoders, and LDPC decoders. As a result of these programming activities, students
move beyond an on-paper understanding, gaining a perspective of what coding the-
ory can do and how to put it to work. A colleague of mine observed that many
students emerge from a first course in coding theory more confused than informed.
My experience with these programming exercises is that my students are, if anything,
overconfident, and feel ready to take on a variety of challenges.

In this book, programming exercises are presented in a series of 13 Laboratory Exer-
cises. These are supported with code providing most of the software “infrastructure,”
allowing students to focus on the particular algorithm they are implementing.

These labs also help with the coverage of the course material. In my course I am
able to offload classroom instruction of some topics for students to read, with the
assurance that the students will learn it solidly on their own as they implement it.
(The Euclidean algorithm is one of these topics in my course.)

Research in error control coding can benefit from having a flexible library of tools
for the computations, particularly since analytical results are frequently not available
and simulations are required. The laboratory assignments presented here can form
the foundation for a research library, with the added benefit that having written major
components, the researcher can easily modify and extend them.

It is in light of these pedagogic features that this book bears the subtitle Mathematical
Methods and Algorithms.

There is sufficient material in this book for a one- or two-semester course based on the
book, even for instructors who prefer to focus less on implementational aspects and the
laboratories.

Over 150 programs, functions and data files are associated with the text. The programs
are written in Matlab,’ C, or C++. Some of these include complete executables which
provide “tables” of primitive polynomials (over any prime field), cyclotomic cosets and
minimal polynomials, and BCH codes (not just narrow sense), avoiding the need to tabulate
this material. Other functions include those used to make plots and compute results in the
book. These provide example of how the theory is put into practice. Other functions include
those used for the laboratory exercises. The files are highlighted in the book by the icon

as in the marginal note above. The files are available at the website

h t tp : / / f tp .wi ley .com/publ ic / sc i_ tech_med/er ror -cont ro l

Other aspects of the book include the following:

‘Matlab is a registered trademard of The Mathworks, Inc.

ix

Many recent advances in coding have resulted from returning to the perspective of
coding as a detection problem. Accordingly, the book starts off with a digital com-
munication framework with a discussion of detection theory.

Recent codes are capable of nearly achieving capacity. It is important, therefore, to
understand what capacity is and what it means to transmit at capacity. Chapter 1 also
summarizes information theory, to put coding into its historical and modem context.
This information theory also is used in the EXIT chart analysis of turbo and LDPC
codes.

Pedagogically, Hamming codes are used to set the stage for the book by using them
to demonstrate block codes, cyclic codes, trellises and Tanner graphs.

Homework exercises are drawn from a variety of sources and are at a variety of
levels. Some are numerical, testing basic understanding of concepts. Others provide
the opportunity to prove or extend results from the text. Others extend concepts or
provide new results. Because of the programming laboratories, exercises requiring
decoding by hand of given bit sequences are few, since I am of the opinion that is
better to know how to tell the computer than to do it by hand. I have drawn these
exercises from a variety of sources, including problems that I faced as a student and
those which I have given to students on homework and exams over the years.

Number theoretic concepts such as divisibility, congruence, and the Chinese remain-
der theorem are developed.

At points throughout the book, connections between the coding theoretic concepts and
related topics are pointed out, such as public key cryptography and shift register
sequences. These add spice and motivate students with the understanding that the
tools they are learning have broad applicability.

There has been considerable recent progress made in decoding Reed-Solomon codes
by re-examining their original definition. Accordingly, Reed-Solomon codes are
defined both in this primordial way (as the image of a polynomial function) and also
using a generator polynomial having roots that are consecutive powers of a primitive
element. This sets the stage for several decoding algorithms for Reed-Solomon codes,
including frequency-domain algorithms, Welch-Berlekamp algorithm and the soft-
input Guruswami-Sudan algorithm.

'hrbo codes, including EXIT chart analysis, are presented, with both BCJR and
SOVA decoding algorithms. Both probabilistic and likelihood decoding viewpoints
are presented.

LDPC codes are presented with an emphasis on the decoding algorithm. Density
evolution analysis is also presented.

Decoding algorithms on graphs which subsume both turbo code and LDPC code
decoders, are presented.

A summary of log likelihood algebra, used in soft-decision decoding, is presented.

Space-time codes, used for multi-antenna systems in fading channels, are presented.

Courses of Study

A variety of courses of study are possible. In the one-semester course I teach, I move quickly
through principal topics of block, trellis, and iteratively-decoded codes. Here is an outline

X Preface

of one possible one-semester course:

Chapter 1 : Major topics only.

Chapter 2: All.

Chapter 3: Major topics.

Chapter 4: Most. Leave CRC codes and LFSR to labs.

Chapter 5: Most. Leave Euclidean algorithm to lab; skip CRT; skip RSA.

Chapter 6: Basic topics.

Chapter 12: Most. Skip puncturing, stack-oriented algorithms and trellis descriptions of

Chapter 13: Most. Skip the V.34 material.

Chapter 14: Basic definition and the BCJR algorithm.

Chapter 15: Basic definition and the sum-product decoder.

block codes

A guide in selecting material for this course is: follow the labs. To get through all 13 labs,
selectivity is necessary.

An alternative two-semester course could be a semester devoted to block codes followed
by a semester on trellis and iteratively decoded codes. A two semester sequence could move
straight through the book, with possible supplements from the research literature on topics
of particular interest to the instructor.

The reader should be aware that theorems, lemmas, and corollaries are all numbered
sequentially using the same counter in a chapter. Examples, definitions, figures, tables, and
equations each have their own counters. Definitions, proofs and examples are all terminated
by the symbol 0.

Use of Computers

The computer-based labs provide a means of working out some of the computational details
that otherwise might require drudgery. There are in addition many tools available, both for
modest cost and for free. The brief tutorial comptut . pdf provides an introduction to
gap and magma, both of which can be helpful to students doing homework or research in
this area.

Acknowledgments

In my mind, the purposes of a textbook are these:

1. To provide a topographical map into the field of study, showing the peaks and the im-
portant roads to them. (However, in an area as rich as coding theory, it is unfortunately
impossible to be exhaustive.)

2. To provide specific details about important techniques.

3. To present challenging exercises that will strengthen students’ understanding of the

4. To have some reference value, so that practitioners can continue to use it.

material and present new perspectives.

xi

5. To provide references to literature that will lead readers to make their own discoveries.
(With a rapidly-changing field, the references can only provide highlights; web-based
searches have changed the nature of the game. Nevertheless, having a starting point
in the literature is still important.)

A significant difficulty I have faced is selection. The terrain is so richly textured that it
cannot be mapped out in a single book. Every conference and every issue of the IEEE
Transactions on Information Theory yields new and significant results. Publishing restric-
tions and practicality limit this book from being encyclopedic. My role as author has been
merely to select what parts of the map to include and to present them in a pedagogically
useful way. In so doing, I have aimed to choose tools for the general practitioner and student.
Other than that selective role, no claim of creation is intended; I hope I have given credit as
appropriate where it is due.

This book is a result of teaching a course in error correction coding at Utah State
University for over a decade. Over that time, 1 have taught out of the books [33], [373],
and [203], and my debt to these books is clear. Parts of some chapters grew out of lecture
notes based on these books and the connections will be obvious. I have felt compelled to
include many of the exercises from the first coding course I took out of [203]. These books
have defined for me the sine qua non of error-correction coding texts. I am also indebted
to [220] for its rich theoretical treatment, [303] for presentation of trellis coding material,
[350] for discussion of bounds, [141] for exhaustive treatment of turbo coding methods, and
to the many great researchers and outstanding expositors whose works have contributed to
my understanding.

I am grateful for the supportive environment at Utah State University that has made it
possible to undertake and to complete this task. Students in coding classes over the years
have contributed to this material, and the students in ECE 7670 class of Spring 2005 have
combed carefully through the text. Stewart Weber and Ray Rallison have improved my C++
code. Thanks to Ojas Chauhan, who produced the performance curves for convolutional
codes. I am especially grateful to John Crockett, who gave a particularly careful reading
and contributed to the EXIT charts for LDPC codes. He also did the solutions for the first
three chapters of the solutions manual. With all the help I have had in trying to produce
clean copy, I alone am responsible for any remaining errors.

To my six wonderful children - Leslie, Kyra, Kaylie, Jennie, Kiana, and Spencer -
and my wife Barbara, who have seen me slip away too often and too long to write, I express
my deep gratitude for their trust and patience. In the end, all I do is for them.

T.K.M
Logan, UT, Mar. 2005

This Page Intentionally Left Blank

Preface vii

List of Program Files xxxi

List of Laboratory Exercises XXXii

List of Algorithms d V

List of Figures XI

List of Tables xlii

List of Boxes Xliii

Part I Introduction and Foundations 1

A Context for Error Correction Coding 2
1.1 F’urpose of This Book . 2
1.2 Introduction: Where Are Codes? . 2
1.3 The Communications System . 4
1.4 Basic Digital Communications . 9

1.4.1 Binary Phase-Shift Keying . 10
1.4.2 More General Digital Modulation 11

1.5 Signal Detection . 14
1.5.1 The Gaussian Channel . 14
1 S.2 MAP and ML Detection . 16
1.5.3 Special Case: Binary Detection 18
1.5.4 Probability of Error for Binary Detection 19
1 S.5 Bounds on Performance: The Union Bound 22
1.5.6 The Binary Symmetric Channel 23
1 S.7 The BSC and the Gaussian Channel Model 25

1.6 Memoryless Channels . 25
1.7 Simulation and Energy Considerations for Coded Signals 26
1.8 Some Important Definitions . 27

1.8.1 Detection of Repetition Codes Over a BSC 28
Soft-Decision Decoding of Repetition Codes Over the AWGN

1.8.3 Simulation of Results . 33
1.8.4 Summary . 33

1.9 HammingCodes . 34
1.9.1 Hard-Input Decoding Hamming Codes 35
1.9.2 Other Representations of the Hamming Code 36

An Algebraic Representation . 37
A Polynomial Representation . 37

1

1.8.2 . . . 32

xiv CONTENTS

A Trellis Representation . 38
The Tanner Graph Representation 38

1.10 The Basic Questions . 39

1.12 A Bit of Information Theory . 40
1.12.1 Definitions for Discrete Random Variables 40

Entropy and Conditional Entropy 40
Relative Entropy. Mutual Information. and Channel Capacity 41

1.12.2 Definitions for Continuous Random Variables 43
1.12.3 The Channel Coding Theorem . 45
1.12.4 “Proof“ of the Channel Coding Theorem 45
1.12.5 Capacity for the Continuous-Time AWGN Channel 49
1.12.6 Transmission at Capacity with Errors 51
1.12.7 The Implication of the Channel Coding Theorem 52

1.11 Historical Milestones of Coding Theory 40

Lab 1 Simulating a Communications Channel 53
Objective . 53
Background . 53

Assignment . 54
Use of Coding in Conjunction with the BSC 53

Programming Part . 54
Resources and Implementation Suggestions 54

1.13 Exercises . 56
1.14 References . 60

Part I1 Block Codes 61

2 Groups and Vector Spaces 62
2.1 Introduction . 62
2.2 Groups . 62

2.2.1 Subgroups . 65
2.2.2 Cyclic Groups and the Order of an Element 66
2.2.3 Cosets . 67
2.2.4 Lagrange’s Theorem . 68
2.2.5 Induced Operations; Isomorphism 69
2.2.6 Homomorphism . 72

2.3 Fields: A Prelude . 73
2.4 Review of Linear Algebra . 75
2.5 Exercises . 80
2.6 References . 82

3 Linear Block Codes 83
3.1 Basic Definitions . 83
3.2 The Generator Matrix Description of Linear Block Codes 84

3.2.1 Rudimentary Implementation . 86
3.3 The Parity Check Matrix and Dual Codes 86

3.3.1 Some Simple Bounds on Block Codes 88
3.4 Error Detection and Correction over Hard-Input Channels 90

CONTENTS xv

3.4.1 Error Detection . 90
3.4.2 Error Correction: The Standard Array 90

3.6 Hamming Codes and Their Duals . 97
3.7 Performance of Linear Codes . 98

3.7.1 Error detection performance . 99
3.7.2 Error Correction Performance . 100
3.7.3 Performance for Soft-Decision Decoding 103

3.8 Erasure Decoding . 104
3.8.1 Binary Erasure Decoding . 105

3.9 Modifications to Linear Codes . 105
3.10 Best Known Linear Block Codes . 107
3.11 Exercises . 107
3.12 References . 112

113
4.1 Introduction . 113
4.2 Basic Definitions . 113
4.3 Rings . 114

4.3.1 Rings of Polynomials . 115
4.4 QuotientRings . 116
4.5 IdealsinRings . 118
4.6 Algebraic Description of Cyclic Codes . 120
4.7 Nonsystematic Encoding and Parity Check 122
4.8 Systematic Encoding . 124
4.9 Some Hardware Background . 126

4.9.1 Computational Building Blocks 126
4.9.2 Sequences and Power series . 127
4.9.3 Polynomial Multiplication . 128

Last-Element-First Processing . 128
First-Element-First Processing . 128

4.9.4 Polynomial division . 129
Last-Element-First Processing . 129

4.9.5 Simultaneous Polynomial Division and Multiplication 132
First-Element-First Processing . 132

4.10 Cyclic Encoding . 133
4.1 1 Syndrome Decoding . 137
4.12 Shortened Cyclic Codes .

Method 1: Simulating the Extra Clock Shifts 144
Method 2: Changing the Error Pattern Detection Circuit 147

4.13 Binary CRC Codes . 147
4.13.1 Byte-Oriented Encoding and Decoding Algorithms 150
4.13.2 CRC Protecting Data Files or Data Packets 153

Appendix 4.A Linear Feedback Shift Registers 154
Appendix 4.A. 1 Basic Concepts . 154
Appendix 4.A.2 Connection With Polynomial Division
Appendix 4.A.3 Some Algebraic Properties of Shift Sequences

3.5 Weight Distributions of Codes and Their Duals 95

4 Cyclic Codes, Rings, and Polynomials

143

. 157
160

CONTENTS xvi

Lab 2 Polynomial Division and Linear Feedback Shift Registers . . . 161
Objective . 161
Preliminary Exercises . 161
Programming Part: BinLFSR . 161
Resources and Implementation Suggestions 161
Programming Part: BinPolyDiv . 162
Follow-On Ideas and Problems . 162

Lab 3 CRC Encoding and Decoding . 162
Objective . 163
Preliminary . 163
Programming Part . 163
Resources and Implementation Suggestions 163

4.14 Exercises . 165
4.15 References . 170

5 Rudiments of Number Theory and Algebra 171
5.1 Motivation . 171
5.2 Number Theoretic Preliminaries . 175

5.2.1 Divisibility . 175

5.2.3 The Sugiyama Algorithm . 182
5.2.4 Congruence . 184
5.2.5 The q!~ Function . 185
5.2.6 Some Cryptographic Payoff . 186

Fermat's Little Theorem . 186
RSA Encryption . 187

5.3 The Chinese Remainder Theorem . 188
5.3.1 The CRT and Interpolation . 190

The Evaluation Homomorphism 190
The Interpolation Problem . 191

5.4 Fields . 193
5.4.1 An Examination of IR and C . 194
5.4.2 Galois Field Construction: An Example 196
5.4.3 Connection with Linear Feedback Shift Registers 199

5.5 Galois Fields: Mathematical Facts . 200
5.6 Implementing Galois Field Arithmetic . 204

5.6.1 Zech Logarithms . 204
5.6.2 Hardware Implementations . 205

5.7 Subfields of Galois Fields . 206
5.8 Irreducible and Primitive polynomials . 207
5.9 Conjugate Elements and Minimal Polynomials 209

5.9.1 Minimal Polynomials . 212
5.10 Factoring x" - 1 . 215
5.1 1 Cyclotomic Cosets . 217

Programming the Euclidean Algorithm 223

5.2.2 The Euclidean Algorithm and Euclidean Domains 177

Appendix 5.A How Many Irreducible Polynomials Are There? 218
. 222

Lab 4
Appendix 5.A.1 Solving for Zm Explicitly: The Moebius Function

CONTENTS xvii

Objective . 223
Preliminary Exercises . 223
Background . 223
Programming Part . 223

Objective . 224
Preliminary Exercises . 224
Programming Part . 224

5.12 Exercises . 225
5.13 References . 234

Lab 5 Programming Galois Field Arithmetic 224

6 BCH and Reed-Solomon Codes: Designer Cyclic Codes 235
6.1 BCHCodes . 235

6.1.1 Designing BCH Codes . 235
6.1.2 TheBCHBound . 237
6.1.3 Weight Distributions for Some Binary BCH Codes 239
6.1.4 Asymptotic Results for BCH Codes 240

6.2 Reed-Solomon Codes . 242
6.2.1 Reed-Solomon Construction 1 . 242
6.2.2 Reed-Solomon Construction 2 . 243
6.2.3 Encoding Reed-Solomon Codes 244
6.2.4 MDS Codes and Weight Distributions for RS Codes 245
Decoding BCH and RS Codes: The General Outline 247
6.3.1 Computation of the Syndrome . 247
6.3.2 The Error Locator Polynomial . 248
6.3.3 ChienSearch . 248

6.4 Finding the Error Locator Polynomial . 250

6.4.2 Berlekamp-Massey Algorithm . 253

Simplifications for Binary Codes 259
6.5 Non-Binary BCH and RS Decoding . 261

6.5.1 Forney’s Algorithm . 262
6.6 Euclidean Algorithm for the Error Locator Polynomial 266

Erasure Decoding for Nonbinary BCH or RS codes 267
6.8 Galois Field Fourier Transform Methods 269

6.8.1 Equivalence of the Two Reed-Solomon Code Constructions 274
6.8.2 Frequency-Domain Decoding . 275

6.9 Variations and Extensions of Reed-Solomon Codes 276
6.9.1 Simple Modifications . 276

6.9.3 GoppaCodes . 278
Decoding Alternant Codes . 280
The McEliece Public Key Cryptosystem 280

Lab 6 Programming the Berlekamp-Massey Algorithm 281
Background . 281
Assignment . 281

6.3

6.4.1

6.4.3
6.4.4

Simplifications for Binary Codes and Peterson’s Algorithm 251

Characterization of LFSR Length in Massey’s Algorithm 255

6.7

6.9.2 Generalized Reed-Solomon Codes and Alternant Codes 277

6.9.4
6.9.5

CONTENTS xviii

Preliminary Exercises . 281
Programming Part . 281
Resources and Implementation Suggestions

Lab 7 programming the BCH Decoder 283
Objective . 283
Preliminary Exercises . 283
Programming Part . 283
Resources and Implementation Suggestions 283
Follow-On Ideas and Problems . 284

Lab 8 Reed-Solomon Encoding and Decoding 284
Objective . 284
Background . 284
Programming Part . 284

Appendix 6.A Proof of Newton’s Identities . 285
6.10 Exercises . 287
6.1 1 References . 291

293
7.1 Introduction: Workload for Reed-Solomon Decoding 293
7.2 Derivations of Welch-Berlekamp Key Equation 293

7.3 Finding the Error Values . 300
7.4 Methods of Solving the WB Key Equation 302

7.4.1 Background: Modules . 302
7.4.2 The Welch-Berlekamp Algorithm 303
7.4.3 Modular Solution of the WB Key Equation 310

7.6.1 Bounded Distance, ML, and List Decoding 322
Error Correction by Interpolation 323

7.6.3 Polynomials in ?Lvo Variables . 324
Degree and Monomial Order . 325
Zeros and Multiple Zeros . 328

7.6.4 The GS Decoder: The Main Theorems 330
The Interpolation Theorem . 331
The Factorization Theorem . 331
The Correction Distance . 333
The Number of Polynomials in the Decoding List 335
Algorithms for Computing the Interpolation Step 337
Finding Linearly Dependent Columns: The Feng-Tzeng Algorithm 338
Finding the Intersection of Kernels: The Katter Algorithm 342

7.6.6 A Special Case: m = 1 and L = 1 348
7.6.7 The Roth-Ruckenstein Algorithm 350

What to Do with Lists of Factors? 354
7.6.8 Soft-Decision Decoding of Reed-Solomon Codes 358

Notation . 358

. 282

7 Alternate Decoding Algorithms for Reed-Solomon Codes

7.2.1 The Welch-Berlekamp Derivation of the WB Key Equation 294
7.2.2 Derivation From the Conventional Key Equation 298

7.5
7.6

ErasureDecoding withthe Welch-Berlekamp Key Equation 321
The Guruswami-Sudan Decoding Algorithm and Soft RS Decoding 322

7.6.2

7.6.5

CONTENTS xix

A Factorization Theorem . 360
Mapping from Reliability to Multiplicity 361
The Geometry of the Decoding Regions 363
Computing the Reliability Matrix 364

7.7 Exercises . 365
7.8 References . 368

8 Other Important Block Codes 369
8.1 Introduction . 369
8.2 Hadamard Matrices. Codes. and Transforms 369

8.2.1 Introduction to Hadamard Matrices 369
8.2.2 The Paley Construction of Hadamard Matrices 371
8.2.3 Hadamard Codes . 374

8.3 Reed-Muller Codes . 375
8.3.1 Boolean Functions . 375
8.3.2 Definition of the Reed-Muller Codes 376
8.3.3 Encoding and Decoding Algorithms for First-Order RM Codes . . . 379

Encoding RM (1. m) Codes . 379
Decoding RM(1, m) Codes . 379
Expediting Decoding Using the Fast Hadamard Transform 382
The Reed Decoding Algorithm for RM(r. m) Codes, I 2 1 384
Details for an RM(2. 4) Code . 384

8.3.5 Other Constructions of Reed-Muller Codes 391
Building Long Codes from Short Codes: The Squaring Construction 392

8.3.4

A Geometric Viewpoint . 387

8.4
8.5 Quadratic Residue Codes . 396
8.6 Golaycodes . 398

8.6.1 Decoding the Golay Code . 400
Algebraic Decoding of the $23 Golay Code 400
Arithmetic Decoding of the 524 Code 401

8.7 Exercises . 403
8.8 References . 404

9 Bounds on Codes 406
9.1 The Gilbert-Varshamov Bound . 409
9.2 The Plotkin Bound . 410
9.3 The Griesmer Bound . 411
9.4 The Linear Programming and Related Bounds 413

9.4.1 Krawtchouk Polynomials . 415
9.4.2 Character . 415
9.4.3 Krawtchouk Polynomials and Characters 416

9.5 The McEliece-Rodemich-Rumsey-Welch Bound 418
9.6 Exercises . 420
9.7 References . 424

xx CONTENTS

10 Bursty Channels. Interleavers. and Concatenation 425
10.1 Introduction to Bursty Channels . 425
10.2 Interleavers . 425
10.3 An Application of Interleaved RS Codes: Compact Discs 427
10.4 Productcodes . 430
10.5 Reed-Solomon Codes . 431
10.6 Concatenated Codes . 432
10.7 Fire Codes . 433

10.7.1 Fire Code Definition . 433
10.7.2 Decoding Fire Codes: Error Trapping Decoding 435

10.8 Exercises . 437
10.9 References . 438

11 Soft-Decision Decoding Algorithms 439

1 1.2 Generalized Minimum Distance Decoding 441
11.1 Introduction and General Notation . 439

1 1.2.1 Distance Measures and Properties 442
1 1.3 The Chase Decoding Algorithms . 445
11.4 Halting the Search: An Optimality Condition 445
1 1.5 Ordered Statistic Decoding . 447
1 1.6 Exercises . 449
1 1.7 References . 450

Part I11 Codes on Graphs

12 Convolutional Codes 452
12.1 Introduction and Basic Notation . 452

12.1.1 TheState . 456
12.2 Definition of Codes and Equivalent Codes 458

12.2.1 Catastrophic Encoders . 461
12.2.2 Polynomial and Rational Encoders 464
12.2.3 Constraint Length and Minimal Encoders 465
12.2.4 Systematic Encoders . 468

12.3 Decoding Convolutional Codes . 469
12.3.1 Introduction and Notation . 469
12.3.2 The Viterbi Algorithm . 471
12.3.3 Some Implementation Issues . 481

The Basic Operation: Add-Compare-Select 481
Decoding Streams of Data: Windows on the Trellis 481
Output Decisions . 482
Hard and Soft Decoding; Quantization 484
Synchronization Issues . 486

12.4 Some Performance Results . 487
12.5 Error Analysis for Convolutional Codes 491

12.5.1 Enumerating Paths Through the Trellis 493
Enumerating on More Complicated Graphs: Mason’s Rule 496

CONTENTS xxi

12.5.2 Characterizing the Node Error Probability P, and the Bit Error Rate
Pb . 498

12.5.3 A Bound on Pd for Discrete Channels 501
Performance Bound on the BSC 503

12.5.4 A Bound on Pd for BPSK Signaling Over the AWGN Channel . . . 503
12.5.5 Asymptotic Coding Gain . 504

12.6 Tables of Good Codes . 505
12.7 Puncturing . 507

Puncturing to Achieve Variable Rate 509
12.8 SuboptimalDecodingAlgorithmsforConvolutionalCodes 510

12.8.1 Tree Representations . 511
12.8.2 The Fano Metric . 511
12.8.3 The Stack Algorithm . 515
12.8.4 The Fano Algorithm . 517
12.8.5 Other Issues for Sequential Decoding 520

12.9 Convolutional Codes as Block Codes . 522
12.10 Trellis Representations of Block and Cyclic Codes 523

12.10.1 Block Codes . 523
12.10.2 Cyclic Codes . 524
12.10.3 Trellis Decoding of Block Codes 525

Programming Convolutional Encoders 526
Objective . 526
Background . 526
Programming Part . 526

Objective . 528
Background . 528
Programming Part . 528

12.1 1 Exercises . 529
12.12 References . 533

13 'Ikellis Coded Modulation 535
13.1 Adding Redundancy by Adding Signals 535
13.2 Background on Signal Constellations . 535
13.3 TCM Example . 537

The General Ungerboeck Coding Framework 544
13.3.2 The Set Partitioning Idea . 545

13.4 Some Error Analysis for TCM Codes . 546
13.4.1 General Considerations . 546

A Description of the Error Events 548
13.4.3 Known Good TCM Codes . 552

13.5 Decodmg TCM Codes . 554
13.6 Rotational Invariance . 556

Differential Encoding . 558
Constellation Labels and Partitions 559

13.7 Multidimensional TCM . 561

12.7.1

12.8.6 A Variation on the Viterbi Algorithm: The M Algorithm 521

Lab 9

Lab 10 Convolutional Decoders: The Viterbi Algorithm 528

13.3.1

13.4.2

CONTENTS xxii

13.7.1 Some Advantages of Multidimensional TCM 562
13.7.2 Lattices and Sublattices . 563

Basic Definitions . 563
Common Lattices . 565
Sublattices and Cosets . 566
The Lattice Code Idea . 567
Sources of Coding Gain in Lattice Codes 567
Some Good Lattice Codes . 571

13.8 The V.34 Modem Standard . 571
Lab 11 Trellis-Coded Modulation Encoding and Decoding 578

Objective . 578
Background . 578
Programming Part . 578

13.9 Exercises . 578
13.10 References . 580

Part IV Iteratively Decoded Codes 581

14 lbrbo Codes 582
14.1 Introduction . 582
14.2 Encoding Parallel Concatenated Codes . 584
14.3 Turbo Decoding Algorithms . 586

14.3.1 The MAP Decoding Algorithm . 588
14.3.2 Notation . 588
14.3.3 Posterior Probability . 590
14.3.4 Computing at and pt . 592

14.3.6 Normalization . 594
14.3.7 Summary of the BCJR Algorithm 596
14.3.8 A MatrixNector Formulation . 597
14.3.9 Comparison of the Viterbi and BCJR Algorithms 598
14.3.10 The BCJR Algorithm for Systematic Codes 598
14.3.11 Turbo Decoding Using the BCJR Algorithm 600

The Terminal State of the Encoders 602
14.3.12 Likelihood Ratio Decoding . 602

Log Prior Ratio Ap. 603
Log Posterior A,. 605

14.3.13 Statement of the Turbo Decoding Algorithm 605
14.3.14 Turbo Decoding Stopping Criteria 605

The Cross Entropy Stopping Criterion 606
The Sign Change Ratio (SCR) Criterion 607
The Hard Decision Aided (HDA) Criterion 608

14.3.15 Modifications of the MAP Algorithm 608
The Max-Log-MAP Algorithm . 608

14.3.16 Corrections to the Max-Log-MAP Algorithm 609
14.3.17 The Soft Output Viterbi Algorithm 610

14.4 On the Error Floor and Weight Distributions 612

14.3.5 Computing yr . 593

(0)

CONTENTS xxiii

14.4.1 The Error Floor . 612
14.4.2 Spectral Thinning and Random Interleavers 614
14.4.3 On Interleavers . 618

14.5 EXIT Chart Analysis . 619
14.5.1 TheEXITChart . 622
Block Turbo Coding . 623

14.7 Turbo Equalization . 626
14.7.1 Introduction to Turbo Equalization 626
14.7.2 The Framework for Turbo Equalization 627

Lab 12 Turbo Code Decoding . 629
Objective . 629
Background . 629
Programming Part . 629

14.8 Exercises . 629
14.9 References . 632

15 Low-Density Parity-Check Codes 634
15.1 Introduction . 634
15.2 LDPC Codes: Construction and Notation 635
15.3 Tanner Graphs . 638
15.4 Transmission Through a Gaussian Channel 638
15.5 Decoding LDPC Codes . 640

15.5.1 The Vertical Step: Updating q m n (x) 641
15.5.2 Horizontal Step: Updating rmn (x) 644
15.5.3 Terminating andInitializing the Decoding Algorithm 647
15.5.4 Summary of the Algorithm . 648
15.5.5 Message Passing Viewpoint . 649
15.5.6 Likelihood Ratio Decoder Formulation 649

15.6 Why Low-Density Parity-Check Codes? 653
15.7 The Iterative Decoder on General Block Codes 654
15.8 Density Evolution . 655
15.9 EXIT Charts for LDPC Codes . 659
15.10 Irregular LDPC Codes . 660

15.10.1 Degree Distribution Pairs . 662
15.10.2 Some Good Codes . 664
15.10.3 Density Evolution for Irregular Codes 664
15.10.4 Computation and Optimization of Density Evolution 667
15.10.5 Using Irregular Codes . 668

15.1 1 More on LDPC Code Construction 668
15.1 1.1 A Construction Based on Finite Geometries 668
15.1 1.2 Constructions Based on Other Combinatoric Objects 669

15.12 Encoding LDPC Codes . 669
15.13 A Variation: Low-Density Generator Matrix Codes 671
15.14 Serial Concatenated Codes; Repeat-Accumulate Codes 671

15.14.1 Irregular RA Codes . 673
Lab 13 Programming an LDPC Decoder 674

Objective . 674

14.6

.

xxiv CONTENTS

Background . 674
Assignment . 675
Numerical Considerations . 675

15.15 Exercises . 676
15.16 References . 679

16.1 Introduction . 680
16.2 Operations in Semirings . 681
16.3 Functions on Local Domains . 681
16.4 Factor Graphs and Marginalization . 686

Marginalizing on a Single Variable 687
16.4.2 Marginalizing on All Individual Variables 691

16.5 Applications to Coding . 694
16.5.1 Blockcodes . 694
16.5.2 ModificationstoMessagePassingfor Binary Variables 695
16.5.3 Trellis Processing and the FonvardBackward Algorithm 696
16.5.4 Turbo Codes . 699
Summary of Decoding Algorithms on Graphs 699

16.7 Transformations of Factor Graphs . 700
16.7.1 Clustering . 700
16.7.2 Stretching Variable Nodes . 701
16.7.3 Exact Computation of Graphs with Cycles 702

16.8 Exercises . 706
16.9 References . 708

16 Decoding Algorithms on Graphs 680

16.4.1

16.6

Part V Space-Time Coding 709

17 Fading Channels and Space-Time Codes 710
17.1 Introduction . 710
17.2 Fading Channels . 710

17.2.1 Rayleigh Fading . 712
. 714

17.3.1 The Narrowband MIMO Channel 716
17.3.2 Diversity Performance with Maximal-Ratio Combining 717

17.4 Space-Time Block Codes . 719
17.4.1 The Alamouti Code . 719
17.4.2 A More General Formulation . 721
17.4.3 Performance Calculation . 721

Real Orthogonal Designs . 723
EncodingandDecodingBasedonOrthogonalDesigns 724
Generalized Real Orthogonal Designs 726

17.4.4 Complex Orthogonal Designs . 727
Future Work . 728

Space-Time Trellis Codes . 728
17.5.1 Concatenation . 729

17.6 How Many Antennas? . 732

17.3 Diversity TransmissionandReception: TheMIMOChannel

17.5

CONTENTS XXV

17.7 Estimating Channel Information . 733
17.8 Exercises . 733
17.9 References . 734

A Log Likelihood Algebra 735
A.l Exercises . 737

References

Index

739

750

This Page Intentionally Left Blank

List of Program Files
comptut.pdf

qf . m
bpskprobp1ot.m
bpskpr0b.m
repcodepr0b.m
testrepcode.cc
repc0des.m
mindist . m
hamcode74pe.m
nchoosektest.m
p1otcapcmp.m
cawgnc2 . m
cbawgnc2.m
h2 . m
plotcbawn2.m
cbawgnc . m
cawgnc . m
phi1og.m
phifun . m
gauss j 2
Hammspher e
genstdarray.~
progdetH15.m
progdet . m
polyadd . m
polysub . m
polymu1t.m
polydiv . m
po1yaddm.m
po1ysubm.m
polymu1tm.m
primitive.txt
BinLFSR . h
BinLFSR.cc
testBinLFSR.cc
MakeLFSR
BinPo1yDiv.h
BinPolyDiv.cc

qf . c
Introduction to gap and magma x
Q function . 20
Q function . 20

. 21
Plot probability of error for BPSK 21
Compute error probability for (n. 1) repetition codes 32
Test the repetition code performance 33
Plot results for repetition code 33
Findminimumdistanceusingexhaustivesearch 34
Probability of error for (7. 4) Hamming code 36
Compute (“k) and test fork < 0 36
Capacity of the AWGN channel and BAWGNC channel . . 45
Compute capacity of AWGN channel 45
ComputethecapacityoftheBAWGNchannel 45
Compute the binary entropy function 45
Plot capacity for AWGN and BAWGN channels 51
Compute capacity for BAWGN channel 51
Compute capacity for AWGN channel 51
Compute the log 4 function associated with the BAWGNC 51
Compute the q5 function associated with the BAWGNC . . 51
Gaussian elimination over GF(2) 86
Compute the number of points in a Hamming sphere 89
Generate a standard array for a code 91
Probability of error detection for (15. 11) Hamming (code . 100
Probability of error detection for (3 1. 21) Hamming (code . 100
Add polynomials . 116
Subtract polynomials . 116
Multiply polynomials . 116
Divide polynomials (compute quotient and remainder) . . . 116
Add polynomials modulo a number 116
Subtract polynomials modulo a number 116
Multiply polynomials modulo a number 116
Table of primitive polynomials 155
(lab. complete) Binary LFSR class 162
(lab. complete) Binary LFSR class 162
(lab. complete) Binary LFSR class tester 162
(lab. complete) Makefile for tester 162
(lab. complete) Binary polynomial division 162
(lab. incomplete) Binary polynomial division 162

Set up to plot prob . of error for BPSK

testBinPolyDiv . cc(1ab. complete) Binary polynomial division test 162
gcd . c A simple example of the Euclidean algorithm 181
crt9amma.m Compute the gammas for the CRT 189

xxviii List of Program Files

fromcrt . m
tocrt . m
testcrt . m
test crp . m
tocrtpo1y.m
fromcrtpolym .
crtgammapo1y.m
pr imf ind
cyclomin
ModAr . h
ModAr . cc
ModArnew.cc
testm0darnew.c~
testmodarl.cc
polynomia1T.h
polynomialT.cc
testpolyl.cc
testgcdpo1y.c~
gcdpoly.cc
GF2 . h
GFNUM2m . h
GFNUM2m.cc
testgfnum.cc
bchwei9ht.m
bchdesigner
reedso1wt.m
masseym0dM.m
erase . mag
testBM . cc
Chiensearch.h
Chiensearch.cc
testChien.cc
BCHdec . h
BCHdec . cc
testBCH.cc
RSenc . h
RSenc . cc
RSdec . h
RSdec . cc
testRS . cc
rsenc0de.c~
rsdecode.cc
bsc . c
testpxy.cc
c0mputekm.m
computeLm.cc
computeLm.m

Convert back from CRT representation to an integer 189

An example of CRT calculations 189
Test a polynomial CRT calculation 189
Compute the CRT representation of a polynomial 189
Compute a polynomial from a CRT representation 189

Executable: Find primitive polynomials in GF(p)[x] . . . 209
Executable: Cyclotomic cosets and minimal polynomials . 217

(lab. complete) Modulo arithmetic class 223
Templatized Modulo arithmetic class 223
Templatized Modulo arithmetic class tester 223
(lab. complete) Test Modulo arithmetic class 223
(lab. complete) Templatized polynomialclass 223
(lab. comp1ete)Templatizedpolynomialclass 223
(lab. complete) Demonstrate templatized polynomial class . 223
(lab. complete) Test the polynomial GCD function 224
(lab. incomplete) Polynomial GCD function 224
(lab. complete) GF(2) class 224
(lab. complete) Galois field GF(2m) class 224
(lab. incomplete) Galois field GF(2m) class 224
(lab. complete) Test Galois field class 224
Weight distribution of BCH code from weight of dual . . . 240
Executable: Design a t-error correcting binary BCH code 241
Compute weight distribution for an (n. k) RS code 246
Return the shortest LFSR for data sequence 258
Erasure decoding example in magma 268
(lab. complete) Test the Berlekamp-Massey algorithm . . . 282
(lab. complete) Chien Search class 283
(lab. incomplete) Chien Search class 283
(lab. complete) Test the Chien Search class 283
(lab. complete) BCHdec decoder class 283
(lab. incomplete) BCHdec decoder class 283
(lab. complete) BCHdec decoder class tester 283
(lab. complete) RS encoder class header 284
(lab. complete) RS encoder class 284
(lab. complete) RS decoder class header 284
(lab. incomplete) RS decoder class 284
(lab. complete) Test RS decoder 284
(lab. complete) Encode a file of data using RS encoder . . . 285
(lab. complete) Decode a file of data using RS decoder . . 285
Executable: Simulate a binary symmetric channel 285
Demonstrate concepts relating to 2-variable polynomials . 325
Compute K m for the Guruswami-Sudan decoder 333
Compute the maximum list length for GS(m) decoding . . 337
Compute the maximum list length for GS(m) decoding . . 337

Computethe CRTrepresentationof aninteger 189

Compute the gammas for the CRT representation 189

(lab. complete) Modulo arithmetic class 223

List of Program Files xxix

testft . m
f engt zeng . m
invmodp . m
testGSl.cc
kotter . cc
testGS3.c~
testGS5.c~
kotterl.cc
testGS2.c~
rothruck.cc
r0thruck.h
Lbarex . m
c0mputetm.m
c0mputeLbar.m
computeLm.m
pi2ml
genrm . cc
rmdecex . m
hadex . m
testfht.cc
fht . cc
fht . m
rmdecex2.m
testQR . cc
go1aysimp.m
testGolay.cc
go1ayrith.m
plotbds . m
simplex1.m
pivottab1eau.m
reducefree.m
rest0refree.m
krawtch0uk.m
1pboundex.m
utiltkm.cc
utiltkm . h
concodequant.m
chernoff1.m
p1otconprob.m
f inddfree
teststack.m
stacka1g.m
f anomet . m
f anoalg . m
BinConv . h
BinConvF1R.h
BinConvFIR.cc

Test the Feng-Tzeng algorithm 341
Poly . such that the first 1 + 1 columns are lin . dep 341
Compute the inverse of a number modulo p 341
Test the GS decoder (Kotter part) 346
Kotter interpolation algorithm 346
Test the GS decoder . 347
Test the GS decoder . 350
Kotter algorithm with rn = 1 350
Test the Roth-Ruckenstein algorithm 354
Roth-Ruckenstein algorithm (find y-roots) 354
Roth-Ruckenstein algorithm (find y-roots) 354
Average performance of a GS(rn) decoder 357
Compute Tm. error correction capability for GS decoder . . 357
Avg . no . of codewords in sphere around random pt 357
Compute maximum length of list of G F (m) decoder . . . 357
Koetter-Vardy algorithm to map reliability to multiplicity . 362
Create a Reed-Muller generator matrix 376
RM(1. 3) decoding example 381
Computation of H8 . 382
Test the fast Hadamard transform 383
Fast Hadamard transform 383
Fast Hadamard transform 383
RM(2. 4) decoding example 387
Example of arithmetic for QR code decoding 397
DeriveequationsforalgebraicGolaydecoder 401
Test the algebraic Golay decoder 401
Arithmetic Golay decoder 402
Plot bounds for binary codes 407
Linear program solution to problems in standard forni . . . 413
Main function in simplex1 . m 413
Auxiliary linear programming function 413
Auxiliary linear programming function 413
Compute Krawtchouk polynomials recursively 415
Solve the linear programming for the LP bound 418
Sort and random functions 440
Sort and random functions 440
Compute the quantization of the Euclidean metric 486
Chernoffboundsforconvolutionalperformance 502
Plot performance bounds for a convolutional code 504
Executable: Find dfiee for connection coefficients 506
Test the stack algorithm 515
The stack algorithm for convolutional decoding 515
Compute the Fano metric for convolutionally coded data . . 5 15
The Fano algorithm for convolutional decoding 517
(lab. complete) Base class for binary convolutional encoder 526
(lab. complete) Binary feedforward convolutional encoder . 526
(lab. incomplete) Binary feedforward convolutional encoder 526

xxx List of Program Files

BinConvI1R.h (lab. complete) Binary recursive convolutional encoder . . 526
BinConvI IR . cc (lab. incomplete) Binary recursive convolutional encoder . 526
testconvenc (lab. complete) Test convolutional encoders 526
Convdec . h (lab. complete) Convolutionaldecoderclass 528
Convdec.cc (lab. incomplete) Convolutionaldecoderclass 528
BinConvdecOl . h (lab. complete) Binary conv . decoder class. BSC metric . . 528
BinConvdecO 1 . h (lab. complete) Binary conv . decoder class. BSC metric . . 528
BinConvdecBPSK . h (lab. complete) Bin . conv . decoder. soft metric with BPSK 528
BinConvdecBPSK . cc (lab. complete) Bin . conv . decoder. soft metric with BPSK 528
testconvdec.cc
makeB . m
tcmtl . cc
tcmrot2.c~
1attstuff.m
voln . m
latta2 . m
latt z2m
BCJR.h
BCJR . cc
testbcjr.cc
testturbodec2.c~
makgenfr0mA.m
gauss j2 . m
Agall . m
Agall . txt
writesparse.m
ldpc . m
ga1decode.m
1dpclogdec.m
psifunc.m
densevl . m
densevtest.m
Psi . m
Psiinv . m
threshtab.m
1dpcsim.mat
exit1 . m
loghist . m
exit3 . m
dotraject0ry.m
exit2 . m
d0exitchart.m
getinf . m
getinf s . m
sparseHno4.m
Asmall.txt
galdec . h

(lab. comp1ete)Test theconvolutionaldecoder 529
Make the B matrix for an example code 549
Test the constellation for a rotationally invariant code . . . 549
Test the constellation for a rotationally invariant code . . . 557
Generator matrices for A2. D4. E6. E8. A16. A24 563
Compute volume of n-dimensional unit-radius sphere . . . 563
Plot A2 lattice . 568
Plot Z2 lattice . 568
(lab. complete) BCJR algorithm class header 629
(lab. incomplete) BCJR algorithm class 629
(lab. complete) Test BCJR algorithm class 629
(lab. complete) Test the turbo decoder 629
Find systematic generator matrix for a parity check matrix . 635
Gauss-Jordan elimination over GF(2) on a matrix 635
A parity check matrix for an LDPC code 637
Sparse representation of the matrix 637
Write a matrix into a file in sparse format 637
Demonstrate LDPC decoding 648
LDPC decoder (nonsparse representation) 648
Log-likelihood LDPC decoder 652
Plotthe q functionusedindensityevolution 656
An example of density evolution 658
Plot density evolution results 658
Plot the q functionused in density evolution 658
Compute W1 used in density evolution 658
Convert threshold table to &/No 658
LDPC decoder simulation results 660
Plot histograms of LDPC decoder outputs 660
Find histograms . 660
Plot mutual information as a function of iteration 660
Mutualinformationas afunctionofiteration 660
Plot EXIT chart . 660
Take mutual information to EXIT chart 660
Convert data to mutual information 660

. . . 668
675

Convertmultiple datato mutualinformation 660
Make a sparse check matrix with no cycles of girth 4
(lab. complete) A matrix in sparse representation
(lab. complete) LDPC decoder class header 675

List of Program Files XXXi

galdec. cc
galtest.cc
ldpc . m
ga1decode.m
galtest2.c~
A1-2. txt
A1-4. txt
testgd12.m
gdl .m
fyx0 .m
fadep1ot.m
jakes .m
fadepbp1ot.m

(lab, incomplete) LDPC decoder class , . . . 675
(lab, complete) LDPC decoder class tester 675
(lab, complete) Demonstrate LDPC decoding . . . , . . . 675
(lab, complete) LDPC decoder (not sparse representation) . 675
(lab, complete) Prob. of error plots for LDPC code . I . . . 675
(lab, complete) Rate 1/2 parity check matrix, sparse format 675
(lab, complete) Rate 1/4 parity check matrix, sparse format 675
Test the generalized distributive law 695
A generalized distributive law function 695
Compute f (y l x) for the GDL framework , . . . 695
Plot realizations of the amplitude of a fading channel . . . 7 12
Jakes method for computing amplitude of a fading channel 7 12
Plot BPSK performance over Rayleigh fading channel . . . 714

List of Laboratory Exercises
Lab 1
Lab 2
Lab 3
Lab 4
Lab 5
Lab 6
Lab 7
Lab 8
Lab 9
Lab 10
Lab 11
Lab 12
Lab 13

Simulating a Communications Channel 53
PolynomialDivisionandLinear Feedbackshift Registers 161
CRC Encoding and Decoding . 162
Programming the Euclidean Algorithm 223
Programming Galois Field Arithmetic . 224
Programming the Berlekamp-Massey Algorithm 281
Programming the BCH Decoder . 283
Reed-Solomon Encoding and Decoding 284
Programming Convolutional Encoders . 526
Convolutional Decoders: The Viterbi Algorithm 528
Trellis-Coded Modulation Encoding and Decoding 578
Turbo Code Decoding . 629
Programming an LDPC Decoder . 674

List of Algorithms
1.1 Hamming Code Decoding . 35
1.2 Outline for simulating a digital communications channel 53
1.3 Outline for simulating (n . k)-coded digital communications 53
1.4 Outline for simulating (n. k) Hamming-coded digital communications 54
4.1 152
4.2 162

Fast CRC encoding for a stream of bytes
Binary linear feedback shift register .

4.3 Binary polynomial division . 162
5.1 Extended Euclidean Algorithm . 181
5.2 Modulo Arithmetic . 223
5.3 Templatized Polynomials . 223
5.4 Polynomial GCD . 223
5.5 GF(2"') arithmetic . 224
6.1 Massey's Algorithm (pseudocode) . 258
6.2 Massey's Algorithm for Binary BCH Decoding 259
6.3 Test Berlekamp-Massey algorithm . 282
6.4 Chien Search . 283
6.5 BCH Decoder . 283
6.6 Reed-Solomon Encoder Declaration . 284
6.7 Reed-Solomon Decoder Declaration . 284
6.8 Reed-Solomon Decoder Testing . 284
6.9 Reed-Solomon File Encoder and Decoder . 285
6.10 Binary Symmetric Channel Simulator . 285
7.1 Welch-Berlekamp Interpolation . 308
7.2 Welch-Berlekamp Interpolation, Modular Method 316

Welch-Berlekamp Interpolation, Modular Method v . 2 319
7.4 Welch-Berlekamp Interpolation. Modular Method v . 3 321

The Feng-Tzeng Algorithm . 341
Kotters Interpolation for Guruswami-Sudan Decoder 346

Roth-Ruckenstein Algorithm for Finding y-roots of Q (x , y) 353
Koetter-Vardy Algorithm for Mapping from l7 to M 362
Decoding for RM(1, m) Codes . 381

8.2 Arithmetic Decoding of the Golay 924 Code 402
11.1 Generalized Minimum Distance (GMD) Decoding 441
1 1.2 Chase-2 Decoder . 445
11.3 Chase-3 Decoder . 445
11.4 Ordered Statistic Decoding . 449
12.1 The Viterbi Algorithm . 475
12.2 The Stack Algorithm . 515
12.3 Base Class for Binary Convolutional Encoder 526
12.4 Derived classes for FIR and IIR Encoders . 526
12.5 Test program for convolutional encoders . 526

.

7.3

7.5
7.6
7.7 Guruswami-Sudan Interpolation Decoder with m = 1 and L = 1 349
7.8
7.9
8.1

xxxiv List of Algorithms

12.6 Base Decoder Class Declarations . 528
12.7 Convolutional decoder for binary (0. 1) data . 528
12.8 Convolutional decoder for BPSK data . 528
12.9 Test the convolutional decoder . 529
14.1 The BCJR (MAP) Decoding Algorithm. Probability Form 596
14.2 The Turbo Decoding Algorithm. Probability Form 601
14.3 BCJR algorithm . 629
14.4 Test the turbo decoder algorithm . 629
15.1 Iterative Decoding Algorithm for Binary LDPC Codes 648
15.2 Iterative Log Likelihood Decoding Algorithm for Binary LDPC Codes 652
15.3 LDPC decoder class declarations . 675
15.4 Matlab code to test LDPC decoding . 675
15.5 Make performance plots for LDPC codes . 675

List of Figures

1.1 The binary entropy function H z (p) . 4
1.2 A general framework for digital communications 6
1.3 Signal constellation for BPSK . 10
1.4 Juxtaposition of signal waveforms . 11
1.5 Two-dimensional signal space . 12
1.6 8-PSK signal constellation . 13

1.8 Conditional densities in BPSK modulation 18
1.9 Distributions when two signals are sent in Gaussian noise 20
1.10 Probability of error for BPSK signaling . 21
1.1 1 Probability of error bound for 8-PSK modulation 22
1.12 A binary symmetric channel . 23

1.14 Energy for a coded signal . 26
1.15 27
1.16 A (3, 1) binary repetition code . 29

1.18 32
1.19 37
1.20 The trellis of a (7, 4) Hamming code . 39
1.21 39

1.23 48
1.24 52

1.7 Correlation processing (equivalent to matched filtering) 15

1.13 Communication system diagram and BSC equivalent 25

Probability of error for coded bits, before correction

1.17 A representation of decoding spheres . 30
Performance of the (3, 1) and (1 1, 1) repetition code over BSC
Performance of the (7, 4) Hamming code in the AWGN channel

The Tanner graph for a (7, 4) Hamming code
1.22 Capacities of AWGNC, BAWGNC, and BSC 46

Relationship between input and output entropies for a channel
Capacity lower bounds on Pb as a function of SNR

1.25 Regions for bounding the Q function . 57

2.1 An illustration of cosets . 67
2.2 A lattice partitioned into cosets . 72

3.1 Error detection performance for a (1 5. 11) Hamming code 100
3.2 Demonstrating modifications on a Hamming code 107

4.1 A circuit for multiplying two polynomials. last-element first 128
4.2 High-speed circuit for multiplying two polynomials. last-element first 129
4.3 A circuit for multiplying two polynomials. first-element first 129
4.4 High-speed circuit for multiplying two polynomials. first-element first 130
4.5 A circuit to perform polynomial division . 131
4.6 A circuit to divide by g (x) = x 5 + x + 1 . 131
4.7 Realizing h (x) / g (x) (first-element first). controller canonical form 133
4.8 Realizing h (x) / g (x) (first-element first). observability form 134
4.9 Realization of H (x) = (1 + x) / (1 + x 3 + x4). controller form 134
4.10 Realization of H (x) = (1 + x)/(l + x 3 + x4). observability form 134

xxxvi LIST OF FIGURES

4.1 1 Nonsystematic encoding of cyclic codes . 135
4.12 Circuit for systematic encoding using g(x) . 136
4.13 Systematic encoder for (7. 4) code with generator g(x) = 1 + x + x3 136
4.14 A systematic encoder using the parity check polynomial 137
4.15 A systematic encoder for the Hamming code using h(x) 137
4.16 A syndrome computation circuit for a cyclic code example 139
4.17 Cyclic decoder with r (x) shifted in the left end of syndrome register 140
4.18 Decoder for a (7, 4) Hamming code, input on the left 141
4.19 Cyclic decoder when r (x) is shifted in right end of syndrome register 143
4.20 Hamming decoder with input fed into right end of the syndrome register 144
4.21 Meggitt decoders for the (31, 26) Hamming code 145
4.22 Multiply r (x) by p (x) and compute the remainder modulo g(x) 146
4.23 Decoder for a shortened Hamming code . 147
4.24 Linear feedback shift register . 154
4.25 Linear feedback shift register with g(x) = 1 + x + x2 + x4 155
4.26 Linear feedback shift register with g(x) = 1 + x + x4 156
4.27 Linear feedback shift register, reciprocal polynomial convention 158
4.28 Another LFSR circuit . 169
4.29 An LFSR with state labels . 169

5.1 LFSR labeled with powers of (Y to illustrate Galois field elements 200
5.2 Multiplication of p by (Y . 205
5.3 Multiplication of an arbitrary /3 by a4 . 205
5.4 Multiplication of /I by an arbitrary field element 206
5.5 Subfield structure of GF(224) . 207

6.1 Chien search algorithm . 249

7.1 295
7.2 Comparing BD. ML. and list decoding . 323
7.3 333
7.4 Fraction of errors corrected as a function of rate 335

7.6 356
7.7 Convergence of M to lT . 363
7.8 Computing the reliability function . 364

Remainder computation when errors are in message locations

K , as a function of m for a (32. 8) Reed-Solomon code

7.5 AnexampleoftheRoth.RuckensteinAlgorithmoverGF(5) 355
An example of the Roth-Ruckenstein Algorithm over GF(5) (cont’d) -

8.1
8.2
8.3

8.5
8.6

An encoder circuit for a R M (1. 3) code . 379
Signal flow diagram for the fast Hadamard transform 384

388

390
Parity check geometric descriptions for vectors of the R M (2 . 4) code 391

Binary adjacency relationships in three and four dimensions
8.4 Planesshadedtorepresenttheequationsorthogonalonbitm34 388

Parity check geometric descriptions for vectors of the R M (2 . 4) code

9.1 407
9.2 A linear programming problem . 413
9.3 Finding Stirling’s formula . 422

Comparison of lower bound and various upper bounds

LIST OF FIGURES MMvii

10.1 A 3 x 4 interleaver and deinterleaver . 426
10.2 A cross interleaver and deinterleaver system 428
10.3 The CD recording and data formatting process 429
10.4 The error correction encoding in the compact disc standard 429
10.5 The product code C 1 x C2 . 431
10.6 A concatenated code . 432
10.7 Deep-space concatenated coding system . 433
10.8 Error trapping decoder for burst-error correcting codes 436

11.1 Signal labels for soft-decision decoding . 440

12.1 A rate R = 1 /2 convolutional encoder . 453
12.2 A systematic R = 112 encoder . 454
12.3 A systematic R = 213 encoder . 455
12.4 A systematic R = 213 encoder with more efficient hardware 455
12.5 Encoder, state diagram. and trellis for G(x) = [l + x2. 1 + x + x2] 458
12.6 State diagram and trellis for a rate R = 2/3 systematic encoder 459
12.7 A feedforward R = 213 encoder . 460
12.8 A less efficient feedforward R = 2/3 encoder 461
12.9 Processing stages for a convolutional code . 469
12.10 Notation associated with a state transition . 472
12.1 1 The Viterbi step: Select the path with the best metric 474
12.12 Path through trellis corresponding to true sequence 476
12.13 Add-compare-select Operation . 481
12.14 A two-bit quantization of the soft-decision metric 485
12.15 Quantization thresholds for 4- and 8-level quantization 487
12.16 Bit error rate for different constraint lengths 488
12.17 Bit error rate for various quantization and window lengths 489
12.18 Viterbi algorithm performance as a function of quantizer threshold spacing . . . 490
12.19 BER performance as a function of truncation block length 490
12.20 Error events due to merging paths . 491
12.21 ltyo decoding examples . 492
12.22 The state diagram and graph for diverginghemerging paths 494
12.23 Rules for simplification of flow graphs . 495
12.24 Steps simplifying the flow graph for a convolutional code 495
12.25 State diagram labeled with input/output weight and branch length 496
12.26 A state diagram to be enumerated . 497
12.27 Performance of a (3, 1) convolutional code with dfree = 5 505

12.29 A tree representation for a rate R = 1 /2 code 512
516

12.28 Trellises for a punctured code . 509

12.30 Stack contents for stack algorithm decoding example
12.31 FlowchartfortheFanoalgorithm . 519
12.32Thetrellisofa(7,4)Hammingcode. 524
12.33 A systematic encoder for a (7.4. 3) Hamming code 524
12.34 A trellis for a cyclically encoded (7,4, 3) Hamming code 525
12.35 State diagram and trellis . 527

PSK signal constellations . 537 13.1

xxxviii LIST OF FIGURES

13.2 QAM Signal constellations (overlaid) . 537
13.3 Three communication scenarios . 538
13.4 Set partitioning of an 8-PSK signal . 539
13.5 R = 2/3 trellis coded modulation example . 540
13.6 542
13.7 An 8-state trellis for 8-PSK TCM . 543
13.8 Block diagram of a TCM encoder . 544
13.9 Set partitioning on a 16-QAM constellation . 545
13.10 Partition for 8-ASK signaling . 546
13.1 1 A correct path and an error path . 548
13.12 Example trellis for four-state code . 549
13.13 Trellis coder circuit . 552
13.14 TCM encoder for QAM constellations . 553
13.15 Mapping of edge (i, j) to edge (f$(i), f $ (j)) 556
13.16 Encoder circuit for rotationally invariant TCM code 557
13.17 Trellis for the rotationally invariant code of Figure 13.16 558
13.18 32-cross constellation for rotationally invariant TCM code 558
13.19 A portion of the lattice Z2 and its cosets . 564
13.20 Hexagonal lattice . 565
13.21 Z2 and its partition chain and cosets . 568
13.22 Block diagram for a trellis lattice coder . 569
13.23 Lattice and circular boundaries for various constellations 570
13.24 16-state trellis encoder for use with V.34 standard 572
13.25 Trellis diagram of V.34 encoder . 573
13.26 The 192-point constellation employed in the V.34 standard 575
13.27 Partition steps for the V.34 signal constellation 576
13.28 Orbits of some of the points under rotation . 576

A TCM encoder employing subset selection and a four-state trellis

14.1 Decoding results for a (37.21. 65536) code . 583
14.2 Block diagram of a turbo encoder . 585
14.3 Block diagram of a turbo encoder with puncturing 586
14.4 Example turbo encoder with G(x) = 1/1+ x 2 587
14.5 Block diagram of a turbo decoder . 587
14.6 Processing stages for BCJR algorithm . 589
14.7 One transition of the trellis for the encoder . 590
14.8 A log likelihood turbo decoder . 604
14.9 Trellis with metric differences and bits for SOVA 612
14.10 State sequences for an encoding example . 616
14.11 Arrangements of nl = 3 detours in a sequence of length N = 7 616
14.12 A 6 x 6 "square" sequence written into the 120 x 120 interleaver 618
14.13 Variables used in iterative decoder for EXIT chart analysis 620
14.14 Qualitative form of the transfer characteristic ZE = T(ZA) 622
14.15 Trajectories of mutual information in iterated decoding 623
14.16 Turbo BCH encoding . 624
14.17 Structure of an implementation of a parallel concatenated code 624
14.18 A trellis for a cyclically encoded (7,4, 3) Hamming code 625
14.19 Framework for a turbo equalizer . 627

LIST OF FIGURES xxxix

14.20 Trellis associated with a channel with L = 2 628
14.21 Example for a (3.2. 2) parity check code . 631

15.1 Bipartite graph associated with the parity check matrix A 638
15.2 A parity check tree associated with the Tanner graph 640
15.3 A subset of the Tanner graph . 642
15.4 The two-tier tree . 644
15.5 The trellis associated with finding rmn(x) . 646
15.6 Processing information through the graph determined by A 650
15.7 Conditional independence among the sets of bits 651
15.8 Illustration of the decoding performance of LPDC codes 654
15.9 Comparisonof hard-decisionHamminganditerativedecoding 655
15.10 The function Q(x> compared with tanh(x/2) 657
15.11 Behavior of density evolution for a R = 1/3 code 658
15.12 Messages from bits to checks and from checks to bits 659

661
15.14 Decoder information at various signal-to-noise ratios 661
15.15 EXIT charts at various signal-to-noise ratios 662
15.16 Result of permutation of rows and columns . 670

672
15.18 A repeat-accumulate encoder . 672
15.19 The Tanner graph for a (3. 1) RA code with two input bits 673
15.20 Tanner graph for an irregular repeat-accumulate code 674

15.13 Histograms of the bit-to-check information for various decoder iterations

15.17 Serially concatenated codes and their iterative decoding

16.1 Factor graph for some examples . 687
16.2 Factor graph for a DFT . 687
16.3 Graphical representations of marginalization 688
16.4 Conversion from factor graph to expression tree 689
16.5 Message passing in the sum-product algorithm 692
16.6 Steps of processing in the sum-product algorithm 692
16.7 The factor (Tanner) graph for a Hamming code 694
16.8 Graph portions to illustrate simplifications . 696
16.9 A trellis and a factor graph representation of it 697
16.10 Message designation for forwardhackward algorithm 698
16.1 1 The factor graph for a turbo code . 700
16.12 Demonstration of clustering transformations 701
16.13 Stretching transformations . 702
16.14 Eliminating an edge in a cycle . 703
16.15 Transformations on the DFT factor graph . 705

17.1 Multiple reflections from transmitter to receiver 711
17.2 Simulation of a fading channel . 713
17.3 Diversity performance of quasi-static, flat-fading channel with BPSK 714
17.4 Multiple transmit and receive antennas across a fading channel 715
17.5 Two receive antennas and a maximal ratio combiner receiver 717
17.6 A two-transmitantennadiversityscheme: the Alamouticode 719
17.7 A delay diversity scheme . 728
17.8 729 8-PSK constellation and the trellis for a delay-diversity encoder

xl LIST OF FIGURES

17.9 Space-time codes with diversity 2 for 4-PSK having 8. 16. and 32 states 730
17.10 Space-time codes with diversity 2 for 8-PSK having 16 and 32 states 731
17.11 Performance of codes with 4-PSK that achieve diversity 2 732
17.12 Performance of codes with 8-PSK that achieve diversity 2 732

A.l Log likelihood ratio . 735

List of Tables

1.1 Historical Milestones . 41

3.1 The Standard Array for a Code . 92

4.1 Codewordsin thecode Generated by g (x) = 1 + x2 + x 3 +x4 123
4.2 Computation Steps for Long Division Using a Shift Register Circuit 132
4.3 Computing the Syndrome and Its Cyclic Shifts 139
4.4 Operation of the Meggitt decoder. Input from the Left 142
4.5 Operation of the Meggitt Decoder. Input from the Right 146
4.6 CRC Generators . 150
4.7 152
4.8 LFSR Example with g (x) = 1 + x + x2 + x4 and Initial State 1 155
4.9 LFSR Example with g(x) = 1 + x + x2 + x4 155
4.10 LFSR Example with g (x) = 1 + x + x2 + x4 156
4.11 LFSR example with g(x) = 1 + x + x4 . 157
4.12 Barker Codes . 170

Lookup Table for CRC-ANSI . Values fort and R (t) are expressed in hex . . .

5.1 Representations of GF(24) Using g(a) = 1 + a + a4 199
5.2 Conjugacy Classes over GF(23) with Respect to GF(2) 214
5.3 Conjugacy Classes over GF(24) with Respect to GF(2) 214
5.4 Conjugacy Classes over GF@) with Respect to GF(2) 215
5.5 Conjugacy Classes over GF(42) with Respect to GF(4) 216
5.6 Cyclotomic Cosets modulo 15 with Respect to GF(7) 218

6.1

6.2

6.3

6.4

6.5
6.6
6.7
6.8

Weight Distribution of the Dual of a Double-Error-Correcting Primitive Binary
BCH Code of Length n = 2m . 1. rn I: 3. rn Odd 240

Weight Distribution of the Dual of a Double-Error-Correcting Primitive Elinary
Narrow-Sense BCH Code. n = 2m - 1. rn 2 4. rn Even 240

Weight Distribution of the Dual of a Triple-Error Correcting Primitive Binary
Narrow-Sense BCH Code. n = 2m - 1. rn I: 5. rn Odd 241

Weight Distribution of the Dual of a Triple-Error Correcting Primitive ELinary
Narrow-Sense BCH Code. n = 2m - 1. rn 2 6. rn Even 241

. 259

Simplified Berlekamp-Massey Algorithm for a double-error correcting code . . 260

Berlekamp-Massey algorithm for input sequence { 1. 1. 1. 0. 1 . 0. 0}
Berlekamp-Massey Algorithm for a Double-Error Correcting Code 259

Berlekamp-Massey Algorithm for a Triple-Error Correcting Code 265

7.1 Monomials Ordered Under (1.3).revlex Order 326
7.2 Monomials Ordered Under (1.3).lex Order 326

8.1 Extended Quadratic Residue Codes 9 . 398

xlii LIST OF TABLES

8.2 Weight Distributions for the 923 and 924 Codes 400

10.1 Performance Specification of the Compact Disc Coding System 430

12.1 Quantized Branch Metrics Using Linear Quantization 487
12.2 508
12.3 Best Known Convolutional Codes Obtained by Puncturing a R = 1/2 Code . . 510
12.4 Performance of Fano Algorithm as a Function of A 520

Comparison of Free Distance for Systematic and Nonsystematic Code

13.1 AverageEnergy Requirementsfor Some QAMConstellations 536
13.2 Maximum Free-Distance Trellis codes for 8-PSK Constellation 554
13.3 Maximum Free-Distance Trellis Codes for 16-PSK Constellation 555
13.4 MaximumFree-Distance Trellis Codes for AM Constellations 555
13.5 EncoderConnectionsandCodingGainsforQAMTrellisCodes 555
13.6 Attributes of Some Lattices . 565
13.7 Comparison of Average Signal Energy . 569
13.8 Some Good Multidimensional TCM Codes [303] 571

13.10 4D Block Encoder . 574
13.9 Bit Converter: Sublattice Partition of 4D RectangularLattice 574

14.1 a: and Example Computations . 597
14.2 Posterior Input Bit Example Computations 597

15.1 Threshold Values for Various LDPC Codes 659
15.2 Degree Distribution Pairs for R = 1/2 Codes for Transmission on an AWGN . 664

16.1 Some Commutative Semirings . 681
16.2 Some Special Cases of Message Passing . 691

List of Boxes
Box 1.1 The Union Bound . 22
Box 2.1 One-to-one and Onto Functions . 70
Box 3.1 Error Correction and Least-Squares . 90
Box 3.2 The UDP Protocol . 105
Box 4.1 The Division Algorithm . 114
Box 5.1 lheriste Galois (1811-1832) . 197
Box 9.1 0 and o Notation . 408
Box 9.2 The Cauchy-Schwartz Inequality . 411
Box 12.1 Graphs: Basic Definitions . 457

This Page Intentionally Left Blank

Part I

Introduction and Foundations

Chapter 1

A Context for Error Correction
Coding

I will make weak things become strong unto them . . . -Ether 1227

. . . he denies that any error in the machine is responsible for the so-called errors in the
answers. He claims that the Machines are self correcting and that it would violate the
fundamental laws of nature for an error to exist in the circuits of relays.

- Isaac Asimov
I, Robot

1.1 Purpose of This Book

Error control coding in the context of digital communication has a history dating back to
the middle of the twentieth century. In recent years, the field has been revolutionized by
codes which are capable of approaching the theoretical limits of performance, the channel
capacity. This has been impelled by a trend away from purely combinatoric and discrete
approaches to coding theory toward codes which are more closely tied to a physical channel
and soft decoding techniques.

The purpose of this book is to present error correctioddetection coding in a modern
setting, covering both traditional concepts thoroughly as well as modern developments in
soft-decision and iteratively decoded codes and recent decoding algorithms for algebraic
codes. An attempt has been made to maintain some degree of balance between the math-
ematics and their engineering implications by presenting both the mathematical methods
used in understanding the codes as well as the algorithms which are used to efficiently
encode and decode.

1.2 Introduction: Where Are Codes?

Error correction coding is the means whereby errors which may be introduced into digital
data as a result of transmission through a communication channel can be corrected based
upon received data. Error detection coding is the means whereby errors can be detected
based upon received information. Collectively, error correction and error detection cod-
ing are error control coding. Error control coding can provide the difference between an
operating communications system and a dysfunctional system. It has been a significant
enabler in the telecommunications revolution, the internet, digital recording, and space ex-
ploration. Error control coding is nearly ubiquitous in modern, information-based society.
Every compact disc, CD-ROM, or DVD employs codes to protect the data embedded in the
plastic disk. Every hard disk drive employs correction coding. Every phone call made over
a digital cellular phone employs it. Every packet transmitted over the internet has a pro-
tective coding “wrapper” used to determine if the packet has been received correctly. Even

1.2 Introduction: Where Are Codes? 3

everyday commerce takes advantage of error detection coding, as the following examples
illustrate.

Example 1.1 The ISBN (international standard book number) is used to uniquely identify books. An
ISBN such as 0-201-36186-8 can be parsed as

0 - 20 -1-36186- 8 .
v v - v

country publisher book no. check

Hyphens do not matter. The first digit indicates a countryhnguage, with 0 for the United States. The
next two digits are a publisher code. The next six digits are a publisher-assigned book number. The
last digit is a check digit, used to validate if the code is correct using what is known as a weighted code.
An ISBN is checked as follows: The cumulative sum of the digits is computed, then the cumulative

sum of the cumulative sum is computed. For a valid ISBN, the sum-of-the-sum must be equal to 0,
modulo 11. The character X is used for the check digit 10. For this ISBN, we have

cumulative cumulative
digit sum Sum

0 0 0
2
2
3
6
12
13
21
21
35

2
4
7
13
25
38
59
86
121

The final sum-of-the-sum is 121, which is equal to 0 modulo 11 (i.e., the remainder after dividing by
11 is 0). 0

Example 1.2 The Universal Product Codes (UPC) employed on the bar codes of most merchandise
employ a simple error detection system to help ensure reliability in scanning. In this case, the error
detection system consists of a simple parity check. A W C consists of a 12-digit sequence, which can
be parsed as

9 l6ooq .
manufacturer item parity
identification number check

number

Denoting the digits as ul, u2 , . . . , u12, the parity digit u12 is determined such that

is a multiple of 10. In this case,

3(0 + 6 + 0 + 6 + 6 +0) + (1 + 0 + O + 6 + 1 + 8) = 70.

If, when a product is scanned, the parity condition does not work, the operator is flagged so that the
object may be re-scanned. 0

4 A Context for Error Correction Coding

0.2 0.4 0.6 0.8 1
P

Figure 1 . l : The binary entropy function H , (p) .

1.3 The Communications System

Appreciation of the contributions of coding and an understanding of its limitations require
some awareness of information theory and how its major theorems delimit the performance
of a digital communication system. In fact, information theory is increasingly relevant to
coding theory, because with recent advances in coding theory it is now possible to achieve
the performance bounds of information theory, whereas in the past the bounds were more of
a backdrop to the action on the stage of coding research and practice. Part of this success has
come by placing the coding problem more fully in its communications context, marrying
the coding problem more closely to the signal detection problem, instead of treating the
coding problem mostly as one of discrete combinatorics.

Information theory treats information almost as a physical quantity which can be mea-
sured, transformed, stored, and moved from place to place. A fundamental concept of
information theory is that information is conveyed by the resolution of uncertainty. Infor-
mation can be measured by the amount of uncertainty resolved. For example, if a digital
source always emits the same value, say 1, then no information is gained by observing that
the source has produced, yet again, the output 1. Probabilities are used to mathematically
describe the uncertainty. For a discrete random variable X (i.e., one which produces discrete
outputs, such as X = 0 or X = l) , the information conveyed by observing an outcome x
is - log, P (X = x) bits. (If the logarithm is base 2, the units of information are in bits.
If the natural logarithm is employed, the units of information are in nats.) For example, if
P (X = 1) = 1 (the outcome 1 is certain), then observing X = 1 yields - log2(1) = 0 bits
of information. On the other hand, observing X = 0 in this case yields - 10g2(0) = 00:

total surprise at observing an impossible outcome.
The entropy is the average information. For a binary source X having two outcomes

occurring with probabilities p and 1 - p , the binary entropy function, denoted as either
H,(X) (indicating that it is the entropy of the source) or H 2 (p) (indicating that it is a
function of the outcome probabilities) is

H2(X) = H2(p) = E [- log2 P (X)] = -p10g2(p) - (1 - p) 10g2(l - p) bits.

A plot of the binary entropy function as a function of p is shown in Figure 1.1. The peak
information of 1 occurs when p = i.

1.3 The Communications System 5

Example 1.3 A fair coin is tossed once per second, with the outcomes being ‘head’ and ‘tail’ with
equal probability. Each toss of the coin generates an event that can be described with Hz(0.5) = 1
bit of information. The sequence of tosses produces information at a rate of 1 bit per second.

An unfair coin, with P(head) = 0.01 is tossed. The average information generated by each throw
in this case is H2(0.01) = 0.0808 bits.

Another unfair coin, with P(head) = 1 is tossed. The information generated by each throw in
a this case is H2 (1) = 0 bits.

For a source X having M outcomes X I , x2, . . . , XM, with probabilities P(X = x i) =
pi, i = 1,2, . . . , M, the entropy is

M

H(X) = E [- log2 P (X)] = - pi log2 pi bits. (1.1)

Note: The “bit” as a measure of entropy (or information content) is different from the “bit”
as a measure of storage. For the unfair coin having P(head) = 1, the actual information
content determined by a toss of the coin is 0: there is no information gained by observing
that the outcome is again 1. For this process with this unfair coin, the entropy rate - that is,
the amount of actual information it generates -is 0. However, if the coin outcomes were for
some reason to be stored directly, without the benefit of some kind of coding, each outcome
would require 1 bit of storage (even though they don’t represent any new information).

With the prevalence of computers in our society, we are accustomed to thinking in terms
of “bits” - e.g., a file is so many bits long, the register of a computer is so many bits wide.
But these are “bits” as a measure of storage size, not “bits” as a measure of actual information
content. Because of the confusion between “bit” as a unit of information content and “bit”
as an amount of storage, the unit of information content is sometimes called a Shannon, in
homage to the founder of information theory, Claude Shannon.

A digital communication system embodies functionality to perform physical actions on
information. Figure 1.2 illustrates a fairly general framework for a single digital communi-
cation link. In this link, digital data from a source are encoded and modulated (and possibly
encrypted) for communication over a channel. At the other end of the channel, the data
are demodulated, decoded (and possibly decrypted), and sent to a sink. The elements in
this link all have mathematical descriptions and theorems from information theory which
govern their performance. The diagram indicates the realm of applicability of three major
theorems of information theory.

There are actually many kinds of codes employed in a communication system. In the
description below we point out where some of these codes arise. Throughout the book we
make some connections between these codes and our major focus of study, error correction
codes.

i = l

The source is the data to be communicated, such as a computer file, a video sequence, or
a telephone conversation. For our purposes, it is represented in digital form, perhaps
as a result of an analog-to-digital conversion step. Information-theoretically, sources
are viewed as streams of random numbers governed by some probability distribution.

‘This mismatch of object and value is analogous to the physical horse, which may or may not be capable of
producing one “horsepower” of power, 550 ft-lbslsec. Thermodynamicists can dodge the issue by using the SI
unit of Watts for power, information theorists might sidestep confusion by using the Shannon. Both of these units
honor founders of their respective disciplines.

6 A Context for Error Correction Coding

Figure 1.2: A general framework for digital communications.

Every source of data has a measure of the information that it represents, which (in
principle) can be exactly quantified in terms of entropy.

The source encoder performs data compression by removing redundancy.

As illustrated in Example 1.3, the number of bits used to store the information from
a source may exceed the number of bits of actual information content. That is, the
number of bits to represent the data may exceed the number of mathematical bits -
Shannons - of actual information content.

The amount a particular source of data can be compressed without any loss of infor-
mation (lossless compression) is governed theoretically by the source coding theorem
of information theory, which states that a source of information can be represented
without any loss of information in such a way that the amount of storage required
(in bits) is equal to the amount of information content - the entropy - in bits or
Shannons. To achieve this lower bound, it may be necessary for long blocks of the
data to be jointly encoded.

Example 1.4 For the unfair coin with P(head) = 0.01, the entropy is H(O.O1) = 0.0808.
Therefore, 10,000 such (independent) tosses convey 808 bits (Shannons) of information, so
theoretically the information of 10,000 tosses of the coin can be represented exactly using only

0 808 (physical) bits of information.

Thus a bit (in a computer register) in principle can represent an actual (mathematical)
bit of information content, if the source of information is represented correctly.

In compressing a data stream, a source encoder removes redundancy present in the
data. For compressed binary data, 0 and 1 occur with equal probability in the com-
pressed data (otherwise, there would be some redundancy which could be exploited
to further compress the data). Thus it is frequently assumed at the channel coder that
0 and 1 occur with equal probability.

1.3 The Communications System 7

The source encoder employs special types of codes to do the data Compression, called
collectively source codes or data compression codes. Such coding techniques in-
clude Huffman coding, run-length coding, arithmetic coding, Lempel-Ziv coding,
and combinations of these, all of which fall beyond the scope of this book.

If the data need to be compressed below the entropy rate of the source, then some kind
of distortion must occur. This is called lossy data compression. In this case, another
theorem governs the representation of the data. It is possible to do lossy compression
in a way that minimizes the amount of distortion for a given rate of transmission.
The theoretical limits of lossy data compression are established by the rate-distortion
theorem of information theory. One interesting result of rate-distortion theory says
that for a binary source having equiprobable outcomes, the minimal rate to which the
data can be compressed with the average distortion per bit equal to p is

1
2 r = 1 - &(p) p 5 -. (1.2)

Lossy data compression uses its own kinds of codes as well.

The encrypter hides or scrambles information so that unintended listeners are unable to
discern the information content. The codes used for encryption are generally different
from the codes used for error correction.

Encryption is often what the layperson frequently thinks of when they think of “cod-
ing,’’ but as we are seeing, there are many other different kinds of codes.

The channel coder is the first step in the error correction or error detection process.

The channel coder adds redundant information to the stream of input symbols in a way
that allows errors which are introduced into the channel to be corrected. This book
is essentially dedicated to the study of the channel coder and its corresponding
channel decoder.

It may seem peculiar to remove redundancy with the source encoder, then turn right
around and add redundancy back in with the channel encoder. However, the redun-
dancy in the source typically depends on the source in an unstructured way and may
not provide uniform protection to all the information in the stream, nor provide any
indication of how errors occurred or how to correct them. The redundancy provided
by the channel coder, on the other hand, is introduced in a structured way, precisely
to provide error control capability.

Treating the problems of data compression and error correction separately, rather than
seeking a jointly optimal source/channel coding solution, is asymptotically optimal (as
the block sizes get large). This fact is called the source-channel separation theorem
of information theory. (There has been recent work on combined source/channel
coding for finite - practical - block lengths, in which the asymptotic theorems are
not invoked. This work falls outside the scope of this book.)

Because of the redundancy introduced by the channel coder, there must be more
symbols at the output of the coder than at the input. Frequently, a channel coder
operates by accepting a block of k input symbols and producing at its output a block
of n symbols, with n > k . The rate of such a channel coder is

R = k / n ,

8 A Context for Error Correction Coding

so that R < 1.

The input to the channel coder is referred to as the message symbols (or, in the case of
binary codes, the message bits). The input may also be referred to as the information
symbols (or bits).

The modulator converts symbol sequences from the channel encoders into signals ap-
propriate for transmission over the channel. Many channels require that the signals
be sent as a continuous-time voltage, or an electromagnetic waveform in a speci-
fied frequency band. The modulator provides the appropriate channel-conforming
representation.

Included within the modulator block one may find codes as well. Some channels
(such as magnetic recording channels) have constraints on the maximum permissible
length of runs of 1s. Or they might have a restriction that the sequence must be
DC-free. Enforcing such constraints employs special codes. Treatment of such
runlength-limited codes appears in [206]; see also [157].

Some modulators employ mechanisms to ensure that the signal occupies a broad band-
width. This spread-spectrum modulation can serve to provide multiple-user access,
greater resilience to jamming, low-probability of detection, and other advantages.
(See, e.g., [386].) Spread-spectrum systems frequently make use of pseudorandom
sequences, some of which are produced using linear feedback shift registers as dis-
cussed in Section Appendix 4.A.

The channel is the medium over which the information is conveyed. Examples of channels
are telephone lines, internet cables, fiber-optic lines, microwave radio channels, high
frequency channels, cell phone channels, etc. These are channels in which information
is conveyed between two distinct places. Information may also be conveyed between
two distinct times, for example, by writing information onto a computer disk, then
retrieving it at a later time. Hard drives, diskettes, CD-ROMs, DVDs, and solid state
memory are other examples of channels.

As signals travel through a channel they are corrupted. For example, a signal may have
noise added to it; it may experience time delay or timing jitter, or suffer from attenua-
tion due to propagation distance and/or carrier offset; it may be multiply reflected by
objects in its path, resulting in constructive and/or destructive interference patterns;
it may experience inadvertent interference from other channels, or be deliberately
jammed. It may be filtered by the channel response, resulting in interference among
symbols. These sources of corruption in many cases can all occur simultaneously.

For purposes of analysis, channels are frequently characterized by mathematical mod-
els, which (it is hoped) are sufficiently accurate to be representative of the attributes of
the actual channel, yet are also sufficiently abstracted to yield tractable mathematics.
Most of our work in this book will assume one of two idealized channel models,
the binary symmetric channel (BSC) and the additive white Gaussian noise channel
(AWGN), which are described in Section 1.5. While these idealized models do not
represent all of the possible problems a signal may experience, they form a starting
point for many, if not most, of the more comprehensive channel models. The experi-
ence gained by studying these simpler channels models forms a foundation for more
accurate and complicated channel models. (As exceptions to the AWGN or BSC
rule, in Section 14.7, we comment briefly on convolutive channels and turbo equal-

1.4 Basic Digital Communications 9

ization, while in Chapter 17, coding for quasi-static Rayleigh flat fading channels are
discussed.)

Channels have different information-carrying capabilities. For example, a dedicated
fiber-optic line is capable of carrying more information than a plain-old-telephone-
service (POTS) pair of copper wires. Associated with each channel is aquantity known
as the capacity, C, which indicates how much information it can carry reliably.

The reliable information a channel can carry is intimately related to the use of error
correction coding. The governing theorem from information theory is Shannon’s
channel coding theorem, which states essentially this: Provided that the rate R of
transmission is less than the capacity C , there exists a code such that the probability
of error can be made arbitrarily small.

As suggested by Figure 1.2, the channel encoding and modulation may be combined
in what is known as coded modulation.

The demodulator/equalizer receives the signal from the channel and converts it into a
sequence of symbols. This typically involves many functions, such as filtering, de-
modulation, carrier synchronization, symbol timing estimation, frame synchroniza-
tion, and matched filtering, followed by a detection step in which decisions about the
transmitted symbols are made. We will not concern ourselves in this book with these
important details, but will focus on issues related to channel encoding and decoding.

The channel decoder exploits the redundancy introduced by the channel encoder to correct
any errors that may have been introduced. As suggested by the figure, demodulation,
equalization and decoding may be combined. Particularly in recent work, turbo
equalizers are used in a powerful combination. This is introduced in Chapter 14.

The decrypter removes any encryption.

The source decoder provides an uncompressed representation of the data.

The sink is the ultimate destination of the data.

As this summary description has indicated, there are many different kinds of codes employed
in communications. This book treats only error correction (or detection) codes. However,
there is significant overlap in the mathematical tools employed for error correction codes
and other kinds of codes. So, for example, while this is not a book on encryption, a couple
of encryption codes are presented in this book, where they are right near our main topic.
(In fact, one public key cryptosystem is an error correction coding scheme. See Section
6.9.5.) And there is a certain duality between some channel coding methods and some
source coding methods. So studying error correction does provide a foundation for other
aspects of the communication system.

1.4 Basic Digital Communications

The study of modulation/channel/demodulation/detection falls in the realm of “digital com-
munications,” and many of its issues (e.g., filtering, synchronization, carrier tracking) lie
beyond the scope of this book. Nevertheless, some understanding of digital communica-
tions is necessary here, because modern coding theory has achieved some of its successes
by careful application of detection theory, in particular in maximum aposteriori (MAP) and
maximum likelihood (ML) receivers. Furthermore, performance of codes is often plotted

10 A Context for Error Correction Coding

in terms of signal to noise ratio, which is understood in the context of the modulation of a
physical waveform. Coded modulation relies on signal constellations beyond simple binary
modulation, so an understanding of them is important.

The material in this section is standard for a digital communications course. However, it
is germane to our treatment here, because these concepts are employed in the development
of soft-decision decoding algorithms.

1.4.1 Binary Phase-Shift Keying

In digital communication, a stream of bits (i.e., a sequence of 1s and 0s) is mapped to a
waveform for transmission over the channel. Binary phase-shift keying (BPSK) is a form of
amplitude modulation in which a bit is represented by the sign of the transmitted waveform.
(It is called “phase-shift’’ keying because the sign change represents a 180” phase shift.)
Let {. . . , b-2, b-1, bo, b l , b2, . . .) represent a sequence of bits, bi E (0, l} which arrive at
a rate of one bit every T seconds. The bits are assumed to be randomly generated with
probabilities Pi = P(bj = 1) and Po = P(bi = 0). While typically 0 and 1 are equally
likely, we will initially retain a measure of generality and assume that P1 # Po necessarily.
It will frequently be of interest to map the set {0, 1) to the set (- 1, 1). We will denote i i as
the fl-valued bit corresponding to the (0, 1)-valued bit bj. Either of the mappings

may be used in practice, so some care is needed to make sure the proper mapping is under-
stood.

be a mapping of bit b, (or
bi) into a transmitted signal amplitude. This signal amplitude multiplies a waveform 401 (t) ,
where 4 1 (t) is a unit-energy signal,

hi = (2bi - 1) or hi = -(2bi - 1)

Here, let ai = 4%(2bi - 1) = -fi(-l)bi =

J -00

which has support2 over [0, T) . Thus, a bit bj arriving at time i T can be represented by the
signal aiqq (t - i T) . The energy required to transmit a single bit bi is

J -00

Thus Eb is thus the energy expended per bit.
It is helpful to think of the transmit-

-4% 4% ted signals f igo l (t) and - f i g o ~ (t) as

“0” “1 “ sional signal space, where the coordinate
axis is the ‘ ‘(~1” axis. The two points in the
signal space are plotted with their corre-
sponding bit assignment in Figure 1.3. The
points in the signal space employed by the

modulator are called the signal constellation, so Figure 1.3 is a signal constellation with
two points (or signals).

A sequence of bits to be transmitted can be represented by a juxtaposition of go1 (t)
waveforms, where the waveform representing bit bi starts at time i T . Then the sequence of

*Strictly speaking, functions not having this limited support can be used, but assuming support over [0, T) makes
the discussion significantly simpler. Also, the signal cpi (t) can in general be complex, but we restrict attention here
to real signals.

I I I b rpl(t) points f i and -fi in a one-dimen-

Figure 1.3: Signal constellation for BPSK.

1.4 Basic Digital Communications 11

Figure 1.4: Juxtaposition of signal waveforms.

bits is represented by the signal

Example 1.5 With qq (t) as shown in Figure 1.4(a) and the bit sequence [1, 1, 0, 1,0), the signal s (t)
0 is as shown in Figure 1.4(b).

1.4.2 More General Digital Modulation

The concept of signal spaces generalizes immediately to higher dimensions and to larger
signal constellations; we restrict our attention here to no more than two dimensions. Let
q12(t) be a unit-energy function which is orthogonal to q~l(t). That is,

00 00

q ~ Z (t) ~ d t = 1 and s_, Vl(t)V2(t) d t = 0. L
(Vl(t) , v2(t)) = s_, bOl(t)V2(t) d t .

In this case, we are defining “orthogonality” with respect to the inner product

00

We say that {qq (t), m(t)} form an orthonormal set if they both have unit energy and are
orthogonal:

(rp2(t), P 2 (t)) = 1 (col(t>9 P2(t)) = 0.

The orthonormal functions qq (t) and (p2(t) define the coordinate axes of a two-dimensional
signal space, as suggested by Figure 1.5. Corresponding to every point (XI, y1) of this
two-dimensional signal space is a signal (i.e., a function of time) s (t) obtained as a linear
combination of the coordinate functions:

(bol(t), Col(t>) = 1

= X l V l (t) + YlP2(t).

That is, there is a one-to-one correspondence between “points” in space and their represented
signals. We can represent this as

s (t) * (X l , Y l) .

12 A Context for Error Correction Coding

Figure 1.5: Two-dimensional signal space.

The geometric concepts of distance and angle can be expressed in terms of the signal space
points. For example, let

(1.4)
sl(t> = X l V l (t) + YlV2(t)

s 2 (t) = X2Vl(t) + Y 2 V 2 0)

(i.e.9 sl(t> * (Xl , Y l))

(i.e.7 s2(t> * (x2, Y2))

We define the squared distance between s1 (t) and ~ (t) as

00

d201(t), $20)) = (sl(t> - s 2 (t > > 2 d t , (1.5) L
and the inner product between $1 (t) and s2(t) as

Rather than computing distance using the integral (1 3, we can equivalently and more easily
compute using the coordinates in signal space (see Figure 1 S):

(1.7)

This is the familiar squared Euclidean distance between the points (XI, y1) and (x2, y2).

Also, rather than computing the inner product using the integral (1.6), we equivalently
compute using the coordinates in signal space:

(1.8)

This is the familiar inner product (or dot product) between the points (X I , y1) and (x2, y2) :

d2(s1(t>, s 2 (t)) = (Xl - X2l2 + (Yl - Y2)2.

b l (t) , s2(t)) = XlX2 + y1y2 .

((Xl , Y l) , (x2, y2)) = X l X 2 + y1y2 .

The point here is that we can use the signal space geometry to gain insight into the nature
of the signals, using familiar concepts of distance and angle.

We can use this two-dimensional signal space for digital information transmission as
follows. Let M = 2m, for some integer m, be the number of points in the signal constellation.
M-ary transmission is obtained by placing M points (alk, a 2 k) , k = 0, 1, . . . , M - 1, in this

1.4 Basic Digital Communications 13

Figure 1.6: 8-PSK signal constellation.

signal space and assigning a unique pattern of m bits to each of these points. These points
are the signal constellation. Let

S = {(alk, azk), k = 0, 1,. . . , h'f - I}

denote the set of points in the signal constellation.

Example 1.6 Figure 1.6 shows 8 points arranged in two-dimensional space in a constellation known
as 8-PSK (phase-shift keying). Each point has a three-bit designation. The signal corresponding to
the point (alk, U z k) is selected by three input bits and transmitted. Thus the signal

s k (t) = alkcPl(t) f aZkVZ(t), (alk, a2k) E s
carries three bits of information.

Note that the assignments of bits to constellation points in Figure 1.6 is such that adjacent points
differ by only one bit. Such an assignment is called Gray code order. Since it is most probable that

0

Associated with each signal S k (t) = alkql(t) + U 2 k (p z (t) and signal constellation point

errors will move from a point to an adjacent point, this reduces the probability of bit error.

(a ik , U 2 k) E S is a signal energy,

The average signal energy E, is obtained by averaging all the signal energies, usually by
assuming that each signal point is used with equal probability:

The average energy per signal E , can be related to the average energy per bit E b by

energy per signal E,
number of bitshignal m '

- _ _ Eb = -

To send a sequence of bits using M-ary modulation, the bits are partitioned into blocks
of m successive bits, where the data rate is such that m bits arrive every T, seconds. The ith

14 A Context for Error Correction Coding

rn-bit set is then used to index a point (al i , a2i) E S. This point corresponds to the signal
which is transmitted over the signal interval for the m bits. These signals are juxtaposed to
form the transmitted signal:

The point (ali, a2i) is thus the point set at time i. Equation (1.9) can be expressed in its signal
space vector equivalent, by simply letting si = [ali , azi]‘ denote the vector transmitted at
time i.

In what follows, we will express the operations in terms of the two-dimensional sig-
nal space. Restricting to a one-dimensional signal space (as for BPSK transmission), or
extending to higher-dimensional signal spaces is straightforward.

In most channels, the signal s (t) is mixed with some carrier frequency before trans-
mission. However, for simplicity we will restrict attention to the baseband transmission
case.

1.5 Signal Detection

1 S.1 The Gaussian Channel

The signal s (t) is transmitted over the channel. Of all the possible disturbances that might
be introduced by the channel, we will deal only with additive noise, resulting in the received
signal

r (t) = s (t) + n (t) . (1.10)

In an additive white Gaussian noise (AWGN) channel, the signal n(t) is a white Gaussian
noise process, having the properties that

E [n (t)] = 0 Vt ,

NO
2

R,(t) = E[n(t)n(t - t)] = - 6 (t) ,

and all sets of samples are jointly Gaussian distributed. The quantity N 0 / 2 is the (two-sided)
noise power spectral density.

Due to the added noise, the signal r (t) is typically not a point in the signal constellation,
nor, in fact, is r (t) probably even in the signal space - it cannot be expressed as a linear
combination of the basis functions (pl (t) and (p2(t) . The detection process to be described
below corresponds to the geometric operations of (1) projecting r (t) onto the signal space;
and (2) finding the closest point in the signal space to this projected function.

At the receiver, optimal detection requires first passing the received signal through a
filter “matched” to the transmitted waveform. This is the projection operation, projecting
r (t) onto the signal space. To detect the ith signal starting at i T,, the received signal is
correlated with the waveforms q.q (t - i Ts) and (p2(t - i T’) to produce the point (R l i , Rzi)

1.5 Signal Detection 15

Figure 1.7: Correlation processing (equivalent to matched filtering).

in signal space3 :

(i + 1) Ts

r (t)v i (t - iTs) d t ,

r(t)v2(t - iT,) d t .

k (1.11)
Rli = (~ (t) , PI(^ - iTs)) =

(i + I) Ts

l T s
R2i = (~ (t) , ~ 2 (t - i T s)) =

The processing in (1.1 1) is illustrated in Figure 1.7. Using (1.9) and (1. lo), it is straightfor-
ward to show that

Rli = U l i + Nli and R2i = ~ 2 i + Nzi, (1.12)

where (U l i , a2i) is the transmitted point in the signal constellation for the ith symbol. The
point (U l i , ~ 2 i) is not known at the receiver - it is, in fact, what the receiver needs to decide
- so at the receiver (ali, ~ 2 i) is a random variable.

The noise random variables Nli and N2i defined by

(i + 1) Ts (i+ l)Ts
v2(t - iT‘)n(t) d t k N l i = lTs vl(t - i T s) n (t) d t and N2i =

have the following properties: Nli and N2i are Gaussian random variables, with

E [N l i] = 0 and E[N2i] = 0 (1.13)

and4

(1.14) A 2 NO A NO var[Nli] = CT = - and var[N2i] = C T ~ = -.
2 2

Also,
E[Ni iNzi] = 0; (1.15)

3The operation in (1 . 1 1) can equivalently be performed by passing r (t) through filters with impulse response
qq (- t) and cpz(-t) and sampling the output at time t = iT,. This is referred to as a matchedjlter. The matched
filter implementation and the correlator implementation provide identical outputs.

A
4The symbol = means “is defined to be equal to.”

16 A Context for Error Correction Coding

that is, Nli and N2i are uncorrelated and hence, being Gaussian, are independent. The
probability density function (pdf) for Nli or N2i is

It will be convenient to express (1.12) in vector form. Let Rj = [Rli , R2jlT (received
vector), Si = [ali, azi]' (sent vector), and Ni = [Nli , N2j]' (noise vector). Then

Rj = Si + Ni.

Then Nj is jointly Gaussian distributed, with 0 mean and covariance matrix

E[NiNT] = u '[: = U 2 I = R N .

Explicitly, the pdf of the vector Ni is

1 1 1
exp [-$n~R;'n] = - exp [---<nf + nt,] .

2n 4- 2nd 202
PN(n) =

Let P (s) be used to denote P (S = s) = Ps(s) for vectors s = [alk, a2klT E S. Let P(slr)
be used to denote P (S = SIR = r) = P s ~ R (S = SIR = r) for an observed value of the
random variable R = r. Note that conditioned on knowing that the transmitted signal is
S = s, R is a Gaussian random variable with conditional density

where llr-s112 is the squared Euclidean distance between rands and C is a quantity that does
not depend on either R or S. The quantity pRls(rls) is called the likelihood&nction. The
likelihood function p~ 1s (r Is) is typically viewed as a function of the conditioning argument,
with the observed values r as fixed parameters.

The signal points E S depends uniquely upon the transmitted bits mapped to the signal
constellation point. Conditioning upon knowing the transmitted signal is thus equivalent to
conditioning on knowing the transmitted bits. Thus the notation p(rls) is used interchange-
ably with p(rlb), when s is the signal used to represent the bits b. For example, for BPSK
modulation, we could write either p(rls = a) or p(rlb = 1) or even p(rl6 = l), since
by the modulation described above the amplitude is transmitted when the input bit is
b = 1 (orb = 1).

-

1.5.2 MAP and ML Detection

Let S denote the transmitted value, where S E S is chosen with prior probability P (S = s),
or, more briefly, P (s). The receiver uses the received point R = r to make a decision about
what the transmitted signal S is. Let us denote the estimated decision as P = [;I, & I T E S.
We will use the notation P(slr) as a shorthand for P (S = slr).

Theorem 1.1 The decision rule which minimizes the probability of error is to choose i to
be that value of s which maximizes P (S = sir), where the possible values of s are those in
the signal constellation S. That is,

P = argmax P(s1r). (1.17)
S€S

1.5 Signal Detection 17

Proof Let us denote the constellation as S = {s i , i = 1,2, . . . , M). Let p(rlsi) denote the
pdf of the received signal when S = si is the transmitted signal. Let S2 denote the space
of possible received values; in the current case S2 = R2. Let us partition the space S2 into
regions S 2 j 9 where the decision rule is expressed as: set 1 = Sj if r E S 2 j . That is,

S2i = {r E S2 : decide1 = s i } .

The problem, then, is to determine the partitions S 2 j . By the definition of the partition, the
conditional probability of a correct answer when S = si is sent is

Denote the conditional probability of error when signal S = si is sent as Pi (E) :

Pi(€) = P(l # sip = sz).

Then we have
P i (€) = 1 - P (a = s i p = si) = 1 - p(r1si)dr. Li

The average probability of error is

M M

P(E) = C Pi(E)P(S = si) = c P (S = si) [1 - Li p(rlsj) dr] dr
i = l i = l

The probability of a correct answer is

M M

j = l ai i = l ai
P(C) = 1 - P (E) = c / p(rlsj)P(S = si) d r = c / P (S = si Ir)p(r) d r .

Since p(r) 2 0, to maximize P (C), the region of integration S2i should be chosen precisely
so that it covers the region where P (S = si Ir) is the largest possible. That is,

S2i = {r : P (S = silr) > P (S = sjlr), i # j } .

This is equivalent to (1.17).

Using Bayes’ rule we can write (1.17) as

Since the denominator of the last expression does not depend on s, we can further write

This is called the maximum a posteriori (MAP) decision rule. In the case that all the prior
probabilities are equal (or are assumed to be equal), this rule can be simplified to

i = argrnaxpRjs(r1s). I S€S

18 A Context for Error Correction Coding

r
t

(a) Conditional densities.

(b) Weighted conditional densities.

Figure 1.8: Conditional densities in BPSK modulation.

This is called the maximum likelihood (ML) decision rule.
Note: We will frequently suppress the subscript on a probability density function or dis-

tribution function, letting the arguments themselves indicate the intended random variables.
We could thus write p(rls) in place of p~ls(rls).

Once the decision 3 is made, the corresponding bits are determined by the bit-to-
constellation mapping. The output of the receiver is thus an estimate of the bits.

By the form of (1.16), we see that the ML decision rule for the Gaussian noise channel
selects that point 3 E S which is closest to r in squared Euclidean distance, Ilr - i l l 2 .

1.5.3 Special Case: Binary Detection

For the case of binary transmission in a one-dimensional signal space, the signal constellation
consists of the points S = (a, -a}, corresponding, respectively, to the bit b = 1 or
b = 0 (respectively, using the current mapping). The corresponding likelihood functions
are

These densities are plotted in Figure 1.8(a). We see r 1s = f i is a Gaussian with mean
The MAP decision rule compares the weighted densities p (r Is = a) P (s = f i)

and p (r 1s = -a) P (s = -a). Figure 1.8(b) shows these densities in the case that
P (s = -a) > P (s = a). Clearly, there is a threshold point t at which

p(r l s = &)P(s = f i) = p(rls = - J E b) P (s = -a).
In this case, the decision rule (1.18) simplifies to

1.5 Signal Detection 19

11 n (i . e . , bi = 1) if r > t

s = (-a (i.e., bi = 0) if r c t.
(1.19)

The threshold value can be computed explicitly as

c2 P (s = - f i) r = -
2 4 5 1 n P (s = 45) . (1.20)

In the case that P (s = a) = P (s = -a), the decision threshold is at t = 0, as
would be expected.

Binary detection problems are also frequently expressed in terms of likelihood ratios.
For binary detection, the problem is one of determining, say, if b = 1 or if b = 0. The
detection rule (1.18) becomes a test between

p(rlb = 1)P(b = 1) and P(rlb = O)P(b = 0).

This can be expressed as a ratio,

p(rlb = l)P(b = 1)
p(rlb = O)P(b = 0)'

In the case of equal priors, we obtain the likelihood ratio

p(rlb = 1)
p(r (b = 0)

L(r) =

For many channels, it is more convenient to use the log likelihood ratio

where the natural logarithm is usually used. The decision is made that h = 1 if A(r) > 0
and 6 = 0 if A(r) .c 0.

For the Gaussian channel with BPSK modulation, we have

where L, = 9 is called the channel reliability5.
The quantity A(r) = L,r can be used as so$ information in a decoding system. The

quantity sign(A(r)) is referred to as hard information in a decoding system. Most early
error correction decoding algorithms employed hard information - actual estimated bit
values - while there has been a trend toward increasing use of soft information decoders,
which generally provide better performance.

problems in Gaussian noise, the probabilities can be expressed using the Q (x) function,

1 S.4 Probability of Error for Binary Detection

Even with optimum decisions at the demodulator, errors can still be made with some prob-
ability (otherwise, error correction coding would not ever be needed). For binary detection

which is the probability that a unit Gaussian N - N (0 , l) exceeds x :

'In some sources (e.g. [134]) the channel reliability Lc is expressedalternatively as equivalent to 2Eb/a2. This
is in some ways preferable, since it is unitless.

20 A Context for Error Correction Coding

a

P(€ls = a) P (s = a)

Figure 1.9: Distributions when two signals are sent in Gaussian noise.

X

The Q function has the properties that

1
Q(x) = 1 - Q(-X) Q(0) = - Q(-w) = 1 Q(cQ) = 0.

2

For a Gaussian random variable Z with mean p and variance o', 2 - N(p , 02), it is
straightforward to show that

Suppose there are two points a and b along an axis, and that

R = s + N ,

wheresisoneofthetwopoints,andN - N(0, a2). Thedistributions P(Rls = a) P (s = a)
and P (R 1s = b) P (s = b) are plotted in Figure 1.9. A decision threshold t is also shown.
When a is sent, an error is made when R > t. Denoting & as the error event, this occurs
with probability

When b is sent, an error is made when R < t, which occurs with probability

b - t
P (& ~ s = b) = P (R < t) = 1 - P (R > t) = 1 - Q

The overall probability of error is

b - t
= Q (y) P (s = a) + Q (T) P (s = b).

(1.22)

1 An important special case is when P (s = a) = P (s = b) = ?. Then the decision
threshold is at the midpoint t = (a + b)/2. Let d = Ib - a1 be the distance between the
two signals. Then (1.22) can be written

(1.23)

1.5 Signal Detection 21

lo-’

t
1 1 o-2

\

Figure 1.10: Probability of error for BPSK signaling.

Even in the case that the signals are transmitted in multidimensional space, provided that
the covariance of the noise is of the form a2Z, the probability of error is still of the form
(1.23). That is, if

R = s + N

are n-dimensional vectors, with N - N(0, (r2Z), and S E {a, b} are two equiprobable
transmitted vectors, then the probability of decision error is P(&) = Q (&), where d =
Ila - bll is the Euclidean distance between vectors. This formula is frequently used in
characterizing the performance of codes.

For the particular case of BPSK signaling, we have a = -a, b = a, and
d = 2 a . The probability P(&) is denoted as Pb, the “probability of a bit error.” Thus,

(1.24) p b = Q (t+a) P (- &) + Q (a-t ~) P (&) .
d

When P (a) = P (- a) , then t = 0. Recalling that the variance for the channel is
expressed as a2 = y, we have for BPSK transmission

(1.25)

I I

The quantity &/No is frequently called the (bit) signal-to-noise ratio (SNR).

to-noise ratio in dB (decibel), where
Figure 1.10 shows the probability of bit error for a BPSK as a function of the signal-

Eb/No dB = lologlo Eb/No,

for the case P (a) = P (- a) .

I bpskprobp1ot.m
bpskpr0b.m

22 A Context for Error Correction Coding

I rhen, since P (A f l B) 2 0, clearly P (A U B) 5 P (A) + P (B) .

Box 1.1: The Union Bound

For sets A and B. we have P (A U B) = P (A)

1.5.5 Bounds on Performance: The Union Bound

For some signal constellations, exact expressions for the probability of error are difficult
or inconvenient to obtain. In many cases it is more convenient to obtain a bound on the
probability of error using the union bound. (See Box 1.1 .) Consider, for example, the 8-PSK
constellation in Figure 1.1 1. If the point labeled so is transmitted, then an error occurs if
the received signal falls in either shaded area. Let A be the event that the received signal
falls on the incorrect side of threshold line L 1 and let B be the event that the received signal
falls on the incorrect side of the line L2. Then

Pr(symbo1 decoding errorlso sent) = P (A U B) .

The events A and B are not disjoint, as is apparent from Figure 1.1 1. The exact probability

Figure 1.1 1 : Probability of error bound for 8-PSK modulation.

computation is made more dfficult by the overlapping region. Using the union bound,
however, the probability of error can bounded as

Pr(symbo1 decoding errorlso sent) I P (A) + P (B)

The event A occurs with the probability that the transmitted signal falls on the wrong side of
the line L1; similarly for B . Assuming that the noise is independent Gaussian with variance
rs2 in each coordinate direction, this probability is

1.5 Signal Detection 23

I
I

bits
1_

I
I

I

I
I

I
I bits -
I
I
I
I

Figure 1.12: A binary symmetric channel.

where dmin is the minimum distance between signal points. Denote the probability of a
symbol error by Ps. Assuming that all symbols are sent with equal probability, we have
Ps = Pr(symbo1 decoding error(s0 sent), where the probability is bounded by

P, p 2Q (2). (1.26)

The factor 2 multiplying the Q function is the number of nearest neighbors around each
constellation point. The probability of error is dominated by the minimum distance between
points: better performance is obtained with larger distance. As E,/No (the symbol SNR)
increases, the probability of falling in the intersection region decreases and the bound (1.26)
becomes increasingly tight.

For signal constellations larger than BPSK, it common to plot the probability of a symbol
error vs. the S N R in E,/No, where E, is the average signal energy. However, when the bits
are assigned in Gray code order, then a symbol error is likely to be an adjacent symbol, so
that only a single bit error occurs

Pb M Ps for sufficiently large SNR. (1.27)

More generally, the probability of detection error for a symbol s which has K neighbors
in signal space at a distance dmin from it can be bounded by

(1.28)

and the bound becomes increasingly tight as the SNR increases.

1.5.6 The Binary Symmetric Channel

The binary symmetric channel (BSC) is a simplified channel model which contemplates
only the transmission of bits over the channel; it does not treat details such as signal spaces,
modulation, or matched filtering. The BSC accepts 1 bit per unit of time and transmits that
bit with a probability of error p . A representation of the BSC is shown in Figure 1.12. An
incoming bit of 0 or 1 is transmitted through the channel unchanged with probability 1 - p ,
or flipped with probability p . The sequence of output bits in a BSC can be modeled as

Ri = Si + N i , (1.29)

where Ri E (0, 1) are the output bits, Si E {O, 1) are the input bits, Ni E {0,1} represents
the possible bit errors, where Ni is 1 if an error occurs on bit i. The addition in (1.29) is
modulo 2 addition, according to the addition table

o + o = o 0 + 1 = 1 1 + 1 = 0 ,

24 A Context for Error Correction Coding

so that if Ni = 1, then Ri is the bit complement of Si. The BSC is an instance of a
memoryless channel. This means each of the errors Ni is statistically independent of all the
other Ni . The probability that bit i has an error is P (N i = 1) = p, where p is called the
BSC crossover probability. The sequence {Ni , i E Z} can be viewed as an independent and
identically distributed (i.i.d.) Bernoulli(p) random process.

Suppose that S is sent over the channel and R is received. The likelihood function
P(R1S) is

if R # S.
P (R I S) = (1.30)

Now suppose that the sequence s = [sl, s2, . . . , s,] is transmitted over a BSC and that
the received sequence is R = [q, r2, . . . , r,]. Because of independent noise samples, the
likelihood function factors,

n

P(RIS) = n P (R j l S i) . (1.31)

Each factor in the product is of the form (1.30). Thus there is a factor (1 - p) every time Ri
agrees with Si , and a factor p every time Ri differs from Si . To represent this, we introduce
the Hamming distance.

Definition 1.1 The Hamming distance between a sequence x = 1x1, x2, . . . , x ,] and a
sequence y = [y1 , y2, . . . , y n] is the number of positions that the corresponding elements
differ:

i = l

n

(1.32)

I I

Here we have used the notation (Iverson's convention [126])

1 ifxj # yi

0 ifxi = y i .
[xi # ~ i l =

0
Using the notation of Hamming distance, we can write the likelihood function (1.3 1) as

P(RIS) = (1 - p)"-dff(R,S) pdx(R3S)
v-
number of places number of places
they are the same they differ

The likelihood function can also be written as

1 - P

dH(R,S)

P(R1S) = (L) (1 - p)".

Consider now the detection problem of deciding if the sequence S 1 or the sequence S2

was sent, where each occur with equal probability. The maximum likelihood decision rule
says to choose that value of S for which &dH(R3S) (1 - p)" is the largest. Assuming that

p < i, this corresponds to choosing that value of S for which dH (R, S) is the smallest, that
is, the vector S nearest to R in Hamming distance.

We see that for detection in a Gaussian channel, the Euclidean distance is the appropriate
distance for detection. For the BSC, the Hamming distance is the appropriate distance for
detection.

1.6 Memoryless Channels 25

bits
Modulator s<t,_ Channel r<t>_ Matched Filter

(e.g. AWGN) or Correlator

bits Decision

(e.g. Rule MAP or k+
ML)

(a) Modulation, channel, and demodulation

I - 1
_ _ _ _ _ _ _ _ - _ _ _ - _ _ _ - _ - _ - - - _ _ _
I

bits I
I Modulator Channel r<t>_ Matched
I Filter
I (e.g. AWGN)

I
I Decision
I bits Rule b

(e.g. W o r I

I
I

I
I
I

bits ~ I i bits

I 1 1 1
I - I

I I 1 - P I
_ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ I

(b) An equivalent BSC model

Figure 1.13: (a) System diagram showing modulation, channel, and demodulation; (b) BSC
equivalent.

1 S.7 The BSC and the Gaussian Channel Model

At a sufficiently coarse level of detail, the modulator/demodulator system with the additive
white Gaussian noise channel can be viewed as a BSC. The modulation, channel, and
detector collectively constitute a “channel” which accepts bits at the input and emits bits at
the output. The end-to-end system viewed at this level, as suggested by the dashed box in
Figure l.l3(b), forms a BSC. The crossover probability p can be computed based on the
system parameters,

p = P(bit out = Olbit in = 1) = P(bit out = llbit in = 0) = Pb = Q(J2b/No).
In many cases the probability of error is computed using a BSC with an “internal” AWGN
channel, so that the probability of error is produced as a function of Eb/NO.

1.6 Memoryless Channels

A memoryless channel is one in which the output r, at the nth symbol time depends only
on the input at time n. Thus, given the input at time n, the output at time n is statistically
independent of the outputs at other times. That is, for a sequence of received signals

R = (R1, R29. - 1 9 Rm)

26 A Context for Error Correction Coding

-
uncoded

Energy/bit=
FL

Modulator

detector
R = k j n
channel -
encoder

“ 0 “1“

-0 EC I I
Energy/bit=

channel
decoder

Figure 1.14: Energy for a coded signal.

depending on transmitted signals S1, Sz, . . . , Sm, the likelihood function

p (R 1 , R 2 , . . . , RmIS1, $2, * * * 3 Srn)

can be factored as
m

p (R 1 , R 2 , . . . , RmJS1, 5’2,. . . , Sm) = n p (R i l S i) .
i= l

Both the additive Gaussian channel and the binary symmetric channel that have been in-
troduced are memoryless channels. We will almost universally assume that the channels
are memoryless channels. The bursty channels discussed in Chapter 10 and the convolutive
channel introduced in Chapter 14 are exceptions to this.

1.7 Simulation and Energy Considerations for Coded Signals

In channel coding, k input bits yield n output bits, where n > k . Let R = k / n be the code
rate. A transmission budget which allocates Eb Jouleshit for the uncoded data must spread
that energy over more coded bits. Let

E , = REb

denote the “energy per coded bit.” We thus have E , < Eb. Consider the framework
shown in Figure 1.14. From point ‘a’ to point ‘b,’ there is conventional (uncoded) BPSK
modulation scheme, except that the energy per bit is E,. Thus, at point ‘b’ the probability
of error can be computed as

Since E , < Eb, this is worse performance than uncoded BPSK would have had. Figure
1.15 shows the probability of error of coded bits for R = 1/2 and R = 1/3 error correction
codes at point ‘b’ in Figure 1.14. At the receiver, the detected coded bits are passed to
the channel decoder, the error correction stage, which attempts to correct errors. Clearly, in
order to be of any value the code must be strong enough so that the bits emerging at point
‘c’ of Figure 1.14 can compensate for the lower energy per bit in the channel, plus correct
other errors. Fortunately, we will see that this is in fact the case.

1.8 Some Important Definitions 27

1 oo

1 0-1

1 oo

1 0-1

Figure 1.15: Probability of error for coded bits, before correction.

Now consider how this system might be simulated in software. It is common to simulate
the modulator at point 'a' of Figure 1.14 as having fixed amplitudes and to adjust the variance
a2 of the noise IZ in the channel. One of the primary considerations, therefore, is how to set

Frequently it is desired to simulate performance at a particular SNR, &/No. Let y =
&, /No denote the desired signal to noise ratio at which to simulate. Frequently, this is
expressed in dB, so we have

Recalling that a2 = N0/2 , and knowing y , we have

a2.

= 10(SNRdB)/lO.

Eb y = -
202 '

so

- Since Eb = E c / R , we have

It is also common in simulation to normalize, so that the simulated signal amplitude is
Ec = 1.

1.8 Some Important Definitions and a Trivial Code:
Repetition Coding

In this section we introduce the important coding concepts of code rate, Hamming distance,
minimum distance, Hamming spheres, and the generator matrix. These concepts are intro-

28 A Context for Error Correction Coding

duced by means of a simple, even trivial, example of an error correction code, the repetition
code.

Let IF2 denote the set (field) with two elements in it, 0 and 1. In this field, arithmetic
operations are defined as:

o + o = o 0 + 1 = 1 1 + 0 = 1 l + l = O

0 - o = o 0 . 1 = 0 1 . 0 = 0 1 . 1 = 1 .

An (n , k) binary code is a set of 2k distinct points in IF;. Another way of putting this:
Let IF; denote the (vector) space of n-tuples of elements of F2.

An (n , k) binary code is a code that accepts k bits as input and produces n bits as output.

Definition 1.2 The rate of an (n , k) code is

k
n

0
The (n , 1) repetition code, where n is odd, is the code obtained by repeating the 1-bit

input n times in the output codeword. That is, the codeword representing the input 0 is a
block of n 0s and the codeword representing the input 1 is a block of n 1s. The code C
consists of the set of two codewords

R = - .

c = {[O,O, . . . ,O] , [l , 1 , . . .) l]} c F;.

Letting m denote the message, the corresponding codeword is

c = [m,m,m,. . . ,m] .

n copies

This is a rate R = l / n code.

given by

Then the encoding operation is

Encoding can be represented as a matrix operation. Let G be the 1 x n generator matrix

G = [1 1 . . . 11.

c = mG.

1.8.1 Detection of Repetition Codes Over a BSC

Let us first consider decoding of this code when transmitted through a BSC with crossover
probability p < 1/2. Denote the output of the BSC by

r = c + n ,

where the addition is modulo 2 and n is a binary vector of length n , with 1 in the positions
where the channel errors occur. Assuming that the codewords are selected with equal
probability, maximum likelihood decoding is appropriate. As observed in Section 1 S.6,
the maximum likelihood decoding rule selects the codeword in C which is closest to the
received vector r in Hamming distance. For the repetition code, this decoding rule can be
expressed as a majority decoding rule: If the majority of received bits are 0, decode a 0;
otherwise, decode a 1. For example, take the (7, 1) repetition code and let m = 1. Then the
codeword is c = [1, 1, 1, 1, 1, 1, 11. Suppose that the received vector is

r = [l , 0, 1, l,O, 1, 11.

1.8 Some Important Definitions 29

Hamming "sphere" for (O,O,O)

(a) The code as points in space. (b) The Hamming spheres around the points.

Figure 1.16: A (3, 1) binary repetition code.

Since 5 out of the 7 bits are 1, the decoded value is

riz = 1.

An error detector can also be established. If the received vector r is not one of the codewords,
we detect that the channel has introduced one or more errors into the transmitted codeword.

The codewords in a code C can be viewed as points in n-dimensional space. For example,
Figure 1.16(a) illustrates the codewords as points (0, 0,O) and (1, 1, 1) in 3-dimensional
space. (Beyond three dimensions, of course, the geometric viewpoint cannot be plotted, but
it is still valuable conceptually.) In this geometric setting, we use the Hamming distance
to measure distances between points.

Definition 1.3 The minimum distance dfin of a code C is the smallest Hamming distance
between any two codewords in the code:

min dH(ci, c j) . 1
ci ,cj E c, ci #Cj

0
The two codewords in the (n, 1) repetition code are c l eaAj a (Hamming) distance n

In this geometric setting the ML decoding algorithm may be expressed as: Choose the
apart.

codeword i? which is closest to the received vector r. That is,

i? = argmindH(r, c) .
C€C

A different decoder is based on constructing a sphere around each codeword.

Definition 1.4 The Hamming sphere of radius t around a codeword c consists of all vectors
0

For example, for the (3, 1) repetition code, the codewords and the points in their Ham-
which are at a Hamming distance I t from c.

ming spheres are

Codeword Points in its sphere
(0,0,0) ~0,0,0),(0,0,~~,~0,1 ,0),(1 ,O,O)
(1 9 191) (191, ~ ~ , ~ ~ , ~ , ~ ~ , ~ ~ , ~ , ~ ~ , ~ ~ , ~ , ~ ~ ,

30 A Context for Error Correction Coding

\
\

\

* I
I

I
/

/

"1

,
/

A
I

* - - . ,
\ \

\

Figure 1.17: A representation of decoding spheres.

as illustrated in Figure l.l6(b).
When the Hamming spheres around each codeword are all taken to have the same radius,

the largest such radius producing nonoverlapping spheres is determined by the separation
between the nearest two codewords in the code, dmin. The radius of the spheres in this case
is t = L(dmin - 1)/2], where the notation 1x1 means to take the greatest integer 5 x. Figure
1.17 shows the idea of these Hamming spheres. The black squares represent codewords in
n-dimensional space and black dots represent other vectors in n-dimensional space. The
dashed lines indicate the boundaries of the Hamming spheres around the codewords. If a
vector r falls inside the sphere around a codeword, then it is closer to that codeword than
to any other codeword. By the ML criterion, r should decode to that codeword inside the
sphere. When all the spheres have radius t = [(ddn - 1)/2], this decoding rule referred to
as bounded distance decoding.

The decoder will make a decoding error if the channel noise moves the received vector r
into a sphere other than the sphere the true codeword is in. Since the centers of the spheres
lie a distance at least dmin apart, the decoder is guaranteed to decode correctly provided that
no more than t errors occur in the received vector r. The number t is called the random
error correction capability of the code. If dmin is even and two codewords lie exactly dmin
apart and the channel introduces ddn/2 errors, then the received vector lies right on the
boundary of two spheres. In this case, given no other information, the decoder must choose
one of the two codewords arbitrarily; half the time it will make an error.

Note from Figure 1.17 that in a bounded distance decoder there may be vectors that
fall outside the Hamming spheres around the codewords, such as the vector labeled v1. If
the received vector r = vl, then the nearest codeword is c1. A bounded distance decoder,
however, would not be able to decode if r = v1, since it can only decode those vectors that
fall in spheres of radius t. The decoder might have to declare a decoding failure in this case.

A true maximum likelihood (ML) decoder, which chooses the nearest codeword to the
received vector, would be able to decode. Unfortunately, ML decoding is computationally
very difficult for large codes. Most of the algebraic decoding algorithms in this book are
only bounded distance decoders. An interesting exception are the decoders presented in
Chapters 7 and 11, which actually produce lists of codeword candidates. These decoders

1.8 Some Important Definitions 31

are called list decoders.
If the channel introduces fewer than dmin errors, then these can be detected, since r

cannot be another codeword in this case. In summary, for a code with minimum distance
dfin :

Guaranteed error correction capability:
Guaranteed error detection capability:

t = L(dfin - 1)/2]
d f in - 1

Having defined the repetition code, let us now characterize its probability of error per-
formance as a function of the BSC crossover probability p . For the (n, 1) repetition code,
dmin = n, and t = (n - 1)/2 (remembern is odd). Suppose in particular that n = 3, so that
t = 1. Then the decoder will make an error if the channel causes either 2 or 3 bits to be in
error. Using P," to denote the probability of decoding error for a code of length n, we have

P: = Prob(2 channel errors) + Prob(3 channel errors)
2 3 = 3p (1 - p) + p3 = 3p2 - 2p .

If p < i, then P: < p , that is, the decoder will have fewer errors than using the channel
without coding.

Let us now examine the probability of decoding error for a code of length n. Note that
it doesn't matter what the transmitted codeword was; the probability of error depends only
on the error introduced by the channel. Clearly, the decoder will make an error if more than
half of the received bits are in error. More precisely, if more than t bits are in error, the
decoder will make an error. The probability of error can be expressed as

n

P," = Prob(i channel errors occur out of n transmitted bits).
i=t+l

The probability of exactly i bits in error out of n bits, where each bit is drawn at random
with probability p is6

so that

P," = (f)p'(l - p)"-'
i=t+l

t+ l

+ terms of higher degree in p .

It would appear that as the code length increases, and thus t increases, the probability of
decoder error decreases. (This is substantiated in Exercise 1.16b.) Thus, it is possible to
obtain arbitrarily small probability of error, but at the cost of a very low rate: R = l / n + 0
as P," + 0.

Let us now consider using this repetition code for communication over the AWGN
channel. Let us suppose that the transmitter has P = 1 Watt (W) of power available and
that we want to send information at 1 bithecond. There is thus Eb = 1 Joule (J) of energy
available for each bit of information. Now the information is coded using an (n, 1) repetition

6The binomial coefficient is (1) = -

32 A Context for Error Correction Coding

code. To maintain the information rate of 1 bitlsecond, we must send n coded bitslsecond.
With n times as many bits to send, there is still only 1 W of power available, which must be
shared among all the coded bits. The energy available for each coded bit, which we denote
as Ec, is E, = &/n. Thus, because of coding, there is less energy available for each bit
to convey information! The probability of error for the AWGN channel (i.e., the binary
crossover probability for the effective BSC) is

P = Q(J2E,/No)= Q(JzEb/nNo).
The crossover probability p is higher as a result of using a code! However, the hope is that
the error decoding capability of the overall system is better. Nevertheless, for the repetition
code, this hope is in vain.

repcodepr0b.m Figure 1.18 shows the probability of error for repetition codes (here, consider only the
hard-decision decoding). The coded performance is worse than the uncoded performance,
and the performance gets worse with increasing n.

1 oo

-a-- Rep n=l 1, soft

i P
I" 0 2 4 6 8 10

SNR. dB

Figure 1.18: Performance of the (3, 1) and (11, 1) repetition code over BSC using both
hard- and soft-decision decoding.

1.8.2 Soft-Decision Decoding of Repetition Codes Over the AWGN

Let us now consider decoding over the AWGN using a sof-decision decoder. Since the
repetition code has a particularly simple codeword structure, it is straightforward to describe
the soft-decision decoder and characterize its probability of error.

The likelihood function is
n

i=l

so that the log likelihood ratio

1.8 Some Important Definitions 33

can be computed using (1.21) as

i=l

Then the decoder decides & = 1 if A(r) > 0, or hi = 0 if A(r) < 0. Since the threshold is
0 and L , is a positive constant, the decoder decides

m = (1 if C:='=, Ti > O

if Cy=1 Ti < 0. O

The soft-decision decoder performs superior to the hard-decision decoder. Suppose the
vector (-a, -a, . . . , -a) is sent (corresponding to the all-zero codeword). If
one of the Ti happens to be greater than 0, but other of the Ti are correspondingly less than
0, the erroneous positive quantities might be canceled out by the other symbols. In fact,
it is straightforward to show (see Exercise 1.18) that the probability of error for the (n, 1)
repetition code with soft-decision decoding is

That is, it is the same as for uncoded transmission - still not effective as a code, but better
than hard-decision decoding.

1.8.3 Simulation of Results

While it is possible for these simple codes to compute explicit performance curves, it is
worthwhile to consider how the performance might also be simulated, since other codes
that we will examine may be more difficult to analyze. The program here illustrates a
framework for simulating the performance of codes. The probability of error is estimated
by running codewords through a simulated Gaussian channel until a specified number of
errors has occurred. Then the estimated probability of error is the number of errors counted
divided by the number of bits generated.

Figure 1.18 shows the probability of error for uncoded transmission and both hard- and
soft-decision decoding of (3 , l) and (1 1, l) codes.

1.8.4 Summary

This lengthy example on a nearly useless code has introduced several concepts that will be
useful for other codes:

The concept of minimum distance of a code.

The probability of decoder error.

The idea of a generator matrix.

The fact that not every code is good!7

Recognition that soft-decision decoding is superior to hard-input decoding in terms
of probability of error.

7Despite the fact that these are very low-rate codes and historically of little interest, repetition codes are an
essential component of a very powerful, recently introduced code, the repeat accumulate code introduced in
Section 15.14.

34 A Context for Error Correction Coding

Prior to the proof of Shannon's channel coding theorem and the research it engendered,
communication engineers were in a quandary. It was believed that to obtain totally reliable
communication, it would be necessary to transmit very slow rates, essentially employing
repetition codes to catch any errors and using slow symbol rate to increase the energy per
bit. However, Shannon's theorem dramatically changed this perspective, indicating that it
is not necessary to slow the rate of communication to zero. It is only necessary to use better
codes.

1.9 Hamming Codes

As a second example we now introduce Hamming codes. These are codes which are much
better than repetition codes and were the first important codes discovered. Hamming codes
lie at the intersection of many different kinds of codes, so we will use them also to introduce
several important themes which will be developed throughout the course of this book.

A (7,4) Hamming code produces 7 bits of output for every 4 bits of input. Hamming
codes are linear block codes, which means that the encoding operation can be described in
terms of a 4 x 7 generator matrix, such as

r1 1 o 1 o o 01

0 0 1 1 0 1 0 '
0 1 1 0 1 0 0 1 G = l 0 0 0 1 1 0 1

(1.34)

The codewords are obtained as linear combination of the rows of G, where all the operations
are computed modulo 2 in each vector element. That is, the code is the row space of G. For
a message vector m = [m l , m2, m3, m4] the codeword is

r
c = mG.

For example, if m = [1, 1 , 0, 01 then

c=[1,1,0,1,0,0,0]+[0,1,1,0,1,0,0]=[1,0,1,0,1,0,0].

mindist .m 1 It can be verified that the minimum distance of the Hamming code is d ~ n = 3, so the code
is capable of correcting 1 error in every block of n bits.

The codewords for this code are

[O ,O, o,o, o,o, 01, [I , 1,0, 1,0,0,01, [O, 1, 1,0, 1,0,01, E l , 0, 1, 1, 1,0,01

[O, 0, 1, 1,0, 1,01, [I , 1, 1,090, 1,019 [O, 1,0, 1, 1, 1,019 [I , o,o, 0, 1, 1,OI

[O, o,o, 1, 1,0, 11, [I, 1,0,0, 190, 11, [O, 1, 1, 1,0,0, 11, [I, 0, 1,0,0,0, 11

[O, 0, 1,0, 1, 1, 11, [I , 1, 1, 1, 1, 1, 11, 10, 1,0,0,0, 1, 11, [I, o,o, 1,0, 1, 11.

(1.35)

The Hamming decoding algorithm presented here is slightly more complicated than for the
repetition code. (There are other decoding algorithms.)

Every (n , k) linear block code has associated with it a (n - k) x n matrix H called the
parity check matrix, which has the property that

vHT = 0 if and only if the vector v is a codeword. (1.36)

The parity check matrix is not unique. For the generator G of (1.34), the parity check matrix
can be written as

(1.37) 1 1 0 1 1 1 0 0

0 0 1 0 1 1 1
1 0 1 1 1 0 .

1.9 Hamming Codes 35

It can be verified that G H = 0.
The matrix H can be expressed in terms of its columns as

H = [hi h2 h3 h4 h5 hg h7].

It may be observed that the columns of H consist of the binary representations of the numbers
1 through 7 = n, though not in numerical order. On the basis of this observation, we can
generalize to other Hamming codes. Hamming codes of length n = 2m - 1 and dimension
k = 2m - m - 1 exist for every m 3 2, having parity check matrices whose columns are
binary representations of the numbers from 1 through n .

1.9.1 Hard-Input Decoding Hamming Codes

Suppose that a codeword c is sent and the received vector is

r = c + n (addition modulo 2).

The first decoding step is to compute the syndrome
s = r H T = (c+n)HT = n H T .

Because of property (1.36), the syndrome depends only on the error n and not on the
transmitted codeword. The codeword information is “projected away.”

Since a Hamming code is capable of correcting only a single error, suppose that n is all
zeros except at a single position,

n = [nl , 122, n 3 , . . . , n71 = [0, . . . , 0 , l , O , . . . , O]

where the 1 is equal to ni . (That is, the error is in the ith position.)
Let us write H~ in terms of its rows:

Then the syndrome is

T s = r H = n H T = [n l n2 ... nn

The error position i is the column i of H that is equal to the (transpose of) the syndrome s T .

Algorithm 1.1 Hamming Code Decoding

1. For the received binary vector r, compute the syndrome s = rHT. If s = 0, then the decoded
codeword is 2 = r.

2. If s # 0, then let i denote the column of H which is equal to sT. There is an error in position
i of r. The decoded codeword is i. = r + ni, where ni is a vector which is all zeros except for
a 1 in the ith position.

This decoding procedure fails if more than one error occurs.

36 A Context for Error Correction Coding

Example 1.7 Suppose that the message

m = Im1, m2, m3, m41 = LO, 1,1,01

is encoded, resulting in the codeword

c = [O, 1, 1,0, 1,0,01+ [O, 0, 1, 1,0, 1,0] = [O, 1,0, 1, 1, 1,Ol.

When c is transmitted over a BSC, the vector

r = [0, 1, 1, 1, 1, 1,0]

is received. The decoding algorithm proceeds as follows:
1. The syndromes = [0, 1, 1, 1, 1, 1, O]HT = [l, 0, 11 is computed.
2. This syndrome corresponds to column 3 of H. The decoded value is therefore

The expression for the probability of bit error is significantly more complicated for Hamming
codes than for repetition codes. We defer on the details of these computations to the
appropriate location (Section 3.7) and simply plot the results here. The available energy per
encoded bit is

E, = Eb(k/n) = 4/7Eb,

so, as for the repetition code, there is less energy available per bit. This represents a loss of
1010glo(4/7) = -2.4 dB of energy per transmitted bit compared to the uncoded system.
Note, however, that the decrease in energy per bit is not as great as for the repetition code,
since the rate is higher. Figure 1.19 shows the probability of bit error for uncoded channels
(the solid line), and for the coded bits -that is, the bits coded with energy E , per bit - (the
dashed line). The figure also shows the probability of bit error for the bits after they have
been through the decoder (the dash-dot line). In this case, the decoded bits do have a lower
probability of error than the uncoded bits. For the uncoded system, to achieve a probability
of error of p b = lop6 requires an SNR of 10.5 dB, while for the coded system, the same
probability of error is achieved with 10.05 dB. The code was able to overcome the 2.4 dB
of loss due to rate, and add another 0.45 dB of improvement. We say that the coding gain
of the system (operated near 10 dB) is 0.45 dB: we can achieve the same performance as
a system expending 10.5 dB SNR per bit, but with only 10.05 dB of expended transmitter
energy per bit.

Also shown in Figure 1.19 is the asymptotic (most accurate for large SNR) performance
of soft-decision decoding. This is somewhat optimistic, being better performance than
might be achieved in practice. But it does show the potential that soft-decision decoding
has: it is significantly better than the hard-input decoding.

hamcode74pe.m
ncho0sektest.m

1.9.2 Other Representations of the Hamming Code

In the brief introduction to the Hamming code, we showed that the encoding and decoding
operations have matrix representations. This is because Hamming codes are linear block
codes, which will be explored in Chapter 3. There are other representations for Hamming
and other codes. We briefly introduce these here as bait and lead-in to further chapters.
As these representations show, descriptions of codes involve algebra, polynomials, graph
theory, and algorithms on graphs, in addition to the linear algebra we have already seen.

1.9 Hamming Codes 37

Asymptotic soft-input decoding

5 6 7 8 9 1 0 1 1 12
EJN, (dB)

Figure 1.19: Performance of the (7,4) Hamming code in the AWGN channel.

An Algebraic Representation

The columns of the parity check matrix H can be represented using special symbols. That
is, we could write

1 [0 0 1 0 1 1 1

1 0 1 1 1 0 0
H = 0 1 0 1 1 1 0

as

H = [P l P2 P3 P4 P5 P6 P7] ,

where each represents a 3-tuple. Then the syndrome s = r H T can be represented as

i=l

Then s = for some j , which indicates the column where the error occurred. This turns
the decoding problem into a straightforward algebra problem.

A question we shall take up later is how to generalize this operation. That is, can codes
be defined which are capable of correcting more than a single error, for whlch finding the
errors can be computed using algebra? In order to explore this question, we will need to
carefully define how to perform algebra on discrete objects (such as the columns of H)
so that addition, subtraction, multiplication, and division are defined in a meaningful way.
Such algebraic operations are defined in Chapters 2 and 5.

A Polynomial Representation

Examination of the codewords in (1.35) reveals an interesting fact: if c is a codeword, then
so is every cyclic shift of c. For example, the codeword [1, 1 , 0, 1 , 0, 0, 01 has the cyclic

38 A Context for Error Correction Coding

which are also codewords. Codes for which all cyclic shifts of every codeword are also
codewords are called cyclic codes. As we will find in Chapter 4, Hamming codes, like most
block codes of modern interest, are cyclic codes. In addition to the representation using a
generator matrix, cyclic codes can also be represented using polynomials. For the (7,4)
Hamming code, there is a generatorpolynomial g (x) = x3 + x + 1 and a corresponding
parity-checkpolynomialh(x) = x 4 + x 2 + x + l , whichis apolynomial suchthath(x)g(x) =
x7 + 1. The encoding operation can be represented using polynomial multiplication (with
coefficient operations modulo 2). For this reason, the study of polynomial operations and
the study of algebraic objects built out of polynomials is of great interest. The parity check
polynomial can be used to check if a polynomial is a code pol nomial: A polynomial r (x)

check condition: compute r(x)h(x) modulo x7 + 1. If this is not equal to 0, then r (x) is
not a code polynomial.

is a code polynomial if and only if r (x)h (x) is a multiple of x Y + 1. This provides a parity

Example 1.8 The message m = [mo, mi, m2, m3] = [O, 1, 1, 01 can be represented as a polynomial
as

2 m (~) = mo +mix +m2x2 +m3x3 = 0 . 1 + 1 . + 1 . + 0 . x3 = + x 2 .

The code polynomial is obtained by c (x) = m (x) g (x) , or

2

2
4x1 = (x + x)(1 + x +x3) = (x + x 2 +x4) + (2 + x 4 +x5)

= x + 2x + x 3 + x 4 + x5 = x + x 3 + x 4 + x 5 ,

(where 2x2 = 0 modulo 2), which corresponds to the code vector c = [0, 1, 0, 1, 1, 1, 01. 0

A Trellis Representation

As we will see in Chapter 12, there is a graph associated with a block code. This graph is
called the Wolf trellis for the code. We shall see that paths through the graph correspond
to vectors v that satisfy the parity check condition v H T = 0. For example, Figure 1.20
shows the trellis corresponding to the parity check matrix (1.37). The trellis states at the kth
stage are obtained by taking all possible binary linear combinations of the first k columns
of H . In Chapter 12, we will develop decoding a algorithm which essentially finds the best
path through the graph. One such decoding algorithm is called the Viterbi algorithm. Such
decoding algorithms will allow us to create soft-decision decoding algorithms for block
codes.

The Viterbi algorithm is also used for decoding codes which are defined using graphs
similar to that of Figure 1.20. Such codes are called convolutional codes.

The Tanner Graph Representation

Every linear block code also has another graph which represents it called the Tanner graph.
For a parity check matrix, the Tanner graph has one node to represent each column of H
(the “bit nodes”) and one node to represent each row of H (the “check nodes”). Edges occur
only between bit nodes and check nodes. There is an edge between a bit node and a check
node if there is a 1 in the parity check matrix at the corresponding location. For example, for
the parity check matrix of (1.37), the Tanner graph representation is shown in Figure 1.21.

1.10 The Basic Questions 39

Figure 1.20: The trellis of a (7,4) Hamming code.

Algorithms to be presented in Chapter 15 describe how to propagate information through
the graph in order to perform decoding. These algorithms are usually associated with codes
which are iteratively decoded, such as turbo codes and low-density parity-check codes.
These modern families of codes have very good behavior, sometimes nearly approaching
capacity.

bit check
nodes nodes

Figure 1.2 1 : The Tanner graph for a (7,4) Hamming code.

1 .I 0 The Basic Questions

The two simple codes we have examined so far bring out issues relevant for the codes we
will investigate:

1. How is the code described and represented?

2. How is encoding accomplished?

3. How is decoding accomplished? (This frequently takes some cleverness!)

4. How are codewords to be represented, encoded, and decoded, in a computationally
tractable way?

40 A Context for Error Correction Coding

5. What is the performance of the code? What are the properties of the code? (e.g.,

6. Are there other families of codes which can provide better coding gains?

7. How can these codes be found and described?

8. Are there constraints on allowable values of n, k , and d ~ i , ?

9. Is there some limit to the amount of coding gain possible?

How many codewords? What are the weights of the codewords?)

10. For a given available SNR, is there a lower limit on the probability of error that can
be achieved?

Questions of this nature shall be addressed throughout the remainder of this book, presenting
the best answers available at this time.

1.1 1 Historical Milestones of Coding Theory

We present in Table 1.1 a brief summary of major accomplishments in coding theory and
some of the significant contributors to that theory, or expositors who contributed by bringing
together the significant contributions to date. Some dates and contributions may not be
exactly as portrayed here; it is difficult to sift through the sands of recent history. Also,
significant contributions to coding are made every month, so this cannot be a complete list.

1.12 A Bit of Information Theory

The channel coding theorem governs the ultimate limits of error correction codes. To
understand what it implies, we need to introduce a little bit of information theory and state
some results. However, it lies beyond the scope of the book to provide a full in-depth
coverage.

1.1 2.1 Information Theoretic Definitions for Discrete Random Variables

Entropy and Conditional Entropy

We first present information-theoretic concepts for discrete random variables. Let X be
a discrete random variable taking values in a set A, = {XI, x2, . . . , xm} with probability
P (X = xi) = pi. We have seen that the entropy is

H (X) = E [- log2 P(X)] = - P (X = x) logz P (X = x) (bits).
,€AX

The entropy represents the uncertainty there is about X prior to its measurement; equiva-
lently, it is the amount of information gained when X is measured.

Now suppose that Y = f (X) for some probabilistic function f(X). For example, Y
might be the output of a noisy channel that has X as the input. Let A, denote the set of
possible Y outcomes. We define H (X 1 y) as the uncertainty remaining about X when Y is
measured as Y = y:

H(XlY) = E[--log2 PXIY(XlY)l = - c PxlY(xlY)log2 PxlY(xlY> (bits).
,€Ax

1.12 A Bit of Information Theory 41

Table 1.1: Historical Milestones
Year Milestone Year Milestone
1948 Shannon publishes “A Mathematical Theorv of 1975 Sugiyama et al. propose the use of the Euclidean

1950
1954

1955
1957
1959
1960

1961

1962

1963

1966

1967

1968

1969

1971

1972

Communi&ion” [309]
Hamming describes Hamming codes [137]
Reed [284] and Muller [248] both present Reed-
Muller codes and their decoders
Elias introduces convolutional codes [76]
Prange introduces cyclic codes [271]
A. Hocquenghem [151] and ...
Bose and Ray-Chaudhuri [36] describe BCH codes
Reed&Solomon produce eponymous codes [286]
Peterson provides a solution to BCH decoding [261]
Peterson produces his book [260], later extended and
revised by Peterson and Weldon [262]
Gallager introduces LDPC codes [1121
2400 BPS modem commercially available (4-PSK)
(see [loo])
The Fano algorithm for decoding convolutional
codes introduced [SO]
Massey unifies the study of majority logic decoding

Fomey produces an in-depth study of concatenated
codes [87] and introduces generalized minimum dis-
tance decoding [88]
Berlekamp introduces a fast algorithm for
BCWReed-Solomon decoding [22]
Rudolph initiates the study of !inite geometries for
coding [299]
4800 BPS modem commercially available (8-PSK)
(see [loo])
Berlekamp produces Algebraic Coding Theory [25]
Gallager produces Information theory and reliable
communication [1 1 11
Jelinek describes the stack algorithm for decoding
convolutional codes [165]
Massey introduces his algorithm for BCH decoding
L27-21
Reed-Muller code flies on Mariner deep space
probes using Green machine decoder
Viterbi introduces the algorithm for ML decoding of
convolutional codes [359]
9600 BPS modem commercially available (16-

The BCJR algorithm is described in the open litera-
ture [lo]

~2241

QAW (see [loOD

1977

1978

1980

1981

1982

1983

1984

1985

1993

1994

1995

1996

1998
1999

2000

2002

2003

2004
2005

algorithm for decoding [324]
MacWilliams and Sloane produce the encyclopedic
The Theory of Error Correcting Codes [220]
Voyager deep space mission uses a concatenated
RSkonvolutional code (see [231])
Wolf introduces a trellis description of block codes
[3771
14,400 BPS modem commercially available (64-
QAW (see [lool)
Sony and Phillips standardize the compact disc, in-
cluding a shortened Reed-Solomon code
Goppa introduces algebraic-geometry codes [123,
1241
Ungerboeck describes trellis-coded modulation
13451
Lin & Costello produce their engineering textbook
[2031
Blahut publishes his textbook [33]
14,400 BPS TCM modem commercially available
(128-TCM) (see [loo])
19,200 BPS TCM modem commercially available
(160-TCM) (see [loo])
Berrou, Glavieux, and Tbitimajshima announce
turbo codes [28]
The 4 linearity of families of nonlinear codes is
announced [138]
MacKay resuscitates LDPC codes [218]
Wicker publishes his textbook [373]
33,600 BPS modem (V.34) modem is commercially
available (see [98])
Alamouti describes a space-time code (31
Guruswami and Sudan present a list decoder for RS
and AG codes [128]
Aji and McEliece [2] (and others [195]) synthesize
several decoding algorithms using message passing
ideas
Hanzo, Liew, and Yeap characterize turbo algorithms
in [141]
Koetter and Vardy extend the GS algorithm for soft-
decision decoding of RS codes [191]
Lm&Costello second edition [204]
Moon produces what is hoped to be avaluable book!

1973 Fomey elucidates the Viterbi algorithm [89]

Then the average uncertainty in X , averaged over the outcomes Y, is called the conditional
entropy, H(XIY), computed as

H(X1Y) = c H(XlY)PY(Y) = - c c PxlY(xlY)PY(Y)logz PxlY(xIY)
YeAy Y E A y x e d ,

= - 1 c ~x,Y(x,Y)log2~xlY(xlY)(bits).
Y E A y x e d ,

Relative Entropy, Mutual Information, and Channel Capacity

Definition 1.5 An important information-theoretic quantity is the Kullback-Leibler dis-
tance D (P I I Q) between two probability mass functions, also known as the relative entropy
or the cross entropy. Let P(X) and Q (X) be two probability mass functions on the

42 A Context for Error Correction Coding

outcomes in Ax. We define

o

Lemma 1.2 D(P I I Q) 2 0, with equality ifand only i f P = Q ; that is, ifthe two distribu-
tions are the same.

Proof We use the inequality logx 5 x - 1, with equality only at x = 1. This inequal-
ity appears so frequently in information theory it has been termed the information theory
inequality. Then

(information theory inequality)

= C P (x) - Q (x) = 0.

Definition 1.6 The mutual information between a random variable X and Y is the Kullback-
Leibler distance between the joint distribution P (X , Y) and the product of the marginals
P (X) P (Y) :

I (X ; Y) = D (P (X , Y > I I P (X) P (Y)) . (1.38)

0
If X and Y are independent, so that P (X , Y) = P (X) P (Y) , then Z (X ; Y) = 0. That is,

Using the definitions, it is straightforward to show that the mutual information can also
Y tells no information at all about X .

be written as
Z(X; Y) = H (X) - H (X 1 Y) .

The mutual information is the difference between the average uncertainty in X and the
uncertainty in X there still is after measuring Y. Thus, it quantifies how much information
Y tells about X . Since the definition (1.38) is symmetric, we also have

Z(X; Y) = H (Y) - H (Y 1 X) .

In light of Lemma 1.2, we see that mutual information Z (X ; Y) can never be negative.
With the definition of the mutual information, we can now define the channel capacity.

Definition 1.7 The channel capacity C of a channel with input X and output Y is defined
as the maximum mutual information between X and Y , where the maximum is taken over
all possible input distributions.

C = max Z(X; Y) .
px (x)

1.12 A Bit of Information Theory 43

For the BSC with crossover probability p , it is straightforward to show (see Exercise
1.3 1) that the capacity is

-1

1.1 2.2 Information Theoretic Definitions for Continuous Random Variables

Let Y be a continuous random variable taking on values in an (uncountable) set A,, with
pdf p y (y) . The differential entropy is defined as

H(Y) = -E[log, PY(Y)I = - PY(Y> log, PY(Y> dY. Ly
Whereas entropy for discrete random variables is always nonnegative, differential entropy
(for a continuous random variable) can be positive or negative.

Example 1.9 Let Y - N(0, a2). Then

1 1
20 2

1 1 1
2 2 2

= I O ~ ~ (~) ~ E [Y ~ I + - log22na2

= - log2(e) + - log2 2nn2 = - log2 2nea2 (bits).

It can be shown that, for a continuous random variable with mean 0 and variance u2, the
Gaussian N(0, a,) has the largest differential entropy.

Let X be a discrete-valued random variable taking on values in the alphabet A, with
probability Pr(X = x) = PX (x) , x E dx and let X be passed through a channel which
produces a continuous-valued output Y for Y E dy . A typical example of this is the additive
white Gaussian noise channel, where

Y = X + N ,

and N - N(0, a2). Let
PXY(X7 Y) = PYlX(YlX)PX(X)

denote the joint distribution of X and Y and let

x e d x X d X

denote the pdf of Y . Then the mutual information Z(X; Y) is computed as

44 A Context for Error Correction Coding

Example 1.10 Suppose Ax = {a , -a} (e.g., BPSK modulation with amplitude a) with probabilities
P (X = a) = P (X = -a) = 4. Let N - N(0, a 2) and let

Y = X + N .

Because the channel has only binary inputs, this is referred to as the binary additive white Gaussian
noise channel (BAWGNC). Then

(1.39)

1 00

@ (y , E b , a2) log2 @ (y , Eb, a2) d y - - log2 2nea2 (bits), (1.40) =I-L 2

where we define the function

When both the channel input X and the output Y are continuous random variables, then the
mutual information is

Example 1.11 Let X - N(0, u:) and N - N(0, a,’), independent of X . Let Y = X + N . Then
Y - N(O,a,” + a,’).
Z(X; Y) = H (Y) - H(Y1X) = H (Y) - H (X + N I X) = H (Y) - H (N I X) = H (Y) - H (N)

= - 1 log2 2neay 2 1 - - log2 2nea,, 2
2 2

(1.41)

The quantity a: represents the average power in the transmitted signal X and a,’ represents the
average power in the noise signal N . This channel is called the additive white Gaussian noise channel
(AWGNC). 0

As for the discrete channel, the channel capacity C of a channel with input X and output
Y is the maximum mutual information between X and Y , where the maximum is over all
input distributions. In Example 1.10, the maximizing distribution is, in fact, the uniform
distribution, P (X = a) = P (X = -a) = i, so (1.40) is the capacity for the BAWGNC. In
Example 1.1 1, the maximizing distribution is, in fact, the Gaussian distribution (since this
maximizes the entropy of the output), so (1.41) is the capacity for the AWGNC.

1.12 A Bit of Information Theory 45

1.1 2.3 The Channel Coding Theorem

The channel capacity has been dejined as the maximum mutual information between the
input and the output. But Shannon’s the channel coding theorem, tells us what the capacity
means. Recall that an error correction code has a rate R = k / n , where k is the number of
input symbols and n is the number of output symbols, the length of the code. The channel
coding theorem says this:

Provided that the coded rate of transmission R is less than the channel capacity,
for any given probability of error E specified, there is an error correction code
of length no such that there exist codes of length n exceeding no for which the
decoded probability of error is less than E.

That is, provided that we transmit at a rate less than capacity, arbitrarily low probabilities of
error can be obtained, if a sufficiently long error correction code is employed. The capacity
is thus the amount of information that can be transmitted reliably through the channel per
channel use.

A converse to the channel coding theorem states that for a channel with capacity C , if
R > C , then the probability of error is bounded away from zero: reliable transmission is
not possible.

The channel coding theorem is an existence theorem; it tells us that codes exist that
can be used for reliable transmission, but not how to find practical codes. Shannon’s
remarkable proof used random codes. But as the code gets long, the decoding complexity of
a truly random (unstructured) code goes up exponentially with the length of the code. Since
Shannon’s proof, engineers and mathematicians have been looking for ways of constructing
codes that are both good (meaning they can correct a lot of errors) and practical, meaning
that they have some kind of structure that makes decoding of sufficiently low complexity
that decoders can be practically constructed.

Figure 1.22 shows a comparison of the capacity of the AWGNC and the BAWGNC
channels as a function of E , / a 2 (an SNR measure). In this figure, we observe that the
capacity of the AWGNC increases with S N R beyond one bit per channel use, while the
BAWGNC asymptotes to a maximum of one bit per channel use - if only binary data is
put into the channel, only one bit of useful information can be obtained. It is always the
case that

CAWGNC > CBAWGNC.

Over all possible input distributions, the Gaussian distribution is information maximizing,
so CAWGNC is an upper bound on capacity for any modulation or coding that might be
employed. However, at very low SNRs, CAWGNC and CBAWGNC are very nearly equal.

Figure 1.22 also shows the capacity of the equivalent BSC, with crossover probability
p = Q (, / W) and capacity CBSC = 1 - H2(p). This corresponds to hard-input
decoding. Clearly, there is some loss of potential rate due to hard-input decoding, although
the loss diminishes as the SNR increases.

1.12.4 “Proof“ of the Channel Coding Theorem

In this section we present a “proof” of the channel coding theorem. While mathematically
accurate, it is not complete. The arguments can be considerably tightened, but are suffi-
cient to show the main ideas of coding. Also, the proof is only presented for the discrete

p1otcapcmp.m
cawgnc2 .m
cbawgnc2.m
h2 rn

46 A Context for Error Correction Coding

1.51 I vi ////j
- - BSCcapacity

Figure 1.22: Capacities of AWGNC, BAWGNC, and BSC.

input/discrete channel case. The intuition, however, generally carries over to the Gaussian
channel.

An important preliminary concept is the “asymptotic equipartition property” (AEP). Let
X be a random variable taking values in a set A,. Let X = (X I , X2, . . . , X,) be an i.i.d.
(independent, identically distributed) random vector and let x denote an outcome of X.

Theorem 1.3 (AEP) As n + 00, there is a set of “typical” outcomes I for which

P(X = x) M 2-”H(X), x E 7, (1.42)

By the AEP, most of the probability is “concentrated” in the typical set. That is, a “typical”
outcome is likely to occur, while an outcome which is not “typical” is not likely to occur.
Since the “typical” outcomes all have approximately the same probability (1.42), there must
be approximately 2”H(X) outcomes in the typical set 7.8

Proof We sketch the main idea of the proof. Let the outcome space for a random variable Y
be A, = (b l , b2, . . . , b ~] , occurring with probabilities Pi = P(Y = bi). Out of n samples
of the i.i.d. variable Y, let ni be the number of outcomes that are equal to bj . By the law of
large number^,^ when n is large,

ni
- 25 Pi.
n

(1.43)

~

*This observation is the basis for lossless data compression occurring in a source coder.
9Thorough proof of the AEP merely requires putting all of the discussion in the formal language of the weak

law of large numbers.

1.12 A Bit of Information Theory 47

The product of n observations can be written as

Now suppose that Y is, in fact, a function of a random variable X , Y = f (X) . In particular,
suppose f (x) = px(x) = P (X = x). Then by (1.44),

~ 1 ~ 2 " ' ~ n = f (~ l) f (x2) . . . f (xn) = n p x (x i)
n [z ~ [l o g 2 px(x)l]" = 2 - n ~ ~) .

i = l

This establishes (1.42). 0
Let X be a binary source with entropy H (X) and let each X be transmitted through a

memoryless channel to produce the output Y . Consider transmitting the sequence of i.i.d.
outcomes XI, x2, . . . , X n . While the number of possible sequences is M = 2n, the typical
set has only about 2nH(X) sequences in it. Let the total possible number of output sequences
y = yi, y2, . . . , yn be N . There are about 2nH(Y) 5 N typical output sequences. For each
typical output sequence y there are approximately 2nH(XIY) input sequences that could have
caused it. Furthermore, each input sequence x typically could produce 2nH(YIX) output
sequences. This is summarized in Figure 1.23(a).

Now let X be coded by a rate-R code to produce a coded sequence which selects, out of
the 2" possible input sequences, only 2nR of these. In Figure 1.23(b), these coded sequences
are denoted with filled squares, .. The mapping which selects the 2nR points is the code.
Rather than select any particular code, we contemplate using all possible codes at random
(using, however, only the typical sequences). Under the random code, a sequence selected
at random is a codeword with probability

Now consider the problem of correct decoding. A sequence y is observed. It can be decoded
correctly if there is only one code vector x that could have caused it. From Figure 1.23(b),
the probability that none of the points in the "fan" leading to y other than the original code
point is a message is

p = (probability a point x is not a codeword)(tJ'Picd number Of inputs for this y)

- - (1 - 2n(R-H(X)))2"H(XIY).

If we now choose R < maxpx(,) H (X) - H (X I Y) , that is, choose R < the capacity C,
then

R - H (X) + H (X 1 Y) < 0

for any input distribution Px (x). In this case,

R - H (X) = - H (X I Y) - Q

48 A Context for Error Correction Coding

2 n H (X) 1

sequences I
typical input I

\
I

X I
I

Z n H (X I Y)
typical inputs
causing each output
sequence .

1 /.',
. I

I
I
I
I Y
I
I
I
I
I

I' \
2 f l H (Y) typical
output sequences

1 . 1
I ,*, I

' N possible
output sequences

sequence

2 " H (X l Y)
ical inputs P or each output

sequence .
1 /.',

1 . 1

\ y / . .
(a) Basic input output relationship. (b) W represents codewords.

Figure 1.23: Relationship between input and output entropies for a channel. Each 0 or
represents a sequence.

so as n + 00,

P --+ 1 -2-a --+ 1.

Thus the probability that none of the points except the original code point leading to y
is a codeword approaches 1, so that the probability of decoding error - due to multiple
codewords mapping to a single received vector - approaches 0.

We remark that if the average of an ensemble approaches zero, then there are elements
in the ensemble that must approach 0. Thus there are codes (not randomly selected) for
which the probability of error approaches zero as n + 00.

There are two other ways of viewing the coding rate requirement. The 2nH(YIX) typical
sequences resulting from transmitting a vector x must partition the 2"*(') typical output se-
quences, so that each observed output sequence can be attributed to a unique input sequence.
The number of subsets in this partition is

1.12 A Bit of Information Theory 49

so the condition R < H (Y) - H (Y 1 X) must be enforced. Alternatively, the 2"H(X) typical
input sequences must be partitioned so that the 2nH(XIY) typical input sequences associated
with an observation y are disjoint. There must be 2n(H(X) -H(Xly)) distinct subsets, so again
the condition R < H (X) - H (X (Y) must be enforced.

Let us summarize what we learn from the proof of the channel coding theorem:

As long as R < C , arbitrarily reliable transmission is possible.

The code lengths, however, may have to be long to achieve the desired reliability. The
closer R is to C , the larger we would expect n to need to be in order to obtain some
specified level of performance.

Since the theorem was based on ensembles of random codes, it does not specify what
the best code should be. We don't know how to "design" the best codes, we only
know that they exist.

However, random codes have a high probability of being good. So we are likely to
get a good code simply by picking one at random!

So what, then, is the issue? Why the need for decades of research in coding theory, if
a code can simply be selected at random? The answer has to do with the complexity of
representing and decoding the code. To represent a random code of length n, there must
be memory to store all the codewords, which requires n2Rn bits. Furthermore, to decode
a received word y, ML decoding for a random code requires that a received vector y must
be compared with all 2R" possible codewords. For a R = 1/2 code with n = 1000 (a
relatively modest code length and a low-rate code), 2500 comparisons must be made for
each received vector. This is prohibitively expensive, beyond practical feasibility for even
massively parallel computing systems, let alone a portable communication device.

Ideally, we would like to explore the space of codes parameterized by rate, probability of
decoding error, block length (which governs latency), and encoding and decoding complex-
ity, identifying thereby all achievable tuples of (R , P , n, X E , XD), where P is the probability
of error and X E and XD are the encoding and decoding complexities. This is an overwhelm-
ingly complex task. The essence of coding research has taken the pragmatic stance of
identifying families of codes which have some kind of algebraic or graphical structure that
will enable representation and decoding with manageable complexity. In some cases what
is sought are codes in which the encoding and decoding can be accomplished readily using
algebraic methods - essentially so that decoding can be accomplished by solving sets of
equations. In other cases, codes employ constraints on certain graphs to reduce the encod-
ing and decoding complexity. Most recently, families of codes have been found for which
very long block lengths can be effectively obtained with low complexity using very sparse
representations, which keep the decoding complexity in check. Describing these codes and
their decoding algorithms is the purpose of this book.

The end result of the decades of research in coding is that the designer has a rich palette
of code options, with varying degrees of rate and encode and decode complexity. This book
presents many of the major themes that have emerged from this research.

1.12.5 Capacity for the Continuous-Time AWGN Channel

Let Xi be a zero-mean random variable with E [X :] = a: which is input to a discrete
AWGN channel, so that

Ri =Xi i- Ni,

50 A Context for Error Correction Coding

where the Ni are i.i.d. Ni - N(0, c,”). The capacity of this channel is

1 0 2 c = - log,(l + 3) bitskhannel use.
2 an

Now consider sending a continuous-time signal x (t) according to
n

where the vi(t) functions are orthonormal over [0, TI. Let us suppose that the transmitter
power available is P watts,
energy is also expressed as

so that the energy dissipated in T seconds is E = P T . This

E = J(I’ x 2 (t) d t = 2 X f .
i=l

We must therefore have
n

C X f = P T
i=l

or nE[X?] = P T , so that 0,” = P T / n .
Now consider transmitting a signal x (t) through a continuous-time channel with band-

width W. By the sampling theorem (frequently attributed to Nyquist, but in this context it
is frequently called Shannon’s sampling theorem), a signal of bandwidth W can be exactly
characterized by 2W samples/second - any more samples than this cannot convey any
more information about this bandlimited signal. So we can get 2 W independent channel
uses per second over this bandlimited channel. There are n = 2 W T symbols transmitted
over T seconds.

If the received signal is
R (t) = ~ (t) + N (t)

where N (t) is a white Gaussian noise random process with two-sided power spectral density
N0/2, then in the discrete-time sample

Rj = xi + Ni

where Ri = s,’ R (t) (p j (t) d t , the variance of Ni is u2 = N 0 / 2 . The capacity for this
bandlimited channel is

C = (k log2 (1 + s) bitskhannel use (2W channel usedsecond) 1
bitdsecond.

2PT

Now using n = 2WT we obtain

C = W log2(l + PINO W) bitshecond.

Since P is the average transmitted power, in terms of its units we have

(1.45)

energy
second

p = - = (energyhit) (bitshecond).

1.12 A Bit of Information Theorv 51

Since Eb is the energyhit and the capacity is the rate of transmission in bits per second, we
have P = EbC, giving

c = Wlog2 (1 + ;g). (1.46)

Let r] = C/ W be the spectral efficiency in bits/second/Hz; this is the data rate available for
each Hertz of channel bandwidth. From (1.46),

or

(1.47)

For BPSK the spectral efficiency is r] = 1 bit/second/Hz, so (1.47) indicates that it is theo-
retically possible to transmit arbitrarily reliably at Eb/No = 1, which is 0 dB. In principle,
then, it should be possible to devise a coding scheme which could transmit BPSK-modulated
signals arbitrarily reliably at an SNR of 0 dB. By contrast, for uncoded transmission when
&/No = 9.6 dB the BPSK performance shown in Figure 1.10 has Pb = There is at
least 9.6 dB of coding gain possible. The approximately 0.44 dB of gain provided by the
(7,4) Hamming code of Section 1.9 falls over 9 dB short of what is theoretically possible!

1.12.6 Transmission at Capacity with Errors

The theoretical tools we need to address these questions are the separation theorem
and rate-distortion theory. The separation theorem says that we can consider separately

By the channel coding theorem, zero probability of error is attainable provided that the
transmission rate is less than the capacity. What if we allow a non-vanishing probability of
error. What is the maximum rate of transmission? Or, equivalently, for a given rate, wluch
is the minimum S N R that will allow transmission at that rate, with a specified probability
of error?

and optimally (at least, asymptotically) data compression and error correction. Suppose
that the source has a rate of r bits/second. First compress the information so that the bits
of the compressed signal match the bits of the source signal with probability p . From
rate distortion theory, this produces a source at rate 1 - H2(p) per source bit (see (1.2)).
These compressed bits, at a rate r(1 - H2(p)) are then transmitted over the channel with
vanishingly small probability of error. We must therefore have r(1 - H2(p)) < C. The
maximum rate achievable with average distortion (i.e., probability of bit error) p , which we
denote as C(P) is therefore

C C(P) =
1 - H2(P) *

Figure 1.24 shows the required SNR Eb/No for transmission at various rates for both the
BAWGNC and the AWGNC. For any given line in the plot, the region to the right of the plot
is achievable - it should theoretically be possible to transmit at that probability of error
at that S N R . Curves such as these therefore represent a goal to be achieved by a particular
code: we say that we are transmitting at capacity if the performance falls on the curve.

We note the following from the plot:

At very low SNR, the binary channel and the AWGN channel have very similar
performance. This was also observed in conjunction with Figure 1.22.

52 A Context for Error Correction Coding

4 * BAWGNCR=0.5
+ BAWGNC R=0.75
* BAWGNC R=0.9 ! - Q AWGNC R=0.25

t -* AWGNC k 0 . 9

I - - AWGNC L 0 . 5 '
--t AWGNC R=0.75

-
t i --
t * -.

Figure 1.24: Capacity lower bounds on Pb as a function of SNR.

The higher the rate, the higher the required SNR.

The vertical asymptote (as Pb -+ 0) is the capacity C for that channel.

1.12.7 The Implication of the Channel Coding Theorem

The implication of the channel coding theorem, fundamentally, is that for a block code of
length n and rate R = k / n , the probability of a block decoding error can be bounded as

P (E) 5 2-nEb(R), (1.48)

where Eb(R) is a positive function of R for R < C . Work on a class of codes known as
convolutional codes - to be introduced in Chapter 12 has shown (see, e.g., [357]) that

where m is the memory of the code and E, (R) is positive for R < C. The problem, as we
shall see (and what makes coding such a fascinating topic) is that, in the absence of some
kind of structure, as either n or m grow, the complexity can grow exponentially.

Lab 1: Simulating a Communications Channel 53

Programming Laboratory 1 :
Simulating a Com mu nicat ions
Channel

Objective

In this lab, you will simulate a BPSK communication sys-
tem and a coded system with a Hamming code employing
hard-input decoding rules.

Background

Reading: Sections 1.5, 1.7, 1.9.
In the case of BPSK, an exact expression for the prob-

ability of error is available, (1.25). However, in many more
interesting communication systems, a closed form expres-
sion for the probability of error is not available or is difficult
to compute. Results must be therefore obtained by simula-
tion of the system.

One of the great strengths of the signal-space viewpoint
is that probability of error simulations can be made based
only on points in the signal space. In other words, it suffices
to simulate random variables as in the matched filter output
(1.12), rather than creating the continuous-time functions as
in (1.10). (However, for other kinds of questions, a simu-
lation of the continuous-time function might be necessary.
For example, if you are simulating the effect of synchro-
nization, timing jitter, delay, or fading, simulating the time
signal is probably necessary.)

A framework for simulating a communication system
from the signal space point of view for the purpose of com-
puting the probability of error is as follows:

Algorithm 1.2 Outline for simulating digital communica-
tions

I Initialization: Store the points in the signal constellation.

z FOR each signal-to-noise ratio y = Eb/No:
3 Compute No = E b / y and o2 = No/2.
4 no:

Fix Eb (typically Eb = 1).

5

6

7

8

9

10

I 1

12

- - .

Generate some random bit@) (the “transmitted” bits)
according to the bit probabilities
Map the bit@) into the signal constellation
(e.g.,BPSK or 8-PSK) to create signal s
Generate a Gaussian random vector n (noise) with
variance m2 = No12 in each signal direction.
Add the noise to the signal to create the matched filter output
signal r = s+ n.
Perform a detection on the symbol
(e.g., find closest point in signal constellation to r)
From the detected symbol, determine the detected bits
Compare detected bits with the transmitted bits
Accumulate the number of bits in error

1 3 UNTIL at least N hit errors have been counted.
14 The estimated urobabilitv of error at this SNR is

pe Ft: number of errors counted
number of bits generated

isEnd FOR

As a general rule, the more errors N you count, the
smaller will be the variance of your estimate of the prob-
ability of error. However, the bigger N is, the longer the
simulation will take to run. For example, if the probabil-
ity of error is near at some particular value of SNR,
around one million bits must be generated before you can
expect an error. If you choose N = 100, then 100 million
bits must be generated to estimate the probability of error,
for just that one point on the plot!

Use of Coding in Conjunction with the BSC

For an (n, k) code having rate R = k / n transmitted with
energy per bit equal to Eb, the energy per coded bit is
Ec = EbR. It is convenient to fix the coded energy per
bit in the simulation. To simulate the BSC channel with
coding, the following outline can be used.

Algorithm 1.3 Outline for simulating (n, k)-coded digital
communications

I Initialization: Store the points in the signal constellation.

z FOR each signal-to-noise ratio y = Eb/No:
3 Compute No = E , / (R y) and g2 = No/2.
4 Compute the BSC crossover probability p = Q(-).
5 DO:
6

7

8

9

10

I I

12 UNTIL at least N bit errors have been counted.
13 The estimated probability of error is

pe ~ number of errors counted
number of bits generated

Fix Ec (typically Ec = 1). Compute R .

Generate a block of k “transmitted” input bits
and accumulate the number of bits generated
Encode the input bits to n codeword bits
Pass the n bits through the BSC
(Ep each bit with probability p)
Run the n bits through the decoder to produce k output bits
Compare the decoded output bits with the input bits
Accumulate the number of bits in error

14End FOR

The encoding and decoding operations depend on the
kind of code used. In this lab, you will use codes which are
among the simplest possible, the Hamming codes.

Since for linear codes the codeword is irrelevant, the
simulation can be somewhat simplified by assuming that
the input bits are all zero, so that the codeword is also all
zero. For the Hamming code, the simulation can be arranged
as follows:

54 A Context for Error Correction Coding

Algorithm 1.4 Outline for simulating (n, k) Hamming-
coded digital communications

I Fix Ec (typically Ec = 1). Compute R .
z FOR each signal-to-noise ratio y = E b / N o :
3 Compute No = E c / (R y) and o2 = N a p .
4 Compute the BSC crossover probability p = Q(m).
5 DO:
6

7

8

9

1 0

1 I

12 UNTIL at least N bit errors have been counted.
1 3 Compute the probability of error.
14End FOR

Generate r as a vector of n random bits which are 1
with probability p
Increment the number of bits generated by k.
compute the syndrome s = rHT.
Ifs # 0, determine the error location based on the column
of H which is equal to s and complement that bit of r
Count the number of decoded bits (out of k) in r which
match the all-zero message bits
Accumulate the number of bits in error.

The coding gain for a coded system is the difference
in the SNR required between uncoded and coded systems
achieving the same probability of error. Usually the coding
gain is expressed in dF3 .

Assignment

Preliminary Exercises Show that if X is a random vari-
able with mean 0 and variance 1 then

Y = a X + b

is a random variable with mean b and variance a2.

Programming Part

BPSK Simulation

1) Write a program that will simulate a BPSK communi-
cation system with unequal prior bit probabilities. Using
your program, create data from which to plot the probabil-
ity of bit error obtained from your simulation for SNRs in
the range from 0 to 10 dB, for the three cases that Po = 0.5
(in which case your plot should look much like Figure 1. lo),
PO = 0.25, and Po = 0.1. Decide on an appropriate value
of N .
2) Prepare data from which to plot the theoretical proba-
bility of error (1.24) for the same three values of Po. (You
may want to combine these first two programs into a single
program.)
3) Plot the simulated probability of error on the same axes
as the theoretical probability of error. The plots should
have Eb/NO in dF3 as the horizontal axis and the probabil-
ity as the vertical axis, plotted on a logarithmic scale (e.g.,
semilogy in Matlab).

4) Compare the theoretical and simulated results. Com-
ment on the accuracy of the simulation and the amount of
time it took to run the simulation. Comment on the impor-
tance of theoretical models (where it is possible to obtain
them).
5) Plot the probability of error for Po = 0.1, Po = 0.25
and PO = 0.5 on the same axes. Compare them and com-
ment.
8-PSK Simulation
1) Write a program that will simulate an 8-PSK communi-
cation system with equal prior bit probabilities. Use a signal
constellation in which the points are numbered in Gray code
order. Make your program so that you can estimate both the
symbol error probability and the bit error probability. De-
cide on an appropriate value of N .
2) Prepare data from which to plot the bound on the prob-
ability of symbol error Ps using (1.26) and probability of
bit error Pb using (1.27).
3) Plot the simulated probability of symbol error and bit
error on the same axes as the bounds on the probabilities of
error.
4) Compare the theoretical and simulated results. Com-
ment on the accuracy of the bound compared to the simula-
tion and the amount of time it took to run the simulation.
Coded BPSK Simulation

1) Write a program that will simulate performance of the
(7,4) Hamming code over a BSC channel with channel
crossover probability p = Q (d a) and plot the prob-
ability of error as a function of Eb/NO in dB. On the same
plot, plot the theoretical probability of error for uncoded
BPSK transmission. Identify what the coding gain is for a
probability of error Pb =
2) Repeat this for a (15, 11) Hamming code. (See page 97
and equations (3.6) and (3.4))

Resources and implementation Suggestlons

A unit Gaussian random variable has mean zero and
variance 1. Given a unit Gaussian random variable, using
the preliminary exercise, it is straightforward to generate a
Gaussian random variable with any desired variance.

The function gran provides a unit Gaussian random
variable, generated using the Box-Muller transformation of
two uniform random variables. The function granil re-
turns two unit Gaussian random variables. This is useful
for simulations in two-dimensional signal constellations.
0 There is nothing in this lab that makes the use of C++ im-
perative, as opposed to C. However, you may find it useful
to use C++ in the following ways:

Create an AWGN class to represent a 1-D or 2-D channel.
0 Create a BSC class.

Lab 1: Simulating a Communications Channel 55

0 Create a Hamming code class to take care of encoding
and decoding (as you learn more about coding algorithms,
you may want to change how this is done).
0 In the literature, points in two-dimensional signal con-
stellations are frequently represented as points in the com-
plex plane. You may find it convenient to do similarly, using
the complex number capabilities that are present in C++.

0 Since the horizontal axis of the probability of error plot is
expressed as a ratio Eb/NO, there is some flexibility in how
to proceed. Given a value of Eb/NO, you can either fix NO
and determine Eb, or you can fix Eb and determine NO. An
exampleofhow this can bedoneisin testrepcode. cc.
0 The function ur an generates a uniform random number
between 0 and 1. This can be used to generate a bit which
is 1 with probability p .
0 The Q function, used to compute the theoretical proba-
bility of error, is implemented in the function qf.

There are two basic approaches to generating the se-
quence of bits in the simulation. One way is to generate and
store a large array of bits (or their resulting signals) then
processing them all together. This is effective in a language
such as Matlab, where vectorized operations are faster than
using for loops. The other way, and the way recommended
here, is to generate each signal separately and to process it
separately. This is recommended because it is not necessar-
ily known in advance how many bits should be generated.
The number of bits to be generated could be extremely large
- in the millions or even billions when the probability of
error is small enough.

For the Hamming encoding and decoding opera-
tion, vector/matrix multiply operations over GF(2) are
required, such as c = mG. (G F (2) is addi-
tion/subtraction/multiplication/division modulo 2.) These
could be done in the conventional way using nested for
loops. However, for short binary codes, a computational
simplification is possible. Write G in terms of its columns
as

Then the encoding process can be written as a series of vec-
torhector products (inner products)

G = [g1 8 2 . . . 9.1

= [mgl m g 2 ... m9.1.

Let us consider the inner product operation: it consists of
element-by-element multiplication, followed by a sum.

Let rn be an integer variable, whose bits represent the
elements of the message vector m. Also, let g[i] be an in-
teger variable in C whose bits represent the elements of the

column gk. Then the element-b element multi lication in-
volved in the product m g k cant; written simpyy using the
bitwise-and operator & in C. How, then, to sum up the ele-
ments of the resulting vector? One way, of course, is to use
a for loop, such as:

/ / Compute c=m*G, where m is a bit-vector,
/ / and G is represented by g[i]
c = 0; / / set vector of bits to 0
for(i = 0; i < n; i++) {

mg = rn & g[i];
/ / mod-2 multiplication
/ / of all elements
bit surn=O ;
for(j = 0, mask=l; j < n; j + +) {
/ / mask selects a single bit

if(mg & mask) {

bit sum++ ;
/ / accumulate if the bit != 0

I
mask <<= 1;
/ / shift mask over by 1 bit

I
bitsum = bitsum % 2; / / mod-2 sum
c = c 1 bitsum*(l<<i);
/ / assign to vector of bits . . .

1

However, for sufficiently small codes (such as in this
assignment) the inner for loop can be eliminated by pre-
corn uting the sums. Consider table below. For a given
numger rn, the last column provides the sum of all the bits
in m, modulo 2.

m mminary) E m s [m] = C m (mod2)
0 oooo 0 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0001
0010
001 1
0100
0101
01 10
0111
1000
1001
1010
1011
1100
1101
1110
1111

1
1
2
1
2
2
3
1
2
2
3
2
3
3
4

1
1
0
1
0
0
1
1
0
0
1
0
1
1
0

To use this in a program, precompute the table of bit
sums, then use this to look up the result. An outline fol-
lows :

/ / Compute the table s , having all
/ / the bit sums modulo 2
/ / ...

/ / Compute c=m*G, where
/ / m is a bit-vector, and
/ / G is represented by g[il
c = 0;
for(i = 0; i < n; i++) {

c = c I s [m & g[ill*(l<<i);
/ / assign to vector of bits

1

56 A Context for Error Correction Coding

1.1 3 Exercises

1.1 Weighted codes. Let sl, s2, . . . , sn be a sequence of digits, each in the range 0 5 si < p , where
p is a prime number. The weighted sum is

W = nsl + (n - l)s2 + (n - 2)s3 + . . * f 2~n-1 + sn.
The final digit sn is selected so that W modulo p is equal to 0. That is, W = 0 (mod p) . W is
called the checksum.

(a) Show that the weighted sum W can be computed by computing the cumulative sum sequence
t1, f 2 , . . . , tn by

I1 = ~ 1 , t2 = ~1 + ~ 2 , . . . , tn = ~1 + $2 + . . S n

then computing the cumulative sum sequence

W I = t l , ~2 = t l +t2, . . . , W n = tl +tz + * * . + t n ,

with W = W n .

(b) Suppose that the digits Sk and Sk+l are interchanged, with Sk # S k + l , and then a new
checksum W’ is computed. Show that if the original sequence satisfies W = 0 (mod p) ,
then the modified sequence cannot satisfy W’ = 0 (mod p) . Thus, interchanged digits
can be detected.

(c) For a sequence of digits of length i p , suppose that digit Sk is altered to some s; # Sk,
and a new checksum W’ is computed. Show that if the original sequence satisfies W = 0
(mod p) , then the modified sequence cannot satisfy W’ = 0 (mod p) . Thus, a single
modified digit can be detected. Why do we need the added restriction on the length of the
sequence?

(d) See if the ISBN 0-13-139072-4 is valid.
(e) See if the ISBN 0-13-193072-4 is valid.

1.2 See if the UPCs 0 59280 00020 0 and 0 41700 00037 9 are valid.
1.3 A coin having P(head) = 0.001 is tossed 10,000 times, each toss independent. What is the

lower limit on the number of bits it would take to accurately describe the outcomes? Suppose it
were possible to send only 100 bits of information to describe all 10,000 outcomes. What is the
minimum average distortion per bit that must be accrued sending the information in this case?

1.4 Show that the entropy of a source X with M outcomes described by (1.1) is maximized when all
the outcomes are equally probable: p i = p2 = . . . = PM.

1.5 Show that (1.7) follows from (1.5) using (1.4).
1.6 Show that (1.12) is true and that the mean and variance of N l j and N2j are as in (1.13) and (1.14).
1.7 Show that the decision rule and threshold in (1.19) and (1.20) are correct.
1.8 Show that (1.24) is correct.
1.9 Show that if X is a random variable with mean 0 and variance 1 that Y = aX + b is a random

variable with mean b and variance a2.
1.10 Show that the detection rule for 8-PSK

T P=argmaxr s
S€S

follows from (1.18) when all points are equally likely.
1.11 Consider a series of M BSCs, each with transition probability p , where the outputs of each BSC

is connected to the inputs of the next in the series. Show that the resulting overall channel is a
BSC and determine the crossover probability as a function of M. What happens as A4 -+ m?
Hint: To simplify, consider the difference of (x + y)” and (x - Y) ~ .

1.13 Exercises 57

1.12 [246] Bounds and approximations to the Q function. For many analyses it is useful to have
analytical bounds and approximations to the Q function. This exercise introduces some of the
most important of these.

Hint: integrate by parts.
(b) Show that

(c) Hence conclude that

(d) Plot these lower and upper bounds on a plot with Q(x) (use a log scale).

(e) Another useful bound is Q (x) 5 ie-*’I2. Derive this bound. Hint: Identify [Q(a)I2 as
the probability that the zero-mean unit-Gaussian random variables lie in the shaded region
shown on the left in Figure 1.25, (the region [a, 03) x [a, m)). This probability is exceeded
by the probability that (x, y) lies in the shaded region shown on the right (extended out to
00). Evaluate this probability.

Y

Figure 1.25: Regions for bounding the Q function.

1.13 Let V2(n, t) be the number of points in a Hamming sphere of “radius” t around a binary codeword
of length n. That is, it is the number of points within a Hamming distance t of a binary vector.
Determine a formula for V2 (n , t) .

1.14 Show that the Hamming distance satisfies the triangle inequality. That is, for three binary vectors
x, y, and z of length n , show that

dH 6, Z) 5 dH (X, Y) f dH (y, Z).

1.15 Show that for BPSK modulation with amplitudes &a, the Hamming distance dH and the
Euclidean distance dE between a pair of codewords are related by dE = 2 m .

1.16 In this problem, we will demonstrate that the probability of error for a repetition code decreases
exponentially with the code length. Several other useful facts will also be introduced by this
problem.

58 A Context for Error Correction Coding

(a) Show that

(b) Justify the steps of the proof of the following fact:

(c) Show that the probability of error for a repetition code can be written as

where t = L(n - 1) / 2 J .

(d) Show that

1.17 [220, p. 141 Identities on (i). We can define

m! if m is a positive integer

i fm = O
otherwise.

Show that

(a) ("k) = n ! if k is a nonnegative integer.

(b) (i) = 0 if n is an integer and k > n is a nonzero integer.

(c) (i) + (k i l l) = (nil).
n f k - 1 (4 (- 1 l k (i n) = (k).

(e) c;=o (i) = 2n.

(8) C;=o(-~)k(i) = o i fn L 1 .

(0 E k even (i) = Ek odd (i) = 2n-' i fn ? 1.

1.18 Show that for soft-decision decoding on the (n, 1) repetition code, (1.33) is correct.

1.19 For the (n, 1) code used over a BSC with crossover probability p , what is the probability that an

1.20 Hamming code decoding.

error event occurs which is not detected?

(a) For G in (1.34) and H in (1.37), verify that G H = 0. (Recall that operations are computed
modulo 2.)

1.13 Exercises 59

1.21

1.22

1.23

1.24

1.25

1.26
1.27

1.28

1.29
1.30

1.31

1.32

(b) Let m = [1, 1, 0, 01. Determine the transmitted Hamming codeword when the generator

(c) Let r = [l , 1, 1, 1, l , O , 01. Using Algorithm 1.1, determine the transmitted codeword c.

(d) The message m = [l , 0.0, 11 is encoded to form the codeword c = [l , 1,0,0, 1,0, 11.

of (1.34) is used.

Also determine the transmitted message m.

The vector r = [l , 0, 1, 0, 1,0,0] is received. Decode r to obtain 2. Is the codeword
found the same as the original c? Why or why not?

For the (7,4) Hamming code generator polynomial g(x) = 1 + x + x3, generate all possible
code polynomials c(x) . Verify that they correspond to the codewords in (1.35). Take a nonzero
codeword c (x) and compute c (x)h(x) modulo x7 + 1. Do this also for two other nonzero
codewords. What is the check condition for this code?

Is it possible that the polynomial g(x) = x4 + x 3 + x2 + 1 is a generator polynomial for a cyclic
code?

For the parity check matrix

H = O l O l O [b : 1 : :‘I
draw the Wolf trellis and the Tanner graph.

Let X be a random variable taking on the values Ax = {a , b, c, d } with probabilities

1 1 1 1
2 4 8 8

P (X = a) = - P (X = b) = - P (X = C) = - P (X = d) = -.

Determine H (X) . Suppose that 100 measurements of independent draws of X are made per
second. Determine what the entropy rate of this source is. Determine how to encode the X data
to achieve this rate.

Show that the information inequality logx 5 x - 1 is true.

Show that for a discrete random variable X , H (X) 2 0.
Show that Z (X ; Y) 0 and that Z (X ; Y) = 0 only if X and Y are independent. Hint: Use the
information inequality.

Show that the formulas Z (X ; Y) = H (X) - H(X1Y) and Z (X ; Y) = H (Y) - H (Y 1 X) follow
from the definition (1.38).
Show that H (X) 1 H(X1Y). Hint: Use the previous two problems.

Show that the mutual information Z(X; Y) can be written as

For a BSC with crossover probability p having input X and output Y , let the probability of the
inputs be P (X = 0) = q and P (X = 1) = 1 - q .

(a) Show that the mutual information is

Z (X ; Y) = H (Y) + plog2 p + (1 - P) log2(1 - P)

(b) By maximizing over q show that the channel capacity per channel use is

C = 1 - H2(p) (bits).

Consider the channel model shown here, which accepts three different symbols.

60 A Context for Error Correction Coding

Transmitted Received
Symbols Symbols

P

The first symbol is not affected by noise, while the second and third symbols have a probability
p of not being corrupted, and a probability q of being changed into the other of the pair. Let
a = - p log p - q log q, and let P be the probability that the first symbol is chosen and let Q be
the probability that either of the other two is chosen, so that P + 2Q = 1.

(a) ShowthatH(X) =-PlogP-2QlogQ.
(b) Show that H(XIY) = 2Qa.
(c) Choose the input distribution (i.e., choose P and Q) in such a way to maximize Z(X; Y) =

1.33 Let X - U(-a, a) (that is, X is uniformly distributed on [-a, a]) . Compute H(X). Compare
H(X) with the entropy of a Gaussian distribution having the same variance.

1.34 Let g(n) denote the pdf of a random variable X with variance u2. Show that

H (X) - H(X1Y)) subject to P + 2Q = 1. What is the capacity for this channel?

H (X) 5 - 1 log2 2nea 2 .
2

with equality if and only if X is Gaussian. Hint: Let p (n) denote the pdf of a Gaussian r.v. with
variance u2 and consider D(gllp) . Also, note that logp(x) is quadratic in x .

1.35 Show that H (X + NIX) = H (N) .

1.14 References

The information age was heralded with Shannon’s work [309]. Thorough coverage of
information theory appears in [59], [111] and [382]. The books [228] and [357] place
coding theory in its information theoretic context. Our discussion of the AEP follows [151,
while our “proof“ of the channel coding theorem closely follows Shannon’s original [309].
More analytical proofs appear in the textbooks cited above. See also [350]. Discussion
about tradeoffs with complexity are in [288], as is the discussion in Section 1.12.6.

The detection theory and signal space background is available in most books on digital
communication. See, for example, [276, 15,246,2671.

Hamming codes were presented in [1371. The trellis representation was presented first in
[377]; a thorough treatment of the concept appears in [205l. The Tanner graph representation
appears in [330]; see also [112]. Exercise 1.16b comes from [350, p. 211.

The discussion relating to simulating communication systems points out that such sim-
ulations can be very slow. Faster results can in some cases be obtained using importance
sampling. Some references on importance sampling are [84,211,308, 3161.

Part I1

Block Codes

Chapter 2

Groups and Vector Spaces
2.1 Introduction

Linear block codes form a group and a vector space. Hence, the study of the properties of
this class of codes benefits from a formal introduction to these concepts. The codes, in turn,
reinforce the concepts of groups and subgroups that are valuable in the remainder of our
study.

Our study of groups leads us to cyclic groups, subgroups, cosets, and factor groups.
These concepts, important in their own right, also build insight in understanding the con-
struction of extension fields which are essential for some coding algorithms to be developed.

2.2 Groups

A group formalizes some of the basic rules of arithmetic necessary for cancellation and
solution of some simple algebraic equations.

Definition 2.1 A binary operation * on a set is a rule that assigns to each ordered pair of
elements of the set (a , b) some element of the set. (Since the operation returns an element
in the set, this is actually defined as closed binary operation. We assume that all binary
operations are closed.) 0

Example 2.1 On the set of positive integers, we can define a binary operation * by a * b = min(a, b).

Example 2.2 On the set of real numbers, we can define a binary operation * by a * b = a (i.e., the
first argument). 0

Example 2.3 On the set of real numbers, we can define a binary operation * by a * b = a + b. That
0 is, the binary operation is regular addition.

Definition 2.2 A group (G, *) is a set G together with a binary operation * on G such that:

G1 The operator is associative: for any a , b, c E G , (a * b) * c = a * (b * c).

G2 There is an element e E G called the identity element such that a * e = e * a = a for
alla E G.

6 3 For every a E G, there is an element b E G known as the inverse of a such that
a * b = e . The inverse of a is sometimes denoted as a-l (when the operator * is
multiplication-like) or as -a (when the operator * is addition-like).

2.2 Groups 63

1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Where the operation is clear from context, the group (G, *) may be denoted simply as G .
It should be noted that the notation * and a-l are generic labels to indicate the concept.

The particular notation used is modified to fit the concept. Where the group operation
is addition, the operator + is used and the inverse of an element a is more commonly
represented as -a. When the group operation is multiplication, either . or juxtaposition is
used to indicate the operation and the inverse is denoted as a -l.

Definition 2.3 If G has a finite number of elements, it is said to be a finite group. The
0

This definition of order (of a group) is to be distinguished from the order of an element,

0

order of a finite group G, denoted]GI, is the number of elements in G.

given below. 0

Definition 2.4 A group (G, *) is commutative if a * b = b * a for every a , b E G.

Example 2.4 The set (Z, +), which is the set of integers under addition, forms a group. The identity
element is 0, since 0 + a = a + 0 = a for any a E Z. The inverse of any a E Z is -a.

0

As a matter of convention, a group that is commutative with an additive-like operator is said
to be an Abelian group (after the mathematician N.H. Abel).

Example 2.5 The set (a, .), the set of integers under multiplication, does not form a group. There is
a multiplicative identity, 1, but there is not a multiplicative inverse for every element in Z. 0

This is a commutative group.

Example 2.6 The set (Q \ {0}, .), the set of rational numbers excluding 0, is a group with identity
0

The requirements on a group are strong enough to introduce the idea of cancellation. In a
group G, if a * b = a * c, then b = c (this is left cancellation). To see this, let a-l be the
inverse of a in G. Then

element 1. The inverse of an element a is a-l = l/a.

a-1 * (a * b) = .-I * (a * c) = (a-1 * a) * c = e * c = c

and a-1* (a * b) = (a-' * a) * b = e * b = b, by the properties of associativity and identity.
Under group requirements, we can also verify that solutions to linear equations of the

form a * x = b are unique. Using the group properties we get immediately that x = a-'b.
If xi and x2 are two solutions, such that a * x1 = b = a * x2, then by cancellation we get
immediately that XI = x2.

Example 2.7 Let (Z5, +) denote addition on the numbers {0, 1,2, 3,4} modulo 5. The operation is
demonstrated in tabular form in the table below:

Clearly 0 is the identity element. Since 0 appears in eachrow and column, every element has an inverse.
By the uniqueness of solution, we must have every element appearing in every row and column, as it
does. By the symmetry of the table it is clear that the operation is Abelian (commutative). Thus we
verify that (Z5, +) is an Abelian group.

(Typically, when using a table to represent a group operation a * b, the first operand a is the row
0 and the second operand b is the column in the table.)

64 Groups and Vector Spaces

In general, we denote the set of numbers 0, 1, . . . , n - 1 with addition modulo n by (Z,, +)
or, more briefly, Z, .

Example 2.8 Consider the set of numbers { 1,2, 3,4,5} using the operation of multiplication modulo
6. The operation is shown in the following table:

__
1
2
3
4
5

1 2 3 4 5
1 2 3 4 5
2 4 0 2 4
3 0 3 0 3
4 2 0 4 2
5 4 3 2 1

The number 1 acts as an identity, but this does not form a group, since not every element has a
multiplicative inverse. In fact, the only elements that have a multiplicative inverse are those that are
relatively prime to 6, that is, those numbers that don’t share a divisor with 6 other than one. We will
see this example later in the context of rings.

Given groups (GI , *), (G2, *), . . . , (Gr, *), the direct product group G1 x G2 x . . - x Gr
has elements (q, a2, . . . , a,), where each ai E Gi. The operation in G is defined element-
by-element. That is, if

One way to construct groups is to take the Cartesian, or direct, product of groups.

(q , 122, . . . ,a,) E G and (bl, b2,. . . , br) E G,

then

(~1,~2,...,ar)*(bl,b2,...,br) = (a1 * b l , a 2 * b 2 , . . . , a r *br).

Example 2.9 The group (Z2 x Z2, +) consists of two-tuples with addition defined element-by-
element modulo two. An addition for the group table is shown here:

This group is called the Klein 4-group. 0

Example 2.10 This example introduces the idea of permutations as elements in a group. It is inter-
esting because it introduces a group operation that is function composition, as opposed to the mostly
arithmetic group operations presented to this point.

A permutation of a set A is a one-to-one, onto function (a bijection) of a set A onto itself. It is
convenient for purposes of illustration to let A be a set of n integers. For example,

A = {1,2, 3,4).

A permutation p can be written in the notation

which means that
1 + 3 2 + 4 3 + 1 4 + 2 .

2.2 Groups 65

There are n! different permutations on n distinct elements.
We can think of p as an operator expressed in prefix notation. For example,

p o l = 3 or p o 4 = 2 .

Let p1 = p and

The composition permutation p2 o p1 first applies p 1 , then p 2 , so that

1 2 3 4 1 2 3 4 1 2 3 4
p 2 0 p 1 = (4 3 1 2)O(3 4 1 2) = (1 2 4 3)

This is again another permutation, so the operation of composition of permutations is closed under
the set of permutations. The identity permutation is

1 2 3 4
e = (1 2 3 4)

There is an inverse permutation under composition. For example,

1 2 3 4
p? = (3 4 1 2)

It can be shown that composition of permutations is associative: for three permutations p 1 , p2 and

Thus the set of all n ! permutations on n elements forms a group, where the group operation is
function composition. This group is referred to as the symmetric group on n letters. The group is
commonly denoted by S,, .

It is also interesting to note that the composition is not commutative. This is clear from this
example since

P39 then (P1 0 P2) 0 P3 = P1 0 (P2 0 P3).

P2OP1 Z P l O P 2 .
So S4 is an example of a non-commutative group.

2.2.1 Subgroups

0

Definition 2.5 A subgroup (H , *) of a group (G, *) is a group formed from a subset of
elements in a group G with the same operation *. Notationally, we may write H < G to
indicate that H is a subgroup of G. (There should be no confusion using < with comparisons

If the elements of H are a strict subset of the elements of G (i.e., H c G but not
H = G) , then the subgroup is said to be a proper subgroup. If H = G, then H is an
improper subgroup of G. The subgroups H = { e) c G (e is the identity) and H = G are
said to be trivial subgroups.

between numbers because the operands are different in each case.)

Example 2.11 Let G = (2 6 , +), the set of numbers {0, 1,2, 3,4,5} using addition modulo 6. Let
H = ({O, 2,4), +), with addition taken modulo 6. As a set, H c G. It can be shown that H forms a
€YOUP.

0 Let K = ({0,3), +), with addition taken modulo 6. Then K is a subgroup of G.

Example 2.12 A variety of familiar groups can be arranged as subgroups. For example,

(2, +) < (Q, +) < (R, +) < (C, +).

66 GrouDs and Vector SDaces

Example 2.13 The group of permutations on 4 letters, S4, has a subgroup formed by the permutations

1 2 3 4
(1 2 3 4)

1 2 3 4
p 2 = (3 4 1 2)

1 2 3 4
p 4 = (2 1 4 3)

1 2 3 4
p 6 = (3 2 1 4)

1 2 3 4
p 1 = (2 3 4 1)

1 2 3 4
p3 = (4 1 2 3)

1 2 3 4
p s = (4 3 2 1)

1 2 3 4
p 7 = (1 4 3 2)

Compositions of these permutations is closed. These permutations correspond to the ways that the
comers of a square can be moved to other comers by rotation about the center and reflection across
edges or across diagonals (without bending the square). The geometric depiction of these permutations
and the group operation table are shown here:

P4

__
PO
PI
P2
P3
P4
PS
P6
PI

PO
PO
PI
P2
P3
P4
P.5
P6
d 2

PI
P1
P2
P3
PO
P6
PI
P5
P4

P2 P3 P4
P2 P3 P4
P3 PO P7
PO P1 P5
P1 P2 P6
PS P7 PO
P4 P6 P2
PI P4 P3
P6 P.5 P1

P.5 P6
P5 P6
P6 P4
P4 P7
P7 PS
P2 PI
PO P3
P1 PO
P3 P2

p7
P7
P.5
P6
P4
P3
P1
P2
PO

- - - * \ - -
/ ' I \ '

/ I \ -1 . / I ' \ .I n

r v
P1

Th~s group is known as D4. D4 has a variety of subgroups of its own. (Can you find them?)

2.2.2 Cyclic Groups and the Order of an Element

In a group G with operation * or multiplication operation we use the notation a" to indicate
a * a * a * . . . * a , with the operand a appearing n times. Thus a' = a , a2 = a * a , etc. We
take ao to be the identity element in the group G. We use a-2 to indicate (a-')(a-'), and

For a group with an additive operator +, the notation nu is often used, which means
a + a + a + . . . + a , with the operand appearing n times. Throughout this section we use
the an notation; making the switch to the additive operator notation is straightforward.

Let G be a group and let a E G. Any subgroup containing a must also contain a 2 , a3,
and so forth. The subgroup must contain e = aa-l , and hence a-2, aP3, and so forth, are
also in the subgroup.

Definition 2.6 For any a E G, the set {anln E Z} generates a subgroup of G called the
cyclic subgroup. The element a is said to be the generator of the subgroup. The cyclic

0
Definition 2.7 If every element of a group can be generated by a single element, the group

0

Example 2.14 The group (Zs, +) is cyclic, since every element in the set can be generated by a = 2
(under the appropriate addition law):

to indicate (u - ') ~ .

subgroup generated by a is denoted as (a) .

is said to be cyclic.

2, 2 + 2 = 4 , 2 + 2 + 2 = 1 , 2 + 2 + 2 + 2 = 3 , 2 + 2 + 2 + 2 + 2 = 0 .

2.2 Groups 67

Figure 2.1: An illustration of cosets.

In this case we could write Z5 = (2). Observe that there are several generators for Z5. 0

The permutation group S3 is not cyclic: there is no element which generates the whole
group.

Definition 2.8 In a group G , with a E G , the smallest n such that an is equal to the identity
in G is said to be the order of a. If no such n exists, a is of infinite order. 0

The order of an element should not be confused with the order of a group, which is the
number of elements in the group.

In Z5, the computations above show that the element 2 is of order 5. In fact, the order
of every nonzero element in Z5 is 5.

Example 2.15 Let G = (&j, +). Then

(2) = [0,2, 4) (3) = [o, 3) (5) = {o, 1,2, 3,4, 5) = %j.

It is easy to verify that an element a E 2 6 is a generator for the whole group if and only if a and 6 are
relatively prime. 0

2.2.3 Cosets

Definition 2.9 Let H be a subgroup of (G, *) (where G is not necessarily commutative)
and let a E G. The left coset of H , a * H , is the set {a * h(h E H } . The right coset of H

0
Of course, in a commutative group, the left and right cosets are the same.
Figure 2.1 illustrates the idea of cosets. If G is the group (R3, +) and H is the white

plane shown, then the cosets of H in G are the translations of H .
Let G be a group and let H be a subgroup of G . Let a * H be a (left) coset of H in

G. Then clearly b E a * H if and only if b = a * h for some h E H. This means (by
cancellation) that we must have

a - ' * b E H .

is similarly defined, H * a = {h * alh E H) .

68 Groups and Vector Spaces

Thus to determine if a and b are in the same (left) coset of H , we determine if a-1* b E H .

Example 2.16 Let G = (Z, +) and let

SO = 3 2 = {. . . , -6, -3 ,0 , 3 , 6 , . . .}.
Then SO is a subgroup of G. Now let us form the cosets

S1 = So + 1 = {. . . , -5 , -2 ,1 ,4 ,7 , . I .}.

and

Note that neither S1 nor S;! are groups (they do not contain the identity). The sets SO, S1, and S2
collectively cover the original group,

S2 = SO + 2 = {. . . , -4, -1 ,2,5, 8 , . . .}.

G = So U S1 U S2.

Let us check whether a = 4 and b = 6 are in the same coset of So by checking whether
0 (-a) + b E So. Since -a + b = 2 9 SO, a and b are not in the same coset.

2.2.4 Lagrange’s Theorem

Lagrange’s theorem prescribes the size of a subgroup compared to the size of its group.
This little result is used in a variety of ways in the developments to follow.

Lemma 2.1 Every coset of H in a group G has the same number of elements.

Proof We will show that every coset has the same number of elements as H . Let a * h 1 E
a * H andlet a * h2 E a * H be two elements inthe coseta * H . If a * h i = a * h2 then by
cancellation we must have h 1 = h2. Thus the elements of a coset are uniquely identified

0
We summarize some important properties about cosets:

Reflexive An element a is in the same coset as itself.

Symmetric If a and b are in the same coset, then b and a are in the same coset.

Transitive If a and b are in the same coset, and b and c are in the same coset, then a and c

Reflexivity, symmetricity, and transitivity are properties of the relation “in the same coset.”

Definition 2.10 A relation which has the properties of being reflexive, symmetric, and
0

An important fact about equivalence relations is that every equivalence relation partitions

by the elements in H .

are in the same coset.

transitive is said to be an equivalence relation.

its elements into disjoint sets. Let us consider here the particular case of cosets.

Lemma 2.2 The distinct cosets of H in a group G are disjoint.

Proof Suppose A and B are distinct cosets of H ; that is, A # B . Assume that A and B are
not disjoint, then there is some element c which is common to both. We will show that this
implies that A c B . Let b E B . For any a E A , a and c are in the same coset (since c is in
A). And c and b are in the same coset (since c is in B) . By transitivity, a and b must be in
the same coset. Thus every element of A is in B , so A c B . Turning the argument around,
we find that B c A. Thus A = B .

0 This contradiction shows that distinct A and B must also be disjoint.

2.2 Groups 69

Theorem 2.3 Lagrange’s theorem Let G be a group offinite order and let H be a subgroup
of G. Then the order of H divides’ the order of G. That is, I H I divides I GI.

Proof The set of cosets partition G into disjoint sets, each of which has the same number
of elements, I H I. These disjoint sets completely cover G, since every element g E G is in
some coset, g * H . So the number of elements of G must be equal a multiple of 1 H 1 . 0
Lagrange’s theorem can be stated more succinctly using a notation which we now introduce:

Definition 2.11 The vertical bar I means divides. We write a 1 b if a divides b (without
remainder). 0

Then Lagrange’s theorem can be written: If I G I < 00 and H < G, then I H I I I GI.
One implication of Lagrange’s theorem is the following.

Lemma 2.4 Every group of prime order is cyclic.

Proof Let G be of prime order, let a E G, and denote the identity in G by e. Let H = (a) ,
the cyclic subgroup generated by a . Then a E H and e E H . But by Theorem 2.3, the order
of H must divide the order of G. Since G is of prime order, then we must have I H I = 1 GI;
hence a generates G, so G is cyclic.

2.2.5 Induced Operations; Isomorphism

Example 2.17 Let us return to the three cosets SO, S1, and S2 defined in Example 2.16. We thus have
a set of three objects, S = {SO, S1, S2). Let us define an addition operation on S as follows: for A , B
and C E S,

A + B = C if and only if a + b = c for any a E A , b E B and some c E C.

That is, addition of the sets is defined by representatives in the sets. The operation is said to be the
induced operation on the cosets. For example,

S1 + S2 = So,

taking as representatives, for example, 1 E S1,2 E S2 and noting that 1 + 2 = 3 E SO. Similarly,

S1 + S1 = S2,

taking as representatives 1 E $1 and noting that 1 + 1 = 2 E S2. Based on this induced operation, an
addition table can be built for the set S:

S1 S2 So

It is clear that this addition table defines a group, which we can call (S, +). Now compare this addition
table with the addition table for 253:

lThat is, divides without remainder

70 Groups and Vector Spaces

I Box 2.1: One-to-one and Onto Functions

Definition 2.13 A function #J : G + 6 is said to be one-to-one if #J(a) = #J(b)
implies a = b for every a and b in G. That is, two distinct values a, b E G with
a # b do not map to the same value of 4. A one-to-one function is also called a

A contrasting example is #J(x) = x2, where #J : R + R, which is not one-to-one
since 4 = #J (2) and 4 = #J (-2).

Definition 2.14 A function #J : G + 4 is said to be onto if for every g E 6,
there is an element a E G such that #(a) = g. An onto function is also called

That is, the function goes onto everything in 6. A contrasting example is #J (x) =
x2, where #J : R + R, since the point g = -3 is not mapped onto by #J from
any point in R.

Definition 2.15 A function which is one-to-one and onto (i.e., surjective and

Bijective functions are always invertible. If #J : G -+ 9 is bijective, then
IGJ = \GI (the two sets have the same cardinality).

surjective function. 0

an injective function. 0

injective) is called bijective. 0

Structurally, the two addition tables are identical: entries in the second table are obtained merely
by replacing Sk with k , for k = 0, 1, 2. We say that the group (S, +) and the group (23, +) are
isomorphic.

Definition 2.12 Two groups (G, *) and (6, 0) are said to be (group) isomorphic if there
exists a one-to-one, onto function #J : G -+ G called the isomorphism such that for every
a, b E G,

(2.2) u * b) = #(a) 0 #J(b) . #JL L-,-!

operation operation
in G in Q

The fact that groups G and 6 are isomorphic are denoted by G 2' 6. 0
We can thus write S Z Z3 (where the operations are unstated but understood from context).

Whenever two groups are isomorphic they are, for all practical purposes, the same thing.
Different objects in the groups may have different names, but they represent the same sorts
of relationships among themselves.

Definition2.16 Let (G, *) beagroup, HasubgroupandletS = {Ho = H, HI, H2,. . . , HM]
be the set of cosets of H in G. Then the induced operation between cosets A and B in S
is defined by

A * B = C if andonlyifa * b = c

for any a E A, b E B and some c E C, provided that this operation is well defined. The
operation is well defined if for every a E A and b E B , a * b E C; there is thus no ambiguity

For commutative groups, the induced operation is always well defined. However, the
reader should be cautioned that for noncommutative groups, the operation is well defined

in the induced operation. 0

2.2 Groups 71

HZ 5

only for normal subgroups.2

2 2 5 3 0 4 1
5 2 1 0 3 1 4

Example 2.18 Consider the group G = (26, +) and let H = {0,3}. The cosets of H are

HO = {0 ,3) H1 = 1 + H = {1,4} Hz = 2 + H = {2,5}.

Then, under the induced operation, for example, H2 + H2 = Hi since 2 + 2 = 4 and 4 E Hi . We
could also choose different representatives from the cosets. We get

5 + 5 = 4

in G. Since 5 E H2 and 4 E H i , we again have H2 + H2 = H i . If by choosing different elements
from the addend cosets we were to end up with a different sum coset, the operation would not be well
defined. Let us write the addition table for Zg reordered and separated out by the cosets. The induced
operation is clear. We observe that Ho, Hi and H2 themselves constitute a group, with addition table
also shown.

+ 0 3 1 4 2 5 I Ho I H1 I HZ

0

Theorem 2.5 If H is a subgroup of a commutative group (G, *), the induced operation *
on the set of cosets of H satisJes

(a * b) * H = (a * H) * (b * H) .

The proof is explored in Exercise 2.13. This defines an operation. Clearly, H itself acts as
an identity for the operation defined on the set of cosets. Also, by Theorem 2.5, (a * H) *
(a-1* H) = (a *a- ') * H = H , so every coset has an inverse coset. Thus the set of cosets
of H form a group.

Definition 2.17 The group formed by the cosets of H in a commutative3 group G with the
induced operation is said to be the factor group of G modulo H, denoted by G / H . The
cosets are said to be the residue classes of G modulo H. 0

In the last example, we could write 2 3 2 &/Ha. From Example 2.17, the group of
cosets was also isomorphic to Z3, so we can write

2 / 3 2 z 2 3 .

In general, it can be shown that
Z / n Z 2 Z,.

2A subgroup H of a group G is normal if g-l H g = H for all g E G. Clearly all Abelian groups are normal.
30r of a normal subgroup in a noncommutative group.

72 Groups and Vector Spaces

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

. o . o q b

n - h

. O . O O

. O . O O

CI 0 0 0 0

c10 0 0 0

c10 0 0 0

c3 0 0 0 0

0 . 0 .

4. n n - -
0 . 0 .

0 . 0 .

Figure 2.2: A lattice partitioned into cosets.

Example 2.19 A lattice is formed by taking all possible integer linear combinations of a set of basis
vectors. That is, let v l , v2, . . . , v, be a set of linearly independent vectors, let V = [vl , v2, . . . , vn] .
Then a lattice is formed from these basis vectors by

A = {VZ : z E Z”}.

For example, the lattice formed by V = [A 71 is the set of points with integer coordinates in the plane,

denoted as Z2.
For the lattice A = Z2, let A’ = 2Z2 be a subgroup. Then the cosets

So = A’ (denoted by 0) S1 = (1 ,O) + A’ (denoted by 0)

S;! = (0, 1) + A’ (denoted by 0) S3 = (1 , 1) + A’ (denoted by 0)

are indicated in Figure 2.2. It is straightforward to verify that

AIA’ 2 z2 x z2.

Such decompositions of lattices into subsets find application in trellis coded modulation, as we
shall see in Chapter 13.

2.2.6 Homomorphism

For isomorphism, two sets G and G are structurally the same, as defined by (2.2), and they
have the same number of elements (since there is a bijective function 4 : G -+ G). From an
algebraic point of view, G and G are identical, even though they may have different names
for their elements.

Homomorphism is a somewhat weaker condition: the sets must have the same algebraic
structure, but they might have different numbers of elements.

Definition 2.18 The groups (G , *) and (6 ,o) are said to be (group) homomorphic if there
exists a function (that is not necessarily one-to-one) 4 : G + 6 called the homomorphism
such that

= 4(a) 0 (2.3) -
operation operation

in G in 6

2.3 Fields: A Prelude 73

0

Example 2.20 Let G = (Z, +) and let B = (Z,, +). Let 4 : G -+ B be defined by @(a) = a
mod n, the remainder when a is divided by n. Let a, b E Z. We have (see Exercise 2.32)

4(a + b) = 4(a) + W).

Thus (Z, +) and (Z,, +) are homomorphic, although they clearly do not have the same number of
elements. 0

Theorem 2.6 Let (G , *) be a commutative group and let H be a subgroup, so that G / H
is the factor group. Let 4 : G + G / H be dejned by #(a) = a * H . Then 4 is a
homomorphism. The homomorphism 4 is said to be the natural or canonical homomorphism.

Proof Let a , b E G . Then by Theorem 2.5

0

Definition 2.19 The kernel of a homomorphism 4 of a group G into a group 6 is the set
0 of all elements of G which are mapped onto the identity element of 6 by 4.

Example 2.21 For the canonical map Z + Z, of Example 2.20, the kernel is nZ, the set of multiples
of n. 0

2.3 Fields: A Prelude

We shall have considerably more to say about fields in Chapter 5, but we introduce the
concept here since fields are used in defining vector spaces and simple linear block codes.

Definition 2.20 A field (F, +, .) is a set of objects F on which the operations of addition
and multiplication, subtraction (or additive inverse), and division (or multiplicative inverse)
apply in a manner analogous to the way these operations work for real numbers.

In particular, the addition operation + and the multiplication operation . (or juxtaposi-
tion) satisfy the following :

F1 Closure under addition: For every a and b in F, a + b is also in F.

F2 Additive identity: There is an element in F, which we denote as 0, such that a + 0 =
O+a=afo reve rya EF.

F3 Additive inverse (subtraction): For every a E F, there exists an element b in F such that
a + b = b + a = 0. The element b is frequently called the additive inverse of a and
is denoted as -a.

F4 Associativity: (a + b) + c = a + (b + c) for every a , b, c E F.
F5 Commutativity: a + b = b + a for every a, b E F.

74 Groups and Vector Spaces

The first four requirements mean that the elements of F form a group under addition; with
the fifth requirement, a commutative group is obtained.

...

F6 Closure under multiplication: For every a and b in F, a . b is also in F.
F7 Multiplicative identity: There is an element in IF, which we denote as 1, such that

a . 1 = 1 . a = a foreverya E IF witha # 0.

F8 Multiplicative inverse: For every a E F with a # 0, there is an element b E F such that
a . b = b . a = 1. The element b is called the multiplicative inverse, or reciprocal, of
a and is denoted as a-l.

F9 Associativity: (a . b) . c = a . (b . c) for every a, b, c E IF.
F10 Commutativity: a . b = b . a for every a , b E IF.

Thus the non-zero elements of F form a commutative group under multiplication.
...

F11 Multiplication distributes over addition: a . (b + c) = a . b + a . c

The field (IF, f, .) is frequently referred to simply as IF. A field with q elements in it may
be denoted as F,. 0

Example 2.22 The field with two elements in it, IF2 = Zz = GF(2) has the following addition and
multiplication tables

- -
“exclusive or” “and”

The field GF(2) is very important to our work, since it is the field where the operations involved in
binary codes work. However, we shall have occasion to use many other fields as well.

Example 2.23 The field IF5 = Z5 = GF(5) has the following addition and multiplication tables: 4 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2

~ 4 0 4 3 2 1

0 1 2 3 4
0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

0

There are similarly constructed fields for every prime p , denoted by either G F (p) or IF,.

Example 2.24 A field with four elements can be constructed with the following operation tables:

Fly-+

2 2 3 0 1 2 0 2 3 1
3 3 2 1 0 3 0 3 1 2

(2.4)

2.4 Review of Linear Algebra 75

This field is called GF(4) . Note that it is definitely not the same as (Z4, +, .) ! (Why not?) We learn
in Chapter 5 how to construct such a field.

0

Just as for groups, we can define the concepts of isomorphism and homomorphism. Two
fields (F , +, -) and (3, +, -) are (field) isomorphic if there exists a bijective function 4 :
F +. F such that for every a, b E F ,

4W) = * - 4(*) = 4(a> + 4(b) -
operation operation operation operation

in F in 3 in F in 3

For example, the field 3 defined on the elements { - 1, l } with operation tables

+p*
is isomorphic to the field G F (2) defined above, with 4 mapping 0 + -1 and 1 + 1.
Fields F and 3 are homomorphic if such a structure-preserving map 4 exists which is not
necessarily bijective.

2.4 Review of Linear Algebra

Linear block codes are based on concepts from linear algebra. In this section we review
concepts from linear algebra which are immediately pertinent to our study of linear block
codes.

Up to this point, our examples have dealt primarily with binary alphabets having the
symbols (0, 1). As your algebraic and coding-theoretic skills are deepened you will learn
that larger alphabets are feasible and often desirable for good codes. However, rather than
present the algebra first and the codes second, it seems pedagogically worthwhile to present
the basic block coding concepts first using binary alphabets and introduce the algebra for
larger alphabets later. For the sake of generality, we present definitions in terms of larger
alphabets, but for the sake of concrete exposition we present examples in this chapter using
binary alphabets. For now, understand that we will eventually need to deal with alphabets
with more than two symbols. We denote the number of symbols in the alphabet by q , where
q = 2 usually in this chapter. Furthermore, the alphabets we use usually form a finite field,
denoted here as IF,, which is briefly introduced in Box 12.1 and thoroughly developed in
Chapter 5.

Definition 2.21 Let V be a set of elements called vectors and let IF be a field of elements
called scalars. An addition operation + is defined between vectors. A scalar multiplication
operation . (or juxtaposition) is defined such that for a scalar a E F and a vector v E V,
a . v E V. Then V is a vector space over F if + and . satisfy the following:

V1 V forms a commutative group under +.
V2 For any element a E IF and v E V, a . v E V .

Combining V1 and V 2 , we must have a . v + b . w E V for every v, w E V and
a, b E IF.

76 Groups and Vector Spaces

V3 The operations + and . distribute:

(a + b) . v = a - ~ + b - ~ and u * (u + v) = u * u + u * v

for all scalars a, b E F and vectors v, u E V.

V4 The operation . is associative: (a . b) . v = a . (b . v) for all a, b E F and v E V

F is called the scalar field of the vector space V. 0

Example 2.25

1. The set of n-tuples (uo, ul, . . . , un-l), with elements vi E R forms a vector space which we
denote as Rn, with addition defined element-by-element,

(UO, ~ 1 , . . . , un-1) + (~ 0 3 ~ 1 , . . + un-1) = (UO + UO, ~1 + ~ 1 , . * * 9 un-1 + ~ n - 1 1 ,

and scalar multiplication defined by

a . (UO, ~ 1 , . . ., Un-1) = (avo, aul , . . . , ~ ~ n - 1) . (2.5)

2. The set of n-tuples of (UO, ul , . . . , ~ ~ - 1) with elements ui E IF2 forms a vector space which
we denote as IF;. There are 2n elements in the vector space IF;. For n = 3, the elements of the
vector space are

(O,O, 0) (O,O, 1) (0, 1,O) (0, 1,1)
(1 ,0 ,0) (1,0, 1) (1 , L 0) (1, 1, 1)

3. In general, the set V = IF: of n-tuples of elements of the field IF, with element-by-element
addition and scalar multiplication as in (2.5) constitutes a vector space. We call an n-tuple of
elements of IF, simply an n-vector.

0

Definition 2.22 Let v1, v2, . . . , Vk be vectors in a vector space V and let 4 1 , a2, . . . , ak be
scalars in P. The operation

UlVl + a2v2 + ' . ' akvk

is said to be a linear combination of the vectors.
Notationally, observe that the linear combination

UlVl + a2v2 + ' * 'akvk

can be obtained by forming a matrix G by stacking the vectors as columns,

G = [V1 V2 * * . vk]

then forming the product with the column vector of coefficients:

Alternatively, the vectors vi can be envisioned as row vectors and stacked as rows. The
linear combination can be obtained by the product with a row vector of coefficients:

2.4 Review of Linear Algebra 77

Definition 2.23 Let V be a vector space. A set of vectors G = (vl , v 2 , . . . , Vk}, each
in V , is said to be a spanning set for V if every vector v E V can be written as a linear
combination of the vectors in G. That is, for every v E V, there exists a set of scalars

For a set of vectors G, the set of vectors obtained from every possible linear combination
0

It may be verified that the span of a set of vectors is itself a vector space. In light of the
notation in (2.6), it is helpful to think of G as a matrix whose columns are the vectors v i ,

and not simply as a set of vectors. If G is interpreted as a matrix, we take span(G) as the set
of linear combinations of the columns of G. The space obtained by the linear combination
of the columns of a matrix G is called the column space of G. The space obtained by the
linear combination of the rows of a matrix G is called the row space of G.

It may be that there is redundancy in the vectors of a spanning set, in the sense that not
all of them are needed to span the space because some of them can be expressed in terms
of other vectors in the spanning set. In such a case, the vectors in the spanning set are not
linearly independent:

Definition 2.24 A set of vectors v 1 , v 2 , . . . , Vk is said to be linearly dependent if a set of
scalars (al, a2, . . . , ak} exists, with not all ai = 0 such that

al , a2, . . . , Uk such that V = U l V l + Q V 2 + . . . -k Ukvk.

of vectors in G is called the span of G, span(G).

a l v l f a2v2 + . . . f UkVk = 0.

A set of vectors which is not linearly dependent is linearly independent. 0
From the definition, if a set of vectors { v l , . . . , Vk) is linearly independent and there

exists a set of coefficients {ai, . . . , a k } such that

U l V l + a2v2 + . . . + a k v k = 0,

then it must be the case that a 1 = a2 = . . = a k = 0.

Definition 2.25 A spanning set for a vector space V that has the smallest possible number
of vectors in it is called a basis for V.

The number of vectors in a basis for V is the dimension of V.
Clearly the vectors in a basis must be linearly independent (or it would be possible to

form a smaller set of vectors).

Example 2.26 Let V = Fi, the set of binary 4-tuples and let

be a set of vectors.

It can be verified that W is a vector space.

78 Groups and Vector Spaces

The set G is a spanning set for W, but it is not a spanning set for V . However, G is not a basis for
W; the set G has some redundancy in it, since the third vector is a linear combination of the first two:

[i] = I] + [;I
The vectors in G are not linearly independent. The third vector in G can be removed, resulting in the
set

Gf = [I] . [i]l
which has span(Gf) = W.

No spanning set for W has fewer vectors in it than does G’, so dim(W) = 2. 0

Theorem 2.7 Let V be a k-dimensional vector space dejned over a scalarjeld with ajni te
number of elements q in it. Then the number of elements in V is I V I = qk.

Proof Every vector v in V can be written as

v = alvl + a2v2 + . . . + Q V k .

Thus the number of elements in V is the number of distinct k-tuples (al, u2, . . . , a k) that
0 can be formed, which is qk .

Definition 2.26 Let V be a vector space over a scalar field IF and let W c V be a vector
space. That is, for any w1 and w2 E W , awl + bw2 E W for any a , b E IF. Then W is

0 called a vector subspace (or simply a subspace) of F .

Example 2.27 The set W in Example 2.26 is a vector space, and is a subset of V . So W is a vector
subspace of V.

0

We now augment the vector space with a new operator called the inner product, creating
an inner product space.

Definition 2.27 Let u = (uo, u 1 , . . . , un-1) and v = (vo, v1, . . . , vn-1) be vectors in a
vector space V, where ui, vi E IF. The inner product is a function the accepts two vectors
and returns a scalar. It may be written as (u, v) or as u . v. It is defined as

Note, as specified by Theorem 2.7, that W has 4 = 22 elements in it.

n-1

(u , v) = u . v = ~ u j . v i .
i =O

I7
It is straightforward to verify the following properties:

1. Commutativity: u . v = v . u

2. Associativity: a . (u . v) = (a . u) . v

3. Distributivity: u . (v + w) = u . v + u . w.

2.4 Review of Linear Algebra 79

In physics and elementary calculus, the inner product is often called the dot product and is
used to describe the physical concept of orthogonality. We similarly define orthogonality
for the vector spaces of interest to us, even though there may not be a physical interpretation.

Definition 2.28 Two vectors u and v are said to be orthogonal if u . v = 0. When u and v
0

Combining the idea of vector subspaces with orthogonality, we get the concept of a dual
space:

Definition 2.29 Let W be a k-dimensional subspace of a vector space V. The set of all
vectors u E V which are orthogonal to all the vectors of W is called the dual space of W
(sometimes called the orthogonal complement of W or nullspace), denoted W'. (The
symbol W' is sometimes pronounced "W perp," for "perpendicular.") That is,

are orthogonal, this is sometimes denoted as u I v.

W' = {u E v : u . w = o for all w E w).

0
Geometric intuition regarding dual spaces frequently may be gained by thinking in three-

dimensional space B3 and letting W be a plane through the origin and W' a line through
the origin orthogonal to the plane.

Example 2.28 Let V = I$ and let W be as in Example 2.26. Then it can be verified that

Note that

and that dim(W') = 2.

This example demonstrates the important principle stated in the following theorem.

Theorem 2.8 Let V be ajnite-dimensional vector space of n-tuples, IF", with a subspace
W of dimension k. Let U = W' be the dual space of W. Then

dim(W') = dim(V) - dim(W) = n - k.

Proof Let gl , g2, . . . , gk be a basis for W and let

G = [gl g2 gk].

This is a rank k matrix, meaning that the dimension of its column space is kand the dimension
of its row space is k. Any vector w E W is of the form w = Gx for some vector x E IFk.
Any vector u E U must satisfy uTGx = 0 for all x E F k . This implies that uTG = 0.
(That is, u is orthogonal to every basis vector for W .)

Let [hl, h2, . . . , hr) be a basis for W', then extend this to a basis for the whole n-
dimensional space, {hi, h2, . . . , h,, fl , fz, . . . , fnMr). Every vector v in the row space of G

80 Groups and Vector Spaces

is expressible (not necessarily uniquely) as v = bT G for some vector b E V. But since
(hi, h2, . . . , hr , fl , f2, . . . , fn-+} spans V, b must be a linear combination of these vectors:

b = alhl + ~2h2 + 3 * * arhr + ar+lfl + . . . + anfn-r.

SO a vector v in the row space of G can be written as

v =alhTG+a2h2TG+...+a,f~ -,G,

from which we observe that the row space of G is spanned by the vectors

{hTG, h;G,. . . , hTG,frG,. . .,fT-rG}.

Thevectors {hl, h2, . . . , hr} arein W’, so that hTG = Ofori = 1,2, . . . , r . The remaining
vectors {f:G, . . . , f,’-,G} remain to span the k-dimensional row space of G. Hence, we
must have n - r 1 k. Furthermore, these vectors are linearly independent, because if there
is a set of coefficients {a i} such that

al(ffG) + - - - U ~ - ~ (~ : - , . G) = 0,

then

But the vectors fi are not in W’, so we must have

(alf; + . . . + anvrf:-,)G = 0.

T alf: + . * * + an-rfn-r = 0.

Since the vectors {fi} are linearly independent, we must have a1 = a2 = . . . = anPr = 0.
0 Therefore, we must have dimspan([frG, . . . , f,_,G}) = k, so n - r = k. T

2.5 Exercises

2.1 A group can be constructed by using the rotations and reflections of a regular pentagon into itself.
The group operator is “followed by” (e.g., a reflection p “followed by” a rotation r) . This is a
permutation group, as in Example 2.10.

(a) How many elements are in this group?
(b) Construct the group (i.e., show the “multiplication table” for the group).
(c) Is it an Abelian group?
(d) Find a subgroup with five elements and a subgroup with two elements.
(e) Are there any subgroups with four elements? Why?

2.2 Show that only one group exists with three elements “up to isomorphism.” That is, there is only
one way of filling out a binary operation table that satisfies all the requirements of a group.

2.3 Show that there are two groups with four elements, up to isomorphism. One of these groups is
isomorphic to Z4. The other is called the Klein 4-group.

2.4 Prove that in a group G , the identity element is unique.
2.5 Prove that in a group G, the inverse a-1 of an element a is unique.
2.6 Let G = (%16, +), the group of integers modulo 16. Let H = (4), the cyclic group generated by

the element 4 E G.

(a) List the elements of H .

(b) Determine the cosets of G/ H .
(c) Draw the “addition” table for G / H .

2.5 Exercises 81

2.7
2.8
2.9

2.10

2.11

2.12
2.13
2.14
2.15

(d) To what group is G/ H isomorphic?

Show that if G is an Abelian group and 6 is isomorphic to G, then 6 is also Abelian.
Let G be a cyclic group and let
Let G be a cyclic group with generator a and let B be a group isomorphic to G. If 4 : G + B is
an isomorphism, show that for every x E G, #(x) is completely determined by # (a) .
An automorphism of a group G is an isomorphism of the group with itself, q5 : G + G. Using
Exercise 2.9, how many automorphisms are there of 22? of 26? of &3? of 217?

[lo61 Let G be a finite Abelian group of order n, and let r be a positive integer relatively prime
to n (i.e., they have no factors in common except 1). Show that the map $r : G + G defined
by 4 r (a) = a‘ is an isomorphism of G onto itself (an automorphism). Deduce that the equation
x r = a always has a unique solution in a finite Abelian group G if r is relatively prime to the
order of G.
Show that the induced operation defined in Definition 2.16 is well defined if G is commutative.
Prove Theorem 2.5.
Show for the lattice with coset decomposition in Figure 2.2 that A/A’ ‘2 2 2 x Z2.

Let G be a cyclic group with generator a and let 4 : G + G’ be a homomorphism onto a
group G’. Show that the value of 4 on every element of G is determined by the value of the
homomorphism 4 (a) .

be isomorphic to G. Show that 6 is also a cyclic group.

2.16 Let G be a group and let a E G. Let 4 : Z -+ G be defined by +(n) = a‘. Show that 4 is a

2.17 Show that if G, G’ and G” are groups and 4 : G + G’ and @ : G’ + G” are homomorphisms,

2.18 Consider the set S = (0, 1,2 ,3} with the operations

homomorphism. Describe the image of 4 in G.

then the composite function + o 4 : G + G’’ is a homomorphism. vF
2 2 3 0 1 2 0 2 3 1
3 3 0 1 2 3 0 3 1 2

Is this a field? If not, why not?

Does (24, +, .) form a field?
2.19 Construct the addition and multiplication tables for (24, +, .) and compare to the tables in (2.4).

2.20 Use the representation of GF(4) in (2.4) to solve the following pair of equations:

2 x + y = 3

x + 2 y = 3 .

2.21 Show that the vectors in a basis must be linearly independent.
2.22 Let G = {vl , v2, . . . , vk} be a basis for a vector space V. Show that for every vector v E V,

2.23 Show that if u is orthogonal to every basis vector for W , then u I W .

2.24 The dual space WL of W is the set of vectors which are orthogonal to every vector in W. Show

2.25 Show that the set of binary polynomials (i.e., polynomials with binary coefficients, with operations

2.26 What is the dimension of the vector space spanned by the vectors

there is a unique representation for v as a linear combination of the vectors in G.

that the dual space WL of a vector space W c V is a vector subspace of V.

in GF(2)) with degree less than r forms a vector space over GF(2) with dimension r .

over GF(2)?

82 Groups and Vector Spaces

2.27 Find a basis for the dual space to the vector space spanned by

((1, 1, 1,0,0), (0, 1, 1,1, O), (O , O , 1, 1, 111.

2.28 Let S = (vl , v2, . . . , vn] be an arbitrary basis for the vector space V. Let v be an arbitrary vector
in v; it may be expressed as the linear combination

V = a1 Vl + ~ 2 v 2 + . . . + & V n .

Develop an expression for computing the coefficients (ai 1 in this representation.

y + z and z + x?

space.

subspace of S.

that #(a + b) = @(a) + 4 (b) .

of length n with elements from the set (-1, 1). Show that d ~ (x , y) = y.

2.29 Is it true that if x, y and z are linearly independent vectors over G F (q) then so also are x + y,

2.30 Let V be a vector space and let v l , v2, . . . , Vk E V. Show that span([vl, v2, . . . , vk]) is a vector

2.31 Let U and V be linear subspaces of a vector space S. Show that the intersection U n V is also a

2.32 Let G = (Z, +) and let f=? = (Zn, +). Let 4 : G -+ 8 be defined by @(a) = a mod n. Show

2.33 In this exercise, let x - y denote the inner product over the real numbers. Let x and y be vectors

2.6 References

Group theory is presented in a variety of books; see, for example, [31] or [106]. Our
summary of linear algebra was drawn from [373,33] and [246]. Some of the exercises were
drawn from [373] and [106].

Chapter 3

Linear Block Codes
3.1 Basic Definitions

Consider a source that produces symbols from an alphabet A having q symbols, where A
forms a field. We refer to a tuple (CO, cl, . . . , cn-l) E An with n elements as an n-vector
or an n-tuple.

Definition 3.1 An (n, k) block code C over an alphabet of q symbols is a set of qk n-vectors
called codewords or code vectors. Associated with the code is an encoder which maps a

0
For a block code to be useful for error correction purposes, there should be a one-to-one

correspondence between a message m and its codeword c. However, for a given code C,
there may be more than one possible way of mapping messages to codewords.

A block code can be represented as an exhaustive list, but for large k this would be
prohibitively complex to store and decode. The complexity can be reduced by imposing
some sort of mathematical structure on the code. The most common requirement is linearity.

Definition 3.2 A block code C over a field F, of q symbols of length n and qk codewords
is a q-ary linear (n, k) code if and only if its qk codewords form a k-dimensional vector
subspace of the vector space of all the n-tuples Fi. The number n is said to be the length of
the code and the number k is the dimension of the code. The rate of the code is R = k/n.

0
In some literature, an (n, k) linear code is denoted using square brackets, [n, k].
For a linear code, the sum of any two codewords is also a codeword. More generally,

any linear combination of codewords is a codeword.

Definition 3.3 The Hamming weight wt(c) of a codeword c is the number of nonzero
components of the codeword. The minimum weight Wmin of a code C is the smallest

0
Recall from Definition 1.3 that the minimum distance is the smallest Hamming distance

message, a k-tuple m E dk, to its associated codeword.

Hamming weight of any nonzero codeword: Wmin = minc,c,c#O wt(c).

between any two codewords of the code.

Theorem 3.1 For a linear code C, the minimum distance d i n satisjies dmin = Wmin. That
is, the minimum distance of a linear block code is equal to the minimum weight of its nonzero
codewords.

Proof The result relies on the fact that linear combinations of codewords are codewords. If
ci and cj are codewords, then so is ci - cj . The distance calculation can then be “translated
to the origin”:

d m i n = min dH(c i , c j) = min d H (C i - c j , c j - c j) = min w(c) .
ci , cj EC, cj #Cj C i , C j E C , C i # C j C€C,C#O

84 Linear Block Codes

0
An (n , k) code with minimum distance dmin is sometimes denoted as an (n , k , &in) code.

As described in Section 1.8.1, the random error correcting capability of a code with
minimum distance dfin is t = L(dfin - 1) /2].

3.2 The Generator Matrix Description of Linear Block Codes

Since a linear block code C is ak-dimensional vector space, there exist k linearly independent
vectors which we designate as go, gl , . . . , gk-1 such that every codeword c in C can be
represented as a linear combination of these vectors,

C =mogo +mlgl +. . .+ mk-lgk-1, (3.1)

where mi E IF,. (For binary codes, all arithmetic in (3.1) is done modulo 2; for codes of
IF,, the arithmetic is done in IF, .) Thinking of the gi as row vectors' and stacking up, we
form the k x n matrix G.

G =

gk-1

Let
m = [mo ml ... mk-11.

c = mG,
Then (3.1) can be written as

and every codeword c E C has such a representation for some vector m. Since the rows
of G generate (or span) the (n , k) linear code C, G is called a generator matrix for C.
Equation (3.2) can be thought of as an encoding operation for the code C. Representing the
code thus requires storing only k vectors of length n (rather than the q k vectors that would
be required to store all codewords of a nonlinear code).

Note that the representation of the code provided by G is not unique. From a given
generator G, another generator G' can be obtained by performing row operations (nonzero
linear combinations of the rows). Then an encoding operation defined by c = mGr maps
the message m to a codeword in C, but it is not necessarily the same codeword that would
be obtained using the generator G.

Example 3.1 The (7,4) Hamming code of Section 1.9 has the generator matrix

(3.3)

To encode the message m = [I 0 0 11, add the first and fourth rows of G (modulo 2) to obtain

c = [l 1 0 0 1 0 11.

'Most signal processing and communication work employs column vectors by convention. However, a venerable
tradition in coding theory has employed row vectors and we adhere to that through most of the book.

3.2 The Generator Matrix Description of Linear Block Codes 85

Another generator is obtained by replacing the first row of G with the sum of the first two rows of G :

1 0 1 1 1 0 0

0 0 0 1 1 0 1

Form the corresponding codeword is

c ’ = m G ’ = [l 0 1 0 0 0 13.

This is a different codeword than c, but is still a codeword in C.

Definition 3.4 Let C be an (n , k) block code (not necessarily linear). An encoder is sys-
tematic if the message symbols mo, ml, . . . , mk-1 may be found explicitly and unchanged
in the codeword. That is, there are coordinates io, i l , . . . , ik-1 (which are most frequently
sequential, io, io + 1, . . . , io + k - 1) such that ci0 = mo, cil = m l , . . . , cik-l = mk-1.

For a linear code, the generator for a systematic encoder is called a systematic generator.
0

It should be emphasized that being systematic is a property of the encoder and not a
property of the code. For a linear block code, the encoding operation represented by G is
systematic if an identity matrix can be identified among the rows of G. Neither the generator
G nor G’ of Example 3.1 are systematic.

Frequently, a systematic generator is written in the form

9 (3.4)

P0,O P0,l . * * P0,n-k-l 1 0 0 ... 0
P1,O p1,1 ... P1,n-k-1 0 1 0 ... 0

G = [P Ik] = P2,O P2,1 ’ . ‘ p2,n-k-1 0 0 1 . - * 0

Pk-l,O Pk-l,l ’ . ’ Pk-1,n-k-1 0 0 0 * ‘ *

c = m [~ I k] = [mP m].

where Zk is the k x k identity matrix and P is a k x (n - k) matrix which generatesparity
symbols. The encoding operation is

The codeword is divided into two parts: the part m consists of the message symbols, and
the part mP consists of the parity check symbols.

Performing elementary row operations (replacing a row with linear combinations of
some rows) does not change the row span, so that the same code is produced. If two
columns of a generator are interchanged, then the corresponding positions of the code are
changed, but the distance structure of the code is preserved.

Definition 3.5 Two linear codes which are the same except for a permutation of the com-
ponents of the code are said to be equivalent codes.

0
Let G and G‘ be generator matrices of equivalent codes. Then G and G’ are related by

1 ;

the following operations:

1. Column permutations,

2. Elementary row operations.

86 Linear Block Codes

Given an arbitrary generator G , it is possible to put it into the form (3.4) by performing
Gaussian elimination with pivoting.

Example 3.2 For G of (3.3), an equivalent generator in systematic form is

gaussj2 .m) For the Hamming code with this generator, let the message be m = [mo, m i , m2, m3] and let the
corresponding codeword be c = [CO, c1, . . . , cs] . Then the parity bits are obtained by

CO = mo + m2 + m3

cl =mo+ml +m2

c 2 = m i + m 2 + m 3

and the systematically encoded bits are c3 = mo, c4 = m i . c5 = m2 and cg = m3.

3.2.1 Rudimentary Implementation

Implementing encoding operations for binary codes is straightforward, since the multiplica-
tion operation corresponds to the and operation and the addition operation corresponds to
the exclusive - o r operation. For software implementations, encoding is accomplished
by straightforward matridvector multiplication. This can be greatly accelerated for binary
codes by packing several bits into a single word (e.g., 32 bits in an unsigned int of
four bytes). The multiplication is then accomplished using the bit exclus ive-or opera-
tion of the language (e.g., the - operator of C). Addition must be accomplished by looping
through the bits, or by precomputing bit sums and storing them in a table, where they can
be immediately looked up.

0

3.3 The Parity Check Matrix and Dual Codes

Since a linear code C is a k-dimensional vector subspace of IF:, by Theorem 2.8 there must
be a dual space to C of dimension n - k.

Definition 3.6 The dual space to an (n, k) code C of dimension k is the (n , n - k) dual
0

As a vector space, C' has a basis which we denote by {ha, hi, . . . , hn-k-i}. We form
code of C, denoted by C'. A code C such that C = C' is called a self-dual code.

a matrix H using these basis vectors as rows:

H =

hn-k-1

This matrix is known as the parity check matrix for the code C. The generator matrix and
the parity check matrix for a code satisfy

IGHT.
The parity check matrix has the following important property:

3.3 The Parity Check Matrix and Dual Codes 87

Theorem 3.2 Let C be an (n, k) linear code over F, and let H be a parity check matrix for
C. A vector v E IF: is a codeword if and only if

vHT = O .

That is, the codewords in C lie in the (left) nullspace of H .

(Sometimes additional linearly dependent rows are included in H, but the same result still
holds.)

Proof Let c E C. By the definition of the dual code, h . c = 0 for all h E C’. Any row
vector h E CL can be written as h = xH for some vector x. Since x is arbitrary, and in fact
can select individual rows of H, we must have chr = 0 for i = 0, 1 , . . . , n - k - 1. Hence
cHT = 0.

Conversely, suppose that vHT = 0. Then vhr = 0 for i = 0, 1, . . . , n - k - 1, so that
v is orthogonal to the basis of the dual code, and hence orthogonal to the dual code itself.
Hence, v must be in the code C. 0

When G is in systematic form (3.4), a parity check matrix is readily determined:

H = [Zn-k - P T] . (3.6)

(For the field P2, - 1 = 1, since 1 is its own additive inverse.) Frequently, a parity check
matrix for a code is obtained by finding a generator matrix in systematic form and employing
(3.6).

Example 3.3 For the systematic generator GI’ of (3.5), a parity check matrix is

1 0 0 1 0 1 1

0 0 1 0 1 1 1
0 1 0 1 1 1 0 1 . (3.7)

It can be verified that GttHT = 0. Furthermore, even though G is not in systematic form, it still
generates the same code so that G H T = 0. H is a generator for a (7,3) code, the dual code to the
(7,4) Hamming code. 0

The condition cH = 0 imposes linear constraints among the bits of c called the parity
check equations.

Example 3.4 The parity check matrix of (3.7) gives rise to the equations

CO f C3 + Cg + C6 = 0

C l + c3 + c4 + c5 = 0

C2 + C4 + C5 -k Cfj = 0

or, equivalently, some equations for the parity symbols are

CO = C3 + Cg + Cfj

C l = c3 + c4 + c5
C2 = C4 f C5 -k Cfj.

A parity check matrix for a code (whether systematic or not) provides information about
the minimum distance of the code.

88 Linear Block Codes

Theorem 3.3 Let a linear block code C have a parity check matrix H . The minimum
distance dmin of C is equal to the smallest positive number of columns of H which are
linearly dependent. That is, all combinations of dmin - 1 columns are linearly independent,
so there is some set of dmin columns which are linearly dependent.

Proof Let the columns of H be designated as ho, hi, . . . , h,-1. Then since c H T = 0 for
any codeword c, we have

O=coho+clhl +...+cn-lhn-1.

Let c be the codeword of smallest weight, w = wt(c) = dmin, with nonzero positions only
at indices i l , i2, . . . , i,. Then

cil hi, + cizhi, + . . . C i w h i w = 0.

Clearly, the columns of H corresponding to the elements of c are linearly dependent.
On the other hand, if there were a linearly dependent set of u < w columns of H , then

0 there would be a codeword of weight u.

Example 3.5 For the parity check matrix H of (3.7), the parity check condition is

1 0 0-
0 1 0
0 0 1

0 1 1
1 1 1
1 0 1

c H T = [CO, cl, ~ 2 , c3, c4, c5, c6]

, , I 1 , 1

The first, second, and fourth rows of H are linearly dependent, and no fewer rows of H T are linearly
dependent.

- - cO[l, 0, 01 + c1[0, 1 , 01 + c2[0, 0% 11 + C3[1, 1, 01 + C4[0 1 11 fCs[l 1 11 + C6[1 0 11

3.3.1 Some Simple Bounds on Block Codes

Theorem 3.3 leads to a relationship between d d n , n, and k :

Theorem 3.4 The Singleton bound.
bounded by

The minimum distance for an (n , k) linear code is

dmin 5 n - k + 1. (3.8)

Note: Although this bound is proved here for linear codes, it is also true for nonlinear codes.
(See [220].)

Proof An (n , k) linear code has a parity check matrix with n - k linearly independent
rows. Since the row rank of a matrix is equal to its column rank, rank(H) = n - k. Any
collection of n - k + 1 columns must therefore be linearly dependent. Thus by Theorem

0
A code for which dmin = n - k + 1 is called a maximum distance separable (M D S) code.

3.3, the minimum distance cannot be larger than n - k + 1.

Thinking geometrically, around each code point is a cloud of points corresponding to
non-codewords. (See Figure 1.17.) For a q-ary code, there are (q - 1)n vectors at a

3.3 The Parity Check Matrix and Dual Codes 89

Hamming distance 1 away from a codeword, (q - l)2(;) vectors at a Hamming distance 2
away from a codeword and, in general, (q - 1)‘ (‘f) vectors at a Hamming distance 2 from a
codeword.

Example 3.6 Let C be a code of length n = 4 over GF(3) , so q = 3. Then the vectors at a Hamming
distance of 1 from the [0, 0, 0, 01 codeword are

[I , o,o, 01, [O, 1,0,01, [O, 0, 1,01, [O, o,o, 11
[2,0,0,01, [O, 2,0,01, [O, 0,2,01, [O,O, 0,21.

0

The vectors at Hamming distances 5 t away from a codeword form a “sphere” called the
Hamming sphere of radius t . The number of codewords in a Hamming sphere up to radius
t for a code of length n over an alphabet of q symbols is denoted Vq(n, t) , where

t

v,<n, t) = c (;& - w. (3.9)

The bounded distance decoding sphere of a codeword is the Hamming sphere of radius t =
L(din - 1)/2] around the codeword. Equivalently, a code whose random error correction
capability is t must have a minimum distance between codewords satisfying d ~ n 2 2t + 1.

The redundancy of a code is essentially the number of parity symbols in a codeword.
More precisely we have

r = n -log, M ,

where M is the number of codewords. For a linear code we have M = q k , so r = n - k .

j =O

Theorem 3.5 (The Hamming Bound) A t-random error correcting q-ary code C must
have redundancy r satisfying

r 2 log, Vq(n, t) .

Proof Each of M spheres in C has radius t . The spheres do not overlap, or else it would
not be possible to decode t errors. The total number of points enclosed by the spheres must
be 5 qn . We must have

MVq(n, t) I qn

so
q n / M 2 V&, t) ,

from which the result follows by taking log, of both sides. 0
A code satisfying the Hamming bound with equality is said to be a perfect code. Actu-

ally, being perfect codes does not mean the codes are the best possible codes; it is simply a
designation regarding how points fall in the Hamming spheres. The set of perfect codes is
actually quite limited. It has been proved (see [220]) that the entire set of perfect codes is:

1. The set of all n-tuples, with minimum distance = 1 and t = 0.

2. Odd-length binary repetition codes.

3. Binary Hamming codes (linear) or other nonlinear codes with equivalent parameters.

4. The binary (23, 12,7) Golay code G23.

5. The ternary (i.e., over GF(3)) (11,6,5) code G11 and the (23,llS)code G23. These
codes are discussed in Chapter 8.

90 Linear Block Codes

Box 3.1: Error Correction and Least-Squares

The hard-input decoding problem is: Given r = mG + e, compute m. Readers
familiar with least-squares problems (see, e.g., [246]) will immediately rec-
ognize the structural similarity of the decoding problem to least-squares. If a
least-squares solution were possible, the decoded value could be written as

m = rGT(GGT)-',

reducing the decoding problem to numerical linear algebra. Why cannot least-
squares techniques be employed here? In the first place, it must be recalled
that in least squares, the distance function d is induced from an inner product,
d (x , y) = (x - y , x - Y) ' / ~ , while in our case the distance function is the
Hamming distance - which measures the likelihood - which is not induced
from an inner product. The Hamming distance is a function IF: x IF: + N, while
the inner product is a function IF: x IF: + IF: : the codomains of the Hamming
distance and the inner product are different.

3.4 Error Detection and Correction over Hard-Input Channels

Definition 3.7 Let r be an n-vector over F, and let H be a parity check matrix for a code
C. Thevector

-1 (3.10)

0
By Theorem 3.2, s = 0 if and only if r is a codeword of C. In medical terminology, a

syndrome is a pattern of symptoms that aids in diagnosis; here s aids in diagnosing if r is a
codeword or has been corrupted by noise. As we will see, it also aids in determining what
the error is.

is called the syndrome of r.

3.4.1 Error Detection

The syndrome can be used as an error detection scheme. Suppose that a codeword c in a
binary linear block code C over IF, is transmitted through a hard channel (e.g., a binary code
over a BSC) and that the n-vector r is received. We can write

r = c + e ,

where the arithmetic is done in IF,, and where e is the error vector, being 0 in precisely the
locations where the channel does not introduce errors. The received vector r could be any
of the vectors in IF:, since any error pattern is possible. Let H be a parity check matrix for
C. Then the syndrome

s = rHT = (c + e)HT = eHT.

From Theorem 3.2, s = 0 if r is a codeword. However, if s # 0, then an error condition has
been detected we do not know what the error is, but we do know that an error has occurred.

3.4.2 Error Correction: The Standard Array

Let us now consider one method of decoding linear block codes transmitted through a hard
channel using maximum likelihood (ML) decoding. As discussed in Section 1.8.1, ML

3.4 Error Detection and Correction over Hard-Inwt Channels 91

decoding of a vector r consists of choosing the codeword c E C that is closest to r in
Hamming distance. That is,

2 = argmindH(c, r).
C € C

Let the set of codewords in the code be {co, c1, . . . , C M - ~ } , where M = qk. Let us take
co = 0, the all-zero codeword. Let Vi denote the set of n-vectors which are closer to the
codeword Cj than to any other codeword. (Vectors which are equidistant to more than one
codeword are assigned into a set Vi at random.) The sets { Vi , i = 0, 1, . . . , M - 1) partition
the space of n-vectors into M disjoint subsets. If r falls in the set Vi, then, being closer to
Ci than to any other codeword, r is decoded as ci . So, decoding can be accomplished if the
Vi sets can be found.

The standardarray is a representation of the partition { Vj }. It is a two-dimensional array
in which the columns of the array represent the Vi . The standard array is built as follows.
First, every codeword Cj belongs in its own set Vj . Writing down the set of codewords thus
gives the first row of the array. Now, from the remaining vectors in Ft , find the vector el of
smallest weight. This must lie in the set VO, since it is closest to the codeword co = 0. But

d ~ (e 1 + ci, ci> = &(el, 01,

for each i , so the vector el + ci must also lie in Vi for each i. So el + Ci is placed into each
Vj . The vectors el + ci are included in their respective columns of the standard array to form
the second row of the standard array. The procedure continues, selecting an unused vector
of minimal weight and adding it to each codeword to form the next row of the standard
array, until all q" possible vectors have been used in the standard array. In summary:

1. Write down all the codewords of the code C.

2. Select from the remaining unused vectors of IF; one of minimal weight, e. Write e in
the column under the all-zero codeword, then add e to each codeword in turn, writing
the sum in the column under the corresponding codeword.

3. Repeat step 2 until all q" vectors in JF: have been placed in the standard array.

Example 3.7 For a (7,3) code, a generator matrix is

1 0 1 1 1 1 0 0

1 1 0 1 0 0 1

The codewords for this code are

rowl OOOooO0 I 0111100 1011010 1100110 1101001 1010101 0110011 oO01111

From the remainin 7 tuples, one of minimal weight is selected take (1000000). The second row
is obtained by adding &,to each codeword

rowl 0000000 I 0111100 1011010 1100110 1101001 1010101 0110011 0001111
row2 1oooOOO I 1111100 0011010 0100110 0101001 0010101 1110011 1001111

Now proceed until all 2" vectors are used, selecting an unused vector of minimum weight and

(The horizontal lines in the standard array separate the error patterns of different weights.) 0

We make the following observations:

adding it to all the codewords. The result is shown in Table 3.1.

92 Linear Block Codes

row1 oooO000
row2 1oO0oO0
row3 0100000
row4 0010000
row5 0001000
row6 0000100
row7 oO00010
row8 0000001
row9 1100000
row 10 1010000
row 11 0110000
row 12 1001000
row 13 0101000
row 14 0011000
row 15 1000100
row16 1110000

Table 3.1 : The Standard Array for a Code

011 1100
111 1100
001 1100
0101100
0110100
0111000
01 11 110
0111101
1011100
1101100
0001 100
1110100
0010100
0100100
1111000
1001100

1011010
0011010
1111010
1001010
1010010
1011110
1011000
1011011
0111010
0001010
1101010
0010010
1110010
1000010
0011 110
0 10 10 10

1100110
0100110
1o00110
11 101 10
1101110
1100010
1100100
11001 11
00001 10
0110110
1010110
0101110
1001110
11111 10
0100010
0010110

1101001
0101001
1001001
1111001
1100001
1101101
1101011
1101000
0001001
01 1 100 1
1011001
0100001
1000001
1110001
0101101
0011001

1010101
0010101
1110101
1000101
1011101
1010001
1010111
1010100
0110101
0000101
1100101
0011101
11 11 101
1001101
0010001
0100101

0110011
11 1001 1
0010011
0100011
0111011
01 101 11
01 10001
0110010
1010011
11oO011
000001 1
111101 1
0011011
0101011
11101 11
1000011

oO01111
1001111
0101 11 1
001 1 1 1 1
00001 11
0001011
0001101
0001 1 10
1101111
1011 11 1
0111111
10001 11
0100111
0010111
1001011
1111111

1. There are qk codewords (columns) and qn possible vectors, so there are qn-k rows in
the standard array. We observe, therefore, that: an (n , k) code is capable of correcting
qn-k different error patterns.

2. The difference (or sum, over GF(2)) of any two vectors in the same row of the
standard array is a code vector. In a row, the vectors are Ci + e and C j + e. Then

(Ci+e) - (c j+e) = C i - C j ,

which is a codeword, since linear codes form a vector subspace.

we have
3. No two vectors in the same row of a standard array are identical. Because otherwise

e + Ci = e + C j , with i # j ,

which means ci = cj, which is impossible.

4. Every vector appears exactly once in the standard array. We know every vector must
appear at least once, by the construction. If a vector appears in both the Zth row and
the mth row we must have

el + Ci = em + cj

for some i and j . Let us take 1 < m. We have

em = el +ci - C . J - - el + ck

for some k . This means that em is on the Zth row of the array, which is a contradiction.

The rows of the standard array are called cosets. Each row is of the form

e + C = { e + c : c E C}.

That is, the rows of the standard array are translations of C. These are the same cosets we
met in Section 2.2.3 in conjunction with groups.

The vectors in the first column of the standard array are called the coset leaders. They
represent the error patterns that can be corrected by the code under this decoding strategy.
The decoder of Example 3.7 is capable of correcting all errors of weight 1 ,7 different error
patterns of weight 2, and 1 error pattern of weight 3.

3.4 Error Detection and Correction over Hard-Input Channels 93

To decode with the standard array, we first locate the received vector r in the standard
array. Then identify

r = e + c

for a vector e which is a coset leader (in the left column) and a codeword c (on the top row).
Since we designed the standard array with the smallest error patterns as coset leaders, the
error codeword so identified in the standard array is the ML decision. The coset leaders are
called the correctable error patterns.

Example 3.8 For the code of Example 3.7, let

r = [O, 0, 1, l,O, 1, 11

(shown in bold in the standard array) then its coset leader is e = [0, 1,0, 1, 0, 0, 01 and the codeword
is c = [0, 1, 1,0, 0, 1, 11, which corresponds to the message m = [0, 1, 11, since the generator is
systematic. 13

Example 3.9 It is interesting to note that for the standard array of Example 3.7, not all (i) = 21
patterns of 2 errors are correctable. Only 7 patterns of two errors are correctable. However, there is
one pattern of three errors which is correctable.

The minimum distance for this code is clearly 4, since the minimum weight of the nonzero
codewords is 4. Thus, the code is guaranteed to correct only L(4 - 1)/2] = 1 error and, in fact it
does correct all patterns of single errors. (3

As this decoding example shows, the standard array decoder may have coset leaders with
weight higher than the random-error-correcting capability of the code t = L(dmin - 1)/2].

Definition 3.8 A complete error correcting decoder is a decoder that given the received
word r, selects the codeword c which minimizes dH(r, c). That is, it is the ML decoder for
the BSC channel. 0

If a standard array is used as the decoding mechanism, then complete decoding is
achieved. On the other hand, if the rows of the standard array are filled out so that aZE
instances of up to t errors appear in the table, and all other rows are left out, then a bounded
distance decoder is obtained.

Definition 3.9 A t-error correcting bounded distance decoder selects the codeword c
given the received vector r if dH(r, c) 5 t. If no such c exists, then a decoder failure is
declared. 0

This observation motivates the following definition.

Example 3.10 In Table 3.1, only up to row 8 of the table would be used in a bounded distance decoder,
which is capable of correcting up to t = L(ddn - 1)/2] = L(4 - 1)/2] = 1 error. A received vector
r appearing in rows 9 through 16 of the standard array would result in a decoding failure. 0

A perfect code can be understood in terms of the standard array: it is one for which
there are no “leftover” rows: all (7) error patterns of weight t and all lighter error patterns
appear as coset leaders in the table, with no “leftovers.” What makes it “perfect” then, is
that the bounded distance decoder is also the ML decoder.

The standard array can, in principle, be used to decode any linear block code, but suffers
from a major problem: the memory required to represent the standard array quickly become
excessive, and decoding requires searching the entire table to find a match for a received
vector r. For example, a (256,200) binary code - not a particularly long code by modern

94 Linear Block Codes

standards - would require 2256 vectors of length 256 bits to be stored in it
and every decoding operation would require on average searching through half of the table.

A first step in reducing the storage and search complexity (which doesn't go far enough)
is to use syndrome decoding. Let e + c be a vector in the standard array. The syndrome
for this vector is s = (e + c) H = eHT. Furthermore, every vector in the coset has the
same syndrome: (e + c) H T = eHT. We therefore only need to store syndromes and their
associated error patterns. This table is called the syndrome decoding table. It has q"-k rows
but only two columns, so it is smaller than the entire standard array. But is still impractically
large in many cases.

1.2 x

With the syndrome decoding table, decoding is done as follows:

1. Compute the syndrome, s = rHT

2. In the syndrome decoding table look up the error pattern e corresponding to s.

3. Then c = r + e.

Example 3.11 For the code of Example 3.7 a parity check matrix is

r l o o o o 1 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0 '

The syndrome decoding table is

Error Syndrome
0000000 0000
1000000 1000
0100000 0100
0010000 0010
0001000 0001
0000100 0111
0000010 1011
0000001 1101
1100000 1100
1010000 1010
0110000 0110
1001000 1001
0101000 0101
0011000 0011
1000100 1111
1110000 1110

Suppose that r = [0, 0, 1 , 1,0, 1 , 11, as before. The syndrome is

s = r H T = [O 1 0 1 1 ,

(in bold in the table) which corresponds to the coset leader e = [0 1 0 1 0 0 01. The
decoded codeword is then

t = [O,O, 1,1,0,1,11 +LO, 1,0, 1,0,0,01 = [O, 1, 1,0,0, 1 , 11,

as before. 0

Despite the significant reduction compared to the standard array, the memory requirements
for the syndrome decoding table are still very high. It is still infeasible to use this technique
for very long codes. Additional algebraic structure must be imposed on the code to enable
decoding long codes.

3.5 Weight Distributions of Codes and Their Duals 95

3.5 Weight Distributions of Codes and Their Duals

The weight distribution of a code plays a significant role in calculating probabilities of error.

Definition 3.10 Let C be an (n, k) code. Let Ai denote the number of codewords of weight
i in C. Then the set of coefficients [Ao, A1, . . . , An} is called the weight distribution for
the code.

It is convenient to represent the weight distribution as a polynomial,

A (z) = A0 + A l z + A2z2 + * * * + An?"' (3.1 1)

0
The weight enumerator is (essentially) the z-transform of the weight distribution se-

This polynomial is called the weight enumerator.

quence.

Example 3.12 For the code of Example 3.7, there is one codeword of weight 0. The rest of the
codewords all have weight 4. So A0 = 1, A4 = 7. Thus

A(z) = 1 + 7z4.

There is a relationship, known as the MacWilliams identity, between the weight enumerator
of a linear code and its dual. This relationship is of interest because for many codes it is
possible to directly characterize the weight distribution of the dual code, from which the
weight distribution of the code of interest is obtained by the MacWilliams identity.

Theorem 3.6 (The MacWilliams Identity). Let C be an (n, k) linear block code over F,
with weight enumerator A (z) and let B (z) be the weight enumerator of C'. Then

06 turning this around algebraically,

(3.12)

(3.13)

The proof of this theorem reveals some techniques that are very useful in coding. We give
the proof for codes over P2, but it is straightforward to extend to larger fields (once you
are familiar with them). The proof relies on the Hadamard transform. For a function f
defined on IF;, the Hadamard transform f of f is

V € F $ V € F $

where the sum is taken over all 2n n-tuples v = (vo, v l , . . . , vn- l) , where each Uj E IF;.

Lemma 3.7 I f C is an (n , k) binary linear code and f is afunction dejined on IF;,

Here IC I denotes the number of elements in the code C.

96 Linear Block Codes

Proof of lemma.

U € C U€C v a ; v€F; U€C

= c f(") ~ (- l) (~ J) + c f(v) E (- l) (U J) ,

V€CL U€C V€C\{O} U€C

where IF; has been partitioned into two disjoint sets, the dual code CL and the nonzero
elements of the code, C \ {O}. In the first sum, (u, v) = 0, so the inner sum is ICI. In the
second sum, for every v in the outer sum, (u, v) takes on the values 0 and 1 equally often
as u varies over C in the inner sum, so the inner sum is 0. Therefore

Proof of Theorem 3.6. Note that the weight enumerator can be written as

C€C

Let f(u) = zwt(u). Taking the Hadamard transform we have

f (u) = c (- l) (~J)zwt(v) .

V € F %

Writing out the inner product and the weight function explicitly on the vectors u = (uo, u 1,

. . . , un-i) and v = (vo, v1, . . . , vn-1) we have

n-1 n-1

The sum over the 2" values of v E IF; can be expressed as n nested summations over the
binary values of the elements of v:

1 1 1 n-1

uo=O u1 =O u,-l =O i d

Now the distributive law can be used to pull the product out of the summations2,

n-1 1

i=O ui=O

If ui = 0 then the inner sum is 1 + z . If ui = 1 then the inner sum is 1 - z. Thus

*The distributive law reappears in a generalized way in Chapter 16. We make the interesting observation here
that the use of the distributive law gives rise to a "fast" Hadamard transform, analogous to and similarly derived
as the fast Fourier transform.

3.6 Hamming Codes and Their Duals 97

Now applying Lemma 3.7 we obtain

3.6 Hamming Codes and Their Duals

We now formally introduce a family of binary linear block codes, the Hamming codes, and
their duals.

Definition 3.11 For any integer rn 2 2, a (2m - 1, 2m - rn - 1,3) binary code may be
defined by its rn x n parity check matrix H , which is obtained by writing all possible binary
m-tuples, except the all-zero tuple, as the columns of H. For example, simply write out the
rn-bit binary representation for the numbers from 1 to n in order. Codes equivalent to this

0 construction are called Hamming codes.
For example, when m = 4 we get

1 H = [0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

as the parity check matrix for a (15, l l) Hamming code. However, it is usually convenient
to reorder the columns -resulting in an equivalent code - so that the identity matrix which
is interspersed throughout the columns of H appears in the first rn columns. We therefore
write

0 0 1 0

1 0 0 0 1 1 0 1 1 0 1 0 1 0 1
0 1 0 0 1 0 1 1 0 1 1 0 0 1 1

0 0 0 1 0 0 0 0 1 1 1 1 1 1 1

H = [

1 2 4 8 3 5 6 7 9 10 I I 12 13 14 15

It is clear from the form of the parity check matrix that for any rn there exist three columns
which add to zero; for example,

so by Theorem 3.3 the minimum distance is 3; Hamming codes are capable of correcting 1
bit error in the block, or detecting up to 2 bit errors.

An algebraic decoding procedure for Hamming codes was described in Section 1.9.1.
The dual to a (2m - 1, 2m - m - 1) Hamming code is a (2m - 1, rn) code called a

simplex code or a maximal-length feedback shift register code.

Example 3.13 The parity check matrix of the (7,4) Hamming code of (3.7) can be used as a generator
of the (7,3) simplex code with codewords

98 Linear Block Codes

0000000 100101 1
0101 110 001011 1
1100101 101 1 loo
01 11001 11 10010

Observe that except for the zero codeword, all codewords have weight 4. 0

In general, all of the codewords of the (2m - 1, m) simplex code have weight 2m-' (see Ex-
ercise 3.12) and every pair of codewords is at a distance 2m-' apart (which is why it is called
a simplex). For example, for the m = 2 case, the codewords {(000), (101), (Oll), (110))
form a tetrahedron. Thus the weight enumerator of the dual code is

B(z) = 1 + (2m - 1)z2"-'. (3.14)

From the weight enumerator of the dual, we find using (3.13) that the weight distribution
of the Hamming code is

1

n + l
A(z) = - [(l + z)" + n(l - z)(l - z2)("-1)'2 I. (3.15)

Example 3.14 For the (7,4) Hamming code the weight enumerator is

A(z) = 8 1 [(l + z17 + 7(1 - z)(l - z213] = 1 + 7z3 + 72 4 7 + z . (3.16)

Example 3.15 For the (15,ll) Hamming code the weight enumerator is

1
16

A(z) = -((I +z)15 + 15(1 - Z)(l - Z217)

(3.17) = 1 + 35z3 + 1 0 5 ~ ~ + 1 6 8 ~ ~ + 280z6 + 4 3 5 ~ ~ + 435z8 + 2 8 0 ~ ~ + 168~"

+ 105z" + 3 . 5 ~ ' ~ + zI5.

U

3.7 Performance of Linear Codes

There are several different ways that we can characterize the error detecting and correcting
capabilities of codes at the output of the channel decoder [373].

P(E) is the probability of decoder error, also known as the word error rate. This is
the probability that the codeword at the output of the decoder is not the same as the
codeword at the input of the encoder.

&(E) or Pb is the probability of bit error, also known as the bit error rate. This is the
probability that the decoded message bits (extracted from a decoded codeword of a
binary code) are not the same as the encoded message bits. Note that when a decoder
error occurs, there may be anywhere from 1 to k message bits in error, depending on
what codeword is sent, what codeword was decoded, and the mapping from message
bits to codewords.

Pu (E) is the probability of undetected codeword error, the probability that errors oc-
curring in a codeword are not detected.

3.7 Performance of Linear Codes 99

Pd(E) is the probability of detected codeword error, the probability that one or more
errors occurring in a codeword are detected.

Pub is the undetected bit error rate, the probability that a decoded message bit is in error
and is contained within a codeword corrupted by an undetected error.

Pdb is the detected bit error rate, the probability that a received message bit is in error
and is contained within a codeword corrupted by a detected error.

P (F) is the probability of decoder failure, which is the probability that the decoder is
unable to decode the received vector (and is able to determine that it cannot decode).

In what follows, bounds and exact expressions for these probabilities will be developed.

3.7.1 Error detection performance

All errors with weight up to dmin - 1 can be detected, so in computing the probability of
detection only error patterns with weight &in or higher need be considered. If a codeword
c of a linear code is transmitted and the error pattern e happens to be a codeword, e = c',
then the received vector

r = c + c '

is also a codeword. Hence, the error pattern would be undetectable. Thus, the probability
that an error pattern is undetectable is precisely the probability that it is a codeword.

We consider only errors in transmission of binary codes over the BSC with crossover
probability p . (Extension to codes with larger alphabets is discussed in [373].) The proba-
bility of any particular pattern of j errors in a codeword is p j (1 - p)"-'. Recalling that A j
is the number of codewords in C of weight j , the probability that j errors form a codeword
is A j p j (1 - p)"- j . The probability of undetectable error in a codeword is then

n

P u (E) = A j p j (1 - p) " - j . (3.18)
j=&i,

The probability of a detected codeword error is the probability that one or more errors occur
minus the probability that the error is undetected:

Computing these probabilities requires knowing the weight dstribution of the code, which
is not always available. It is common, therefore, to provide bounds on the performance. A
bound on Pu (E) can be obtained by observing that the probability of undetected error is
bounded above by the probability of occurrence of any error patterns of weight greater than
or equal to Since there are (7) different ways that j positions out of ~t can be changed,

(3.19)

A bound on Pd (E) is simply
P d (E) 5 1 - (1 - p)" .

100 Linear Block Codes

probdetH15.m
probdet .m

Example 3.16 For the Hamming (7,4) code with A (z) = 1 + 7z3 + 7z4 + z7,

3 Pu(E) = 7 p (I - pl4 + 7p4(1 - p13 + p 7 .

If p = .01 then Pu(E) 6.79 x lop6. The bound (3.19) gives P u (E) < 3.39 x 0

The corresponding bit error rates can be bounded as follows. The undetected bit error
rate Pub can be lower-bounded by assuming the undetected codeword error corresponds to
only a single message bit error. Pub can be upper-bounded by assuming that the undetected
codeword error corresponds to all k message bits being in error. Thus

1
- P u (E) I: I P u (E) .
k

1
- P d (E) I: pdb I: P d (E) . k

Similarly for Pdb :

Example 3.17 Figure 3.1 illustrates the detection probabilities for a BSC derived from a BPSK
system, withp = Q(,/-), for aHamming (15,ll) code. The weight enumerator is in (3.17).
For comparison, the probability of an undetected error for the uncoded system is shown, in which
any error is undetected, so Pu,uncoded = I - (1 - Puncod&, where Puncoded = ~(4-1.
Note that the upper bound on Pu is not very tight, but the upper bound on Pd is tight - they are
indistinguishable on the plot, since they differ by Pu(E), which is orders of magnitude smaller than
Pd (E) . The uncoded probability of undetected error is much greater than the coded Pu. 0

loo * g 1

+ P"(E)

d Pd(E)

- +- . Pu(E) upper bound

- + . P&E) upper bound

+ PJE) uncoded
I I

Figure 3.1: Error detection performance for a (15,l l) Hamming code.

3.7.2 Error Correction Performance

An error pattern is correctable if and only if it is a coset leader in the standard array for
the code, so the probability of correcting an error is the probability that the error is a coset
leader. Let ai denote the number of coset leaders of weight i . The numbers c q , a1 , . . . , an

3.7 Performance of Linear Codes 101

are called the coset leader weight distribution. Over a BSC with crossover probability
p , the probability of j errors forming one of the coset leaders is a, p j (1 - p)"-j. The
probability of a decoding error is thus the probability that the error is not one of the coset
leaders

n

This result applies to any linear code with a complete decoder.

Example 3.18 For the standard array in Table 3.1, the coset leader weight distribution is

U p = 0.01, then P (E) = 0.0014. 0

Most hard-decision decoders are bounded-distance decoders, selecting the codeword c
which lies within a Hamming distance of L(dmin - 1)/2] of the received vector r. An exact
expression for the probability of error for a bounded-distance decoder can be developed as
follows. Let Pi] be the probability that a received word r is exactly Hamming distance 1
from a codeword of weight j .

Lemma 3.8 [373, p . 2491

Proof Assume (without loss of generality) that the all-zero codeword was sent. Let c be
a codeword of weight j , where j # 0. Let the coordinates of c which are 1 be called the
1-coordinates and let the coordinates of c which are 0 be called the 0-coordinates. There
are thus j 1-coordinates and n - j 0-coordinates of c. Consider now the ways in which
the received vector r can be a Hamming distance 1 away from c. To differ in 1 bits, it must
differ in an integer r number of 0-coordinates and 1 - r 1-coordinates, where 0 5 r 5 1.
The number of ways that r can differ from c in r of the 0-coordinates is ("i'). The total
probability of r differing from c in exactly r 0-coordinates is

The number of ways that rcan differ from cin 1 -r of the 1-coordinates is (j-({-rl)) = (lir).
Since the all-zero codeword was transmitted, the 1 - r coordinates of r must be 0 (there
was no crossover in the channel) and the remaining j - (1 - r) bits must be 1. The total
probability of r differing from c in exactly 1 - r 1-coordinates is

(1 r) pj-l+r (1 - p)l-'.

The probability P/ is obtained by multiplying the probabilities on the 0-coordinates and the
1-coordinates (they are independent events since the channel is memoryless) and summing

102 Linear Block Codes

over r :

0
The probability of error is now obtained as follows.

Theorem 3.9 For a binary (n, k) code with weight distribution { A i) , the Probability of
decoding error for a bounded distance decoder is

n

(3.20)

Proof Assume that the all-zero codeword was sent. For a particular codeword of weight
j # 0, the probability that the received vector r falls in the decoding sphere of that codeword
is

Then the result follows by adding up over all possible weights, scaled by the number of
0

The probability of decoder failure for the bounded distance decoder is the probability that
the received codeword does not fall into any of the decoding spheres,

codewords of weight j , A j .

l(dmin-1)/2J

P (F) = 1 - c (;) p j (l - p y - j - P (E) . +
i , probability of

j =O

probability of falling in the
falling in correct incorrect
decoding sphere decoding sphere

Exact expressions to compute Pb (E) require information relating the weight of the mes-
sage bits and the weight of the corresponding codewords. This information is summarized
in the number B j , which is the total weight of the message blocks associated with codewords
of weight j .

Example 3.19 For the (7,4) Hamming code, 83 = 12,84 = 16, and 87 = 4. That is, the total
weight of the messages producing codewords of weight 3 is 12; the total weight of messages producing

0 codewords of weight 4 is 16.

Modifying (3.20) we obtain

3.7 Performance of Linear Codes 103

(See hamcode74pe. m.) Unfortunately, while obtaining values for B j for small codes
is straightforward computationally, appreciably large codes require theoretical expressions
which are usually unavailable.

The probability of decoder error can be easily bounded by the probability of any error
patterns of weight greater than L(dmin - 1)/2] :

An easy bound on probability of failure is the same as the bound on this probability of error.
Bounds on the probability of bit error can be obtained as follows. A lower bound is

obtained by assuming that a decoder error causes a single bit error out of the k message
bits. An upper bound is obtained by assuming that all k message bits are incorrect when the
block is incorrectly decoded. This leads to the bounds

1
-P(E) I Pb(E) I P(E). k

3.7.3 Performance for Soft-Decision Decoding

While all of the decoding in this chapter has been for hard-input decoders, it is interesting to
examine the potential performance for soft-decision decoding. Suppose the codewords of
an (n, k, ddn) code C are modulated to a vectors using BPSK having energy E, = REb per
coded bit and transmitted through an AWGN with variance c2 = No/2. The transmitted
vector s is a point in n-dimensional space. In Exercise 1.15, it is shown that the Euclidean
distance between two BPSK modulated codewords is related to the Hamming distance
between the codewords by

dE = 2JE,dH.

Suppose that there are K codewords (on average) at a distance dmin from a codeword. By
the union bound (1.28), the probability of a block decoding error is given by

Neglecting the multiplicity constant K , we see that we achieve essentially comparable
performance compared to uncoded transmission when

- E b for uncoded = RdminEb for coded.
NO No

The asymptotic coding gain is the factor by which the coded Eb/No can be decreased to
obtain equivalent performance. (It is called asymptotic because it applies only as the SNR
becomes large enough that the union bound can be regarded as a reasonable approximation.)
In this case the asymptotic coding gain is

Rdmin.

Recall that Figure 1.19 illustrated the advantage of soft-input decoding compared with
hard-input decoding.

104 Linear Block Codes

3.8 Erasure Decoding

An erasure is an error in which the error location is known, but the value of the error is not.
Erasures can arise in several ways. In some receivers the received signal can be examined
to see if it falls outside acceptable bounds. If it falls outside the bounds, it is declared as an
erasure. (For example, for BPSK signaling, if the received signal is too close to the origin,
an erasure might be declared.)

Example 3.20 Another way that an erasure can occur in packet-based transmission is as follows.
Suppose that a sequence of codewords c1, c2, . . . , C N are written into the rows of a matrix

then the columns are read out, giving the data sequence

[C I O ~ ~ 2 0 3 . . . , ~ ~ 0 1 3 Cell, ~ 2 1 3 . . . , ~ ~ 1 1 3 [c122 ~ 2 2 9 . . . , ~ ~ 2 1 , . . . , [c ln - l , c2n-13. . . , c ~ n - 1 1 .

Suppose that these are now sent as a sequence of n data packets, each of length N , over a channel
which is susceptible to packet loss, but where the loss of a packet is known at the receiver (such as the
internet using a protocol that does not guarantee delivery, such as UDP). At the receiver, the packets
are written into a matrix in column order - leaving an empty column corresponding to lost packets
- then read out in row order. Suppose in this scheme that one of the packets, say the third, is lost in
transmission. Then the data in the receiver interleaver matrix would look like

where the gray boxes indicate lost data. While a lost packet results in an entire column of lost data,
it represents only one erased symbol from the de-interleaved codewords, a symbol whose location is
known. 0

Erasures can also sometimes be declared using concatenated coding techniques, where an
outer code declares erasures at some symbol positions, which an inner code can then correct.

Consider the erasure capability for a code of distance df in . A single erased symbol
removed from a code (with no additional errors) leaves a code with a minimum distance at
least df in - 1. Thus f erased symbols can be “filled” provided that f < dfin. For example,
a Hamming code with dmin = 3 can correct up to 2 erasures.

Now suppose that there are both errors and erasures. For a code with d ~ n experiencing
a single erasure, there are still n - 1 unerased coordinates and the codewords are separated
by a distance of at least dfin - 1. More generally, if there are f erased symbols, then the
distance among the remaining digits is at least d f i n - f . Letting tf denote the random error
decoding distance in the presence of f erasures, we can correct up to

3.9 Modifications to Linear Codes 105

I Box 3.2: The UDP Protocol

UDP -user datagram protocol - is one of the protocols in the TCP/IF' protocol
suite. The most common protocol, TCP, ensures packet delivery by acknowledg-
ing each packet successfully received, retransmitting packets which are garbled
or lost in transmission. UDP, on the other hand, is an open-ended protocol which
does not guarantee packet delivery. For a variety of reasons, it incurs lower
delivery latency and as a result, it is of interest in near real-time communication
applications. The application designer must deal with dropped packets using,
for example, error correction techniques.

errors. If there are f erasures and e errors, they can be corrected provided that

2e + f < d d n . (3.21)

Since correcting an error requires determination of both the error position and the error
value, while filling an erasure requires determination only of the error value, essentially
twice the number of erasures can be filled as errors corrected.

3.8.1 Binary Erasure Decoding

We consider now how to simultaneously fill f erasures and correct e errors in a binary
code with a given decoding algorithm [373, p. 2291. In this case, all that is necessary is to
determine for each erasure whether the missing value should be a one or a zero. An erasure
decoding algorithm for this case can be described as follows:

1. Place zeros in all erased coordinates and decode using the usual decoder for the code.

2. Place ones in all erased coordinates and decode using the usual decoder for the code.

3. Find which of co and c1 is closest to r. This is the output code.

Call the resulting codeword co.

Call the resulting codeword c1.

Let us examine why this decoder works. Suppose we have (2e + f) < d d n (so that correct
decoding is possible). In assigning 0 to the f erased coordinates we thereby generated eo
errors, eo 5 f , so that the total number of errors to be corrected is (eo + e) . In assigning 1
to the f erased coordinates, we make el errors, el 5 f , so that the total number of errors to
be corrected is (el + e). Note that eo + el = j , so that either eo or el is less than or equal
to f/2. Thus either

2(e + eo) F 2(e + f/2) or 2(e + el) i 2(e + f/2),

and 2(e + f/2) < ddn, so that one of the two decodings must be correct.

example, decoding of Reed-Solomon codes is discussed in Section 6.7.
Erasure decoding for nonbinary codes depends on the particular code structure. For

3.9 Modifications to Linear Codes

We introduce some minor modifications to linear codes. These are illustrated for some
particular examples in Figure 3.2.

106 Linear Block Codes

Definition 3.12 An (n , k , d) code is extended by adding an additional redundant coordinate,
0 producing an (n + 1, k , d + 1) code.

Example 3.21 We demonstrate the operations by modifying a (7,4, 3) Hamming code. The parity
check matrix for an extended Hamming code, with an extra check bit that checks the parity of all the
bits, can be written

0 0 1 0 1 1 1 0 .

1 0 0 1 0 1 1 0

1 1 1 1 1 1 1 1 1 H = [0 1 0 1 1 1 0 0

1
1 G = [0 1 1 1 0 0 1 0 .

The last row is the overall check bit row. By linear operations, this can be put in equivalent systematic
form

1 0 0 0 1 1 0 1
0 1 0 0 0 1 1 1
0 0 1 0 1 1 1 0
0 0 0 1 1 0 1 1

H = [
with the corresponding generator

0

1 0 1 1 1 0 0 0
1 1 1 0 0 1 0 0

1 1 0 1 0 0 0 1

See Figure 3.2.

Definition 3.13 A code is punctured by deleting one of its parity symbols. An (n , k) code
0

Puncturing an extended code can return it to the original code (if the extended symbols
are the ones punctured.) Puncturing can reduce the weight of each codeword by its weight
in the punctured positions. The minimum distance of a code is reduced by puncturing if
the minimum weight codeword is punctured in a nonzero position. Puncturing an (n , k , d)
code p times can result in a code with minimum distance as small as d - p .

Definition 3.14 A code is expurgated by deleting some of its codewords. It is possible to
expurgate a linear code in such a way that it remains a linear code. The minimum distance

0

Example 3.22 If all the odd-weight codewords are deleted from the (7,4) Hamming code, an even-
weight subcode is obtained.

0

becomes an (n - 1, k) code.

of the code may increase.

Definition 3.15 A code is augmented by adding new codewords. It may be that the new

Definition 3.16 A code is shortened by deleting a message symbol. This means that a row
is removed from the generator matrix (corresponding to that message symbol) and a column
is removed from the generator matrix (corresponding to the encoded message symbol). An
(n , k) code becomes an (n - 1, k - 1) code.

Definition 3.17 A code is lengthened by adding a message symbol. This means that a
row is added to the generator matrix (for the message symbol) and a column is added to
represent the coded message symbol). An (n , k) code becomes an (n + 1, k + 1) code. 0

code is not linear. The minimum distance of the code may decrease.

Shortened cyclic codes are discussed in more detail in section 4.12.

3.10 Best Known Linear Block Codes 107

'$:.tit
coordinates

Hamming (2m - 1, 2m - 1 - rn, 3)

Extend b adding
an overallparity check

1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

1 0 0 1 0 1 1

0 0 1 0 1 1 1

Extended Hammin
(2m 3 2m - 1 - rn, $1

1 0 1 1 1 0 0 0

Even wei ht subcode
(2m-1,%-2-m,4)

1 1 0 1 1 1 0 0
1 1 0 0 1 0

0 1 1 1 0 0 1

r l o o o 1 1 01
4

Shorten
the code 1 lH=i 0 0 0 1 1 0 1

0 1 0 0 0 1 1
0 0 1 0 1 1 1

1 1 0 1 0 0 0 1

1 0 0 0 1 1 0 1
0 1 0 0 0 1 1 1

0 0 0 1 1 0 1 1 1 H = [0 0 1 0 1 1 1 0

Figure 3.2: Demonstrating modifications on a Hamming code.

3.10 Best Known Linear Block Codes

Tables of the best known linear block codes are available. An early version appears in [220].
More recent tables can be found at [37].

3.1 1 Exercises

3.1 Find, by trial and error, a set of four binary codewords of length three such that each word is at
least a distance of 2 from every other word.

3.2 Find a set of 16 binary words of length 7 such that each word is at least a distance of 3 from every
other word. Hint: Hamming code.

3.3 Perhaps the simplest of all codes is the binary parity check code, a (n , n - 1) code, where k = n - 1.
Given amessage vector m = (mo, m i , . . . , mk- l) , the codeword is c = (mo, mi, . . . , mk-1, b),
where b = Ck-l m (arithmetic in GF(2)) is the parity bit. Such a code is called an even parity
code, since a l ~ ~ % e ~ o r d s have even parity - an even number of 1 bits.

(a) Determine the minimum distance for this code.

(b) How many errors can this code correct? How many errors can this code detect?

(c) Determine a generator matrix for this code.

(d) Determine a parity check matrix for this code.

108 Linear Block Codes

3.4
3.5

3.6

3.7

3.8

(e) Suppose that bit errors occur independently with probability p c . The probability that a
parity check is satisfied is the probability that an even number of bit errors occur in the
received codeword. Verify the following expression for this probability:

1 + (1 - 2pcY
2

i=O.z even

For the (n, 1) repetition code, determine a parity check matrix.
[373] Let p = 0.1 be the probability that any bit in a received vector is incorrect. Compute
the probability that the received vector contains undetected errors given the following encoding
schemes:

(a) No code, word length n = 8.

(b) Even parity (see Exercise 3), word length n = 4.
(c) Odd parity, word length n = 9. (Is this a linear code?)
(d) Even parity, word length = n.

[204] Let C1 be an (nl, k , d l) binary linear systematic code with generator G1 = [P I
C2 be an (n2, k , d2) binary linear systematic code with generator G2 = [Pz
parity check matrix for an (n 1 + n2, k) code as

Zk]. Let
Zk]. Form the

Show that this code has minimum distance at least dl + d2.

The generator matrix for a code over GF(2) is given by

1 [0 0 1 0 1 1

1 1 1 0 1 0
G = 1 0 0 1 1 1 .

Find a generator matrix and parity-check matrix for an equivalent systematic code.
The generator and parity check matrix for a binary code are given by

(3.22) 1 [::::::I [0 1 0 0 1 1

1 1 0 1 1 0
G = 0 1 1 1 0 1 H = 1 0 1 0 1 1 .

This code is small enough that it can be used to demonstrate several concepts from throughout
the chapter.

Verify that H is a parity check matrix for this generator.
Draw a logic diagram schematic for an implementation of an encoder for the nonsystematic
generator G using ‘and‘ and ‘xor’ gates.
Draw a logic diagram schematic for an implementation of a circuit that computes the
syndrome.
List the vectors in the orthogonal complement of the code.
Form the standard array for this code.
Form the syndrome decoding table for this code.
How many codewords are there of weight 0, 1, . . . , 6 ? Determine the weight enumerator
A (z) .

3.11 Exercises 109

(h) Using the generator matrix in (3.22), find the codeword with m = [l , 1,0] as message bits.
(i) Decode the received word r = [1, 1, 1, 0, 0, 11 using the generator of (3.22).
(i) Determine the weight enumerator for the dual code.
(k) Write down an explicit expression for Pu (E) for this code. Evaluate this when p = 0.01.
(1) Write down an explicit expression for Pd (E) for this code. Evaluate this when p = 0.01.

(m) Write down an explicit expression for P (E) for this code. Evaluate this when p = 0.01.
(n) Write down an explicit expression for P (E) for this code, assuming a bounded distance

(0) Write down an explicit expression for P (F) for this code. Evaluate this when p = 0.01.
(p) Determine the generator G for an extended code, in systematic form.
(q) Determine the generator for a code which has expurgated all codewords of odd weight.

decoder is used. Evaluate this when p = 0.01.

Then express it in systematic form.

3.9 [203] Let a systematic (8,4) code have parity check equations

co = m i + m2 + m3

cl = m o + m i + m 2

c 2 = m o + m i + m g

c3 = r n o + m 2 + m g .

(a) Determine the generator matrix G in for this code in systematic form. Also determine the

(b) Using Theorem 3.3, show that the minimum distance of this code is 4.
(c) Determine A (z) for this code. Determine B (z) .
(d) Show that this is a self-dual code.

parity check matrix H .

3.10 Show that a self-dual code has a generator matrix G which satisfies GGT = 0.
3.11 Given a code with a parity-check matrix H , show that the coset with syndrome s contains a vector

3.12 Show that all of the nonzero codewords of the (2m - 1, m) simplex code have weight 2m-'. Hint:

3.13 Show that (3.13) follows from (3.12).
3.14 Show that (3.15) follows from (3.14) using the MacWilliams identity.
3.15 Let f (u 1 , u2) = ulu2, for ui E F2. Determine the Hadamard transform f of f.
3.16 The weight enumerator A (z) of (3.11) for a code C is sometimes written as W A (X , y) =

of weight w if and only if some linear combination of w columns of H equals S.

Start with m = 2 and work by induction.

. .
C;=o Ajxn-' y' .

(a) Show that A (z) = W A (X , y) l x = l , y = z .

(b) Let WB (x , y) = C;=o B ~ x " - ~ y i be the weight enumerator for the code dual to C. Show

1

that the MacWilliams identity can be written as

w B (X , y) = - w A (X + y , x - y)
qk

(3.23)
1

(c) In the following subproblems, assume a binary code. Let x = 1 in (3.23). We can write

or

w A (X , y) = F W B (X + y , X - y) .

n
(3.24)

' l n
A j y ' = - 2n-k

i =O i =O

Set y = 1 in this and show that Cr=o 3 = 1. Justify this result.

Bi (1 + (1 - y)"

110 Linear Block Codes

(d) Now differentiate (3.24) with respect to y and set y = 1 to show that

If I31 = 0, this gives the average weight.

(e) Differentiate (3.24) u times with respect to y and set y = 1 to show that

i =O

0 n i O
x" n z 0

. We have the following generalization of the product Hint: Define (x)$ =

rule for differentiation:

(0 Now set y = 1 in (3.23) and write

n n

Differentiate u times with respect to x and set x = 1 to show that

3.17

3.18

3.19

3.20

3.21
3.22

Let C be a binary (n, k) code with weight enumerator A (z) and let z be the extended code of
length n + 1,

Determine the weight enumerator for z.
[204] Let C be a linear code with both even- and odd-weight codewords. Show that the number
of even-weight codewords is equal to the number of odd-weight codewords.

Show that for a binary code, Pu (E) can be written as:

(b) and P u (E) = 2k-"B(1 - 2p) - (1 - p) n .

[373] Find the lower bound on required redundancy for the following codes.

(a) A single-error correcting binary code of length 7.
(b) A single-error correcting binary code of length 15.
(c) A triple-error correcting binary code of length 23.

(d) A triple-error correcting 4-ary code (i.e., q = 4) of length 23.

Show that all odd-length binary repetition codes are perfect.

Show that Hamming codes achieve the Hamming bound.

3.11 Exercises 111

3.23 Determine the weight distribution for a binary Hamming code of length 3 1. Determine the weight
distribution of its dual code.

3.24 The parity check matrix for a nonbinary Hamming code of length n = (qm - l)/(q - 1) and
dimension k = (qm - l)/(q - 1) - m with minimum distance 3 can be constructed as follows.
For each q-ary m-tuple of the base-q representation of the numbers from 1 to qm - 1, select those
for which the first nonzero element is equal to 1. The list of all such m-tuples as columns gives
the generator H.

(a) Explain why this gives the specified length n.
(b) Write down a parity check matrix in systematic form for the (5,3) Hamming code over the

(c) Write down the corresponding generator matrix. Note: in this field, every element is its

3.25 [204] Let G be the generator matrix of an (n, k) binary code C and let no column of G be all

field of four elements.

own additive inverse: 1 + 1 = 0 , 2 + 2 = 0 , 3 + 3 = 0.

zeros. Arrange all the codewords of C as rows of a 2k x n array.

Show that no column of the array contains only zeros.
Show that each column of the array consists of Zk-' zeros and 2k-1 ones.
Show that the set of all codewords with zeros in particular component positions forms a
subspace of C. What is the dimension of this subspace?
Show that the minimum distance dmin of this code must satisfy the following inequality,
known as the Plotkin bound:

n2k-1
dmin 5 -

2k - 1 '
3.26 [204] Let r be the ensemble of all the binary systematic linear (n, k) codes.

(a) Prove that a nonzero binary vector v is contained in exactly 2(k-1)(n-k) of the codes in r

(b) Using the fact that the nonzero n-tuples of weight d - 1 or less can be in at most
or it is in none of the codes in r .

(n, k) systematic binary linear codes, show that there exists an (n, k) linear code with
minimum distance of at least d if the following bound is satisfied:

d-1

i=l

(c) Show that there exists an (n, k) binary linear code with minimum distance at least d that
satisfies the following inequality:

d

i =O

This provides a lower bound on the minimum distance attainable with an (n , k) linear code
known as the Gilbert-Varshamov bound.

3.27 Define a linear (5,3) code over GF(4) by the generator matrix

G = O 1 0 1 2 . [: : : : :I

112 Linear Block Codes

(a) Find the parity-check matrix.
(b) Prove that this is a single-error-correcting code.
(c) Prove that it is a double-erasure-correcting code.
(d) Prove that it is a perfect code.

3.28 [203] Let H be the parity check matrix for an (n, k) linear code C. Let C’ be the extended code
whose parity check matrix H‘ is formed by

0
0

0
1
-

H

1 1 ... 1

(a) Show that every codeword of C’ has even weight.
(b) Show that C’ can be obtained from C by adding an extra parity bit called the overall parity

3.29 The [ulu + v] construction: Let Ci, i = 1 , 2 be linear binary (n, k i) block codes with generator

bit to each codeword.

matrix Gi and minimum distance di . Define the code C by

c = IC1 IC1 + c21 = {[ulu + vl : u E c1, v E C2}.

(a) Show that C has the generator

(b) Show that the minimum distance of C is

3.1 2 References

The definitions of generator, parity check matrix, distance, and standard arrays are standard;
see, for example, [203, 3731. The MacWilliams identity appeared in [219]. Extensions to
nonlinear codes appear in [220]. The discussion of probability of error in Section 3.7 is
drawn closely from [373]. Our discussion on modifications follows [373], which, in turn,
draws from [25]. Our analysis of soft-input decoding was drawn from [15]. Classes of
perfect codes are in [337].

Chapter 4

Cyclic Codes, Rings, and
Polynomials
4.1 Introduction

We have seen that linear block codes can be corrected using the standard array, but that for
long codes the storage and computation time can be prohibitive. Furthermore, we have not
yet seen any mechanism by which the generator or parity check matrix can be designed
to achieve a specified minimum distance or other criteria. In this chapter, we introduce
cyclic codes, which have additional algebraic structure to make encoding and decoding
more efficient. Following the introduction in this chapter, additional algebraic tools and
concepts are presented in Chapter 5, which will provide for design specifications and lead
to efficient algebraic decoding algorithms.

Cyclic codes are based on polynomial operations. A natural algebraic setting for the
operations on polynomials is the algebraic structure of a ring.

4.2 Basic Definitions

Given a vector c = (co, c1, . . . , cn-2, cn-l) E G F (q) n , the vector

c' = (cn-1, cot c1, . . . , cn-2)

is said to be a cyclic sh@ of c to the right. A shift by r places to the right produces the
vector (Cn-r , ~ n - ~ + i , . . . , ~ ~ - 1 , C O , ci, . . . , C n - r - 1) .

Definition 4.1 An (n , k) block code C is said to be cyclic if it is linear and if for every
codeword c = (co, c1 , . . . , cn-l) in C, its right cyclic shift c' = (~ ~ - 1 , co, . . . , cn-2) is also
in C. 0

Example 4.1 We observed in Section 1.9.2 that the Hamming (7,4) code is cyclic; see the codeword
list in (1.35). 0

The operations of shifting and cyclic shifting can be conveniently represented using poly-
nomials. The vector

c = (cot c1,. . . , cn-1)

is represented by the polynomial

c (x) = co + q x + . . . + cn- lxn- l ,

(co, c1, . . . , cn-1) * co + c1x + . * . + cn-lx"-l.

using the obvious one-to-one correspondence. We write this correspondence as

114 Cyclic Codes, Rings, and Polynomials

Box 4.1: The Division Algorithm

Let p (x) be a polynomial of degree IZ and let d(x) be a polynomial of degree
m. That is, deg(p(x)) = IZ and deg(d(x)) = m. Then the "division algorithm"
for polynomials asserts that there exist polynomials q (x) (the quotient) and r (x)
(the remainder), where 0 5 deg(r(x)) < m and

P(X> = q(x)d(x) + r (x) .

The actual "algorithm" is polynomial long division with remainder. We say that
p (x) is equivalent to r (x) modulo d(x) and write this as

p (x) = r (x) mod d (x)

or
p (x) (mod d (x)) = r (x) .

If r (x) = 0, then d (x) divides p (x) , which we write as d(x) I p (x) . If d (x) does
not divide p (x) this is denoted as d (x) i p (x) .

A (noncyclic) shift is represented by polynomial multiplication:

2
X C (X) = COX + c1x + * . . + Cn- lX"

so
2 (0, C O , ~ 1 , . . . , cn-1) + COX + c1x + . . . + C n - l X n .

To represent the cyclic shift, we move the coefficient of x" to the constant coefficient position
by taking this product modulo X" - 1. Dividing x c (x) by X" - 1 using the usual polynomial
division with remainder (i.e., the "division algorithm;" see Box 4.1), we obtain

2 x c (x) = c,-1 (x" - 1) + (cox + c1x + . . f + c"4xn-l + cn-l) + i

quotient remainder

so that the remainder upon dividing by x n - 1 is

x c (x) (mod X" - 1) = cn-l + COX + . . . + cn-2x"-l.

4.3 Rings

We now introduce an algebraic structure, the ring, which is helpful in our study of cyclic
codes. We have met the concept of a group in Chapter 2 . Despite their usefulness in a
variety of areas, groups are still limited because they have only one operation associated
with them. Rings, on the other hand, have two operations associated with them.

Definition 4.2 A ring (R , +, .) is a set R with two binary operations + (addition) and .
(multiplication) defined on R such that:

R1 (R , +) is an Abelian (commutative) group. We typically denote the additive identity
as 0.

4.3 Rings 115

R2 The multiplication operation . is associative: (a . b) . c = a . (b . c) for all a , b , c E R .

R3 The left and right distributive laws hold:

a(b + c) = ab + ac,

(a + b)c = (ac) + (bc).

A ring is said to be a commutative ring if a . b = b . a for every a , b E R .
The ring (R , +, .) is frequently referred to simply as R.
A ring is said to be a ring with identity i f . has an identity element. This is typically

denoted as 1. 0
Notice that we do not require that the multiplication operation form a group: there may

not be multiplicative inverses in a ring (even if it has an identity). Nor is the multiplication
operation necessarily commutative. All of the rings that we deal with in this book are rings
with identity.

Some of the elements of a ring may have a multiplicative inverse. An element a in a
ring having a multiplicative inverse is said to be a unit.

Example 4.2 The set of 2 x 2 matrices under usual definitions of addition and multiplication form a
ring. (This ring is not commutative, nor does every element have an inverse.) 0

Example 4.3 (&j, +, .) forms a ring.

0 1 2 3 4 5 0 0 0 0 0 0 0
1 0 1 2 3 4 5

3 4 5 0 1 2 3 0 3 0 3 0 3
4 5 0 1 2 3 4 0 4 2 0 4 2

0 1 2 3 4 5

1 2 3 4 5 0
2 3 4 5 0 1 2 0 2 4 0 2 4

5 0 1 2 3 4 ! 5 0 5 4 3 2 1

It is clear that multiplication under &j does not form a group. But .&j still satisfies the requirements
to be a ring. 0

Definition 4.3 Let R be a ring and let a E R . For an integer n , let nu denote a + a + . . . + a
with n arguments. If a positive integer exists such that nu = 0 for all a E R, then the
smallest such positive integer is the characteristic of the ring R . If no such positive integer

0 exists, the R is said to be a ring of characteristic 0.

Example 4.4 In the ring &j, the Characteristic is 6. In the ring (Zn , +, a) , the characteristic is n. In
the ring Q, the characteristic is 0.

4.3.1 Rings of Polynomials

Let R be a ring. A polynomial f (x) of degree n with coefficients in R is

i=O

where a, # 0. The symbol x is said to be an indeterminate.

Definition 4.4 The set of all polynomials with an indeterminate x with coefficients in a
ring R , using the usual operations for polynomial addition and multiplication, forms a ring

0 called the polynomial ring. It is denoted as R [x] .

116 Cyclic Codes, Rings, and Polynomials

po1yadd.m
po1ysub.m
polymu1t.m
po1ydiv.m
po1yaddn.m
po1ysubm.m
polymu1tm.m

Example 4.5 Let R = (26, +, .) and let S = R [x] = &[XI. Then some elements in S are: 0, 1, x,
1 + x, 4 + 2x, 5 + 4x, etc. Example operations are

(4 + 2x) + (5 + 4x) = 3

(4 + 2x)(5 + 4x) = 2 + 2x + 2 . 2 .

Example 4.6 Z2[x] is the ring of polynomials with coefficients that are either 0 or 1 with operations
modulo 2. As an example of arithmetic in this ring,

(1 + x)(l + x) = 1 + x + x + 2 = 1 +x2 ,

since x + x = 0 in Z2. 0

It is clear that polynomial multiplication does not, in general, have an inverse. For example,
in the ring of polynomials with real coefficients R[x], there is no polynomial solution f (x)
to

f (X) (X 2 + 3x + 1) = x3 + 2x + 1.

Polynomials can represent a sequence of numbers in a single collective object. One rea-
son polynomials are of interest is that polynomial multiplication is equivalent to convolution.
The convolution of the sequence

a = Iao, al, a2, . . . , G I
with the sequence

can be accomplished by forming the polynomials

b = Ib07 bl, b29.. . > brn}

U (X > = + U ~ X + a2x2 + . . . + anXn
b(x) = bo + blx + b2x2 + * . + bmxm

c (x) = a(x)b (x) .
and multiplying them

Then the coefficients of

c (x) = CO + C1.x + c2x2 + . . . + Cn+rnXn+rn

are equal to the values obtained by convolving a * b.

4.4 Quotient Rings

Recall the idea of factor groups introduced in Section 2.2.5: Given a group and a subgroup,
a set of cosets was formed by “translating” the subgroup. We now do a similar construction
over a ring of polynomials. We assume that the underlying ring is commutative (to avoid
certain technical issues). We begin with a particular example, then generalize.

Consider the ring of polynomials G F (2) [x] (polynomials with binary coefficients) and
a polynomial x3 - 1 . l Let us divide the polynomials up into equivalence classes depending
on their remainder modulo x3 + 1. For example, the polynomials in

so = { 0 , ~ 3 + 1,~4+., .5 + x 2 , x 6 + x 3 , . . .)
’In a ring of characteristic 2, x n - 1 = x” + 1. However, in other rings, the polynomial should be of the form

x” - 1.

4.4 Quotient Rings 117

all have remainder 0 when divided by x3 + 1. We write So = (x3 + I) , the set generated by
x3 + 1. The polynomials in

s1 = {1,~3,.4+. + 1,x5 + x 2 + 1 , ~ 6 + . 3 + I , . . . I
all have remainder 1 when divided by x3 + 1. We can write

3 s1 = 1 + so = 1 + (x + 1).

Similarly, the other equivalence classes are

s2 = [x,x3 + x + 1, x 4 5 , x +x2 +x ,x6 + x3 + x , . . .}

s3 = {x + 1,x3 + x , x 4 + 1,x5 +x2 + x + 1,x6 +x3 + x + 1 , . . .}

s4 = [x2,x3 +x2 + 1, x4 +x2 + x, x , x + x3 +x2, . . .)

= x + S o

= x + 1 +so
5 6

= x2 + so

= 2 + 1 + so

= x2 + x + so

= 2 + x + 1 + so

s5 = { x 2 + 1 , x 3 + x 2 , x 4 + x 2 + x + 1 , x 5 + 1 , x 6 3 2 + x + x + l , . . .)

= {X2 + X , X3 + X 2 f X + 1, X4 fX2, X5 + X , X6 + X 3 + X 2 + X , . . .}

s7 = [x2 + x + 1, x3 + x2 + x, x4 + x2 + 1, x5 + x + 1, x6 + x3 + 2 + x + 1 , . . .}

Thus, So, S1,. . . , S7formthecosetsof (GF(2)[x], fjmodulothesubgroup (x3+1).These
equivalence classes exhaust all possible remainders after dividing by x + 1. It is clear that
every polynomial in GF(2)[x] falls into one of these eight sets.

Just as we defined an induced group operation for the cosets of Section 2.2.5 to create the
factor group, so we can define induced ring operations for both + and - for the equivalence
classes of polynomials modulo x3 + 1 by operation on representative elements. This gives
us the following addition and multiplication tables.

Let R = {So, S1, . . . , S7}. From the addition table, (R , +) clearly forms an Abelian group,
with SO as the identity. For the multiplicative operation, S1 clearly acts as an identity.
However, not every element has a multiplicative inverse, so (R \ SO, .) does not form a
group. However, (R , +, .) does define a ring. The ring is denoted as GF(2)[x]/(x3 + 1)
or sometimes by GF(2)[x]/(x3 + 1), the ring ofpolynomials in GF(2)[x] rnoduZox3 + 1.

118 Cyclic Codes, Rings, and Polynomials

We denote the ring G F (2) [x] / (x n - 1) by Rn. We denote the ring F q [x] / (x n - 1) as Rn,q.

Each equivalence class can be identified uniquely by its element of lowest degree.

so f, 0

s2 f, x S 3 + x + l

s1 f, 1

s4 e x 2 s5 f , X 2 + l

sfj + + x 2 + x s7 t) x 2 + x + 1

Let R = {0, 1 , x, x + 1, x 2 , x 2 + 1, x 2 + x , x 2 + x + 1). Define the addition operation
in R as conventional polynomial addition, and the multiplication operation as polynomial
multiplication, followed by computing the remainder modulo x 3 + 1. Then (R, +, -) forms
a ring.

Definition 4.5 Two rings (R , +, .) and (R, +, .) are said to be (ring) isomorphic if there
exists a bijective function 4 : G + G called the isomorphism such that for every a , b E R ,

(4.1) a . b) = # (a) 4(*) = - #(a> + 4@) 4(- \---d

operation operation operation operation
in R in R in R in R

Ring homomorphism is similarly defined: the function 4 no longer needs to be bijective,

Clearly the rings R (where operation is by representative elements, defined in the tables

Note that we can factor x3 + 1 = (x + 1)(x2 + x + 1). Also note from the table that in

but (4.1) still applies. 0

above) and R (defined by polynomial operations modulo x 3 + 1) are isomorphic.

R , S3S7 = So. Equivalently, in R,

(x + 1)(x2 + x + 1) = 0.

This is clearly true, since to multiply, we compute the conventional product (x + 1)(x2 +
x + 1) = x3 + 1, then compute the remainder modulo x3 + 1 , which is 0. We shall make
use of analogous operations in computing syndromes.

More generally, for a field F, the ring of polynomials F [x] can be partitioned by a
polynomial f (x) of degree rn into a ring consisting of qm different equivalence classes,
with one equivalence class for each remainder modulo f (x) , where q = IF(. This ring is
denoted as I F [x] / (f (x)) or F [x] / f (x) . A question that arises is under what conditions this
ring is, in fact, a field? As we will develop much more fully in Chapter 5, the ring F[x]/f (x)
is a field if and only if f (x) cannot be factored over F [x] . In the example above we have

x3 + 1 = (x + 1)(x2 + x + I),

so x 3 + 1 is reducible and we do not get a field.

4.5 Ideals in Rings

Definition 4.6 Let R be a ring. A nonempty subset I C R is an ideal if it satisfies the
following conditions:

I1 Z forms a group under the addition operation in R .

4.5 Ideals in Rings 119

I2 Foranya E I andanyr E R , a r E I .

0

Example 4.7

1. For any ring R, 0 and R are (trivial) ideals in R.

2. ThesetZ = (0,x5+x4+x3+x2+x+1}fomsanidealin~g. Forexample,letl+x+x2 E Rg.
Then

(l + x + x 2 5)(x + x 4 + x 3 + x 2 + x + 1) = x 7 + x 5 + x 4 + x 3 + x 2 + 1 (rnodx6+1)

= 2 +x4 + x 3 + x 2 + x + 1 E I .

Example 4.8 Let R be a ring and let R [q , x2, . . . , x n] be the ring of polynomials in the n indeter-
minates xi, x2, . . . , x n .

Ideals in a the polynomial ring R [x l , . . . , x n] are often generated by a finite number of polyno-
mials. Let f 1 , f 2 , . . . , fs be polynomials in R [x l , . . . , x n] . Let (f i , f2 , . . . , f s) be the set

That is, it is the set of all polynomials which are linear combinations of the { f i } . The set (fi , . . . , f s)

is an ideal.
Thus, an ideal is similar to a subspace, generated by a set of basis vectors, except that to create a

subspace, the coefficients are scalars, whereas for an ideal, the coefficients are polynomials. 0

The direction toward which we are working is the following:

1 Cyclic codes form ideals in a ring of polynomials. 1
In fact, for cyclic codes the ideals are principal, as defined by the following.

Definition 4.7 An ideal I in a ring R is said to be principal if there exists some g E I
such that every element a E I can be expressed as a product a = mg for some m E R . For
a principal ideal, such an element g is called the generator element. The ideal generated
by g is denoted as (g):

(g) = [hg : h E R } .

0

Theorem 4.1 Let I be an ideal in IF4[x]/(x" - 1). Then

1. There is a unique monic polynomial g (x) E I of minimal degree.2

2. I is principal with generator g (x) .

3. g (x) divides (x n - 1) in IF4[xl.

2A polynomial is monic if the coefficient of the leading term - the term of highest degree - is equal to 1

120 Cyclic Codes, Rings, and Polynomials

Proof There is at least one ideal (so the result is not vacuous, since the entire ring is an
ideal). There is a lower bound on the degrees of polynomials in the ideal. Hence there must
be at least one polynomial in the ideal of minimal degree, which may be normalized to be
monic. Now to show uniqueness, let g(x) and f (x) be monic polynomials in I of minimal
degree with f # g. Then h(x) = g(x) - f (x) must be in I since I forms a group under
addition, and h (x) must be of lower degree, contradicting the minimality of the degree of g
and f.

To show that I is principal, we assume (to the contrary) that there is an f (x) E I that is
not a multiple of g (x). Then by the division algorithm

f(x> = m (x > g (x > + 4x1

with deg(r) < deg(g). But m (x) g (x) E I (definition of an ideal) and r = f - mg E I
(definition of ideal), contradicting the minimality of the degree of g, unless r = 0.

To show that g(x) divides (x" - l), we assume to the contrary that g (x) does not divide
(x" - 1). By the division algorithm

X" - 1 = h (x) g (x) + r (x)

with 0 I deg(r) < deg(g). But h (x) g (x) E I and r (x) = (x" - 1) - h (x) g (x) is the
additive inverse of h (x) g (x) E I , and so is in I, contradicting the minimality of the degree

If a monic polynomial g(x) divides (x" - l), then it can be used to generate an ideal:

In the ring IF, [x]/(x" - l), different ideals can be obtained by selecting different divisors

of g. 0

I = (g (x)) .

g(x) of X" - 1.

Example 4.9 By multiplication, it can be shown that in G F (2) [x] ,

x7 + 1 = (x + 1)(x3 + + 1)(n3 + 2 + 1) .

In the ring G F (2) [x] / (x 7 + l), there are ideals corresponding to the different factorizations of x7 + 1,
so there are the following nontrivial ideals:

(x + 1) (x3 + x + 1) (x 3 + x2 + 1)

((x + 1)(n3 tx + 1)) ((x + 1)(x3 + x 2 + 1)) ((x 3 + x + 1)(x3 + 2 + 1)) .

0

4.6 Algebraic Description of Cyclic Codes

Let us return now to cyclic codes. As mentioned in Section 4.1, cyclic shifting of a polyno-
mial c (x) can be represented by x c (x) modulo X" - 1. Now think of c (x) as an element of
G F (q) [x] / (x " - 1). Then in that ring, x c (x) is a cyclic shift, since operations in the ring
are defined modulo x" - 1. Any power of x times a codeword yields a codeword so that,
for example,

(Cn-1 , CO, ~ 1 , . . . * cn-2) * X C (X >

(Cn-2 , Cfl-1, CO, * . . I Cn-3) * x c(x> 2

4.6 Algebraic Description of Cyclic Codes 121

where the arithmetic on the right is done in the ring G F (q) [x] / (x " - 1). Furthermore,
multiples of these codewords are also codewords, so that a l x c (x) is a codeword for a1 E
G F (q) , a2x2c(x) is a codeword for a2 E G F (q) , etc. Furthermore, any linear combination
of such codewords must be a codeword (since the code is linear. Let C be a cyclic code over
G F (q) and let c (x) E G F (q) [x] / (x " - 1) be a polynomial representing a codeword in C.
If we take a polynomial a (x) E G F (q) [x] / (x " - 1) of the form

a (x) = a0 + a1x + * . . + an-1x"-1

then
c (x >a (x 1

is simply a linear combination of cyclic shifts of c (x) , which is to say, a linear combination
of codewords in C. Thus c (x) a (x) is also a codeword. Since linear codes form a group
under addition we see that a cyclic code is an ideal in G F (q) [x] / (x n - 1). From Theorem
4.1, we can immediately make some observations about cyclic codes:

An (n , k) cyclic code has a unique minimal monic polynomial g (x) , which is the
generator of the ideal. This is called the generator polynomial for the code. Let the
degree of g be n - k ,

g (x > = go + g l x + g2x2 + . . . + gn-kxn-k,

and let r = n - k (the redundancy of the code).

Every code polynomial in the code can be expressed as a multiple of the generator

c (x > = m (x) g (x > ,

where m (x) is a message poZynomiaZ. The degree of m (x) is (strictly) less than k ,

m (x > = m0 +mix + + mk-1xk-l .

There are k independently selectable coefficients in m (x) , so the dimension of the
code is k . Then c (x) = m (x) g (x) has degree 5 n - 1, so that n coded symbols can
be represented:

c (x) = co + c1x + (72x2 + * + C"-lxn-l

= (go + g l x + . . . + gn-kxn-k)(mo + mix + m2x2 + . . . + mk-lxk-'>.

The generator is a factor of x" - 1 in G F (q) [x] .

Example 4.10 We consider cyclic codes of length 15 with binary coefficients. By multiplication it
can be verified that

.15 - 1 = (I + x) (~ + + x2)(1 + + x4)(1 + + x 2 + x3 + x4)(1 + x3 + x4).

So there are polynomials of degrees 1, 2,4,4, and 4 which can be used to construct generators. The
product of any combination of these can be used to construct a generator polynomial. If we want a
generator of, say, degree 10, we could take

g (x) = (1 + x + x 2) (1 + x + x4) (1 + x + x2 + x3 + 2).

g (x) = (1 + x)(l + x + x4)

If we want a generator of degree 5 we could take

122 Cyclic Codes, Rings, and Polynomials

or
g (x) = (l + x) (l + x + x 2 + x 3 + x 4) .

In fact, in this case, we can get generator polynomials of any degree from 1 to 15. So we can construct
the (n, k) codes

(15, l), (15,2), . . . , (15, 15).

0

4.7 Nonsystematic Encoding and Parity Check

A message vector m = [mo ml . . . rnk-11 corresponds to a message polynomial

m (x) = rno + f * * + mk-lxk-1.

Then the code polynomial corresponding to m (x) is obtained by the encoding operation
of polynomial multiplication:

4x1 = m (x > g (x)

= (mog(x) + m1xg(x) + . - -mk- lxk - 'g (x)) .

This is not a systematic encoding operation; systematic encoding is discussed below. The
encoding operation can be written as

c(x> = [mo ml m2 ... mk-11

This can also be expressed as

(where empty locations are equal to 0) or

c = mG,
where G is a k x n matrix. A matrix such as this which is constant along the diagonals is
said to be a Toeplitz matrix.

Example 4.11 Let n = 7 and let

g(x) = (x3 + x + l)(x + 1) = 1 + x2 + x3 + x4,
so that the code is a (7 ,3) code. Then a generator matrix for the code can be expressed as

1 [0 0 1 0 1 1 1

1 0 1 1 1 0 0
G = 0 1 0 1 1 1 0 .

The codewords in the code are as shown in Table 4.1.

4.7 Nonsystematic Encoding and Parity Check 123

Table 4.1: Codewords in the Code Generated by g(x) = 1 + x 2 + x3 + x4
m m (x >g (x 1 code polynomial codeword
(0,090) Og(x) 0 0000000
(1,0,0) M x) 1 +x2+x3 +x4 1011100
(0,1,0) x + x3 +x4 +x5 0101110
(1,190) (x + l)g(x) 1 + x +x2 +x5 1110010
(0,0,1) x2g(x) x2 + x4 + x5 + x6 0010111
(1,0,1) (x2 + l)g(x) 1 + x3 + x5 + x6 1001011
(0,191) (x2 + x>g(x) x + x2 + x3 + x6 0111001
(l,l ,l) (x2+x + l)g(x) 1 + x +x4+x6 1100101

For a cyclic code of length n with generator g(x) , there is a corresponding polynomial
h(x) of degree k satisfying h(x)g(x) = X" - 1. This polynomial is called the parity check
polynomial. Since codewords are exactly the multiples of g(x) , then for a codeword,

c(x)h(x) = m(x)g(x)h(x) = m(x)(xn - 1) = 0 (in GF(q)[x] / (x" - 1)).

Thus a polynomial r (x) can be examined to see if it is a codeword: r (x) is a codeword if
and only if r (x)h (x) (mod x" - 1) is equal to 0.

As for linear block codes, we can define a syndrome. This can be accomplished several
ways. One way is to define the syndrome polynomial corresponding to the received data
r (x) as

s (x) = r (x)h (x) (mod X" - 1). (4.2)

s (x) is identically zero if and only if r (x) is a codeword.
Let us construct a parity check matrix corresponding to the parity check polynomial

h(x) . Let c (x) represent a code polynomial in C, so c(x) = m(x)g(x) for some message
m(x) = mo + mlx + . . . mk-1xk-'. Then

c(x)h(x) = m(x)g(x)h(x) = m(x)(x" - 1) = m(x) - m(x)x".

Since m (x) has degree less than k , then powers x k , xk+l, . . . , x"-' do not appear3 in
m(x) - m(x)x". Thus the coefficients of x k , x k f l , . . . , x"-l in the product c(x)h(x) must
beO. Thus

5 hicl-j = 0 for I = k , k + 1, . . . , n - 1. (4.3)
i =O

This can be expressed as

= 0. (4.4)

1-1 I]
3This "trick" of observing which powers are absent is a very useful one, and we shall see it again.

124 Cyclic Codes, Rings, and Polynomials

Thus the parity check matrix H can be expressed as the (n - k) x n Toeplitz matrix

1 h k - 2 . . * h0 p k hLh' h k - 1 h k - 2 . . . h0

Example 4.12 For the (7,4) cyclic code of Example 4.1 1 generated by g(x) = x4 + x 3 + x 2 + 1, the
parity check polynomial is

X I + 1
h (x) = = x3 + x 2 + 1.

x4 + x 3 + x2 + 1

The parity check matrix is
1 1 0 1

It can be verified that G H T = 0 (in GF(2)) .

4.8 Systematic Encoding

0

With only a little more effort, cyclic codes can be encoded in systematic lmn . We take the
message vector and form a message polynomial from it,

m = (rno, rn l , . . . , r n k - 1) t, m(x> = rno + r n l x + . . + r n k - l X k - ' .

x n - k r n (x) = r n 0 x n - k + r n l x " - k + l + . . * + r n k - l x n - 1 .

(O,O, . . . , o , mot r n l , . . . , r n k - 1) t, x " - k r n (x) .

Now take the message polynomial and shift it to the right n - k positions:

Observe that the vector corresponding to this is -
n-k

Now divide xnFkrn(x) by the generator g (x) to obtain a quotient and remainder

X " - k r n (X) = q (x) g (x) + d (x) ,

where q (x) is the quotient and d (x) is the remainder, having degree less than n - k. We use
the notation R,(,) [-] to denote the operation of computing the remainder of the argument
when dividing by g(x). Thus we have

d (x) = R g (x) [x n - k r n (X)] .

By the degree of d(x), it corresponds to the code sequence

(do, d l , . . . o,o, . . . ,o) t, d (x) .

Now form
x n - k r n (x) - d (x) = q (x) g (x) .

4.8 Systematic Encoding 125

Since the left-hand side is a multiple of g(x), it must be a codeword. It has the vector
representation

(-do, - d l , . . . , -dn-k-l, WZo, WZl, . . . , m k - 1) t, X n - k W Z (X) - d(X).
The message symbols appear explicitly in the last k positions of the vector. Parity symbols
appear in the first n - k positions. This gives us a systematic encoding.

Example 4.13 We demonstrate systematic coding in the (7,3) code from Example 4.11. Let m =
(I, 0, 1) ff m (x) = 1 + 2.

4 1. Compute
2. Employ the division algorithm:

= x m (x) = x4 + x6.

4 + x 6 = (1 s X +x2)(i + x 2 + x 3 +x4) + (1 + x) .

The remainder is (1 + x) .
3. Then the code polynomial is

c (x) = x " - k m (x) - d(x) = (1 + x) + (x4 + x 6) ff (1, 1,0,0, 1,0, 1). +
m

A systematic representation of the generator matrix is also readily obtained. Dividing
x ~ - ~ ~ ~ by g(x) using the division algorithm we obtain

q j (x) g (x) + bi(x) , i = 0, 1,. . . , k - 1, p - k + i =

where bi(x) = bi ,o + b i , I x + . . . + bi,n-k-lX n-k-1

- b i (x) = qi(x)g(x),

is the remainder. Equivalently,
xn-k+i

so Xn-k+i - bi(x) is a multiple of g(x) and must be a codeword. Using these codewords
for i = 0, 1, . . . , k - 1 to form the rows of the generator matrix, we obtain

-bo,o -bo,l 1 . . -bO,n-k-l 1 0 0 ... 0
- b l , o - b l , l . . . -bl,n-k-l O 1 O ...

G = -b2,0 -b2,1 . . . -bZ,n-k-l O O 1 ... :I. 1

I H = 1. 0 0 1 ... 0 b0,2 b1,2 b2,2 . . .

-bk-l,O -bk- l , l ... -bk- lp-k- l 0 0 0

bk-1,2 .

0 bo,o b1,o b2 ,o ... bk-1,O

bi,i b2 , l ... b k - i , i

I :
The corresponding parity check matrix is

1 0 0 * * *

0 1 0 . . . 0 bo, l

O O O . . . 1 b0,n-k-1 b1,n-k-1 b2,n-k-1 ... bk- 1,n-k- 1

Example 4.14 Let g(x) = 1 + x + x 3 . The bi (x) polynomials are obtained as follows:

= g(x) + (1 + x) 3 i = O : x

i = l : x 4 = x g (x) + (x + x2>

i = 2 : x5= (x 2 + l) g (x) + (I + x + x 2)

i = 3 : x6= (x3 + x + l)g(x) + (1 + 2)

bo(x) = 1 + x

b l (x) = x + x 2

b2(x) = 1 + x + x2

b3(x) = 1 + x2

126 Cyclic Codes, Rings, and Polynomials

The generator and parity matrices are

1 0 0 1 0 1 1

0 0 1 0 1 1 1
1 1 1 0 1 .

For systematic encoding, error detection can be readily accomplished. Consider the systematically-
encoded codeword

c = (-do, - d l , . . . , -dn-k-l,rno,rnl,. . . , mk-1) = (-d,m).

We can perform error detection as follows:

1. Estimate a message based on the systematic message part of r. Call this m’.

2. Encode m’. Compare the parity bits from this to the received parity bits. If they don’t
match. then an error is detected.

4.9 Some Hardware Background

One of the justifications for using cyclic codes, and using the polynomial representation
in general, is that there are efficient hardware configurations for performing the encoding
operation. In this section we present circuits for computing polynomial multiplication and
division. In Section 4.10, we put this to work for encoding operations. Some of these
architectures are also used in conjunction with the convolutional codes, to be introduced in
Chapter 12.

4.9.1 Computational Building Blocks

The building blocks employed here consist of three basic elements. We express the opera-
tions over an arbitrary field IF.

One-bit memory storage The symbol is a storage element which holds one symbol in
the field IF. (Most typically, in the field G F (2) , it is one bit of storage, like a D flip-
flop.) The holds its symbol of information (either a 0 or a 1) until a clock signal
(not portrayed in the diagrams) is applied. Then the signal appearing at the input
is “clocked” through to the output and also stored internally. In all configurations
employed here, all of the elements are clocked simultaneously. As an example,
consider the following system of five elements:

0 0 D D D D

This cascaded configuration is called a ship register. In this example, the connection
on the left end is permanently attached to a “ 0 . If the storage elements are initially
loaded with the contents (1, 0, 1, 0, O), then as the memory elements are clocked, the
contents of the shift register change as shown here:

4.9 Some Hardware Background 127

This is frequently represented in tabular form:

Initial: 1 0 1 0 0
Shiftl: 0 1 0 1 0
Shift 2: 0 0 1 0 1
Shift3: 0 0 0 1 0
Shift4: 0 0 0 0 1
Shift 5 : 0 0 0 0 0

Further clockings of the system result in no further changes: the state (the contents
of the memory elements) of the system remains in the all-zero state.

Adder The symbol @has two inputs and one output, which is computed as the sum of

Multiplication The symbol @ has one input and one output, which is computed as the
product of the input and the number gi (in the field F). For the binary field the
coefficients are either 0 or 1, represented by either no connection or a connection,
respectively.

the inputs (in the field P).

4.9.2 Sequences and Power series

In the context of these implementations, we represent a sequence of numbers {ao, ai, a2,

. . . , a,} by a polynomial y (x) = a0 + alx + . . . + anXn = Cy=o aixi. Multiplication by
x yields

which is a representation of the sequence {0, ao, a i , . . . , an} - a right-shift or delay of the
sequence. The x may thus be thought of as a “delay” operator (just as z-l in the context
of Z-transforms). Such representations are sometimes expressed using the variable D (for
“delay”) as y (0) = a0 + a1 D + . . . + a, D”. This polynomial representation is sometimes
referred to as the D-transform. Multiplication by D (= x) represents a delay operation.)

There are two different kinds of circuit representations presented below for polynomial
operations. In some operations, it is natural to deal with the last element of a sequence first.
That is, for a sequence (ao, a l , . . . , U k } , represented by a(x) = a0 + aix f . . . + akxk, first

X Y (X) = U O X + a1x2 + . . * + anxn+l ,

128 Cvclic Codes, Rings, and Polvnomials

uk enters the processing, then U k - 1 , and so forth. This seems to run counter to the idea of x
as a “delay,” where temporally a0 would seem to come first. But when dealing with a block
of data, it is not a problem to deal with any element in the block and it is frequently more
convenient to use this representation.

On the other hand, when dealing with a stream of data, it may be more convenient to
deal with the elements “in order,” first uo, then u l , and so forth.

The confusion introduced by these two different orders of processing is exacerbated
by the fact that two different kinds of realizations are frequently employed, each of which
presents its coefficients in opposite order from the other. For (it is hoped) clarity, represen-
tations for both last-element-first and first-element-first realizations are presented here for
many of the operations of interest.

4.9.3 Polynomial Multiplication

Last-Element-First Processing

Let u (x) = a0 + u l x + . . . U k X k and let h (x) = ho + h l x + . . . + h r x r . The product

b (x) = u (x) h (x)

= Uoho f (U o h l + U 1 h o) X + ’. * f (U k h r - 1 + U k - l h r) x r f k - ’ a k h r X r + k

can be computed using a circuit as shown in Figure 4.1. (This circuit should be familiar to
readers acquainted with signal processing, since it is simply an implementation of a finite
impulse response filter.) The operation is as follows: The registers are first cleared. The
last symbol u k is input first. The first output is u k h , , which is the last symbol of the product
u (x) h (x) . At the next step, Uk-1 arrives and the output is U k - l h r + U k h r - 1 . At the next
step, U k - 2 arrives and the output is (U k - 2 h r + u k - l h r - l + U k h r - 2) , and so forth. After a0

is clocked in, the system is clocked r times more to produce a total of k + r + 1 outputs.
A second circuit for multiplying polynomials is shown in Figure 4.2. This circuit has the

first)

Figure 4.1 : A circuit for multiplying two polynomials, last-element first.

advantage for hardware implementation that the addition is not cascaded through a series
of addition operators. Hence this configuration is suitable for higher-speed operation.

First-Element-First Processing

The circuits in this section are used for filtering streams of data, such as for the convolutional
codes described in Chapter 12.

Figure 4.3 shows a circuit for multiplying two polynomials, first-element first. Note that
the coefficients are reversed relative to Figure 4.1. In this case, a0 is fed in first, resulting

4.9 Some Hardware Background 129

*. 0

...
(last-element
first)

Figure 4.2: A circuit for multiplying two polynomials, last-element first, with high-speed
operation.

(first-element
first)

*.
first)

Figure 4.3: A circuit for multiplying two polynomials, first-element first.

in the output aoho at the first step. At the next step, a1 is fed in, resulting in the output
aohl + alho, and so forth.

Figure 4.4 shows another high speed circuit for multiplying two polynomials, first-
element first.

It may be observed that these filters are FIR (finite impulse response) filters.

4.9.4 Polynomial division

Last-Element-First Processing

Computing quotients of polynomials, and more importantly, the remainder after &vision,
plays a significant role in encoding cyclic codes. The circuits of this section will be applied
to that end.

Figure 4.5 illustrates a device for computing the quotient and remainder of the polyno-

dx)'
where the dividend d (x) represents a sequence of numbers

d (x) = do + dlx + d2x2 + . * . + dnx",

130 Cyclic Codes, Rings, and Polynomials

I I - 0 0 0 I I I

(first-element

first) ($ 6 6
(first-element
first)

Figure 4.4: A circuit for multiplying two polynomials, first-element first, with high-speed
operation.

and the divisor g (x) represents a sequence of numbers

g (x) = go + g l x + g2x2 + * + g p x p .

The coefficient g , is nonzero; for binary polynomials the coefficient -gF1 has the value of
1. The polynomial g (x) is sometimes called the connection polynomial. The remainder
r (x) must be of degree 5 p - 1, since the divisor has degree p :

r (x) = ro + I 1 X + . . . + r p - l x p - l ,

q (x) = qo + q1x + . . * + q n - , x n - p .

and the quotient q (x) can be written

Readers familiar with signal processing will recognize the device of Figure 4.5 as an im-
plementation of an all-pole filter.

The division device of Figure 4.5 operates as follows:

1. All the memory elements are initially cleared to 0.

2. The coefficients of d (x) are clocked into the left register for p steps, starting with dn,
the coefficient of xn in d (x) . This initializes the registers and has no direct counterpart
in long division as computed by hand.

3. The coefficients of d (x) continue to be clocked in on the left. The bits which are
shifted out on the right represent the coefficients of the quotient d (x) / g (x) , starting
from the highest-order coefficient.

4. After all the coefficients of d (x) have been shifted in, the contents of the memory
elements represent the remainder of the division, with the highest-order coefficient
rp-l on the right.

Example 4.15 Consider the division of the polynomial d(x) = x 8 + x7 + x5 + x + 1 by g(x) =

4.9 Some Hardware Background 131

r p -2 r p - 1

Figure 4.5: A circuit to perform polynomial division.

*

Figure 4.6: A circuit to divide by g(x) = x5 + x + 1.

x 5 + x + I. The polynomial long division is

The circuit for performing this division is shown in Figure 4.6. The operation of the circuit is detailed
in Table 4.2. The shaded components of the table correspond to the shaded functions in the long
division in (4.5). The Input column of the table shows the coefficient of the dividend polynomial
d(x), along with the monomial term xi that is represented, starting with the coefficient of x 8 . The
Register column shows the shift register contents, along with the polynomial represented. As the
algorithm progresses, the degree of the polynomial represented by the shift register decreases down
to a maximum degree of p - 1.

Initially, the shift register is zeroed out. After 5 shifts, the shift registers hold the top coefficients
of d(s) , indicated by A in the table, and also shown highlighted in the long division. The shift register
holds the coefficient of the highest power on the right, while the long division has the highest power
on the left. With the next shift, the divisor polynomial g(x) is subtracted (or added) from the dividend.
The shift registers then hold the results B. The operations continue until the last coefficient of d(x)
is clocked in. After completion, the shift registers contain the remainder, ~ (x) , shown as D. Starting

0 from step 5, the right register output represents the coefficients of the quotient.

132 Cyclic Codes, Rings, and Polynomials

~

9

Table 4.2: Computation Steps for Long Division Using a Shift Register Circuit

Output Symbol on
ith Shift Shift Register Contents After i Shifts

polynomial polynomial
bits representation bit term

0 0 0 0 0
1 0 0 0 0
1 1 0 0 0
0 1 1 0 0
1 0 1 1 0

0 1 0 1 1 A : 1 x3

1 1 1 0 1 8 : 1 x2

l 0 l l 0 C : 0 x 1
1 1 0 1 1 x + x 2 + x 4 + x 5 1 xo

4.9.5 Simultaneous Polynomial Division and Multiplication

First-Element-First Processing

Figure 4.7 shows a circuit that computes the output

where
h (x) ho + hlx + . . . + hrx'

go + glx + . . . + grx'
-- -
g(x>

with go = 1. (If go = 0, then a non-causal filter results. If go # 0 and go # 1, then a
constant can be factored out of the denominator.) This form is referred to as the controller
canonical form or theJirst companion form in the controls literature [109, 1811. Figure
4.8 also computes the output

This form is referred to as the altemativeJirst companion form or the obsentability form in
the controls literature.

Example 4.16 Figure 4.9 shows the controller form for a circuit implementing the transfer function

l + x
H (x) =

1 +.3 + x 4 '

For the input sequence a(x) = 1 + x + x2 the output can be computed as

l + x - (1 + x +x2)(1 + x) - 1 + x 3

I + x 3 +x4 - 1 +x3 +x4 1 + x 3 +x4
- b(n) = a(x)

= 1 + X 4 + , 7 + X ~ + X ~ O + . . . ,

4.10 Cyclic Encoding 133

0 1 1 1 1000
1 1 1 O(x) 1100
2 1 1 O (x 2) 1110
3 o 1 0 (~ 3) 1111
4 0 0 1 (x4) 0111

first)

6 0 0 0 (x6) 0001
7 0 1 1 (x7) 1000
8 0 0 l (x8) 0100
9 0 0 O (x 9) 0010
10 0 1 1 (X'O) 1001

0 . .

0 . .

k U k output next state
0000

0 1 1 1101
1 1 O(x) 0111
2 1 O (x 2) 0010
3 o 0 (~ 3) 0001
4 0 1 (x4) 1100

...

k U k output next state

6 0 0 (x 6) 0011
5 o 0 (2) 0110

7 0 1 (x7) 1101
8 0 l(x8) 1010
9 0 O(x9) 0101
10 0 1 (x 1 0) 1110

Figure 4.7: Realizing h (x) / g (x) (first-element first), controller canonical form.

as can be verified using the long division 1 + .3 + .4 1 + .3 . The operation of the circuit with this
input is detailed in the following table. The column labeled 'b' shows the signal at the point 'b' in
Figure 4.9.

I

k U k b output next state 1 1 k U k b output next state
0000 II 5 o o o(A 0011

4.10 Cyclic Encoding

+ x " - ~ be the generator for a cyclic code. Let g (x) = 1 + g l x + . . . + g n - k - 1 X

Nonsystematic encoding of the message polynomial m (x) = mo + mix + . . . + m k - 1 X k - '

n - k - 1

134 Cvclic Codes, Rings, and Polvnomials

(first-element
first)

a(x>

0 . 0

(first-element
first)

Figure 4.8: Realizing h (x) / g (x) (first-element first), observability form.

Figure 4.9: Circuit realization of H (x) = (1 + x)/(l + x3 + x4), controller form.

can be accomplished by shifting m (x) (starting from the high-order symbol mk-1) into
either of the circuits shown in Figures 4.1 or 4.2, redrawn with the coefficients of g (x) in
Figure 4.1 1.

To compute a systematic encoding, the steps are:

1. Compute xn-km (x)
2. Divide by g (x) and compute the remainder, d (x) .

3. Compute xn-km(x) - d (x) .

Figure 4.12 shows a block diagram of a circuit that accomplishes these steps. The connection
structure is the same as the polynomial divider in Figure 4.5. However, instead of feeding
the signal in from the left end, the signal is fed into the right end, corresponding to a shift of

Figure 4.10: Circuit realization of H (x) = (1 + x)/(l + x3 + x4), observability form.

4.10 Cyclic Encoding 135

Input

0

m a .

...

Register contents

0 0 0 (initial state)
1 1 1 0
1 1 0 1
1 0 1 0

0 0 1 (paritybits,d(x) = x2)

Figure 4.1 1 : Nonsystematic encoding of cyclic codes.

x n P k . This shifted signal is then divided by the feedback structure. The steps of operation
are as follows:

1. With the gate “open” (allowing the signal to pass through) and the switch in position
A, the message symbols mk-1, mk-2, . . . , mo are fed (in that order) into the feedback
system and simultaneously into the communication channel. When the message has
been shifted in, the n - k symbols in the register form the remainder - they are the
parity symbols.

2. The gate is “closed,” removing the feedback. The switch is moved to position B. (For
binary field, the - 1 coefficients are not needed.)

3. The system is clocked n - k times more to shift the parity symbols into the channel.

136 Cvclic Codes, Rings, and Polynomials

Figure 4.12: Circuit for systematic encoding using g(x).

Figure 4.13: Systematic encoder for the (7,4) code with generator g(x) = 1 + x + x3.

Systematic encoding can also be accomplished using the parity check polynomial h (x) =
ho + h l x + . . . f hkxk. Since hk = 1, we can write the condition (4.3) as

k-1

C l -k = - x h i c r - i I = k , k + 1 , . . . , n - 1. (4.6)
i=O

Given the systematic part of the message C n - k = mo, cn-k+1 = m l , . . . , cn-l = mk-1,

the parity check bits co, c1, . . . , Cn-k-1 can be found from (4.6). A circuit for doing the
computations is shown in Figure 4.14. The operation is as follows.

1. With gate 1 open (passing message symbols) and gate 2 closed and with the syndrome
register cleared to 0, the message m (x) = mo + m l x + ... + mk-1xk-l is shifted
into simultaneously the registers and into the channel, starting with the symbol mk-1.

At the end of k shifts, the registers contain the symbols mo, m 1, . . . , mk-1, reading
from left to right.

2. Then gate 1 is closed and gate 2 is opened. The first parity check digit

cn-k-1 = -(hOcn-l + hlCn-2 + . . * + h k - l c n - k)

= -(mk-i + himk-2 +. . . + hk-imo)

4.11 Syndrome Decoding 137

.. ‘*E D D

...

Figure 4.14: A systematic encoder using the parity check polynomial.

gate 2

I t
gate 1

Figure 4.15: A systematic encoder for the Hamming code using h (x) .

is produced and appears at the point labeled A. Cn-k-1 is simultaneously clocked into
the channel and into the buffer register (through gate 2).

3. The computation continues until all n - k parity check symbols have been produced.

Example 4.18 For the (7,4) code generator g(x) = x 3 + x + 1, the parity check polynomial is

XI - 1

x 3 + x + 1
h(x) = = x4 + x2 + x + 1.

Figure 4.15 shows the systematic encoder circuit. (The -1 coefficient is removed because of the
binary field.) Suppose m (x) = x + x2 + x3. The bits (O,l,l,l) are shifted in (with the 1 bit shifted
first). Then the contents of the registers are shown here.

~ Registers 1 O u r
0 1 1 1 (initial)
1 0 1 1
0 1 0 1
0 0 1 0

c = (O,O, 1, 0, 1, 1, l) ,
The sequence of output bits is

which is the same as produced by the encoding in Example 4.17. 0

4.1 1 Syndrome Decoding

We now examine the question of decoding binary cyclic codes. Recall that for any linear
code, we can form a standard array, or we can use the reduced standard array using syn-

138 Cyclic Codes, Rings, and Polynomials

Polynomial
r (x) = x + x 2 + x 4 + x 5 + x 6
r(')(x) = 1 + x2 + x3 + x5 + x6

r (2) (x) = 1 + x + x3 + x4 + x6

r'3'(x) = l + x + x 2 + x 4 + x 5

r'4'(x) = x + x 2 +x3 + x 5 + x 6

r'5'(x) = 1 + x 2 +x3 +x4 +x6
r@'(x) = 1 + x + x3 + x4 + x5

Syndrome
s (x) = x
s (l) (x) = x2

s@)(x) = 1 + x
s(3)(x)=x + x 2

s'4'(x) = 1 + x + x 2

s'5'(x) = 1 + x 2
s@'(x) = 1

dromes. For cyclic codes it is possible to exploit the cyclic structure of the codes to further
decrease the memory requirements.

Recall that the syndrome was initially defined as s (x) = r (x)h(x) (mod x" - 1).
However, we can define the syndrome an alternative way. Since a codeword must be a
multiple of g(x), when we divide r (x) by g (x) , the remainder is zero exactly when r (x) is
a codeword. Thus we can employ the division algorithm to obtain a syndrome. We write

r (x) = q(x)g(x) + s(x),

where q (x) is the quotient (which is usually not used for decoding) and s (x) is the remainder
polynomial having degree less than the degree of g(x):

n-k-1 s (X) = SO + S I X + . . . + S n - k - l X

Thus, to compute the syndrome we can use polynomial division. A circuit such as that in
Figure 4.5 can be used to compute the remainder.

We have the following useful result about cyclic codes and syndromes.

Theorem 4.2 Let s (x) be the syndrome corresponding to r (x) , so r (x) = q(x)g(x) + s (x) .
Let r(') (x) be the polynomial obtained by cyclically right-shifting r (x) and lets(') (x) denote
its syndrome. Then s(l)(x) is the remainder obtainedwhen dividingxs(x) by g (x) . In other
words, syndromes of shifts of r (x) (modx" - 1) are shifts ofs(x) (modg(x)).

Proof With r (x) = ro + r1x f . . . rn-lx"-l the cyclic shift r(') (x) is

r (l) (x) = rn-l + rox + . + rn-2xn-',

which can be written as

Using the division algorithm and the fact that x n - 1 = g(x)h(x) ,

where s (l) (x) is the remainder from dividing r (l) (x) by g(x). Rearranging, we have

r(') (x) = x r (x) - rn-1(P - 1).

q(')(x)g(x) + s (') (x) = x[q(x)g(x) + - rn-lg(x)h(x),

x s (x) = [q (l) (x) + rn-lh(x) - xq(x)]g (x) + s (') (x) .

0
By induction, the syndrome s (') (x) that corresponds to cyclically shifting r (x) i times to
produce r (') (x) is obtained from the remainder of x's (x) when divided by g(x). This can
be accomplished in hardware simply by clocking the circuitry that computes the remainder
s (x) i times: the shift register motion corresponds to multiplication by x, while the feedback
corresponds to computing the remainder upon division by g (x) .

Example 4.19 Forthe(7,4)codewithgeneratorg(x) = x3+x+1,1etr(x) = x+x2+x4+x5+x6
be the received vector. That is, r = (0, 1, 1,0, 1, 1, 1). Then the cyclic shifts of r(x) and their
corresponding syndromes are shown here.

Thus s(l)(x) is the remainder from dividing x s (x) by g(x), as claimed.

Polynomial I syndrome

4.11 Syndrome Decoding 139

.

Figure 4.16 shows the circuit which divides by g (x) , producing the remainder s(x) = so + s l x +s2x2
in its registers. Suppose the gate is initially open and r (x) is clocked in, producing the syndrome s (x) .
Now the gate is closed and the system is clocked 6 more times. The registers contain successively the
syndromes s(i) (x) corresponding to the cyclically shifted polynomials r - @) (x) , as shown in Table 4.3.

0

(turn off gate)

rq gate

Figure 4.16: A syndrome computation circuit for a cyclic code example.

Table 4.3: Computing the Syndrome and Its Cyclic Shifts

Clock Input I Registers I Syndrome
Initial: 1 0 0 0 1

1 1
2 1
3 1
4 0
5 1
6 1
7 0

1 0 0
1 1 0
1 1 1
1 0 1
0 0 0
1 0 0
0 1 0

8
9
10
11
12
13

0 0 1
1 1 0
0 1 1
1 1 1
1 0 1
0 0 0

s (x) = x

s(l)(x) = x2
s'2'(x) = 1 + x
s '3 ' (x) = x + x2

s'4'(x) = 1 + x + x2

s'5) (x) = 1 + x2
s @) (x) = 0 (syndrome adjustment)

We only need to compute one syndrome s for an error e and all cyclic shifts of e, so the
size of the syndrome table can be reduced by n. Furthermore, we can compute the shifts
necessary using the same circuit that computes the syndrome in the first place.

This observation also indicates a means of producing error correcting hardware. Con-
sider the decoder shown in Figure 4.17. This decoder structure is called a Meggitt decoder.

The operation of the circuit is as follows. The error pattern detection circuit is a com-
binatorial logic circuit that examine the syndrome bits and outputs a 1 if the syndrome
corresponds to an error in the highest bit position, e,-1 = 1.

With gate 1 open and gate 2 closed and with the syndrome register cleared to 0,
the received vector is shifted into the buffer register and the syndrome register for n
clocks. At the end of this, the syndrome register contains the syndrome for r (x) .

140 Cyclic Codes, Rings, and Polynomials

g (x) connections

Syndrome register (n - k stages)

I S ndrome ...
Xodification I I 1

gate 2 I Error pattern
detection circuit

corrected

Figure 4.17: Cyclic decoder when r (x) is shifted in the left end of the syndrome register.

Now gate 1 is closed and gate 2 is opened. The error pattern detection circuit outputs
en-l = 1 if it has determined that the (current) highest bit position is in error, so
that e (x) = xn- ' . The modified polynomial, denoted by r l (x) , is r l (x) = ro +
r1.x + . . . + (m-1 + en- l)xn- l . Now cyclically shift rl (x) to produce

s i l) (x) is the remainder of 11(')(x) divided by g (x) . Since the remainder of x r (x) is
s (l) (x) and the remainder of xx"-l is 1, the new syndrome is

rI (1) (x) = (m-1 + en- l) + rox + . . . + r,_2xn-l. The corresponding syndrome

Therefore, the syndrome register can be adjusted so that it reflects the modification
made to r (x) by adding a 1 to the left end of the register. (If only single error correction
is possible, then this update is unnecessary.)

The modified value is output and is also fed back around through gate 2.

Decoding now proceeds similarly on the other bits of r (x) . As each error is detected,
the corresponding bit is complemented and the syndrome register is updated to reflect
the modification. Operation continues until all the bits of the buffer register have been
output.

At the end of the decoding process, the buffer register contains the corrected bits.
The key to decoding is designing the error pattern detection circuit.

Example 4.20 Consider again the decoder for the code with generator g(x) = x3 + x + 1. The
following table shows the error vectors and their corresponding syndrome vectors and polynomials.

4.11 Svndrome Decoding 141

1 1 I

Error pattern
detectlon circuit

6 5 4 3 2 1 0

gate 2

Figure 4.18: Decoder for a (7,4) Hamming code, input on the left.

error error polynomial syndrome syndrome polynomial
0000000 e (x) = 0 000 s (x) = 0
1000000 e (x) = 1 100 s(x) = 1
0100000 e (x) = n 010 s (x) = x
OOIOOOO e (x) = x2 00 1 s (x) = x2

OOOIOOO e (x) = x3 110 s (x) = 1 + x
OOOOIOO e (x) = x4 01 1 s (x) = x + x2
OOOOOIO e (x) = x5 111 s (x) = 1 + x + x 2
OOOOOOI e (x) = x6 101 s (x) = 1 + x 2

(From this table, we recognize that the received polynomial r (x) in Example 4.19 has an error in the
second bit, since s (x) = x is the computed syndrome). However, what is of immediate interest is the
error in the last position, e = (0000001) or e (x) = x6, with its syndrome s(x) = 1 + x2. In the
decoder of Figure 4.18, the pattern is detected with a single 3-input and gate with the middle input
inverted. When this pattern is detected, the outgoing right bit of the register is complemented and the
input bit of the syndrome register is complemented. The decoding circuit is thus as shown in Figure
4.18.

Suppose now that T (X) = x + x2 + x4 + x5 + x 6 , as in Example 4.19. As this is shifted in, the
syndrome s (x) = x is computed. Now the register contents are clocked out, producing in succession
the syndromes shown in Table 4.3. At clock tick 12 (which is 5 ticks after the initial the pattern was
shifted in), d5)(x) = 1 + x2 appears in the syndrome register, signaling an error in the right bit of
the register. The bit of the buffer register is complemented on its way to output, which corresponds
to the second bit of the received codeword. The next syndrome becomes 0, corresponding to a vector
with no errors. The corrected codeword is thus

c(x) = x2 + x 4 + x 5 + x6,

corresponding to a message polynomial m(x> = x + x2 + x3.
The overall operation of the Meggitt decoder of Figure 4.18 is shown in Table 4.4. The input is

shifted into the syndrome register and the buffer register. (The erroneous bit is indicated underlined.)
After being shifted in, the syndrome register is clocked (with no further input) while the buffer register
is cyclically shifted. At step 12, the syndrome pattern is detected as corresponding to an error in the
right position. This is corrected. The syndrome is simultaneously adjusted, so that no further changes

142 Cyclic Codes, Rings, and Polynomials

are made in the last two steps.

Table 4.4: Operation of the Meggitt decoder, Input from the Left

101
000

6
7
8
9
10
11
12
13
14

01 1

000
000

buffer
register
1000000
1 100000
1 1 10000
01 11000
101 1100
- 1101 110
01101 11
10~1011
110~101
11 10110
01 1 lol l
101 1101 (error corrected)
0101110
0010111

In some cases, the Meggitt decoder is implemented with the received polynomial shifted
in to the right of the syndrome register, as shown in Figure 4.19. Since shifting r (x) into
the right end of the syndrome register is equivalent to multiplying by x"-~, the syndrome
after r (x) has been shifted in is s ("-@(x) , the syndrome corresponding to ~ - (" - ~) (x) . Now
decoding operates as before: if s (" - ~) (x) corresponds to an error pattern with e (x) with
e,-l = 1, then bit r,-1 is corrected. The effect of the error must also be removed from
the syndrome. The updated syndrome, denoted sPpk)(n) is the sum of ~("-~)(x) and the
remainder resulting from dividing x " - ~ - ' b y g (x) . Since has degree less than the
degree of g (x) , this remainder is, in fact, equal to x"-~-'. The updated syndrome is thus

$ - k) (x) = s (n-k) (..) + X(n-k-l)*

This corresponds to simply updating the right coefficient of the syndrome register.

Example 4.21 When the error pattern e (x) = x 6 is fed into the right-hand side of the syndrome
register of a (7,4) Hamming code, it appears as x 3 x 6 = x9. The remainder upon dividing x9 by g(x)
is xt3) (x) = R,(,)[x9] = x2. Thus, the syndrome to look for in the error pattern detection circuit is

0

If this decoder is used with the received polynomial r (x) = n + x 2 + x4 + x5 + x6
(as before), then the syndrome register and buffer register contents are as shown in Table
4.5. Initially the received polynomial is shifted in. As before, the erroneous bit is shown
underlined. After step n = 7, the syndrome register is clocked with no further input. At
step 12, the syndrome pattern detects the error in the right position. This is corrected in the
buffer register adjusted in the syndrome register.

x2. Figure 4.20 shows the corresponding decoder circuit.

4.12 Shortened Cyclic Codes 143

Syndrome
~ (x) connections modification

JI ...
I

Syndrome register (n - k stages) t] I
I I ... I ' I

I
gate 2 I I Error pattern

detection circuit

I I I I
corrected

Buffer register

Figure 4.19: Cyclic decoder when r (x) is shifted into the right end of the syndrome register.

Example 4.22 We present decoders for the (31,26) Hamming code generated by g (x) = 1 +x2 +x5.
Figure 4.21(a) shows the decoder when the received polynomial is shifted in on the left. The error

pattern e(x) = x30 results in the syndrome s(x) = ~ , (,) [x ~ O l = x4 + x ;
Figure 4.21(b) shows the decoder when the received polynomial is shifted in on the right. The

error pattern e (x) = x30 results in the shifted syndrome

4.12 Shortened Cyclic Codes

Shortened block codes were introduced in Section 3.9. In this section we deal in particular
about shortened cyclic codes [204]. Let C be an (n , k) cyclic code and let C' c C be the
set of codewords for which the 1 high-order message symbols are equal to 0. That is, the
symbols mk-1, mk-i+l, . . . , mk-2, mk-1 are all set to 0, so all messages are of the form

k-1-1 m (x) = mo + m l x + . . . + m k - l - 1 ~ .
There are 2k-1 codewords in C', forming a linear (n - 1, k - 1) subcode of C. The minimum
distance of C' is at least as large as that of C. C' is called a shortened cyclic code.

The shortened cyclic code C' is not, in general, cyclic. However, since C is cyclic, the
encoding and decoding of C' can be accomplished using the same cyclic-oriented hardware
as for C, since the deleted message symbols do not affect the parity-check or syndrome
computations. However, care must be taken that the proper number of cyclic shifts is used.

Let r (x) = ro + rlx + . . . + rn-l-lxn-'-l be the received polynomial. Consider a
decoder in which r (x) is clocked into the right end of the syndrome register, as in Figure 4.19.
Feeding r (x) into the right end of the corresponds to multiplying r (x) by x ~ - ~ . However,
since the code is of length n - 1, what is desired is multiplication by = x " - ~ + ' .
Thus, the syndrome register must be cyclically clocked another 1 times after r (x) has been
shifted into the register. While this is feasible, it introduces an additional decoder latency
of 1 clock steps. We now show two different methods to eliminate this latency.

144 Cyclic Codes, Rings, and Polynomials

I
Syndrome
Modification

6 5 4 3 2 1 0

gate 2

*
Corrected
output

Figure 4.20: Hamming decoder with input fed into the right end of the syndrome register.

Method 1 : Simulating the Extra Clock Shifts

In this method, I (x) is fed into the syndrome computation register in such a way in n - k
shifts the effect of n - k + 1 shifts is obtained.

Using the division algorithm to divide x ~ - ~ + ' ~ (x) by g (x) we obtain

I (X) = q1(x)g(x) + P k + l) (x), (4.7)

(x) is the remainder and is the desired syndrome for decoding the digit rn-l-1.

p - k + l

where
Now divide x ~ - ~ ~ ~ b Y

Xn-k+l - - q2(x)g(x) + P (X > .

where p(x) = po + pix +. . . + pn-k-lXn-k-i is the remainder. This can also be expressed
as

(4.8)
(for binary operations). Multiply (4.8) by r (x) and use the (4.7) to write

From this equation, it is seen that the desired syndrome s (~ - ~ + ~) (x) can be obtained by
multiplying I (x) by p (x) then computing the remainder modulo g (x). Combining the first-
element-first circuits of Figures 4.1 and 4.5 we obtain the circuit shown in Figure 4.22.

p (x) = Xn-k+z + q2(x)g(x)

p (x) r (x) = [q1(x) + q2(x)r(x)lg(x) + P k + l) (x).

The error pattern detection circuit for this implementation is the same as for the unshort-
ened code.

Example 4.23 Consider the Hamming (7,4) code generated by g() = 1 + x + x 3 whose decoder is
shown in Figure 4.20. Shortening this code by 1 = 2, a (5,2) code is obtained. To find p (x) we have

p (x) = Rg(x)[xn-k+l] = R,(,)[X 5 2] = x + x + 1.
Figure 4.23 shows the decoder for this code. 0

4.12 Shortened Cyclic Codes 145

gate 2

F F F z ; g e c t e d 3 I-bit buffer register

gate 2

(a) Input from the left end. 4 gate 1

1

I pate 2 I
I " I

31-bit buffer register

data
gate 2

(b) Input from the right end.

Figure 4.2 1 : Meggitt decoders for the (3 1,26) Hamming code.

146 Cyclic Codes, Rings, and Polynomials

Table 4.5: Operation of the Meggitt Decoder, Input from the Right

step
1
2
3
4
5
6
7
8
9
10
11
12
13
14

input
1
1
1
0
1
1
0

-

-

F

syndrome
register

110
101
010
00 1
000
110
01 1
111
101
100
010
00 1
000
000

buffer
register
1000000
1100000
11 10000
01 11000
101 1100
- 1101110
01101 11
10~101 1
110~101
11 10110
01 11011
101 1101 (error corrected)
0101110
0010111

Figure 4.22: Multiply r (x) by p (x) and compute the remainder modulo g (x).

4.13 Binary CRC Codes 147

I I

Error pattern
detechon circuit

gate 2

Figure 4.23: Decoder for a shortened Hamming code.

Method 2: Changing the Error Pattern Detection Circuit

Another way to modify the decoder is to change the error pattern detection circuit so that
it looks for patterns corresponding to the shifted input, but still retains the usual syndrome
computation circuit. The error pattern detection circuit is designed to produce a 1 when
the syndrome register corresponds to a correctable error pattern e (x) with an error at the
right-position, that is, at position x n - l - l . When this happens, the received digit rn-l-l is
corrected and the effect of the error digit en-l-l is removed from the syndrome register via
syndrome modification.

Let e (x) = xn-'-'. Since this is input on the right end, this is equivalent to xn-l- lxn-k =
x2n-r-k-1. The syndrome pattern to watch for is obtained by CJ (x) = Rg(x)[x2n-z-k-1 I.

Example 4.24 Consider again the (7,4) Hamming code shortened to a (5,2) code. The error pattern
at position xn-'-' = x4 appearing on the right-hand side as x2n-z-k-1 = x7. The syndrome to
watch for is

= R , (,) [~ ~ I = 1.

0

4.13 Binary CRC Codes

The term Cyclic Redundancy Check (CRC) code has come to be jargon applied to cyclic
codes used as error detection codes: they indicate when error patterns have occurred over a
sequence of bits, but not where the errors are nor how to correct them. They are commonly
used in networking in conjunction with protocols which call for retransmission of erroneous
data packets. Typically CRCs are binary codes, with operations taking place in GF(2). A
CRC is a cyclic code, that is, the code polynomials are multiples of a generator polynomial
g(x) E GF(2)[xl.

CRCs are simply cyclic codes, so the same encoding and decoding concepts as any other
cyclic code applies. In this section, however, we will introduce an efficient byte-oriented

148 Cyclic Codes, Rings, and Polynomials

algorithm for computing syndromes.
We use the notation R,(,)[.] to denote the operation of computing the remainder of the

argument when dividing by g(x). The entire cyclic encoding operation can thus be written,
as described in Section 4.8, as

C (X) = x ' ~ (x) + Rg(,)[x'm(~)l.

Example 4.25 Letg(x) = x16+x15+x2+1 andm(x) = x ~ ~ + x ~ ~ + ~ ~ ~ + X ~ ~ + X ~ + X ~ + X ~ + X + ~

corresponding to the message bits

m=[O,1,1,0,1,1,0 ,1 ,0 ,0 ,1 ,0 ,0 ,1 ,1 ,11

= [m15, m14, ' ' ' I m l , mo].

The vector m is written here with mo on the right. Since deg(g(x)) = n - k = 16, to encode we first
multiply m (x) by x16:

x16m(x) = X3O + 2 9 + XZ7 + 2 6 + 2 4 + 2 1 + x18 + x*7 + x16, (4.9)

then divide by g(x) to obtain the remainder

d (x) = X I 4 + X I 3 + X I 1 +.lo +x9 +x7 +x6 +x4 +x2. (4.10)

The code polynomial is

c (x) = x'6m(x) + d (x)

= x30 + 2 9 + 2 7 + x26 + 2 4 + 2 1 + .18 + 2 7 + ,16

+ X I 4 + X I 3 + X I 1 + X I 0 + 2 +x7 +x6 +x4 + x 2

The operation can also be represented using bit vectors instead of polynomials. From (4.9),

x16m(x) ff [O, 1, l , O , 1,1,0, 1,0,0, 1,0,0, 1, 1 , 110, o,o,o, o,o,o, 0, o,o, 0, o,o, O , O , O]

(with the highest power of x corresponding to the bit on the left of this vector) and from (4.10),

d (x) f, [O , O , O , O , o ,o ,o ,o ,o ,o , 0,0,0,0,0,010, 1 ,1 ,0 ,1 ,1 ,1 ,0 ,1 ,1 ,0 ,1 ,0 , 1,0,01

Adding these two vectors we find

c=[0 ,1 ,1 ,0 ,1 ,1 ,0 ,1 ,0 ,0 ,1 ,0 ,0 ,1 ,1 ,1~0 ,1 ,1 ,0 ,1 ,1 ,1 ,0 ,1 ,1 ,0 ,1 ,0 ,1 ,0 ,0]

The message vector m is clearly visible in the codeword c.

Suppose now that the effect of the channel is represented by

r (x) = c (x) + e(x).

To see if any errors occurred in transmission over the channel, r (x) is divided by g(x) to
find s (x) = Rg(,) [r (x)]. The polynomial s (x) is the syndrome polynomial. Note that

s (x) = Rg(,)[r(x)l = Rg(,)[c(X) + &)I = R g (x) [~ (~) I + Rg(x)[e(x)l = Rg(,)[e(x>l,

since Rg(,) [c(x)] = 0 for any code polynomial c (x) .
If s (x) # 0, then e (x) # 0, that is, one or more errors have occurred and they have been

detected. If s (x) = 0, then it is concluded r (x) has not been corrupted by errors, so that the
original message m (x) may be immediately extracted from I (x).

4.13 Binary CRC Codes 149

Note, however, that if an error pattern occurs which is exactly one of the code polyno-
mials, say e (x) = CI (x) for some code polynomial cl (x) , then

J(X) = R g (x) [C (X) + C l (X > l = R g (x) [C (X) l + R g (x) [C l (X) I = 0.

In other words, there are error patterns that can occur which are not detected by the code:
an error pattern is undetectable if and only if e (x) is a code polynomial.

Let us consider how many such undetected error patterns there are.

Suppose there is a single bit in error, e (x) = x i for 0 <_ i 5 n - 1. If the polynomial
g (x) has more than one nonzero term it cannot divide x i evenly, so there is a nonzero
remainder. Thus all single-bit errors can be detected.

Suppose that g (x) has (1 + x) as a factor. Then it can be shown that all codewords
have even parity, so that any odd number of bit errors can be detected.

A burst error of length B is any error pattern for which the number of bits between
the first and last errors (inclusive) is B . For example, the bit sequence . . .,O,O,l,l,O,l,
l,O,l,O,. . .has a burst error of length 7.

Let e (x) be an error burst of length r = II - k or less. Then

n - k - 1) e (x) = xi(l + elx + . . . + en-k-1.x

for some i, 0 p i 5 k. Since g (x) is of degree n - k and has a non-zero constant
term, that is

+ P - k , n-k-1 g(x) = 1 + glx +. . . + g n - k - l x

then R g (,) [e (x)] cannot be zero, so the burst can be detected.

Consider now a burst of errors of length n - k + 1 , with error polynomial e (x) =
x'(1 + e l x + . . . e , - k - l X n-k-l + x ~ - ~) . There are 2n-k-1 possible error patterns of
this form for each value of i . Of these, all but error bursts of the form e (x) = x ' g (x)
are detectable. The fraction of undetectable bursts of length n - k + 1 is therefore
2 - (n - k - l)

For bursts of length 1 > n - k + 1 starting at position i, all 2'-2 of the bursts are
detectable except those of the form

e (x) = x i a (x) g (x)

for some a (x) = a0 + a lx + . . - a i - n + k - l x '-n+k-l with a0 = al-nfk-1 = 1. The
number of undetectable bursts is 21-nfk-2, so the fraction of undetectable bursts is
2 - n + k .

Example 4.26 Let g (x) = x 1 6 + x15 + x 2 + 1. This can be factored as g (x) = (1 +x)(l +x + x 15),
so the CRC is capable of detecting any odd number of bit errors. It can be shown that the smallest
integer rn such that g(x) divides 1 + x m is rn = 32767, So by Exercise 4.37, the CRC is able to detect
any pattern of two errors - a double error pattern -provided that the code block length n 5 32767.
All burst errors of length 16 or less are detectable. Bursts of length 17 are detectable with probability
0.99997. Bursts of length 2 18 are detectable with probability 0.99998.

Table 4.6 [373, p. 1 2 3 1 , [281] lists commonly used generator polynomials for CRC codes
of various lengths.

150 Cyclic Codes, Rings, and Polynomials

Table 4.6: CRC Generators

CRC Code Generator Polvnomial
CRC-4
CRC-7
CRC-8
CRC- 12
CRC-ANSI
CRC-CCITT
CRC-SDLC
CRC-24
CRC-32a
CRC-32b

4.1 3.1 Byte-Oriented Encoding and Decoding Algorithms

The syndrome computation algorithms described above are well-adapted to bit-oriented
hardware implementations. However, CRCs are frequently used to check the integrity
of files or data packets on computer systems which are intrinsically byte-oriented. An
algorithm is presented here which produces the same result as a bit-oriented algorithm, but
which operates on a byte at a time. The algorithm is faster because it deals with larger pieces
of data and also because it makes use of parity information which is computed in advance
and stored. It thus has higher storage requirements than the bitwise encoding algorithm but
lower operational complexity; for a degree 16 polynomial, 256 two-byte integers must be
stored.

Consider a block of N bytes of data, as in a file or a data packet. We think of the first
byte of data as corresponding to higher powers of x in its polynomial representation, since
polynomial division requires dealing first with highest powers of x. This convention allows
the file to be processed in storage order. The data are stored in bytes, as in

do, 4 , . . ., dN-1,

where di represents an 8-bit quantity. For a byte of data di, let di,7, di$, . . , di,o denote the
bits, where di,o is the least-significant bit (LSB) and 4 7 is the most significant bit (MSB).
The byte di has a corresponding polynomial representation

7 bi+l(x) = d i , 7 ~ + di,6X6 + * * . + di,lX + di,O.

The algorithm described below reads in a byte of data and computes the CRC parity
check information for all of the data up to that byte. It is described in terms of a CRC
polynomial g (x) of degree 16, but generalization to other degrees is straightforward. For
explicitness of examples, the generator polynomial g(x) = x l6 +x l5 +x2 + 1 (CRC-ANSI)
is used throughout. Let m"](x) denote the message polynomial formed from the 8i bits of
the first i data bytes {do, dl , . . . , dj-l},

m"](X) = d0,7X8i-1 + d0,6X8i-2 + . . . + di-l,lx + dj-l,O,

4.13 Binary CRC Codes 151

and let p ['] (x) denote the corresponding parity polynomial of degree 5 15,

p[i l (x) = p & 15 + p14x [il 14 + . . . + p y x + po [il .

By the operation of cyclic encoding,

16 [i] P[il(x) = R g (x) [X m (X I 1 9

x m (XI = q(x)g(x) + P [~] (x)
that is,

16 [i]
(4.1 1)

for some quotient polynomial q (x).
Let us now augment the message by one more byte. This is done by shifting the

current message polynomial eight positions (bits) and inserting the new byte in the empty
bit positions. We can write

m[i+ll(x) = x 8 m [il (x) + bi+l(x) , - -
Shift 8 positions add new byte

where bi+1 (x) represents the new data. The new parity polynomial is computed by

(4.12) 16 8 [i] (~ 1 1 = Rg(x)[x (X m (XI + h+l(x)) I .
p['+'](x) = Rg(,)[X 16, [i+ll

Using (4.11), we can write (4.12) as

P [~ + '] (x) = Rg(x)[x8g(x>q(x) + X~P"](X) + x16bi+l(~)1

p[i+l?x) = Rg(,,[x8g(x)q(x)1 + Rg(,)[x8p['](x) + X16bi+l (x) l ,

P[i+ll(x) = Rg(x)[x8p[il(x) + x16bi+l(x)l

This can be expanded as

or

since g(x) evenly divides x 8 g (x) q (x) . The argument can be expressed in expanded form
as

X ~ ~ [" (X) + xl6bi+1 (x) = pl5x [il 23 + pyjx22 + . . . + pr1x9 + pi1x8

+ d i , 7 ~ ~ ~ + dj,6X22 + . . . + di,1xl7 + di,0xl6

[il 23

[il 15 [il 14

= (4 7 + p 1 5) X + (di,6 + p r i) ~ ~ ~ + * * * + (di,o + ~ F]) X ' ~
+ p7 x + pg x + . . . + p p x g .

[il NOW let t j = di,j + pj+8 for j = 0, 1, . . . ,7. Then

X8p['] (x) +x'6bj+l(x) = t7x23 + t 6 X 2 2 +. . . f + p.5"]X15 + pt1X'4 +. . . f pt1x8.

The updated parity is thus

p[i+ll(x) = Rg(x)[t7X 23 + t 6 X 2 2 + ' . . + + p y 1 X 1 5 + p t 1 X 1 4 + . * * + ptlx81

= Rg(x) [t7X 23 + t 6 X 2 2 + '.. + t 0 X l 6] + R g (~) [p y] X ~ ~ + p F 1 X 1 4 + ... + p p 3 1
= R g (~) [t 7 X ~ ~ + t 6 X 2 2 f . . . + tOX 16] + p7 [il X 15 + p i 11 X 14 +. * . f p i 1 X 8 ,

where the last equality follows since the degree of the argument of the second R g (x) is less
than the degree of g (x) .

152 Cvclic Codes. Rings. and Polvnomials

a 003c
12 006c
la 805f
22 OOcc
2a 80ff
32 80af
3a 009c
42 018c
4a 81bf
52 81ef
5a Oldc
62 814f
6a 017c
72 012c
7a 8llf
82 03Oc
8a 833f
92 836f
9a 035c
a2 83cf
aa 03fc
b2 03ac
ba 839f
c2 828f
ca 02bc
d2 02ec
da 82df
e2 024c

Table 4.7: Lookup Table for CRC-ANSI. Values for t and R (t) are expressed in hex.

b
13
lb
23
2b
33
3b
43
4b
53
5b
63
6h
73
7b
83
8b
93
9b
a3
ab
b3
bb
c3
cb
d3
db
e3

0000 8CQ5
8033 0036

10 8063 11 0066

2 800f I 3 OOOa
8039
8069

8055
00c6
80f5
80a5
0096
0186
81b5
81e5
Old6
8145
0176
0126
8115
0306
8335
8365
0356
83c5
03f6
03a6
8395
8285
02b6
02e6
82d5
0246
8275

18 0050
20 8Oc3
28 OOfo
30 OOaO
38 8093
40 8183
48 OlbO
50 Ole0
58 81d3
60 0140
68 8173
70 8123
78 0110
80 8303
88 0330
90 0360
98 8353
a0 03cO
a8 83f3
bO 83a3
b8 0390
c0 0280
c8 82b3
do 82e3
d8 02d0
eO 8243
e8 0270

19
21
29
31
39
41
49
51
59
61
69
71
79
81
89
91
99
a1
a9
bl
b9
cl
c9
dl
d9
el
e9

005a
8Oc9
OOfa
ooaa
8099
8189
Olba
Olea
81d9
014a
8179
8129
01 la
8309
033a
036a
8359
03ca
83t9
83a9
039a
028a
82b9
82e9
02da
8249 p 827f 1 027a

822f 022a
021c 8219

f R (f)
4 801h
c 0028
14 0078
lc 804b
24 OOd8
2c 80eb
34 80bb
3c 0088
44 0198
4c 81ab
54 81fb
5c Olc8
64 815b
6c 0168
74 0138
7c 810b
84 0318
8c 832b
94 837b
9c 0348
a4 83db
ac 03e8
b4 03b8
bc 838b
c4 829b
cc 02a8
d4 02f8
dc 82cb
e4 0258
ec 826b
f4 823h
fc 0208

There are 28 = 256 possible remainders of the form

f
5
d
15
Id
25
2d
35
3d
45
4d
55
5d
65
6d
75
7d
85
8d
95
9d
a5
ad
b5
bd
c5
cd
d5
dd
e5
ed
f5

- R(t)
OOle
802d
807d
004e
80dd
OOee
OObe
808d
819d
Olae
Olfe
81cd
015e
816d
813d
OlOe
831d
032e
037e
834d
03de
83ed
83bd
0388
029e
82ad
82fd
02ce
825d
026e
023e

fd 8206

f R(f)
6 0014
e 8027
16 8077
le 0044
26 Sod7
2e OOe4
36 OOb4
3e 8087
46 8197
4e Ola4
56 Olf4
5e 81c7
66 0154
6e 8167
76 8137
7e 0104
86 8317
8e 0324
96 0374
9e 8347
a6 03d4
ae 83e7
b6 83b7
be 0384
c6 0294
ce 82a7
d6 82f7
de 02c4
e6 8257
ee 0264
f6 0234
fe 8207

f
17
If
27
2f
37
3f
47
4f
57
5f
67
6f
77
7f
87
8f
97
9f
a7
af
b7
bf
c7
cf
d7
df
e7
ef
f7

t R (t)
7 8011

0022
0072
8041
OOd2
8Oel
80bl
0082
0192
81al
81fl
Olc2
8151
0162
0132
8101
0312
8321
8371
0342
83dl
03e2
03b2
8381
8291
02a2
02f2
82cl
0252
8261
8231

ff 0202

(4.13)

For each 8-bit combination t = (t7 , t6, . . . , to), the remainder in (4.13) can be computed
and stored in advance. For example, when t = 1 (i.e., to = 1 and other ti are 0) we find

16
Rg(x)[X 1 = Xl5 + x2 + 1,

which has the representation in bits [1,0,0,0, O,O,O,O, O,O,O,O, 0,1,0,1], or in hex, 8005.
Table 4.7 shows the remainder values for all 256 possible values oft , where the hex number
R (t) represents the bits of the syndrome. Let ?;(x) = t7x23 + t6x22 + . .. + t0xl6 and let
R (t) = Rg(x)[t"(~)] (i.e., the polynomial representedby the data inTable 4.7). The encoding
update rule is summarized as

The algorithm described above in terms of polynomials can be efficiently implemented in
terms of byte-oriented arithmetic on a computer. The parity check information is represented
in two bytes, c r c 1 and c r c0, with c r c 1 representing the high-orderparity byte. Together,
[crcl , crcO] forms the two-byte (16 bit) parity. Also, let R (t) denote the 16-bit parity
corresponding to the t, as in Table 4.7. The operation 69 indicates bitwise modulo-2 addition
(i.e., exclusive or). The fast CRC algorithm is summarized in Algorithm 4.1.

4.13 Binarv CRC Codes 153

Algorithm 4.1 Fast CRC encoding for a stream of bytes

Input: A sequence of bytes do, dl, . . . , dN.
I

2 F o r i = O t o N :
3

4

5 End
6 Output: Return the 16-bit parity [crcl , crcO].

Example 4.27 A file consists of two bytes of data, do = 39 and dl = 109, or in hexadecimal notation,
do '2716 and dl = 6016. This corresponds to the bits

0110 1101 00100111
--'

di do

Initialization: Clear the parity information: Set [crcl , crco] = [O,O].

Compute t = dN-j @ c r c l
[crcl , crcO] = [crcO,O] @ R (t)

with the least-significant bit on the right, or, equivalently, the polynomial

x14 + X I 3 + X I 1 + X I 0 + x * +x5 +x2 + x + 1.

(It is the same data as in Example 4.25.) The steps of the algorithm are as follows:
I crc1, crcO = [O,O]
2 i=O:
3

4

2 i = l :
3

4

6 Return 6ED416.

t = dl@ c r c l = 6D16 + 0 = 6D16
[crcl , crcO] = [crcO, 01 @ R (t) = [O, 0]@816D16

t =do @ c r c l = 2716 @ 8116 = A616
[crcl , crcO] = [crcO, 01 @ R (t) = [6D16,0]@03D416 = 6ED416

The return value corresponds to the bits

01 10 11 10 1101 0100

which has polynomial representation

p(x) = x14 + X I 3 + X I 1 + X1O + x9 + x7 + x6 + x4 + x2.

This is the same parity as obtained in Example 4.25. 0

4.13.2 CRC Protecting Data Files or Data Packets

When protecting data files or data packets using CRC codes, the CRC codeword length is
selected in bytes. As suggested in Example 4.26, for the CRC-16 code the number of bits
in the codeword should be less than 32767, so the number of bytes in the codeword should
be less than 4095. That is, the number of message bytes should be less than 4093. Let
K denote the number of message bytes and let N denote the number of code bytes, for
example, N = K + 2.

The encoded file is, naturally, longer than the unencoded file, since parity bytes is
included. In encoding a file, the file is divided into blocks of length K . Each block of data is
written to an encoded file, followed by the parity bytes. At the end of the file, if the number
of bytes available is less than K, a shorter block is written out, followed by its parity bytes.

In decoding (or checking) a file, blocks of N bytes are read in and the parity for the
block is computed. If the parity is not zero, one or more error has been detected in that
block. At the end of the file, if the block size is shorter, the appropriate block length read in
is used.

154 Cyclic Codes, Rings, and Polynomials

Figure 4.24: Linear feedback shift register.

Appendix 4.A Linear Feedback Shift Registers

Closely related to polynomial division is the linear feedback shift register (LFSR). This is
simply a divider with no input - the output is computed based on the initial condition of
its storage elements. With proper feedback connections, the LFSR can be used to produce
a sequence with many properties of random noise sequences (for example, the correlation
function approximates a S function). These pseudonoise sequences are widely used in spread
spectrum communication and as synchronization sequences in common modem protocols.
The LFSR can also be used to provide an important part of the representation of Galois
fields, which are fundamental to many error correction codes (see Chapter 5). The LFSR
also re-appears in the context of decoding algorithms for BCH and Reed-Solomon codes,
where an important problem is to determine a shortest LFSR and its initial condition which
could produce a given output sequence. (See Chapter 6).

Appendix 4.A.1 Basic Concepts

A binary linear feedback shift register (LFSR) circuit is built using a polynomial division
circuit with no input. Eliminating the input to the division circuit of Figure 4.5, we obtain
the LFSR shown in Figure 4.24. Since there is no input, the output generated is due to the
initial state of the registers. Since there are only a finite number of possible states for this
digital device, the circuit must eventually return to a previous state. The number of steps
before a state reappears is called the period of the sequence generated by the circuit. A
binary LFSR with p storage elements has 2 P possible states. Since the all-zero state never
changes it is removed from consideration, so the longest possible period is 2P - 1.

Example 4.28 Figure 4.25 illustrates the LFSR with connection polynomial g(x) = 1 + x + x 2 +x4.
Table 4.8 shows the sequence of states and the output of the LFSR when it is loaded with the initial
condition (1, 0, 0, 0); The sequence of states repeats after 7 steps, so the output sequence is periodic
with period 7. Table 4.9 shows the sequence of states for the same connection polynomial when the
LFSR is loaded with the initial condition (1, 1, 0, 0), which again repeats after 7 steps. Of the 15
possible nonzero states of the LFSR, these two sequences exhaust all but one of the possible states.
The sequence for the last remaining state, corresponding to an initial condition (1,0, 1, I), is shown

0 in Table 4.10; this repeats after only one step.

Example 4.29 Figure 4.26 illustrates the LFSR with connection polynomial g(x) = 1 + x + x4.
Table 4.11 shows the sequence of states and the output of the LFSR when it is loaded with the initial
condition (1,0,0,0). In this case, the shift register sequences through 15 states before it repeats. 0

Appendix 4.A Linear Feedback Shift Registers 155

I Count State
0 1 0 0 0
1 0 1 0 0
2 0 0 1 0
3 0 0 0 1
4 1 1 1 0
5 0 1 1 1
6 1 1 0 1
7 1 0 0 0

Figure 4.25: Linear feedback shift register with g (x) = 1 + x + x 2 + x 4 .

output
0
0
0
1
0
1
1
0

I Count State
0 1 1 0 0
1 0 1 1 0
2 0 0 1 1
3 1 1 1 1
4 1 0 0 1
5 1 0 1 0
6 0 1 0 1
7 1 1 0 0

Definition 4.8 A sequence generated by a connection polynomial g (x) of degree n is said
0

Thus, the output sequence of Example 4.29 is a maximal-length sequence, while the
output sequences of Example 4.28 are not. A connection polynomial which produces a
maximal-length sequence is a primitive polynomial. A program to exhaustively search for
primitive polynomials modulo p for arbitrary (small) p is pr i m f ind.

to be a maximal length sequence if the period of the sequence is 2" - 1.

The sequence of outputs of the LFSR satisfy the equation

P - 1

output
0
0
1
1
1
0
1
0

(4.14)
j =O

This may be seen as follows. Denote the output sequence of the LFSR in Figure 4.24 by
(ym} . For immediate convenience, assume that the sequence is infinite {. . . , y - 2 , y-1, yo,
y1, y2, . . .} and represent this sequence as a formal power series

primitive.txt

156 Cyclic Codes, Rings, and Polynomials

Table 4.10: LFSR Example with g (x) = 1 + x + x 2 + x 4 and Initial State 1 + x 2 + x 3
Count State output

1 0 1 1

Figure 4.26: Linear feedback shift register with g (x) = 1 + x + x 4 ,

Consider the output at point ‘a’ in Figure 4.24. Because of the delay x , at point ‘a’ the signal
is

gox Y (x 1 Y

where the factor x represents the delay through the memory element. At point ‘b’, the signal
is

g0x2y (x> + glxY (X I

(g0xP + g1xP-’ + - . . g p - l x) Y (x) ,

Continuing likewise through the system, at the output point ‘d’ the signal is

which is the same as the output signal:

(g0xP + g1xp-’ + . . * g p - l x) Y (x) = y (x) . (4.15)

Equation (4.15) can be true only if coefficients of corresponding powers of x match. This
produces the relationship

(4.16)

Letting g* = g p - j , (4.16) can be written in the somewhat more familiar form as a convo-
lution,

J

P

(4.17)
j = l

Equation (4.17) can also be re-written as

D

(4.18)
j =O

with the stipulation that go* = 1.
The polynomial g*(n) with coefficients gs = gp-j is sometimes referred to as the

reciprocal polynomial. That is, g * (x) has its coefficients in the reverse order from g (x) .
(The term “reciprocal” does not mean that h (x) is a multiplicative inverse of g (x) ; it is just
a conventional name.) The reciprocal polynomial of g (x) is denoted as g * (x) . If g (x) is

Appendix 4.A Linear Feedback Shift Registers 157

Table 4.1 1 : LF! examp
Count

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

with g(x) = 1
State

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1
1 1 0 1
1 0 1 0
0 1 0 1
1 1 1 0
0 1 1 1
1 1 1 1
1 0 1 1
1 0 0 1
1 0 0 0

x +x4

output
0
0
0
1
0
0
1
1
0
1
0
1
1
1
1
0

md initial state 1

a polynomial of degree p with non-zero constant term (i.e., go = 1 and gp = l), then the
reciprocal polynomial can be obtained by

g*(x) = xPg(l/x).

It is clear in this case that the reciprocal of the reciprocal is the same as the original polyno-
mial. However, if go = 0, then the degree of xPg(l/x) is less than the degree of g(x) and
this latter statement is not true.

With the understanding that the output sequence is periodic with period 2P - 1, so that
y-1 = y 2 ~ - 2 , (4.18) is true for all i E Z. Because the sum in (4.18) is equal to 0 for all i ,
the polynomial g*(x) is said to be an annihilator of y (x) .

Example 4.30 For the coefficient polynomial g(x) = 1 + x + x2 + x4, the reciprocal polynomial is
g*(x) = 1 + x 2 + x3 + x4 and the LFSR relationship is

yi = yi-2 + yi-3 + yi-4 for all i E Z. (4.19)

For the output sequence of Table 4.8 [O, 0, 0, 1,0, 1, 1, 0, . . .}, it may be readily verified that (4.19)
is satisfied. 0

The LFSR circuit diagram is sometimes expressed in terms of the reciprocal polynomials,
as shown in Figure 4.27. It is important to be careful of the conventions used.

Appendix 4.A.2 Connection With Polynomial Division

The output sequence produced by an LFSR has a connection with polynomial long division.
To illustrate this, let us take g(x) = 1 + x + x2 + x4, as in Example 4.28. The reciprocal
polynomialis g*(x) = 1 + x 2 + x 3 +x4. Let the dividend polynomial be d(x) = x 3 . (The
relationship between the sequence and the dividend are explored in Exercise 4.43.) The

158 Cyclic Codes, Rings, and Polynomials

Figure 4.27: Linear feedback shift register, reciprocal polynomial convention.

power series obtained by dividing d(x) by g * (x) , with g * (x) written in order of increasing
degree, is obtained by formal long division:

x 3 + x 5 + x 6 * -

1 + x2 + x3 + x q x 3

x3+ x 5 + x 6 + x 7

x5+ x6+ x7

x5+ x 7 + x * + x 9

x6+ x8+x9

x6+ x*+ x9+ xlo

The quotient polynomial corresponds to the sequence {O, 0, 0, 1, 0, 1, 1, . . .}, the same as
the output sequence shown in Table 4.8.

Let yo, y i , . . . be an infinite sequence produced by an LFSR, which we represent with
y (x) = yo + y i x + y2x2 + . . . = ynxn. Furthermore, represent the initial state of
the shift register as y-1, y-2, . . . , Y - ~ . Using the recurrence relation (4.17) we have

00

C O P P 00

Y (X > = 7, g f y n - j x n = 1 g f x j C yn-jxn-J
n=O j = 1 j=1 n =O

so that

Amendix 4.A Linear Feedback Shift Registers 159

and y-4 = 1. From (4.20) we find

- x 3 x3
y(x) = - -

s * (x) 1 + x 2 + x 3 +x4'

as before. 0

Theorem 4.3 Let y (x) be produced by a LFSR with comection polynomial g (x) of degree
p . Ify(x) isperiodic withperiod N then g*(x) I (xN - l)d (x) , where d (x) is apolynomial
of degree < p.

Proof By the results above, y(x) =
y(x) is periodic then

for a polynomial d (x) with deg(d(x)) < p . If g (x)

Y(X> = (yo + ylx + * * . + yN-lXN-') + XN(YO + y1x + * . . + yN-1XN-')

2N + x (yo + YlX + ... + yN-lXN-l) + ...
= (yo + y1x + . * * + YN, xN-1) (1 + X N + X Z N + . . .)

N-1) (YO + Y l X + . . . + YN-lX - - -
X N - 1

so
d (x)
g*(x) XN - 1

(YO + ylx + * * . + Y N - I ~ ~ - ') -

or g*(x)(yo + ylx +.
For a given d(x), the period is the smallest N such that g*(x) 1 (xN - l)d(x) .

+ yN-lxN-') = -d(x)(xN - l), establishing the result. 0

Example 4.32 The polynomial g * (x) = 1 + x2 + x 3 + x4 can be factored as

g * (x) = (1 + x) (l + x +x3).

Taking N = 1 and d(x) = 1 + x + x 3 we see that y (x) has period 1. This is the sequence shown in
0 Table 4.10. We note that g * (x) I x7 - 1, so that any d(x) of appropriate degee will serve.

As a sort of converse to the previous theorem, we have the following.

Theorem 4.4 I f g * (x) 1 x N - 1, then y(x) = & isperiodic withperiod N or some divisor
of N .

N 1 Proof Let q(x) = = yo + ylx + . . y ~ - l x ~ - l . Then

= (yo + y1x + . . * YN- 1 xN-l) + X N (yo + y1x + . . . YN- 1 x N-l) + . . . ,
which represents a periodic sequence. 0

Theorem 4.5 Ifthe sequence y(x) produced by the connection polynomial g (x) of degree
p has period 2 P - 1 -that is, y(x) a maximal-length sequence - then g*(x) is irreducible.

160 Cyclic Codes, Rings, and Polynomials

Proof Since the shift register moves through 2 P - 1 states before repeating, the shift
register must progress through all possible nonzero conditions. Therefore, there is some
“initial condition” corresponding to d (x) = 1. Without loss of generality we can take

Suppose that g * (x) factors as a*(x)b*(x), where deg(a*(x)) = pi and deg(b*(x)) =
Y (X > = l/g*(x).

p2, with p1 + p2 = p . Then

4x1 d(x)
g * (x) a*(x)b*(x) a*(x) b*(x)

-+- - - 1 - 1
y(x) = - -

by partial fraction expansion. c (x) / a * (x) represents a series with period at most 2‘’ - 1
and d (x) b*(x) represents a series with period at most 2’2 - 1. The period of the sum

the product of the periods:

- + & d,, is at most the least common multiple of these periods, which must be less than

(2P’ - 1)(2PZ - 1) = 2p - 3.

But this is less than the period 2 P - 1, so g * (x) must not have such factors. 0
As mentioned above, irreducibility does not imply maximal-length. The polynomial g * (x) =
1 + x + x2 + x3 + x4 divides x5 + 1. But by Theorem 4.4, y (x) = l/g*(x) has period 5 ,
instead of the period 15 that a maximal-length sequence would have. What is needed for
the polynomial to be primitive.

Appendix 4.A.3 Some Algebraic Properties of Shift Sequences

Let y(x) be a sequence with period N . Then y (x) can be considered an element of R N =
GF(2)[x]/(xN - 1). Let g (x) be a connection polynomial and g * (x) be its reciprocal. Let
w(x) = g * (x) y (x) , where computation occurs in the ring R N , and let w(x) = wo + w1x +
. . . + W N - I X ~ - ’ . The coefficient zui of this polynomial is computed by

j =O

However, by (4.18), this is equal to 0. That is, g* (x) y (x) = 0 in the ring RN . In this case, we
say that g* (x) annihilates the sequence y (x). Let V (g *) be the set of sequences annihilated
by g* (x). We observe that V (g*) is an ideal in the ring R, and has a generator h* (x) which
must divide x N - 1. The generator h*(x) is the polynomial factor of (xN - l)/g*(x) of
smallest positive degree. If (X N - l)/g*(x) is irreducible, then h*(x) = (X N - l)/g*(x).

Example 4.33 Let g (x) = 1 + x + x 2 + x4, as in Example 4.28. Then g * (x) = 1 + x 2 + x 3 + x4.
This polynomial divides x7 + 1:

The polynomial y (x) = h * (x) corresponds to the output sequence 1,0, 1, 1,0,0,0 and its cyclic
shifts, which appears in Table 4.8.

The polynomial y (x) = (1 + x)h* (x) = 1 + x +x2 + x4 corresponds to the sequence 1, 1, 1,0, 1
and its cyclic shifts, which appears in Table 4.9.

The polynomial y (x) = (1 + x + x3) * h * (x) = I + x + x 2 + ~ 3 x 4 + x5 + x6 corresponds to
the sequence 1, 1, 1, 1, 1, 1 and its cyclic shifts. This sequence appears in Table 4.10. This sequence

0 also happens to have period 2.

Lab 2: Polvnomial Division and Linear Feedback Shift Registers 161

Example 4.34 For the generator polynomial g(x) = 1 +x+x4 and its reciprocal g* (x) = 1 +x3 +x4.
This polynomial divides x l5 + 1:

The polynomial y(x) = h*(x) corresponds to the sequence 1 ,0 ,0 , 1, 1, 0, 1,0, 1, 1, 1, 1, which
appears in Table 4.11. 0

Programming Laboratory 2:

Polynomial Division and Linear
Feedback Shift Registers

Objective

Computing quotients and remainders in polynomial divi-
sion is an important computational step for encoding and
decoding cyclic codes. In this lab, you are to create a C++
class which performs these operations for binary polynomi-
als. You will also create an LFSR class, which will be used
in the construction of a Galois field class.

Preliminary Exercises

Reading: Section 4.9, Appendix 4.A.1.

1) Let g(x) = x4 + x3 + x + 1 and d(x) = x8 + x7 +
x5 + x 4 + x 3 + x + 1.

a) Perform polynomial long division of d (x) and g(x),
computing the quotient and remainder, as in Example
4.15.

b) Draw the circuit configuration for dividing by g (x) .

c) Trace the operation of the circuit for the g(x) and
d (x) given, identifying the polynomials represented by
the shift register contents at each step of the algorithm, as
in Table 4.2. Also, identify the quotient and the remainder
produced by the circuit.

2) For the connection polynomial g(x) = x4 + x3 + x +
1, trace the LFSR when the initial register contents are
(1,0,0,0), as in Example 4.28. Also, if this does not ex-
haust all possible 15 states of the LFSR, determine other
initial states and the sequences they generate.

Programming Part: BinLFSR
Create a C++ class BinLFSR which implements an LFSR
for a connection polynomial of degree < 32. Create a con-
structor with arguments

BinLFSR(int g, int n, int initstate=l);

The first argument g is a representation of the con-
nection polynomial. For example, g = 0x1 7 represents
the bits 1 0 11 1, which represents the polynomial g(x) =
x4 + x2 + x + 1. The second argument n is the degree
of the connection polynomial. The third argument has a
default value, corresponding to the initial state (1 ,O,O,. . . ,O).
Use a single unsigned int internally to hold the state of
the shift register. The class should have member functions
as follows:

BinLFSR(v0id) { g=n=state=mask=maskl=O;l
/ / default constructor

BinLFSR(int g, int n, int initstate=l);
/ / constructor

-BinLFSR () { 1 ;
/ / destructor

void setstate(int state);
/ / Set the initial state of the LFSR

unsigned char step(void1;
/ / Step the LFSR one step,
/ / and return 1-bit output

unsigned char step(int &state);
/ / Step the LFSR one step,
/ / return 1-bit output
/ / and the new state

/ / Step the LFSR nstep times,
/ / returning the array of 1-bit outputs

void steps(int nstep, unsigned char *outputs);

Test the class as follows:

1) Use the LFSR class to generate the three sequences of
Example 4.28.
2) Use the LFSR class to generate the output sequence and
the sequence of states shown in Table 4.11.

Resources and implementation Suggestions
The storage of the polynomial divider and LFSR could be
implemented with a character array, as in

unsigned char *storage = new unsigned char[nl;

Shifting the registers would require a f o r loop. How-
ever, since the degree of the coefficient polynomial is of
degree c 32, all the memory can be contained in a single
4-byte integer, and the register shift can be accomplished
with a single bit shift operation.

0 The operator << shifts bits left, shifting 0 into the least
significant bits. Thus, if a=3, then a<<2 is equal to 12. The
number l ~ m is equal to 2m for m ?- 0.

162 Cyclic Codes, Rings, and Polynomials

0 The operator > > shifts bits right, shifting in 0 to the most
significant bit. Thus, if a=13, then a ~ 2 is equal to 3.

0 Hexadecimalconstants can be writtenusing Oxnnnn, as
in OxFF (thenumber255), or 0x1 0 1 (thenumber 257). Oc-
tal constants can be written using Onnn, as in 0123, which
has the bit pattern 001 010 011.
0 The bitwise and operator & can be used to mask bits off.
For example, if a = 0x123, then in b = a & OxFF;,
b is equal to 0 x2 3. To retain the lowest m bits of a number,
maskitwith ((1 c c m) - 1) .

0 The algorithms can be implemented either by shifting
right using >> or by shifting left using <<. For a few rea-
sons, it makes sense to shift left, so that the input comes
into the least significant bit and the output comes out of the
most significant bit. This may be initially slightly confus-
ing, since the pictures portray shifts to the right.
0 As a tutorial, the code for the LFSR is explicitly por-
trayed.

BinLFSR.cc
testBinLFSR.cc
MakeLFSR

The class declarations are given in BinLFSR. h. The class
definitions are given in BinLFSR. cc. In this case, the
definitions are short enough that it would make sense to
merge the . cc file into the . h file, but they are sepa-
rated for pedagogical reason^.^ A simple test program
is testBinLFSR. cc. A very simple makefile (if you
choose to use make) is in MakeLFSR.

Programming Part: BinPolyDiv
Create a C++ class BinPolyDiv which implements a
polynomial divisorh-emainder circuit, where the degree of
g (x) is i 32. The constructor has arguments representing
the divisor polynomial and its degree:

BinPolyDiv(unsigned char *g, int p) ;

The class should have member functions div and
remainder which compute, respectively, the quotient and
the remainder, with arguments as follows:

int div(unsigned char *d, / / dividend
int ddegree,
unsigned char *q,
int "ientdegree,
int &remainderdegree);

int remainder(unsigned char *d,
int n,
int &remainderdegree);

The dividend d is passed in as an unsigned char
array, one bit per character, so that arbitrarily long dividend
polynomials can be accommodated. The remainder is re-
turned as a single integer whose bits represent the storage
register, with the least-significant bit representing the coef-
ficient of smallest degree of the remainder. Internally, the
remainder should be stored in a single unsigned int.

Test your function on the polynomials g(x) = x4 +
x 3 + x + l a n d d (x) = x 8 + x 7 + x 5 + x 4 + x 3 + x + 1
from the Preliminary Exercises. Also test your function on
the polynomials from Example 4.15.

Algorithm 4.3 BinPolyDiv
File: BinPolyDiv. h

BinPolyDiv.cc
testBinPo1yDiv.c~

Follow-On Ideas and Problems

A binary (0, 1) sequence { y n] can be converted to a binary
f l sequence zn by zn = (-1)Yn . For a binary f l se-
quence [t o , z 1 , . . . , Z N - l } with period N , define the cyclic
autocorrelation by

N-1

r z (t) = - C ZiZ((i+r))$
i=o

where ((i + t)) denotes i + T modulo N .
Using your LFSR class, generate the sequence with con-

nection polynomial g (x) = 1 + x + x4 and compute and
plot r Z (t) for t = 0, 1, . . . , 15. (You may want to make
the plots by saving the computed data to a file, then plotting
using some convenient plotting tool such as Matlab.) You
should observe that there is a single point with correlation
1 (at T = 0) and that the correlations at all other lags has
correlation - 1 f N .

The shape of the correlation function is one reason
that maximal length sequences are called pseudonoise se-
quences: the correlation function approximates a 8 function
(with the approximation improving for longer N) .

As a comparison, generate a sequence with period 7 us-
ing g(x) = 1 + x + x 2 +x4 and plot r Z (t) for this sequence.

4The comment at the end of this code is parsed by the emacs editor in the ccc mode. This comment can be used by the compile
command in emacs to run the compiler inside the editor.

Lab 3: CRC Encoding and Decoding 163

Programming Laboratory 3:

CRC Encoding and Decoding

Objective

In this lab, you become familiar with cyclic encoding and
decoding, both in bit-oriented and byte-oriented algorithms.

Preliminary

Reading: Section 4.13.
Verify that the remainder d (x) in (4.10) is correct by

dividing X ' ~ ~ (X) by g(x). (You may want to do this both
by hand and using a test program invoking BinPolyDiv,
as a further test on your program.)

Programming Part

1) Write a C++ class CRC 1 6 which computes the 16-bit
parity bits for a stream of data, where (x) is a enerator
polynom@l of degree 16. The a l g o r i k shoulf use the
olynomal &vision idea (that is, a bit-onented algonthm.

!'ou may probably want to make use of a BinPolyDiv
object from Lab 2 in our class). Here is a class declaration
you might find usefuE

class CRC16 {
protected:

public :
BinPolyDiv div; / / the divider object

CRC16(int crcpoly); / / constructor
int CRC(unsigned char *data, int len);
/ / Compute the CRC for the data
/ / data=data to be encoded
/ / len = number of bytes to be encoded
/ / Return value: the 16 bits of
/ / parity
/ / (data[Ol is associated with the
/ / highest power of x"n)

1;

Test your program first using Example 4.25.
2) Write a standalone program crcenc which encodes
a file, making use of your CRC16 class. Use g(x) =
x16 + x15 ,+ x2 + 1. The program should accept three
command line arguments:

crcenc K filein fileout

where K is the message block length (in bytes), f i 1 e i n
is the input file, and f i l eou t is the encoded file.
3) Write a standalone program crcdec which decodes a
file, making use of your CRC class. The program should
accept three arguments:

crcdec K filein fileout

whereKisthemessageblocklength(inbytes), f i l e i n
is an encoded file, and f i l eou t is a decoded file.

4) Test crcenc and crcdec by first encoding then de-
coding a file, then comparing the decoded file with the orig-
inal. (A simple compare program is crnpsimple.) The
decoded file should be the same as the original file. Use a
message block length of 1024 bytes. Use a file of 1,000,000
random bytes created using the rnakerand program for the
test.

5) Test your programs further by passing the encoded data
through a binary symmetric channel using the bs c program.
Try channelcrossoverprobabilities ofO.oooO1, 0.001, 0.01,
and 0.1. Are there any blocks of data that have errors that
are not detected?
6) Write aclass FastCRC16 whichusesthebyte-oriented
algorithm to compute the parity bits for a generator g(x) of
degree 16. A sample class definition follows:

class FastCRC16 {
protected:

static int *crctable;
unsigned char crc0, crcl;
/ / the two bytes of parity

FastCRC16(int crcpoly); / / constructor
int CRC(unsigned char *data, int len);
/ / Compute the CRC for the data
/ / data[O] corresponds to the
/ / highest powers of x

public :

I ;

The table of parity values (as in Table 4.7) should be
stored in a static class member variable (see the discussion
below about static variables). The constructor for the class
should allocate space for the table and fill the table, if it has
not already been built.

7) Test your program using the data in Example 4.27.

8) Write a standalone program fastcrcenc which en-
codesafileusingFastCRC16. Use&) =x16 + x 1 5 +
x2 + 1. The program should have the same arguments as
the program c r cenc. Test your program by encoding some
data and verify that the encoded file is the same as for a file
encoded using crcenc.

9) Write a decoder program f a s t c r cde c which decodes
using Fast CRC 1 6 . Verify that it decodes correctly.
10) Compare the encoding rates of crcenc and
fastcrcenc. How much faster is the byte-oriented al-
gorithm?

Resources and Implementation Suggestions

Static Member Variables A static member variable of
a class is a variable that is associated with the class. How-
ever, all instances of the class share that same data, so the
data is not really part of any articular object. To see why
these might be used, suppose &at you want to build a system
that has two FastCRC16 objects in it:

164 Cvclic Codes. Rings. and Polvnomials

FastCRC16 CRCl(g); / / instantiate two objects
FastCRC16 CRCZ(g);

The Fast CRC 1 6 algorithm needs the data from Table 4.7.
This data could be represented using member data as in
class FastCRC16 1
protected:

int *crctable;
unsigned char crc0, crcl;
/ / the two bytes of parity

FastCRC16(int crcpoly); / / constructor
int CRCtunsigned char *data, int len);

public:

) ;

However, there are two problems with this:

1) Each object would have its own table. This wastes stor-
age space.
2) Each object would have to construct its table, as part of
the constructor routine. This wastes time.
As an alternative, the lookup table could be stored in a static
member variable. Then it would only need to be constructed
once (saving computation time) and only stored once (sav-
ing memory). The tradeoff is that it is not possible by this
arrangement to have two or more different lookup tables in
the same system of software at the same time. (There are
ways to work around this problem, however. You should try
to think of a solution on your own.)

The declaration s t a t i c i n t *c rc t ab le ; which
appears in the ,h file does not define the variable. There
must be a defimtion somewhere, in a C++ source file that
is only compiled once. Also, since it is a static object, in
a sense external to the class, its definition must be fully
scoped. Here is how it is defined:
/ / File: FastCRC.cc

/ / . . .
#include "FastCRC . h"
int *FastCRClG::crctable=O;

This defines the pointer and initializes it to, 0. allocation
of space for the table and computation of its contents is
accomplished by the constructor:
/ / Constructor for FastCRC16 object
FastCRClG::FastCRClG(int crcpoly)
i

if(FastCRClG::crctable==O) (
/ / the table has not been allocated yet
FastCRC16::crctable = new int[256];
/ / Now build the tables

1

Static member variables do not necessarily disappear
when an object goes out of scope. We shall use static mem-
ber variables again in the Galois field arithmetic implemen-
tation.

Command Line Arguments For operating systems
which provide a command-line interface, reading the com-
mand line arguments into a program is very straightfor-
ward. The arguments are passed in to the main routine
using the variables a rgc and argv. These may then be
parsed and used. a rgc is the total number of arguments
on the command line, including the program name. If there
is only the program name (with no other arguments), then
argc==l . argv is an array of pointers to the string com-
mands. argv [0] is the name of the program being run.

As an example, to read the arguments for crcenc K
f i l e i n f i l e o u t , you could use the following code:

/ / Program crcenc

/ / . . .

main (int argc, char *argv [])
t

int K;
char *infname, *outfname;

/ / ...
if (argc!=l) (
/ / check number of arguments is as expected

cout << "Usage: " << argv[O] <<
"K inf ile outf ile" << endl;

exit(-1);
1
K = atoi(argv[ll);
/ / read blocksize as an integer
infname = argv[2];
/ / pointer to input file name
outfname = argv[3];
/ / pointer to output file name
/ / . . .

1

Picking Out All the Bits in a File To write the bit-
oriented decoder a1 orithm, you need to pick out all the bits
in an array of data.%ere is some sample code:

/ / d is an array of unsigned characters
/ / with 'len' elements
unsigned char bits[E];
/ / an array that hold the bits of one byte of d

for(int i = 0; i < len; i++)
/ / work through ail the bytes of data
for(int j = 7; j >= 0; j--) {

/ / work through the bits in each byte
bits[j] = (data[i]&(l<<j)) != 0;

1
/ / bits now has the bits of d[i] in it
/ / . . .

1

4.14 Exercises 165

4.1 4 Exercises

4.1
4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

List the codewords for the (7,4) Hamming code. Verify that the code is cyclic.
In a ring with identity (that is, multiplicative identity), denote this identity as 1. Rove:

The multiplicative identity is unique.
If an element a has both a right inverse b (i.e., an element b such that ab = 1) and a left
inverse c (i.e., an element c such that ca = l), then b = c. In this case, the element a is
said to have an inverse (denoted by a - ’) . Show that the inverse of an element a, when it
exists, is unique.
Ifa has a multiplicative inverse a- l , then (a-l)-l = a.

The set of units of a ring forms a group under multiplication. (Recall that a unit of a ring
is an element that has a multiplicative inverse).
If c = ab and c is a unit, then a has a right inverse and b has a left inverse.
In a ring, a nonzero element a such that ax = 0 for x # 0 is said to be a zero divisor. Show
that if a has an inverse, then a is not a zero divisor.

Construct the ring R4 = GF(2)[x]/(x4 + 1). That is, construct the addition and multiplication
tables for the ring. Is R4 a field?
Let R be a commutative ring and let a E R. Let I = {b E R : ab = 0). Show that I is an ideal
of R .
An element a of a ring R is nilpotent if an = 0 for some positive integer n. Show that the set of
all nilpotent elements in a commutative ring R is an ideal.
LetAandBbeidealsinaringR.ThesumA+BisdefinedasA+B = (a + b : a E A , ~ E B}.
Show that A + B is an ideal in R . Show that A c A + B .
Show that in the ring Z15 the polynomial p (x) = x 2 - 1 has more than two zeros. In a field there
would be only two zeros. What may be lacking in a ring that leads to “too many” zeros?
In the ring R4 = GF(2)[x]/(x4 + l), multiply a(x) = 1 + x 2 + x 3 and b(x) = x + x 2 . Also,
cyclically convolve the sequences (1, 0, 1, 1) and (0, 1, l}. What is the relationship between these
two results?
For the (15,ll) binary Hamming code with generator g(x) = x4 + x + 1:

(a) Determine the parity check polynomial h(x) .
(b) Determine the generator matrix G and the parity check matrix H for this code in nonsys-

(c) Determine the generator matrix G and the parity check matrix H for this code in systematic

(d) Let m (x) = x + x 2 + x 3 . Determine the code polynomial c (x) = g (x) m (x) .
(e) Let m(x) = x + x 2 + x 3 . Determine the systematic code polynomial c(x) = x ” - ~ ~ (x) +

(f) For the codeword c (x) = 1 + x + x 3 + x4 + x5 + x9 +. lo + x l 1 + x13, determine the

(g) For the codeword c(x) = 1 + x + x3 + x4 + x5 + x9 + + x l 1 + x13, determine the

(h) Let r (x) = x14 +.lo + x5 + x 3 . Determine the syndrome for ~ (x) .
(i) Draw the systematic encoder circuit for this code using the g(x) feedback polynomial.
(i) Draw the decoder circuit for this circuit with r (x) input on the left of the syndrome register.

(k) Draw the decoder circuit for this circuit with r (x) input on the right of the syndrome register.

tematic form.

form.

Rgc,)[xn-km(x)], where Rg(,) [] computes the remainder after division by g(x).

message if nonsystematic encoding is employed.

message if systematic encoding is employed.

Determine in particular the error pattern detection circuit.

Determine in particular the error pattern detection circuit.

166 Cyclic Codes, Rings, and Polynomials

(1) Let r (x) = x13 +

(m) Let r (x) = x13 +
+ x9 + x 5 + x2 + 1. Trace the execution of the Meggitt decoder

+ x9 + x5 + x2 + 1. Trace the execution of the Meggitt decoder

with the input on the left, analogous to Table 4.4.

with the input on the right, analogous to Table 4.5.

4.10 Let f (x) be a polynomial of degree rn in F[x], where F is a field. Show that if a is a root of f (x)
(so that f (a) = O), then (x - a) I f (x) . Hint: Use the division algorithm. Inductively, show that
f (x) has at most rn roots in IF.

4.1 1 The following are code polynomials from binary cyclic codes. Determine the highest-degree
generator g (x) for each code.

(a) c(x> = 1 +x4 + x 5

(b) c (x) = l + x + ~ ~ + x ~ + x ~ + x ~ + x ~ + x ~ + x ~ + x ~ + x ~ ~ + x ~ ~ + x " + x ~ ~ + x ~ ~

(c) c (x) =x13+x12+x9+x~+x4+x3+,2+1

(d) ~ (x) = x 8 + 1
(e) c(x) = x10 + x 7 + x 5 +x4 + x 3 + x 2 + x + 1

4.12 Let g(x) = go + g l x + . . . + gn-kXn-k be the generator for a cyclic code. Show that go # 0.

4.13 Show that g(x) = 1 + x +x4 + x 5 +x7 + x 8 +x9 generates abinary (21,12) cyclic code. Devise
a syndrome computation circuit for this code. Let r (x) = 1 +x4 + x l6 be a received polynomial.
Compute the syndrome of r (x) . Also, show the contents of the syndrome computation circuit as
each digit of r (x) is shifted in.

4.14 [204] Let g (x) be the generator for a binary (n, k) cyclic code C. The reciprocal of g(x) is defined
as

g*(x) = xn-kg(l/x).

(In this context, "reciprocal" does not mean multiplicative inverse.)

(a) As a particular example, let g(x) = 1 + x 2 +x4 + x 6 + x7 + x l 0 . Determine g * (x) . The

(b) Show that g*(x) also generates an (n, k) cyclic code.
(c) Let C* be the code generated by g * (x) . Show that C and C* have the same weight distri-

bution.

(d) Suppose C has the property that whenever c (x) = co + c lx + c,-lx"-l is a codeword, so
is its reciprocal c*(x) = cn-l + ~ n - 2 ~ + . . . + coxn-'. Show that g(x) = g*(x). Such
a code is said to be a reversible cyclic code.

following subproblems deal with arbitrary cyclic code generator polynomials g (x) .

4.15 [204] Let g(x) be the generator polynomial of a binary cyclic code of length n.

(a) Show that if g(x) has x + 1 as a factor then the code contains no codevectors of odd weight.
Hint: The following is true for any ring F[x]:

I 1 - xn- l = (1 - x)(l + x + x2 + . . . + 2 - 1) I.
I I

(b) Show that if n is odd and x + 1 is not a factor of g (x) , then the code contains the all-one

(c) Show that the code has minimum weight 3 if n is the smallest integer such that g(x) divides

codeword.

x" - 1.

4.16 Let A (z) be the weight enumerator for a binary cyclic code C. with generator g(x). Suppose
furthermore that x + 1 is not a factor of g(x). Show that the code generated by j (x) = (x + l)g(x)
has weight enumerator A (z) = i [A (z) + A (- z)] .

4.14 Exercises 167

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26
4.27

4.28

Let g (x) be the generator polynomial of an (n, k) cyclic code C. Show that g (x h) generates an
(hn, hk) cyclic code that has the same minimum weight as the code generated by g (x) .

Let C be a (2m - 1, 2m - m - 1) Hamming code. Show that if a Meggitt decoder with input on the
right-hand side is used, as in Figure 4.19, then the syndrome to look for to correct the digit rn-l

is s (x) = Hint: g(x) divides x2m-1 + 1. Draw the Meggitt decoder for this Hamming
code decoder.

[33] The code of length 15 generated by g (x) = 1 + x4 + n6 + x7 + x8 is capable of correcting
2 errors. (It is a (15,7) BCH code.) Show that there are 15 correctable error patterns in which the
highest-order bit is equal to 1. Devise a Meggitt decoder for this code with the input applied to
the right of the syndrome register. Show that the number of syndrome patterns to check can be
reduced to 8.

Let g (x) be the generator of a (2m - 1, 2m - m - 1) Hamming code and let j(x) = (1 + x) g (x) .
Show that the code generated by i (x) has minimum distance exactly 4.

(a) Show that there exist distinct integers i and j such that x i +xj is not a codeword generated

(b) Choose an integer k such that the remainder upon dividing xk by g(n) is not equal to Y 1 (x) .

(c) Choose an integer I such that when x' is divided by g(x) the remainder is r2 (x) . Show that

(d) Show that x i + X J + nk + x' = [42(x) + q 3 (x)] g (x) and that x i + xj + xk + n1 is a

[204] An error pattern of the form e (x) = x i + xi+l is called a double-adjacent-error pattern.
Let C be the (2m - 1, 2m - m - 2) cyclic code generated by g (x) = (x + l)p(x), where p (x)
is a primitive polynomial of degree m.
Show that no two double-adjacent-error patterns can be in the same coset of a standard array for
C. Also show that no double-adjacent error pattern and single error pattern can be in the same
coset of the standard array. Conclude that the code is capable of correcting all the single-error
patterns and all the double-adjacent-error patterns.

[204] Let c(x) be a code polynomial in a cyclic code of length n and let c(')(x) be its ith cyclic
shift. Let 1 be the smallest positive integer such that c(') (x) = c (x) . Show that I is a factor of n.

Verify that the circuit shown in Figure 4.1 computes the product a (x) h (x) .

Verify that the circuit shown in Figure 4.2 computes the product a(x)h(x).

Verify that the circuit shown in Figure 4.3 computes the product a(x)h (x).
Verify that the circuit shown in Figure 4.4 computes the product a(x)h (x) .

Let h(x) = 1 + x 2 + x 3 + x4. Draw the multiplier circuit diagrams as in Figures 4.1,4.2,4.3,
and 4.4.

Let r (n) = 1 + x 3 + x4 + n5 be the input to the decoder in Figure 4.20. Trace the execution of
the decoder by following the contents of the registers. If the encoding is systematic, what was
the transmitted message?

by g (x) . Write xi + xj = 41 (x) g (x) + rl (x).

Write xi + xj + xk = q2(x)g(x) + r 2 (x)

1 is not equal to i , j , or k .

multiple of (x + l)g(x)

4.29 Cyclic code dual.

(a) Let C be a cyclic code. Show that the dual code C' is also a cyclic code.
(b) Given a cyclic code C with generator polynomial g (x) , describe how to obtain the generator

polynomial for the dual code C'.

4.30 As described in Section 3.6, the dual to a Hamming code is a (2m - 1, m) maximal-length code.
Determine the generator matrix for a maximal-length code of length 2m - 1 .

168 Cyclic Codes, Rings, and Polynomials

4.3 1 Let C be an (a , k) binary cyclic code with minimum distance d h n and let C' c C be the shortened
code for which the 1 high-order message bits are equal to 0. Show that C' has 2k-' codewords
and is a linear code. Show that the minimum distance dAn of C' is at least as large as

4.32 For the binary (31,26) Hamming code generated using g(x) = 1 +x2 + x 5 shortened to a (28,23)
Hamming code.

(a) Draw the decoding circuit for the (28,23) shortened code using the method of simulating

(b) Draw the decoding circuit for the (28,23) shortened code using the method of changing the

extra clock shifts.

error pattern detection circuit.

4.33 Explain why CRC codes can be thought of as shortened cyclic codes.

4.34 Let g(x) = 1 + x2 + x4 + x5. Determine the fraction of all burst errors of the following lengths
that can be detected by acyclic code using this generator: (a) burst length= 4; (b) burst length= 5;
(c) burst length = 6; (d) burst length = 7; (e) burst length = 8.

4.35 Let g(x) = x8 + x7 + x6 + x4 + x2 + 1 be the generator polynomial for a CRC code.

(a) Let m (x) = 1 + x + x3 + x6 + x7 + x12 + x16 + x2'. Determine the CRC encoded
message c (x) .

(b) The CRC-encodedpolynomial ~ (x) = x 2 + x 3 + x 5 +x6 +x7 + x 8 +x10 + x l l +x14 +
x17 + x20 + x23 + x26 + x28 is received. Has an error been made in transmission?

4.36 Verify the entry for t = 3 in Table 4.7. Also verify the entry for t =dc.

4.37 A double error pattern is one of the form e (x) = x i + xJ , for 0 5 i i j 5 n - 1. If g(x) does
not have x as a factor and does not evenly divide 1 + x J P z , show that any double error pattern is
detectable.

4.38 A file containing the two bytes do = 56 = 3816 and dl = 125 =7D16 is to be CRC encoded
using the CRC-ANSI generator polynomial g (x) = x16 + x15 + x2 + 1.

(a) Convert these data to a polynomial m(x) .

(b) Determine the CRC-encoded data c (x) = x r m (x) + R g (,) [x r m (x)] and represent the

(c) Using the fast CRC encoding of Algorithm 4.1, encode the data. Verify that it corresponds

encoded data as a stream of bits.

to the encoding obtained previously.

4.39 The output sequence of an LFSR with connection polynomial g (x) can be obtained by formal
division of some dividend d (x) by g*(x). Let g(x) = 1 + x + x4. Show by computational
examples that when the connection polynomial is reversed (i.e., reciprocated), the sequence
generated by it is reversed (with possibly a different starting point in the sequence). Verify this
result analytically.

4.40 Show that (4.16) follows from (4.15). Show that (4.17) follows from (4.16).

4.41 Show that the circuit in Figure 4.28 produces the same sequence as that of Figure 4.24. (Of the
two implementations, the one in Figure 4.24 is generally preferred, since the cascaded summers
of Figure 4.28 result in propagation delays which inhibit high-speed operations.)

4.42 Figure 4.29 shows an LFSR circuit with the outputs of the memory elements labeled as state
variables X I through x p . Let

~ [k] =

x p [kl

4.14 Exercises 169

Figure 4.28: Another LFSR circuit.

Figure 4.29: An LFSR with state labels.

(a) Show that for the state labels as in Figure 4.29 that the state update equation is

where M is the companion matrix

0 0 0 0 ... 0 -go
1 0 0 0 ". 0

M = 0 0 1 0 1 O O ;;; ::: 1.
0 0 0 0 -gp-1

(b) The characteristic polynomial of a matrix is p (x) = det(xI - M) . Show that

2 p (x) = go + g1x + g2x + * * * + g p = g (x) .

(c) It is a fact that every matrix satisfies its own characteristic polynomial. That is, p (M) = 0.
(This is the Cayley-Hamilton theorem.) Use this to show that if g (x) I (1 -xk) then M k = I .

(d) The period k of an LFSR with initial vector x[O] is the smallest k such that M k = I .
Interpret this in light of the Cayley-Hamilton theorem, if p (x) is irreducible.

(e) A particular output sequence {xp [O], xp [11, . . . , } is to be produced from this LFSR. De-
termine what the initial vector x[O] should be to obtain this sequence. (That is, what is the
initial value of the LFSR register?)

170 Cyclic Codes, Rings, and Polynomials

4.43 Given a sequence y (x) produced by dividing by the reciprocal polynomial of g(x) ,

determine what d(x) should be to obtain the given y (x) .

The sequence {0, 1,0,0, 1, 1,0, l , O , 1,1, 1 , 1,. . .} is generated by the polynomial g*(x) =
1 + x 3 + x4. Determine the numerator polynomial d (x) .

4.44 Show that the set of sequences annihilated by a polynomial g*(x) is an ideal.
4.45 [199] A Barker code is a binary-valued sequence {bn} of length n whose autocorrelation function

has values of 0, 1, and n. Only nine such sequences are known, shown in Table 4.12.

(a) Compute the autocorrelation value for the Barker sequence {b5}.

(b) Contrast the autocorrelation function for a Barker code with that of amaximal-length LFSR
sequence.

Table 4.12: Barker Codes
n t b n l
2 [1,11
2 [-1,11
3 [1,1,-11
4 [1,1,-1,11
4 [1,1,1,-11
5 [1,1,1,-1,11
7 [l,l,l,-1,-l,l,-11
11 [l,l,l,-1,-1,-l,l,-1,-l,l,-11
13 [l,l,l,l,l,-1,-l,l,l,-l,l,-l,l]

4.1 5 References

Cyclic codes were explored by Prange [271, 272, 2731. Our presentation owes much to
Wicker [373], who promotes the idea of cyclic codes as ideals in a ring of polynomials.
The Meggitt decoder is described in [237]. Our discussion of the Meggitt decoder closely
follows [203]; many of the exercises were also drawn from that source.

The tutorial paper [281] provides an overview of CRC codes, comparing five different
implementations and also providing references to more primary literature.

Much of the material on polynomial operations was drawn from [262]. The table of
primitive polynomials is from [386], which in turn was drawn from [262]. An early but
still important and thorough work on linear feedback shift registers is [120]. See also
[1 19,1181. The circuit implementations presented here can take other canonical forms. For
other realizations, consult a book on digital signal processing, such as [253], or controls
[109,18 11. The paper [387] has some of the fundamental algebraic results in it. An example
of maximal length sequences to generate modem synchronization sequences is provided in
[1601. The paper [301] has descriptions of correlations of maximal length sequences under
decimation.

Chapter 5

Rudiments of Number Theory
and Algebra
5.1 Motivation

We have seen that the cyclic structure of a code provides a convenient way to encode and
reduces the complexity of decoders for some simple codes compared to linear block codes.
However, there are several remaining questions to be addressed in approaching practical
long code designs and effective decoding algorithms.

1. The cyclic structure means that the error pattern detection circuitry must only look
for errors in the last digit. This reduces the amount of storage compared to the
syndrome decoding table. However, for long codes, the complexity of the error
pattern detection circuitry may still be considerable. It is therefore of interest to have
codes with additional algebraic structure, in addition to the cyclic structure, that can
be exploited to develop efficient decoding algorithms.

2. The decoders presented in chapter 4 are for binary codes: knowing the location of
errors is sufficient to decode. However, there are many important nonbinary codes,
for which both the error locations and values must be determined. We have presented
no theory yet for how to do this.

3. We have seen that generator polynomials g (x) must divide x n - 1. Some additional
algebraic tools are necessary to describe how to find such factorizations over arbitrary
finite fields.

4. Finally, we have not presented yet a design methodology, by which codes having a
specified minimum distance might be designed.

This chapter develops mathematical tools to address these issues. In reality, the amount
of algebra presented in this chapter is both more and less than is needed. It is more than
is needed, in that concepts are presented which are not directly called for in later chapters
(even though their presence helps puts other algebraic notions more clearly in perspective).
It is less than is needed, in that the broad literature of coding theory uses all of the algebraic
concepts presented here, and much more. An attempt has been made to strike a balance in
presentation.

Example 5.1 We present another example motivating the use of the algebra over finite fields [25].
This example will preview many of the concepts to be developed in this chapter, including modulo
operations, equivalence, the Euclidean algorithm, irreducibility, and operations over a finite field.

We have seen in Section 1.9.2 that the decoding algorithm for the Hamming code can be expressed
purely in an algebraic way: finding the (single) error can be expressed as finding the solution to a
single algebraic equation. It is possible to extend this to a two-error-correcting code whose solution

172 Rudiments of Number Theorv and Algebra

is found by solving two polynomial equations in two unknowns. We demonstrate this by a particular
example, starting from a Hamming (31,26) code having a parity check matrix

0 0 0 ... 1 1

H = [: 0 0 : 0 : I 11.
The 5-tuple in the ith column is obtained from the binary representation of the integer i . As in Section
1.9.2, we represent the 5-tuple in the ith column as a single “number,” denoted by y j , so we write

1 0 1 0 1

H = [YI Y2 Y3 . . . Y30 M I] .

Let us now attempt to move beyond a single error correction code by appending 5 additional rows
to H . We will further assume that the 5 new elements in each column are some function of column
number. That is, we assume that we can write H as

H = (5.1)

The function f(i) = [f i (i) , f 2 (i) , f3(i), f4(i), f5(i)lT has binary components, so f i (i) E (0, 1) .
This function tells what binary pattern should be associated with each column. Another way to express
this is to note that f maps binary 5-tuples to binary 5-tuples. We can also use our shorthand notation.
Let f (y) be the symbol represented by the 5-tuple (fl(i), f 2 (i) , f 3 (i) , f4(i), f5(i)), where i is the
integer corresponding to yi = y . Using our shorthand notation we could write (5.1) as

= [f (Y 1) Y1 f (Y 2) y2 f (Y 3) Y3 ” ’ . .. f (Y30) y30 f (Y 3 1) ~ 3 1 1 .

The problem now is to select a function f so that H represents a code capable of correcting two errors,
and does so in such a way that an algebraic solution is possible. To express the functions f we need
some way of dealing with these yi 5-tuples as algebraic objects in their own right, with arithmetic
defined to add, subtract, multiply, and divide. That is, the yi need to form ajeld, as defined in Section
2.3, or (since there are only finitely many of them) a jn i fe jdd . Addition in the field is straightforward
we could define addition element-by-element. But how do we multiply in a meaningful, nontrivial
way? How do we divide?

The key is to think of each 5-tuple as corresponding to a polynomial of degree 5 4. For example:

(O,O, 0, 0,O) ff 0

(O,O, 0, 0, 1) ff 1

(O,O, 0, 1 , O) ff x

(0, 0, 1 , 0 , 0) ff x 2

(1 , 0 , 1 , 0 , 1) ~ ~ ~ + ~ ~ + 1 .

5.1 Motivation 173

Note that each coefficient of the polynomials is binary; we assume that addition is modulo 2 (i.e.,
over GF(2)). Clearly, addition of polynomials accomplishes exactly the same thing as addition of the
vectors. (They are isomorphic.)

How can we multiply? We want our polynomials representing the 5-tuples to have degree 5 4,
and yet when we multiply the degree may exceed that. For example,

3 4 3 (x + + l)(x + + + 1) = .7 + x6 + .s + .4 + .2 + I.

To reduce the degree, we choose some polynomial M (x) of degree 5, and reduce the product modulo
M (x) . That is, we divide by M (x) and take the remainder. Let us take M (x) = x5 + x2 + 1. When
we divide x7 + x6 + x5 + x4 + x2 + 1 by M(x) we get a quotient of x2 + x + 1, and a remainder of
x3 + x2 + x. We use the remainder:

(x 3 + x + I) (~ 4 3 + x + x + 1) = x7 + P f x S +x4 +x2 + 1

= x3 + x 2 + X (mod 2 + x 2 + 1).

Our modulo operations allows us now to add, subtract, and multiply these 5-tuples, considered as
polynomials modulo some M (x) . Can we divide? More fundamentally, given a polynomial a (x) , is
there some other polynomial s (x) - we may consider it a multiplicative inverse or a reciprocal -
such that

a(x)s(x) = 1 mod M (x) .

The answer lies in the oldest algorithm in the world, the Euclidean algorithm. (More details later!)
For now, just be aware that if M (x) is irreducible - it cannot be factored - then we can define
division so that all of the 5-tuples yi have a multiplicative inverse except (0, 0, 0, 0,O).

Let us return now to the problem of creating a two-error-correcting code. Suppose that there are
two errors, occurring at positions ii and i2. Since the code is linear, it is sufficient to consider

r=(O,O, ..., 1 1 , O , . . . , O)
-’...?+

ii i2

We find

with

rHT = (sl,s2)

If the two equations in (5.2) are functionally independent, then we have two equations in two unknowns,
which we could solve for yil and yiz which, in turn, will determine the error locations il and i2.

Let us consider some possible simple functions. One might be a simple multiplication: f (y) =
ay. But this would lead to the two equations

Vil + Viz = S l ayi, + ayiz = s29

representing the dependency s2 = as1 ; the new parity check equations would tell us nothing new.
We could try f (y) = y + a; This would not help, since we would always have s2 = $1.
Let us try some powers. Say f (y) = y2. We would then obtain

2
Yil + Yi2 = $1 Yil + Y; = s2.

These looks like independent equations, but we have to remember that we are dealing with operations
modulo 2. Notice that

174 Rudiments of Number Theory and Algebra

We have only the redundant sf = q: the second equation is the square of the first and still conveys
no new information.

Try f (y) = y 3 . Now the decoder equations are

3 3 Yil + Yi2 = Sl vi, + yi2 = 52.

These are independent!
Now let's see what we can do to solve these equations algebraically. In a finite field, we can do

conventional algebraic manipulation, keeping in the back of our mind how we do multiplication and
division.

We can write

3 2 2
s2 = ~ i , + ~i ' , = (yil + yi2)(yil - yil ~ i 2 + Y;) = ~1 (~ i , + yil ~ i 2 + Y;) = ~1 (yil yi2 - s;)

(where the signs have changed with impunity because these values are based on GF(2)) . Hence we
have the two equations

s2

S l
Yil + Yiz = $1 l/il ~ i 2 = s t + -

if sl # 0. We can combine these two equations into a quadratic:

or

or

For reasons to be made clear later, it is more useful to deal with the reciprocals of the roots. Let
z = y.-'. We then have the equation

El

q(z) = 1 + S l Z + (.: + ;) z2 = 0.

The polynomial q (z) is said to be an error locatorpolynomial: the reciprocals of its roots tell the yi,
and yi2, which, in turn, tell the locations of the errors.

If there is only one error, then yil = sl and y: = s2 and we end up with the equation 1 +sl y-' =
0. If there are no errors, then sl = s2 = 0.

Let us summarize the steps we have taken. First, we have devised a way of operating on 5-tuples
as single algebraic objects, defining addition, subtraction, multiplication, and division. This required
finding some irreducible polynomial M (x) which works behind the scenes. Once we have got this,
the steps are as follows:

1. We compute the syndrome r H T .

2. From the syndrome, we set up the error locator polynomial. We note that there must be some
relationship between the sums of the powers of roots and the coefficients.

3. We then find the roots of the polynomial, which determine the error locations.

For binary codes, knowing where the error is suffices to correct the error. For nonbinary codes, there
is another step: knowing the error location, we must also determine the error value at that location.
This involves setting up another polynomial, the error evaluation polynomial, whose roots determine
the error values.

The above steps establish the outline for this and the next chapters. Not only will we develop
more fully the arithmetic, but we will be able to generalize to whole families of codes, capable of
correcting many errors. However, the concepts are all quite similar to those demonstrated here.

5.2 Number Theoretic Preliminaries 175

(It is historically interesting that it took roughly ten years of research to bridge the gap between
Hamming and the code presented above. Once this was accomplished, other generalizations followed
quickly.) 0

5.2 Number Theoretic Preliminaries

We begin with some notation and concepts from elementary number and polynomial theory.

5.2.1 Divisibility

Definition 5.1 An integer b is divisible by a nonzero integer a if there is an integer c
such that b = ac. This is indicated notationally as a I b (read “a divides b”). If b is not
divisible by a we write aXb. Let a(x) and b(x) be polynomialsin F [x] (that is, thering of
polynomials with coefficients in F) where F is a field and assume that a (x) is not identically
0. Then b(x) is divisible by a polynomial a(x) if there is some polynomial c (x) E F [x]

0 such that b(x) = a(x)c (x) ; this is indicated by a(x) I b(x) .

Example 5.2 For a(x) and b(x) in R[x], with

3 5
4 7

b(x) = 112 + 96x + 174x2 + 61x3 + 42x4 and a(x) = -x2 + --x + 2

we have a(x) I b(x) since b(x) = 28(2 + x + 2x3)a(x).
The following properties of divisibility of integers are straightforward to show.

Lemma 5.1 [250] For integers,

1. a 1 b implies a 1 bc for any integer c.

2. a1 b and bl c imply a I c.

3. a 1 b and a I c imply a I (bs + ct) for any integers s and t.

4. a (b and b (a imply a = f b .

5. a I b , a > O a n d b > O i m p l y a ~ b .

6. i fm # 0, then a I b ifand only i fma I mb

7. ifac I bc then a 1 b.

8. $a I b and C I d then acl bd.

These properties apply with a few modijications topolynomials. Property (4) is diflerent for
polynomials: i fa (x) I b(x) and b (x) I a(x) then a(x) = cb(x), where c is a nonzem element
of thejeld of coeficients. Property (5) is also different forpolynomials: a(x) 1 b(x) implies
deg(a(x)) 4 deg(b(x)).

An important fact regarding division is expressed in the following theorem.

Theorem 5.2 (Division algorithm) For any integers a and b with a > 0, there exist unique
integers q and r such that

b = q a + r ,

176 Rudiments of Number Theory and Algebra

where 0 5 r < a. The number q is the quotient and r is the remaindel:
For polynomials, for a (x) and b(x) in F [x], F a je ld , there is a unique representation

b (x) = q (x) a (x) + r (x) ,

where deg(r (x)) < deg(a(x)).

Proof 1250, p. 51 We provide a partial proof for integers. Form the arithmetic progression

. . . , b - 3a, b - 2a, b - a , b , b + a, b + 2a, b + 3a,. . .

extending indefinitely in both directions. In this sequence select the smallest non-negative
element and denote it by r ; this satisfies the inequality 0 5 r < a and implicitly defines q
by r = b - q a . 0

Example 5.3 With b = 23 and a = 7 we have

23 = 3.7 + 2.

The quotient is 3 and the remainder is 2. 0

Example 5.4 With b(x) = 2x3 + 3x + 2 and n (x) = x2 + 7 in R[x],

b(x) = (2x)(x2 + 7) + (-lln + 2)

Definition 5.2 If d 1 a and d I b then d is said to be a common divisor of a and b.
A common divisor g > 0 such that every common divisor of a and b divides g is called

the greatest common divisor (GCD) and is denoted by (a, b) .
Integers a and b with a greatest common divisor equal to 1 are said to be relatively

prime. The integers a1 , a2, . . . , ak are pairwise relatively prime if (ai, a j) = 1 for i # j .
If d (x) I a(x) and d (x) I b(x) then d (x) is said to be a common divisor of a (x) and b(x) .

If either a (x) or b(x) is not zero, the common divisor g(x) such that every common divisor
of a (x) and b(x) divides g(x) is referred to as the greatest common divisor (GCD) of a(x)
and b (x) and is denoted by (a(x), b (x)) .

The GCD of polynomials (a(x) , b (x)) is, by convention, normalized so that it is a monk
polynomial.

If the greatest common divisor of a(x) and b (x) is a constant (which can be normalized
to 1). then a(x) and b(x) are said to be relatively prime.

Example 5.5 If a = 24 and b = 18 then, clearly, (u, b) = (24, 18) = 6. 0

Example 5.6 By some trial and error (to be reduced to an effective algorithm), we can determine that
(851, 966) = 23.

Example 5.7 With a(x) = 4x3 + lox2 + 8x + 2 and b(x) = 8x3 + 14x2 + 7x + 1 in R[x], it can
be shown that

2 3 1 (a (x> , b(x)) = x + 5" + 5.
0

5.2 Number Theoretic Preliminaries 177

Useful properties of the greatest common divisor:

Theorem 5.3

1.

2.

3.

4.

5.

6.

7.

8.

9.

For any positive integer m, (ma, mb) = m(a, b).

As a consequence of the previous result, i fd I a and d 1 b and d > 0 then

(z , $) = $(a , b) .

I f (a , b) = g then (a /g , b / g) = 1.

I f (a , c) = (b , c) = 1, then (ab, c) = 1

I f c / ab and (b, c) = 1 then C I a.

Every divisor d of a and b divides (a , b). This follows immediatelyfrom (3) in Lemma
5.1 (or from the definition).

(a , b) = la1 ifand only i fa I b.

(a , (b , c)) = ((a , b) , c) (associativity).

(ac, bc) = \cl(a, b) (distributivity).

5.2.2 The Euclidean Algorithm and Euclidean Domains

The Euclidean algorithm is perhaps the oldest algorithm in the world, being attributed to
Euclid over 2000 years ago and appearing in his Elements. It was formulated originally to
find the greatest common divisor of two integers. It has since been generalized to apply to
elements in an algebraic structure known as a Euclidean domain. The powerful algebraic
consequences include a method for solving a key step in the decoding of Reed-Solomon
and BCH codes.

To understand the Euclidean algorithm, it is perhaps most helpful to first see the Eu-
clidean algorithm in action, without worrying formally yet about how it works. The Eu-
clidean algorithm works by simple repeated division: Starting with two numbers, a and
b, divide a by b to obtain a remainder. Then divide b by the remainder, to obtain a new
remainder. Proceed in this manner, dividing the last divisor by the most recent remainder,
until the remainder is 0. Then the last nonzero remainder is the greatest common divisor
(a, b).

Example 5.8 Find (966, 851). Let a = 966 and b = 851. Divide a by b and express in terms of
quotient and remainder. The results are expressed in equation and “long division”form:

966 = 851.1 + 115

Now take the divisor (851) and divide it by the remainder (115):

1
851 (966

85 1
115
-

851 = 115.7+46

7 1
115 p (9 6 6 -

805 851
46 115
--

178 Rudiments of Number Theorv and Algebra

Now take the divisor (1 15) and divide it by the remainder (46):

1 1 5 = 4 6 . 2 + 2 3

2 7 1
46mw)966

' 92 '805 '851
23 46 115

Now take the divisor (46) and divide it by the remainder (23):

46 = 2 3 . 2 + 0

2 2 7 1
23 FpP/966

23 92 805 851
0 23 46 115

--.__-

The remainder is now 0; the last nonzero remainder 23 is the GCD:

(966, 851) = 23.

Example 5.9 In this example, we perform computations over Z 5 [x] , that is, operations modulo
5 . Determine (a(x), b (x)) = (x7 + 3x6 + 4x4 + 2x3 + x2 + 4, x6 + 3x3 + 2x + 4), where
a(x), b(x) E &,[XI.

(x7 + 3x6 $ 4 2 +2x3 +x2 +4) = (x + 3)(x6 + 3x3 + 2x +4) + (x4 + 3x3 +4x2 +2)

(x6 + 3x3 + 2x + 4) = (x2 + 2x)(x4 + 3x3 + 4x2 + 2) + (3x2 + 3x + 4)

(x4 + 3x3 +4x2 + 2) = (2x2 +4x + 3)(3x2 + 3x +4) + 0

(5.3)

With the degee of the last remainder equal to zero, we take the last nonzero remainder, 3x2 + 3x + 4
and normalize it to obtain the GCD:

g(x) = 3-1 (3x2 + 3~ + 4) = 2(3x2 + 3x + 4) = x2 + x + 3.

The Euclidean algorithm is established with the help of the following theorems and lemmas.

Theorem 5.4 I f g = (a , b) then there exist integers s and t such that

g = (a , b) = as + br.

Forpolynomials, i f g (x) = (a (x), b(x)), then there are polynomials s (x) and t (x) such that

g(x) = a (x) s (x) + b (x) t (x) .

Proof 12501 We provide the proof for the integer case; modification for the polynomial case
is straightforward.

Consider the linear combinations as + br where s and r range over all integers. The set
of integers E = {as + br, s E Z, r E Z) contains positive and negative values and 0. Choose
so and to so that as0 + bto is the smallest positive integer in the set: 1 = as0 + bto > 0. We
now establish that 1 I a; showing that I 1 b is analogous. By the division algorithm, a = lq + r
with 0 p r < 1. Hence r = a - ql = a - q(as0 + bto) = a(1 - qso) + b(-qro), so r

5.2 Number Theoretic Preliminaries 179

itself is in the set E . However, since 1 is the smallest positive integer in R , r must be 0, so
a =Iq ,o r I l a .

Since g is the GCD of a and b, we may write a = gm and b = gn for some integers m
and n. Then 1 = as0 + bto = g(ms0 + nto), so g I 1. Since it cannot be that g < 1 , since g
is the greatest common divisor, it must be that g = 1. 0
From the proof of this theorem, we make the following important observation: the greatest
common divisor g = (a , b) is the smallest positive integer value of as + bt as s and t range
over all integers.

Lemma 5.5 For any integer n, (a , b) = (a , b + an).
For any polynomial n(x) E F [x] , (a@), b(x)) = (a@) , b (x) + a (x) n (x)) .

Proof Let d = (a , b) and g = (a , b + an). By Theorem 5.4 there exist so and to such that
d = as0 + bto. Write this as

d = ~ ($ 0 - nto) + (b + an)to = as1 + (b + an)to.

It follows (from Lemma 5.1 part (3)) that g 1 d. We now show that d 1 g . Since d 1 a and d 1 b
we have that d 1 (an + b). Since g is the GCD of a and an + b and any divisor of a and
an + b must divide the GCD, it follows that d 1 g. Since d I g and g I d, we must have g = d .

(For polynomials, the proof is almost exactly the same, except that it is possible that
0

We demonstrate the use of this theorem and lemma by an example.
g(x) = d (x) only if both are monic.)

Example 5.10 Determine g = (966, 851); this is the same as in Example 5.8, but now we keep track
of a few more details. By the division algorithm,

966 = 1 .851+ 115. (5.4)

By Lemma 5.5,

g = (851,966) = (851,966 - 1 . 851) = (851, 115) = (115, 851).

Thus the problem has been reduced using the lemma to one having smaller numbers than the original,
but with the same GCD. Applying the division algorithm again,

851 =7 .115+46 (5.5)

hence, again applying Lemma 5.5,

(115, 851) = (115, 851 - 7 * 115) = (115, 46) = (46, 115).

Again, the GCD problem is reduced to one with smaller numbers. Proceeding by application of the
division algorithm and the property, we obtain successively

115 = 2 .46 + 23

(46, 115) = (46, 115 - 2.46) = (46,23) = (23,461

46 = 2 .23 + 0

(23,46) = 23.

(5.6)

Chaining together the equalities we obtain

(966,851) = 23.

180 Rudiments of Number Theory and Algebra

We can find the s and t in the representation suggested by Theorem 5.4,

(966, 851) = 966s + 851t,

by working the equations backward, substituting in for the remainders from each division in reverse
order

2 3 ~ 1 1 5 - 2 . 4 6 “23” from (5.6)

“46” from (5.5)

“1 15” from (5.4)

= 115 - 2 . (851 -7.115) = -2.851 + 15.115

= -2.851 + 15(966 - 1 .851) = 15.966 - 17.851

so s = 15 and t = -17. 0

Example 5.11 It can be shown that for the polynomials in Example 5.9,

t(x) = 2x3 + zX + 2. s(x) = 3x 2 + x

Having seen the examples and the basic theory, we can now be a little more precise. In
fullest generality, the Euclidean algorithm applies to algebraic structures known as Euclidean
domains:

Definition 5.3 [106, p. 3011 A Euclidean domain is a set D with operations + and .
satisfying:

1. D forms a commutative ring with identity. That is, D has an operation + such that
(D , +) is a commutative group. Also, there is a commutative operation “multiplica-
tion,” denoted using . (or merely juxtaposition), such that for any a and b in D , a . b
is also in D. The distributive property also applies: a . (b + c) = a . b + a . c for any
a , b, c E D. Also, there is an element 1, the multiplicative identity, in D such that
a . 1 = 1 . a = a .

2. Multiplicative cancellation holds: if ab = cb and b # 0 then a = c.

3. Every a E D has a valuation u(a) : D +- N U (-00) such that:

(a) u(a) 2 0 for all a E D.
(b) u(a) 5 v(ab) for all a, b E D , b # 0.
(c) For all a , b E D with u(a) > v(b) there is a q E D (quotient) and r E D

(remainder) such that
a = q b + r

with u(r) < u(b) or r = 0. v(b) is never -m except possibly when b = 0.
The valuation u is also called a Euclidean function.

0
We have seen two examples of Euclidean domains:

1. The ring of integers under integer addition and multiplication, where the valuation is
v(a) = la1 (the absolute value). Then the statement

a = q b + r

is obtained simply by integer division with remainder (the division algorithm).

5.2 Number Theoretic Preliminaries 181

2. Let F be a field. Then F [XI is a Euclidean domain with valuation function v(a (x)) =
deg(a(x)) (the degree of the polynomial a(x) E F[x]). It is conventional for this
domain to take v(0) = -m. Then the statement

a(x> = q(x)b(x) + r(x)
follows from polynomial division.

The Euclidean algorithm can be stated in two versions. The first simply computes the GCD.

Theorem 5.6 (The Euclidean Algorithm) Let a and b be nonzero elements in a Euclidean
domain. Then by repeated application of the division algorithm in the Euclidean domain,
we obtain a series of equations:

a = bqi + rl

b = riq2 + rz

rl = rZq3 f r3

r1 # Oand v(r1) < v(b)

rz # 0 and v(rz) < v(r1)

r3 # 0 and v(r3) < u(rz)

rj-2 = r j - lq j + rj

rj-1 = rjqj+l + 0

rj # 0 and v(r j) < v(rj -1)

(rj+l = 0) .
Then (a, b) = rj , the last nonzero remainder of the division process.

That the theorem stops after a finite number of steps follows since every remainder must
be smaller (in valuation) than the preceding remainder and the (valuation of the) remainder
must be nonnegative. That the final nonzero remainder is the GCD follows from property
Lemma 5.5.

This form of the Euclidean algorithm is very simple to code. Let La/b] denote the
“quotient” without remainder of a / b , that is, a = La/b]b + r . Then recursion in the
Euclidean algorithm may be expressed as

for i = 1,2, . . . (until termination) with 1-1 = a and ro = b.
The second version of the Euclidean algorithm, sometimes called the extended Eu-

clidean algorithm, computes g = (a, b) and also the coefficients s and t of Theorem 5.4
such that

as + bt = g.

The values for s and t are computed by finding intermediate quantities si and tj satisfying

asj + btj = rj (5.8)

at every step of the algorithm. The formula to update sj and tj is (see Exercise 5.18)

sj = si-2 - qisj-1

ti = tj-2 - qjtj-1,

s-1 = 1 so = o
t-1 = o to = 1.

for i = 1,2, . . . (until termination), with

The Extended Euclidean Algorithm is as shown in Algorithm 5.1.

(5.9)

(5.10)

gcd. c 1

182 Rudiments of Number Theory and Algebra

Algorithm 5.1 Extended Euclidean Algorithm

1 Initialization: Sets and t as in (5.10).
z Letr-1 = a,ro = b,s-l = 1,so = O , t - l =0, to = l , i = O
3 while(ri # 0) { Repeat until remainder is 0
4 i = i + l
5 qi = [ri-2/ri-l J Compute quotient
6 ri = ri-2 - qiri-1 Compute remainder
7

9 1

10 Return: s = si-1, t = ti-1, g = ri-1

si = si-2 - qisi-1 Compute s and t values
8 = ti-2 - qjtj-1

The following are some facts about the GCD which are proved using the Euclidean
algorithm. Analogous results hold for polynomials. (It is helpful to verify these properties
using small integer examples.)

Lemma 5.7

1. For integers, (a , b) is the smallestpositive value of as + bt, where s and t range over
all integers.

2. Ifas + bt = 1 for some integers s and t , then (a, b) = 1; that is, a and b are relatively
prime. Thus a and b are relatively prime if and only if there exist s and t such that
as + bt = 1.

5.2.3 An Application of the Euclidean Algorithm: The Sugiyama Algorithm

The Euclidean algorithm, besides computing the GCD, has a variety of other applications.
Here, the Euclidean algorithm is put to use as a means of solving the problem of finding the
shortest LFSR which produces a given output. This problem, as we shall see, is important
in decoding BCH and Reed-Solomon codes. (The Berlekamp-Massey algorithm is another
way of arriving at this solution.)

We introduce the problem as a prediction problem. Given a set of 2p data points
{b t , t = 0, 1, . . . , 2 p - l} satisfying the LFSR equation'

P

bk = - C t j b k - j , k = P , p + I , . . . ,2P - 1 (5.11)
j=l

we want to find the coefficients { t j) so that (5.11) is satisfied. That is, we want to find
coefficients to predict bk using prior values. Furthermore, we want the number of nonzero
coefficients p to be as small as possible, so that t (x) has the smallest degree possible
consistent with (5.1 1). Equation (5.11) can also be written as

P
C t j b k - j = 0 ,
j =O

k = p , p + 1, ..., 2 p - 1,

'Comparison with (4.17) shows that this equation has a - where (4.17) does not.
expressed over G F (2) .

(5.12)

This is because (4.17) is

5.2 Number Theoretic Preliminaries 183

where to = 1. One way to find the coefficients { t j } , given a set of measurements { b j } , is to
explicitly set up and solve the Toeplitz matrix equation

There is no guarantee, however, that solution of this set of equations will yield t(x) of
shortest degree. The Sugiyama algorithm is an efficient way of solving this equation which
guarantees that t (x) has minimal degree. Put another way, the Sugiyama algorithm provides
a means of synthesizing LFSR coefficients, given a sequence of its outputs.

The convolution (5.12) can be written in terms of polynomials. Let

2p-1 P

i=O i = l

Then the condition (5.12) is equivalent to saying that the kth coefficient of the polynomial
product b (x) t (x) is equal to zero for k = p, p + 1, . . . ,2p - 1. Another way of saying this
is that

b (x) t (x) = r (x) - x 2 p s (x) , (5.13)
where r (x) is a polynomial with deg(r(x)) < p and x 2 P s (x) is a polynomial whose first
term has degree at least 2p.

Example 5.12 In this example, computations are done in Zg. The sequence [2 , 3 , 4 , 2 , 2 , 3 } , corre-
sponding to the polynomial b (x) = 2 + 3x + 4x2 + 2x3 + 2x4 + 3 2 , can be generated using the
coefficients t i = 3 , t2 = 4, t3 = 2, so that t (x) = 1 + 3x + 4x2 + 2 x 3 . We have p = 3. Then in
Z s b l ,

b (x) t (x) = 2 + 4x + x 2 + x6 + x7 + x 8 = (2 + 4x + x 2) + x6(1 + x + x 2) . (5.14)

Note that the terms x 3 , x4 and x5 are missing. We identify

2 I (X) = 2 + 4 x + x 2 s (x) = - (1 + x + x).

Equation (5.13) can be written as

x 2 P s (x) + b (x) t (x) = r (x) . (5.15)

The problem can now be stated as: given a sequence of 2p observations {bo, b l , b 2 , . . . ,
b2p-1 1 and its corresponding polynomial representation b (x) , find a solution to (5.15). When
stated this way, the problem appears underdetermined: all we know is b (x) and p . However,
the Euclidean algorithm provides a solution, under the constraints that deg(t (x)) I p and
deg(r(x)) < p. We start the Euclidean algorithm with r - l (x) = x2P and ro(x) = b (x) .
The algorithm iterates until the first i such that

deg(ri(x)) < p .
Then by the definition of the Euclidean algorithm, it must be the case that the s i (x) and
t i (x) solve (5.15). The algorithm then concludes by normalizing ti (x) so that the constant
term is 1. While we don't prove this here, it can be shown that this procedure will find a
solution minimizing the degree of t (x) .

184 Rudiments of Number Theory and Algebra

Example 5.13 Given the sequence {2, 3,4, 2,2,3}, where the coefficients are in 255, calling the gcd
function with a (x) = x6 and b(x) = 2 + 3x + 4x2 + 2x3 + 2x4 + 3x5 results after three iterations in

ri(x) = 3 + x +4x2 si(x) = 1 + x +x2 ti(x) = 4 + 2 x + x 2 +3x3.

Normalizing ti (x) by scaling by 4-1 = 4 we find

t (x) = 1 + 3 x + 4 x 2 + 2 x 3

r (x) = 2 + 4 x + x 2

s (x) = 4 + 4.x + 4x2 = -(1 + x + 2).
These correspond to the polynomials in (5.14).

One of the useful attributes of the Sugiyama algorithm is that it determines the coefficients
(ti, . . . , t p } satisfying (5.12) with the smallest value of p . Put another way, it determines
the t (x) of smallest degree satisfying (5.13).

Example 5.14 To see this, consider the sequence {2, 3,2,3, 2,3]. This can be generated by the
polynomial tl (x) = 1 + 3x + 4x2 + zx3, since

b (~) t l (~) = 2 + 42 + 4x2 + 3x6 + x7 + x8 = (2 + 4x + 4x2) +x6(3 + x + x 2) ,

However, as a result of calling the Sugiyama algorithm, we obtain the polynomial

t(x) = 1 + x ,

so
b (x) t (x) = 2 + 3x6.

It may be observed (in retrospect) that the sequence of coefficients in b happen to satisfy bk = -bk-l,

0 consistent with the t (x) obtained.

5.2.4 Congruence

Operations modulo an integer are fairly familiar. We frequently deal with operations on a
clock modulo 24, “If it is 1O:OO now, then in 25 hours it will be 11:00,” or on a week modulo
7, “If it is Tuesday, then in eight days it will be Wednesday.” The concept of congruence
provides a notation to capture the idea of modulo operations.

Definition 5.4 If an integer m # 0 divides a - b, then we say that a is congruent to b
modulo m and write a = b (mod m). If a polynomial m (x) # 0 divides a(x) - b(x) , then
we say that a (x) is congruent to b(x) modulo m (x) and write a (x) = b(x) (mod m (x)) .

In summary:

I a = b (mod m) if andonlyif ml (a - b) . 1 (5.16)

Example 5.15

1. 7 = 20 (mod 13).
2. 7 = -6 (mod 13).

5.2 Number Theoretic Preliminaries 185

Congruences have the following basic properties.

Theorem 5.8 [250, Theorem2.1,Theorem2.3, Theorem2.4]Forintegersa, b, c , d, x , y , m:

1. a = b (m o d m) e S b = a (m o d m) + b - a = O (modm).

2. Zfa 3 b (mod m) and b = c (mod m) then a = c (mod m).

3. Zfa 3 b (mod m) and c = d (mod m) then ax + cy = bx + dy (mod m).

4. Zfa 3 b (mod m) and c = d (mod m) then ac = bd (mod m). From this itfollows

5. Zfa = b (mod m) anddl m andd > 0 then a E b (mod d).

6. Zfa 3 b (mod m) then for c > 0, ac = bc (mod mc).

7. ax = ay (mod m) ifand only i f x E y (mod m/(a , m)) .

8. Zfax = ay (mod m) and (a , m) = 1 then x = y (mod m).

9. Zfa = b (mod m) then (a , m) = (b, m).

that i fa E b (mod m) then a" = b" (mod m).

From the definition, we note that if n I a , then a E 0 (mod n) .

5.2.5 The $ Function

Definition 5.5 The Euler totient function $ (n) is the number of positive integers less
than n that are relatively prime to n . This is also called the Euler $ function, or sometimes
just the 4 function. 0

Example 5.16

1. 4(5) = 4 (the numbers 1,2,3,4 are relatively prime to 5).
2. 4 (4) = 2 (the numbers 1 and 3 are relatively prime to 4).
3. 4(6) = 2 (the numbers 1 and 5 are relatively prime to 6).

It can be shown that the $ function can be written as

where the product is taken over all primes p dividing n.

Example 5.17
4(189) = 4 (3 . 3 . 3 . 7) = 189(1 - 1/3)(1 - 1/7) = 108.

@(a) = 1$(2~) = 64(1 - 1/2) = 32.

We observe that:

1. $ (p) = p - l i f p i s p r i m e .

2. For distinct primes p1 and p2,

4(PlP2) = (P1 - 1)@2 - 1). (5.17)

186 Rudiments of Number Theory and Algebra

3. +(pm> = pm-’(p - 1) for p prime.

4. + (p m q n) = pm-’qn-’(p - l)(q - 1) for distinct primes p and q.

5. For positive integers m and n with (m, n) = 1,

4(mn> = 4(m)4(n). (5.18)

5.2.6 Some Cryptographic Payoff

With all the effort so far introducing number theory, it is interesting to put it to work on a problem
of practical interest: public key cryptography using the RSA algorithm. This is really a topic distinct
from error correction coding, but the application is important in modem communication and serves
to motivate some of these theoretical ideas.

In a symmetric public key encryption system, a user B has a private “key” which is only known
to B and a public “key” which may be known to any interested party, C. A message encrypted by one
key (either the public or private) can be decrypted by the other.

For example, if C wants to send a sealed letter so that only B can read it, C encrypts using B’s
public key. Upon reception, B can read it by deciphering using his private key. Or, if B wants to send
a letter that is known to come from only him, B encrypts with his private key. Upon receipt, C can
successfully decrypt only using B’s public key.

Public key encryption relies upon a “trapdoor”: an operation which is exceedingly difficult to
compute unless some secret information is available. For the RSA encryption algorithm, the secret
information is number theoretic: it relies upon the difficulty of factoring very large integers.

Fermat’s Little Theorem

Theorem 5.9

I . (Fermat’s little theorem)2 If p is a prime and i fa is an integer such that (a , p) = 1 (i.e., p
does not divide a), then p divides ap-’ - 1. Stated another way, i fa $ 0 (mod p) ,

ap-’ = 1 (mod p) .

2. (Euler’s generalization of Fennat’s little theorem) I f n and a are integers such that (a , n) = 1,
then

a4(’) = 1 (mod n) ,

where + is the Euler +function. For any prime p , @ (p) = p - 1 and we get Fennat’s little
theorem.

Example 5.18

1. Let p = 7 and a = 2. Thenap - 1 = 63 and pi 26 - 1.

2. Compute the remainder of 81°3 when divided by 13. Note that

103 = 8 . 1 2 + 7.

Then with all computations modulo 13,

81°3 = (812)8(87) (18)(87) = (-5)7 (-5)6(-5) (25) 3 (-5) = (-1) 3 (-5) 5.

Proof of Theorem 5.9.

2Fermat’s little theorem should not be confused with “Fermat’s last theorem,” proved by A. Wiles, which states
that x” + y” = z” has no solution over the integers if n > 2.

5.2 Number Theoretic Preliminaries 187

1. The nonzero elements in the group Z,, { 1,2, . . . , p - I} form a group of order p - 1 under
multiplication. By Lagrange's theorem (Theorem 2.3), the order of any element in a group
divides the order of the group, so for a E Z, with a # 0, ap-l = 1 in Z,. If a E Z and
a $! Z,, write a = (6 + kp) for some k E Z and for 0 5 ii < p , then reduce modulo p .

2. Let Gn be the set of elements in Zn that are relatively prime to n. Then (it can be shown that)
Gn forms a group under multiplication. Note that the group G, has @(a) elements in it. Now
let a E Zn be relatively prime to n. Then a is in the group Gn. Since the order of an element
divides the order of the group, we have a$(n) = 1 (mod n). If a # Zn, write a = (6 + kn)
where ?i E Z, . Then reduce modulo n.

RSA Encryption

Named after its inventors, Ron Rivest, Adi Shamir, and Leonard Adleman [293], the RSA encryption
algorithm gets its security from the difficulty of factoring large numbers. The steps in setting up the
system are:

Choose two distinct random prime numbers p and q (of roughly equal length for best security)
and compute n = pq. Note that @(n) = (p - l)(q - 1).
Randomly choose an encryption key e , an integer e such that the GCD (e, (p - l)(q - 1)) = 1.
By the extended Euclidean algorithm, there are numbers d and f such that de - f (p - l)(q -
1) = 1, or

de = 1 + (p - l)(q - 1)f.

That is, d = e-l (mod (p - l)(q - 1)).

private key. The factors p and q of IZ are never disclosed.
Publish the pair of numbers {e , n } as the public key. Retain the pair of numbers (d , n} as the

To encrypt (say, using the public key), break the message m (as a sequence of numbers) into
blocks mi of length less than the length of n. Furthermore, assume that (mi, n) = 1 (which is highly
probable, since n has only two factors). For each block mi, compute the encrypted block ci by

ci = ml (mod n).

(If e < 0, then find the inverse modulo n.) To decrypt (using the corresponding private key) compute

Since (mi , n) = 1,

so that
d ci (mod n) = m i ,

as desired.

(and computing powers) is easy and straightforward, factoring very large integers is very difficult.
To crack this, a person knowing n and e would have to factor n to find d. While multiplication

Example 5.19 Let p = 47 and q = 71 and n = 3337. (This is clearly too short to be of cryptographic
value.) Then

The encryption key e must be relatively prime to 3220; take e = 79. Then we find by the Euclidean
algorithm that d = 1019. The public key is (79, 3337). The private key is (1019, 3337).

(p - l)(q - 1) = 3220.

188 Rudiments of Number Theory and Algebra

To encode the message block rn 1 = 688, we compute

cl = (688)79 (mod 3337) = 1570.

To decrypt this, exponentiate

C! = (1570)1019 (mod 3337) = 688.

In practical applications, primes p and q are usually chosen to be at least several hundred digits long.
This makes factoring n = p q exceedingly difficult!

5.3 The Chinese Remainder Theorem

The material from this section is not used until Section 7.4.2. In its simplest interpretation,
the Chinese Remainder Theorem (CRT) is a method for finding the simultaneous solution
to the set of congruences

x =a1 (mod m l) x -a2 (modm2) . . . x = a r (modm,). (5.19)

However, the CRT applies not only to integers, but to other Euclidean domains, including
rings of polynomials. The CRT provides an interesting isomorphism between rings which
is useful in some decoding algorithms.

One approach to the solution of (5.19) would be to find the solution set to each congruence
separately, then determine if there is a point in the intersection of these sets. The following
theorem provides a more constructive solution.

Theorem 5.10 I fm 1, m2, . . . , m, arepairwise relativelyprime elements withpositive valu-
ation in a Euclidean domain R, and a 1, a2, . . . , ar are any elements in the Euclidean domain,
then the set of congruences in (5.19) have common solutions. Let m = m 1m2 . . . mr. Ifxo
is a solution, then so is x = xo + km for any k E R.

Proof Let m = ngZ1 mi . Observe that (m / m j , m j) = 1 since the mis are relatively
prime. By Theorem 5.4, there are unique elements s and t such that

(m/mj) s + mjt = 1,

which is to say that
(m / m j) s - 1 (mod m j) .

Let bj = s in this expression, so that we can write

(m/mj)b j = 1 (mod mj) .

Also (m/m,)bj = 0 (mod mi) if i # j since mi 1 m. Let

r

xo = x (m / m j) b j a j .

(5.20)

(5.21)
j=1

Then
xo = (m/mi)biai 3 aj (mod mi) .

5.3 The Chinese Remainder Theorem 189

Uniqueness is straightforward to verify, as is the fact that x = xo + km is another solution.
0

It is convenient to introduce the notation Mi = m/mi . The solution (5.21) can be written
as xo = Cg=l yjaj , where

y . 1 - - -b. j - -Mjb j (5.22)
m

m j

with bj determined by the solution to (5.20). Observe that yj depends only upon the set of
moduli {mi} and not upon x. If the y j s are precomputed, then the synthesis of x from the
{aj} is a simple inner product.

Example 5.20 Find a solution x to the set of congruences

x = O (mod 4) x = 2 (mod 27) x = 3 (mod 25)

Since the moduli mi are powers of distinct primes, they are pairwise relative prime. Then m =
mlm2m3 = 2700. Using the Euclidean algorithm it is straightforward to show that (m/4)bl = 1
(mod 4) has solution bl = -1. Similarly

b2 = 10 b3 = -3.

The solution to the congruences is given by

x = (m/4)(-1)(0) + (m/27)(10)(2) + (m/25)(-3)(3) = 1028.

Example 5.21 Suppose the Euclidean domain is R[x] and the polynomials are

ml(X) = (x - 1) m2(x) = (x - 2)2 m3(x) = (x - 3)3.

These are clearly pairwise relatively prime. We find that

m (x) = ml(x)m2(x)mg(x) = x6 - 14x5 + 80x4 - 238x3 + 387x2 - 324x + 108.

If
f (x) = x5 + 4x4 + 5x3 + 2x2 + 3x + 2,

then we obtain

u ~ (x) = 17 u ~ (x) = 2 7 9 ~ - 406 u3(x) = 533x2 - 2211x + 2567.

The CRT provides a means of representing integers in the range 0 5 x < m, where
m = m1m2 . . mr and the mi are painvise relatively prime. Let R / (m) denote the ring of
integers modulo m and let R / (m i) denote the ring of integers modulo mi. Given a number
x E R / (m) , it can be decomposed into an r-tuple [XI, x2, . . . , x,] by

x =xi (mod mi) , i = 1,2, ..., r,

where X i E R/(mj) . Going the other way, an r-tuple of numbers [xi, x2, . . . , x,] with
0 5 X j < mj can be converted into the number x they represent using (5.21). If we let
x = [xi, x2, . . . , x,], then the correspondence between a number x and its representation
using the CRT can be represented as

x f) &.

crtgamma.m
fromcrt .m
tocrt .m
testcrt .m

testcrtp.m
tocrtpo1y.m
fromcrtpo1y.m
crtgammapo1y.r

190 Rudiments of Number Theory and Algebra

We also denote this as
x_ = CRT(X) x = CRT-~(XJ.

Ring operations can be equivalently computed in the original ring R/(m), or in each of the
rings R/(mi) separately.

Example 5.22 Let m i = 4, m2 = 27, m3 = 25. Let x = 25; then x = [l , 25,Ol. Let y = 37;
then y = [I, 10, 121. The sum z = x + y = 62 has g = [2,8, 121, which represents x_ + z, added
element by element, with the first component modulo 4, the second component modulo 27, and the
third component modulo 25.

The product z = x . y = 925 has z = [l, 7,0], corresponding to the element-by-element product
(modulo 4,27, and 25, respectively). 0

More generally, we have a ring isomorphism by the CRT. Let ni : R/(rn) +- R/(mi), i =
1,2, . . . , r denote the ring homomorphismdefined by ni (a) = a (mod mi). We define the
homomorphism x : R f (m) +- R fml x R/m2 x . . . x R/mr by x = ni x n2 x . . . x n,,
that is,

x (a) = (a modm1,a modm2,. . . , a modm,) (5.23)

Then x defines a ring isomorphism: both the additive and multiplicative structure of the
ring are preserved, and the mapping is bijective.

Example 5.23 Using the same polynomials as in Example 5.21, let

f1(x) = x5 + 4x4 + 5x3 + 2x2 + 3x + 2.

Then using the CRT,

fi (x) tf (17, 2 7 9 ~ - 406, 533x2 - 2211 + 2567) = f (x). -1

Also let
f 2 (~) = x3 + 2x2 tf (3, 20x - 24, 11x2 - 27x + 27) = f2(x).

Then

fi (x) + f2(x) = x5 + 4x4 + 6x3 + 4x2 + 3x + 2 tf (20, 299x - 430, 544x2 - 2238x + 2594).

0

5.3.1 The CRT and Interpolation

The Evaluation Homomorphism

Let IF be a field and let R = IF[x]. Let f (x) E R and let m 1 (x) = x - u 1. Then computing
the remainder of f(x) modulo x - u1 gives exactly f(u1).

Example 5.24 Let f (x) = x4 + 3x3 + 2x2 + 4 E R[X] and let m i @) = x - 3. Then computing
f(x)/m 1 (x) by long division, we obtain the quotient and remainder

f(x) = (x - 3)(x3 + 6x2 + 20x + 60) + 184.

But we also find that
f(3) = 184.

So f (x) mod (x - 3) = 184 = f (3) . 0

5.3 The Chinese Remainder Theorem 191

Thus we can write
f (x) mod (x - u) = f (u) .

The mapping nj : F[x] + F defined by

n i (f (x >) = f (u i) = f (x) (mod (X - U i))

is called the evaluation homomorphism. It can be shown that it is, in fact, a homomorphism:
for two polynomials f (x) , g(x) E F[x],

n i (f (x > + g(x>) = n i (f (x > > + n i (g (x > > n i (f (x)g (x>> = ri(f(x))nik(x)).

The interpolation Problem

Suppose we are given the following problem: Given a set of points (u i , ai), i = 1,2, . . . , r ,
determine an interpolating polynomial f (x) E F[x] of degree < I such that

f(u1) = a l , f (u2) = ~ 2 9 . . * > f (U r > = ar. (5.24)

Now let f(x) = fo + f i x + . . . + fr-1Xr-'. Since deg(f(x)) < r , we can think of f (x)
as being in F[x]/(x' - 1). Also let mi(x) = x - ui E F[x] for i = 1,2, . . . , r where the
u1, u2, . . . , u, E F are pairwise distinct. Then the mi (x) are painvise relatively prime.

By the evaluation homomorphism, the set of constraints (5.19) can be expressed as

f (x) = a1 (mod m l (x)) f (x) = a2 (mod m 2 (x)) f (~) = a, (mod mr(X)).

So solving the interpolation problem simply becomes an instance of solving a Chinese
Remainder problem.

The interpolating polynomial is found using the CRT. Let m (x) = n i = l (x - ui). By
the proof of Theorem 5.10, we need functions b j (x) such that

(rn (x) /mj (x))b j (x) = 1 (mod m j)

(m (x) / m j (x)) b j (x) = 0 (mod mk).
and

That is,

[j>+j(x -u i)] b j (x) 3 1 (mod m j) ,

and

b j (x) = 0 (mod mk)

fork # j . Let

and let

r

(5.25)

192 Rudiments of Number Theory and Algebra

Since

we see that bj (x) satisfies the necessary requirements. By (5.21), the interpolating polyno-
mial is then simply

l j (u j) = 1 and l j (u k) = 0, j # k,

r

This form of an interpolating polynomial is called a Lagrange interpolator. The basis
functions li (x) are called Lagrunge interpolunts. By the CRT, this interpolating polynomial
is unique modulo rn (x).

The Lagrange interpolator can be expressed in another convenient form. Let
r

i= l

Then the derivative3 is
r

k=l i#k

so that
rn’(Uj) = n (U j - Ui).

i # j

(See also Definition 6.5.) The interpolation formula (5.26) can now be written as

(5.27)
rn(x) 1

(X - u i) m ’ (u i) *
f (x) = c a j - - -

i = l

Example 5.25 An important instance of interpolation is the discrete Fourier transform (DFT). Let
f (x) = f o + f l x + . . . + f N - 1 x N - ’ , w i t h x = z-l,betheZ-transformofacomplexcyclicsequence.
Then f (x) E @ [x] / (x N - l), since it is apolynomial of degree 5 N - 1. Let m (x) = x N - 1. The
N roots of rn (x) are the complex numbers e- i j2n/N, i = 0, 1, . . . , N - 1. Let w = e - j 2 K / N ; this
is a primitive N-th root of unity. Then the factorization of m(n) can be written as

N - 1

m (x) = X N - 1 = n (x - m i) ,

i=O

where the factors are painvise relative prime. Define the evaluations

N - 1

Fk = T k (f (X)) = f (d) = f j m i k , k = 0, 1, . . . , N - 1.
i =O

Expressed another way, Fk = f (x) (mod x - mk) . The coefficients (jk} may be thought of as
existing in a “time domain,” while the coefficients { Fk] may be thought of as existing in a “frequency
domain.”

For functions in the “time domain,” multiplication is polynomial multiplication (modulo x - 1).
That is, for polynomials f (x) and g (x) , multiplication is f (x) g (x) (mod x N - l), which amounts
to cyclic convolution.

3 0 r formal derivative, if the field of operations is not real or complex

5.4 Fields 193

For functions in the “transform domain,” multiplication is element by element. That is, for
sequences (Fo, F1, . . . , F N - ~) and (Go, G I , . . . , G N - ~) , multiplication is element by element as
complex numbers:

(FoGo, F l G i , . . . I F N - I G N - I) .

Thus, the ring isomorphism validates the statement: (cyclic) convolution in the time domain is equiv-
alent to multiplication in the frequency domain.

5.4 Fields

Fields were introduced in Section 2.3. We review the basic requirements here,in comparison
with a ring. In a ring, not every element has a multiplicative inverse. In a field, the familiar
arithmetic operations that take place in the usual real numbers are all available: (F , +) is
an Abelian group. (Denote the additive identity element by 0.) The set F \ {O] (the set
F with the additive identity removed) forms a commutative group under multiplication.
Denote the multiplicative identity element by 1. Finally, as in a ring the operations + and .
distribute: a . (b + c) = a . b + a 1 c for all a , b , c E F .

In a field, all the elements except the additive identity form a group, whereas in a ring,
there may not even be a multiplicative identity, let alone an inverse for every element. Every
field is a ring, but not every ring is a field.

Example 5.26 (Z5, +, .) forms a field; every nonzero element has a multiplicative inverse. So this
set forms not only a ring but also a group. Since this field has only a finite number of elements in it,
it is said to be a finite field.

However, (Z6, +, .) does not form a field, since not every element has a multiplicative inverse.

One way to obtain finite fields is described in the following.

Theorem 5.11 The ring (Z p , f, .) is aJield ifand only i f p is aprime.

Before proving this, we need the following definition and lemma.

Definition 5.6 In a ring R , if a , b E R with both a and b not equal to zero but ab = 0, then
a and b are said to be zero divisors. 0

Lemma 5.12 In a ring Zn, the Zero divisors are precisely those elements that are not
relatively prime to n.

Proof Let a E Zn be not equal to 0 and be not relatively prime to n . Let d be the greatest
common divisor of n and a . Then a (n / d) = (a/d)n, which, being a multiple of n, is equal
to 0 in Zn. We have thus found a number b = n/d such that ab = 0 in Zn, so a is a zero
divisor in Z, .

Conversely, suppose that there is an a E Z, relatively prime to n such that ab = 0.
Then it must be the case that

ab = kn

for some integer k . Since n has no factors in common with a , then it must divide b, which
means that b = 0 in Z,. 0
Observe from this lemma that if p is a prime, there are no divisors of 0 in Z,. We now turn
to the proof of Theorem 5.1 1.

194 Rudiments of Number Theory and Algebra

Proof of Theorem 5.1 1.
We have already shown that if p is not prime, then there are zero divisors and hence

(Z,, +, .) cannot form a field. Let us now show that if p is prime, (Z,, +, -) is a field.
We have already established that (Z, , +) is a group. The key remaining requirement is to

establish that (Z,\{O), .) forms a group. The multiplicative identity is 1 and multiplication
is commutative. The key remaining requirement is to establish that every nonzero element
in Z, has a multiplicative inverse.

Let { 1,2, . . . , p - 1) be a list of the nonzero elements in Z,, and let a E Z, be nonzero.
Form the list

{la, 2a,. . . , (p - 1)a). (5.28)

Every element in this list is distinct, since if any two were identical, say ma = nu with
m # n, then a(m - n) = 0, which is impossible since there are no zero divisors in Z,.
Thus the list (5.28) contains all nonzero elements in Z, and is a permutation of the original

0 list. Since 1 is in the original list, it must appear in the list in (5.28).

5.4.1 An Examination of R and Q:

Besides the finite fields (Z, , +, a) with p prime, there are other finite fields. These fields
are extensionJields of Z,. However, before introducing them, it is instructive to take a look
at how the field of complex numbers C can be constructed as a field extension from the field
of real numbers R

Recall that there are several representations for complex numbers. Sometimes it is
convenient to use a “vector” notation, in which a complex number is represented as (a, b).
Sometimes it is convenient to use a “polynomial” notation a + bi, where i is taken to be
a root of the polynomial x 2 + 1. However, since there is some preconception about the
meaning of the symbol i, we replace it with the symbol a, which doesn’t carry the same
connotations (yet). In particular, a is not (yet) the symbol for 2/--i-. You may think of
a + ba as being a polynomial of degree 5 1 in the “indeterminate” a. There is also a polar
notation for complex numbers, in which the complex number is written as a + ib = reie
for the appropriate r and 8. Despite the differences in notation, it should be borne in mind
that they all represent the same number.

Given two complex numbers we define the addition component-by-component in the
vector notation (a, b) and (c, d) , where a , b, c and d are all in R, based on the addition op-
eration of the underlying field R. The set of complex number thus forms a two-dimensional
vector space of real numbers. We define

(a, b) + (c, d) = (a + c , b + d) . (5.29)

It is straightforward to show that this addition operation satisfies the group properties for
addition, based on the group properties it inherits from R.

Now consider the “polynomial notation.” Using the conventional rules for adding poly-
nomials, we obtain

u + ba + c + da = (a + C) + (b + d)a ,

which is equivalent to (5.29).
How, then, to define multiplication in such a way that all the field requirements are

satisfied? If we simply multiply using the conventional rules for polynomial multiplication,

(a + b a) (~ + d a) = uc + (ad + bc)a + bda2, (5.30)

5.4 Fields 195

we obtain a quadratic polynomial, whereas complex numbers are represented as polynomials
having degree 5 1 in the variable a.

Polynomial multiplication must be followed by another step, computing the remainder
modulo some other polynomial. Let us pick the polynomial

g(a) = 1 +a2

to divide by. Dividing the product in (5.30) by g(a)

bd

a2 + llbda2+ (ad + bc)a+ ac

bda2+ bd

(ad + bc)a+ uc - bd

we obtain the remainder (ac - bd) + (ad + bc)a. Summarizing this, we define the product
of (a + ba) by (c + da) by the following two steps:

1. Multiply (a + ba) by (c + da) as polynomials.

2. Compute the remainder of this product when divided by g(a) = a2 + 1.

That is, the multiplication is defined in the ring lR[a]/g(a), as described in Section 4.4.

polynomial arithmetic: by this two-step procedure we have obtained the familiar formula
Of course, having established the pattern, it is not necessary to carry out the actual

(a + ba) . (C + da) = (UC - bd) + (ad + bc)a

or, in vector form,
(a , b) . (c , d) = (UC - bd, ad + bc).

As an important example, suppose we want to multiply the complex numbers (in vector
form) (0, 1) times (0, l), or (in polynomial form) a times a. Going through the steps of
computing the product and the remainder we find

a .a = -1. (5.31)

In other words, in the arithmetic that we have defined, the element a satisfies the equation

a2 + 1 = 0. (5.32)

In other words, the indeterminate a acts like the number m. This is a result of the fact
that multiplication is computed modulo the polynomial g(a) = a2 + 1: the symbol a is
(now by construction) a root of the polynomial g (x) . To put it another way, the remainder
of a polynomial a2 + 1 divided by a2 + 1 is exactly 0. So, by this procedure, any time
a2 + 1 appears in any computation, it may be replaced with 0.

Let us take another look at the polynomial multiplication in (5.30):

(a + ba)(c + da) = ac + (ad + bc)a + bda2. (5.33)

Using (5.31), we can replace a2 in (5.33) wherever it appears with expressions involving
lower powers of a. We thus obtain

(a + ba)(c + da) = uc + (ad + bc)a + bd(-1) = (UC - bd) + (ad + bc)a,

196 Rudiments of Number Theory and Algebra

as expected. If we had an expression involving a3 it could be similarly simplified and
expressed in terms of lower powers of a:

a3 = a. ,2 = (y . (-1) = -a.

Using the addition and multiplication as defined, it is (more or less) straightforward to
show that we have created a field which is, in fact, the field of complex numbers C.

As is explored in the exercises, it is important that the polynomial g(a) used to define
the multiplication operation not have roots in the base field R. If g(a!) were a polynomial so
that g(b) = 0 for some b E R, then the multiplication operation defined would not satisfy
the field requirements, as there would be zero divisors. A polynomial g (x) that cannot be
factored into polynomials of lower degree is said to be irreducible. By the procedure
above, we have taken a polynomial equation g(a) which has no real roots (it is irreducible)
and created a new element a! which is the root of g(a), defining along the way an arithmetic
system that is mathematically useful (it is a field). The new field C, with the new element
a! in it, is said to be an extension field of the base field R.

At this point, it might be a tempting intellectual exercise to try to extend C to a bigger
field. However, we won't attempt this because:

1. The extension created is sufficient to demonstrate the operations necessary to extend
a finite field to a larger finite field; and (more significantly)

2. It turns out that C does not have any further extensions: it already contains the roots
of all polynomials in @ . [X I , so there are no other polynomials by which it could be
extended. This fact is called the fundamental theorem of algebra.

There are a couple more observations that may be made about operations in C. First, we
point out again that addition in the extension field is easy, being simply element by element
addition of the vector representation. Multiplication has its own special rules, determined
by the polynomial g(a!). However, if we represent complex numbers in polar form,

a + ba! = i-lej'l c + da! = r2eJQ2,

then multiplication is also easy: simply multiply the magnitudes and add the angles:

r , e j Q ~ . r2ej02 = r l r 2 e J (Q ~ f 0 2) .

Analogously, we will find that addition in the Galois fields we construct is achieved by
straightforward vector addition, while multiplication is achieved either by some operation
which depends on a polynomial g, or by using a representation loosely analogous to the
polar form for complex numbers, in which the multiplication is more easily computed.

5.4.2 Galois Field Construction: An Example

A subfield of a field is a subset of the field that is also a field. For example, Q is a subfield
of R. A more potent concept is that of an extension field. Viewed one way, it simply turns
the idea of a subfield around: an extension field E of a field F is a field in which F is a
subfield. The field F in this case is said to be the base field. But more importantly is the
way that the extension field is constructed. Extension fields are constructed to create roots
of irreducible polynomials that do not have roots in the base field.

Definition 5.7 A nonconstant polynomial f (x) E R [x] is irreducible over R if f (x)
cannot be expressed as a product g (x) h (x) where both g (x) and h(x) are polynomials of
degree less than the degree of f (x) and g (x) E R [x] and h (x) E R [x] .

5.4 Fields 197

Box 5.1: Everiste Galois (1811-1832)

The life of Galois is a study in brilliance and tragedy. At an early age, Galois
studied the works in algebra and analysis of Abel and Lagrange, convincing him-
self (justifiably) that he was a mathematical genius. His mundane schoolwork,
however, remained mediocre. He attempted to enter the Ecole Polytechnique,
but his poor academic performance resulted in rejection, the first of many
disappointments. At the age of seventeen, he wrote his discoveries in algebra in
a paper which he submitted to Cauchy, who lost it. Meanwhile, his father, an
outspoken local politician who instilled in Galois a hate for tyranny, committed
suicide after some persecution. Some time later, Galois submitted another paper
to Fourier. Fourier took the paper home and died shortly thereafter, thereby
resulting in another lost paper. As a result of some outspoken criticism against
its director, Galois was expelled from the normal school he was attending. Yet
another paper presenting his works in finite fields was a failure, being rejected
by the reviewer (Poisson) as being too incomprehensible.

Disillusioned, Galois joined the National Guard, where his outspoken nature
led to some time in jail for a purported insult against Louis Philippe. Later he was
challenged to a duel -probably a setup - to defend the honor of a woman. The
night before the duel, Galois wrote a lengthy letter describing his discoveries.
The letter was eventually published in Revue EncylopZdique. Alas, Galois was
not there to read it: he was shot in the stomach in the duel and died the following
day of peritonitis at the tender age of twenty.

In this definition, the ring (or field) in which the polynomial is irreducible makes a
difference. For example, the polynomial f (x) = x 2 - 2 is irreducible over Q, but over the
real numbers we can write

so f (x) is reducible over R.
We have already observed that (Z,, +, .) forms a field when p is prime. It turns out

that all finite fields have order equal to some power of a prime number, p m . For m > 1, the
finite fields are obtained as extension fields to Z, using an irreducible polynomial in Z, [XI
of degree m. These finite fields are usually denoted by G F (p m) or G F (q) where q = p m ,
where G F stands for “Galois field,” named after the French mathematician Everiste Galois.

We demonstrate the extension process by constructing the operations for the field
G F (z 4) , analogous to the way the complex field was constructed from the real field.
Any number in G F Q ~) can be represented as a 4-tuple (a , b , c, d) , where a , b , c, d E
GF(2) . Addition of these numbers is defined to be element-by-element, modulo 2: For
(ai ,a2, a3, a4) E GF(24) and (b i , b2, b3, b3) E G F (z 4) , where aj E GF(2) and bi E
GF(2) ,

(a i ,a2 ,a3 ,a4)+(b i ,b~ ,b3 ,b4) = (a1 + b i , a 2 + b 2 , ~ 3 + b 3 , ~ 4 + b 4) .

f (x) = (x + &)(x - &I,

Example 5.27 Add the numbers (1, 0, 1, 1) + (0, 1, 0, 1). Recall that in GF(2) , 1 + 1 = 0, so that
we obtain

(L O , 1 , 1) + (0, 1,0, 1) = (1, 1, 1,O).

198 Rudiments of Number Theory and Algebra

To define the multiplicative structure, we need an irreducible polynomial of degree 4.
The polynomial g(x) = 1 + x + x4 is irreducible over GF(2) . (This can be verified since
g(0) = 1 and g(1) = 1, which eliminates linear factors and it can be verified by exhaustion
that the polynomial cannot be factoredinto quadratic factors.) In the extension field G F (z 4) ,
define a to be root of g:

a + a + l = O , 4

or
4 a =1+a. (5.34)

A 4-tuple (a, b, c , d) representing a number in GF(24) has a representation in polynomial
form

Now take successive powers of a beyond a4:

a + ba + ca2 + da3.

4 a = l + a ,

a5 = a(a4) = a + a2,

a - a (a)-a +a3, 6 - 2 4 - 2 (5.35)

a I = a 3 4 (a) = a 3 (1 + a) = a 3 + 1 + a ,

and so forth. In fact, because of the particular irreducible polynomial g (x) which we
selected, powers of a up to a14 are all distinct and a15 = 1. Thus all 15 of the nonzero
elements of the field can be represented as powers of a. This gives us something analogous
to a “polar” form; we call it the “power” representation. The relationship between the vector
representation, the polynomial representation, and the “power” representation for GF(24)
is shown in Table 5.1. The fact that a 4-tuple has a corresponding representation as a power
of a is denoted using *. For example,

(0,1, 0, 0) * 5 (0, 1, 1,O) * a .
The Vector Representation (integer) column of the table is obtained from the Vector Repre-
sentation column by binary-to-decimal conversion, with the least-significant bit on the left.

Example 5.28 In G F (z ! ~) multiply the Galois field numbers 1 + a + a3 and a + a2. Step 1 is to
multiply these “as polynomials” (where the arithmetic of the coefficients takes place in GF(2)) :

3 (1 + a + a 1 . (a +a2) = a +a3 +a4 +a5.

Step 2 is to reduce using Table 5.1 or, equivalently, to compute the remainder modulo a4 + a + 1:
+ a 3 +a4 +a5 = a + a 3 + (1 + a) + (a + a 2) = 1 + a + a 2 +a3.

SO in ~ ~ (2 ~ 1 ,

In vector notation, we could also write

3 (1 + a + a 1. (a + a 2) = 1 + a + a 2 + a 3 .

(1, 1,0, 1). (0, 1, 1 , O) = (L1, 1, 1).

This product could also have been computed using the power representation. Since (1, 1, 0, 1) ++ a7
and (0, 1, 1 , O) ++ a5, we have

(1, l , O , 1) * (0, 1, 1,O) tf a7a5 = a12 * (1 , 1, 1, 1).

The product is computed simply using the laws of exponents (adding the exponents). 0

5.4 Fields 199

Table 5.1: Power, Vector, and Polynomial Representations of G F Q ~) as an Extension Using
g(a) = 1 + a + a 4

Vector Power Zech
Polynomial Vector Representation Representation Logarithm Logarithm

Representation Representation (integer) a" n Z(n)

1 1 0 0 0 1 1 =a0 0 -
a 0 1 0 0 2 a 1 4

a2 0 0 1 0 4 a2 2 8
a3 0 0 0 1 8 a3 3 14

- - - 0 0 0 0 0 0

1 +a 1 1 0 0 3 a4 4 1
a+a2 0 1 1 0 6 a5 5 10

l+a +a3 1 1 0 1 11 a7 7 9
1 +a2 1 0 1 0 5 a8 8 2

a +a3 0 1 0 1 10 a9 9 7
l+a+a2 1 1 1 0 7 a10 10 5

a+a2+ a3 0 1 1 1 14 a11 11 12
l+a!+a2+ a3 1 1 1 1 15 a 12 12 11

1 + a!3 1 0 0 1 9 a14 14 3

a2+ a3 0 0 1 1 12 a6 6 13

1 +a2+a3 1 0 1 1 13 a! 13 13 6

The Zech logarithm is explained in Section 5.6.

Example 5.29 In G F Q ~) , compute a12 . a5. In this case, we would get

. ,5 = a!17.

However since a l 5 = 1,
.J = - 15 2 - 2 - a a! - a .

0

We compute aaab = a' by finding c = (a + b) (mod p M - 1).
Since the exponents are important, a nonzero number is frequently represented by the

exponent. The exponent is referred to as the logarithm of the number.
It should be pointed that this power (or logarithm) representation of the Galois field

exists because of the particular polynomial g(a) which was chosen. The polynomial is not
only irreducible, it is also primitive which means that successive powers of a up to 2m - 1
are all unique, just as we have seen.

While different irreducible polynomials can be used to construct the field there is, in
fact, only one field with q elements in it, up to isomorphism.

Tables which provide both addition and multiplication operations for G F (z 3) and
GF(24) are provided inside the back cover of this book.

5.4.3 Connection with Linear Feedback Shift Registers

The generation of a Galois field can be represented using an LFSR with g (x) as the connec-
tion polynomial by labeling the registers as 1, a, a2 and a3, as shown in Figure 5.1. Then

200 Rudiments of Number Theorv and Algebra

as the LFSR is clocked, successive powers of a are represented by the state of the LFSR.
Compare the vector representation in Table 5.1 with the LFSR sequence in Table 4.1 1. The
state contents provide the vector representation, while the count provides the exponent in
the power representation.

1 ff ff2 a3

Figure 5.1: LFSR labeled with powers of a to illustrate Galois field elements.

5.5 Galois Fields: Mathematical Facts

Having presented an example of constructing a Galois field, we now lay out some aspects
of the theory.

We first examine the additive structure of finite fields, which tells us what size any finite
field can be. Recalling Definition 4.3, that the characteristic is the smallest positive integer
m such that m(1) = 1 + 1 + .. . + 1 = 0, we have the following.

Lemma 5.13 The characteristic of aJield must be either 0 or aprime number.

Proof If the field has characteristic 0, the field must be infinite. Otherwise, suppose that
the characteristic is a finite number k . Assume k is a composite number. Then k(1) = 0
and there are integers m # 1 and n # 1 such that k = mn. Then

0 = k(1) = (mn)(l) = m(l)n(l) = 0.

But a field has no zero divisors, so either m or n is the characteristic, violating the minimality
of the characteristic. 0
It can be shown that any field of characteristic 0 contains the field Q.

On the basis of this lemma, we can observe that in a finite field GF(q), there are p
elements (p a prime number) (0, 1 , 2 = 2(1), . . . , (p - 1) = (p - 1)(1)} which behave
as a field (i.e., we can define addition and multiplication on them as a field). Thus Z,
(or something isomorphic to it, which is the same thing) is a subfield of every Galois field
GF(q). In fact, a stronger assertion can be made:

Theorem 5.14 The order q of everyJiniteJield GF(q) must be apower of aprime.

Proof By Lemma 5.13, every finite field GF(q) has a subfield of prime order p . We will
show that GF(q) acts like a vector space over its subfield GF(p).

E GF(q), with /31 # 0. Form the elements a181 as a1 varies over the elements
{0, 1 , . . . , p- l}inGF(p) . Theproductalp1 takesonpdistinctvalues. (Forifxj31 = y/31
we must have x = y , since there are no zero divisors in a field.) If by these p products we
have “covered” all the elements in the field, we are done: they form a vector space over
GF(P).

Let

5.5 Galois Fields: Mathematical Facts 201

If not, let ,!?2 be an element which has not been covered yet. Then form al,!?~ + 4 2 as
a1 and a2 vary independently. This must lead to p 2 distinct values in G F (q) . If still not
done, then continue, forming the linear combinations

aiSi + a2P2 +.. *am/&

until all elements of GF(q) are covered. Each combination of coefficients {al, a2, . . . , a m }
corresponds to a distinct element of G F (q) . Therefore, there must be pm elements in

This theorem shows that all finite fields have the structure of a vector space of dimension
m over a finite field 23,. For the field G F (p m) , the subfield G F (p) is called the ground
field.

This proof raises an important point about the representation of a field. In the con-
struction of GF(24) in Section 5.4.2, we formed the field as a vector space over the basis
vectors 1, a, a2 and a3. (Or, more generally, to form G F (p m) , we would use the elements
{ 1, a, a2, . . . , am-’} as the basis vectors.) However, another set of basis vectors could be
used. Any set of m linearly independent nonzero elements of G F (p m) can be used as a
basis set. For example, for GF(24) we could construct the field as all linear combinations
of { 1 + a, a + a2, 1 + a3, a + a2 + a3}. The multiplicative relationship prescribed by the
irreducible polynomial still applies. While this is not as convenient a construction for most
purposes, it is sometimes helpful to think of representations of a field in terms of different
bases.

GF(q) . 0

Theorem 5.15 I f x and y are elements in a$eld of characteristic p ,

(x + y) P = x p + y p .

This rule is sometimes called “freshman exponentiation,” since it is erroneously employed
by some students of elementary algebra.

Proof By the binomial theorem,

P

i=O

For a prime p and for any integer i fl and i # p , p I (4) so that (4) = 0 (mod p) . Thus all
the terms in the sum except the first and the last are p times some quantity, which are equal

0
This theorem extends by induction in two ways: both to the number of summands and

to 0 since the characteristic of the field is p .

to the exponent: If X I , x2, . . . , Xk are in a field of characteristic p , then

/ k \p ’ k

(5.36)

for all r 0.

Definition 5.8 Let /3 E GF(q) . The order4 of ,!?, written ord(#?) is the smallest positive
0

We now consider some multiplicative questions related to finite fields.

integer n such that B” = 1.

4The nomenclature is unfortunate, since we already have defined the order of a group and the order of an element
within a group.

202 Rudiments of Number Theory and Algebra

Definition 5.9 An element with order q - 1 in GF(q) (i.e., it generates all the nonzero
0

In other words, a primitive element has the highest possible order.
We saw in the construction of GF(z4) that the element we called a! has order 15, making

it a primitive element in the field. We also saw that the primitive element enables the "power
representation" of the field, which makes multiplication particularly easy. The questions
addressed by the following lemmas are: Does a Galois field always have a primitive element?
How many primitive elements does a field have?

elements of the field) is called a primitive element.

Lemma 5.16 vj3 E G F (q) and j3 # 0 then ord(j3) I (q - 1).

Proof Let t = ord(j3). The set {B, P 2 , . . . , j3' = 1) forms a subgroup of the nonzero
elements in G F (q) under multiplication. Since the order of a subgroup must divide the

0 order of the group (Lagrange's theorem, Theorem 2.3), the result follows.

Example 5.30 In the field GF(Z4), the element a3 has order 5, since

(a3)5 = a15 = 1,

and 5 I 15. In fact, we have the sequence

Lemma 5.17 Let j3 E GF(q) . j3" = 1 ifand only iford(j3) 1 s.

Proof Let t = ord(B). Let s be such that BS = 1. Using the division algorithm, write
s = at + r where 0 5 r < t . Then 1 = Bs = B"'j3' = j3'. By the minimality of the order
(it must be the smallest positive integer), we must have r = 0.

Conversely, if ord(j3) 1 s, then j3" = #I@ = (j3')q = 1, where t = ord(/3) and q = s / t .
n u

Lemma 5.18 Ifa! has orders and j3 has order t and (s, t) = 1, then aj3 has order st.

Example 5.31 In GF(Z4>, a3 and a5 have orders that are relatively prime, being 5 and 3 respectively.
It may be verified that a3a5 = a8 has order 15 (it is primitive).

Proof First,
(a!j3)$t = (a"'(j3'>$ = 1.

Might there be a smaller value for the order than st?
Let k be the order of aj3. Since (c ~ j 3) ~ = 1, ak = j 3 - k . Since a!" = 1, ask = 1, and

hence j 3 F k = 1. Furthermore, dk = j3-'k = 1. By Lemma 5.17, s I tk. Since (s, t) = 1,
k must be a multiple of s.

Similarly, j3-"k = 1 and so t I sk. Since (s, t) = 1, k must be a multiple of t .
Combining these, we see that k must be a multiple of st . In light of the first observation,

o we have k = st.

5.5 Galois Fields: Mathematical Facts 203

Lemma 5.19 In a jn i te je ld , iford(a) = t and B = ai, then

Proof If ord(a) = t , then as = 1 if and only if t 1 s (Lemma 5.17).
Let ord(B) = u. Note that i / (i , t) is an integer. Then

pt/l(i,f) = (a i) t / (4 t) = (a t) i / (i , j) = 1

Thus u I t / (i , t) . We also have
(a')* = 1

so t I iu . This means that t / (i , t) 1 u. Combining the results, we have u = t / (i , t) . 0

Theorem 5.20 For a Galoisjeld G F (q) , i f t I q - 1 then there are + (t) elements of order
t in G F (q) , where @ (t) is the Euler totientfunction.

Proof Observe from Lemma 5.16 that if t / (q - 1, then there are no elements of order t in
G F (q) . So assume that t 1 q - 1; we now determine how many elements of order t there
are.

Let a be an element with order t . Then by Lemma 5.19, if B = a' for some i such that
(i, t) = 1, then j3 also has order t . The number of such i s is + (t) .

Could there be other elements not of the form ai having order t? Any element having
order t is a root of the polynomial xf - 1. Each element in the set {a, a2, a3, . . . , a'} is a
solution to the equation x ' - 1 = 0. Since a polynomial of degree t over a field has no more
than t roots (see Theorem 5.27 below), there are no elements of order t not in the set. 0
The following theorem is a corollary of this result:

Theorem 5.21 There are +(q - 1) primitive elements in G F (q) .

Example 5.32 In G F (7) , the numbers 5 and 3 are primitive:

5l = 5, 52 =4, 53 = 6, 54 = 2, 55 = 3, 56 = 1.
3 1 = 3 , 3 2 = 4 , 3 3 = 6 , 3 4 = 4 , 3 5 =5, 36=1.

We also have @(q - 1) = @(6) = 2, so these are the only primitive elements. 0

Because primitive elements exist, the nonzero elements of the field G F (q) can always be
written as powers of a primitive element. If a E G F (q) is primitive, then

2 3 &-2,,4-1 = 1) Ia,a ,a , * . * I

is the set of all nonzero elements of G F (q) . If we let G F (q) * denote the set of nonzero
elements of G F (q) , we can write

GF(q)* = (a) .

If B = a' is also primitive (i.e., (i , q - 1) = l), then the nonzero elements of the field are
also generated by

that is, GF(q)* = (B) . Despite the fact that these are different generators, these are not
different fields, only different representations, so (a) is isomorphic to (B) . We thus talk of
the Galois field with q elements, since there is only one.

IB, B2, B 3 , . . . , F2, p 4 - l = 11,

204 Rudiments of Number Theory and Algebra

Theorem 5.22 Every element of thefield G F (q) satisfies the equation xq - x = 0. Fur-
thermore, they constitute the entire set of roots of this equation.

Proof Clearly, the equation can be written as x (x 4 - l - 1) = 0. Thus x = 0 is clearly a
root. The nonzero elements of the field are all generated as powers of a primitive element
a. For an element B = ai E G F (q) , 8 q - l = (ai)q-' = (~ 4 - l) ~ = 1. Since there are q
elements in G F (q) , and at most 4 roots of the equation, the elements of G F (4) are all the
roots. 0
An extension field E of a field F is a splitting field of a nonconstant polynomial f (x) E P[x]
if f (x) can be factored into linear factors over E , but not in any proper subfield of E .
Theorem 5.22 thus says that G F (q) is the splitting field for the polynomial x q - q .

As an extension of Theorem 5.22, we have

Theorem 5.23 Every element in afield G F (q) satisfies the equation

xqn - x = o
for every n 2 0.

Proof When n = 0 the result is trivial; when n = 1 we have Theorem 5.22, giving xq = x.

The proof is by induction: Assume that xqn-' = x. Then (xq"-')q = x 4 = x, or xqn = x.
0

A field G F (p) can be extended to a field G F (p m) for any m > 1. Let q = p m . The field
G F (q) can be further extended to a field GF(q') for any r , by extending by an irreducible
polynomial of degree r in G F (q) [x] . This gives the field GF(pm') .

5.6 Implementing Galois Field Arithmetic

Lab 5 describes one way of implementing Galois field arithmetic in a computer using two
tables. In this section, we present a way of computing operations using one table of Zech
logarithms, as well as some concepts for hardware implementation.

5.6.1 Zech Logarithms

In a Galois field GF(2m) , the Zech logarithm z (n) is defined by

,z(n) = 1 + ffn , n = 1 , 2 ,..., 2"'-2.

Table 5.1 shows the Zech logarithm for the field G E ' (~ ~) . For example, when n = 2, we
have

1+ff2=ff8

so that z (2) = 8.
In the Zech logarithm approach to Galois field computations, numbers are represented

using the exponent. Multiplication is thus natural. To see how to add, considerthe following
example:

The first step is to factor out the term with the smallest exponent,

a3 +a5.

~ (1 + a2).

5.6 Imdementine Galois Field Arithmetic 205

Now the Zech logarithm is used: 1 + a2 = az(2) = a8. So

3 + = a 3 (1 + a 2) = a3a8 = ,.P.
The addition requires one table lookup and one multiply operation. It has been found that
in many implementations, the use of Zech logarithms can significantly improve execution
time.

5.6.2 Hardware Implementations

We present examples for the field GF(24) generated by g(x) = 1 + x + x4. Addition is
easily accomplished by simple mod-2 addition for numbers in vector representation.

Multiplication of the element B = bo + bla + b2a2 + b3a3 by the primitive element a
is computed using a4 = 1 + a as

= boa + bla2 + b2a3 + b3a4 = b3 + (bo + b3)a + bla2 + b2a3.

These computations can be obtained using an LFSR as shown in Figure 5.2. Clocking the
registers once fills them with the representation of a/?.

Figure 5.2: Multiplication of /? by a.

Multiplication by specific powers of a can be accomplished with dedicated circuits. For
example, to multiply B = bo + bla + b2a2 + b3a3 by a4 = 1 + a, we have

Pa4 = B + .B = (bo + b3) + (bo + bl + b3)a + (bl + b2)a2 + (b2 + b3)a3,

which can be represented as shown in Figure 5.3.

Figure 5.3: Multiplication of an arbitrary /3 by a4

Finally, we present a circuit which multiplies two arbitrary Galois field elements. Let
#? = bo + bia + b2a2 +b3a3 and let y = co + cla + c2a2 + c3a3. Then B y can be written
in a Horner-like notation as

BY = (((c3B)a + C 2 B b + C l m + COB.

Figure 5.4 shows a circuit for this expression. Initially, the upper register is cleared. Then at
the first clock the register contains c3B. At the second clock the register contains c3Ba+c2B,
where the multiplication by a comes by virtue of the feedback structure. At the next clock
the register contains (c3Ba + c2B)a + c1B. At the final clock the register contains the entire
product.

206 Rudiments of Number Theory and Algebra

Figure 5.4: Multiplication of B by an arbitrary field element.

5.7 Subfields of Galois Fields

Elements in a base field GF(q) are also elements of its extension field GF(qm). Given an
element B E GF(qm) in the extension field, it is of interest to know if it is an element in
the base field G F (4). The following theorem provides the answer.

Theorem 5.24 An element ,6 E GF(qm) lies in GF(q) ifand only ifBq = B.

Proof If B E GF(q) , then by Lemma 5.16, ord(B) I (q - l), so that 84 = B.
Conversely, assume 84 = B . Then /3 is a root of xq - x = 0. Now observe that all q

elements of GF(q) satisfy this polynomial and it can only have q roots. Hence B E GF(q) .

By induction, it follows that an element B E GF(q") lies in the subfield GF(q) if 84" = /?
for any n >_ 0.

Example 5.33 The field GF(4) is a subfield of GF(256). Let a be primitive in GF(256). We desire
to find an element in GF(4) C GF(256). Let j3 = Then, invoking Theorem 5.24

4 ,85.4 - ,255,85 - - B. p = -

So ,b E GF(4) and GF(4) has the elements {0, 1, B, B2] = {0, 1, a85, a170]. 0

Theorem 5.25 GF(qk) is a subjield of G F (q j) ifand only i fkl j .

The proof relies on the following lemma.

Lemma 5.26 I f n , r, and s are positive integers and n 2 2, then ns - 1 I n' - 1 ifand only
i f s l r.

Proof of Theorem 5.25. If kl j , say j = mk, then GF(qk) can be extended using an
irreducible polynomial of degree m over GF(qk) to obtain the field with (49" = q j
elements.

Conversely, let GF(qk) be a subfield of GF(q j) and let B be a primitive element in
GF(qk) . ThenBqk-l = 1. As an element of the field GF(qk) , it must also be true (see, e.g.,

5.8 Irreducible and Primitive polynomials 207

Theorem 5.22) that ,9q'-' = 1. From Lemma 5.17, it must be the case that qk - 1 I q j - 1
0

As an example of this, Figure 5.5 illustrates the subfields of GF(2%).

and hence, from Lemma 5.26, it follows that k I j .

/ \ /
GF(26) GF(z4)

Figure 5.5: Subfield structure of GF(224).

5.8 Irreducible and Primitive polynomials

We first present a result familiar from polynomials over complex numbers.

Theorem 5.27 A polynomial of degree d over a field F has at most d roots in any field
containing F.

This theorem seems obvious, but in fact over a ring it is not necessarily true! The quadratic
polynomial x2 - 1 has four roots in Z15, namely 1,4, 11 and 14 [25].

Proof Every polynomial of degree 1 (i.e.. a linear polynomial) is irreducible. Since the
degree of a product of several polynomials is the sum of their degrees, a polynomial of
degree d cannot have more than d linear factors. By the division algorithm, (x - j3) is a
factor of a polynomial f (x) if and only if f (j3) = 0 (see Exercise 5.47). Hence f (x) can
have at most d roots. 0

While any irreducible polynomial can be used to construct the extension field, com-
putation in the field is easier if a primitive polynomial is used. We make the following
observation:

Theorem 5.28 Let p be prime. An irreducible mth-degree polynomial f (x) E G F (p) [x]
dividesxpm-l - 1.

Example 5.34 (x 3 + x + 1) 1 (x7 + 1) in GF(2) (this can be shown by long division). 0

It is important to understand the implication of the theorem: an irreducible polynomial
divides xPrn - 1, but just because a polynomial divides xPm - 1 does not mean that it is
irreducible. (Showing irreducibility is much harder than that!)
Proof Let GF(q) = GF(pm) be constructedusing the irreduciblepolynomial f (x), where
a denotes the root of f (x) in the field: f (a) = 0. By Theorem5.22, a is aroot of x p r n - l - 1
in GF(q). Using the division algorithm write

(5.37) X P m - l - 1 = g(x1.f (x) + r (x) ,

208 Rudiments of Number Theory and Algebra

where deg(r(x)) < m. Evaluating (5.37) at x = a in G F (q) we obtain

0 = 0 + r(a).

But the elements of the field GF(q) are represented as polynomials in a of degree < m, so
0 since r (a) = 0 it must be that r (x) is the zero polynomial, r (x) = 0.

A slight generalization, proved similarly using Theorem 5.23, is the following:

Theorem 5.29 I f f [XI E G F (q) [X I is an irreducible polynomial of degree m, then
k

f (x4 -XI

for any k such that m I k.

Definition 5.10 An irreducible polynomial p (x) E G F (p) [x] of degree m is said to be
primitive if the smallest positive integer n for which p (x) divides x" - 1 is n = pm - 1. 0

Example 5.35 Taking f (x) = x 3 + x + 1, it can be shown by exhaustive checking that f (x) lyx4 + 1,
f (x) ,4'x5 + 1, and f (x) l y x 6 + 1, but f (x) / x7 + 1. In fact,

x7 - 1 = (x3 + x + 1)(x4 + x 2 + x + 1).

Thus f (x) is primitive. 0

The following theorem provides the motivation for using primitive polynomials.

Theorem 5.30 The roots of an mth degree primitive polynomial p (x) E G F (p) [x] are
primitive elements in G F (p m) .

That is, any of the roots can be used to generate the nonzero elements of the field G F (p m) .

Proof Let a be a root of an mth-degree primitive polynomial p (x) . We have

1 = p (x) q (x) X P m - l -

for some q (x). Observe that

aPm-l - 1 = p (a) q (a) = Oq(a) = 0,

a p m - l = 1.
from which we note that

Now the question is, might there be a smaller power t of a such that a' = l ? If this were
the case, then we would have

a - 1 = 0 .

There would therefore be some polynomial x' - 1 that would have a as a root. However,
any root of xi - 1 must also be a root of xPm-' - 1, because ord(a) I p m - 1. To see this,
suppose (to the contrary) that ord(a)i(pm - 1. Then

p m - 1 = kord(a) + r

t

for some r with 0 < r < ord(a). Therefore we have

1 = a ~ m - l = akord(cr)+r - r
- - a ! ,

5.9 Conjugate Elements and Minimal Polynomials 209

which contradicts the minimality of the order.
Thus, all the roots of xt - 1 are the roots of x p r n - l - 1, so

X t - l / x p m - l - 1.

We show below that all the roots of an irreducible polynomial are of the same order. This
means that p (x) 1 xr - 1. But by the definition of a primitive polynomial, we must have

0
All the nonzero elements of the field can be generated as powers of the roots of the

t = p m - 1.

primitive polynomial.

Example 5.36 The polynomial p (x) = x 2 + x + 2 is primitive in GF(5) . Let a represent a root of
p (x > , so that a2 + a + 2 = 0, or a2 = 4a + 3. The elements in GF(5) can be represented as powers
of a as shown in the following table.

0 a0 = 1 a l = a 2 = 4 a + 3 a 3 = k + 2
a 4 = 3 a + 2 a5=4a+4 a 6 = 2 a7 = 2a a8 = 3a + 1
a 9 = 3 a + 4 a l O = a + 4 , 1 1 = 3 a + 3 a12=4 a13 =&
a i 4 = a + 2 d 5 = , + 3 d 6 = 2 a + 3 a 1 7 = a + 1 & 3 = 3
d 9 = 3 , a 2 0 = 2 a + 4 & = h + i , 2 2 = 4 a ! + i , 2 3 = 2 , , + 2

As an example of some arithmetic in this field,

(3a + 4) + (4a + 1) = 201

(3a + 4) (4 a + 1) = a9a22 = a31 = (a24)(,7) = 2a .

0

The program pr imf i n d Find primitive polynomials in G F (p) [x] , where the prime
p can be specified. It does this by recursively producing all polynomials (or all of those
of a weight you might specify) and evaluating whether they are primitive by using them
as feedback polynomials in an LFSR. Those which generate maximal length sequences are
primitive.

5.9 Conjugate Elements and Minimal Polynomials

From chapter 4, we have seen that cyclic codes have a generator polynomial g(x) dividing
xR - 1. Designing cyclic codes with a specified code length n thus requires the facility to
factor x n - 1 into factors with certain properties. In this section we explore aspects of this
factorization question.

It frequently happens that the structure of a code is defined over a field G F (q m) , but it
is desired to employ a generator polynomial g(x) over the base field G F (q) . For example,
we might want a binary generator polynomial - for ease of implementation - but need to
work over a field G F (2 m) for some m. How to obtain polynomials having coefficients in
the base field but roots in the larger field is our first concern. The concepts of conjugates
and minimal polynomials provide a language to describe the polynomials we need.

We begin with a reminder and analogy from polynomials with real coefficients. Suppose
we are given a complex number X I = (2 + 3i). Over the (extension) field C, there is a
polynomial x - (2 + 3i) E @ [X I which has x1 as a root. But suppose we are asked to find
the polynomial with real coefficients that has x1 as a root. We are well acquainted with the

primfind.c

210 Rudiments of Number Theory and Algebra

fact that the roots of real polynomials come in complex conjugate pairs, so we conclude
immediately that a real polynomial with root XI must also have a root x2 = (2 - 3i). We
say that x2 is a conjugate root to X I . A polynomial having these roots is

(x - (2 + 3i)) (x - (2 - 3i)) = x 2 - 4x + 13.
Note in particular that the coefficients of the resulting polynomials are in R, which was the
base field for the extension to C.

This concept of conjugacy has analogy to finite fields. Suppose that f(x) E G F (q) [x]
has a E G F (q m) as a root. (That is, the polynomial has coefficients in the base$eZd, while
the root comes from an extension field.) What are the other roots of f (x) in this field?

Theorem5.31 Let G F (q) = GF(p') for some r 1 1. Let f(x) = Cf=, f j x j E

G F (q) [x] . Thatis, f i E GF(q) . Then

f W") = [f (x114"

for any n 1 0.

Proof

d

= C f j (~ q " > j (by Theorem 5.24)
j =O

= f (xq").

Thus, if j3 E G F (q m) is a root of f (x) E G F (q) [x] , then 84" is also a root of f(x). This
motivates the following definition.

Definition 5.11 Let j3 E GF(q"). The conjugates of j3 with respect to a subfield G F (q)
are j3, /?q,j34 , j3q , (This list must, of course, repeat at some point since the field is
finite.)

The conjugates of j3 with respect to G F (q) form a set called the conjugacy class of j3

2 3

with respect to G F (q) . 0

Example 5.37
1. Let a E ~ (2 ~) be primitive. The conjugates of a are

2 4 23 a, a2, (a2) = a , (a) = a.

= a3, an element not in the conjugacy class of a. The conjugates of j3 are

SO the conjugacy class of a is {a, a2, a41.

Let

B = 013, (a 3) 2 = a6, (a3)Z2 = a12 = a7a5 = a5, (a3p3 = ($4 = &,3 = a3.

So the conjugacy class of B is (a 3 , a6, a5].
The only other elements of C F (z 3) are 1, which always forms its own conjugacy class, and 0,
which always forms its own conjugacy class.
We observe that the conjugacy classes of the elements of GF(23> form a partition of GF(23) .

5.9 Conjugate Elements and Minimal Polynomials 211

2. Let 8 E GF(16) be an element such that ord(p) = 3. (Check for consistency: since 3 1 15,
there are 4(3) = 2 elements of order 3 in GF(16).) The conjugacy class of 8 is

/3,82, p2 = 84 = #?.

SO there are 2 elements in this conjugacy class, 18, 821.

Let a E GF(24) be primitive. Pick a and list its conjugates with respect to GF(2):

3. Find all the conjugacy classes in GF(24) with respect to GF(2).

a , 2, a 4 , 2 , a16 = a

so the first conjugacy class is {a, a2, a4, a8) . Now pick an element unused so far. Take a3
and write its conjugates:

a3, (a3)2 = a6, (a3)4 = a12, (a3)8 = a9, (a3)16 = a3,

a5, (a32 = a10, (a5)4 = as

a7, (a7)2 = a14, (a7)4 = a13, (a7)8 = a l l , (a7)16 = a7,

so the next conjugacy class is {a3. a6, a9, a12}. Take another unused element, as:

so the next conjugacy class is {a5, a"}. Take another unused element, a7:

so the next conjugacy class is {a7, a14, a13, a l l } . The only unused elements now are 0, with
conjugacy class (0}, and 1, with conjugacy class { 1).

Let a be primitive in GF(24). The conjugacy classes with respect to GF(4) are:

4. Find all the conjugacy classes in GF(24) with respect to GF(4).

{a ,a4) ia2, 2 1 ia3, d2) a9} {a7, d3) {a1o} {a11,

Definition 5.12 The smallest positive integer d such that n I qd - 1 is called the multi-
plicative order of q modulo n .

0

Lemma 5.32 Let j3 E G F (q m) have ord(j3) = n and let d be the multiplicative order of q
modulo n. Then j3q = j3. The d elements f?, 8 4 , j39 , . . . , j3qd-' are all distinct.

d

d
Proof Since ord(j3) = n andnl qd - 1, j3q -' = 1, so j3qd = B.

To check distinctness, suppose that Bqk = j3qi for 0 5 i < k < d . Then j3q -4' = 1,
which by Lemma 5.17 implies that n 1 qk - q', that is, qk = q' (mod n) . By Theorem 5.8,
item 7 it follows that qk-' = 1 (mod n / (n , q')) , that is, qk-' = 1 (mod n) (since q is a
power of a prime, and n I qd - 1). By definition of d , this means that d I k - i , which is not
possible since i < k < d .

0

k

'This is yet another usage of the word "order."

212 Rudiments of Number Theory and Algebra

5.9.1 Minimal Polynomials

In this section, we examine the polynomialin GF(q)[x] which has an element j3 E GF(qm)
and all of its conjugates as roots.

Definition 5.13 Let j3 E GF(qm) . The minimal polynomial of j3 with respect to GF(q)
is the smallest-degree, nonzero, monic polynomial p (x) E GF(q)[x] such that p(j3) = 0.

Returning to the analogy with complex numbers, we saw that the polynomial with
f (x) = x 2 - 4x + 13 with real coefficients has the complex number x1 = 2 + 3i as a root.
Furthermore, it is clear that there is no real polynomial of smaller degree which has x 1 as a
root. We would say that x2 - 4x + 13 is the minimal polynomial of 2 + 3i with respect to
the real numbers.

Some properties for minimal polynomials:

Theorem 5.33 [373, Theorem 3-21 For each j3 E GF(qm) there exists a unique monic
polynomial p (x) of minimal degree in GF(q) [x] such that:

1. p (B) = 0.

2. The degree of p (x) I m.

3. Ifthere is a polynomial f (x) E GF(q)[x] such that f (j 3) = 0 then p (x) 1 f (x) .

4. p (x) is irreducible in GF(q)[x] .

Proof Existence: Given an element j3 E GF(qm) , write down the (m + 1) elements
1, j3, P 2 , . . . , ,B" which are elements of GF(qm). Since GF(qm) is a vector space of
dimension m over GF(q) , these m + 1 elements must be linearly dependent. Hence there
exist coefficients ai E GF(q) suchthatao+alj3+. . .+ampm = 0; theseare the coefficients
of a polynomial f (x) = Ey!o aid which has j3 as the root. (It is straightforward to make
this polynomial monic.) This also shows that the degree of f (x) 5 m.

Uniqueness: Suppose that there are two minimal polynomials of j3, which are normalized
to be monic; call them f (x) and g(x) . These must both have the same degree. Then there
is a polynomial r (x) having deg(r(x)) < deg(f(x)) such that

f (x > = g(x> + r (x) .

Since j3 is a root of f and g , we have

0 = f (B > = g (B) + r(j3).

so that r(j3) = 0. Since a minimal polynomial f (x) has the smallest nonzero degree
polynomial such that f (j 3) = 0, it must be the case that r (x) = 0 (i.e., it is the zero
polynomial), so f (x) = g(x) .

Divisibility: Let p (x) be a minimal polynomial. If there is a polynomial f (x) such that
f (j 3) = 0, we write using the division algorithm

f (x > = p(x)q (x) + r (x) ,

where deg(r) < deg(p). But then f (j 3) = p(j3)q(j3) + r (p) = 0, so r(j3) = 0. By the
minimality of the degree of p (x) , r (x) = 0, so p (x) 1 f (x) .

Irreducibility: If p (x) factors, so p (x) = f (x) g (x) , then either f (j 3) = 0 or g(j3) = 0,
0 again a contradiction to the minimality of the degree of p(x) .

5.9 Conjugate Elements and Minimal Polynomials 213

We observe that primitive polynomials are the minimal polynomials for primitive elements
in a finite field.

Let p (x) E G F (q) [x] be a minimal polynomial for B. Then 8 4 , B q 2 , . . . , pqd-' are
also roots of p (x) . Could there be other roots of p (x) ? The following theorem shows that
the conjugacy class for B contains all the roots for the minimal polynomial of B.

Theorem 5.34 [25, Theorem 4.4101 Let #? E G F (q m) have order n and let d be the multi-
plicative order of q mod n. Then the coeficients of the polynomial p (x) = nfz; (x - B q i)

are in G F (4). Furthermore, p (x) is irreducible. That is, p (x) is the minimal polynomial
for B.

Proof From Theorem 5.31 we see that p (B) = 0 implies that p(Bq) = 0 for p (x) E
G F (4) [X I . It only remains to show that the polynomial having the conjugates of B as its
roots has its coefficients in G F (q) . Write

d-1 d-1

[p(x)]4 = n (x - p i) q = n (X 4 - pi+') (by Theorem 5.15)
i=O i=O

d 0
d d-1

= n (x q - pqi) = n (x q - pqi> (since = /i~ = /P).
i=l i =O

Thus [p(x)]q = p(x4) . Now writing p (x) = z$o pixi we have

and

(5.38)

d

p (x 4) = C pix? (5.39)
i=O

The two polynomials in (5.38) and (5.39) are identical, so it must be that pq = pi , so

If p (x) = g (x) h (x) , where g(x) E G F (q) [x] and h (x) E G F (q) [x] and are monic,
then p (B) = 0 implies that g(B) = 0 or h(B) = 0. If g(B) = 0, then g(/3q) = g (/ 3 q 2) =

* = g(Bqd-') = 0. g thus has d roots, SO g (x) = p (x) . Similarly, if h(B) = 0, then it
0

pi E G F (q) .

follows that h (x) = p (x) .

As a corollary, we have the following.

Corollary 5.35 [373, p. 581 Let f (x) E G F (q) [x] be irreducible. Then all of the roots of
f (x) have the same ordel:

Proof Let G F (q m) be the smallest field containing all the roots of the polynomial f (x) and
let B E G F (q m) be a root of f (x) . Then ord(/?) 1 qm - 1 (Lemma 5.16). By the theorem,

the roots of f (x) are the conjugates of @ and so are of the form {B , 8 4 , p q 2 , . . .}. Since
q =prforsomer,itfollowsthat(q,qm-1)= l . A l s o , i f t I q m - l , t h e n (q , t) = l . By
Lemma 5.19 we have

= ord(B). k ord(B) ord(Bq) =
(q k 9 ord(B))

214 Rudiments of Number Theory and Algebra

111
{a, a2, a41
{a3, a6, as}

Table 5.2: Conjugacy Classes over G F (2 3) with Respect to G F (2)

M o (x) = x + 1
2

Ml(X1 = (x - a) (x 3 - a) (x -a4) = x 3 + x + 1
M 3 (x) = (x - a) (x - a S) (x - a6) = x3 + x 2 + 1 .

Conjugacy Class I Minimal Polynomial
[01 I M - (x) = x

Table 5.3: Conjugacy Classes over G F Q ~) with Respect to G F (2)

Conjugacy Class
101
1 1 1

{a, a2, a4, a81

Minimal Polvnomial
M- (x) = x
M o (x) = x + 1
M l (X) = (x - a) (x - a 2) (x - a 4) (x - a8)

M 3 (x) = (x - a) (x - a) (x - a 9) (x - a12)

M s (x) = (x - a S) (x - ,lo) = x 2 + x + 1
M 7 (x) = (x - a 7) (x - a ") (x - a ' 3) (x - a14)

= x 4 + x + i

= x4 + x3 + x 2 + x + 1

= x 4 + x 3 + 1

3 6

Since this is true for any k , each root has the same order.

Example 5.38 According to Theorem 5.34, we can obtain the minimal polynomial for an element
j3 by multiplying the factors (x - 8 4 ') . In what follows, you may refer to the conjugacy classes
determined in Example 5.37.

1. Determine the minimal polynomial for each conjugacy class in GF(8) with respect to GF(2) .
To do the multiplication, a representation of the field is necessary; we use the representation
using primitive polynomial g (x) = x 3 + x + 1. Using the conjugacy classes we found before
in GF(8) , we obtain the minimal polynomials shown in Table 5.2.

2. Determine the minimal polynomial for each conjugacy class in GF(Z4) with respect to GF(2) .
Use Table 5.1 as a representation. The minimal polynomials are shown in Table 5.3.

3. Determine theminimal polynomial for each conjugacy class in GF(2') withrespect to GF(2) .
Using the primitive polynomial x 5 + x 2 + 1, it can be shown that the minimal polynomials are
as shown in Table 5.4.

4. Determine the minimal polynomials in GF(4') with respect to GF(4) . Use the representation
obtained from the subfield GF(4) = [O, 1 , a5, a"} c GF(16) from Table 5.1. The result is
shown in Table 5.5.

As this example suggests, the notation Mi (x) is used to denote the minimal polynomial of
the conjugacy class that ui is in, where i is the smallest exponent in the conjugacy class.

It can be shown that (see [200, p. 961) for the minimal polynomial m (x) of degree d in
a field of G F (q m) that dl m.

5.10 Factoring X" - 1 215

Table 5.4: Conjugacy Classes over GF(z5) with Respect to GF(2)

Minimal Polynomial
M - (x) = x
&(x) = x + 1
M1 (X I = (x - a)(x - a2)(x - a4)(x - d) (X - a16)

M3(x) = (x - a)(x -a% - a'2)(x - a'7)(x - 2 4)

M5(x) = (x - a)(x - a)(x - a'O)(x - a'8)(x - 2 0)

M7(x) = (x - a 7) (x - a'4)(x - a

M l l (X) = (x - a") (x - a'3)(x - a21)(x - a22)(x - 2 6)

15 23 ~ 1 5 (x) = (x - a)(x - a)(x - a27)(x - a29)(x - a39

=x5 + x 2 + 1

= .5 + .4 + x 3 +,2 + 1

= x5 + x4 + x2 + x + 1

= x5 + x3 +x2 + x + 1

= x 5 + x 4 + x 3 + x + 1

3

5 9

19 25 28)(x - a)(x - a)

= + x 3 + 1

5.10 Factoring - 1

We now have the theoretical tools necessary to describe how to factor x" - 1 over arbitrary
finite fields for various values of n. When n = qm - 1, from Theorem 5.22, every element
of GF(qm) is a root of xqm-l - 1, so

(5.40)

for a primitive element a E GF(qm). To provide a factorization of xqm-l - 1 over the
field GF(q) , the factors in (x - a') (5.40) can be grouped together according to conjugacy
classes, which then multiply together to form minimal polynomials. Thus xqm-' - 1 can
be expressed as a product of the minimal polynomials of the nonzero elements.

Example 5.39

1. The polynomial x7 - 1 = x23-1 - 1 can be factored over G F (2) as a product of the minimal
polynomials shown in Table 5.2.

x7 - 1 = (x + 1)(x3 + + 1)(x3 + x2 + 1)

2. The polynomial x15 - 1 = x24-1 - 1 can be factored over GF(2) as a product of the minimal
polynomials shown in Table 5.3.

.15 - 1 = (x + I) (~ ~ + + 1) (x 4 + x3 + x2 + + 1) (x 2 + + 1) (x 4 + x3 + 1) .

We now pursue the slightly more general problem of factoring x n - 1 when n # qm - 1.
An element B # 1 such that ,B" = 1 is called an nth root of unity. The first step is to

216 Rudiments of Number Theory and Algebra

Table 5.5: Conjugacy Classes over GF(42) with Respect to GF(4)

Minimal Polvnomial

determine field GF(qm) (that is, to determine m) in which nth roots of unity can exist.
Once the field is found, factorization is accomplished using minimal polynomials in the
field.

Theorem 5.20 tells us that if
nlq" - 1, (5.41)

then there are $ (n) elements of order n in GF(qm). Finding a field GF(qm) with nth roots
of unity thus requires finding an m such that n 1 qm - 1, which is usually done by trial and
error.

Example 5.40 Determine an extension field GF(3m) in which 13th roots of unity exist. We see that
0

Once the field is found, we let p be an element of order n in the field G F (q m) . Then /3 is a
root of x" - 1 in that field, and so are the elements p 2 , p 3 , . . . , p"-'. That is,

13 1 33 - 1, so that 13th roots exist in the field GF(33).

n-1

X" - 1 = n (x - pi) .
i=O

The roots are divided into conjugacy classes to form the factorization over GF(q) .

Example 5.41 Determine an extension field GF(2m) in which 5th roots of unity exist and express
the factorization in terms of polynomials in GF(2)[x]. Using (5.41) we check:

5J(2 - 1) 5J(22 - 1) 5i((Z3 - 1) 51 (24 - 1).

So in GF(16) there are primitive fifth roots of unity. For example, if we let = a3, a primitive, then
65 = a15 = 1.

The roots of x5 - 1 = x 5 + 1 in GF(16) are

which can be expressed in terms of the primitive element a as

3 6 9 1 2 l , a , a , a , a .

5.11 Cyclotomic Cosets 217

Using the minimal polynomials shown in Table 5.3 we have

2 + 1 = (x + 1) k f 3 (X) = (x + 1)(x4 + x 3 + x 2 + + I).

Example 5.42 We want to find a field GF(2m) which has 25th roots of unity. We need

251 (2m - 1).

By trial and error we find that when m = 20,25 1 2'" - 1. Now let us divide the roots of 220 - 1 into
conjugacy classes. Let j3 be a primitive 25th root of unity. The other roots of unity are the powers of
j3: Po, #?I, p2, . . . , j324. Let us divide these powers into conjugacy classes:

Letting Mi (x) E GF(2) [x] denote the minimal polynomial having /?I for the smallest i as a root, we
0 have the factorization x2' + 1 = Mo(x)M1 (x) M g (x) .

Example 5.43 Let us find a field GF(7m) in which x15 - 1 has roots; this requires an m such that

151 7m - 1 .

m = 4 works. Let y be a primitive 15th root of unity in GF(74). Then yo , y l , . . . , y14 are roots of
unity. Let us divide these up into conjugacy classes with respect to GF(7):

3 6 1 2 9 10 111, { y , y 7 , Y49 = Y4, Y73 = V l 3 1 , IY2 , Y14? Y 8 ? Y 1 l l , (v 9 Y 1 Y v Y 1 9 (Y 5 1 ? 1Y 1

Thus x15 - 1 factors into six irreducible polynomials in GF(7). 0

5.1 1 Cyclotomic Cosets

Definition 5.14 The cyclotomic cosets modulo n with respect to G F (4) contain the expo-
nents of the n distinct powers of a primitive nth root of unity with respect to GF(q) , each
coset corresponding to a conjugacy class. These cosets provide a shorthand representation
for the conjugacy class. 0 .
Example 5.44 For Example 5.43, n = 15 and q = 7. The cyclotomic cosets and the corresponding

0 conjugacy classes are shown in Table 5.6.

I cvclomin. cc I - > ~ ~~ J

"Tables" of cyclotomic cosets and minimal polynomials are available using the program
c y c 1 omi n.

218 Rudiments of Number Theory and Algebra

Table 5.6: Cyclotomic Cosets modulo 15 with Respect to G F (7)

I Coniueacv Class Cvclotomic Cosets

Appendix 5.A How Many Irreducible Polynomials Are There?

The material in this appendix is not needed later in the book. However, it introduces several valuable
analytical techniques and some useful facts.

A finite field GF(qm) can be constructed as an extension of GF(q) if an irreducible polynomial
of degree m over GF(q) exists. The question of the existence of finite fields of order any prime power,
then, revolves on the question of the existence of irreducible polynomials of arbitrary degree. Other
interesting problems are related to how many such irreducible polynomials there are.

To get some insight into the problem, let us first do some exhaustive enumeration of irreducible
polynomials with coefficients over GF(2). Let I,, denote the number of irreducible polynomials of
degree n . The polynomials of degree 1, x and x + 1, are both irreducible, so I1 = 2. The polynomials
of degree 2 are

x 2 (reducible)

x2 + x = x(x + 1) (reducible)

x 2 + 1 = (x + 1)2 (reducible)

x2 + x + 1 (irreducible).

so 12 = 1.
In general, there are 2n polynomials of degree n. Each of these can either be factored into products

of powers of irreducible polynomials of lower degree, or are irreducible themselves. Let us count how
many different ways the set of binary cubics might factor. It can factor into a product of an irreducible
polynomial of degree 2 and a polynomial of degree 1 in 12 I1 = 2 ways:

x (x 2 + x + l) (x + 1Xx2 + x + 1).

It can factor into a product of three irreducible polynomials of degree 1 in four ways:

x3 n2(x + 1) x(x + 112 (x + 113

The remaining cubic binary polynomials,

x 3 + x + l and x 3 + x 2 + 1

must be irreducible, so 13 = 2.
This sort of counting can continue, but becomes cumbersome without some sort of mechanism to

keep track of the various combinations of factors. This is accomplished using a generating function
approach.

Definition 5.15 A generating function of a sequence Ao, A l , A2, . . . is the formal power series

co
A (z) = Akzk.

k=O

Amendix 5.A How Manv Irreducible Polvnomials Are There? 219

0
The generating function is analogous to the z-transform of discrete-time signal processing, allow-

ing us to formally manipulate sequences of numbers by polynomial operations. Generating functions
A (z) and B (z) can be added (term by term), multiplied (using polynomial multiplication)

and (formal) derivatives computed,

00 00

if A (z) = C Akzk then A'(z) = kAkzk-l l
k=O k = l

with operations taking place in some appropriate field.
The key theorem for counting the number of irreducible polynomials is the following.

Theorem 5.36 Let f (z) and g (z) be relativelyprime, monic irreduciblepolynomials over G F(q) of
degrees m and n, respectively. Let ck be the number of monic polynomials of degree k whose only
irreducible factors are f (x) and g (x) . Then the moment generating function for ck is

1 1
C(z) = --

I - z m I - z n '

Thatis, ck = xi BiAk-i, where Ai istheithcoefJicientinthegeneratingfunctionA(z) = l / (l - z m)
and Bi is the ith coefJicient in the generating function B (z) = 1/(1 - zn) .

Example 5.45 Let f (x) = x and g (x) = x + 1 in GF(2)[x] . The set of polynomials whose factors
are f (x) and g (x) are those with linear factors, for example,

P @) = (f (x)) " (g (x)) b , a, b I. 0.

According to the theorem, the weight enumerator for the number of such polynomials is

1

(1 - 2 1 2 .

This can be shown to be equal to

(5.42)

That is, there are 2 polynomials of degree 1 (f (x) and g (x)) , 3 polynomials of degree 2 (f (x) g (x) ,
0 f (x) ~ and g (x) 2) , 4 polynomials of degree 3, and so on.

Proof Let Ak be the number of monk polynomials in G F (q) [x] of degree k which are powers of
f (x). The kth power of f (x) has degree km, so

1 i f m l k
A k = (0 otherwise.

We will take A0 = 1 (corresponding to f (x)' = 1). The generating function for the Ak is

A (z) = 1 + z m + z 2 m + * a .

1 -- -
1 - z m '

220 Rudiments of Number Theory and Algebra

A (z) is called the enumerator by degree of the powers of f (z) .

of g (x) ; arguing as before we have B (z) = 1/(1 - z').

observe that if deg(g(x)b) = nb = i , then deg(f (.x)~) = ma = k - i for every 0 5 i 5 k . Thus

Similarly, let Bk be the number of monic polynomials in G F (q) [x] of degree k which are powers

With Ck the number of monk polynomials of degree k whose only factors are f (n) and g(x), we

or, equivalently,
C (z) = A (z) B (z) .

The theorem can be extended by induction to multiple sets of polynomials, as in the following corollary.

Corollary 5.37 Let S1, S2, . . . , SN be sets ofpolynomials such that any two polynomials in different
sets are relatively prime. The set of polynomials which are products of a polynomial from each set
has an enumerator by degree nEl Ai (z) , where Ai (z) is the enumerator by degree ofthe set S i .

Example 5.46 For the set of polynomials formed by products of x , x + 1 andx2 +x + 1 E G F (2) [x] ,
the enumerator by degree is

1 + 22 + 4z2 + 6z3 + 924 + 2 1 (&) s=
That is, there are 6 different ways to form polynomials of degree 3, and 9 different ways to form
polynomials of degree 4. (Find them!)

Let Zm be the number of monic irreducible polynomials of degree m. Applying the corollary, the set
which includes I1 irreducible polynomials of degree 1, 12 irreducible polynomials of degree 2, and
so forth, has the enumerator by the degree

Let us now extend this to a base field G F (q) . We observe that the set of all monic polynomials
in G F (q) [z] of degree k contains q k polynomials in it. So the enumerator by degree of the set of
polynomials of degree k is

Furthermore, the set of all products of powers of irreducible polynomials is precisely the set of all
monic polynomials. Hence, we have the following.

Theorem 5.38 125, Theorem 3.321

(5.43)

Appendix 5.A How Many Irreducible Polynomials Are There? 221

Equation (5.43) does not provide a very explicit formula for computing I,. However, it can be
manipulated into more useful forms. Reciprocating both sides we obtain

00

(1 - q z) = 17 (1 - z")'".
m=l

Taking the formal derivative of both sides and rearranging we obtain

(5.44)

(5.45)

Multiplying both sides by z and expanding both sides of (5.45) in formal series we obtain

co 00 co co co
C(qzlk = C mlm C(zmlk = C m I m C zk = C C m I m z k .
k = l m = l k=l m = l k:k#O k=lm:mlk

m lk

Equating the kth terms of the sums on the left and right sides of this equation, we obtain the following
theorem.

Theorem 5.39
qk = C m I m , (5.46)

m Ik

where the sum is taken of all m which divide k, including 1 and k.

This theorem has the following interpretation. By Theorem 5.29, in a field of order q, the product

of all distinct monic polynomials whose degrees divide k divides xq - x. The degree of xq - x is
qk , the left-hand side of (5.46). The degree of the product of all distinct monic polynomials whose
degrees divide k is the sum of the degrees of those polynomials. Since there are Im distinct monic
irreducible polynomials, the contribution to the degree of the product of those polynomials is mlm.
Adding all of these up, we obtain the right-hand side of (5.46). This implies the following:

k k

k
Theorem 5.40 [25, Theorem 4.4151 In aJield of order q, xq -x factors into the product of all monic
irreducible polynomials whose degrees divide k.

Example 5.47 Let us take q = 2 and k = 3. The polynomials whose degrees divide k = 3 have
degree 1 or 3. The product of the binary irreducible polynomials of degree 1 and 3 is

3 x(x + l)(x + + 1)(x3 + x 2 + 1) = .* + x.

Theorem 5.39 allows a sequence of equations to be built up for determining Im for any m. Take
for example q = 2:

k = 1: 2 = (1)Zl - 11 = 2

k = 2: + 12 = 1

k = 3: -+ I3 = 2.

4 = (1)11 + 212

8 = (1)Ii + 313

222 Rudiments of Number Theory and Algebra

Appendix 5.A.1 Solving for Zm Explicitly: The Moebius Function

However, equation (5.46) only implicitly determines Zm. An explicit formula can also be found.
Equation (5.46) is a special case of a summation of the form

(5.47)

in which f (k) = qk and g(m) = m Z m . Solving such equations for g(m) can be accomplished using
the number-theoretic function known as the Moebius (or Mobius) function p.

Definition 5.16 The function p (n) : Z+ + Z+ is the Moebius function, defined by

i f n = 1
if n is the product of r distinct primes
if n contains any repeated prime factors.

0

Theorem 5.41 The Moebius function satisjies the following formula:

(5.48)

The proof is developed in Exercise 81. This curious “delta-function-like” behavior allows us to
compute an inverse of some number-theoretic sums, as the following theorem indicates.

Theorem 5.42 Moebius inversion formula I f f (n) = g(d) then

g(n) = C C L (d) f (n ld) .
dln

Proof Let d 1 n. Then from the definition of f (n) , we have

Multiplying both sides of this by p(d) and summing over divisors d of n we obtain

The order of summation can be interchanged as

By (5.48), & (n / k) p(d) = 1 if n / k = 1, that is, if n = k , and is zero otherwise. So the double
0

Returning now to the problem of irreducible polynomials, (5.46) can be solved for Zm using the

summation collapses down to a g(n) .

Moebius inversion formula of Theorem 5.42,

(5.49)

Lab 4: Programming the Euclidean Algorithm 223

Programming Laboratory 4:

Programming the Euclidean
Algorithm

Objective

The Euclidean algorithm is important both for modular
arithmetic in general and also for specific decoding algo-
rithms for BCWReed-Solomon codes. In this lab, you are
to implement the Euclidean algorithm over both integers
and polynomials.

Preliminary Exercises

Reading: Sections 5.2.2,5.2.3.

1) InZg[x],determineg(x) = (Zx5 +3x4+4x3+3x2+
2x + 1, x4 + Zx3 + 3x2 + 4x + 3) and also s (x) and t(x)
such that

2) Compute (x3 + 2x2 + x + 4, x2 + 3x + 4, operations
in R[x], and also find polynomials s (x) and t(x) such that

Background
Code is rovided which implements modulo arith-
metic in Ke class ModAr, implemented in the files
indicated in Algorithm 5.2.

Algorithm 5.3 Templatized

File: polynomialT. h
Polynomials

polynomialT.cc
testpolyl.cc

Programming Part
1) Write a C or C++ function that performs the Euclidean
algorithm on integers a and b, r e w n g g, s, and.t such that
g = as + bt. The function should have declarabon

void gcd(int a, int b, int &g, int & s , int &t);

Test your algorithm on (24,18), (851,966), and other
pairs of integers. Verify in each case that as + bt = g.
2) Write a function that computes the Euclidean al orithm
on olynomialT<TYPE>. The function shoufd have
dec&ation

template <class Tz void
gcd(const polynomialT<T> &a,
const polynomialT<T> &b, polynomialT<T> &g,
polynomialT<T> & s , polynomialT<T> &t);

Also, write a program to test your function. Al-
gorithm 5.4 shows a test program and the framework
for the program, showing how to instantiate the func-
tion with ModAr and double polynomial arguments.

Algorithm 5.4 Polynomial GCD
File: testpolygcd. cc

gcdpoly.cc

Algorithm 5.2 Modulo Arithmetic
File: ModAr . h

ModAr . cc
testmodar1.c~
M0dArnew.h
testmodarnew.cc

Code is also rovided which implements olynomial arith-
metic in the cpass polynomialT,using &e files indicated
in Algorithm 5.3. This class is tem latized, so that the co-
efficients can come from a vqety o! fields or rings. For ex-
ample, if you want a polynomal with double coefficients
or int coefficients or ModAr coefficients, the objects are
declared as

polynomialT<double> pl;
polynomialT<int> p2;
polynomialT<ModAr> p3;

Test your algorithm as follows:

a) Compute (3x7 + 4x6 + 3x4 + x 3 + 1, 4x4 + x 3 + x)
and t(x) and s (x) for polynomials in Z=j[x]. Verify that
a(x) s (x) + b(x) t (x) = g(x).
b) Compute (Zx5 + 3x4 + 4x3 + 3x2 + 2x + 1, x4 +
Zx3 + 3x2 + 4x + 3) and s (x) and t(x) for polynomials
in Zg[x]. Verify that a(x)s (x) 4- b (x) t (x) = g(x).
c) Compute (2+8x+ lox2 +4x3, 1 +7x+14x2 + 8 x 3)
and s (x) and t (x) for polynomials in R[x]. For polyno-
mials with real coefficients, extra care must be taken to
handle roundoff. Verify that a(x)s (x) +b(x)t (x) = g(x).

3) Write a function which applies the Sugiyama algorithm
to a sequence of data or its polynomial representation.
4) Test your algorithm over Zg[x] by finding the shortest
polynomial generating the sequence (3,2,3, 1,4,0,4,3}.

224 Rudiments of Number Theory and Algebra

Having found t (x), compute b(x)t (x) and identify r (x) and
s (x) and verify that they are consistent with the result found
by the Sugiyama algorithm.

5) In Zg[x], verify that the sequence (3 ,2 ,1 ,0 ,4 ,3 ,2 , l}

can be generated using the polynomial ti (x) = 1 + 2x +
4x2 + 2x3 + x4. Then use the Sugiyama algorithm to find
the shortest polynomial t (x) generating the sequence and
verify that it works.

Programming Laboratory 5:
Programming Galois Field Arithmetic

Objective

Galois fields are fundamental to algebraic blockcodes. This
lab provides a tool to be used for BCH and Reed-Solomon
codes. It builds upon the LFSR code produced in lab 2.

Preliminary Exercises

Reading: Section 5.4.
Write down the vector, polynomial, and power repre-

sentations of the field G F Q ~) generated with the polyno-
mial g(x) = 1 + x + x3. Based on this, write down the
tables v2p and p2v for this field. (See the implementation
suggestions for the definition of these tables.)

Programming Part

Create a C++ class GFNUM2m with overloaded operators to
implement arithmetic over the field GF(2'") for an arbitrary
rn < 32. This is similar in structure to class ModAr class,
except that the details of the arithmetic are different.

Test all operations of your class: + I -, * , / , * , +=,

g(x) = 1 + x + x4 by comparing the results the computer
provides with results you calculate by hand. Then test for
GF(23) generated by g(x) = 1 + x + x3.

The class GFNUM2m of Algorithm 5.5 provides the dec-
larations and definitions for the class. In this representation,
the field elements are represented intrinsically in the vector
form, with the vector elements stored as the bits in a sin-
gle int variable. This makes addition fast (bit operations).
Multiplication of Galois field elements is easier when they
are in exponential form and addition is easier when they are
in vector form. Multiplication here is accomplished by con-
verting to the power representation, adding the exponents,

_= , *- - I /=, *=, ==(!=forthefieldgeneratedby

then converting back to the vector form. In GFNUM2m, all of
the basic field operations are present except for completing
the construction operator in i t gf which builds the tables
v2p and p2v. The main programming task, therefore, is
to build these tables. This builds upon the LFSR functions
already written.

Algorithm 5.5 GF(2m)
File: GFNUM2m. h

GFNUM2m.cc
t e s t gf num . cc

To make the conversion between the vector and power
representations, two arrays are employed. The array v2p
converts from vector to power representation and the array
p2v converts from power to vector representation.

Example 5.48 In the field GF(24) represented in Table
5.1, the field element (1,0, 1, 1) has the power represen-
tation a7. The vector (1,0, 1, 1) can be expressed as an in-
teger using binary-to-decimal conversion (LSB on the right)
as 11. We thus think of 11 as the vector representation. The
number v2p [11] converts from the vector representation,
11, to the exponent of the power representation, 7.

Turned around the other way, the number a7 has the
vector representation (as an integer) of 11. The number
p2v [7] converts from the exponent of the power repre-
sentation to the number 1 1. The conversion tables for the
field are

4 11 14
4 2 3 12 15
5 8 6 13 13 13
6 5 12 14 11 9
7 10 11 15 12 -

5.12 Exercises 225

0

To get the whole thing working, the arrays p2v and v2p
need to be set up. To this end, a static member function
initgf (int m, int g) is created. Given the degree
of the extension m and the coefficients of g(x) in the bits of
the integer g, initgf sets up the conversion arrays. This
can take advantage of the LFSR programmed in lab 2. Start-
ing with an initial LFSR state of 1, the v2p and p2v arrays
can be obtained by repeatedly clocking the LFSR: the state
of the LFSR represents the vector representation of the Ga-
lois field numbers, while the number of times the LFSR has
been clocked represents the power representation.

There are some features of this class which bear remark-
ing on:

The output format (when printing) can be specified in
either vector or power form. In power form, something like
A ^ 3 is printed; in vector form, an integer like 8 is printed.
The format can be specified by invoking the static member
function setouttype, as in

GFNUM2m::setouttype(vector);

GFNUM2m::setouttype(power);
/ / set vector output format

/ / set power output format

The v2p and p2v arrays are stored as static arrays. This
means that (for this implementation) all field elements must
come from the same size field. It is not possible, for exam-
ple, to have some elements to be G F (Z 4) and other elements
to be G F (2 8) . (You may want to give some thought to how
to provide for such flexibility in a memory efficient manner.)

0 A few numbers are stored as static data in the class. The
variable g f m represents the number m in G F (2 m) . The
variable gf N represents the number 2m - 1. These should
be set up as part of the initgf function. These numbers
are used in various operators (such as multiplication, divi-
sion, and exponentiation).
0 Near the top of the header are the lines

extern GFNUM2m ALPHA;

extern GFNUM2m& A;
/ / set up a global alpha

/ / and a reference to alpha
/ / for shorthand

These declare the variables ALPHA and A, the latter of
which is a reference to the former. These variables can be
used to represent the variable a in your programs, as in

GFNUM2m a;
a = (A-4) + (A-8);//

/ / a is alpha-4 + alpha-a

The deJinitions of these variables should be provided in
the GFNUM2m. cc file.

Write your code, then extensively test the arithmetic us-
ing G F (z 4) (as shown above) and G F (2 8) . For the field
G F (2 8) , use the primitive polynomial p (x) = 1 + x 2 +
x3 + x4 + x 8 :

GFNUM2m::initgf(8,0xllD);
/ / 1 0001 1101
/ / x A a + x-4 + X-3 + X-2 + 1

5.1 2 Exercises

5.1 Referring to the computations outlined in Example 5.1:

5.2

5.3

5.4
5.5

5.6

(a) Write down the polynomial equivalents for y1, n, . . . , y31. (That is, find the binary

(b) Write down the polynomial representation for y;, using operations modulo M (x) = 1 +

(c) Explicitly write down the 10 x 31 binary parity check matrix H in (5.1).

representation for yi and express it as a polynomial.)

x2 + x5 .

Prove the statements in Lemma 5.1 that apply to integers.

[250] Let s and g > 0 be integers. Show that integers x and y exist satisfying x + y = s and
(x , y) = g if and only if gl s.

[250] Show that if rn > n, then (a2" + 1) I (a2" - 1).

Wilson's theorem: Show that if p is a prime, then (p - l)! = -1 (mod p) .

Let f (x) =
f (x) = g(x)q(x) + r (x) , where deg(r(x)) < deg(g(x)).

+ x9 + x5 + x4 and g(x) = x2 + x + 1 be polynomials in G F (2) [x] . Write

226 Rudiments of Number Theory and Algebra

5.7

5.8

5.9
5.10

5.11

5.12

5.13

5.14

5.15

Uniqueness of division algorithm: Suppose that for integers a > 0 and b there are two represen-
tations

b = qia + ri b = q2a + 1-2,

with 0 5 r l < a and 0 5 r2 -= a. Show that r l = r2.

Let Ra[b] be the remainder of b when divided by a, where a and b are integers. That is, by the
division algorithm, b = q a + Ra[b]. Prove the following by relating both sides to the division
algorithm.

(a) Ra[b + cl = Ra[&[bl + Ra[cll.

(b) Ra [bcl = Ra [Ra [blRa [ell.

(c) Do these results extend to polynomials?

Find the GCD g of 6409 and 42823. Also, find s and t such that 6409s + 42823t = g.

Use the extendedEuclidean algorithmover Z, [XI to find&) = (a@), b(x)) and the polynomials
s (x) and t(x) such that a(x)s (t) + b(x)t(x) = g (x) for

3

6 5
(a) a (x) = x + x + 1, b(x) = x 2 + x + 1 for p = 2 and p = 3.

(b) a (x) = x + x + x + 1, b(x) = x4 + x3, p = 2 and p = 3.

Let a E Zn. Describe how to use the Euclidean algorithm to find an integer b E Z n such that
ab = 1 in Zn, if such a b exists and determine conditions when such a b exists.

Show that all Euclidean domains with a finite number of elements are fields.

Prove the GCD properties in Theorem 5.3.

Let a and b be integers. The least common multiple (LCM) m of a and b is the smallest
positive integer such that a1 m and b / m. The LCM of a and b is frequently denoted [a, b]
(For polynomials a(x) and b(x), the LCM is the polynomial m (x) of smallest degree such that
a(x) 1 m (x) and b(x) 1 m (x) .

(a) If s is any common multiple of a and b (that is, a 1 r and b I r) and m = [a, b] is the least

(b) Show that form > 0, [ma, mb] = m[a, b].

(c) Show that a, b = lab1

common multiple of a and b, then m I s. Hint: division algorithm.

Let C1 and C2 be cyclic codes generated by g1 (x) and g 2 (x) , respectively, with g1 (x) # g2(x) .
Let C3 = C1 n C2. Show that C3 is also a cyclic code and determine its generator polynomial
g3(x). If dl and d2 are the minimum distances of C1 and C2, respectively, what can you say about
the minimum distance of C3?

5.16 Show that c:I; i -2 = 0 (mod p) , where p is a prime. Hint: The sum of the squares of the

5.17 [360] Show that {as + bt : s, t E Z} = {k (a , b) : k E Z} for all a, b E Z.
5.18 Show that the update equations for the extended Euclidean algorithm in (5.9) are correct. That

is, show that the recursion (5.9) produces si and ti satisfying the equation asi + bti = ri for all i.
Hint: Show for the initial conditions given in (5.10) that (5.8) is satisfied for i = -1 and i = 0.
Then do a proof by induction.

5.19 [33] A matrix formulation of the Euclidean algorithm. For polynomials a (x) and b(x) , use
the notation ~ (x) = L#] b(x) + r (x) to denote the division algorithm, where q (x) =

is the quotient. Let deg(a(x)) > deg(b(x)). Let a(O)(x) = a(x) and do)(,) = b(x) and

first n natural numbers is n(n + 1)(2n + 1)/6.

(X)

5.12 Exercises 227

A(')(x) = [i :]. Let

(b) Show that d K) (x) = 0 for some integer K .

(c) Show that [a(Ki(x)] =

(d) Showthat

[;::,'I. Conclude that any divisor of both a(n) and b(x)

also divides #) (x) . Therefore (a(x) , b (x)) I d K) (x) .

Henceconcludethata(K)(x) 1 a(x) and#(n) 1 b(x),andthereforethat#)(x) 1 (a(x) , b (x)) .

(el Conclude that #)(n) = y (a (x) , b(x)) for some scalar y . Furthermore show that
~ (~) (x) = A (K) l1 (x) a (x) + A r t) (x) b (x) .

5.20 [360] More on the matrix formulation of the Euclidean algorithm. Let

(a) pG[(;)] = R(') [;::;I , 0 5 i 5 K , where K is the last index such that r~ (x) # 0.

(c) Show that any common divisor of ri and rj+l is a divisor of r~ and that rK I rj and r K I rj+l

(dl sjtj+l - si+ltj = (-l) i+l, SO that (s j , ti) = 1. Hint: determinant of

(e) sja + tib = r i , -1 5 i 5 K .

for -1 5 i < K .

(0 (ri, ti) = (a , ti)

5.21 [234] Properties of the extended Euclidean algorithm. Let qi, r i , s j , and ti be defined as in
Algorithm 5.1. Let n be the values of i such that rn = 0 (the last iteration). Using proofs by

228 Rudiments of Number Theorv and Algebra

induction, show that the following relationships exist among these quantities:

tjrj-1 - tj-lrj = (-1)'u

sjrj-1 - sj-lrj = (-l)i+'b

sjtj-1 - S j - l t j = (-l)i+l

sja + tib = ri

0 s i s n

o 5 i 5 n

O s i l n
- 1 s i s n

l s i s n

O i i c n

deg(sj) + deg(ri-1) = deg(b)

deg(tj) + deg(rj-1) = deg(a)

5.22 Continued fractions and the Euclidean algorithm. Let uo and ul be in a field IF or ring of
polynomials over a field IF[x]. A continued fraction representation of the ratio uo/ul is a fraction
of the form

(5.50)
1 u0 -=a ()+

U l 1
a1 + 1

a 2 + * * *
1

aj-1+ -
Q j

For example,
51 1
- = 2 + -
22 1 '

3 + ?

The continued fraction (5.50) can be denoted as (ao, a l , . . . , aj).
(a) Given uo and u1, show how to use the Euclidean algorithm to find the ao, a1 , . . . , aj in

the continued fraction representation of uo/ul. Hint: by the division algorithm, ug =
ulao + u2. This is equivalent to uo/u l = a0 + l/(ul/u2).

(b) Determine the continued fraction expansion for uo = 966, ul = 815. Verify that it works.
(c) Let u o (x) , ul(x) E Zg[xl, where uo(x) = 1 + 2x + 3x2 + 4x3 + 3x5 and ul(x) =

1 + 3x2 + 2x3. Determine the continued fraction expansion for u o (x) / u l (x).

5.23 [234] Pad6 Approximation and the Euclidean Algorithm. Let A(x) = a0 + a lx + a2x2 + + . .
be a power series with coefficients in a field F. A (p, u) Pad6 approximant to A(x) is a rational
function p(x)/q(x) such that q(x)A(x) = p (x) (mod xN+l), where p + u = N and where
deg(p(x) 5 p and deg(q(x)) 5 u. That is, A(x) agrees with the expansion p (x) / q (x) for terms
uptoxN. ThePad6conditioncanbewrittenasq(x)AN(x) = p(x) (mod xN+l), whereAN(x)
is the Nth truncation of A(x),

AN(x) = uo + a l x + . . . + U N X ~

(a) Describe how to use the Euclidean algorithm to obtain a sequence of polynomials r j (x)
and t j (x) such that ti (x) A ~ (x) = r j (x) (mod xN+l).

(b) Let p + u = deg(a(x)) - 1, with p 2 deg((a(x), b(x)). Show that there exists a unique
index j such that deg(r,) 5 p and deg(tj) 5 u. Hint: See the last property in Exercise
5.21

(c) Let A(x) = l+2x+x3+3x7+x9+.. . beapowerseries. DetermineaPad6approximation
with p = 5 and u = 3; that is, an approximation to the truncated series Ag(x) = 1 + 2x +
x3 + 3x7.

5.24 Let I1 and 12 be ideals in F[x] generated by g1 (x) and g2(x), respectively.

5.12 Exercises 229

(a) The least common multiple of g1 (x) and gZ(x) is the polynomial g (x) of smallest degree
such that g1 (x) I g (x) and g z (x) I g (x) . Show that I1 n Zz is generated by the least common
multiple of g l (x) and g 2 (x) .

(b) Let I1 + 12 mean the smallest ideal which contains I1 and Zz. Show that I1 + 12 is generated
by the greatest common divisor of gl(x) and g2(x) .

5.26
5.27

5.28

5.29
5.30

5.31

5.32

5.33

5.34

5.35

5.36

5.37

5.25 Using the extended Euclidean algorithm, determine the shortest linear feedback shift register that
could have produced the sequence [l, 4 ,2 ,2 ,4 , 11 with elements in 2 5 .

Prove statements (1) - (9) of Theorem 5.8.
If x is an even number, then x = 0 (mod 2). What congruence does an odd integer satisfy? What
congruence does an integer of the form x = 7k + 1 satisfy?
[250] Write a single congruence equivalent to the pair of congruences x = 1 (mod 4) and x = 2
(mod 3).
Compute: +(190), +(191), +(192).
[250] Prove the following divisibility facts:

(a) n6 - 1 is divisible by 7 if (n, 7) = 1
(b) n7 - n is divisible by 42 for any integer n.
(c) n12 - 1 is divisible by 7 if (n , 7) = 1.
(d) dk - 1 is divisible by 7 if (n, 7) = 1, k a positive integer.
(e) n13 - n is divisible by 2,3 ,5 ,7 , and 13 for any positive integer n.

Show that

where the product is taken over all primes p dividing n. Hint: write n = pi' p p . . . p p .
In this exercise, you will prove an important property of the Euler + function:

d In

where the sum is over all the numbers d that divide n.

(a) Suppose n = p e , where p is prime. Show that (5.51) is true.
(b) Now proceed by induction. Suppose that (5.51) is true for integers with k or fewer distinct

prime factors. Consider any integer N with k + 1 distinct prime factors. Let p denote
one of the prime factors of N and let pe be the highest power of p that divides N . Then
N = pen, where n has k distinct prime factors. As d ranges over the divisors of n, the set
d, p d , p'd, . . . , ped ranges over the divisors of N. Now complete the proof.

Let Gn be the elements in 2, that are relatively prime to n. Show that G n forms a group under
multiplication.
RSA Encryption: Let p = 97 and q = 149. Encrypt the message rn = 1234 using the public key
{ e , n} = {35,14453}. Determine the private key (d , n}. Then decrypt.
A message is encrypted using the public key {e , n} = {23,64777}. The encrypted message is
c = 1216. Determine the original message rn. (That is, crack the code.)
Find all integers that simultaneously satisfy the congruences x = 2 (mod 4), x ZE 1 (mod 9)
andx = 2 (mod 5).
Find a polynomial f (x) E 2 5 [XI simultaneously satisfying the three congruences

(mod (x - 2)2) f (x) = 2

f (x) = x 2 + 3 x + 2

(mod x - 1) f (x) = 3 + 2x

(mod (x - 3)3)

230 Rudiments of Number Theorv and Algebra

5.38

5.39

5.40

5.41

5.42

5.43
5.44

5.45

Evaluation homomorphism: Show that f (x) (mod x - u) = f (u) . Show that n : F[x] + F
defined by nu (f(x)) = f (u) is a ring homomorphism.
Determine a Lagrange interpolating polynomial f (x) E R[x] such that

f(1) = 3 f(2) = 6 f (3) = 1.

Let (xi, y i) , (x2, ~ 2 1 , . . . , (X N , Y N) be points.

(a) Write down the Lagrange interpolants Zi (x) for these points.

(b) Write down a polynomial f (x) that interpolates through these points.

An interesting identity. In this exercise you will prove that for p i , p2, . . . , p~ all distinct, the
following identity holds:

N N

- 1 Pi c n =-
i=l n=l,n#i

in any field.

(a) Verify the identity when N = 2 and N = 3.
(b) Let f (x) = x N - l . FindaLagrangeinterpolatingpolynomialg(x)forthepoints(pl, p y - ') ,

(c) Determine the (N - 1)st derivative of g(x), g(N-')(x).
(d) Determine the (N - 1)st derivative of f (x) , f (N - ') (x) .

(e) Show that the identity is true.
(f) Based on this identity, prove the following facts:

N - 1
(p23 p r - ') , . . . , (P N 3 p N 1.

i. z E ~ FIn=l,n#i N
ii. m 1 ci=1 N (- l) N - i (Y) i N = 1.

iii. xE1 nn=l,n#i N

V. Ci=1 ITn=l,n+i + = 1 9 x z 1 .

= 1.

5 = 1 .

iv. czl(--1)i-1(7) = 1.

vi. Czl FInN=l.*#i iqqqT = 1 for allx # 0.

N N

Let Zj (x) be a Lagrange interpolant, as in (5.25). Show that Cg=l Zj (x) = 1.

Show that x5 + x3 + 1 is irreducible over GF(2).
Determine whether each of the following polynomials in GF(2)[x] is irreducible. If irreducible,
determine if it is also primitive.

(a) x2 + 1 (g) x5 + x3 + x2 + x + 1
(b) x2 + x + 1 (e) x 4 + x 2 + x 2 + x + 1 . (h) x 5 + x 2 + l
(c) x 3 + x + 1 (f) x 4 + x 3 + x + 1 (i) x 6 + x 5 + x 4 + x + 1

(d) x 4 + x 2 + l

Let p(x) E GF(2)[x] be p (x) = x4 + x3 + x2 + x + 1. This polynomial is irreducible. Let this
polynomial be used to create a representation of GF(24). Using this representation of GF(24),
do the following:

(a) Let (Y be a root of p(x). Show that (Y is not a primitive element.
(b) Show that B = (Y + 1 is primitive.
(c) Find the minimal polynomial of = (Y + 1.

5.12 Exercises 231

5.46 Solve the following set of equations over G F Q ~) , using the representation in Table 5.1.

5 a x + a y + z = a

a2x + a3y +a% = a4
a % + y + a z = a 9 10 .

5.47 Show that (x - j3) is a factor of a polynomial f (x) if and only if f (j 3) = 0.
5.48 Create a table such as Table 5.1 for the field GF(23) generated by the primitive polynomial

5.49 Construct the field GF(8) using the primitive polynomial p (x) = 1 + x 2 +x3, producing a table

5.50 Extension of GF(3):

x3 + x + 1, including the Zech logarithms.

similar to Table 5.1. Use j3 to represent the root of p (x) : p3 + p2 + 1 = 0.

(a) Prove that p (x) = x 2 + x + 2 is irreducible in GF(3) .
(b) Construct the field GF(32) using the primitive polynomial x 2 + x + 2.

5.51 Let g(x) = (x2 - 3x + 2) E R[x]. Show that in R [x] / (g (x)) there are zero divisors, so that this

5.52 Let f (x) be a polynomial of degree n over GF(2) . The reciprocal of f(X) is defined as
does not produce a field.

f*b) = x " f (l / x)

(a) Find the reciprocal of the polynomial

f (x) = 1 + x + x 5 .

(b) Let f (x) be a polynomial with nonzero constant term. Prove that f (x) is irreducible over

(c) Let f(x) be a polynomial with nonzero constant term. Prove the f (x) is primitive if and
GF(2) if and only if f * (x) is irreducible over GF(2) .

only if f * (x) is primitive.

5.53 Extending Theorem 5.15. Show that

i=l i=l

Show that
(x + y)P' = xp' + yp' .

5.54 Prove Lemma 5.26.
5.55 Show that, over any field, xs - 1 I x" - 1 if and only if s 1 r .

5.56 [25, p . 291 Let d = (m, n). Show that (x" - 1, x" - 1) = x - 1. Hint: Let rk denote the
remainders for the Euclidean algorithm over integers computing (m, n) , with rk-2 = qkrk- 1 +rk ,
and let be the remainder for the Euclidean algorithm over polynomials computing (x m -
1, xn - 1). Show that

d

232 Rudiments of Number Theory and Algebra

5.57 The set of Gaussian integers Z[i] is made by adjoining i = to Z:

Z[i] = {a + bi : U , b E Z}.

(This is analogous to adjoining i = to R to form C.) For a E Z[i], define the valuation
function v(a) = au*, where * denotes complex conjugation. v(a) is also called the norm. Z[i]
with this valuation forms a Euclidean domain.

(a) Show that v(u) is a Euclidean function. Hint: Let a = a1 + u2i and b = bl + b2i,
a / b = Q + i s with Q, S E Q and q = q1 + iq2,q1,42 E Z be the nearest integer point
to (a / b) and let r = a - bq. Show that u (r) < u(b) by showing that u(r) /u (b) < 1.

(b) Show that the units in Z[i] are the elements with norm 1.
(c) Compute the greatest common divisors of 6 and 3 + i in Z[i]. Express them as linear

5.58 The trace is defined as follows: For j3 E GF(p'), Tr(B) = j3 + j3P + j3P + . . . + j 3 P r - ' . Show

combinations of 6 and 3 + i .
2

that the trace has the following properties:

(a) For every j3 E GF(p'), Tr(j3) E GF(p).

(b) There is an element j3 E G F (p ') such that Tr(j3) # 0.

(c) The trace is a GF(p)-linear function. That is, for j3, y E G F (p) and 61,S2 E GF(p ') ,

Tr[BSi + ~ 6 2 1 = B Td611 + Y Tr[S21.

5.59 Square roots in finite fields: Show that every element in GF(2m) has a square root. That is, for

5.60 [360, p. 2381 Let q = p m and let t be a divisor of q - 1, with prime factorization t =

every j3 E GF(2m), there is an element y E GF(2m) such that y2 = j3.

p;' p: . . . pFr. Prove the following:

(a) For a E G F (q) with a # 0, ord(a) = t if and only if at = 1 and at/J" # 1 for

(b) GF(q) contains an element j3i of order pfi for i = 1,2, . . . , r .

(c) If a E GF(q) and j3 E GF(q) have (ord(a), ord(j3)) = 1, then ord(aj3) = ord(a) ord(j3).
(d) G F (q) has an element of order t .
(e) GF(q) has a primitive element.

i = 1 , 2 , . . . , r.

5.61 Let f (x) = (x - q) ' l . . . (x - ul)'l. Let f ' (x) be the formal derivative of f (x) . Show that

5.62 The polynomial f(x) = x2 - 2 is irreducible over Q[x] because 2/2 is irrational. Prove that 2/2

5.63 Express the following as products of binary irreducible polynomials over GF(2)[x]. (a) x7 + 1.

5.64 Construct all binary cyclic codes of length 7.
5.65 Refer to Theorem 4.1. List all of the distinct ideals in the ring G F (~) [x] / (x ' ~ - 1) by their

5.66 [373] List by dimension all of the binary cyclic codes of length 31.
5.67 [373] List by dimension all of the 8-ary cyclic codes of length 33. Hint:

(f(x), f'(x)) = (x - a1)rl-l . . . (x - u p - 1 .

is irrational.

(b) x15 + 1.

generators.

x33 - 1 = (x + 1)(x2 + x + 1) (P + x7 + x5 + x3 + l)(x'O + x9 + x5 + x + 1)

(XI0 +x9 $ 2 +x7 +x6 +x5 +x4 + x 3 + x 2 + x + 1).

5.12 Exercises 233

5.68

5.69

5.70

5.71

5.72

5.73

5.74

5.75

5.76

List the dimensions of all the binary cyclic codes of length 19. Hint:

18
x19 + 1 = (x + 1) p.

i SO

Let p be an element of GF(2m), with j3 # 0 and p # 1. Let q (x) be the minimal polynomial of
B. What is the shortest cyclic code with q (x) as the generator polynomial?
Let p E GF(q) have minimal polynomial m(x) of degree d . Show that the reciprocal xdm(l/x)
is the minimal polynomial of p-1.
Let a! E GF(2lo) be primitive. Find the conjugates of a! with respect to GF(2), GF(4), and
G F (32).
In the field GF(9) constructed with the primitive polynomial x2 + x + 2 (see Exercise 5.50),
determine the minimal polynomials of all the elements with respect to GF(3) and determine the
cyclotomic cosets.
[373] Determine the degree of the minimal polynomial of j3 with respect to GF(2) for a field
element p with the following orders: (a) ord(B) = 3. Example: {j3, p2, p4 = p } , so there
are two conjugates. Minimal polynomial has degree 2. (b) ord(p) = 5 (c) ord(j3) = 7. (a)
ord(B) = 9
For each of the following polynomials, determine a field GF(2m) where the polynomials can be
factored into polynomials in GF(2)[x]. Determine the cyclotomic cosets in each case and the
number of binary irreducible polynomials in the factorization.

(a) x9 + 1

(3) X1l + 1

(c) x13 + 1
(d) x17 + 1

(el x19 + 1

(0 x29 + 1

Let g (x) be the generator of a cyclic code over G F (q) of length n and let q and n be relatively
prime. Show that the vector of all 1s is a codeword if and only if g(1) # 0.
Let g (x) = x9 + P2x8 + x6 + x 5 + p2x2 + p2 be the generator for a cyclic code of length 15
over GF(4), where p = p2 + 1 is primitive over GF(4).

(a) Determine h (x) .
(b) Determine the dimension of the code.
(c) Determine the generator matrix G and the parity check matrix H for this code.
(d) Let r (x) = j3x3 + p2x4. Determine the syndrome for r (x) .

(e) Draw a circuit for a systematic encoder for this code.
(f) Draw a circuit which computes the syndrome for this code.

5.77 [373] Let (f (x) , h(x)) be the ideal I c GF(2)[x]/(xn - 1) formed by all linear combinations
of the form a (x) f (x) + b (x) g (x) , where a(x), b(x) E GF(2)[x]/(xn - 1). By Theorem4.1, I
is principal. Determine the generator for I .

5.78 Let A(z) = xr=oAnzn and B(z) = cr=o Bnzn be generating functions and let C(z) =

A(z)B(z) . Using the property of a formal derivative that A'(z) = CEO nAnz"-l, show that
C'(z) = A'(z)B(z) + A(z)B ' (z) . By extension, show that if C(z) = Ai(z), show that

5.79 Show how to make the transition from (5.44) to (5.45).

234 Rudiments of Number Theory and Algebra

5.80 Show that:

(a) For an LFSR with an irreducible generator g (x) of degree p , the period of the sequence is
a factor of 2P - 1.

(b) If2P - 1 is prime, then every irreducible polynomial of degree p produces a maximal-length
shift register.
Incidentally, if 2n - 1 is a prime number, it is called a Mersenne prime. A few values of
n which yield Mersenne primes are: n = 2,3,5,7, 13, 17, 19,31,61,89.

5.81 Prove Theorem 5.41.
5.82 Using Exercise 5.32 and Theorem 5.42, show that

dJ(n) = CCL(d)(n/d) .
dln

5.83 Let q = 2. Use (5.49) to determine I i 1 Z 2 , 1 3 , 14, and 15.

5.1 3 References

The discussion of number theory was drawn from [250] and [360]. Discussions of the
computational complexity of the Euclidean algorithm are in [1871 and [360]. The Sugiyama
algorithm is discussed in [324] and [234]. Fast Euclidean algorithm implementations are
discussed in [34]. Continued fractions are discussed in [250]; Pad6 approximation appears
in [234, 239, 3601 A delightful introduction to applications of number theory appears in
[304]. Modern algebra can be found in [106,360,373,31,25]. More advanced treatments
can be found in [155,162], while a thorough treatment of finite fields is in [200,201]. Zech
logarithms and some of their interesting properties are presented in [304]. Our discussion
of hardware implementations is drawn from [203], while the format of the add/multiply
tables inside the back cover is due to [274]. Discussion of irreducible polynomials was
drawn closely from [25]. The RSA algorithm was presented first in [293]; for introductory
discussions, see also [360] and [304]. The algebraic approach using the Chinese Remainder
Theorem for fast transforms in multiple dimensions is explored in [277].

Chapter 6

BCH and Reed-Solomon Codes:
Designer Cyclic Codes
The most commonly used cyclic error correcting codes are the BCH and Reed-Solomon
codes. The BCH code is named for Bose, Ray-Chaudhuri, and Hocquenghem (see the
references at the end of the chapter), who published work in 1959 and 1960 which revealed a
means of designing codes over GF(2) with a specified design distance. Decoding algorithms
were then developed by Peterson and others.

The Reed-Solomon codes are also named for their inventors, who published in 1960. It
was later realized that Reed-Solomon (RS) codes and BCH codes are related and that their
decoding algorithms are quite similar.

This chapter describes the construction of BCH and RS codes and several decoding
algorithms. Decoding of these codes is an extremely rich area. Chapter 7 describes other
“modern” decoding algorithms.

6.1 BCHCodes

6.1.1 Designing BCH Codes

BCH codes are cyclic codes and hence may be specified by a generator polynomial. A BCH
code over G F (q) of length n capable of correcting at least t errors is specified as follows:

Determine the smallest m such that G F (q m) has a primitive nth root of unity p .
Select a nonnegative integer b . Frequently, b = 1.

Write down a list of 2t consecutive powers of B :
p b , pb+’ , . . . , Bb+-l .

Determine the minimal polynomial with respect to G F (q) of each of these powers
of p . (Because of conjugacy, frequently these minimal polynomials are not distinct.)

The generator polynomial g(x) is the least common multiple (LCM) of these minimal
polynomials. The code is a (n , n - deg(g(x)) cyclic code.

Because the generator is constructed using minimal polynomials with respect to G F (q) ,
the generator g(x) has coefficients in GF(q) , and the code is over G F (q) .

Definition 6.1 If b = 1 in the construction procedure, the BCH code is said to be narrow
0

Two fields are involved in the construction of the BCH codes. The “small field G F (q)
is where the generator polynomial has its coefficients and is the field where the elements of
the codewords are. The “big field” GF(qm) is the field where the generator polynomial has
its roots. For encoding purposes, it is sufficient to work only with the small field. However,
as we shall see, decoding requires operations in the big field.

sense. If n = q m - 1 then the BCH code is said to be primitive.

236 BCH and Reed-Solomon Codes: Designer Cyclic Codes

Example 6.1 Let n = 3 1 = 25 - 1 for a primitive code with m = 5 and let j3 be a root of the primitive
polynomial x 5 + x 2 + 1 in GF@). (That is, j3 is an element with order n.)

Let us take b = 1 (narrow sense code) and construct a single-error correcting binary BCH code.
That is, we have t = 1. The 2t consecutive powers of j3 are j3, 8'. The minimal polynomials of j3 and
p2 with respect to GF(2) are the same (they are conjugates). Let us denote this minimal polynomial
by Mi (x). Since j3 is primitive, Mi (x) = x 5 + x2 + 1 (see Table 5.4). Then

g(x) = M l (X) = 2 + x 2 + 1.

Since deg(g) = 5, we have a (31,26) code. (This is, in fact, a Hamming code.) 0

Example 6.2 As before, let n = 31, but now construct a t = 2-error correcting code, with b = 1,
and let j3 be a primitive element. We form 2t = 4 consecutive powers of j3: j3, p2, p3 , p4. Dividing
these into conjugacy classes with respect to GF(2), we have {j3, p2, p4], {p3 } . Using Table 5.4 we
find the minimal polynomials

M~(x) = 2 + 2 + 1 M 3 (x) = x5 + x4 + 2 + 2 + 1

= .lo + x9 + x8 + x 6 + 2 + x3 + 1.
This gives a (31, 31 - 10) = (31,21) binary cyclic code. 0

Example 6.3 As before, let n = 31, but now construct a t = %error correcting code, with b = 1.
We form 2t = 6 consecutive powers of j3:

Divided into conjugacy classes with respect to GF(2), we have

{ A P 2 , D4I3 { P 3 > P I 7 {B51.

Denote the minimal polynomials for these sets as M1 (x), M3 (x) and M5 (x), respectively. Using
Table 5.4 we find that the minimal polynomials for elements in these classes are

M ~ (~) = x 5 + x 2 + l M3(x) = x 5 + x4 + x 3 +2 + 1 M 5 (x) = 2 +x4 + x 2 + x + 1

so the generator is

g(x) = LCM[M1 M3 (XI, M5 (x)I = Mi (x)M3 (x)M5 (x)
11 10 + x = X l 5 + x +x9 + .* + x7 + x 5 + 2 + x 2 + x + 1

This gives a (31, 31 - 15) = (31, 16) binary cyclic code. 0

Example 6.4 Construct a generator for a quaternary, narrow-sense BCH 2-error correcting code of
length n = 51. For a quaternary code we have q = 4. The smallest rn such that 51 I qm - 1 is
m = 4, so the arithmetic takes place in the field GF(44) = GF(256). Let a! be primitive in the
field GF(256). The element j3 = a5 is a 51st root of unity. The subfield GF(4) in GF(256) can be
represented (see Example 5.33) using the elements {0, 1, d5, d 7 0] . The 2t consecutive powers of
j3 are j3, j3', ,!I3, b4. Partitioned into conjugacy classes with respect to GF(4), these powers of j3 are
{j3, p4], ID2), {b3} . The conjugacy classes for these powers of j3 are

6.1 BCH Codes 237

with corresponding minimal polynomials

p1 (x) = x4 + ,170x3 + 2 + x + ,170

P2(X) = x4 + ,S5X3 + 2 + 2 5

p 3 (x) = x4 + a170x3 + x 2 + ,170, + 1.

These are in G F (4) [x] , as expected. The generator polynomial is

6.1.2 The BCH Bound

The BCH bound is the proof that the constructive procedure described above produces codes
with at least the specified minimum distance.

We begin by constructing a parity check matrix for the code. Let c (x) = rn(x)g(x) be
a code polynomial. Then, for i = b, b + 1 , . . . , b + 2t - 1 ,

since these powers of /3 are, by design, the roots of g (x) . Writing c (x) = co + c1x + . . . +
Cn-1xn-' we have

c(p'> = m (p ') g (p ') = m(p')o = 0,

~0 + C ~ B ' + c 2 (p ' l 2 + + c n - l (p i > n - l = o i = b, b + I , . . . , b + 2t - 1.
The parity check conditions can be expressed in the form

= O i = b , b + l , ..., b + 2 t - 1 .

Let 6 = 2t + 1 ; 6 is called the design distance of the code. Stacking the row vectors for
different values of i we obtain a parity check matrix H,

(6.1)

p 2 b ... p (n - l P

p2(b+1) . . . p (n - l) (b + l)

p2(b+6-3) . . . p(n-l)(b+6-3)

p2(b+6-2) . . . p(n-l)(b+6-2)

H =

With this in place, there is one more important result needed from linear algebra to prove
the BCH bound.

A Vandermonde matrix is a square matrix of the form

v = V (x 0 , X I , . . . , xn-1) =

238 BCH and Reed-Solomon Codes: Designer Cyclic Codes

or the transpose of such a matrix.

Lemma 6.1
det(V) = n (xk - x j) .

05 j <k in-1

Thus, as long as the xi are all distinct, the Vandermonde matrix is invertible.

Proof The determinant is a polynomial function of the elements of the matrix of total degree

1 + 2 + . . . + n - 1 = n(n - 1)/2.

We note that if any xi = xo, i # 0, then the determinant is equal to 0, since the determinant
of a matrix with two identical columns is equal to 0. This suggests that we can think of the
determinant as a polynomial of degree n - 1 in the variable xo. Thus we can write

det(V) = (X O - xl>(xo - ~ 2) . . . (X O - xn-l)po(xl, ~ 2 , . . ., xn-11,

where po is some polynomial function of its arguments. Similarly, we can think of det(V)
as a polynomial in X I of degree n - 1, having roots at locations xo, x2, . . . , xn-1:

det(V) = (X I - xo>(xl - ~ 2) . . . (X I - xn-l)pl(xo, ~ 2 9 . ., xn-1).

This applies to all the elements, so

det(V) = n (xk - xj)P(xo, x i , . . . , xn-1)
0s j <ksn-l

for some function p which is polynomial in its arguments. The product

n (xk - x j)
0 s j < k i n - l

has total degree
(n - 1) + n - 2 + . . . + 1 = n(n - 1)/2.

Comparing the degrees of both sides, we see that p = 1. 0

Theorem 6.2 (The BCH Bound) Let C be a q-ary (n , k) cyclic code with generatorpoly-
nomial g (x) . Let G F (q m) be the smallest extensionjield of G F (q) that contains a prim-
itive nth root of unity and let j3 be a primitive nth root of unity in that jield. Let g (x)
be the minimal-degree polynomial in G F (4) [X I having 2t consecutive roots of the form
g(Bb> = g (B b f l) = g(j3b+2) = . . . = g(j3b+2f-1). Then the minimum distance of the code
satisfies dmin >_ 6 = 2t + 1; that is, the code is capable of correcting at least t errors.

In designing BCH codes we may, in fact, exceed the design distance, since extra roots as
consecutive powers of j3 are often included with the minimal polynomials. For RS codes,
on the other hand, the minimum distance for the code is exactly the design distance.
Proof Let c E C, with corresponding polynomial representation c (x) . As we have seen in
(6.1), a parity check matrix for the code can be written as

j32b ... p(n-l)b

g2(b+l) . . . p(n-l)(b+l)

j32(b+6-3) . . . p(n-l)(b+S-3)
j32(b+S-2) . . . p(n-l)(b+S-2)

6.1 BCH Codes 239

By Theorem 3 . 3 , the minimum distance of a linear code C is equal to the minimum positive
number of columns of H which are linearly dependent. Also, the minimum distance of a
code is the smallest nonzero weight of the codewords.

We do a proof by contradiction. Suppose there is a codeword c of weight w c 6. We
write the nonzero components of c as [C i , , Ciz , . . . , C i W l T = dT. Then since H c = 0, we

have

pii pii b p i z (b + l) pi2b pi3(b+1) pi3b p i w (b + l)] p i w b [:! 1
= 0.

pii (b+6-3) piz(b+6-3) pi3(b+6-3) . . . piw(b+6-3)
Ciw-l

p i i (b f 8 - 2) piz(b+6-2) p"(b+6-2) . . . piW(b+6-2)
ciw

From the first w rows, we obtain
p i z b pi3b . . . p i w b

p i z (b + l) pi3(b+1) . . . p iw(b+U 1 [1 = 0.
p i l (b+w-2) piz(b+w-2) pig(b-tW-2) . . . p iW(b+w-2)

Ciw- l
p i i (b+w-1) pi2(b+w-l) p i3 (b+w- l) . . . p i w (b + w - l)

Ciw

1 ... 1

Let H' be the square w x w matrix on the LHS of this equation. Since d # 0, we must have
that H' is singular, so that det(H') = 0. Note that

det(H') = piib+izb+.-+iwb det

p i i (w - 2) p i z (w-2) . . . ~ i ~ (w - 2)

pi1 (w-1) p i z (w-1) . . . p i w (w - l)

But the latter matrix is a Vandermonde matrix: its determinant is zero if and only if j3 iJ = p i k

for some j and k , j # k . Since 0 5 i k < n and p is of order n, the p i k elements along
the second row are all distinct. There is thus a contradiction. We conclude that a codeword

0
It should be mentioned that there are extensions to the BCH bound. In the BCH bound,

only a single consecutive block of roots of the generator is considered. The Hartman-Tzeng
bound and the Roos bound, by contrast, provide bounds on the error correction capability
of BCH codes based on multiple sets of consecutive roots. For these, see [1 4 3 , 1 4 4 , 2 9 6 1 .

6.1.3 Weight Distributions for Some Binary BCH Codes

While the weight distributions of most BCH codes are not known, weight distributions for
the duals of all double and triple-error correcting binary primitive BCH codes have been
found [1 8 6] , [220, p. 4 5 1 , p. 6 6 9 1 , [2 0 3 , pp. 177-1781. From the dual weight distributions,
the weight distributions of these BCH codes can be obtained using the MacWilliams identity.

with weight w < 6 cannot exist.

Example 6.5 In Example 6.2 we found the generator for a double-error correcting code of length
n = 31 = 25 - 1 tobe

g (x) = x 1 0 +x9 + x 8 + x 6 + x 5 + x 3 + I.

From Table 6.1, we obtain

240 BCH and Reed-Solomon Codes: Designer Cvclic Codes

Table 6.1 : Weight Distribution of the Dual of a Double-Error-Correcting Primitive Binary
BCH Code of Length n = 2m - 1, m 2 3, m Odd

Codeword Weight i Number of Codewords of Weight i. B;

Table 6.2: Weight Distribution of the Dual of a Double-Error-Correcting Primitive Binary
Narrow-Sense BCH Code, n = 2" - 1, m 2 4, m Even

Codeword Weight i
0 1

Number of Codewords of Weight i , Bi

Codeword Number of Codewords
Weight i of Weight i, Bi

0 1
12 310
16 527
20 186

The corresponding weight enumerator for the dual code is

B (x) = 1 + 3 1 0 ~ ' ~ + 5 2 7 ~ ' ~ + 1 8 6 ~ ~ ' .

Using the MacWilliams identity (3.13) we have

l + x

= 1 + 186x5 + 806x6 + 2635x7 + 7905~' + 18910~' + 41602~'' + 8 5 5 6 0 ~ ~ ~

+ 1 4 2 6 0 0 ~ ~ ~ + 1 9 5 3 0 0 ~ ~ ~ + 2 5 1 1 0 0 ~ ~ ~ + 3 0 1 9 7 1 ~ ~ ~ + 3 0 1 9 7 1 ~ ~ ~

+ 251100~'~ + 195300~" + 142600~ '~ + 85560~~' + 4160h21 + 18910~~'

+ 7 9 0 5 ~ ~ ~ + 2 6 3 5 ~ ~ + 8 0 6 ~ ~ ~ + 1 8 6 ~ ~ ~ + x3'.

6.1.4 Asymptotic Results for BCH Codes

The Varshamov-Gilbert bound (see Exercise 3.26) indicates that if the rate R of a block
code is fixed, then there exist binary (n, k) codes with distance d- satisfying kln 2 R

6.1 BCH Codes 241

Table 6.3: Weight Distribution of the Dual of a Triple-Error Correcting Primitive Binary
Narrow-Sense BCH Code, n = 2m - 1, m 2 5, m Odd

Codeword Weight i
0 I

Number of Codewords of Weight i , Bi

and d d n / n 2 HT'(1 - R) . It is interesting to examine whether a sequence of BCH codes
can be constructed which meets this bound.

Definition 6.2 [220, p. 2691 A family of codes over G F (q) for a fixed q is said to be good
if it contains an infinite sequence of codes C1, C2, , . . , , where Ci is an (ni , ki , di) code such
that both the rate Ri = ki/ni and the relative distance di/ni approach a nonzero limit as
i + 00. (7

The basic result about BCH codes (which we do not prove here; see [220, p. 2691) is
this:

Theorem 6.3 There does not exist a sequence of primitive BCH codes over G F (q) with
both k / n and d l n bounded away from zero.

That is, as codes of a given rate become longer, the fraction of errors that can be corrected
diminishes to 0.

Nevertheless, for codes of moderate length (up to n of a few thousand), the BCH codes
are among the best codes known. The program bchdesigner can be used to design a
binary BCH code for a given code length n, design correction capability t , and starting
exponent b.

242 BCH and Reed-Solomon Codes: Designer Cyclic Codes

6.2 Reed-Solomon Codes

There are actually two distinct constructions for Reed-Solomon codes. While these initially
appear to describe different codes, it is shown in Section 6.8.1 using Galois field Fourier
transform techniques that the families of codes described are in fact equivalent. Most of
the encoders and decoders in this chapter are concerned with the second code construc-
tion. However, there are important theoretical reasons to be familiar with the first code
construction as well.

6.2.1 Reed-Solomon Construction 1

Definition 6.3 Let a! be a primitive element in GF(qm) and let n = qm - 1. Let m =
(mo, m l , . . . , mk-1) E GF(qm)k be a message vector and let m (x) = mo + m l x + . . . +
mk-1xk-' E G F (q m) [x] be its associated polynomial. Then the encoding is defined by the
mapping p : m (x) H c by

a
(co, c i , . . . , cn-i> = p (m (x)) = (m(l>, m ~ , m(a2>, . . . , m(a"-'>).

That is, p (m (x)) evaluates m (x) at all the non-zero elements of G F (q m) .
The Reed-Solomon code of length n = qm - 1 and dimension k over GF(qm) is the

image under p of all polynomials in G F (q m) [x] of degree less than or equal to k - 1.
More generally, a Reed-Solomon code can be defined by taking n 5 q , choosing n

distinct elements out of GF(qm) , a!1, a ! ~ , . . . , a!,, known as the support set, and defining
the encoding operation as

p (m (x >) = (m(ai>, m(u2), . . . , m (U n > > .

The code is the image of the support set under p of all polynomials in GF(qm) [XI of degree
less than k.

0

Example 6.6 Let G F (q m) = GF(23) = GF(8) . A (7, 3) Reed-Solomon code can be obtained by
writing down all polynomials of degree 2 with coefficients in GF(8) , then evaluating them at the
nonzero elements in the field. Such polynomials are, for example, m(x) = a! + a3x2 or m (x) =
a!' + a2x + a4x2 (S3 = 512 polynomials in all). We will see that dmin = 5, so this is a 2-error
correcting code.

Some properties of the Reed-Solomon codes are immediate from the definition.

Lemma 6.4 The Reed-Solomon code is a linear code.

The proof is immediate.

Lemma 6.5 The minimum distance of an (n , k) Reed-Solomon code is dmin = n - k + 1.

Proof Since m (x) has at most k - 1 zeros in it, there are at most k - 1 zero positions in
each nonzero codeword. Thus dmin 2 n - (k - 1). However, by the Singleton bound (see
Section 3.3.1), we must have ddn 5 n - k + 1. SO ddn = n - k + 1. 0
Reed-Solomon codes achieve the Singleton bound and are thus maximum distance separable
codes.

6.2 Reed-Solomon Codes 243

This construction of Reed-Solomon codes came first historically [286] and leads to im-
portant generalizations, some of which are introduced in Section 6.9.2. Recently a powerful
decoding algorithm has been developed based on this viewpoint (see Section 7.6). However,
the following construction has been important because of its relation with BCH codes and
their associated decoding algorithms.

6.2.2 Reed-Solomon Construction 2

In constructing BCH codes, we looked for generator polynomials over G F (q) (the small
field) so we dealt with minimal polynomials. Since the minimal polynomial for an element
j3 must have all the conjugates of j3 as roots, the product of the minimal polynomials usually
exceeds the number 2t of roots specified.

The situation is somewhat different with RS codes. With RS codes, we can operate in
the bigger field:

0
In G F (q m) , the minimal polynomial for any element j3 is simply (x - j3). The generator

Definition 6.4 A Reed-Solomon code is a qm-ary BCH code of length qm - 1.

for a RS code is therefore

1 9 g(x) = (x - (1I b)(x - & + I) . . . (x - a b f 2 f - l

where (11 is a primitive element. There are no extra roots of g(x) included due to conjugates
in the minimal polynomials, so the degree of g is exactly equal to 2t. Thus n - k = 2t for
a RS code. The design distance is S = n - k + 1.

Example 6.7 Let n = 7. We want to design a narrow sense double-error correcting RS code. Let a!

be a root of the primitive polynomial x 3 + x + 1. The 2t = 4 consecutive powers of a! are a, ct2, a3
and a4. The generator polynomial is

2 3 g (x) = (x - a)(x - a!) (x - a!) (x - a4) = x4 + a3x3 + x 2 + a x + 2.

code with 83 codewords. 0
Note that the coefficients of g(x) are in GF(8) , the extension (“big”) field. We have designed a (7,3)

Example 6.8 Let n = 24 - 1 = 15 and consider a primitive, narrow sense, three-error correcting
code over G F ‘ (~ ~) , where the field is constructed modulo the primitive polynomial x4 + x + 1. Let
a! be a primitive element in the field. The code generator has

2 3 4 5 6
a!,a! , a ,ff , a ,a!

as roots. The generator of the (15,9) code is

2 3 g (x) = (x - a)(x -a!) (x - a!)(n - a 4) (x - a5) (x - a 6)

= a6 + a9x + a6x2 + a4x3 + a!l4X4 + cX1Ox5 + x6

A (15,9) code is obtained. 0

Example 6.9 Let n = 2 - 1 = 255 and consider a primitive, narrow sense, three-error correcting
code over GF(28), where the field is represented using the primitive polynomial p (x) = 1 + x 2 +
x 3 + x4 + x 8 . Let a! be a primitive element in the field. The generator is

8

2 3 4 5 6 g (x) = (x - a !) (x - a !) (x - a !) (x - a) @ - a) (x - a !)

= a21 + (p x + ,9,2 + ,137x3 + 2 x 4 + ,167,5 + .6
This gives a (255,249) code.

0

244 BCH and Reed-Solomon Codes: Designer Cyclic Codes

Codes defined over GF(256), such as this, are frequently of interest in many computer
oriented applications, because every field symbol requires eight bits - one byte - of data.

The remainder of this chapter deals with Reed-Solomon codes obtained via this second
construction.

6.2.3 Encoding Reed-Solomon Codes

Reed-Solomon codes may be encoded just as any other cyclic code (provided that the
arithmetic is done in the right field). Given a message vector m = (mo, ml , . . . , mk-1) and
its corresponding message polynomial m (x) = mo + m l x + . . + mk-1xk-', where each
mi E G F (q) , the systematic encoding process is

c (x) = m(x)xn-k - Rg(X) [m(x)xn-k]

where, as before, R g (x) [-I denotes the operation of taking the remainder after division by
A x) .

Typically, the code is over GF(2m) for some m. The message symbols mi can then be
formed by grabbing m bits of data, then interpreting these as the vector representation of
the G F (2m) elements.

Example 6.10 For the code from Example 6.8, the 4-bit data

5 2 , 1 ,6 ,8 ,3 , 10, 15,4

are to be encoded. The corresponding message polynomial is

m(x) = 5 + 2x + x 2 + 6x3 + 8x4 + 3x5 + lox6 + 15x7 + 4x8

Using the vector to power conversion

5 = 01012 ff a8 2 = 00102 t, a 1 = 00012 t, 1

and so forth, the message polynomial (expressed in power form) is

8 m(x) = a + ax + x 2 + a5x3 + a3x4 + a4x5 + ,925 + a12x7 + 2 x 8 .

The systematically encoded code polynomial is

c (x) = as + a2x + a14x2 + a3x3 + a5x4 + ax5 + a8.8 + ax7 + x8 + a 5 x 9 + a3x10 + a4x11

+ a 9 d 2 + a12x13 + ,224

where the message is explicitly evident.

and p o 1 y n orni a 1 T :
The following code fragment shows how to reproduce this example using the classes GFNUM2rn

int k=9;
int n=15;
GFNUM2m::initgf(4,0~13); / / 1 0011 = dA4+d+l
POLYC(GFNUM2mr m, t5,2,1,6,8,3,10,15,41); / / the message data
polynomialT<GFNUM2m> c; / / code polynomial
/ /
/ / . . . build the generator g

c = (m<<(n-k)) + (m<<(n-k))% 9; / / encode operation: pretty easy!

cout << "message=" << m << endl;
cout << "code=" << c << endl;

6.2 Reed-Solomon Codes 245

Using groups of m bits as the vector representation of the Galois field element is particularly
useful when m = 8, since 8 bits of data correspond to one byte. Thus, a computer data file
can be encoded by simply grabbing k bytes of data, then using those bytes as the coefficients
of m(x) : no conversion of any sort is necessary (unless you want to display the answer in
power form).

6.2.4 MDS Codes and Weight Distributions for RS Codes

We observed in Lemma 6.5 that Reed-Solomon codes are maximum distance separable
(MDS), that is, d d n = n - k + 1. Being MDS gives sufficient theoretical leverage that the
weight distribution for RS codes can be explicitly described. We develop that result through
a series of lemmas [220, p. 31 81.

Lemma 6.6 A code C is MDS if and only if every set of n - k columns of its parity check
matrix H are linearly independent.

Proof By Theorem 3.3, a code C contains a code of weight w if and only if w columns of
H are linearly dependent. Therefore C has d ~ n = n - k + 1 if and only if no n - k or fewer

0 columns of H are linearly dependent.

Lemma 6.7 Ifan (n, k) code C is MDS, then so is the (n , n - k) dual code C'. That is, C'
has dmin = k + 1.

Proof Let H = [hi h.] be an (n - k) x n parity check matrix for C. Then H is
a generator matrix for C'. Suppose that for some message vector m there is a codeword
c = mH E C' with weight 5 k. Then c has zero elements in 2 n - k positions. Let the
zero elements of c have indices { i l , i2, . . . , i n - k } . Write

. . .

H = [hl h2 ... hn].

Then the zero elements of c are obtained from
A -

0 = m [hi, hi, ... hi,-,] = mH.

We thus have a (n - k) x (n - k) submatrix fi of H which is singular. Since the row-rank
of a matrix is equal to the column-rank, there must therefore be n - k columns of H which
are linearly dependent. This contradicts the fact that C has minimum distance n - k + 1, so
the minimal weight codeword of C' must be d ~ n > k . By the Singleton bound, we must
h a v e d ~ , = k + 1. 0

Lemma 6.8 Every k columns of a generator matrix G of an MDS are linearly independent.
(This means that any k symbols of the codeword may be taken as systematically encoded
message symbols.)

Proof Let G be the k x n generator matrix of an MDS code C. Then G is the parity check
matrix for C'. Since C' has minimum distance k + 1, any combination of k rows of G
must be linearly independent. Thus any k x k submatrix of G must be nonsingular. So by
row reduction on G, any k x k submatrix can be reduced to the k x k identity, so that the

0 corresponding k message symbols can appear explicitly.

246 BCH and Reed-Solomon Codes: Designer Cyclic Codes

Lemma 6.9 The number of codewords in a q-ary (n, k) MDS code C of weight dmin =
n - k + 1 is An-k+l = (q - l)k-i+l).

Proof By Lemma 6.8, select an arbitrary set of k coordinates as message positions for a
message m of weight 1. The systematic encoding for these coordinates thus has k - 1 zeros
in it. Since the minimum distance of the code is n - k + 1, all the n - k parity symbols
therefore must be nonzero. Since there are (n-i+l) = &) different ways of selecting the
zero coordinates and q - 1 ways of selecting the nonzero message symbol,

An-k+l = (4 - 1) -

0

Lemma 6.10 (Weight distribution for MDS codes) The number of codewords of weight j
in a q-ary (n , k) MDS code is

(1.

Proof Using (3.25) from Exercise 3.16, generalized to q-ary codes we have

Since Ai = 0 for i = 1, . . . , n - k and Bi = 0 for i = 1, . . . , k, this becomes

(;)+ f Y i) A i = q k - j C) , j = O , l , ..., k - 1 .
i=n-k+l

Setting j = k - 1 we obtain

as in Lemma 6.9. Setting j = k - 2 we obtain

Proceeding similarly, it may be verified that

Letting j = n - k + r , it is straightforward from here to verify (6.2). 0
Complete weight enumerators for Reed-Solomon codes are described in [35].

6.3 Decoding BCH and RS Codes: The General Outline 247

6.3 Decoding BCH and RS Codes: The General Outline

There are many algorithms which have been developed for decoding BCH or RS codes. In
this chapter we introduce a general approach. In chapter 7 we present other approaches
which follow a different outline.

The algebraic decoding BCH or RS codes has the following general steps:

1. Computation of the syndrome.

2. Determination of an error locatorpolynomial, whose roots provide an indication of
where the errors are. There are several different ways of finding the locator polyno-
mial. These methods include Peterson's algorithm for BCH codes, the Berlekamp-
Massey algorithm for BCH codes; the Peterson-Gorenstein-Zierler algorithm for RS
codes, the Berlekamp-Massey algorithm for RS codes, and the Euclidean algorithm.
In addition, there are techniques based upon Galois-field Fourier transforms.

3. Finding the roots of the error locator polynomial. This is usually done using the Chien
search, which is an exhaustive search over all the elements in the field.

4. For RS codes or nonbinary BCH codes, the error values must also be determined.
This is typically accomplished using Fomey 's algorithm.

Throughout this chapter (unless otherwise noted) we assume narrow-sense BCH or RS
codes, that is, b = 1.

6.3.1 Computation of the Syndrome

Since
g (a) = g (a 2) = . . . = g(a2') = 0

c(a) = . . . = c(a2t) = 0.

it follows that a codeword c = (CO, . . . , cn- l) with polynomialc(x) = co f . . . + cn-lX"- '

has

For a received polynomial r (x) = c (x) + e (x) we have

n- 1

sj = r (a j) = e (a j> = C e k a j k , j = 1 ,2 , . . ., 2t.

The values S1, S2, . . . , S2r are called the syndromes of the received data.

error values in these locations eij # 0. Then

k=O

Suppose that r has u errors in it which are at locations i 1, iz, . . . , i v , with corresponding

U U

Let
XI = a'/.

Then we can write
U

248 BCH and Reed-Solomon Codes: Designer Cyclic Codes

For binary codes we have ejl = 1 (if there is a non-zero error, it must be to 1). For the
moment we restrict our attention to binary (BCH) codes. Then we have

!J

sj = Ex/.
I=1

If we know X I , then we know the location of the error. For example, suppose we know that
X1 = a4. This means, by the definition of X I that i l = 4; that is, the error is in the received
digit r4. We thus call the X1 the error locators.

The next stage in the decoding problem is to determine the error locators X I given the
syndromes S, .

6.3.2 The Error Locator Polynomial

From (6.4) we obtain the following equations:

S2t = x y + x,2t + . . . + x f .
The equations are said to be power-sum symmetricfunctions. This gives us 2t equations in
the u unknown error locators. In principle this set of nonlinear equations could be solved
by an exhaustive search, but this would be computationally unattractive.

Rather than attempting to solve these nonlinear equations directly, a new polynomial is
introduced, the error locator polynomial, which casts the problem in a different, and more
tractable, setting. The error locator polynomial is defined as

!J

A(x) = n(l - X I X) = AUxu + AU-1Xu-' + * . . + AlX + Ao, (6.6)

where A0 = 1. By this definition, if x = X,' then A (x) = 0; that is, the roots of the error
locator polynomial are at the reciprocals (in the field arithmetic) of the error locators.

1=1

Example 6.11 Suppose in G F (16) we find that x = a4 is a root of an error locator polynomial A(x).
0 Then the error locator is (a4)-' = al l , indicating that there is an error in r l l .

6.3.3 Chien Search

Assume for the moment that we actually have the error locator polynomial. (Finding the
error locator polynomial is discussed below.) The next step is to find the roots of the error
locator polynomial. The field of interest is G F (q m) . Being a finite field, we can examine
every element of the field to determine if it is a root. There exist other ways of factoring
polynomials over finite fields (see, e.g., [25,360]), but for the fields usually used for error
correction codes and the number of roots involved, the Chien search may be the most
efficient.

Suppose, for example, that u = 3 and the error locator polynomial is

A(x) = A0 + Alx + A2x2 + A3x3 = 1 + A ~ x + A2x2 + A3x3.

6.3 Decoding BCH and RS Codes: The General Outline 249

We evaluate A(x) at each nonzero element in the field in succession: x = 1, x = a,
x = a2, . . . , x = a4m-2. This gives us the following:

A(1) = 1 + Ai(1) + A2(1)2 + A3(1)3

A(a) = 1 + Ai(a) + A ~ (u) ~ + A3(a)3

A(a2) = 1 + Al(a2) + A2(a2)2 +

A(a4m-2) = 1 + A ~ (u ~ ~ - ~) + A2(a4m-2)2 + A ~ (G X ~ " - ~) ~ .

The computations in this sequence can be efficiently embodied in the hardware depicted in
Figure 6.1. A set of u registers are loaded initially with the coefficients of the error locator
polynomial, A1 , A2, . . . , A,,. The initial output is the sum

U

A = C A j = A(x) - 11,=1.

If A = 1 then an error has been located (since then A(x) = 0). At the next stage, each register
is multiplied by a j , j = 1,2, . . . , v, so the register contents are Ala , A2a2, . . . , A,,a'.
The output is the sum

j=1

V

A = C A j a j = A(x) - llx=a.
j= l

The registers are multiplied again by successive powers of a, resulting in evaluation at cz2 .
This procedure continues until A (x) has been evaluated at all nonzero elements of the field.

A ..
I ..-

Figure 6.1 : Chien search algorithm.

If the roots are distinct and all lie in the appropriate field, then we use these to determine
the error locations. If they are not distinct or lie in the wrong field, then the received word is
not within distance t of any codeword. (This condition can be observed if the error locator
polynomial of degree v does not have v roots in the field that the operations take in; the
remaining roots are either repeated or exist in an extension of this field.) The corresponding
error pattern is said to be an uncorrectable error pattern. An uncorrectable error pattern
results in a decoder failure.

250 BCH and Reed-Solomon Codes: Designer Cyclic Codes

6.4 Finding the Error Locator Polynomial

Let us return to the question of finding the error locator polynomial using the syndromes.
Let us examine the structure of the error locator polynomial by expanding (6.6) for the case
v = 3:

A (x > = l - x (X 1 + X 2 + X 3) + x 2 (X 1 X 2 + X 1 X 3 + X ~ X ~) - X ~ X ~ X Z X ~

= A0 + x A 1 + x 2 A 2 + x 3 A 3

so that

In general, for an error locator polynomial of degree v we find that

That is, the coefficient of the error locator polynomial Ai is the sum of the product of all
combinations of the error locators taken i at a time. Equations of the form (6.7) are referred
to as the elementary symmetricfunctions of the error locators (so called because if the error
locators { X i } are permuted, the same values are computed).

The power-sum symmetric functions of (6.5) provide a nonlinear relationship between
the syndromes and the error locators. The elementary symmetric functions provide a non-
linear relationship between the coefficients of the error locator polynomial and the error
locators. The key observation is that there is a linear relationship between the syndromes
and the coefficients of the error locator polynomial. This relationship is described by the
Newton identities, which apply over any field.

Theorem 6.11 The syndromes (6.5) and the coeficients of the error locatorpolynomial are
related by

6.4 Finding the Error Locator Polynomial 251

That is,

k = l : S l + A l = O

k = 2 : S2+AlS1+2A2=0

For k > v, there is a linear feedback shiji register relationship between the syndromes and
the coeflcients of the error locator polynomial,

(6.10)

The theorem is proved in Appendix 6.A.
Equation (6.10) can be expressed in a matrix form

. .

The v x v matrix, which we denote M v , is a Toeplitz matrix, constant on the diagonals.
The number of errors v is not known in advance, so it must be determined. The Peterson-
Gorenstein-Zierler decoder operates as follows.

1. Set v = t .

2. Form Mu and compute the determinant det(M,) to determine if Mu is invertible. If

3. If Mu is invertible, solve for the coefficients A1, A2, . . . , A,.

it is not invertible, set v t v - 1 and repeat this step.

6.4.1 Simplifications for Binary Codes and Peterson’s Algorithm

For binary codes, Newton’s identities are subject to further simplifications. nS, = 0 if n is
even and nSj = S j if n is odd. Furthermore, we have S2j = Sj”, since by (6.4) and Theorem
5.15

V / u \ 2

252 BCH and Reed-Solomon Codes: Designer Cvclic Codes

We can thus write Newton’s identities (6.9) as

S 1 + A l = O

S3 + A1S2 + A 2 S 1 + A3 = 0

S2t-1 + A1S2t-2 + * * - + AtSf-1 = 0,

which can be expressed in the matrix equation

1 0 0 0 ... 0 0
s 2 s 1 1 0 . * . 0 0
s4 s3 s 2 s1 * . * 0 0

S2t-4 S2t-5 S2t-6 S2t-7 * . * ff-2 st-3
,S2t-2 S2t-3 S2t-4 S2t-S * . * st st-1

] , (6.11)

4 2 r - 1

or A h = -S. If there are in fact t errors, the matrix is invertible, as we can determine
by computing the determinant of the matrix. If it is not invertible, remove two rows and
columns, then try again. Once A is found, we find its roots. This matrix-based approach to
solving for the error locator polynomial is called Peterson’s aZgorithm for decoding binary
BCH codes.

For small numbers of errors, we can provide explicit formulas for the coefficients of
A (x) , which may be more efficient than the more generalized solutions suggested below
[238].

1-error correction A 1 = S1.

2-error correction A1 = S1, A 2 = (S3 + S!)/(Sl).

3-error correction A 1 = S1, A 2 = (S:S3 + S5)/(S: + S3), A3 = (S: + S3) + S1A2.

4 error correction

6.4 Finding the Error Locator Polynomial 253

For large numbers of errors, Peterson’s algorithm is quite complex. Computing the
sequence of determinants to find the number of errors is costly. So is solving the system
of equations once the number of errors is determined. We therefore look for more efficient
techniques.

Example 6.12 Consider the (3 1,21) 2-error correcting code introduced in Example 6.2, with generator
g (x) = x 10 + x 9 + x 8 + x6 + x 5 + x 3 + 1 having roots at a, a2, a3 and a4. Suppose the codeword

c (x) = l+x 3 4 5 6 + x + x + x + x ~ + x ~ ~ + x ~ ~ + x ~ ~ + x ~ ~ + x ~ ~ + x ~ ~ + x ~ ~ + x ~ ~ + x ~ ~ + ~ ~ ~

is transmitted and

r (x) = l + x 3 5 6 + x + x + x * + x ~ ~ + x ~ ~ + x ~ ~ + x ~ ~ + ~ ~ ~ + ~ ~ ~ + x ~ ~ + x ~ ~ + x ~ ~

is received. The syndromes are

3 4 s1 = r(a) = a17 s2 = r(a2) = a3 s3 = r (a) = 1 s4 = r (a) = a6,

Using the results above we find

so that A (x) = 1 + a17x + a22x2. The roots of this polynomial (found, e.g., using the Chien search)
are at x = a13 and x = a27. Specifically, we could write

A(x) = a 2 2 (~ + al3)(x + a27).

The reciprocals of the roots are at
4 and 18,

and a4, so that the errors in transmission occurred at locations

e (x) = x4 + x18.

It can be seen that r (x) + e (x) is in fact equal to the transmitted codeword. 0

6.4.2 Berlekamp-Massey Algorithm

While Peterson’s method involves straightforward linear algebra, it is computationally com-
plex in general. Starting with the matrix A in (6.11), it is examined to see if it is singular.
This involves either attempting to solve the equations (e.g., by Gaussian elimination or
equivalent), or computing the determinant to see if the solution can be found. If A is sin-
gular, then the last two rows and columns are dropped to form a new A matrix. Then the
attempted solution must be recomputed starting over with the new A matrix.

The Berlekamp-Massey algorithm takes a different approach. Starting with a small
problem, it works up to increasingly longer problems until it obtains an overall solution.
However, at each stage it is able to re-use information it has already learned. Whereas as the
computational complexity of the Peterson method is 0 (u3), the computational complexity
of the Berlekamp-Massey algorithm is O(u2).

We have observed from the Newton’s identity (6.10) that
U

5’. J - - ->:AiSj-i , j = v + 1 , ~ + 2 , ..., 2t. (6.12)
i = l

254 BCH and Reed-Solomon Codes: Designer Cyclic Codes

This formula describes the output of a linear feedback shift register (LFSR) with coefficients
Al, Az, . . . , A". In order for this formula to work, we must find the A j coefficients in
such a way that the LFSR generates the known sequence of syndromes S1, S2, . . . , Szr.
Furthermore, by the maximum likelihood principle, the number of errors v determined
must be the smallest that is consistent with the observed syndromes. We therefore want to
determine the shortest such LFSR.

In the Berlekamp-Massey algorithm, we build the LFSR that produces the entire se-
quence {Sl, S2,. . . , Szt} by successively modifying an existing LFSR, if necessary, to
produce increasingly longer sequences. We start with an LFSR that could produce S1.
We determine if that LFSR could also produce the sequence {Si, Sz}; if it can, then no
modifications are necessary. If the sequence cannot be produced using the current LFSR
configuration, we determine a new LFSR that can produce the longer sequence. Proceed-
ing inductively in this way, we start from an LFSR capable of producing the sequence
(Sl, S2, . . . , &-I} and modify it, if necessary, so that it can also produce the sequence
{ S1, S2, . . . , Sk } . At each stage, the modifications to the LFSR are accomplished so that the
LFSR is the shortest possible. By this means, after completion of the algorithm an LFSR
has been found that is able to produce {Sl , S2, . . . , S2t} and its coefficients correspond to
the error locator polynomial A (x) of smallest degree.

Since we build up the LFSR using information from prior computations, we need a
notation to represent the A(x) used at different stages of the algorithm. Let Lk denote the
length of the LFSR produced at stage k of the algorithm. Let

Ack1(x) = 1 + Arklx +. . . + AF!xLk

be the connection polynomial at stage k , indicating the connections for the LFSR capable
of producing the output sequence {Sl, S2, . . . , sk}. That is,

L1

, k. (6.13)
i=l

Note: It is important to realize that some of the coefficients in AFkl(x) may be zero, so
that Lk may be different from the degree of ACkl (x). In realizations which use polynomial
arithmetic, it is important to keep in mind what the length is as well as the degree.

At some intermediate step, suppose we have a connection polynomial A[k-'](x) of
length Lk-1 that produces {Sl, Sz, . . . , &-I} for some k - 1 < 2t . We check if this
connection polynomial also produces s k by computing the output

Lk-l

i k = - C AZk-l1Sk-i.
i=l

If & is equal to s k , then there is no need to update the LFSR, so h r k l (x) = ALk-'I(x) and
Lk = Lk-1. Otherwise, there is some nonzero discrepancy associated with A[k-'](x),

i=l i=O

In this case, we update the connection polynomial using the formula

6.4 Finding the Error Locator Polynomial 255

where A is some element in the field, 1 is an integer, and A[m-'l(x) is one of the prior
connection polynomials produced by our process associated with nonzero discrepancy d,.
(Initialization of this inductive process is discussed in the proof of Theorem 6.13.) Using
this new connection polynomial, we compute the new discrepancy, denoted by dk, as

i=O i =O

Now, let 1 = k - m . Then, by comparison with the definition of the discrepancy in (6.14),
the second summation gives

i =O

Thus, if we choose A = -d;'dk, then the summation in (6.16) gives

d; = dk - dGidkdm = 0.

So the new connection polynomial produces the sequence { S1, S2, . . . , s k } with no discrep-
ancy.

6.4.3 Characterization of LFSR Length in Massey's Algorithm

The update in (6.15) is, in fact, the heart of Massey's algorithm. If all we need is an algorithm
to find a connection polynomial, no further analysis is necessary. However, the problem
was to find the shortest LFSR producing a given sequence. We have produced a means of
finding an LFSR, but have no indication yet that it is the shortest. Establishing th s requires
some additional effort in the form of two theorems.

Theorem 6.12 Suppose that an LFSR with connectionpolynomial A[k-'](x) of length Lk-i
produces the sequence { Si , Sz, . . . , s k - 1 }, but not the sequence [Sl , S2, . . . , S k } . Then any
connection polynomial that produces the latter sequence must have a length Lk satisfying

Lk k - Lk-1.

Proof The theorem is only of practical interest if Lk-1 < k - 1; otherwise it is trivial to
produce the sequence. Let us take, then, Lk-1 < k - 1. Let

ALk-lI(x) = 1 + Ar-']x + . . . + AfkIflXLk-l

represent the connection polynomial which produces {Si, . . . , & - I } and let

Atkl(x) = 1 + Ark1x + . . * + Af;xLk

denote the connection polynomial which produces [Sl , S2, . . . , sk}. Now we do a proof by
contradiction.

Assume (contrary to the theorem) that

Lk 5 k - 1 - Lk-1. (6.17)

256 BCH and Reed-Solomon Codes: Designer Cyclic Codes

From the definitions of the connection polynomials, we observe that

and
Lb

- c A i k l S j - i = S j j = L k + 1, L k + 2, . . . , k. (6.19)
i=l

In particular, from (6.19), we have

i=l

The values of Si involved in this summation range from Sk-1 to S k - L k . The indices of these
Values form a set (k - L k , k - L k + 1, . . . , k - 1). By the (contrary) assumption made in
(6.171,wehavek-Lk p Lk-1+1,sothatthesetofindices{k-Lk,k-Lk+l,. . ., k - 1)
are a subset of the set of indices { L k - l + 1, 2, . . . , k - l} appearing in (6.18). Thus
each s k - i appearing on the right-hand side of (6.20) can be replaced by the summation
expression from (6.18) and we can write

i=l i=l j = 1

Interchanging the order of summation we have

Lb-1 Lb

Now setting j = k in (6.18), we obtain

Lk-I

(6.21)

(6.22)

In this summation the indices of S form the set {k - L k - 1 , . . . , k - 1). By the (contrary)
assumption (6.171, L k + 1 5 k - L k - 1 , so the sequence of indices {k - L k - 1 , . . . , k - 1)
is a subset of the range L k + 1, . . . , k of (6.19). Thus we can replace each s k - i in the
summation of (6.22) with the expression from (6.19) to obtain

Lk- I

i=l j = l

Comparing (6.21) with (6.23), the double summations are the same, but the equality in
the first case and the inequality in the second case indicate a contradiction. Hence, the
assumption on the length of the LFSRs must have been incorrect. By this contradiction, we
must have

L k 3 k - L k - 1 .

If we take this to be the case, the index ranges which gave rise to the substitutions leading
to the contradiction do not occur. 0

6.4 Finding the Error Locator Polynomial 257

Since the shortest LFSR that produces the sequence [Sl, S2, . . . , Sk} must also produce the
first part of that sequence, we must have Lk 2 Lk-1. Combining this with the result of the
theorem, we obtain

Lk 2 maX(Lk-1, k - Lk-1). (6.24)

We observe that the shift register cannot become shorter as more outputs are produced.
We have seen how to update the LFSR to produce a longer sequence using (6.15) and

have also seen that there is a lower bound on the length of the LFSR. We now show that
this lower bound can be achieved with equality, thus providing the shortest LFSR which
produces the desired sequence.

Theorem 6.13 In the update procedure, ifArk](x) # Alk-ll(x), then a new LFSR can be
found whose length satisfies

Lk = maX(Lk-1, k - Lk-1). (6.25)

Proof We do a proof by induction. To check when k = 1 (which also indicates how to get
the algorithm started), take LO = 0 and A[O](x) = 1. We find that

dl = S1.

If S1 = 0, then no update is necessary. If S1 # 0, then we take ArmI(x) = A[O](x) = 1, so
that I = 1 - 0 = 1. Also, take d , = 1. The updated polynomial is

A['](x) = 1 + Six,

which has degree L 1 satisfying

L1 = max(L0,l - Lo) = 1.

In this case, (6.13) is vacuously true for the sequence consisting of the single point [Sl).

with L,-1 < Lk-1 that can produce the sequence [Sl, S2, . . . ,
[Sl, S2, . . . , Sm} . Then

Now let A[m-'](~), m < k - 1, denote the lust connection polynomial before Ark-'](x)
but not the sequence

L, = Lk-1;

hence, in light of the inductive hypothesis (6.25),

L , = m - L,-1 = Lk-1, or L,-1 - m = -&-I. (6.26)

By the update formula (6.15) with 1 = k - m, we note that

Lk = max(Lk-1, k - m + L,-1).

Using Lm-1 - m from (6.26) we find that

Lk = maX(Lk-1, k - Lk-1).

0
In the update step, we observe that the new length is the same as the old length if Lk-1 _>
k - Lk-1, that is, if

2Lk-1 2 k.

In this case, the connection polynomial is updated, but there is no change in length.

258 BCH and Reed-Solomon Codes: Designer Cvclic Codes

The shift-register synthesis algorithm, known as Massey’s algorithm, is presented first
in pseudocode as Algorithm 6.1, where we use the notations

C (X) = ALkl(x)

to indicate the “current” connection polynomial and

p (x) = ALm-’](x)

to indicate a “previous” connection polynomial. Also, N is the number of input symbols
(N = 2t for many decoding problems).

Algorithm 6.1 Massey’s Algorithm

Input: s1, $2, . . . , S N
Initialize:
L = 0 (the current length of the LFSR)
c(x) = 1 (the current connection polynomial)
p (x) = 1 (the connection polynomial before last length change)
1 = 1 (1 is k - m, the amount of shift in update)
dm = 1 (previous discrepancy)
fork = 1 to N

d = s k + c:=, C i s k - j (compute discrepancy)
if (d = 0) (no change in polynomial)

else
1 = 1 + 1

if (2L ? k) then (no-length change in update)
C(X) = C(X) - dd;’x‘p(x)
1 = 1 + 1

else (update c with length change)
t (x) = c(x) (temporary storage)
C(X) = C(X) - dd;’x‘p(x)
L = k - L
A x) = t (x)

1 = 1
end

end
end

Example 6.13 For the sequence S = { 1, 1, 1 , 0, 1 , 0, 0) the feedback connection polynomial obtained
by a call to m a s s e y is [1, 1 , 0, 1 }, which corresponds to the polynomial

c (~) = 1 + x +x3.

Thus the elements of S are related by

sj = sj-1 + S j - 3 ?

for j ? 3. Details of the operation of the algorithm are presented in Table 6.5.

6.4 Finding the Error Locator Polynomial 259

Table 6.5:
~1 .1 .1 .0 .1 .0 .0~ .

Evolution of the Berlekamp-Massey Algorithm for the Input Sequence

2 1 0 l + x 1 1 2 1
3 1 0 l + x 1 1 3 1
4 0 1 1+X+X3 3 l + x 1 1
5 1 0 1 + x + x 3 3 l + x 2 1

7 0 0 1+X+X3 3 l + x 4 1
6 0 0 1 + x + x 3 3 l + x 3 1

Example 6.14 For the (31,21) binary double-error correcting code with decoding in Example 6.12,
let us employ the Berlekamp-Massey algorithm to find the error locating polynomial. Recall from
that example that the syndromes are S1 = a17, S2 = a3, S3 = 1, and S4 = a6. Running the
Berlekamp-Massey algorithm over GF(32) results in the computations shown in Table 6.6. The final
connection polynomial c (x) = 1 + a17x + a22x2 is the error location polynomial previously found
using Peterson's algorithm. (In the current case, there are more computations using the Berlekamp-
Massey algorithm, but for longer codes with more errors, the latter would be more efficient.)

Table 6.6: Berlekamp-Massey Algorithm for a Double-Error Correcting Code
k s k dk C (X) L P b) 1 dm
1 417 a17 1 + 4 ' 7 x 1 1 1 417

2 4 3 0 1 + 4 ' 7 x 1 1 2 417

3 1 4 8 1 + a ' 7 x + a 2 2 x 2 2 1 + a 1 7 x 1 4 8

4 a6 0 1 + a ' 7 x + 4 2 2 x 2 2 1 + a ' 7 x 2 4 8

6.4.4 Simplifications for Binary Codes

Consider again the Berlekamp-Massey algorithm computations for decoding a BCH code,
as presented in Table 6.6. Note that dk is 0 for every even k. This result holds in all cases
for BCH codes:

Lemma 6.14 When the sequence of input symbols to the Berlekamp-Massey algorithm are
syndromes from a binary BCH code, then the discrepancy dk is equal to 0 for all even k
(when 1-based indexing is used).

As a result, there is never an update for these steps of the algorithm, so they can be merged
into the next step. This cuts the complexity of the algorithm approximately in half. A
restatement of the algorithm for BCH decoding is presented below.

Algorithm 6.2 Massey's Algorithm for Binary BCH Decoding

Input: S1, S2, . . . , SN, where N = 2t
Initialize:
L = 0 (the current length of the LFSR)

260 BCH and Reed-Solomon Codes: Designer Cyclic Codes

C (X) = 1 (the current connection polynomial)
p (x) = 1 (the connection polynomial before last length change)
1 = 1 (1 is k - m, the amount of shift in update)
dm = 1 (previous discrepancy)
fork = 1 to N in steps of 2

d = s k + c:=, ci Sk-i (compute discrepancy)
if (d = 0) (no change in polynomial)

else
1 = 1 + 1

if (2L 2 k) then (no-length change in update)
1 1 C (X) = C (X) - dd& x P (X)

1 = 1 + 1
else (update c with length change)

t (x) = C (X) (temporary storage)
C (X) = C (X) - dd&’x’p(x)
L = k - L
P (X) = t (x)
dm = d
1 = 1

end
end
2 = 1 + 1; (accounts for the values of k skipped)

end

Example 6.15 Returning to the (31,21) code from the previous example, if we call the BCH-modified

we obtain the results in Table 6.7. Only two steps of the algorithm are necessary and the same error
0

Berlekamp-Massey algorithm with the syndrome sequence S1 =

locator polynomial is obtained as before.

S2 = (Y 3 , S3 = 1, and S4 = a6,

Table 6.7: Berlekamp-Massey Algorithm for a Double-Error Correcting code: Simplifica-
tions for the Binary Code

k Sk d k C (X > L P (X > 1 d m

o ,17 ,17 1 + a 1 7 x 1 1 2 a17

2 1 1 + a 1 7 x + a 2 2 x 2 2 1 + a 1 7 x 2

The odd-indexed discrepancies are zero due to the fact that for binary codes, the syn-
dromes S j have the property that

(S j > 2 = ~ 2 j . (6.27)

We call this condition the syndrome conjugacy condition. Equation (6.27) follows from
(6.4) and freshman exponentiation.

For the example we have been following,
3 2 6 s; = (a) = a = s4. 17 2 sf = (a) = a 3 = s 2

Example 6.16 We now present an entire decoding process for the three-error correcting (15,5) binary
code generated by

g(X) = 1 + X + X 2 + x 4 + + X 8 + X 1 o .

6.5 Non-Binary BCH and RS Decoding 261

Suppose the all-zero vector is transmitted and the received vector is

r = (0, 1,0, 1,0 ,0 ,0 ,0 , 1 , 0, 0, 0, 0, 0,O).

Thenr(x) = x + x 3 +x8.

Step 1 Compute the syndromes. Evaluating r (x) at x = a , a2 , . . . , a6 we find the syndromes

s 1 = J 2 s 2 = a 9 s3=a s4=a3 s5 = o s6 = a6.

Step 2 Compute the error locator polynomial.
A call to the binary Berlekamp-Massey algorithm yields the following computations.

3 ,3 a2 1 + , 1 2 ~ + , 5 ~ 2 2 1+a% 2 a 2

5 0 a 2 1 + , 1 2 x + a 1 0 x 2 + a 1 2 x 3 3 1 + a l 2 x + f f 5 , 2 2 a 2

The error locator polynomial is thus

A (x) = 1 + + .lox2 + a12x3.

Step 3 Find the roots of the error locator polynomial. Using the Chien search function, we find roots
at a7, and a14. Inverting these, the error locators are

XI =a8 x 2 = a 3 x 3 = a ,

indicating that errors at positions 8, 3, and 1.
Step 4 Determine the error values: for a binary BCH code, any errors have value 1.
Step 5 Correct the errors: Add the error values (1) at the error locations, to obtain the decoded vector

0
of all zeros.

6.5 Non-Binary BCH and RS Decoding

For nonbinary BCH or RS decoding, some additional work is necessary. Some extra care
is needed to find the error locators, then the error values must be determined.

From (6.3) we can write

~2~ = ei, X? + ei2Xf + . . . + e i , ~ ? .

Because of the ej, coefficients, these are not power-sum symmetric functions as was the
case for binary codes. Nevertheless, in a similar manner it is possible to make use of an
error locator polynomial.

Lemma 6.15 The syndromes and the coeflcients of the error locator polynomial A (x) =
A0 + Alx 4- . . . + Avx" are related by

A u S j - v + Au-1Sj -v+l + * * . + A1Sj-1 + Sj = 0. (6.28)

262 BCH and Reed-Solomon Codes: Designer Cyclic Codes

Proof Evaluating the error locator polynomial A(x) = n:==, (1 - X i X) at an error locator
XI 3

Multiplying this equation by ej, X{ we obtain

e i l X / A (X r l) = ejl(A,X/-’ + A,-1X1

A(X,’) = 0 = AuXC” + AU-1X:-’ + ... + AIXF1 + Ao.

j + l - u +. - . + AlX;-’ + AoX;) = 0 (6.29)

Summing (6.29) over 1 we obtain

U
0 = C eil (AUX/-’ + A,-l x j + l - u + . . * + AIX;-’ + AoX:)

l=1
1J U U

1=1 i=l 1=1 1=1

In light of (6.3), the latter equation can be written as

AuSj-, + Au-1Sj-v+l + * . * + AISj-1 + AoSj = 0.

0
Because (6.28) holds, the Berlekamp-Massey algorithm (in its non-binary formulation)

can be used to find the coefficients of the error locator polynomial, just as for binary codes.

6.5.1 Forney’s Algorithm

Having found the error-locator polynomial and its roots, there is still one more step for
the non-binary BCH or RS codes: we have to find the error values. Let us return to the
syndrome,

!J

1=1

Knowing the error locators (obtained from the roots of the error locator polynomial) it is
straightforward to set up and solve a set of linear equations:

However, there is a method which is computationally easier and in addition provides us a key
insight for another way of doing the decoding. It may be observed that the matrix in (6.30)
is essentially a Vandermonde matrix. There exist fast algorithms for solving Vandermonde
systems (see, e.g., [121]). One of these which applies specifically to this problem is known
as Forney ’s algorithm.

Before presenting the formula, a few necessary definitions must be established. A
syndrome polynomial is defined as

2t-1

S(x) = s1 + s2x + s3x2 ’ . . + &n2t-l = c S j + l X j . (6.31)
j =O

6.5 Non-Binary BCH and RS Decoding 263

Also an error-evaluator polynomial Q (x) is defined' by

1 a (x) = S(x)A(x) (mod I (6.32)

This equation is called the key equation. Note that the effect of computing modulo x~~ is
to discard all terms of degree 2t or higher.

Definition 6.5 Let f (x) = f o + f i x + f2x2 + . . . + ftx' be a polynomial with coefficients
in some field IF . The formal derivative f ' (x) of f (x) is computed using the conventional
rules of polynomial differentiation:

f ' (x) = f l + 2 f i x + 3 f3x2 + . . . + t f tx '- l , (6.33)

where, as usual, m f i for m E Z and f i E IF denotes repeated addition:

mfi = f i + fi + . . . + fi .
i-.-y----/

m summands

0
There is no implication of any kind of limiting process in formal differentiation: it

simply corresponds to formal manipulation of symbols. Based on this definition, it can be
shown that many of the conventional rules of differentiation apply. For example, the product
rule holds:

If f (x) E IF[x], where IF is a field of characteristic 2, then f ' (x) has no odd-powered terms.
[f (x)g(x)l' = f ' (x)g(x> + f (x>g'(x).

Theorem 6.16 (Forney's algorithm) The error values for a Reed-Solomon code are com-
puted by

(6.34)

where A'(x) is the formal derivative of A(x) .

Proof First note that over any ring,
2t-1

(1 - X 2 f) = (1 - X) (1 + X + X 2 + - + X 2 t - 1) = (I - x) c x j . (6.35)
j =O

Observe:
Q (x) = S(x)A(x) (mod x2')

2r-1 v

V 2t-1

1=1 j =O i=l

- Xix) (mod x2').
j =O

'Some authors define S(x) = Six + S2x2 + . . . + &x2', in which case they define Q (x) = (1 + S (x)) A (x)
(mod x2'+') and obtain eik = - X k Q (X ~ ') / A ' (X L ') .

264 BCH and Reed-Solomon Codes: Designer Cyclic Codes

From (6.35),
2r-1

(1 - X l X) C (X 1 X) j = 1 - (xlx)2'

j =O

Since (X I X) ~ ' (mod = 0 we have
v

S (X) A (X) (mod x2') = C e i l X 1 n(l - X i x) .
/=1 i#l

Thus
v

1=1 i #l

The trick now is to isolate a particular eik on the right-hand side of this expression.
Evaluate s2 (x) at x = X k ' :

v

1=1 i #/

Every term in the sum results in a product that has a zero in it, except the term when I = k ,
since that term is skipped. We thus obtain

a(x,') = eikXk n (1 - XiX; ') .
i #k

We can thus write
w;9

t?ik =
X k n i # k (l - x i x i ') '

Once Q (x) is known, the error values can thus be computed.
computational simplifications.

The formal derivative of A (x) is

Then

i #k

Substitution of this result into (6.36) yields (6.34).

(6.36)

However, there are some

- X i X) .

17

Example 6.17 WorkingoverGF(8) inacode wheret = 2, suppose S (x) = a6+a3x+a4x2+a3x3.
We find (say using the B-M algorithm and the Chien search) that the error locator polynomial is

A (X) = 1 + a2x + a x 2 = (1 + a3x) (1 + d x) .

That is, the error locators (reciprocals of the roots of A (x)) are X1 = a3 and X2 = a5. We have

Q (x) = (a6+a3x+a 4 2 x +a 3 3 x)(1+a2x+ax2) (mod x 4) = (a6+x+a4x5) (mod x 4) = a6+x

6.5 Non-Binary BCH and RS Decoding 265

Using the error locator X 1 = a3 we find

e3 = a4 + a5(a3)-1 = a

e5 = a 4 + a5(a5)-1= 2.
and for the error locator X 2 = a5,

The error polynomial is e (x) = ax3 + ~ 5 x 5 . 0

Example 6.18 We consider the entire decoding process for (15,9) code of Example 6.8, using the
message and code polynomials in Example 6.10. Suppose the received polynomial is

r (x) = a8 + a 2 x + ,13,2 + a3x3 + a5x4 + a x 5 + 2 x 6 + a x 7 + ,,8 + (2x9 + ,320

+ a 4 P + a9x12 + a V 3 + ,5,14.
(Errors are in the underlined positions.)

The syndromes are

s1 = r (a) = a13 s2 = r(a2) = a4 s3 = r(a3) = a8

s4 = r(a4) = a2 s5 = r(a5) = a3 & = r(a6) = a8

so
S (x) = a13 + a4x + a8x2 + 2 x 3 + a3x4 + 2 3 x 5

and the error locator polynomial determined by the Berlekamp-Massey algorithm is

A (x) = 1 + a3x + a1'x2 + a9x3.

The details of the Berlekamp-Massey computations are shown in Table 6.8.

Table 6.8: Berlekamp-Massey Algorithm for a Triple-Error Correcting Code
k s k dk C (X > L P (X) 1 dm
1 413 413 1 +a'3x 1 1 1 4 1 3

2 a4 413 1 +a% 1 1 2 413

3 4 8 a! 1 +46x+43x2 2 1 +a% 1 4
4 a2 a5 1 +a12x+a'2x2 2 1 +a% 2 4
5 a3 do 1 +a12x +a8x2+x3 3 1 +a% +a'2x2 1 410

6 c8 a5 1 +a3x+a11x2+u9x3 3 1 +cd2x+(u '2~2 2 cx10

The roots of A (x) are at a , a7 and a13, so the error locators (the reciprocal of the roots) are

x1 =a14 x 2 = 2 x3=a2,

corresponding to errors at positions 14,8, and 2. The error evaluator polynomial is

! 2 (x) = a 13 + x + a V .

266 BCH and Reed-Solomon Codes: Designer Cyclic Codes

Then the computations to find the error values are:

x 1 = d4 : s2(x;l) = a6 A ' (x ; ~) = a5 e14 = a

~2 = a 8 : Q(X; ') = a2 A ' (x ; ~) = a13 eg = a 4

~3 = a2 : ~ 2 x 3 ~) = a13 A ' (x ; ~) = a11 e2 = a 2

The error polynomial is thus

and the decoded polynomial is

e (x) = a 2 2 x + a 4 8 x +ax14

a8 + a2x + d 4 x 2 + .3x3 + 2 x 4 + ax5 + a8x6 + ax7 + 2 + a5x9 + a 3 P

+ a 4 x 1 1 + a9x12 + a W 3 + , 2 2 4 .

which is the same as the original codeword c(x) . 0

6.6 Euclidean Algorithm for the Error Locator Polynomial

We have seen that the Berlekamp-Massey algorithm can be used to construct the error
locator polynomial. In this section, we show that the Euclidean algorithm can also be
used to construct error locator polynomials. This approach to decoding is often called the
Sugiyama algorithm [324].

We return to the key equation:

Q (x) = S(x)A(x) (mod x21). (6.37)

Given only S(x) and t , we desire to determine the error locator polynomial A (x) and the error
evaluator polynomial C2 (x). As stated, this problem seems hopelessly underconstrained.
However, recall that (6.37) means that

O(x>(x2') + A(x)S(x) = S2(x)

for some polynomial O(x) . (See (5.16).) Also recall that the extended Euclidean algorithm
returns, for a pair of elements (a , b) from a Euclidean domain, a pair of elements (s, t) such
that

as + bt = c,

where c is the GCD of a and b. In our case, we run the extended Euclidean algorithm to
obtain a sequence of polynomials O [k] (~) , ACk](x) and C2CkI(x) satisfying

O C k 1 (~) ~ 2 r + A ' k l (~) S (~) = Qtkl(x).

This is exactly the circumstance described in Section 5.2.3. Recall that the stopping criterion
there is based on the observation that the polynomial we are here calling C2 (x) must have
degree < t .

The steps to decode using the Euclidean algorithm are summarized as follows:

Compute the syndromes and the syndrome polynomial S(x) = S1 + S2x + . . . +
s2rx2r-l.

Run the Euclidean algorithm with a(x) = x2r and b(x) = S(x), until deg(ri (x)) < t .
Then Q (x) = r j (x) and A(x) = t j (x) .

Find the roots of A(x) and the error locators Xi.

6.7 Erasure Decoding for Nonbinary BCH or RS codes 267

4. Solve for the error values using (6.34).

Actually, since A (x) has A0 = 1, it may be necessary to normalize, A (x) = ti (X)/ti (0).

Example 6.19 For the syndrome polynomial

S(x) = a!13 + a4x + a8x2 + a2x3 + a3x4 + 2 x 5

of the triple-emor correcting polynomial of Example 6.18, let

4 x 1 = x6 b(x) = S(x).

Then calling the Euclidean algorithm to stop when the degree of i i (x) is less than 3 yields

14 6
S j (X) = a! + a! x + 2 x 2

ti (x) = 1 + a3x +
ri (x) = a!

+ a9x3
13 + x + a2x2.

The error locator polynomial is

A(x) = t i (x) = 1+a!3~+a!11~2+a9x3 ,

as before. 0

In terms of computational efficiency, it appears that the Berlekamp-Massey algorithm
procedure may be slightly better than the Euclidean algorithm for binary codes, since the
Berlekamp-Massey deals with polynomials no longer than the error locator polynomial,
while the Euclidean algorithm may have intermediate polynomials of higher degree. How-
ever, the computational complexity is probably quite similar. Also, the error evaluator
polynomial s2 (x) is automatically obtained as a useful byproduct of the Euclidean algo-
rithm method.

6.7 Erasure Decoding for Nonbinary BCH or RS codes

Erasures and binary erasure decoding were introduced in Section 3.8. Here we describe
erasure decoding for nonbinary BCH or RS codes.

Let the received word r have v errors and f erasures, with the errors at i 1, i2, . . . , i, and
the erasures at j 1 , j 2 , . . . , j f . We employ error locators as before, X I , X Z , . . . , X u , with
Xk = atk. Now introduce erasure locators

y1 =a]' y2 = aJZ . . . Y f = a J f .

The decoder must find: the errors locators X k , the error values eik at the error locations, and
values at the erasures fjk .

We begin by creating an erasure locator polynomial,

r(x) = - Yl.X>,
f

1=1

which is known, since the erasure locations are known.

268 BCH and Reed-Solomon Codes: Designer Cyclic Codes

Since received symbol values are necessary to compute the syndromes, it is convenient to
(temporarily) fill in the erased symbol locations with zeros. Then (assuming for convenience
a narrow sense code)

V f

= C e j k X L + C f i k y ; , I = 1,2, .. . , 2 t
zeros at erasures k,l k=l

As before, we create a syndrome polynomial,

2r-1

l=O

and create the key equation

A(x) [r (x) S (x)] = Q (x) (mod x2 ') .

Letting
E(x) = r (x) S (x) (mod xZr)

be used to represent the data that are known once the syndromes are computed, we can write
the key equation as

A (x) Z (x) = Q (x) (mod x2').

This key equation has exactly the same form as that in (6.32). Thus, any of the decoding
algorithms already introduced can be used to solve the key equation for A(x) (e.g., the
Berlekamp-Massey algorithm or the Euclidean algorithm), using E(x) in place of S (x)
in these algorithms. If the Berlekamp-Massey algorithm is used, then the input is the
coefficients Eo, E 1 , & - I , in place of S 1 , S 2 , . . . , &. If the Euclidean algorithm is used,
set a(x) = x2' and b(x) = E(x) and stop when

Once A (x) is known, its roots are found (as usual). The error and erasure values can then
be found using a modification of Forney's algorithm. The polynomial

@(XI = A (x) r (x) ,

called the combined error/erasure locator polynomial is computed. Then

Q (Y L l) W k l)
Qf (X , ') Qf(YL1) .

and fjk = -- erk = -

[erase .mag J Example 6.20 For a triple-error correcting (t = 3) Reed-Solomon code over GF(16), suppose that

T (X) = a 5 x 1 ' + a6x9 + Ex7 + Ex6 + a 1 1 x 5 + x4 + a1 'x3 + a6x2 + a12,

where E denotes that the position is erased. The erasure locations are thus at j l = 7 and j 2 = 6, the
erasure locators are Y1 = a7 and Y2 = a6. The erasure locator polynomial is

r (x) = (i - a 6 x) (i - a 7 x) = i + a 10 x + a 13 2 .

Let
f (x) = r (x) lerasures removed

= a 5 x l 1 + a6x9 + a112 + x4 + a11x3 + a 6 2 + a 1 2 .

6.8 Galois Field Fourier Transform Methods 269

The syndromes are

2 s1 = ?(a) = 1 s;! = ?(a) = 0 s3 = f(a3) = a9

s 4 = ?(a4) = a!12 ss = ?(a5) = CX2 s6 = ?(a6) = a8,

so S(X) = 1 + a 9 x 2 + aI2x3 + a 2 x 4 + a 8 x 5 . Let

E(x) = r (x) S (x) mod x2' = a13x5 + a2x4 + a 6 x 3 + a!10x2 + a l 0 x + 1

By Berlekamp-Massey or Euclid, we find that

A(x) = 1 + a!"x,

which has aroot atx = a4, so there is an error at i l = 11 andX1 = a l l . We find

Q (x) = A (x) % (x) mod x2r = a7x7 + + 1

and
@(x) = A(x)r(x) = a 9 x 3 + x 2 + a14x + 1 .

The error value is

The decoded polynomial is

E (X) = a6x9 + ax7 + d 4 X 6 + a112 + x4 + a11x3 + a6x2 + a12

6.8 Galois Field Fourier Transform Methods

Just as a discrete Fourier transform can be defined over real or complex numbers, so it
is possible to define a Fourier transform over a sequence of Galois field numbers. This
transform yields valuable insight into the structure of the code and new decoding algorithms.

Recall (see, e.g., [253]) that the discrete Fourier transform (DFT) of a real (or complex)
vector x = (xo, x i , . . . , xn-1) is the vector X = (X o , X i , . . . , X n - 1) with components

n-1

j =O

(where i = &i) and that the inverse DFT computes the elements of x from X by

270 BCH and Reed-Solomon Codes: Designer Cyclic Codes

The quantity e-2Riln is a primitive nth root of unity, that is, a complex number with order
n. In a similar way, we can define a discrete Fourier transform of length n over a finite field
having an element of order n.

Definition 6.6 Let v = (v g , v1, . . . , u n - l) be a vector over G F (q) of length n such that
n q m - 1 for some positive integer m. Let a E G F (q m) have order n. The Galois Field
Fourier Transform (GFFT) of v is the vector V = (VO, V1, . . . , Vn-1) with components

n-1

vj = C a i j v j j = 0, I , . . . , n - 1. (6.38)
i=O

We write V = F[v] and v + V to denote the Fourier transform relationship between v and
0 V, where the type of Fourier transform (a GFFT) is obtained from the context.

Theorem 6.17 In a field G F (q) with characteristic p , the inverse GFFT of the vector
V = (Vo, V1, . . . , Vn-l) is the vector v with components

n-1

j =O

where n-l is the multiplicative inverse of n modulo p .

Proof [373, p. 1941 Note that ct is a root of x" - 1. We can write

xn - 1 = (n - 1)(x"-1 + x n - 2 + * . . + x + 1).

Evaluating x n - 1 at x = ar for some integer r we have

- 1 = (an)' - 1 = 0.

If r f 0 (mod n) , then a' must be a zero of (xn- l + x " - ~ + - . . + x + 1). We therefore
have

n-1

Z a r j = O r $ 0 (modn).
j =O

When r = 0 (mod n) we get

n-1 n-1

Ca'j = El = n (mod p) .
j =O j =O

Substituting (6.38) into (6.39),

n-1 n-1 n-1

v. J - - C ,-ij C vk
j =O j =O k=O

n-1 n-1

k=O j=O

= vjn (mod p) .

Multiplying both sides by n-l (mod p) we obtain the desired result.

6.8 Galois Field Fourier Transform Methods 271

Cyclic convolution of the sequences a = (ao, a l , . . . , an-l) and b = (bo, bl, . . . , bn-1) is
denoted by

c = a @ b ,

where o denotes cyclic convolution. The elements of c in the convolution are given by
n-1

k=O

where ((i - k)) is used as a shorthand for (i - k) (mod n) . That is, the indices in i - k “wrap
around” in a cyclic manner. One of the most important results from digital signal processing
is the convolution theorem; as applied to the DFT it says that the D l T of sequence obtained
by cyclic convolution of a and b is the element-by-element product of the DFTs of a and b.
An identical result holds for the GFFT.

Theorem 6.18 If
a e A

b e B

c e c
are all sequences of length n in a jn i t e j e ld G F (q) such that n I 4”’ - 1 for some m, then

Cj = A j B j j = O , l , ..., n - 1

ifand only if

(cyclic convolution) - that is,

c = a @ b

n-1

Ci = akb((i-k)).
k=O

Furthermore,

if and only if

that is,

c, = ajb, j = 0, 1, . . . , n - 1

C = n-’A @ B;

n-1

k=O

Proof [373, p. 1951 We prove the first part of the theorem. We compute the inverse GFFT
of c:

n-1 n-1

n-1 /n-1 \ n-1 n-1

j=O \k=O 1 k=O j = O

n-1

= x a k b ((i - k)) -
k=O

272 BCH and Reed-Solomon Codes: Designer Cyclic Codes

Let us now turn our attention from vectors to polynomials.

Definition 6.7 The spectrum of the polynomial (codevector) v (x) = vo + v ~ x + . - * +
0

We refer to the original vector v = (vo, u1, . . . , vn-1) as a vector in the "time domain"
(even though time has nothing to do with it) and its corresponding transform V as being in
the "frequency domain."

vn-lxn-l is the GFFT of v = (vo, 2 1 1 , . . . , ~ ~ - 1) .

Given a polynomial v (x) , note that

n-1

v (a j) = vo + v1aj + vza2J + * * . + u n - l a (n - l) j = c vjaij = vj. (6.40)

Thus, the j th component of the GFFT of v is obtained by evaluating v (x) at x = a'. Let
us also define a polynomial based on V = (Vo, V1, . . . , Vn-1) by

i =O

V (x) = vo + v1x + v2x2 + . * * + vn-1x"-l

Then

n-1

V (&) = vo + vla-i + v2(y-2i + . . . + Vn-la-(n-1)i - - c Via-'j = nvi. (6.41)
j =O

Based on (6.40) and (6.41), we can immediately prove the following theorem.

Theorem 6.19 aj is a zero of v (x) ifand only ifthe jthfrequency component of the spectrum
of v (x) equals zero.

is a Zero of V (x) ifand only ifthe ith time component vj of the inverse transform v
of V equals zero.

Recall the basic idea of a minimal polynomial: a polynomial p (x) has its coefficients in
the base field G F (4) if and only if its roots are conjugates of each other. We have a similar
result for the GFFP

Theorem 6.20 [373, p. 1961 Let V be a vector of length n over GF(qm), where n 1 qm -
1 and GF(qm) has characteristic p. The inverse transform v of V contains elements
exclusively from the subjeld G F(q) if and only if

vq (mod p) Vqj(modn), j = 0, 1 , . . . , n - 1.
I

Proof Recall that in GF(p ') ,

(a + b)p' = up' + bPr .
Also recall that an element f i E GF(qm) is in the subfield G F (q) if and only if f i q = f i .

Let vi E GF(q) . Then

/ n - 1 \ q n-1 n-1

/ i=o i =O

6.8 Gal& Field Fourier Transform Methods 273

Conversely, assume V p = V q j (mod n) . From the definition of the GFFT,

and

hence
n-1 n-I

i d i =O

Let k = q j (mod n). Since n = q m - 1, q and n must be relatively prime, so that as j
ranges from 0 to n - 1, k takes on all values in the same range, so we conclude the zli = us.

0

Example 6.21 Let us illustrate the idea of the spectrum of a polynomial by considering the spectra of
the minimal polynomials in G F(8) . The conjugacy classes and their minimal polynomials are shown
here:

Conjugacy Class Minimal Polynomial
(01 M - (X) = x

{a0}
{a, a2, a41
(a 3 , a 5 , a 6]

Mo(x) = x + 1
M~ = (x - a) (x - a2) (x - a 4) = .3 + + 1
M 3 (x) = (x - a 3)(x - a 6) (x - a 5) = x 3 + x2 + 1

Now let us find the GFFT of the sequences obtained from the coefficients of the polynomials:

2 3 4 5 6 M - (x) : F(0100000) = (.')go = (1, a, 01 , a , a , a , a)

~(ioiiooo) = (1 + a 2 j + a3j):=0 = (I, a4, a, 0, 01 2 , o,o).

M ~ (~) : ~(1100000) = (1 + ~ , i) q = ~ = (o,& d , 5 4 2 , , a

: ~ (i i o i o o o) = (1 + a j + a3j):=0 = (1,0,0, 014, 0, a2, a)

~ ~ (4 :

Note that the positions of the zeros in the spectra correspond to the roots of the minimal polynomials.
0

We can now state the BCH bound in terms of spectra:

Theorem 6.21 [373, p . 1971Let n 1 q m - 1 for some m. A q-ary n-tuple with weight 5 6 - 1
that also has 6 - 1 consecutive zeros in its spectrum must be the all-zero vector That is,
the minimum weight of the code is 2 6.

Proof Let c have weight v, having exactly nonzero coordinates at i l , i 2 , . . . , i , . Define the
locator polynomial A(x) whose zeros correspond to the nonzero coordinates of c:

A(x) = (1 - X U - ") (~ - ~ ~ l l - ") . (1 - = A0 + Alx + * . . + A,x".

We regard this polynomial as a polynomial in the frequency domain. The inverse transform
of A(x) (i.e., its coefficient sequence) is a time domain vector X that has zero coordinates

274 BCH and Reed-Solomon Codes: Designer Cyclic Codes

in the exact positions where c has nonzero coordinates. Also, at the positions where C i = 0,
the hi are not zero. Thus cjhi = 0 for all i . By the convolution theorem we must therefore
h a v e C @ h = O .

Assume c has weight 5 6 - 1, while C has 6 - 1 consecutive zeros (possibly consecutive
by "wrapping around" the end of the vector C in a cyclic manner). From the definition,
A0 = 1. Cyclic convolution in the frequency domain gives us

n-1

k=O

so

Substituting the sequence of S - 1 zeros into Ci gives Ci = 0; proceeding forward from
that index shows that all the Cis are 0, so that C = 0. 0

Based on our transform interpretation, we have the following definition (construction) for
a Reed-Solomon code: A Reed-Solomon code can be obtained by selecting as codewords
all vectors whose transforms have S - 1 = 2t consecutive zeros. That is, a vector c is
a codeword in a code with minimum distance 2t + 1 if its transform C = F[c] has a
consecutive sequence of 2t zeros (where the sequence of zeros starts from some fixed index
in the transform vector).

This definition of the code can be used to establish another encoding mechanism for
Reed-Solomon codes. Given a message sequence m = (mo, m l , . . . , mk-I), form the
vector

Then the corresponding codeword is

c = F-l [C] ,

However, this encoding is not systematic.

6.8.1 Equivalence of the Two Reed-Solomon Code Constructions

In Section 6.2, two seemingly inequivalent constructions were presented for Reed-Solomon
codes. Based on Theorem 6.21, a Reed-Solomon codeword has a consecutive sequence of
2t = dmin - 1 zeros in its GFFT. We furthermore know that the minimum distance of a
Reed-Solomon code is d ~ n = n - k + 1. We now show that the codewords constructed
according to Construction 1 (Section 6.2.1) have a consecutive sequence of n - k zeros in
their spectrum, as required.

Let m (x) = mo + m l x + . . . + mk-1xk-l and let the codeword constructed according
to Construction 1 be

c = (m(l),m(a), . . . ,m(a"-l)) ,

(6.42)

6.8 Galois Field Fourier Transform Methods 275

Now compute the GFFT of c as
n-1

where the index - j is to be interpreted cyclically (which is legitimate, since an = 1).
Substituting from (6.42) into the transform,

n-1 k-1 k - 1 rn-1 1

i=O 1=0 1=0 Li=o J
The inner summation is 0 if 1 # j (mod n). This is the case for - j = k, k + 1, . . . , n - 1,
which is n - k consecutive values of j . Thus, there are n - k consecutive zeros in the GFFT
of every codeword.

6.8.2 Frequency-Domain Decoding

We present in this section one way of using the GFFT to decode a BCH or Reed-Solomon
code. Let r = c + e be a received vector and let R, C, and E denote the corresponding
transformed vectors. By the linearity of the transform we have

R = C + E ,

where
n-I

i=O

Assume the code is a narrow sense code. Then the first 2t coordinates of C are equal to
zero, so that R j = Ej for j = 0, 1, . . . ,2t - 1. (These are the syndromes for the decoder.)
Completion of the decoding requires finding the the remaining n - 2t coordinates of E, after
which we can find e by inverse GFFT.

Let A(x) = fly=1 (1 - X l x) , treating the coefficients as a spectrum A. The inverse
transform X = 3-' [A] yields a vector which has zeros at the coordinates corresponding to
the zeros of A (x) , so X has a zero wherever e is nonzero. Thus

h i e i = O , i = O , l , . . . , n - 1 .

Translating the product back to the frequency domain, we have by the convolution formula
A O E = O , o r

n-1

C A k E ((j - k)) = 0, j = 0, 1,. . . , T Z - 1.
k=O

Now assume that u errors have occurred, so that the degree of A(x) is u. Then Ak = 0 for
k > u. We obtain the familiar LFSR relationship

11

or, since Ao = 1,
v

(6.43)

276 BCH and Reed-Solomon Codes: Designer Cyclic Codes

This expresses an LFSR relationship between the transformed errors E j and the coefficients
of the error locator polynomial. Given the 2t known values of the transformed errors
{Eo, E l , . . . , Ezt-I}, the error locator polynomial can be found using any of the methods
described previously (such as the Berlekamp-Massey algorithm or the Euclidean algorithm).
Knowing the Ai coefficients, the remainder of the Ej values can be found using (6.43).
Then knowing E, the error vector in the “time” domain can be found by an inverse Fourier
transform: e = F-’ [El. Note that unless a fast inverse Fourier transform is available, this
is essentially the same as a Chien search.

6.9 Variations and Extensions of Reed-Solomon Codes

In this section we briefly describe several variations on Reed-Solomon and BCH codes.
More detail can be found in [220].

6.9.1 Simple Modifications

Several simple modifications are possible, of the sort described in Section 3.9.
An (n, k) Reed-Solomon code can bepunctured by deleting any of its symbols, resulting

in a (n - 1, k) code.
An (n, k) Reed-Solomon code C can be extended by adding additional parity check

symbols. A code is singly extended by adding a single parity symbol. Interestingly enough,
a single-extended Reed-Solomon code is still MDS. To see this, let c = (co, c l , . . . , cq-2)

be a codewords from a (q - 1, k) q-ary narrow-sense t-error correcting code and let

q--2

cq-1 = - C c j

be an overall parity check digit. Then an extended codeword is (co, c1, . . . , cg-l) . To see
that this extended code is still MDS, we must show that the distance has, in fact, increased.
To thls end, suppose that c has, in fact, minimum weight ddn in C. Let c(x) be corresponding
code polynomial. The generator for the code is

j =O

2 2t g (x) = (x - a) (x - a) * . . (x - a).

Now
a-2

c(1) = c c i .
i=O

If c(1) # 0, then cq-i # 0, so the new codeword in the extended code has minimum
distance dmin + 1. If c(1) = 0, then c(x) must be of the form c(x) = u (x) (x - l)g(x) for
some polynomial u (x) . That is, c (x) is a code polynomial in the code having generator

g’(x) = (x - l)(x - a)(x - a2). . . (x - 2).
By the BCH bound, this code must have minimum distance dd, , + 1. Since the new code
is (n + 1, k) with minimum distance dmin + 1, it is MDS.

It is also possible to form a double-extended Reed-Solomon code which is MDS [220].
However, these extended codes are not, in general, cyclic.

6.9 Variations and Extensions of Reed-Solomon Codes 277

6.9.2 Generalized Reed-Solomon Codes and Alternant Codes

Recall that according to Construction 1 of Reed-Solomon codes, codewords are obtained
by

c = (m(l) , m(a), . . . ,m(a"-')). (6.44)

Now choose a vector v = (v1, v2, . . . , v n) whose elements are all nonzero. Then a gener-
alization of (6.44) is

c = (vlm(l>, vzm(a) , . . . , vnm(an-'>>.

Somewhat more generally, we have the following.

Definition 6.8 Let a! = (a1, a2, . . . , an) be n distinct elements of G F (q m) and let v =
(~ 1 , v2, . . . , v,) have nonzero (but not necessarily distinct) elements from G F (q m) . Then
the generalized RS code, denoted by GRSk(a!, v), consists of all vectors

(v lm(a l) , v2m(a2), * * * 9 vnm(an>>

as m (x) ranges over all polynomials of degree < k. 0
The G R & (a , v) code is an (n, k) code and can be shown (using the same argument as

The parity check matrix for the GRSk(a!, v) code can be written as
for Construction 1) to be MDS.

Y1 y2 . . .

, y - l
n Yn 1 H = [W Y l a2y2 - * -

, y - l
1 Y 1 q l Y 2 ...

1
(6.45)

Here, y = (y l , y2 , . . . , y n) with yi E GF(qm) and yi # 0, is such that G R & (a , v)' =
GRSn-k(a, Y).

If H = X Y is a parity check matrix, then for an invertible matrix C, I? = CXY is an
equivalent parity check matrix.

While the elements of codewords of a GRSk(a!, v) code are in general in GF(qm), it is
possible to form a code from codewords whose elements lie in the base field G F (q) .

Definition 6.9 An alternant code A(a, y) consists of all codewords of GRSk(a!, v)
whose components all lie G F (q) . (We say that A(a, y) is the restriction of GRSk(a!, v)
to GF(q) .) That is, &(a!, y) is the set of all vectors c E GF(q)" such that Hc = 0, for H
in (6.45). Another way of saying this is that A is the subfield subcode of GRSk(a, v). 0

Since we have an expression for a parity check matrix for the GRS code, it is of interest
to find a parity check matrix for the alternant code. That is, we want to find a parity check
matrix over G F (q) corresponding to the parity check matrix H over G F (q m) . This can
be done as follows. Pick a basis al , a2, . . . , am for GF(q") over G F (q) . (Recall that
GF(qm) can be written as a vector space of elements of G F (q) .) A convenient basis set is

278 BCH and Reed-Solomon Codes: Designer Cyclic Codes

{l, a, a2, . . . , am-'), but any linearly independent set can do. Then, for each element Hij

of H, write
m

E=l

where each hijl E GF(q) . Now define H to be the (n - k)m x n matrix obtained from H
by replacing each entry Hij by the column vector of components in (hijl, hij2, . . . , hijm),
so that

-
H =

It can be argued that the dimension of the code must satisfy k 2 n - mr.
One of the important properties about alternant codes is the following:

Theorem 6.22 [220, p . 3341 &(a, y) has minimum distance dmin 2 n - k + 1.
Proof Suppose c is a codeword having weight 5 r = n - k . Then H c = XYc = 0. Let
b = Yc. Since Y is diagonal and invertible, wt(b) = wt(c). Then Xb = 0. However, X is

0
In summary, we have a code of length n, dimension k 2 n - mr and minimum distance
d,,,i,, 2 n - r .

The family of alternant codes encompasses a variety of interesting codes, depending on
how the field and subfield are chosen. BCH and Reed-Solomon codes are alternant codes.
So are Goppa codes, which are described next.

a full-rank Vandermonde matrix, so this is impossible.

6.9.3 Goppa Codes

Goppa codes start off with a seemingly different definition but are, in fact, instances of
alternant codes.

Definition 6.10 Let L = [a1,a2,. ..,a,} where each ai E GF(qm). Let G(x) E
GF(qm)[x] be the Goppa polynomial, where each ai E L is not a root of G . That is,
G(ai) # 0 for all ai E L. For any vector a = (a l , a2, . . . , a n) with elements in GF(q) ,
associate the rational function

n

Ra(x) = C G-
i=l

ai

Then the Goppa code r(L, G) consists of all vectors a E GF(4)" such that

Ra(x) 0 (mod G (x)) .

If G(x) is irreducible, then r (L , G) is an irreducible Goppa code.

(6.46)

0

6.9 Variations and Extensions of Reed-Solomon Codes 279

As we will see, Goppa codes have good distance properties: d ~ n ? deg(G) + 1.
Goppa codes are linear codes. The parity check matrix can be found using (6.46), which

can be re-expressed as: &(x) = 0 in the ring GF(qm)[x] /G(x) . Note that in this ring,
x - ai does have an inverse, since it does not divide G(x). The inverse is

(6.47)

as can be shown by observing that

by applying the definition of =. Let G(x) =
long division and collection of terms that

gix' with gr # 0. It can be verified by

+ g 2 (~ + ai) + gl.

(6.48)

Substituting (6.47) into (6.46), we have that a is in r (L , G) if and only if

(6.49)

us apolynomiul (and not just modulo G(x)). Since the polynomial must be 0, the coefficients
of each x i must each be zero individually. Substituting (6.48) into (6.49) and equating each
of the coefficients of xr-l, , . . . , 1 toO,weseethataisinr(Z, G)ifandonlyif H a = 0,
where

H =

I (g l + a 1 8 2 + . . . + a ; - l g r) G (a l) - ' ' 1 . (g l +a,g :!+...+a~-'gr)G(an)-'

1 G(ai)- = 0 Lai (3x1 -
X - aj

i=l

gr G (a1 1-l ... glG(an)-'
(gr-1 + algr)G(aI)-' ... (gr-1 + angr)G(an)-'

ar-l ,r-1 2 " ' an r - 1 1
1

280 BCH and Reed-Solomon Codes: Designer Cyclic Codes

or H = C X Y . Since C is lower triangular with a nonzero along the diagonal, C is invertible.
It follows that an equivalent parity check matrix is

1 . G(al)-' . . . G (an >-l

G(al)-' . . * anG(an1-l -
H = X Y = L ~ ; - ' G (c x ~) - ' . * * a;-'G(an)-'

We observe from the structure of the parity check matrix (compare with (6.45)) that the
Goppacodeisanalternantcode,withy = (G(al)- ' , . . . , G(an)-'). Infact,itcanbeshown
that the r (L , G) code can be obtained as the restriction to GF(q) of the GRSn-,(a, v)
code, where

G (ai 1
V j =

nj+<ai -a,).

6.9.4 Decoding Alternant Codes

Efficient algorithms exist for decoding alternant codes [220, Section 12.91. These exactly
parallel the steps used for decoding Reed-Solomon codes: (1) A syndrome is computed (the
details are somewhat different than for RS codes); (2) An error locator polynomial is found,
say, using the Berlekamp-Massey or the Euclidean algorithm; (3) The roots are found; and
(4) Error values are computed if necessary. A decoding algorithm for Goppa codes also
appears in 12561.

6.9.5 Cryptographic Connections: The McEliece Public Key Cryptosystem

In this section we present another connection between error correction coding and cryptog-
raphy. In this case, we show how an error correction code can be used to make a public key
encryption system. The original system was based on Goppa codes (hence its inclusion in
this context), but other codes might also be used.

The person A wishing to communicate picks an irreducible polynomial G (x) of degree
t over GF(2m) "at random" and constructs the generator matrix G for the (n , k) Goppa
code using G(x) . This code is capable of correcting any pattern of up to t errors. Note that
there are efficient decoding algorithms for this code.

Now A scrambles the generator G by selecting a random dense invertible k x k matrix S
and a random n x n permutation matrix P. He computes 6 = SG P. A message m would
be encoded using this generator as

E = (mS)GP = (mG)P.

Since P simply reorders the elements of the codeword corresponding to the message m,
the code with generator 6 has the same minimum distance as the code with generator G.
The public key for this system is the scrambled generator 6. The private key is the set
(S, G, PI.

Encryption of a message m is accomplished using the public key by computing

e = m G + z ,

where z is a random "noise" vector of length n and weight t . e is transmitted as the encrypted
information.

Lab 6: Programming the Berlekamp-Massey Algorithm 281

Because the encoding is not systematic and there is noise added, the message is not
explicitly evident in e. The encrypted message m could be discovered if e could be decoded
(in the error correction coding sense). However, the scrambled matrix z! no longer has the
algebraic structure that provides an efficient decoding algorithm. Optimal decoding without
some structure to exploit can have NP-complete complexity [24]. Hence, a recipient of e
can recover m only with extreme effort.

Decryption of e knowing (S, G , P) , however, is straightforward. Knowing P , first
compute 6 = eP-' . Note that while the noise is permuted, no additional noise terms are
added. Now decode using a fast Goppa decoder, effectively getting rid of the noise z, to
obtain the scrambled message m = mS. Finally, invert to obtain m = mS-'.

Programming Laboratory 6:
Programming the Berlekamp-Massey
Algorithm

Background

Reading: Sections 6.4.2, 6.4.3,6.4.4.
The Berlekamp-Massey algorithm provides one of the

key steps in the decoding of BCH or Reed-Solomon codes.
Specifically, it provides a means to determine the error-
locating polynomial given the syndromes.

We have encountered LFSRs in previous labs: in binary
form in Lab 2 and in the context of the Sugiyama algorithm
in Lab 4 . The problem addressed by the Berlekamp-Massey
algorithm is to find the coefficients {cl , c2, . . . , c u } satisfy-
ing (6.12) with the smallest u. (The Sugiyama algorithm
introduced in Lab 4 provides another solution to this same
problem.) The LFSR coefficients are represented in a poly-
nomial, the connection polynomial

2 c(x) = 1 + c1x + c2x + . . . + cux'.

The Berlekamp-Massey algorithm is described in Algorithm
6.1 on page 258. Simplifications for binary BCH codes are
presented in Algorithm 6.2 on page 259.

Assignment

Preliminary Exercises

1) For operations in Z5, work through the Berlekamp-
Massey algorithm for the sequence { 2 , 3 , 4 , 2 , 2 , 3 } . Verify
that the sequence of connection polynomials is

Initial: c = 1 L = O
k = l c = 1 + 3 x L = l
k = 2 c = l + x L = l

L = 2
k = 4 c = 1 + 2 x L = 2
k = 5 c = 1 + 2 x + 2 x 2 + 2 x 3 L = 3
k = 6 c = 1 + 3 x + 4 x 2 + 2 x 3 L = 3

k = 3 c = l + x + 4 x 2

2) For operations in G F (2) , work through the Berlekamp-
Massey algorithm for the sequence { 1 , 1 , 1, 0, 1, 0, 0). Ver-
ify that the sequence of connection polynomials is

Initial:
k = l
k = 2
k = 3
k = 4
k = 5
k = 6
k = 7

c = l L = O
c = l + x L = l
c = l + x L = l
c = l + x L = l
c = l + x + x 3 L = 3
c = l + x + x 3 L = 3
c = l + x + x 3 L = 3
c = l + x + x 3 L = 3

3) For operations in G F (2 4) , work through the
Berlekamp-Massey algorithm for the sequence
10, a3, a4, a7}. Verify that the sequence of connection
polynomials is

Initial: c = 1 L = O
k = l c = l L = O

k = 3 c = 1 + a x + a 3 x 2 L = 2
k = 4 c = l + (~ x + a ~ O x ~ L = 2

k = 2 c = l + a 3 , 2 L = 2

Programming Part

1) Write a function berlmass which: Either

0 Accepts a sequence of numbers of arbitrary type and re-
turns a connection polynomial for an LFSR generating that
sequence. The function should have the following declara-
tion:

template <class T> polynomialT<T>
berlmass(const T* s , int n);
/ I Accept a sequence s of type T and length n
/ / (s[Ol .. . sLn-11)
/ I and return a connection polynomial c of
/ I shortest length generating that sequence.

0 Or, accepts an array of numbers of arbitrary type and an
argument into which the coefficients of the connection poly-
nomial are written. The function should have the following
declaration:

282 BCH and Reed-Solomon Codes: Designer Cyclic Codes

template <class T > void
berlmass2(const T* s, int n, T* c, int& L)
/ / s = input coefficients s[Ol,s[ll, . . . s[n-11
/ / c = connection polynomial coefficients.
/ / (Must be allocated prior to calling)
/ / L = degree of connection polynomial

You may want to create a class BCH which encapsulates one
of these functions. (See the discussion below.) The dif-
ference between these is that the first form deals explicitly
with the polynomial, while the second deals only with the
coefficients. Tradeoffs between these are discussed below.
2) Test your function using the examples from the prelim-
inary exercises.

Algorithm 6.3 Test BM Algorithm
File: testBM. cc

3) Over GF(16) verify that the sequence
{a8, a, aI3, a2, a5 , a l l } is generated by the LFSR with
connection polynomial 1 + a', + a 2 x 2 .

4) Over GF(16) verify that the sequence
{O, 0, a5, 0,1, a''} is produced by 1 + a10x2 + a 5 x 3 .

5) Write a function berlmassBCH which accepts data
satisfying the syndrome conjugacy condition (6.27) and
computes the connection polynomial using the reduced
complexity algorithm. Test your algorithm by verifying
that:

a) For the sequence 11, 1, a", 1, a", a'} the connec-
tion polynomial is 1 + x + a5x3, with computations over

b) For the sequence {a14, a13, 1, a", a5 , l} the con-
nection polynomial is 1 + aI4x + a1'x2 + ~ 1 ~ x 3 , with
computations over ~ ~ (2 4) .

G F (24).

Resources and Implementation Suggestions

Two implementations are suggested for the algorithms, one
which employs polynomials and the other which employs
arrays. The polynomial implementation is somewhat eas-
ier to write than the array implementation, since the single
statement

c = c - (p <i shift)*(d/dm);

suffices to provide the update in (6.15). The algorithm out-
lined in Algorithm 6.1 can thus be almost literally translated
into C++.

mial c(x) is less than the expected de ee L. However, L
should not be modified. The mpact o&s is that when the
discrepancy is computed, the actual degree of c (x) should
be used, not L. The discrepancy can be computed as in the
following piece of code:

/ / compute the discrepancy
/ / in the polynomial implementation
d = s[kl;
for(j=l; j <= c.getdegree0; j+t) (/ / sum

\
d t= c[j]*s[k-j];

The other thing to be aware of is that there is internal
memory allocation and deallocation that takes place when-
ever a polynomialT is assigned to a polynomialT of
different degree. This introduces an operational overhead
to the algorithm.

Which brings up the array form: By implementing the
operations explicitly using arrays, the overhead of memory
management can be (almost) eliminated and only a little
more work is necessary. For example, the update formula
(6.15) can be represented using a simple loop:

/ / update the polynomial
for(j = shift; j <= L; j t t) {

c[j] -= p[j-shift]*ddm;
/ / Compute: c = c - (p<< shift)*(d/dm);

1

The function must have passed to it an array of sufficient
size to hold the polynomial. Also, it must allocate arrays of
sufficient size to represent the largest possible t and p poly-
nomials, then de-allocate them on exit. However, there is a
caution associated with this implementation: if the function
is called repeatedly, the prior data in c does mess up the
computations. Additional care is necessary to ensure that
terms that should be 0 actually are - the simple loop above
does not suffice for this purpose.

This brings up the final implementation suggestion: the
function would be most cleanly represented using a class
with internal storage allocation. Then the necessary inter-
nal space could be allocated once upon instantiation of an
object then used repeatedly. You may therefore want to
write it this way (and use arrays internally).

Lab 7: Programming the BCH Decoder 283

Programming Laboratory 7:
Programming the BCH Decoder

ObJectlve

In this lab you implement a BCH decoder and thoroughly
test it.

Preliminary Exercises

Reading: Sections 6.3,6.4.

1) For the field G F (z 4) generated by 1 + x + x4, show
that the minimal polynomials of a , a3, and a5 are

M ~ (~) = 1 f x +x4

M 3 (x) = 1 + x + x 2 + x 3 +x4

M5(x) = 1 + x + x2.
2) Show that the generator for a (15,5) three-error correct-
ing binary BCH code is

3) Determine the actual minimum weight of this code.

Programming Part

1) Write a class Chiensearch which implements the
Chien search algorithm over GF(2m). In the interest of
speed, the class constructor should allocate space necessary
for the registers as well as space for the computed roots. A
member function should accept an error locator polynomial
(or an array of its coefficients) and compute all the roots of
the polynomial.

Algorithm 6.4 Chien Search
File: Chiensearch. h

Ch1enSearch.c~
testChien.cc

Test your algorithm by verifying that over G F ’ (~ ~) the
roots of the error locator polynomial

A(x) = 1 + x + u5x3

are at a3, and a12.

2) Build a BCH decoder class which decodes a vector of
n binary elements.

3) Thoroughly test your decoder on the (15,5) BCH code
with generator

over the field GF(24) . You should correct all patterns of up
to three errors. The test program in Algorithm 6.5 provides
an exhaustive test of all patterns of three errors (with some
duplication).

Your finished decoder should finish without any uncor-
rected errors. It is important to make sure that you are able
to successfully decode all error patterns. This test is likely
to shake out several minor problems with the functions you
have written. After all errors are corrected, you can be quite
confident in the functions you have written.

Algorithm 6.5 BCH Decoder
File: BCHdec . h

BCHdec. cc
testBCH.cc

4) Modify the BCH decoder to use the reduced-complexity
Berlekamp-Massey algorithm for BCH syndromes (the one
described in Section 6.4.4) to find the error locator polyno-
mial from the syndromes. Ensure that your decoder is still
able to decode all patterns of up to three errors.
5) Modify the BCH decoder to use the Sugiyama algorithm
from lab 4 to find the error locator polynomial from the syn-
dromes. Ensure that your decoder is still able to decode all
patterns of up to three errors.

Resources and Implementation Suggestions

1) The syndromes are numbered s l , s2 , . . . , szt , whereas
the discussion surrounding the Berlekamp-Massey algo-
rithm used zero-based indexing, y o , y1, . . . , ~ 2 ~ - 1 . There
is no difficulty here: simply interpret y j = sj+l and call
the Berlekamp-Massey algorithm with an array such that
the first element contains the first syndrome.
2) If you represent the received vector as a polynomial
polynomialT<GFNUM2m>, then evaluating it to com-
pute the syndromes is very straightforward using the ()

operator in class polynomiall.
If you choose to represent it as an array (to avoid mem-

ory management overhead), for efficiency the polynomial
evaluation should be done using Homer’s rule. As an ex-
ample, to evaluate a cubic polynomial, you would not want
to use
p = C[O] + c[l]*x + C[2]*X*X + c[31*x*x*x;

since multi lications are wasted in repeatedly computing
products of% Instead, it is better to wnte in nested form as

284 BCH and Reed-Solomon Codes: Designer Cyclic Codes

p = ((C[3I*XtC[2])*x+c[ll)*x+c[O];

This nesting can be efficiently coded as

p = c[j=nl;
while(j>O)

p = p*x + c[--jl;

3) If you use an array implementation of the Berlekamp-
Massey algorithm (in contrast to a p o l y n o m i a l T imple-
mentation) you may need to take special care that the coeffi-
cients of the connection polynomial are zeroed out properly.

Follow-On Ideas and Problems

The BCH codes described in this lab are narrow sense,
in that the roots of the polynomial g(x) contain the list
p, 82, . . . , p 2 f for a primitive element 8. A non-narrow
sense BCH code uses the roots

for an arbitrary b. Describe how the decoding algorithm is
modified for non-narrow sense BCH codes.

Programming Laboratory 8:
Reed-Solomon Encoding and
Decoding

Objective

In this lab you are to extend the binary BCH decoder im-
plemented in lab 7 to nonbinary Reed-Solomon codes. In
addition, instead of simply decodingrandom errors, you will
create a systematic encoder.

Background

Reading: Sections 6.3,6.4, 6.5,6.6.

Programming Part

1) Create a class R S e n c which implements a Reed-
Solomon encoder for primitive, narrow-sense codes. Verify
that the function works by encoding the data as in Example
6.10. Your class declaration might be as in R S e n c . h.

the Chien search to find the error locators and the Forney
algorithm to find the error values. You should be able to
use much of the code that you have written previously (the
Berlekamp-Massey algorithm, the Chien search from the
BCH lab) as well as create new code for the Forney algo-
rithm. A declaration for the class might be as in R S d e c . h.

Algorithm 6.7 Reed-Solomon De-
coder Declaration
File: R S d e c . h

R S d e c . cc

After creating an R S d e c object, a call to the decode
member function converts the array r to the decoded array
dec.

3) Test your decoder by decoding 10000 patterns of up to
three errors for the (255,249) code over the field GF(28)
using p (x) = x8 + x4 + x3 + x2 + 1. A program which
does this testing is t e s t R S . cc.

Algorithm 6.6 Reed-Solomon En-
coder Declaration
File: R S e n c . h

R S e n c . cc

Algorithm 6.8 Red-Solomon De-
coder Testing
File: t e s t R S . cc

~ ~~ ~ ~~~~~

2) Create a class R S d e c which implements a Reed-
Solomon decoder for primitive, narrow-sense codes. Use
the Berlekamp-Massey algorithm to find A(x), followed by

4) After you have tested and debugged your decoder, re-
place the Berlekamp-Massey algorithm with the Euclidean
algorithm to determine A(x) and Q (x) . Test the resulting

Appendix 6.A Proof of Newton's Identities 285

algorithm as before, ensuring that many random patterns of
up to three errors are decoded.

5) After you have tested and debugged your encoder and
decoder objects, you are ready to use them to protect data
files on the computer. rsencode is program to encode
data using a (255,255 - 2t) Reed-Solomon code, where
t defaults to 3, but can be set using a command-line argu-
ment. The corresponding decoderprogramis r sdecode.

In the program, special care is taken to handle the last
block of data, writing out the length of the block if it is less
than 255.

Starting with this source code, use your encoder and
decoder objects to build complete encoder and decoder pro-
grams, rsencode and rsdecode. Test your encoders
and decoders on short files (< 249 bytes) and longer files.
Test the program when the encoded data is corrupted (say,
using the bsc program).

Algorithm 6.9 Reed-Solomon File
Encoder and Decoder
File: rsencode. cc

rsdec0de.c~

Algorithm 6.10 Binary Symmetric
Channel Simulator
File: bsc. c

Appendix 6.A Proof of Newton's Identities

Newton's identities relate the coefficients of a polynomial to the power sum identities ob-
tained from the roots of the polynomial. We derive them here in the general case, then make
application to the error locator polynomial.

Let

f(x) = (X - xI)(x - ~ 2) . . . (X - xn)
= x" - up"-l + 02x n-2 + . . * + (-l)n-lon-lx + (- l l n ~ n .

The power sums are Sk = xf + x; + . . . + x,k,
symmetric functions are

k = 1 , 2 , . . . , n, and the elementary

Theorem 6.23 (Newton's Identities) The elementary symmetricfunctions CTk and thepower
sum symmetricfunctions Sk are related by

S k - a l S k - l f . . . + (- l) k - l a k _ l S l + (- l) k k a k = O l < k e n
(6.50)

Sk - ulSk-1 f ' . ' + (-1)"-'Dn-lSk-n+l + (-l)nSk-nDn = 0 k > n.

Proof Let a; be the ith elementary symmetric function in n variables and let sf be the
symmetric power sum function in n variables. Also, let = 1 and a? = 0 if i -= 0 or
i > n. Then the two Newton's identities (6.8) are subsumed into the single relationship

s; - ars;-l + . . . + (-l)k-lcri-lsT + (-l)kkm[= 0 for allk 2 1, (6 . 5 1)

286 BCH and Reed-Solomon Codes: Designer Cyclic Codes

or, more concisely,
k-1

[(- l)J~;-~o;" + (-l)kka," = 0 for all k 2 1. (6.52) 1
j =O

The proof of (6.51) relies on the observations that

s r = s P - ' + x i , m = 1 ,2 ,..., n (6.53)

and c~r = +x,aim_T', i = I , . . . , n; m = 0 , . . . , n. (6.54)

The former equation is by definition and the latter is by the multiplication operation. We
do induction on the number of variables. When m = n = 1, (6.52) implies s: = a:, which
is true by direct computation. Assume (6.52) is true for n - 1; we obtain the inductive
hypothesis

(6.55)

Then for n, using (6.53) and (6.54),

axc+e=A a x d f f = B

k-1 k- 1

j =O j =O
i , i i

b x c b x d

C

The terms in A are equal to zero by (6.55). The terms in B are

= - y (- 1) k - l n-1
*k- 1

using (6.55) again. The terms in C cancel each other except for one term, so that

c = (- p x n a ; : ; .

Thus B + C = 0 and cfzk ~g-~a;" + (-l)kka," = 0.

Since f (x) is of the form f (x) = n:==, (x -Xi) and A (x) is of the form A(x) = n:==, (1 -
X i X) , it follows that A (x) = x " f (l / x) , so that Ai = (- l) i D j . This gives the form of the
Newton identities shown in (6.8).

6.10 Exercises 287

6.1 0 Exercises
6.1 For a binary, narrow-sense, triple error-correcting BCH code of length 15:

(a) Compute a generator polynomial for this code.
(b) Determine the rate of the code.
(c) Construct the parity check matrix and generator matrix for this code.

6.2 Find the generator g(x) for a narrow-sense, binary double-error correcting code of blocklength

6.3 Find a generator polynomial for a narrow-sense, double-error correcting binary BCH code of

6.4 Find a generator for a narrow-sense, double-error correcting quaternary BCH code of length 21.
6.5 Compute the weight distribution of a double-error-correcting binary BCH code of length n = 15.
6.6 Construct a narrow-sense Reed-Solomon code of length 15 and design distance 3. Find the

generator polynomial and the parity-check and generator matrices. How does the rate of this
code compare with the rate of the code found in Exercise 1.1 ?

6.7 Compute the weight distribution of an (8,3) 8-ary MDS code.
6.8 Show that when a MDS code is punctured, it is still MDS. Hint: Puncture, then use the Singleton

bound.
6.9 Show that when a MDS code is shortened, it is still MDS. Hint: Let C be MDS and let Cj be the

subset of codewords in C which are 0 in the ith position. Shorten on coordinate i, and use the
Singleton bound.

6.10 [204] Show for a binary BCH t-error correcting code of length n that, if 2t + 11 n, then the
minimum distance of the code is exactly 2t + 1. Hint: Write n = q(2t + 1) and show that
(x" + l)/(xq + 1) is a code polynomial of weight exactly 2t + 1. See Exercise 5.55.

6.1 1 Find g(x) for a narrow-sense, double-error correcting RS code using cr E G w 4) as the primitive
element. For this code, suppose the received data produces the syndromes S1 = cr4, S2 = 0,
S3 = a8 and S4 = a2. Find the error locator polynomial and the error locations using the
Peterson-Gorenstein-Zierler decoder.

6.12 For a triple-error correcting, primitive, narrow-sense, binary BCH code of length 15, suppose that

n = 63.

length 21.

(a) Determine the syndromes S1, S2, S3, S4, S5, and S6.
(b) Check that S2 = Sf, S4 = S$, and S6 = S:.
(c) Using the Peterson-Gorenstein-Zierler algorithm, determine the error locator polynomial

(d) Find the error locator polynomial using the (nonbinary) Berlekamp-Massey algorithm.

(e) Find the error locator polynomial using the binary Berlekamp-Massey algorithm. Provide

(f) Find the error locator polynomial using the Euclidean algorithm (the Sugiyama algorithm).

6.13 For a triple-error correcting, primitive, narrow-sense, binary BCH code of length 15, suppose that

and the decoded codeword.

Provide the table illustrating the operation of the Berlekamp-Massey algorithm.

the table illustrating the operation of the Berlekamp-Massey algorithm.

Show the steps in the operations of the algorithm.

r (x) = x13 + x 9 +x4 +x3 + 1.

(a) Determine the syndromes S1, S2, S3, S4, S5, and S6.

(b) Check that S2 = Sf, S4 = S$, and S6 = Sz.

288 BCH and Reed-Solomon Codes: Designer Cyclic Codes

6.14

6.15

6.16

6.17

6.18

6.19

(c) Find the error locator polynomial A (x) using the (nonbinary) Berlekamp-Massey algorithm.
Provide the table illustrating the operation of the Berlekamp-Massey algorithm. Also, find
the factorization of A (x) , and determine the error locations and the decoded codeword.

(d) Find the error locator polynomial using the binary Berlekamp-Massey algorithm. Provide
the table illustrating the operation of the Berlekamp-Massey algorithm. Compare the error
locator polynomial with that found using the Berlekamp-Massey algorithm.

(e) Find the error locator polynomial using the Euclidean algorithm (the Sugiyama algorithm).
Show the steps in the operations of the algorithm. Compare with the error locator polyno-
mial found using the Berlekamp-Massey algorithm.

For a triple-error correcting, narrow-sense, Reed-Solomon code of length 15, suppose that

(a) Determine the syndromes S1, S2, S3, S4, S5, and &j.

(b) Find the error locator polynomial A(x) using the Berlekamp-Massey algorithm. Provide
the table illustrating the operation of the Berlekamp-Massey algorithm. Also, find the
factorization of A(x) and determine the error locations.

(c) Determine the error values using Forney’s algorithm and determine the decoded codeword.
(d) Find the error locator polynomial using the Euclidean algorithm (the Sugiyama algorithm).

Show the steps in the operations of the algorithm. Compare with the error locator polyno-
mial found using the Berlekamp-Massey algorithm.

For a triple-error correcting, narrow-sense, Reed-Solomon code of length 15, suppose that

I (X) = + a 3 x 7 + ax6 + a 7 x 5 + Ex4 + Ex3 + a 4 x 2 + a9x +ag,

where E denotes that the position is erased.

(a) Determine the erasure locator polynomial r (x) .

(b) Determine P (x) and the syndromes S1 , S2 , S3, S4, S5, and Sfj.
(c) Find E((x).

(d) Using the Berlekamp-Massey or Euclidean algorithm determine A(x) and find the error

(e) Determine the error and erasure values using Forney’s algorithm, and determine the decoded

The decoding algorithms described in this chapter assume that narrow-sense codes are used.
Carefully describe what changes would have to be made in the decoder if a non-narrow sense
code is used. In particular:

locations.

codeword.

(a) How do computations change for finding the error locating polynomial A(x)?

(b) How does the Forney algorithm change for finding the error values?

The Berlekamp-Massey algorithm (Algorithm 6.1) requires division in the field, that is, finding a
multiplicative inverse. This can be more complex than multiplication or addition. Is it possible
to modify the algorithm so that it still produces an error locator polynomial, but does not require
any divisions?
Let C be the (2m - 1, k) Reed-Solomon code with minimum distance d . Show that C contains
the primitive (2m - 1, k) binary BCH code C’ of length 2m - 1 with design distance d. This is
an example of a subfield subcode.
[204] Is there a binary t-error-correcting BCH code of length n = 2m + 1 for rn 5 3 and t < 2m-1.
If so, determine its generator polynomial.

6.10 Exercises 289

6.20

6.21

6.22

6.23

6.24

[204] Let b = -t. A BCH code with designed distance d = 2t + 2 whose generator polynomial
has ,!I-', . . . , j 3 - ' , 1 , j3, . . . , B' and their conjugates as roots. Show that this is a reversible cyclic
code. (See Exercise 4.14a.) Also, show that if t is odd, then the minimum distance of this code
is at least 2t + 4.
[204] A t-error correcting Reed-Solomon code of length n = 2m - 1 over GF(2m) has the
following parity check matrix.

,&n-1)

,2t(n- 1) I ? 1 a a2 ...

H = [; :: :: :I:
H' = I' 0 4. where 01 is primitive in GF(2"). Now form the parity check matrix

0 1

0 0
1 0

Show that the code with parity check matrix H' also has minimum distance 2t + 1 . Hint: Consider
2t x 2t submatrices. For submatrices including the first columns, think of the cofactor expansion.

Let m(x) = mg + mlx + . . . + mk-1xk-l E GF(2m)[x] . Form the polynomial

c (x) = m(1) + m(O1)x + m(O12)x2 + . * . + m(a!2m-2)x2m-2.

Show that c(x) has a, a2, . . . , ct2m-k-1 as roots. What can you conclude about the set of all
{ c (x)] as m (x) varies?
Letv = [vg, q , . . . , vn- l] , ui E GF(q)beasequenceandletv(x) = v ~ + v l n + ~ . . + v ~ - l x ~ - ~ .
Let V . - v (a j) = Cyzi v ja i j , j = 0,1,. . . , n - 1 , where a! is a primitive nth root of unity.
The Mattson-Solomon polynomial (see [220, p. 2391 is defined as

I -

n-1 n

A (z) = An- j z j = 1 Ajz"-'.
j =O j = l

(a) Show that A0 = An.
(b) Show that the aj can be recovered from A (z) by ai = n - l A (a i) .
(c) Show that if the aj are binary valued and operations take place in a field GF(2m), then

(d) Show that if c(x) = R , ~ ~ + l [a (x) b (x)] (that is, the product modulo x" + l), then C (z) =
R p + i [A (~) ~ l = A W .

A (z) O B (z) , where Odenotestheelement-by-elementproduct, A(z)OB(z) = ny:: Aj Bizi ,
and conversely.

Using the definition of the formal derivative in (6.33) for operations over the commutative ring
with identity R [x] , where R is a ring:

(a) Show that [f(x)g(x)l' = f ' (x) g (x) + f(x)g'(x).
(b) Show that if f 2 (x) I g (x) then f (x) 1 g ' (x) .

(c) Showthat (f 1 f 2) (~) = Cr=o (r)fi f 2
(4 Show that (f 1 . h . . * fr)' = CI=1 4' njzj f j .

(i) (n - i) ,where()(") denotesthenthformalderivative.

290 BCH and Reed-Solomon Codes: Designer Cyclic Codes

(e) From the latter conclude that with f = f i f 2 . f r .

f l = f r + ...+-. f :
f f l f r

This is a partial fraction decomposition of f '/ f .
(f) Let u be a simple root of f (x) and let g (x) = f (x) / (x - u). Show that f ' (u) = g(u).

(g) Show that if f has a repeated root at u, then (x - u) is a factor of (f , f ').

6.25 Prove Lemma 6.14. Hint: Use the fact that S2,, = S: for binary codes.
6.26 Express Massey's algorithm in a form appropriate for using 0-based indexing; that is, when the

syndromes are numbered So, S1, . . . , S N - ~ , where N = 2t.
6.27 Compute the GFFT in GF(8) of the vector represented by the polynomial v (x) = 1 + a 2 x +

a 3 x 4 + a 6 x 5 . Also, compute the inverse GFFT of V (x) and ensure that v (x) is obtained.
6.28 Let {q} be a sequence of length n , [u i } = {ao, a l , . . . , a n - l } . Let {a((i - l)) } denote the cyclic

shift of the sequence {ai} . Let {aj} ++ { A j } denote that there is a GFFT relationship between the
sequences. Prove the following properties of the GFFT.

Cyclic shift property: ~ a ((j - l)) } ++ { a j ~ j }

Modulation property: {a 'a i } t, { A ((j + l)) }

6.29 Determine the GFFT of the vector vi = arz. Determine the GFFT of the vector vi = p s i - l ; that
is, it has value vi = /3 when i = 1 and value vj = 0 when i # 1. Assume 0 5 1 < n .

6.30 List the minimal polynomials over G F (16). Compute the GFFT of the corresponding vectors and
note the positions of the zeros of the spectra compared to the roots of the minimal polynomials.

6.31 Computing the GFFT. Let vi E GF(2m), i = 0, 1 , . . . , n - 1. Let

n-1
v . - - p J . 2 c p-(j-j) ' (pi2 vi). (6.56)

Show when ,5 is a square root of a that V , of (6.56) equal to V j of (6.38). That is, (6.56) can be
used to compute the GFFT. This is called the Bluestein chup algorithm. The chirp transform
can be computed as a pointwise product of vi by followed by a cyclic convolution with j3-I'.

6.32 Describe how to obtain a (mn, mk) binary code from a (n, k) code over GF(2m). Let d be the
minimum distance of the (n . k) code and let dm be the minimum distance of the (mn, mk) code.
HOW does dm/(mn) compare with d / n in general?

i =O

.2

6.33 Let M i (x) be the minimal polynomial of a i , where ai is aprimitive element in GF(2"). Let

and let V (h *) be the set of sequences of length 2" - 1 which are annihilated by h*(x) . Show
that for any two sequences a , b E V (g *) , wt(a + b) > 2k.

6.34 (Justesoncodes) LetCbean(n, k)Reed-SolomoncodeoverGF(qm). Letc = (co, c l , . . . , Cn-1)

be a codeword in C. Form the 2 x n matrix by

Replace each G F (q m) element of this matrix by a GF(q) m-tuple, resulting in a 2m x N matrix.
The set of such matrices produces the Justeson codes, a q-ary code whose codewords have length
2mN obtained by stacking up the elements of the matrix into a vector.

6.11 References 291

(a) Show that the Justeson code is linear.

(b) Explain why at least n - k + 1 of the columns of a matrix M are nonzero.

(c) Explain why no two nonzero columns can be the same.

(d) Let I be an integer satisfying

Show that the minimum distance of the Justeson code is lower-bounded by

Hint: In a 2m-tuple there are (2y) ways of picking i nonzero places and q - 1 different
nonzero values. The minimum distance greater than or equal to the sum of the weights of
the columns.
It can be shown that [33] asymptotically d,,-,i,/n >_ 0.11(1 - 2R), where R = k/2n is the
rate of the code. Thus Justeson codes have a fractional distance bounded away from 0 if
R < 112.

6.35 Newton’s identities: Show that a? =
6.36 Newton’s identities: Let

+ xnai”_T1 is true.

f (x) = (x - q) (x - x2) * . . (x - x n) .

f (x) = xn - a1xn-l + 02xn-2 +. ’ + (-~)~ - ‘nn- lx + (-1Inan.

Show that f (x) can be written in terms of the elementary functions by

Hint: Give an inductive proof using the identity (6.54).

6.1 1 References

Reed-Solomon codes were presented first in [286]; these are, of course, structurally similar
to the BCH codes announced in [151] and [36]. The first decoding algorithms were based
on solving Toeplitz systems; this is the essence of the Peterson decoding algorithm [261].
The generalization to nonbinary codes appears in [1251. The Berlekamp-Massey algorithm
was presented in [25] and [222]. The Forney algorithm appears in [86] and the Chien search
appears in [49]. More information about weight distributions of BCH codes appears in
[186]. The theoretical aspects of these codes are considerably richer than this chapter can
contain and could cover several chapters. Interested readers are referred to [220]

There are many other decoding algorithms to explore for these codes. It is possible to
scale the Berlekamp-Massey algorithm so that no divisions are required to produce an error-
locator polynomial [38]; this may be of interest in hardware implementations. However,
computing the error value still requires divisions. Decoding algorithms based on finite-field
Fourier transforms have been developed; for a thorough survey see [33]. See also [372] for
a systolic decoding algorithm and [285] for an algorithm based on Fermat transforms. A
work which shows the underlying similarity of the Euclidean algorithm-based methods and
the Berlekamp-Massey based methods is [52].

Blahut [33] has made many of the contributions to Galois field Fourier transform methods
for coding theory; the presentation here closely follows [373]. Berlekamp-Massey algorithm

292 BCH and Reed-Solomon Codes: Designer Cvclic Codes

is presented in [222]; our presentation closely follows that of [246]. A very theoretical
description of BCH and RS codes appears in [220], with considerable material devoted to
MDS codes.

The discussion of Newton’s identities is suggested by an exercise in [60]. The discussion
of alternant and Goppa codes is summarized from [220]. A decoding algorithm for Goppa
codes appears in [256]. McEliece public key cryptosystem was presented in [229].

Chapter 7

Alternate Decoding Algorithms for
Reed-Solomon Codes
7.1 Introduction: Workload for Reed-Solomon Decoding

In this chapter we present two alternatives to the decoding algorithms presented in chapter 6.
The first is based upon a new key equation and is called remainder decoding. The second
method is a list decoder capable of decoding beyond the design distance of the code.

A primary motivation behind the remainder decoder is that implementations of it may
have lower decode complexity. The decode complexity for a conventional decoding algo-
rithm for an (n, k) code having redundancy p = n - k is summarized by the following
steps:

1. Compute the syndromes. p syndromes must be computed, each with a computational
cost of 0 (n), for a total cost of 0 (pn) . Furthermore, all syndromes must be computed,
regardless of the number of errors.

2. Find the error locator polynomial and the error evaluator. This has a computation cost
O(p2) (depending on the approach).

3. Find the roots of the error locator polynomial. This has a computation cost of 0 (pn)
using the Chien search.

4. Compute the error values, with a cost of 0 (p2).

Thus, if p < n / 2 , the most expensive steps are computing the syndromes and finding the
roots. In remainder decoding, decoding takes place by computing remainders instead of
syndromes; the remaining steps retain similar complexity. This results in potentially faster
decoding. Furthermore, as we demonstrate, it is possible to find the error locator polynomial
using a highly-parallelizable algorithm. The general outline for the new decoding algorithm
is as follows:

1.

2.

3.

4.

7.2

Compute the remainder polynomial r (x) = R (x) mod g(x), with complexity O(n)
(using very simple hardware).

Compute an error locator polynomial W(x) and an associated polynomial N (x) . The
complexity is 0 (p2). Architectures exist for parallel computation.

Find the roots of the error locator polynomial, complexity 0 (p n) .

Compute the error values, complexity O(p2).

Derivations of Welch-Berlekamp Key Equation

We present in this section two derivations of a new key equation called the Welch-Berlekamp
(WB) key equation. The first derivation uses the definition of the remainder polynomial. The

294 Alternate Decoding Algorithms for Reed-Solomon Codes

second derivation shows that the WB key equation can be obtained from the conventional
Reed-Solomon key equation.

7.2.1 The Welch-Berlekamp Derivation of the WB Key Equation

The generator polynomial for an (n, k) RS code can be written as

b f d - 2

i =b

which is a polynomial of degree d - 1, where d = dmin = 2t + 1 = n - k + 1. We
denote the received polynomial as R (x) = c (x) + E (x) . We designate the first d - 1
symbols of R (x) as check symbols, and the remaining k symbols as message symbols. This
designation applies naturally to systematic encoding of codewords, but we use it even in the
case that systematic encoding is not employed. Let L , = {0, 1, . . . , d - 2) be the index
set of the check locations, with corresponding check locators L a c = {ak, 0 5 k 5 d - 2 } .
Also, let L, = [d - 1, d , . . . , n - 1) denote the index set of the message locations, with
corresponding message locators L a m = {ak, d - 1 5 k 5 n - 1).

We define the remainderpolynomial as

r (x) = R (x) mod g (x)

and write r (x) in terms of its coefficients as

d-2
r (x) = C r j x i .

i=O

The degree of r (x) is 5 d - 2. This remainder can be computed using conventional LFSR
hardware that might be used for the encoding operation, with computational complexity
O b) .

Lemma7.1 r (x) = E (x) mod g (x) a n d r (a k) = E(ak) fork E [b ,b+l , ..., b + d - 2 } .

Proof Since R(x) = m(x)g (x) + E (x) for some message polynomial m (x) , the remainder
polynomial does not depend upon the transmitted codeword. Thus

r (x) = E (x) mod g (x) .

Wecanwrite E (x) = q (x) g (x) + e (x) forsomedivisorpolynomialq(x). Thus E (x) = e (x)
mod g (x) . Then E (a k) = q (a k) g (a k) + e (a k) = e(ak) = r (a k) fork E {b, b+ 1 , . . . , b+
d - 2) . 0

Notation: At some points in the development, it is convenient to use the notation rk =
r [akl to indicate the remainder at index k (with locator ak). Similarly, we will use Y [a k]
to indicate an error value at index k.

Single error in a message location. To derive the WB key equation, we assume initially
that a single error occurs. We need to make a distinction between whether the error location
e is a message location or a check location. Initially we assume that e E L , with error
value Y . We thus take E (x) = Y x e , or the (error position, error value) = (ae, Y) = (X , Y) .
The notation Y = Y [X] is also used to indicate the error value at the error locator X .

7.2 Derivations of Welch-Berlekamp Key Equation 295

r (x) E i x)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

check message
locations locations

Figure 7.1: Remainder computation when errors are in message locations.

When e E L,, then the modulo operation Yxe mod g(x) "folds" the polynomial back
into the lower order terms, as pictured in Figure 7.1. Evaluating r (x) at generator root
locations we have by Lemma 7.1,

r (a k) = E (a k) = Y (a k) " = Y X t k k E { b , b + l , ..., b + d - 2 } , (7.1)

where X = ae is the error locator. It follows that

r(&) - Xr(ak-1) = Y X k - x y x k - l = 0 , k € { b + I , b + 2 ,..., b + d - 2) .

Define the polynomial u (x) = r (x) - X r (a - ' x) , which has degree less than d - 1. Then
u(x) has roots at ab+l, ab+2 , . . a , ab+d-2, so that u (x) is divisible by the polynomial

b+d-2 d-2

i=b+l i=O

which has degree d - 2. Thus u (x) must be a scalar multiple of p (x) ,

u (x) = a&) (7.2)

for some a E G F (q) . Equating coefficients between u (x) and p (x) we obtain

r i (l - X a - ') = a p i , i = O , l , ..., d - 2 .

That is,

r i (a ' - X) = a a ' p i , i = O , l , ..., d - 2 . (7.3)

We define the error locator polynomial as Wm(x) = x - X = x - ae. (This definition is
different from the error locator we defined for the conventional decoding algorithm, since
the roots of W, (x) are the message locators, not the reciprocals of message locators.) Using
W, (x), we see from (7.3) that

(7.4)

Since the error is in a message location, e E L,, W, (ui) is not zero for i = 0, 1 , . . . , d - 2.
We can solve for ri as

riWm(ai) = aa'p i , i = 0, 1, . . . , d - 2.

ri = aa'p i /W,(a ') . (7.5)

We now eliminate the coefficient a from (7.5). The error value Y can be computed using
(7.1), choosing k = b:

296 Alternate Decoding Algorithms for Reed-Solomon Codes

Define

Pi
, x E L a m ,

i=O (aZ - x)

which can be pre-computed for all values of x E L a m . Then

Y = f f f (X)

or a = Y / f (X) . We thus write (7.4) as

Ya’pi

f (X I wm (ai) ’
ri = (7.6)

Multiple errors in message locations. Now assume that there are v 2 1 errors, with
error locators X i E L a m and corresponding error values Yi = Y [X i] for i = 1,2, . . . , v.
Corresponding to each error there is a “mode” yielding a relationship r (ak) = YiXb, each
of which has a solution of the form (7.6). Thus by linearity we can write

Now define the function
v

Yi
F (x) = c f (X i) (X - X i) i=l

having poles at the error locations. This function can be written as

(7.8)

where

is the error locator polynomial for the errors among the symbol locations and where Nm(x) is
the numerator obtained by adding together the terms in F (x) . It is clear that deg(Nm (x)) <
deg(Wm (x)). Note that the representation in (7.8) corresponds to a partial fraction expansion
of N m (x) / Wm(x) . Using this notation, (7.7) can be written

rk = p k a k F (a k) = pkakNm(ak) /Wm(ak)

or

(7.9)
rk

Pkak
Nm(ak) = -Wm(ak), k E L , = {0, 1, . . . , d - 2).

N m (x) and Wm(x) have the degree constraints deg(Nm (x)) < deg(Wm (x)) and deg(W, (x)) p
[(d - 1)/21 = t , since no more than t errors can be corrected. Equation (7.9) has the form
of the key equation we seek.

7.2 Derivations of Welch-Berlekamp Key Equation 297

k E L,={O,l ,..., d-2) . N (a k) = -W(ak), rk

P k a k

Errors in check locations For a single error occurring in a check location e E L,, then
r (x) = E(x) - there is no “folding” by the modulo operation. Then u(x) = r (x) -
Xr(a - ’x) must be identically 0, so the coefficient a in (7.2) is equal to 0. We can write

(7.12)

Y k = e
0 otherwise.

r k = [
If there are errors in both check locations and message locations, let E m = { i l , i z , . . . , i,,) C
Lm denote the error locations among the message locations and let E , = +I , . . . , i v } c
L, denote the error locations among the check locations. Let Earn = {all, a’*, . . . , a’”])
and E,c = {a’”l+’, . . . , a’} denote the corresponding error locators. The (enor location,
error value) pairs for the errors in message locations are (X i , Yi), i = 1,2, . . . , v1. The
pairs for errors in check locations are (X i , Y j) , i = v1 + 1, . . . , u. Then by linearity,

Yi Y j if error locator X j = ak is in a check location
W I

k

rk = pka c f (X j) (U k - X i) + [0 otherwise.
1 = 1

(7.10)
Because of the extra terms added on in (7.10), equation (7.9) does not apply when k E E,,
so we have

(7.11)

To account for the errors among the check symbols, let W,(x) = n i E L , (x - ai) be the
error locator polynomial for errors in check locations. Let

N(x) = Nm(x)Wc(x) and W(x) = W,(x)W,(x).

rk

Pkak
Nm(ak) = -Wm(ak), k E L, \ Ec.

Since N(ak) = W(ak) = 0 fork E E,, we can write

Example 7.1 Consider a (15,9) triple-error correcting RS code over GF(16) generated by 1 +x +x4
with b = 2. The generator for the code is

g(x) = d2 + d 4 x + ,-‘ox2 + a7x3 + ax4 + d l x 5 + x6.

p (x) = * l o + a9x + U-’lX2 + a6x3 + ,9,4 + 2.

The function p (x) is

298 Alternate Decoding Algorithms for Reed-Solomon Codes

The function f(x) evaluated at message locators is tabulated as

x : a6 ,7 ,8 ,9 , lo ,11 ,12 ,13 a 1 4

f (x) : 1 a8 a12 a2 a11 a7 a7 a8 a5

Suppose the received data is R (x) = a5x4 + a7x9 + a8x12 (three errors). Then

2
~ (x) = R (x) (mod g (x)) = a + ax + a6x3 + a3x5.

The (x i , y i) data appearing in the key equation are

i 1 2 3 4 5 6
xi 1 a a2 a 3 a 4 a5

yi a7 a 6 0 a 1 2 0 a 1 3

Hereafter we will refer to the N (x) and W (x) as N1 (x) and W2(x), referring to the first
(WB) derivation.

7.2.2 Derivation From the Conventional Key Equation

A WB-type key equation may also be obtained starting from the conventional key equation
and syndromes. Let us denote the syndromes as

d -2

Si = R(ab+') = ~ - (a ~ + ~) = r j (a b + ') j , i = 0, 1, . . . , d - 2.
j =O

The conventional error locator polynomial is A(x) = n;==,(l - X i x) = A0 + h l x +
. . . + Auxu where A0 = 1; the Welch-Berlekamp error locator polynomial is W (x) = n;='=, (x -Xi) = Wo + W i x +. . . +xu. These are related by Ai = Wu-i. The conventional
key equation can be written as (see 6.10)

i =O

Writing this in terms of coefficients of W we have

W S I k+z ' - 0 - k = 0 , 1 , ..., d - 2 - ~ ,
i=O

or
u d-2

Rearranging,

(7.15)

7.2 Derivations of Welch-Berlekamp Key Equation 299

equation (7.14) can be written as
d - 2

C f j a j k = O , k = 0 , 1 , ..., d - 2 - ~ ,
j =O

which corresponds to the Vandermonde set of equations

1 1

= o
. . . ,d-3

,2(d-3)

,(d-2-u)(d-3)

r i 1 ...

with (d - 1 - u) x (d - 1) matrix V . The bridge to the WB key equation is provided by
the following lemma.

Lemma 7.2 [63] Let V be a rn x r matrix with r > rn having Vandennonde structure

with the { u i } all distinct. For any vector z in the nullspace of V (satisfying V z = 0), there
exists a unique polynomial N (x) of degree less than r - rn such that

i = l , 2 ,..., r, N(u i) zj = -
F ’ (u ~) ’

where F (x) = n : = , (x - ui).

Proof A vector z in the nullspace must satisfy
r

C u ! z i = o , j = 0 , 1 , ..., r n - 1 . (7.16)

Let N (x) be a polynomial of degree -= r - m. Then the highest degree of polynomials of
the form

is less than r - 1. Now let us construct an interpolating function 4j (x) such that for

u1, u 2 , . . . , U r , @ j (U i) = u{N(ui) , for each j = 0, 1 , . . . , rn - 1. Using the Lagrange
interpolating function (5.27), we can write

i=l

x j ~ (x > , j = 0,1,. . . , m - 1

(7.17)

Since it is the case that # j (x) = x j N (x) has degree less than r - 1, the coefficient of the
monomial of degree r - 1 on the right-hand side of (7.17) must be equal to 0. Since the
leading coefficient of F (x) is 1 , the leading coefficient of F (x) / (x - ui) is 1. Thus

= 0 , j = O , l , ..., m - 1 .
i=l

300 Alternate Decoding Algorithms for Reed-Solomon Codes

Thus if z i = N(ui) /F’ (u i) , the nullspace relationship (7.16) is satisfied.
The dimension of the nullspace of V is r -rn. The dimension of the space of polynomials

of degree < r - rn is r - rn. There must therefore be a one-to-one correspondence between
0

Returning to the key equation problem, by this lemma, there exists a polynomial N (x) of
degree less than v such that f j = N(aj) /gL(a’) , where

vectors in the nullspace of V and the polynomials N (x) . Thus N (x) is unique.

d-2

go(x) = H (X -a‘).
i =O

Thus from (7.15),

This gives rise to a form of the key equation,

(7.18)

with deg(iV(x)) < deg(W(x)) 5 L(d - 1)/2]. We call this the Dabiri-Blake (DB) form of
the WB key equation. We can also write this in terms of the original generator polynomial

(7.19)

With xi+l = ai and yi+l = rkg’(ab+k)ab(2-dCk), this can be expressed in the form (7.13).

I N(ak) = rkg;)(a k)a kb W (a k) , k = 0, 1 , . . . , d - 2 I

g (x) : 1 N(a!k) = rkg’(a b+k)a! b(2-d+k) W (a k) , k = 0, 1 , . . . , d - 2. I

Example 7.2 For the same code and R (x) as in Example 7.1, the (x i , y i) data are

i 1 2 3 4 5 6
xi 1 a a2 a3 a4 a5

yz a9 a* 0 a14 0 1

We will refer to the N (x) and W (x) derived using the DB method as Nz(x) and W2(x).

7.3 Finding the Error Values

We begin with the key equation in the W B form, (7.12). Assuming that the error locator
W (x) has been found - as discussed in Section 7.4 - we consider here how to compute
the error values Yi corresponding to an error locator X i ; we denote this as Y [X i] . For an
error location in a message location, we have from (7.7) and (7.8)

(7.20)

7.3 Finding the Error Values 301

where we use Ecm = Ec U E m to denote the set of all error locations. Multiplying both
sides of (7.20) by W (x) and evaluating at x = Xk, we obtain

UXkl ni&k - Xi)
= Nl (Xk), f (Xk)

since the factor (x - Xk) in the denominator of (7.20) cancels the corresponding factor in
W1 (x) , but all other terms in the sum are zero since they have factors of zero in the product.

Now taking the formal derivative, we observe that

(7.21)

When the error is in a check location, Xj = ak fork E E,, we must revert to (7.10),

(7.22)

Now consider the error values for the DB form of the WB equation, (7.18). It is shown
in Exercise 7.6 that

d-3
g~(ab+k)ab(k+2-d)pka,k = -e = &(d-2) I-I(ar+l - 1

i=O

so that

It is shown in Exercise 7 that f(ak)g(ab+k) = -eab(d-l-k). From these two facts we can
express the error locators for the DB form as

(7.23)

(7.24)

302 Alternate Decoding Algorithms for Reed-Solomon Codes

7.4 Methods of Solving the WB Key Equation

The key equation problem can be expressed as follows: Given a set of points (Xi, y i) , i =
1,2 , . . . , m over some field F, the problem of finding polynomials N (x) and W(x) with
deg(N(x)) < deg(W(x)) satisfying

N (x i) = W (x i) y i , i = 1 , 2 , . . . , m (7.25)

is called a rational interpolation problem’, since in the case that W(xj) # 0 we have

N (x i)

W(xi)’
yi = -

A solution to the rational interpolation problem provides a pair [N (x) , W(x)] satisfying
(7.25).

We present two different algorithms for solving the rational interpolation problem. Either
of these algorithms can be used with the data from either of the two forms of the key equations
derived in Section 7.2.

7.4.1 Background: Modules

An additional algebraic structure is used in the algorithm below. In preparation for what
follows, we pause to introduce this structure, which is a module. Modules are to rings what
vector spaces are to fields. That is, they act like vector spaces, but they are built out of rings
instead of fields. More formally, we have the following:

Definition 7.1 [61] A module over a ring R (or R-module) is a set M together with a
binary operation (usually denoted as addition) and an operation of R on M called scalar
multiplication with the following properties:

M1 M is an Abelian group under addition.

M2 Forallu E Rand f , g E M , a (f + g) = a f +ag E M .

M 3 F o r a l l u , b ~ R a n d a l l f E M , (a + b) f = u f + b f E M .

M4 For all a , b E R and f E M, (ab) f = a(bf) E M .

M5 If 1 is the multiplicative identity in R, then 1 f = f for all f E M .

For f , g E M and u , b E R, we say that a f + bg is an R-linear combination of f and g.
A submodule of a module M is a subset of M which is closed under addition and scalar

0
Thus, the structure appears to be exactly that of a vector space (see Section 2.4). How-

multiplication by elements of R.

ever, there are a few important distinctions, as the following example shows.

Example 7.3 Let R = F[n, y , z] , where F is some field and R is the ring of polynomials in the three
variables x, y , and z . Let

fl = [3] f2 = [!I f3 = [o z - Y] .

‘Strictly speaking, this is a weak rational interpolation problem, since in the form it is written it does not have
to address concerns when W (x i) = 0.

7.4 Methods of Solving the WB Key Equation 303

Let M be the module generated by R-linear combinations of f l , f2, and f3. We could denote this as
M = (fl, f2, f3) . This set is minimal, in the sense that (fj, f j) does not generate M . However, they
are linearly dependent, since

We thus have a minimal generating set which is not linearly independent. This phenomenon cannot
0

zf1 - yf2 fxf3 = 0.

occur in any vector space.

Definition 7.2 If a module M over a ring R has a generating set which is R-linearly
independent, then M is said to be a free module. The number of generating elements is
the rank of the module. 17

Example 7.4 Let R = F[x] be a ring of polynomials and let M = Rm be the module formed by
columns of rn polynomials. This is a free module. The standard basis for this module is

7.4.2 The Welch-Berlekamp Algorithm

In this section we describe a method of solving the rational interpolation problem which
is structurally similar to the Berlekamp-Massey algorithm, in that it provides a sequence
of solution pairs which are updated in the event that there is a discrepancy when a new
point is considered. We are interested in a solution satisfying deg(N(x)) < deg(W(x)) and
deg(W(x)) I m/2.

Definition 7.3 The rank of a solution [N (x) , W (x)] is defined as

rank[N(x), W (x)] = max{2deg(W(x)), 1 + 2deg(N(x))].

0
We construct a solution to the rational interpolation problem of rank 5 m and show that

it is unique. By the definition of the rank, the degree of N (x) is less than the degree of
W (x > .

A polynomial expression for the interpolation problem (7.25) is useful. Let P (x) be an
interpolating polynomial such that P (x i) = yi, i = 1,2, . . . , m . For example, P (x) could
be the Lagrange interpolating polynomial,

m
l X l , k + i (X - xk)

P (X > = C Yi
i=l l - I L , k f i (Xi - X k) .

By the evaluation homomorphism (see Section 5.3.1), the equation N (x i) = W(Xi)yi is
equivalent to

Since this is true for each point (xi, y i) and since the polynomials (x - Xi), i = 1,2, . . . , m
are pairwise relatively prime, by the ring isomorphism introduced in conjunction with the
Chinese remainder theorem we can write

N (x) = W (x) P (x) (mod lT(x)), (7.26)

N (x) = W (x) P (x) (mod (x - xi)).

304 Alternate Decoding Algorithms for Reed-Solomon Codes

where
m

n(x) = n (x - X i) .

i=l

Definition7.4 Suppose [N (x) , W(x)] is a solution to (7.25) andthat N (x) and W (x) share a
common factor f (x) , such that N (x) = n (x) f (x) and W(x) = w (x) f (x) . If [n(x) , w(x)]
is also a solution to (7.25), the solution [N (x) , W(x)] is said to be reducible. A solution
which has no common factors of degree > 0 which may be factored out leaving a solution
is said to be irreducible. 0

It may be that an irreducible solution does have common factors of the form (x - yi),
but which cannot be factored out while satisfying (7.26).

We begin with an statement regarding the existence of the solution.

Lemma 7.3 There exists at least one irreducible solution to (7.26) with rank 5 m.

Interestingly, this proof makes no use of any particular algorithm to construct a solution -
it is purely an existence proof.

Proof Let S = { [N (x) , W(x)] : rank(N, W) 5 m} be the set of polynomials meeting the
rank specification. For [N (x) , W(x)] E S and [M (x) , V(x)] E S and f a scalar value,
define

“(XI, W(X)l + [M (x) , V(X)l = “(XI + M (x) , W (x) + V(X) l

f“(x), W(X>l = [f N (x) , fW(x)l.
(7.27)

We thus make S into a module over P[x]. The dimension of S is m + 1 , since a basis
for the N (x) component is

{ l , X , . . . I xL(m-1)’2J}

and a basis for the W (x) component is

(1 + L(m - 1)/21 dimensions)

{Lx, * . * , x im/21 } (1 + Lm/21 dimensions)

so the dimension of the Cartesian product is 1 + [(m - 1)/2] + 1 + Lm/21 = m + 1.

quotient Q (x) and remainder R (x) with deg(R(x)) < m such that

N (x) - W (X) ~ (X) = Q (x) n (x) + R (x) .

By (7.26) and by the division algorithm for every [N (x) , W (x)] E S there exists a

Now define the mapping E : S -+ {h E F[x]l deg(h) < m) by

E(“(x) , W(X)l) = R (x) (7.28)

(the remainder polynomial). The dimension of the range of E is m. Thus, E is a linear
mapping from a space of dimension m + 1 to a space of dimension m, so the dimension
of its kernel is > 0. But the kernel is exactly the set of solutions to (7.26). There must

0
The Welch-Berlekamp algorithm finds a rational interpolant of minimal rank by building

successive interpolants for increasingly larger sets of points. First a minimal rank rational
interpolant is found for the single point (XI , yl). This is used to construct a rational inter-
polant of minimal rank for the pair of points {(XI, yl), (x2, y2)), and so on, until a minimal
rank interpolant for the entire set of points {(XI, yl), (x2, y2), . . . , (x,, ym)} is found.

therefore exist at least one solution to (7.26) with rank 5 m.

7.4 Methods of Solving the WB Key Equation 305

Definition 7.5 We say that [N (x) , W(x)] satisfy the interpolation(k) problem if

N (X j) = W(xi)yi i = 1 ,2 , . . . , k. (7.29)

0
The Welch-Berlekamp algorithm finds a sequence of solutions [Nlk], WLk]] of minimum

rank satisfying the interpolation(k) problem, for k = 1,2, . . . , m. We can also express the
interpolation(k) problem as

N (x) = W(x)Pk(x) (mod Wx)),

where &(x) = n,=, (x - Xi) and &(X) is a polynomial that interpolates (at least) the first
k points, P (x i) = y i , i = 1,2, . . . , k.

As with the Berlekamp-Massey algorithm, the Welch-Berlekamp algorithm propagates
two solutions, using one of them in the update of the other. For the Welch-Berlekamp
algorithm, the two sets of solution maintain the property that they are complements of each
other, as defined here.

Definition 7.6 Let [N (x) , W(x)] and [M (x) , V(x)] be two solutions of interpolation(k)
such that

rank[N(x), W(x)] + rank[M(x), V(x)] = 2k + 1

N(x)V(x) - M(x)W(x) = frI(x)

k

and

for some scalar f . Then [N (x) , W(x)] and [M (x) , V(x)] are complementary. cl
The key results to construct the algorithm are presented in Lemmas 7.4 and 7.6.

Lemma 7.4 Let [N (x) , W(x)] be an irreducible solution to the interpolation(k) problem
with rank p k. Then there exists at least one solution to the interpolation(k) problem which
is a complement o f [N (x) , W(x)].

Proof Define the set similar to that in Lemma 7.3,

S = I[M(x), V(x)ll rank[M(x), V(x)l I 2k + 1 - rank(N(x), W (x)) } .

It may be verified that, under the operations defined in (7.27), S is a module of dimension
2k + 2 - rank(N(x), W (x)) . Let K be the kernel of the mapping E defined in (7.28). Since
dim(X(E)) = k and dim(S) = 2k + 1 - rank(N(x), W(x)), we must have dim(K) =
dim@) - dim(R(E)) = k + 1 - rank(N(x), W(x)). We now show that there is an element
[M (x) , V(x)] E K which is not of the form [g(x)N(x), g(x)W(x)]. Let

T = {[g(x)N(x), g(x)W(x)] : g is a polynomial such that

rank[g(x)N(x), g(x)W(x)l I 2k + 1 - rank[N(x), W(x)ll.

Then T c S. By the definitions we have

rank[g(x)N(x), g(x)W(x)l 5 2k + 1 - r an" (x) , W(x)l

rank[g(x)N(x), g(x)W(x)l = 2 deg(g(x)) + rank[N(x), Wb) l

deg(g(x)) I k - rank[N(x), W(x)l,

and

so that

306 Alternate Decoding Algorithms for Reed-Solomon Codes

which therefore bounds the dimension of the subspace T . Since K has dimension s k +
1 - rank[N(x), W(x)l, there must be a point [M(x), V(x)] E K \ T such that

ran“(x) , W(x)l + rank[M(x), V(x)l 5 2k + 1. (7.30)

Since [M(x), V(x)] # T , [M(x), V(x)] is not reducible to [N(x), W(x)]. We now need
another lemma.

Lemma 7.5 If[N(x), W(x)] is an irreducible solution to the interpolation(k) problem and
[M(x), V(x)] is another solution such that rank[N(x), W(x)] + rank[M(x), V(x)] 5 2k,
then [M(x), V(x)] can be reduced to [N(x), W(x)].

The proof of this lemma is developed in the exercises. Since we have argued that [M(x), V(x)]
is not reducible to [N(x), W(x)], by this lemma we must have that the inequality in (7.30)
must be satisfied with equality:

rank[N(x), W(x)] + rank[M(x), V(x)] = 2k + 1.

Therefore, one of rank[N(x), W(x)] and rank[M(x), V(x)] is even and the other is odd.
So it must be that either

2k + 1 = rank[N(x), W(x)] + rank[M(x), V(x)] = (1 + 2deg(N(x)) + 2deg(V(x)))

> 2deg(W(x)) + (1 + 2deg(M(x)))

(in which case deg(N(x)V(x)) = k and deg(W(x)M(x)) < k) or

2k + 1 = rank[N(x), W(x)l + rank[M(x), V(x)] = 2deg(W(x)) + 1 + 2deg(M(x))

> 1 + 2deg(N(x)) + 2deg(V(x))

(in which case deg(M(x)W(x)) = k and deg(N(x)V(x)) < k) so that, in either case,

deg(N(x)V(x) - M(x)W(x)) = k.

Since l?k (x) for the interpolation(k) problem has degree k, it must be the case that N (x) V(x) -
M(x) W(x> = f &(x) for some scalar f.

Lemma 7.6 If[N(x), W(x)] is an irreducible solution to the interpolation(k)problem and
[M (x) , V(x)] is one of its complements, then for any a, b E IF with n # 0, [bM(x) -
aN(x), bV(x) - aW(x)] is also one of its complements.

Proof Since [N(x), W(x)] and [M(x), V(x)] are solutions, it must be that

N(x) = W(x)P(x) (mod l?(x)) M(x) = V(x)P(x) (mod n(x)).

Multiplying the first equation by a and the second equation by b and subtracting the first
from the second yields

bM(x) - aN(x) 3 (bV(x) - aW(x))P(x) (mod n(x))
so that [bM(x) - aN(x), bV(x) - aW(x)] is a solution. We now show that it is comple-
mentary.

It is straightforward to show that [bM(x) -aN(x), bV(x) -a W(x)] cannot be reduced to
[N(x), W(x)] (since [M(x), V(x)] cannot bereducedto [N (x) , W(x)] by complementarity
and Lemma 7.5). By lemma 7.5 we must therefore have

rank[N(x), W(x)] + rank[bM(x) - aN(x>, bV(x) - aW(x)] = 2k + 1.

7.4 Methods of Solving the WB Key Euuation 307

Lemma 7.5 also implies that there exists only one irreducible solution to the interpolation(k)
problem with rank 5 k, and that this solution must have at least one complement.

We are now ready to state and prove the theorem describing the Welch-Berlekamp
algorithm.

Theorem 7.7 Suppose that [N t k] , Wtk]] and [Mtk], V f k]] are two complementary solutions
of the interpoZation(k) problem. Suppose aZso that [N t k l , Wtkl] is the solution of lower
rank. Let

(7.31)

(These are analogous to the discrepancies of the Berlekamp-Massey algorithm.) Ifbk = 0
(the discrepancy is 0, so no update is necessary) then

[Ntk l (x) , Wrkl(x) l and [(x - xk+1)Mrk1(x), (x - x k + ~) V [~ ~ (x) l

are two complementary solutions of the interpolation(k+ l)probZem, and [Ntk](x) , Wtkl (x)]
is the solution of lower rank.

[(x -xk+i)Ntkl(x), (x -xk+1)Wtk1(x)] and [bkMLkl(x) -akNtkl(x), bkNtkl - ~ k W [~] (x)]

are two complementary solutions. The solution with lower rank is the solution to the
interpolation(k + 1) problem.

Proof Since [NikI(x), Wrkl(x)] and [M[k](x) , VLk](x)] are complementary,

Ifbk # 0 (the discrepancy is not 0, so an update is necessary), then

rank[Ntkl (x) , Wtkl (x)] + rank[Mtkl (x) , VLkl (x)] = 2k + 1

and
k

N [~] (x) v [~] (x) - M [~] (x) w [~] (x) = f n (x - xi)
i=l

for some scalar f.

problem. For [(x - xk+l)Mlkl(x), (x - ~ k + l) V [~] (x)] we must have
If bk = 0: It is clear that [NlkI(x), Wrkl(x)] is a solution to the interpolation(k + 1)

(x - xk+l)Mtkl(x) = (x - xk+1)Vtk1(x)Pk+l(x) (mod h + i (x)) ,

which is clearly true since MLkl(x) = Vtkl(x)Pk(x) (mod l&(x)). When x = xk+i, then
bothsidesareo. Sincerank[(x-xk+l)M[kl(x), (~- -xk+1)V[~](x>] = rank[Mtkl(x), VLkl(x)l+
2 we have

rank[Ntkl(x), Wrk l (x)] + rank[(x - xk+1)Mtk1(x), (x - ~ k + i) V [~] (x)] = 2k + 1 + 2
= 2 (k + 1) + 1.

Furthermore,

k+l

(X - Xk+l)Ntkl(x)Vtkl(x) - (X - Xk+l)MLkl(X)Wtkl(X) = f n (~ - x i)
i=l

308 Alternate Decoding Algorithms for Reed-Solomon Codes

so that [NLk](x), W[kl (x)] and [(x - x k + ~) M [~ I (x) , (x - x k + ~) V [~] (x)] arecomplementary.

NLk](x) = W[kl (~)Pk+l (mod &(x)) (7.32)

Ifbk # 0: Since [~ [k l (x) , W ["] (X) I satisfies

it follows that

(x - xk+1)NLk1(x) = (x - xk+l)W[kl(x)Pk+l (mod lIk+l(x)), (7.33)

sinceitholdsby (7.32)forthefirst kpointsandforthepoint (xk+l, yk+l). both sidesof (7.33)
are 0. Thus [(x - xk+l)N[k](x) , (x - xk+l) Wrk] (x)] is a solution to the interpolation(k + 1)
problem.

That [bkMLk] (x) - u ~ N [~] (x), bk V[kl (x) -ak WLk] (x)] is a solution to the interpolation(k)
problem follows since

Mck1(x) = V [k l (x) P k + ~ (~)

Multiplying the first of these equivalences by bk and the second by ak and subtracting gives
the solution for the first k points.

To show that [bkMCkI(x) - ~ k N [~] (x) , bkVLk](x) - U ~ W [~] (X)] is also asolution at the
point (&+I, yk+l), substitute ak and bk into the following to show that equality holds:

(mod &(x)) and N L k l (x) = W[kl(x)Pk+l(x) (mod nk(x)).

bkMfkl (X k + l) - ak"kl (X k + l) = (bk VLkl (X k + l) - ak WLkl (Xk+l))Yk+l.

It is clear from the inductive hypothesis that

deg[(x - xk+i)N[kl(x), (x - x k + ~) W [~] (x > l

+ deg[bkMM (x) - (x), bkVrkl (x) - a k W[kl (x)] = 2(k + 1) + 1

and that

(x - xk+l)N[kl(x)(bkV[kl(x) - U k W [k] (X))

k f l

- (~ ~ M [~ I (X) - u ~ N [~ ' (x)) (x - x ~ + ~) w [~] (x) = f E(x -xi>
i=l

for some scalar f. Hence these two solutions are complementary. 0
Based on this theorem, the Welch-Berlekamp rational interpolation function is shown

in Algorithm 7.1.

Algorithm 7.1 Welch-Berlekamp Interpolation

Input: (xi, y i) , i = 1, . . . , m
Returns: IN["] (x), W["](x)] of minimal rank satisfying the interpolation problem.
Initialize:

f o r i = O t o m - 1
"OI(x) = 0; V [O] (X) = 0; W[Ol(x) = 1; M[Ol(x) = 1;

bi = "'](Xi+i) - yi+l W[il(xi+l) (compute discrepancy)
if(bi = 0) then (no change in [N , W] solution)

"i+lI(,) = ~ [i + . ' l (~) = W [~ I (~) ;

M"+'](X) = (x - xi+l)M["(x); V[i+'] (X) = (x - x i + l) V [q x)
else (update to account for discrepancy)

a. z - - ~ [i l (~ . z+l) - yj+l V[']((xi+l); (compute other discrepancy)

7.4 Methods of Solving the WB Kev Eauation 309

Example 7.5 Using the code and data from Example 7.1, the Welch-Berlekamp algorithm operates
as follows. Initially, N[O](x) = 0, W[O](x) = 1, M[O](x) = 1, and V[O](x) = 0.

Using the Chien search, it can be determined that the error locator W (x) = a4 +a14x2 +a9x3
has roots at a4, a9 and a12. For the error location X = a4 (a check location), using (7.22) the error
value is found to be

For the error location X = a9 (a message location), using (7.21) the error value is found to be

N(a9) 7 N (X) Y [X] = f(X)- = a2-
W'(X) W'(a9)

= a .

Similarly, for the error location X = a12, the error value is Y [X] = a*. The error polynomial is thus

E (x) = a5x4 + (27x9 + a 8 P

and all errors are corrected. 0

Example 7.6 Using the same code and the data from Example 7.2, the Welch-Berlekamp algorithm
operates as follows.

310 Alternate Decoding Algorithms for Reed-Solomon Codes

Using the Chien search, it can be determined that the error locator W (x) = a13 +a7x +a8x2 +a3x3
has roots at a4, a9 and a12. For the error location X = a4 (a check location), the error value is found
using (7.24) to be

= a5
N l (x) X - b , b (d - l) N’ (X) X - b a 2 (6)

Y [a 4] = 7.4 - = o -
W ’ (X) g (X a b) W ’ (X) g (X a 2)

For the error location X = a9 (a message location), the error value is found using (7.23) to be

N (x) X - b , b (d - l) ~ (, 9) , - 1 8 , 2 (6)
= a 7 . - Y [X] = -

Wl(X) g (X a b) W ’ (a 9) g (a 9 a 2)

Similarly, for the error location x = a ‘ 2 , the error value is Y [X I = a’. The error polynomial is thus

E (x) = a x + a x + a n 5 4 7 9 8 1 2

and all errors are corrected. 0

7.4.3 A Modular Approach to the Solution of the
Welch-Berlekamp Key Equation

In this section we present an alternative approach to the solution of the Welch-Berlekamp
key equation, due to [63], which makes use of modules and the concept of exact sequences.
This solution is interesting theoretically because it introduces several important and powerful
algebraic concepts. In addition, as shown in [63], it is suitable for representation in a parallel
pipelined form for fast decoding.

The problem, again, is to find polynomials N (x) and W (x) satisfying the rational inter-
polation problem

(7.34)

with deg(N(x)) < deg(W (x)) and deg(W(x)) minimal. We observe that the set of solutions
to (7.34), without regard to the degree requirements, can be expressed more abstractly as
the kernel of the homomorphism

(7.35)

Any pair of polynomials (w(x), n(x)) in the kernel of # j yields a solution to (7.34) at x i .
By the Chinese remainder theorem, the equations in (7.34) can be collectively expressed

as a congruence
N (x) = W (x) P (x) (mod n(x)) (7.36)

where P (x) is any interpolating polynomial, P (x j) = y j , i = 1,2, . . . , m, and n(x) = ny.l (x - xi). Our approach is to develop a linear space of solutions [w(x), n(x)] without
regard to the minimality of degree, then to establish a means of selecting a point out of that
space with minimal degree. The approach is made somewhat more general by defining a
module as follows.

Definition 7.7 For fixed D (x) and G (x) , let M be the module consisting of all pairs
[w (x) , n(x)] satisfying

G (x) n (x) + D (x) w (x) = 0 (mod n(x)). (7.37)

0
The module M corresponds to the space of solutions of (7.36) when G (x) = 1 and

N (x i) = W (x i) y i , i = 1 , 2 , . . . , m

j : F[x] + F defined by # j (w (x) , n(x)) = n (x i) - w (x i) y j .

D (x) = - P (x) .

7.4 Methods of Solving the WB Kev Eauation 311

(7.38)

(7.39)

Lemma 7.8 M is a free F[x]-module of rank 2 having a basis vectors

[n (X I 6 (X I n (X I Y (~ 1 1 [- G (x> /A (x) I D (X I /A (x) l ,

where
= GCD(G(x) , D (x)) , @ (X I , n (x)) = 1

and
S (x) (D (x) / U x)) + ~ (x) (G (x) / V x)) = 1.

Proof It is straightforward to verify that (7.37) holds for

[w (X 1, n (X 11 = [- G (X 1 /A (X 1, D (x 1 /A (X 11

[w(x>, n b) l = [n (x V (x) , n (x > Y (x > l ,
and for

so these bases are in M.
We must show that an arbitrary element [w(x), n(x)] E M can be expressed as a

F[x]-linear combination of these basis vectors. Since [w (x) , n (x)] E M, G (x) n (x) +
D (x) w (x) = 0 (mod

Consider the matrix

By (7.39), det(A) =

(7.40)

1, so that A-’ is also a polynomial matrix. There therefore exist
polynomials n*(x) and w* (x) such that

[w(x>, n(x) l = [w*(x) , n*(x) lA.

Substituting this into (7.40),

(7.41)

6 (x) Y (x) D (x) = 0 (mod n (x)) ,
[w*(x) ’ n*(x)l [- G (x) / h (x) D(x) /A(x)] [G (x)]

or, using (7.39) again,

[w*(x) , n*(x)] [“!)I = 0 (mod n (x)) .

Thus w*(x)A(x) = 0 (mod n (x)) , so that by (7.38) n (x) 1 w*(x). Thus there i s apolyno-
mial G (x) such that w*(x) = n (x) G (x) . Equation (7.41) can thus be written as

indicating that an arbitrary element [n(x) , w (x)] can be expressed as a F[x]-linear combi-
nation of the basis vectors.

0
It is convenient to represent the set of basis vectors for 34 as rows of a matrix. We use W to
represent a basis matrix. Then any point [w (x) , n (x)] can be represented as

[W), n(x>l = [a (x) , b(x) lQ

for some [a (x) , b (x)] E F[xI2.

312 Alternate Decoding Algorithms for Reed-Solomon Codes

Lemma 7.9 For any matrix W whose rows form a basis of M, det(W) = alT(x) , where
a E IF is not zero.

Conversely, ifthe rows of@ E F[x]2x2 are in nlc and det @ = a n (x) f o r some nonzero
a! E IF, then is a basis matrix for M.

Proof For the matrix W in (7.42),

n
h

det(\Y) = -[D6 + Gy] = n(x)

by (7.39). Let W' be any other basis matrix. Then there must be a matrix T such that

W' = TW \Y = T-lW'.

Since T is invertible, it must be that det(T) is a unit in F[x], that is, det(T) E IF. Thus
det(W) = det(TW) = det(T) det(Q) = an(x) .

To prove the converse statement, for a matrix Q, whose rows are in M, there must be a
matrix T such that @ = TW. Then

an(x) = det(Q,) = det(T) det(Q) = det(T)Il(x)

so that det(T) = a, which is a unit. Thus T is invertible and W = T-'@. By this we
observe that Q, must be a basis matrix. 0

Let us return to the question of finding the intersection of the modules which are the
kernels of & defined in (7.35). To this end, we introduce the notion of an exact sequence.

Definition 7.8 Let R be a ring [such as F[x]] and let '31, 23 and 8 be R-modules. Let f
and g be module homomorphisms, f : '31 + 23 and g : 23 + 8. The sequence

(nf93234n

is said to be exact if im(f) = ker(g). 0
As an example, let Mi be the module of rank two that is the kernel of 4i and let Wi (x)

be a 2 x 2 basis matrix for the Mj . Define +i (w (x) , n (x)) = [w (x) , n (x)] Wi (x) . Then

is an exact sequence.
The main idea in the intersection-finding algorithm is embodied in the following lemma.

Lemma7.10 Let
%323h73

be exact and let 42 : 93 + 8' be another module homomorphism. Then

ker(4i) n ker(42) = $(ker(42 0 11.)).

Proof Consider the function 42 o $: '31 4 8'. Since ker(42 o +) c '31, it follows that
+(ker(42 o +)) c im(+), which by exactness is equal to ker(41). Thus $(ker(42 o +) c
ker (41 1.

Furthermore, bydefinition,42(+(ker(&o@))) = (0}, that is, +(ker(&o+)) E ker(42).
Combining these we see that

(7.43) +(ker(42 0 $1) c ker(41) fl ker(42).

7.4 Methods of Solving the WB Key Equation 313

By definition,

so that

42 0 +(+-l 0rer(41) n ker(42))) = (01

@ - ' (k e r ~ i) n ker(42)) c ker(42 0 +I

ker(4i) n ker(42) c q(ker(42 0 +)I.

or, applying @ to both sides,

(7.44)

Combining (7.43) and (7.44) we see that

ker(4i) n ker(42) = Wer(4z 0 +I).
0

This lemma extends immediately: If T& + % + B is exact and $i : '23 + B', i =
1,2, . . . , rn are module homomorphisms, then

ker(&) rl ker(42) r l . . . r l ker(4,) = @(ker(@2 o @) n ker(43 o +) n. . . rl ker(4, o @)).

1cI 41

Consider the solution of the congruence

Gin(x) + Diw(x) = 0 (mod x -xi), i = 1,2,. . . , m (7.45)

for given Gi and Di . Define the homomorphisms for this problem as

4i(W(x), n(x>) = Gin(xi) + DiW(xi) = [W(xi), n(xi>l [z] 7 (7.46)

and

The module of solutions of (7.45) for a particular value of i is denoted as Mi.

Lemma 7.11 For di and +i as just defined, the sequence

F[x]2 4 F[x]2 3 F

is exact.

Proof We consider the case that Di # 0. By substitution of the elements (w(x), n(x)) from

each row of the matrix defined in (7.47), 'Pi (x) = [-Gi Di], into (7.46) it is clear

that the rows are two elements of ker(4i). Also, the determinant of the matrix is equal to
-Di (X - x i) . Thus by Lemma 7.9, 'Pi (x) is a basis matrix for the module Mi = ker(&).

0
Each homomorphism & can be written as

(x -Xi) 0

The case when Di = 0 follows similarly, making use of the fact that Di = 0.

314 Alternate Decoding Algorithms for Reed-Solomon Codes

so that (Di , Gi) characterizes the homomorphism. Let #Io1 = 4i , i = 1,2, . . . , m represent
the initial set of homomorphisms, with initial parameters (DY], GY]) = (Di, Gi). The
superscript indicates the iteration number.

In the first step of the algorithm, a homomorphism 4jl is chosen from the set

such that Di[O1 # 0. (The second subscript in 4jl also denotes the iteration number.) The
homomorphism @ j , of (7.47), described by the matrix Wfl(y), is formed,

* j I 41,

[I1 - [OI

By Lemma 7.1 1, the sequence F[xI2 --+ F[xI2 --+ F is exact. Now define

4i - 4i 0 ~ j l .

Then from Lemma 7.10

3uc = @j1 (ker(4;'l) n ker(&]) n . . . n ker(#])).

The interpolation problem is therefore equivalent to finding a basis for

ker(4l'l) n ker(&]) n . . . n ker(4,'I).

(7.48)

(7.49)

We can write

(7.50)

-

(7.51)

Thus the homomorphisms are defined by (DI", GI1]), where

When i = j1 we have

(7.52)

(7.53)

so that ker(q551l) = F[xI2. (That is, d[:] maps all pairs of polynomials to 0.) This means
that among the modules listed in (7.44) there is a trivial module, reducing the number of
nontrivial modules to deal with by one. It also means that the equation is satisfied for index
i = j 1 .

7.4 Methods of Solving the WB Key Equation 315

At the next step, a single homomorphism @::I is chosen from the set [I1 , @2 [I1 , . . . ,
&’] such that D‘.’], defined by (7.52), is nonzero. The corresponding homomorphism +j2

is also formed via its matrix representation,
12.

This choice of j 2 gives rise to a new set of homomorphisms {@i2]] by

@i PI - - @ j I11 0+j2,

@i P I - - @ i [OI o + j l o + j 2 ,

i = 1 , 2 ,..., m.

Then from (7.48),

so that

i = 1 , 2 ,..., m

From (7.53) it follows immediately that GF1 = DE1 = 0. It is also straightforward to show
that

12

Thus ker(d‘2’) = ker(@) = F[xl2, and the equations corresponding to the indices j 1 and
j 2 are satisdkd. The number of nontrivial modules under consideration is again reduced by
one. Furthermore, by Lemma 7.10,

M = +jl o +j2 (ker(@I2]) n ker(@fl) n . . . n ker(&])).

We continue iterating in this manner until iteration number I 5 rn at which the set of
DF1 = 0 for all i = 1,2, . . . , m. Now consider the set of homomorphisms {@?I, @!I, . . . , 9, [11 1.
Define

M[‘I = ker(@fl) n ker(@tl) n . . . n ker(&]) c F[xI2

and let
+ = +jl 0 $j2 0 . . . 0 $jl.

M = +(M[q.
By Lemma 7.10,

BY construction, D;] = o for i = 1,2, . . . , m. Since

111 [I1 “I @i (~ (x) , n(x)) = Gi n(xi) - Dj w(xi), i = 1 ,2 , . . . , m ,

the pair (1,O) E MI1], which implies that + (1,O) E M. We have thus found a solution
to the interpolation problem! It remains, however, to establish that it satisfies the degree
requirements. This is done by keeping track of how the homomorphism + is built.

316 Alternate Decoding Algorithms for Reed-Solomon Codes

We can write + (w (x) , n (x)) as

Let

and
i

(7.54)

(7.55)

Use Q (x) = Q ['] (X) . Then + (w (x) , n (x)) = [w (x) , n (x) l Q (x) . Let us write this as

Our culminating lemma indicates that this construction produces the desired answer.

Lemma 7.12 Let [Q l , l (x) , Q2,2(x)1 be the image of(1,O) under the mapping +. That is,

Proof The fact that (Q 1 , 1 , Q 1 , 2) satisfies the interpolation equations has been shown by their
construction. It remains to be shown that the degree requirements are met. The following
conditions are established:

This is immediate when i = 1. The remainder are proved by induction. For example,

deg(Qz;']) = 1 + deg(Qt]z) I 1 + L(i - 1)/2J = [i /21 .

This and the other inductive steps make use of the facts that

1 + ~ i / 2 1 = r(i + 11/21 l (i + 1)/2J = ri/21.

0

The solution to the WE! equation can thus be computed using the following algorithm.

7.4 Methods of Solving the WB Key Equation 317

Algorithm 7.2 Welch-Berlekamp Interpolation, Modular Method, v. 1

I Input: Points (x i , y i) , i = 1,2 , . . . , m.

2 Initialization: Set G~[OI = 1, D!'] = - y j , i = 1,2, . . . , m, q [O I =

3 for s = 1 tom
4

5

Returns: N (x) and W (x) satisfying N (x i) = W (x i) y i , i = 1,2, . . . , m.

Choose j s such that D[s--'] # 0. If no such js, break.
for k = 1 to rn (may be done in parallel)

Js

7 end (for)

9 end(for)
10 W (x) = q],, N (x) = q;.

As pointed out in the comment on line 5, computation of the new parameters G and D
in line 6 may be done in parallel.

Example 7.7 For the (x i , y i) data of Example 7.1, the execution of the algorithm is as follows (using
1-based indexing):

s = 1: (Diol} = {a7, m6, 0, a12, 0, a13}. Choose: j 1 = 1. q ['] (x) =

s = 2: {Di[']} = (0, a", a7, a2, a7, a'}. Choose: j2 = 2. \IrL2](x) =

[21 - 2 4 2 1 4 s = 3: {Di } - (O,O, a , a , a , a }. Choose: j 3 = 3. qL3](x) =

s = 4: {Di3]} = (0, 0 , 0, m12, m4, a2}. Choose: j 4 = 4.

s = 5: {$I} = {O, O ,O, 0, a4, 0) . Choose: j5 = 5.

1 a4 + m8x + ,132

1 + a4, + ,9,2
@ I (,) = [a 2

f:&:9fa7x3

s = 6: {of5]} = {0, 0, 0 , 0, 0 , m2}. Choose: j6 = 6.

1 [a3 + a9x + ,122 + m9x3 a9 + a l l x + , 1 3 2 + a13,3

a4 + m13x + a14x2 + a9x3 a2 + a6x + a11x2
d61(,) =

At the end of the iteration we take

W (x) = * l , J (X) = a4 + a13x + ,142 + a9x3 N (x) = \Y1,2(x) = a2 + a6x + al1x2

These are the same (N (x) , W (n)) as were found in Example 7.5. The roots of W (n) and the error
values can be determined as before. 0

318 Alternate Decoding Algorithms for Reed-Solomon Codes

At the end of the algorithm, we have

Q (x) = \y['l(x)

This algorithm produces a (D!], GIs]) pairs satisfying

Thus ker(4;:) = F[xI2 for s = 1,2, . . . , l . By Lemma 7.10,

ker(#j,) n ker(4,J n ... fl ker(4j,) = @(F[xI2). (7.56)

Now consider @(O, 1) = (Q2,1 (x), Q2,2(x)) (that is, it is the second row of the matrix
Q (x) . By (7.56), +(O, 1) E ker(4j,) f l ker(4j2) n.. . n ker(4jl); that is, it solves all of the
equations

(7.57)

Furthermore, we know by construction that the first row of the @(x) matrix satisfies the
equations

(7.58)

(Note that these are the original (Di, Gi) pairs which are not zero, not the modified
(D!], G ~ J) pairs.)

Like the Welch-Berlekamp algorithm, Algorithm 7.2 requires the propagation of four
polynomials. However, we now show that it is possible to generate a solution using only
two polynomials. This is done by showing how to compute the error values using only two
elements in the Q (x) matrix. We show how to compute the error values for the DB form of
the key equation. (Extension to the WB form of the key equation is straightforward.)

Dj5'P2,1(~j,) + Gj,rQ2,2(~js) = 0 s = 192, . . . ,1.

DjsQ1,l(Xj,) + Gj,?Q1,2(~j~) = 0 s = 192, . . ., 1.

Lemma 7.13 [63, p. 8791 Define

(7.59)

Proof We consider separately the cases that the error is in a message location or a check
location. Recall that the Xk, k = 1,2, . . . , m defined in the interpolation problem represent
check locations. Suppose first the error is in a message location, with locator xi. From
(7.54) and (7.55) we have

1

det(Q(x)) = 'P1,1(x)Q2,2(x) - QI,~(x)Qz,J(x) = (- 1) ' n D:-'](x - xj,). (7.60)

By definition, the x j , are all in check locations, so the right-hand side of the equation is not
zero at x = xi. But since xi is an error location, we must have 'P1,1 (xi) = 0. We thus obtain

s=l

(7.61)

7.4 Methods of Solving the WB Key Equation 319

Recalling that the error value for a message location is (see (7.23))

-b Wd- l) * 1 , 2 (X j) X i -bab(d-l)
- - N2(xi)xi a

Y [x ~] = -
Wl (xi)g (xi ab> *;, l (Xi)g(Xiab)

and substituting from (7.61), the result follows.
Now consider the case that xi is a check location. From (7.58), when *1,1 (xi) = 0, we

must have*l,z(xi) = 0. Asobservedin(7.57), (* ~ , J (x) , *2,2(x)) satisfies theinterpolation
problem (7.18) for ak E {x i s , s = 1,2, . . . , I } . The function (h(x), h(x)) satisfies it
(trivially) for other values of ak that are check locations, since it is zero on both sides of the
interpolation equation. Thus (h(x)*2,1(x), h(x)\Ir2,2)(~)) satisfies (7.18). Thus

b b b(2-d)
h(xi)*2,2(xi) = h(~i)*2,1(xi)r[xiIg’(xia)xi a .

It can be shown that *2,1 (x i) # 0 and that h(xi) # 0 (see Exercise 7.1 l), so that

-b b(d-2)
*2,2(xi)xj a

r[xj] =
*2,1 (xi g’ (abxi 1

.

Now substitute into (7.24):

Since by this lemma the only polynomials needed to compute the error values are * 1 , 1 (x)
and W2,1 (x) (the first column of @ (z)) , we only need to propagate these. This gives rise to
the following decoding algorithm.

320 Alternate Decoding Algorithms for Reed-Solomon Codes

Algorithm 7.3 Welch-Berlekamp Interpolation, Modular Method, v. 2

I Input: Points (x i , y i) , i = 1,2, . . . , rn from DB form of key equation.
Returns: *2,1 (x) and * 1 , 1 (x) which can be used to find error values.

z Initialization: Set Gi[O1 = 1, D/ol = - y i , i = 1,2, . . . , rn, *ioi = 1; *$oi = 0.
3 for s = 1 torn
4

s

Choose j , such that D'f--'] # 0. If no such j , , break.
for k = 1 to rn (may be done in parallel)

Js

7 end(for)

Example 7.8 For the (x i , y i) data in Example 7.2 (which form is necessary, since the method is
based on the error values computed for the DB form), the algorithm operates as follows (using 1-
based indexing).

s = 1: {D/o'} = {a9,a8, 0, a'4,0, l}. Choose: j 1 = 1. (* ~ , J (x) , * 2 , 1 (x)) = (1 , 1 + x)

s = 2. {Di[']} = {O, a12, a 9 , a4, a9, a7]. Choose: j 2 = 2. p P l , l (x) , * 2 , 1 (x)) = (a12x, a + X I
s = 3 . {Di [211={0 ,0 ,a 6 8 6 3 ,a , a , a }.Choose: j 3 = 3 . (* 1 , 1 (~) , * 2 , 1 (x)) = (a 7 + a x , a 1 4 x +

, 1 2 2 ,)

x 2 , a 1 ~ + a 3 x f a x 2 ,)

2 x 2 , a10 + a 4 x + a 5 2 + x 3)

a 3 x 3 , a2 + a 8 x + a112 + a 8 x 3)

s = 4. {DI3]} = {O,O, 0, a3 , a", a8}. Choose: j 4 = 4. (* I , I (x) , *2,1(x)) = (a6 + a8x +

s = 5 . {D14]] = {0,0,0,0,a '4 ,0] . Choose: j 5 = 5. (*1,1(x) , * ~ , J (x)) = (a12 + a4x +

s = 6. {D141} = (O , O , O , O , 0, a3}. Choose: j 6 = 6. (*1,1(x) , * ~ , J (x)) = (a13 + a7x + a8x2 +

The roots of *1,1(x) = + a7x + a8x2 + a3x3 are at a4, a9 and a12. Using (7.59) the error
0

One last simplification is now developed for this algorithm. As we shall show, there are
some computations which Algorithm 7.3 performs which turn out to be unnecessary. If we
can postpone some of them until it is certain that they are needed, unnecessary computations
can be avoided. This idea was originally suggested as using queues in [23].

value are found to be a5, a7 and a8, respectively.

Let
Qs = (k E [1 ,2 , . . . , 2 t } : 0; = 0 and Gi = 0)

and let
Cs = (k E (1,2, . . . , 2 t } : 0; = 0 and G; # O}.

For a k E C2, we can (by normalization if necessary) assume without loss of generality that
Gi = 1.

7.5 Erasure Decoding with the Welch-Berlekamp Key Equation 321

Let j , be such that Dg-'] # 0 (that is, j , # F-' and j , $ P-') and let k E ZS-'

such that D f - '] = 0 and GF-'] = 1. Then

so that for all k E V-', G i = 0 and DF1 = Djs ['-'I # 0. Hence k $ X'. Therefore, at

the (s + 1)st step of the algorithm, if C'-' # 0, js+l can be chosen from F-'. So let
j,+1 E V-'. Fork E F-' with k # j,+1,

so that Df"] = 0 and GIs+'' # 0. From this, k E Xsf ' and j,+1 E fits+'.
Thus, the for loop in lines 5-7 of Algorithm 7.3 can exclude those values of k that are

in X'-' U Xs U as, since over the next two iterations computations involving them are
predictable (and eventually they may not need to be done at all). This leads to the following
statement of the algorithm.

Algorithm 7.4 Welch-Berlekamp Interpolation, Modular Method, v. 3

I Input: Points (xi, yi), i = 1,2, . . . , rn.

z Initialization: Set C O = z-1 = QO = 0, GIO] = 1, ~ i [O l = -yi, i = 1,2, . . . , m, qioi = 1; tp?! = 0.
3 for s = 1 torn
4

Returns: *2,1 (x) and *1,1 (x) which can be used to find error values.

If Cs-2 # 0 choose j s E CS-'. Otherwise, choose j , such that D[?'] # 0.
If no such j , , break.
fork = 1 to rn such that k @ Cs-2 U CS-' U Qs-' (may be done in parallel)

I s

5

6 [D f '] = [-G[!-'] Js

7 end (for)
GrS1 (xk - x j S)

10 end (for)

7.5 Erasure Decoding with the Welch-Berlekamp Key Equation

In the event that some of the positions in R (x) are erased, the algorithms can be modified
as follows. Let the erasure locator polynomial be r(x) = n , (x - af), where the ei are in
this case the erasure locations.

For the Welch-Berlekamp algorithm of Section 7.4.2, erasure/error decoding proceeds
exactly as in the case of errors-only decoding, except that initial W polynomial is set equal
to the erasure locator polynomial, W[OI(x) = r(x). The formulas for computing the error
and erasure values are exactly the same as for errors-only decoding.

322 Alternate Decoding Algorithms for Reed-Solomon Codes

For the Dabiri-Blake decoding, Algorithm 7.2, think of W (x) as consisting of two
factors, one factor due to errors and the other due to erasures,

Then the interpolation problem is written as

N (x i) = W (x i) y i = W l (X i) r (X i) y i .

Now let j$ = r (x i) y i and run Algorithm 7.2 on the data (Xi , j i) , except that the initialization
qio; (x) = r (x) is performed. The error value computations are unchanged.

7.6 The Guruswami-Sudan Decoding Algorithm and
Soft RS Decoding

The algebraic decoders presented to this point in the book are bounded distance decoders,
meaning they are capable of decoding up to to = [(dmin - 1) /2] errors. In the remainder of
this chapter we discuss a list decoding approach to Reed-Solomon (and related) codes which
is capable of decoding beyond to errors. A list decoder generally returns several possible
decoded messages. However, for many codes the size of the list is usually small, so that
only one decoded message is usually returned. An extension of this decoding algorithm
provides a means for algebraic soft decision decoding of Reed-Solomon codes.

7.6.1 Bounded Distance, ML, and List Decoding

Consider an (n, k , d) Reed-Solomon code C. Three different decoding paradigms can be
employed in decoding such codes.

In bounded distance (BD) decoding, the following problem is solved: For a distance e
such that 2e + 1 5 dmin, given a received vector r, find a codeword c E C which is
within a Hamming distance e of r. There exist many efficient algorithms exist for
solving this (all of the algorithms in chapter 6 are BD decoders), and for a t-error
correcting code the answer is unique when t 2 e . However, if r lies at a distance
greater than [(dmin - 1)/2] from any codeword, a decoding failure will result.

In maximum likelihood (ML) decoding (also known as nearest codeword problem),
the codeword c which is closest to r is selected. Provided that the number of errors e
satisfies 2e + 1 5 d d n , the ML and BD algorithms decode identically. However, ML
decoding may be able to decode beyond L(ddn - 1) /2] errors. The ML decoding
problem, however, is computationally difficult in general [24].

In list decoding the problem is to find all codewords c E C which are within a given
distance e of the received word r.

The Guruswami-Sudan (GS) algorithm is essentially a list-decoding algorithm, providing
lists of all codewords within a distance tm of the received word r. Whereas the BD decoder
is able to correct a fraction t = of the errors, the Guruswami-Sudan algorithm
is able to correct a up to tGS = rn - d% - 11 errors, so that the fraction is (asymptotically)
t = 1 - a. Thus the GS algorithm has better error correction capability for every code
rate R.

=

7.6 The Guruswami-Sudan Decoding Algorithm and Soft RS Decoding 323

drmn_l

(a) BD decoding: Codeword in (b) ML decoding: Nearest code-
same Hamming sphere as r. word tor decoding (possibly be-

yond Hamming sphere).

(c) List decoding: All code-
words within a given Hamming
distance of r

Figure 7.2: Comparing BD, ML, and list decoding.

7.6.2 Error Correction by Interpolation

The motivating idea behind the GS decoding algorithm can be expressed as follows. Under
Construction 1 of Reed-Solomon codes, a set of data points (xi, cj) , i = 1, . . . , n are
generated with a polynomial relationship ci = m (x i) for some polynomial m (x) which has
at most degree k - 1. A set of points (x i , ci) are produced. The cj are corrupted by some
noise process, producing points (xi, y i) in which as many as e of the ri are in error. The
problem now is to fit a polynomial p (x) , of degree < k through the data points, such that
p (x i) = y i . However, since some of the points are in error, we seek an interpolating match
only for n - e of the data points, so I{i : p (x j) = yj)l n - e. Then, based on this
interpolating polynomial, the points in error are recovered. That is, if i is the index of a
point in error, then we say that the recovered value is i i = p(x j) .

The Guruswami-Sudan decoding is based generally on this idea of interpolation. The
interpolating polynomial is constructed as a polynomial in two variables, Q (x , y) which
satisfies the interpolating condition Q (x i , y j) = 0. In addition to simply interpolating, an

324 Alternate Decoding Algorithms for Reed-Solomon Codes

interpolation multiplicity mi is introduced which defines the order of the interpolation at
each point. This is roughly equivalent to specifying the value of the function and its rni - 1
derivatives in the interpolating polynomial. This interpolation multiplicity improves the
correction capability. Furthermore, as we will see in Section 7.6.8, we will see that the
interpolating multiplicity can be used for soft decision decoding of RS codes. From the
bivariate polynomial Q (x , y) the polynomials p (x) are extracted by factorization, which
will satisfy the property p(x i) = yi for a sufficiently large number of locations (x i , y i) . Then
each polynomial p (x) represents a possible transmitted codeword and the set of polynomials
is the list of possible decoded codewords.

There are thus two main steps to the decoding algorithm:

The interpolation step The decoder constructs a two-variable polynomial

(7.62)

such that Q (x i , y i) = 0 for i = 1,2 , . . . , n (with a certain multiplicity of the zero,
to be discussed below), and for which the “degree” (actually, the weighted degree) of
Q (x , y) is as small as possible.

Explaining and justifying this step will require a discussion of the concept of the
degree of multivariable polynomials, which is presented in Section 7.6.3.

The problem can be set up and solved using straightforward linear algebra. However,
a potentially more efficient (and interesting) algorithm due to Kotter [1931 is presented
in Section 7.6.5. An algorithm accomplishing the solution, which is an extension of
the Berlekamp-Massey algorithm to vectors, is presented in Section 7.6.5.

The factorization step The decoder then finds all factors of Q (x , y) of the form y -
p (n) , where p (x) is a polynomial of degree v or less. This step produces the list of
polynomials

L = { P l (X) , p 2 (x) , . . ., PL(X))

that agree with (xi, y i) in at least tm places. That is, I{i : p j (x i) = yi}l tm for
every p j E C.
An algorithm due to Roth and Ruckenstein [297] which performs the factorization
by reducing it to single-variable factorization (amenable, e.g., to root-finding via the
Chien search) is presented in Section 7.6.7.

The quantity tm is the designed decoding radius. The larger tm is, the more potential
errors can be corrected. The quantity tm depends in a nondecreasing way on mi; that is

to 5 t l 5 t2 ... , and there is a multiplicity rno such that tmo = tm,+l = ... = ~ G S that
describes the maximum error correction capability of the decoding algorithm.

7.6.3 Polynomials in Two Variables

In this section, we describe the concepts associated with polynomials in two variables
which are necessary to understand the algorithm. We will see that for a polynomial p (x) of
degree v such that (y - p (x)) 1 Q (x , y) it is natural to consider the (univariate) polynomial

A

7.6 The Guruswami-Sudan Decoding Algorithm and Soft RS Decoding 325

Q (x , p (x)) . For Q (x , y) as in (7.62), this gives

dx d~

Q(x, P (x)) = r x a i , j x i p (x) ’ ,
z=o j=o

which is a polynomial in x of degree dx + vdy. It is thus natural to define the degree of
Q (x, y) as d, + udy . This is called the (1, u) weighted degree of Q (x , y).

Degree and Monomial Order

For a polynomial in a single variable, the notion of degree is straightforward. For polyno-
mials defined over multiple variables, however, there is some degree of flexibility available
in defining the order of the polynomials. Various algorithms (and their complexity) depend
on the particular order employed. (For a full discussion of the degree of multinomials, the
reader is referred to [60, section 2.21.)

Let IF be a field and let IF[x, y] denote the commutative ring of polynomials in the
variables x and y with coefficients from F . A polynomial Q (x , y) E F[x, y] can be written
as

i, jr0

in which only a finite number of coefficients are nonzero.

Example 7.9 Let F = R and let

Q(x, y) = 3 x 3 y + 4xy3 + 5x4

Looking forward to the upcoming definitions, we ask the questions: What is the degree of Q (x , y)?
What is the leading term of Q(x , y)? How is Q (x , y) to be written with the terms ordered in increasing
“degree”? 0

To address the questions raised in this example, it will be convenient to impose an ordering
on the set of monomials

MIX, y] = {x’yj : i, j 2 0) c F[X, y].

That is, we want to be able to say when a monomial xil yjl is “less than” xi2yj2. Let N2
denote the set of pairs of natural numbers (pairs of nonnegative integers).

Definition 7.9 A monomial ordering is a relation “<” on M[x, y] with the following
properties.

M 0 1 For (al, a2) E N2 and (bl , b2) E N2, if a1 f bl and a2 5 b2 then xalyaz 5 xblyb2.

M02 Therelation “<” is a total ordering. That is, if a = (al, a2) E N2 and b = (bi, b2) E

M03 Forany(a1, a2), (bl , bz)and(cl, c2) E N2,ifxa’ya* 5 xblyb2,thenxaIya2xc1 Y - ‘2 <

(That is, the monomial xal ya2 “comes before” the monomial xbl yb2.)

N2 are distinct, then either xal ya2 < xbl yb2 or xbl yb2 < xal ya2.

xbi y b 2 X ~ ~ yc2.

0
Of the many possible monomial orderings one might consider, those which will be most

important in this development are the weighted degree (WD) monomial orderings. Each

326 Alternate Decoding Algorithms for Reed-Solomon Codes

Table 7.1 : Monomials Ordered Under (1, 3)-revlex Order

Monomial: @ j (x , y) 1 x x2 x3 y x4 xy x5 x2y x6 x3y y2 x7 x4y xy2
Weight: (w-revlex): 0 1 2 3 3 4 4 5 5 6 6 6 7 7 7

j : 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 14

Monomial: @j(x, y)
Weight: (w-revlex): 8 8 8 9 9 9 9 10 10 10 10 11 11 11 11

i : 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

x8 x5y x2y2 x9 x6y x3y2 y3 x10 x7y x4y2 xy3 x l1 x8y x5y2 x2y3

Table 7.2: Monomials Ordered Under (1,3)-lex Order

Monomial: @j(x ,y) 1 x x 2 y x3 xy x4 x2y x5 y2 x3y x6 xy2 x4y x7
Weight: (w-lex): 0 1 2 3 3 4 4 5 5 6 6 6 7 7 7

j : 0 1 2 3 4 5 6 7 8 9 10 11 12 1 3 1 4

Monomial: @j(x, y) x2y2 x5y x8 y3 x3y2 x6y x9 xy3 x4y2 x7y x10 x2y3 x5y2 x8y x l 1
Weight: (w-lex): 8 8 8 9 9 9 9 10 10 10 10 11 11 11 11

i : 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

WD monomial order is characterized by a fixed pair w = (u , v) of non-negative integers
where not both are 0. Then the w-degree of the monomial x i y j is defined as

deg, x c y J = ui + v j .

The WD monomial order is sufficient to define a partial order on M [x , y]. However
there may be ties under this order, since there are monomials $l(x, y) and 42(x, y) with
&(x , y) # 42(x, y) with deg, 4 l (x , y) = deg, 42(x, y) , so that it is not yet an order.
There are two common ways to break such ties.

Definition 7.10 In w-lexicographic (or w-lex) order, if u i l + vj1 = ui2 + vj2, we say
that xc lyJ ' < xi2yj2 if il < i 2 . In w-reverse lexicographic (or w-revlex) order, if
uil + vj1 = ui2 + vj2, we say that x i l y j l < xizyjz if il > i2. These orderings are denoted
by < wlex and < wrevlex. 0

Example7.10 Letw= (1,3). Let@l(x,y) =x2y3;thendeg,@1 = 11. Let@2(x,y)=x8y;then
deg, 42 = 11, so there is a tie in the degree. Under w-lex order, @l(x, y) <wlex @2(x, y). Under
w-revlex order, 42(x, Y) <wrevlex @I (x, y).

By a fixed monomial order < a set of monomials {&] can be uniquely ordered:

. .

1 = 4 0 (x , y) <41(X,Y) <42(X,Y) <

Example 7.11 Let w = (1,3). Table 7.1 shows the first 30 monomials @j (x, y) ordered in w-revlex
order, along with the w-degree of the monomial and the order index j . The first 30 monomials ordered
in w-lex order are shown in Table 7.2. 0

For purposes of characterizing the performance of the decoder, it is useful to know how
many monomials there are up to a given weighted degree.

7.6 The Guruswami-Sudan Decoding Algorithm and Soft RS Decoding 327

Lemma 7.14 Let C(v, 1) be the number of monomials of weighted (1, v)-degree less than
or equal to 1. Then

C(V, 1) = (13 + 1) (I + 1 - ; I;]) .

Furthermore,
1 1 + 2 12

C (v , l) - - > -.
v 2 2v

(7.63)

(7.64)

Example 7.12 Some values of C(3,l) computed using (7.63) are

1 1 2 3 4 5 6 7 8 9 1 0 1 1
C(3,l) 2 3 5 7 9 12 15 18 22 26 30
bound 0.5 1.67 2.5 4 5.83 8 10.5 13.33 16.5 20 23.83

These can be compared with the data in Table 7.1 or Table 7.2. 0

Proof For a fixed j2, the monomials xJlyJ* of (1, v)-degree less than or equal to 1 is
1 + 1 - vj2. The largest y-degree of a monomial of (1, v)-degree less than 1 is [l / v] . The
total number of monomials of (1, v)-degree 5 1 is thus

The bound follows since

Apolynomial Q(x, y) = Ci,j20 aj,jx'yj with themonomialsorderedby afixedmono-
mial ordering can be written uniquely as

J

j =O

for some set of coefficients {a j) , with a J # 0. The integer J is called the rank of Q(x, y),
denoted rank(Q (x , y)) . The monomial 4 J (X , y) is called the leading monomial of Q (x , y),
denoted LM(Q (x, y)). The coefficient a J is called the leading coefficient of Q (x, y) . The
weighted degree of the leading monomial of Q(x, y) is called the weighted degree of
Q(x, y), or w-degree, denoted degw(Q(x, y)):

degw(Q(x, Y)) = deg, LM(Q(x, Y)) = mm{deg,4j(x, Y) : aj # 0)

We also say that the y-degree of Q(x, y) is the degree of Q(1, y) as a polynomial in y.

Example 7.13 Let w = (1, 3) and let < be the w-revlex ordering. When

Q (x , y) = 1 + x y +x4y + x 2 y 3 + x + y + x 8 y

328 Alternate Decoding Algorithms for Reed-Solomon Codes

is written with monomials ordered in increasing degree under <, we have

Q(x, y) = 1 + x + y + xy + x4y + x8y + x2y3.

They-degreeof Q(x, y)is3. TheLM(Q) = x2y3,rank(Q) = 29(refertoTable7.l)anddegw(Q) =
11 .

When Q (x , y) is written under w-lex ordering,

Q(x, y) = 1 S X + y + x y + x 4 y +x2y3 +x8y,

and LM(Q) = x 8 y and rank(Q) = 28 (refer to Table 7.2).

Having defined an order on monomials, this can be extended to a partial order on polyno-
mials.

Definition 7.11 For two polynomials P(x, y) , Q(x, y) E F[x, y] , we say that P (x , y) <
Q(x, y) if LM(P(x, y)) < LM(Q(x, y)) . (This is a partial order on F[x, y] , since distinct

0 polynomials may have the same leading monomial.)

Zeros and Multiple Zeros

In the GS decoder, we are interested in fitting an interpolating polynomial with a multiplicity
of zeros. We define in this section what we mean by this.

We first make an observation about zeros at 0 of polynomials in one variable.

Definition 7.12 Form 5 n, the polynomial

n

Q<X) = a m X m + um+lxm+l + . . . + a,xn = C arxr,
r=m

where a0 = a1 = . . = u,-l = 0, is said to a zero of order or multiplicity m at 0. We

Let Dr denote the rth formal derivative operator (see Section 6.5.1). Then we observe
write ord(Q; 0) = m.

that
Q(0) = Dl Q(0) = * * . = Dm-l Q(0) = 0.

So the order of a zero can be expressed in terms of derivative conditions in this case.
Let us generalize this result to zeros of order m at other locations. We say that Q(x) has

a zero of order m at a if Q(x + a) has a zero of order m at 0. This can be expressed using
a kind of Taylor series, which applies over any field, known as Hasse's theorem.

Lemma 7.15 [145] If Q(x) = Cz0 aixi E F[x], then for any a E F,
n

r=O

where

Qr(x) = 5 (i) u i x i - r , r
i=O

andwhere we take (:) = 0 ifr =- i.

7.6 The Guruswami-Sudan Decoding Algorithm and Soft RS Decoding 329

The proof follows by straightforward application of the binomial theorem. Qr (x) is called
the rth Hasse derivative of Q (x) . We will denote Qr (x) by D, Q (x) . In the case that F is
a field of characteristic 0, then

(7.65) DrQ<x> = Q r (x > = z,Q(x),
so that Dr does, in fact, act like a differentiating operator, but with a scaling factor of l / r !.
We can write

1 d'

n

Q (x + a) = C Dr Q(a)x ' .
r =O

Thus, if Q (x) has a zero of order in at a we must have the first m coefficients of this series
equal to 0:

Extending Definition 7.12 we have the following:

Definition 7.13 Q (x) has a zero of order (or multiplicity) m at (11 if

Q (a) = D l Q (a) = ... = Dm-1 Q(u) = 0.

Q ((~ I) = D1 Q (a) = . . . = D m - 1 (~) = 0.

This is denoted as ord(Q ; a) = m.
These concepts extend to polynomials in two variables.

0

Definition 7.14 Let Q (x , y) E F[x, y] and let a and B be such that Q (a , B) = 0. Then we
say that Q has a zero at (a, B) .

Let Q (x , y) = xi, 2o ai, j x i y j . We say that Q has a zero of multiplicity m (or order
m) at (0,O) if the coefficients ai, j = 0 for all i + j < m. When Q has a zero of order m at
(0,O) we write ord(Q : 0,O) = m.

Similarly, we say that Q (x , y) has a zero of order m at (a, p) , denoted as ord(Q ; a, B) =
0 m, if Q(x +a, y + B) has a zero of order m at (0,O).

Example 7.14 Q (x , y) = x 4 y + x 3 y 2 + x 4 y 4 has a zero of order 5 at (0,O).
Q (x , y) = x + y has a zero of order 1 at (0,O).
Q(x, y) = (x - ~) ~ (y - p) + (x - ~ !) ~ (y - p)2 + (x - ~) ~ (y - j3)4 has a zero of order 5 at

We observe that a zero of order m requires that (mll) = m(m + 1)/2 coefficients are 0. For
example, for a zero of order 3 at (O,O), the ("') = 6 coefficients

(a, 0). 0

ao,o, a0,1, a0,2, Q,O, a,1, a2,o

are all zero.
Lemma 7.15 is extended in a straightforward way to two variables.

Lemma 7.16 ZfQ(x, Y) = ai , jxzy j , then

where
(7.66)

330 Alternate Decoding Algorithms for Reed-Solomon Codes

Again, the proof is by straightforward application of the binomial theorem. We will denote

Qr,s(x, Y) = o r , s Q < x , Y) ; (7.67)

this is sometimes called the (r, s)th Hasse (mixed partial) derivative of Q (x , y) .
Based on this notation, we observe that if ord(Q : a, /3) = m, then

Dr,sQ(a , /3) = 0 for all r , s such that r + s < m , (7.68)

which is a total of ("l') constraints.

Example 7.15 We demonstrate some Hasse derivatives over F = GF(5).

D 1 , p = 1

D0,Ix = 0

D1,OY = 0

D0,lY = 1

5 0
D2,0x5 = (2) (0)x5-2 = lox3 = 0 (over GF(5))

We note that Dr,s acts very much like a partial differentiation operator, except for the division l / r ! x !
suggested by (7.65).

7.6.4 The GS Decoder: The Main Theorems

With the notation of the previous section, we can now describe the GS decoder in greater de-
tail. Foran(n, k)RScodeoverthefieldFwithsupportset(seeSection6.2.1)(~1, x 2 , . . . , x,)
and a positive integer m , the GS(m) decoder accepts a vector r = (y l , y2, . . . , y n) E Fn as
an input and produces a list of polynomials {PI, p2, . . . , p ~] as the output by the following
two steps:

Interpolation step: The decoder constructs a nonzero two-variable polynomial of the form
C

Q (X , Y > = C a j # j (X , Y)
j =O

of minimal (1, v)-degree which has a zero of order m at each of the points (x i , yi), i =
1,2, . . . , n. Here, the # j (x , y) are monomials of the form x p y q , ordered according
to the (1, v)-revlex monomial order such that 40 < 41 <
Related to this step are two fundamental questions: Does such a polynomial exist?
How can it be constructed?

Factorizationstep: The polynomial Q (x , y) is factored by finding a set of polynomials
p (x) such that y - p (x) I Q (x , y) . We form the set of such polynomials, called the
y-roots of Q (x , y) ,

L = {AX) E U x I : (Y - P (x)) I Q (x , Y) } .

Questions related to this step are: How does this relate to the error correction capability
of the code? How is the factorization computed? How many polynomials are in L?

As we will see, it is also possible to employ a different interpolation order mi at each point
(x i , y j) . This is developed further in Section 7.6.8.

7.6 The Guruswami-Sudan Decoding Algorithm and Soft RS Decoding 331

The Interpolation Theorem

We address the existence of the interpolating polynomial with the following theorem.

Theorem 7.17 (The Interpolation Theorem) Let

c

where the monomials are ordered according to an arbitrary monomial order n e n a nonzero
Q (x , y) polynomial exists that interpolates the points (x i , y i) , i = 1,2, . . . , n with multi-

(7.70)

Proof There is a zero of multiplicity m at (xi, yj) if

D,, ,Q(xi , y i) = 0 for all (r, s) such that 0 5 r + s < m . (7.71)

Using the Hasse partial derivatives defined in (7.66) and (7.67), equation (7.71) can be
written as

There are (mi1) linear homogeneous equations (constraints) for each value of i , for a total
of n(";') equations. If C = n ("TI), then there are C + 1 variables ao, a l , . . . , ac in (7.69).

0

The solution to (7.72) can be computed using straightforward linear algebra, with complexity
0(C3). Other algorithms are discussed in Section 7.6.5.

There must be at least one nonzero solution to the set of linear equations (7.71).

The Factorization Theorem

The main results regarding the factorization step are provided by the following lemma and
theorem.

Lemma 7.18 Let Q (x i , y i) have zeros of multiplicity m at thepoints (X i , y i) , i = 1,2, . . . , n.
I f p (x) is apolynomial such that yi = p (x i) , then (X - 1 Q (x , P (x)) .

Proof To gain insight, suppose initially that (x i , y i) = (0, 0) , so 0 = p (0) . Thus we can
write p (x) = x F (x) for some polynomial F (x) . Then for

i+j?rn

(where the sum is over i + j 2 m since Q (x , y) has zeros of multiplicity m) it follows that

Q(x, = Q (x , x F (x)) = C a i , j x ' (x F (x >) j ,

which is divisible by xm. This establishes the result for the point (0,O).

i+j?m

332 Alternate Decoding Algorithms for Reed-Solomon Codes

Nowlet (x i , y i) beageneralinputpointwithyi = p (x i) . Let p (') (~) = p(X+Xi)-yi ,so
that p(')(O) = 0. Thus p (') (x) = x ~ (~) (x) for some polynomial j (i) (x) . Let Q (i) (x, y) =
Q (x + X i , y + y j) , SO Q(j)(O, 0) = 0. The problem has been shifted SO that Q(')(O,O) and
p(') behave like the results above at (0,O). Thus xi" 1 Q(')(n, P (~) (~)) . Shifting back gives
the desired conclusion. 0

Theorem 7.19 (The Factorization Theorem) Let Q (x , y) be an interpolatingpolynomial
of (1, v)-weighted degree I 1 such that D,, Q (x i , y i) = Ofor i = 1,2, . . . , n and for all
r + s < m. (That is, each (x i , y i) is interpolated up to order m.) Let p (x) be a polynomial
of degree at most v such that yj = p(x j) for at least K , values of i in {1,2, . . . , n} . If
mKm > 1, then (Y - p (~ > > I Qb, Y) .

Before proving this theorem, let us put it in context. If p (x) is a polynomial of degree less
than k, then p (x) produces a codeword c E C by the mapping

p (x > + (P (Xl) , p(x21, . . * 7 p(xn>> E c.
For this codeword, yi = p (x i) for at least Km places. Let tm = n - Km . Then c differs from
the received vector r = (y l , y2, . . . , Y m) in as many as tm places. Thus, p (x) identifies a
codeword c at a distance no greater than tm from r. This codeword is a candidate to decode
r. So, if p (x) agrees in at least Km places, then by the factorization theorem, p (x) is a
y -root of Q (x , y) , and is therefore placed on the list of candidate decodings.

Proof Let g(x) = Q (x , p(x)). By the definition of the weighted degree, and by the fact
that Q (x , y) has (1, v)-weighted degree I I, g (x) is a polynomial of degree at most 1 . By
Lemma 7.18, (x - xi), 1 g (x) for each point such that yi = p(Xi) . Let S be the set of points
where there is agreement such that yi = p(Xi) , that is, S = { i E 11, . . . , n} : yi = p(Xj) }
and let

s (x) = H (X - X i) , .

ieS

Then s (x) / g (x) . Since IS] 2 K , (by hypothesis), we have degs(x) 2 mK,. We thus
have a polynomial of degree 2 m K , dividing g (x) which is of degree < mK,. It must
therefore be the case that g (x) is identically 0, or Q (x , p (x)) = 0. Now think of Q (x , y)
as a polynomial in y with coefficients in IF[x]. Employ the division algorithm to divide by

Q (x , Y) = (Y - P (~)) c I (~ , Y) + r (x) .
(Y - p (x >) :

Evaluating at y = p (x) we have

0 = Q (x , = r (x)

The degree of p (x) in Theorem 7.19 is at most v . Since p (x) is to interpolate points as
yi = p (x i) and there is (by the Reed-Solomon encoding process) a polynomial relationship
of degree < k between the support set and the codewords, we must have deg p (x) < k. We
thus set

This establishes the weighted order to be used in the algorithm.

7.6 The Guruswami-Sudan Decoding Algorithm and Soft RS Decoding 333

The Correction Distance

Let us now establish a connection between the correction distance t m , the multiplicity m, and
the maximum (1, v)-weighted degree 1 of Q (x , y) . The point of the interpolation theorem
is that the number of variables in the interpolating polynomial must exceed the number
of equations (constraints), which is n(m, f l) . Recall from Lemma 7.14 that the number of
monomials of weighted (1, v)-degree 1 is C(v, 1). So by the interpolation theorem (Theorem
7.17) we must have

(7.73)

By the Factorization Theorem (Theorem 7.19) we must also have

mKm > 1 ormKm S, 1 + 1 OrmK, - 1 2 1. (7.74)

Since C(v, 1) is increasing its second argument, replacing the second argument with a larger
value makes it larger. Thus, from (7.73) and (7.74) we have

For m 2 1 we will define Km to be the smallest value for which (7.75) is true:

K : C (v , m K - 1) > n

(7.75)

(7.76)

From the factorization theorem, Km is the number of agreements between y and a codeword,
so t, = n - K , is the distance between y and a codeword; it is the error correction distance.
For m = 0, we define Km to be n - to = n - L(n - k)/2J = [(n + v + 1)/21. As the
following example shows, K, is non-increasing with m.

Example 7.16 Figure 7.3 shows K , as a function of m for a (32, 8) Reed-Solomon code. There is
an immediate decrease with m for small values of m, followed by a long plateau. At m = 120, K m
decreases to its final value - there are no more decreases beyond that.

Values of K- for n-32, k.8

- ' I I

I
20 40 60 80 100 120

m

Figure 7.3: K m as a function of m for a (32,8) Reed-Solomon code.

c0mputekm.m
computetm.cc

There is a multiplicity mo beyond which Kmo = Kmo+l = . . . - no further decreases
are possible. We denote this as K,. Since Km is nonincreasing with m , t , = n - Km
is nondecreasing with m. That is, increasing the multiplicity m can increase the error
correction distance, up till the point too = n - KW is reached, which is the asymptotic
decoding capability of the GS decoder.

334 Alternate Decoding Algorithms for Reed-Solomon Codes

We will denote
K , = 1 6 1 + 1

so that
too = n - K , = n - 1 - t,/iKj = n - 1 - LJ-J.

The following theorem indicates that the decoding distance of the GS decoder improves
(or at least does not decrease) with increasing m. (As becomes evident below, the decoder
algorithmic complexity increases with m, so this improved performance is obtained with
higher complexity.)

Theorem 7.20 [230] Km is nonincreasing with m:

KO

KO ? K1

K m L K w

Km 1: Km+l

K , ? u + 1

K , = K , for all suflciently large m.

(7.77)

(7.78)

(7.79)

(7.80)

(7.81)

Proof We will give only a partial proof. (The remaining results require bounds on C (v , 1)
which are more fully developed in [230].) Proof of (7.77)2:

KO = [(n + v + 1)/21 L(n + v + 1)/2] + 1

2 LJn(v+l>J (arithmetic-geometric inequality)

? L f i j + 1 = Koo.

Proof of (7.81): It must be shown that for all sufficiently large m

m + l
C (v , m K , - 1) > n(). (7.82)

Using the bound (7.64) we have

C(v, m K , - 1) 1:

So (7.82) holds if & $ > 1, or when

(mK, - l) (m K , + 1) m2K$
2

>- = n
2v 2v

(7.83)

In order for the bound in (7.83) to make sense, the term on the right-hand side must be
positive, which establishes the lower bound K , = L f i] + 1. Suppose it were the case
that K , were smaller, say, K , = L f i] . Then (1 6 1 / (v n) - 1) would be negative.

0
For an (n , k) decoder capable of correcting t errors, let t = t / n denote the fraction of

errors corrected and let R = k / n denote the rate. For the conventional t = to decoder, the

Thus Koo = L f i] + 1 is the smallest possible value.

’The arithmetic-geometric inequality states that for positive numbers ~ 1 . ~ 2 , . . . , Zm. (~ 1 ~ 2 . . . ~ m) ’ ’ ~ i
E(z l 1 + z2 + . . . zm); that is, the geometric mean is less than the arithmetic mean. Equality holds only in
the case that all the zi are equal.

7.6 The Guruswami-Sudan Decoding Algorithm and Soft RS Decoding 335

0.9

0.8

fraction of errors corrected is (asymptotically) TO = (1 - R) / 2 . For the Guruswami-Sudan
algorithm, too = 1 - (asymptotically). Figure 7.4 shows the improvement in fractionof
errors corrected as a function of rate. The increase in the decoding capability is substantial,
particularly for low rate codes.

-

"0 0.2 0.4 0.6 0.8 1
R

Figure 7.4: Fraction of errors corrected as a function of rate.

The Number of Polynomials in the Decoding List

The GS algorithm returns a list of polynomials L = { p l (x) , p2(x), . . . , p ~ (x)] . The
transmitted codeword will be in L if the number of channel errors is I tm. There may be
other codewords as well, since this is a list decoding algorithm. How many polynomials
can be in L? (This material is drawn from [230].)

Recall that Q (x , y) is a polynomial of (1, v)-weighted degree p 1 and that the poly-
nomials p (~) are those such that (y - p @)) 1 Q (x , y) . The maximum number of such
polynomials is thus the y-degree of Q (x , y) . We denote this number as L m .

Let B(v , L) be the rank of the polynomial y L with respect to the (1, v)-weighted revlex
order.

Example 7.17 Using Table 7.1, we have

L 0 1 2 3 4 5
B (3 , L) 0 4 11 21 34 50

Then

Lm = max{L : B(v , L) 5 n (" 2' 7 1 .

(Because if there is a y L m in a monomial, then x i y L m has rank > rn(mll) for i > 0.) We
will develop an analytical expression for Lm and a bound for it.

336 Alternate Decoding Algorithms for Reed-Solomon Codes

Lemma 7.21
vL2 (v + 2)L

2
B(v , L) = - +

2
(7.84)

Proof Note (e.g., from Table 7.1) that y L is the last monomial of (1, v)-degree L in revlex
order, so that

B (v , L) = I{ (i , j) : i + v j p Lv)l - 1. (7.85)

Then we have the recursive expression

B (v , L) = (I { (i , j) : i + vj p (L - 1)v)l - 1) + I{ (i , j) : (L - l) v + 1 p i + vj p Lv)l

= B(v , L - 1) + VL + 1.

Then by induction,

B (v , L - 1) + VL + 1 =
v(L - 1)2

vL2 (v + 2)L

(v + 2)(L - 1)
2

= B(v , L) .

+ V L + 1 +
2

2
-+

2

Define the function r a (x) as that value of L such that B (v , L) p x 5 B (v , L + 1). That is,

rB(x) = argmax{L E N : B (v , L) p x).

Then L , = r a (n (m i ')) . Now we have a lemma relating rB to B(v , L) .

Lemma 7.22 I f B (v, x) = f (x) is a continuous increasingfunction ofx > 0, taking integer
values when x is integer, then

More generally, i f g (x) p B (v , x) 5 f (x) , where both f and g are continuous increasing
functions of x > 0, then

Lf-'(x>l 5 rB(X) 5 Lg-'(x)J. (7.86)

rB (XI = Lf - ' (X > l .

Proof Let L = rg (x) . By definition of r B (x) we have B(v , L) p x. Invoking the
inequalities associated with these quantities we have

g (L) 5 B(v , L) 5 x < B (v , L) + 1 5 f(L + 1).

r B (x) P g- ' (x) and f - ' (x) < r e (x) + 1,

Thus L p g - ' (x) and f - ' (x) < L + 1. That is,

or
f-'(x) - 1 < r g (x) p g- ' (x) .

Since ra (x) is integer valued, taking 1.1 throughout we obtain (7.86). 0
Using (7.84), we have B(v , L) = f(L) = vL2/2 + (v + 2)L/2. If f (L) = x , then (using
the quadratic formula)

Using Lemma 7.22 we reach the conclusion:

7.6 The Guruswami-Sudan Decoding Algorithm and Soft RS Decoding 337

Theorem 7.23

I , I

A convenient upper bound is (see Exercise 7.22)

1
L, < (rn + 5)&qi.

I computeLm.cc I c0mputeLm.c

7.6.5 Algorithms for Computing the Interpolation Step

As observed in the proof of the Interpolation Theorem (Theorem 7.17), the interpolating
polynomial can be found by solving the set of

linear interpolation constraint equations with > C unknowns, represented by (7.72). How-
ever, brute force numerical solutions (e.g., Gaussian elimination) would have complexity
cubic in the size of the problem. In this section we develop two other solutions which have,
in principle, lower complexity.

Definition 7.15 A mapping D : F[x, y] + P is said to be a linear functional if for any
polynomials Q (x , y) and P (x , y) E F[x, y] and any constants u , v E F,

D (u Q (x , Y) + v P (x , Y)) = u D Q (x , Y) + v D P (x , Y) .

The interpolation constraint operations in (7.68) act as Zinearfunctionals.

The operation
Q(x9 Y) * Dr,sQ<aT B)

is an instance of a linear functional. We will recast the interpolation problem and solve it
as a more general problem involving linear functionals: Find Q (x , y) satisfying a set of
constraints of the form

D i Q (x , Y) = O , i = 1 , 2 ,..., C ,

where each Di is a linear functional. For our problem, each Di corresponds to some D, , ,
according to a particular order relating i to (r, s). (But other linear functionals could also
be used, making this a more general interpolation algorithm.)

Let us write Q (x , y) = C:, aj#j (x, y) , where the # j (x, y) are ordered with respect
to some monomial order, and where ac # 0. The upper limit J is bounded by J 5 C ,
where C is given by (7.70). The operation of any linear functional Di on Q is

(7.88)

with coefficients di, j = Di 4 j (X , Y) .

338 Alternate Decoding Algorithms for Reed-Solomon Codes

1 1 1 1 1 -

0 1 0 2 0
3.2' 0 4.Z3 3 5.Z4

0 1 0 4 0

23 3 24 2 . 3 25

43 2 44 4 . 2 45

3.42 0 4.43 2 5.44 -

Finding Linearly Dependent Columns: The Feng-Tzeng Algorithm

The set of functionals D1, D2, . . . , Dc can be represented as the columns of a matrix D,

.

D =

Example 7.18 Over the field GF(5) , we desire to create a polynomial of minimal (1,3)-revlex rank
through the following points, with the indicated multiplicities:

Point Multiplicity
(1 9 1) 1
(2,3) 2
(472) 2

There are 1 + (i) + (;) = 1 + 3 + 3 = 7 constraints. These constraints are (using the notation
Qr,s introduced in (7.66))

Qo,o(L 1) = 0
Q0,0(2,3) = 0 Qo,1(2,3) = 0 Q1,0(2,3) = 0
Qo,o(4, 2) = 0 Qo,1(4, 2) = 0 Ql,o(4, 2) = 0.

With seven constraints, some linear combination of the first eight monomials listed in Table 7.1
suffices. These monomials are 1, x , x 2 , x 3 , y , x4, xy, and 2. The polynomial we seek is

4 5 Q(X, y) = a0 + aix + a2x2 + a3x3 + a4y + a5x + a6XY + a7x .

This polynomial should satisfy the constraints (using (7.67))

D0,Ol = 1 D0,OX = x D0,oy = y . . . D ~ , ~ x ~ =

D1,Ol = 0 D 1 , O X = 1 D1,oy = 0 . . . ~ 1 . 0 ~ ~ = 5x4 = o
D0,11=0 D0,1y=1 D0,1y=1 ... D O , ~ X ~ = 0.

Now form a matrix V whose columns correspond to the eight monomials and whose rows correspond
to the seven constraints.

1 x
- 1 1

1 2
0 0
0 1
1 4
0 0

- 0 1

X2

22
1

0
2 . 2

0
2 . 4

42
(7.90)

The condition that all the constraints are simultaneously satisfied,

D iQ(x ,y)=O, i = 1 , 2 ,..., C

7.6 The Guruswami-Sudan Decoding Algorithm and Soft RS Decoding 339

can be expressed using the matrix D as

V ["I = 0 or d(O)ao + d(')al + . . . + d(J)aJ = 0,

so the columns of D are linearly dependent. The decoding problem can be expressed as
follows:

aJ

Interpolation problem 1: Determine the smallest J such that the first J
columns of V are linearly dependent.

This is a problem in computational linear algebra, which may be solved by an extension
of the Berlekamp-Massey (BM) algorithm known as the Feng-Tzeng algorithm. Recall
that the BM algorithm determines the shortest linear-feedback shift register (LFSR) which
annihilates a sequence of scalars. The Feng-Tzeng algorithm produces the shortest "LFSR"
which annihilates a sequence of vectors.

We will express the problem solved by the Feng-Tzeng algorithm this way. Let

a12 . * .

A = :". a22 . . . 7 = [a1 a2 . . . aN].

The first 1 + 1 columns of A are linearly dependent if there exist coefficients c1, c2, . . . , cl,

not all zero, such that
al+l + clar + . . clal = 0. (7.91)

The problem is to determine the minimum 1 and the coefficients c1, c2, . . . , cl such that the
linear dependency (7.91) holds.

Let C (x) = co + cix + - . . + cix', where co = 1, denote the set of coefficients in the
linear combination. Let a(x) = a0 + alx + . . . + aNxN be a representation of the matrix
A, with a0 = 1 (the vector of all ones) and let a(') (x) = ai,o + ai,lx + . . . + aj ,NxN be the
ith row of a(x). We will interpret C(x)a(x) element by element; that is,

aM1 aM2 ". aMN

C(x)a(')(x)
c (x)a(2) (x)

C(x)a(M)(x)
C(x)a(x) = [; 1-

Forn = l+1,1+2, . . . , N,let [C(x)a(x)], denotethecoefficient(vector)ofxninC(x)a(x).
That is,

1

[~ (x > a (x) l ~ = cOan +cla,-l + - - . +c[a,-l = Ccjan-j .

The problem to be solved can be stated as follows: Determine the minimum 1 and a poly-
nomial C (x) with deg C(x) 5 1 such that [C(x)a(x)]l+l = 0.

The general flavor of the algorithm is like that of the BM algorithm, with polynomials
being updated if they result in a discrepancy. The algorithm proceeds element-by-element

j =O

340 Alternate Decoding Algorithms for Reed-Solomon Codes

through the matrix down the columns of the matrix. At each element, the discrepancy is
computed. If the discrepancy is nonzero, previous columns on this row are examined to see
if they had a nonzero discrepancy. If so, then the polynomial is updated using the previous
polynomial that had the discrepancy. If there is no previous nonzero discrepancy on that
row, then the discrepancy at that location is saved and the column is considered "blocked"
- that is, no further work is done on that column and the algorithm moves to the next
column.

c (! - L j) j - 1 withct-',i) - - 1, be defined Let c(i-l,j)(x) = c (i - 1 3 j) + c (i - L j) x + . . .
for each column j , where j = 1 , 2 , . . . ,1 + 1, and for i = 1,2, . . . , M , where each
polynomial C("-'.j) has the property that

[~ (~ - - 1 ~ j) (~) ~ (h) (~)] J . - - a h , j f C 1 (i - W U h , j - l + . . . f C ! ' - ' ' j) J - l U h J = 0 forh 5 i - 1.

That is, in column j at position (i - 1, j) of the matrix and all previous rows there is no
discrepancy. The initial polynomial for the first column is defined as C(O3') (x) = 1. The
discrepancy at position (i, j) is computed as

x , 0 1 J - 1

d , , , = . - a. . (i - W a . , , + . . . + c (. i - l , j) J - l & , l * ' I J - 1 . J

If di,j = 0, then no update to the polynomial is necessary and & j) (x) = I ? (~ - ' , ~) (X) . If,
on the other hand, di,j # 0, then an update is necessary. If there is on row i a previous
column u that had a nonzero discrepancy (that was not able to be resolved by updating the
polynomial), then the polynomial is updated according to

(7.92)

where u is the column where the previous nonzero discrepancy occurred and C(')(x) is the
polynomial which had the nonzero discrepancy in column u.

If there is a nonzero discrepancy di,, , but there is no previous nonzero discrepancy on
that row, then that discrepancy is saved, the row at which the discrepancy occurred is saved,
p (j) = i, and the polynomial is saved, C j (x) = d i - l , j) (x) . The column is considered
"blocked," and processing continues on the next column with C (o , J + l) (x) = C(j - l , j) (x) .

The following lemma indicates that the update (7.92) zeros the discrepancy.

Lemma 7.24 Ifdi, j # 0 and there is a previous polynomial C @) (x) at column u, so that
C(')(X) = C(i - - ' ,u) (x) and di,u # 0, then the update (7.92) is such that

Proof We have

where the second equality follows from a result in Exercise 7.18.

7.6 The Guruswami-Sudan Decoding Algorithm and Soft RS Decoding 341

Algorithm 7.5 The Feng-Tzeng Algorithm

This representation is due to McEliece [230]
I Input: A matrix A of size M x N
2 Output: A polynomial C of minimal degree annihilating columns of A
3 Initialize: s = 0 (column counter)
4 C = 1 (C holds the current polynomial)
5 dsave = zeros(1,N) (holds nonzero discrepancies)
6 p = zeros(l,N) (holds row where nonzero discrepancy is)
7 Begin:
x while(1) (loop over columns)
9 s = s + 1; r = 0; (move to beginning of next column)
10 c o l u m n b l o c k e d = 0;
11 while(1) (loop over rows in this column)
12

13

14

IS

r = I + 1; (move to next row)
drs = [C(x)a(')(x)ls (compute discrepancy here using current poly.)
if(drs # 0) (if nonzero discrepancy)

if(there is a u such that p (m) = I) (if a previous nonzero disc. on this row)

else (no previous nonzero discrepancy on this row)
16 C(x) = C(x) - &CU(x)xs- ' ; (update polynomial)
17

18

19

p (s) = r ; (save row location of nonzero discrepancy)
Cs(x) = C(x); (save polynomial for this column)

c o l u m n b l o c k e d = 1; (do no more work on this column)
20

22 end (else)
23 end (if drs)
24

25 end (while (1))
26

27 end (while(1))
28 End

dsave(s) = drs; (save nonzero discrepancy for this column)
21

if(r 2 M or c o l u m n b l o c k e d = l) break; end; (end of loop over row)

if(columnblocked=o) break; end; (end loop over columns)

It can be shown that the polynomial C (x) produced by this algorithm results in the minimal
number of first columns of A which are linearly dependent [83].

Example 7.19 We apply the algorithm to the matrix 2, of (7.90) in Example 7.18. The following
matrix outlines the steps of the algorithm.

0
0

0
0 I 0

0

L
0
0
0

bf
2,
0

0

h 0

21

testft .m
fengt2eng.m
invmodp . rn

The initially nonzero discrepancies are shown in this matrix; those which are in squares resulted in
polynomials updated by (7.92) and the discrepancy was zeroed.

342 Alternate Decoding Algorithms for Reed-Solomon Codes

a: Starting with C (x) = 1, a nonzero discrepancy is found. There are no previous nonzero

b: Nonzero discrepancy found, but the polynomial was updated using previous nonzero discrep-

c: Nonzero discrepancy found and no update is possible. Save d 2) (x) = 4x + 1 and the

d: Nonzero discrepancy found, but updated polynomial computed (using polynomial at c) C (x) =

e: Nonzero discrepancy found; no update possible. Save d 3) (x) = 2x2 + 2x + 1 and the
discrepancy and and jump to next column.

f Update polynomial: C (x) = x3 + 3x2 + 1
g: save c (~) (x) = x 3 + 3x2 + 1
h: Update polynomial: C (x) = 2x4 + 4 x 3 + 3x2 + 1
i: Save c (~) (x) = 2x4 + 4x3 + 3x2 + 1
j: Update polynomial: C (x) = 3x5 + 3x3 + 3x2 + 1
k Update polynomial: C (x) = x 5 + 4x4 + 3x3 + 1x2 + 1
1: Save d 6) (x) = x5 + 4x4 + 3x3 + 1x2 + 1
m: Update polynomial C (x) = x6 + 4x4 + 3x3 + x 2 + 1
n: Update polynomial C (x) = 3x5 + 3x3 + 3x2 + 1
0: Update polynomial C (X) = x6 + 4x5 + 3x4 + 3x3 + 3x2 + 1
p: Update polynomial C (x) = 3x6 + 3x4 + 3x2 + 1
q: Save c (~) (x) = 3x6 + 3x4 + 3x2 + 1
r: Update polynomial C (x) = 2x7 + 4x6 + 3x2 + 1
s: Update polynomial C (X) = x7 + zX5 + 4x4 + 2x2 + 1

discrepancies on this row, so C (') (x) = 1 is saved and we jump to the next column.

ancy on this row (at a): C (x) = 4x + 1.

discrepancy and jump to next column.

2x2 + 2 x + 1.

Returning to the interpolation problem of Example 7.18, we obtain from the coefficients of C (x)
the coefficients of the polynomial

Q (x , y) = 1 +Ox + 2x2 + 4 x 3 + O y + 2x4 +Oxy +x5.

It can be easily verified that this polynomial satisfies the interpolation and multiplicity constraints
specified in Example 7.18. 0

The computational complexity goes as the cube of the size of the matrix. One view of
this algorithm is that it is simply a restatement of conventional Gauss-Jordan reduction and
has similar computational complexity.

Finding the Intersection of Kernels: The Kotter Algorithm

Let FL [x , y] c F [x , y] denote the set of polynomials whose y-degree is 5 L. (The variable
y is distinguished here because eventually we will be looking for y-roots of Q (x , y).) Then
any Q (x , y) E F L [x , y] can be written in the form

L

k=O

for polynomials qk(X) E F [x] . FLEX, y] is an F[x]-module (see Section 7.4.1): for any
polynomials a(x) and b(x) in F [x] and polynomials Q (x , y) and P (x , y) in FL[x, y],

(a (~ > f ' (x , Y> + b (x) Q < x , Y)) E F L [~ , YI
since the y-degree of the linear combination does not change.

7.6 The Guruswami-Sudan Decoding Algorithm and Soft RS Decoding 343

For a linear functional D, we will generically write KD as the kernel of D:

K D = ker D = { Q (x , y) E F[x, y] : D Q (x , y) = 0).

For a set of linear functionals D1, Dz, . . . , Dc defined on FL[x, y], let K1, Kz, . . . , Kc be
their corresponding kernels, so that

Ki = ker Dj = (Q (x , y) E F[x, y] : DjQ(x , y) = 0).

Then a solution to the problem

Di Q (x , y) = 0 for all i = 1,2, . . . , C (7.93)

lies in the intersection of the kernels K = K1 n Kz n . . . Kc. We see that the interpolation
problem can be expressed as follows:

Interpolation Problem 2: Determine the polynomial of minimal rank in K

To find the intersection constructively, we will employ cumulative kernels, defined as fol-
lows: KO = FL[x, y] and

-
K ~ = K ~ - ~ ~ K ~ = z c 1 n - . . n K i .

That is, Fi is the space of solutions of the first i problems in (7.93). The solution of the
interpolation is a polynomial of minimum (1, v)-degree in Kc.

We will partition the polynomials in FL[x, y] according to the exponent of y. Let

sj = { Q (x , y) E FL[x, y] : LM(Q) = x’yj for some i)

be the set of polynomials whose leading monomial has y-degree j . Let gj,j be the minimal
element of n Sj , where here and throughout the development “minimal” or “mid’ means
minimal rank, with respect to agiven monomial order. Then {gc,j}F=o is a set of polynomials
that satisfy all of the constraints (7.93).

The Kotter algorithm generates a sequence of sets of polynomials (Go, GI , . . . , Gc),
where

Gi = (gi,ot gi,l, . . . gi,L),

and where gi,j is a minimal element of Ki n Sj . (That is, it satisfies the first i constraints
and the y-degree is j .) Then the output of the algorithm is the element of G c of minimal
order in the set G c which has polynomials satisfying all C constraints:

This satisfies all the constraints (since it is in K c) and is of minimal order.

given linear functional D , define the mapping [-, ‘ID : F[x, y] x F[x, y] + F[x, y1 by
We introduce a linear functional and some important properties associated it. For a

[P (x , Y), Q(x7 Y)lD = (D Q < x , Y))P(X, Y) - (DP(X, Y))Q(X, Y).

Lemma 7.25 For all P (x , y), Q (x , y) E F[x, y], [P (x , y), Q (x , y)]D E ker D. Further-
more, i f P (x , y) > Q (x , y) (withrespecttosomeJixedmonomia1order)and Q (x , y) # KD,
then rank[P(x, Y), Q < x , Y)lD = rankP(x, Y).

344 Alternate Decoding Algorithms for Reed-Solomon Codes

Proof We will prove the latter statement of the lemma (the first part is in Exercise 7.19).
For notational convenience, let a = D Q (x, y) and b = D P (x, y) . (Recall that a, b E F.)
I f a # 0 and P (x , Y) > Q (x , y) , then [P (x , y), Qh, y)lo = a P (x , Y) -bQ(x , y),which
does not change the leading monomial, so that LM[P (x , y) , Q (x , y)] D = LMP (x , y) and
furthermore, rank[P(x, y) , Q (x , y)] ~ = rankP(x, y) . 0
The algorithm is initialized with

2 L Go = (go,o, g0,1, . . . 1 g0,d = (1, Y , Y 1 . . ., Y).

Ji = { j : Di+l(gi,j> # 01

To form Gi+l given the set Gi, we form the set

as the set of polynomials in Gj which do not satisfy the i + 1st constraint. If J is not
empty, then an update is necessary (i.e., there is a discrepancy). In this case, let j * index
the polynomial of minimal rank,

j " = arg min gj,j
j G J j

and let f denote the polynomial gj,j*:

f = mingi,j. (7.94)
jeJ j

The update rule is as follows:

gi, j if j 6 Jj
gi+l,j = [gi,j, f l ~ i + l i f j E Ji but j # j * (7.95) I [xf, fIoi+, i f j = j * .

The key theorem governing this algorithm is the following.

Theorem 7.26 For i = 0, . . . , C,

gi,j = min{g : g E Ki n Sj} for j = O,1,. . . , L . (7.96)

Proof The proof is by induction on i. The result is trivial when i = 0. It is to be shown
that

g i + l , j = m i n { g : g E K i + l n S j } f o r j = 0 , 1 , ..., L

is true, given that (7.96) is true. We consider separately the three cases in (7.95).

Case 1: j 6 Ji, SO that gi+l,j = gj,j. The constraint Dj+lgj,j = 0 is satisfied (since
j @ J i) , SO gi+l,j = gj,j E Kj+l. By the inductive hypothesis, gj+l,j E Ki n Sj.
Combining these, we have gj+l,j E Kj+l n S j . Since gj,j is minimal in Kj n Sj, it must
also be minimal in the set Kj+l n Sj , since the latter is contained in the former.

Case 2: In this case,

gi+l, j = [gi, j 7 f l ~ j + i = (Di+lgi, jlf - (Di+l f)gi, j ,

which is a linear combination off and gj,j. Since both f and gj,j are in Ki, gj+l,, is also in
Ki. By Lemma 7.25, gi+l, j E Ki+l. Combining these inclusions, gj+l,j E Ki n Ki+l =

Ki+l.
By (7.94), rankgj,j > rankf, so that by Lemma 7.25, rankgj+l,j = rankgj,j. Since

gi,j E Sj, it follow^ that gi+l,j E Sj also. And, since gi+l,j has the same rank as gi,j,
which is minimal in Ki n Sj , it must also be minimal in the smaller set Ki+l n Sj .

-
-

7.6 The Guruswami-Sudan Decoding Algorithm and Soft RS Decoding 345

Case 3: In this case the update is

gi+l, j = [xf, f l ~ j + l = (Di+lxf)f - (Di+l fbf

which is a linear combination of f and xf. But f E Ki by the induction hypothesis.

in terms of the Hasse partial derivatives of f and f,
We must show that xf E Ki . Let f (x , y) = xf (x, y). In Exercise 7.21 it is shown that,

&,s<x, Y) = fr-l,s(X, Y> + xfr,s(x, Y>. (7.97)

If fr-l,s(Xj, yj) = 0 and fr,,s(Xj, yj) = 0 for j = 0, 1 , . . . , i, then f r , s (~ j , y j) = 0, SO

xf E gi. This will hold provided that the sequence of linear functionals (Do, D1, . . . , D c)
are ordered such that Dr-1,s always precedes Dr,s.

Assuming this to be the case, we conclude that f E Ki andxf E Ki, so that gi+l,j E Kj.
By Lemma 7.25, gi+l,j E Ki+l, SO gi+l,j E Ki n Ki+l = K j + l .

Since f E Sj (by the induction hypothesis), then xf E Sj (since multiplication by x
does not change the y-degree). By Lemma 7.25, rank gi+l,j = rankxf, which means that

Showing that gi+l, j is minimal is by contradiction. Suppose there exists a polynomial
h E Ki+l n Sj such that h < gi+l,j. Since h E Ki n Sj, we must have f 5 h and
rankgi+l,j = rankxf. There can be no polynomial f’ E Sj with rank f < rank f’ <
rankxf, so that it follows that LM(h) = LM(f). By suitable normalization, the leading
coefficients of h and f can be equated. Now let

I

-

gi+l,j E Sj also.

I

f = h - f.

By linearity, f E Ei . By cancellation of the leading terms, f < f . Now Di+l h = 0, since
h E Ki+l, but Di+l f # 0, since j E Ji in (7.94). Thus we have a polynomial f such that
f” E Xi \ Ki+l and f” < f . But f was supposed to be the minimal element of Ki \ Ki+l,

17

Let us return to the ordering condition raised in Case 3. We must have an order in which
(I - 1, s) precedes (r, s). This is accomplished when the (I , s) data are ordered according
to (m - 1, 1) lex order:

by its selection in (7.94). This leads to a contradiction: gi+l,j must be minimal.

At the end of the algorithm, we select the minimal element out of G c as Q o (x , y).
Kotter’s algorithm for polynomial interpolation is shown in Algorithm 7.6. This algo-

rithm is slightly more general than just described: the point (xi, yi) is interpolated up to
order mi, where mi can vary with i, rather than having a fixed order m at each point. There
is one more explanation necessary, regarding line 19. In line 19, the update is computed as

346 Alternate Decoding Algorithms for Reed-Solomon Codes

Algorithm 7.6 Kotter’s Interpolation for Guruswami-Sudan Decoder

I Input: Points: (x i , y j) , i = 1, . . . , n; Interpolation order mi; a (1 , v) monomial order; L = Lm
z Returns: Qo(x , y) satisfying the interpolation problem.
3 Initialize: g j = y J for j = 0 to L.
4 for i = 1 to n (go from i - 1st stage to ith stage)
s

6

7

9 end(for j)
10

I I i f(J # 0)
1 2

C = (mi + l)mi/2 (compute number of derivatives involved)
for (Y, s) = (0, 0) to (mi - 1,O) by (mi - 1, 1) lex order (from 0 to c)

for j = 0 to L
8 A, = Dr,sgj (x i , y j) (compute “discrepancy”)

J = { j : A j # 0} (set of nonzero discrepancies)

j * = argmin{gj : j E J } (polynomial of least weighted degree)
13 f = g,+
14 A = A ‘+ J
15 for(j E J)
16 i f (j # j*)
17 g . - Agj - A j f (update without change in rank)

J .-
18 else if(j = j *)
19 g, = (x - x i) f (update with change in rank)
20 end (if)
2 1 end (if j)
22 end (for J)
23 end (for (Y, s))
24 end (for i)
2s Qo(x, y) = min,{gj(x, y) } (least weighted degree)

Example 7.20 Thepoints (1 , a 3) , (a, a4) , (a 2 , a 5) , (a3, a7)and(a4, a8)aretobeinterpolatedbya
polynomial Q (x , y) using the Kotter algorithm, where operations are over GF(24) with l+a+a4 = 0.
Use multiplicity m = 1 interpolation at each point and the (1,2)-revlex order.

testGSl.cc
kotter .cc At each point, there is one constraint, since rn = 1.

Initial: Go: go(x, Y) = 1, g l (x , Y) = y , g 2 (x , Y) = Y 2 , g 3 (x , Y) = Y 3 , g4(x, y) = y4.
i = 0: (Y, s) = (0, o), (xz, y i) = (1 , a3).

Discrepancies: A0 = g o (l , a 3) = 1, A1 = g 1 (l , a 3) = a3, A2 = g 2 (l , a 3) = a6,
A3 = g3(1 , a3) = a9, A4 = g 4 (l , a3) = a12. J = {0, 1,2,3,4] , j * = 0, f = 1, A = 1

l2 + y4. G 1 : g 0 = 1 + x , g 1 = a 3 + y , g 2 = a 6 2 + y , g 3 = a 9 3 + y , g 4 = a
i = 1: (Y, s) = (0, 0) , (x t , y z) = (a , a 4).

G2: go = a + a4, + x 2 , g1 = 7 4 x + a y , 82 =
a 4 3 y ,g4 = (a12 + a13.X) + a4y4.

i = 2: (I, s) = (0, 01, (x l , y j) = (2 , a5).

G3: go = 3 + 11 x + a10.x2 + x 3 , g l = a7x + a 4 y , g 2 = a 8 2 x + a 2 2 y , g 3 = (a14 +

Discrepancies: A0 = a4, A1 = a7, A2 = a14, A3 = a’, A4 = a13. J = {O, 1 , 2 , 3,4),
j * = O , f = I + x , ~ = a 4 .

+ a14x) + a 4 y 2 , g3 = (a3 + a 8 x) +

Discrepancies: A0 = a13, A1 = 0, A2 = a*, A3 = a6, A4 = a2. J = {O, 2, 3,4}, j* = 0,
f = (Y + a4x + x2, A = a13.

a 7 x + a6x2) + (Y2y3,g4 = (a12 + a x + a 2 2) + a 2 y 4 .

7.6 The Guruswami-Sudan Decoding Algorithm and Soft RS Decoding 347

i = 3: (r, s) = (0, O) , (Xi, y i) = (a 3 7 , a).

Discrepancies: A0 = a14, A1 = a14, A2 = a7, A3 = a', A4 = a3. J = (0, 1,2, 3,4},
j " = 1, f = a7x + a4y.
G4: go = (a2 + a7x + a9x2 + a14x3) + (a3)y, g l = OX + a7x2) + (a 7 4 + (11 X) Y , g2 =
(a 14 x+a 7 x 2) + a 11 y + a y 2 , g 3 = (a 1 3 + a 5 x + a 5 x 2) + a 6 y + a y 3 , g 4 = (a l l + a 5 x +

a x 2) + a7y + ay4.

j * = 0, f = (a2 + a 7 x + a 9 2 + a14x3) + (a3)y.

i = 4: (r, s) = (0, O), (Xi, y i) = (a4,a8).

Discrepancies: A0 = a", A1 = a', A2 = a", A3 = a2, A4 = a''. J = {O, 1, 2,3,4},

G5: go = (a6 + a9, + a5x2 + + a 1 4 ~ 4) + (a7 + a3,)y, g l = (a9 + a 8 x + a9x2 +
a6x3)+(a12+x)y,g2 = (a 1 3 + a 1 2 x + a 1 1 x 2 + a 1 o , 3) + a y + a 1 2 y 2 , g 3 = (a 14 +a 3 x +
a 6 2 x +ax 3) + ay + a12y3, g4 = (a2 + a 5 x + a 6 2 + 2 x 3) + a8y + P y 4 .

Final: Q o (x , y) = g l (x , y) = (a9 + a 8 x + a9x2 + a6x3) + (a12 + x)y .

0

Example 7.21 Let C be a (15,i') code over GF(24) and let rn(x) = a + a2x + a3x2 + a4x3 + L t e s t ~ s 3 . cc J
a5x4 + a6x5 + a7x6 be encoded over the support set (1, a, . . . , a14). That is, the codeword is

The corresponding code polynomial is

Suppose the received polynomial is

That is, the error polynomial is

e (x) = a2x + a3x3 + a4x5 + a5x7.

For this code and interpolation multiplicity, let

The first decoding step is to determine an interpolating polynomial for the points

with interpolation multiplicity rn = 2 at each point using the (1,6)-revlex degree.

348 Alternate Decoding Algorithms for Reed-Solomon Codes

Using t e s t G S 3 , the final set of interpolating polynomials G c = (go, 81, g2 , g3) can be shown
to be

13 go(x, y) = (a +ax + a4x2 + a 6 2 + a13x4 + a112 + .lox6 + 2 x 8 + 2 x 9
+ a 5 x 10 + a 9 P + ,322 + a6x13 + a3x14 + a 2 P + ,10,16 + a7x17

11 18

1 3 4 7 5

+ (]I x

+ a

+ a8d9 + a3x20 + a14x21 + ,1422) + (a6 + a5x + a 3 2 + 2 x 3

x + a x + a7x6 + x7 + a7x8 + a11x9 + a14x10 + + a 5 P

+ a 8 d 3 + a13x14 + a9x15)y + (a13 + a9x + a l1x2 + a7x3 + x4 + ,102

+ al1x6 + a5x7 + a 5 2 + a7x9)y2 + (1 + a2x + a2x2 + a4x3)y3

g1(x, y) = (a13 + a13x + a14x2 + x3 + (23x4 + a 6 2 + a12,6 + a14x7 + 2 x 8 + a6x9

) + (a2 + a9x + a l l 2 + ax3 + al1x4 + a10x5 + ,525 + ax7

+ a6x8 + a l O P + a7x11 + ,lox12 + a13x13 + a4x14)y + (a4 + a5x + ,12,2
+ d 2 X 3 + al1x4 + a5x5 + a7x6 + ax7)y2 + (a11 +ax + ,14,2)y3

+ a 4 x 9 + a 10 x 10 + a521 + a 2 P + a14x13 + a6x14 + , 5 1 5 + a 1 3 p + .7,17+

+ a4x18 + a d 9 + ,721) + (1 + a7x + a 9 2 + a14x3 + a9x4 + a 8 2 + a3x6

+ a14x7 + a4x8 + a 8 P + a5x11 + a822 + a11x13 + a2,14)y + (a3x + a 7 2

+ ,lox3 + a6x4 + a3x5 + d 4 X 7 + x8)y2 + (a9 + a14x + a 1 2 2) y 3

g 3 (x , y) = (a5 + a9x + , 132 + a2x3 + ax4 + ,142 + a2x6 + ax7 + , 1 2 2

+ax + a 1 4 P + a7x11 + , 923 + a5x14 + a5x15 + a 9 p + a11x17 + a 3 p

) + (a7 + a7x + a8x2 + J 4 X 3 + x4 + a l l 2 + (27x6 + 2 x 7 + ,523

+ J 4 X 9 + a12x10 + a 8 P + a 5 P + a5x13)y + (a5 + ax + ,lox2 + a11x3

+ J 3 X 4 + a6x5 + a4x6 + a8x7)y2 + (1 + a8x)y3

+.8,10 +,7,11 + a 13 x 12 + ax13 + a11x14 + a1ox15 + X I 6 + a9,17 + .14,18

+ a x 3 19 3 21 + a x

g2(x, y) = (a13 + al l , + (25x2 + ,132 + a7x4 + 2 x 5 + a11x6 + a12x7 + a 9 2

9

13 19 + a x

of weighted degrees 22,20,20, and 19, respectively. The one of minimal order selected is Q (x , y) =
g3(x , Y) . 0

The computational complexity of this algorithm, like the Feng-Tzeng algorithm, goes
as the cube of the size of the problem, 0 (m 3) , with a rather large multiplicative factor. The
cubic complexity of these problems makes decoding impractical for large values of m.

7.6.6 A Special Case: m = 1 and L = 1

We will see below how to take the interpolating polynomial Q (x , y) and find its y-roots.
This will handle the general case of arbitrary m. However, we treat here an important
special case which occurs when m = 1 and L = 1. In this case, the y-degree of Q (x , y)
is equal to 1 and it is not necessary to employ a sophisticated factorization algorithm. This
special case allows for conventional decoding of Reed-Solomon codes without computation
of syndromes and without the error evaluation step.

When L = 1 let us write

Q (x , Y> = PI(X)Y - Po(x).

7.6 The Guruswami-Sudan Decoding Algorithm and Soft RS Decoding 349

If it is the case that PI (x) 1 Po (x) , let

Then it is clear that y - p (x) I Q (x , y), since

Pl(X)Y - Po(x> = P l b) (Y - A x)) .

Furthermore, it can be shown that the p (n) returned will produce a codeword within a
distance f L(n - k) / 2 J of the transmitted codeword. Hence, it decodes up to the design
distance.

In light of these observations, the following decoding algorithm is an alternative to the
more conventional approaches (e.g.: find syndromes; find error locator; find roots; find error
values; or: find remainder; find rational interpolator; find roots; find error values).

Algorithm 7.7 Guruswami-Sudan Interpolation Decoder with m = 1 and L = 1

I Input: Points: (x i , y i) , i = 1,. . . , n; a (1, k - 1) monomial order
2 Returns: p (x , y) as a decoded codeword if it exists
3 Initialize: go(x , y) = 1, g l (x , y) = y
4 for i = 1 to n
5

7

8 if(J # 0)
9

1 1 A = A j *
IZ for(j E J)
13 if(j # j *)

IS

16

17 end(&)
18 end(for j)
19 end(if J)
20 end(for i)
21 Q (x , y) = min,{gj(x, y) } (least weighted degree)
22 Write Q (x , y) = P l (x) y - Po(x)
2 3 1 (X) = Pg(x) mod Pl(x).
24 if(r(x) = 0)

26 if(degp(x) 5 k - 1) then
27 p (x) is decoded message
28 end(if)
29 else
30 Uncorrectable error pattern
31 end(if)

A0 = g g (x i , y i) (compute discrepancies)

J = { j : A j # 0) (set of nonzero discrepancies)
6 A1 = g I (X i , Y i)

j * = argmin{gj : j E J } (polynomial of min. weighted degree)
10 f = gj*

g . - A g j - A j f (update without change in rank)

g j , = (x - x i) f (update with change in rank)

J .-
14

else if(j = j *)

25 P (x) = P O (x) / P l (x) .

350 Alternate Decoding Algorithms for Reed-Solomon Codes

Example 7.22 Consider a (5, 2) RS code over GF(5) , using support set (0, 1,2,3,4). Let m (x) =
1 + 4x. Then the codeword

(m (~) , m (l) , m(2), m (3) , m(4)) = (LO, 4,3,2) +. c(x) = 1 + 4x2 + 3x3 + zx4.
Let the received polynomial be r (x) = 1 + 2x + 4x2 + 3x3 + 2x4. The following table indicates the
steps of the algorithm.

i (X , , Y ,) g o (x 3 y) Y)
- 1 Y

0 (O J) x 4+Y

2 (24) (2 + x + x 2) + 3 y (2 + 4 +4x2) + 3 y
3 (3,3)
4 (4,2)

-

1 (1,O) 4x $2 (4 + 4x1 + y

(4 + 4x + 3x2 + x3) + (1 + 3 x) y (3 + 4x + 3 x 2) + (2 + 3 x) y
(4 + 3x + 2x2 + 4x3 + x4) + (1 + 4x + 3 x 2) y (3 + 4x + 3x2) + (2 + 3 x) y

(An interesting thing happens at i = 2: It appears initially that g o (x , y) = (2 + x + x 2) + 3 y
is no longer in the set So, the set of polynomials whose leading monomial has y-degee 0, because a
term with y appears in go(x, y) . However, the leading term is actually x2. Similar behavior is seen
at other steps.) At the end of the algorithm we take

Q (x , y) = (2 + 3 x 1 ~ + (3 + 4x + 3x2) = (2 + 3 x) y - (2 + x + 2 x 2) ,

so that
2 + x + 2 x 2

= 1 +4x,
2 + 3x

P(X> =

which was the original message.

7.6.7 An Algorithm for the Factorization Step:
The Roth-Ruckenstein Algorithm

0

We now consider the problem of factorization when the y-degree of Q (x, y) 1. Having
obtained the polynomial Q (x , y) interpolating a set of data points (xi, yi), i = 1,2, . . . , n,
the next step in the Guruswami-Sudan decoding algorithm is to determine all factors of the
form y - p (x) , where p (x) is a polynomial of degree 5 u, such that (y - p (x)) I Q (x , y).
We have the following observation:

Lemma 7.27 (y - p (x)) 1 Q (x) ifand only if Q (x , p (x)) = 0.

(This is analogous to the result in univariate polynomials that (x - a) I g(x) if and only if

Proof Think of Q (x, y) as a polynomial in the variable y with coefficients over iF(x). The
division algorithm applies, so that upon division by y - p (x) we can write

Q(x , Y) = q (x , Y>(Y - p b)) + r (x) ,

where the y-degree of r (x) must be 0, since the divisor y - p (x) has y-degree 1. Evaluating
at y = p (x) we see that Q (x , p (x)) = r (x) . Then Q (x , p (x)) = 0 if and only if r (x) = 0

Definition 7.16 A function p (x) such that Q (x , p (x)) = 0 is called a y-root of Q (x , y).
0

The algorithm described in this section, the Roth-Ruckenstein algorithm [297], finds
y-roots. (Another algorithm due to Gao and Shokrollahi [114] is also know to be effective
for this factorization.)

= 0.)

(identically). 0

7.6 The Guruswami-Sudan Decoding Algorithm and Soft RS Decoding 351

The notation ((Q (x , y))) denotes the coefficient (polynomial) of the highest power of
x that divides Q (x , y). That is, if x m ! Q (x , y) but xmfl ,/ Q (x , y), then

Exmple7.23 IfQ(x, y) = xy,then((Q(x, y))) = y. IfQ(x, y) = x2y4+x3y5,then((Q(x, y))) =
0 Y + X Y . If Q(x, y) = 1 + x2y4 + x 3 y 5 , then ((Qcx, y))) = Q(x, y).

Letp(x) = a o + a i x + a ~ x 2 + . . . + a u x u beay-rootof Q (x , y). TheRoth-Ruckenstein
algorithm will determine the coefficients of p (x) one at a time. The coefficient a0 is found
using the following lemma.

4 5

Proof If (y - p (x)) I Q(x, y), then (y - p (x)) 1 x"Qo(x , y) for some m 2 0. But since
y - p (x) and x m must be relatively prime, it must be the case that (y - p (x)) I Qo(x , y),
so that Q o (x , y) = To(x, y)(y - p (x)) for some quotient polynomial To(x, y). Setting
y = p (0) we have

Qo(0, Y) = Qo(0, ~ (0)) = TO@, p(O))(p(O) - ~ (0)) = TO@, p(0))O = 0.

0
From this lemma, the set of possible values of the coefficient a0 of p (x) are the roots of
the polynomial Qo(0, y) . The algorithm now works by inductively "peeling off' layers,
leaving a structure by which a1 can similarly be found, then a2, and so forth. It is based on
the following theorem, which defines the peeling off process and extends Lemma 7.28.

Theorem 7.29 Let Q o (x , y) = ((Q (x , y))). Let p o (x) = p (x) = a0 + a l x +
F,[x]. For j 2 1 defne

. auxu E

(7.98)

Proof The proof is by induction: We will show that (y - p j - 1 (x)) 1 Q j - 1 (x , y) if and only

i f (y - p j (x >) l Q j < x , y > .

352 Alternate Decoding Algorithms for Reed-Solomon Codes

+ : Assuming (y - pj-l(x))l Q j - l (x , y), we write

Q j - l < x , Y) = (Y - pj- l (x>)u(x, Y)

for some quotient polynomial u(x, y). Then from (7.99),

T j (x , Y) = (XY + aj -1- pj-l(x))u(xT X Y + aj-1).

Since aj-1 - p j - l (x) = -xpj(x),

Tj(x , Y) = X (Y - pj(x)>u(xT X Y + aj-1)

so that (y - pj(x))l T j (x , y). From (7.100), T j (x , y) = x " Q j (X , y) for some m 1: 0, so
(y-pj(x))l x " Q j (x , y) . Sincexm andy-p(x) arerelativelyprime, (y - p j (x)) / Q j (x , y) .

e : Assuming (y - p , (x)) l Q j (x , y) and using (7.100), (y - pj(x))j T j (x , y) . From

(7.9913 (~ - p j (x)) l Q j - 1 (X 3 x y +aj-1) sothat

Q j - l (x , XY + aj-1) = (Y - Pj(X)>u(x, Y) (7.101)

for some quotient polynomial u (x , y). Replace y by (y - a j - l) / x in (7.101) to obtain

Q j - l (x , Y) = ((Y - a j - l) / x - P ~ (X)) U (X , (Y - a j - l) / x > .

The fractions can be cleared by multiplying both sides by some sufficiently large power L
of x. Then using the fact that p , - l (x) = aj-1 + xpj(x) we obtain

x L Q j - l (x , Y) = (Y - ~ j - l (~)) v (~ , Y)

for some polynomial v (x , y) . Thus (y - p i - 1 (x)) I x L Qj-1 (x, y) and so

(Y - p j - l (x) > l Q j - l c x , Y).

0
The following lemma is a repeat of Lemma 7.28 and is proved in a similar manner.

Lemma 7.30 Zf(y-p(x))/ Q (x , y) , theny = p j (0) isarootoftheequation Qj(0 , y) = 0
f o r j = 0 ,1 , . . . ,7J.

Since p j (0) = a j , this lemma indicates that the coefficient a, can be found by finding the
roots of the equation Q j (0, y) = 0.

Finally, we need a termination criterion, provided by the following lemma.

Proof Note that if y 1 Qv+l (x , y), then Qu+l (x, 0) = 0.
By the construction (7.98), p j (x) = 0 for j ? v + 1. The condition y I Q,,+l(x, y) is

equivalent to (y - p u + l (x)) 1 Q , + l (x , y) . Thus by Theorem 7.29, it must be the case that

The overall operation of the algorithm is outlined as follows.
(Y - P(x))~ Q < x > . 0

7.6 The Guruswami-Sudan Decoding Algorithm and Soft RS Decoding 353

for each a0 in the set of roots of Qo(0, y)
for each a1 in the set of roots of Ql(0, y)

for each a2 in the set of roots of Q2(0, y)

for each a, in the set of roots of Q,, (0, y)

end for
if Q , (x , 0) = 0, then (by Lemma 7.311, p (x) = a0 + alx + . + auxU is a y-root

end for
end for

end for

The iterated “for” loops (up to depth u) can be implemented using a recursive programming
structure. The following algorithm uses a depth-first tree structure.

Algorithm 7.8 Roth-Ruckenstein Algorithm for Finding y-roots of Q(x, y)

I Input: Q(x, y). D (maximum degree of p (x))
2 Output: List of polynomials p (x) of degree 5 D such that (y - p (x)) I Q(x, y)
3 Initialization: Set p (x) = 0, u = deg(p) = -1, D = maximum degree (set as internal global)
4 Set up linked list where polynomials are saved.
s Set u = 0 (the number of the node; global variable)
6 call r o t h r u c k t r e e (Q (x , y) , u , p)

7 Function r o t h r u c k t r e e (Q , u , p) :
8 Input: Q(x, y) , p (x) and u (degree of p)
9 Output: List of polynomials
1 0 u = u + 1 (increment node number)
11 if(Q(x, 0) = 0)
IZ add p (x) to the output list
I 3 end(if)
14 else if(u < D) (try another branch of the tree)
15 R = list of roots of Q(0, y)
16 for each (Y E R
17

18

19

20 end (for)
21 else (leaf of tree reached with nonzero polynomial)
zz (no output)
23 end (if)
24 end

Qnew(x, y) = Q(x, x y +a) (shift the polynomial)
p,+l = a (new coefficient of p (x))
Call ro thruckt ree(((Qnew(x, y))) , u + 1 , p) (recursive call)

Example 7.24 Let

Q (X , Y) = (4 + 4x2 + zx3 + 3x4 + 2 + 3x6 + 4x7) + (1 + 2x + zx2 + 3x4 + 3x6)y+

(1 + + zx2 + x 3 + x4)y2 + (4 + zXly3

354 Alternate Decoding Algorithms for Reed-Solomon Codes

by a polynomial in GF(S) [x , y] . Figures 7.5 and 7.6 illustrate the flow of the algorithm with D = 2.

At Node 1, the polynomial Q(0, y) = 4 + y + y2 + y 3 is formed (see Figure 7.5) and its roots

At Node 1, the root 1 is selected. Node 2 is called with ((Q (x , xy + 1))) .
At Node 2, the polynomial Q(0, y) = 3 + 3y2 is formed, with roots {2, 3 } .

At Node 2, the root 2 is selected. Node 3 is called with ((Q (x , xy + 2))) .
At Node 3, the polynomial Q (x , 0) = 0, so the list of roots selected to this node { 1 , 2 } forms

The recursion returns to Node 2, where the root 3 is selected, and Node 4 is called with

At Node 4, the polynomial Q(0, y) = 2 + 3y is formed, with roots { 1).
At Node 4, the root 1 is selected. Node 5 is called with ((Q (x , xy + 1))).

At Node 5, it is not the case that Q (x , 0) = 0. Since the level of the tree (3) is greater than D
(2), no further searching is performed along this branch, so no output occurs. (However, if D
had been equal to 3, the next branch would have been called with a root of 2 and a polynomial
would have been found; the polynomial p (x) = 1 + 3x + x2 + 2x3 would have been added to
the list.)

The recursion returns to Node 1, where the root 4 is selected and Node 6 is called with

At Node 6, the polynomial Q(0, y) = 2 + y is formed, with root {3} . (S e e Figure 7.6.) Node

At Node 7, the polynomial Q(0, y) = 3 + y is formed, with root (2). Node 8 is called with

At Node 8, Q (x , 0) = 0, so the list of roots selected to this node {4 ,3 ,2] forms an output

0

are computed as { 1,4} (1 is actually a repeated root).
testGS2.c~
rothruck.cc
r0thruck.h

an output polynomial, p (x) = 1 + 2x.

((Qk X Y + 3))) .

((Q (x 3 X Y + 4))).

7 is called with ((Q (x , xy + 3)))

((Qk X Y + 2))) .

polynomial p (x) = 4 + 3x + 2x2.

The set of polynomials produced is { 1 + 2x, 4 + 3x + 2x2}.

Example 7.25 For the interpolating polynomial Q(x, y) of Example 7.21, the Roth-Ruckenstein
algorithm determines the following y-roots (see t e s tGS3 . cc):

p (x) E {a! + (Y2X + a3x2 + a4x3 + a5x4 + a6xS + a7x6,

a7 + a6x + d 4 X 2 + aSx3 + a10x4 + a!10x5 + 2 x 6 ,

a!12 + a!% + al1x3 + a13x4 + al1xS + a ! V } = c.

Note that the original message m(x) is among this list, resulting in a codeword a Hamming distance
4 away from the received r (x) . There are also two others (confer the fact that L m = 3 was computed
in Example 7.21). The other polynomials result in distances 5 and 6, respectively, away from r (x) .

0 Being further than tm away from r (x) , these can be eliminated from further consideration.

What to Do with Lists of Factors?

The Guruswami-Sudan algorithm returns the message m (x) on its list of polynomials C,
provided that the codeword for m (x) is within a distance tm of the received vector. This
is called the causal codeword.It may also return other codewords at a Hamming distance
5 t m , which are calledpluusible codewords. Other codewords, at a distance > tm from r (x)
may also be on the list; these are referred to as noncausal codewords (i.e., codewords not

7.6 The Guruswami-Sudan Decoding Algorithm and Soft RS Decoding 355

Node 3

Node 1

(continued in Figure 7.6)

Root = 2

Qb, y) = (4 + 4x2 + 2x3 + 3x4 + x5 +
3~6+4X7)+(1+2x +2x2 +32+3,6)y+
(i + ~ + 2 ~ 2 + ~ ~ +x4)y2+(4+2x)y3

Q(0, y) = 4 + y + y 2 +4y3

Roots = { 1,4}

Node 2
I I I

Q (x , y) = (3 + 3x + 2x2 + x 3 + x4 +
4x5) + (x + 2x2 + 3x5)y + (3 + 2x +
2x2 + x3 + x4)y2 + (4x + @ly3

Q(0, Y) = 3 + 3y2

Roots: (2,3}

Q (x , y) = (2 + 4x + 3x2 + x 3 + x4 +
4x6) + (1 +x +3x2 +3x3 +x4 +3x6)y +
(4x + 2x3 +x4 + 2 l Y 2 + (4 2 + zX3ly3

Q(0, Y) = 2 + Y

Roots: (3}

Q (x , y) = (2x+2x2+4x3+4x4+4x5+
3x6)y+(3x2+x3 +4x4+,5 +x6)y2+
(4x4 + zX5ly3

I p (x) = 1 + 2x I
Q (x , 0) = 0, so output polynomial:

Q (x , y) = (2+3x4)+(3+x+3x2+x3+
x4 + 3x5)y + (3x + 3x2 + x4 + x 5) y 2 +
(4x3 + 2x4)y3

Q(0, Y) = 2 + 3y

Roots: (1)

Node 5
Root = 1

Maximum depth reached and Q (x , 0) #

Figure 7.5: An example of the Roth-Ruckenstein Algorithm over G F (5) .

356 Alternate Decoding Algorithms for Reed-Solomon Codes

Node 6

Q (x , y) = (2 + 4~ + 3x2 + x3 + x4 +
4x6) + (1 +x +3x2 + 3x3 +x4 +3x6)y +
(4x + zX3 + .4 + x 5) y 2 + (4 2 + zX3ly3

Q(0, Y) = 2 + Y

Roots: [3}

Node 7
Root = 3

Q (x , y) = (3+2x2+3x3+4x4+3x5)+
(1 +x2+4x3 +2X4+X5+3X6)Y+(4X2+

+ + x6)y2 + (4.4 + 2x5)y3

Q(0, Y) = 3 + Y

Roots: [2)

Node 8
Root = 2

Q (x , y) = (x+2x3+3x4+4x6+2x7)y+
(4x4+2 +4X6+3X7 +x8)y2+(4,7+
2x8)y3

Q (x , 0) = 0, so output polynomial:

I p (x) = 4+ 3x + 2 x 2 I

Figure 7.6: An example of the Roth-Ruckenstein Algorithm over GF(5) (cont’d).

7.6 The Guruswami-Sudan Decoding Algorithm and Soft RS Decoding 357

caused by the original, true, codeword). We have essentially showed, by the results above,
that all plausible codewords are in L and that the maximum number of codewords is 5 L,.

In Example 7.25, it was possible to winnow the list down to a single plausible codeword.
But in the general case, what should be done when there are multiple plausible codewords
in L? If the algorithm is used in conjunction with another coding scheme (in a concatenated
scheme), it may be possible to eliminate one or more of the plausible codewords. Or there
may be external ways of selecting a correct codeword from a short list. Another approach
is to exploit soft decoding information, to determine using a more refined measure which
codeword is closest to r-(x). But there is, in general, no universally satisfactory solution to
this problem.

However, it turns out that for many codes, the number of elements in L is equal to 1:
the list decoder may not actually return a list with more than one element in it. This concept
has been explored in [230]. We summarize some key conclusions.

When a list decoder returns more than one plausible codeword, there is the possibility of
a decoding failure. Let L denote the number of codewords on the list and let list L’ denote
the number of noncausal codewords. There may be a decoding error if L’ > 1 . Let PE
denote the probability of a decoding error. We can write

the average number of noncausal codewords on the list.
Now consider selecting a point at random in the space GF(q)” and placing a Hamming

sphere of radius tm around it. How many codewords of an (n , k) code, on average, are in
this Hamming sphere? The “density” of codewords in the space is q k / q ” . As we have seen
(Section 3.3.1), the number of points in the Hamming sphere is

5 (“)GI S -
s=o

Therefore, the average number of codewords in a sphere of radius tm around a random point
is

It can be shown [230] that z(tm) is slightly less than a rigorous bound on the average number
of noncausal codewords on the list.

Example 7.26 [230] For a (32, 8) RS code over GF(32), we have the following results (only values
of rn are shown that lead to distinct values oft,,,): - .._,

tm Lrn L (t m)
0 12 1 1.36305e-10
1 14 2 2.74982e-07
2 15 4 1.02619e-05
4 16 8 0.000339205

120 17 256 0.00993659
Thus, while the list for m = q may have as many as L4 = 8 polynomials, the probability E(t4) is

very small -the list is very likely to contain only one codeword, which will be the causal codeword.
It is highly likely that this code is capable of correcting up to 16 errors. (Actually, even for tn = 120,
the probability of more than codeword is still quite small; however, the computational complexity for
m = 120 precludes its use as a practical decoding option.)

computetm.m
c0mputeLbar.m

358 Alternate Decoding Algorithms for Reed-Solomon Codes

Example 7.27 [230] For a (32,15) code over GF(32), we have -
m tm L m L (tm 1
0 8 1 5.62584e-06
3 9 4 0.000446534

21 10 31 0.0305164
It is reasonable to argue that the code can correct up to 9 errors with very high probability. 0

7.6.8 Soft-Decision Decoding of Reed-Solomon Codes

The Reed-Solomon decoding algorithms described up to this point in the book have been
hard decision decoding algorithms, making explicit use of the algebraic structure of the
code and employing symbols which can be interpreted as elements in a Galois field. A
long outstanding problem in coding theory has been to develop a soft-decision decoding
algorithm for Reed-Solomon codes, which is able to exploit soft channel outputs without
mapping it to hard values, while still retaining the ability to exploit the algebraic structure
of the code. This problem was solved [191] by an extension of the Guruswami-Sudan
algorithm which we call the Koetter-Vardy (KV) alg~ri thm.~

Recall that the GS algorithm has a parameter m representing the interpolation multiplic-
ity, m. For most of this chapter, a fixed multiplicity has been employed at each point. It is
possible, however, to employ a different multiplicity at each point. (In fact, the Algorithm
7.6 already handles multiple multiplicities.) In the KV algorithm, a mapping is found from
posterior probabilities (soft information) to the multiplicities, after which the conventional
interpolation and factorization steps of the GS are used to decode. (The mapping still results
in some degree of “hardness,” since probabilities exist on a continuum, while the multiplici-
ties must be integers.) We present here their algorithm for memoryless channels; for further
results on channels with memory and concatenated channels, the reader is referred to [19 11.

Notation

Recall (see Section 1.6) that a memoryless channel can be modeled as an input alphabet
X, an output alphabet and a set of (XI functions f (- l x) : 9 +. R. The channel input
and output are conventionally viewed as a random variables X and ’41. If Y is continuous
then f (- l x) is a probability density function (for example, for a Gaussian channel, f (y l x)
would be a Gaussian likelihood function). If ’41 is discrete then f (. Ix) is a probability mass
function. The memoryless nature of the channel is reflected by the assumption that the joint
likelihood factors,

n

f(ylYy2, ...,yn1x1,~2, .-.,xn> = n f (y i I x i) .
i=l

It is assumed that the X random variable is uniformly distributed (i.e., that each codeword
is selected with equal probability). Given an observation y E 9, the probability that some
(11 E X was transmitted is found using Bayes’ theorem,

where the assumption of uniformity of X is used.

3The name Koetter is simply a transliteration of the name Kotter.

7.6 The Guruswami-Sudan Decoding Algorithm and Soft RS Decoding 359

For Reed-Solomon codes, the input alphabet is the field over which the symbols occur,
X = G F (q) . We have therefore X = {al , a2, . . . , aq}, for some arbitrary ordering of the
elements of G F (4).

Let y = (y l , y 2 , . . . , y ,) E gn be a vector of observations. We define the posterior
probabilities

ni,j = P (X = a i l Y = y j) , i = 1,2 ,..., 4, j = 1 ,2 ,..., n

and form the q x n matrix l7 with elements X i , j . The matrix l7 is called the reliability
matrix. It is convenient below to use the notation l7 (a, j) to refer the element in the row
indexed by a and the column indexed by j . It is assumed that the reliability matrix is
provided (somehow) as the input to the decoding algorithm.

A second matrix is also employed. Let M be a q x n multiplicity matrix with nonnegative
elements mi, j , where mi, j is the interpolation multiplicity associated with the point (ai, y j) .

The key step of the algorithm to be described below is to provide a mapping from the
reliability matrix l7 to the multiplicity matrix M.

Definition 7.17 Let M be a multiplicity matrix with elements mi,, . We will denote by
Q M (x , y) the polynomial of minimal (1, k - 1)-weighted degree that has a zero of multi-
plicity at least mi,j at the point (ai, y j) for every i, j such that mi,j # 0.

0
Recall that the main point of the interpolation theorem is that there must be more degrees

of freedom (variables) than there are constraints. The number of constraints introduced by
a multiplicity mi,j is equal to ("'~~+'). The total number of constraints associated with a
multiplicity matrix M is called the cost of M, denoted C (M) , where

i= l j = 1

As before, let C (v , 1) be the number of monomials of weighted (1, v)-degree less than or
equal to 1 . Then by the interpolation theorem an interpolating solution exists if

C(v,Z) > C(M).

Let K,(x) = min{Z E Z : C(v, 1) > x) be the smallest (1, v)-weighted degree which has
the number of monomials of lesser (or equal) degree exceeding x . Then K k - 1 (C (M)) is
the smallest (1, k - 1)-weighted degree which has a sufficiently large number of monomials
to exceed the cost C (M) . (Confer with K , defined in (7.76)). By (7.64), for a given cost
C (M) we must have

KIJ(C(M)) < J 2 v w f) . (7.102)

It will be convenient to represent vectors in GF(q)n as indicator matrices over the reals,
as follows. Let v = (v i , v2, . . . , v,) E GF(q)" and let [v] denote the q x n matrix which
has [v]i,j = 1 if V j = ai, and [v]i,j = 0 otherwise. That is,

[vli, j = Icyj (vj)?

1 vj = ai

0 otherwise. I where Zcyj (v j) is the indicator function, Zcyj (v j) =

360 Alternate Decoding Algorithms for Reed-Solomon Codes

Example 7.28 In the field G F (3) , let v = (1,2, 0, 1). The matrix representation is
;;1 ;;2 y3 "]

[v]=:i[1 0 0
2 : o 1 0 0

For two q x n matrices A and B , define the inner product

q n

(A , B) = tr(ABT) = y y , a i , j b i , j .
i=l j=1

Now using this, we define the score of a vector v = (v1, v2, . . . , v,) with respect to a given
multiplicity matrix M as

The score thus represents the total multiplicities of all the points associated with the vector

S M i V) = (M, [vll.

V.

Example 7.29

example is

m i , i m1,2 mi,3 mi^]
m2,l m2,2 m2,3 m2,4 then the score of the vector v from the last
m3,l m3,2 m3,3 m3,4

A Factorization Theorem

Our key result is an extension of the factorization theorem for different multiplicities.

Theorem 7.32 Let C (M) be the cost of the matrix M (the number of constraints to sat-
isfy). Let c be a codeword in a Reed-Solomon (n , k) code over G F (q) and let p(x) be a
polynomial that evaluates to c (i.e., c = (p (x i) , p (x 2) , . . . , p(x ,)) for code support set
{xi, ~ 2 , . . . , x d . VSM(C) > G-i(C(M)), then (Y - p(x>>l Q d x , Y).

Proof Let c = (ci, . . . , c,) be a codeword and let p (x) be a polynomial of degree < k
that maps to the codeword: p(xj) = c j for all x j in the support set of the code. Let
g(x) = Q M (x , p(x)). We will show that g (x) is identically 0, which will imply that
(Y - P (x) > ~ Q M ~ , Y) .

Write SM(C) = m i + m2 + . . . m,. The polynomial Q M (x , y) has a zero of order
m j at (Xj, C j) (by the definition of Q M) . By Lemma 7.18, (x - xj)mj I Q M (x , p (x)) , for
j = 1,2, . . . , n. Thus g(x) = Q M (x , p (x)) is divisible by the product

(x - (n - x2Irn2 . . . (x - x ~) ~ " having degree mi + m2 + - . . + m, = SM(C),

so that either deg(g(x)) 2 S M (C) , or g (x) must be zero.
Since deg p (x) 5 k - 1, the degree of Q M (x, p (x)) is less than or equal to the (1, k - 1)-

weighteddegreeof Q M (x , y). Furthermore, since Q M (x , y)isofminimal(l, k-1)-degree,
deg1,k-i Q M (x , Y) i G - l (C (M)) :

degg(x) 5 deg1,k-i Q M ~ , Y) L &-i(C(M)).

7.6 The Guruswami-Sudan Decoding Algorithm and Soft RS Decoding 361

By hypothesis we have SM(C) > &-l (C(M)) . Since we cannot have degg(x) 2 SM(C),
we must therefore have g (x) is zero (identically). As before, we write using the factorization
theorem

Q(x , Y) = (Y - p (x)) q (~ , Y) + ~ (x)
so that at y = p (x) we have

Qb, p(x)> = g (x > = 0 = Oq(x , Y) + r (x)

17
In light of (7.102), this theoremindicates that Q M (x , y) has a factory - p (x) , where p(x)
evaluates to a codeword c, if

SM(C) 2 J2(k - l)C(M). (7.103)

so ~ (x) = 0, giving the stated divisibility.

Mapping from Reliability to Multiplicity

Given a cost C , we define the set m(C) as the set of all matrices with nonnegative elements
whose cost is equal to C :

l 4
?lX(C) = {M E Z q x n : mi,j 2 0 and - 7 mi,j (r n i , j + 1) = C}.

i= l j = 1
2

The problem we would address now is to select a multiplicity matrix M which maximizes
the score S M (C) for a transmitted codeword c (so that the condition SM(C) > Ick-1 (C (M))
required by Theorem 7.32 is satisfied). Not knowing which codeword was transmitted,
however, the best that can be hoped for is to maximize some function of a codeword chosen
at random. Let 5 = (X I , X 2 , . . . , X n) be a random transmitted vector. The score for this
vector is S M (X) = (M, [XI). We choose to maximize the expected value of this score,4

E [SM (XI1 = c SM (X I p (X I

X€3?

with respect to a probability distribution P (x) . We adopt the distribution determined by the
channel output (using the memoryless channel model),

n n

P (x) = P (x ~ , ~ 2 , . . . , X n) = n P (X j = xjl?jj = y j) = n l l (x j , j) , (7.104)
j = 1 j = 1

where ll is the reliability matrix. This would be the posterior distribution of Z given the
observations if the prior distribution of Z were uniform over GF(q)n. However, the X are,
in fact, drawn from the set of codewords, so this distribution model is not accurate. But
computing the optimal distribution function, which takes into account all that the receiver
knows about the code locations, can be shown to be NP complete [191]. We therefore adopt
the suboptimal, but tractable, stance.

The problem can thus be stated as: Select the matrix M E !lX maximizing E [S M (X)] ,
where the expectation is with respect to the distribution P in (7.104). We will denote the
solution as M (n , C) , where

M (l 7 , C) = arg max E [S M (X)] .
M€lm(C)

We have the following useful lemma.

computation is, in general, very complicated.
4More correctly, one might want to maximize P (S M (X) > ICk-i(C(M))) , but it can be shown that this

362 Alternate Decoding Algorithms for Reed-Solomon Codes

Proof
E[~M(X)I = [X I) = (M , E[XI)

by linearity. Now consider the (i, j)th element:

E[X]i, j = E[Zai(Xj)] = (l) P (X j = ai) + (O)P(Xj # ai) = P (X j = ai) = n(ai, j) ,

where the last equality follows from the assumed probability model in (7.104). 0
The following algorithm provides a mapping from a reliability matrix l7 to a multiplicity

matrix M .

Algorithm 7.9 Koetter-Vardy Algorithm for Mapping from ll to M

I Input: A reliability matrix ll; a positive integer S indicating the number of interpolation points
z Output: A multiplicity matrix M
3 Initialization: Set ll* = l7 and M = 0.
4 DO:
5

6 Setnzj = &
7 S e t r n . . = r n . . + l 1.1 k J

B S e t S = S - 1
9Whi leS>O

Find the position (i, j) of the largest element nzj of ll*.
n*.

Let % be formed by normalizing the columns of M produced by this algorithm to sum
to 1. It can be shown that ?i? -+ l3 as S +. 00. That is, the algorithm produces an integer
matrix which, when normalized to look like a probability matrix, asymptotically approaches
n. Since one more multiplicity is introduced for every iteration, it is clear that the score
increases essentially linearly with S and that the cost increases essentially quadratically with
S.

Example 7.30 Suppose

1
0.1349 0.3046 0.2584 0.2335
0.2444 0.1578 0.1099 0.1816
0.2232 0.1337 0.2980 0.1478 .
0.1752 0.1574 0.2019 0.2307
0.2222 0.2464 0.1317 0.2064

Figure 7.7 shows a plot of lla - ll 11 after S iterations as S varies up to 400 iterations. It also shows
the score and the cost. The M matrix produced after 400 iterations, and its normalized equivalent, are

M = [I;;;] 22 13 30 15 0.2222 0.1287 0.3000 0.1500

0.1313 0.3069 0.2600 0.2300
0.2525 0.1584 0.1100 0.1800

0.1717 0.1584 0.2000 0.2300
0.2222 0.2475 0.1300 0.2100

7.6 The Guruswami-Sudan Decoding Algorithm and Soft RS Decoding 363

0.8, 1

'D 0.2

0

:tL; , , ~ , 1
0 50 100 150 200 250 300 350 400

30

"0 50 100 150 200 250 300 350 400

0 Ill:
0
0 50 100 150 200 250 300 350 400

Number of steps

Figure 7.7: Convergence of %f to n, and the score and cost as a function of the number of
iterations.

Some understanding of this convergence result - why M proportional to n is appropriate
- can be obtained as follows. We note that the cost C (M) can be written as

1
C (M) = p, M) + (M , I)),

where 1 is the matrix of all ones. For sufficiently large M , C (M) is close to i(M, M) ,
which is (1/2) the Frobenius norm of M . For fixed norm (M , M) , maximizing the expected
score (M , l7) is accomplished (as indicated by the Cauchy-Schwartz inequality) by setting
M to be proportional to n.

The Geometry of the Decoding Regions

In the bound (7.103), write SM(C) = (M , [c]) and C (M) = (M , IT) + (M , 1); we thus see
from Theorem 7.32 that the decoding algorithm outputs a codeword c if

(', [cl) > m,
d (M , M) + (M , 1) -

Asymptotically (as S 4 00 and the normalized + n) we have

(7.105)

(where the o(1) term accounts for the neglected (Ti?, 1) term).

the cosine of the angle B between vectors X and Y is
Observe that for any codeword c, ([c], [c]) = n. Recall that in the Hilbert space Wn,

364 Alternate Decoding Algorithms for Reed-Solomon Codes

In light of (7.105), a codeword c is on the decoder list if

Asymptotically (n + oo), the codeword is on the list if

cosB([cl, n) 2 f i + OU).

The asymptotic decoding regions are thus cones in Euclidean space Rqn: the central axis
of the cone is the line from the origin to the point n. Codewords which lie within an angle
of cos - l f i of the central axis are included in the decoding list of n.

Each codeword lies on a sphere S of radius ,/- = fi. To contrast the KV algo-
rithm with the GS algorithm, the GS algorithm would take a reliability matrix l7 and project
it (by some nonlinear means) onto the sphere S, and then determine the codewords within
an angle of c0s-l of this projected point. Conventional decoding is similar, except that
the angle of inclusion is cos-l(l + R) / 2 and the decoding regions are nonoverlapping.

Computing the Reliability Matrix

We present here a suggested method for computing a reliability matrix for transmission
using a large signal constellation.

Consider the constellation shown in Figure 7.8. Let the signal points in the constellation
be so, . . . , S M - ~ and let the received point be r. Then the likelihood functions f(rlsi) can
be computed. Rather than use all M points in computing the reliability, we compute using
only the N largest likelihoods. From the N largest of these likelihoods (corresponding to
the N closest points in Gaussian noise) f(rlsi,), f(r1si2), . . . , f(rlsiN) we form

Figure 7.8: Computing the reliability function.

Using likelihoods computed this way, the authors of [191] have examined codes with
a rate near 112 for a 256 QAM signal constellation. The soft-decision decoding algorithm
achieved gains of up to 1.6 dB compared to conventional (hard-decision) decoding of the
same RS codes.

7.7 Exercises 365

7.7 Exercises

7.1 [61] Let M be a module over a ring R.

(a) Show that the additive identity 0 E M is unique.

(b) Show that each f E M has a unique additive inverse.

(c) Show that Of = 0, where 0 E R on the left-hand side is the zero element in R and 0 E M
on the right-hand side is the additive identity element in M.

7 . 2 Show that an ideal I C R is an R-module.
7.3 Show that if a subset M c R is a module over R , then M is an ideal in R.
7.4 Let I be an ideal in R. Show that the quotient M = R / I is an R-module under the quotient

ring sum operation and the scalar multiplication defined for cosets [g] E R / I and f E R by
f k l = [fgl E RII .

7.5 Show that the expression leading to (7.19) is true, that is, g;)(ak)akb = g'(ab+k)ab(2-d+k).

7.6 Show that g'(ab+k)ab(k+2-d)pkak = c fork = 0, 1 , . . . , d - 2, where ? is a constant, using
the following steps. Let g['I(x) = n r = o (x -a ') and p['I(x) = nrZl (x -a') = C;=o pk [rl x k .
(That is, these correspond to polynomials with b = 0.) You may prove the result by induction,
using

r-1
g[rl(ak)p[lak = c [r l = n (, r + 1 - , i + l) , k = 0, 1 , . . . , r

i=O
as the inductive hypothesis.

(a) Show that g[']'(&) = g[rl'(ak-l ar+k-'-ar-' .
& I - , y

grrl'(ak)(ak - ar+') k = 0, 1 , . . . , r . Hint: g['+'](x) = I (ar+l k = r + l
(b) Show that gLr+l]'(ak) =

$ 1 (x) (x - a r + l) .

-pF;lar+l k = O

1 k = r + l .
(c) ShowthatpL"] = [pLll - a r f l p L 1 k = 1 , 2 , . . . , I . Hint: p['+'](x) = p['I(x)(x-

(d) Show that for the case k = r + 1 , g [r f l] ' (ar+l)pF;f i l lar f l = g [r+ll'((yr+l)&l =

a r + l) .

n;=o ,r+2 - ai+l ~ [r + 1 1 .

c [r + l I .
(el For the case that k = 0, show (using the inductive hypothesis) that g[r+l] ' (ao)p[+l lao =

(0 For the case that k = 1 , 2 , . . . , r, show that g [r + l] (a k) p L + l l a k = C['+'].

(g) Now extend to the case that b # 0. Let g o (x) = nfzt(x - a') and g (x) = nfLf-2
and let po(x) = @z;(x - a') and p (x) = nfzfGf(x - a'). Show that & (x) =

g'(cXbX)CX-b(d-2) and pok = pkab(k-d+2). Conclude that

g'(ab+k)pkak+b(k-r) = Cabr = 2;

(h) Hence show that

366 Alternate Decoding Algorithms for Reed-Solomon Codes

7.7 Show that f(ak)g(ubfk) = ?ab(d-l-k), k = d - I , . . . , n - 1, where 2. is defined in Exercise
7.6. This may be done as follows:

(a) Let f o (x) = XfI t

(b) Show that f (x) = ~ - ~ f o (x) a ~ @ - ~) to conclude the result.

and go(x) = nfz ; (x - a i) . Show that fo(x)go(x) = -t.
Hint: Lagrange interpolation.

7.8 Show that (7.23) and (7.24) follow from (7.21) and (7.22) and the results of Exercises 7.6 and
3-

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

I . I .

Work through the steps of Lemma 7.5.

(a) Explain why there must by polynomials Q l (x) and Q 2 (x) such that N (x) - W (x) P (x) =

(b) Show that (N V - M W) P = (M Q l - N Q 2) I l

(c) Explain why (lT (x) , P (x)) I N (x) and (n(x), P (x)) I M (x) . (Here, (n(x), P (x)) is the
GCD.)

(d) Show that (N (x) V (x) - M (x) W (x)) P (x) = (M (x) Q l (x) - N (x) Q 2 (x)) n (x) .

(e) Show that

Q l (x) n (x) and M (x) - V (x) P (x) = Q ~ (x) ~ (x) .

and hence that l7 (x) 1 (N (x) V (x) - M (x) W (x)) .

(0 Show that deg(N (x) V (x) - M (x) W (x)) < k . Hence conclude that N (x) V (x) - M (x) W (x) =
0.

(g) Letd(x) = (W (x) , V (x)) (the GCD), so that W (x) = d(x)w(x) and V (x) = d(x)u(x) for
relatively prime polynomials u(x) and w (x) . Show that N (x) = h (x) w (x) and M (x) =
h (x) u (x) for a polynomial h (x) = N (x) / w (x) = M (x) / u (x) .

(h) Show that h (x) w (x) - d(x)w(x)P(x) = Q l (x) n (x) and h (x) u (x) - d (x) u (x) P (x) =
Q 2 b) n

(i) Show that thereexistpolynomials s (x) and t (x) such that s (x) w (x) + t (x) u (x) = 1. Then
show that h (x) - d (x) P (x) = (s (x) Q l (x) + t (x) Q 2 (x)) n (x) .

(i) Conclude that (h (x) , d (x)) is also a solution. Conclude that deg(w(x)) = 0, so that only
(M (x) , V (x)) has been reduced.

[4 5] Explain how the Euclidean algorithm can be used to solve the rational interpolation problem
(i.e., how it can be used to solve the Welch-Berlekamp key equation).
Show that when Xi is an error in a check location that q 2 , 1 (x i) # 0 and that h (x i) # 0. Hint: I f
\ V ~ , J (X ~) = 0, show that * 2 , 2 (x i) must also be zero; furthermore we have * l , l (x j) = 0, which
implies *1,2(xi) = 0. Show that this leads to a contradiction, since (x - x i) 2 cannot divide
det(* (x)) .

Write down the monomials up to weight 8 in the (1,4)-revlex order. Compute C(4, 8) and
compare with the number of monomials you obtained.
Write down the polynomials up to weight 8 in the (I , 4)-lex order. Compute C(4, 8) and compare
with the number of monomials you obtained.
Write the polynomial Q (x , y) = x 5 + x 2 y + x 3 + y + 1 E G F (S) [x , y] with the monomials in
(1,3)-revlex order. Write the polynomial with the monomials in (1,3)-lex order.
Let Q (x , y) = 2 x 2 y + 3 x 3 y 3 + 4 x 2 y 4 . ComputetheHassederivatives D1,o Q (x , y) , DO,^ Q (x , y),

For a (16,4) RS code over GF(16), plot Km as a function of m.
D i , i Q (x , Y L D 2 , 0 Q (x , Y) , D 2 , i Q < x 3 Y) and D 3 , 2 Q (x , Y) .

7.7 Exercises 367

7.17

7.18
7.19
7.20
7.21
7.22

7.23

7.24

A polynomial Q(x, y) E G F (5) [x , y] is to be found such that:

Q(2, 3) = 0 Di,oQ(2,3) = 0

Q(3,4) = O Do,iQ(3,4)=0 &,oQ(3,4)=0

(a) Determine the monomials that constitute Q(x, y) in (1,4)-revlex order.
(b) Determine the matrix 'D as in (7.89) representing the interpolation and multiplicity con-

Do,iQ(2, 3) = 0

straints for a polynomial.

In relation to the Feng-Tzeng algorithm, show that [C(x)a(')(x)xf']n = [C (~) a (') (x >] ~ - ~ .

FromLemma7.25, show that for P (x , y), Q(x, y) E P[x, y1, [P (x , y), Q(x, y)] ~ E ker D.
Write down the proof to Lemma 7.15.
Show that (7.97) is true.
Bounds on Lm :

(a) Show that

(b) Show that Lm < (rn + 1)m.
[230] Let A(u, K) be the rank of the monomial x K in (1, u)-revlex order. From Table 7.1 we

K 0 1 2 3 4 5
K(3,L) 0 1 2 3 5 7

Show that A(u, K + 1) = C(u, K).
Show that A(u, K) = [{(i, j) : i + u j < K } l .
Show that B (L , u) = A(uL + 1, u) - 1.
Euler's integration formula [187, section 1.2.1 1.2, (3)] indicates that the sum of a function
f (k) can be represented in terms of an integral as

where {x) = x - Lx] is the fractional part of x . Based on this formula show that

wherer = K (mod u).

Show the following bound

Bounds on Km:

(a) Show that

where

K~ K r (u - r)
A (u , K) = - + - + -

2u 2 2v '

K2 (K + u/2I2 - < A (K , u) 5
2u 2u .

(7.106)

(7.107)

368 Alternate Decoding Algorithms for Reed-Solomon Codes

(b) Show that

(c) Hence show that asymptotically (as m + 00)

7.8 References

The original Welch-Berlekamp algorithm appeared in [369]. In addition to introducing
the new key equation, it also describes using different symbols as check symbols in a
novel application to magnetic recording systems. This was followed by [23], which uses
generalized minimum distanceto improve the decoding behavior. The notation we use
in Section 7.2.1 comes from this and from [247]. A comparison of Welch-Berlekamp key
equations is in [244]. Our introduction to modules was drawn from [61]; see also [162,1551.

Our discussion of the DB form of the key equation, as well as the idea of “exact se-
quences” and the associated algorithms, is drawn closely from [63]. Other derivations of
WB key equations are detailed in [2 141 and [247].

The development of the Welch-Berlekamp algorithm from Section 7.4.2 closely follows
[214]. The modular form follows from [63]. Other related work is in [44] and [45].

The idea of list decoding goes back to [77]. The idea of this interpolating recovery is
expressed in [369]. Work preparatory to the work here appears in [193] and was extended
in [323], building in turn on [8], to decode beyond the RS design distance for some low rate
codes. In particular, a form of Theorem 7.19 appeared originally in [8]; our statement and
proof follows [128]. In [128], the restriction to low-rate codes was removed by employing
higher multiplicity interpolating polynomials. The Feng-Tzeng algorithm appears in [83],
which also shows how to use their algorithm for decoding up to the Hartmann-Tzeng and
Roos BCH bounds. A preceding paper, [82] shows how to solve the multi-sequence problem
using a generalization of the Euclidean algorithm, essentially producing a Grobner basis
approach. The algorithm attributed to Kotter [193] is clearly described in [230]. Other
algorithms for the interpolation step are in [188] and in [252], which puts a variety of
algorithms under the unifying framework of displacements.

The factorization step was efficiently expressed in [297]. The description presented of
the Roth-Ruckenstein algorithm draws very closely in parts from the excellent tutorial paper
[230]. Alternative factorization algorithms appear in [114, 9, 81, 3791.

Chapter 8

Other Important Block Codes
8.1 Introduction

There are a variety of block codes of both historical and practical importance which are
used either as building blocks or components of other systems, which we have not yet seen
in this book. In this chapter we introduce some of the most important of these.

8.2 Hadamard Matrices, Codes, and Transforms

8.2.1 Introduction to Hadamard Matrices

A Hadamard matrix of order n is an n x n matrix Hn of f 1 such that

H,H; = nz.

That is, by normalizing Hn by 1 /,h an orthogonal matrix is obtained. The distinct columns
of H are painvise orthogonal, as are the rows. Some examples of Hadamard matrices are:

1 1 1

1 1 -1 -1
1 -1 1 -: 1

H4 =

1 -1 -1 1 _I
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
1 -1 -1 1 1 -1 -1 1
1 1 1 1 -1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1

The operation of computing rH,, where r is a row vector of length n, is sometimes called
computing the Hadamard transform of r. As we show in Section 8.3.3, there are fast
algorithms for computing the Hadamard transform which are useful for decoding certain
Reed-Muller codes (among other things). Furthermore, the Hadamard matrices can be used
to define some error correction codes.

It is clear that multiplying a row or a column of Hn by - 1 produces another Hadamard
matrix. By a sequence of such operations, a Hadamard matrix can be obtained which has
the first row and the first column equal to all ones. Such a matrix is said to be noml i zed .

Some of the operations associated with Hadamard matrices can be expressed using the
Kronecker product.

370 Other Important Block Codes

Definition 8.1 The Kronecker product A €3 B of an m x n matrix A with a p x q matrix
B is the m p x nq obtained by replacing every element aij of A with the matrix ajj B. The
Kronecker product is associative and distributive, but not commutative.

Example 8.1 Let

Theorem 8.1 The Kronecker product has the following properties [246, ch. 91:

1. A €3 B # B €3 A in general. (The Kroneckerproduct does not commute.)

2. For a scalar x, (xA) €3 B = A €3 (xB) = x (A €3 B) .

3. Distributive properties:

(A + B) €3 C = (A €3 C) 4- (B €3 C).

A €3 (B + C) = (A €3 B) + (A €3 C) .

4. Associativeproperty: (A €3 B) €3 C = A €3 (B €3 C).

5. Transposes: (A €3 B)T = AT €3 BT.

6. Trace (for square A and B): tr(A €3 B) = tr(A) tr(B).

7. I f A is diagonal and B is diagonal, then A €3 B is diagonal.

8. Determinant, where A is rn x m and B is n x n: det(A €3 B) = det(A)" det(B)'".

9. The Kronecker product theorem:

(A €3 B)(C €3 D) = (A C) €3 (BW, (8.2)

provided that the matrices are shaped such that the indicatedproducts are allowed.

10. Inverses: IfA and B are nonsingular then A €3 B is nonsingularand

(A €3 B)O1 = A-' €3 B-' . (8.3)

Returning now to Hadamard matrices, it may be observed that the Hadamard matrices
in (8.1) have the structure

This works in general:

Theorem 8.2 I f Hn is a Hadamard matrix, then so is H2n = H2 €3 Hn,

8.2 Hadamard Matrices, Codes, and Transforms 371

Proof By the properties of the Kronecker product,

&nH& = (H2 8 W (H 2 8 H d T = H2HT 8 HnH: = (212) 8 (n1,)
= 2n(Z2 8 In) = 2nz2,.

This construction of Hadamard matrices is referred to as the Sylvester construction. By this
construction, Hadamard matrices of sizes 1, 2, 4 , 8, 16, 32, etc., exist. However, unless
a Hadamard matrix of size 6 exists, for example, then this construction cannot be used to
construct a Hadamard matrix of size 12. As the following theorem indicates, there is no
Hadamard matrix of size 6.

Theorem 8.3 A Hadamard matrix must have an order that is either I , 2, or a multiple of 4.

Proof [220, p. 441 Suppose without loss of generality that Hn is normalized. By column
permutations, we can put the first three rows of Hn in the following form:

1 1 1 1 1 * . - 1 1 1 ... 1 1 1 ... 1
1 1 ... 1 1 1 ... 1 -1 -1 ... -1 -1 -1 ... -1
1 1 ... 1 -1 -1 . . . -1 1 1 * * - 1 -1 -1 ... -1

- \ / \

i j k 1

For example, j is the number of columns such that the first two rows of Hn have ones while
the third row has negative ones. Since the rows are orthogonal, we have

i + j - k - Z = O

i - j + k - Z = O

i - j - k + Z = O

(inner product of row 1 with row 2)

(inner product of row 1 with row 3)

(inner product of row 2 with row 3),

which collectively imply i = j = k = 1. Thus n = 4 i , so n must be a multiple of 4. (If
n = 1 or 2, then there are not three rows to consider.) 0

This theorem does not exclude the possibility of a Hadamard matrix of order 12. However,
it cannot be obtained by the Sylvester construction.

8.2.2 The Paley Construction of Hadamard Matrices

Another method of constructing Hadamard matrices is by the Paley construction, which em-
ploys some number-theoretic concepts. This allows, for example, creation of the Hadamard
matrix Hl2. While in practice Hadamard matrices of order 4k are most frequently em-
ployed, the Paley construction introduces the important concepts of quadratic residues and
the Legendre symbol, both of which have application to other error correction codes.

Definition 8.2 For all numbers a such that (a , p) = 1 , the number a is called a quadratic
residue modulo p if the congruence x = a (mod p) has some solution x . That is to say,
a is the square of some number, modulo p . If a is not a quadratic residue, then a is called

If a is a quadratic residue modulo p , then so is a + p , so we consider as distinct residues
a quadratic nonresidue. 0

only these which are distinct modulo p .

372 Other Important Block Codes

Example 8.2 The easiest way to find the quadratic residues modulo a prime p is to list the nonzero
numbers modulo p , then square them.

Let p = 7. The set of nonzero numbers modulo p is {1,2, 3,4,5,6]. Squaring these numbers
modulo p we obtain the list (12, 22, 32, 42, 5 2 , 62} = {1,4,2,2,4, 1). So the quadratic residues
modulo 7 are {1,2,4}. The quadratic nonresidues are {3,5,6}. The number 9 is a quadratic residue
modulo 7, since 9 = 7 + 2, and 2 is a quadratic residue.

Now let p = 11. Forming the list of squares we have

The quadratic residues modulo 11 are (1,3,4, 5,9}. 0

Theorem 8.4 Quadratic residues have the following properties:

I . There are (p - 1)/2 quadratic residues modulo p for an oddprime p.

2. The product of two quadratic residues or two quadratic nonresidues is always a
quadratic residue. The product of a quadratic residue and a quadratic nonresidue is
a quadratic nonresidue.

3. I f p is of the form 4k + 1, then -1 is a quadratic residue modulo p. I f p is of the
form 4k + 3, then - 1 is a nonresidue modulo p.

The Legendre symbol is a number theoretic function associated with quadratic residues.

Definition 8.3 Let p be an odd prime. The Legendre symbol x p (x) is defined as

0 if n is a multiple of p

1
- 1 if x is a quadratic nonresidue modulo p .

if x is a quadratic residue modulo p

The Legendre symbol x p (x) is also denoted as . (9 0

Example 8.3 Let p = 7. The Legendre symbol values are

~ 0 1 2 3 4 5 6
x7(x): 0 1 1 -1 1 -1 -1

When p = 11 the Legendre symbol values are

x : O 1 2 3 4 5 6 7 8 9 1 0
x11(x): 0 1 -1 1 1 1 -1 -1 -1 1 -1

The key to the Paley construction of Hadamard matrices is the following theorem.

Lemma 8.5 [220, p. 461 For any c f 0 (mod p) ,

D-1

8.2 Hadamard Matrices, Codes, and Transforms 373

- 1 1 1 1 1 1 1 1 ’
1 -1 1 1 -1 1 -1 -1
1 -1 -1 1 1 -1 1 -1

1 1 -1 -1 -1 1 1 -1
1 -1 1 -1 -1 -1 1 1
1 1 -1 1 -1 -1 -1 1
1 1 1 -1 1 -1 -1 -1 -

1 -1 -1 0 1 1 -1 -1 -1 -1 -1

0 1 1 -1 1 -1 -1
-1 0 1 1 -1 1 -1
-1 -1 0 1 1 -1 1

-1 1 -1 -1 0 1 1
1 -1 1 -1 -1 0 1
1 1 -1 1 -1 -1 0

Proof From Theorem 8.4 and the definition of the Legendre symbol, x p (xy) = xp (x) xp (y) .
Since b = 0 contributes nothing to the sum in (8.4), suppose b # 0. Let z = (b + c)b-’
(mod p). As b runs from 1,2, . . . , p - 1, z takes on distinct values in 0,2,3, . . . , p - 1,
but not the value 1. Then

P-1 P-1 P-1 P-1

P-1

z=o
= c xp(z> - Xp(1) = 0 - Xp(1) = -1,

where the last equality follows since half of the numbers z from 0 to p - 1 have xp (z) = - 1

With this background, we can now define the Paley construction.

and the other half x p (z) = 1, by Theorem 8.4.

1. First, construct the p x p Jacobsthal matrix J p . with elements 4ij given by q i j =
xp(j - i) (with zero-based indexing). Note that the first row of the matrix is xp(j),
which is just the Legendre symbol sequence. The other rows are obtained by cyclic
shifting.

2. Second, form the matrix

where 1 is a column vector of length p containing all ones.

Example 8.4 Let p = 7. For the first row of the matrix, see Example 8.3.

Example 8.5 We now show the construction of H12. The 11 x 11 Jacobsthai matrix is

J11 =

- 0 1 - 1 1 1 1 - 1 - 1 - 1 1 - 1
-1 0 1 -1 1 1 1 -1 -1 -1 1

1 -1 0 1 -1 1 1 1 -1 -1 -1
-1 1 -1 0 1 -1 1 1 1 -1 -1
-1 -1 1 -1 0 1 -1 1 1 1 -1
-1 -1 -1 1 -1 0 1 -1 1 1 1

1 -1 -1 -1 1 -1 0 1 -1 1 1
1 1 -1 -1 -1 1 -1 0 1 -1 1
1 1 1 -1 -1 -1 1 -1 0 1 -1

-1 1 1 1 -1 -1 -1 1 -1 0 1
- 1 - 1 1 1 1 - 1 - 1 - 1 1 - 1 0

374 Other ImDortant Block Codes

and the Hadamard matrix is

1 1 1 1 1 1 1 1 1 1 1 1
1 -1 1 -1 1 1 1 -1 -1 -1 1 -1
1 -1 -1 1 -1 1 1 1 -1 -1 -1 1
1 1 -1 -1 1 -1 1 1 1 -1 -I -1 I 1 -1 1 -1 -1 1 -1 1 1 1 -1 -1
1 -1 -1 1 -1 -1 1 -1 1 1 1 -1

H12 = I 1 -1 -1 -1 1 -1 -1 1 -1 1 1 1
1 1 -1 -1 -1 1 -1 -1 1 -1 1 1
1 1 1 -1 -1 -1 1 -1 -1 1 -1 1
1 1 1 1 -1 -1 -1 1 -1 -1 I -1
1 -1 1 1 1 -1 -1 -1 1 -1 -1 1 i 1 1 -1 1 1 1 -1 -1 -1 1 -1 -1

(8.5)

The following lemma establishes that the Paley construction gives a Hadamard matrix.

Lemma 8.6 Let Jp be a p x p Jacobsthal matrix. Then J p Jp' = pZ - U and Jp U =
U Jp = 0, where U is the matrix of all ones.

Proof Let P = Jp Jp'. Then

P - 1

pii = C q:k = p - 1 (since x,2(x) = 1 for x + 01
k=O

D - 1 D-1

k=O k=O
P - 1

= xp(b)Xp(b + c) = -1 (subs. b = k - i, c = i - j , then use Lemma 8.5).
b=O

Also, JpU = 0 since each row contains (p - 1) / 2 elements of 1 and (p - 1) / 2 elements
of -1. 0
Now

ButfromLemma8.6, J + (J , - l) (J p ' - Z) = U f p l - U - U - J p - Jp'+I = (p f 1) Z .

so Hp+lHpT+1 = (P + l U p + l .

8.2.3 Hadamard Codes

Let An be the binary matrix obtained by replacing the 1s in a Hadamard matrix with Os, and
replacing the -1s with 1s. We have the following code constructions:

By the orthogonality of Hn, any pair of distinct rows of An must agree in n / 2 places
and differ in n / 2 places. Deleting the left column of An (since these bits are all the
same and do not contribute anything to the code), the rows of the resulting matrix
forms a code of length n - 1 called the Hadamard code, denoted An, having n
codewords and minimum distance n / 2 . This is also known as the simplex code.

By including the binary-complements of all codewords in An we obtain the code Bn
which has 2n codewords of length n - 1 and a minimum distance of n / 2 - 1.

8.3 Reed-Muller Codes 375

Starting from An again, if we adjoin the binary complements of the rows of A,, we
obtain a code with code length n, 2n codewords, and minimum distance n/2. This
code is denoted e.

This book does not treat many nonlinear codes. However, if any of these codes are con-
structed using a Paley matrix with n > 8, then the codes are nonlinear. (The linear span
of the nonlinear code is a quadratic residue code.) Interestingly, if the Paley Hadamard
matrix is used in the construction of A, or B,, then the codes are cyclic, but not necessarily
linear. If the codes are constructed from Hadamard matrices constructed using the Sylvester
construction, the codes are linear.

8.3 Reed-Muller Codes

Reed-Muller codes were among the first codes to be deployed in space applications, being
used in the deep space probes flown from 1969 to 1977 [373, p. 1491. They were probably
the first family of codes to provide a mechanism for obtaining a desired minimum distance.
And, while they have been largely displaced by Reed-Solomon codes in volume of practice,
they have a fast maximum likelihood decoding algorithm which is still very attractive. They
are also used as components in several other systems. Furthermore, there are a variety
of constructions for Reed-Muller codes which has made them useful in many theoretical
developments.

8.3.1 Boolean Functions

Reed-Muller codes are closely tied to functions of Boolean variables and can be described
as multinomials over the field GF(2) [284]. Consider a Boolean function of m variables,
f(u1, u2, . . . , Urn), which is a mapping from the vector space V, of binary rn-tuples to the
binary numbers (0, 1). Such functions can be represented using a truth table, which is an
exhaustive listing of the input/output values. Boolean functions can also be written in terms
of the variables.

Example 8.6 The table below is a truth table for two functions of the variables ul , u2, u3 and u4.

u 4 = 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
u 3 = 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
u 2 = 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
u 1 = 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

f 1 = 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

f 2 = 1 1 1 1 1 0 0 1 1 0 1 0 1 1 0 0

fl(V1, u2, u3, u4) = V l + u2 + V3 + u4

It can be verified (using, e.g., methods from elementary digital logic design) that

and that
f2(u1, u2, V3, V4) = 1 + u1u4 + vlu3 + V2u3.

0

The columns of the truth table can be numbered from 0 to 2rn- 1 using a base-2 representation
with u1 as the least-significant bit. Then without ambiguity, the functions can be represented
simply using their bit strings. From Example 8.6,

f l = (01 101001 10010110)

376 Other Important Block Codes

I genrm.cc I

f2 = (1111100110101100).

The number of distinct Boolean functions in m variables is the number of distinct binary
sequences of length 2 m , which is 22m. The set M of all Boolean functions in m variables
forms a vector space that has a basis

{ 1 , u l , V 2 , ..., ~m,~l~2,~1~3,...,Um-1Um,"' ,VlV2U3.. .Vm].

Every function f in this space can be represented as a linear combination of these basis
functions:

f =a01 + a l v l + a 2 ~ 2 + . . . a m u r n + ~ l 2 ~ l ~ 2 + . . . + ~ 1 2 . . . m ~ 1 ~ 2 ' . . ~ m .

Functional and vector notation can be used interchangeably. Here are some examples
of some basic functions and their vector representations:

1 f, 1 = 1111111111111111

Ul f, V l = 0101010101010101

u2 t, v 2 = 0011001100110011
u3 f, v 3 = 00001 11 100001 11 1

u4 f, v4 = 000000001 11 11 11 1

UlU2 f, V l V 2 = 0001000100010001

~1 u2 u3 ~4 t, ~ 1 ~ 2 ~ 3 ~4 = 000000000000000 1.

As this example demonstrates, juxtaposition of vectors represents the corresponding Boolean
'and' function, element by element. A vector representing a function can be written as

f =a01 + a l v l + a 2 ~ 2 + * . . a m ~ m + ~ 1 2 ~ 1 ~ 2 + . . . + a l 2 , , , m ~ l v 2 . . . v , .

8.3.2 Definition of the Reed-Muller Codes

Definition 8.4 [373, p. 1511 The binary Reed-Muller code R M (r , m) of order r and length
2m consists of all linear combinations of vectors f associated with Boolean functions f that
are monomials of degree p r in m variables.

Example8.7 TheRM(1,3)codehaslength23 = 8. Themonomialsofdegree< lare(l, v l , v2, vg},
with associated vectors

l + l = (I 1 1 1 1 1 1 1)
v3 * v 3 = (0 0 0 0 1 1 1 1)
v 2 * v 2 = (0 0 1 1 0 0 1 1)
Vl * v 1 = (0 1 0 1 0 1 0 1).

It is natural to describe the code using a generator matrix having these vectors as rows,

0 0 1 1 0 0 1 1 '

1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1 1 G = [0 0 0 0 1 1 1 1

This is an (8,4,4) code; it is single-error correcting and double-error detecting. This is also the
extended Hamming code (obtained by adding an extra parity bit to the (7,4) Hamming code). 0

8.3 Reed-Muller Codes 377

Example 8.8 The R M (2 , 4) code has length 16 and is obtained by linear combinations of the mono-
mials up to degree 2, which are

(1 , v l , v29 V 3 , v4, v l v 2 , vlv3, Vlv4, V2V3, v2v4, V3v41

with the following corresponding vector representations:

1 = (1 1 1 1 1 1 1 1 1
v 4 = (0 0 0 0 0 0 0 0 1
v 3 = (0 0 0 0 1 1 1 1 0
v 2 = (0 0 1 1 0 0 1 1 0
v 1 = (0 1 0 1 0 1 0 1 0

v3v4= (0 0 0 0 0 0 0 0 0
~ 2 ~ 4 = (0 0 0 0 0 0 0 0 0
V Z V ~ = (0 0 0 0 0 0 1 1 0
V I V ~ = (0 0 0 0 0 0 0 0 0
v 1 ~ 3 = (0 0 0 0 0 1 0 1 0
v1v2= (0 0 0 1 0 0 0 1 0

1 1 1 1 1 1 1)
1 1 1 1 1 1 1)
0 0 0 1 1 1 1)
0 1 1 0 0 1 1)
1 0 1 0 1 0 1)
0 0 0 1 1 1 1)
0 1 1 0 0 1 1)
0 0 0 0 0 1 1)
1 0 1 0 1 0 1)
0 0 0 0 1 0 1)
0 0 1 0 0 0 1).

This is a (16, 1 1) code, with minimum distance 4.

In general for an R M (r , m) code, the dimension is

k = 1 + (7) + (;) + . . . + (;).
The codes are linear, but not cyclic.

As the following lemma states, we can recursively construct an R M (r + 1, m + 1) code
- twice the length - from an RM(r, m) and RM(r + 1, m) code. In this context, the
notation (f, g) means the concatenation of the vectors f and g.

Lemma8.7 RM(r+ l ,m+l) = [(f,f+g)foraZZf E RM(r+l,m)andg E R M (r , m)] .

Proof The codewords of R M (r + 1, m + 1) are associated with Boolean functions in m + 1
variables of degree F r + 1. If c(v1, . . . , v m + l) is such a function (i.e., it represents a
codeword) we can write it as

c (~ I , 1 . . 9 v m + l) = f (v 1 , . . - 9 v m) + v m + l g (v l , . . ., Urn),

where f is a Boolean function in m variables of degree 5 r + 1, and hence represents a
codeword in RM(r + 1, m), and g is a Boolean function in m variables with degree 5 r ,
representing a Boolean function in R M (r, m) . The corresponding functions f and g are thus
in R M (r + 1, - m) and R M (r , m) , respectively.

NOW let f (~ , UZ,. . . , V m + l) = f (u 1 , u 2 , . . . , v m) + 0 . vm+l represent a codeword
in R M (r + 1 , m + 1) and let i (u1 , v2 , . . ., V m + l) = v m + l g (v l , u2 , . . . , u,) represent a
codeword in RM(r + 1, m + 1). The associated vectors, which are codewords in R M (r +
1, m + 11, are

f = (f, f) and 8 = (0, g).

Their linear combination (f, f + g) must therefore also be a codeword in R M (r + 1, m + 1).
0

We now use this lemma to compute the minimum distance of an R M (r , m) code.

378 Other Inwortant Block Codes

Theorem 8.8 The minimum distance of RM(r , m) is 2m-r.

Proof By induction. When m = 1 the R M (0 , 1) code is built from the basis [l } , giving rise
to two codewords: it is the length-2 repetition code. In this case d i n = 2. The RM(1 , 1)
code is built upon the basis vectors [l , u l } and has four codewords of length two: 00, 01,
1 0 , l l . Hence dmin = 1 .

As an inductive hypothesis, assume that up to m and for 0 5 r 5 m the minimum
distance is 2m-r. We will show that dmin for RM(r , m + 1) is 2m-r+1.

Let f and f’ be in RM(r , m) and let g and g’ be in R M (r - 1 , m). By Lemma 8.7, the
vectors c1 = (f, f + g) and c2 = (f ’ , f’ + g’) must be in RM(r , m + 1) .

If g = g’ then d(c1, c2) = d ((f , f + g), (f’, f ’ + g)) = d ((f , f’), (f, f’)) = 2 d (f , f’) 2
22“‘-‘ by the inductive hypothesis. If g # g’ then

d(c1, ~ 2) = w(f - f’) + w(g - g’ + f - f’).
Claim: w(x + y) 2 w(x) - w(y). Proof Let wxy be the number of places in which the
nonzero digits of x and y overlap. Then w(x + y) = (w(x) - w x y) + (w(y) - w x y) . But
since 2w(y) _> 2wxy, the result follows.

By this result,

d(c1, ~ 2) 2 w(f - f’) + w(g - g’) - w(f - f’) = w(g - g’).

But g - g’ E R M (r - 1 , m) , so that w(g - g’) 2 2m-(r-1) = 2m-r+1. 0
The following theorem is useful in characterizing the duals of RM codes.

Theorem 8.9 For 0 5 r 5 m - 1 , the R M (m - r - 1 , m) code is dual to the RM(r , m)
code.

Proof [373, p. 1541 Let a be a codeword in R M (m - r - 1 , m) and let b be a codeword
in RM(r , m) . Associated with a is a polynomial a(u1, u2, . . . , V m) of degree 5 m - I - 1;
associated with b is a polynomial b(u1, u2, . . , , V m) of degree 5 r . The product polynomial
has degree 5 m - 1 , and thus corresponds to a codeword in the R M (m - 1 , m) code, with
vector representation ab. Since the minimum distance of RM(m - r - 1 , m) is 2+’ and
the minimum distance of R M (m - 1 , m) is 2m-r, the codeword ab must have even weight.
Thus a . b = 0 (mod 2). From this, R M (m - r - 1, m) must be a subset of the dual code
to RM(r , m) . Note that

dim(RM(r, m)) + dim(RM(m - r - 1 , m))

= 1 + (7) + . . . + (;) + 1 + C) + (;) + . . . + (m)
m - r - 1

= 1 + (’ l) + . - - (;) + (;) + (m - 1)+(m - 2)+. . .+(r + l m ,

m

i =O

By the theorem regarding the dimensionality of dual codes, Theorem 2.8, RM(m -r - 1 , m)
0

It is clear that the weight distribution of RM(1 , m) codes is A0 = 1 , A2m = 1 and A2,,-1 =
2m+1 - 2. Beyond these simple results, the weight distributions are more complicated.

must be the dual to RM(r , m) .

8.3 Reed-Muller Codes 379

8.3.3 Encoding and Decoding Algorithms for First-Order RM Codes

In this section we describe algorithms for encoding and decoding RM(1, m) codes, which
are (2 m , m + 1, 2m-1) codes. In Section 8.3.4 we present algorithms for more general RM
codes.

Encoding RM(1, m) Codes

Consider the RM(1,3) code generated by

Lo 1 0 1 0 1 0 11

The columns of G consist of the numbers (1, 0, 0,O) through (1, 1, 1, 1) in increasing binary
counting order (with the least-significant bit on the right). This sequence of bit values can
thus be obtained using a conventional binary digital counter. A block diagram of an encoding
circuit embodying this idea is shown in Figure 8.1.

3-bit binary digital counter

Figure 8.1 : An encoder circuit for a R M (1 ,3) code.

Decoding RM(1, m) Codes

The idea behind the decoder is to compare the received sequence r with every codeword in
RM(1, m) by means of correlation, then to select the codeword with the highest correlation.
As we shall show, because of the structure of the code these correlations can be computed
using a Hadamard transform. The existence of a fast Hadamard transform algorithms makes
this an efficient decoding algorithm.

Let r = (ro, 1 1 , . . . , 1 2 m - 1) be the received sequence, and let c = (co, c1, . . . , ~ 2 m - 1)

380 Other Important Block Codes

be a codeword. We note that

2 m - 1 2 m - 1 2 m - 1

i=O i=O

2"-1

i=O
(8.7)

i=O

where @ denotes addition modulo 2 and d(ri , ci) is the Hamming distance between the
arguments. A sequence which minimizes d(r, c) has the largest number of positive terms
in the sum on the right of (8.7) and therefore maximizes the sum.

Let 3(r) be the transformation that converts binary {O, l} elements of r to binary f l
values of a vector R according to

3(r) = F(r0, r1, . . . , r2m-1) = R = ((-l)ro, (-l)rl , . . . , (-1)"2"-1 1.

We refer to R as the bipolar representation of r. Similarly define 3 (c) = C = (Co, C1, . . . , C 2 m -.

We define the correlation function

2 m - 1

T = cor(R, C) = cor((Ro, R 1 , . . . , R p - i) , (Co, Ci, . . . , Cp-1)) = C RiCi.
i =O

By (8.7), the codeword c which minimizes d(r , c) maximizes the correlation cor(R, C) .
The decoding algorithm is summarized as: Compute Ti = cor(R, Ci), where Ci =

3 (c i) for each of the 2"+' codewords, then select that codeword for which cor(R, C i) is
the largest. The simultaneous computation of all the correlations can be represented as a
matrix. Let Ci be represented as a column vector and let

Then all the correlations can be computed by

Recall that the generator matrix for the R M (1, m) code can be written as

We actually find it convenient to deal explicitly with those codewords formed as linear
combinations of only the vectors v1, v1, . . . , vm, since 1 + c complements all the elements
of c, which corresponds to negating the elements of the transform C . We therefore deal with
the 2m x 2" matrix H p . Let us examine one of these matrices in detail. For the R M (1,3)
code with G as in (8.6), the matrix Hs can be written as

8.3 Reed-Muller Codes 381

0 1 2 3 4 5 6 7 -
1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
1 -1 -1 1 1 -1 -1 1
1 1 1 1 -1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1

L 1 -1 -1 1 -1 1 1 -1

Examination of this reveals that, with this column ordering, column 1 corresponds to 3(v I) ,

column 2 corresponds to 3(v2) , and column 4 corresponds to 3(v3). In general, the ith
column corresponds to the linear combination of i l v l + i2v2 + i3v3, where i has the binary
representation

i = i l + 2i2 + 4i3.

We write the binary representation as i = (i3, i2, i1)2. In the general case, for an 2m x 2m
Hadamardmatrix,weplace3(~~=l ijvj) intheithcolumnwherei = (im, i m - l , . . . , i1)2.

The computation RH is referred to as the Hadamard transform of R.
The decoding algorithm can be described as follows:

Algorithm 8.1 Decoding for R M (1, m) Codes

I Input: r = (ro, rl , . . . , r2m-1).
2 Output: A maximum-likelihood codeword 2.
3 Begin
4 Find the bipolar representation R = F(r).
5 Compute the Hadamard transform T = R H p = (to, t l , . . . , t2m-1)
6 Find the coordinate ti with the largest magnitude
7 Let i have the binary expansion (im, i,-l, . . . , i1)2. (i l LSB)
8 if& > 0) (1 is not sent)
9 C = C y = = l i j v j

10 else (1 is sent - complement all the bits)
I I

12 end (if)
13 End

2 = 1 + CY==, i j v j

Example 8.9 For the R M (1, 3) code, suppose the received vector is

r = [I , 0, 0, I , O , O , 1 ,0] .

The steps of the algorithm follow:

1. Compute the transform: R = [-1, 1, 1 , -1, 1, 1, -1, 11.

2. Compute T = RH = [2, - 2 , 2 , -2, - 2 , 2 , -2, -61.

3. The maximum absolute element occurs at t7 = -6, so i = 7 = (1, 1 , 1)2.

4. Sincet7 < 0 , c = 1 + v l + v 2 +v3 = [1,0,0, 1,0, 1 , 1 .03 .

rmdecex.m

382 Other Important Block Codes

Expediting Decoding Using the Fast Hadamard Transform

The main step of the algorithm is the computation of the Hadamard transform R H . This
can be considerably expedited by using a fast Hadamard transform, applicable to Hadamard
matrices obtained via the Sylvester construction. This transform is analogous to the fast
Fourier transform (FFT), but is over the set of numbers f 1. It is built on some facts from
linear algebra.

As we have seen, Sylvester Hadamard can be built by

H2m = H2 @ H2m-I. (8.9)

This gives the following factorization.

Theorem 8.10 The matrix H2m can be written as

(1) (2) . . . (m) H2m = M2m M2rn M2m 9

where

M.!$ = 12m-i @ H2 @ Z2i-I,

and where Z p is a p x p identity matrix.

(8.10)

Proof By induction. When m = 1 the result holds, as may be easily verified. Assume,
then, that (8.10) holds for m. We find that

M$+l = 12m+1-i @ H2 @ 121-1

= (Z2 @ 1 2 m - i) @ H2 @ 12i-I (by the structure of the identity matrix)

= 12 @ (12m-i @ H2 @ Z 2 i - I) (associativity)

= 12 @ M$? (definition).

Furthermore, by the definition, Mg;: = H2 @ 1 2 m . We have

(1) (2) (m + l) H2m+l = M2m+l M2rn+l . . . M2m+I

= (12 @ Mi:)) (I2 @ Mi?) . . . (12 @ Mi:)) (H2 @ 1 2 m)

= (1TH2) @ <M2m M2m (2) . . . M g)) (Kronecker product theorem 8.2)

= H2 @ H2m.

Example 8.10 By the theorem, we have the factorization

Ha = M i 1) M f) M i 3) = (122 €3 H2 63 Z20)(I21 63 H2 €3 I 2 ~) C I 2 0 €3 H2 €3 122) .

[hadex.m I Straightforward substitution and multiplication shows that this gives the matrix Ha in (8.8).
Let R = [Ro , R1, . . . , R7]. Then the Hadamard transform can be written

T = RHs = R(Mg (1) Ms (2) M8 (3)) = R(Z22 63 H2 €3 120)(121 €3 H2 €3 121)(120 €3 H2 €3 122).

8.3 Reed-Muller Codes 383

The matrices involved are

Mi1) = I4 @ H2 =

- 1 1
1 -1

-

1 1
1 -1

1 1
1 -1

1 1
- 1 -1

1 0
0 1

- 1 0
0 -1

1 0
0 1
1 0 -
0 1

-

1 0
0 1

-1 0
0 -1 -

(3) - M8 - H2@14=

- 1 1
-

1 1
1 1

1 1
1 -1

1 -1
1 -1

- 1 -1 -

t es t fh t .cc
Figure 8.2 shows the flow diagram corresponding to the matrix multiplications, where arrows

indicate the direction of flow, arrows incident along a line imply addition, and the coefficients -1 U f h t . m

along the horizontal branches indicate the gain along their respective branch. At each stage, the two-
point Hadamard transform is apparent. (At the first stage, the operations of H2 are enclosed in the box
to highlight the operation.) The interleaving of the various stages by virtue of the Kronecker product

0

f h t . cc

is similar to the “butterfiy” pattern of the fast Fourier transform.

The conventional computation of the Hadamard transform R H p produces 2m elements,
each of which requires 2m additiodsubtraction operations, for a total complexity of (2”)2.
The fast Hadamard transform has m stages, each of which requires 2m additiodsubtraction
operations, for a total complexity of m2m. This is still exponential in m (typical for maximum
likelihood decoding), but much lower than brute force evaluation. Furthermore, as Figure
8.2 suggests, parallellpipelined hardware architectures are possible.

The R M (1, m) decoding algorithm employing the fast Hadamard transform is referred
to as the “Green machine,” after its developer at the Jet Propulsion Laboratory for the 1969
Mariner mission [373].

384 Other Important Block Codes

..........

Figure 8.2: Signal flow diagram for the fast Hadamard transform.

8.3.4 The Reed Decoding Algorithm for RM(r, rn) Codes, r 2 1

Efficient decoding algorithms for general Rh4 codes rely upon the concept of majority logic
decoding, in which multiple estimates of a bit value are obtained, and the decoded value
is that value which occurs in the majority of estimates. We demonstrate this first for a
RM(2,4) code, then develop a notation to extend this to other RM(r, rn) codes.

Details for an RM(2,4) Code

Let us write the generator for the RM(2,4) code as

G =

- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

We partition the 11 input bits to correspond to the rows of this matrix as

GO

= [z]

Thus the bits in mo are associated with the zeroth order term, the ml bits are associated
with the first order terms, and the second-order terms are associated with m2. The encoding

8.3 Reed-Muller Codes 385

operation is

c = (CO, c1, c2, . . . , C15) = mG = [mo, ml, m21 [g] = moGo +mlGl fm2G2.

(8.11)
The general operation of the algorithm is as follows: Given a received vector r, estimates

are first obtained for the highest-order block of message bits, m2. Then m2G2 is subtracted
off from r, leaving only lower-order codewords. Then the message bits for ml are obtained,
then are subtracted, and so forth.

The key to finding the message bits comes from writing multiple equations for the same
quantity and taking a majority vote. Selecting coded bits from (8.11) we have

co = mo

c1 = nzo +ml

c:!=mo+m2

c3 = m o + m i +rn2+m12 .

Adding these code bits together (modulo 2) we obtain an equation for the message bit m 12:

co + ci + c2 + c3 = m12.

We can similarly obtain three other equations for the message bit m 12,

c4 + C5 + C6 f C7 = m12

CS + C9 + C10 + C11 = m12

c12 + ci3 + C14 + C15 = m12.

Given the code bits co, . . . , ~ 1 5 , we could compute m12 four independent ways. However,
the code bits are not available at the receiver, only the received bits r = (ro, rl, . . . , r15).

We use this in conjunction with the equations above to obtain four estimates of m 12:

(1) m12 = ro + ri + r2 + r3

12 - r4 + r5 + r6 + r7
n (3) m12 = r8 + r9 + rio + rii

-

h (4) -
12 - r12 + 113 + 114 + 115.

Expressions such as this, in which the check sums all yield the same message bit, are said
to be orthogond' on the message bit. From these four orthogonal equations, we determine
the value of m12 by majority vote. Given A?;, i = 1,2,3,4, the decoded value 6 1 2 is

where maj (- . .) returns the value that occurs most frequently among its arguments.
If errors occur such that only one of the A:; is incorrect, the majority vote gives the

correct answer. If two of them are incorrect, then it is still possible to detect the occurrence
of errors.

'This is a different usage from orthogonality in the vector-space sense.

386 Other ImDortant Block Codes

(8.12)

m34 = c3 + c7 + c11 + C15

Based upon these equations, majority logic decisions are computed for each element of the
second-order block. These decisions are then stacked up to give the block

m 2 = (A349 A243 k147 k23, fit133 fi12).

We then “peel off’ these decoded values to get

rf = r - m2G2.

Now we repeat for the first-order bits. We have eight orthogonal check sums on each of the
first-order message bits. For example,

ml = c o + c 1 m i =C2+C3 m i = c 4 + c 5 m i = C6 +c7

m i = C 8 + C 9 m l = c10 + c11 m l = C12 + C13 m l = C14 f C15

We use the bits of r’ to obtain eight estimates,

= rh + r;

m(5) = r8 f + rb

m y) = r; + ri mi3) = ri + ri my’ = ri + r;

mi6’ = ri0 + ril my’ = ri2 + ri3 mr8) = Ti4 + ri5

then make a decision using majority logic,
k 1 = maj(mi’), m y ’ , . . . , m l (8) 1.

Similarly, eight orthogonal equations can be written on the bits m2, m3, and m4, resulting
in the estimate m l = (k 1 , k 2 , k 3 , k 4) .

Having estimated m l , we strip it off from the received signal,
f f f r = r - m 1 G 1

r” = mol + e.

and look for mo. But if the previous decodings are correct,

Then mo is obtained simply by majority vote:

k o = maj(rff 0, r f f 1 , . . . ,&.
If at any stage there is no clear majority, then a decoding failure is declared.

8.3 Reed-Muller Codes 387

Example 8.11 The computations described here are detailed in the indicated file. Suppose m =
(00001001000), SO the codeword is c = mG = (010101 1001010110). Suppose the received vector
is r = (0101011011010110). The bit message estimates are

12 - ro + ri + r2 + r3 = 0

12 - r8 + rg + rio + r l i = 1

&(I) - h(2) -

&(3) - ,. (4)

12 - r4 + r5 + rg + r7 = 0

m12 = r12 + r13 + r14 + ‘15 = 0

We obtain h i 2 = maj(0, 0, 1,O) = 0. We similarly find

h i 3 = maj(O,O, 1,O) = O 2 1 4 = maj(1, 0, 0, 0) = O

2 2 4 = maj(1, O , O , 0) = O

h23 = maj(1, I, 0.1) = 1

h34 = maj(l,O, 0,O) = 0,

so that m2 = (001000). Removing this decoded value from the received vector we obtain

v3 v4

r = r - m2G2 = r’ - m 2 v2v3
‘ I - b;] = (0101010111010101).

VlV2

At the next block we have

$1 =maj(l, 1, 1, 1,O, I , 1 , I) = 1

h3 = maj(O,O, O,O, 1,0,0,0) = 0

h 2 =maj(O,O,O,O, l,O,O,O) = O

h 4 = maj(l,O, O,O, O,O, 0,O) = 0

so that m2 = (0001). We now remove this decoded block

v4

r” = r’ - m2G1 = r’ - m2 [= (0000000010000000).

The majority decision is 40 = 0. The overall decoded message is

m = (ho, m1, m2) = (00001001000).

This matches the message sent. 0

A Geometric Viewpoint

Clearly the key to employing majority logic decoding on an R M (r , m) code is to find a
description of the equations which are orthogonal on each bit. Consider, for example, the
orthogonal equations for m34, as seen in (8.12). Writing down the indices of the checking
bits, we create the check set

S34 = { {O , 4,8, 121,11,5,9, 131, {2,6,10,14), {3,7,11, 1511.

Now represent the indices in 4-bit binary,

s34 = {{(0000), (OlOO), (lOOO), (l lOO)} , {(OOOl), (OlOl), (l O O l) , (1101)},

{(OOlO), (O l lO) , (lolo), (1110)), {(OOll), (Olll), (loll) , (llll)}}.

Within each subset there are pairs of binary numbers which are adjacent, differing by a
single bit. We can represent this adjacency with a graph that has a vertex for each of the

388 Other Important Block Codes

(a) Three dimensions. (b) Four dimensions.

Figure 8.3: Binary adjacency relationships in three and four dimensions.

numbers from 0000 to 11 1 1, with edges between those vertices that are logically adjacent.
The graph for a code with n = 3 is shown in Figure 8.3(a). It forms a conventional 3-
dimensional cube. The graph for a code with n = 4 is shown in Figure 8.3(b); it forms a
4-dimensional hypercube. The check set S34 can be represented as subsets of the nodes in
the graph. Figure 8.4 shows these sets by shading the ‘‘plane” defined by each of the fours
check subsets. Similarly, the check sets for each the bits m 12, m13, etc., form a set of planes.

Figure 8.4: Planes shaded to represent the equations orthogonal on bit m34.

With these observations, let us now develop the notation to describe the general situation.
For a codeword c = (co, c1, . . . , cn-l) , let the coordmate ci be associated with the binary m-
tuple Pi obtained by complementing the binary representation of the index i. For example, co
is associated with Po = (1 11 1) (since 0 = (0000)2) and C6 is associated with P6 = (1001)
(since 6 = (01 10)~). We think of the Pi as points on the adjacency graph such as those

8.3 Reed-Muller Codes 389

shown in Figure 8.3.
Each codeword c in R M (r , m) forms an incidence vector for a subset of the graph,

selecting points in the graph corresponding to 1 bits in the codeword. For example, the
codeword c = (0101011001010110) is an incidence vector for the subset containing the

Let I = { 1,2, . . . , m } . We represent the basis vectors for the RM(r , m) code as subsets
of I . For example, the basis vector v1 is represented by the set { 1). The basis vector ~ 2 ~ 3 is
represented by the set {2,3}. The basis vector v2v3v4 is represented by [2,3,4}. With this
notation, we now define the procedure for finding the orthogonal check sums for the vector

points {p l , p3, p5, p69 p99 9 1 7 p13, p141-

~ i , vi2 * . . vi, [373, p. 1601.

1. Let S = {Sl, S2, . . . , S ~ W , } be the subset of points associated with the incidence
vector vi, Vjz . . . vi,.

2. Let { j i , j 2 , . . . , j m - p } be the set difference I - {il , i2, . . . , ip}. Let T be the subset
of points associated with the incidence vector vj, vjz . . . vjm-,. The set T is called the
complementary subspace to S .

3. The first check sum consists of the sum of the coordinates specified by the points in
T .

4. The other check sums are obtained by “translating” the set T by the points in S. That
is, for each Si E S , we form the set T + Si . The corresponding check sum consists
of the sum of the coordinates specified by this set.

Example 8.12 Checksums for R M (2 , 4) . Let us find checksums for v3v4 = (0000000000001 11 1).

1. The subset for which v3v4 is an incidence vector contains the points

S = (p122 p13, p14, pis} = { (~ ~ ~ ~) (~ ~ ~ ~) (~ ~ ~ ~) (~ ~ ~ ~) } .

In Figure 8.4, the set S is indicated by the dashed lines.
2. The difference set is

{ j l , j21 = {1,2,3,41- {3,4) = {1>21,

which has the associated vector vlv2 = (0001000100010001). This is the incidence vector
for the set

T = { p 3 , h, p11, = ~ (~ ~ ~ ~) (~ ~) (~ ~ ~ ~) (~ ~) ~ ~

In Figure 8.4, the set T is the darkest of the shaded regions.
3. T represents the checksum m34 = c12 + cg + c4 + co.

4. The translations of T by the nonzero elements of S are:

by Pi2 = (0011) + {(llll)(lOll)(Olll)(OOll)} = {PO, p4, pg, p121

by Pi3 = (0010) -+ {(lllO>(lOlO)(OllO)(OOlO)} = {PI, p5, p9,

by Pi4 = (0001) + { (~ ~ ~ ~) (~ ~ ~ ~) (~ ~ ~ ~) (~ ~ ~ ~) } = {p2, p6, pl0, p141.

These correspond to the checksums

m34 = c15 + cll + c7 + c3

m34 = c13 +c9 +c5 + c i ,

m34 = C 1 4 + C 1 0 + C 6 + C 2

which are shown in the figure as shaded planes.

390 Other Important Block Codes

Figure 8.5: Geometric descriptions of parity check equations for second-order vectors of
the R M (2 , 4) code.

Figure 8.5 indicates the check equations for all of the second-order vectors for the R M (2 , 4) code.
Now let us examine check sums for the first-order vectors.

1. For the vector v4 = (OOOOoooOl 1 11 11 11) the set S is

S = {PS, p9, p10, p11, p12, p132 p14, Pl.51

= ((O l l l) , (O l l O) , (O l O l) , (O l o o) , (O O l l) , (OOlO), (OOOl), (OOOO)}.

These eight points are connected by the dashed lines in Figure 8.6(a).

2. The difference set is

[1,2, 3,4}- [41 = 11,Z 31,

which has the associated vector ~ 1 ~ 2 ~ 3 = (OOoooOOlOOOOOOOl), which is the incidence vector
for the set

T = [4, P15} = ((lOOO), (OOOO)}.

The corresponding equation is m4 = Cg + co, The subset is indicated by the widest line in
Figure 8.6(a).

3. There are eight translations of T by the points in S. These are shown by the other wide lines
in the figure.

0

8.3 Reed-Muller Codes 391

OOOI 1001 OOOI IWI

Figure 8.6: Geometric descriptions of parity check equations for first-order vectors of the
R M (2 , 4) code.

8.3.5 Other Constructions of Reed-Muller Codes

The lulu + vI Construction The lulu + vI introduced in Exercise 3.29 may be used to
construct Reed-Muller codes. In fact,

R M (r , m) = {[ulu + v] : u E RM(r , m - 1), v E R M (r - 1, m - 1)}

having generator matrix

A Kronecker Construction Let G(2,2) = [11 . Define the rn-fold Kronecker product

of G(2,2) as
G (2 m , 2 m) = G(2,2) 8 G(2,2) 8 * * * 8 G(2,2),

m operands

392 Other Important Block Codes

which is a 2m x 2m matrix. Then the generator for the R M (r , m) code is obtained by
selecting from G(2m,2m) those rows with weight greater than or equal to 2m-r.

8.4 Building Long Codes from Short Codes:
The Squaring Construction

There are several ways of combining short codes together to obtain codes with different
properties. Among these are the [ulu + v] construction (outlined in Exercise 3.29) and
concatenation (described in Section 10.6). In this section we present another one, called the
squaring construction [220,204].

We begin by examining partitions of codes into cosets by subcodes. Let Co = C be a
binary linear (n , ko) block code with generator G and let C1 c Co be a (n, kl) subcode of
Co. That is, C1 is a subgroup of Co. Recall that a coset of C1 is a set of the form

CI + c1 = {CI + c : c E el},

where c1 E Co is a coset leader. We will take the nonzero coset leaders in C \ C1. From
Section 2.2.5, recall that Co/CI forms a factor group, partitioning Co into 2ko-kl disjoint
subsets each containing 2kl codewords. Each of these subsets can be represented by a
coset leader. The set of coset leaders is called the coset representative space. The coset
representative for the coset C1 is always chosen to be 0. Denote this coset representative
space by [Co/C1]. The code C1 and the set [C/Cl] share only the zero vector in common,

Without loss of generality, let Go = G be expressed in a form that k l rows of Go can
be selected as a generator GI for C1. The 2ko-kl codewords generated by the remaining
ko - k l rows of Go \ GI can be used as to generate representatives for the cosets in C/CI.
Let Go\l = Go \ GI (that is, the set difference, thinking of the rows as individual elements
of the set). The 2ko-kl codewords generated by Go\l form a (n , k - kl) subcode of Co.

Every codeword in C can be expressed as the sum of a codeword in C1 and a vector in
[Co/Cl]. We denote this as

c1 n [c/cli = 0.

co = c1 63 [CO/Cll = {u + v : u E Cl, v E [CO/C11).

The set-operand sum cB is called the direct sum.

Example 8.13 While the squaring construction can be applied to any linear block code, we demon-
strate it here for a Reed-Muller code. Consider the RM(1, 3) code with

1 [0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

G = G o =

Let C1 be the (8 ,3) code generated by the first k l = 3 rows of the generator Go,

1 [0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1
G I = 0 0 1 1 0 0 1 1 .

The cosets in C/C1 are

LO, 0, 0 , 0, 0 , 0, 0,Ol + c1, LO, 1,0, 1,0, 1,0, 11 + c1

8.4 Building Long Codes from Short Codes: The Squaring Construction 393

The coset representatives are

[COIC11 = “O,O, o,o, o,o, O,OI , [O , 1,0, 1,0, 1,0, 131

generated by the rows of the matrix

Go\i = Go \ G I = LO, 1,0, 1,0, 1,0, 11.

0

One-level squaring is based on C1 and the partition Co/C1. Let (Co/C1 l 2 denote the code
&/i of length 2n obtained by the squaring construction, defined as

Cop = ICo/C1 l 2 = {(a + x, b + x) : a, b E C1 and x E [Co/C1]}. (8.13)

Since there are 2ko-k1 vectors in [Co/Cl] and 2k1 choices each for a and b, there are
2ko-k12kl 2kl = 2ko+kl codewords in Co/1. The code Q/1 is thus a (n, ko + kl) code.
Let

m = [mi ,o ,mi , i , ..., mi,kl-i,m2,o,m2,1, ..., m2,kl-i,m3,0,ms,i, ..., m3,k,,-kl-il

be a message vector. A coded message of the form c = (a + x, b + x) from (8.13) can be
obtained by

c = m [:I] Lm@o/l

so the matrix 6 0 / 1 is the generator for the code. The minimum weight for the code is
doll = min(2d0, d l) .

We can express the generator matrix 6 0 / 1 in the following way. For two matrices M1
and M2 having the same number of columns, let M1 @ M2 denote the stacking operation

GO\l GO\l

This is called the matrix direct sum. Let 12 be the 2 x 2 identity. Then

12 €3 G1 = [Ggi 4 f
where €3 is the Kronecker product. We also have

Then we can write
@o/i = 12 8 GI @ [I 11 €3 Go\i.

Example 8.14 Continuing the previous example, the generator for the code ICo/C1 l 2 is

QSO/l =

- 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

394 Other Important Block Codes

We can further partition the cosets as follows. Let C2 be a (n, k2) subcode of C1 with
generator G2, with 0 5 k2 5 k l . Then each of the 2ko-kl cosets cl + C1 in the partition
CO/CI can be partitioned into 2k1-k2 cosets consisting of the following codewords

cl + d p + C2 = {cl + d p + c : c E C2}

for each 1 in 0 ,1 ,2 , . . . , 2k-kl and each p in 1,2, . . . , 2k1-k2, where d, is a codeword in
C1 but not in C2. This partition is denoted as C/Ci/C2. We can express the entire code as
the direct sum

co = [C/ClI @ [Cl/C21 a3 cz.
Let G1\2 denote the generator matrix for the coset representative space [CI/C~]. Then
G1\2 = G I \ G2.

Example 8.15 Let C2 be generated by the first two rows of GI , so

1 G 2 = [0 0 1 1 0 0 1 1
1 1 1 1 1 1 1 1

There are two cosets in C1/C2,

[O, o,o,o, 0, 0 , 0,01+ c2, [O, 0, 0, 0, 1, 1, 1, 11 + c2.

The set of coset representatives [Cl /C2] is generated by

Two-level squaring begins by forming the two one-level squaring construction codes C.011 =
ICo/CI l 2 and C1p = lC1/C2l2, with generators 80 /1 and 81/2, respectively, given by

@0/1 = [: 11]
GO\l GO\l

(8.14)

Note that C1p is a subcode (subgroup) of Co/1. The coset representatives for Co/1/C1/2,

which are denoted by [Co/l/C1/2], form a linear code. Let 8 ~ , , \cl,2 denote the generator
matrix for the coset representatives [Co/l/Cl/2]. Then form the code C0/1/2 = ICo/C1/C2I4

by
C0/1/2 = ICo/C1/C214 = {(a + x, b + x) : a, b E C112 and x E [C0/1/C1~211.

That is, it is obtained by the squaring construction of Co/1 and C0/1/C1/2. The generator
matrix for C0/1/2 is

@0/1/2 = p .P,2] .
@1\2 81\2

This gives a (4n, ko + 2k1 + k2) linear block code with minimum distance

d0/1/2 = min(4do92di, d2).

8.4 Building Long Codes from Short Codes: The Squaring Construction 395

Writing 6 0 / 1 and 6 1 / 2 as in (8.14), rearranging rows and columns and performing some
simple row operations, we can write 60/1/2 as

@0/1/2 =

which can be expressed as

G2
0
0
0

GO\l

G1\2
0
0

Note that

are the generator matrices for the zeroth and first order Reed-Muller codes of length 4.

generators Gj, minimum distance dj, and dimensions k l , k2, . . . , km satisfying
More generally, let CI, C2, . . . , Cm be a sequence of linear subcodes of C = Co with

co 2 c 1 2 . . . 1 c,
k 3 kl 2 - * . 2 km 2 0.

Then form the chain of partitions

c o / c l , c o / c l / c 2 , ..., c o /Cl / -** /cn l ,

co = [C/Cll @ [Cl/C21 @ . * * @ [C*-l/Cml.

such that the code can be expressed as the direct sum

Assume that the generator matrix is represented in a way that Go 2 G 1 . - 2 Gm. Let
Gj\i+l denote the generator matrix for the coset representative space [Ci/Cj+l], with

rank(Gj/j+l) = rank(Gi) - rank(Gj+l)

and Gi\ j+l = Gi \ Gi+l . Then higher-level squaring is performed recursively. From the
codes

A 2m-I
@o/I / . . . /~-I = Ico/C1/. . * /cm-l I

and the code
A

61/2/ ...I m = I C ~ / C ~ / . . . / e m 12"-' 9

form the code
A

@O/l/.../m = [Co/Cl/ . . *
= {(a + X, b + X) : a, b E 81/2/ - . / m , x E [@0/1/. . . /m-l/61/2/. . . /mI).

396 Other Important Block Codes

The generator matrix can be written (after appropriate rearrangement of the rows) as

m

@ o / I / .../ rn = Z2m @ Gm @ ~ G R M (~ . m) @ Gr\r+1,
r=O

where G R M (~ , m) is the generator of the RM(r , m) code of length 2m.

8.5 Quadratic Residue Codes

Quadratic residue codes are codes of length p , where p is a prime with coefficients in
G F (s) , where s is a quadratic residue of p . They have rather good distance properties,
being among the best codes known of their size and dimension.

We begin the construction with the following notation. Let p be prime. Denote the set
of quadratic residues of p by Q p and the set of quadratic nonresidues by N p . Then the
elements in G F (p) are partitioned into sets as

G F (P) = Q p U N p U {Ole

As we have seen G F (p) is cyclic. This gives rise to the following observation:

Lemma 8.11 A primitive element of G F (p) must be a quadratic nonresidue. That is, it is
in N p .

Proof Let y be a primitive element of G F (p) . We know yp-' = 1, and p - 1 is the
smallest such power. Suppose y is a quadratic residue. Then there is a number cr (square
root) such that cr2 = y . Taking powers of cr, we have c r 2 (P - l) = 1. Furthermore, the powers
cr, c2, c r 3 , . . . , c 2 (P - l) can be shown to all be distinct. But this contradicts the order p of
the field.

So a primitive element y E G F (p) satisfies y e E Q p if and only if e is even, and y e E N p
if and only if e is odd. The elements of Q p correspond to the first (p - 1) /2 consecutive
powers of y 2 ; that is, Q p is a cyclic group under multiplication modulo p , generated by y 2 .

The quadratic residue codes are designed as follows. Choose a field G F (s) as the field
for the coefficients, where s is a quadratic residue modulo p . We choose an extension
field G F (s m) so that it has a primitive pth root of unity; from Lemma 5.16 we must have
pi s"' - 1. (It can be shown [220, p. 5191 that if s = 2, then p must be of the form
p = 8k f 1.)

Let be a primitive pth root of unity in G F (s m) . Then the conjugates with respect to
G F (s) are

The cyclotomic coset is { 1, s, s2, s3, . . . , }. Since s E Q p and Q p is a group under multi-
plication modulo p , Q p is closed under multiplication by s. So all of the elements in the
cyclotomic coset are in Q p . Thus Q p is a cyclotomic coset or the union of cyclotomic
cosets.

B ' , B S , BS2 , B S 3 , . * *

Example 8.16 Let p = 11, which has quadratic residues Q p = (1 ,3 ,4 , 5 ,9} . Let s = 3. A field
having a primitive 11th root of unity is GF(35). Let E CF(35) be a primitive 11th root of unity.
The conjugates of j3 are:

P , P 3 , B9 , P2I = 5 , P81 = P4,

8.5 Quadratic Residue Codes 397

so the cyclotomic coset is

which is identical to Q p .

Now let B be a primitive pth root of unity in GF(sm) . Because of the results above,

11>3,9,5,4),

0

q(x) = n (x - P i)

n (x) = n (x - Pi>

i C Q p

is a polynomial with coefficients in G F (s) . Furthermore,

i c N p

also has coefficients in GF(s) . We thus have the factorization

x p - 1 = q(x)n(x) (x - 1) .

Let R be the ring G F (s) [x] / (x P - 1) .

(8.15)

Definition 8.5 [220, p. 4811 For a prime p , the quadratic residue codes of length 9, g, 31'
and are the cyclic codes (or ideals of R) with generator polynomials

q (x) , (x - l) q (x) , n(x>, (x - l>n(x>,

respectively. The codes 9 and N have dimension i (p + 1) ; the codes have
dimension i (p - 1). The codes 9 and N are sometimes called augmented QR codes, while

and

-
9 and are called expurgated QR codes. 0

Example 8.17 Let p = 17 and s = 2. The field GF(28) has a primitive 17th root of unity, which is
@ = a15. The quadratic residues modulo 17 are { 1,2 ,4 ,8 ,9 , 13, 15, 16). Then

QR codes tend to have rather good distance properties. Some binary QR codes are the best
codes known for their particular values of n and k. A bound on the distance is provided by
the following.

Theorem 8.12 The minimum distance d of the codes 9 or N satisjies d2 ? p. IJ; addition-
ally, p = 41 - 1 forsomel, thend2 - d + 1 ? p.

The proof relies on the following lemma.

Lemma 8.13 Let $(x) = q (x n) , where n E N p (where the operations are in the ring R).
Then the mots of $(x) are in the set (ai , i E N p } . That is, $(x) is a scalar multiple of n(x) .
Similarly, n (xn) is a scalar multiple of q (x) .

398 Other Important Block Codes

Proof Let p be a generator of the nonzero elements of G F (p) . From the discussion around
Lemma 8.11, Q is generated by even powers of p and N p is generated by odd powers of p.

Write i(x) = (x" - a') . Let m E N p . Then for any m E N p ,

j(a") = n (arn" - a".
i e N p

But since m E N p and n E N p , mn E N p (being both odd powers of p. So a' = am" for
0

The effect of evaluation at q (x") is to permute the coefficients of q (x).

Proof of Theorem 8.12. [220, p. 4831. Let a(x) be a codeword of minimum nonzero
weight d in 9. Then by Lemma 8.13, the polynomial Z(x) = a(x") is a codeword in N.
Since the coefficients of Z (x) are simply a permutation (and possible scaling) of those of
a(x), Z(x) must be a codeword of minimum weight in N. The product a(x)Z(x) must be a
multiple of the polynomial

some value of i, so am is a root of 4 (x).

Thus a(x)Z(x) has weight p . Since a(x) has weight d , the maximum weight of a(x)Z(x)
is d2. We obtain the bound d 2 2 p .

If p = 4k - 1 then n = 1 is a quadratic nonresidue. In the product a(x)Z(x) =
a(x)a(x-') there are d terms equal to 1, so the maximum weight of the product is d 2 - d + 1.

n
U

Table 8.1 summarizes known distance properties for some augmented binary QR codes,
with indications of best known codes. In some cases, d is expressed in terms of upper and
lower bounds.

Table 8.1: Extended Quadratic Residue Codes 9 [220,373]
n k d n k d n k d
8 4 4" 74 37 14 138 69 14-22
18 9 6" 80 40 16" 152 76 20
24 12 8" 90 45 18" 168 84 16-24
32 16 8" 98 49 16 192 96 16-28
42 21 10* 104 52 20* 194 97 16-28

72 36 12 128 64 20
48 24 12* 114 57 12-16 200 100 16-32

* Indicates that the code is as good as the best known for this n and k

While general decoding techniques have been developed for QR codes, we present only
a decoding algorithm for a particular QR code, the Golay code presented in the next section.
Decoding algorithms for other QR codes are discussed in [2201, [287], [283], and [75].

8.6 Golay Codes

Of these codes it was said, "The Golay code is probably the most important of all codes,
for both practical and theoretical reasons." [220, p. 641. While the Golay codes have not

8.6 Golay Codes 399

- 1
1
1
1
1
1

1
1
1
1

- 1

G =

supported the burden of applications this alleged importance would suggest, they do lie at
the confluence of several routes of theoretical development and are worth studying.

Let us take p = 23 and form the binary QR code. The field GF(211) has a primitive
23rd root of unity. The quadratic residues are

and the corresponding generators for L! and N are

Q p = {1 ,2 ,3 ,4 ,6 ,8 ,9 , 12, 13, 16, 18)

q(x) = n (x - p i) = 1 + x + x 5 +x6 +x7 +x9 + x"
i € Q p

n(x)= l + x 2 + x 4 + x ~ + x 6 + x 1 0 + x l l .

This produces a (23,12,7) code, the Golay code 523. It is straightforward to verify that this
code is a perfect code: the number of points out to a distance t = 3 is equal to

1 1 1 1 1 1 1

1 1 1 1 1 1 1

-
1 1 1 1 1 1 1

1 1 1 1 1 1 1
1 1 1 1 1 1 1

1 1 1 1 1 1 1
1 1 1 1 1 1 1

1 1 1 1 1 1 1
1 1 1 1 1 1 1

1 1 1 1 1 1 1
1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 -

(8.16)

We note the following facts about 524.

In this representation, the 11 x 11 ATl matrix on the upper right is obtained from the
transpose of 12 x 12 Hadamard matrix of Paley type (8.5) by removing the first row
and column of H12, then replacing - 1 by 1 and 1 by 0. Since the rows of H12 differ
in six places, the rows of ATl differ by six places. Because of the identity block, the
sum of any two rows of G has weight 8.

If u and v are rows of G (not necessarily distinct), then wt(u . v) = 0 (mod 2). So
every row of G is orthogonal to every other row. Therefore, G is also the parity check
matrix H of 524. Also 9 is dual to itself 524 = 5i4. Such a code is call self-dual.
Every codeword has even weight: If there were a codeword u of odd weight then
wt(u . u) = 1. Furthermore, since every row of the generator has weight divisible by
4, every codeword is even.

The weight distributions for the (23, 12) and the (24, 12) codes are shown in Table
8.2.

400 Other Important Block Codes

Table 8.2: Weight Distributions for the 923 and 924 Codes [373]

923: i: 0 7 8 11 12 15 16 23
Ai: 1 253 506 1288 1288 506 253 1

Q24: i: 0 8 12 16 24
Aj: 1 759 2576 759 1

8.6.1 Decoding the Golay Code

We present here two decoding algorithms for the Golay code. The first decoder, due to
[75], is algebraic and is similar in spirit to the decoding algorithms used for BCH and Reed-
Solomon codes. The second decoder is arithmetic, being similar in spirit to the Hamming
decoder presented in Section 1.9.1.

Algebraic Decoding of the 923 Golay Code

The algebraic decoder works similar to those we have seen for BCH codes. An algebraic
syndrome is first computed, which is used to construct an error locator polynomial. The
roots of the error locator polynomial determine the error locations, which for a binary code
is sufficient for the decoding. Having minimum distance 7, 923 is capable of correcting up
to three errors.

Let /3 be a primitive 23rd root of unity in GF(211). Recall that the quadratic residues
modulo 23 are Q p = {1,2,3,4,6,8,9, 12, 13, 16, 18) and the generator polynomial is

g(x) = fl (x - B’) .
i E Q p

Thus B, B3, and B9 are all roots of g(x) , and hence of any codeword c (x) = m (x) g (x) . Let
c (x) be the transmitted codeword, and let r (x) = c (x) + e (x) be the received polynomial.
We define the syndrome as

sj = r (@) = e(B’>.

If there are no errors, then sj = 0 for i E Q p . Thus, for example, if $1 = $3 = s9 = 0, no
errors are detected. If there is a single error, e (x) = xJI , then

s1 = B J I , s3 = 83’1, s9 = 8 9 ” .

When this condition is detected, single-error correction can proceed.
Suppose there are two or three errors, e (x) = xJl + xJz + x j 3 , Let z1 = B j l , z2 = BJz

and z3 = 8’3 be the error locators, where z3 = 0 in the case of only two errors.) The
syndromes in this case are

sj = z’; + z; + z;.
Define the error locator polynomial as

3 2 + 01X L (x) = (X - z l) (X - ZZ)(X - 23) = x + a 2 X + 03,

8.6 Golay Codes 401

where, by polynomial multiplication,

0 1 = 21 + 22 + 23

02 = 2122 + 2123 + 2223

0 3 = 212223.

The problem now is to compute the coefficients of the error locator polynomial using the
syndrome values. By substitution of the definitions, it can be shown that

9 2 2 4 s7 = sIs3 f 0285 + 03sl S9 + S1 = a2S7 + 03S3

3
$1 + $3 = 0 3 + 02Sl.

5
S5 = S1 + 0283 + 03s:

By application of these equivalences (see golay s i m p . m) it can be shown that

(8.17)

The quantity D thus has a cube root in GF(211). From (8.17) we obtain 02 = s: + D'J3;
similarly for 03. Combining these results, we obtain the following equations:

0 1 = s1

An example of the decoder is shown in t e s t G o l a y . cc.

Arithmetic Decoding of the QU Code

In this section we present an arithmetic coder, which uses the weight structure of the syn-
drome to determine the error patterns.

Besides the generator matrix representation of (8.16), it is convenient to employ a sys-
tematic generator. The generator matrix can be written in the form

G =

1
1

1
1

1
1

1
1

1
1

1
1

= [I12 B] .

1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

It may be observed that B is orthogonal,

B ~ B =I.

Let r = c + e and let e = (x, y), where x and y are each vectors of length 12. Since the code
is capable of correcting up to three errors, there are only a few possible weight distributions
of x and y to consider:

wt(x) 5 3

wt(x) 5 2

wt(x) 5 1
wt(x) = 0

wt(y) = 0

wt(y) = 1

wt(y) = 2
wt(y) = 3.

go1aysimp.m I

402 Other Important Block Codes

Since the code is self-dual, the generator matrix is also the parity check matrix. We can
compute a syndrome by

T T s = Gr = G(e) = G[x, yIT = xT + ByT.

If y = 0, then s = xT. If s has weight 5 3, we conclude that y = 0. The error pattern is
e = (x, 0) = (sT, 0).

Suppose now that wt(y) = 1, where the error is in the ith coordinate of y and that
wt(x) I 2. The syndrome in this case is

T S = X + b z ,

where bi is the i th column of B. The position i is found by identifying the position such that
wt(s + bj) = wt(x) L: 2. Having thus identified i, the error pattern is e = ((s + b,)T, yi).
Here, the notation yz is the vector of length 12 having a 1 in position i and zeros elsewhere.

Ifwt(x) = Oandwt(y) = 2 o r 3 thens = b, + b j o r s = b, + b, + bk. Since B is an
orthogonal matrix,

B ~ S = B ~ (B Y ~) = yT.

The error pattern is e = (0, (BTs)T).
Finally, if wt(x) = 1 and wt(y) = 2, let the nonzero coordinate of x be at index i f Then

T T B ~ S = B (X + BY^) = B ~ X ~ + B ~ B ~ ~ = r: + yT,

where r, is the ith row of B. The error pattern is e = (xi, (BTs)T + ri).
Combining all these cases together, we obtain the following decoding algorithm.

go1ayarith.m

Algorithm 8.2 Arithmetic Decoding of the Golay 924 Code

(This presentation is due to Wicker [373])
I Input: r = e + c, the received vector
z Output: c, the decoded vector
3 Compute s = Gr (compute the syndrome)
4 if wt(s) 5 3
5 e = (sT,O)
6 eke if wt(s + bi) 5 2 for some column vector bj
7

8 else
9 Compute B ~ S

10 ifwt(BTs) 5 3
e = (0, (~ ~ s) ~)

iz else ifwt(BTs + r:) 5 2 for some row vector ri
13 e = (xi, + ri)
14 else
15

16 end
17 end
18 c = r f e

e = ((s + bi)T y j)

Too many errors: declare uncorrectable error pattern and stop.

A Matlab implementation that may be used to generate examples is in golayar ith . m

8.7 Exercises 403

8.7 Exercises

8.1 Verify items 1, 9, and 10 of Theorem 8.1.
8.2 Show that

are Hadamard matrices.
8.3 Prove the first two parts of Theorem 8.4.
8.4 Compute the quadratic residues modulo 19. Compute the values of the Legendre symbol ~ 1 9 (x)

8.5 The Legendre symbol has the following properties. Prove them. In all cases, take (a, p) = 1 and

(a) x p (a) = a(P-')12 (mod p) . Hint: if Xp(a) = 1 then x 2 = a (mod p) has a solution,

forx = 1,2, . . . , 18.

(b, p) = 1.

say xo. Then a(P-')l2 = xl-'. Then use Fermat's theorem.

(b) X p W X p (b) = Xp (a@.
(c) a = b (mod p) implies that x p (a) = xp(b).

(d) xp(a2) = 1. xp(a2b) = ~ p (b) . xp(l) = 1. xp(-l) = (-1)(p-')l2.

8.6 Construct a Hadamard matrix of order 20.
8.7 Construct the Hadamard codes A20,2320 and '220. Which of these are linear codes? Which are

cyclic?
8.8 Construct a generator and parity check matrix for RM(2,4).
8.9 Show that RM(r , rn) is a subcode of R M (r + 1, m).

8.10 Show that RM(0, rn) is a repetition code.

8.11 Show that R M (m - 1, rn) is a simple parity check code.
8.12 Show that if c E R M (r , m) , then (c, c) E RM(r , m + 1).

8.13 For each of the following received sequences received from RM(1,3) codes, determine the
transmitted codeword c.

(a) r= [1 ,0 ,1 ,0 ,1 ,1 ,0 ,1] .
(b) r=[O,1 ,0 ,0 ,1 ,1 ,1 ,1] .

8.14 Prove that all codewords in RM(1, m) have weight 0, 2m-1 or 2m. Hint: By induction.
8.15 Show that the RM(1,3) and RM(2,5) codes are self-dual. Are there other self-dual Rh4 codes?

8.16 Forthe RM(1,4) code:

(a) Write the generator G.

(b) Determine the minimum distance.
(c) Write down the parity checks for $4, $3, $2, $1 and $0.

(d) Decode the received vector r = [0, 1, 1, 1,0, 1, 1, 0, 1,0,0, 1, 1,0,0, 11, if possible.
(e) Decode the received vector r = [I, 1, 1, 1,0, 1, 1,0, 1, 1, 1, 1, 0, 0, 0, 01, if possible.
(f) Decode the received vector r = [l , 1, 1, 1,0,0, 1, 1,0, 1,0, 1, 1, 0, 1, 01, if possible.

8.17 Verify the parity check equations for Figure 8.6(a) and (b).
8.18 For the inverse Hadamard transform:

(a) Provide a matrix decomposition analogous to (8.10).
(b) Draw the signal flow diagram for the fast inverse Hadamard computation.

404 Other Important Block Codes

8.19

8.20

8.21

8.22

8.23

8.24
8.25

8.26
8.27
8.28

8.29

(c) Implement your algorithm in Matlab.

Construct the generator for a RM(2,4) code using the [ulu + v] construction.
Using the [ulu + v] construction show that the generator for a RM(r , m) code can be constructed
as

1. GRM(r, m - 2) GRM(r, m - 2) G R M (~ , m - 2) GRM(r, m - 2)
0 GRM(Y - 1, m - 2) 0 GRM(I - 1, m - 2)

0 GRM(r - 1, m - 2)
0 0 GRM(r - 2, m - 2)

GRM(r - 1, m - 2) G = [0 0

Construct the generator for a RM(2,4) code using the Kronecker construction.

Let G = [: : y : y :] be the generator for a (7,4) Hamming code Co. Let G1

be formed from the first two rows of G . Let G2 be formed from the first row of G.

1 1 0 1 0 0 0

0 0 0 1 1 0 1

(a) Identify Go\l and the elements of [Co/C1].
(b) Write down the generator 60/1 for the code Coil.
(c) Write down the generator 6 1/2 for the code C112.
(d) Write down the generator 60/1/2 for the code Co/1/2.

Quadratic residue code designs.

(a) Find the generator polynomials for binary quadratic residue codes of length 7 and dimen-
sions 4 and 3. Also, list the quadratic residues modulo 7 and compare with the cyclotomic
coset for B .

(b) Are there binary quadratic residue codes of length 1 l ? Why or why not?

(c) Find the generator polynomials for binary quadratic residue codes of length 23 and di-
mensions 12 and l l . Also, list the quadratic residues modulo 23 and compare with the
cyclotomic coset for j3.

Find quadratic residue codes with s = 3 of length 11 having dimensions 5 and 6.
Show that n(x) defined in (8.15) has coefficients in GF(s) .

In decoding the Golay code, show that the cube root of D may be computed by finding x = D 1365.

Show that the Golay (24,12) code is self-dual.
Let r = [l , 1, 1, 1,0, 1, 1, 1, 1, 1, 1, O,O, 0, 1, 1, l,O, l , O , 0, 1, 1, 11 be areceived vector from
a Golay (24, 12) code. Determine the transmitted codeword using the arithmetic decoder.
Let r = [l , 1, 1,0, 1, 1, 1, 1, 1, 1,0,0,0, 1, 1, 1,0, 1,0,0, 1, 1, 11 be the received vector from a
Golay (23, 12) code. Determine the transmitted codeword using the algebraic decoder.

8.8 References

This chapter was developed largely out of course notes based on [373] and closely follows
it. The discussion of Hadamard matrices and codes is drawn from [220] and [373]. A
more complete discussion on quadratic residues may be found in [250]. Considerably more
detail about Reed-Muller codes is available in [220]. The Reed-Muller codes were first
described in [248], with work by Reed immediately following [284] which reinforced the
Boolean function idea and provided an efficient decoding algorithm. The graph employed
in developing the Reed-Muller decoding orthogonal equations is an example of a Euclidean

8.8 References 405

geometry E G (m , r) , a finite geometry. This area is developed and explored, giving rise
to generalizations of the majority logic decoding, in [203, Chapter 81. Chapter 7 of [203]
also develops majority logic decoding for cyclic codes. Majority logic decoding can also be
employed on convolutional codes [203, Chapter 131, but increasing hardware capabilities
has made this less-complex alternative to the Viterbi algorithm less attractive.

The Golay codes are covered in lavish and fascinating detail in Chapters 2, 16 and 20
of [220]. Interesting connections between 924 and the 24-dimensional Leech lattice are
presented in [56].

Another type of decoder which has worked well for the Golay code is an error trapping
decoder. Such decoders employ the cycle structure of the codes, just as the Meggitt decoders
do, but they simplify the number of syndromes the decoder must recognize. A thorough
discussion of error trapping decoders is in [203] and [185]. Other Golay code decoders
include conventional coset decoding; a method due to Berlekamp [350, p. 351; and majority
logic decoding [220].

Chapter 9

Bounds on Codes
Let C be an (n, k) block code with minimum distance d over a field with q elements with
redundancy r = n - k . There are relationships that must be satisfied among the code length
n , the dimension k , the minimum distance d ~ i n , and the field size q . We have already met
two of these: the Singleton bound of theorem 3.4,

d 5 n - k + 1 = r + 1,

and the Hamming bound of Theorem 3.5,

r I log, vq (n 7 t) 9

where V,(n, t) is the number of points in a Hamming sphere of radius t = [(d - 1)/2J,

(see (3.9)). In this chapter we present other bounds which govern the relationships among
the parameters defining a code. In this, we are seeking theoretical limits without regard
to the feasibility of a code for any particular use, such as having efficient encoding or
decoding algorithms. This chapter is perhaps the most mathematical of the book. It does
not introduce any good codes or decoding algorithms, but the bounds introduced here have
been of both historical and practical importance, as they have played a part in motivating
the search for good codes and helped direct where the search should take place.

Definition 9.1 Let A, (n, d) be the maximum number of codewords in any code over G F (q)
0

For a linear code the dimension of the code is k = log, A,(n, d) .
Consider what happens as n gets long in a channel with probability of symbol error

equal to p,. The average number of errors in a received vector is np,. Thus, in order
for a sequence of codes to be asymptotically effective, providing capability to correct the
increasing number of errors in longer codewords, the minimum distance must grow at least
as fast as 2np,. We will frequently be interested in the relative distance and the rate k / n as
n -+ 00.

Definition 9.2 For a code with length n and minimum distance d , let 6 = d / n be the
relative distance of the code. 0

Definition 9.3 Let’

of length n with minimum distance d.

For a code with relative distance 6, the distance is d 6n = 6n + O(1).

1

‘The lim sup is the least upper bound of the values that its argument function returns to infinitely often. Initially
it may be helpful think of lim sup as “sup” or “max.”

407

For a linear code, log, A, (n , d) is the dimension of the code and A log, A, (n , d) is the
code rate, so a, (6) is the maximum possible code rate that an arbitrarily long code can have

0
The functions A, (n , d) and aq (6) are not known in general, but upper and lower bounds

on these functions can be established. For example, the Singleton bound can be expressed
in terms of these functions as

and, asymptotically,

while maintaining a relative distance 6. We call this the asymptotic rate.

n-d+l A,(n , & 5 4

a,(S) 5 1 - 6.

Many of the bounds presented here are expressed in terms of a, (8) . A lower bound is
the Gilbert-Varshamov bound (sometimes called the Varshamov-Gilbert bound). As upper
bounds on aq (a), we also have the Hamming and Singleton bounds, the Plotkin bound, the
Elias bound, and the McEliece-Rodemich-Rumsey-Welch bound (in two forms). Figure
9.1 shows a comparison of the lower bound and these upper bounds. Codes exist which fall
between the lower bound and the smallest of the upper bounds, that is, in the shaded region.

0.8 McEliece-Rodemich-
Rumsey-Welch

0.6 -

0.4 -

0.2 -

n -

' A / Hammincr

"0 0.2 0.4 0.6 0.8 1
6

Figure 9.1 : Comparison of lower bound (Gilbert-Varshamov) and various upper bounds.

A function which figures into some of the bounds is the entropy function. The binary
entropy function H2 was introduced in Section 1.3. Here we generalize that definition.

Definition 9.4 Let p = (q - l) /q. Define the entropy function H, on [O, p] by

Hq(X) = x lOg,(q - 1) - x log, x - (1 - X) lOg,(l - x), x E (0, p]

and H,(O) = 0. 0
The entropy and the number of points in the Hamming sphere are asymptotically related.

Lemma 9.1 Let0 5 x 5 p = (q - l) /q. Then
1

lim -log, V,(n, Lxnl) = H,(x).
n+cc n (9.3)

408 Bounds on Codes

Box 9.1: 0 and o Notation

The 0 and o notation are used to represent "orders" of functions. Roughly,
these may be interpreted as follows [152]:

f = O (l) a s x + x o e ~ f isboundedasx-+xo.

f = o(1) asx -+ XO + f + 0 as x + no.

f = O(g) as x + xo + f / g is bounded as x + xo.
f = o(g) asx -+ xo + f / g -+ Oasx + xg.

It follows from the definitions that o(1) + o(1) = o(1) and O(x") + O (x m) =
0 (Xmax(n I m) 1.

Proof First we need a way to approximate the binomial. Stirling's formula (see Exercise
9.10) says that

n! = &nne-n + o(1).

Thus

1
2

logn! =log&+ (n + -)logn - n +o(l) =nlogn - n + O(1ogn). (9.4)

Now let m = Lxn]. Then by (9.1),

The last term of the summation is the largest over this index range. Also, it is clear that

m-1

m i=O

We thus obtain

(n)(q m
- 1)" i v,(n,m) 5 (1 + m ~ (~) (q m - 1)".

Take log, throughout and divide through by n to obtain

1 1 n log, (:> + log,(q - 1) 5 -log, n Vq(n, m>

1
n n

As n -+ 00, $log,(l + m) -+ 0. Using the fact that

i - log,(l + m) + log,(q - 1). (9.5)

= 6 + o(l) , we obtain

+ log,(q - 1) n+oo n (:> 1
lim - log, V,(n, m) = lim - log,

n + w n

1
= lim - log, (i) + s log,(q - 1) + o(1).

n+oo n

9.1 The Gilbert-Varshamov Bound 409

Using (9.4) we have

1
lim -log, V,(n, m)

n+oo n
= log, n - S log, m - (1 - 8) log,@ - m) + 6 log,(q - 1) + o(1)

=logqn-610gqS-610gqn-(1 -S)logp(l-6)-(1-6)log,n

+ 6log,(q - 1) + o(l)

= -Slog,S-(1-S)log,(1-6)+6log,(q- 1)+o(l)=Hp(8)+o(l) .

0

9.1 The Gilbert-Varshamov Bound

The Gilbert-Varshamov bound is a lower bound on A , (n, d) .

Theorem 9.2 For natural numbers n and d , with d 5 n,

Proof [350] Let C be a code of length n and distance d with the maximum number of
codewords . Then of all the qn possible n-tuples, there is none with distance d or more
to some codeword in C. (Otherwise, that n-tuple could be added to the code and C would
not have had the maximum number of codewords.) Thus, the Hamming spheres of radius
d - 1 around the codewords cover all the n-tuples, so that the sum of their volumes is 2 the
number of points. That is,

ICIV,(n, d - 1) 2 qn.

This is equivalent to (9.6). 0
For a linear code, the Gilbert-Varshamov bound can be manipulated as follows:

log, A,(n, d) 2 n -log, Vq(n, d - 1)

or
IZ - log, Aq(n, d) 5 log, Vq(n, d - 1).

The correction capability satisfies d = 2t + 1. The redundancy can be written as r =
n - k = n - log, Aq(n, d) . We obtain

(9.7)

The Gilbert-Varshamov bound can thus be viewed as an upper bound on the necessary
redundancy for a code: there exists a t-error correcting q-ary code with redundancy r
bounded as in (9.7).

r 5 log, V,(n, 2 t) .

The Gilbert-Varshamov bound also has an asymptotic form.

410 Bounds on Codes

Proof [350] Using (9.2), (9.6) and Lemma 9.1 we have

1 1
aq(6) = limsup -log, A,(n, L6nl) 2 lim (1 - -log, Vq(n, an)) = 1 - Hq(6).

n + w n n + w n

0
The Gilbert-Varshamov bound is a lower bound: it should be possible to do at least

as well as this bound predicts for long codes. However, for many years it was assumed
that a, (6) would, in fact, be equal to the lower bound for long codes, since no families of
codes were known that were capable of exceeding the Gilbert-Varshamov bound as the code
length increased. In 1982, a family of codes based on algebraic geometry was reported,
however, which exceeded the lower bound [342]. Unfortunately, algebraic geometry codes
fall beyond the scope of this book. (See [341] for a comprehensive introduction to algebraic
geometry codes, or [349] or [274]. For mathematical background of these codes, see [321].)

9.2 The Plotkin Bound

Theorem 9.4 Let C be a q-ary code of length n and minimum distance d . Then ifd > pn,

where p = (q - l) /q.

Proof [350] Consider a code C with M codewords in it. Form a list with the M codewords
as the rows, and consider a column in this list. Let qj denote the number of times that the j th

symbol in the code alphabet, 0 5 j < q, appears in this column. Clearly,
Let the rows of the table be arranged so that the qo codewords with the 0th symbol

are listed first and call that set of codewords Ro, the q1 codewords with the 1st symbol
are listed second and call that set of codewords R1, and so forth. Consider the Hamming
distance between all M (M - 1) pairs of codewords, as perceived by this selected column.
For pairs of codewords within a single set Rj , all the symbols are the same, so there is no
contribution to the Hamming distance. For pairs of codewords drawn from different sets,
there is a contribution of 1 to the Hamming distance. Thus, for each of the q j codewords
drawn from set Rj , there is a total contribution of M - qj to the Hamming distance between
the codewords in Rj and all the other sets. Summing these up, the contribution of this
column to the sum of the distances between all pairs of codewords is

qj = M.

0-1 0-1 a-1 a-1

j =O j=O j=O j =O

Now use the Cauchy-Schwartz inequality (see Box 9.2 and Exercise 9.6) to write

Now total this result over all n columns. There are M(M - 1) pairs of codewords, each a
distance at least d apart. We obtain

9.3 The Griesmer Bound 411

Box 9.2: The Cauchy-Schwartz Inequality

For our purposes, the Cauchy-Schwartz inequality can be expressed as follows
(see [246] for extensions and discussions): Let a = (al, u2, . . . , a n) and
b = (61 , b2, . . . , 6,) be sequences of real or complex numbers. Then

I n n

or
d

d - np
M I - .

Since this result holds for any code, since the C was arbitrary, it must hold for the code with
A,(n, d) codewords. 0
Equivalently,

The Plotkin bound provides an upper bound on the distance of a code with given length n
and size M .

9.3 The Griesmer Bound

Theorem 9.5 For a linear block (n, k) q-ary code C with minimum distance d ,

k- 1

i =O

Proof Let N (k , d) be the length of the shortest q-ary linear code of dimension k and
minimum distance d . Let C be an (N (k , d), k , d) code and let G be a generator matrix of
the code. Assume (without loss of generality, by row and/or column interchanges andor
row operations) that G is written with the first row as follows: [1 l G I . * 1 1 0 oGi- 0 1

G = ,

where G1 is (k - 1) x d and G2 is (k - 1) x (N (k , d) - d) . Claim: G2 has rank k - 1.
Otherwise, it would be possible to make the first row of G2 equal to 0 (by row operations).
Then an appropriate input message could produce a codeword of weight < d , by canceling
one of the ones from the first row with some linear combination of rows of G 1 , resulting in
a codeword of minimum distance < d .

Let Gz be the generator for an (N (k , d) - d , k - 1, d l) code C'. We will now determine
a bound on dl .

Now let [uolv] (the concatenation of two vectors) be a codeword in C,

[uolvl = moG,

412 Bounds on Codes

where v E C' has weight dl and where mo is a message vector with 0 in the first position,

mo = [0, m 2 , . . . , mk].

Let zo be the number of zeros in uo, zo = d - wt(u0). Then we have

wt(uo) + dl = (d - Z O) + dl 3 d .

Let mi = [i, m2, . . . , mk], for i E G F (q) , and let

ui = miG.

Let z i be the number of zeros in ui, zi = d - wt(u0). As i varies over the elements in
G F (q) , eventually every element in Ui will be set to 0. Thus

4-1

i =O

Writing down the weight equation for each i we have

dl + d - Z O 2 d

dl f d - ~ 1 2 d

dl + d - zq-1 2 d .

Summing all these equations, we obtain

or

dl 2 w q i .

G2 therefore generates an (N (k , d) - d , k - 1, r d / q l) code. We conclude that

Now we simply proceed inductively:

k-2

i=O
k- 1

i =O

Since N (k , d) < n for any actual code, the result follows.

9.4 The Linear Programming and Related Bounds 413

9.4 The Linear Programming and Related Bounds

The linear programming bound takes the most development to produce of the bounds in-
troduced so far. However, the tools introduced are interesting and useful in their own right.
Furthermore, the programming bound technique leads to one of the tightest bounds known.
We introduce first what is meant by linear programming, then present the main theorem,
still leaving some definitions unstated. This is followed by the definition of Krawtchouk
polynomials, the character (needed for a couple of key lemmas), and finally the proof of the
theorem.

Let x be a vector, c a vector, b a vector, and A a matrix. A problem of the form

maximize C*X

subject to Ax 5 b (9.9)

(or other equivalent forms) is said to be a linear programming problem. The maximum
quantity c*x from the solution is said to be the value of the linear programming problem.

Example 9.1 Consider the following problem.

maximize x l + x~
subject to xl + 2x2 5 10

15
2

- X I + 5x2 5 45

X l L 0 x2 2 0.

Figure 9.2 illustrates the geometry. The shaded region is thefeasible region, the region where all the
constraints are satisfied. The function x i + x2 increases in the direction shown, so that the point in
the feasible region maximizing x l + x2 is as shown.

Figure 9.2: A linear programming problem.

The solution to this problem is xi = 4, x2 = 3 and the value is x i + x2 = 7.

The feasible region always forms a polytope and, due to the linear nature of the function
being optimized, the solution is always found on a vertex or along an edge of the feasible
region. Linear programming problems arise in a variety of applied contexts and algorithmic

414 Bounds on Codes

methods of solving them are well established. (See [246] and the references therein for an
introduction.)

The linear programming bound applies to both linear and nonlinear codes.

Definition 9.5 Let C be a q-ary code with M codewords of length n. Define

1
A . - - l [(c , d)lc E C, d E C, dH(c, d) = i } l .

That is, Aj is the (normalized) number of codewords in the code at a distance i from each
other. The sequence (Ao, A1, . . , A,) is called the distance distribution of the code. For

0
In Section 9.4.1, we will introduce a family of polynomials Kk(X), known as Krawtchouk

‘-A4

a linear code, the distance distribution is the weight distribution.

polynomials. The theorem is expressed in terms of these polynomials as follows.

Theorem 9.6 [350] (Linear programming bound) For a q -ary code of length n and mini-
mum distance d

Aq(n, d) I M ,

where M is value of the linear programming problem

n

maximize C A ~
i=O

subject to A0 = 1,

n

z A j K k (i) > O f o r k ~ { O , I , ..., n}
i =O

Aj 2 0 for i E [0 ,1 , . . . , n } .

Furthermore, i fq = 2 and d is even, then we may take Ai = 0 for odd i .

Solution of the linear programming problem in this theorem not only provides a bound on
Aq(n, d) , but also the distance distribution of the code.

Let us begin with an example that demonstrates what is involved in setting up the linear
programming problem, leaving the Kk (i) functions still undefined.

Example 9.2 Determine a bound on A2(14,6) for binary codes.

since the minimum distance is 6, we also have A2 = A4 = 0. All the Ai are
Xf=o Ai Kk (i) 1 0 in the theorem becomes

Since q = 2, we have A1 = A3 = A5 = A7 = A9 = A11 = A13 = 0. Furthermore
0. The condition

9.4 The Linear Programming and Related Bounds 415

9.4.1 Krawtchouk Polynomials

The Krawtchouk polynomials mentioned above and used in the linear programming bound
are now introduced.

Definition 9.6 The Krawtchouk polynomial Kk (x ; n , q) is defined by

k \

\ J / ' j =O

where (1) = x(x - 1) . * * (x - j + 1)
forn E R.

j !

Usually, Kk(x; n , q) is used in the context of a fixed n and q , so the abbreviated notation

Some of the important properties of Krawtchouk polynomials are developed in Exercise
&(x) is used. 0

9.16. I krawtch0uk.m

9.4.2 Character

We also need the idea of a character.

Definition 9.7 Let (G, +) be a group and let (T , .) be the group of complex numbers which
have absolute value 1, with multiplication as the operation. A character is a homomorphism
x : G + T . That is, for all gl, g2 E G,

(9.11)

0

x(g1 + g2) = x (g d x (g 2) .

If x (g) = 1 for every g E G, then x is called the principal character.
It is straightforward to show that x (0) = 1, where 0 is the identity of G.
The lemma which we need for our development is the following.

Lemma 9.7 I f x is a characterfor (G, +), then

I G I i f x is the principal character
0 otherwise.

Proof If x is principal, the first part is obvious.
Let h be an arbitrary element of G . Then

x (h) C x (g) = C x (h + g) = C x (k) ,
geG geG keG

where the first equality follows from the homomorphism (9.11) and the second equality
follows since h + g sweeps out all elements of G as g sweeps over all the elements of G.
We thus have

(X(h) - 1) c x (g > = 0.
geG

Since h was arbitrary, then if x is not principal it is possible to choose an h E G such that
0 ~ (h) # 1. We must therefore have CgeG x (g) = 0.

416 Bounds on Codes

Example 9.3 The character property of Lemma 9.7 is actually familiar from signal processing, under
a slightly different guise. Let G = &, the set of integers modulo n, and let x l (g) = e - j2z1g /n for
p E G. Then

Thus, xi (8) is principal if I = 0, and not principal if 2 # 0.

Now let G be the additive group in G F (4). Let w = ejZnfq be a primitive qth root of unity
in @. We want to define a character by

x(g> = wg

for g E GF(q), but g is not an integer. However, for the purposes of defining a character,
we can interpret the elements of GF(q) as integers. The only property we need to enforce
is the homomorphism property, wgl+g2 = wgI wg2, which will follow if we make the integer
interpretation. Thus, we can interpret the alphabet over which a q-ary code exists as Z/qZ Z
Z q , which we will denote as Q.

Note that this character is not principal, so that, by Lemma 9.7,

or

gEQ\IO)

Also note that

(9.12)

(9.13)

Let (x, y) be the conventional inner product (see Definition 2.27)
n

i=l

9.4.3 Krawtchouk Polynomials and Characters

We now present an important lemma which relates Krawtchouk polynomials and characters.

Lemma 9.8 [350] Let w be a primitive qth root of unity in C and let x E Q" be a jixed
codevector with weight i. Then

c w(XJ) = Kk(i) .
Y E Q " :
wt(y) = k

Proof Assume that all the weight of x is in the first i positions,

x = [XI, x2, . . . , x;, o,o, . . . , O] ,

with x i through xi not equal to 0. In the vector yof weight k, choose positions h 1, hz, . . . , hk
such that

0 < hi < h2 < ... < hj 5 i < hj+l < . < hk 5 n

9.4 The Linear Programming and Related Bounds 417

with yhk # 0. That is, the first j nonzero positions of y overlap the nonzero positions of x.
Let D be the set of all words of weight k that have their nonzero coordinates at these k fixed
positions. Then

,(X,Y) = c ,xhi Yhl f " ' f x h j Y h j fO+."fO

Y E D YED

= c . . . c Y h I f " . + x h j Y h j f O f . . . f O

Yhl EQ\fOl Yh,EQ\IOI c woe.* oo c W n h j Y h j

Yhl EQ\fOl Yh €Q\W Y h j + l cQ\fOl YhkEQ\{OI

= c W X h i Y h i .. .

= (-l)j(q - 1>"-',

where the last equality follows from (9.12) and (9.13).
The set D may be chosen in (j) GI;) different ways for each fixed position j . We have

c ,(X,Y) = c C , (X > Y) =
k - j

Y E Q " : Different YED j =O
wt@) = k choices of

D

= e (i) (n - i) (- l) j (q - k - j l) k - j = Kk(i) ,
j =O

by the definition of the Krawtchouk polynomial. 0
The final lemma we need in preparation for proving the linear programming bound is

the following.

Lemma 9.9 Let {Ao, A1, . . . , A n } be the distance distribution of a code C of length n with
M codewords. Then

n

c A i K k (i) 1: 0.
i =O

Proof From Lemma 9.8 and the definition of Ai we can write
n n .

wt(z) = k

wt(z) = k

418 Bounds on Codes

We are now ready to prove the linear programming bound.

Proof of Theorem 9.6. Lemma 9.9 shows that the distance distribution must satisfy
n

x A i K k (i) 2 0.
i=O

Clearly the Ai are nonnegative, A0 = 1 and the Ai = 0 for 1 5 i < d to obtain the
distance properties. By definition, we also have ~ ~ = o Ai = M, the number of codewords.
Hence, any code must have its number of codewords less than the largest possible value of

For binary codes with d even we may take the Ai = 0 for i odd, since any codeword
with odd weight can be modified to a codeword with even weight by flipping one bit without

0

C;=o Ai = M .

changing the minimum distance of the code.

I 1pboundex.m I

Example 9.4 Let us return to the problem of Example 9.2. Now that we know about the Krawtchouk
polynomials, the inequalities in (9.10) can be explicitly computed. These become

k = 0 : 1 + A6 + 4 3 + A10 + A12 + A14 2 0

k = 1 :

k = 2 :

14 + 2A6 - 2Ag - 6A10 - 10A12 - 14A14

91 - 5A6 - 5A8 + llA10 +43A12 +91A14

0

0

k = 3 :

k = 4 :

k = 5 :

k = 6 :

k = 7 :

364 - l2A6 + l2A8 + 4A10 - 100A12 - 364414 p 0

1001 + 9246 + 9A8 - 39Alo + 121A12 + 1001A14 2 0

2002 + 3OA6 - 3OA8 + 38Alo - 22412 - 2002A14

3003 - 5A6 - 5Ag + 27~410 - 165412 + 3OO3A14 2 0

3432 - 4OA6 + 40A8 - 721410 + 264412 - 3432414 2 0.

0

The other inequalities are duplicates, by symmetry in the polynomials. Also note that the k = 0
inequality is implicit in maximizing A6 + A8 +. . - + A14, so it does not need to be included. Solving
the linear programming problem, we obtain the solution

& = 4 2 A g = 7 Ale= 14 A 1 2 = O A14=0.

Hence A2(14,6) i 1 + 42 + 7 + 14 = 64.

9.5 The McEliece-Rodemich-Rumsey-Welch Bound

The McEliece-Rodemich-Rumsey-Welch bound is a bound that is quite tight. It applies
only to binary codes and is derived using the linear programming bound.

Theorem 9.10 (The McEliece-Rodemich-Rumsey-Welch bound) For a binary code,

(9.14)

The proof is subtle and makes use of some properties of JSrawtchoukpolynomials introduced
in Exercise 9.16, an extension of the linear programming bound in Exercise 9.17, as well
as other properties that follow from the fact that Krawtchouk polynomials are orthogonal.
What is provided here is a sketch; the reader may want to fill in some of the details.

9.5 The McEliece-Rodemich-Rumsey- Welch Bound 419

Proof [227,350] Let t be an integer in the range 1 5 t I
[0, n]. Define the polynomial

and let a be a real number in

1
a (x) = - (Kr (a)Kt+ l (x) - Kr+l (a)Kf (x))2 . (9.15)

Because the {Kk (x)} form an orthogonal set, they satisfy the Christoffel-Darboux formula

a - x

k
Kk+l(X)Kk(Y) - Kk(X)Kk+l(Y) - 2 -

Y - X

(see [246, p. 2241 for an introduction, or a reference on orthogonal polynomials such as
[llo]). Using (9.16), equation (9.15) can be written as

Since & (X) is a polynomial in x of degree k, it follows that a (x) is a polynomial in x of
degree 2t + 1. Then a (x) can also be written as a series in {Kk(X)} as

2t f l

k=O

(since both are polynomials of degree 2t + 1). Let B(x) = a(x)/ao = 1 + ct=',' BkKk(X).
We desire to choose a and t such that B (x) satisfies the conditions of the theorem in Exercise
9.17: Bk p 0 and B (j) 5 0 for j = d , d + 1, . . . , n.

Note that if a 5 d, then by (9.15) a (j) 5 j for j = d , d+ 1 , . . . , n, so the only thing to be
verified is whether ai 2 0, i = 1, . . . , n and a0 > 0. This is established using the interlacing
property of the roots of the Krawtchouk polynomials: Kt+l (x) has t + 1 distinct real zeros on
(0, n). Denote these as xl(l+'), . . . , x z ') , with xf") < xtfl) < . . . < xt(::'). Similarly

Kt (x) has t distinct real zeros on (0, n), which we denote as xlf), . . . , xr(t) and order similarly.
These roots are interlaced:

0 < q + l) < X;f) < .F+*) < $1 < . . . < xr(t) < xt(::') < n.

(This interlacing property follows as aresult of the orthogonality properties of the Krawtchouk
polynomials; see [1 101 .)

So choose t such that xlf) < d and choose a between xf+l) and xlf) in such a way that
Kt (a) = -Kt+l(a) > 0. Then a (x) can be written in the form a (x) = c c k l K k (x) K l (x)
where all the ckl 2 0. Thus the ai 2 0. It is clear that a0 = -&(:)Kt (a)Kt+l (a) > 0.

Thus, the theorem in Exercise 9.17 can be applied:

(9.18)

We now invoke another result about orthogonal polynomials. It is known (see [1 lo])
that as n + 00, if t + 00 in such a way that t l n + t for some 0 < t < i, then x; ') /n +
i - d m . So let n + 00 and d l n + 6 in such a way that t l n -+ i - d m .
Talung the logarithm of (9.18), dividing by n and using the results of Lemma 9.1, the result
follows. 111

420 Bounds on Codes

In [227], a slightly stronger bound is given (which we do not prove here):

(9.19)

where

g (x) = H2((1 - &=3/2).

The bound (9.14) actually follows from this with u = 1 - 2s. For 0.273 I: S I: i, the
bounds (9.14) and (9.19) coincide, but for S < 0.273 (9.19) gives a slightly tighter bound.

Another bound is obtained from (9.19) when u = 0. This gives rise to the Elias bound
for binary codes. In its more general form, it can be expressed as follows.

Theorem 9.11 (Elias bound) For a q-ary code,

aq@) I 1 - Hq(P - Jrn) 0 5 I p ,

where p = (q - l)/q.

The Elias bound also has a nonasymptotic form: Let r 5 pn, where p = (q - l)/g. Then
[350, p. 651

pnd 9"
Aq(n' dl r2 - 2pnr + pnd Vq(n, r) '

The value of r can be adjusted to find the tightest bound.

9.6 Exercises

9.1 Using the Hamming and Gilbert-Varshamov bounds, determine lower and upper bounds on the
redundancy r = n - k for the following codes.

(a) A single-error correcting binary code of length 7.
(b) A single-error correcting binary code of length 15.

(c) A triple-error correcting binary code of length 23.

(d) A triple-error correcting ternary code of length 23.

(e) A triple-error correcting 4-ary code of length 23.

(0 A triple-error correcting 16-ary code of length 23.

9.2 With H2(x) = -x log2 x - (1 - x) log2(1 - x) , show that

9.3 With H2(x) as defined in the previous exercise, show that for any h in the range 0 5 h 5 4,

Hint: Use the binomial expansion on (A + (1 - A))" = 1; truncate the sum up to An and use the
fact that (A/(I - A))' < (A/(I - A))*".

9.6 Exercises 421

9.4 [331 Prove: In any set of M distinct nonzero binary words of length n having weight at most nh,
the sum of the weights W satisfies

w 2 nh(M - ~ " ~ 2 (*))

for any h E (0, 1/2). Hint: Use the fact that zgO G) 5 2nH2(h). Then argue that for each h

there are at least M - 2"*2(*) words of weight exceeding nh.

9.5 For binary codes, show that A2(n, 21 - 1) = A2(n + 1,21).
9.6 Using the Cauchy-Schwartz inequality, show that

9.7 What is the largest possible number of codewords of a ternary (q = 3) code having n = 13 and

9.8 Examine the proof of Theorem 9.4. Under what condition can equality be obtained in (9.8)?
9.9 Prove the asymptotic Plotkin bound:

d = 9?

a q (6) = O i f p (6 < 1

aq(S) 5 1 - S / p if 0 5 6 5 p .

Hint: For the second part, let n' = [(d - l) / p] . Show that 1 5 d - pn' 5 1 + p. Shorten a
code of length n with M codewords to a code of length n' with M' codewords, both having the
same distance. Show that M' 2 qn'-nM and apply the Plotkin bound.

9.10 [136,30] Stirling's formula. In this problem, you will derive the approximation

n! x nne-"&.

(a) Show that

logxdx = n l o g n - n + 1 . 1"
(b) Use the trapezoidal rule, as suggested by Figure 9.3(a), to show that

1
2

logx dx 2 logn! - - logn,

where the overbound is the area between the function log n and its trapezoidal approxima-
tion. Conclude that

n! 5 .",-",hie.

(c) Using the integration regions suggested in Figure 9.3(b), show that

~ " l o g n d x j l o g n ! + - - - l o g n 1 1
8 2

and that
n! 2 nne-",hie7f8.

In this integral approximation, for the triangular region, use a diagonal line tangent to the
function at 1.
In the approximation

n! w n"e-"&C, (9.20)

422 Bounds on Codes

(a) Under bound. (b) Over bound.

Figure 9.3: Finding Stirling’s formula.

we thus observe that
e7I8 5 c 5 e.

It will turn out that C = & works as n + 00. To see this, we take a nonobvious detour.
Define the function

(d) Show that Ik = Ik-2 - I k / (k - I), and hence that Ik = (k - 1)Ik-2 /k for k 2 2. Hint:

(e) Show that I0 = n / 2 and I1 = 1 .

cos k (x) = cosk-2(x) (l - sin2x).

(f) Show that 12k-l > I2k > 12k+l, and hence that

I2k I2k+l

I2k- 1 I2k- 1
1 > - > -.

(g) Show that
1 > 2 k [- - - - . . . 2 k - 1 2 k - 3 - 3 I 2 j 7 > 2k

2k 2 k - 2 2 2 2 k + 1 ’

(h) Show that

(i) Now substitute (9.20) for each factorial to show that

6) Show that C + G a s k + 00.

9.11 Show that asymptotically, the Hamming bound can be expressed as

aq(S) 5 1 - Hq(SI2).

9.6 Exercises 423

9.12 Use the Griesmer bound to determine the largest possible value of k for a (13, k , 5) binary code.
9.13 Use the Griesmer bound to determine the largest possible value of k for a (14, k , 9) ternary code.
9.14 Find a bound on the length of shortest triple-error correcting (d = 7) binary code of dimension 5.
9.15 Let d = Zk-’. Determine N (k , d). Is there a code that reaches the bound? (Hint: simplex.)
9.16 Properties of Krawtchouk polynomials.

(a) Show that for x E {O, 1, . . . , k } ,

00 c K k (X) Z k = (1 + (q - l)z)n-n(l - Z Y .

k=O
(9.21)

(b) Show that K k (x) is an orthogonal polynomial with weighting function (y)(q - l)i, in that

(9.22)

(c) Show that for q = 2,
k Kk(X) = (-1) Kk(n - X).

(d) Show that

(e) Use this result to show another orthogonality relation.

n

C Kl(i)K i (k) = 61kqn.
i =O

(f) One way to compute the Krawtchouk polynomials is to use the recursion

(k + l)Kk+l(X) = (k + (4 - l) (n - k) - q x) K n (x) - (4 - l) (n - k + l) K k - l (X) ,

which can be initialized with KO@) = 1 and K1 (x) = n(q - 1) - qx from the definition.
Derive this recursion. Hint: Differentiate both sides of (9.21) with respect to z, multiply
both sides by (1 4- (q - l)z)(l - z) and match coefficients of zk.

(g) Another recursion is

Kk(X) = Kk(X - 1) - (4 - l)Kk- l (X) - K k - l (X - 1).

Show that this is true. Hint: In (9.21), replace x by x - 1.

9.17 [350] (Extension of Theorem 9.6) Theorem: Let B(x) = 1 + X i = 1 & K k (x) be a polynomial
2 0 for 1 5 k 5 n such that B (j) 5 0 for j = d , d + 1 , . . . , n. Then Aq(n, d) 5 b(0). with

Justify the following steps of the proof:

(a) C:=d AiBW I 0.

424 Bounds on Codes

(e) Hence conclude that A q (n , d) 5 B(0).

(0 Now put the theorem to work. Let q = 2 , n = 21 + 1 and d = 1 + 1. Let B (x) =
1 + B(l)Kl(X) + B(2)K2(X) .

i. Show that B (x) = 1 + Bl(n - 2x) + B2(2x2 - 2nx + i n (n - 1)).
ii. Show that choosing to set B (d) = B(n) = 0 leads to B1 = (n + 1) /2n and 82 = l / n .

iii. Show that the conditions of the theorem in this problem are satisfied.
iv. Hence conclude that Aq(21 + 1 , l + 1) 5 21 + 2.

9.18 Let x be a character, x : G -+ T . Show that x(0) = 1, where 0 is the identity of G.
9.19 Show that (9.17) follows from (9.15) and (9.16).

9.7 References

Extensive discussions of bounds appear in [220]. Our discussion has benefited immensely
from [350]. The Hamming bound appears in [1371. The Singleton bound appears in [3 141.
The Plotkin bound appears in [266]. The linear programming bound was developed in [68].

An introduction to orthogonal polynomials is in [246]. More extensive treatment of
general facts about orthogonal polynomials is in [1 101.

Chapter 10

Bursty Channels, Interleavers, and
Concatenation
10.1 Introduction to Bursty Channels

The coding techniques introduced to this point have been appropriate for channels with
independent random errors, such as a memoryless binary symmetric channel, or an AWGN
channel. In such channels, each transmitted symbol is affected independently by the noise.
We refer to the codes that are appropriate for such channels as random error correcting
codes. However, in many channels of practical interest, the channel errors tend to be
clustered together in “bursts.” For example, on a compact disc, a scratch on the media may
cause errors in several consecutive bits. On a magnetic medium such as a hard disk or a
tape, a blemish on the magnetic surface may introduce many errors. A wireless channel may
experience fading over several symbol times, or a stroke of lightning might affect multiple
digits. In a concatenated coding scheme employing a convolutional code as the inner code,
a single incorrect decoding decision might give rise to a burst of decoding errors.

Using a conventional random error correcting block code in a bursty channel leads to
inefficiencies. A burst of errors may introduce several errors into a small number codewords,
which therefore need strong correction capability, while the majority of codewords are not
subjected to error and therefore waste error correction capabilities.

In this chapter we introduce techniques for dealing with errors on bursty channels.
The straightforward but important concept of interleaving is presented. The use of Reed-
Solomon codes to handle bursts of bit errors is described. We describe methods of con-
catenating codes. Finally, Fire codes are introduced, which is a family of cyclic codes
specifically designed to handle bursts of errors.

Definition 10.1 In a sequence of symbols, a burst of length 1 is a sequence of symbols
0 confined to 1 consecutive symbols of which the first and last are in error.

For example, in the error vector

e = (0 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0)

is a burst of length 15.

all bursts up to length 1.
A code C is said to have burst-error-correcting capability I if it is capable of correcting

10.2 lnterleavers

An interleaver takes a sequence of symbols and permutes them. At the receiver, the
sequence is permuted back into the original order by a deinterleaver. Interleavers are
efficacious in dealing with bursts of errors because, by shuffling the symbols at the receiver,

426 Bursty Channels, Interleavers, and Concatenation

I _

I Interleaver I

I

I
I

I 1 E: I Deinterleaver I

I columns

I Read I
I across I
I rows I

I I xo>xl,x2,...,xll

I x10 Xll

L _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I

I

I
I

I

1-
I
I
I

Figure 10.1: A 3 x 4 interleaver and deinterleaver.

a burst of errors appearing in close proximity may be broken up and spread around, thereby
creating an effectively random channel.

A common way to interleave is with a block interleaver. This is simply an N x M
array which can be read and written in different orders. Qpically the incoming sequence
of symbols is written into the interleaver in row order and read out in column order. Figure
10.1 shows a 3 x 4 interleaver. The input sequence xo, X I , . . . , x 1 1 is read into the rows of
array, as shown, and read off as the sequence

X O , X47 X8, X1, X5, X99 X 2 , x67 X l 0 , X 3 , X7, X11.

Frequently, the width M is chosen to be the length of a codeword.

Example 10.1 We present here an application of interleaving. The UDP (user datagram protocol)
internet protocol is one of the TCP/IP protocol suite which does not guarantee packet delivery, but
experiences lower network latency. In this protocol, each packet carries with it a sequential packet
number, so that any missing packets may be identified. Because of its lower latency, UDP is of interest
in near real-time internet applications. Error correction coding can be used to significantly increase
the probability that all packets are correctly received with only a moderate decrease in rate.

The data stream is blocked into message blocks of 249 bytes and the data are encoded with a
(255,249) Reed-Solomon code having = 7 and capable of correcting 6 erasures. The codewords
are written into an N x 255 matrix as rows and read out in column order. Each column is transmitted
as a data packet of length N.

Suppose that the third packet associated with this interleaving block, corresponding to the third
column, is lost in transmission, as suggested by the shading on this matrix.

10.3 An Application of Interleaved RS Codes: Compact Discs 427

By the protocol, the fact that the third packet is lost i s known. When the data are written into the
matrix for deinterleaving, the missing column is left blank and recorded as an erasure. Then each of
the N codewords is subjected to erasure decoding, recovering the lost byte in each codeword. For
this code, up to six packets out of N may be lost in transmission (erased) and fully recovered at the
receiver. 0

In general, when a burst of length 1 is deinterleaved, it causes a maximum of rZ/N1
errors to occur among the received codewords. If the code used can correct up to t errors,
a decoding failure may occur if the burst length exceeds Nt + 1.

The efficiency y of an interleaver can be defined as the ratio of the length of the smallest
burst of errors that exceeds the correction capability of a blockcode to the amount of memory
in the interleaver. Based on our discussion, for the block interleaver the efficiency is

N t + 1 t

Another kind of interleaver is the cross interleaver or convolutional interleaver [282],
which consists of a bank of delay lines of successively increasing length. An example
is shown in Figure 10.2. This figure shows the input stream, and the state of the inter-
leaver at a particular time as an aid in understanding its operation. The cross interleaver
is parameterized by (M , D), where M is the number of delay lines and D the number
of samples each delay element introduces. It is clear that adjacent symbols input to the
interleaver are separated by M D symbols. If M is chosen to be greater than or equal to
the length of the code, then each symbol in the codeword is placed on a different delay
line. If a burst error of length 1 occurs, then rZ/(MD + 1)1 errors may be introduced
into the deinterleaved codewords. For a t-error correcting code, a decoding failure may
be possible when 1 exceeds (M D + l)(t - 1) + 1. The total memory of the interleaver is
(0 + 1 + 2 + . . . + (M - 1))D = D M (M - 1)/2. The efficiency is thus

y = - x - - - .
N M M

(M D + l)(t - 1) + 1 2t x-
= D M (M - 1)/2 M - 1 '

Comparison with the block interleaver shows that cross interleavers are approximately twice
as efficient as block interleavers.

While block interleaving can be accomplished in a straightforward way with an array,
for cyclic codes there is another approach. If C is a cyclic code of length n with generator
g(x), then the code obtained after interleaving with an M x n interleaver matrix is also
cyclic, with generator polynomial g (x M) . The encoding and syndrome computation can
thus be implemented in conventional fashion using shift registers [203, p. 2721.

10.3 An Application of Interleaved RS Codes: Compact Discs

By far the most common application of RS codes is to compact discs. The data on the
compact disc (CD) is protected with a Reed-Solomon code, providing resilience to scratches

428 Bursty Channels, Interleavers, and Concatenation

Interleaver

\ - Inteileaver - 1 ' output
t

Interleaver ,,
input

\ Deinterleaver
output

Deinterleaver ' X 2

f
input

Figure 10.2: A cross interleaver and deinterleaver system.

on the surface of the disc. (Of course, scratches may still impede CD playback, as many
listeners can attest, but these problems are more often the result of tracking problems with
the read laser and not the problem of errors in the decoding stream read.) Because this
medium is so pervasive, it is important to be familiar with the data representation. This
presentation also brings out another important point. The error correction is only one aspect
of the data processing that takes place. To be of practical value, error correction coding must
work as a component within a larger system design. In addition to basic error correction
provided by Reed-Solomon codes, protection against burst errors due to scratches on the
disc is provided by the use of a cross interleaver. The data stream is also formatted with
an eight-to-fourteen modulation (EFM) code which prevents excessively long runs of ones.
This is necessary because the laser motion control system employs a phase-locked loop
(PLL) which is triggered by bit transitions. If there is a run of ones that is too long, the PLL
may drift. Details on the data stream and the EFM code are in [159]. Our summary here
follows [373].

The overall block diagram of the CD recording process is shown in Figure 10.3. The
1.41 Mbps sampled data stream passes through an error correction system resulting in a
data rate of 1.88 Mbps. The encoder system, referred to as CIRC, uses two interleaved,
shortened, Reed-Solomon codes, C1 and C2. Both codes are built on codes over GF(256).
The eight-bit symbols of the field fit naturally with the 16-bit samples used by the A/D

10.3 An Application of Interleaved RS Codes: Compact Discs 429

left -
Sound
source

Control

display

~ optical
Sampling - Recording
A/D Error 8-14 Channel - Correction Mux- modulation MUX - - (Em) .-) Coding 44.1 K sam leslsec

16 bits/sampf)e/chan;el -
~

Synch.

I ,4112 Mbps 1.88 Mbps I .94 Mbps 4.32 Mbps

Figure 10.3: The CD recording and data formatting process.

r - - - - - - -

___c ___) - - c2

shortened
I RSencoder

Input: 24 8-bit symbols
obtained from
12 16-bit samples

Output: 32 8-bit symbols

Output: 28 8-bit symbols ;$-pDp
I
I

I

I M = 2 8 1
1 cross I

I interleaver

I D = 4 1

Figure 10.4: The error correction encoding in the compact disc standard.

converter. However, the codes are significantly shortened: C1 is a (32,28) code and C2 is a
(28,24) code. For every 24 input symbols there are 32 output symbols, resulting in a rate
R = 24/32 = 3/4. Both codes have minimum distance 5.

Encoding The outer code, C2, uses 12 16-bit samples to create 24 8-bit symbols as its
message word. The 28-symbol codeword is passed through a (28,4) cross interleaver. The
resulting 28 interleaved symbols are passed through the code C1, resulting in 32 coded output
symbols, as shown in Figure 10.4.

Decoding At the decoder (in the CD player), the data that reaches the CIRC decoder first
passes through the outer decoder C1. Since C1 has minimum distance 5, it is capable of
correcting two errors, or correcting one error and detecting two errors in the codeword, or
detecting up to four errors. If the C1 decoder detects a high-weight error pattern, such as

430 Burstq Channels, Interleavers, and Concatenation

Table 10.1: Performance Specification of the Compact Disc Coding System [159, p. 571

Maximum completely
correctable burst length

Maximum interpolatable burst
length in the worst case

Sample interpolation rate

% 4000 bits (% 2.5 mm track length)

x 12,300 data bits
(x 7.7 mm track length)

One sample every 10 hours
at a bit error rate (BER) of
1000 samples per minute at BER of

less than one every 750 hours
at BER=10-3.
Negligible at BER p low4

Undetected error samples
(producing click in output)

Code rate R = 314

Implementation One LSI chip plus
one random-access memory of 2048 bytes.

a double error pattern or any error pattern causing a decoder failure, the decoder outputs
28 erased symbols. The deinterleaver spreads these erased symbols over 28 C2 codewords,
where the erasure correction capability of the C2 code can be used.

The C2 decoder can correct any combination of e errors and f erasures satisfying 2e +
f < 5. Since C1 is likely to be able to produce error-free output, but will declare erasures
when there seem to be too many errors for it to correct, the C2 decoder is frequently built to
be an erasures-only decoder. Since erasure decoding involves only straightforward linear
algebra (e.g., Forney’s algorithm) and does not require finding an error locater polynomial,
this can be a low-complexity decoder. In the rare event that a vector is presented having
more than four erasures that C2 is not able to correct the C2 decoder outputs 24 erasures. In
this case, the playback system uses an “error concealment” system which either mutes the
corresponding 12 samples of music or performs some kind of interpolation.

The performance specifications for this code are summarized in Table 10.1.

10.4 Product Codes

Let C1 be an (n l , k l) linear block code and let C2 be an (n.2, k 2) linear block code over
GF(q) . An (nln2, klk2) linear code called the product code, denoted C1 x C2, can be
formed as diagrammed in Figure 10.5. A set of k1k2 symbols is written into a k2 x kl array.
Each of the k2 rows of the array is (systematically) encoded using code C1, forming nl
columns. Each of the n 1 columns of the array is then (systematically) encoded using code
C2, forming an n2 x n1 array. Because of linearity, it does not matter whether the encoding
procedure is reversed (C2 encoding followed by C1 encoding).

Theorem 10.1 rfC1 has minimum distance dl and C2 has minimum distance d2, then the
product code C1 x C2 has minimum distance dld2.

Proof The minimum weight cannot be less than dld2: Each nonzero row of the matrix in
Figure 10.5 must have weight 2 dl and there must be at least d2 nonzero rows.

10.5 Reed-Solomon Codes 431

Figure 10.5: The product code C1 x C2.

To show that there is a codeword of weight dld2, let c1 be a codeword in C1 of minimum
weight and let c2 be a codeword in C2 of minimum weight. Form an array in which all
columns corresponding to zeros in c1 are zeros and all columns corresponding to ones in c1
are c2. 0

Using the Chinese remainder theorem it is straightforward to show [220, p. 5701 that if C1

and C2 are cyclic and (n 1, n2) = 1, then C1 x Cz is also cyclic.
The product code construction can be iterated. For example, the code C1 x C2 x C3 can

be produced. It may be observed that by taking such multiple products, codes with large
distance can be obtained. However, the rate of the product code is the product of the rates,
so that the product code construction produces codes with low rate.

We do not present a detailed decoding algorithm for product codes here. However,
decoding of codes similar to product codes is discussed in chapter 14. Product codes are
seen there to be an instance of turbo codes, so a turbo code decoding algorithm is used.
However, we discuss here the burst error correction capability of product codes [203, p.
2751. Suppose C1 has burst error correction capability I 1 and C2 has burst error correction
capability 12. Suppose that the code is transmitted out of the matrix row by row. At the
receiver the data are written back into an array in row by row order. A burst of length n 112 or
less can affect no more than 12 + 1 consecutive rows, since when the symbols are arranged
into the array, each column is affected by a burst of length at most 12. By decoding first
on the columns, the burst can be corrected, so the burst correction capability of the product
code is at least nll2. Similarly, it can be shown that bursts of length at least nzli can be
corrected, so the overall burst error correction capability of the code is max(n 112, n211).

10.5 Reed-Solomon Codes

Reed-Solomon codes and other codes based on larger-than-binary fields have some intrinsic
ability to correct bursts of binary errors. For a code over a field G F(2m), each coded symbol
can be envisioned as a sequence of m bits. Under this interpretation, a (n, k) Reed-Solomon
code over GF(2m) is a binary (mn, mk) code.

The RS code is capable of correcting up to t symbols of error. It does not matter that a

432 Burstv Channels. Interleavers. and Concatenation

single symbol might have multiple bits in error - it still is a single symbol error from the
perspective of the RS decoder. A single symbol might have up to m bits in error. Under
the best of circumstances then, when all the errors affect adjacent bits of a symbol, a RS
code may correct up to mt bits in error. This means that RS codes are naturally effective
for transmitting over bursty binary channels: since bursts of errors tend to cluster together,
there may be several binary errors contributing to a single erroneous symbol. As an example
[203, p. 2781, a burst of length 3m + 1 cannot affect more than 4 symbols, so a RS code
capable of correcting 4 errors can correct any burst of length 3m + 1. Or any burst of length
m + 1 cannot affect more than two bytes, so the 4-error correcting code could correct up
to two bursts of length m + 1. In general, a t-error correcting RS code over GF(2'") can
correct any combination of

t

1 + U + m - 2)/mJ

or fewer bursts of length I , or correcting a single burst up to length (t - l)m + 1. And,
naturally, it also corrects any combination of t or fewer random errors.

10.6 Concatenated Codes

Concatenated codes were proposed by Forney [87] as a means of obtaining long codes (as
required by the Shannon channel coding theorem for capacity-approaching performance)
with modest decoding complexity. The basic concatenation coding scheme is shown in
Figure 10.6. The inner code is conventionally a binary code. The outer code is typically
a (n2, k2) Reed-Solomon code over GF(2k). The outer code uses k2 k-tuples of bits from
the inner code as the message sequence. In the encoding, the outer code takes kk2 bits
divided into k-tuples which are employed as k2 symbols in GF(29 and encodes them as a
Reed-Solomon codeword (cot c1, . . . , cn,). These symbols, now envisioned as k-tuples of
binary numbers, are encoded by the inner encoder to produce a binary sequence transmitted
over the channel.

The inner code is frequently a convolutional code. The purpose of the inner code is
to improve the quality of the "superchannel" (consisting of the inner encoder, the channel,
and the inner decoder) that the outer RS code sees so that the RS code can be used very
effectively. When the Viterbi decoder (the inner decoder) makes a decoding error, it typically
involves a few consecutive stages of the decoding trellis, which results in a short burst of
errors. The bursts of bit errors which tend to be produced by the inner decoder are handled
by the RS decoder with its inherent burst-error correction capability.

Figure 10.6: A concatenated code.

10.7 Fire Codes 433

Example 10.2 [373, p. 4321 Figure 10.7 shows the block diagram of a concatenated coding system
employed by some NASA deep-space missions. The outer code is a (255,223) Reed-Solomon code
followed by a block interleaver. The inner code is a rate 1/2 convolutional code, where the generator
polynomials are

Rate1/2dfree=10 g o (x) = l + x + x 3 + x 4 + x 6 g 1 (x) = 1 + x 3 + x 4 + x 5 + x 6 .

The RS code is capable of correcting up to 16 8-bit symbols. The dfree path through the trellis traverses
7 branches, so error bursts most frequently have length seven, which in the best case can be trapped
by a single RS code symbol.

To provide for the possibility of decoding bursts exceeding 16 x 8 = 128 bits, a symbol interleaver
is placed between the RS encoder and the convolutional encoder. Since it is a symbol interleaver, burst
errors which occupy a single byte are still clustered together. But bursts crossing several bytes are
randomized. Block interleavers holding from 2 to 8 Reed-Solomon codewords have been employed.
By simulation studies [133], it is shown that to achieve a bit error rate of with interleavers of
sizes of 2,4, and 8, respectively, an Eb/No of 2.6 dB, 2.45 dB, and 2.35 dB, respectively, are required.
Uncoded BPSK performance would require 9.6 dB; using only the rate 1/2 convolutional code would
require 5.1 dB, so the concatenated system provides approximately 2.5 dB of gain compared to the
convolutional code alone. 0

Figure 10.7: Deep-space concatenated coding system.

10.7 Fire Codes

10.7.1 Fire Code Definition

Fire codes, named after their inventor [85], are binary cyclic codes designed specifically to
be able to correct a single burst of errors. They are designed as follows. Let p (x) be an
irreducible polynomial of degree m over GF(2). Let p be the smallest integer such that
p (x) divides x p + 1. p is called the period of p (x) . Let 1 be a positive integer such that
1 p rn and p 121 - 1. Let g(x) be the generator polynomial defined by

(10.1) g(x) = (2 1 - 1 + l)p(x).

Observe that the factors p (x) and x21-l + 1 are relatively prime. The length n of the code
is the least common multiple of 21 - 1 and the period:

n = LCM(21- 1, p)

and the dimension of the code is k = n - m - 21 + 1.

434 Bursty Channels, Interleavers, and Concatenation

Example 10.3 Let p (x) = 1 + x + x4. This is a primitive polynomial, so p = z4 - 1 = 15. Let
1 = 4 and note that 21 - 1 = 7 is not divisible by 15. The Fire code has generator

I g(x) = (x + 1)(1 + x +x4) = 1 + x + x 4 +x7 +2 +xll

with length and dimension

~t = LCM(7,15) = 105 and k = 94.

The burst error correction capabilities of the Fire code are established by the following
theorem.

Theorem 10.2 The Fire code is capable of correcting any burst up to length 1.

Proof [203, p. 2621 We will show that bursts of different lengths reside in different cosets,
so they can be employed as coset leaders and form correctable error patterns. Let a (x) and
b(x) be polynomials of degree 1 1 - 1 and 12 - 1, representing bursts of length 1 1 and 12,

respectively,
a(x> = 1 + alx + a2x2 + . . . + a', - 2 x ' 1 - ~ + x'1-l

b (x) = 1 + b l x + b2x2 + . . . + b/2-2~'2-2 + x12-l,

with 1 1 5 1 and 12 5 1. Since a burst error can occur anywhere within the length of the code,
we represent bursts as x ' a (x) and x j b (x) , where i and j are less than n and represent the
starting position of the burst.

Suppose (contrary to the theorem) that x i a (x) and x j b (x) are in the same coset of the
code. Then the polynomial

U (X) = x ' a (x) + x'b(x)

must be a code polynomial in the code. We show that this cannot occur. Without loss of
generality, take i 5 j . By the division algorithm, dividing j - i by 21 - 1 we obtain

(10.2) j - i = q(21- 1) + b

for some quotient q and remainder b, with 0 5 b < 21 - 1. Using this, we can write

U (X) = x ' (u (x) + x b b (x)) + xi+bb(x)(xq(2'-') + 1). (10.3)

Since (by our contrary assumption) u (x) is a codeword, it must be divisible by g (x) and,
since the factors of g (x) in (10.1) are relatively prime, v(x) must be divisible by x2'-l + 1.
Since d 2 ' - l) + 1 is divisible by x2'-l + 1, it follows that a(x) + x b b (x) is either divisible
by x2'-l + 1 or is 0. Let us write

U(X) + x b b (x) = d(X)(x2"-' + 1) (10.4)

for some quotient polynomial d (x). Let S be the degree of d (x). The degree of d (x) (x 2'-1 +
1) is 6 + 21 - 1. The degree of a(x) is 11 - 1 < 21 - 1, so the degree of a(x) + x b b (x)
must be established by the degree of x b b (x) . That is, we must have

b + 12 - 1 = 21 - 1 + 6. (10.5)

Since 11 I: 1 and 12 5 1, subtracting 12 from both sides of (10.5) we obtain

b 2 11 + 6.

10.7 Fire Codes 435

From this inequality we trivially observe that

b > 11 - 1 and b > d .

Writing out a (x) + xbb(x) we have

U (X) + Xbb(X) = 1 + a l x + a2x2 +. . . + a[,-&i-2 + x'1- l

+ xb(l + blx + b2x2 + . . . + b12-2x12-2 + x12-')

so that x b is one of the terms in a(x) + xbb(x). On the other hand, since S < b < 21 - 1,
the expression d(x)(x2'-' + 1) from (10.4) does not have the term xb, contradicting the
factorization of (10.4). We must therefore have d (x) = 0 and a (x) + xbb(x) = 0. In order
to cancel the constant terms in each polynomial we must have b = 0, so we conclude that

U (X) = b(x).

Since b must be 0, (10.2) gives
j - i = q(21- 1). (10.6)

Substituting this into (10.3) we obtain

V (X) = xib(x)(xj-i + 1).

Now the degree b(x) is 12 - 1 < 1, so deg(p(x)) < m = deg(p(x)). But since p (x) is
irreducible, b(x) and p (x) must be relatively prime. Therefore, since v (x) is (assumed to
be) a code polynomial, x j - i + 1 must be divisible by p (x) (since it cannot be divisible by
x2' - l + 1). Therefore, j - i must be a multiple of p. By (10.6), j - i must also be multiple
of 21 - 1. So j - i must be a multiple of the least common multiple of 22 - 1 and m. But
this least common multiple is n. We now reach the contradlction which leads to the final
conclusion: j - i cannot be a multiple of n , since j and i are both less than n.

We conclude, therefore, that v (x) is not a codeword, so the bursts x i a (x) and xjb(x)
0 are in different cosets. Hence they are correctable error patterns.

10.7.2 Decoding Fire Codes: Error Trapping Decoding

There are several decoding algorithms which have been developed for Fire codes. We present
here the error trapping decoder. Error trapping decoding is a method which works for
many different cyclic codes, but is particularly suited to the structure of Fire codes.

Let r (x) = c (x) + e (x) be a received polynomial. Let us recall that for a cyclic code,
the syndrome may be computed by dividing r (x) by g(x), e (x) = q(x)g(x) + s (x) . The
syndrome is a polynomial of degree up to n - k - 1,

n-k-1 s (x) = SO f SIX + ' ' ' + Sn-k- lX

Also recall that if r (x) is cyclically shifted i times to produce T - (~) (x) , the syndrome s (~) (x)
may be obtained either by dividing T (~) (x) by g(x), or by dividing x i s (x) by g(x). Suppose
that an 1 burst-error correcting code is employed and that the errors occur in a burst confined
to the I digits,

n-k-1 + . . . + e n - k - l x n-k- l+ l e(X) = f?n-k-[Xn-k-l + e n - k - l + l X

Then the syndrome digits Sn-k-1, S n - k - l + l , . . . , Sn-k-1 match the error values and the
syndrome digits so, $ 1 , . . . , Sn-k-1-1 are zeros.

436 Burstv Channels. Interleavers. and Concatenation

I A

Buffer register gate 4

I output

Figure 10.8: Error trapping decoder for burst-error correcting codes [203, p. 2601.

If the errors occur in a burst of 1 consecutive positions at some other location, then after

.n-k-l of r (i) (~) . Then the corresponding syndrome s(')(x) of T (~) (x) matches the errors
at positions x ~ - ~ - ' , ~ " - ~ - ' + l , * * * , p - k - 1 of r (i) (x) and the digits at positions xo, x ', . . . ,
X n - k - l - l are zeros. This fact allows us to "trap" the errors: when the condition of zeros is
detected among the lower syndrome digits, we conclude that the shifted errors are trapped
in the other digits of the syndrome register.

An error trapping decoder is diagrammed in Figure 10.8. The operation is as follows:

some number i of cyclic shifts, the errors are shifted to the positions x ~ - ~ - ' , x'-~-'+' , . . . ,

~2031

1. With gate 1 and gate 2 open, the received vector r (x) is shifted into the syndrome
register, where the division by g(x) takes place by virtue of the feedback connections,
so that when r (x) has been shifted in, the syndrome register contains s(x). r (x) is
also simultaneously shifted into a buffer register.

2. Successive shifts of the syndrome register occur with gate 2 still open. When the left
n - k - 1 memory elements contain only zeros, the right 1 stages are deemed to have
"trapped" the burst error pattern and error correction begins. The exact correction
actions depends upon how many shifts were necessary.

If the n - k - 1 left stages of the syndrome register are all zero after the i th shift
for 0 5 i I n - k - I, then the errors in e(x) are confined only to the parity
check positions of r (x), so that the message bits are error free. There is no need
to correct the parity bits. In this case, gate 4 is open, and the buffer register is
simply shifted out. If, for this range of shifts the n - k - 1 left stages are never
zero, then the error burst is not confined to the parity check positions of r (x) .

If the n - k - 1 left stages of the syndrome register are all zero after the (n -
k - I + i)th shift, for 1 5 i I 1, then the error burst is confined to positions
p - 1 , . . .) xn-1, xo, . . . , x I - i - 1 or r (x) . (This burst is contiguous in a cyclic
sense.) In this case, 1 - i right digits of the syndrome buffer register match
the errors at the locations xo, xl, . . . , x'-~-' of r (x) , which are parity check
positions and the next i stages of the syndrome register match the errors at
locations x n - ' , . . . , x ~ - ~ , xn- ' , which are message locations. The syndrome

10.8 Exercises 437

register is shifted 1 - i times with gate 2 closed (no feedback) so that the errors
align with the message digits in the buffer register. Then gate 3 and gate 4 are
opened and the message bits are shifted out of the buffer register, being corrected
by the error bits shifted out of the syndrome register.
If the n - k - 1 left stages of the syndrome register are never all zeros by the time
the syndrome register has been shifted n - k times, the bits are shifted out of the
buffer register with gate 4 open while the syndrome register is simultaneously
shifted with gate 2 open. In the event that then - k -1 left stages of the syndrome
register become equal to all zeros, the digits in the 1 right stages of the syndrome
register match the errors of the next 1 message bits. Gate 3 is then opened and
the message bits are corrected as they are shifted out of the buffer register.
If the n - k - I left stages of the syndrome register are never all zeros by the
time the k message bits have been shifted out of the buffer, an uncorrectable
error burst has been detected.

10.8 Exercises

10.1 Let an (n, k) cyclic code with generator g (x) be interleaved by writing its codewords into an
M x n array, then reading out the columns. The resulting code is an (Mn, kn) code. Show that
this code is cyclic with generator g (x M) .

10.2 Let G1 and G2 be generator matrices for C1 and C2, respectively. Show that G1 €3 G2 is a
generator matrix for C1 x C2, where €3 is the Kronecker product introduced in chapter 8.

10.3 Let C1 and C2 be cyclic codes of length n l and n2, respectively, with (nl , n2) = 1. Form the
product code C1 x C2. In this problem you will argue that C1 x C2 is also cyclic. Denote the
codeword represented by the matrix

1 coo co1 ... COnz-1

C l l '.. C1 nz-1

Cn1-10 C n , - l l ... CnI -1 nz-1

by the polynomial

where c (x , y) E P[x]/(xnl - 1, ynz - 1). That is, in the ring where xnl = 1 and yn2 = 1
(since the codes are cyclic). Thus nc(x, y) and yc(x, y) represent cyclic shifts of the rows and
columns, respectively, of c.

(a) Show that there exists a function Z(i , j) such that for each pair (i, j) with 0 5 i < n 1 and
0 5 j < n2, Z(i , j) is a unique integer in the range 0 5 I (i , j) < nln2, such that

Z(i , j) = i
Z(i , j) = j

(mod n l)
(mod n2).

(b) Using Z(i, j) , rewrite c (x , y) in terms of a single variable z = x y by replacing each x i y J

(c) Show that the set of code polynomials d(z) so obtained is cyclic.
by ~ ' (~ , j) to obtain the representation d(z).

10.4 For each of the following (M, D) pairs, draw the cross interleaver and the corresponding dein-
terleaver. Also, for the sequence xo, x i , x2, . . . , , determine the interleaved output sequence.

438 Bursty Channels, Interleavers, and Concatenation

10.5 [203] Find a generator polynomial of a Fire code capable of correcting any single error burst of
length 4 or less. What is the length of the code? Devise an error trapping decoder for this code.

10.9 References

The topic of burst-error correcting codes is much more fully developed in [203] where,
in addition to the cyclic codes introduced here, several other codes are presented which
were found by computer search. Fire codes were introduced in [85]. The cross interleaver
is examined in [282]. Error trapping decoding is also fully developed in [203]; it was
originally developed in [184,240,241,298,185]. The compact disc system is described in
[158]. A thorough summary is provided in [159]. Product codes are discussed in [220, ch.
181. Application to burst error correction is described in [203]. Cyclic product codes are
explored in [39,202]. The interpretation of Reed-Solomon codes as binary (mn, mk) codes
is discussed in [220]. Decoders which attempt binary-level decoding of Reed-Solomon
codes are in [243] and references therein.

Chapter 11

Soft-Decision Decoding Algorithms
11.1 Introduction and General Notation

Most of the decoding methods described to this point in the book have been based on discrete
field values, usually bits obtained by quantizing the output of the matched filter. However,
the actual value of the matched filter output might be used, instead of just its quantization,
to determine the reliability of the bit decision. For example, in BPSK modulation if the
matched filter output is very near to zero, then any bit decision made based on only that
output would have low reliability. A decoding algorithm which takes into account reliability
information or uses probabilistic or likelihood values rather than quantized data is called a
soft-decision decoding algorithm. Decoding which uses only the (quantized) received bit
values and not their reliabilities is referred to as hard-decision decoding. As a general rule
of thumb, soft-decision decoding can provide as much as 3 dB of gain over hard-decision
decoding. In this short chapter, we introduce some of the most commonly-used historical
methods for soft-decision decoding, particularly for binary codes transmitted using BPSK
modulation over the AWGN channel. Some modem soft-decision decoding techniques are
discussed in the context of turbo codes (chapter 14) and LDPC codes (chapter 15).

Some clarification in the terminology is needed. The algorithms discussed in the chapter
actually provide hard output decisions. That is, the decoded values are provided without
any reliability information. However, they rely on “soft” input decisions - matched filter
outputs or reliabilities. They should thus be called soft-input hard-output algorithms. A
soft-output decoder would provide decoded values accompanied by an associated reliability
measure, or a probability distribution for the decoded bits. Such decoders are called soft-
input, soft-output decoders. The turbo and LDPC decoders provide this capability.

Let C be a code and let a codeword c = (co, c1, . . . , cn-l) E C be modulated as the
vector

S = (t o , ? I , . . . , Zn-1)

(assuming for convenience a one-dimensional signal space; modifications for two- or higher-
dimensional signal spaces are straightforward). We will denote the operation of modulation
- mapping into the signal space for transmission -by M, so that we can write

E = M(c).

The modulated signal Z. is passed through a memoryless channel to form the received vector
r = (ro, q , . . . , m-1). For example, for an AWGN

r’ - c“.
t - z +ni,

where ni - N(0, u2), with u2 = N 0 / 2 .
The operation of “slicing” the received signal into signal constellation values, the detec-

tion problem, can be thought of as an “inverse” modulation. We denote the “sliced” values

440 Soft-Decision Decoding Algorithms

as ui. Thus
L J ~ = M-'(Ti)

or
v = M-'(r).

If the ri values are sliced into discrete detected values V j and only this information is used
by the decoder, then hard-decision decoding occurs.

Example 11.1 For example, if BPSK modulation is used, then ti = M(ci j = &(2ci - 1 j is the
modulated signal point. The received values are sliced into detected bits by

In this case, as described in Section 1.5.7, there is effectively a BSC model between transmitter and
receiver. Figure 1 1 .1 illustrates the signal labels.

(matched filter
outputs) y or

Modulate Channel Slice

Figure 1 1 . 1 : Signal labels for soft-decision decoding.

It is possible to associate with each sliced value vi a reliability z j , which indicates the quality
of the decision. The reliabilities are ordered such that zj > z j if the ith symbol is more
reliable - capable of producing better decisions -than the j th symbol. If the channel is
AWGN, then

zi = IriI E R

can be used as the reliability measure, since the absolute log likelihood ratio

(11 .1)
p(rz ICZ = 0)

is proportional to Iri I. Associated with each channel is a distance measure. For the BSC,
the appropriate distance measure is the Hamming distance,

u t i l tk rn .cc
u t i It krn . h

n-1

dH(v, C> = C[ui + cil.
However, for soft-decision decoding over the AWGN, the Euclidean metric between the
(soft) received vector and the transmitted codeword

dE(r, ti) = dE(r, M(c)) = ((r - till2.

i=O

is more appropriate. (See Section 1 . 5 for further discussion.)

11.2 Generalized Minimum Distance Decoding 441

A key idea in soft-decision decoding is sorting the symbols in order of reliability. When
the symbols are sorted in order of decreasing reliability, then the first sorted symbols are
more likely to be correct than the last sorted symbols. The set of symbols which have the
highest reliability (appearing first in the sorted list) are referred to as being in the most
reliable positions and the set of symbols appearing at the end of the sorted list are said to
be in the least reliable positions.

11.2 Generalized Minimum Distance Decoding

Recall (see Section 3.8) that an erasure-and-error decoder is capable of correcting twice
as many erasures as errors. That is, a code with minimum Hamming distance &in can
simultaneously correct e errors and f erasures provided that 2e + f 5 - 1. The
generalized minimum distance (GMD) decoder devised by Forney [88] makes use of this
fact, deliberately erasing symbols which have the least reliability, then correcting them using
an erasure-and-error decoder. The GMD decoding considers all possible patterns of up to
f I - 1 erasures in the least reliable positions. The decoder operates as follows.

Algorithm 11.1 Generalized Minimum Distance (GMD) Decoding

Initialize: For the (soft) received sequence r = (ro, rl , . . . , rn- l) , form

Sort the reliabilities to find the dmin - 1 least reliable positions
if dmin is even:

the hard-decision vector v = (VO, v l , . . . , ~ ~ - 1) and the reliabilities zj = Irj 1.

for j=1tod, , - , in-1by2
erase the j least reliable symbols in v to form a modified vector B
Decode and Select the best codeword

- 1 by 2
erase the j least reliable symbols in v to form a modified vector 8
Decode and Select the best codeword

else if dmin is odd:
for j = 0

end if

Decode and Select the best codeword
Decode 8 using an erasures-and-errors decoding algorithm to obtain a codeword c.
Compute the soft-decision (e.g., Euclidean) distance between M(c) and r, dE(r, M(c)),
and select the codeword with the best distance.

As discussed in Exercise 2, the correlation discrepancy A can be computed instead of
the distance.

Since hard-decision values are actually used in the erasures-and-errors decoding algo-
rithm, an algebraic decoder can be used, if it exists for the particular code being decoded.
(The Chase algorithms described below are also compatible with algebraic decoding algo-
rithms.) Note that for dmin either even or odd, there are only + 1)/2J different vectors
that must be decoded.

While the GMD algorithm is straightforward and conceptually simple, justifying it in
detail will require a bit of work, which follows in the next section.

442 Soft-Decision Decoding Algorithms

11.2.1 Distance Measures and Properties

There are two theorems which will establish the correctness of the GMD algorithm, which
will require some additional notation. We first generalize the concept of Hamming distance.
In defining the Hamming distance between elements of a codeword c and another vector v,
there were essentially two “classes” of outcomes, those where ui matches ci, and those where
vi does not match ci. We generalize this by introducing J reliability classes C1, C2, . . . , C J ,

each of which has associated with it two parameters pcj and pej such that

0 5 Bcj 5 Be j 5 1.

We also introduce the weight of the class, aj = /lei - p c j . Then Bej is the “cost” when Ui
is in class j and ui # ci, and BCj is the “cost” when vi is in class j and ui = ci. It is clear
that 0 5 a; 5 1.

We write

Then the generalized distance dG (v, c) is defined as

il-1

dG(v, C> = C d G (v i , Ci> . (11.2)

(Note that this is not a true distance, since it is not symmetric in v and c.) Now let n,; be
the number of symbols received correctly (i.e., vi = ci) and put into class Cj . Let nej be
the number of symbols received incorrectly (so that ui # ci) and put into class Cj . Then
(1 1.2) can be written as

i=O

.I

(11.3)

Example 11.2 For conventional, errors-only decoding, there is only one reliability class, C1, having
= 0 and pel = I , so eq = 1. In this case, the generalized distance specializes to the Hamming

distance.
Introducing erasures introduces a second reliability class C2 having &2 = j3e2 = 0, or a2 = 0.

Symbols in the erasure class can be considered to be equally distant from all transmitted symbols. 0

A class for which aj = 1 is said to be fully reliable.

a correct decoded value.
The first theorem provides a basis for declaring when the decoding algorithm can declare

Theorem 11.1 [88] For a code having minimum distance dmin, ifc is sent and n,, and nej

are such that

CT(1 - a j)nc ; + (1 + aj)nejl < dmin,
J

(11.4)
j= l

then
dG(V, C> < dG(V, C’)

for all codewords c’ # c. That is, v is closer to c in the dG measure than to all other
codewords.

11.2 Generalized Minimum Distance Decoding 443

Note that for errors-only decoding, this theorem specializes as follows: if 2 n e l < d d n , then
dH(r, c) < dH(r, c’), which is the familiar statement regarding the decoding capability of
a code, with ne1 the number of correctable errors. For erasures-and-errors decoding, the
theorem specializes as follows: if 2ne1 + (nc2 + n e 2) < dmin then &(v, C) < &(v, c’).
Letting f = nc2 + ne2 be the number of erasures, this recovers the familiar condition for
erasures-and-errors decoding.

Proof Let c’ be any codeword not equal to c. Partition the n symbol locations into sets such
that

SO if ci = c;

i E Scj if ci # C: and ~i = C i and V i E C j I Sej if ci # c: and vi # ci and U i E C j .

Clearly we must have) S c j) 5 n c j and ISej I 5 n e j .

Fori E S O , & (V ~ , C ;) ? O = d ~ (c i , c ;) .

For i E S c j , dG(Vi, C:) = Bej = d ~ (c { , C i) - 1 + Bej

For i E S e j , dG(Vi, C:) 2 Bcj = d ~ (C i , C i) - 1 + B c j .

Summing both sides of these equalitieshnequalities over j = 1, . . . , J , we obtain

n-1

~ G (V , C’) 2 dH(C, C’) - c[(1 - Bej>Isc j I

n- 1

(1 - B c j > l s e j l l

i=O

L dmin - C[(1- B e j) n c j + (1 - ~ c j) n e j > l .

i =O

If, as stated in the hypothesis of the theorem,

then

This theorem allows us to draw the following conclusions:

If generalized distance dG is used as a decoding criterion, then no decoding error will
be made when ncj and nej are such that (1 1.4) is satisfied.

Let us say that c is within the minimum distance of v if (1 1.4) is satisfied.

distance of any received word v.
The theorem also says that there can be at most one codeword within the minimum

Thus, if by some means a codeword c can be found within the minimum distance of the
received word v, then it can be concluded that this is the decoded value.

The next theorem will determine the maximum number of different decoded values
necessary and suggest how to obtain them.

444 Soft-Decision Decoding Algorithms

Let the classes be ordered according to decreasing reliability (or weight), so that aj 2 ak
if j c k. Let

be the vector of all class weights. Let

Let

a = (a l , a 2 , . . . , a J)

Rb = {0, 1 , 2 , . . . , b } and E b = { b + 1, b + 2, b + 3 , . . . , J] .

a b = { l , l , ..., l , o , o , ..., o}. -
b ones

Theorem 11.2 [88] Let the weights be ordered according to decreasing reliabilizjt If
J

C [(1 - aj)ncj + (1 + a j > n e j l < dmin,
j = 1

then there is some integer b such that
b J

j = l i=b+l

Since erased symbols are associated with a class having aj = 0, which would occur last
in the ordered reliability list, the import of the theorem is that if there is some codeword
such that the inequality (1 1.4) is satisfied, then there must be some assignment in which
(only) the least reliable classes are erased which will enable an erasures-and-errors decoder
to succeed in findmg that codeword.
Proof Let

J

f(a> = C[(1- aj)nc j + (1 + a j l n e j l .

j=1

b Note that f (a b) = 2 Cjz1 n,j + C:=b+l (ncj + n e j) . The proof is by contradiction.
Suppose (contrary to the theorem) that f (a b) 2 ddn . Let

ho = 1 -a1 hb = (Yb - a b + l 1 5 b 5 J - 1 h~ =a.J.

By the ordering, 0 p hb 5 1 for 0 p b p 1, and hb = 1 .
Now let

.I

Then
J J

f(a) = f c h b a b = c h b f (a b) 2 dmin c h b = dmin.
(b r 0) b=O b=O

Thus if f (a b) 1 d for all b , then f(a) 2 d . But the hypothesis of the theorem is that
f (a) < d , which is a contradiction. Therefore, there must be at least one b such that

Let us examine conditions under which an erasures-and-errors decoder can succeed.
The decoder can succeed if there are apparently no errors and d d n - 1 erasures, or one error
and dmin - 3 erasures, and SO forth up to to errors and dmin - 2t0 - 1 erasures, where to is
the largest integer such that 2t0 5 dhn - 1. These possibilities are exactly those examined
by the statement of the GMD decoder in Algorithm 1 1.1.

f (a b) < d .

11.3 The Chase Decoding Algorithms 445

11.3 The Chase Decoding Algorithms

In [46], three other soft-decision decoding algorithms were presented, now referred to
as Chase-1, Chase-2, and Chase-3. These algorithms provide varying levels of decoder
capability for varying degrees of decoder effort.

In the Chase-1 algorithm, all patterns of up to d- - 1 errors are added to the received
signal vector v to form w = v + e. Then w is decoded, if possible, and compared using a
soft-decision metric to r. The decoded codeword closest to r is selected. However, since
all patterns of up to dmin - 1 errors are used this is very complex for codes of appreciable
length or distance, so Chase-1 decoding has attracted very little interest.

In the Chase-2 algorithm, the [dmin/2] least reliable positions are identified from the
sorted reliabilities. The set E consisting of all errors in these Ld-/2J least reliable positions
is generated. Then the Chase-2 algorithm can be summarized as follows.

Algorithm 11.2 Chase-2 Decoder

Initialize: For the (soft) received sequence r = (ro, q, . . . , rn- l) , form the hard-decision vector
v = (UO, ul , . . . , un-l) and the reliabilities zi = Iri I.
Identify the Ldmin/2J least reliable positions
Generate the set E of error vectors (one at a time, in practice)
for each e E E

Decode v + e using an errors-only decoder to produce the codeword c
Compute dE (r, M(c)) and select the candidate codeword with the best metric.

end for

to the GMD.
The Chase-3 decoder has lower complexity than the Chase-2 algorithm, and is similar

Algorithm 11.3 Chase-3 Decoder

Initialize: For the (soft) received sequence r = (ro, q , . . . , rn-1), form the hard-decision vector
v = (UO, u l , . . . , un-l) and the reliabilities zi = Iri 1.
Sort the reliabilities to find the Ldfin - 11 least reliable positions

Generate a list of at most Ldmin/2 + 1J sequences by modifying v:
If dmin is even, modify v by complementing no symbols, then the least reliable symbol, then the three
least reliable symbols, . . ., the dmin-l least reliable symbols.
If dmin is odd, modify v by complementing no symbols, then the two least reliable symbols, then the
four least reliable symbols, . . ., the d h - 1 least reliable symbols.
Decode each modified v into a codeword c using an error-only decoder.
Compute dE(r, M(c)) and select the codeword that is closest.

11.4 Halting the Search: An Optimality Condition

The soft-decision decoding algorithms presented so far require searching over an entire list
of candidate codewords to select the best. It is of interest to know if a given codeword is
the best that is going to be found, without having to complete the search. In this section we
discuss an optimality condition appropriate for binary codes transmitted using BPSK which
can be tested which establishes exactly this condition.

Let r be the received vector, with hard-decision values v. Let c = (co, c1, . . . , cn-l) be
a binary codeword in C and let 6 = (20, Zl, . . . , Znn-l) be its bipolar representation (i.e.., for
BPSK modulation), with Zi = 2ci - 1. In this section, whenever we indicate a codeword c

446 Soft-Decision Decoding Algorithms

its corresponding bipolar representation E is also implied. We define the index sets Do(c)
and D1 (c) with respect to a codevector c by

and

Let n(c) = ID1 (c) 1 ; this is the Hamming distance between the transmitted codeword c and
the hard-decision vector v.

It is clear from the definitions that riEi < 0 if and only if ui # ci. In Exercise 2, the
correlation discrepancy h(r , E) is defined as

Do(c) = (i : 0 5 i < n andci = ui} D ~ (c) = { i : 0 5 i < n andci # ui}.

i:rii.i <O

Based on the index sets just defined, h can be expressed as

iEDI (c)

As discussed in Exercise 2, ML decoding seeks a codeword c such that h(r , E) is minimized:
a ML codeword c* is one satisfying

h(r,E*) 5 min h (r , c) .
C € C , C # C *

While determining the minimum requires search over all c E C, we will establish a tight
bound A* on mincEc,c#c*(h(r, c)) such that h(r , c) 5 h* represents a sufficient condition
for the optimality of the candidate codeword in the list of candidate codewords generated
by a reliability-based decoding algorithm such as those presented above.

Let the indices in Do(c) be written as

Do(c) = {El, 1 2 7 . . . * h - n (c) l ,

Irl; I < lrEj I.

where the indices are ordered such that for i < j , the reliabilities are ordered as

Let Df)(c) denote the first j indices in the ordered set,

D (j) 0 (1 = U l , l 2 , . - . , l j } . (11.5)

For j i 0, define Df)(c) = 0, and for j 2 n - n (c) , define Df)(c) = Do(c).
Let wi be the ith weight in the weight profile of the code C. That is, wg = 0, w1 = dfin,

and w1 < w2 < . . . < wm for some m. That is, w, is the weight of the heaviest codeword
in C. For a codeword c E C, let

and define

qi = W i - n(c)

and
R (C , w j) = (c’ E C ~ H (c , c’) < ~ j } .

ThesetR(c, wj)isthesetofcodewordswithinadistancewj-1 ofc. Whenj = l ,R(c, w1)
is simply the codeword {c}. When j = 2, R (c , w2) is the codeword c and all codewords in
C which are at a distance ddn from c.

With this notation, we are now ready for the theorem.

11.5 Ordered Statistic Decoding 447

Theorem 11.3 [204, p . 4041 Let r be the received vector, with corresponding hard-decision
vector V. For a codeword c E C and a nonzero weight wj in the weight projile of C, if the
correlation discrepancy h(r, M(c)) satisjies

h(r, M(c)) 5 G(r, Wj),

then the maximum likelihood codeword CML for r is contained in R(c, wj).

The theorem thus establishes a sufficient condition for R(v, wj) to contain the maximum
likelihood codeword for r .
Proof Let c‘ be a codeword outside R(c, wj). Then, by the definition of R, dH(C, c‘) 2 Wj.
The theorem is established if we can show that h(r, M(c’)) p h(r, M(c)), since this would
show that c’ has lower likelihood than c. Thus no codeword outside R(r, wj) is more likely
than c, so that the maximum likelihood codeword must be in R(c, Wj).

Define
no1 = JDo(c) n Dl(c’)I and

From the definitions of Do and D1, it follows that dH(c, c’) = no1 + n10. As we have just
observed, we must also have

wj L d H (C , c’) = no1 + nio.

nlo = IDl(c) n Do(c’)).

(11.6)

It also follows that

IDl(c’>I 2 IDo(c) n Dl(c’>I 2 wj -n10
2 Wj - lDl(c)I (11.7)

= wj - n(c),

where the first inequality is immediate from the nature of intersection, the second from
(1 1.6), and the third from the definition of n 10 and the intersection. Now we have

= G(C, Wj) (bydefinition)

2 h(c, C) (by hypothesis).

We thus haveh(r, c’) 2 h(r, c): no codewordoutside R(r, wj) is morelikely thanc. Hence
0

For j = 1, this theorem says that the condition h(r, M(c)) < G(c, wl) guarantees that
c is, in fact, the maximum likelihood codeword. This provides a sufficient condition for
optimality, which can be used to terminate the GMD or Chase algorithms before exhausting
over all codewords in the lists these algorithms produce.

c m must lie in R(r, Wj).

11.5 Ordered Statistic Decoding

The GMD and Chase algorithms make use of the least reliable symbols. By contrast, ordered
statistic decoding [1041 uses the most reliable symbols.

448 Soft-Decision Decoding Algorithms

Let C be an (n , k) linear block code with k x n generator matrix

G = [go gl * * . gn-11.

Let r be the received vector of matched filter outputs, with corresponding hard-decoded
values v. Let z denote the corresponding reliability values and let E = (To , Zi, . . . , Zn-i>
denote the sorted reliability values, with TO 2 Z1 2 . . . 2 Zn-1. This ordering establishes
a permutation mapping n1, with

z = Zl(Z).

In ordered statistic decoding, the columns of G are reordered by the permutation mapping
to form a generator matrix GI, where

-

Gt = ~1 (G) = [gb gi . * . &-I] .

Now a most reliable basis for the codeword is obtained as follows. The first k linearly
independent columns of G' (associated with the largest reliability values) are found. Then
these k columns are used as the first k columns of a new generator matrix G", in reliability
order. The remaining n - k columns of G" are placed in decreasing reliability order. This
ordering establishes another permutation mapping 1t2, such that

G" = n2(Gt) = n2(ni(G)).

Applying n2 to the ordered reliabilities Z results in another reliability vector 2,

ii = ?T2(Z) = TTZ(?Tl(Z))

satisfying

Now perform elementary row operations on G" to obtain an equivalent generator matrix G
in systematic form,

Z1 > 2 2 2 - . . L & a n d & + l > & + 2 > - . . 2 : & 1 .

rl o ... o pl,l ... Pl,n-kl

L O 0 ". 1 Pk,l ' * . Pk,n-kA

Let c" denote the code generated by G. The code c" is equivalent to C (see Definition 3.5).
The next decoding step is to use the k most reliable elements of v. Let us denote these

as i$ = [n2(n1 (v))11:k = (;I, 62, . . . , Zk). Since these are the most reliable symbols, these
symbols should contain very few errors. Since G is systematically represented, we will take
these symbols as the message symbols for a codeword. The corresponding codeword C in
c" is obtained by

2 = f k 6 E c".
Finally, the codeword P in the original code C can be obtained by unpermuting by both
permutations:

P = n;'(n,l(q) E c.
This gives a single candidate decoded value. Then P is compared with r by computing
dE(r, M(P)) (at least, this is the appropriate distance for the AWGN channel).

11.6 Exercises 449

Now some additional search is performed. Fix a “search depth parameter” I 5 k . For
each i in 1 p i 5 I, make all possible changes of i of the k most reliable symbols in f k .

Denote the modified vector as i$. For each such Ti, find the corresponding codeword

and its corresponding codeword i? = ncl(nF1(C’)) E C. Then compute dE(r, M(i?)).
Select the codeword i? with the best metric. The number of codewords to try is If=, (f).

The ordered statistic decoding algorithm is summarized below.

Algorithm 11.4 Ordered Statistic Decoding

Initialize: For the (soft) received sequence r = (rg, r1, . . . , rfl-l), form the hard-decision vector
v = (vo, q, . . . , v f l - l) and the reliabilities z i = Iri 1.
Sort the reliabilities by q , such that

such that To 1 2 1 2 . . . 2 T f l - l

Order the columns of G to produce G’ = nl (G).
Find the first k linearly independent columns of G’ and retain the order of the other columns. Let
G” = nz(G’) have these first k linearly independent columns.
Reduce GI‘ by row operations to produce e.
Let i k = rr2(nl(v))l:k.
for i = 0 to I

z = q (z)

form all patterns of i errors and add them to the most reliable positions of Vk to form $6
for each such i i , find E’ = Vie and the corresponding i? = zrl (nTl(Zr’))

for each L’, compute dE(r, M(t)) and retain the codeword with the smallest distance.

When I = k , then the algorithm will compute a maximum likelihood decision, but the
decoding complexity is O(29 . However, since the vector f k contains the most reliable
symbols, it is likely to have very few errors, so that making a change in only a small number
of locations is likely to produce the ML codeword. It is shown in [lo41 (see also [204, p.
4331) that for most block codes of length up to n = 128 and rates R I that i = L&in/4]
achieves nearly ML decoding performance.

11.6 Exercises

11.1 Show that for a signal transmitted over an AWGN, the absolute log likelihood ratio (1 1.1) is

11.2 Let Z: is a BPSK signal transmitted through an AWGN to produce a received signal r.
proportional to Iri I.

(a) Show that, as far as ML decoding is concerned, dE(r, Zr) is equivalent to m(r, V) =
-1 vi = o
1 vi = 1.

ri i;i, where Gi =

(b) Show that m(r, i) can be written as

where

450 Soft-Decision Decoding Algorithms

Thus, minimizing dE(r, S) is equivalent to minimizing A(r, 5) . h(r , 5) is called the
correlation discrepancy.

11.3 [204, p. 4061 In this exercise, a sufficient condition for determining the optimality of a codeword
based on two codewords is derived. Let cl , c2 E C. Define

61 = wl - n (q) 62 = wi - n(c21,

where n(c) = I{i : 0 5 i < n and ci # q}l is the Hamming distance between c and v, and wi
is the i th weight in the weight profile of the code. Assume that the codewords are ordered such
that 61 ? 6 2 . Also define

~ 0 0 = D O (C ~) n ~ O (c 2) ~ 0 1 = DOW n w c 2) .

Let X (4) denote the first q indices of an ordered index set X , as was done in (1 1.5). Define

Also define
G(c1, ~ 1 ~ ~ 2 , w l) = C IriI.

ie.l(cl ,CZ)

Let c be the codeword among c1, c2, which has the smaller discrepancy.
Show that: If k(c , c) 5 G(c1, w l , c2, w l) , then c is the maximum likelihood codeword for r.

11.4 [204] In GMD decoding, only L(dmin + 1)/2J erasure patterns in the d d n - 1 least reliable
positions are examined. Explain why not all d d n - 1 possible erasure patterns are considered.

11.7 References

Generalized minimum distance decoding was presented first in [88]. The statement of the
algorithm presented here follows [204]. The Chase decoding algorithms were presented
in [46]; our statement of Chase-3 is essentially identical to that in [204]. Generalizations
of the Chase algorithm presented in [lo31 circumscribe Chase-2 and Chase-3, and are
capable of achieving bounded distance decoding. An iterative method of soft decision
decoding which is capable of finding the ML codeword is proposed in [183, 1821. Our
discussion of the optimality criterion very closely follows [204, section 10.31, which in turn
is derived from [327]. Chapter 10 of [204], in fact, provides a very substantial discussion
of soft-decision decoding, including topics not covered here such as reduced list syndrome
decoding [317, 3181, priority-first search decoding [139, 140, 73, 16, 3481, and majority-
logic decoding [224, 1921. Soft-decision decoding is also discussed in this book in chapter
15 for LDPC codes, chapter 12 using the trellis representation of codes, chapter 7 for Reed-
Solomon codes, and chapter 14 for turbo codes.

Part I11

Codes on Graphs

Chapter 12

Convolutional Codes
12.1 Introduction and Basic Notation

Convolutional codes are linear codes that have additional structure in the generator matrix
so that the encoding operation can be viewed as a filtering - or convolution - operation.
Convolutional codes are widely used in practice, with several hardware implementations
available for encoding and decoding. A convolutional encoder may be viewed as nothing
more than a set of digital filters - linear, time-invariant systems - with the code sequence
being the interleaved output of the filter outputs. Convolutional codes are often preferred
in practice over block codes, because they provide excellent performance when compared
with block codes of comparable encodeldecode complexity. Furthermore, they were among
the earliest codes for which effective soft-decision decoding algorithms were developed.

Whereas block codes take discrete blocks of k symbols and produce therefrom blocks
of n symbols that depend only on the k input symbols, convolutional codes are frequently
viewed as stream codes, in that they often operate on continuous streams of symbols not
partitioned into discrete message blocks. However, they are still rate R = kjn codes,
accepting k new symbols at each time step and producing n new symbols. The arithmetic
can, of course, be carried out over any field, but throughout this chapter and, in fact, in most
of the convolutional coding literature, the field G F (2) is employed.

We represent sequences and transfer functions as power series in the variable x.' A
sequence {. . . , m-2, m-1, mo, m l , m2, . . .} with elements from a field F is represented as
a formal Laurent series m (x) = CE-, rnlx'. The set of all Laurent series over F is a
field, which is usually denoted as F [[x l] . Thus, m (x) E F [[x]] .

For multiple input streams we use a superscript, so rn(')(x) represents the first input
stream and rn(2)(x) represents the second input stream. For multiple input streams, it is
convenient to collect the input streams into a single (row) vector, as in

m (x > = [rn(')(x) m (2) (~)] E ~ " ~ 1 1 ~ .

A convolutional encoder is typically represented as sets of digital (binary) filters.

Example 12.1 Figure 12.1 shows an example of a convolutional encoder. (Recall that the D blocks
represent 1-bit storage devices, or D flip-flops.) The input stream mk passes through two filters
(sharing memory elements) producing two output streams

cf) = mk + mk-2 and cf' = mk + m k - l + mk-2.

These two streams are interleaved together to produce the coded stream C k . Thus, for every bit of
input, there are two coded output bits, resulting in a rate R = 1/2 code.

'The symbol D is sometimes used instead of x . The Laurent series representation may be called the D-transform
in this case.

12.1 Introduction and Basic Notation 453

mk I mk-1 mk-2 Ck
1

Figure 12.1 : A rate R = 1 /2 convolutional encoder.

It is conventional to assume that the memory elements are initialized with all zeros at the beginning

For the input stream m = { 1, 1, 0, 0, 1,0, l}, the outputs are
of transmission.

c(l) = 11, 1, 1, 1, 1,0,0,0, 1) and c (~) = {1,0,0, 1, 1, 1,0, 1, 1)

and the interleaved stream is

c = {11,10, 10,11, 11,01,00,01, 11)

(where commas separate the pairs of outputs at a single input time). We can represent the transfer
functionfrominputm(x) tooutput c(')(x) asg(l)(x) = 1+x2, andthetransferfunctionfromm(x) to
output d2) (x) as g(2)(x) = 1 + x + x 2 . The input stream m = { 1, 1, 0, 0, 1, 0, 1) can be represented
as m (x) = 1 + x + x4 + x6 E G F (2) [[x]] . The outputs are

c'l'(x) = m(x)g1 (x) = (1 + x + x4 + x6)(1 + 2) = 1 + x + x 2 + x3 + x4 + x8
c'2'(x) = m (x) g 2 (x) = (1 + x + x4 + x6)(1 + x + x 2) = 1 + x3 + x4 + x5 + x7 + 2.

0

A rate R = k / n convolutional code has associated with it an encoder, a k x n matrix
transfer function G(x) called the transferfunction matrix. For the rate R = 1/2 code of
this example,

G a (x) = [1 + x 2 1 + x + x 2] .
The transfer function matrix of a convolutional code does not always have only polyno-

mial entries, as the following example illustrates.

Example 12.2 Consider the convolutional transfer function matrix

Since there is a 1 in the first column the input stream appears explicitly in the interleaved output data;
this is a systematic convolutional encoder.

A realization (in controller form) for this encoder is shown in Figure 12.2. For the input sequence
m (x) = 1 + x + x2 + x3 + x4 + 2, the first output is

c (') (x) = m(x) = 1 + x + x 2 + x3 + x4 + x 8

and the second output is

(1 + x + x 2 + x3 +x4 + x8)(1+ x + 2)
1 + x 2

C @ ' (X) = = 1 + x3 +x4 +x5 +x7 + x 8 + . . .

as can be verified by long division.

454 Convolutional Codes

Figure 12.2: A systematic R = 1/2 encoder.

An encoder that has only polynomial entries in its transfer function matrix is said to be
a feedforward encoder or an FIR encoder. An encoder that has rational functions in its
transfer function matrix is said to be a feedback or IIR encoder.

For a rate R = k / n code with k > 1, there are k input message sequences (usually
obtained by splitting a single message sequence into k streams). Let

m(x> = [~ (') (x) , ~ (~) (x) , . . . , ~ (k) (x) ~

and

(12.1)

The output sequences are represented as

c(x) = [c(')(x), d2)(x), . . . , c(")(x)] = m(x)G(x).
A transfer function matrix G(x) is said to be systematic if an identity matrix can be identified
among the elements of G(x). (That is, if by row and/or column permutations of G (x) , an
identity matrix can be obtained.)

Example 12.3 For a rate R = 2/3 code, a systematic transfer function matrix might be

(12.2)

with a possible realization as shown in Figure 12.3. This is based on the controller form of Figure
4.7. Another more efficient realization based on the observability form from Figure 4.8, is shown in
figure 12.4. In this case, only a single set of memory elements is used, employing linearity. With
m (x) = [l + x 2 + x 4 + x 5 + x 7 +. . . , x 2 + x 5 + x 6 + x 7 + . . . I , theoutput is

c (x) = [l + x 2 +x4 + x 5 + x 7 + * . . 9 x 2 + x 5 + x 6 f.7 + . . . , x + x 3 + x 5 + . . * 1.

~ ~ 1 , 0 , 1 , 0 , 1 , 1 , 0 , 1 I . . . } ,{0 ,0 ,1 ,0 ,0 ,1 ,1 ,1 , ... } ,{0 ,1 ,0 ,1 ,0 ,1 ,0 ,0 ,..., }]

(100,001,110,001,100,111,010, llO}.

The corresponding bit sequences are

which, when interleaved, produce the output sequence

12.1 Introduction and Basic Notation 455

I

Figure 12.3: A systematic R = 213 encoder.

Figure 12.4: A systematic R = 213 encoder with more efficient hardware.

For feedforward encoders, it is common to indicate the connection polynomials as vectors
of numbers representing the impulse response of the encoder, rather than polynomials. The
transfer function matrix G(x) = [l + x2, 1 + x + x2] is represented by the vectors

g(') = [loll and g(') = [l l l] .

These are often expressed compactly (e.g., in tables of codes) in octal form, where triples of
bits are represented using the integers from 0 to 7. In this form, the encoder is represented
using g(') = 5 , g(') = 7.

For an impulse response g (j) = [gf', gF), . . . , g, 1, the output at time i due to the
input sequence mi is

(j)

1 =o

which is, of course, a convolution sum (hence the name of the codes). For an input sequence
m, the output sequence can be written as c(j) = m * g (j) , where * denotes discrete-time
convolution. The operation of convolution can also be represented using matrices. Let
m = [mo, m l , m2, . . .]. Then for g (j) = [&I, g y) , . . . , g, 3, the convolution c = mg(j) Ci)

456 Convolutional Codes

can be represented as

where empty entries in the matrix indicate zeros.
For a rate 1 /2 code, the operation of convolution and interleaving the output sequences is

represented by the following matrix, where the columns of different matrices are interleaved:

(12.3)
It is the shift (Toeplitz) structure of these generator matrices that gives rise to some of the
desirable attributes of convolutional codes.

For a k-input, n-output code with impulse response vectors g (L j) , i = 1,2, . . . , k and
j = 1,2, . . . , n, where g(' ,J) is the impulse response of the encoder connecting input i with
output j , the output can be written as

t

q=l l=O

A matrix description of the these codes can also be given, but the transfer function matrix
G (x) is usually more convenient.

We always deal with delayfree transfer function matrices, for which it is not possible
to factor out a common multiple x i from G (x) . That is, it is not possible to write G (x) =
x"(x) for some i > 0 and any G (x) .

12.1.1 The State

A convolutional encoder is a state machine. For both encoding and decoding purposes, it is
frequently helpful to think of the state diagrams of the state machines, that is, a representation
of the temporal relationships between the states portraying statehext-state relationships as
a function of the inputs and the outputs. For an implementation with u memory elements,
there are 2" states in the state diagram.

Another representation which is extremely useful is a graph representing the connections
from states at one time instant to states at the next time instant. The graph is a bipartite
graph, that is, a graph which contains two subsets of nodes, with edges running only between
the two subsets. By stacking these bipartite graphs to show several time steps one obtains a
graph known as a trellis, so-called because of its resemblance to a trellis that might be used
for decorative purposes in landscaping.

It may be convenient for some implementations to provide a table indicating the statehext
state information explicitly. From the statehext state table the state/previous state informa-
tion can be extracted.

12.1 Introduction and Basic Notation 457

Box 12.1: Graphs: Basic Definitions

Graph concepts are used throughout the remainder of the book.
definitions summarize some graph concepts [375].

The following
A graph G is a pair (V , E) ,

where V is a nonempty finite set of vertices or nodes often
called the vertex set and E is a finite family of unordered
pairs of elements of V called edges. (A family is like a set,
but some elements may be repeated.) In the graph here, the
vertex set is V = {a , b, c , d] and the edge family is E =

A loop is an edge joining a vertex to itself. If the edge
family is in fact a set (no repeated elements) and there are
no loops then the graph is a simple graph.
Two vertices of a graph G are adjacent if there is an edge
joining them. We also say that adjacent nodes are neighbors.
The two vertices are said to be incident to such an edge. Two
distinct edges of a graph are adjacent if they have at least one
vertex in common. The degree of a vertex is the number of
edges incident to it.
The vertex set V of a bipartite graph can be split into two
disjoint sets V = V1 U V;! in such a way that every edge of
G joins a vertex of V1 to a vertex of V2.

{ { a , a } , {a , bl, {a, bl, {a, bl, { a , 4, Ib, 4, {c , 4, Id, 41 . C

A graph

W V 2 v '
A bipartite graph

C

A directed graph

A - walk through a graph G (V , E) is a finite sequence of edges
{ U O , 1111, {q, u;!] ,..., {um- l , urn], where each ui E V and each {vi, u j } E E . The
length of a walk is the number of edges in it. If all the edges are distinct the walk is a
trail; if all the vertices are also distinct (except possibly uo = Um) the walk is a path. A
path or trail is closed if uo = urn. A closed path containing at least one edge is called a
circuit. The girth of a graph is the number of edges in its shortest circuit.
A graph is connected if there is a path between any pair of vertices u, w E V. A connected
graph which contains no circuits is a tree. A node of a tree is a leaf if its degree is equal
to 1.
A directed graph (digraph) G is a pair (V, E) , where E is a finite family
of ordered pairs of elements of V . Such graphs are frequently represented us-
ing arrows to represent edges. In the directed graph here, the edge set is E =

{ (a , a), (a, b) , (b, a) , (b, a), (a , c) , (b, c), (c , 4, (d, 41 .

Example 12.4 Consider again the convolutional encoder of Example 12.1 with transfer function
matrix G (x) = [1 + x2, 1 + x + x2]. A realization and its corresponding state diagram are shown in
Figure 12.5(a) and (b). The state is indicated as a pair of bits, with the first bit representing the least
significant bit (lsb). The branches along the state diagram indicate input/output values. One stage
of the trellis (corresponding to the transition between two time instants) is shown in Figure 12.5(c).
Three trellis stages are shown in Figure 12.5(d). 0

Example 12.5 For the rational systematic encoder with matrix transfer function

G (x) = [' 91,
O 1 1 + X 3

(12.4)

with the circuit realization of Figure 12.4, the state diagram, and trellis are shown in Figure 12.6.
In the state diagram, the states are represented as integers from 0 to 7 using the numbers (a , b, c)

458 Convolutional Codes

v 1/01

(a) Encoder. (b) State Diagram.

State Next
(lsb,msb) State

00

10

01 01

11
1/01

11

State
(lsb,msb)

00
o/oo 0100

10

01

11

t t + l t + 3 t + 4

(c) One stage of trellis. (d) Three stages of trellis.

Figure 12.5: Encoder, state diagram, and trellis for G (x) = [l + x2, 1 + x + x 2] .

corresponding to the registers shown on the circuit. (That is, the lsb is on the right of the diagram this
time.) Only the state transitions are shown, not the inputs or outputs, as that would excessively clutter
the diagram. The corresponding trellis is also shown, with the branches input/output information
listed on the left, with the order of the listing corresponding to the sequence of branches emerging
from the corresponding state in top-to-bottom order.

0

12.2 Definition of Codes and Equivalent Codes

Having now seen several examples of codes, it is now time to formalize the definition and
examine some structural properties of the codes. It is no coincidence that the code sequences
(dl)(x), d 2) (x) > are the same for Examples 12.1 and 12.2. The sets of sequences that lie in
the range of the transfer function matrices G, (x) and Gb (x) are identical: even though the
encoders are different, they encode to the same code. (This is analogous to having different
generator matrices to represent the same block code.)

12.2 Definition of Codes and Equivalent Codes 459

inputloutput
00/000
10/100
01/010
1111 10

(a) State diagram

state

10/101
00/001
111111
01/011

01/010
11/110 oo/ooo
10/100

01/011
11/111
00/001
10/101

1111 10
01/010
10/100
00/000

111111
01/011
10/101
00/00 1

(c) Trellis.

State
0
1
2
3
4
5
6
7

Next State
0 1 2 3
4 5 6 7
1 0 3 2
5 4 7 6
2 3 0 1
6 7 4 5
3 2 1 0
7 6 5 4

(b) Staternext State Information.

Figure 12.6: State diagram and trellis for a rate R = 2/3 systematic encoder.

460 Convolutional Codes

Figure 12.7: A feedforward R = 213 encoder.

We formally define a convolutional code as follows:

Definition 12.1 [303, p. 941 A rate R = k/n code over the field of rational Laurent series
F[[x]] over the field F is the image of an injective linear mapping of the k-dimensional
Laurent series m(x) E F[[x]lk into the n-dimensional Laurent series c (x) E F[[x]ln. 0

In other words, the convolutional code is the set { c (x)) of all possible output sequences
as all possible input sequences {m(x)] are applied to the encoder. The code is the image set
or (row) range of the linear operator G (x) , not the linear operator G (x) itself.

Example 12.6 Let

(12.5)

and note that

(where G 1 (x) was defined in (12.2)) and consider the encoding operation

where

Corresponding to each m(x) there is a unique m’(x) , since T2(x) is invertible. Hence, as rn’(x) varies
over all possible input sequences, m (x) also varies over all possible input sequences. The set of output
sequences { c (x) } produced is the same for G2(x) as G1 (x) : that is, both encoders produce the same
code.

Figure 12.7 shows a schematic representation of this encoder. Note that the implementation of
both G1 (x) (of Figure 12.4) and G2(x) have three one-bit memory elements in them. The contents of
these memory elements may be thought of as the sfuate of the devices. Since these are binary circuits,
there are 23 = 8 distinct states in either implementation.

Example 12.7 Another encoder for the code of Example 12.1 is

(12.6)

12.2 Definition of Codes and Equivalent Codes 461

Figure 12.8: A less efficient feedforward R = 2/3 encoder.

where, it may be observed,

The encoding operation

m(x)G3(x) = m(x)T3(x)Gi(x) = m’(x)Gi(x) ,

with m’(x) = m(x)T3 (x), again results in the same code, since T3(x) is invertible.
The schematic for G3 (x) in Figure 12.8 would require more storage blocks than either G 1 (x) or

0 G ~ (x) : it is not as efficient in terms of hardware.

These examples motivate the following definition.

Definition 12.2 Two transfer function matrices G (x) and G’(x) are said to be equivalent if
they generate the same convolutional code. Two transfer function matrices G (x) and G’(x)

These examples also motivate other considerations: For a given a code, is there always
a feedforward transfer matrix representation? Is there always a systematic representation?
What it the “minimal” representation, requiring the least amount of memory? As the
following section reveals, another question is whether the representation is catastrophic.

12.2.1 Catastrophic Encoders

Besides the hardware inefficiency, there is another fundamental problem with the encoder
G3(x) of (12.6). Suppose that the input is

are equivalent if G (x) = T(x)G’ (x) for an invertible matrix T (x) .

m(x> = [o &],
where, expanding the formal series by long division,

1

1 + x
- = l + x + x 2 + 2 + . . .

462 Convolutional Codes

The input sequence thus has infinite Hamming weight. The corresponding output sequence
is

C(X) = m(x)Gg(x) = [X 1 01,

a sequence with total Hamming weight 2. Suppose now that c(x) is passed through a channel
and that two errors occur at precisely the locations of the nonzero code elements. Then the
received sequences is exactly zero, which would decode (under any reasonable decoding
scheme) to m(x) = [0 01. Thus, a j n i t e number of errors in the channel result in an
injnite number of decoder errors. Such an encoder is called a Catastrophic encoder. It may
be emphasized, however, that the problem is not with the code but the particular encoder,
since Gl(x), G ~ (x) and G3(x) all produce the same code but, G1(x) and G ~ (x) do not
exhibit catastrophic behavior.

Letting wt(c(x)) denote the weight of the sequence c (x) , we have the following defini-
tion:

Definition 12.3 [303, p.971 An encoder G(x) for a convolutional code is catastrophic if
there exists a message sequence m(x) such that wt(m(x)) = 00 and the weight of the coded

To understand more of the nature of catastrophic codes, we introduce the idea of a right
inverse of a matrix.

Definition 12.4 Let k < n. A right inverse of a k x n matrix G is a n x k matrix G-' such
that GG-' = & k , the k x k identity matrix. (This is not the same as the inverse, which
cannot exist when G is not square.) A right inverse of G can exist only if G is full rank.

sequence wt(m(x)G(x)) < 00. 0

Example 12.8 For G1 (x) of (12.2), a right inverse is

For G2(x) of (12.5), a right inverse is

X

G2(x)-' = [:2 1 + x 2 3] .

l + x + x

For G3 (x) of (12.6), a right inverse is

1 l + x 1 + x 2
G3(x)-'= 1 + n + ~ 3 + , 4 [x + x 2 l + x] .

0

Note that Gl(x1-l and G2(x)-l are polynomial matrices - they have only polynomial
entries - while G3 (x)-' has non-polynomial entries - some of its entries involve rational
functions.

Example 12.9 It should be observed that right inverses are not necessarily unique. For example, the
matrix [l + x2, 1 + x + x2] has the right inverses

[l + x XI and 11

Of these, one has all polynomial elements. 0

12.2 Definition of Codes and Equivalent Codes 463

Definition 12.5 A transfer function matrix with only polynomial entries is said to be a
polynomial encoder (i.e., it uses FIR filters). More briefly, such an encoder is said to be
polynomial. A transfer function matrix with rational entries is said to be a rational encoder

0
For an encoder G (x) with right inverse G(x)- ' , the message may be recovered (in

a theoretical sense when there is no noise corrupting the code - this is not a decoding
algorithm!) by

c(x)G(x) - ' = m(x)G(x)G(x)-' = m(x). (12.7)

Now suppose that c (x) has finite weight, but m(x) has infinite weight: from (12.7) this can
only happen if one or more elements of the right inverse G(x)-' has an infinite number
of coefficients, that is, they are rational functions. It turns out that this is a necessary and
sufficient condition:

(i.e., it uses IIR filters), or simply rational.

Theorem 12.1 A transferfunction matrix G (x) is not catastrophic ifand only i f it has a
right inverse G(x)-' having only polynomial entries.

From the right inverses in Example 12.8, we see that G 1 (x) and G z (x) have polynomial right
inverses, while G3(x) has non-polynomial entries, indicating that G3 (x) is a catastrophic
generator.

Definition 12.6 A transfer function matrix G (x) is basic if it is polynomial and has a
polynomial right inverse. 0

G2(x) is an example of a basic transfer function matrix.

Example 12.10 Another example of a transfer function matrix for the code is

(12.8)

The invariant factor decomposition (presented below) can be used to show that this is basic. However,
for sufficiently small matrices finding a right inverse may be done by hand. We seek a polynomial
matrix such that

Writing out the implied equations we have

a (l + x + x 2 + x 3) + b(1 + x) + cx = 1

d(l + x + x 2 +x3) +e(l + x) + f x = o

ax + b = 0

d x + e = 1.

From the second we obtain b = ax; substituting this into the first we find a(1 + x 3) + cx = 1. By
setting c = x 2 and a = 1 we can solve this using polynomials.

From the fourth equation we obtain e = 1 + dx, so that from the third equation

d(1 + x + x 2 + x 3) + (1 +dx)(l + x) + fx = 0

ord (l+x3)+fx = 1+x. Thisyieldsd = 1 andf =x2+1 . Thisgivesapolynomialrightinverse,
so G4(x) is basic. Note that the encoder requires four memory elements in its implementation.

464 Convolutional Codes

Two basic encoders G (x) and G’(x) are equivalent if and only if G (x) = T(x)G’ (x) ,

1. T (x) is not only invertible (as required by mere equivalence),

2. But also det(T(x)) = 1,

where

so that when the right inverse is computed all the elements remain polynomial.

12.2.2 Polynomial and Rational Encoders

We show in this section that every rational encoder has an equivalent basic encoder. The
implication is that it is sufficient to use only feedforward (polynomial) encoders to represent
every code. There is, however, an important caveat: there may not be an equivalent basic
(or even polynomial) systematic encoder. Thus, if a systematic coder is desired, it may be
necessary to use a rational encoder. This is relevant because the very powerful behavior of
turbo codes relies on good systematic convolutional codes.

Our results make use of the invariant factor decomposition of a matrix [162, section
3.71. Let G (x) be a k x n polynomial matrix. Then2 G (x) can be written as

G (x) = A (x) r (x) B (x) ,

where A (x) is a k x k polynomial matrix and B (x) is a n x n polynomial matrix and where
det(A(x)) = 1, det(B(x)) = 1 (ie., they are unimodular matrices); and r(x) is the k x n
diagonal matrix

1 Y1 (XI

Y 2 b)

Yk (X) _I

~ i (x > I Yi+l

I r (x) =

The nonzero elements yi (x) of r(x) are polynomials and are called the invariant factors
of G (x). (If any of the yi (x) are zero, they are included in the zero block, so k is the number
of nonzero elements.) Furthermore, the invariant factors satisfy

(Since we are expressing a theoretical result here, we won’t pursue the algorithm for actually
computing the invariant factor decomposition3); it is detailed in [162].

Extending the invariant factor theorem to rational matrices, a rational matrix G (x) can
be written as

G(x) = A (x) r (x) B (x) ,

where A (x) and B (x) are again polynomial unimodular matrices and r (x) is diagonal with
rational entries ai (X) / B i (x), such that Yi (x) = cxi (x) 1 ai+l (x) and Bi+l (x) I

Let G (x) be a rational encoding matrix, with invariant factor decomposition G(x) =
A (x) r (x) B (x) . Let us decompose B (x) into the blocks

(x).

‘The invariant factor decomposition has a technical requirement: The factorization in the ring must be unique,
up to ordering and units. This technical requirement is met in our case, since the polynomials form a principal
ideal domain, which implies unique factorization. See, e.g., [106, Chapter 321.

3”he invariant factor decomposition can be thought of as a sort of singular value decomposition for modules.

12.2 Definition of Codes and Eauivalent Codes 465

where G'(x) is k x n. Then, since the last k columns of r(x) are zero, we can write

1
Since A (x) and I"(x) are nonsingular matrices, G (x) and G'(x) are equivalent encoders:
they describe the same convolutional code. But G'(x) is polynomial (since B (x) is poly-
nomial) and since B (x) is unimodular (and thus has a polynomial inverse) it follows that
G'(x) has a polynomial right inverse. We have thus proved the following:

Theorem 12.2 Every rational encoder has an equivalent basic transferfunction matrix.

The proof of the theorem is constructive: To obtain a basic encoding matrix from a rational
transfer function G (x) , compute the invariant factor decomposition G (x) = A (x) r (x) B (x)
and take the first k rows of B (x) .

12.2.3 Constraint Length and Minimal Encoders

Comparing the encoders for the code we have been examining, we have seen that the
encoders for G l (x) or G2(x) use three memory elements, while the encoder G3(x) uses
four memory elements. We investigate in this section aspects of the question of the smallest
amount of memory that a code requires of its encoder.

Let G (x) be a basic encoder (so that the elements of G (x) are polynomials). Let

Vi = m v deg(gij (XI)
J

denote the maximum degree of the polynomials in row i of G (x) . This is the number of
memory elements necessary to store the portion of a realization (circuit) of the encoder
corresponding to input i . The number

k
u = c u i

i= l

(12.9)

represents the total amount of storage required for all inputs. This quantity is called the
constraint length of the encoder.

Note: In other sources (e.g., [373]), the constraint length is defined as the maxi-
mum number of bits in a single output stream that can be affected by any input bit (for
a polynomial encoder). This is taken as the highest degree of the encoder plus one:
u = 1 + maxi,j deg(gi,j(x)). The reader should be aware that different definitions are
used. Ours suits the current purposes.

We make the following definition:

Definition 12.7 A minimal basic encoder is a basic encoder that has the smallest constraint
0

Typically we are interested in minimal encoders: they require the least amount of hard-
ware to build and they have the fewest evident states. We now explore the question of when
an encoder is minimal basic.

length among all equivalent basic encoders.

466 Convolutional Codes

The first theorem involves a particular decomposition of the decoder matrix. We demon-
strate first with some examples. Let G(x) = G ~ (x) from (12.2). Write

(12.10) 1 x2 0 1 0 l o x
G 2 (x) = [. 1 xo] = [x 2 .] [l 0 01 + [o 1 01.

As another example, when G(x) = G4(x) from (12.8)

l + x 1 0 "1 1 + x + x 2 + x 3
G4(x) = [

- [x3 I " 0 o] + [l + x + x 2 l + x "1
0 1 0 .

-
x 1 0 0

(12.11)

In general, given a basic encoder G(x) we write it as

Gh + &x) = A(x)Gh + 6 (x) , (12.12) ... 1 G (x) =

1
where Gh is a binary matrix with a 1 indicating the position where the highest degree term
x'i occurs in row i and each row of 6 (x) contains all the terms of degree less than ui . Using
this notation, we have the following:

Theorem 12.3 [175] Let G(x) be a k x n basic encoding matrix with constraint length v.
The following statements are equivalent:

(a) G (x) is a minimal basic encoding matrix.

(b) The maximum degree p among the k x k subdeterminants of G(x) is equal to the overall

(c) Gh isfull rank.

To illustrate this theorem, consider the decomposition of G4(x) in (12.11). The 2 x 2
subdeterminants of G ~ (x) are obtained by taking the determinant of the two 2 x 2 submatrices
of G4(x),

d e t [1 + X + X 2 + x 3 X '''1 1 d e t [l T x G],
the maximum degree of which is 3. Also, we note that Gh is not full rank. Hence, we
conclude that G ~ (x) is not a minimal basic encoding matrix.

Proof To show the equivalence of (b) and (c): Observe that the degree of a subdeterminant
of G(x) is determined by the k x k submatrices of A(x)Gh (which have the largest degree
terms) and not by ?;(x). The degree of the determinants of the k x k submatrices of G (x)
are then determined by the subdeterminants of A (x) and the k x k submatrices of Gh. Since
det A(x) # 0, if Gh is full rank, then at least one of its k x k submatrices has nonzero
determinant, so that at least one of the determinants of the k x k submatrices of A(X)Gh
has degree p equal to deg A(x) = v. On the other hand, if Gh is rank deficient, then none
of the determinants of the submatrices of A(x)Gh can be equal to the determinant of A(x).

To show that (a) implies (b): Assume that G(x) is minimal basic. Suppose that
rank(Gh) < k . Let the rows of G(x) be denoted by g l , g 2 , . . . , g k , let the rows of Gh

constraint length v.

12.2 Definition of Codes and Equivalent Codes 467

be denoted by hi, h2, . . . , hk, and let the rows of 6 (x) be denoted by g1, g2, . . . , g k . Then
the decomposition (12.12) is

By the rank-deficiency there is a linear combination of rows of Gh such that

gi = X u i h i + gj .

hi, + hi2 + * . . +hid = 0

for some d i k . Assume (without loss of generality) that the rows of G(x) are ordered such
thatvl 2.v2L...>vk.TheithrowofA(x)GhisxUihi . Adding

xUil [hi, + hi3 + . . * + h i d]

to the ilst row of A(x)Gh (which is xuihi) reduces it to an all-zero row. Note that

xUii[hi2 +hi3 + . . . + h i d] = ~ % - % ~ ~ i 2 h . 12 + X u i l - u i 3 ~ u i 3 h . 13 + . . . + x ’ i i - u i d ~ u i d h i d .

Now consider computing G’(x) = T(x)G(x), where T (x) is the invertible matrix

T = i l :

i2 i3 .
1

1

id

,

with an identity on the diagonal. This has the effect of adding
x ” i l -ui2 gi2 + xvil -Ui3 gi3 + . . . + x”il --V’

‘d gi,

to the ilst row of G(x), which reduces the highest degree of the ilst row of G(x) (because
the term xuil hi, is eliminated) but leaves other rows of G(x) unchanged. But G’(x) is
an equivalent transfer function matrix. We thus obtain a basic encoding matrix G’(x)
equivalent to G(x) with an overall constraint length less than that of G(x). This contradicts
the assumption that G(x) is minimal basic, which implies that Gh must be full rank. From
the equivalence of (b) and (c), p = v.

Conversely, to show (b) implies (a): Let G’(x) be a basic encoding matrix equivalent to
G(x). ThenG’(x) = T(x)G(x), whereT(x)isakxkpolynomialmatrixwithdet T (x) = 1.
The maximum degree among the k x k subdeterminants of G’(x) is equal to that of G(x)
(since det T (x) = 1). Hence, rank(Gh) is invariant over all equivalent basic encoding
matrices. Since rank(Gh) is less than or equal to the overall constraint length, if p = v, it

The proof is essentially constructive: given a non-minimal basic G(x), a minimal basic
follows that G(x) is minimal basic.

encoder can be constructed by finding rows of Gh such that

hi, + hi2 hi3 + . * . + hid = 0,

where the indices are ordered such that vid 2 vij , 1 5 j < d, then adding

xUid-’i1 gi, + . . . ~ u i d - u i d - l gid- ,

to the idth row of G (x) .

(12.13)

468 Convolutional Codes

Example 12.11 Let G (x) = G4(x), as before. Then

hi = [l 0 01 h2 = [l 0 01

so that hl + h2 = 0. We have i l = 2 and i2 = 1. We thus add

x3-lg2 = x ~ [x 1 01 = [.3 01

to row 1 of G(x) to obtain the transfer function matrix

“1 0
[l + ; C x 2 1 + x + x 2

1 =

to obtain an equivalent minimal basic encoder. 0

Comparing G ~ (x) with G 2 (x) , we make the observation that minimal basic encoders are
not unique.

As implied by its name, the advantage of a basic minimal encoder is that it is “smallest”
in some sense. It may be built in such a way that the number of memory elements in the
device is the smallest possible and the number of states of the device is the smallest possible.
There is another advantage to minimal encoders: it can be shown that a minimal encoder is
not catastrophic.

12.2.4 Systematic Encoders

Given an encoder G (x) , it may be turned into a systematic decoder by identifying a full-rank
k x k submatrix T (x) . Then form

G’(x) = T (x) - ’ G (x) .

Then G’(x) is of the form (perhaps after column permutations)

G’(x) = [I k , k P k , n - k (X)] 9

where P k , n - k (x) is a (generally) rational matrix. The outputs produced by P k , n - k - that
is, the non-systematic part of the generator - are frequently referred to as the parity bits,
or check bits, of the coded sequence.

Example 12.12 [175] Suppose

l + x x
G (x) =

and T (x) is taken as the first two columns:

1
l r x]

l + x x 1
T (x) = [“ 2 1] T - (x) =

1 + x + x 3

Then
1 +x +x* fX3

G’(x) = T-l (x)G(n) =

12.3 Decoding Convolutional Codes 469

m -

Historically, polynomial encoders (i.e., those implemented using FIR filters) have been
much more commonly used than systematic encoders (employing IIR filters). However,
there are some advantages to using systematic codes. First, it can be shown that every
systematic encoding matrix is minimal. Second, systematic codes cannot be catastrophc
(since the data appears explicitly in the codeword).

For a given constraint length, the set of systematic codes with polynomial transfer
matrices has generally inferior distance properties compared with the set of systematic
codes with rational transfer matrices. In fact, it has been observed [357, p. 2521 that for
large constraint lengths u, the performance of a polynomial systematic code of constraint
length K is approximately the same as that of a nonsystematic code of constraint length
K (1 - k/n). (See Table 12.2) For example, for a rate R = 1 / 2 code, polynomial systematic
codes have about the performance of nonsystematic codes of half the constraint length,
while requiring exactly the same optimal decoder complexity. Because of these reasons,
recent work in turbo codes has relied almost exclusively on systematic encoders.

X Signal
Append Convolutional

a
Mapper

(e.g. BPSK)

zero-state Encoder

(Optional) R = k / n

forcingsequence

12.3 Decoding Convolutional Codes

12.3.1 Introduction and Notation

Several algorithms have been developed for decoding convolutional codes. The one most
commonly used is the Viterbi algorithm, which is a maximum likelihood sequence estimator
(MLSE). A variation on the Viterbi algorithm, known as the soft-output Viterbi algorithm
(SOVA), which provides not only decoded symbols but also an indication of the reliability of
the decoded values, is presented in Section 14.3.17 in conjunction with turbo codes. Another
decoding algorithm is the maximum a posteriori (MAP) decoder frequently referred to as
the BCJR algorithm, which computes probabilities of decoded bits. The BCJR algorithm is
somewhat more complex than the Viterbi algorithm, without significant performance gains
compared to Viterbi codes. It is, however, ideally suited for decoding turbo codes, and
so is also detailed in chapter 14. It is also shown there that the BCJR and the Viterbi are
fundamentally equivalent at a deeper level.

Suboptimal decoding algorithms are also occasionally of interest, particularly when the
constraint length is large. These provide most of the performance of the Viterbi algorithm,
but typically have substantially lower computational complexity. In Section 12.8 the stack
algorithm (also known as the ZJ algorithm), Fano’s algorithm, and the M-algorithm are
presented as instances of suboptimal decoders.

To set the stage for the decoding algorithm, we introduce some notation for the stages
of processing. Consider the block diagram in Figure 12.9. The time index is denoted by
t , which indexes the times at which states are dstinguished in the state diagram; there are
thus k bits input to the encoder and n bits output from the encoder at each time step t.

Channel

n

Figure 12.9: Processing stages for a convolutional code.

470 Convolutional Codes

The input - message - data may have a sequence appended to drive the state
to 0 at the end of some block of input. At time t there are k input bits, denoted
as mi‘) or $, i = 1,2, . . . , k. The set of k input bits at time t is denoted as
mt = (mt (I) , 4 2) , . . . , rn?) and those with the (optional) appended sequence are XI.
An input sequence consisting of L blocks is denoted as x:

x = {xo, X I , . . . , XL-I}.

The corresponding coded output bits are denoted as cf), i = 1,2, . . . , n, or collec-
tively at time t as cf . The entire coded output sequence is c = {co, c1, . . . , C L - ~ } .

The coded output sequence is mapped to a sequence of M symbols selected from a
signal constellation with Q points in some signal space, with Q = 2P. We must have
2nL (the number of coded bits in the sequence) equal to 2pM, so that M = nL/p.
For convenience in notation, we assume that p = 1 (e.g., BPSK modulation), so that
M = L ; we use M as identical to L in this development, although it does not have to
be.

The mapped signals at time t are denoted as a:), i = 1,2, . . . , n. The entire coded
sequence is a = {ao, al, . . . , aL-1}

The symbols at pass through a channel, resulting in a received symbol r;) , i =
1,2, . . . , n, or a block rl. We consider explicitly two channel models: an AWGN
and a BSC. For the AWGN we have

2 2 No $) = + nf) , where nji) - N(0, a), and where a = -.
2

For the AWGN the received data are real- or complex-valued. For the BSC, the
mapped signals are equal to the coded data, at = ct . The received signal is

(0 (i) (0 r, = ct e n t , wherent - 13(pc),

where @ denotes addition modulo 2 and pc is the channel crossover probability and
B(pc) indicates a Bernoulli random variable. For both channels it is assumed that
the n?) are mutually independent for all i and t , resulting in a memoryless channel.
We denote the likelihood function for these channels as f(rt lat). For the AWGN
channel,

where 1) . denotes the usual Euclidean distance,
n

12.3 Decoding Convolutional Codes 471

where [r f) # a,(’)] returns 1 if the indicated condition is true and dH(ft, at) is the
Hamming distance.

Since the sequence of inputs uniquely determines the sequence of outputs, mapped
outputs, and states, the likelihood function can be equivalently expressed as f(rlc)

Maximizing the likelihood is obviously equivalent to minimizing the negative log
likelihood. We deal with negative log likelihood functions and throw away terms
and/or factors that do not depend upon the conditioning values. For the Gaussian
channel, since

or f(rla> or f(rlI‘u0, Ql, * * * , Q L D .

we use
2

llrt - at II
as the “negative log likelihood” function. For the BSC, since

(12.14)

Pc
-logf(rtlat) = -&(rt,at)log- -nlog(l -pc)

1 - Pc
we use

dH (rt at) (12.15)

as the “negative log likelihood” (since log(p,/(l - pc)) < 0).

More generally, the affine transformation

4- 1% f(rt la) - bl (12.16)

provides a function equivalent for purposes of detection to the log likelihood func-
tion for any a > 0 and any b. The parameters a and b can be chosen to simplify
computations.

The state at time t in the trellis of the encoder is denoted as Qt. States are represented
with integer values in the range 0 5 qt < 2”, where u is the constraint length for the
encoder. (We use 2” since we are assuming binary encoders for convenience. For a
q-ary code, the number of states is q”.) It is always assumed that the initial state is
q o = 0.

As suggested by Figure 12.10, quantities associated with the transition from state p
to state q are denoted with (P . 4) . For example, the input which causes the transition
from state qt = p to the state Wt+l = q is denoted as x(P,q). (If the trellis had
different structure at different times, one might use the notation xt(P”).) The code bits
output sequence as a result of this state transition is c(P.4) and the mapped symbols
are a(P,q).

A sequence of symbols such as {xo, XI, . . . , xr} is denoted as xi.

12.3.2 The Viterbi Algorithm

The Viterbi algorithm was originally proposed by Andrew Viterbi [358] , but its optimality as
a maximum likelihood sequence decoder was not originally appreciated. In [89] it was es-
tablished that the Viterbi algorithm computes the maximum likelihood code sequence given
the received data. The Viterbi algorithm is essentially a shortest path algorithm, roughly

472 Convolutional Codes

time t time t + 1

i

Figure 12.10: Notation associated with a state transition.

analogous to Dijkstra’s shortest path algorithm (see, e.g., [305, p. 4151) for computing the
shortest path through the trellis associated with the code. The Viterbi algorithm has been
applied in a variety of other communications problems, including maximum likelihood se-
quence estimation in the presence of intersymbol interference [96] and optimal reception of
spread-spectrum multiple access communication (see, e.g., [354]). It also appears in many
other problems where a “state” can be defined, such as in hidden Markov modeling (see,
e.g., [67]). See also [246] for a survey of applications. The decoder takes the input sequence
r = {ro, rl , . . .) and determines an estimate of the transmitted data {ao, a1 , . . .) and from
that an estimate of the sequence of input data (xo, X I , . . .}.

The basic idea behind the Viterbi algorithm is as follows. A coded sequence (co, c1, . . .],
or its signal-mapped equivalent (ao, al, . . .}, corresponds to a path through the encoder
trellis. Due to noise in the channel, the received sequence r may not correspond exactly to
a path through the trellis. The decoder finds a path through the trellis which is closest to the
received sequence, where the measure of “closest” is determined by the likelihood function
appropriate for the channel. In light of (12.14), for an AWGN channel the maximum
likelihood path corresponds to the path through the trellis which is closest in Euclidean
distance to r. In light of (12.15), for a BSC the maximum likelihood path corresponds to
the path through the trellis which is closest in Hamming distance to r. Naively, one could
find the maximum likelihood path by computing separately the path lengths of all of the
possible paths through the trellis. This, however, is computationally intractable. The Viterbi
algorithm organizes the computations in an efficient recursive form.

For an input xt the output ct depends on the state of the encoder Qt, which in turn depends
upon previous inputs. This dependency among inputs means that optimal decisions cannot
be made based upon a likelihood function for a single time f(rtIxt). Instead, optimal
decisions are based upon an entire received sequence of symbols. The likelihood function
to be maximized is thus f(rlx), where

The fact that the channel is assumed to be memoryless is used to obtain the last equality. It

12.3 Decoding Convolutional Codes 473

is convenient to deal with the log likelihood function,

L-1

1% f(rlx> = C log f(rtlxt).
t =o

Consider now a sequence f6-I = {go, 21, . . . , f t - l } which leaves the encoder in state
@t = p at time t . This sequence determines a path - or sequence of states - through the
trellis for the code, which we denote (abstractly) as l7, or ITt(%;-'). Thus

nt = {@o, @l , f . * 9 %I.
The log likelihood function for this sequence is

t-1
t-1 -r-1

log f(ro 1x0) = C l o g f(riIfi).

Let Mt-l (p) = - log f(r;-'/f;-,-') denote the path metric for the path nt through the
trellis defined by the sequence%;-;-' and terminating in state p . (We could write Mt-l (p ; l7,)
or Mt-1 (p ; %;-I) to indicate that the metric depends on the path but this leads to an awkward
notation.) The negative sign in this definition means that we seek to minimize the path metric
(to maximize the likelihood).

Now let the sequence 26 = {go, $1 , . . . , ft } be obtained by appending the input ft to
2b-l and suppose the input ft is such that the state at time t + 1 is Wt+1 = q. The path
metric for this longer sequence is

Mr(q) = - C l o g f (r i I f i) = - Clogf(r i I f i) - logf(r t~l t) = Mt-l(p)-logf(rttat>.

Let pt(r t , ft) = - log f (rt 1%) denote the negative log likelihood for this input. As pointed
out in (12.16), we could equivalently use

pt(r t , f t) = a [- logf(r,If(P,q)) - b] , (1 2.17)

for any a > 0. The quantity pf (rt ,ft) is called the branch metric for the decoder. Since
f, moves the trellis from state p at time t to state q at time t + 1, we can write pt (rt, 2,) as
pt (rt, f(P,q)). Then

i=O

t r-1

i=O i =O

t-1

M t (q) = C pt(ri, %i> + pt (r t , 2,) = ~t-i(p) + Ccr(rt, @ ' q)) .

That is, the path metric along a path to state q at time t is obtained by adding the path metric
to the state p at time t - 1 to the branch metric for an input which moves the encoder from
state p to state q. (If there is no such input then the branch metric is 00.)

With this notation, we now come to the crux of the Viterbi algorithm: What do we do
when paths merge? Suppose Mt-l (p i) is the path metric of a path ending at state p i at time
t and Mt-l(p2) is the path metric of a path ending at state p2 at time t . Suppose further
that both of these states are connected to state q at time t + 1, as suggested in Figure 12.1 1.
The resulting path metrics to state q are

Mt-l(pl) + pt (r t , and Mt-l(p2) + pt(r t , f (p 2 , q)) .

i=O

474 Convolutional Codes

Path through trellis
leading to state q t = p1

time t I time t

Path through trellis
leading to state Wt = p2

Figure 12.11: The Viterbi step: Select the

tl

path with the best metric.

The governing principle of the Viterbi algorithm is this: To obtain the shortest path through
the trellis, the path to state q must be the shortest possible. Otherwise, it would be possible to
find a shorter path through the trellis by finding a shorter path to state q. (This is Bellman's
principle of optimality; see, e.g., [17].) Thus, when the two or more paths merge, the
path with the shortest path metric is retained and the other path is eliminated from further
consideration. That is,

~ (q) = m i n { ~ ~ - l (p l) + p I (r t , @l% ~ - 1 ~ 7 2) + kr(rI, g(P23q)))

and the path with minimal length becomes the path to state q. This is called the survivor
path.

Since it is not known at time t c L which states the final path passes through, the paths
to each state are found for each time. The Viterbi algorithm thus maintains the following
data:

A path metric to each state at time t .

A path to each state at time t .

The Viterbi algorithm is thus summarized as follows:

1. For each state q at time t + 1, find the path metric for each path to state q by adding
the path metric Mt-l (p) of each survivor path to state p at time t to the branch metric
pLt (rt, % (p - q)) .

2. The survivor path to q is selected as that path to state q which has the smallest path
metric.

3. Store the path and path metric to each state q.

4. Increment t and repeat until complete.

In the event that the path metrics of merging paths are equal, a random choice can be made
with no negative impact on the likelihood.

12.3 Decoding Convolutional Codes 475

More formally, there is the description in Algorithm 12.1. In this description, the path to
state q is specified by listing for each state its predecessor in the graph. Other descriptions
of the path are also possible. The algorithm is initialized reflecting the assumption that the
initial state is 0 by setting the path metric at state 0 to 0 and all other path metrics to 00 (i.e.,
some large number).

Algorithm 12.1 The Viterbi Algorithm

I Input: A sequence ro, rl , . . . , rL-1

z Output: The sequence i o , fl, . . . , % ~ - l which maximizes the likelihood f(r;-l I%-’).
3 Initialize: Set M (0) = 0 and M (p) = 00 for p = 1,2, . . . , 2 ” - 1 (initial path costs)
4

5 Sett = O
6 Begin
7 For each state q at time t + 1
n

9

Set l T p = 0 for p = 0, 1, . . . , 2” - 1 (initial paths)

Find the path metric for each path to state q:
for each pi connected to state q corresponding to input %(Pi 341, compute

10 Select the smallest metric M (q) = mini mi and the corresponding predecessor state p .
I I Extend the path to state q: I l q = [l T p p1
1 2 end (for)

14if t < L - 1, goto line 6.
15 Termination:
16 If terminating in a known state (e.g. 0)

17 If terminating in any state

18 End

mi = pi) + F t (r t , i(pi,q))).

13 t = t + 1

Return the sequences of inputs along the path to that known state

Find final state with minimal metric; Return the sequence of inputs along that path to that state.

The operations of extending and pruning that constitute the heart of the Viterbi algorithm
are summarized as:

M t (q > = minkMt-l(p) + pt(rt, ?(P:q)J
P

Extend all paths at time t
tostateq ... ,

Then choose smallest cost

(12.18)

Example 12.13 Consider the encoder

G(x) = [x2 + 1 x 2 + x + 11

of Example 12.1, whose realization and trellis diagram are shown in Figure 12.5, passing the data
through a BSC. When the data sequence

m = [I , I , O , O , 1,0, I , 0, . . .]
= [mo, m i , m2, m3, m4, m5, m6, m 7 ? . . .]

c = [11, 10, 10, 11, 11,01, 00,01,. . .]

is applied to the encoder, the coded output bit sequence is

= [CO, c1, c2, c3, c4, c.55 c6, c7, . . .].

476 Convolutional Codes

For the BSC, we take the mapped data the same as the encoder output at = ct . The output sequence
and corresponding states of the encoder are shown here, where \Ira = 0 is the initial state.

t Input mk Output ct State q t + l

0 1 11 1
1 1 10 3
2 0 10 2
3 0 11 0
4 1 11 1
5 0 01 2
6 1 00 1
7 0 01 2

The sequence of states through the trellis for this encoder is shown in Figure 12.12; the solid line
shows the state sequence for this sequence of outputs. The coded output sequence passes through a

t = O t = l t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

Figure 12.12: Path through trellis corresponding to true sequence.

channel, producing the received sequence

r = [11 I O Q O ~ Q I I O I O O O I . . . I = [rO,rl,r2,rg,rq,rg,rg,r7, . . . I .
The two underlined bits are flipped by noise in the channel.

t = 0: The received sequence is ro = 11. We compute the metric to each state at time t = 1 by
finding the (Hamming) distance between ro and the possible transmitted sequence co along the
branches of the first stage of the trellis. Since state 0 was known to be the initial state, we end
up with only two paths, with path metrics 2 and 0, as shown here:

The algorithm proceeds as follows:

ro = 11
0 .;............. 2

...' 0 1 '

2 ' a

3 ' a

t = O t = l

12.3 Decoding Convolutional Codes 477

t = 1: The received sequence is rl = 10. Again, each path at time t = 1 is simply extended, adding
the path metric to each branch metric:

rl = 10

3 ' ' "a 0

t = O t = l t = 2

t = 2: The received sequence is r2 = 00. Each path at time t = 2 is extended, adding the path metric
to each branch metric of each path.

r2 = 00
0

1 '

2 '

3 '
t=O t = l t = 2 t = 3

There are now multiple paths to each node at time t = 3. We select the path to each node with
the best metric and eliminate the other paths. This gives the diagram as follows:

r2 = 00
0 * - - ' 3

* a *' 2

. a 1

.... --..1

... . ~. ... 1 '

2 '

3 '

. -. :
% . . ' ' % .*'

I . . , . : ' *...*

t = O t = l t = 2 t = 3

478 Convolutional Codes

t = 3: The received sequence is r3 = 10. Each path at time t = 3 is extended, adding the path metric
to each branch metric of each path.

r3 = 10

~, . . . : ' *...... 3 '

t = O t = l t = 2 t = 3 t = 4

Again, the best path to each state is selected. We note that in selecting the best paths, some of the
paths to some states at earlier times have no successors; these orphan paths are deleted now in our
portrayal:

r3 = 10

t = O t = l t = 2 t = 3 t = 4

t = 4: The received sequence is r4 = 11. Each path at time t = 4 is extended, adding the path metric
to each branch metric of each path.

r4 = 11

0 '

1 '

2 '

3 '
t = O t = l t = 2 t = 3 t = 4 t = 5

In this case, we note that there are multiple paths into state 3 which both have the same path metric;
also there are multiple paths into state 2 with the same path metric. Since one of the paths must be
selected, the choice can be made arbitrarily (e.g., at random). After selecting and pruning of orphan
paths we obtain:

12.3 Decoding Convolutional Codes 479

r 4 = 11

0 ' '

1 ' .', '

2 ' \ '

t = O t = l t = 2 t = 3 t = 4 t = 5

t = 5: The received sequence is r5 = 01.

r5 = 01

t = O t = l t = 2 t = 3 t = 4 t = 5 t = 6

After selecting and pruning:
r5 = 01

' ' ' e.. " 2

' -..* 2 ' ,I. < . ' ~ I.

' -, . ' -.- 2

............ I. ' 3

, . , . .*. . . * -. , . , . . , ..
I.. f . , .

. *.
, - . ,
, _'
,. , . , I

, _
, .

, a

1 ' -*.

2 '

3 ' ' '

. ' .8' a '

. .
% ,

I :

t = O t = l t = 2 t = 3 t = 4 t = 5 t = 6

t = 6: The received sequence is r6 = 00.

r6 = 00

t = O t = l t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

Convolutional Codes 480

After selecting and pruning:

r 6 = 00

t = O t = l t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

t = 7: The received sequence is r7 = 01.

r7 = 01

t = O t = l t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

After selecting and pruning:

1-7 = 01

--. 0 0 3

t = O t = l t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

The decoding is finalized at the end of the transmission (the 16 received data bits) by selecting the
state at the last stage having the lowest cost, traversing backward along the path so indicated to the
beginning of the trellis, then traversing forward again along the best path, reading the input bits and
decoded output bits along the path. This is shown with the solid line below; input/output pairs are
indicated on each branch.

12.3 Decoding Convolutional Codes 481

ADD I +

COMPARE

t = O t = l t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

Note that the path through the trellis is the same as in Figure 12.12 and that the recovered input bit
sequence is the same as the original bit sequence. Thus, out of this sequence of 16 bits, two bit errors
have been corrected. 0

SELECT -

12.3.3 Some Implementation Issues

The Basic Operation: Add-Compare-Select

The basic operation of the Viterbi algorithm is Add-Compare-Select (ACS): Add the branch
metric to the path metric for each path leading to a state; compare the resulting path metrics
at that state; and select the better metric. A schematic of this idea appears in Figure 12.13.
High-speed operation can be obtained in hardware by using a bank of 2” such ACS units in
parallel. A variation on this theme, the compare-select-add (CSA) operation, is capable of
somewhat improving the speed for some encoders. The algorithm employing CSA is called
the direrential Viterbi algorithm; see [lo51 for a description.

Path metric to
state p2 ADD

Path metric
from state

state q
Pi to

Figure 12.13: Add-compare-select Operation.

Decoding Streams of Data: Windows on the Trellis

In convolutional codes, data are typically encoded in a stream. Once the encoding starts, it
may continue indefinitely, for example until the end of a file or until the end of a data trans-
mission session. If such a data stream is decoded using the Viterbi algorithm as described
above, the paths through the trellis would have to have as many stages as the code is long.

482 Convolutional Codes

For a long data stream, this could amount to an extraordinary amount of data to be stored,
since the decoder would have to store 2” paths whose lengths grow longer with each stage.
Furthermore, this would result in a large decoding latency: strictly speakmg it would not
be possible to output any decoded values until the maximum likelihood path is selected at
the end of the file.

Fortunately, it is not necessary to wait until the end of transmission. Consider the paths
in Example 12.13. In this example, by t = 4, there is a single surviving path in the first
two stages of the trellis. Regardless of how the Viterbi algorithm operates on the paths as it
continues through the trellis, those first two stages could be unambiguously decoded.

In general, with very high probability there is a single surviving path some number of
stages back from the “current” stage of the trellis. The initial stages of the survivor paths
tend to merge if a sufficient decoding delay is allowed. Thus, it is only necessary to keep
a “window” on the trellis consisting of the current stage and some number of previous
stages. The number of stages back that the decoding looks to make its decision is called
the decoding depth, denoted by r. At time t the decoder outputs a decision on the code
bits Ct-r. While it is possible to make an incorrect decoding decision on a finite decoding
depth, this error, called the truncation error, is typically very small if the decoding depth
is sufficiently large. It has been found (see, e.g., [90, 1491) that if a decoding depth of
about five to ten constraint lengths is employed, then there is very little loss of performance
compared to using the full length due to truncation error.

It is effective to implement the decoding window using a circular queue of length r
to hold the current window. As the window is “shifted,” it is only necessary to adjust the
pointers to the beginning and end of the window.

As the algorithm proceeds through the stream of data, the path metrics continue to
accumulate. Overflow is easily avoided by periodically subtracting from all path metrics
an equal amount (for example, the smallest path metric). The path metrics then show the
differential qualities of each path rather than the absolute metrics (or their approximations),
but this is sufficient for decoding purposes.

Output Decisions

When a decision about the output Ct-r is to be made at time t , there are a few ways that
this can be accomplished [373]: Output Ct-r on a randomly selected survivor path; Output
Ct-r on the survivor path with the best metric; Output Ct-r that occurs most often among
all the survivor paths; Output c1-r on any path. In reality, if r is sufficiently large that all
the survivor paths have merged r decoding stages back, then the performance difference
among these alternatives is very small.

When the decision is to be output, a survivor path is selected (using one of the methods
just mentioned). Then it is necessary to determine the Ct-r. There are a couple of ways of
accomplishing this, the register exchange and the traceback.

In the register exchange implementation, an input register at each state contains the
sequence of input bits associated with the surviving path that terminates at that state. A
register capable of storing the kr bits is necessary for each state. As the decoding algorithm
proceeds, for the path selected from state p to state q , the input register at state q is obtained
by copying the input register for state p and appending the k input bits resulting in that state
transition. (Double buffering of the data may be necessary, so that the input registers are
not lost in copying the information over.) When an output is necessary, the first k bits of
the register for the terminating state of the selected path can be read immediately from its

12.3 Decoding Convolutional Codes 483

input register.

Example 12.14 For the decoding sequence of Example 12.13, the registers for the register exchange
algorithm are shown here (boxed) for the first five steps of the algorithm.

............ 0 0 l El '

. . . .
' ' 111 .-.* 2 ' 2 '

3 ' 3 * ' a

t = O t = l t = O t = l t = 2

............ -.-* 0 ..- 1ooo1

1 '

2 '

3 '
t = O

0 *-..

1 '

2 '

3 '
t = O

0 *-.,

1 '

2 '

3 '
t = O

... . " ,*m
;'pg

*-..-(1111

. -. *
a .. 3.-

. ,
, a

a . :
t = l t = 2 t = 3

a a ' ,a

.' ,
a .

' - ? * '.*'
. , . - . ,.

t = l t = 2 t = 3 t = 4

a ' a ..*' @
. >
. I . ,'

t = l t = 2 t = 3 t = 4 t = 5

The number of initial bits all the registers have in common is the number of branches of
the path that are shared by all paths. These common input bits are shown in bold above. In
some implementations, it may be of interest to output only those bits corresponding to path
branches which have merged.

484 Convolutional Codes

In the traceback method, the path is represented by storing the predecessor to each state.
This sequence of predecessors is traced back r stages. The state transition qt-r to \Vt-r+1

determines the output ct-r and its corresponding input bits Xt-r .

Example 12.15 The table

State Previous StateAnput
010 010 Of0 2 0 210 010 010 210

1: 011 011 211 211 011 011 w1 011
- 110 310 310 110 110 110 110

3: - 111 311 211 111 311 1/1 311

shows the previous state traceback table which would be built up by the decoding of Example 12.13.
For example, at time t = 8, the predecessor of state 0 is 2, the predecessor of state 1 is 0, and so forth.
Starting from state 2 (having the lowest path cost), the sequence of states can be read off in reverse
order from this table (the bold entries):

2 + 1 + 2 - + 1 - + 0 - + 2 - + 3 - + 1 - + 0 .

Thus the first state transition is from state 0 to state 1 and the input at that time is a 1.
The inputs for the entire sequence can also be read off, starting at the right, 11001010. 0

In the traceback method, it is necessary to trace backward through the trellis once for each
output. (As a variation on the theme, the predecessor to a state could be represented by the
input bits that lead to that state.)

In comparing the requirements for these two methods, we note that the register exchange
method requires shuffling registers among all the states at each time. In contrast, the
traceback method requires no such shuffling, but it does require working back through the
trellis to obtain a decision. Which is more efficient depends on the particular hardware
available to perform the tasks. Typically, the traceback is regarded as faster but more
complicated.

Hard and Soft Decoding; Quantization

Example 12.13 presents an instance of hard-decision decoding. If the outputs of a Gaussian
channel had been used with the Euclidean distance as the branch metric, then softdecision
decoding could have been obtained. Comparing soft decision decoding using BPSK over
an AWGN with hard decision decoding over a BSC, in which received values are converted
to binary values with a probability of error of p c = Q(,/m) (see Section 1.5.6), it has
been determined that soft-decision decoding provides 2 to 3 dB of gain over hard-decision
decoding.

For a hard-decision metric, kt (rt , x(P,q)) can be computed and stored in advance. For
example, for an n = 2 binary code, there are four possible received values, 00, 01, 10, 11,
and four possible transmitted values. The metric could be stored in a 4 x 4 array, such as
the following.

2 0
2 1 0

12.3 Decoding Convolutional Codes 485

-1 1

Figure 12.14: A two-bit quantization of the soft-decision metric.

Soft-decision decoding typically requires more expensive computation than hard-decision
decoding. Furthermore, soft-decision decoding cannot exactly precompute these values to
reduce the ongoing decoding complexity, since rt takes on a continuum of values. Despite
these disadvantages, it is frequently desirable to use soft-decision decoding because of its
superior performance. A computational compromise is to quantize the received value to a
reasonably small set of values, then precompute the metrics for each of these values. By
converting these metrics to small integer quantities, it is possible to efficiently accumulate
the metrics. It has been found [I481 that quantizing each r;') into 3 bits (eight quantization
levels) results in a loss in coding gain of around only 0.25 dB. It is possible to trade metric
computation complexity for performance, using more bits of quantization to reduce the loss.

As noted above, if a branch metric p is modified by F = up + b for any a > 0 and
any real b, an equivalent decoding algorithm is obtained; this simply scales and shifts the
resulting path metrics. In quantizing, it may be convenient to find scale factors which make
the arithmetic easier.

A widely used quantizer is presented in Section 12.4.

Example 12.16 A two-bit quantizer. In a BPSK-modulated system the transmitted signal amplitudes
are a = 1 or a = -1. The received signal rt is quantized by a quantization function Q[.] to obtain
quantized values

qr = Q[rtl

using quantization thresholds at f l and 0, as shown in Figure 12.14, where the quantized values are
denoted as 00, 01 , 10 and 11. These thresholds determine the regions T4 . That is,

(This is not an optimal quantizer, merely convenient.) For each quantization bin we can compute the
likelihood that rt falls in that region, given a particular input, as

For example,
1 -1

Suppose the likelihoods for all quantized points are computed as follows.

486 Convolutional Codes

P(qtla)
a = l
a = -1

qt = 00 01 10 11
0.02 0.14 0.34 0.5
0.5 0.34 0.14 0.02

-1.619(log P(qtla -log P(OO11))

(the factor a = 1.619 was found by a simple computer search and b was chosen to make the smallest

-log(P(qtla))
a = l
a = - 1

qt = 00 01 10 11
3.5066 2.0402 1.0788 0.6931
0.6931 1.0788 2.0402 3.5066

a = -1 I 0 1 2 5
Although the signal is quantized into two bits, the metric requires three bits to represent it. With

additional loss of coding gain, this could be reduced to two bits of metric (reducing the hardware
required to accumulate the path metrics). For example, the first row of the metric table could be
approximated as 3,2, 1,O.

Note that, by the symmetry of the pdfand constellation, bothrows of the table have the same values,
so that in reality only a single row would need to be saved in an efficient hardware implementation. 0

4- log(P(qr la) - b)
a = l
a = -1

Synchronization Issues

The decoder must be synchronized with the stream of incoming data. If the decoder does
not know which of the n symbols in a block initiates a branch of the trellis, then the data
will be decoded with a very large number of errors. Fortunately, the decoding algorithm
can detect this. If the data are correctly aligned with the trellis transitions, then with high
probability, one (or possibly two) of the path metrics are significantly smaller than the other
path metrics within a few stages of decoding. If this does not occur, the data can be shifted
relative to the decoder and the decoding re-initialized. With at most n tries, the decoder can
obtain symbol synchronization.

Many carrier tracking devices employed in communication systems experience a phase
ambiguity. For a BPSK system, it is common that the phase is determined only up to &n,
resulting in a sign change. For QPSK or QAM systems, the phase is often known only up to
a multiple of n/2 . The decoding algorithm can possibly help determine the absolute phase.
For example, in a BPSK system if the all ones sequence is not a codeword, then for a given
code sequence c, 1 + c cannot be a codeword. In this case, if decoding seems to indicate
that no path is being decoded correctly (i.e., no path seems to emerge as a strong candidate
compared to the other paths), then the receiver can complement all of its zeros and ones
and decode again. If this decodes correctly the receiver knows that it has the phase off by
n. For a QPSK system, four different phase shifts could be examined to see when correct
decoding behavior emerges.

qr = 00 01 10 11
5.0028 2.109 0.618 0
0 0.618 2.109 5.0028

12.4 Some Performance Results 487

12.4 Some Performance Results

Bit error rate characterization of convolutional codes is frequently accomplished by simula-
tion and approximation. In this section, we present performance as a function of quantiza-
tion, constraint length, window length, and codeword size. These results generally follow
[148], but have been recomputed here.

Quantization of the metric was discussed in the previous section. In the results here, a
simpler quantized metric is used. Assume that BPSK modulation is employed and that the
transmitted signal amplitude a is normalized to f 1. The received signal I is quantized to m
bits, resulting in M = 2m different quantization levels, using uniformly spaced quantization
thresholds. The distance between quantization thresholds is A. Figure 12.15 shows 4-level
quantization with A = 1 and 8-level quantization using A = 0.5 and A = 4. Rather than
compute the log likelihood of the probability of falling in a decision region, in this approach
the quantized q value itself is used as the branch metric if the signal amplitude 1 is sent,
or the complement M - q - 1 is used if -1 is sent. The resulting integer branch metric
is computed as shown in Table 12.1. This branch metric is clearly suboptimal, not being
an affine transformation of the log likelihood. However, simulations have shown that it
performs very close to optimal and it is widely used. Obviously, the performance depends
upon the quantization threshold A employed. For the 8-level quantizer, the value A = 0.4
is employed. For the 16-level quantizer, A = 0.25 is used, and for the 4-level quantizer,
A = 1 is used. We demonstrate below the dependence of the bit-error rate upon A.

3 1 2 1 I 0

1 I 1
-1.0 0 1.0

7 6 1 5 4 3 2 1 1 0
I 1 I I I 1 I

-1.5 -1.0 -0.5 0 0.5 1.0 1.5

7 1 6 5 4 3 2 1 1 0

-1.0 0 1 .o
I I I I I)

Figure 12.15: Quantization thresholds for 4- and 8-level quantization.

Table 12.1 : Quantized Branch Metrics Using Linear Quantization

Amplitude Branch Metric p

0 1 2 3 4 5 6 7

Figure 12.16(a) shows the bit error rate as a function of SNR for codes with constraint
lengths (here employing K = 1 + max deg(gj) as the constraint length) of K = 3, K = 5
and K = 7 using 8-level uniform quantization with A = 0.42. The generators employed

488 Convolutional Codes

1 o-2

1 o - ~

a
5
[r

5 lo4
67
iij
c

1 o - ~

(a) 8-level quantization, K = 3, 5, 7. (b) l-bit (hard) quantization, K = 3 through 8.

Figure 12.16: Bit error rate as a function of Eb/No of R = 1/2 convolutional codes with
32 bit window decoding (following [148]).

in this and the other simulations are the following:

K gl(x) g2(x) &ee
3 l + x 2 1 + x + x 2 5
4 1 + x + x 3 1 + x + x 2 + x 3 6
5 1 + ~ 3 + . 4 1 + x + x 2 + x 4 7
6 l + x 2 + x 4 + x 5 1 + x + x 2 + x3 + x5 8
7 1 +x2 +x3 + X 5 + x 6 1 + x + x 2 +x3 + x 6 10
8 1 + x 2 + x 5 + x 6 + x 7 1 + x + x 2 + x 3 + x 4 + x 7 10

The Viterbi decoder uses a window of 32 bits. As this figure demonstrates, the performance
improves with the constraint length. Figure 12.16(b) shows l-bit (hard) quantization for
K = 3 through 8.

Comparisons of the effect of the number of quantization levels and the decoding win-
dow are shown in Figure 12.17. In part (a), the performance of a code with K = 5 is
shown with 2, 4, 8, and 16 quantization levels. As the figure demonstrates, there is very
little improvement from 8 to 16 quantization levels; 8 is frequently chosen as an adequate
performancekomplexity tradeoff. In part (b), again a K = 5 code is characterized. In this
case, the effect of the length of the decoding window is shown for two different quantiza-
tion levels. With a decoding window of length 32, most of the achievable performance is
attained.

12.4 Some Performance Results 489

lo-'

1 o-2

1 o - ~

lo4

1 o - ~

1 o-6

a,
4-

2
u
c
E

1 o - ~

(a) 2-, 4-, 8- and 16-level quantization,
decoding window 32.

(b) Deccding window length W = 8,16, and 32; Quan-
tization levels Q = 2 and 8.

Figure 12.17: Bit error rate as a function of Eb/No of R = 1/2, K = 5 convolutional code
with different quantization levels and decoding window lengths (following [1481).

Figure 12.18 shows the effect of the quantizer threshold spacing A on the performance
for an 8-level quantizer with a K = 5, R = 112 code and a K = 5, R = 1/4 code. The plots
are at SNRs of 3.3 dB, 3.5 dB, and 3.7 dB (reading from top to bottom) for the R = 1/2
code and 2.75 dB, 2.98 dB, and 3.19 dB (reading from top to bottom) for the R = 1/4 code.
(These latter SNRs were selected to provide roughly comparable bit error rate for the two
codes.) These were obtained by simulating, counting 20,000 bit errors at each point of data.

A convolutional code can be employed as a block code by simply truncating the sequence
at a block length N (see Section 12.9). This truncation results in the last few bits in the
codeword not having the same level of protection as the rest of the bits, a problem referred
to as unequal error protection. The shorter the block length N , the higher the fraction
of unequally protected bits, resulting in a higher bit error rate. Figure 12.19 shows BER
for maximum likelihood decoding of convolutional codes truncated to blocks of length
N = 200, N = 2000, as well as the "conventional" mode in which the codeword simply
streams.

490 Convolutional Codes

8 -

6-

Figure 12.18:
old spacing.

12-
**d

e,
74 10- a
L

2

5

L

w
c

5.2 0.4 0.6 0.8 1
Quantizer Threshold Spacing A

Viterbi algorithm bit error rate performance as a function of quantizer thresh-

lo-' ,

Figure 12.19: BER performance as a function of truncation block length, N = 200 and
N = 2000, for 2- and 8-level quantization.

12.5 Error Analysis for Convolutional Codes 491

12.5 Error Analysis for Convolutional Codes

While for block codes it is conventional to determine (or estimate) the probability of decoding
a block incorrectly, the performance of convolutional codes is largely determined by the
rate and the constraint length. It is not very meaningful to determine the probability of a
block in error, since the block may be very long. It is more useful to explore the probability
of bit error, or the bit error rate, which is the average number of message bits in error in
a given sequence of bits divided by the total number of message bits in the sequence. We
shall denote the bit error rate by Pb. In this section we develop an upper bound for Pb [357].

Consider how errors can occur in the decoding process. The decision mechanism of the
Viterbi algorithm operates when two paths join together. If two paths join together and the
path with the lower (better) metric is actually the incorrect path, then an incorrect decision
is made at that point. We call such an error a node error and say that the error event occurs
at the place where the paths first diverged. We denote the probability of a node error as Pe.
A node error, in turn, could lead to a number of input bits being decoded incorrectly.

Since the code is linear, it suffices to assume that the all-zero codeword is sent: With
dH(r, c) the Hamming distance between c and r, we have dH(r, c) = dH(r + c, c + c) =
dH(r + c, 0). Consider the error events portrayed in Figure 12.20. The horizontal line
across the top represents the all-zero path through the trellis. Suppose the path diverging
from the all-zero path at a has a lower (better) metric when the paths merge at a'. This
gives rise to an error event at a. Suppose that there are error events also at b and d. Now
consider the path diverging at c: even if the metric is lower (better) at c', the diverging path
from c may not ultimately be selected if its metric is worse than the path emerging at b.
Similarly the path emerging at d may not necessarily be selected, since the path merging at
e may take precedence. This overlapping of decision paths makes the exact analysis of the
bit error rate difficult. We must be content with bounds and approximations.

a' b c c' b'd e d' e'

\ / d
\I

Figure 12.20: Error events due to merging paths.

The following example illustrates some of these issues.

Example 12.17 Consider again the convolutional code from Example 12.1, with

G (x) = [l + x 2 , 1 + x +x2].

Suppose that the input sequence is x = [0, 0, 0, 0 , . . .] with the resulting transmitted sequence
c = [00, 00, 00, 00, . . .], but that the received sequence after transmission through a BSC is r =
[l l , 01,00, . . .]. A portion of the decoding trellis for this code is shown in Figure 12.21. After three
stages of the trellis when the paths merge, the metric for the lower path (shown as a dashed line) is
lower than the metric for the all-zero path (the solid line). Accordingly, the Viterbi algorithm selects
the erroneous path, resulting in a node error at the first node. However, while the decision results

492 Convolutional Codes

2(0) = 3
ro = 11 r l = 0 1 r2 = 00

o/oo o/oo o/oo - -
I

00

10

01

11

Total distance along diverging path=5 11

(a) Diverging path of distance 5.

(b) Diverging path of distance 6.

Figure 12.2 1 : Two decoding examples.

in three incorrect branches on the path through the trellis, the input sequence corresponding to this
selected path is [1, 0, 01, so that only one bit is incorrectly decoded due to this decision.

As the figure shows, there is a path of metric 5 which deviates from the all-zero path. The
probability of incorrectly selecting this path is denoted as Ps. This error occurs when the received
sequence has three or more errors (1s) in it. In general, we denote

Pd = Probability of a decoding error on a path of metric d.

For a deviating path of odd weight, there will be an error if more than half of the bits are in error. The
probability of this event for a BSC with crossover probability p c is

Pd = 5 c) p l (l - pc)d-i (withd odd).
i=(d+l) /2

(12.19)

Suppose now the received signal is r = [lo, 10, 10,001. Then the trellis appears as in Figure
12.210). In this case, the path metrics are equal; one-half of the time the decoder chooses the
wrong path. If the incorrect path is chosen, the decoded input bits would be [1, 1, 0, 01, with two bits
incorrectly decoded. The probability of the event of choosing the incorrect path in this case is P6,

12.5 Error Analysis for Convolutional Codes 493

where

() d/2(1 - p c) d / 2 + - pc)d - i (withd even) (12.20)
1 d

pd = 5 d,2 Pc
i=d/2+l

is the probability that more than half of the bits are in error, plus
half the bits are in error.

times the probability that exactly
0

We can glean the following information from this example:

Error events can occur in the decoding algorithm when paths merge together. If the
erroneous path has lower (better) path metric than the correct path, the algorithm
selects it.

Merging paths may be of different lengths (number of stages).

This trellis has a shortest path of metric 5 (three stages long) which diverges from the
all-zero path then remerges. We say there is an error path of metric 5. There is also
an error path of metric 6 (four stages long) which deviates then remerges.

When an error path is selected, the number of input bits that are erroneously decoded
depends on the particular path.

The probability of a particular error event can be calculated and is denoted as P d .

The error path of metric 5 was not disjoint of the error path of metric 6, since they
both share a branch.

In the following sections, we first describe how to enumerate the paths through the trellis.
Then bounds on the probability of node error and the bit error rate are obtained by invoking
the union bound.

12.5.1 Enumerating Paths Through the Trellis

In computing (or bounding) the overall probability of decoder error, it is expedient to have
a method of enumerating all the paths through the trellis. This initially daunting task is
aided somewhat by the observation that, for the purposes of computing the probability of
error, since the convolutional code is linear it is sufficient to consider only those paths which
diverge from the all-zero path then remerge.

We develop a transfer function method which enumerates all the paths that diverge from
the all-zero path then remerge. This transfer function is called the path enumerator. We
demonstrate the technique for the particular code we have been examining.

Example 12.18 Figure 12.22(a) shows the state diagram for the encoder of Example 12.1. In Figure
12.22(b), the 00 state has been “spliti,:, or duplicated. Furthermore, the transition from state 00 to state
00 has been omitted, since we are interested only in paths which diverge from the 00 state. Any path
through the graph in Figure 12.22(b) from the 00 node on the left to the 00 node on the right represents
a path which diverges from the all-zero path then remerges. In Figure 12.22(c), the output codeword
of weight i along each edge is represented using D” (For example, an output of 11 is represented by
D2; an output of 10 is represented by D’ = D and an output of 00 is represented by Do = 1.) For
convenience the state labels have been removed.

The labels on the edges in the graph are to be thought of as transfer functions. We now employ
the conventional rules for flow graph simplification as summarized in Figure 12.23

494 Convolutional Codes

011 1
01 00

010 1

1/00 P - O

(a) State diagram. (b) Split state 0.

(c) Output weight i represented by D i .

Figure 12.22: The state diagram and graph for diverginghemerging paths.

Blocks in series multiply the transfer functions.
Blocks in parallel add the transfer functions.
Blocks in feedback configuration employ the rule “forward gain over 1 minus loop gain.”

(For a thorough discussion on more complicated flow graphs, see [221].) For the state diagram of
Figure 12.22, we take each node as a summing node. The sequence of steps by successively applying
the simplification rules is shown in Figure 12.24. Simplifying the final diagram, we find

D5 D -
T (D) = 02-02 = -

1 - - 1 - 2 0 .
1-D

To interpret this, we use the formal series expansion4 (check by long division)

- 1 + D + D2 + D3 +... . I
Expanding T (D) we find

T (D) = Ds(l +2D + (2D)2 + (2D)3 + ...) = Ds +2D6 +4D7 +... + 2kDk+s + . ..
Interpreting this, we see that we have:

4A formal series is an infinite series that is obtained by symbolic manipulation, without particular regard to
convergence.

12.5 Error Analysis for Convolutional Codes 495

Blocks in series Blocks in parallel

AYHTt--- = @ = +Gt--
G

Feedback configuration

Figure 12.23: Rules for simplification of flow graphs.

%K* D

2
1-D 1

1-D

2

1 - D

J-
1-D 1-D

1

Figure 12.24: Steps simplifying the flow graph for a convolutional code.

One diverginghemerging error path at metric 5 from the all-zero path;
2 error paths of metric 6;

4 error paths of metric 7, etc.

Furthermore, the shortest error path has metric 5. 0

Definition 12.8 The minimum metric of a path diverging from then remerging to the all-
zero path is called the free distance of the convolutional code, and is denoted as dfiee. The

0
In general, we write
number of paths at that metric is denoted as Nfiee.

00

T (D) = a (d) D d ,
d=dfree

where a(dfiee) = Nfiee.

Additional information about the paths in the trellis can be obtained with a more expres-
sive transfer function. We label each path with three variables: D' , where i is the output
code weight; N" where i is the input weight; and L, to account for the length of the branch.

496 Convolutional Codes

W
DLN

Figure 12.25: State diagram labeled with output weight, input weight, and branch length.

Example 12.19 Returning to the state diagram of Figure 12.22, we obtain the labeled diagram in
Figure 12.25. Using the same rules for block diagram simplification as previously, the transfer
function for this diagram is

D5L3N
T (D , N , L) =

1 - D L N (~ + L) ‘
(12.21)

Expanding this as a formal series we have

T (D , N , L) = D5L3N + D6L4(l + L)N2 + D7L5(l + L) 2 N 3 + ... , (12.22)

which has the following interpretation:

There is one error path of metric 5 which is three branches long (from L3) and one input bit is
1 (from N’) along that path.

There are two error paths of metric 6: one of them is four branches long and the other is five
branches long. Along both of them, there are two input bits that are 1.

There are four error paths of metric 7. One of them is five branches long; two of them are six
branches long; and one is seven branches long. Along each of these, there are three input bits
that are 1.

Etc.

Clearly, we can obtain the simpler transfer function by T (D) = T (D , N , L) l ~ = l , ~ = l .

When we don’t care to keep track of the number of branches, we write

T (D , N) = T (D , N , L)I,=l.

Enumerating on More Complicated Graphs: Mason’s Rule

Some graphs are more complicated than the three rules introduced above can accommodate. A more
general approach is Mason’s rule [221]. Its generality leads to a rather complicated notation, which
we summarize here and illustrate by example (not by proof) [373]. We will enumerate all paths from
the 0 state to the 0 state in the state diagram shown in Figure 12.26.

A loop is a sequence of states which starts and ends in the same state, but otherwise does not
enter any state more than once. We will say that a forward loop is a loop that starts and stops in
state 0. A set of loops is nontouching if they have no vertices in common. Thus (0, 1,2,4,0) is
a forward loop. The loop {3,6,5,3) is a loop that does not touch this forward loop. The set of all
forward loops in the graph is denoted as L = (L1 , L2, . . .}. The corresponding set of path gains is
denoted as F = [F l , F2, . . .}. Let C = [Cl, C2, . . .} denote the set of loops in the graph that does
not contain the vertex 0. Let .F = [Fl, 75, . , .) be the set of corresponding path gains. (Determining

12.5 Error Analysis for Convolutional Codes 497

D2 7 D2

1
D D D
D

Figure 12.26: A state diagram to be enumerated.

all the loops requires some care.) For the graph in Figure 12.26, the forward loops and their gains are

L1: [0 ,1 ,3 ,7 ,6 ,5 ,2 ,4 ,0] F 1 = D 8
L2 : IO, 1,3,7,6,4,01 F2 = D6
L 3 : {0,1,3,6,5,2,4,0) F3=D10
L4 : tO,1, 3,6,4,01 F4 = D8
L 5 : {0,1,2,5,3,7,6 ,4 ,0] F 5 = D 8
L 6 : {0,1,2,5,3,6,4,0} F 6 = D l o
L7 : {O, 1,2,4,01 F7 = D6

and the other loops and their gains are

F1 = D4
F 2 = D2
F 3 = D6
F4 = D4
3 5 = D4
F6 = D6
F6 = D2
Fa = D2
F 9 = D2
F1o = D4
F11 = D2

We also need to identify the pairs of nontouching loops in C, the triples of nontouching loops in C,
etc., and their corresponding product gains. There are ten pairs of nontouching loops in C:

(132, La) F2Fa = D4 (133% C11) F3F11 = D8
(C43 La) F 4 F S = D6 (C4, C11) F4F11 = D6

(C73 CIO) F7F10 = D6 (c73 c11) F7F11 = D4
(c63 c11) F 6 F l l = D8 (137, C9) 3 7 F 9 = D4

(La, Cii) FsFii = D4 K l O 9 C11) FlOF11 = D6

There are two triplets of nontouching loops in C,

(c49 LS , c11) F 4 F 8 F l l = D8 (c7, LlO, c11) F7FlOFll = D8

but no sets of four or more nontouching loops in C.
With these sets collected, we define the graph determinant A as

A = 1 - C F i + C FiFj - C FjFjFk + ...
Li (Ci ,Lj) (Li ,Lj,Lk)

498 Convolutional Codes

where the first sum is over all the loops in C, the second sum is over all pairs of nontouching loops in
L, the third sum is over all triplets of nontouching loops in L, and so forth.

We also define the graph cofactor of the forward path L j , denoted as Aj, which is similar to
the graph determinant except that all loops touching Lj are removed from the summations. This can
be written as

Cl Fl A1 T (D) = ~

A ’
(12.23)

where the sum is over all forward paths.
For our example, we have

A l = l A 5 = 1

(since there are no loops that do not contain vertices in the forward paths L 1 and L5),

A3 = A 6 = 1 -F11 = 1 - D 2

(since L3 and L6 do not cross vertex 7 and so do not touch loop L ~ I) ,

= 1 - 3 8 = 1 - D~

(since L2 does not touch .C8 but it does touch all other loops), and

A4 = 1 - (F8 + 311) + F8Fll = 1 - 2D2 + D4

A7 = 1 - (3 9 + 3 1 0 + F11) + (3 1 0 3 1 1) = 1 - 2D2 - D4 + D6.

The graph determinant is

A = 1 - (D4 + D2 + D6 + D4 + D4 + D6 + D2 + D2 + D2 + D4 + D2)

+ (D4 + D8 + D6 + D6 + D8 + D4 + D6 + D4 + D4 + D6) - (D 8 + 0’)

= 1 - SO2 + 2D6.

Finally, using (12.23) we obtain
2D6 + DIO

1 - 5 D 2 + 2 D 6 ’
T (D) =

12.5.2 Characterizing the Node Error Probability Pe and the Bit Error Rate Pb

We now return to the question of the probability of error for convolutional codes. Let P j

denote the set of all error paths that diverge from node j of the all-zero path in the trellis
then remerge and let pi , j E P j be one of these paths. Let A M (p i , j , 0) denote the difference
between the metric accumulated along path p i , j and the all-zero path. An error event at
node j occurs due to path p i , j if A M (p j , j , 0) < 0. Letting Pe(j) denote the probability of
an error event at node j, we have

pe(j> 5 Pr [C J l a M (P i , j , 0) 5 01 , (12.24) 1

12.5 Error Analysis for Convolutional Codes 499

where the inequality follows since an error might not occur when A M (p j , j , 0) = 0.
The paths p i , j E P are not all disjoint since they may share branches, so the events
{ A M (p i , j , 0) 5 0) are not disjoint. This makes (12.24) very difficult to compute ex-
actly. However, it can be upper bounded by the union bound (see Box 1.1 in chapter 1) as

(12.25)

Each term in this summation is now apainvise event between the paths pi, j and the all-zero
path.

We here develop expressions or bounds on the pairwise events in (12.25) for the case
that the channel is memoryless. (For example, we have already seen that for the BSC, the
probability Pd developed in (12.19) and (12.20) is the probability of the pairwise events
in question.) For a memoryless channel, A M (p i , j , 0) depends only on those branches for
which pi,j is nonzero. Let d be the Hamming weight of p i , j and let Pd be the probability
of the event that this path has a lower (better) metric than the all-zero path. Let a(d) be the
number of paths at a distance d from the all-zero path. The probability of a node error event
can now be written as follows:

00

P e (j) 5 Pr(enor caused by any of the a(d) incorrect paths at distance d)
d=dfree

00

(12.26)
d=dtree

Any further specification on Pe (j) requires characterization of P d . We show below that
bounds on Pd can be written in the form

Pd < Z d (12.27)

for some channel-dependent function 2 and develop explicit expressions for 2 for the BSC
and AWGN channel. For now, we simply express the results in terms of Z . With this bound
we can write

00

d=dfree

Recalling that the path enumerator for the encoder is T (D) = c T = d f r e e a (d) D d , we obtain
a closed-form expression for the bound

P e (j > < T(D)ID=z. (12.28)

The bound (12.28) is a bound on the probability of a node error. From this, a bound on the
bit error rate can be obtained by enumerating the number of bits in error for each node error.
The derivative

brings exponents of N down as multipliers for each term in the series.

Example 12.20 For the weight enumerator of Example 12.18,

T (D , N) = D 5 N + 2 D 6 N 2 + 4 D 7 N 3 + . . . ,

500 Convolutional Codes

i a
Pb < --T(D,N)

we have
~ T (D , N) = (1)D5 + (2)2D6N + (3)4D7N2 -t
aN

(12.29)

so that a node error on the error path of metric 5 contributes one bit of error; a node error on either of
0 the error paths of metric 6 contributes two bits of error, and so forth.

The average number of bits in error along the branches of the trellis is

a
aN N = l
- T (D , N)l = Ddfree(nl + n2 + . . .) +

The number n 1 + 122 + a . . is the number of nonzero message bits associated with codewords
of weight dfi,,,. Let us denote this number as bdfree = nl + n2 + . . .
Example 12.21 Suppose

T (D , N) = D 6 N + D 6 N 3 + 3 D 8 N + 5 D 8 N 4 + . * .

Then there are two codewords of weight 6: one corresponding to a message of weight 1 and one
corresponding to a message of weight 3. We could write

T (D , N) = D6(N + N 3) + 3D8N + 5D8N4 +
Thenbg = 1 + 3 = 4 .

Then the approximation is
1

pb X -bd k free Ddfree . I D=Z

A lower bound can be found as
1

'b ' i bd f reepdf ree*

where Pddfree is Pd at d = dfree.

Example 12.22 For

. . .

T (D , N) = - = D 5 N + 2 D D5 6 2 N + 4 D 7 3 N t
1 - 2DN

0

(12.30)

(12.31)

the derivative is
a

- T (D , N) = D 5 + 4 D 6 N + 1 2 D 7 N 2 + . . .
aN

12.5 Error Analysis for Convolutional Codes 501

so the probability of error is approximated by

Pb %5 z5
or lower bounded by

Pb 1 Ps.

12.5.3 A Bound on Pd for Discrete Channels

In this section we develop a bound on Pd for discrete channels such as the BSC [373, Section
12.3.11. Let p(ri 11) denote the likelihood of the received signal T i , given that the symbol
corresponding to 1 was sent through the channel; similarly p(ri lo). Then

Pd = P (A M (p i , j , O) FOandd~(p i , j ,O) = d)

where (r l , r2, . . . , r d] are the received signals at the d coordinates where pj,j is nonzero.
Continuing,

Let R’ be the set of vectors of elements r = (r l , r2 , . . . , r d) such that
d

i = l

(12.32)

(For example, ford = 5 over the BSC, R’ is the set of vectors for which 3 or 4 or 5 of the ri
are equal to 1.) The probability of any one of these elements is p(ri lo), since we are
assuming that all zeros are sent. Thus, the probability of any vector in R’ is nf=l p(ri lo).
The probability Pd can be obtained by summing over all

d

the vectors in R‘:

rcR’i=l

Since the left-hand side of (12.32) is 2 1 , we have

for any s such that 0 5 s < 1 . The tightest bound is obtained by minimizing with respect
to s:

This is made more tractable (and larger) by summing over the set R of all sequences
(r1, r 2 , . . . , r d) :

d

502 Convolutional Codes

The order of summation and product can be reversed, resulting in

d

This is known as the Chernoff bound. Let

(12.33)

Then Pd < Zd.

when s = 1/2. Then Z = z/p(ri IO)p(ri 11) and
If the channel is symmetric, then by symmetry arguments the minimum must occur

d

(12.34)
i=l ri

This bound is known as the Bhattacharya bound.

D'N Example 12.23 Suppose the encoder with T (D , N) = !-2DN is used in conjunction with an asym-
metric channel having the following transition probabilities:

r = 1 0.02 0.997.

Then

1 chernoff 1 .m The minimum value can be found numerically as Z = 0.1884, which occurs when s = 0.442.
The node error probability can be bounded using (12.28) as

= 3.8 p e w < -
- D5N 2DN I N = 1 , 0 = 0 . 1 8 8 4

and the bit error rate is bounded using (12.29) as

The approximate bit error rate from (12.30) is

12.5 Error Analysis for Convolutional Codes 503

i a
Pb < - - T (D , N)

Performance Bound on the BSC

For the BSC with crossover probability p , , (12.34) can be written as follows:
d d

pd < n c J P (r i / O) P (r i / 1) = ~ (~ P (o l o) p (o ~ l) 4- Jp(l lo)p(l (l))
i= l ri i=l
d

= ~ G Z - x = [4P,(l - p c) l d / 2 = J G F x d .
i=l

The expression Z in (12.27) is thus Z = [4p,(l - pc)]1/2.
Let us now return to P e (j) . Inserting this bound on Pd in (12.26) we obtain

d=dfree d=dfree

The closed-form expression for the bound on the probability of error is

(12.35)

(12.36)

(12.37)

Suppose that the coded bits ct(i) are mapped to a BPSK signal constellation by a:) =

a (2 c , (') - l), where E, is the coded signal energy, with E , = REb, and Eb is the
energy per message bit. If the all-zero sequence is sent, then the sequence of amplitudes (-a, -a, -a, . . .) is sent. A sequence which deviates from this path in d lo-
cations is at a squared distance 2dE, from it. Then Pd is the probability that a d-symbol
sequence is decoded incorrectly, compared to the sequence for all-zero transmission. That
is, it is the problem of distinguishing p1 = (-a, -a, -a, . . . , -a) from
p2 = (a, a, a, . . . , a), where these vectors each have d elements. The Eu-
clidean distance between these two points is

dEuclidean(P1, P2) = 2[dEc11/2.

The probability of a detection error is (see Section 1.5.4)

To express this in the form Z d (for use in the bound (12.28)) use the bound Q (x) < i e - x 2 / 2
(see Exercise 1).12. We thus obtain

1
2

pd < -e -dEc/NO

504 Convolutional Codes

Then (12.28) and (12.29) give

. (12.38)
1 1 a

P b < ---T(D,N)
1

~ = ~ - E c l N o 2 k a N N=l,D=e-EclNO
p e (j > < TT(D)~

Another bound on the Q function is [359]

Q(d-1 i Q (f i > e - Y / 2 , x 2 0, Y 2 0. (12.39)

Then

A lower bound can be obtained using (12.31)

(12.41)

Example 12.24 For the R = 1/2 code of Example 12.1 with dbee = 5, Figure 12.27 shows the
bounds on the probability of bit error of the code for both hard- and soft-decision decoders compared

1plotconprob.m with uncoded performance. For soft decoding, the lower bound and the upper bound of (12.40)
approach each other for high signal to noise ratios, so the bounds are asymptotically tight. (The bound
of (12.38) is looser.) Gains of approximately 4 dB at high SNR are evident for soft decision decoding.

The hard-decision decoding bounds are clearly not as tight. Also, there is approximately 3 dB
0 less coding gain for the hard-decision decoder.

12.5.5 Asymptotic Coding Gain

The lower bound for the probability of bit error for the coded signal (using soft-decision
decoding)

can be approximated using the bound Q (x) < ge-x2/2 as

The probability of bit error for uncoded transmission is

(12.42)

(12.43)

12.6 Tables of Good Codes 505

I o5

B lo-'"!-

10.21

10."-

-
0

b

d

t 1 o-"

6

Figure 12.27: Performance of a (3, 1) convolutional code with dfree = 5 .

The dominant factor in (12.42) and (12.43) for large values of signal-to-noise ratio is deter-
mined by the exponents. Comparing the exponents in these two using E , = REb we see
that the exponent in the probability of bit error for the coded case is a factor of Rdfiee larger
than the exponent for the uncoded case. The quantity

 soft = lologlo Rdfiee

is called the asymptotic coding gain of the code. For sufficiently large SNR, performance
essentially equivalent to uncoded performance can be obtained with y dB less SNR when
coding is employed. A similar argument can be made to show that the asymptotic coding
gain for hard decision decoding is

This shows that asymptotically, soft-decision decoding is 3 dB better than hard-decision
decoding.

As the SNR increases, the dominant term in computing the bit error rate is the first term
in T (x , N) . As a result the free distance has a very strong bearing on the performance of
the code.

12.6 Tables of Good Codes

Unlike block codes, where many good codes have been found by exploiting the algebraic
structure of the codes, good convolutional codes have been found mostly by computer
search. As a result, good codes are known only for relatively short constraint lengths. The
following tables [251,254, 197,651 provide the best known polynomial codes. It may be
observed that all of these codes are nonsystematic.

506 Convolutional Codes

There are separate tables for different rates. Within each table, different memory lengths
L, are used, where

L = u + l ,

where u = maxi,j deg(gij(x)) is the degree of the highest polynomial. (This quantity
is called in many sources the constraint length.) For the rate k / n codes with k > 1, L
represents the largest degree and u represents the total memory.

In these tables, the coefficients are represented using octal digits with the least significant
bit on the right. Thus, 0 -+ 000, 1 -+ 001,2 + 010, 3 + 011, and so forth. There may
be trailing zeros on the right. For example, for the rate 1/4 code, the entry with L = 5 has
generators go = 52, gl = 56, g2 = 66 and g3 = 76. The corresponding bit values are

go = (101010) g1 = (101 110) g2 = (110110) g3 = (111 110).

The first coefficient (on the left) is the first coefficient in the en~oder .~ Thus the coded
output streams are

finddfree.cc 1 The program f i n d d f ree finds dkee for a given set of connection coefficients. It has
been used to check these results. (Currently implemented only fork = 1 codes.)

R = 1/2 [251, 1971

4
5
6
7
8
9
10
11
12
13
14
15
16
17 -

64
46
65
554
712
561
4734
4762
4335
42554
43572
56721
441254
716502

74 6
72 7
57 8
744 10
476 10
753 12
6624 12
7542 14
5723 15
77304 16
56246 16
61713 18
627324 19
514576 20

R = 1/3 [251, 1971

3 5 7 7 8
4 54 64 74 10
5 52 66 76 12
6 47 53 75 13
7 554 624 764 15
8 452 662 756 16
9 557 663 711 18
10 4474 5724 7154 20
11 4726 5562 6372 22
12 4767 5723 6265 24
13 42554 43364 77304 24
14 43512 73542 76266 26

L g(1) g(2) g(3) dfree

5T0 use the class BinConvFIR, the left bit must be interpreted as the LSB of a binary number. The function
octconv returns an integer value that can be used directly in BinConvFIR.

12.7 Puncturing 507

4 54 64 64 74 13
5 52 56 66 76 16
6 53 67 71 75 18
7 564 564 634 714 20
8 472 572 626 736 22
9 463 535 733 745 24
10 4474 5724 7154 7254 27
11 4656 4726 5562 6372 29
12 4767 5723 6265 7455 32
13 44624 52374 66754 73534 33
14 42226 46372 73256 73276 36
R = 213 [254, 1721

,&l) ,$12) ,$1,3)

2
3 3 5

1
3 4 7

2
4 5 60

14
4 6 64

30
5 7 60

16
5 8 64

26
6 9 52

05
6 10 63

32

4 8
2 6 4
4 7
1 4 5
5 7
30 70 6
40 74
30 64 7
64 74
34 54 8
46 74
12 52 8
66 44
06 74 9
70 53
15 46 10
65 61

R = 314 [254,172]
g(l,l) g(1,2) g(1,3) g(174)

p , i) p , 3) p 3 4)

,, g(3,i) g(3,2) ,p) p) dfree

2 3 4 4 4 4 4
0 6 2 4
0 2 5 5

3 5 6 2 2 6 5
1 6 0 7
0 2 5 5

3 6 6 1 0 7 6
3 4 1 6
2 3 7 4

4 8 70 30 20 40 7
14 50 00 54
04 10 74 40

04 64 20 70
34 00 60 64

4 9 40 14 34 60 8

Table 12.2 presents a comparison of dfiee for systematic and nonsystematic codes (with
polynomial generators), showing that nonsystematic codes have generally better distance
properties. Results are even more pronounced for longer constraint lengths.

12.7 Puncturing

In Section 3.9, puncturing was introduced as a modification to block codes, in which one
of the parity symbols is removed. In the context of convolutional codes, puncturing is
accomplished by periodically removing bits from one or more of the encoder output streams
[40]. This has the effect of increasing the rate of the code.

Example 12.25 Let the coded output sequence of a rate R = 1 /2 code be

508 Convolutional Codes

Table 12.2: Comparison of Free Distance as a Function of Constraint Length for Systematic
and Nonsystematic Codes

R = 113 [251]
Systematic Nonsystematic

3 4 5
4 4 6
5 5 7
6 6 8
7 6 8
8 7 10

R = 112 [251]
Systematic Nonsystematic

3 6 8
4 8 10
5 9 12
6 10 13
7 12 15
8 12 16

When the code is punctured by removing every fourth coded symbol, the punctured sequence is

The - symbols merely indicate where the puncturing takes place; they are not transmitted. The
punctured sequence thus produces three coded symbols for every two input symbols, resulting in a
rate R = 213 code.

Decoding of a punctured code can be accomplished using the same trellis as the unpunctured
code, but simply not accumulating any branch metric for the punctured symbols. One way
this can be accomplished is by inserting symbols into the received symbol stream whose
branch metric computation would be 0, then using conventional decoding.

The pattern of puncturing is often described by means of a puncturing matrix P. For
a rate k / n code, the puncture matrix has n rows. The number of columns is the number of
symbols over which the puncture pattern repeats. For example, for the puncturing of the
previous example,

The element Pij is 1 if the ith symbol is sent in the j th epoch of the puncturing period.
While the punctured code can be encoded as initially described - by encoding with the

lower rate code then puncturing - this is wasteful, since computations are made which are
promptly ignored. However, since the code obtained is still a convolutional code, it has its
own trellis, which does not require any explicit puncturing.

Example 12.26 We demonstrate puncturing for the code which has been a leitmotiffor this chapter,
with generators g(’) (x) = 1 + x2 and g (2) (x) = 1 + x + x2. Puncturing is accomplished by deleting
every other bit of the second output stream (as above). Four stages of the trellis for this punctured
code are shown in Figure 12.28(a).

Now draw the trellis for the resulting R = 213 code by taking the input bits two at a time, or two
stages in the original trellis, and think of this as representing a single transition of the new code. The
resulting trellis is shown in Figure 12.28(b).

0

Besides being used to increase the rate of the code, puncturing can sometimes be used
to reduce decoding complexity. In decoding, each state must be extended to 2k states at the

12.7 Puncturing 509

00

10

01

11

(a) Trellis for initial punctured code.

non

01 I
010

(b) Trellis by collapsing two stages of the
initial trellis into a single stage.

Figure 12.28: Trellises for a punctured code.

next time. Thus, the decoding complexity scales exponentially with k. Given the trellis for
an unpunctured code with rate R = k / n with k > 1, if a trellis for an equivalent punctured
code having k‘ < k input bits can be found, then the decoding complexity can be decreased.

Suppose, for example, that the encoder having the trellis in Figure 12.28(b) is used. In
decoding, four successor states must be examined for each state, so that the best of four
paths to a state must be selected. However, we know that this encoder also has the trellis
representation in Figure 12.28(a). Decoding on this trellis only has two successor states
for each state. This results in only a two-way comparison, which can be done using a
conventional add/compare/select circuit.

Of course, puncturing changes the distance properties of the code: a good rate R = 2/3
code is not necessarily obtained by puncturing a good R = 1/2 code. Tables of the best
R = 3/4 and R = 2/3 codes obtainable by puncturing are presented in [40].

12.7.1 Puncturing to Achieve Variable Rate

Puncturing can also be used to generate codes of various rates using the same encoder. Such
flexibility might be used, for example, to match the code to the channel in a situation in
which the channel characteristics might change. Suppose that a rate R = 1/2 encoder is
used as the “basic” code. As mentioned above, puncturing 1 bit out of every 4 results in a

510 Convolutional Codes

R = 213 code. Puncturing 3 out of every 8 bits results in a R = 415 code.
If the puncturing is done in such a way that bits punctured to obtain the R = 213 code are

included among those punctured to obtain the R = 415 code, then the R = 415 codewords
are embedded in the R = 213 codewords. These codewords are, in turn, embedded in
the original R = 112 codewords. Such codes are said to be rate compatible punctured
convolutional (RCPC) codes. Assuming that all the RCPC codes have the same period (the
same width of the P matrix), then the P matrix of a higher rate code is obtained simply by
changing one or more of the 1s to 0s. An RCPC code system can be designed so that the
encoder and the decoder have the same structure for all the different rates. Extensive tables
of codes and puncturing schedules which produce rate compatible codes appear in [130].
Abbreviated tables appear in Table 12.3.

Table 12.3: Best Known R = 213 and R = 314 Convolutional Codes Obtained by Punc-
turing a R = 1 /2 Code [1981
I Initial Code I Punctured Code 1 1 Initial Code 1 Punctured Code

5

13

31

65

155

7

17

27

57

117

P

1 0

i n

4ree

5

13

31

65

155

7

17

27

57

117

~ P

1 1 0
1 0 0

1 1 0

4 29

4 1

4 1

5 8

12.8 Suboptimal Decoding Algorithms for Convolutional Codes

While the Viterbi algorithm is an optimal decoding algorithm, its complexity grows as 2”,
exponentially with the number of states. The probability bound presented in (1.49) suggests
that better performance is obtained by codes with longer memory (constraint length). These
two facts conflict: it may not be possible to build a decoder with a sufficiently long memory
to achieve some desired level of performance.

The Viterbi algorithm also has fixed decoding costs, regardless of the amount of noise.
It would be desirable to have an algorithm which is able to perform fewer computations
when there is less noise, adjusting the amount of effort required to decode to the severity of
the need.

In this section we present two algorithms which address these problems. These algo-
rithms have decoding complexity which is essentially constant as a function of constraint
length. Furthermore, the less noisy the channel, the less work the decoders have to do, on av-
erage. This makes them typically very fast decoders. These positive attributes are obtained,
however, at some price. These are suboptimal decoding algorithms: they do not always
provide the maximum-likelihood decision. Furthermore, the decoding time and decoder
memory required are a random variables, depending on the particular received sequence.

In recent years, the availability of high-speed hardware has led to almost universal use of

12.8 Suboptimal Decoding Algorithms for Convolutional Codes 511

Viterbi decoding. However, there are still occasions where very long constraint lengths may
be of interest, so these algorithms are still of value. Viterbi algorithms can be practically used
on codes with constraint lengths up to about 10, while the sequential algorithms discussed
here can be used with constraint lengths up to 50 or more.

The first algorithm is known as the stack algorithm, or the ZJ algorithm, after Zigan-
girov (1966) [388] and Jelinek (1969) [1651. The second algorithm presented is the Fano
algorithm (1963) [80]. These are both instances of sequential decoding algorithms [378].

12.8.1 Tree Representations

While the Viterbi algorithm is based on a trellis representation of the code, the sequential
algorithms are best understood using a tree representation. Figure 12.29 shows the tree for
the convolutional code with generator G (x) = [1 + x 2 , 1 + x + x 2] whose state diagram
and trellis are shown in Figure 12.5. At each instant of time, the input bit selects either the
upper branch (input bit = 0) or the lower branch (input bit = 1). The output bits for the code
are shown along the branches of the tree. By recognizing common states, it is possible to
“fold” the tree back into a trellis diagram.

The tree shown in figure 12.29 is for an input sequence of length 4 in the “branching
portion” of the tree, followed by a sequence of zeros which drives the tree back to the all-zero
state in the “nonbranching” portion of the tree. The length of the codeword is L branches.
Each path of length L from the root node to a leaf node of the tree corresponds to a unique
convolutional codeword.

Since the size of the tree grows exponentially with the code length, it is not feasible to
search the whole tree. Instead, a partial search of the tree is done, searching those portions
of the tree that appear to have the best possibility of succeeding. The sequential decoding
algorithms which perform this partial search can be described heuristically as follows: Start
at the root node and follow the branches that appear to best match the noisy received data.
If, after some decisions, the received word and the branch labels are not matching well, back
up and try a different route.

12.8.2 The Fano Metric

As a general rule, paths of differing lengths are compared as the algorithm moves around
the tree these in sequential decoding algorithms. A path of length five branches through the
tree might be compared with a path of length twenty branches. A first step, therefore, is to
determine an appropriate metric for comparing different paths. The log likelihood function
used as the branch metric for the Viterbi algorithm is not appropriate to use for the sequential
algorithm. This is because log likelihood functions are biased against long paths.

Example 12.27 Suppose the transmitted sequence of a rate R = 1/2 code is

a = [l l , 10, 10, 11, 11,01,00,01]

and the received sequence is
r = [Ol, lO,OO, 11, l l ,Ol, 00,011.

Using the Hamming distance as the path metric, this is to be compared with a partial path of one
branch, P (l) = [00] and a partial path of six branches, a(2) = [ll, 10, 10, 11, 11,011. Letting [rlj
denote i branches of received data, we have

dH(tr11, a‘’)) = 1 dH(i1-16, a(2)) = 2.

512 Convolutional Codes

Figure 12.29: A tree representation for a rate R = 1/2 code.

By not taking into account the fact that branches of different length are being compared, a1 appears
to be better, since the Hamming distance is smaller. But intuitively, it seems that 2 errors out of 12

0 bits should be superior to 1 error out of 2 bits.

The Fano metric is designed to take into account paths of different lengths. Let

be a partial input sequence of length n j corresponding to a particular path through the tree,
where each a:) consists of n bit symbols. Accordingly, let us write this as a vector of nni
bits,

g(i) = ,(i) (i) G) (0 0) , , . . ., = (ao , a l , .. . , a n i n - l) .

Assuming that each encoded bit occurs with equal probability, each sequence ii(i) occurs
with probability

p (i (9) = (2-k)"' = 2-Rnni. (12.44)

Suppose that there are M partial sequences to be compared, represented as elements of the
set X,

x = { i i y @), . . . , i (M) } .

12.8 Suboptimal Decoding Algorithms for Convolutional Codes 513

Let nmax be the longest of the partial sequences,

nmax = max(n1, n2,. . . , nM).

Let r = (ro, rl , . . . , rL-1) be a received sequence corresponding to a codeword and let

f = (ro, ri, . . . , rnmaX-i)

be a "partial" sequence, starting at the beginning of r, but extending only through nmax
branches. (The tilde is used to represent partial sequences.) Each ri consists of n symbols,
so we can also write this as a vector of nnmm elements

f = (ro, r l , . . . , rnnma-l).

From among the sequences in X, the optimal receiver chooses the ii(i) which maximizes

Assuming (as is typical) that the channel is memoryless, this can be written as

where the second product arises since there are no known data associated with the sequence
H(') for j 2 nj . Canceling common terms in the numerator and denominator of (12.45) we
obtain

Taking the logarithm of both sides and using (12.44), we have

Each rj and a:' consists of n symbols, so we can write this as

We use this as the path metric and denote it as

~ (i i (~) , r) = log2 ~ (i i (') IF).

The corresponding branch metric which is accumulated for each new symbol is

(i) l (r j , a:') = log2 P(rj laj) - log2 P(rj) - R .
i-

ML metric path length bias

This metric is called the Fano metric. As indicated, the Fano metric consists of two parts.
The first part is the same maximum likelihood metric used for conventional Viterbi decoding.
The second part consists of a bias term which accounts for different path lengths. Thus, when

514 Convolutional Codes

comparing paths of different lengths, the path with the largest Fano metric is considered the
best path, most likely to be part of the maximum likelihood path. If all paths are of the same
length, then the path length bias becomes the same for all paths and may be neglected.

If transmission takes place over a BSC with transition probability p c , then P(r j = 0) =
P(r j = 1) = i. The branch length bias is

which is > 0 for all codes of rate R < 1. The cumulative path length bias for a path of
nni bits is nni (1 - R) : the path length bias increases linearly with the path length. For the
BSC, the branch metric is

Example 12.28 Let us contrast the Fano metric with the ML metric for the data in Example 12.27,
assuming that pc = 0.1. Using the Fano metric, we have

M([OOI, r) = 10g2(l - p c) + log2 pc + 2(1 - 1/2) = -2.479

M([11, 10, 10, 11, 11,011, r) = lOlogZ(1 - p c) + 210g2pc + 12(1 - 1/2) = -2.164.

Thus the longer path is has a better (higher) Fano metric than the shorter path. 0

Example 12.29 Suppose that R = 1/2 and pc = 0.1. Then from (12.46),

0.348 rj = a ,
-2.82 r j # a j .

, W j , a j) =

It is common to scale the metrics by a constant so that they can be closely approximated by integers.
Scaling the metric by 1/0.348 results in the metric

Thus, each bit aj that agrees with r j results in a +1 added to the metric. Each bit aj that disagrees
0

A path with only a few errors (the correct path) tends to have a slowly increasing metric,
while an incorrect path tends to have a rapidly decreasing metric. Because the metric
decreases so rapidly, incorrect paths are not extended far before being effectively rejected.

For BPSK transmission through an AWGN , the branch metric is

with r j results in -8 added to the metric.

P (r j , a j> = log2 ~ (r j l a j) -log, p (r j > - R ,

where p (r j laj) is the PDF of a Gaussian r.v. with mean aj and variance a2 = No/2 and

p(rjlaj = 1) + p (r j (a j = -1)
2 P (r j > =

12.8 Suboptimal Decoding Algorithms for Convolutional Codes 515

12.8.3 The Stack Algorithm

Let 5(i) represent apath through the tree and let M(C('),, r) represent the Fano metric between
ii(i) and the received sequence r . These are stored together as a pair (M (5@) , r) , P (i)) called
a stack entry.

In the stack algorithm, an ordered list of stack entries is maintained which represents all
the partial paths which have been examined so far. The list is ordered with the path with the
largest (best) metric on top, with decreasing metrics beneath. Each decoding step consists
of pulling the top stack entry off the stack, computing the 2k successor paths and their path
metrics to that partial path, then rearranging the stack in order of decreasing metrics. When
the top partial path consists of a path from the root node to a leaf node of the tree, then the
algorithm is finished.

Algorithm 12.2 The Stack Algorithm

I Input: A sequence ro, rl , . . . , rL-1
z Output: The sequence ao, a1 , . . . , aL-1
3 Initialize: Load the stack with the empty path with Fano path metric 0: S = (0,O)
4 Compute the metrics of the successors of the top path in the stack
5 Delete the top path from the stack
6 Insert the paths computed in step 4 into the stack, and

7 If the top path in the stack terminates at a leaf node of the tree, Stop.
rearrange the stack in order of decreasing metric values.

Otherwise, goto step 4.

Example 12.30 The encoder and received data of Example 12.13 are used in the stack algorithm. We
have

Figure 12.30 shows the contents of the stack as the algorithm progresses. After 14 steps of the
algorithm, the algorithm terminates with the correct input sequence on top. (The metrics here are not

r = [I1 1000 10 11 01 OOO1 . . .] .

scaled to integers.) 0

A major part of the expense of the stack algorithm is the need to sort the metrics at every
iteration of the algorithm. A variation on this algorithm due to Jelinek [165] known as the
stack bucket algorithm avoids some of this complication. In the stack bucket algorithm,
the range of possible metric values (e.g., for the data in Figure 12.30, the range is from
0.7 to -9.2) is partitioned into fixed intervals, where each interval is allocated a certain
number of storage locations called a bucket. When a path is extended, it is deleted from its
bucket and a new path is inserted as the top item in the bucket containing the metric interval
for the new metric. Paths within buckets are not reordered. The top path in the nonempty
bucket with the highest metric interval is chosen as the path to be extended. Instead of
sorting, it only becomes necessary to determine which bucket new paths should be placed
in. Unfortunately, the bucket approach does not always choose the best path, but only a
"very good" path, to extend. Nevertheless, if there are enough buckets that the quantization
into metric intervals is not too coarse, and if the received signal is not too noisy, then the
top bucket contains only the best path. Any degradation from optimal is minor.

Another practical problem is that the size of the stack must necessarily be limited. For
long codewords, there is always the probability that the stack fills up before the correct

test stack .m
stacka1g.m

516 Convolutional Codes

Step 1 Step 2 Step 3 Step 4 Step 5
0.7 [l] 1.4 [l l] -1.1 [111] -0.39 [1110] 0.31 [11100]

-5.6 [0] -4.9 [lo] -1.1 [110] -1.1 [110] -1.1 [110]
-5.6 (01 -4.9 [lo] -4.9 [lo] -4.9 [lo]

-5.6 [O] -5.6 [O] -5.6 [O]
-6.7 [1111] -6 [11101]

-6.7 [l l l l]
Step 6

-1.1 [110]
-2.2 [111001]
-2.2 [111000]
-4.9 [lo]
-5.6 [O]

-6.7 [1111]
-6 [11101]

Step 10
-3.6 [11001
-3.6 [11011
-3.9 [111000001
-3.9 [111000011
-4.6 [1110011]
-4.6 [11100101
-4.9 1101
-5.6 [O]

-6 [11101]
-6.7 [1111]
-7.8 [1110001]

Step I
-2.2 [111000]
-2.2 [1110011

-4.9 [lo]

_ _ _ _ _ -

-3.6 [1101]
-3.6 [1100]

-5.6 [O]

-6.7 [1111]
-6 [11101]

Step 11
-2.9 [110011
-3.6 [1101]
-3.9 [111000011
-3.9 [11100o0o]
-4.6 [1110010]
-4.6 [1110011]
-4.9 [lo]
-5.6 [O]

-6 [11101]
-6.7 [11111
-7.8 [11100011
-9.2 [110001

Step 13 Step 14
-1.5 [1100101] -0.77 [11001010]
-3.6 [1101] -3.6 [1101]
-3.9 [111000011 -3.9 [11100000]
-3.9
-4.6
-4.6
-4.9
-5.6

-6
-6.7
-7.8
-7.8
-8.5
-9.2

[1 1 l00000]
[1110010]
[1110011]
I101
[OI
[11101]
[1111]
[1110001]
[1100100]
[110011]
[110001

-3.9
-4.6
-4.6
-4.9
-5.6

-6
-6.7
-7.1
-7.8
-7.8
-8.5
-9.2

[1 1 100001]
11 11001 11
[1110010]
[lo1
[OI
[11101]
[1111]
[11001011]
[1 1 1 OOOl]
[1 100100]
[l 1001 11
[11000]

Step 8
-1.5 [1110000]
-2.2 [111001]
-3.6 [1100]
-3.6 [1101]
-4.9 [lo]
-5.6 [O]

-6 [11101]
-6.7 [11111
-7.8 [1110001]

step 9 -
-2.2 [111001]
-3.6 [1101]
-3.6 [1100]
-3.9 [11100001]
-3.9 [11100000]
-4.9 [lo]
-5.6 [O]

-6 [11101]
-6.7 111111
-7.8 [1110001]

step 12
-2.2 [110010]

-3.9 [1110oooo]
-3.9 [111000011
-4.6 [lllOOll]
-4.6 [1110010]
-4.9 [lo]
-5.6 [O]

-6.7 [1111]

-8.5 [1100111
-9.2 [110001

-3.6 [1101]

-6 [11101]

-7.8 [1110001]

Figure 12.30: Stack contents for stack algorithm decoding example: metric, [input list].

12.8 Suboptimal Decoding Algorithms for Convolutional Codes 517

codeword is found. This is handled by simply throwing away the paths at the bottom of the
stack. Of course, if the path that would ultimately become the best path is thrown away at
an earlier stage of the algorithm, the best path can never be found. However, if the stack
is sufficiently large the probability that the correct path will be thrown away is negligible.
Another possibility is to simply throw out the block where the frame overflow occurs and
declare an erasure.

12.8.4 The Fano Algorithm

While the stack algorithm moves around the decoding tree, and must therefore save infor-
mation about each path still under consideration, the Fano algorithm retains only one path
and moves through the tree only along the edges of the tree. As a result, it does not require
as much memory as the stack algorithm. However, some of the nodes are visited more than
once, requiring recomputation of the metric values.

The general outline of the decoder is as follows. A threshold value T is maintained by
the algorithm. The Fano decoder moves forward through the tree as long as the path metric
at the next node (the “forward” node), denoted by MF, exceeds the threshold and the path
metric continues to increase (improve). The algorithm is thus a depth-first search. When
the path metric would drop below the threshold if a forward move were made, the decoder
examines the preceding node (the “backward” node, with path metric M B) . If the path metric
at the backward node does not exceed the current threshold, then the threshold is reduced
by A, and the decoder examines the next forward node. If the path metric at the previous
node does exceed the threshold, then the decoder backs up and begins to examine other
paths from that node. (This process of moving forward, then backward, then adjusting the
threshold and moving forward again is why nodes may be visited many times.) If all nodes
forward of that point have already been examined, then the decoder once again considers
backing up. Otherwise, the decoder moves forward on one of the remaining nodes.

Each time a node is visited for the first time (and if it is not at the end of the tree) the
decoder “tightens” the threshold by the largest multiple of A such that the adjusted threshold
does not exceed the current metric. (As an alternative, tightening is accomplished in some
algorithms by simply setting T = M F .)

Since the Fano algorithm does backtracking, the algorithm needs to keep the following
information at each node along the path that it is examining: the path metric at the previous
node, M B ; which of the 2k branches it has taken; the input at that node; and also the state
of the encoder, so that next branches in the tree can be computed. A forward move consists
of adding this information to the end of the path list. A backward move consists of popping
this information from the end of the path list. The path metric at the root node is set at
MB = -CQ; when the decoder backs up to that node, the threshold is always reduced and
the algorithm moves forward again.

Figure 12.31 shows the flowchart for the Fano algorithm. The number i indicates the
length of the current path. At each node, all possible branches might be taken. The metric
to each next node is stored in sorted order in the array P . At each node along the path, the
number ti indicates which branch number has been taken. When ti = 0, the branch with
the best metric is chosen, when t i = 1 the next best metric is chosen, and so forth. The
information stored about each node along the path includes the input, the state at that node,
and ti. (Recomputing the metric when backtracking could be avoided by also storing P at
each node.)

The threshold is adjusted by the quantity A. In general, the larger A is, the fewer the

fanoa1g.m

518 Convolutional Codes

number of computations are required. Ultimately, A must be below the likelihood of the
maximum likelihood path, and so must be lowered to that point. If A is too small, then
many iterations might be required to get to that point. On the other hand, if A is lowered
in steps that are too big, then the threshold might be set low enough that other paths which
are not the maximum likelihood path also exceed the threshold and can be considered by
the decoder. Based on simulation experience [203], A should be in the range of (2,8) if
unscaled metrics are used. If scaled metrics are used, then A should be scaled accordingly.
The value of A employed should be explored by thorough computer simulation to ensure
that it gives adequate performance.

Example 12.31 Suppose the same code and input sequence as in Example 12.13 is used. The follow-
ing traces the execution of the algorithm when the scaled (integer) metric of Example 12.29 is used
with A = 10. The step number n is printed every time the algorithm passes through point A in the
flow chart.

n = 1: T = 0 P = [2 - 161 to = 0

MF p T. Move forward
First visit: Tighten T
MF = 2 MB = 0 Node=[l]

Look forwad MF = 2

M = 2 T = 0

n = 2 : T = O P = [4 - 1 4] t l = 0
Look forward MF = 4
MF > T. Move forward
First visit: Tighten T
MF = 4 MB = 2 Node=[ll]
M = 4 T = 0

n = 3: T = 0 P = 1-3 - 31 f2 = 0
Look forward MF = -3
MF < T: Look back
MB = 2
Mg p T: Move back
All forward nodes not yet tested. f l = 1
MF = -3 MB = 2 Node=[l]
M = 2 T = 0

n = 4 : T = O P = [4 - 1 4] t l = I

MF < T: Look back

Mg ? T: Move back
All forward nodes not yet tested. fo = 1
M F = -14 MB = 0 Node=[]
M = O T = O

Lookforward MF = -14

Mg = 0

n = 5: T = 0 P = [2- 161 to = 1

MF < T: Look back
Lookforward: MF = -16

Mg = --OO

Mg < T : T = T - A
MF = -16 MB = --oo Node=[]
M = O T = -10

n = 6 T = -10 P = [2- 161 to = 0

MF ? T. Move forward
MF = 2 MB = 0 Node=[l]

Look forward MF = 2

M = 2 T = -10

n = 7: T = -10 P = [4 - 141 f l = 0

MF 2 T. Move forward
MF = 4 M g =2Node=[ll]

Look forward MF = 4

M = 4 T = -10

n = 8: T = -10P = [-3-3]12 = 0
Look forward MF = -3
MF ? T. Move forward
First visit: Tighten T
MF = -3 Mg = 4Node=[lll]
M = -3 T = -10

n = 9: T = -10 P = 1-1 - 191 fg = 0

MF ? T. Move forward
First visit: Tighten T
MF = -1 MB = -3Node=[l110]

n = 10: T = -10 P = [l - 171 f4 = 0
Lookforward MF = 1
MF p T. Move forward
First visit: Tighten T
MF = 1 Mg = -1 Node=[11100]

n = 11: T = 0 P = [-6 - 61 fs = 0

MF < T: Lookback

Look forwad MF = -1

M = -1 T = -10

M = l T = O

Look forward M F = -6

MB = -1
M g < T : T = T - A
MF = -6 MB = -1 Node=[11100]
M = 1 T = -10

n = 12: T = -10 P = 1-6 - 61 ts = 0

MF ? T. Move forward
First visit: Tighten T
MF = -6 Mg = 1 Node=[111001]

n = 13: T = -10 P = [-13 - 131

Look forward MF = -6

M = -6 T = -10

f6 = 0
Look forward: MF = -13
MF < T: Lookback
Mg = 1
Mg p T: Move back
All forward nodes not yet tested. f g = 1
MF = -13 Mg = 1 Node=[11100]

n = 14: T = -10 P = [-6-6]ts = 1

MF p T. Move forward
First visit: Tighten T
MF = -6 Mg = 1 Node=[l11000]
M = -6 T = -10

M = 1 T = -10

Look forward MF = -6

n = 15: T = -10 P = [-4-22] f,j = 0
Look forward M F = -4
MF p T. Move forward
First visit: Tighten T
MF = -4 MB = -6Node=[1110000]
M = -4 T = -10

n = 16: T = -10 P = 1-11 - 111
t7 = 0
Look forward: MF = - 11
M F < T: Look back
MB = -6
Mg p T: Move back
AU forward nodes not yet tested. t6 = 1
MF = -11 Mg = -6Node=[ll1000]
M = -6T = -10

n = 17: T = -10 P = [-4- 221 f6 = 1
Look forward MF = -22
MF < T: Lookback
Mg = I
Mg 2 T: Move back
No more forward nodes
MB = -1
MB p T: Move back
All forward nodes not yet tested. t4 = 1
M F = -22 MB = -1 Node=[lllO]

n = 18: T = -10 P = [l - 171 14 = 1
Look forward: MF = - 17
MF < T: Look back
Mg = -3
MB ? T: Move back
All forward nodes not yet tested. f3 = 1
MF = -17 Mg = -3 Node=[lll]
M = -3 T = -10

n = 19: T = -10 P = 1-1 - 191 t3 = 1

M F < T: Look back

Mg ? T: Move back
All forward nodes not yet tested. fz = 1
M ~ = - 1 9 M ~ = 4 N o d e = [l l]
M = 4 T = -10

n = 20: T = -10 P = [-3 - 31 t2 = 1

MF ? T. Move forward
First visit: Tighten T
MF = -3 Mg = 4 Node=[llO]

M = -1 T = -10

Look fornard: M F = -19

M g = 4

Look forward: MF = -3

M = -3 T = -10

12.8 Suboptimal Decoding Algorithms for Convolutional Codes 519

next unexamined (examine next
node unexamined node)

and find metric

Initialize:
i = 0, T = 0,

M-1 = -m, Mo = 0

ti = 0
(to choose best node)

Corn Ute and sort metrics
P,r 2k paths from

current node. Store in P

(See if there
are any unexamined
nodes forward

no ofthisnode)

I

Move forward
Save t i , inputi ,

i = i + l

End of search?
I

First

Figure 12.31: Flowchart for the Fano algorithm.

520 Convolutional Codes

Number of
Decoding Correct

A Steps Decoding
1 158 Yes
2 86 Yes
3 63 no
4 47 no
5 40 Yes
6 33 no

n = 21: T = -10 p = [-lo - 101

Look forward M F = - 10
M F ? T. Move forward
First visit: Tighten T
M F = -10 Mg = -3 Node=[llOl]

f3 = 0

M = -10 T = -10

Number of
Decoding Correct

A Steps Decoding
7 31 no
8 31 no
9 31 no

11 16 no
12 16 no

10 27 Yes

n = 22: T = -10 P = [-17 - 171
fq = 0
Lookforward M F = -17
MF < T: Look back
Mg = -3
Mg ? T : Move back
All forward nodes not yet tested. 13 = 1
M F = -17 Mg = -3 Node=[llO]
M = -3 T = -10

n = 23: T = -10 P = [-lo - 101

Lookforward M F = -10
t3 = 1

M F 2 T. Move forward
First visit: Tighten T
MF = -10 Mg = -3 Node=[1100]
M = -10 T = -10

n =24: T = -lOP = [-8-26]14 = O
Look forward: MF = -8
M F ? T . Move forward
First visit: Tighten T
MF = -8 Mg = -10 Node=[11001]
M = -8T = -10

n = 25: T = -10 P = [-6-24] r5 = 0
Look forward: M F = -6
M F 2 T. Move forward
First visit: Tighten T
MF = -6 Mg = -8 Node=[1100101
M = - 6 T = -10

n = 26: T = -10 P = [-4 - 221 r6 = 0

MF 2 T. Move forward
First visit: Tighten T
MF = -4 Mg = -6 Node=[1100101]

n = 27: T = -10 P =[-2-20]t7 = 0

MF ? T . Move forward
First visit: Tighten T
M F = -2 Mg = -4Node=[11001010]

Look forward: MF = -4

M = -4 T = -10

Look forward: MF = -2

M = -2 T = -10

For this particular set of data, the value of A has a tremendous impact both on the number of steps
the algorithm takes and whether it decodes correctly. Table 12.4 shows that the number of decoding
steps decreases typically as A gets larger, but that the decoding might be incorrect for some values of
A.

Table 12.4: Performance of Fano Algorithm on a Particular Sequence as a F inction of A

In comparing the stack algorithm and the Fano algorithm, we note the following.

The stack algorithm visits each node only once, but the Fano algorithm may revisit

The Fano algorithm does not have to manage the stack (e.g.. resort the metrics).

nodes.

Despite its complexity, when the noise is low the Fano algorithm tends to decode faster than
the stack algorithm. However, as the noise increases more backtracking might be required
and the stack algorithm has the advantage. Overall, the Fano algorithm is usually selected
when sequential decoding is employed.

12.8.5 Other Issues for Sequential Decoding

We briefly introduce some issues related to sequential decoding, although space precludes
a thorough treatment. References are provided for interested readers.

12.8 Suboptimal Decoding Algorithms for Convolutional Codes 521

Computational complexity The computational complexity is a random variable, and so
is described by a probability distribution. Discussions of the performance of the decoder
appear in [302, 161, 164,901.

Code design The performance of a code decoded using the Viterbi algorithm is governed
largely by the free distance dkee. For sequential decoding however, the codewords must have
a distance that increases as rapidly as possible over the first few symbols of the codeword
(i.e., the code must have a good column distance function) so that the decoding algorithm
can make good decisions as early as possible. A large free distance and a small number of
nearest neighbors are also important. A code having an optimum distance profile is one in
which the column distance function over the first constraint length is better than all other
codes of the same rate and constraint length. Tables of codes having optimum distance
profiles are provided in [1741. Further discussion and description of the algorithms for
finding these codes appear in [169, 170, 171, 172,43, 1731.

Variations on sequential decoding algorithms In the interest of reducing the statistical
variability of the decoding, or improving the decoder performance, variations on the de-
coding algorithms have been developed. In [48], a multiple stack algorithm is presented.
This operates like the stack algorithm, except that the stack size is limited to a fixed number
of entries. If the stack fills up before decoding is complete, the top paths are transferred
to a second stack and decoding proceeds using these best paths. If this stack also fills up
before decoding is complete, a third stack is created using the best paths, and so forth. In
[79] and [1661, hybrid algebraickequential decoding was introduced in which algebraic
constraints are imposed across frames of sequentially decoded data. In [129], a generalized
stack algorithm was proposed, in which more than one path in the stack can be extended
at one time (as in the Viterbi algorithm) and paths merging together are selected as in the
Viterbi algorithm. Compared to the stack algorithm, the generalized stack algorithm does
not have buffer size variations as large and the error probability is closer to that of the Viterbi
algorithm.

12.8.6 A Variation on the Viterbi Algorithm: The M Algorithm

For a trellis with a large number of states at each time instant, the Viterbi algorithm can be
very complex. Furthermore, since there is only one correct path, most of the computations
are expended in propagating paths that are not be used, but must be maintained to ensure
the optimality of the decoding procedure. The M algorithm (see, e.g., [270]) is a subopti-
mal, breadth-first decoding algorithm whose complexity is parametric, allowing for more
complexity in the decoding algorithm while decoding generally closer to the optimum.

A list of M paths is maintained. At each time step, these M paths are extended to M2k
paths (where k is the number of input bits), and the path metric along each of these paths
is computed just as for the Viterbi algorithm. The path metrics are sorted, then the best M
paths are retained in preparation for the next step. At the end of the decoding cycle, the path
with the best metric is used as the decoded value. While the underlying graphical structure
for the Viterbi algorithm is a trellis, in which paths merge together, the underlying graphical
structure for the M algorithm is a tree: the merging of paths is not explicitly represented,
but better paths are retained by virtue of the sorting operation. The M-algorithm is thus a
cross between the stack algorithm (but using all paths of the same length) and the Viterbi

522 Convolutional Codes

algorithm. If M is equal to the number of states, the M algorithm is nearly equivalent to the
Viterbi algorithm. However, it is possible for M to be significantly less than the number of
states with only modest loss of performance.

Another variation is the T-algorithm. It starts just like the M algorithm. However,
instead of retaining only the best M paths, in the T algorithm all paths which are within a
threshold T of the best path at that stage are retained.

12.9 Convolutional Codes as Block Codes

In this section, we use m = maxi vj as the maximum amount of memory in any of the
elements of the transfer function matrix.

A block code takes a fixed-length block of k symbols and maps it to a block of n symbols.
Convolutional codes, on the other hand, can operate on an entire “stream” of data: a stream
of data is simply passed through the filtering system of the convolutional coder. As a result,
the “block length” of the code is not usually referred to in the context of convolutional codes.

However, convolutional encoders can be used as encoders for block codes. In fact,
this perspective allows bounds on block codes to provide useful bounds for convolutional
codes (see, e.g., [197]). Here are some natural ways that block codes can be obtained from
convolutional codes. (This discussion applies to polynomial transfer function matrices.
Some modifications are necessary for creation of the transfer function matrices.)

Truncation A sequence of L blocks of k-bits can be input to the decoder. This results
in an (nL , nk) decoder. This has the disadvantage that there is little (if any) error
protection afforded to the last digits input into the encoder [213], resulting in what
is called unequal error protection. The effect of unequal error protection is shown in
Figure 12.19. Decoding takes place using the Viterbi algorithm starting in state 0 and
ending after L stages at any state.

Zero tail Following L k-bit blocks of bits, a sequence of m k-bit blocks of zeros is input to
the encoder, driving the state of the encoder to the zero state. The resultant code is an
((L + m)n, kL) decoder, with rate R = kL/(L + m)n. There is thus a loss of rate,
but for large block lengths the rate reduction is negligible. Decoding is accomplished
using the Viterbi algorithm starting in state 0 and ending in state 0.

Tail biting In a tail-biting codeword, no additional bits are appended to drive the encoder
to the zero state. Instead, the encoder ends in whatever state it happens to end in after
the input bits are encoded. There is thus no loss of rate due to the zero-state forcing
sequence. The encoder is modified to avoid the problem of unequal error protection
by allowing it to start in any state and not just the 0-state. Then the initial state is
determined by the terminal bits in the sequence. Then valid codewords are those that
start and end in the same state.

For feedforward encoders, the state is determined by the most recent v input bits. The
final state is thus determined by the last v input bits. Since the initial and final state
must match, the initial state is also determined by the last v input bits. This allows
one to view the trellis as a circular trellis: the final state of the trellis wraps around to
become the initial state of the trellis. (This circular trellis structure initially gave rise
to the term tail-biting.)

Decoding a tail-biting code more complicated: the Viterbi algorithm should find a
path which starts and ends in the same state. In principle, this could require running

12.10 Trellis Remesentations of Block and Cvclic Codes 523

the decoder 2k times, starting in each possible state, then checking that the best path
terminates in the same state as the starting state. This is computationally infeasible
for many codes. Variations on tail biting codes and their decoding algorithms, are
described in [213]. One variation runs through two passes. In the first pass, decoding
starts at an arbitrary state (such as the 0 state) and finds the terminal state with the
best path metric. Then the Viterbi algorithm is run again, starting with the initial state
as that terminal state. Other alternatives are in [4].

12.10 Trellis Representations of Block and Cyclic Codes

In this section we take a dual perspective to that of the previous section: we describe how
linear block codes can be represented in terms of a trellis. Besides theoretical insight, the
trellis representation can also be used to provide a means of soft-decision decoding that does
not depend upon any particular algebraic structure of the code. These decoding algorithms
can make block codes “more competitive with convolutional codes” [205, p. 31.

12.1 0.1 Block Codes

We demonstrate the trellis idea with a (7,4, 3) binary Hamming code. Let

1 [1 0 1 1 0 0 1

1 1 1 0 1 0 0
H = 1 1 0 1 0 1 0 = [hi h2 h 3 h 4 h 5 h 6 h7] (12.47)

be the parity check matrix for the code. Then a column vector x is a codeword if and only
if s = Hx = 0; that is, the syndrome s must satisfy

We define the partial syndrome by
r

Sr+1 = C h i x i = Sr + h r x r ,
i= l

with s1 = 0. Then the sn+l = s.
A trellis representation of a code is obtained by using sr as the state, with an edge

between a state Sr and Sr+l if Sr+l = Sr (corresponding to x r = 0) or if Sr+l = Sr + h r

(corresponding to Xr = 1). Furthermore, the trellis is terminated at the state sn+i = 0,
corresponding to the fact that a valid codeword has a syndrome of zero. The trellis has at
most 2n-k states in it.

Figure 12.32 shows the trellis for the parity check matrix of (12.47). Horizontal transi-
tions correspond to X i = 0 and diagonal transitions correspond to xi = 1. Only those paths
which end up at s g = 0 are retained.

As may be observed, the trellis for a block code is “time-varying’’ - it has different
connections for each section of the trellis. The number of states “active” at each section of
the trellis also varies.

524 Convolutional Codes

000

001

010

011

100

101

110

111

Figure 12.32: The trellis of a (7,4) Hamming code.

For a general code, the trellis structure is sufficiently complicated that it may be difficult
to efficiently represent in hardware. There has been recent work, however, on families of
codes whose trellises have a much more regular structure. These are frequently obtained by
recursive constructions (e.g., based on Reed-Muller codes). Interested readers can consult
[205].

12.10.2 Cyclic Codes
An alternative formulation of a trellis is available for a cyclic code. Recall that a cyclic
code can be encoded using a linear feedback shift register as a syndrome computer. The
sequence of possible states in this encoder determines a trellis structure which can be used
for decoding. We demonstrate the idea again using a (7,4,3) Hamming decoder, this time
represented as a cyclic code with generator polynomial g(x) = x 3 + x + 1.

Figure 12.33 shows a systematic encoder. For the first k = 4 clock instants, switch 1 is
closed (enabling feedback) and switch 2 is in position ‘a’. After the systematic part of the
data has been clocked through, switch 1 is opened and switch 2 is moved to position ’b’.
The state contents then shift out as the coefficients of the remainder polynomial. Figure

b *
Switch 2

d x) *

a

Figure 12.33: A systematic encoder for a (7,4, 3) Hamming code.

12.34 shows the trellis associated with this encoder. For the first k = 4 bits, the trellis
state depends upon the input bit. The coded output bit is equal to the input bit. For the last

12.10 lkellis Representations of Block and Cyclic Codes 525

State

110

111

\ /
Shift message in

(Input bit = output bit)

Shift parity out

(No input bits)

Figure 12.34: A trellis for a cyclically encoded (7,4,3) Hamming code.

n - k = 3 bits, the next state is determined simply by shifting the current state. There are
no input bits so the output is equal to the bit that is shifted out of the registers.

12.10.3 Trellis Decoding of Block Codes

Once a trellis for a code is established by either of the methods described above, the code
can be decoded with a Viterbi algorithm. The time-varying structure of the trellis makes the
indexing in the Viterbi algorithm perhaps somewhat more complicated, but the principles are
the same. For example, if BPSK modulation is employed, so that the transmitted symbols
are ai = 2ci - 1 E {kl}, and that the channel is AWGN, the branch metric for a path taken
with input xi is (ri - (2xi - 1))2. Such soft decision decoding can be shown to provideup
to 2 dB of gain compared to hard decision decoding (see, for example [303, pp. 222-2231).
However, this improvement does not come without a cost: for codes of any appreciable
size, the number of states 2n-k can be so large that trellis-based decoding is infeasible.

526 Convolutional Codes

Programming Laboratory 9:

Programming Convolutional
Encoders

Objective

In this lab you are to create a program structure to imple-
ment both polynomial and systematic rational convolutional
encoders.

Background

Reading: Sections 12.1, 12.2.

Since both polynomial and systematic ration encoders
are “convolutional encoders” and they share many attributes.
Furthermore, when we get to the decoding operations, it is
convenient to employ one decoder which operates on data
from either kind of encoder. As a result, it is structurally
convenient to create a base class BinConv, then create two
derived classes, BinConvFIR and BinConvIIR. Since
the details of the encoding operation and the way the state is
determined differ, each of these classes employs its own en-
coder function. To achieve this, a virtual function encode
is declared in the base class, which is then realized sepa-
rately in each derived class6 Also, virtual member func-
tions get s tat e and set state are used for reading and
setting the state of the encoder. These can be used for test-
ing purposes; they are also used to build information tables
that the decoder uses.

The declaration for the BinC0nv.h base class is
shown here.

Algorithm 12.3 Base Class for
Binary Convolutional Encoder
File: BinConv. h

The derived classes BinConvFIR and
BinConvI IR are outlined here.

Algorithm 12.4 Derived classes for
FIR and IIR Encoders
File: BinConvFIR. h

BinConvI1R.h
BinConvF1R.c~
BinConvIIR.cc

Programming Part

1) Write a class BinConvFIR that implements convolu-
tional encoding for a general polynomial encoder. That is,
the generator matrix is of the form in (12,1), where each
g (’ ? j) (x) is a polynomial. The class should have an ap-
propriate constructor and destructor. The class should im-
plement the virtual functions encode, getstate, and
setstate, as outlined above.

Test your encoder as follows:

a) Using the encoder with transfer function

1 + x + x2], G (x) = [l + x 2

verify that the impulse response is correct, that the
getstate and nextstate functions work as ex-
pected, and that the statehextstate table is correct. Use
Figure 12.5.

The program testconvenc. cc may be helpful.

Algorithm 12.5 Test program for
convolutional encoders
File: testconvenc. cc

b) The polynomial transfer function +*I (12.48)
1 0

G (x) =

has the state diagram and trellis shown in Figure 12.35.
Verify that for this encoder, the impulse response is cor-
rect, that the getstate and nextstate functions
work as expected, and that the statelnextstate table is cor-
rect.

2) Write aclass BinConvIIRthat implements a system-
atic encoder (possibly employing IIR filters). The generator

‘This is a tradeoff between flexibility and speed. In operation, the virtual functions are called via a pointer, so there is a pointer-lookup
overhead associated with them. This also means that virtually called functions cannot he inline, even if they are very small. However,
most of the computational complexity associated with these codes is associated with the decoding operation, which takes advantage of
precomputed operations. So for our purposes, the virtual function overhead is not too significant.

Lab 9: Programming Convolutional Encoders 527

3

(a) State diagram

O/OOO
1/101
2/010
3/11 1

0/101
1/000
2/111
3/010

0/110
1/01 1
2/100
3/001

0/011
1/110
2/00 1
3/100

0/100
1/001
2/110
3/01 1

o/oo 1
11100
2/01 1
3/110

0/010
11111
2/000
3/101

0/111
1/010
2/101
3/000

(b) Trellis

Figure 12.35: State diagram and trellis for the encoder in (12.48)

matrix is of the form for polynomials pi (x) and qi (x) .
Test your class using the recursive systematic encoder

of (12.2), checking as for the first case. (You may find it
convenient to find the samples of the impulse by long divi-
sion.)

528 Convolutional Codes

Programming Laboratory 10:
Convolutional Decoders: The Viterbi
Algorithm

Objective

You are to write a convolutional decoder class that decodes
using both hard and soft metrics with the Viterbi algorithm.

Background

Reading: Section 12.3
While there are a variety of ways that the Viterbi algo-

rithm can be structured in C++, we recommend using a base
class Convdec . h that implements that actual Viterbi algo-
rithm and using a virtual function met r i c to compute the
metric. This is used by derived classes BinConvdecOl
(for binary 0-1 data) and BinConvBPSK (for BPSKmod-
ulated data), where each derived class has its own metric
function.

The base class Convdec This class is a base class for
all of the Viterbi-decoded objects.

Algorithm 12.6 The Base Decoder
Class Declarations
File: Convdec . h

Convdec.cc

In this class, an object of type BinConv (which could
be either an FIR or IIR convolutional encoder, if you have
used the class specification in lab 9) is passed in. The con-
structor builds appropriate data arrays for the Viterbi al-
gorithm, placing them in the variables prevstate and
inputfrom. A virtual member function metric is used
by derived classes to compute the branch metric. The core
of the algorithm is used in the member function vit erbi,
which is called by the derived classes. Some other functions
are declared:

showpaths - You may find it helpful while de-
bugging to dump out information about the paths.
This function (which you write) should do this for
you.
get inpnow - This function decodes the last avail-
able branch in the set of paths stored, based on the
best most recent metric. If adv is asserted, the
pointer to the end of the branches is incremented.
This can be used for dumping out the decisions when
the end of the input stream is reached.

buildprev builds the state/previous state array,
which indicates the connections between states of
the trellis.

The derived class BinConvdecO 1 The first derived
class is BinConvdecO 1 . h, for binary 0-1 decoding using
the Hamming distance as the branch metric.

Algorithm 12.7 Convolutional
decoder for binary (0,l) data
File: BinConvdecOl . h

BinConvdecOl.cc

This class provides member data outputmat, which
can be used for direct lookup of the output array given the
state and the input. Since the output is, in general, a vec-
tor quantity, this is a three-dimensional array. It is rec-
ommended that space be allocated using CALLOCTENSOR
defined in matalloc. h. The member variable data is
used by the metric function, as shown. The class de-
scription is complete as shown here, except for the function
buildoutputmat, which is part of the programming as-
signment.

The derived class BinConvdecBPSK The next de-
rivedclass is BinConvdecBPSK. h, for decoding BPSK-
modulated convolutionally coded data using the Euclidean
distance as the branch metric.

Algorithm 12.8 Convolutional
decoder for BPSK data
File: BinConvdecBPSK. h

BinConvdecBPSK.cc

As for the other derived class, space is provided for
outputmat and data; the class is complete as presented
here except for the function buildoutputmat.

Programming Part

1) Finish the functions in Convdec . cc.
2) Test the binary (0,l) BinConvdecOl de-
coder for the encoder G(x) = [l + x2, 1 +
n + x2] by reproducing the results in Example

12.11 Exercises 529

12.13. The program testconvdec can help.

Algorithm 12.9 Test the
convolutional decoder
File: testconvdec . cc

3) Test the convolutional decoder BinConvdecBPSK by
modulating the (0, 1) data. Again, testconvdec can
help.
4) Determine the performance of the encoder G (x) =
[1 + x 2 1 + x + x 2] by producing an error curve on the
AWGN channel using BPSK modulation with a soft metric.
Compare the soft metric performance with hard metric per-

formance, where the BSC is modeled as having crossover
probability pc = Q (4 m) . Compare the two kinds
codedperformances withuncoded BPSKmodulation. Also,
plot the bound (12.40) and the approximation (12.42) on the
same graph.

How much coding gain is achieved? How do
the simulation results compare with the theoretical
bounds/approximations? How do the simulations com-
pare with the theoretically predicted asymptotic coding
gain? How much better is the soft-decoding than the hard-
decoding?
5) Repeat the testing, but use the catastrophic code with
encoder G (x) = [l -t x , 1 + x 2] . How do the results for
the noncatastrophic encoder compare with the results for the
catastrophic encoder?

12.1 1 Exercises

12.1 For the R = 1/2 convolutional encoder with

G (x) = [1 + x 2 + x 3 1 + x + x 3] (12.49)

(a) Draw a hardware realization of the encoder.
(b) Determine the convolutional generator matrix G.
(c) For the input sequence m = [1, 0, 1, 1, 0, 1, 11 determine the coded output sequence.
(d) Draw the state diagram. Label the branches of the state diagram with input/output values.
(e) Draw the trellis.
(0 What is the constraint length of the code?
(g) Determine the Staternext State table.
(h) Determine the StatelPrevious State table.
(i) Is this a catastrophic realization? Justify your answer.
0) Determine the weight enumerator T (D , N) .
(k) What is dfree?
(1) Determine upper and lower bounds on Pb for a BSC using (12.36) and (12.37) and an

approximation using (12.30). Plot as a function of the signal-to-noise ratio, where p c =
Q (d m) . Compare the bounds to uncoded performance.

(m) Determine upper and lower bounds on Pb for an AWGN channel using (12.40) and (12.41)
and plot as a function of the signal-to-noise ratio.

(n) Determine the theoretical asymptotic coding gain for the BSC and AWGN channels.
Compare with the results from the plots. Also, comment on the difference (in dF3) between
the hard and soft metrics.

(0) Express G (x) as a pair of octal numbers using both leading 0 and trailing 0 conventions.
(p) Suppose the output of a BSC is r = [l l , 11,00, 01, OO,OO, 10, 10, 10, 111. Draw the

trellis for the Viterbi decoder and indicate the maximum likelihood path through the
trellis. Determine the maximum likelihood estimate of the transmitted codeword and the
message bits. According to this estimate, how many bits of r are in error?

12.2 For the R = 1/3 convolutional coder with

G(x) = [l + x 1 + x 2 1 + x + x 2]

530 Convolutional Codes

Draw a hardware realization of the encoder.
Determine the convolutional generator matrix G.
For the input sequence m = [l , 0, 1, 1 , 0 , 1, 11 determine the coded output sequence.
Draw the state diagram. Label the branches of the state diagram with input/output values.
Draw the trellis.
What is the constraint length of the code?
Determine the Staternext State table.
Determine the StatePrevious State table.
Is this a catastrophic realization? Justify your answer.
Determine the weight enumerator T (D , N) .
What is dfiee?
Express G(x) as a triplet of octal numbers.

12.3 Find a catastrophic encoder equivalent to G(x) = [l + x2 1 + x + x2] and determine an
infinite-weight message rn (x) that results in a finite-weight codeword for this catastrophic en-
coder.

12.4 Show that G4(x) defined in (12.8) is equivalent to Gz(x) of (12.5).
12.5 Let G (x) be the transfer function matrix of a basic convolutional code. Show that G (x) is

equivalent to a basic transfer function matrix G’(x) if and only if G’(x) = T (x) G (x) , where
T (x) is a unimodular matrix.

12.6 Determine a systematic encoder transfer function matrix equivalent to

l + x x

[1 1 + x + x 2
G(x) =

12.7 For the transfer function matrices

X and G’(.x) =
l + x x

G(x) =

(a) Show that G(x) is equivalent to G’(x).
(b) Show that G(x) is a minimal basic encoder matrix.
(c) Show that G’(x) is not a minimal basic encoder matrix.
(d) Using the procedure described in association with (12.13), determine a transfer function

matrix G”(x) which is a minimal basic encoding matrix equivalent to G’(x), but different
from G (x) .

12.8 For the code generated by

1

G(x) =
1+x3

use elementary row operations to convert the generator matrix to systematic form. Draw a circuit
realization of the systematic encoder.

12.9 Catastrophic codes.

(a) ForarateR = 1/2code,letgl(x) = l + x , g ~ (x) =x2+1. Showthatwhenrn(x) = &
(b) Motivated by this result, prove the following: For a rate l / n code, if

that the transmitted sequence has finite weight. Determine GCD(g1 (x), g2(x)) .

GCD[gl(x), gZ(x), . . . , gn(x)l = 1,

then the code is noncatastrophic.

12.11 Exercises 531

12.10 For the catastrophic code with generators gl(x) = 1 + x, g 2 (x) = 1 + x 2 :

(a) Draw the state diagram.
@) Determine the weight enumerator T (D , N) for the code.
(c) What is the minimum free distance of the code?
(d) How is the catastrophic nature of the code evidenced in the weight enumerator?

12.1 1 For the generator G(x) = [1 + x 2 , 1 + x + x2 + x 3] :

(a) Find the GCD of the generator polynomials.
(b) Find an infinite-weight message sequence that generates a codeword of finite weight.

12.12 Prove that dfree is independent of the encoder realization, so that it is a property of the code and

12.13 Show that the formal series expansion
not of a particular encoder for the code.

-- - 1 + x + x 2 + x 3 +... 1
1 - x

is correct. Show the formal series expansions of

1 D 5 L 3 N
1 - 2 0 and l - D L N (l + L) '

12.14 Show that the expressions for Pd in (12.19) and (12.20) can be bounded by Pd < [4pc(l -

12.15 For a BSC where Z = ,/4pc(l - pc) , show that (12.27) can be replaced by pd < Zd+' when

d d / 2
pc) ldl2. Hint: Show that x$(d+l)/2 (f)pi(l- pc)d-i < xf=(d+1)/2 (i)PC (l -pC)d/2 .

d is odd. Using this result, show that (12.28) can be replaced by

1
P e w < p 1 + Z)T(Z) + (1 - Z)T(-Z)I.

12.16 [1471 An upper bound on dk=. Let K be the number of outputs determining the output of a rate
R = l / n code (i.e., K is the constraint length). The code can be represented by a matrix such
as that in (12.3), in which all rows are obtained by shifting the first row.

(a) Show that for any binary linear code, if the codewords are arranged as the rows of a matrix,
then any column is either all zeros or half zeros and half ones.

(b) Consider the set of all sequences of length no greater than L . Show that the code generated
by these finite-length sequences has length (K - 1 + L)n symbols. Also show that
the average weight of all codewords (excluding the all-zero codeword) is Wav(L) 5
2L-' (K - 1 + 15)n/(2~ - 1).

(c) Argue that the code has a minimum distance between paths of dfree 5 wav(L).

12.17 Show that (12.21) and (12.22) are correct.

12.18 A code with k = 1 has weight enumerator T (D , N) = &. The codewords are passed
through a BSC with p - 0 01. Compute upper and lower bounds on the node error probability
and the bit-enor rate for Viterbi decoding. Repeat this when the code is passed through an
AWGN channel with Eb/NO = 6 dB.

c - ..

12.19 For a rate R = 1/2 code, suppose the output sequence

Write down the puncture matrix P

532 Convolutional Codes

12.20 A binary-inputhinary-output channel with input a and output r has transition probabilities

P (r = O(a = 0) = 0.9

P (r = lla = 0) = 0.1

P (r = Ola = 1) = 0.3

P (r = 1la = 1) = 0.7.

(a) Determine the log likelihoods.
(b) Scale and shift these values to obtain a set of bit metrics that can be reasonably approxi-

12.21 A channel has binary inputs and three outputs, 0 and 1, and E , where E denotes an erasure. When
an erasure occurs, the symbol is known to be suspicious and does not influence the decoding
process - it is erased. (It is a lot like a punctured bit). This channel is called the binary erasure
channel. The channel has transition probabilities

mated with not more than 3 bits.

P(r = Ola = 0) = 0.6

P(r = OJa = 1) = 0.2

P (r = Eta = 0) = 0.3

P (r = Ela = 1) = 0.2

P (r = 1la = 0) = 0.1

P (r = lla = 1) = 0.6

(a) Determine the log likelihood ratios.

(b) Scale and shift these values to obtain a set of bit metrics that can be reasonably approx-
imated with not more than 3 bits, making sure that erased symbols do not contribute
differentially to the path metric.

12.22 An AWGN with variance o2 = 2 is used with BPSK-modulated data sending signals with
amplitudes a = ztl. The received signal rt is quantized to four different values q = Q [r] with
quantization thresholds at f 1.5 and 0.

(a) Determine the probabilities P(qt la) and the log probabilities - log P(qt la).

(b) Determine a and b so that a(-logP(qtla) - b) can be approximated well by integers
using at most two bits.

12.23 A binary inputhinary output channel with input a and output r has

P (r = Ola = 0) = 0.99999

P (r = lla = 0) = 0.00001

P (r = Ola = 1) = 0.05

P (r = lla = 1) = 0.95.

(a) Determine 2 in the Chernoff bound from (12.33).
(b) The input to this channel is coded using a convolutional code whose path enumerator is

given by
D5N

T (D , N) = ~

1 - 2ND'
Using (12.28), determine an upper bound on the node error probability P e (j) . Using
(12.29) and (12.30), determine an upper bound and an approximation on the bit error rate

12.24 Chernoff bound. Let X I , X2, . . . , X n be independent random variables with densities pi (x) and
moment generating functions 4i ($1 = ~ [e s x i] . Let z = C;='=, xi, with moment generating
function dz(s). Using the following steps, show that

Pb .

n
P(Z L Y) 5 e-SY n 4i(s).

i= l

for all s 2 0 such that q5i (s) exists.

(a) Let $z(s) be the moment generating function for Z . Show that q'~z(s) = n;='=, &(s).

12.12 References 533

CO) Show that j-", eszfz(z) dz ? Jy" esZfz(z) dz.
(c) Finish the proof.

12.25 Show that (12.39) is correct.
12.26 A rate-compatible punctured convolutional code (RCPC) based on a rate R = 1 /4 convolutional

code has puncturing period 8 and puncturing matrices

1 P I = " 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 P2 = [0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 0 1 1 1
1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 4 = [

(a) Determine the actual rate when using the puncture matrix P I . Also for P2 and P3.
(b) The generators for the convolutional code are g (l) (x) = 1 + x 3 + x4, g (2) (x) = 1 +

x + x2 + x4, g (3) (x) = 1 + x 2 + x 3 + x4, and g(4)(x) = 1 + x + x 3 + x4. Draw a
convolutional encoder capable of transmitting at these three different rates.

12.27 Determine the branch Fano metric for binary transmission of a rate R = 1/3 code through a
BSC with pc = 0.1. Then scale the metric so it has nearly integer values. Repeat for pc = 0.05
and pc = 0.001.

12.28 For the asymmetric channel in Exercise 12.20, determine the Fano metric for a rate R = 1/2
code. Then shift and scale the metric so it has nearly integer values.

12.29 For the code with generator

~ (x) = [1 + ~ 2 + , 3 1 + ~ + ~ 3 1 ,

thesequencer=[ll, 11, l l , O l , ll,OO,OO]isreceivedthroughaBSCwithpc =0.125. Using
the stack algorithm, determine the transmitted sequence. Repeat using the Fano algorithm. (The
Matlab code may prove very helpful.)

12.30 Draw a trellis representing the binary block code with parity check matrix

I [1 0 1 0 1 0

0 0 0 1 1 1
H = 0 1 1 0 0 1 .

12.31 Draw a trellis representation for the cyclic code with generator g (x) = x 3 + x 2 + 1 that employs
a systematic encoder.

12.1 2 References

Convolutional codes were introduced in 1955 by Elias [76]. Our presentation overall has
benefited greatly from [303]. The discussion of structural properties comes from that source,
which, in turn, closely follows [175]. This, in turn, builds on the landmark paper on the
algebraic structure of convolutional codes [97]. Catastrophic codes were first discussed in
[226]. The criterion for catastrophic codes in terms of the GCD of the generators appears
in [226]. Extensive simulation studies of convolutional codes and error curves appears in
[148]. The results here were computed by Ojas Chauhan.

534 Convolutional Codes

The Viterbi algorithm was described in [358]. However, it was not until [89] that the
Viterbi algorithm was shown to be a maximum likelihood sequence estimator. This paper
also presented the weight enumerator and the graph analysis associated with the performance
of convolutional codes.

An important and still very relevant source on convolutional codes is [357]. This book
presents random coding performance bounds for convolutional codes and shows that con-
volutional codes have a higher cutoff rate than block codes. A recent book dedicated to
convolutional codes is [174]. Convolutional codes are also presented in most books on
coding theory and digital communication theory.

Puncturing appears to have been first explored in [40]. Tail biting was introduced in
[213]. Work on short tailbiting codes with many examples of good codes appears in [320].
Basic results regarding the structure of tail-biting trellises appears in [189]. The trellis
representation of a block code was presented first in [111 and developed more fully in [377].
It has been the topic of a detailed monograph [205]. Readers interested in fully developed
design methodologies should consult that source. A summary of this work is in [303].

The stack algorithm was explored in [388] and [165]. The genre of sequential decoding
algorithms was explored early on in [378]. The Fano algorithm appeared first in [go].
The Fano metric received theoretical foundation as a maximum likelihood metric in [223].
A comparison of sequential decoding algorithms appears in [115, 1161. A discussion of
the performance of the M algorithm as a function of M and comparison with the Viterbi
algorithm is summarized in [303].

Chapter 13

Trellis Coded Modulation
13.1 Adding Redundancy by Adding Signals

The error correction codes studied up to this point in the book have added redundancy
by increasing the number of coded symbols. If the channel is bandlimited so that the
transmitted symbol rate is fixed, this results in a lower information transmission rate. In the
very common case that the high transmission rate is of interest (in contrast to minimizing
transmission power), this reduction in effective information rate is unfortunate. Up until
the early 1970s it was believed that coding would not greatly benefit channels needing a
spectral efficiency - the number of bits transmitted per channel use - exceeding 1.

In 1976, a new method of coding was introduced by Ungerboeck [344,346,347,345]
which adds redundancy to the coded signal by increasing the number of symbols in the signal
constellation employed in the modulation. If the average signal energy is fixed, having more
signals in the signal constellation would tend to decrease the distance between points in the
signal constellation. The key, therefore, is to combine the coding and modulation into a
single unit which transmits only constrained sequences of symbols, and to employ a sequence
detector (i.e., Viterbi algorithm) to detect the sequence. The combination of constrained
symbol sequences and larger signal constellation gives rise to what is known as trellis coded
modulation, or TCM.

13.2 Background on Signal Constellations

Because TCM is built upon signal constellations, we briefly review concepts related to
signal constellations. For now, we restrict our attention to one- and two-dimensional signal
constellations. (A review of the communications concepts in Section 1.4 may prove helpful.)

A signal constellation S is a discrete set of points, typically a subset of the real line R or
the plane R2 (sometimes regarded as the complex plane). A one-dimensional constellation is
used in what is often called amplitude shi$ keying (ASK). A one-dimensional constellation
with two points fa is more frequently called BPSK (binary phase-shift keying). A
two-dimensional constellation with all the points lying on a circle is referred as phase-
shift keying (PSK). The constellation is frequently expressed in terms of the number of
points, such as 4-PSK, 8-PSK, or 16-PSK. QPSK - quaternary PSK - is a synonym for
4-PSK. Figure 13.1 shows examples of PSK constellations, scaled so that they all have the
same signal energy E,. The minimum distance between signal points is denoted as do.
A two-dimensional constellation with points on a square grid is frequently referred to as
quadrature-amplitude modulation (QAM). Figure 13.2 shows overlays of examples of QAM
constellations, where the minimum distance between points is called do. (The 32-point and
128-point constellations are referred to as cross constellations, since the points are arranged
in a cross; this reduces the average energy compared to rectangular constellations.) Other

536 Trellis Coded Modulation

Table 13.1 : Average Energy Requirements for Some QAM Constellations
Spectral

Efficiency q
Constellation (bitshymbol) E, Eb

BPSK 1 id: id:

QPSK 2 2 0 ' d 2 i d ;

16-QAM 4

32-cross 5 5d: d;

64-QAM 6 id:

Zd2
8 0

4'd2 4' 2
128-cross 7 2 0 14d0

85 2 85 2
256-QAM 8 TdO i d 0

arrangements are also possible in two dimensions.
The spectral eficiency Q of a constellation is the number of bits carried by each symbol.

Assuming the bits are identically distributed, the average symbol energy E , is the average
of the squared distances of the constellation points from the origin. For example, for the
16-QAM constellation with minimum distance do,

Es = 16 (4((do/2l2 + (do/2I2) + 8((do/2I2 f (3do/2l2) + 4((3do/2I2 + (3do/2I2))
1

- 5d; - -
2 '

Table 13.1 lists average energies and spectral efficiencies for various QAM constellations.
Also shown is the average energy per bit, where Eb = f E, . It may be computed that for a
square constellation with M points,

M - 1
6

d: . E, = __. (13.1)

The elements of a point (a l , u2) E S c R2 represent the amplitudes of two basis
functions, which we denote as 91 (t) and q2(t) , which are assumed to be orthonormal (unit
energy and orthogonal)

00 co
q?(t)dt = 1 s_, 91 (t)92(t) dt = 0. L

Furthermore, shifts of the functions by the symbolperiod T are orthogonal,
co

pi(t)pi(t - k T) dt = 0 i = 1,2, for all integer k # 0. L
The time T is called the symbol time, or sometimes the baud interval. The number of
symbols transmitted per second, 1 / T is called the symbol rate or the baud rate.

The transmitted signal s (t) is obtained by juxtaposing a sequence of scaled basis signals,
each with their own amplitude representing the transmitted symbol

s(t> = &kVl(t - k T) + U2,k92(t - k T) .
k

13.3 TCM Example 537

BPSK 4-PSK (QPSK)
I

8-PSK

I

128

'I'

16-PSK

a + .

Figure 13.1: PSK signal constellations.

__- - - - - - - -
I. . . * I

.I. . I

.I. .I

.(.I.
1 1

.I. .I

.(.I. .I

0 . . I. .I

I . -

I

I

Figure 13.2: QAM Signal constellations (overlaid).

At the receiver the received signal r (t) is again projected back onto the signal constella-
tion plane by matched filtering. Over each symbol interval, a point (rl , r2) is received, then
the maximum likelihood (ML) detector without coding determines the constellation point
nearest to (rl , r2) .

13.3 TCM Example

With this background on signal constellations, consider the following three scenarios. In
the first case, Figure 13.3(a), 2 bits select a single signal point in a QPSK constellation,
resulting in 7 = 2 bits of information per transmitted symbol. In the second case, R = 2/3
coding is used with the same QPSK constellation. The efficiency is reduced to 7 = 4/3 bits

538 Trellis Coded Modulation

I QPSKModulator I I QPSK Modulatoi

I

(a) QPSK, no coding. (b) QPSK, R = 2/3 coding.

8PSK Modulator I

2 bits/symbol I-
I ‘ d ’ I

V3 bits/symbol -

(c) SPSK, R = 2/3 coding.

Figure 13.3: Three communication scenarios.

of information per transmitted symbol. In the third case, 8-PSK modulation is employed on
the coded bits, and again there are r] = 2 bits of information per transmitted symbol. Thus
the larger signal constellation is able to attain the uncoded data rate. However, if the average
signal energy E , is the same for both the QPSK and 8-PSK, the symbol points are closer
in the 8-PSK constellation: approximately 4 dB additional signal energy would be required
to make the minimum distance between 8-PSK points the same as the QPSK points. The
problem of closer points can be overcome by combining the coding and the modulation.

Consider coded modulation with the 8-PSK signal constellation with points labeled as
shown in Figure 13.4 [346]. (The rationale for the labeling by this partitioning mechanism
is discussed below.) The points on the signal constellation correspond to elements of the
sets labeled Di . The signal point i as a binary number corresponds to the “set” of points Di,
with the least significant bit of i on the right. The minimum distance d j at the j th partition
between points in the constellation increases with j . The constellation is used with the rate
R = 213 binary convolutional code, with the trellis as shown in Figure 13.5. The outputs
of the convolutional coder are mapped to points in the signal constellation, resulting in a
single 8-PSK symbol transmitted for each pair of input bits. We regard the convolutional
encoder simply as a finite-state machine with a given number of states and specified state
transitions, used to select points or subsets of the signal constellation. The combination of
the convolutional coding followed by the mapping is indicated by the labeling of the trellis,
with the sequence of outputs Di corresponding to the sequence of branches read from top
to bottom. Thus, for example, if the coder starts in the first state and the top branch is taken,

13.3 TCM Example 539

Figure 13.4: Set partitioning of an 8-PSK signal.

540 Trellis Coded Modulation

Map to
point in R = 213

input Convolutional
bits Encoder

symbol
n = 3
output
bits

state output set

Figure 13.5: R = 213 trellis coded modulation example.

the point in the set Do is transmitted; if the second branch is taken from the first state, the
point in the set D4 is transmitted, and so forth. The trellis structure imposes constraints
on the sequences of symbols that can be transmitted. For example, starting from state 0, it
is impossible to transmit the sequence (D4, 0 2) . Thus when determining the performance
of the system, distances between sequences of symbols much be considered, rather than
distances between individual points in the signal constellation.

The optimal decoding algorithm (Viterbi) finds a shortest path through the trellis, that is,
a sequence of symbols in the trellis which is closest to the sequence observed at the receiver.
Assuming that the channel is AWGN, the branch metric is related to the squared Euclidean
distance between received signal points and transmitted signal points along a branch. As in
the case of convolutional codes, the overall performance of the system is dominated by the
shortest distance between two paths which diverge the come back together - errors which
lead to the path metric exceeding half of this distance and result in selecting the incorrect
path in the Viterbi algorithm.

Accordingly, let us find the shortest distance between two paths which diverge then re-
merge. One candidate to consider is the distance between the transmitted symbols (Do, Do)
and the symbols along the path (0 4 , 01). The sequence is indicated in Figure 13.5 with
a dotted line, remerging after two branches. The squared distance between the sequences
is the sum of the squares of the distances, which can be determined with the help of the
diagram in Figure 13.4:

d2((Do, Do), (D4,Di>> = d2(Do, 04) + d2(Do, 01) = d i + do2
= 4E, + (2 - h) E s = (6 - h) E , .

A second path to consider is represented by the sequence (0 2 , D6), shown with dashed
lines, with

d2((D0, DO), (D2, 0 6)) = d2(D0, 0 2) + D2(D0, 0 6) = d: f d:
= 2E8 4- 2Es = 4Es .

13.3 TCM Example 541

A third path (dash-dot line) represented by (D6, 01) has

d2((& &dt (0 6 , 01)) = d2(Do, 0 6) -k d 2 (h 01) = d? f

= 2Es + (2 - h) E S = (4 - h) E S .

This is the minimum distance path between any sequences in the trellis.

Euclidean distance. It is usually denoted as dkee. Thus for this code
The minimum distance between any sequences in the trellis for a code is called thefree

dice = (4 - &)Es.

How does the performance of this coded scheme compare with uncoded 4-PSK that
transmits information at the same rate? The quantity

is called the (asymptotic) coding gain for the code. Here, dfree,uncoded is the minimum dis-
tance between points in the original signal constellation and dfree,coded is the free Euclidean
distance between nearest sequences of the coded signal. The factor yc = Es,uncoded/Es,coded
is called the constellation expansion factor; it accounts for the average energy of the con-
stellations - larger average energy in the coded constellation reduces the coding gain. The

is called the increased distance factor. In our case,
the constellation expansion factor is 1 (the PSK constellations require the same energy per
symbol) and we find the coding gain is

factor yo = 2 dfree,coded/dfree,uncoded 2

ThisisfrequentlyexpressedindB, YdB = 10loglo(y) = 1010glo(1.29) = 1.1 dB. Asymp-
totically (for high SNR), the coded 8-PSK scheme requires 1.1 dB less energy for (essen-
tially) the same performance as the uncoded QPSK scheme.

There are other four-state convolutional coding schemes than can provide better coding
performance. Consider the coding scheme shown in Figure 13.6. In this figure, there are
two input bits. However, only one of them goes into the convolutional encoder, which is
a rate R = 1/2 encoder. The two coded output bits are used to select one of four sets of
constellation points, which are the sets denoted Co, C1, C2, and C3 in Figure 13.4. Each set
has two symbols. The other input bit is used to select one of the two points within a selected
set. The result is that the pair of input bits can be used to select a single output symbol. The
behavior of the convolutional code and the signal mapper is shown by the trellis of Figure
13.6. The sets selected by the output bits are listed to the left of the trellis. For example,
from state 0, the output sets Co and C2 can be selected, depending on which branch of the
trellis is taken. The fact that Co actually consists of two points is shown as parallel paths in
the trellis between state 0 and state 0. One of the paths corresponds to the point Do E Co;
the parallel path corresponds to the point D4 E Co. The parallel paths corresponding to
C2 are similarly labeled, and the other (unlabeled) parallel paths of the trellis have their
corresponding symbol point assignments.

What is the minimum distance between diverginghemerging paths for this code? Let
us consider the path (Co, Co, Co) and the path (C2, C1 , C2), starting from state 0, indicated

542 Trellis Coded Modulation

n = 2
output
bits selected

subset

symbol
Select point

subset

Select
Subset of

Constellation
R = 1/2

Input Encoder
Bits

rn2

state output set Dn

Figure 13.6: A TCM encoder employing subset selection and a four-state trellis.

with dashed lines in Figure 13.6. In comparing distances between sets, the distance between
the nearest points in the sets must be used. The squared distance is

d2((Co, Co, Co), (C2, Ci, C2)) = d2(Co, C2) + d2(Co, Ci) + d2(Co, C2)

= d t + do2 + d? = (6 - z/Z)E,.

Is this the smallest distance between divergingkemerging paths? There is, in fact, another
way that paths can diverge and remerge - through the parallel paths. Consider the distance
between the path Co and Co, where in one case the symbol Do is sent, and in the other case
the symbol 0 4 is sent. Then the distance is

d2(Do, 0 4) = d; = 4Es,

which is smaller than the last distance found and is, in fact, the smallest distance between
diverginghemerging sequences.

The coding gain for this code compared to uncoded QPSK (transmitting information at
the same rate) is

a coding gain of 3 dl3. It can be verified that this is the best possible coding gain for a TCM
code having four states.

Let us now consider a convolutional encoder with 8 states, with trellis and encoder as
shown in Figure 13.7. The coder selects single subsets (the Di). The minimum squared
distance in this case is

d2((Do, Do, Do), (0 6 , D7, 0 6)) = d t + do2 + df = 4.585ES.

13.3 TCM Example 543

I
I

I
/

Figure 13.7: An 8-state trellis for 8-PSK TCM.

The coding gain relative to uncoded QPSK is

From these examples, we may make the following observations.

TCM relies on signal space enlargement to compensate for coding redundancy, re-
sulting in equivalent data rates for coded data.

The trellis-coded modulation concept combines convolutional coding with the signal
mapping (modulation). Rather than optimizing the coding and modulation separately,
TCM code design seeks a jointly optimum solution for coding and modulation.

The finite-state machine structure imposed by the underlying convolutional code im-
poses constraints between sequences of symbols. The performance depends upon
distances between sequences of symbols. By proper design, the reduced distance
between symbols in the enlarged signal constellation or the additional average energy
in the enlarged constellation can be more than compensated for by effective distance
between sequences, resulting in net coding gain.

While these examples have used convolutional codes, actually any finite state machine,
even a nonlinear state machine, could be used to impose constraints on the sequences
of allowed symbols.

544 Trellis Coded Modulation

m k i + l +
mki +2 -
mki +k2 ____L

m l I

Select point
from symbol
subset

Figure 13.8: Block diagram of a TCM encoder.

The (asymptotic) performance depends upon the minimum distance between diverg-
inglremerging paths, where sums of squared Euclidean distances are used (in AWGN).
This minimum distance is referred to as the free Euclidean distance of the code. The
(asymptotic) coding gain in dB is computed as

2

YdB = log lo (Es,uncoded) (*,coded) = YC,dB -k YD,dB-
Es,coded dfree,uncoded

The encoding architecture includes (in general) two stages. The first stage selects sets
of points, based on the convolutional coder output. The second stage selects a single
point for transmission from the set.

The sets which are used in the TCM code can be obtained from a “set partitioning”
process.

The subset selection may give rise to parallel paths in the trellis; the number of parallel
paths is the number of points in the set.

Finding minimum distance requires consideration of distances between parallel paths,
as well as other diverging/remerging paths through the trellis.

As the number of states in the coder increases, increased coding gain is possible.

13.3.1 The General Ungerboeck Coding Framework

The general trellis coded modulation idea is shown in Figure 13.8. We take k = k l + k2

message bits as inputs. The first kl bits go into a rate R = k l / (k l + 1) convolutional
encoder. The kl + 1 coded bits then select a subset of points. The remaining k2 bits select
a point from within the subset. The constellation must therefore have 2klfkz+1 points in it.

In the first example above, k l = 2 and k2 = 0 and the coder had four states. That is, we
simply employ a rate 2/3 encoder, then use the output to select signal points. In the second
example, kl = 1, k2 = 1 and the encoder had four states. In the third example, k l = 2,
k2 = 0 and the encoder had eight states.

1111 IIIO I101 1100 1011 TOTO 1001 1000 0~I10110 01010T00 00I10010 000I0000
0000 0.00 0000 000. 0000 0000 0000 0000 0000 00.0 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 00.0 0000 0000 0000 0000 0000 000. 0000 0.00
000. 0000 0.00 0000 0000 0000 0000 0000 0000 0000 00.0 0000 0000 0000 0000 0000
0000 0000 0000 0000 00.0 0000 0000 0000 0000 0000 0000 0000 0.00 0000 000. 0000

rvo 1vo:E3
0000 0000 ‘VO 0000

IVO
00.0

IVO
0000 IVO 0000 IVO

EaO 0 0 0
000.

-40

Laooo0

0.00

Sa;;;; Ia;::,; 9a;;;; zaoooo 00.0 eaooo0 0000 Oa;:,;: 0.00 000.

0000 0000 00.0 0000 0000 0000 0.00 000.
1 = 23vo = 23 1 = Z3V0 = 23

‘[= z3VO= z3
1 = z3vo= 23

0.0. 0000
€3 0000 13 00.0

0.0. 0000

o-o\ I = I3

0.0.

‘8 .OoO
0.0.

....

00.0 0000

23 0000 03 0.0.
00.0 0000

“““Ol;\ I= /P..O0

00.0

08 OoO.
00.0

Figure 13.9: Set partitioning on a 16-QAM constellation.

13.3.2 The Set Partitioning Idea

The problem now is how to determine the subsets of the signal constellation. An effective
answer was developed by Ungerboeck, using what he called setpartitioning. We recursively
divide a constellation into subsets with increasing intraset distance. The Ungerboeck set
partitioning rules [347] are summarized as follows:

Signals in the lowest partition of the partition tree are assigned parallel transitions.

This rule maximizes the distance between symbols assigned to parallel transitions in
the trellis.

State transitions that begin and end in the same state should be assigned subsets
separated by the largest Euclidean distance.

This ensures that the total distance is at least the sum of the minimum distances
between signals in these subsets.

For example, in the 8-PSK example, the 8-PSK constellation was partitioned into two
4-PSK constellations (the sets Bo and B1 in Figure 13.4).

The signal points should be used equally often.

Furthermore, the partitioned constellation should produce subsets that have a higher mini-
mum distance than the sets above it.

Figure 13.9 provides an example of set partitioning for a 16-QAM signal constella-
tion. Figure 13.10 shows a partition for an amplitude shift-keyed system, 8-ASK, a one-
dimensional constellation.

546 Trellis Coded Modulation

/\ 0 . 0 . 0 . 0 O B I . 0 . 0 . 0 . o B o

/I c3
0 0 0 . 0 0 0 .

C1
. 0 0 0 . 0 0 0 co A\ 0 0 . 0 0 0 . 0 0 . 0 0 0 . 0 0

Do / D 4 \ D2 / \ 0 6 D1 / \ D5 D3 / \D7
.0000000 0000.000 00.00000 000000.0 0.000000 00000.00 000.0000 0000000.

Figure 13.10: Partition for 8-ASK signaling.

13.4 Some Error Analysis for TCM Codes

13.4.1 General Considerations

The probability of error analysis for TCM codes starts out very similar to that of convolutional
codes: We employ the union bound to express the probability of node error and bit error rate
in terms of binary error probabilities, then develop expressions for those error probabilities.
The problem is complicated, however, by the fact that TCM codes are not, in general, linear,
even when the underlying state machine is a linear convolutional coder. Additional effort
to bound the probability of error is therefore needed.

Denote the “correct” path through the trellis by c. Let Ipj denote the set of all paths
that diverge from node j in the trellis and let pj,j E Ipj be an incorrect path that diverges
at node j , then remerges. Let ej,j be the event that pi,j is chosen by the decoding (Viterbi)
algorithm. The probability of a node error (i.e., the Viterbi algorithm chooses an incorrect
path) at any node when c is the correct path is

The average probability of error Fe is obtained by averaging over all correct paths,

p e = C p (c) p I c = C ~ (c) p r
C C

-

where P (c) is the probability of the path c . Since the paths are not disjoint, the probability
is difficult to compute, so the union bound is employed to obtain a somewhat simpler
expression,

C j \ i /

If the length 1 of the encoded sequence is very long, then it is probable that a node error
eventually occurs. In fact, Pe + 1 as 1 -+ 00. A more interesting measure is the rate at
which node errors occur. We denote

- 1-
P = lim - P e .

l-tw 1

13.4 Some Error Analysis for TCM Codes 547

Averaged over an infinite trellis, every node has the same characteristics, so the dependence
on an individual node j can be removed to write

where ej is the event that an error event starts at an arbitrary time unit.
We now employ the union bound again to write

C ei

The probability h (e i Ic) is the probability of the error event ei when c is sent. This is the
probability of error for a binary defection problem. We denote this probability as Pc+ei.

Now let dci denote the distance (metric) between the correct path c and the incorrect path
corresponding to the error event ei . The probability of the error event Pc+ei is a function
of the distance dci between the correct path c and the error path ej. We write the functional
dependence in general as Pc+ei = Pdci. The particular functional form depends on the
particular channel. For example, for the AWGN channel,

C ei

-
This sum can be rearranged as

p 5 c Ad,i pdci 9

(13.3)

(13.4)
dci

where Adci is the average number of paths pi that are at a distance dci from c , and where the
sum is over all the distances. The set of pairs (d,j, Adci) is known as the distance spectrum
of the code [303, p. 1241. The smallest distance dci is the free distance of the code.

A lower bound on the probability of node error can be obtained by keeping only the first

2 Adfree Pdfre,
term of (13.4), -

where dkee is the minimum of the distances between any correct sequence c and an incorrect
sequence.

The discussion above applies to probability of a node error. Each node error causes
a certain number of bit errors in the decoded message bits. Let Bdci denote the average
number of bit errors on error paths with distance dci . Since the trellis code encodes k bits
per symbol, the average bit error rate is bounded by

dci

For an AWGN we have, using (13.3),

548 Trellis Coded Modulation

13.4.2 A Description of the Error Events

For the error analysis of convolutional codes (Section 12.5), it was not necessary to average
over the set of correct code sequences c, since it suffices to consider only the all zero
codeword as the correct codeword. However, TCM is not necessarily a linear code. It may
be necessary to consider average behavior over all correct paths. In this section we introduce
some notation to describe how this is done.

Consider the case illustrated in Figure 13.1 1, where the correct path c passes through
the states p = po -+ p1 -+ p2 -+ . . . -+ pL-1 -+ p~ and the incorrect path ei consists
of the states q = qo -+ q1 3 q 2 + . . -+ q ~ - 1 -+ q ~ , where qo = po and q L = p ~ . To

Correct path

\ / / \ /

\.' .'
\ / / 45

\ /

\

\t - -4

43 44

Incorrect path ei

41

diverging "parallel" path pairs merging
path pars path pars

Figure 13.1 1 : A correct path and an error path.

describe the error events corresponding to all error paths, we consider all paths ej that deviate
from the correct path. The two-tuple sequence (P O , qo) -+ (P I , 41) -+ . . . -+ (p ~ , q ~)
denotes the pair of paths

PO -+ P I -+ p2 -+ . . +. pL-1 -+ P L and qo -+ qi -+ q 2 -+ . . . -+ q ~ - i -+ q ~ .

Let S((p , q) -+ (p i , 41)) denote the squared distance accrued (the branch metric) when
the correct path transitions from state p to state p1 while the incorrect path transitions from
state q to state 41. If there is no transition (p , q) -+ (P I , q l) , then 6 ((p , q) -+ (P I , 91)) is
defined to be 00. The cumulative squared distance along this path is

L
A 2 p ((P l - 1 , q l - l) -+ (P l , 41)) = d,i,

1=1

where dzi is the squared inter-path distance between the correct path c and the incorrect path
ei .

13.4 Some Error Analvsis for TCM Codes 549

Example 13.1 Thetrellis andencoder ofFigure 13.12, havingconnectioncoefficients go = 5, gl = 4
and g2 = 2, are used with the 8-PSK partition shown in Figure 13.4. The following are some branch
costs for this coder, assuming that the constellation is normalized so that Es = 1.

Figure 13.12: Example trellis for four-state code.

makeB.rn
tcmtl . cc

We develop an algebraic expression for the set of interpath distances using a power-
series-like notation. Let x be a “dummy” variable. The squared distance 6 ((p , q) +
(p l , 41)) is represented as the monomial x s ((P , q) + (P l , q l)) . Using this notation, products of
monomials accumulate distances in the exponent. Thus

We assume that each transition p + p1 occurs with probability 1/2k for a k-input TCM,
which is the probability of the correct branch c .

We now define the output transition matrix associated with the encoder and decoder
by

The matrix B is indexed by all possible pairs of “from” states (p , q) and all possible pairs
of “to” states (p l , ql) . The elements of the matrix are monomials whose exponent is the
squared branch metric.

S((0,O) + (0, 1)) = &Do, 0 2) = 2 S((0,O) --f (0,211 =&Do, 0 4) = 4

S((0, 1) + (0,O)) = d 2 (0 0 , 0 s) = 3.4 S((0, 1) 4 (0, 1)) = d2(Do, 0 7) = 0.6

The corresponding output transition matrix B is

550 Trellis Coded Modulation

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33
00- 1 .2 x 4 2 1 2 1 .2 .4 .4 .2 1 .2 .2 x 4 .2 1 -

02 .2 1 .2 .4 1 .2 x 4 .2 x2 x 4 2 2 1 x 4 .2 1 2

11 1 1 2 x 4 x 2 x 2 1 .2 x 4 .4 .2 1 2 x 2 x 4 x2 1

4 20 .2 1 .2 .4 1 x 2 .4 .2 x 2 x 4 .2 1 x 4 x 2 1 2

22 1 x 2 x 4 .2 x 2 1 .2 .4 x 4 x 2 1 x 2 x 2 .4 2 1

01 .3.4 .0.6 .0.6 .3.4 .3.4 .3.4 .0.6 .0.6 .0.6 .3.4 .3.4 .0.6 .0.6 .0.6 .3.4 .3.4

03
10

.0.6 .3.4 .3.4 .0.6 .3,4 .3.4 .0.6 .0.6 .3.4 .0.6 .0.6 .3.4 .0.6 .0.6 .3.4 x3.4

.3.4 .3.4 .0.6 .0.6 .0.6 .3.4 .3.4 .0.6 .0.6 .0.6 .3.4 .3.4 .3.4 .0.6 .0.6 .3.4

12 .3.4 .3.4 .0.6 .0.6 .3.4 .0.6 .0.6 .3.4 .0.6 .0.6 .3.4 .3.4 .0.6 .3.4 .3.4 .0.6

1 13 x2 1 x2 x4 1 x2 x4 x2 x2 x4 x2 1 x4 x2 1 x2 B (x) = -

21 .3.4 .3.4 .0.6 .0.6 ,3.4 .0.6 .0.6 .3.4 .0.6 .0.6 .3.4 .3.4 .0.6 .3.4 .3.4 .0.6

23
30
31 x2 1 x2 x4 1 x2 x4 x2 x2 x4 x2 1 x4 x2 1 x2

.3.4 .3.4 .0.6 .0.6 .0.6 .3.4 .3.4 .0.6 .0.6 .0.6 .3.4 .3.4 .3.4 .0.6 .0.6 .3.4

.0.6 .3.4 .3.4 .0.6 .3.4 .3.4 .0.6 .0.6 .3.4 .0.6 .0.6 .3.4 .0.6 .0.6 .3.4 .3.4

32 .3.4 .0.6 .0.6 .3.4 .3.4 .3.4 .0.6 .0.6 .0.6 .3.4 .3.4 .0.6 .0.6 .0.6 .3.4 .3.4

33 1 .2 .4 .2 .2 1 x 2 x 4 x 4 x 2 1 .2 2 .4 2 1 -

’

Example 13.2 For the matrix B (x) of Example 13.1, we have

01
02
03
10
12

1 13
4 20

21
23
30
31
32

P (x) = -

01 02 03 10 12 13 20 21 23 30 31 32 - .0.6 .0.6 .3.4 .3.4 .0.6 .0.6 .0.6 .3.4 .0.6 .0.6 .0.6 .3.4

.3.4 .3.4 .0.6 x3.4 .0.6 .0.6 .3.4 .0.6 .3.4 .0.6 .0.6 .3.4

.3.4 .0.6 .0.6 .0.6 .3.4 .0.6 .0.6 .0.6 .3.4 .3.4 .0.6 .0.6

.3.4 .0.6 .0.6 .3.4 .0.6 .3.4 .0.6 .0.6 .3.4 .0.6 .3.4 .3.4

1 .2 .4 1 x 4 .2 x 2 x 4 1 x 4 x 2 1

1 x 2 x 4 1 x 4 x 2 .2 x 4 1 x 4 2 1
1 .2 x 4 1 .4 .2 .2 x 4 1 x 4 .2 1
.3.4 .0.6 .0.6 .3.4 .0.6 .3.4 .0.6 .0.6 .3.4 .0.6 .3.4 .3.4

.3.4 .0.6 .0.6 .0.6 .3.4 .0.6 .0.6 .0.6 .3.4 .3.4 .0.6 .0.6

.3.4 .3.4 .0.6 .3.4 .0.6 .0.6 .3.4 .0.6 .3.4 .0.6 .0.6 X ’ 3 4

.0.6 .0.6 .3.4 .3.4 .0.6 .0.6 .0.6 .3.4 .0.6 .0.6 .0.6 .3.4
1 .2 .4 1 x 4 .2 x2 x 4 1 .4 2 1

For the output transition matrix, the ((p , p) , (4 , 4)) entry of the B (x) ~ is a polynomial
in x whose exponents are all the distances between path pairs originating at (p , p) and
terminating at (q , 4) ; the coefficients of the polynomials are the average multiplicities of
these distances. Thus matrix multiplication can be used to keep track of the distances
between paths. The B (x) matrix can thus be used to compute the distance spectrum for a
given encoder.

We now split B (x) into matrices corresponding to branches which diverge from a com-
mon node, branches which are on a “parallel” path, and branches which merge to a common
node, denoting these as D (x) , P (x) , and M (x) , respectively. Thus the rows of D (x) are in-
dexed by values of (p , q) which are the same, the rows and columns of P (x) are indexed by
values of (p , q) , (PI, 41) which are painvise distinct, and the columns of M (x) are indexed
by values of (p i , 41) which are the same.

Example 13.2 For the matrix B (x) of Example 13.1, we have

13.4 Some Error Analysis for TCM Codes 551

00 11 22 33

21 .3.4 .0.6 .3.4 .0.6

23 .3.4 .3.4 .3.4 .3.4

30 .0.6 .3.4 .0.6 .3.4

31 x2 x2 x 2 x2
32 I .3.4 .3.4 .3.4 .3.4 ,

With these matrices we can now describe the set of all error events. An error path
diverges from a node and only remerges at the end of the error event; in between the error
path and the correct path are never in the same state at the same time step. The set of all
metrics of error events of exactly L branches is computed by

GL(x) = D(x)P(x)~-~M(x) L 2 2.

This expression can be used to compute the distance spectrum for the code, although it
becomes computationally infeasible for codes of even moderate numbers of states, due to
the size of the matrices involved. (Algorithms based on the Viterbi algorithm are generally
more efficient ways of actually computing the distance spectrum.) The rows and columns
of the G L (x) matrix are indexed with (p , p) or (q , q) pairs. The ((p , p) , (q , q)) entry of
GL is an enumerator (or table) of all weighted distances between paths that start at the state
p and end at the state q and have L branches. Note that

where 1 is a vector of 2v Is, is the sum of all the elements of the matrix, which contains all
paths of length L from any state to any state.

Returning to (1 3.4), let us use the bound

(see Exercise 1.12) so that

Since the elements of G L tabulate all the distances between path segments of length L, this
sum can be written as

552 Trellis Coded Modulation

00 1 1
2 2 v

This can be manipulated as

(13.5)

where we have used the matrix identity (I - P)- ' = EEo P i , analogous to the identity
for scalars 1 = 1 + p + p 2 + p 3 + . . - . The identity holds when hmax < 1, the largest
eigenvalue of P (x) . When the code is noncatastrophic and the SNR is sufficiently large, this
is the case. The bound (1 3.5) is referred to as the transferfunction bound. Computationally,
actually computing this bound could be difficult, since it requires computing the inverse of
a (N 2 - N) x (N 2 - N) matrix, where N = 2'.

A tighter bound can be obtained (see, e.g., [303, p.1311) by using a tight union bound
for path differences up to a certain length, then employing the transfer function bound for
the tail.

1 1
= --lTD(x)(Z - P (x)) - ' M (x) l

2 2v x =exp(-REb /4No)

1 -P

13.4.3 Known Good TCM Codes

Tables 13.2 through 13.5 describe TCM encoders which have been found by computer search
[345,347,268]. The numbers g i are connection polynomials in octal format. For example,
the number g = 23 represents 10 01 1, with the LSB go on the right. The connections are
used with the systematic convolutional encoder circuit shown in Figure 13.13. The mapping

ck . . . mk

Cki +,' . . . mkl+1

Figure 13.13 : Trellis coder circuit.

from the outputs co, c1, c2 to the signal constellation is that of Figure 13.4, that is, with the

13.4 Some Error Analysis for TCM Codes 553

c5 * . . . m5

c4 * . . . m4

m3 . . . c3

c2 mki

ml Cl

. . .
w

CO

64-QAM
- - - - - _

32-cross

16-QAM

- _ _ _ _ _

- - - - - -

Select
Subset

Figure 13.14: TCM encoder for QAM constellations.

points numbered consecutively around the circle. The asymptotic coding gain is with respect
to QPSK, with minimum squared distance between signals of 2E, . The column Adfree is
the average number of paths at distance dfree. The column Bdfree is the average number of
bit errors on those paths. The probability of a node error (selecting the wrong path) can be
approximated by computing the probability of an error due to the shortest path (at distance
dfree from the path corresponding to sending the all-zero sequence), scaled by the number
of such paths:

The probability of bit error is approximately

Another computer search [385] has yielded the improved 8-PSK designs also shown in
Table 13.2. While the free distance is the same, the multiplicities Adf,, and values are
smaller, resulting in smaller error probabilities. This uses the 8-PSK with the points around
the constellation labeled in a different order, as noted in the table.

A table of good codes for 16-QAM and larger constellations is shown in Table 13.5.
The columns labeled Asymptotic Coding Gain show both the coded constellation and the
constellation used for comparison. The corresponding circuit diagram for this code is

Selected
symbol
___)

554 Trellis Coded Modulation

Table 13.2: Maximum Free-Distance Trellis Codes for 8-PSK Constellation [347,268,303,
3851

A0 = 2 sin(n/8)

Number Coding Gain (a)
Asymptotic

of States go 81 g2 dgee/Ao” Adfree Bdfree 8-PSW4-PSK
4 5 2 - 4.00 1 1 3.0
8 11 2 4 4.59 2 7 3.6
8t 17 2 6 4.59 2 5 3.6
16 23 4 15 5.17 2.25 11.5 4.1
16t 27 4 12 5.17 2.25 7.5 4.1
32 45 16 34 5.76 4 22.25 4.6
32t 43 4 24 5.76 2.375 7.375 4.6
64 103 30 66 6.34 5.25 31.125 5.0
64+ 147 12 66 6.34 3.25 14.8755 5.0
128 277 54 122 6.59 0.5 2.5 5.2
128f 277 54 176 6.59 0.5 2 5.2
256 43 5 72 130 7.52 1.5 12.25 5.8
256+ 435 72 142 7.52 1.5 7.813 5.8
512 1525 462 360 7.52 0.313 2.75 5.8
512t 1377 304 350 7.52 0.0313 0.25 5.8
1024 2701 1216 574 8.10 1.32 10.563 6.1
1024+ 2077 630 1132 8.10 0.2813 1.688 6.1
2048 4041 1212 330 8.34 3.875 21.25 6.2
4096 15201 6306 4112 8.68 1.406 11.758 6.4
8192 20201 12746 304 8.68 0.617 2.711 6.4

32768 143373 70002 47674 9.51 0.25 2.5 6.8
131072 616273 340602 237374 9.85 6.9

t Usepoint labeling (000), (OOl), (OlO), (Oll), (110), (l l l) , (loo), (101).

shown in Figure 13.14. An interesting feature about this structure is that it can be employed
with larger signal constellations by using more uncoded bits. The 32-cross and 64-QAM
constellations are shown in Figure 13.2. The set partition and assignment for most of these
follow the pattern set in Figure 13.9. Also shown in Table 13.5 are connectors for another
set of codes with generally lower Adfre, and Bdfr, due to [385]. These are indicated with t.
These use the labels shown below the table.

13.5 Decoding TCM Codes

Optimal decoding is accomplished using a Viterbi algorithm. The general outline is the
same as for convolutional codes. However, in computing the branch metric associated with
a received signal rt, the nearest point in the subset for that branch is used. For branches
with parallel transitions (that is, whose subsets contain more than one point), it is necessary
to compute the distance between r and every point in the subset.

In the second step the signal point selected from each subset (in step 1) is used to
determine a branch cost for a Viterbi algorithm using a squared distance measurement. The
optimal sequence is that which has the minimum sum of squared distances along the trellis.

13.5 Decoding TCM Codes 555

Table 13.3: Maximum Free-Distance Trellis Codes for 16-PSK Constellation [347]
A0 = 2sin(n/l6)

Number
of States

4
8
16
32
64
128
256

80 81 g2
5 2 -
13 4 -
23 4 -

45 10 -
103 24 -
203 24 -
427 374 176

Asymptotic
Coding Gain (dB)

dgee/Ai Adfree 16-PSW8-PSK
1.324 4 3.54
1.476 4 4.01
1.628 8 4.44
1.910 8 5.13
2.000 2 5.33
2.000 2 5.33
2.085 8 5.51

Table 13.4: Maximum Free-Distance Trellis Codes for Amplitude Modulated (One-
Dimensional) Constellations [347]

Asympt. Gain (a) (codeduncoded)
Number
of States go 81 dgee/At Adfre 4-AM/ 2-AM 8-AhW4-M

4 5 2 9.0 4 2.55 3.31
8 13 4 10.0 4 3.01 3.77
16 23 4 11.0 8 3.42 4.18
32 45 10 13.0 12 4.15 4.91
64 103 24 14.0 36 4.47 5.23
128 235 126 16.0 66 5.05 5.81
256 515 362 16.0 2 - 5.81

Table 13.5: Encoder Connections and Coding Gains for Maximum Free-Distance QAM
Trellis Codes [347][385]-t

Asympt. Gain (dB) (codeUuncoded)
Number 1 6 - Q M 32-cross1 6 4 - Q M

4 5 2 - - 4.0 4.4 3.0 2.8
O f S b t e S go gI g2 g3 d:ree Adfree Edfree 8-PSK 16-QAM 32-CroSS

8 1 1 2 4 -
8+ 1 3 4 2 6
16 23 4 16 -
16T 25 12 6 14
32 41 6 10 -
3Zt 47 22 16 34
64 101 16 64 -
64? 117 26 74 52
128 203 14 42 -
128+ 313 176 154 22
256 401 56 304 -
256t 417 266 40 226
512 1001 346 510 -

t Use the labeling shown here.

5.0 3.656
5.0 3.656
6.0 9.156
6.0 9.156
6.0 2.641
6.0 2
7.0 8.422
7.0 5.078
8.0 36.36
8.0 20.328
8.0 7.613
8.0 3.273
8.0

18.313 5.3 4.0 3.8
12.344
53.5 6.1 4.8 4.6

37.594
16.063 6.1 4.8 4.6

6
55.688 6.8 5.4 5.2
21.688
277.361 7.4 6.0 5.8
100.031
51.953 7.4 6.0 5.8
16.391

7.4 6.0 5.8

-
0000 0000 00.0 0000 0000 0000 0000 moo0
0000 0000 0000 0.00 0000 0000 000. 0000
00.0 0000 0000 0000 0000 moo0 0000 0000
0000 0.00 0000 0000 000. 0000 0000 0000

0000 1000 0100 1100 0010 1010 0110 1110

0000 0000 0000 0.00 0000 0000 000. 0000
0000 0000 00.0 0000 0000 0000 0000 moo0
0000 0.00 0000 0000 000. 0000 0000 0000
00.0 0000 0000 0000 0000 boo0 0000 0000

0001 1001 0101 1101 0011 1011 0111 1111

556 Trellis Coded Modulation

13.6 Rotational lnvariance

A real digital receiver must typically estimate the phase of the received signal. For QAM
signals, methods exist which can estimate the phase, but only up to a phase uncertainty of a
multiple of n / 2 radians. This introduces a pn/2phase ambiguity (p an integer) which must
be accommodated in the receiver. When TCM is employed, it may be possible to identify
if the receiver has the correct decoding phase by examining the likelihoods computed by
the Viterbi algorithm. If no path emerges as having significantly better likelihood than the
others, than it is likely that the wrong phase has been selected. The receiver can adjust
the phase by n / 2 and try again. This procedure, however, takes additional synchronization
time. Another approach is to transmit the information in such a way that it can be accurately
recovered regardless of the p n / 2 ambiguity. This can be accomplished by (1) using a TCM
code which is invariant with respect to rotation; and (2) employing differential encoding of
some of the bits.

signal constellation. Let a@ be the sequence obtained by rotating each at by a fixed angle
4: af = ej@at. We have the following:

Definition 13.1 A TCM code is rotationally invariant with respect to a rotation by C$ if
a@ is also a valid coded symbol sequence for every valid coded symbol sequence a. 0

Rotational invariance in TCM can be related to the trellis as follows. Let S denote the
signal constellation and let Si denote the set of subsets, at some level of signal partitioning,
which are transmitted along the branches of the trellis. Assume that the partitioning is
done such that, for each possible phase rotation, each subset Si rotates into another Sj.
Then the set of subsets is invariant under phase rotation. It turns out that this invariance
holds automatically for one- and two-dimensional signal constellations [362]. (For example,
consider the set partitions in Figures 13.4 and 13.9.) For such a rotational invariant set of
subsets, we have the following.

Let a = (ao, a1 , a2, . . .) be a sequence of complex coded symbols from a two-dimensional

Theorem 13.1 [362, 366, 3031 For each transition on the trellis from state i to state j
associated with a subset A, let B denote the subset obtained when A is rotated by 4, as
shown in Figure 13.15.

Then a TCM code is rotationally invariant with respect to a rotation by an angle C$ ifthere
exists a bijectivefunction f@ : S + S with the property that B is the subset associated with
the transition from f @ (i) to state f @ (j > (and so f @ (i) + f @ (j) is a valid state transition)
when A is the subset associated with the transition from state i to state j .

0 0

Figure 13.15: Mapping of edge (i , j > to edge (f @ (i > , f@(j>>.

13.6 Rotational Invariance 557

Differential Nonlinear
encoder trellis coder

Select
Signal
Point

Figure 13.16: Encoder circuit for rotationally invariant TCM code.

Proof Let i l , i2, i3, . . . denote a sequence of states on a valid path through the trellis. If the
conditions of the theorem are satisfied, then fb(il), f@(i2), f + (i 3) , . . . are also on a valid

0
It has been found that using a linear convolutional code as the state machine underlying
the TCM cannot achieve rotational invariance [263]. Nonlinear trellis codes, however, have
been found which can achieve rotational invariance [363,364]. We present examples of such
codes which are widely used in V.32 and V.33 industry standards, referring the interested
reader to the literature [363,364] for design methodologies. The V.32 standard [32] operates
at bit rates of 9600 bitdsecond using a symbol rate of 2400 symbols/second (suitable for use
on a standard telephone line) by achieving up to 4 bits per symbols. To do this, it uses a coded
signal constellation with 32 points in it (the 32-cross constellation). The V.33 standard [32]
provides for data rates of up to 14,400 bits/second using 2400 symbols/second by carrying
six bits per symbol using a 128-point coded signal constellation. This code provides up to
4 dB of coding gain.

The encoder of Figure 13.16 is a nonlinear trellis encoder whose trellis is shown in
Figure 13.17. In this figure, the input that gives rise to output subset Dj can be found by
taking the two most significant bits of i . Thus a branch transmitting 0 5 is due to an input
of (6 2 , 61) = (1, 0), since 5 = 1012. A branch transmitting 0 7 is due to an input of
(6 2 , & I) = (1, l), etc. It can be shown that the code represented by this trellis is invariant,
in the sense of Theorem 13.1. The corresponding labeled signals and the constellation
partition are shown in Figure 13.18. We observe that the first two bits (labeled with the
light font) are invariant with respect to n /2 rotations. However, the last three label bits do
change with rotation. The code uses differential coding techniques to achieve invariance
to the changes in the last three bits. The first stage of the encoder takes two input bits and
differentially encodes them. The differentially encoded bits are used by the trellis coder.

The overall framework of invariance works as follows. If a transmitted signal point is
rotated by some multiple of n/2, then the corresponding received signal point is identical

path, each branch selecting a rotated symbol.

558 Trellis Coded Modulation

Figure 13.17 : Trellis for the rotationally invariant code of Figure 13.16

11111 00011

Labels:
ooiio ioioo oi i io

oibi ioioo iibi ooioi c4c3 C 2 C l co

00000 ill10 01000 10110 11OOo

ioiii oiiii oiiii ioiii

iiioo iGio oiioo ii&o ooioo

oohi iiioi i&i oiioi

Oil10 loo00 00110

00111 11011

Figure 13.18: 32-cross constellation for rotationally invariant TCM code.

in the first two bits. The last three bits differ because of the rotation. However, because the
code is rotationally invariant, there is still a valid path through the trellis which can be used
to decode this rotated sequence of symbols. The input bits for the rotated signals can be
decoded. Then, since the bits are differentially encoded, so that the sequence of diflerences
does not change when the signal sequence is rotated, the original bits can be recovered.

Differential Encoding

The differential encoder operates as follows. The input bits m I , ~ and m2,t are converted
to an integer, mt = 2m2,, + mi,i . The encoder keeps the previous outputs # ~ i , ~ - i , rii2,t-1,

13.6 Rotational Invariance 559

represented as an integer by Gr-i = 2 & ~ , ~ - 1 + &1,~-1. Then the differential encoder
computes

g r = mt +&-I (mod 4). (13.6)

The initial memory of the differential encoder is assumed to be set at 0.

can be recovered as
Given a received sequence of differentially encoded data r i i ~ , ~ , &2, t , the original data

mf = kt - f i t - 1 (mod 4). (13.7)

Example 13.3 Suppose the sequence of input data (m ~ , ~ , m l , r) is

(01)(10)(11)(01)(10)(11) . . .

The differential encoding proceeds as in the following table.

Constellation Labels and Partitions

The sets Di consist of points having the label i in the last three digits in binary notation (in
bold font in Figure 13.18). Examination of the subsets in figure 13.18 reveals that under
rotation of n/2, the subset Do maps to D7. and 0 7 maps to D4, and so forth. The sets map
under n/2 rotations as

(13.8)

Example 13.4 The sequence of bits

(11 01)(01 10)(11 11)(10 01)(00 10)(01 11)

is to be transmitted, where the 4-tuples represent (~ 4 , ~ , m3,r, m2,r,
the second pair of bits (see the previous example), the sequence of bits (m4, m3, h z , 21) is

After differential encoding

(11 01)(01 11)(11 10)(10 11)(0001)(0100).

This sequence is presented to the nonlinear trellis coder (starting from state 0) resulting in the following
output and path through the trellis.

560 Trellis Coded Modulation

D o D ~ D ~ D ~ ~ , D ~ Dg / \ D4

DlDgD7D3. ' \ \ * / I * ' \

000 1101 11010 D2 010 DgDoDqD2. ' \ *
state input output subset next state / \

010 0111 01110 D6 000
000 1110 11100 D4 01 1

\

011 1011 10111 D7 101 DzDqDoDg* '\

DiD3DlDg* * - - - * DI

DqD2DgDom *

DgDlD3Dlm

\
\ D3 101 0001 00011 D3 111

111 0100 01001 D1 111 \
\

Now suppose that at the receiver the sequence is received with a n / 2 rotation, so that the points
of the signal constellation correspond to the following bit patterns:

DO
DoDgD2Dq* t--\ D6

0 4 I

received bits subset
11001 D1
01 101 D5
11011 0 3

10 100 D4
00 000 DO
01 110 D6

Of course, the initial state in the trellis is not known initially, but would be discovered by the

We make the following observations about these bits:

Viterbi algorithm.

The first two bits are unchanged by the rotation. This occurs because the symbol labels were

The subsets represented by the last three bits are obtained by rotating the transmitted subsets

created so that p n / 2 rotations do not affect the first two bits.

according to the cyclic translations of (13.8).

As shown, a valid path through the trellis can be found. However, it does not necessarily start with
state 0. The Viterbi decoding algorithm must be prepared to start with any state. Furthermore, if the
initial state is not zero, the differential decoder must be initialized with the data corresponding to the
rotation which moves to the initial state. Since the path starts at state 7, the differential decoder is
initialized with (rn2,-1, rn1,-1) = (1, 1).

The sequence of input bits corresponding to this path is

(11 00)(01 10)(1101)(10 10)(0000)(01 l l) ,

where the last two bits of the 4-tuple are differentially encoded. Using (13.7) to undo the effect of the
differential decoding on those bits, we obtain the following:

13.7 Multidimensional TCM 561

(11 01)(01 10)(11 11)(1001)(00 10)(01 l l) ,

the same as transmitted originally. Thus even though the signal constellation was rotated due to phase
ambiguity, the decoder was invariant to such rotations.

13.7 Multidimensional TCM

The TCM described up to this point has employed one- or two-dimensional signal con-
stellations. However, there are several compelling reasons for dealing with constellations
in more than two dimensions. After presenting some of these reasons, we present one of
several possible frameworks for mathematical descriptions of signal constellations and their
partitions in multiple dimensions using lattices and their cosets. These rather general de-
scriptions are followed by an extended example, the code used in the V.34 (also known as
V.fast) modem protocol.

We begin, however, with a discussion of how to obtain multiple dimensions using digital
signaling. We detail the notation only with even-numbers of dimensions; modification to
odd-numbers of dimensions is straightforward.

The 2L-dimensional signal point a = (a l , a2, . . . , a 2 ~) can be transmitted by sending
a sequence of L two-dimensional points over L signaling intervals

(4, a219 (a39 a41,. . . , (a2L-1, a2d.

If the uncoded multi-dimensional constellation is employed with an overall spectral effi-
ciency of bitshymbol, then there must be 2qL symbols in the multidimensional constella-
tion.

Example 13.5 Suppose that a signal is to be transmitted with q = 4 bits/symbol using a4dmensional
constellation. Then the two symbols required to carry the 4 coordinates must represent 2 x 4 = 8
bits, so that the constellation must have 2* points in it.

Now suppose that a TCM is used with a 4-dimensional constellation with a k / (k + 1) convolutional
0 encoder. There must be 29 points in the signal constellation.

Multidimensional TCM is similar to one- or two-dlmensional TCM: kl out of k input bits
are input into a rate k l / (k l + 1) trellis encoder. These bits are used to selected one of 2kl+1
subsets of a 2L-dimensional signal constellation. The remaining k2 = k - kl input bits then
select a single point out of the subset. This signal point is then transmitted by a sequence
of L two-dimensional points. A difference from one- or two-dimensional TCM is that the
trellis encoder circuit is used only every L symbol times.

562 Trellis Coded Modulation

13.7.1 Some Advantages of Multidimensional TCM

Energy expansion advantage In one- or two-dimensional TCM, the rate k l / (k l + 1)
encoder requires that the number of points in the signal constellation be doubled to preserve
rate so that there must be 2vL+’ symbols in the constellation to transmit with a spectral
efficiency of r] bitshymbol. This roughly doubles the average signal energy, since the
extra redundancy must be accommodated over a single symbol interval. This results in
approximately a 3 dB penalty in yc.

However, in multiple dimensions there is only one redundant bit spread over L symbol
times, so the energy penalty is reduced. The extra energy required to represent this larger
signal constellation is shared among L transmitted symbols. For a 4-dimensional signal
constellation, the penalty in yc is 1.5 dB.

Sphere-packing advantages To obtain the smallest average signal energy, it is desirable to
pack the points of the signal constellation as closely as possible while maintaining minimum
inter-symbol distance requirements. The problem of placing points in a signal constellation
is thus an instance of the “sphere packing problem.” This can be expressed in familiar
terms in three dimensions as the problem of packing as many identical spherical oranges
(maintaining at least a minimum distance between centers) as possible into a crate of given
dimensions. It can be shown that if the oranges are stacked in layers with one orange resting
over the interstices formed by the oranges in the layer below, then more oranges can be
packed into the crate than if the oranges are stacked in ‘Z3” way, in a square lattice with
the center of each orange over the center of the orange below it.

In higher dimensions it may be possible to stack points in such a way that the density is
higher than simply stacking them on a multidimensional rectangular grid. This results in a
lower average signal energy compared to the rectangular lattice Zn.

Spectral efficiency If the channel has bandwidth to support r] bits/symbol but not r] + 1
bitdsymbol, it may be possible to squeeze a little more out by using r] + 6 bitshymbol, for
some rational number 0 < S < 1. Using multidimensional constellations, it is possible to
design transmission systems with such fractional spectral efficiencies.

Rotational invariance For two-dimensional constellations, nonlinear trellis coders must
be employed to obtain rotational invariance. However, linear encoders can be used in higher
dimensional TCM.

Signal shape Signal shape [94,196] slightly reduces the average energy requirements even
further by selectively using points of smaller energy. This is used in the V.34 modem, as
described below.

Peak-to-average power ratio Multidimensional constellations can be designed which
have a lower peak-to-average power ratio.

Decoding speed The first step in decoding is to determine the closest point in a subset to
the received data. For many lattices, efficient algorithms exist for doing this (see, e.g., [57]).
Furthermore, the state of the trellis must be advanced only every L received signals. These
factors allow for higher speed decoding.

13.7 Multidimensional TCM 563

13.7.2 Lattices and Sublattices

While there are many ways of constructing multidimensional signal constellations, one very
important way employs lattices and sublattices. We briefly introduce lattices here; extensive
detail is presented in [56].

Basic Definitions
1attstuff.m

A lattice A is an (infinite) discrete periodic arrangement of points in RM. A signal
constellation based on a lattice is obtained by selecting a finite number of points from the
lattice, possibly with a translation, with the points usually selected in such a way as to
minimize the average energy in the constellation.

A lattice may be described by a generator matrix' M , where

with m 2 n, where, following convention, each TOW is a basis vector. Then the lattice is the
set

A = {EM : 6 E Z"};

that is, integer linear combinations of the basis vectors. Note that a lattice forms a group
under addition.

It should be obvious that the generator is not unique. Two generator matrices M and A?
define equivalent lattices if fi = c U M B , where c is a nonzero constant, U is a matrix with
integer entries and det(U) = f.1 (that is, U is unimodular) and B is orthogonal, B B = I .
Equivalent lattices are essentially just rotated and/or scaled versions of each other.

Example 13.6 A portion of the lattice Z2, consisting of points (n l , n2) for ni E Z, is shown in Figure

13.19(a). It has the generator M = [A i] . A 16-QAM constellation can be obtained, for example,

by selecting 16 points of A + (1/2, 1/2). The n-dimensional extensions of this lattice, denoted by
0 Z", are generated by the n x n identity matrix.

Example 13.7 The hexagonal lattice, known as the A2 lattice, is shown in Figure 13.20(a). It can be
generated by

Not so obviously, the hexagonal lattice can also be generated by

giving a two-dimensional lattice embedded in three dimensions. 0

'Not to be confused with the generator matrix for a linear block code.

Trellis Coded Modulation

......
0 0 . . O

0 0 . 0 4)

0 . 0 . O

- - - - - - -
0 . 0 . O

. . . . 0 0 . 0 0 . 0 .

0 0 . 0

0 . 0 . . 0 . 0 0 . 0 .

0 . 0 .

a. - ., - - - -
0 0 o m 0 0 . 0 .

0 . 0 .

0 . 0 . . 0 . 0 0 . 0 .

(a) Z* lattice. (b) Cosets of the lattice.

Figure 13.19: A portion of the lattice Z2 and its cosets.

Figure 13.20(b) shows that around each lattice point a circle (or, in general, a sphere)
can be drawn which does not intersect with identical spheres around the other lattice points;
we denote the radius of the largest such sphere by p. Also, around each point is a region
known as the fundamental parallelotope (shown shaded). Associated with the generator is
the Gram matrix A ,

The determinant of the lattice generated by M is defined to be the determinant of the
Gram matrix, det A = det A. The volume of the fundamental region of the lattice, or the
fundamental volume, denoted by V(A), is

A = M M T .

V(A) = I det(A)1'/2 = I det(A)1'I2.

Example 13.8 For the lattice A = Z2" (even-numbered dimensions), the volume of the fundamental
parallelotope is

V(A) = I det(A)l'l2 = I det(Z)l'/2 = 1.

0

Example 13.9 For the A2 lattice with minimum distance between points equal to 1, the volume of
the fundamental parallelotope is

The hexagonal lattice has a smaller fundamental volume than the Z2 lattice with the same minimum
distance. It thus packs points more efficiently into space. 0

Another relevant attribute of lattices is the kissing number, usually denoted by t, which is
the number of nearest neighbors a lattice point has. This has bearing in code design, since
the asymptotic performance is governed by the number of nearest neighbors a point has.
For the A2 lattice the kissing number is t = 6 . For the lattice Z" the kissing number is
t = 2n.

13.7 Multidimensional TCM 565

* I *
t * 0

(a) Basic lattice. (b) The fundamental parallelotopes around
the lattice points.

Figure 13.20: Hexagonal lattice.

Common Lattices

Table 13.6 summarizes the attributes of the lattices described here.

Table 13.6: Attributes of Some Lattices
Kissing Lattice
Number Fundamental coding

Name Dimension t Volume V (A) gain Ycg Ycg (dB1
Z" n 2n 1 1 0

A2 (hexagonal) 2 6 &I2 1.15 0.63

D 4 4 24 0.5 1.51
D n n (even) 2n(n - 1) 2(1-n/2) 2(1-2/") 3.01(1 - 2/n)

E8 8 240 1/16 2 3.01
A16 (Barnes-Wall) 16 4320 2.33 x 2.83 4.51

1\24 (Leech) 24 196560 5.96 x 4 6.02

A3 (face-centered cubic) 3 12 &I2 1.26 1 .oo

E6 6 12 0.2165 1.6654 2.21

The fundamental volume is computed for a lattice normalized so the minimum distance between points equal to 1 .

D 4 , also known as the checkerboard lattice, is the densest lattice in four dimensions [56,
p. 91. The lattice points are (~ 1 , u2, ~ 3 , 2 4 4) where the ui are integers and U I +
u 2 + u3 + u 4 is an even integer. The center (O,O,O,O) has the points (k l , f l , 0,O)
and their permutations as nearest neighbors, so that the kissing number is r = 24.
Any two distinct points must differ by at least 1 in at least two coordinates, or by
2 in at least one coordinate, so the minimal distance between centers is 2/2, and
p = 2/2/2. A generator matrix for this and other lattices mentioned here is provided
in lattstuff .m.

566 Trellis Coded Modulation

Eg provides the densest lattice packing in eight dimensions [56, p. 1201. The lattice can
be described as follows: The set of points

1
{(ui, u2, . . . , ug) : all ui E Z or all ui E Z + ?, and cxi is even].

E 6 is the densest lattice in 6 dimensions [56, p. 1251. Points in this lattice are vectors in
Eg which are perpendicular to any A2 sublattice V in Eg:

E6 = (X E Eg : X * ‘u = Oforall ‘u E v};
another description is

E6 = {(Xi, . . . , X g) E Eg : X1 X g = X2 + . . . X7 = 0).

Another description for E 6 is over the Eisenstein integers, the set & = {a + wb :
a, b E Z, w = (-1 + i&)/2}. This uses the generator

M = 1 - 1 0 . [: :ll

where 8 = a.
1\16 is the Barnes-Wall lattice [56, p. 1291. This lattice has strong connections with Reed-

Muller codes of length 16.

A24 is the Leech lattice [56, p. 13 11. What makes it remarkable is that it can be constructed
in many ways, with many connections to block error correcting codes. We mention
only one. The lattice can be generated by all vectors of the form L (F~ , f123) (that
is, 23 ones), where the ~3 may be in any position, and the upper signs are taken on
the set of coordinates where the binary Golay (24,12) code is 1.

.J8

Sublattices and Cosets

A sublattice of a lattice is a lattice A’ all of whose points lie in the lattice A. The sublattice
is generated by a matrix M’.

As a subgroup of a group, there are cosets associated with a sublattice. A coset of a
lattice A’ is a translation A’ + p of all points in A’ by p. The set of cosets of A produced by
A’ is denoted A/A’; since the lattice is an Abelian group, A/A‘ is a group. We can write
the partition of A into cosets as

A = A’ U {pi + A’} U {p2 + A’] u.. . U IPN-1 + A’}

for some number N which is the number of cosets.

Example 13.10 Let A = Z2 and let A’ = 2 Z 2 . That is, the generator is

There are four cosets in this lattice, with the following shape designations in Figure 13.19(b):

So = A’ (denoted by 0)

S2 = (0, 1) + A’ (denoted by U)
S1 = (1 ,O) + A’ (denoted by 0)

S3 = (1, 1) + A’ (denoted by 0)

The set of lattices z2/2z2 is isomorphic to the group ~2 x ~ 2 . 0

13.7 Multidimensional TCM 567

A partition chain of a lattice, denoted AIA’IA’’ is the set obtained by partitioning A’ and
each of its cosets by A”, where A‘‘ is a sublattice of A’.

A commonly used transformation is obtained by stacking 2 x 2 blocks of the form

which represents a rotation of the lattice by 45” and a scaling by &. The sublattice of A
formed by this transformation is denoted RA.

Example 13.11 Figure 13.21(a) shows A = Z2. Figure 13.21(b) shows the cosets in the partition
12/12’, where A = Z2 and A‘ = RZ2, where the points in the cosets are designated as

A ’ = RZ2 (0)
A’ + (1,O) (m).

Figure 13.21(c) shows the cosets in the partition chain A/A’/A’’, where A” = R2A = 2Z2, where
the points in the four cosets are designated as

A” = R2Z2 (0)
A” + (1,O) (0)

A” f (0, 1) (0)

A’’ + (1, 1) (0).

This four-way partition creates the same partition as that in Figure 13.9. 0

The Lattice Code Idea

Figure 13.22 shows the idea behind TCM on lattice cosets. It is very similar to TCM in
general: a set of coded bits selects a coset (as a subset of the constellation), and a set of
uncoded bits selects a point within the subset. The performance of the code is determined
by the minimum distance between points in the coset (corresponding to parallel transitions
in the trellis) and the minimum distance between diverging paths in the trellis of the encoder.

Sources of Coding Gain in Lattice Codes

In addition to gains due to to the distances between sequences obtained using trellis coding,
the very shape of the lattice constellation contributes gains. Two sources of coding gain can
be attributed to the use of lattices. The first is referred to as the lattice coding gain. The
lattice coding gain for an n-dimensional lattice A is a measure of how much more effectively
points are packed into A compared to the lattice Z”. Let A be a lattice that is normalized so
that the minimum distance between points is equal to 1, and let the fundamental volume of
A be V (A). A rectangular lattice, a multiple of Z“ , with this volume would have a minimum
distance of V(A) l/”. There is thus a gain in energy equal to the ratio of the square of the
minimum distance of the lattice (which is 1) divided by the square of the minimum distance
an equal-volume rectangular lattice would have. This is called the lattice coding gain, and
is denoted by ycg:

1
vcg = ~ V(A)2/n ‘

Table 13.6 lists coding gains for the lattices described in the previous section.

568 Trellis Coded Modulation

(a) 2 2 . (b) Cosets of RZ2.

(c) Cosets of R ~ Z ~

Figure 13.21: Z2 and its partition chain and cosets.

The other source of coding gain provided by multidimensional constellations in genera1
is called the shape gain, ys, which can be obtained by employing a nearly-circular boundary
on the constellation, instead of natural rectangular or cross boundaries such as shown in
Figure 13.2. Figure 13.23(a) shows circular boundaries for constellations obtained using
2’; part (b) shows similar boundaries for constellations built from the A2 lattice. Table
13.7 shows the comparison of the average energies for these constellations with the average
energies for the constellations from Table 13.1 .(Possible minor reductions in energy could
also be obtained by slightly shifting the constellations, but this was not done.) As the table
shows, there is efficiency gained by employing a constellation spherical with a boundary
instead of a square or cross boundary. (There is also somewhat higher complexity in the
decoder.) Gains of about 0.18 dB are possible compared with the square constellation.
(The gain is not as large for the 32-point constellation, since the cross form is already an

13.7 Multidimensional TCM 569

ml
m2 __c

7

-
c

b
c1

Rate k i / (k i + 1)
Convolutional

Encoder
Select coset

from

I J I I

Input
Bits

I selected
coset

mki +1 4 I

mk''2 7 1 Select from point k+ symbol

coset

Figure 13.22: Block diagram for a trellis lattice coder.

Table 13.7: Comparison of Average Signal Energy for Circular Boundary Z2 and A2 Con-
stellations with Regular QAM

Es , Rect. bdy., ES,

Rect. QAM Circ. Bdy. E s , Circ. Bdy.
M (Table 13.1) Rect. QAM Gain ys (dB) A2 Lattice Gain ysycg (a)
64 10.5 10.19 0.13 8.85 0.74
128 20.5(CR) 20.41 0.02 17.68 0.64
256 42.5 40.79 0.18 35.26 0.81

approximation to the circular constellation.) Also shown in Table 13.7 are the average
signal energies and gains when an A2 lattice with circular boundary is employed. The
shape gain is independent of the lattice gain, so the overall gain is additive (on a dB scale)
(Y)dB = (ys)dB -k (Ycg)dB.

The shape gain is for an N-dimensional constellation is

(N/2)Average energy for circular 2-D lattice
Average energy for square lattice Ys =

Nf2 Let Mc denote the size of the 2-dimensional signal constellation, and let M c , ~ = Mc
denote the size of the N-dimensional constellation.

circular ZN (N even) constellation2 C of is
Assuming the minimum distance between points is do = 1, the average energy for a

where the summation is approximated by an integral and V is the volume of the spherical
region containing the signal constellation. The number of points in the region can be
approximated as

r

2The results here hold even for other lattices: the fundamental volume cancels out of the ratio.

570 Trellis Coded Modulation

. _ - - _ _ _ - _

(a) z2 lattice. (b) A2 lattice.

Figure 13.23: Lattice and circular boundaries for 16,32,64, 128, and 256-point
constellations.

The N-dimensional volume element increment in this integral can be expressed in "polar"
form as [30, pp. 242,2461

NnN/2 rN-1
dv = dr

(N/2) !
so that, with the radius of V equal to p ,

Using the same volume element increment,

(13.9)

(1 3.10)

The average energy for the square lattice can be found using (13.1) as

Using (13.9) and (13.10), the shape gain is

N/2 [jvdvINI2 - n(1 + N/2) -
6sv l l ~ 1 1 ~ d v / I ~ d v 6[(N/2)!I2lN' Ys M

When N = 2, y = n /3 = 1.0472 = 0.2 dB. This is apparent in Table 13.7 for N = 256.
Stirling's approximation to n ! tells us3

n! M nne+.J2nn.

Using Stirling's approximation, it can be shown that asymptotically, ys + ne/6 = 1.53
dB .

3A very clear derivation of this appears in [136].

13.8 The V.34 Modem Standard 571

Some Good Lattice Codes

Table 13.8 [303] lists some good codes that have been developed in the literature.

Table 13.8: Some Good Multidimensional TCM Codes [303]
Asymptotic

Partition Number Coding Gain
A/At d$,, of States (a) N D Source

Four dimensions: Add 0.35 dl3 of shape gain
Z4/RD4 4 8 4.52 44 [365]
Z4/RD4 4 16 4.52 12 [365]
241224 4 32 4.52 4 [365]
Z4/2D4 5 64 6.28 72 [365]
Z4/2D4 6 128 6.28 728 [347]
041204 6 16 4.77 152 [42]
041204 8 64 5.27 828 [42]

Eight dimensions: Add 0.76 dB of shape gain
Z8/E8 4 16 5.27 316 [365]
Z8/E8 4 32 5.27 124 [365]
Zg/E8 4 32 5.27 60 [365]

Z ~ / R D ~ 4 128 5.27 28 [347]
RDglREg 8 32 6.02 > 500 [365]
RDgIREg 8 64 6.02 316 [365]
RDgIRE8 8 128 6.02 124 [365]
E8IRE8 8 8 5.27 764 [42]
E8IRE8 8 16 5.27 316 [42]
E8 IRE8 8 32 5.27 124 [42]
E8/RE8 8 64 5.27 60 [42]

13.8 Multidimensional TCM Example:
The V.34 Modem Standard

In this section we discuss the error correction coding which is used for the V.34 modem
standard. This modem is capable of transmitting up to 33.6 kbhecond over the standard
telephone system (on some lines). There are many technical aspects to this modem; space
permits detailing only those related to the error correction coding. A survey and pointers
to the literature appears in [98]. However, we briefly summarize some of the aspects of the
modem:

The modem is adaptive in the symbol rate it employs and the size of the constellation.
It is capable of sending at symbol rates of 2400, 2743, 2800, 3000, 3200, or 3429
symbolshecond. (These peculiar-looking choices are rational multiples of the basic
rate of 2400 symbolshecond.) The symbol rate is selected by a line probing sequence
employed during initialization which determines the available bandwidth.

The modem is capable of transmitting variable numbers of bits per symbol. At the
highest rate, 8.4 bits/symbols are carried. Rate is established at link initialization,
and rate adjustments can occur during data transmission.

572 Trellis Coded Modulation

12,+’
4D block 22ilt1

23,

(Table 13.10) 2 2n

encoder .
t

; b

Figure 13.24: 16-state trellis encoder for use with V.34 standard [365].

Adaptive precoding [339, 142, 99, 781 and decision feedback equalization is also
employed to compensate for channel dispersion.

Shaping via shell mapping is employed, which provides modest gains in addition to
the coding gains.

Adaptive trellis coding is employed. The main code is a 16-state four-dimensional
trellis code (to be described below). This code provides 4.66 dB of gain and is
rotationally invariant. However, two other trellis codes are also included: a 32-state
four-dimensional code with 4.5 dB of gain and a 64-state four dimensional code
providing 4.7 dB of gain. These codes are not described here.

Given the complexity of the modem, it is a technological marvel that they are so readily
affordable and effective!

The trellis encoder for the modem is shown in Figure 13.24, with the corresponding
trellis diagram in Figure 13.25.

The bit converter in the encoder supports the rotational invariance and is outlined in
Table 13.9. The 4D block converter supports the shell shaping, controlling the selection of
“inner” and “outer” constellation points. The operation is detailed below.

To transmit 17 information bits per signaling interval using 2N = 4-dimensional mod-
ulation, N = 2 signaling intervals are required. For uncoded transmission, 2‘“ points in
the signal constellation are necessary. For coded transmission, 2vNNf’ points are necessary.
The V.34 standard carries 9 = 7 bits per symbol, so 215 points in the signal constellation

13.8 The V.34 Modem Standard 573

Current state: Next state:
W l n W2n W3n W4n W t ni2W2n+2W3n+2 W4n+2

4D subset (LSB=W4)

0 2 1 3

4 6 5 7

2 0 3 1

6 4 7 5

1 3 0 2

5 7 4 6

3 1 2 0

7 6 5 4

2 0 3 1

6 4 7 5

0 2 1 3

4 6 5 7

3 1 2 0

7 5 6 4

1 3 0 2

5 7 4 6

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Figure 13.25: Trellis diagram of V.34 encoder [365].

are necessary. The V.34 standard does this using an interesting constellation. The four-
dimensional constellation consists of the cross product of the 192-point constellation shown
in Figure 13.26. The 192-point constellation contains a 128-point cross constellation in the
inner points, plus an additional 64 outer points. The inner points can be used to transmit
7 uncoded bits per symbol. The outer points are selected as close to the origin as possible
(outside of the inner constellation) to minimize energy. Each of the A, B , C and D sets has
the same number of points. Also, a rotation of an outer point yields another outer point.

The 215 points in the constellation are obtained by concatenating a pair of 192-point
constellations (which would result in a 1922 point constellation, but 1922 > 215), excluding
those 4D points whose corresponding pair of two-dimensional points are both outer points.
There are thus

1922 - 642 = 215

points in this constellation. The inner points are used three-fourths of the time. By using
the inner constellation more often, the average power is reduced compared to other (more
straightforward) constellations. The average power of the constellation can be shown to
be 28.0625d02, where is the minimum squared Euclidean distance (MSED) of the con-
stellation. The peak power (which is also the peak power of the inner constellation) is
60.5di.

The partition of the constellation proceeds through a sequence of steps which are illus-
trated in Figure 13.27.

Each constituent two-dimensional rectangular lattice is partitioned into two families

574 Trellis Coded Modulation

Iln+l I2n+1 &+I
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Table 13.9: Bit Converter: Sublattice Partition of 4D Rectangular Lattice [365]

4D
Sublattice
(subset) YO, I l n 12; 13; 4DTypes ZOn Zln ZOn+1 Zln+l

0 0 0 0 0 (A , A) 0 0 0 0
0 0 0 1 (B , B) 0 1 0 1

1 0 0 1 0 (C , C) 1 0 1 0
0 0 1 1 (D , D) 1 1 1 1

2 0 1 0 0 (A , B) 0 0 0 1
0 1 0 1 (B , A) 0 1 0 0

3 0 1 1 0 (C , D) 1 0 1 1
0 1 1 1 (D , C) 1 1 1 0

4 1 0 0 0 (A , C) 0 0 1 0
1 0 0 1 (B , D) 0 1 1 1

5 1 0 1 0 (C , B) 1 0 0 1
1 0 1 1 (D , A) 1 1 0 0

6 1 1 0 0 (A , D) 0 0 1 1
1 1 0 1 (B , C) 0 1 1 0

7 1 1 1 0 (C , A) 1 0 0 0
1 1 1 1 (D , B) 1 1 0 1

22, -73, Z2n+1 -%,+I
0 0 0 0
0 0 0 1
0 0 1 0
0 1 1 0
1 0 0 0
1 0 0 1
0 1 0 0
0 1 0 1

AUB and CUD, where the sublattice A is composed of those points in the constellation
of Figure 13.26 labeled with the letter 'a,' and similarly for B , C, and D . The MSED
between these two families is 2d;.

The two-dimensional families are further partitioned into four sublattices A , B , C,
and D , with MSED 4 4 . The sublattices have the property that under a 90" counter-
clockwise rotation, sublattice A rotates to sublattice D . Collectively the sublattices
rotate as

A + D + B +. C + A . (13.11)

Sixteen four-dimensional types are defined by concatenating all pairs of two-dimensional
sublattices. These types are (A , A) , (A , B) , . . . , (D , 0). The MSED between the
types is 4d;, the same as for the sublattices, since two of the same sublattices can be
used in a type.

13.8 The V.34 Modem Standard 515

. c : : : : :
~ - 1 4 : I ~ - i O b '8 c '6 b '4 c -'2 b

lO;lOO, !011100, ,001100 000100

- - - - - -- - - - - -c- - -b- - - - - - - E ' s ; : b c c ' s l c

d 2 . - a d a d a d 1 d
000000 001000 ,011000, ~IOl!300,

c 1 b 4 c b b * ~ l b : 1 ~ 1 ~ ~ t x , , o r

. . .
011010 llOo'OO

I

b c b c k 4 / c b c b c b ; c b E 4 ; :

I
a " a d a $; a : I .

011111 0101 I I 01001 I 011011 l l o l o l I
I - - - - - _ - - - - - - - - - - - - - - - 10111l

E ! E ' s E ' s E . b

Number beneath each point:

(i=O or 1)
1001 I I 100011 Z%+i Z3n+iZ4n+iZ5n+i Z6n+iZ7n+i

Figure 13.26: The 192-point two-dimensional constellation employed in the V.34 standard.

The 16 types are grouped into eight four-dimensional sublattices, denoted by 0,
1, . . . ,7 , as denoted in Figure 13.27 and Table 13.9. The MSED between these
sublattices is still 4d$, which may be verified as follows. The two first constituent
two-dimensional sublattices in each four-dimensional sublattice are in A U B or CUD,
and likewise for the second two two-dimensional sublattices. Each of these thus have
the minimum squared distance of the two-dimensional families, 2dt. Since there are
two independent two-dimensional components, the MSED is 2di + 2di. It can be
verified that the four-dimensional sublattices are invariant under 180" rotation.

The eight sublattices are further grouped into two four-dimensionalfamilies ui=o i
and U;=4 i, with MSED 2di.

3

Combining the trellis of Figure 13.25 with the decomposition of Figure 13.27, the

The 4D sublattices associated with a transition from a state or to a state are all different,

assignments of Table 13.9, satisfy the following requirements:

576 Trellis Coded Modulation

A A
(2D constellation) (2D constellation)

2D families
/\

(MSED=Zd; j A U B C U D A U B C U D
/\

/ \ / \
(MSED=4d,?j A B C D A B C D 2D sublattices

" / \ / \

4D sublattices
(MSED=4d0)

(MSED=2di) w v to, 1 ,2 ,3) t4,5,6,71 4D families

Figure 13.27: Partition steps for the V.34 signal constellation.

d a
t-- 44]': 001010

oopllo - - - 00M)IO

Number beneath each point:

(i=O or 1)
z2n+iz3n+i 24n+i z5n+iz6n+iZ7n+i

Figure 13.28: Orbits of some of the points under rotation: all points in an orbit are assigned
the same bit pattern.

but all belong to the same family U:=o i or Uy=4 i.
The MSED between any two allowed sequences in the trellis is greater than 4di. In
combination with the first requirement, this means that the free distance of the code is
established by the MSED of each 4D sublattice, 4di. Compared to uncoded 128-point
cross signal constellation with average energy 20.5d;, the asymptotic coding gain is

The assignment makes a rotationally invariant code (using just a linear trellis encoder).
For a valid transition in the trellis from a state i to a state j , let X be the four-
dimensional subset associated with the transition. Let Y be the four-dimensional

13.8 The V.34 Modem Standard 577

subset that is obtained by rotating X by 90". Then Y is associated with the valid
transition from the state F (i) to the next state F (j) for some function F . For this
particular code, the function is:

- -
F : W1,W2,W3,W4, H Wl,W2,W3,W4,,

where the overbar denotes binary complementation. In combination with the fact
that the sublattices are invariant with respect to 180" rotations, this makes the code
rotationally invariant with respect to multiples of 90" rotations.

The encoding operation is now summarized. Fourteen bits, representing the information
for two symbol periods, are presented to the encoder. These fourteen input bits are denoted
by (Z L , . . . ,17J and (11,+1, . . . ,17,+1), where the subscript n denotes bits or symbols
associated with even-numbered symbols and n + 1 denotes bits or symbols associated with
odd-numbered symbols. We refer to the pair of symbol intervals at time n and time n + 1
as a coding epoch. From these fourteen bits, two symbols in the coding epoch are selected
according to the following steps:

The encoded bits YO,, 11, and 12; select one of the eight four-dimensional sublat-
tices. Then the nontrellis-encoded information bit 13; selects one of the two four-
dimensional types within the sublattice. This is done in such a way that the system
is transparent to phase ambiguities of multiples of 90". To see this, consider a bit
pattern YO,11,12~13; and let X denote the associated 4D type from Table 13.9. Let
s21s31, s22s32, s22s32 denote the bit pairs obtained when the bit pair 12;13; is
advanced in the circular sequence

00 + 11 -+ 10 + 00. (13.12)

Let XI, X2, and X3 denote the types obtained by rotating X counterclockwise by
successive multiples of 90". Then the 4D types associated with the bit patterns
Yon11,S21s31, Y0,11nS21S31, and Y0,11,S21S31 are X I , X2, and X 3 , respec-
tively.

Example 13.12 Let YOnZlnZ2hZ3h = 0010. Then (fromTable 13.9) the4D type transmitted
is X = (C, C). When this is rotated 90°, the type is (see (13.11)) (A , A) , corresponding to
a transmitted sequence YOnZ1,Z2L 13; = 0000. Note that the last two bits correspond to the
succession of (13.12). 0

To obtain rotational invariance, the bits 12,13; are obtained as the output of a dif-
ferential encoder, just as for the V.32 and V.33 standards presented in Section 13.6.
The pair (13,, 12,) is converted to a number modulo 4 (12, is the LSB), and the
differential representation (1 3.6) is employed.

The 4D block encoder serves the purpose of selecting points in the inner and outer
constellation, ensuring that the outer constellation is not used for both the symbols in
the coding epoch. The 4D block encoder takes the input bits I ln+l , 12,+1 and &+I

and generates two pairs of output bits (Z2,, 23,) and (Z2,+1, Z3,+1) according to
Table 13.10. The outputs (00) and (01) correspond to points in the inner constellation
and the output 10 corresponds to points in the outer constellation. (See the labeling
in Figure 13.26.) Each bit pair can be 00,01, or 10, but they cannot both be 10.

578 Trellis Coded Modulation

There are 16 points in the outer group of a 2D lattice (such as A) or in either
half of the inner part of a 2D subset. These sixteen points are indexed by the bits
Z4,Z5pZ6pZ7p,wherep = n o r n + 1.

The bits 22,23,24,25,26,27, (p = n or n + 1) select from a set of four points
in the signal constellation. To ensure rotational invariance, the four rotations of a
point are all assigned the same set of bits. Figure 13.28 shows the “orbits” of some
of the points under rotation. The a, b, c and d points in the orbit are all assigned the
same label 22,23,Z4,25,26,Z7,; then one of the points in the orbit is selected
by Zl,ZO,. Since the bits Z2,Z3,24,25,26,27, are rotationally invariant by
labeling, and the bits Z l,ZO, are invariant by differential encoding, the overall code
is rotationally invariant.

The bits ZO,Zl, . . .Z7, (p = n or n + 1) are used to select two points in the signal
constellation, corresponding to the two symbols sent in the coding epoch.

Programming Laboratory 11 :
Trellis-Coded Modulation Encoding
and Decoding

Programming Part

1) Construct an encoder to implement the trellis code for a
four-state trellis with an 8-PSK signal constellation. Verify

Objective
that it works as expected.

2) Construct a Viterbi decoder for the trellis code. Verify
In this laboratory, you will create an encoder and decoder
for a particular TCM code.

Background

Reading: Section 13.3. achieved?

that it works as expected.

3) Make a plot of P (e) as a function of SNR for the
code. Compare P (e) with P (e) for uncoded 4-PSK. Plot
the theoretical P (e). Is the theoretical coding gain actually

13.9 Exercises

13.1 Verify the energy per symbol Es and the energy per bit Eb for BPSK signaling from Table 13.1.

13.2 For each of the following signal constellations, determine a signal partition. Compute the
Repeat for 16-QAM and 32-cross signaling.

minimum distance between signal points at each level of the tree.

- - - - - - - - - - - - - - _ -
d o = ’ + I-

* * * * Ao=~-QAM
* . * * -7 -5 -3 -1 1 3 5 7

13.3 [373] The simple TCM encoder shown here

Select
subset

13.9 Exercises 579

is used with the 8-AM signal constellation shown in exercise 2.

(a) Determine the trellis for the encoder.

(b) Determine a signal partitioning scheme which transmits 2 bitskymbol.

(c) Determine the squared minimum free distance for the coded system.

(d) Compute the asymptotic coding gain in dE3 for this system compared with an uncoded

(e) Determine the output transition matrix B (x) for this code and determine the components

4-AM system.

D (x) , P (x) , and M (x) .

13.4 For the encoder shown here

Select

employed with an 8-PSK constellation partitioned as in Figure 13.4:

(a) Draw the trellis for the convolutional encoder.

(b) Draw the trellis for the trellis coder, labeling the state transitions with the subsets from
the constellation.

(c) Determine the minimum free distance between paths which deviate from the all-zero path,
both for non-parallel paths and for parallel paths. Determine the minimum free distance
for the code. Assume E, = 1.

(d) Determine the coding gain of the system, compared with 4-PSK transmission.

13.5 The sequence of data (m ~ , ~ , mi,?) consisting of the pairs (O,O), (l,O), (1, l), (1, l), (O,O),

(a) Determine the differentially encoded sequence (k 2 , ~ , k1,r). Assume that the differential
encoder starts with previous input 0.

(b) The sequence of inputs (m4 , t , m3 , t , m2,r, consisting of the 4-tuples (0, 1 ,0 ,0) ,
(l , l , l , O) , (O , l , l , l j , (l,O,l,lj ,(O,O,O,O), (l , l , O , 1) ,(1,0,0, 1)ispresentedtothe
encoder of Figure 13.16. Determine the sequence of output subsets and plot the cor-
responding path on the trellis, as in Example 13.4. Assume the encoder starts in state
0.

(c) Now take this sequence of output signals and rotate them by n/2. Determine the sequence
of received signal points.

(d) Determine the state sequence decoded at the receiver. Assume the decoder is able to
determine that state 7 is the starting state.

(e) Determine the sequence of input bits corresponding to this decoded sequence.

(f) Run the input bits through a differential decoder and verify that the decoded bits match

(0, l), (0, 1) is applied to the encoder of Figure 13.16.

the original sequence of transmitted bits.

13.6 The signal constellation below has 16 points, with the points on a hexagonal lattice with minimum
distance between points equal to 1. Adjust the center location and the lattice points SO that
the constellation has minimum average signal energy. Compute the average signal energy
Es . Compare this average signal energy with a 16-QAM constellation having equal minimum
distance. How much energy advantage is there for the hexagonal lattice (in a)? What practical
disadvantages might the hexagonal constellation have?

580 Trellis Coded Modulation

13.1 0 References

The idea of combining coding and modulation can be traced at least back to 1974 [225].
It was developed into a mature technique by Ungerbock [344, 346, 347, 3451. Important
theoretical foundations were later laid by Forney [loo, 91, 92, 931. Rotationally invariant
codes are described in [363,364]. Additional work in this area appears in [263, 264, 3661.
It was also mentioned in [347]. See also rotational invariance appears in [340, 181

Our bound on the performance in Section 13.4 follows [303] very closely. See also [383].
A random coding bound is also presented there. Other analyses of the code performance
appear in [29]. A thorough treatment of TCM appears in [204]. Theoretical foundations of
coset codes appear in [91,92].

TCM using lattices is described in [42]. An example of multidimensional TCM using
an eight dimensional lattice is described in [41]. Issues related to packing points in higher
dimensional spaces and codes on lattices are addressed in [54,55,53,58,57]. The definitive
reference related to sphere packings is [56]. The sphere-packing advantage as applied to data
compression (vector quantization) is described in [210]. A trellis code in six dimensions
based on the E6 lattice is described in [242]. Lattices also have use in some computer
algebra and cryptographic systems; in this context an important problem is finding the
shortest vector in the lattice. For discussions and references, see [360, Chapter 161. A
concise but effective summary of lattice coding is presented in [5]. Extensive design results
appear in [264, 265,2041.

Part IV

Iteratively Decoded Codes

Chapter 14

Turbo Codes
“Tell me how you decode and I’ll be able to understand the code.” When you have no
particular gift for algebra, ... then think about the decoding side before the encoding
one. Indeed, for those who are more comfortable with physics than with mathemat-
ics, decoding algorithms are more accessible than coding constructions, and help to
understand them. - Claude Berrou [26]

14.1 Introduction

Shannon’s channel coding theorem implies strong coding behavior for random codes as the
code block length increases, but increasing block length typically implies an exponentially
increasing decoding complexity. Sequences of codes with sufficient structure to be easily
decoded as the length increases were, until fairly recently, not sufficiently strong to approach
the limits implied by Shannon’s theorem. However, in 1993, an approach to error correction
coding was introduced which provided for very long codewords with only (relatively) modest
decoding complexity. These codes were termed turbo codes by their inventors [27, 281.
They have also been termed parallel concatenated codes [146,3031. Because the decoding
complexity is relatively small for the dimension of the code, very long codes are possible,
so that the bounds of Shannon’s channel coding theorem become, for all practical purposes,
achievable. Codes which can operate within a fraction of a dB of channel capacity are
now possible. Since their announcement, turbo codes have generated considerable research
enthusiasm leading to a variety of variations, such as turbo decoding of block codes and
combined turbo decoding and equalization, which are introduced in this chapter. Actually,
the turbo coding idea goes back somewhat earlier than the original turbo code announcement;
the work of [207] and [208] also present the idea of parallel concatenated coding and iterative
decoding algorithms.

The turbo code encoder consists of two (or more) systematic block codes which share
message data via interleavers. In its most conventional realization, the codes are obtained
from recursive systematic convolutional (RSC) codes - but other codes can be used as
well. A key development in turbo codes is the iterative decoding algorithm. In the itera-
tive decoding algorithm, decoders for each constituent encoder take turns operating on the
received data. Each decoder produces an estimate of the probabilities of the transmitted
symbols. The decoders are thus soft output decoders. Probabilities of the symbols from
one encoder known as extrinsic probabilities are passed to the other decoder (in the symbol
order appropriate for the encoder), where they are used as prior probabilities for the other
decoder. The decoder thus passes probabilities back and forth between the decoders, with
each decoder combining the evidence it receives from the incoming prior probabilities with
the parity information provided by the code. After some number of iterations, the decoder
converges to an estimate of the transmitted codeword. Since the output of one decoder is
fed to the input of the next decoder, the decoding algorithm is called a turbo decoder: it is

14.1 Introduction 583

1 oo

I ” 0 0.5 1 1.5 2 2.5
E,/N, (dB)

Figure 14.1: Decoding results for a (37,21,65536) code.

reminiscent of turbo charging an automobile engine using engine-heated air at the air intake.
Thus it is not really the code which is “turbo,” but rather the decoding algorithm which is
“turbo.”

As an example of what turbo codes can achieve, Figure 14.1 shows the performance
of a turbo code employing two recursive systematic convolutional (RSC) encoders with
parity-producing transfer functions

1 f x 4
G (x) =

1 + x + x2 + x 3 + x4
(14.1)

in a rate R = 1/2 turbo code (i.e., it is punctured) with block length N = 65536 and a
random interleaver. (The numerator and denominator polynomials are represented using the
octal numbers 21 = 10 001 and 37 = 11 11 1, respectively, so this code is sometimes referred
to as a (37,21,65536) code.) The decoding performance for up to 18 decoding iterations is
shown. Beyond 18 iterations, little additional coding gain is achieved. (These results were
obtained by counting up to 100 bits in error.) We note that with 18 iterations of decoding,

584 n r b o Codes

performance within about 0.5 dB of the capacity limit is achieved by this code, at least for
SNRs up to about 0.6 dl3. However, an interesting phenomenon is observed at higher SNRs:
while the decoding is still good, it fails to improve as dramatically as a function of SNR. At
a certain SNR, the error curves nearly level off, so the improvement with increasing SNR is
very modest. This phenomenon is referred to as the errorJlOor and is discussed in Section
14.4. Briefly, it is due to the presence of low-weight codewords in the code. A bound due
to the free distance of the convolutional coders is also shown in the plot, which indicates
the slope of the error floor. The portion of the plot where the error plot drops steeply down
as a function of SNR is referred to as the waterfall or cliff region.

In this chapter we discuss the structure of the encoder, present various algorithms for
decoding, and provide some indication of the structure of the codes that leads to their good
performance and the error floor. We also introduce the idea of turbo equalization and the
concept of EXIT analysis for the study of the convergence of the decoding algorithm.

14.2 Encoding Parallel Concatenated Codes

The conventional arrangement for the (unpunctured) turbo encoder is shown in Figure
14.2. It consists of two transfer functions representing the non-systematic components of
recursive systematic convolutional (RSC) encoders called the constituent encoders, and an
interleaver, which permutes the input symbols prior to input to the second constituent
encoder. (It is also possible to use more than two encoder blocks [70], but the principles
remain the same, so for the sake of specific notation we restrict attention here to only two
constituent encoders.) As discussed in chapter 12, systematic convolutional codes typically
work best when the encoder is a feedback (IIR) encoder, so the transfer function of each
convolutional encoder is the rational function

Strictly speaking, there is no reason that both constituent transfer functions must be the
same. However, it is conventional to use the same transfer function in each branch; research
to date has not provided any reason to do otherwise.

A block of input symbols x = {XO, X I , . . . , XN-l} is presented to the encoder, where
each xi is in some alphabet d with Id1 elements in it. These input symbols may include
an appended zero-state forcing sequence, as in Figure 14.6, or it may simply be a message
sequence, x = m = {mo, m l , . . . , mN-l} . In the encoder, the input sequence x is used three
ways. First, it is copied directly to the output to produce the systematic output sequence
v,(’) = xt, t = 0 , 1, . . . , N - 1. Second, the input sequence runs through the first RSC
encoder with transfer function G (x) , resulting in a parity sequence {vo (1) , v2 (1) , . . . , vNV1 (1) }.

The combination of the sequence {vt (0) } and the sequence {v,(”} results in a rate R = 1/2

(neglecting the length of the zero-forcing tail, if any) systematically encoded convolutionally
encoded sequence. Third, the sequence x is also passed through an interleaver or permuter
of length N , denoted by n, which produces the permuted output sequence x’ = n(x).
The sequence x‘ is passed through another convolutional encoder with transfer function

sequences are multiplexed together to form the output sequence

G (x) which produces the output sequence d2) = {US’, vi2), . . . , vN-l (2) }. The three output

14.2 Encoding Parallel Concatenated Codes 585

Convolutional
Encoder

Interleaver 0
Convolutional

Encoder x’ = n (X)

Figure 14.2: Block diagram of a turbo encoder.

resulting in an overall rate R = 1 /3 linear, systematic, block code. The code has two sets of
parity information, v(’) and d2) which, because of the interleaving, are fairly independent.
In an ideal setting, the sets of parity bits would be exactly independent.

Frequently, in order to obtain higher rates, the filter outputs are punctured before mul-
tiplexing, as shown in Figure 14.3. Puncturing operates only on the parity sequences -
the systematic bits are not punctured. The puncturing is frequently represented by a matrix,
such as

P = [; !$
The first column indicates which bits are output at the even output instants and the second
column indicates which bits are output at the odd output instants. For example, this puncture
matrix alternately selects the outputs of the encoding filters.

Example 14.1 Consider the transfer function G(x) = & incorporated in the turbo encoder of
Figure 14.4(a), with the trellis stage shown in Figure 14.4(b). Let the interleaver be described by

n = {S, 3,7 ,6 ,9 ,0 ,2 , 5, 1,4).

Then, for example, xb = Xg, xi = x3, etc. Let the input sequence be

x = [l, 1,0,0, 1,0, 1,0 , 1, 11 = JO).
Then the output of the first encoder is

V(l) = [I, 1 , L l,Q, 1 , L l , Q , O I , (14.2)

and the first encoder happens to be left in state 0 at the end of this sequence. The interleaved bit
sequence is

and the output of the second encoder is

x’ = [l , 0, 0, 1, 1, 1, 0, 0, 1, 11

d2) = [l ,Q, 1 , L o,o,o,o, LLI; (14.3)

586 Wrbo Codes

xt

c

(
Recursive Systematic Vt

. . - - ’ - Convolutional
Encoder

-,

I 1 I

Interleaver
n

: Puncture : vt

: (Optional) : b

..._.._.....
Encoder x’ = n (X)

Figure 14.3: Block diagram of a turbo encoder with puncturing.

the second encoder is left in state 3. When the three bit streams are multiplexed together, the bit stream
is

v = [l , 1 , 1 , l , l , O , O , l , l , O , l , l , 1 ,0 ,0 , 0 ,1 ,0 , 1 , 1 , 0 , 0 , 1 , 0 , l , O , l , 1,0,1].

If the encoded bits are punctured, the underlined parity bits of (14.2) and (14.3) are retained. The
resulting rate R = 112 encoded bit sequence is

v = [l , l , 1,0, O , l , O , l , 1 ,0, o,o, l , l , O , O , 1,0, 1,1].

It should be pointed out that there are also serially concatenated codes with iterative
decoders. One such code is the repeat accumulate (RA) code, which is introduced in Section
15.14.

14.3 Turbo Decoding Algorithms

The multiplexed and encoded data v are modulated and transmitted through a channel,
whose output is the received vector r. The received data vector r is demultiplexed into the
vectors do) (corresponding to do)), r(’) (corresponding to d‘)), and d2) (corresponding to

The general operation of the turbo decoding algorithm is as follows, as summarized in
Figure 14.5. The data (do), r(’)) associated with the first encoder are fed to Decoder I.
This decoder initially uses uniform priors on the transmitted bits and produces probabilities
of the bits conditioned on the observed data. These probabilities are called the extrinsic
probabilities, as described below. The output probabilities of Decoder I are interleaved and
passed to Decoder 11, where they are used as “prior” probabilities in the decoder, along
with the data associated with the second encoder, which is do) (interleaved) and d2). The
extrinsic output probabilities of Decoder 11 are deinterleaved and passed back to become
prior probabilities to Decoder I. The process of passing probability information back and

@I).

14.3 limbo Decoding Algorithms 587

“Priors“

I

1

Deinterleaver ’* Extrinsic
n-1

0

1

2 111

3

o/o

r(0)

r(1)
___)

Figure 14.4: Example turbo encoder with G (x) = 1/1 + x2

“Priors“
Extrinsicc Interleaver - Decoder

-Decoder I n
A I1

Interleaver r(0)
-

Deinterleaver X t -
n-1

Figure 14.5: Block diagram of a turbo decoder.

forth continues until the decoder determines (somehow) that the process has converged, or
until some maximum number of iterations is reached.

The heart of the decoding algorithm is a soft-decision decoding algorithm which provides
estimates of the posterior probabilities of each input bit. The algorithm most commonly
used for the soft-decision decoding algorithm is the MAP algorithm, also commonly known
as the BCJR algorithm. In Section 14.3.1 we describe this algorithm for the case of a general
convolutional code. Then in Section 14.3.10 we describe modifications to the algorithm that
apply to systematic codes, which sets the stage for the iterative turbo decoding algorithm.
The MAP algorithm can also be expressed in a log likelihood setting, as described in Section
14.3.12. A lower-complexity implementation of the MAP algorithm is discussed in Section
14.3.15. Another decoding algorithm, called the soft-output Viterbi algorithm (SOVA) is
described in Section 14.3.17, which has even lower computational complexity (but slightly
worse performance).

588 Turbo Codes

14.3.1 The MAP Decoding Algorithm

The maximum a posteriori (MAP) decoding algorithm suitable for estimating bit and/or state
probabilities for a finite-state Markov system is frequently referred to as the BCJR algorithm,
after Bahl, Cock, Jelenik, and Raviv who proposedit originally in [1 11. The BCJR algorithm
computes the posterior probability of symbols from Markov sources transmitted through
discrete memoryless channels. Since the output of a convolutional coder passed through
a memoryless channel (such as an AWGN channel or a BSC) forms a Markov source, the
BCJR algorithm can be used for maximum aposteriori probability decoding of convolutional
codes. In many respects, the BCJR algorithm is similar to the Viterbi algorithm. However,
the Viterbi algorithm computes hard decisions - even if it is employing soft branch metrics
- since a single path is selected to each state at each time. This result in an overall decision
on an entire sequence of bits (or codeword) at the end of the algorithm, and there is no way
of determining the reliability of the decoder decisions on the individual bits. Furthermore,
the branch metric is based upon log likelihood values; no prior information is incorporated
into the decoding process. The BCJR algorithm, on the other hand, computes soft outputs in
the form of posterior probabilities for each of the message bits. While the Viterbi algorithm
produces the maximum likelihood message sequence (or codeword), given the observed
data, the BCJR algorithm produces the a posteriori most likely sequence of message bits,
given the observed data. (Interestingly, the sequence of bits produced by the MAP algorithm
may not actually correspond to a continuous path through the trellis.) In terms of actual
performance on convolutional codes, the distinction between the Viterbi algorithm and the
BCJR algorithm is frequently insignificant, since the performance of the BCJR algorithm is
usually comparable to that of the Viterbi algorithm and any incremental improvement offered
by the BCJR algorithm is offset by its higher computational complexity. However, there
are instances where the probabilities produced by the BCJR are important. For example,
the probabilities can be used to estimate the reliability of a decisions about the bits. This
capability is exploited in the decoding algorithms of turbo codes. As a result, the BCJR
algorithm lies at the heart of most turbo decoding algorithms.

We first express the decoding algorithm in terms of probabilities then,in Section 14.3.12,
we present analogous results for likelihood ratio decoding. The probabilistic description is
more general, being applicable to the case of nonbinary alphabets. However, it also requires
particular care with normalization. Furthermore, there are approximations that can be made
in association with the likelihood ratio formulation that can reduce the computational burden
somewhat.

14.3.2 Notation

We present the BCJR algorithm here in the context of a R = k/n convolutional coder.
Consider the block diagram of Figure 14.6. The encoder accepts message symbols mi
coming from an alphabet A - most frequently, A = {0, I} - which are grouped into
k-tuples mi = [mi , . . . , mi 1. It is frequently convenient to employ convolutional
encoders which terminate in a known state. To accomplish this, Figure 14.6 portrays the
input sequence m = [mo, ml , . . . , mL-11 passing through a system that appends a sequence
of x ~ , X L + ~ , . . . , XL+”-~, where IJ is the constraint length (or memory) of the convolutional
coder, which is used to drive the state of the encoder to 0. (For a polynomial encoder, the
padding bits would be all zeros, but for the recursive encoder, the padding bits are a function

(0) (k - 1)

14.3 n r b o Decoding Algorithms 589

m
--+

Channel

X Signal a
Append Convolutional

zero-state
forcingsequence

(Optional)
Mapper

Encoder

R = k i n

n r,

(e.g. BPSK) / /

Figure 14.6: Processing stages for BCJR algorithm.

of the state of the encoder after the last message bit m ~ - l enters the encoder.) The sequence

x = [m, XL, X L + I , . . . , XL+~-I]

forms the input to the R = k / n convolutional encoder. We denote the actual length of the
input sequence by N, so N = L + v if the appended sequence is used, or N = L if not.
Each block xi is in dk. The output of the encoder is the sequence of blocks of symbols

v = [vo, v1, . * ., VN-1] 9

where each block vt contains the n output bits of the encoder for the tth input:

The encoder symbols vt are mapped to a signal constellation (such as BPSK) to produce
the output symbols at. The dimension of the at depends on the dimension of the signal
constellation. For example, if BPSK is employed, we might have u? E {ha), where
REb = Ec, with at = [a,('), a;'), . . . , a,("-')] and

(14.4)

We also use the notation
4) - (i) - 1 vy - 2v,

to indicate the f l modulated signals without the

white Gaussian noise (AWGN) channel to form the received symbol sequence

scaling, so a,(i) = a@).
The sequence of output symbols a = [ao, al, . . . , alv-11 passes through an additive

r = [ro, rl, . . . , rN-11,

where
r t = a t + n t , t = 0 , 1 , ..., N - 1 ,

and where ni is a zero-mean Gaussian noise signal with variance a2 = N0/2 in each
component.

We denote the discrete time index as t. We denote the state of the encoder at time t by
qt. There are Q = 2' possible states, where v is the constraint length of the encoder, which
we denote as integers in the range 0 5 Qt -= 2'. We assume that the encoder starts in state
0 (the all-zero state) before any message bits are processed, so that Qt = 0 for t 5 0. When
the zero-forcing sequence is appended, the encoder terminates in state 0, so that QN = 0.
Otherwise, it is assumed that the encoder could terminate in any state with equal probability.
The sequence of states associated with the input sequence is (Qo, Qi, . . . , QN).

590 limbo Codes

time t time t -t 1

Figure 14.7: One transition of the trellis for the encoder.

A portion of the trellis associated with the encoder is shown in Figure 14.7, portray-
ing a state Qt = p at time t transitioning to a state Qt+i = q at time t + 1. The
unique input xt which causes this transition is denoted by x(P34). The corresponding
mapped symbols at produced by this state transition are denoted by a(P,q), with elements

Notationally, quantities with the time-index subscript are often random variables or
their realizations, (e.g., at, a/’), or xt), whereas quantities without the time-index subscript
are usually not random variables.

14.3.3 Posterior Probability

a (o , P , d , a (L P , d , . . . , &-l ,P4?) .

It is clear that the convolutional code introduces dependencies among the symbols (a t } . An
optimal decoder should exploit these dependencies, examining the entire sequence of data to
determine its estimates of the probabilities of the input bits. The goal of the decoder is thus:
Determine the a posteriori probabilities of the input P(xt = xlr), that is, the probability
that the input takes on some value x conditioned upon the entire received sequence r. The
BCJR algorithm provides an efficient way to compute these probabilities. The first step
is to determine the probabilities of state transitions; once these are determined finding the
probabilities of the bits is straightforward.

The convolutional code introduces a Markov property into the probability structure:
Knowledge of the state at time t + 1 renders irrelevant knowledge of the state at time t or
previous times. To exploit this Markovity, we partition the observations into three different
sets,

r = r<t U { r t } U r>?,

where r<t = {TI: 1 < t } is the set of “prior” observations, rt is the “current” observation,
and r,t = (rl: I > t) is the set of the future observations. Then the posterior probability of
the transition (qt = p , Qt+l = q) given the observed sequence r is

(14.5)

where P denotes a probability mass function and p denotes a probability density function.

P(Qt = P, %+I = qlr) = p(Qt = p , Qt+i = q , r>/p(r>
= p W t = p , q t + l = q , r<t, rt, r,t>/p(r>,

14.3 n r b o Decoding Algorithms 591

We now employ the conditioning factorization

(14.6)
P(% = p , %+I = qlr)

= p (W = p , %+I = q , r<f, rr)p(rzrlWt = p , %+i = q , r<[, rt>lp(r>.

Because of the Markov property, we can rewrite the second probability in (14.6) as

p(r>tI% = p , %+I = q , r,t, rt) = p(r,tl%+i = q) , (14.7)

since knowledge of the state at time t + 1 renders irrelevant knowledge about prior states
or received data. The first factor in (14.6) can be factored further and the Markovity can
exploited again:

(14.8)
14% = P , *r+i = q , rXr, rt> = p(Qt+i = q , rrlW = p , r,t)p(W = p , rill

= p(%+i = q , rrl% = p) p (% = p , rit).

Substituting (14.7) and (14.8) into (14.6) we obtain

P(Qt = p , %+I = qlr) = p (% = p , r<dp(%+i = q , rtl% = p)p(r>tlQt+i = q)/p(rh

We denote the factors in this probability as follows:

1 ar(p> = ~ (q r = P , r<r) I
represents the probability of the observations up to time t - 1, with the state ending in state
p at time t ;

I Yt(P7 4) = P(W+l = 49 rtlW = p>;l
represents the probability of the transition from state p to state q , with the observation at
time t ; and

[B t+ i (q) = p(r>tIwt+i = q) I
is the probability of the future observed sequence r>t, given that it starts at state q at time
t + 1. Thus we have the posterior probability of the state transition

We determine recursive techniques for efficiently computing at and Bt below.
Given the posterior probability of the state transitions, it is straightforward to determine

the posterior probability of a bit P(xt = xlr). For each input value x in the input alphabet
A, let S, denote the set of state transitions (p , q) which correspond to the input xt = x:

S, = { (p , 4): X(P34) = x}.

For example, for the trellis of Figure 14.4(b),

So = I@, 01, (1,2), (2, I), (3,311 s1 = I(0, 3 , (1, O), (2,3), (391)).

(We assume for convenience that the trellis is time-invariant, but decoding on time-varying
trellises is also possible.) The posterior probability of xt = x is then obtained by summing
over all state transitions for which x is the input:

1
~ (x t = xlr) = C P W ~ = p , *r+i = q ~ r) = - C at(p>~t(p,q>Bt+i(q)9

(P 14) €Sx (P 4) E S x

(14.9)

592 Turbo Codes

for all x E dk. Up to this point, we have been including the factor l /p(r) in all of our
posterior probability computations. However, it is nothing more than a normalizing factor
and does not need to be explicitly computed. Since P(xt = xlr) is a probability mass
function, we have

C p(xt = xlr) = 1.
X€A

Using this fact, we can compute (14.9) without finding p(r) as follows. Let

F<xt = xlr) = C at(p>~t(p, q)Bt+1(4), x E dk.
(P 3 4) € S X

That is, F(xt = xlr) is the same as in P(xt = xlr), but without the factor l/p(r). Then

(14.10)

It is convenient to express this normalization using an operator. Define the scaling (or
nomzalizatian) operator N, by

That is, the normalization of a function f (x) is obtained by dividing f(x) by the sum of
f(x), summed over the entire domain set of x. The domain of x is implicit in this notation.
Using the normalization notation, we have

P(xt = xlr) = NxF(xt = xlr) = N, 1 ar(p>~t(p, 4)Br+1(4). (14.1 1)
(P . q) € S x

14.3.4 Computing af and Br
Given a t (p) for all states p E {O, . . . , Q - l}, the values of at+l (4) can be computed as
follows:

at+i(q) = p(*t+i = 4, r<t+i> = p W + i = 4 , rt, r,?)

= C p(*t+t = 4 , rt, *t = p , r<t)

(definition of w,+l and r,?+l)

(compute marginal from joint)
0-1

p=o

Q-1

p =o
Q-1

p = o

= C p(*t = p , r,t)p(\Vt+l = 4 , rt1qt = p , r<?) (conditioning factorization)

= C p(*t = P , r < t) p ~ t + l = 4 , rtlqt = p > (by Markovity)

= at (P) Y t (P , 4) (definition of a and y) .

p=o

That is,

(14.12)

14.3 mrbo Decoding Algorithms 593

A backward recursion can similarly be developed for Bt (p) :

Bt(p) = p(r>t-lI*r = P) = p(r>t, rt IQt = p)

= C p(r>t, rt9 q r + l = q1wr = p)

(definition of r>r-.l)

(marginal from joint)
Q-1

q =o
Q-1

q=o
= C p(rr, %+l = q1Qt = P)P(r>tlrt, %+l = q , *r = PI

= c p(rt7 Qt+l = 41% = p)p(r,t IW+l = q)

(conditioning factorization)

Q-1

q =o
(by Markovity)

0-1

(definition of y and B) .
q =o

(14.13)

That is,

B ~ (P) = C yr(p, q)Bt+l(q)

The a probabilities are computed starting at the beginning of the trellis with the set ao(p) , p =
0, 1, . . . , Q - 1, and working forward through the trellis. This computation is called the
forwardpass. The @ probabilities are computed starting at the end of the trellis with the set
b ~ (p) , p = 0, 1, . . . , Q - 1, and working backward through the trellis. This computation
is called the backward pass. Because the computation of a and /3 is such an essential part
of the BCJR algorithm, it is sometimes also referred to as theforward-backward algorithm.

(14.14)
q =o

The recursions (14.12) and (14.14) are initialized as follows. Since the encoder is known
to start in state 0, set all of the probability weight in state 0 for ao:

[~ o (O > , a0(1), . . . , ~ o < Q - 1)l = [I , 0, . . . , O I . (14.15)

If it is known that the encoder terminates in state 0, set

[B N (O) , B N U) , . . . , BN(Q)I = [I, 0 , . . . ,01. (14.16)

Otherwise, since the encoder can terminate in any state with uniform probability, set

[B N (O) , B N (~) , . . . , B N (~ v - 111 = [1/Q, 1 / Q 3 . . . , 1/Ql. (14.17)

14.3.5 Computing yt

The transition probability yt (p , q) , or branch metric for the branch from W t = p to Wr+l =
q , depends upon the particular distribution of the observations. For an AWGN channel, the
branch metric can be computed as

Yt(p9 4) = ~ W t + 1 = q 3 rrlQt = P) = p(rrl*r = P , q r + l = q)P(*r+l = q l q r = P I .
(14.18)

594 n r b o Codes

Knowing qf = p and q t + l = q , that is, the beginning and ending of a state transition,
completely determines and is determined by the output a(P.4) and the corresponding input
x(P.4). The probability of the state transition (p , q) is thus equivalent to the probability of
the input bit associated with it:

P (@ f + l = qI@t = p) = P (X f = X Q q , (14.19)

where P(xf = x(P.4)) is the a priori probability of the message symbol xt. In conventional
binary coding, P (x t = x) is usually equal to 1/2k; however, we will see below that it is
helpful to use other interpretations.

The probability p(rtIqf = p , qt+1 = q) can be written as p(rtla@,4)). For the n-
dimensional AWGN channel, this is simply the Gaussian likelihood,

where 11 . 1 1 2 is the conventional squared Euclidean metric,

n

i=l

Substituting (14.19) and (14.20) into (14.18) we obtain, for BPSK modulation,

14.3.6 Normalization

Two different kinds of normalization are frequently used in computing the forward-backward
algorithm. First, normalization is used to simplify the computation of the transition proba-
bility y . Second, the normalization is used to numerically stabilize the computation of the
as and ps.

For some constant C , let y,'(p, q) = C y t (p , q) and let ai(p) and & (p) be the corre-
sponding forward and backward probabilities, defined by

Bi+l(P) = c Y,'(P, 4)8i+&)
4

with the same initialization for a6 and /3& as for the unnormalized case. At each stage of
the propagation, an additional factor C accumulates, so that

a:(P) = C'at(p> B:(P) = CN-'Bt(P).

When a' and p' are used in (14.10) or (14.33), the factor C cancels out, resulting in identical
probability or likelihood values. Since the normalization constant C has no bearing on the

14.3 'hrbo Decoding Algorithms 595

detection problem, it may be chosen to simplify the computations. For example, using
C = 2k(2n02)n/2 in (14.21) yields the normalized branch metric

If the prior probability P(Xt = x(P,q)) = 1/2k for all t , then the factor in front is simply

The propagation of at and fit involves computing products and sums of small numbers.
Without some kind of normalization there is a rapid loss in numerical precision in the
forward and backward passes. It is therefore customary to normalize these probabilities.
The forward probability a t (p) and the backward probability Bf (p) are replaced by a i (p)
and & (p) which are normalized so that

unity.

P P

for each t . These normalized versions are propagated by

Q-1

p=o
a;+l(d = Af c a:(P)Yr(P, 4)

Q-1

q=o

BI(P) = Bf c Yf(P, 4)8:+1(4),
where At and Bf are chosen so that (14.22) is satisfied for each t . That is,

When using a: and ,!$ in (14.10) or (14.33) the products of the normalization factors cancel
from the numerator and denominator. While the normalization does not affect the posterior
probability computation mathematically, it does have a significant impact on the numerical
performance of the algorithm.

596 limbo Codes

14.3.7 Summary of the BCJR Algorithm

Algorithm 14.1 The BCJR (MAP) Decoding Algorithm, Probability Form

Initialize: Set ah as in (14.15), and initialize j3h as in (14.16) or (14.17).
For t = 0, 1, . . . , N - 2 propagate a’:

Q-1

p=o
a]1:+1(4) = Nq c a:(P)V:(P? 4).

Fort = N - 1, N - 2, . . . , 1 propagate j3’:

Q-1

q =o
B:(P) = N p c 4)8:+1(4).

P(Xt = xlr) = N, c a:(P)v:(P, 4)8;+1(4).

Compute the posterior probability for xt :

(P 4) 4

Example 14.2 Referring to Example 14.1, the sequence x = [l , 1, 0, 0, 1, 0, 1, 0, 1, 11 is input to one
of the convolutional encoders of Figure 14.4. The systematic and parity bits are multiplexed together
to produce the coded sequence

v = [l , l , 1 , 1 , 0 , 1 , 0 , 1 , l , O , O , l , 1 , 1 , 0 , 1 , 1,0, LO].

The corresponding sequence of encoder states is

vr = [O, 2,3,3,3,1,2,3,3,1,0]. (14.23)

The sequence v is BPSK modulated with amplitudes f 1 and passed through an AWGN channel with
o2 = 0.45, resulting in the received data

r = [(2.53008, 0.73 1636) (-0.523916, 1.93052) (-0.793262, 0.307327) (- 1.24029, 0.784426)

(1.83461, -0.968171)(-0.433259, 1.26344)(1.31717, 0.995695)(- 1 S0301, 2.04413)

(1.60015, -1.15293)(0.108878, -1.57889)]. (14.24)

If a decision were made at this point based on the sign of the received signal, the detected bits would
be

11, 1, 0, 1, 0, 1, 0, 1 , 1,0, 0, 1, 1 , 1, 0, 1, L O , 1,01,

where the underlined bit is in error.
The forward and backward passes are shown in Table 14.1. Note that the maximum probability

states determined by the as (shown in bold) correspond with the true state sequence of (14.23). The
maximum likelihood sequence of states determined by the j3s correspond with the true sequence of
states from *lo down to * 2 , but the maximum likelihood state determined by 81 is 81 = 3, whereas
the true state is = 2; the confusion arises because the rl = (-0.523916, 1.93052) decodes
incorrectly, and the resulting sequence (0, 1) is a valid output transition on a state leading to Q2 = 3.

As may be seen from the trellis in Figure 14.4, the input transition sets So and S1 are

so = {(O,O), (1,2), (2, l), (3,3)) s1 = {(0,2), (1, O), (2,3), (3, 1)).

14.3 lbrbo Decoding Algorithms 597

P(xr =0lr)
P(xt = llr)
fr

Table 14.1: a: and j3: Example Computations

1.49e-8 1.64e-5 1 1 2.17e-6 1 3.31e-7 1 2.90e-8 1.25e-7
1 1 2.47e-6 2.58e-5 1 2.13e-5 1 1.55e-7 1 1
1 1 0 0 1 0 1 0 1 1

Forward Pass

Table 14.2: Posterior Input Bit Example Computations
I t : 1 0 I 1 1 2 I ? 1 4 1 5 I 6 1 7 1 8 1 9 I

The input bit probabilities can be computed as follows for t = 0:

~ (X O = 1lr) = ao(O)~o(O, 2)81(2) + ao(l)vo(l, 0)8i(O) + ao(2)~0(2,3)81(3)

+ ao(3)Yo(3, 1)81(1)

whichresults in ~ (X O = 1 Ir) = 0.00295. Similarly, j (x 0 = OJr) = 4.41 x lo-". After normalizing
these, we find P(x0 = Olr) = 1.49 x P (x 0 = 1Ir) = 0.999. Table 14.2 shows the posterior
bit probabilities (to three decimal places, so there is some roundoff in the probabilities near 1) and
the posterior estimate of the bit sequence. Note that the estimated bit sequence matches the input
sequence.

0

14.3.8 A MatrixNector Formulation

For notational purposes it is sometimes convenient to express the BCJR algorithm in a
matrix formulation (although we do not use this further in this chapter). Let

at (0) Bt (0)

at = [] and P t = [Bt(l)]
at<Q - 1) Bt (Q - 1)

be vectors of the forward and backward probabilities. Let Gr be the probability matrix with
elements gt, i , j defined by

Then the forward update (14.12) can be expressed as

gt, i , j = Vt(i , j) .

at+1 = G , a t -
T

598 n r b o Codes

The backward update (14.14) can be expressed as

Pt = GtPt+I.

To compute (14.9), we need to define a matrix describing transitions in the trellis. Let T (x)
be defined with elements t j , j (x) by

1 if (i , j) is a state transition with x (i , j) = x
0 otherwise. I ti, j (x) =

For example for the trellis shown in Figure 14.4(b),

0 0 1 0 1 0 0 0

0 0 0 1 0 1 0 0
T(O)= 10 1 0 01 T (l) = 10 0 0 1 1 -

Let 0 denote the element-by-elementproduct of two matrices. Then (14.9) can be expressed
as

p (x t = xlr) = --&(T(X) o pt)pt+l.

14.3.9 Comparison of the Viterbi Algorithm and the BCJR Algorithm

It is interesting to contrast this update formula with the formula for updating the path metric
in the Viterbi algorithm. In the Viterbi algorithm, the path metric is updated by adding the
branch metric to the previous path metric. Then the minimum of the path metrics at a state
is computed. In the BCJR case, the path metric at (p) is multiplied by the branch metric
yr (p , q) , then the branch metrics are summed at each state. Mapping the operations

min + sumsum t, product

we obtain the equivalent algorithm. The Viterbi algorithm is sometimes referred to as a
"min-sum" algorithm and the BCJR algorithm is referred to as a "sum-product'' algorithm.
(See [2] or Chapter 16 for other examples.)

14.3.10 The BCJR Algorithm for Systematic Codes

To finish setting the stage for turbo decoding, we now consider the specialization to the
case that the convolutional encoder is a systematic R = 1/2 coder, and the signal mapper is
BPSK, where, to be specific, we use the BPSK signal mapper in (14.4). The encoder output
is now

1

P 0.1

(0) (1) (1)
V t = [U t 3 U t 1 = [x t , U t 1

a, = [a,('), a,(')] = &[2v,(O) - 1,2v,(') - 11 = J E , [2 x t - I , 24') - I].

To denote the output corresponding to the transition from Vt = p to Vt+l = q , we write

and the mapped signals are

a (P j 4) = [a(o,P,q), a (' , P , 4)] = f i [Z X (P > 4) - 1, 2v(' ,P .4) - 13.

The received signal vector at time t is

14.3 lbrbo Decoding Algorithms 599

where
(0) - (0) + ny) rt(') = + ny)*

ro - at

The transition probability can be written

Vr(p, 4) = pWt+i = 4, r r l W = p) (definition)

(condition factorization)

(definition of rt)

(x (P 4) determines q t + l) .

= p(rtI% = P , %+l = q)P(%+1 = 41% = PI

= P"t (0) 9 r p 1 % = P , %+l = 4) P W t + l = 4IW = p)

= p(r , (0) , r,(l) IW = p , q t + l = q)p(x t = ~ (~ 3 4))

(14.25)

The conditioning on the state transition can be equivalently expressed as conditioning on
the state and the input, since knowing the state and the input determines the next state
unequivocally:

p(rt(O), rt(l)I*t = p , ~ t + i = 4) = p(r t (O) , rt(')lqt = p , X t = X (P ~ Q)) .

But r:') and It(') are conditionally independent, given the input, since rjo) depends on the
input data and not on the state. Thus

(0) (1)

(14.26)
p(r?), r / ') ~ ~ t = p , xt> = ~ (r t Ixt)p(rr I q r = p , q r + l = 4)

= p(r t (0) l x t) p (r ~ l) l a ~ l) = a (' , p , q)) .

Substituting (14.26) into (14.25) we obtain

Vr(p, 4) = A r t (0) Ixr)p(rt (1) la, (1) - - a(l ,P4))p (x t - - - x (P.4)). (14.27)

Now substitute (14.27) into (14.1 1):

P(xt = xlr) = N, C crt(p)p(r,(o)Ixt>p(r,(l)lal(l) = a(' ,p ,q)) p(xt = X(P'4))Bt+l(4>.
(p,q)ESx

(14.28)
In (14.28), since the sum is over elements in S,, P (x t = x(P94)) is constant and can be
pulled out of the sum. Also, p(r,(O) Ixt) does not depend on the state, and so can be pulled
out of the sum. Thus

(P > 4) ESx I [
(14.29)

P(xt = xlr) = Nxp(rt (0) (xt = x) P (x t = x) c at(p)p(rt(' ' \a~') = a('*P'4))/3t+i(q)

= N x Ps, t (x) pp , t (x) pe, t (x 1.
In (14.29), we refer to

(0) Ps, t (x) = A r t Ixt = x)

as the systematic probability,
P p , t (x) = P(xt = x)

as the prior probability, and

(14.30)

600 a r b 0 Codes

as the extrinsic probability. The word “extrinsic” means’ “acting from the outside,” or
separate.

We now describe what the three different probabilities represent.

Prior The prior Pp,t represents the information available about bits before any decoding
occurs, arising from a source other than the received systematic or parity data. It is
sometimes called intrinsic information, to distinguish it from the extrinsic informa-
tion. In the iterative decoder, after the first iteration the “prior” is obtained from the
other decoder.

Systematic The quantity PJ? represents the information about xt explicitly available from

the measurement of rj’). This is a posterior probability.

Extrinsic The extrinsic information Pe,t is the information produced by the decoder based
on the received sequence and prior information, but excluding the information from
the received systematic bit r,(’) and the prior information related to the bit xt . It is
thus the information that the code itself provides about the bit xt.

From (14.12) and (14.14), we note that at and Bt+1 do not depend on xt, but only on
received data at other times. Also note that p(rj’)/u,(’) = u(’,P,q)) does not depend
on the received systematic information rj0). Thus the extrinsic probability is, in fact,
separate from the information conveyed by the systematic data about x t . The extrinsic
probability Pe,r(x) conveys all the information about P (x t = x) that is available
from the structure of the code, separate from information which is obtained from an
observation of xt (via r,‘”) or from prior information. This extrinsic probability is an
important part of the turbo decoding algorithm; it is, in fact, the information passed
between decoders to represent the “prior” probability.

14.3.1 1 Turbo Decoding Using the BCJR Algorithm

In the turbo decoding algorithm, the posterior probability computed by a previous stage is
used as the prior for the next stage. Let us examine carefully which computed probability
is to be used. For the moment, for simplicity of notation we ignore the interleavers and the
normalization.

We will show that the appropriate probability to pass between the encoders is the extrinsic
probability by considering what would happen if the entire posterior probability P (x t = x Ir)
were used as the prior for the next decoding phase. Suppose we were to take the MAP
probability estimate P (xt = x Ir) = P8,t (x) P p , t (x) Pe,f (x) of (14.29) computed by the first
decoder and use it as the prior P (xt = x) for the second decoder. Then in the MAP decoding
algorithm for the second decoder, the y computation of (14.27) would be

But recalling definition of Ps,t we have

We see that the initial prior information Pp, t still appears in y , even though we have al-
ready used whatever information it could provide. Furthermore we see in (14.31) that the

’ Webster’s New World Dictionary

14.3 'hrbo Decoding Algorithms 601

probability of the systematic information Ps,t appears twice. If we were to continue this
iteration between stages m times, Ps,, would appear to the mth power, coming to yield an
overemphasized influence. Thus P (X t = x Ir) is not the appropriate information to pass
between the decoders.

Instead, we use the extrinsic probability Pe,* as the information to pass between stages
as the "prior" probability P (x f = x). Using this, yy is computed in the second decoder as

V ~ (P ? 4) = P(r,(')Ixt)P(rt (2) la, (2) = a(z'P'q))pe, , (x(P.4)) .

We now flesh out the details somewhat. Let the output of the encoder at time t be

(1) (2)
Vt = [X t , ~t , uy 1, t = 0, 1,. . . , N - 1,

where vjm) is the output of encoder m, m = 1,2. Also, let the received sequence be

It = [rt (') , r:') , rt (2) ~ , t = 0,1, . . . , N - I .

There are two MAP decoders employed in the BCJR algorithm, one for each constituent en-
coder. The first MAP decoder uses the input symbol sequence { (r:'), r;"), t = 0, 1 , . . . , N -
11, which we also denote (with some abuse of notation) as (do), d l)) . The second MAP
decoder uses the permuted received sequence {rIr;')) and the received parity information
from the second encoder rt(2). Denote this information as (lTr('), d2)). Let P(')(xy = x)
denote the initial prior probabilities used by the first MAP decoder. Initially it is assumed
that the symbols are equally likely. For binary signaling, P(')(xr = x) = 1/2.

Let the extrinsic probability produced by decoder j , j E {l , 2}, at the Zth iteration be
denoted by P$j) (xt = x) . Let the probability that is used as the prior probability in decoder
j at the Zth information be denoted by P('* j) (xt = x) . Let M denote the number of iterations
the decoder is to compute. The turbo decoding algorithm can be outlined as follows:

Algorithm 14.2 The Turbo Decoding Algorithm, Probability Form

1. Let P('?')(xr = x) = P(')(x, = x) (use the initial priors as the input to the first decoder).
2. For1 = 1 , 2 , . . . , M:

(a) Using ~ (l - l ? l) (x t = x) as the prior P (X ~ = X I , compute:

(Y and p using (14.12), (14.14), and (14.21) (or their normalized equivalents)
Pe'f; ') (xt = x) using (14.30)

(b) Let P(',2) (xy = x) = l7 Pit; ') (xy = x)]

(c) Using P (Z , ~) (X ~ = x) as the prior P (X ~ = x) compute:

(d) If not the last iteration:

[
a and ,fJ using (14.12), (14.14), and (14.21) (or their normalized equivalents)

Compute P$2)(xy = x) using (14.30)

Let ~ (' + 1 * 1) (x ~ = x) = .-1 [~ J : ; ~ ' (x t = x)

Using P(',2)(xr = x) as the prior P (x t = x) compute (thepermuted) P (x t = xlr)

Un-permute: P(xt = xlr) = l7-l [P (x t = xtr)~

I
(e) Else if the last iteration:

using (14.29).

602 Turbo Codes

In the iterative decoding algorithm, the “a priori” information used by a constituent decoder
should be completely independent of the channel outputs used by that decoder. However,
once the information is fed back around to the first decoder, it is re-using information ob-
tained from the systematic bits used in the second decoder. Thus the prior probabilities used
are not truly independent of the channel outputs. However, since the convolutional codes
have relatively short memories, the extrinsic probability for a bit xt are only significantly
affected by the received systematic bits close to xt. Because of the interleaving employed,
probability computations for xt in the first decoder employ extrinsic probabilities that are,
with high probability, widely separated. Thus the dependence on the extrinsic probabilities
on the systematic data for any given bit x t is very weak.

The Terminal State of the Encoders

It is straightforward to append a tail sequence so that the terminal state of the first encoder is
0. However, due to interleaving, the state of the second encoder is not known. Discussions
on how to drive the state of both encoders to zero are presented in [168,131. However, it has
been found experimentally that ignorance of the terminal state of the second encoder leads
to insignificant differences in decoder performance; it suffices to initialize /3 uniformly over
the states in the decoder.

14.3.12 Likelihood Ratio Decoding

For encoders with a single binary input, the log likelihood ratio is usually used in the
detection problem. We denote log likelihood ratios (or log probability ratios of any sort)
using the symbol h. It is convenient to use the mapping from binary values {0,1} to signed
binary values { 1, - 1 } defined by

For present purposes, we assume that the Z t data are mapped to modulated signals by

Let

P (x t = l lr)
P (x t = olr)’

h(xt Ir) = log (14.32)

where r is the entire observed sequence. Using (14.9), and noting that the l /p (r) factor
cancels in numerator and denominator, the likelihood ratio can be written

(14.33)

14.3 Turbo Decoding Algorithms 603

Assuming that systematic coding is employed and substituting (14.27) into (14.33) we obtain

plus the log likelihood ratio of the prior probabilities,

P(xt = 1)
P(xt = 0)

hp,t = log

plus the extrinsic information he, t ,

The extrinsic information he,t is the information that is passed from one decoder to the next
as the turbo decoding algorithm progresses. This extrinsic information can be computed
from (14.34) by

he,? = Uxtlr) - hp,t - k , t . (14.35)

Based on this, Figure 14.8 illustrates one way of implementing the turbo decoding. The
conventional MAP output of the decoder (expressed in terms of log likelihood ratio) is
computed, from which the extrinsic probabilities are computed from (14.35).

We now examine some manipulations which can simplify the computation of some of
these log likelihoods.

Log Prior Ratio hp,r

The log ratio of the priors
P (x t = 1)
P (x t = 0)

h p , t = log

604 lbrbo Codes

I -
I
I
I
I
I
I
I
I

I - I ’ I are in interleaved order D e - I n t e r p h(Xt i r)
L - - - - - - - - - - - - - - - - - -

Quantities inside the dashed box

(Decoder output
probabilities)

n-

Figure 14.8: A log likelihood turbo decoder.

can be solved for the prior probabilities. Since P (x t = 1) + P (x t = 0) = 1 and since

it is straightforward to show that

(14.37)

For x E {0, 1) and 2 = 2x - 1 E [- 1, l}, (14.36) and (14.37) can be combined together as

The factor in brackets does not depend upon the value of xt and so for many circumstances
can be regarded as a constant.

14.3 mrbo Decoding Algorithms 605

Log Posterior ~ j o j

For an AWGN channel with variance a2 and BPSK modulation as in (14.4), A:oj can be
computed as

exp[-&(r,(o) - 2 a r , (O)
Ajo; = log = log - - = LJ/? p(rr(o'lat(o) = a)

P('r (0) la, (0) = -a> exp[- (r,(O) + 4 7 2 1 a2
(14.39)

where

is the channel reliability, essentially just the signal to noise ratio. The quantity A:oj = L,r,(')
is often called the soft channel input. The posterior density can be expressed in terms of the
channel reliability :

(14.41)

where the Ci are constants which do not depend on 2 .

14.3.13 Statement of the Turbo Decoding Algorithm

Let us combine the equations from the last section together and express iterations of the turbo
algorithm. Let A[z~~](xtlr) denote the log likelihood ratio computed at the lth iteration of
the j th constituent encoder, j E { 1,2}. Similarly, let A t / ' denote the extrinsic probability
at the lth iteration for the j th decoder. The basic decomposition is described in (14.34).
However, in light of the turbo principle, we replace the prior information lip,, with the
appropriate extrinsic information from the other decoder. Furthermore, we express the log
posterior A6o; in terms of the soft inputs LCr/').

Based on this notation, the turbo decoding algorithm (suppressing the interleavers) can
be expressed as

[I - 1 21
+ - v

channel input extrinsic from other new extrinsic

A['g'](x,lr) = ~,r , (') + Ae, t

decoder used as prior
(14.42)

channel input extrinsic from other new extrinsic
decoder used as prior

for 2 = 1,2, . . . , M, with hLo;21 = 0 to represent uniform prior probabilities.

14.3.14 Turbo Decoding Stopping Criteria

The turbo decoding algorithm is frequently run for a fixed number of iterations, which
is determined by the worst case noise degradation. Most codewords, however, are not

606 'hrbo Codes

corrupted by worst case noise and therefore need fewer iterations to converge. A stopping
criterion is a way of determining if the decoding algorithm has converged so that iterations
can be terminated. A properly designed stopping criterion reduces the average number of
iterations, while maintaining the same probability of bit error performance.

We introduce here three different stopping criteria.

The Cross Entropy Stopping Criterion

From (14.42) it follows that
K21- [L11

h,,t . ~[1321(xtlr) - A['.'] (xtlr) = A,,t

We define A:,; = A:;:] - A::]. From the likelihood A['~j](xt1r) of (14.42), the probability
of a bit output can be computed as

(14.43)

Let P[',jl(i(r) denote the probability of the entire sequence 2,

P['J(glr) = ~ [' , j l (z o , 21, . . . ,?N-I Ir).

Under the assumption that the elements in i are statistically independent we have

N-1

P['Jl(i\r) = n p['Jl(iklr).
k=O

We define the bit estimate at the Zth iteration as
Our first stopping criterion is based on the cross entropy, also known as the relative

entropy or the Kullback-Leibler distance introduced in Section 1.12. The cross entropy
between two probability distributions P and Q taking on values in some alphabet A is

= sign(A[1,2](xtIr)).

(14.44)

The cross entropy is a measure of similarity between the two distributions P and Q. From
Lemma 1.2 we have that D(PJ 1 Q) = 0 if and only if P = Q, that is, if the distributions are
identical.

We use the cross entropy as a measure of similarity between the distributions P[',21
and P['>l]. Since convergence implies a fixed point of the turbo decoding iterations, at
convergence we should have = P['>l]. In practice, we determine convergence has
occurred when the cross entropy becomes sufficiently small.

We denote the cross entropy at the Ith iteration by T(Z):

where the expectation is with respect to the probability P[',21(i) . Under the independence
assumption,

(14.45)

14.3 Turbo Decoding Algorithms 607

From the definition of the expectation

and, using (14.43), it can be shown that

A[ll 1 + exp[-~[l~~l(xklr)] e,k

1 + exp[-h['-2l(xkIr)] *
+ log E P " W k) [Log ;::::;3 = - 1 + exp[~[',2](nkIr)]

(14.46)

We now simplify this expectation using approximations which are accurate near conver-
gence. We assume that the decisions do not change from among the different decoders,

sign(h[l*l](xkIr)> = sign(A["21(xkIr)) = 4;'.
We invoke the approximation log(1 + x) M x, which is true when Ix I << 1. Then it can be
shown (see Exercise 9) that

so

Taylor series expansion and write

Substituting this into (14.45) we obtain, using the fact that (k!1)2 = 1,

Having found this approximate expression, we take as our stopping criterion: Stop if T (1) <
some threshold. Taking the threshold to be something in the range of 10-2T (1) to 10-4T (1)
seems appropriate. For example, stopping when T(1) < 10-3T(l) is common.

It has been found experimentally that using this stopping criterion results in at most a
few percent error degradation compared to a fixed number of iterations, with the amount of
degradation being somewhat higher as the number of fixed iterations increases. At the same
time, there is a significant decrease in the average number of iterations, with the amount of
improvement being a function of the maximum number of iterations.

The Sign Change Ratio (SCR) Criterion

A stopping criterion which is simpler to compute than the cross entropy can be obtained
as follows. Let C(Z) denote the number of changes of sign of A!,;, t = 0, 1, . . . , N - 1
compared with At;']. Experimentally it has been found that if C(1) < E N , where E is
typically in the range of 0.005 to 0.03, then the stopping criterion performance is similar to
that for the cross entropy criterion.

608 Turbo Codes

The Hard Decision Aided (HDA) Criterion

A third stopping criterion is obtained by comparing sign(h[z,21 (x t Ir)) and sign(h['-1,21 (x t Ir)).
When the signs are the same for all t E {O, 1, . . . , N - l}, then the decoding stops.

14.3.15 Modifications of the MAP Algorithm

The Max-Log-MAP Algorithm

The MAP algorithm is significantly more complex than the Viterbi algorithm, so that it is of
interest to reduce the computational complexity of the MAP algorithm, if possible, even at
the expense of some performance. In this section we introduce the max-log-MAPalgorithm,
which propagates approximations to logarithms of the a and jl probabilities. This not only
avoids some potential roundoff properties, but also has lower complexity than the MAP
algorithm. Unfortunately, the algorithm is only approximate, so that some performance is
lost. A further modification which recovers the lost performance with a slight increase in
computational complexity is then discussed.

Define

Let us attempt to develop a recursion for computing At+l (4). From (14.12) we have

(14.48)

At this point, an approximation is made in the interest of developing a fast algorithm:

Using this approximation in (14.48) we obtain

(14.49)

(14.50)

Thus to find At+l (q) , we add a branch cost Tt (p , q) to A t (p) , then compute the maximum
value of the result over all paths leading to state q. The selected path to state q can then
be thought of as the survivor path. The result is exactly the same operation as the Viterbi
algorithm! The computational complexity is thus essentially the same as for the Viterbi
algorithm: for each pair of merging paths, two additions and one comparison are required,
except that the branch cost r is a posterior probability for the log-MAP algorithm and is
a likelihood for the Viterbi algorithm. In the max-log-MAP algorithm At (p) provides the
(approximation of the logarithm of the) most probable path through the trellis to state p ,
rather than the probability of any path through the trellis to state p .

14.3 Turbo Decoding Algorithms 609

The recursion for Bf (4) is obtained as follows:

(14.51)

This amounts to a Viterbi algorithm working backward.
The branch metric rf (p , q) is computed using (14.27):

rt(p, q) = ln(P(xt = x (p 3 ~))) + ln(p(r/O’lxt>> + ln(p(r/’)Ia(’) = a(’,p,*))).

Using (14.38) and (14.39) (and a similar expression for p(r,(l)lxt = 1)) and throwing away
unnecessary constants, we can write

The log posterior h(xt Ir) is, using (14.33),

C (P , q) E ~ , ar(p)Yr(p, q)Bt+l(q)

C(p,q)Eso at(P>Yr(P, 4)Bt+1(4)

C(P,q)Es, ~ X P [A ~ (P) + r r (P , 4) + ~ t + l (q)]

C(p,q)eso exp [A t (P) + rr (P9 9) + Bt+l(S>]

h(xtlr) = log

= log

M max (Ar(p) + rt(pI 4) + &+l(q)) - max + r t (p , 4) + Bt+i(q)).
(P4)ESI (P 4) E S O

(14.53)

This may be interpreted as follows [141, p. 1321: For each bit xt, all the transitions from
\Irt to \Irf+l are considered, grouped into those which might occur if xf = 1 and those
which might occur if xf = 0. For each of these groups the transition which maximizes
A t (p) + I‘ t (p , q) + Bf+l(q) is found, then the posterior log likelihood is computed based
on these two optimal transitions.

If only the At (p) values were needed, the max-log-MAP algorithm would have com-
plexity essentially the same as the Viterbi algorithm; however, Bf (p) must also be computed.
It has been argued [355] that the complexity of the max-log-MAP algorithm is not more
than three times that of the Viterbi algorithm. However, the storage requirements are higher,
since the values of A t @) and B t (p) must be stored. The storage can be reduced however,
at the expense of an increase in computational complexity [355, 3561.

14.3.1 6 Corrections to the Max-Log-MAP Algorithm

The approximation (14.49) has been shown [295] to result in approximately 0.35 dB of
degradation compared to exact decoding. Another algorithm is obtained by using the “Ja-
cobian logarithm”:

ln(exl + ex*) = max(x1, x2) + l n (l+ e- ’xl -x2’) . (14.54)

610 Turbo Codes

Let us write this as

ln(ex' + ex*) = max(x1, x2) + f c (S) = g(xi, x2),

where S = 1x1 - x2I and where fc(6) is the "correction" term. Since the fc(6) function
depends upon only a single variable, it is straightforward to precompute it and determine
its values in use by table lookup. It has been found [295] that sufficient accuracy can be
obtained when only eight values of fc(S) are stored for values of 6 between 0 and 5.

In order to handle multiple term summations, the functions are composed as follows:

If a lookup table for f, is used, the computational complexity is only sightly higher than
the max-log-MAP algorithm, but the decoding is essentially exact.

14.3.17 The Soft Output Viterbi Algorithm

For turbo decoding, an alternative to MAP-type decoding algorithms (MAP, log-MAP, or
max-log-MAP) is the soft output Viterbi algorithm (SOVA). This differs from the conven-
tional Viterbi algorithm in two ways, which in combination make the algorithm suitable for
use in decoding turbo codes. First, SOVA uses a modified path metric which takes account
of prior probabilities of the input symbols. Second, SOVA produces a soft output indicating
the reliability of the decision.

Before reading this section, the reader is advised to consult Appendix A, which intro-
duces notation pertaining to arithmetic on log likelihood functions.

Recall that for the conventional Viterbi algorithm, the branch metric pt (rt , x(Pyq)) =
log p(rtIx(P3q)) was used (see (12.17)), where p(rtlx(P,q)) is the likelihood of the output
x(P,q) on the branch from state p at time t to state q at time t + 1, based on the observation
rt. We can incorporate prior information very simply: Use the logarithm of y t (p , q) of
(14.27) as the branch metric, which is the same as r t (p , q) (here assuming a single parity
bit and systematic encoding):
pt(rt, x(p.4)) = log(p(r, (0) 1xt)> + log(p(r:')Iu(') = u(' ,~ ,q))) + log(P(xt = x(p'q)>>,

where the first two terms are equivalent to the log likelihood (for this n = 2 systematic
code), and the third term represents the prior probabilities. As is evident from (14.52), this
can be readily computed:

This has an interesting interpretation. When the channel is good, so that L , is large compared
to the prior reliability Ihp,t(, then the decoder relies more on the channel outputs rt. On
the other hand, when the channel is poor, so that L , is small compared to the reliability
Ihp,t 1, then the decoder relies more on the reliability. Readers familiar with the Kalman
filter will notice a similarity to the update of a Kalman filter: the Kalman filter relies more
on observations when the observations are more reliable. (This attribute is common to all
Bayesian methods.) Using the new branch metric, the path metric Mt (p) is (essentially)
equal to log p(x;-' Irh-'), where xh-' denotes the sequence of inputs from time 0 to time
t , and rk-l denotes the sequence of observations from time 0 to time t - 1. We thus can
compute the likelihood ~

t-1 t-1 p(xo Ir0 = CeMr(P) (14.55)

14.3 nrbo Decoding Algorithms 611

Let us consider now how to obtain soft outputs indicating the reliability of the decision
for binary codes. Suppose that two paths merge at state q at time t + 1, having path metrics
M:Yl (q) and M::l (q) , with M:yl (q) > M::l (4). The path with metric M:yl (q) is thus
selected as the survivor path. Define the path metric difference as

The probability of a correct decision is obtained by normalizing the likelihood of the choice
by the likelihoods of all competing choices. Using (14.55), we obtain

pt':, (9) eA:+l
- - P(correct decision at Qt+l = q) =

e ~ , ' : : (4) + e~j:,(4) 1 + eA:+l'

The log likelihood ratio is

(14.56) In = A;+l.

Thus the path metric difference where the paths merge in the Viterbi algorithm is equal to
the log likelihood ratio of the probability that the decision is correct.

Application of this concept is somewhat complicated because of delayed decisions.
Recall that the Viterbi algorithm typically makes a decision about a bit it after some window
of decoding delay, typically about five constraint lengths. Let us denote the decoding delay
by 6. At time t , a decision is made about a bit 2,-6. Consider the window on the trellis in
Figure 14.9, where 6 = 6. (For simplicity, not all paths to time t are shown.) The surviving
path sequence selected at time t , denoted as qt, is shown with a bold line; its metric is
denoted as M!') (p r) . The 6 paths which were discarded by the Viterbi algorithm over this
window are also shown. Let A: denote the path metric difference between the metric along
the surviving path \y, and the paths discarded by the Viterbi algorithm at a lag of 1 steps
back from t , 1 = 0, 1, . . . , 6 - 1. We here refer to the path which was discarded at time
t - 1 as the Zth path. Let Zt-6 denote the input bit along the selected path at time t - 6, and
let Z:-i denote an input bit at time t - i along the lth path.

If the bit Zfms on discarded path 1 is equal to Z,-8, then we would have made no bit error
if we would have selected the discarded path. In this case, the reliability of this bit decision
is 00. If it[-& # Zt-s, then there would be a bit error along the Zth path, which we denote as

e tdg = i t - 8 @ xt-6.

P(correct decision at Qt+l = q)
1 - P(correct decision at Qt+l = q)

-1 -1

Here, @ denotes addition in G F (2) , with identity 1:

1 @ 1 = 1 1@-1=-1 - 1 @ 1 = - 1 -1@-1=1. (14.57)

The log likelihood value of the bit error is, by (14.56), equal to A:. Combining these two
cases we have

(14.58)

Each path provides evidence about the likelihood that Zt-a is correctly decoded. The total
error resulting from the sum of all possible discarded paths for Zt-s is

6-1

1 =o

612 'hrbo Codes

t -

J rn

Figure 14.9: Trellis with metric differences and bits for SOVA.

We take the log likelihood ratio of &-s to be
8-1

W t - s) = -6-8 E V 2 f - s) . (14.59)

where the factor .Zt-8 sets the sign of the likelihood ratio and the sum of the errors represents
the accumulation of evidence.

By (A.4) and (14.58), this sum is over only those indices I where .Zt-s # 2:-8. Using
(14.58) we can write (14.59) as

l=O

8-1

1 =o
Finally, using the approximation of (A.5), we can write

A(,G-~) = zt-s min A;. (14.60)
l€(O,l, ..., 6-11

The reliability of the bit decision for .Zt-s thus depends on the least reliable path decision
which determines the path selection.

Implementation of the SOVA algorithm requires storing not only the path metric to each
state, but also the metric difference A,. The sequence 2f-i is also updated for each decision.
When a decision is made, the reliability of the decision is produced according to (14.60).

14.4 On the Error Floor and Weight Distributions

In this section we discuss briefly two questions relating to the performance of turbo codes.
These questions are: Why is there an error floor? and What makes turbo codes so effective?
Other discussions along these lines appear in [303].

14.4.1 The Error Floor

As observed from the plot in Figure 14.1, there is an error floor associated with turbo codes,
so that for moderate to high SNRs, the probability of error performance fails to drop off as

14.4 On the Error Floor and Weight Distributions 613

rapidly as it does for low SNRs. This can be explained as follows. The probability of bit
error for a turbo code can be approximated just as for convolutional codes. Thinking of the
set of codes as block (N I R , N) codes, there are 2N codewords. Then the probability of bit
error can be bounded as [303, p. 2431

where wj is the weight of the message sequence of the ith message and di is the Hamming
weight of the codeword. Grouping together codewords of the same Hamming weight, the
bound on the probability of bit error can be written as

where Nd is the multiplicity of codewords of weight d, and

- wd

Nd
Wd = -,

where Wd is the total weight of all message sequences whose codewords have weight d.
Thus I%d is the average weight of the message sequences whose codewords have weight d.
The quantity dfree is the free distance of the code, the minimum Hamming distance between
codewords. The upper limit N / R of the summation comes from neglecting the length of
the zero-forcing tail, if any.

As the SNR increases, the first term of the sum in (14.61) dominates. The asymptotic
performance of the code is thus

where Nfiee is the number of sequences at a distance dfree from each other and is
the average weight of the message sequence causing the free-distance codewords. When
plotted on a log-log scale (e.g., logarithmic probability with &/No in dB), the slope of Pb
is determined by dfree. If there is a small dfree, then the slope is small.

The error floor, which appears at higher S N R s , is thus ostensibly due to the presence of
a small dfree, that is, due to low weight codewords.

Why should there be low weight codewords in a turbo code? We note first that the
presence of a single 1 in the input sequence x can lead to many nonzero values in its parity
sequence. If xi = 1 for some t and x is zero at all other positions, then the encoder leaves
the zero state when xr arrives. Since the encoder is recursive, the remaining sequence of
input zeros does not drive the encoder to the 0 state, so a sequence of 0s and 1s continues to
be produced by the encoder. For example, for the encoder whose trellis is shown in Figure
14.4(b), a 1 followed by a string of 0s produces the parity sequence {l, 0, 1,0, 1, 0, . . .}.
This alternating sequence output is typical of many recursive encoders. Having a high
weight code sequence for a low weight input is one reason why recursive encoders are used
in turbo encoders. If xi = 1 happens to occur near the end of the input sequence, then the
parity sequence v(l) has low weight. But the interleaver may produce a sequence x’ whose
nonzero value occurs earlier, resulting in a parity sequence d2) of higher weight. From

614 n r b o Codes

one point of view, this is one of the sources of strength of turbo encoders: if one of the
parity sequences has low weight, then there is a reasonable probability that the other parity
sequence has higher weight. There are thus codewords with high weight.

Consider now a low-weight input sequence x that results in a low weight parity sequence
in dl). For example, a sequence of all zeros, followed by a single 1, so that X N - ~ = 1.
This would result in a parity sequence with wt(v(')) = 1. More generally, there might be
a single 1 appearing somewhere near the end of x. This would result in a low weight v(').
When x is permuted, the resulting sequence may have the 1 appearing early in the sequence,
causing the second encoder to leave the 0 state early on, after which, as mentioned, a parity
sequence d2) of appreciable weight might be produced.

But circumstances may make it so that the second parity sequence also results in a low-
weight codeword. In the first case, suppose that the parity sequence d2) is in fact a { 1, O}
alternating sequence, and that the parity sequences are now punctured with a puncturing
phase that punctures all the 1s. All the weight from d2) is removed, so the weight of the
codeword depends only upon the weight of x and d ') , which may be very low.

A low weight codeword could also be obtained another way. If the interleaver is such
that the single 1 appearing near the end of x also happens to appear near the end of x', then
regardless of the puncturing, both v(') and d2) are low weight.

Thus it may occur that a sequence x which produces a low weight d') can, after inter-
leaving, produce a sequence x' which would also produce a low weight d 2) . At this point
in the state of the art, methods of designing encoders and/or interleavers which completely
avoid the low weight codeword problem are unknown.

14.4.2 Spectral Thinning and Random lnterleavers

The difficulties of low-weight codewords notwithstanding, turbo codes are outstanding
performers. This is because, while there are low weight codewords, there are not many
of them! As mentioned, the interleaver helps ensure that if one parity sequence has low
weight, the other has higher weight with high probability.

The distance spectrum of a code is a listing of the (N d , w d) information as a function
of the codeword weight d , where N d , again, is multiplicity of codewords at weight d , and
w d is the total weight of the message sequences producing codewords of weight d. Turbo
codes are said to have a sparse distance spectrum if the multiplicities of the lower-weight
codewords is relatively small. Since each term in the probability bound in (14.6 1) is scaled
by the multiplicity N d , higher multiplicities result in more contribution to the probability of
error, so that a higher S N R must be achieved before the probability of error term becomes
negligible.

For example, for the (37,21,65536) code, the distance spectrum computed using weight-
2 message sequences, when the set of turbo codes is averaged over all possible interleavers,
is [303]

d N d w d

6 4.5 9
8 11 22
10 20.5 41
12 75 150

(This data was found using the algorithm described in [306].) Note that N d increases
relatively slowly with d . Convolutional codes, on the other hand, frequently are spectrally

14.4 On the Error Floor and Weight Distributions 615

dense, meaning that Nd increases much more rapidly with d .
We now argue that the sparse distance spectrum is typical for long interleavers. The

argument is based on enumerating aspects of the weight behavior of the codes, averaged
over the set of all possible random interleavers. This argument is referred to as random
interleaving [19, 3031. The sparse distance spectrum for turbo codes, compared to the
distance spectrum of convolutional codes, is referred to as spectral thinning.

To characterize the weight spectrum, define the input redundancy weight enumerating
function (IRWEF) A (W, 2) [2 11. The IRWEF A (W , 2) is defined as

w z

where is the number of codewords produced by message sequences x of weight w and
parity sequences d l) and d2) of combined weight z . The quantities W and Z are formal
variables used in the series expansion. Our interest here is not in the entire IRWEF A (W, Z),
but in the relationship between the low weight codewords of the turbo code and A w , z . This
requires enumerating possible state sequences in the constituent encoders.

In the first encoder, a message sequence x of weight w gives rise to a sequence of states
* (l) . We say that a detour occurs in the state sequence if a contiguous sequence of states
deviates from the zero state then returns to the zero state. Let nl denote the number of
detours in \Ir(’) and let 11 denote the total length of the detours. Let dl = 20 + z1 denote
the weight of the message and first parity word. Similarly, the permuted sequence x’ gives
rise to a state sequence W(2) in the second encoder; we denote the number of detours and
the total length of the detours in W(2) by n2 and Z2, respectively. Let d2 = w + 22 denote
the weight of the message and second parity word.

Example 14.3 Let x = [0, 1 ,0 , 0, 0, 1,0, 0, 0, 0, 1, 0, 11 and the interleaved bits x’ = [l, 0, 0, 0, 1,
1, 0, 0, 0, 0, 1,0,0] be applied to the encoder of Example 14.12. The parity sequences are

“ (l) = [O, 1,0, 1,0,0,0,0, o,o, 1,0,0] “(2) = [1,0, 1,0,0, 1,0, 1,0, 1, l , l , 11.

Then dl = 7 and d2 = 12. The combined weight of the parity bits is z = 11. The presence of this
codeword contributes one codeword “count” to the coefficient A4,12.

Figure 14.10 shows the state sequences for this codeword. The state sequence \Y(’) has nl = 2
detours whose total length is Z1 = 8; the state sequence \Ir(2) has n2 = 2 detours whose total length
is Z2 = 13. 0

Suppose the interleaver of length N is chosen at random, so there are N ! possible
interleavers. If we assume that an interleaver is chosen according to a uniform distribution,
then the probability of choosing any particular interleaver is 1 / N ! . Suppose the message
sequence x has weight w. Then the permuted sequence x’ also has weight w. Since all 1
bits of x are indistinguishable from each other, and similarly all 0 bits, there are w ! (N - w) !
interleavers out of the N ! that could all produce the same permuted sequence x’. The
probability that the mapping from x to x’ occurs (where both have the same weight) is

w ! (N - w) ! 1

This is also the probability of occurrence of the codeword that results from the input se-
quences x and x’.

2The interleaver is different from that example, since the length of the code is different.

616 Turbo Codes

state 1 11 = 8

state 0

state 2

state 3 Encoder 1

12 = 13
Encoder 2 state 3

Figure 14.10: State sequences for an encoding example.

Figure 14.1 1: Arrangements of nl = 3 detours in a sequence of length N = 7.

Consider a sequence x of weight w, with corresponding encoder state sequences *(')

and q(2) and having parity weights 21 and 22. Since the particular codeword occurs with
probability l/(:), the contribution to A,,ZI +L2, averaged over all random interleavers, is

1

The sequence of zeros connecting any two distinct state sequence detours has no effect
on either the weight of the message sequence or its parity sequence. The detours can be
moved around within the state sequence, without changing their order, without changing
their contribution to Aw,zl+Z2. Enumerating all the possible ways that the detours can be
moved around. there are

distinct ways that the nl detours can be arranged, without changing their order. Each of
these therefore results in a contribution to A,,,, f Z 2 .

Example 14.4 Figure 14.11 shows the different ways that n 1 = 3 detours (each of length 2, so that
I1 = 6) can be arranged, in order, in a sequence of length N = 7. There are

different arrangements. 0

This applies to the first constituent encoder. For the second constituent encoder, the number
of possible arrangements depends on whether the encoder ends in the 0 state. If the second
encoder ends in the 0 state, then there are

14.4 On the Error Floor and Weight Distributions 617

ways that the detours in \Ir(2) can be arranged in order, each of which contributes to the
same Aw,zl+z2. If the second encoder does not return to the 0 state, then the last of the n2
“detours” is not a true detour. There are thus

N - 12 + (n2 - 1)

ways the detours can be arranged, each of which contributes a codeword count to A w,z l + z 2 .

The overall average contribution to A,,,, +z2 for a particular pattern of detours in \Ir(’)
and \Ir(2) is

) (n z - 1

(N-ftl,+ni) (N-h+nz)
(14.62) n2

(3
if the last “detour” of the second encoder ends in the 0 state, or

if the second encoder does not end in the 0 state.
Since our intent here is to explore codewords of low weight, we now assume that n 1 << N ,

11 << N , n2 << N , 12 << N , and w << N . (Because otherwise there would be either a large
number of short detours or a few very long detours, either of which would be unlikely to
result in codewords of low weight.) Under this assumption, the contribution to A w,zl +z2 of
(14.62) can be approximated as

(14.64)

and (14.63) can be approximated as

w ! NnI+n2-w-1 (14.65)

Each detour in the state sequence must be caused by a message sequence whose weight is
at least 2 (i.e., one message bit to deviate from the 0 state, and one message bit to return back
to the zero state), so w 3 2max(nl, n2). In (14.64), as the block length (and interleaver
length) approaches 00, the exponent Nnl+’Q-”’ += 0 unless w = nl + n2 and n1 = 122. In
(14.65), Nnt+n2-w-1 += 0 as N -+ 00 for any values of nl and 122. Thus the following
conditions must be met by the codeword in order for the codeword to contribute to A w,zt +z2 :

nl!(n2 - l)!

1. The second encoder must terminate in the all zero state.

2. Both encoders must make the same number of detours.

3. Each state detour is caused by a message sequence of weight 2.

If these conditions are not all met, then asymptotically receives no contribution from
the codeword.

The result of this is that, for large enough N , Aw,z for low-weight codewords is rather
small: the conditions simply are not met very often. Thus the distance spectrum for the
code is “thinned.”

One result of the thinned spectrum is that there are relatively few codewords of low
weight, hence relatively few codewords near to other codewords. Thus codewords selected
at random will, with high probability, be decoded correctly. However, when errors occur,

618 n r b o Codes

Write -
Read

Figure 14.12: A 6 x 6 “square” sequence written into the 120 x 120 interleaver.

they tend to occur in clusters, since a decoding failure can cause several stages of the trellis
to be corrupted in the BCJR algorithm. This observation is borne out in simulation: when
the decoder is run for many iterations at low probability of error, most blocks are completely
error free and errors, when they occur, tend to appear multiple times in the block.

14.4.3 On lnterleavers

The interleaver is a key component of the turbo encoder, since it allows the extrinsic infor-
mation passed into a decoder to be nearly independent of the observed data in the decoder.
As we now argue, a rectangular interleaver, which is probably the easiest from an imple-
mentation point of view, leads to degraded coder performance compared to a (pseudo-)
random interleaver, because it can lead to a large value of Nfiee. Thus it is important to use
an interleaver which is closer to a true random interleaver.

We observe that the interleaved message sequence x’ = lTx has the same weight as
the original message sequence x. In the general case, the parity sequences dl) and d2)
are different, however, because the inputs to the constituent convolutional encoders are
different. Thus if v(l) is a low-weight parity sequence, it may be hoped that d2) has higher
weight. However, if the interleaved sequence x’ not only has the same weight as x, but is in
fact equal to x, and if v(’) is low weight, then d2) has the same low weight, resulting in an
overall low-weight codeword. Furthermore, as we show, a rectangular interleaver provides
the possibility for many such low-weight codewords, resulting in a large Nfree.

We give a specific example based on a code using the transfer function in (14.1) in a
rate R = 1/2 code. Suppose that a rectangular (or square) interleaver is used in the turbo
encoder, so that the message data x is written row by row, and read out column by column.
Suppose, to be specific, that a 120 x 120 interleaver is used, resulting in a block code of
length N = 1202 = 14400 [303]. AS will be shown, Nfiee =28900 for this code. When
compared with the results for the N = 65536 code using a (pseudo-) random interleaver,
the performance is about 2 dB worse at a probability of bit error of Some of the
difference can be attributed to the shorter codeword length, but more significant is the fact
that Nfiee is so large.

Consider a message sequence

x = [...) 1 ,0 ,0 ,0 ,0 ,1 ,0 ,0) . . . , 0 ,1 ,0 ,0 ,0 ,0 ,1 ,0) . . . 1,

where there are zeros such that the four ones form a 6 x 6 square in the interleaver, as shown
in Figure 14.12. Thus the interleaved sequence x’ = llx is equal to x. The encoded parity
sequence v(’) has weight 4 after puncturing. Since x’ is equal to x, the parity sequence
v (~) also has weight 4. The entire codeword has weight 4 + 4 + 4 = 12. There are

14.5 EXIT Chart Analysis 619

(120 - 5) x (120 - 5) = 13325 different positions where the square pattern can be placed
in the interleaver. There are also rectangular message patterns of size 11 x 6 , 6 x 11, and
11 x 11 which also encode to sequences of weight 12. For the 6 x 11 and 11 x 6 patterns,
the weight depends on the “phase” of the puncturing, depending on which parity sequence
is punctured first, so only half of the positions result in the codeword of weight 12. There
are thus

1
2

2 x -(120 - 10) x (120 - 5) = 12650

different input sequences producing a weight-12 codeword. For the 11 x 11 pattern, the
weight of both sequences is affected by which is punctured first. As a result, only one-fourth
of the possible input patterns result in a weight-12 codeword, so there are (120 - 10) x
(120 - 10) = 3025 different codewords producing this pattern. Adding this up, we see that
there are 28,900 weight-12 codewords.

It is clear that, for this example, increasing the size of the interleaver only results in
more minimum codeword patterns, resulting in a larger Nfiee. In fact, NfrW grows roughly
linearly with N , so the effective multiplicity Nfree/ N does not change significantly for larger
rectangular interleavers.

While this example was described for a particular code, the principles apply fairly gen-
erally. Attempts to design some kind of structured interleaver to reduce the implementation
complexity frequently destroys the very randomness needed to obtain good performance at
low SNRs.

14.5 EXIT Chart Analysis

In this section we introduce the extrinsic information transfer (EXIT) chart, a powerful
method for analyzing iteratively decoded codes. While we present it here in the context
of turbo codes, it can also be used for LDPC code analysis (see Section 15.9). The EXIT
chart provides a means of characterizing a code which is both faster and more insightful
than simulating the code. It reveals that there is a decoding threshold, an SNR below which
correct decoding cannot be expected. EXIT analysis can also be used to search for good
codes, or codes whose decoding converges quickly. It can also be used to approximate the
probability of error in some regions of the curve.

The EXIT chart is expressed in terms of a likelihood ratio decoder. For our purposes, it
will be convenient to use the labeling shown in Figure 14.13. The a priori information is
labeled as Ai , i = 1 or 2, depending on which decoder is used. The extrinsic information
is Ej, the decoder output information is Di, and the soft input information is Zj, with
Di = Zi + A j + Ei. We will also denote the transmitted information - the i bits - as X.
The key concept of the EXIT chart is measuring the amount of information that the prior
A conveys about the transmitted data X and that the extrinsic information E conveys about
the data information X . This information is measured using the mutual infomation in the
form of Z(X; A j) and Z(X; Ei) . (Mutual information was introduced in Section 1.12.) TO
quantify these, it is necessary to model the distributions of the Aj and Ej data.

The soft output Zi from the channel is obtained from the log likelihood ratio

(where rt generically represents either systematic or parity information). Following (14.39),

620 lhrbo Codes

- c
Compute i '

Soft I (
Channel \. ,' - ,(l) MAP

Decoder

Figure 14.13: Variables used in iterative decoder for EXIT chart analysis.

,(O)

-

we have
z = Lcrt = L,(,,&.Z~ + n) ,

where n - N(0, a2), with a2 = No12 and L , = 2 a / a 2 . We can write

Z = /.Lz% + n z ,

where /.LZ = 2Ec/a2 and n z - N(0, a;), where

2 2 az = 4E,/a = 2 p z .

That is, we have a? = 2 p z . A Gaussian distribution having the variance twice the mean is
said to be consistent.

We make the following assumptions for the analysis:

,' - \ El

Inputs A1 D1

1. For sufficiently large interleavers, the a priori values Ai are fairly uncorrelated from
their respective channel observations Zi over many iterations.

2. The probability density functions of the extrinsic information Ei - which are the
prior inputs for the next decoder - approach Gaussian dstributions with increasing
iterations.

Mutual Information Between X and A Under these assumptions, we model the ~ p r i o r i
probability input Ai to an encoder as

Ai = /.LA& + nA, (14.66)

where nA is an independent Gaussian random variable with variance a: and zero mean.
We assume that Ai is also consistent, so CJ; = 2P.4. Then the conditional pdf of A can be
written as

r

(14.67)

14.5 EXIT Chart Analysis 621

Using the Kullback-Leibler distance introduced in (14.44), the mutual information Z (X ; A)
can be computed as (see Section 1.12)

where P X A is the joint probability distribution of 2 and A, and px and P A are the marginal
distributions. We assume that the 2 occurs with equal probability for s? E (*1} and that, as
mentioned, A is conditionally Gaussian. Then

- 4 (Y-+P
00 e 2 0 ~

log2(1 + e - Y) dy. (14.69)

We will denote this as ZA(C?A) = Z(X; A) . Since this is information regarding a binary-
valued random variable, we have the limits 0 5 Z (X; A) 5 1. We will furthermore define
the function J(a) = ZA(C?A) l u A = o . Since this is mutual information, it can be shown that
J(a) is a monotonic function of c?, so that there is an inverse:

UA = J-l(lA). (14.70)

= ‘ - L c x J &C?A

A

Mutual Information Between X and E We can similarly write the mutual information
between X and E . Following (14.68) we have

. ,
(14.7 1)

In this case, we do not consider E to be a Gaussian random variable. Instead, to compute
ZE, a simulated channel is used to produce data which are passed through a stage of the
decoder. Then, the extrinsic output of the decoder is used to estimate p~(y1.i) by creating
a histogram of the extrinsic outputs. This estimated density is numerically integrated to
produce ZE in (14.7 1). In this simulation, the parameter CTA corresponding to some value of
ZA via (14.70) is selected, and a Gaussian input vector A is generated according to (14.66),
which is then passed through the BCJR algorithm at some SNR Eb/NO. There is thus some
functional relationship between ZA, Eb/ No, and Z E , denoted abstractly as

I E = T(IA, Eb/NO)

or, for a fixed Eb/No, simply as

This function T denotes the “transfer” of information from the prior information A at the
input of a decoder to the extrinsic information E at the output of the decoder, which, in the
turbo decoding scheme, is then used as the prior input at the next decoder.

Figure 14.14 illustrates the qualitative shape of the function T (ZA) for various values of
S N R . As the S N R increases, the ZE available at the output of the decoder increases.

I E = T(IA).

622 Turbo Codes

0.2 0.4 0:6 0.8 1
Mutual information IA at input of encoder

“0

Figure 14.14: Qualitative form of the transfer characteristic ZE = T(ZA).

14.5.1 The EXIT Chart

The plot in Figure 14.14 shows the mutual information ZE at the output of a single decoder
as a function of the mutual information ZA at the input of the decoder. Let us now consider
how this curve affects an iterative decoder. The extrinsic information El at the output of
the first decoder is permuted and used as the prior information A2 at the next decoder. Let
Z:’ denote the mutual information I (X; A1) at the nth iteration of first the decoder, starting

with zero a priori knowledge I:’ = 0. Similarly let Zgl = Z(X; E l) denote the mutual

information Z(X; El) at the output of the first decoder at the nth iteration, Zgl = Ti(Z:’).
This is forwarded to the next decoder to become Z E 1 = Zgl. This passes through the second

decoder to become Izl = T2(ZE1), which in turn is passed back to the first decoder as the

information.)
To portray this iteration graphically, the mutual information function ZE, = T(ZA,) is

reflected across the line y = x and plotted, so that the abscissa and ordinate of the plot are
interchanged. Then starting at ZI1 = 0, each ordinate becomes an abscissa for the next
iteration. Figure 14.15(a) shows the information decoding in a sequence of decoding steps,
following the arrows. Ultimately (in this case), a point is reached where ZA = 1. If the prior
information about a bit is sufficiently close to 1, then we conclude that the prior information
is sufficient to accurately decode the bit. Thus, in this case, the decoder iterates until a
correct decoding occurs. There is a “channel” or gap between the two curves in Figure
14.15(a). The decoding proceeds by walking through this channel.

Figure 14.15(b) shows how the iterative decoding process can break down. In this case
T (ZA) is plotted for a lower SNR, producing a function T (ZA) which crosses the y = x line.
As a result, the iterations get stuck at the crossover point. The decoder is unable to “exit”

prior, z ~ + ’ l = ZE2 [el . (Note that interleaving or de-interleaving does not change the mutual
I

14.6 Block n r b o Coding 623

c *

- w
- -

l a n

the channel in the EXIT chart.
Clearly, there is a threshold phenomenon taking place: for a sufficiently large SNR,

after a sufficiently large number of iterations the decoder is able to decode correctly. For a
sufficiently small SNR, the “channel” in the graph shuts down. The decoder never reaches
the point that there is sufficient information about X in the extrinsic information to be able
to correctly decode, no matter how many times the decoder iterates.

I i-irst aecoaer -
I

I
- - 8 Second decoder

I
I ,

v)

E
8

- a “0 0.2 0.4 0.6 0.8 1
output IE2 of second decoder becomes input IA, of first decoder

(a) Decoding above threshold.

- - a Second decoder

ii nl I -
a “0 0.2 0.4 0.6 0.8 1

output IE2 of second decoder becomes input IA, of first decoder

(b) Decoding below threshold. The decoder cannot get
past the pinchoff point.

Figure 14.15: Trajectories of mutual information in iterated decoding. The iterations follow
the arrows.

Clearly, the farther the EXIT chart is from the line y = x, the faster the ZA will converge
to 1. When the EXIT chart remains above the line y = x, convergence occurs. However,
if it remains too near the y = x line, then convergence is slowed. Such a line, having a
derivative with value nearly equal to 1, is said to be “flat.”

The EXIT chart reveals something fundamental about the iterative decoding process.
As the SNR approaches the threshold, the number of decoding iterations must increase,
because each step through the EXIT chart is smaller. This behavior occurs independent of
the particular decoding algorithm used, or, as will be discussed in chapter 16, regardless of
the fact that there are cycles in the associated factor graph. Decoding near capacity seems
to be intrinsically difficult.

14.6 Block Turbo Coding

While the turbo code examples up to this point in the chapter have employed convolutional
codes as their constituent codes, other block codes may also be used. As an example, Figure
14.16 illustrates a turbo coder built using parallel concatenated BCH codes in what is called
Turbo BCH coding. One particular structure for the interleaver is suggested in Figure 14.17.

624 mrbo Codes

(1)
V t BCH

Encoder 1

Xt
* *

7

Puncturing
and Interleaver

n Multiplexing

(2)
V t BCH

Encoder 2
w *

x’ = n (X)

*

Figure 14.16: Turbo BCH encoding.

Figure 14.17: Structure of a particular implementation of a parallel concatenated code.

In this case, message data are written into a k2 x kl matrix. Data are read out in row order and
passed to encoder 1, and data are read out in column order - constituting a permuted order
- and passed through encoder 2. This framework is highly suggestive of the product codes
introduced in Section 10.4, except that there is no portion of the codeword corresponding
to the “parity on parity” that is present in a conventional product code. (Compare Figure
14.17 with Figure 10.5.)

Decoding of block turbo decoding proceeds as for the convolutional code: a decoder
is used for each constituent code which produces a soft output in the form of an extrinsic
probability, which is interleaved (or de-interleaved) and passed into the other decoder as a
prior. The primary difficulty, then, is how to obtain soft output decoders for the codes.

Soft decoding of each code can be accomplished using the BCJR algorithm on the trellis
representation for the code. To make the description explicit, we assume transmission over
an AWGN. To make the description even more explicit, consider the trellis representation
for the cyclically encoded (7,4,3) Hamming code with generator g(x) = x 3 + x + 1, shown
in Figure 14.18 (and also originally in Figure 12.34). Unlike convolutional codes, where
each branch of the trellis may convey several bits of systematic and/or parity information,

14.6 Block n r b o Coding 625

State
000

001

010

01 1

100

101

110

111

\ /
Shift message in

(Input bit = output bit)

Shift parity out

(No input bits)

Figure 14.18: A trellis for a cyclically encoded (7,4,3) Hamming code.

each branch of the block code trellis carries only one bit of information, either message bits
(for the first k stages) or parity bits (for the last n - k stages). The transition probability
y t (p , q) is thus simplified compared to (14.27) and (14.52). We can write the transition
probability as (neglecting uninformative factors)

prior message or parity

The likelihood ratio can then be computed as

(14.72)

- - A p , t + h , t + L , r 9 (14.74)

where hp,t = A(&) is the prior information, hs,t = L,rt is the channel information, and

626 n r b o Codes

is the extrinsic information. Note that, unlike the convolutional coded case, the extrinsic
information depends only on a and /3 probabilities and not on any parity bits transmitted
with the systematic bits along a branch. Given y r (p , q) , the computation of the a and /3
probabilities is identical to that for turbo codes based on convolutional codes.

14.7 Turbo Equalization

14.7.1 Introduction to Turbo Equalization

In this section we introduce a decoding technique applicable to a channel model which differs
significantly from other channel models used throughout this book. Because of the close
connection of turbo equalization with turbo decoding, it is deemed to be an appropriate topic
to include here. In the rest of the book, the channel model has been a discrete memoryless
model, specifically, an adhtive noise channel in which the received signal rr is simply the
transmitted signal st corrupted by additive noise (typically either Gaussian or Bernoulli):
rt = st + nt . In this section, however, we consider the case that the channel has a response
characterized by a transfer function H (z) = ho + hlz-’+. - + h ~ z - ~ , so that the received
signal is

/ L \

Such a channel could arise, for example, in a multipath environment or bandlimited channel.
The degradation of the received signal due to the channel can be severe, so that it

is important to compensate in some way for the effect of the channel. Over the years,
considerable work has been done on receivers for such channels. Various approaches include
the following:

1. Linear equalization with a fixed filter f i (z) , so that r (z) f i (z) “looks” a lot like the
transmitted signal s (z) . The equalizer filter can be designed according to several
criteria, such as zero forcing (cancel all interference, but neglect the influence of
noise) or minimum mean-square error (minimize the average interference energy)
[276].

2. Decision feedback equalization, a technique in which decisions on previous outputs

3. Adaptive linear equalizers and decision feedback techniques, in which the receiver

4. Maximum likelihood sequence estimation (MLSE), in which the channel is regarded
as having a state determined by the previous L bits, and a Viterbi decoder is used to
decode [276].

5 . Maximum a posteriori decoding, similar to MLSE, except that the MAP (or BCJR)
algorithm is run. The latter two methods are arguably optimal, but run into compu-
tational difficulties because the number of states grows exponentially with the length
L of the channel response. (Conventional turbo equalization also suffers from this
problem.)

are fed back to cancel their influence in the received signal [276].

adaptively estimates the coefficients for the receiver (see, e.g., [276]).

6. Suboptimal variations and interpolations of these ideas (such as [310]).

14.7 'hrbo Equalization 627

Convolutional Interleaver Modulator
Encoder (e.g., BPSK)

I
I
I
I
I
I

soft De-
I

I
7 Convolutional Interleaver

Decoder
I

I
I
I

I
I
I
I

Interleaver -

Figure 14.19: Framework for a turbo equalizer.

Until recently, most work in this area employed a nearly tacit separation principle: the
equalization and detection was followed by the error correction decoding. However, the
advent of turbo decoding algorithms has led to the development of turbo equalization, in
which the channel impairments and the error correction are dealt with in an iterated structure.

14.7.2 The Framework for Turbo Equalization

A key observation is that if a convolutional encoder at the transmitter is followed by an
interleaver, then the convolutive effects experienced as the signal traverses through the
channel act like a second convolutional encoder, so the overall scheme acts like a serially
concatenated code, with an interleaver between them. It is thus amenable to turbo decoding.
Figure 14.19 shows the general framework for a system that can employ turbo decoding.
The interleaver serves to decorrelate the values, so that extrinsic information computed in
the decoder is nearly independent of the input values and can be used as a prior. In practice,
the length of the interleaver is on the order of the length of the channel response.

In the turbo decoder, the channel response is first accounted for using a MAP equalizer,
which produces information about the bits in the form of log likelihood ratios, h(xt Ir). The
prior information is subtracted, leaving an extrinsic information that is passed through the
interleaver and on to the convolutional decoder, where it is employed as a prior probability.
The output of the decoder is again bit information in the form of log likelihood ratios
h(xl Ir). The prior information associated with this is subtracted off, then the resulting
extrinsic information is sent back to the equalizer for another iteration.

All elements of this equalizer should by now be familiar, with the possible exception of
the MAP equalizer, which is described via an example.

Suppose fl-valued bits emerging from the convolutional encoder are denoted as fit
(where, for the moment, we simply think of these as a string of bits, without regard to which
are message bits and which are parity bits). The modulated bits are af = f i z z . Suppose

628 n r b o Codes

Figure 14.20: Trellis associated with a channel with L = 2.

that the channel has length L = 2, so that the received signal can be written as

rt = h o a i j , + h l f i i j t - I + h 2 f i i j t - 2 .

We now form the trellis associated with this channel by defining the state at time t to be the L
previous bits (& - I , ijr-2). Figure 14.20 shows the trellis associated with this channel. At a
state p = (i j t - l , iji-2) at time t , with the input ijt = i j (P s 4) leading to the state q = (S t , i j t - l)

at time t + 1, let the channel output (excluding the noise) be denoted as

s t b , q) = ho f i i j r + h i f i i j t - i + h 2 a i j t - 2 .

Then for AWGN, the likelihood function is

Based on this, a transition probability suitable for use with the MAP algorithm is

Yt(P3 4) = p(rtlsr(P3 q)) W t = f i (P . 4)) .

This can be subjected to the usual simplifications (e.g., expressed in log form, unimportant
terms ignored, etc.).

Once the transition probability y r (p , q) is established, the remainder of the MAP or
log-MAP algorithm follows exactly as outlined in Section 14.3.12. The resulting decoder
produces log likelihoods h(Zt Ir), from which the extrinsic probabilities can be extracted for
use in the convolutional decoder.

It is typical for turbo equalizers to have several dB of improvement compared to non-
turbo equalizers. For a comparative study, we refer the reader to [1411.

Of course, computing the transition probability, and hence the MAP decoding, requires
knowledge of the channel coefficients {ho, hl , . . . , h L } . A variety of methods of estimating
these are known. Many signals are prefaced with a training sequence which can be used
to establish linear equations for computing the coefficients, using, for example, a minimum
mean-squared error or least-squares criterion. Channel coefficients can also be estimated
“blindly” by averaging out the unknown bits using an EM (expectatiodmaximization) type
algorithm (see, e.g., [310]). Once transmission has begun, previous bits can be used to
re-estimate the channel coefficients if the channel is time-varying .

Lab 12: firbo Code Decoding 629

Programming Laboratory 12:

Turbo Code Decoding

Objective

In this laboratory, you will finalize the decoding algorithms
for the probabilistic form of the BCJR algorithm and use
this to construct a turbo decoder.

Background

Reading: Sections 14.2, 14.3.

Programming Part

1) Using the class definitions and declarations shown
in Algorithm 14.3, complete the function alphabeta
to compute 01 and using the forward and backward
passes. Use normalized computations. Verify that 01 and
,6 are computed correctly using the program test bc j r,
comparing the results with Example 14.2.

Algorithm 14.3 BCJR Algorithm
File: BCJR. h

BCJR.cc
testbcjr.cc

2) Use your BCJR algorithm in conjunction with
testturbodec2 to reproduce (part of) the data shown
in Figure 14.1 for a (37,21,65536) turbo code. Note: Do
not take the SNR too large, or the computations will take
excessively long.

Algorithm 14.4 Test the turbo
coder
File: testturbodec2. cc

de-

As currently implemented, the interleaver is a very sim-
ple random interleaver.

14.8 Exercises

14.1 A convolutional encoder uses the parity generator G(x) = 2. The length of the input
1 +x +x

sequence is 10. The interleaver is described by the sequence l7 = (9 ,4 ,2 ,7 ,0 ,6 , 1, 8 , 3,5).

(a) Draw the block diagram for the turbo encoder and the trellis for the convolutional code.
(b) The sequence x = [1, 1,0,0, 1, 0, 1, 0, 1, 11 is input to the turbo encoder. Determine the

(c) The sequence is punctured to obtain a rate R = 112 code by taking the even bits of vC1)
output sequences do), dl), d2) and v.

and the-odd bits of d2). Determine the output sequence v now.

f i s exercise is meant to introduce concepts related to turbo decoding.

Let rt be the output of an AWGN channel. Suppose that BPSK modulation is employed.
Let the transmitted signal st have energy Eb, where st = fi& and & E {fl}. Let

Show that

where Lc = 2 f i / 0 2 and A(&) = log e.
Suppose that the signal st is sent independently through two different channels, so the
received values are

U i t l r t) = Lcrt + A(.%), (14.75)

(1)

(2)

rt(') = sr + It,
rj2) = St + n, ,

630 n r b o Codes

where nj') and nj2' are independent. Show that

h(& I $) , rj2') = Lc, r y + Lc*rj2' + A(&). (14.76)

Now consider the simple (3,2,2) parity check code shown in Figure 14.21(a). The parity
check p i (across the rows) is defined by

p i = i i 1 63 xi2

and the parity check for the pi I (down the columns) is defined by

p; = x 1 j 63?2i,

where 63 is the GF(2) addition defined in (14.57). Explain why h(212 63pI Ir) is extrinsic
information for the bit 211. (Here the conditioning on r denotes conditioning based on
the entire set of received codeword data.) Denote this extrinsic information as &(21 I) - ,
that is, the likelihood ratio of the extrinsic information using the horizontal code parity
checks.
Note that, using the H operator defined in (A.3), we can write

Le(z11)- = hG12 63 ~11') = h(2121r) H h (~ l l r) . (14.77)

Suppose the channel input values Lcrt are as shown in Figure 14.21(b). Using (14.77)
and the approximate formula (A.2), determine the extrinsic information for 211, 212, 221
and X22 using the horizontal parity bits p i . That is, determine he(211)-, he(212)-,

hc(521)-, and &(222)-. Assume uniform priors. Computing this extrinsic information
constitutes the horizontal stage of decoding.
For example, for 21 1 , we have

L e (Z l 1) - = G 1 2 63 pllr) = h(2121r) H h (p 1 l r)

= (Lcri2 + h(212)) H h (p 1 Ir)

= Lcr12 H h (p 1 Ir)

(using, e.g., (14.75))

(assuming uniform priors)

= 1.5 EE 1.0 FZ 1.0

These likelihoods are available from Lcrt in Figure 14.21(b). Show that the extrinsic
information h e (i i j) - is as shown here:

For the second stage of decoding, determine the extrinsic information after the first vertical
decoding using the information fromthe first (horizontal) extrinsic information as the prior.
For example,

he(xl l) l = ~ (2 2 1 63 ~1 ~ r) = ~ (2 2 1 IT) EE h(pj I ~ I I

= (~ c r 2 1 + he(z21)-) EE ~ (p j ~ r)
= (4 + (-1)) 2.0 FZ 2.0.

Show that & (i l l) ' , he(212)1, he(221)/ , and he(222)' are as shown here:

+2.0 +0.5 E{
This completes the vertical stage of decoding.

14.8 Exercises 631

(a) A simple (3, 2, 2) parity
check code.

(b) Received values L , q .

Figure 14.21: Example for a (3 ,2 ,2) parity check code.

(Q The overall information after a horizontal and a vertical stage is

 xi,; Ir, -, 1) = Lcri; + he(xi;)- + h e (i i j) ' .

The addition is justified by (14.76), since after t h i s first complete round the three terms in
the sum are independent. Show that this information is as shown here:

+3.5 +2.5

(g) Decoding can be accomplished by taking the sign of the total likelihoods. Determine the

(h) If iteration continues, the information he(.fij)l is used as the prior for the next horizontal
decoded values after this round of decoding.

stage. Show that at the next stage, the extrinsic information is

(If iteration continues, then the independence assumption no longer holds, but is invoked
anyway.)

14.3 Suppose that a R = k / n convolutionally encoded sequence is passed through a BSC with
channel crossover probability pc . Determine the transition probability yj (p , q) for this channel.

14.4 In Example 14.2:

(a) Compute a; and a; using the received data r in the example.
(b) Compute pi and using the received data r in the example.
(c) Using the data provided in Table 14.1, compute P (x 0 = Olr) and P(x1 = Olr).

14.5 Show that the log likelihood of the sequence log p(r) = log p(r0N-l) can be written as

N

14.6 Given the log probability ratio h = log(P(X = l) /P(X = 0)), determine P(X = 1) and
P (X = 0). Show that P (X = x) can be written as P(X = x) = [e-A/2/(1 + e-A)]eiA/2,
where 2 = 2x - 1.

632 n r b o Codes

14.7 Show that (14.39) is correct.
14.8 Show that (14.46) is correct.
14.9 Show that (14.47) is correct. Hint: Consider separately the cases

x k = 1,

k[l,'l(xklr) >> 0, k[1,21(xklr) >> 0,

and

14.10 (Examination of the approximation (14.49).) Let x i = 1 and make a plot of x2 vs. log(exl +
eX2) - x2 for x2 in the range [1,201. Comment on where the approximation becomes particularly
accurate.

14.11 Show that (14.54) is correct.
14.12 Show how to obtain the approximation (14.64) from (14.62).
14.13 Show how (14.69) follows from (14.67) and (14.68).
14.14 The EXIT chart can be used to estimate the bit error rate after an arbitrary number of iterations.

(a) Argue that D is Gaussian distributed with variance u; and mean 6212, where

Using D = Z + A + E

a; =a ,+oA+uE. 2 2 2

(b) Show that the probability of bit error is therefore Pb
(c) Show that

Q(kd/ag).

8REb/No + J - ' (~ A) ~ + J - ~ (I E) *
2

14.9 References

Turbo codes were originally described in [28, 271; their decoding algorithm was somewhat
different than that described here, since they used a Gaussian random variable to represent
the extrinsic probability passed between the decoders. The original BCJR algorithm appears
in [111. The a! and B probabilities are also fundamental in hidden Markov models; see, for
example, [269,280,67]. The presentation here benefited from the discussion in [141, [303],
and [141]. The latter reference provides an extensive comparison between the various
decoding algorithms presented here as well as a wealth of information about turbo code
performance and tradeoff studies. Several tutorial expositions are also available; see, for
example [315]. A discussion of the weight distributions of turbo codewords appears in [21,
201. Discussion on the structure of the codewords appears in [294], while some discussion
of design issues appears in [20]. The paper [69] provides suggested tables of encoder
polynomials and suggests that the feedback coefficients for the encoder should be a primitive
polynomial.

The discussion on spectral thinning was drawn from [303], as was the discussion on
interleaving. For more on distance spectrum of turbo codes, see [259]. A more extensive
treatment of interleaving, discussing several different structured approaches to interleavers,
appears in [146, Chapter 31 and [6,7,72,328]. See also [12, 180, 329,641 for discussions
on interleaving.

14.9 References 633

The EXIT chart analysis is discussed in [336] and references therein.
Our discussion of the cross entropy stopping criterion is drawn from [134]. The other

stopping criteria are described in [311, 3121; see also [3801, [3841, [l l , and 13131.
The max-log-MAP algorithm appeared first in [295]. The SOVA algorithm is widely

attributed to [1321. It is also described in [13 1,1341. The essential equivalence of the SOVA
and max-log-MAP algorithm is discussed in [102].

Turbo block codes are discussed in [134]. Extensive simulation results of Turbo BCH
codes appear in [141]. For an alternative viewpoint based upon the Chase algorithm, see
[279] or [278].

On turbo equalization, see [343]. For an extensive, self-contained introduction to turbo
equalization, see [1901. The book [1411 provides detailed examples of turbo equalization.
An example of turbo equalization using LDPC codes combined with blind estimation of the
channel coefficients is in [127].

An excellent resource on material related to turbo codes, LDPC codes, and iterative
decoding in general is the February 2001 issue of the IEEE Transactions on Information
Theory, which contains many articles in addition to those articles cited here.

Chapter 15

Low-Density Parity-Check Codes
15.1 Introduction

Low-density parity-check (LDPC) codes were originally proposed in 1962 by Robert Gal-
lager [112, l 131. LDPC codes (sometimes called Gallager codes [217]) have performance
exceeding, in some cases, that of turbo codes, with iterative decoding algorithms which
are easy to implement (with the per-iteration complexity much lower than the per-iteration
complexity of turbo decoders), and are also parallelizable in hardware. There are other
potential advantages to LDPC codes as well. In a very natural way, the decoder declares a
decoding failure when it is unable to correctly decode, whereas turbo decoders must perform
extra computations for a stopping criterion (and even then, the stopping criterion depends
upon a threshold that must be established, and the stopping criterion does not establish that
a codeword has been found). Also, LDPC codes of almost any rate and blocklength can be
created simply by specifying the shape of the parity check matrix, while the rate of turbo
codes is governed largely by a puncturing schedule, so flexibility in rate is obtained only
through considerable design effort. Also, because the validity of a codeword is validated
if its parity checks, even when errors do occur, they are almost always detected errors (es-
pecially for long codes). As an additional boon on the commercial side, LDPC codes are
not patent protected. On the negative side, LDPC codes have a significantly higher encode
complexity than turbo codes, being generically quadratic in the code dimension, although
this can be reduced somewhat. Also, decoding may require many more iterations than turbo
decoding, which has implications for latency.

It is a curious twist of history that LDPC codes, which are among the best codes in
the world, should have been largely unnoticed for so long. Among the reasons that the
codes might have been overlooked are that contemporary investigations in concatenated
coding overshadowed LDPC codes, and that the hardware of the time could not support
effective decoder implementations. As a result, LDPC codes remained largely unstudied
for over thirty years, with only scattered references to them appearing in the literature,
such as [330, 371, 3701. Recently, however, they have been strongly promoted, beginning
with the work of MacKay [217,66,215,216]. Both historically and recently, LDPC codes
have been proved to be capable of closely approaching the channel capacity. In fact, the
proof of the distance properties of LDPC codes demonstrates such strong performance for
these codes that it has been termed a “semiconstructive proof of Shannon’s noisy channel
coding theorem” [217, p. 4001. In particular, using random coding arguments MacKay
showed that LDPC code ensembles can approach the Shannon capacity limit exponentially
fast in the length of the code. The powerful capabilities of LDPC codes have led to their
recent inclusion in several standards, such as IEEE 802.16, IEEE 802.20, IEEE 802.3 and
DBV-RS2.

15.2 LDPC Codes: Construction and Notation 635

15.2 LDPC Codes: Construction and Notation

We use N to denote the length of the code and K to denote its dimension and M = N - K.'
Throughout this chapter, only binary LDPC codes are considered (although they can be
constructed over other fields). Since the parity check matrices we consider are generally
not in systemic form, we usually use the symbol A to represent parity check matrices,
reserving the symbol H for parity check matrices in systematic form. Following the general
convention in the literature for LDPC codes, we assume that vectors are column vectors. A
message vector m is a K x 1 vector; a codeword is a N x 1 vector. The generator matrix G
is N x K and the parity check matrix A is (N - K) x N , such that H G = 0. We denote
the rows of a parity check matrix as

The equation aTc = 0 is said to be a linear parity-check constraint on the codeword c. We
use the notation zm = afc and call zm a parity check or, more simply, a check.

For a code specified by a parity check matrix A , it is expedient for encoding purposes
to determine the corresponding generator matrix G . A systematic generator matrix may
be found as follows. Using Gaussian elimination with column pivoting as necessary (with
binary arithmetic) determine an M x M matrix A;' so that

H = A i ' A = [Z A z] .

(If such a matrix A , does not exist, then A is rank deficient, r = rank(A) < M . In this
case, form H by truncating the linearly dependent rows from A,' A . The corresponding
code has R = K I N > (N - M) / N , so it is a higher rate code than the dimensions of A
would suggest.) Having found H, form

G = [y] .

Then H G = 0, so A , H G = AG = 0, so G is a generator matrix for A . While A may be
sparse (as discussed below), neither the systematic generator G nor H is necessarily sparse.

Definition 15.1 A low density parity check code is linear block code which has a very
sparse parity check matrix.

For reasons to be made clear below, the parity check matrix should also be such that
no two columns have more than one row in which elements in both columns are nonzero.

The weight of a binary vector is the number of nonzero elements in it. The column
weight of a column of a matrix is the weight of the column; similarly for TOW weight. An
LDPC generator is regular if the column weights are all the same and the row weights are
all the same. To generate a regular LDPC code, a column weight wc is selected (typically a
small integer such as w , = 3) and values for N (the block length) and M (the redundancy)

A matrix is said to be sparse if fewer than half of the elements are nonzero.

(This corresponds to no cycles of length four in the Tanner graph.)

lIn other chapters, n, k , andm are used to describe the code. In this chapter we use n and m as indices, suggesting
by them that they index length and redundancy components.

636 Low-Density Parity-Check Codes

are selected. Then an M x N matrix A is generated which has weight wc in each column and
row weight w, in each row. Attaining uniform row weight w , requires that wcN = WrM.
This structure says that every bit participates in wc checks and each check involves W r

bits. Such a regular code is called a (wc , w,, N) code (or a (w c , W r) code, if a sequence of
codes of increasing length N is considered). The design rate of a regular (w c , W r) code is
R = 1 - w c / w r , provided that all the rows are linearly independent. (Because rows may be
linearly dependent, the actual rate may be somewhat higher than the design rate.) Gallager
showed that the minimum distance of a typical regular LDPC code increases linearly with
N provided that w, 2 3. The parity check matrix need not be regular; codes having varying
column weights are in general superior to regular codes. Irregular codes are introduced in
Section 15.10.

The parity check matrix A may be generated at random with the appropriate column
and row weights (although there are some restrictions on column overlap which should be
met, as discussed in Section 15.11). We thus have, in constructive fulfillment of Shannon's
original proof, a random code that is, as we shall see, easily decoded.

Example 15.1

(15.1) 1 [1 1 0 1 0 0 1 1 1 0

1 1 1 0 0 1 1 0 0 1
1 0 1 0 1 1 0 1 1 0

A = 0 0 1 1 1 0 1 0 1 1
0 1 0 1 1 1 0 1 0 1

has column weight wc = 3 and row weight wr = 6. (Strictly speaking, A is not a sparse matrix, since
more than half of its elements are nonzero. However, it was chosen as a small matrix to illustrate
the concept of a random matrix with fixed-weight columns. Space considerations preclude explicit
presentation of more realistic parity check matrices.)

For a codeword c = [cl, 122, . . . , ~101, we must have

Cl + C 2 + C3 + C6 + C7 + C10 = 0,

Cl + C3 + C5 + C6 + Cg + Cg = 0,
etc. Thus, bits cl , c2, c3, c6, c7 and c10 participate in check z1. Also, from A it may be observed that
bit cl is involved in checks z1, z2 and z5. (The italicized elements of A are discussed below.)

Example 15.2 One way to construct a (wc, wr) parity check matrix is as follows. Construct the
matrix Ao,

A0 =

ri 1 ... 1

1 1 ... 1 I

with N / W r = M/wc rows and N columns. This defines a (1, w,) regular parity check code, but one
having minimum distance 2 (why?). Then we form A by stacking permutations of Ao,

15.2 LDPC Codes: Construction and Notation 637

where each ni(A0) denotes a matrix obtained by permuting the columns of Ao. Obviously, the
choice of the permutations determines the distance structure of the code. However, a random choice
of permutation will, on average, produce a good code. (This is an instance of the concentration
principle, which essentially states that a random code will, with high probability, have behavior like
the average code.) Gallager showed that if each permutation is chosen at random out of the N ! possible
permutations, then the average minimum distance increases linearly with N . Such codes are called
good codes. This is thus a rather constructive way of achieving Shannon’s original idea of random
codes. While the code is increasing in size, the column and row weight are fixed, which means that

0 the decoding complexity (per iteration) remains fixed.

Example 15.3 An example of an LDPC parity check matrix for a (3,4)-regular LDPC code due to
Gallager [1 131 is

A =

Agal1.m I Agall. txt
\ J

1
I I I 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0
o o o l o o o o l o o o o l o o l o o o
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

It can be shown that there are 13 linearly independent rows. The dimension of the code is thus
0 20 - 13 = 7, so we have a (20,7) code with actual rate R = 0.35.

In many LDPC codes, N is taken to be quite large (such as N > 10000) while the column
weight is held at around 3 or 4, so the density of 1s in the matrix is quite low. (A column
weight of w, = 2 has been found to be ineffective [217].)

Since the A matrix is sparse, it can be represented efficiently using lists of its nonzero
locations. In this notation, bits are typically indexed by n or n’ (e.g., c n l) and the checks are
typically indexed by m or m’ (e.g., z m) . The set of bits that participate in check Zm (i.e., the
nonzero elements on the mth row of A) is denoted

Thus we can write the mth check as

Zm = C cn.
neN,

The set of bits that participate in check zm except for bit n is denoted

The notation INm I indicates the number of elements in the set N m . These sets should be
considered ordered lists, with the ith element of Nm being indicated by N m (i).

The set of checks in which bit cn participates (i.e., the nonzero elements of the nth
column of A) is denoted

For a regular LDPC code, 1 Mn I = w,. Let

Mn = {m : Am, = l}.

M n - m = Mn\m
be the set of checks in which bit cn participates except for check m.

638 Low-Density Parity-Check Codes

Example 15.4 For the parity check matrix of (15. l),

N1 = [1,2, 3, 6,7, lo}, N2 = {1,3, 5, 6, 8,9}, etc.

MI = {1,2,5}, M2 = {1,4,5}, etc.

N2,1 = 13,5, 6,8,91, N2,3 = 11, $ 6 , 8,91, etc.

M2,i = 14,5}, M2,4 = {1,51, etc.

15.3 Tanner Graphs

Associated with a parity check matrix A is a graph called the Tanner graph containing two
sets of nodes. The first set consists of N nodes which represent the N bits of a codeword;
nodes in this set are called “bit” nodes. The second set consists of M nodes, called “check”
nodes, representing the parity constraints. The graph has an edge between the nth bit
node and the mth check node if and only if nth bit is involved in the mth check, that is, if
A,, = 1. Thus the Tanner graph is a graphical depiction of the parity check matrix. Figure
15.1 illustrates the graph for A from Example 15.1. A graph such as this, consisting of two
distinct sets of nodes and having edges only between the nodes in different sets, is called
a bipartite graph. The Tanner graph is used below to develop insight into the decoding
algorithm. For the Tanner graph representation of the parity check matrix of a regular code,
each bit node is adjacent to wc check nodes and each check node is adjacent to w,. bit nodes.

z1

22

z3

24

25

bit check
nodes nodes

Figure 15.1: Bipartite graph associated with the parity check matrix A. (The dashed edges
correspond to a cycle of length four, as discussed below.)

15.4 Transmission Through a Gaussian Channel

The decoding algorithm described below is a soft-decision decoder which makes use of
channel information. We develop the decoder for codewords transmitted through an additive
white Gaussian noise (AWGN) channel. When a codeword is transmitted through an AWGN
channel the binary vector c is first mapped into a transmitted signal vector t. For illustrative

15.4 Transmission Through a Gaussian Channel 639

purposes, a binary phase-shift keyed (BPSK) signal constellation is employed, so that the
signal a = a represents the bit 1 and the signal --a represents the bit 0. The energy
per message bit Eb is related to the energy per transmitted coded bit E , by E, = REb,
where R = k / n is the rate of the code. The transmitted signal vector t has elements
tn = (2cn - 1)a. This signal vector passes through a channel which adds a Gaussian noise
vector u, where each element of v is independent, identically distributed with zero mean
and variance o2 = N0/2 . The received signal is

r = t + v . (15.2)

Given the received data, the posterior probability of detection can be computed as

where it assumed that P(cn = 1) = P (C n = 0) = i. In (15.3), the notation P(-) indicates a
probability mass function and p (.) indicates a probability density function. For an AWGN
channel,

. (15.4)
1

p(rnltn = a) = -e-&(rn-tn)*

&a
Applying (15.4) in (15.3) we obtain

(15.5)

We shall refer to P(cn = x Irn) as the channelposterior probability and denote it by pn (x) .

Example 15.5 The message vector m = [l 0 1 0 1IT is encoded using a systematic gener-
ator G derived from (15.1) to obtain the code vector

c = [o 0 0 1 0 1 0 1 0 l]? (15.6)

Then c is mapped to a signal constellation with amplitude a = 2 to obtain the vector
T t= [-2 -2 -2 2 -2 2 -2 2 -2 21 ,

which is transmitted through an AWGN channel with u2 = 2. The vector

r = [-0.63 -0.83 -0.73 -0.04 0.1 0.95 -0.76 0.66 -0.55 0.58IT

is received. Using (15.5), it is found that the channel posterior probabilities are

P (c = llr) = [0.22 0.16 0.19 0.48 0.55 0.87 0.18 0.79 0.25 0.76IT. (15.7)

If r were converted to a binary vector by thresholding the probabilities in (15.7) at 0.5, the estimated
vector

would be obtained, which differs from the original code vector at the two underlined locations.
However, note that at the error locations, the channel posterior probability is only slightly different
than the threshold 0.5, so that the bits only “weakly” decode to the values 0 and 1, respectively. Other
bits more strongly decode to their true values. These weak and strong indications are exploited by a
soft-decision decoder. 0

[o 0 0 0 1 1 0 1 0 11

640 Low-Density Parity-Check Codes

15.5 Decoding LDPC Codes

Some insight can be gained into the soft, iterative decoding algorithm we will eventually
develop by considering a preliminary, iterative, hard decision decoder:

Hard Decoder: For each bit cn, compute the checks for those checks that are influenced
by cn. If the number of nonzero checks exceeds some threshold (say, the majority of the
checks are nonzero), then the bit is determined to be incorrect. The erroneous bit is flipped
and correction continues.

This simple scheme is capable of correcting more than one error, as we now explain.
Suppose that cn is in error and that other bits influencing its checks are also in error. Arrange
the Tanner graph with cn as a root (neglecting for now the possibility of cycles in the graph).
In Figure 15.2, suppose the bits in the shaded boxes are in error. The bits that connect to the
checks connected to the root node are said to be in tier 1. The bits that connect to the checks
from the first tier are said to be in tier 2. Many such tiers could be established. Then, decode
by proceeding from the “leaves” of the tree (the top of the figure). By the time decoding on
Cn is reached, other erroneous bits may have been corrected. Thus bits and checks which
are not directly connected to cn can still influence cn.

Usethese - Tier 2

And these -

parity checks

this bit.

Figure 15.2: A parity check tree associated with the Tanner graph.

The soft decoder: In the soft decoder, rather than flipping bits (a hard operation), we
propagate probabilities through the Tanner graph, thereby accumulating evidence that the
checks provide about the bits. The optimal (minimum probability of decoding error) decoder
seeks a codeword 2 which maximizes P(clr, Ac = 0) , that is, the most probable vector
which satisfies the parity checks, given set of received data r = [r l , r2, . . . , r ~] . However,
the decoding complexity for the true optimum decoding of an unstructured (i.e., random)
code is exponential in K , requiring an exhaustive search over all 2 K codewords. Instead,
the decoder attempts to find a codeword having bits cn which maximize

P(c , lr, all checks involving bit Cn are satisfied),

that is, the posterior probability for a single bit given that only the checks on that bit are
satisfied. As it turns out, even this easier, more computationally localized, task cannot be
exactly accomplished due to approximations the practical algorithm must make. However,
the decoding algorithm has excellent demonstrated performance and the complexity of the
decoding is linear in the code length.

15.5 Decoding LDPC Codes 641

The decoding algorithm deals with two sets of probabilities. The first set of probabilities
is related to the decoding criterion, P(c , lr, all checks involving bit c, are satisfied). We
denote this by

q n (x) = P(c, = xlr, all checks involving c, are satisfied), x E {0, l},

or, using the notation defined in Section 15.2,

q n (x) = P(c , = xlr, Iz, = 0, m E M n }) , x E (0, 1). (15.8)

This probability is referred to as the pseudoposterior probability and is ultimately used to
make the decisions about the decoded bits. A variant of this probability, called qmn (x), is
also used, which is

qmn(x) = P(c , = xlr, all checks, except z,, involving c, are satisfied)

qmn(x) = P(c , = xlr, {z,’ = 0, m’ E M,,,]).

The second set of probabilities has to do with the probability of checks given the bits.
These indicate the probability that a check is satisfied, given the value of a single bit involved
with that check and the observations associated with that check. This probability is denoted
by rmn(x), with rmn(x) = P (z , = Olc, = x, r).

The quantities qmn (x) and rmn (x) are computed only for those elements A,, of A
that are nonzero. The decoding algorithm incorporates information from the measured
data to compute probabilities about the checks, as represented by rmn (x). The information
about the checks is then used to find information about the bits, as represented by qmn (x),
This, in turn, is used to update the probabilities about the checks, and so forth. This
amounts to propagating through the “tree” derived from the Tanner graph. Iteration between
bit and check probabilities (4 s and rs) proceeds until all the parity checks are satisfied
simultaneously, or until a specified number of iterations is exceeded.

15.5.1 The Vertical Step: Updating qmn(x)

Consider Figure 15.3(a), which is obtained by selecting an arbitrary bit node cn from the
Tanner graph and using it as the root of a tree, with the subset of the Tanner graph connecting
this bit to its checks and the other bits involved inthese checks as nodes in the tree. The
bits other than c, which connect to the parity checks are referred to as bits in tier 1 of the
tree. We shall assume that the bits represented in the first tier of the tree are distinct, and
hence independent.

In reality, the portion of the redrawn Tanner graph may not be a tree, since the bits on
the first tier may not be distinct. For example, Figure 15.3(b) shows a portion of the actual
Tanner graph from Figure 15.1 with the root c1. In the figure, for example, bit c2 is checked
by both checks z1 and 25. There is thus a cycle of length four in the graph, indicated by the
dashed lines. This cycle corresponds to the italicized elements of the matrix A in (15.1).
Such a cycle means that the bits in the first tier are not independent (as ideally assumed).
However, for a sufficiently large code, the probability of such cycles is small (at least for
trees represented out to the first tier). We therefore assume a tree structure as portrayed in
Figure 15.3(a), with its corresponding independence assumption.

Under the assumption of independence of bits in the first tier, the checks in the tree
are statistically independent, given cn . The decoding algorithm uses information that the
checks provide about the bits, as indicated by the following.

or, more briefly,

642 Low-Density Parity-Check Codes

Tier 1

Figure 15.3: A subset of the Tanner graph. (a) Viewed as a tree, with node for c, as the
root. (b) An actual portion of the Tanner graph, with node for cl as root, showing a cycle.

Theorem 15.1 For a bit cn involved in parity checks { z m , m E MB}, if the checks are
independent then

q n (X) = aP(cn = xlrn> n P (z m = OJcn = X , r), (15.9)
m E M n

where (11 is a normalizing constant.

Proof

Due to independence of bits and noise, the conditional probability P(cn = xlr) can be
written as P(cn = xlrn>. Under the assumption that the checks are independent, the joint
probability on the checks can be factored, so that

15.5 Decoding LDPC Codes 643

The factor dividing this probability can be obtained by marginalizing:

P(cn = xlrn) nmcMn P(zm = Olcn = X , r) .
Ex! P(cn = X’Irn) n m , M n P(zm = OIcn = x’ , r)’

qn(x) =

that is, the factor is just a normalization constant, which we denote as a, which ensures that
0

In (15.9), q n (X) has two probability factors. The factor n , ,~ , P(zm = O(c, = x , r)
has been called the extrinsic probability. Like the extrinsic probability used in turbo code
decoding, it expresses the amount of information there is about cn based on the structure
imposed by the code. The other factor in (15.9), P(c, Irn), expresses how much information
there is about cn based on the measured channel output rn corresponding to cn; it has been
called the intrinsic probability.

q n (x) is a probability mass function with respect to x .

As before, let
rmn(x) = P(zm = Olc, = X , r) (15.10)

denote the probability that the mth check is satisfied, given bit c,. We will derive in Section
15.5.2 an expression to compute this probability. Using (15.10) and Theorem 15.1 we can
write

qn(X) = aP(cn = XI^) IJ rmn(x>. (15.11)

Each bit in tier 1 of the tree has its own set of checks, each with their own corresponding
checked bits. This leads to a situation as in Figure 15.4. To do decoding on the tree, we again
invoke an independence assumption: the set of bits connected to a check subtree rooted at
a bit in the first tier are independent. (As before, cycles in the Tanner graph violate this
assumption.) The probability of a bit in the first tier of the tree is computed using bits from
the second tier of the tree. Let n’ be the index of a bit in the first tier connected to the check
Zm. Let

mEMn

qmn!(x) = P(cnt = x [all checks involving cnt, except for check Zm, are satisfied)

qmnr(x) = P(cn! = XI{Zm! = 0, m f E M,!,,), r).
or, more briefly,

Then, slightly modifying the results of Theorem 15.1,

qmn!(x) = aP(C,! = xlm!) n rm!n!(X). (1 5.12)

If there are wc parity checks associated with each bit, then the computation (15.12) involves
wc - 1 checks. Using (15.12), the probabilities for bits in the first tier can be computed
from the checks in the second tier, following which the probability at the root c, can be
computedusing (15.11).

Since the product in (15.12) is computed down the columns of the A matrix (across the
checks), updating qmn (x) is called the vertical step of the decoding algorithm. The process
can be described in words as follows: For each nonzero position (m, n) of A , compute the
product of rmt,n (x) down the nth column of A , excluding the value at position (m, n) , then
multiply by the channel posterior probability. There are wcN values of qmn to update, each
requiring O(w,) operations, so this step has O (N) complexity.

If the graph associated with the code were actually a tree with independence among the
bits associated with the checks on each tier, this procedure could be recursively applied,

m’EM,,,,

644 Low-Density Parity-Check Codes

Process from

Figure 15.4: The two-tier tree.

starting at the leaf nodes of the tree -those not connected to further checks - and working
toward the root. The probabilities at the leaf nodes could be computed using the channel
posterior probabilities p , (x) defined in (15.5). Working from leaves toward the root, the
probability qmn’ (x) would be computed for each node c,, on the second-to-last tier, using
the leaf nodes (the last tier). Then qmnr would be computed for each node on the third-to-last
tier, using the probabilities obtained from the second-to-last tier, and so forth until the root
node is reached.

However, it is time to face reality: The graph associated with the code is not actually
a tree. The node c, which we have called the root of the tree is not a distinguished root
node, but is actually an arbitrary node. We deal with this reality by considering each node
c, in turn as if it were the “root” of a tree. For each c,, we consider each parity check zm,
m E M , associated with it, and compute qmnr(x) as defined in (15.12), involving other
wc - 1 checks and the other bits of the first tier of the “tree” with that c, as the root. The
algorithm does not actually propagate information from leaf to root, but instead propagates
information throughout the graph as if each node were the root. If there were no cycles in
the tree, the algorithm would, in fact, result in an exact computation at each node of the
tree. But as bits connect to checks to other bits through the iterations, there must eventually
be some cycles in the graph. These violate the independence assumptions and lead to only
approximate, but still very impressive, results.

15.5.2 Horizontal Step: Updating rmn (x)

The probability rmn(x) = P(zm = Olc, = x , r), depends on all of the bits {c,’, n’ E N m }
that participate in zm, so an expression involving all of the bits that influence check z m is
necessary. The desired probability can be computed by marginalizing,

P (z m = O~C, = X , r) = C
(X n l . n ’ E N m . n I

P (z m = 0, {cnr = x,’, n’ E Nm,,}Icn = X , r),

(15.13)
where the sum is taken over all possible binary sequences { + r } with n’ E N m , , . (Contin-
uing Example 15.4, for N2,l = { 3 , 5 , 6 , 8, 9}, the variables in the sum (x3, x5, X6, Xg, x 9 }

take on all 25 possible binary values, from (0, 0, 0, 0,O) through (1, 1, 1, 1, l).) The joint

15.5 Decoding LDPC Codes 645

probability in (15.13) can be factored using conditioning as

rmn (XI = C [P (z m = Olcn = X, {cnl = xnl : n’ E N m , n] , r)
(x , I : n l ~ N ~ , ~] (15.14)

x P({cnl = Xnl : n’ E N m , n } I r)] .

Under the assumption that the bits {cn1, n’ E N m , n] are independent - which is true only
if there are no cycles in the graph - (15.14) can be written as

rmn = C [P (z m = Olcn = X, {cnl Xnl : n’ E N m , n l >
[xnl :nl~Nm,,]

(1 5.15)
x n P(CV = WI~)] ,

1’ E N m , n

where the conditioning on r in the first probability has been dropped since the parity is
independent of the observations, given the values of the bits. The conditional probability
in the sum, P (z m = O (c n = x , {c,~ = xn1 : n’ E N m , n }) is either 0 or 1, depending on
whether the check condition for the bits in N m is actually satisfied. Only those terms for
which C n l e ~ , X,I = 0 - or, in other words, for which X n = xnlE~m,n x , ~ - contribute
to the probability, so

(15.16)

That is, rmn (x) is the total probability of sequences { x , I , n’ E Nm,,} of length 1Nm.n I whose
sum is equal to x , where each element X,I in each sequence occurs with probability P (Cnl I r) .
At first appearance, (15.16) seems like a complicated sum to compute. However, there are
significant computational simplifications that can be made using a graph associated with
this problem.

For a sequence of bit values { x ~ I , n’ E N;n,n] involved in check m, let

k

i=l

be the sum of the first k bits of { X ~ I] . Then

(15.17)

where L = INm,,I. The sum in (15.17) appears in the index of the sum in (15.16).
The values of ((k) as a function of k may be represented using the trellis shown in

Figure 15.5. There are two states in the trellis, 0 and 1, representing the possible values of
{ (k) . Starting from the 0 state at k = 0, ((1) takes on two possible values, depending on
the value of X N ~ , ~ (~) . Then ((2) takes on two possible values, depending on the value of
((1) and x~~,,(2). The final state of the trellis represents ((L) .

Let the values X,I occur with probability P(x , I) = P(c,llr). Using this graph, it may
be observed that rmn (x) is the probability that x = ((L) , where the probability is computed
over every possible path through the trellis. The problem still looks quite complicated.

646 Low-Density Parity-Check Codes

Figure 15.5: The trellis associated with finding rmn (x). The probability of all possible paths
through the trellis is computed inductively.

However, due to the structure of the trellis, the probabilities can be recursively computed.
Note that

P(F(1) = x) = P(XNm,,(l) =XI = P(CN,,,(l) = xlr).

Knowing P(((1) = 0) and P(F(1) = 1), the event that F(2) = 0 can occur in two ways:
either {(l) = 0 and X N ~ , ~ (~) = 0, or ((1) = 1 and X N , , , (~) = 1. Similarly, the event that
t(2) = 1 can occur in two ways. Thus

P(F(2) = 0) = P(t(1) = 0, XNm,,(2) = 0) + P (W) = 1, XNrn,,(2) = 1)

P(F(2) = 1) = P(J'(1) = 1, XNm,,(2) = 0) + P(F(1) = 0, XNm,,(2) = 1).
(15.18)

By the (assumed) independence of the bits, the joint probabilities in (15.18) can be factored,
so (15.18) can be written

P(F(2) = 0) = P(F(1) = O)P(XNm,,(2) = 0) + P(F(1) = 1)P(XNrn,,(2) = 1)

P(F(2) = 1) = P(F(1) = 1)P(XNm,,(2) = 0) + P(F(1) = 0>P(XNrn,,(2) = 1).
(15.19)

Let wk(x) be the probability

Then (15.19) can be written

Wk(X) = P ({ (k) = x).

w2(0) = wl(0)P(xNm,,(2) = 0) + w1(1)P(xNm,,(2) = 1)

w2(l) = wl(1)P(xNm,,(2) = 0) + w(0)P(XNm,n(2) =

and, in general (under assumptions of independence)

W k (0) = Wk-l(O)P(XNm,,(k) = 0) + wk-l(l)P(xNrn,,(k) = 1)

Wk(1) = wk-l(l)P(XNm.,(k) = 0) + W k - l (0) P (X N m , , (k) = 1).
(15.20)

The recursion is initialized with wo(0) = 1, wo(1) = 0. (It may be noted that the recursion
(15.20) is an instance of the BCJR algorithm. In this case, the w probabilities are directly
analogous to the forward probabilities of the BCJR algorithm, usually denoted by a.)

By the recursive computation (15.20), the probabilities of all possible paths through the
trellis are computed. By the definition of w k (x) , P ({ (L) = x) = W L (X) and by (15.161,

T m n (0) = W L (O) rrnn(1) = w ~ (1) . (15.21)

Now consider computing P(zm = Olc, = x , r) for a check node zm in the first tier
of a multi-tier tree, such as that portrayed in Figure 15.4. The bit probabilities P(xA) =

15.5 Decoding LDPC Codes 647

P (c , ~ Irnt) necessary for the recursion (15.20) are obtained from the bit nodes in tier 1 of the
tree, which depend also upon check nodes in tier 2, excludmg check Z, . That is, we use

P(cnl = x Ir) = qmnt(x)

as the bit probabilities. Then the recursive update rule is written

W k (0) = Wk-1 (o)qm,Nm,n(k)(o) + Wk-1 (l)qm,Nm,"(k)(l)
(15.22)

Wk(1) = Wk-1 (l)qm,Nm,n(k)(o) + Wk-1 (0)qin,hTm,n(k) (1).

This computation is used for each iteration of the decoding algorithm.
The probability update algorithm (15.22) can be extended to codes with larger than

binary alphabets by creating a trellis with more states. The LDPC decoding algorithm is
thus applicable to linear codes over arbitrary fields. For binary codes, however, (15.22) can
be re-expressed in an especially elegant way in terms of differences of probabilities. Let
Sq,l = qml(0) - qml(l) and 6r,l = r,i(O) - r,i(l). From (15.22),

W k (0) - WkU) = (Wk- l (O) - wk-1(1))(4mNm,,(k)(0) - ~mNm,n(k)(l)).

~ k (0) - ~ k (1) = n(qmNm,n(i)(0) - qmNm,n(i)(l))*

Inductively,
k

i= l

Using Sr,, = r,,(O) - r,,(l), we have

(15.23)

In words what this update says is: For each nonzero element (m, n) of A , compute the
product of the 6q,,r across the mth row, except for the value at column n. This step is
therefore called the horizontal step. The entire update has complexity O (N) .

Having found the Sr,, and using the fact that rmn (0) + r,, (1) = 1, the probabilities
can be computed as

rmn(0) = (1 + 6rmn) /2 rrnnU) = (1 - 6rmn)/2 . (1 5.24)

15.5.3 Terminating and Initializing the Decoding Algorithm

As before, let q n (x) = P (c, = x / { z , : m E M,}). This can be computed as

4 n (XI = a n ~n (x> n rmn (XI 9

m E M ,

where a, is chosen so that qn (0) + qn (1) = 1. These pseudoposterior probabilities are used
to make decisions on x : if q, (1) > 0.5 a decision is made to set c ,̂, = 1.

Since the decoQng criterion computes P (c , = x Jr, checks involving c,), with each
bit probability computed separately, it is possible that the set of bit decisions obtained
by the decoding algorithm do not initially simultaneously satisfy all of the checks. This
observation can be used to formulate a stopping criterion. If A2 = 0, that is, all checks are
simultaneously satisfied, then decoding is finished. Otherwise, the algorithm repeats from
the horizontal step.

It may happen that A2 = 0 is not satisfied after the specified maximum number of
iterations. In this case, a decoding failure is declared; this is indicative of an error event

648 Low-Density Parity-Check Codes

which exceeds the ability of the code to correct within that number of iterations. Knowledge
of a decoding failure is important, but not available with many codes, including turbo codes.
In some systems, a decoding failure may invoke a retransmission of the faulty codeword.

The iterative decoding algorithm is initialized by setting qmn(x) = pn(x) . That is,
the probability conditional on the checks qmn (x) is set to the channel posterior probability,
which is what would be used if the Tanner graph were actually a tree.

15.5.4 Summary of the Algorithm

Algorithm 1 is a concise statement of the decoding algorithm; the details are discussed in
the sections below. (This particular formulation of the decoding algorithm is due to [217],
while concepts from the description are from [1131.)

Algorithm 15.1 Iterative Decoding Algorithm for Binary LDPC Codes

Input:
iterations, L.
Initialization: Set q m n (x) = pn(x) for all (m. n) with A(m, n) = 1.
Horizontal step: For each (m , n) with A (m , n) = 1:

A , the channel posterior probabilities Pn(x) = P(cn = xlm), and the maximum # of

Compute Sqml = qml(0) - qml(1)
Compute

~ r m n = n Sqmnr
br4m,n)

Compute rmn(l) = (1 - 6rmn)/2 andrmn(0) = (1 + Srmn)/2.
Vertical Step: For each (m , n) with A(m, n) = 1:

Compute

(15.25)

q m n (0) =amnpn(O) n rmrn(0) and qmn(1) = ~ m n p n (l) n rmrn(1)
Im’EMn,m 1 Im‘cMn,m l

(15.26)
where a m n is chosen so qmn (0) + qmn (1) = 1.
Also compute the “pseudoposterior” probabilities

qn(0) = a n p n (O) n rmrn(0) and qn(1) = a n P n (l) n rrnrn(l)
I m ‘ d 4 b {m‘EMn}

where an is chosen so that qn (0) + qn (1) = 1.
Make a tentative decision: Set 2n = 1 if q n (l) > 0.5, else set
If A t = 0, then Stop. Otherwise, if #iterations c L , loop to Horizontal Step

= 0.

Otherwise, declare a decoding failure and Stop.

This algorithm (or its log likelihood equivalent) is sometimes referred to as the sum-
product decoding algorithm.

Example 15.6

~ I u a l i a i 2 a i i a i d a l r a i e

ldpc . m
For the parity check matrix (15.1) of Example 15.1 and the received probability

vector of Example 15.5, the decoding proceeds as follows:
Initialization: Set qmn (x) = pn (x) from (15.7)

qmn(1)
-0.22 0.16 0.19 0.87 0.18
0.22 0.19 0.55 0.87 0.79 0.25

0.19 0.48 0.55 0.18
0.16 0.48 0.55 0.87 0.79

-0.22 0.16 0.48 0.18 0.79 0.25

15.5 Decoding LDPC Codes 649

Iteration 1: Horizontal Step:

0.1 0.086 0.094
-0.013 -0.012

0.00067 0.01
0.00089 0.015

-0.005 -0.0042 -0.071

[I):); r: 0.45 0.51

0.5

0.5 0.5

Iteration 1: Vertical Step:

[“0;; 0.19
0.16
0.17

0.19 0.14

6rmn
-0.079 0.091

0.075 0.01
-0.0041 O.OLQ64
-0.0061 -0.00082

-0.0044

rmn(1)
0.54 0.45

0.46 0.49 0.49
0.49 0.5 0.5
0.49 0.5 0.5 0.5
0.54 0.5 0.5

qmnm
0.87 0.18

0.56 0.89 0.79
0.51 0.52 0.16
0.51 0.51 0.88 0.78
0.47 0.15 0.79

-0.11
0.013 -0.015

0.00083 -0.00079
-0.001 -0.0012
0.0049 -0.0057

0.5

0.5
0.5

0.26

0.26
0.8

qnfl) (15.27)
[0.19 0.14 0.17 0.5 0.52 0.88 0.16 0.78 0.26 0.81

t = [o 0 0 1 1 1 0 1 0 11 z = [O 1 1 1 01

At the end of the first iteration, the parity check condition is not satisfied. The algorithm runs
through two more iterations (not shown here). At the end, the decoded value

C = [O 0 0 1 0 1 0 1 0 11

is obtained, which exactly matches the transmitted code vector c of (15.6).
Even though the minimum distance of the code is 4, the code was able to decode beyond the

0 minimum distance (in this case) and correct two errors.

15.5.5 Message Passing Viewpoint

The decoding algorithm can be viewed as an instance of a message passing algorithm.
Messages are passed among the nodes in the Tanner graph. In the horizontal step, “messages”
in the form of probability vectors qmn (x) are passed to the check nodes, where the messages
are combined using (15.23). In the vertical step, “messages” in the form of probability
vectors rmn (x) are passed to the bit nodes, where the messages are combined using (15.12).
The iteration of the algorithm may be viewed as message passing through the graph obtained
by concatenating several copies of the Tanner graph, as shown in Figure 15.6.

In the absence of cycles, such message passing algorithms compute exact probabilities
[258]. However, the presence of cycles in the graph means that the decoding algorithm com-
putes only approximate solutions. Careful analysis of graphs with cycles, however, [367]
has shown theoretically that the approximate algorithm still provides effective decoding
capability; this conclusion is borne out by repeated simulation studies.

15.5.6 Likelihood Ratio Decoder Formulation

In this section we re-derive the decoding algorithm, this time in terms of log likelihood
ratios. This derivation serves to emphasize some of the likelihood arithmetic presented in
Appendix A and reinforce the concept of extrinsic probability that arose in the context of
turbo decoding. Computationally, it avoids having to compute normalizations. Furthermore,

650 Low-Density Parity-Check Codes

bits checks bits checks bits

b

Direction of Processing

Figure 15.6: Processing information through the graph determined by A. The dashed line
illustrates a cycle of length 4.

the likelihood ratio algorithm is used in the density evolution analysis presented in Section
15.8. However, it is only applicable to binary codes, so the general formulation above
has value for nonbinary codes. (The reader is advised to review the log likelihood rule in
Appendix A before reading this section.)

By application of Bayes' rule, the numerator can be expressed as

For a Gaussian channel, we have seen (see, e.g., (14.39)) that

where L, = 2& f a2 is the channel reliability. We observe that the terms in the sum can
be identified as

(15.29) P(cn = llbi, i # nl>
~ (c , = OI{ri, i # n}) '

h(cnlr) = L,rn +log
v

intrinsic ' I

extrinsic

15.5 Decoding LDPC Codes 651

This set of bits is conditional1 independent
(assumed to be) ... of this set d b i t s

f

Figure 15.7: Conditional independence among the sets of bits.

where the intrinsic term is determined by the explicit measurement r, affecting the bit c, and
the extrinsic term is determined by the information provided by all the orher observations
and the code structure.

Let us now express the probabilities in the extrinsic term in terms of the parity checks.
Let zm,, denote the parity check computed using the mth check associated with c,, except
for c,. That is,

If c, = 1, then zm,, + c, = 0; that is, zm,, = 1 for all the checks m E M , in which c,
participates. Similarly, if c, = 0, then zm,, = 0 for all m E M,. We can write (15.29) as

P (z ~ , ~ = 1 for all m E M,I{ri, i # n})
P(zm,, =Oforallm ~ M , l { r i , i # n }) ’

h(cnlr) = L,r, + log

We now invoke the assumption that the graph associated with the code is cycle-free. Then
the set of bits associated with zm,, are independent of the bits associated with Zm’,n, for
m’ # m . (See Figure 15.7.) We thus have

Let us define the log likelihood ratio

Then

Under the assumption that the checks in zm,, are conditionally independent (if there are no
cycles in the graph), we invoke the tanh rule of (A.l) to write

652 Low-Density Parity-Check Codes

Computation now requires knowing the h(cj 1 {ri , i # n) , the conditional likelihoods of the
bits which connect to the checks of cn. How are these obtained? They are obtained the
same way as h(cn): that is, we remove from cn its distinguished role, and treat all bit nodes
alike. However, we must be careful to deal only with the extinsic information.

Let

This can be thought of as the “message” which is passed from the check node m to the bit
node n . Then (15.30) can be written

(15.32)

This can be thought of as a message that the bit node cn sends to its check nodes.
If we were to employ an iterative decoder alternating between (15.31) and (15.32), a

problem would develop. The likelihoods A(c, Ir) each contain the prior information Lcrn,
which would lead to a bias in qm,n. What we need to do is remove from the “message” that
bit node n sends to check node m the message that it has already received from that check
node. This represents the extrinsic information passed by the decoder.

The log likelihood decoder can now be described.

Algorithm 15.2 Iterative Log Likelihood Decoding Algorithm for Binary LDPC Codes

Input: A , the received vector r, the maximum # of iterations L, and the channel reliability Lc.
Initialization: Set q$!n = 0 for all (m, n) with A(m, n) = 1.
Set A;’] = Lcrn
Set the loop counter 1 = 1.
Check node update: For each (m, n) with A (m , n) = 1: Compute

Bit node update: For n = 1,2, . . . , N : Compute

Make a tentative decision: Set Zn = 1 if hn [l] > 0, else set Zn = 0.
If Ai? = 0, then Stop. Otherwise, if #iterations .c L , loop to Check node update
Otherwise, declare a decoding failure and Stop.

(1 5.33)

(15.34)

Example 15.7 For the code of Example 15.1 and the received vector of Example 15.5, we obtain the
following. Initially,

A[’] = [-1.3 -1.7 -1.5 -0.08 0.2 1.9 -1.5 1.3 -1.1 1.21.

In the first iteration,

15.6 Why Low-Density Parity-Check Codes? 653

-0.0017 0.0016
0.0023

-0.21 -0.17 -0.19 0.16 -0.18
0.027 0.024 -0.15 -0.02 -0.026 0.03

-0.0013 -0.021 0.0083 -0.0013
-0.0018 -0.03 0.012 0.0016 0.0021

0.01 0.0083 0.14 0.0088 -0.0097 0.01 1

A[’] = [-1.4 -1.8 -1.6 0.011 0.072 2 -1.7 1.3 -1.1 1.41

rl[’l =

and

which corresponds to the probability vector

p = [0.19 0.14 0.17 0.5 0.52 0.88 0.16 0.78 0.26 0.81.

This matches exactly the probability vector found by the probability decoder. Other iterations proceed
0

The check node update (15.33) can be also simplified using the min-sum approximation

similarly, yielding identical probability values and decoded values.

(see Appendix A), at a cost of about 0.5 dB in performance.

15.6 Why Low-Density Parity-Check Codes?

LDPC codes have excellent distance properties. Gallager showed that for random LDPC
codes, the minimum distance &,in between codewords increases with N when column
and row weights are held fixed [112, p. 51, that is, as they become increasingly sparse.
Sequences of LDPC codes as N -+ 00 have been proved to reach channel capacity [217].
LDPC codes thus essentially act like the random codes used in Shannon’s original proof of
the channel coding theorem. Note, however, that for the nonrandom constructive techniques
summarized in Section 15.1 1, there may be an error floor (see [291]).

The decoding algorithm is tractable. As observed, the decoding algorithm has complex-
ity linearly proportional to the length of the code. Thus we get the benefit of a random code,
but without the exponential decoding complexity usually associated with random codes.
These codes thus fly in the face of the now outdated conventional coding wisdom, that there
are “few known constructive codes that are good, fewer still that are practical, and none at
all that are both practical and very good.” [217, p. 3991. It is the extreme sparseness of the
panty check matrix for LDPC codes that makes the decoding particularly attractive. The
low-density nature of the parity check matrix thus, fortuitously, contributes both to good
distance properties and the relatively low complexity of the decoding algorithm.

For finite length (but still long) codes, excellent coding gains are achievable as we
briefly illustrate. Figure 15.8(a) shows the BPSK probability of error performance for two
LDPC codes, a rate 1/2 code with (N , K) = (20000, 10000) and a rate 1/4 code with
(N , K) = (13298,3296) from [215], compared with uncoded BPSK. These plots were
made by adding simulated Gaussian noise to a codeword then iterating the algorithm up to
1000 times. As many as 100000 blocks of bits were simulated to get the performance points
at the higher SNRs. In all cases, the errors counted in the probability of error are detected
errors; in no case did the decoder declare a successful decoding that was erroneous! (This is
not always the case. We have found that for very short toy codes, the decoder may terminate
with the condition A6 = 0, but 6 is erroneous. However, for long codes, decoding success
meant correct decoding.)

Figure 15.8(b) shows the average number of iterations to complete the decoding. (The
peak number of iterations, not shown, was in many instances much higher.) The high
number of iterations suggests a rather high potential decoding complexity, even though

654 Low-Density Parity-Check Codes

l

Rate 112 N-20000
Rate 113 N-15000

-Rate 112 Capacity Bound

4

(a) Performance for a rate 112 and a rate 1/4 code. (b) Average number of decoding iterations.

Figure 15.8: Illustration of the decoding performance of LPDC codes and the number of
iterations to achieve decoding.

each iteration is readily computed. As suggested by EXIT chart analysis, as the decoding
threshold is approached, the number of iterations must increase.

There are, of course, some potential disadvantages to LDPC codes. First, the best code
performance is obtained for very long codes (as predicted by the channel coding theorem).
This long block length, combined with the need for iterative decoding, introduces latency
which is unacceptable in many applications. Second, since the G matrix is not necessarily
sparse, the encoding operation may have complexity 0 (N 2) . Some progress in reducing
complexity is discussed in Section 15.12.

LDPC codes have an error floor, just as turbo codes do. Some efforts to lower the error
floor have been made by increasing the girth of the Tanner graph, but this has met with
only limited success. A tradeoff between decoding thresholds (from the density evolution
analysis) and the error floor has been observed. Codes having very low error floors tend to
perform around half a dB worse in terms of their decoding thresholds. However, this has
not yet led to any design methodologies to reduce error floor.

15.7 The Iterative Decoder on General Block Codes

There initially seems to be nothing impeding the use of the sum-product decoder for a
general linear block code: it simply relies on the parity check matrix. This would mean that
there is a straightforward iterative soft decoder for every linear block code. In fact, Figure
15.9 shows the use of the soft decoder on a (7,4) Hamming code. The soft decoding works
better than conventional hard decoding by about 1.5 dB.

However, for larger codes a serious problem arises. Given a generator matrix G, the
corresponding H matrix that might be found for it is not likely to be very sparse, so the

15.8 Density Evolution 655

lo-’
- Iterative decoded

Uncoded

D

Figure 15.9: Comparison of hard-decision Hamming decoding and sum-product (iterative)
decoding.

resulting Tanner graph has many cycles in it. In fact, a threshold is reached at some density
of the parity check matrix at which the decoder seems to break down completely. Also,
the problem of finding the sparsest representation of a matrix is as computationally difficult
(NP-complete) as performing a ML decoding.

15.8 Density Evolution

Having described LDPC codes and the decoding, we now turn attention to some analytical
techniques associated with the codes. Density evolution is an analytical technique which
has been used to understand limits of performance of LDPC decoders. It also provides a
tool which can be used in the design of families of LDPC codes, since their performance
can be predicted using density evolution much more rapidly than the performance can
be simulated. Density evolution introduces the idea of a channel threshold, above which
the code performs well and below which the probability of error is non-negligible. This
provides a single parameter characterizing code performance which may be used to gauge
the performance compared to the ultimate limit of the channel capacity.

In density evolution, we make a key assumption that the block length N +. 00, under
which it may be assumed there are no cycles in the Tanner graph. Since the code is linear,
and we have assumed a symmetric channel, it suffices for this analysis to assume that the
all-zero codeword c = 0 is sent. We also assume that the LDPC code is regular, with
IM, I = wc and INnz I = w r for each n and m.

Local Convention: We assume furthermore that a bit of zero is mapped to a signal
amplitude of +a (i.e., 0 + 1 and 1 -+ -1; note that this mapping is consistent with the
assumption made in Appendix A, but different from the convention used throughout most
of the book).

Based on this convention, the received signal is rt = a + n t , where nt - N(0, a2).

656 Low-Density Parity-Check Codes

Hence in the likelihood decoding algorithm, the initial likelihood ratio is

which is Gaussian. The mean and variance of hLol are

That is, the variance is equal to twice the mean. Thus

A p - h/(m['l, 2 m q

A Gaussian random variable having the property that its variance is equal to twice its mean
is said to be consistent. Consistent random variables are convenient because they are
described by a single parameter, the mean.

Clearly, the initial hio1 are Gaussian, but at other iterations they are not Gaussian. How-
ever, as h, is computed as the sum of other random variables, a central limit argument can
be made that it should tend toward Gaussian. Furthermore, numerical experiments confirm
that they are fairly Gaussian. The messages &!n sent by check nodes are nongaussian,
but again numerical experiments confirm that they can be approximately represented by
Gaussians. In the interest of analytical tractability, we assume that all messages are not
only Gaussian, but consistent. The density evolution analysis tracks the parameters of these
Gaussian random variables through the decoding process.

Let p[I1 = E [v:!~] denote the mean of a randomly chosen r#&. (Under the assumption
that the nodes are randomly chosen and that the code is regular, we also assume that the
mean does not depend on m or n.) Let m.[lI denote the mean of A!]. We assume that both
the qz!n and

[JI

are consistent random variables, so

v m , n ['I - N (p , 2p"1) A:] - n/(m['] , 2m['l).

Under the local convention (which changes the signs in the tanh rule), by the tanh rule
(15.31),

tanh - = n tanh (T) .
("n) jENm,n

Taking the expectation of both sides we have

E [tanh (%)I = E [n t a n h i s)] .

i 4 m . n
(15.35)

Now define the function

*(x) = E[tanh(y/2)] where y - " (x , 2x)

tanh (y /2)e-(y-x)2/(4X) dy ,
1 0 0 - -FL

which is plotted in Figure 15.10 compared with the function tanh(x/2). The Q(x) function
is monotonic and looks roughly like tanh(x/2) stretched out somewhat.2

21t has been found [51] that Q (x) can be closely approximated by Iu(x) % 1 - e - 4527x0 86+o.0218.

15.8 Density Evolution 657

1.5

- - . tanh(x)

-1.51 I
-10 -5 0 5 10

X

Figure 15.10: The function Q (x) compared with tanh(xl2).

Using the Q function we can write (15.35) as

(15.36)

The bit update equation (15.32) can be expressed (with some shuffling of the order of
computation) as

Taking expectations of both sides we obtain

Substituting into (15.36), we obtain

or

(15.37)

The recursion is initialized with p[O] = 0. The dynamics are completely determined by the
row weight wr, the column weight w,, and the SNR E c / a 2 .

For some values of SNR, the mean p[l] converges to a small fixed point. The Gaussian
pdf it represents would thus have both positive and negative outcomes, meaning that the h
represented by this distribution could have negative values, or that (recalling that the all-zero
codeword is assumed) there is a nonnegligible probability that there are decoding errors.
On the other hand, for some values of SNR, the mean p[’] tends to infinity. The pdf has all
of its probability on positive values. Thus, for a sufficiently large number of iterations the
decoder would decoder correctly.

658 Low-Density Parity-Check Codes

0.5

0.4-

=- 0.3-

5 n
I

densevl .m
densevtest.m

Psi.m
Psiinv .m

p1otgauss.m

I/ EbiNO=1.72 dB, final mean value I/
1 ;
I1

I t
4 1
: I

~ ~

1 1
1 1
1 1

Example 15.8 Let wc = 4 and wr = 6, resulting in a R = 1 - 4/6 = 1/3 code. Recall that
Ec = REb and u2 = N0/2, so that E,/u2 = 4REb/No. Let Eb/No = 1.72 dB. Then the
iteration (15.37) achieves a fixed point at p* = liml-too pL1] = 0.3155. The corresponding density
N(0.3155,0.631) is shown using dashed lines in Figure 15.11(a). The mean is small enough that
there is a high probability that A[‘] < 0 for any iteration; hence, decoding errors are probable.

When Eb/NO = 1.764 dB, the mean (15.37) tends to 00: p[‘] + 00 as I + 00. Figure
15.1 l(a) shows the distributions for iterations 507 through 51 1. Clearly, for high iteration numbers,
the decoder is almost certain to decode correctly.

Figure 15.11(b) shows the mean values p[‘] as a function of the iteration number 1 for various
S N R s . For sufficiently small SNR, the mean converges to a finite limit, implying a nonzero probability
of error. As the SNR increases, the mean “breaks away” to infinity after some number of iterations,
where the number of iterations required decreases with increasing SNR.

(a) The pdf of h[l] for Eb/No = 1.72 (final), and
Eb/& = 1.764 (various iterations).

(b) The mean of the pdf of
1 for different values of EbINO.

as a function of iteration

Figure 15.1 1: Behavior of density evolution for a R = 1/3 code.

0

As this example shows, there is a value of Eb/No above which reliable decoding can be
expected (~ [’ l + m) and below which it cannot. This is called the thresholdof the decoder.

[threshtab.m Table 15.1 [51] shows a table of thresholds for regular LDPC codes of various rates, as
well as channel capacity at that rate. (Note: The recursion (15.37) is sensitive to numerical
variation.) The thresholds are shown both in terms of Eb/No and in terms of a channel
standard deviation err, where

2REh 1 ” -- - -
No ~ 2 ’

As the table shows, there is a tendency toward decrease (improvement) in the Eb/No thresh-
old as the rate of the code decreases. However, even within a given rate, there is variation
depending on the values of we and w r . It appears that values of we > 3 generally raise the
threshold. Note that, since the analysis does not take cycles in the graph into account, this
has nothing to do with problems in the decoding algorithm associated with cycles; it is an
intrinsic part of the structure of the code.

15.9 EXIT Charts for LDPC Codes 659

Table 15.1 : Threshold Values for Various LDPC Codes for the Binary AWGN Channel
wc w r Rate Threshold oT Threshold E b / & (dB) Capacity (dB) Gap (dB)
3 12 0.75 0.6297 2.2564 1.6264 0.63
3 9 213
4 10 0.6
3 6 0.5
4 8 0.5
5 10 0.5
3 5 0.4
4 6 113
3 4 0.25

0.705 1
0.7440
0.8747
0.8323
0.7910
1.0003
1.0035
1.2517

1.7856
1.7767
1.1628
1.5944
2.0365
0.9665
1.7306
1.0603

1.0595
0.6787
0.1871
0.1871
0.1871
-0.2383
-0.4954
-0.7941

0.7261
1.098
0.9757
1.4073
1.8494
1.2048
2.226
1.8544

15.9 EXIT Charts for LDPC Codes

Recall from Section 14.5 that an EXIT chart is a method for representing how the mutual
information between the decoder output and the transmitted bits changes over turbo decoding
iterations. EXIT charts can also be established for LDPC codes, as we now describe.

Consider the fragments of a Tanner graph in Figure 15.12. In these fragments, there are
bit-to-check messages and check-to-bit messages, denoted as ~ B + C and ~ c + B , respec-
tively, where the messages are the log likelihood ratios. Let r:; (x) and (x) denote the
probabilities computed in the horizontal and vertical steps of Algorithm 15.1, respectively,
at the i th iteration of the algorithm. Using the original probability-based decoding algorithm
of Algorithm 15.1, the messages from bit nodes (n) to check nodes (m) or back are

p B + C PC+B //

d d

Figure 15.12: A portion of a Tanner graph, showing messages from bits to checks and from
checks to bits.

Let X denote the original transmitted bits. The mutual information (see Section 1.12)
between a check-to-bit message p c + ~ and the transmitted data symbol for that bit X is
denotedas Z(X, p c + ~) = ZC+B. Theiterationnumberimayalsobeindicated,asinZC+B.
The actual mutual information is computed experimentally as follows. Histograms of the
message data are used to estimate the probability distribution. These histograms are

[il

660 Low-Density Parity-Check Codes

obtained from the outputs logrmn(l)/rmn(0) of all the check nodes in the Tanner graph.
(Alternatively a single node could be used, by sending the codeword multiple times through
the channel with independent noise.) These histograms are normalized to form estimated
probability density functions, here denoted @(p), of the random variable p c + ~ . Then these
estimated density functions are used in the mutual information integral (1.40) wherever
p (y l - a) appears. Because of symmetry, the likelihood p(y la) is computedusing @(-p).
The numerical evaluation of the integral then gives the desired mutual information.

In a similar way, the mutual information between a bit-to-check message pg+c and
the transmitted data symbol for that bit X, Z(X, pg+c) = ZB.+C, is computed from the
histograms of the outputs log qmn (l) /qmn (0) to estimate the densities in (1.40).

The first trace of the EXIT chart is now formed by plotting Z:Lg, Zi++! for values
of i as the decoding algorithm proceeds. The horizontal axis is thus the check-to-bit axis.
The second trace of the EXIT chart uses Zi++! as the independent variable, but plotted on

the vertical axis, with ZE++2 - that is, the mutual information at the next iteration - on
the horizontal axis. The “transfer” of information in the EXIT chart results because the
check-to-bit message at the output of the i + l th stage becomes the check-to-bit message
at the input of the next stage.

Example 15.9 Figure 15.13 shows the density estimated from the histogram of the log likelihood
ratios L = logrmn(l)/mmn(0) for a (15000, 10000) LDPC code at an SNR of 1.6 dB for various
iterations of the algorithm. At iteration 0, the log likelihoods from the received signal data are plotted.
At the other iterations, the log likelihoods of the bit-to-check information are plotted. Observe that
the histogram has a rather Gaussian appearance (justifying the density evolution analysis of Section
15.8) and that as the iterations proceed the mean becomes increasingly negative. The decoder thus
becomes increasingly certain that the transmitted bits are 0.

Figure 15.14 shows the mutual information as a function of decoder iteration number for bit-to-
check and check-to-bit information for various SNRs. Perhaps the most interesting is for an SNR of
0.4 dB: after an initial increase in information, the decoder stalls and no additional increases occur.
The EXIT chart is essentially obtained by eliminating the iteration number parameter from these two
plots and plotting them against each other.

Figure 15.15 shows the EXIT chart for this code at various SNRs. The solid bold line plots the
points (ZiL B , Z;:’&) and the dashed bold line plots the points (Z;:!, Z!!’;), with the horizontal
axis representing Zc+g and the vertical axis representing Zg+c. The narrow solid line plots the

two traces of the plot. At an SNR of 0.8 &, the code is fairly close to the decoding threshold, so it
takes many iterations for the decoder to pass through the channel. At an S N R of 0.4 dB, the decoder

SNR of 1.2 dB, the channel is open somewhat wider, so fewer decoding iterations are required, and

-
Ololo-owqd

,_.’ , A ‘

a l u u l l a 1 2 c (l l u , l a l * ~ , ~
<<-.-. ‘Lc

exit3 .m
dotraject0ry.m

progress of the decoding algorithm: the decoder essentially follows the stair-step pattern between the

is below the decoding threshold: the information is not able to make it through the channel. At an

at 1.8 dB the channel is open wider still.
getinf .m

15.10 Irregular LDPC Codes

An irregular (or nonuniform) LDPC code has a very sparse parity check matrix in which
the column weight (resp. row weight) may vary from column to column (resp. row to
row). Considering that the results in Table 15.1 suggest that for the same rate, different
columnhow weights per fom differently, the ability to allocate weights flexibly provides
potentially useful design capability. In fact, the best known LDPC codes are irregular;
gains of up to 0.5 dB compared to regular codes are attainable [212]. In this section, we

15.10 Irregular LDPC Codes 661

Iteration 0 Iteration 1
0.06 I 0.05 I I I

-60 -40 -20 0 20 -%O -40 -20 0 20
Log Likelihood Ratio L Log Likelihood Ratio L

Iteration 10 Iteration 14
I 0.02, 0.03 I I

Log Likelihood Ratio L Log Likelihood Ratio L

Figure 15.13: Histograms of the bit-to-check information for various decoder iterations at
1.6 dB.

SNR=0.8 dB

C
0

E
Lc

Chk to Bit

Bit to Chk

C

0.2

1 ,

C
0 3 0.6 -
.-

E
Lc

Chk to Bit

Bit to Chk

C

0.2 -

I I I ,

0 ‘ I

Iteration
0 10 20 30 40 50

SNR=I .6 dB

0 5 10 15 20
Iteration

SNR=0.4 dB
0.7

0.6 , I / - - - - - - - - - -

0.5 .,’ 1 .- c

Chk to Bit
0.1 ’

I

0 20 40 60
0‘

Iteration

SNR=1.8 dB

0- 5 10
0

Iteration
5

Figure 15.14: Decoder information at various signal-to-noise ratios.

662 Low-Density Parity-Check Codes

0.4.

0.2

1

0.8
0 -

71' 0.6 - -' 0.4
7 T =rn -

0.2

I
I
I

' I

SNR=0.8 dB

I
I
I

0
0 o ~ ~ [i + ~ l 1

C+ B' C+ B
SNR=1.6 dB

0.6 '.lV
I1 I

SNR=0.4 dB

l 7

1

0.8
0 -

i=, 71' a 0.6 - - - 0.4

0.2

71' =a -

-
0.5 1 $1 1"+11

0

C+ B' C-+ B
SNR=1.8 dB

. I
I
I
I
I

n
0.5 1 -0 0.5 1 1"l 1['+11 I"] I"+'I

-0

C+ B' C+ B C+ B' C+ B

Figure 15.15: EXIT charts at various signal-to-noise ratios.

present some results of the design of irregular codes. This is followed by a sketch of the
density evolution analysis which leads to these results.

15.10.1 Degree Distribution Pairs

The distribution of the weights of the columns and rows of the parity check matrix is
described as follows. We let u i represent the fraction of edges emanating from a bit (variable)
node in the Tanner graph for the code and let x i represent the fraction of edges emanating
from a check node. Let d, denote the maximum number of edges connected to a variable
node and let dc be the maximum number of edges connected to a check node. The polynomial

i=2

represents the distribution of variable node weights and

i =2

15.10 Irregular LDPC Codes 663

represents the distribution of check node weights. These are called the variable node and
check node distributions, respectively. The degree distributions satisfy u(1) = 1 and x (1) =
1. The pair (u (x) , x (x)) is called a degree distribution pair. For example, for the (3,6)
regular code, u(x) = x 2 and x (x) = x5. The number of variable nodes is N and the number
of check nodes is M .

The number of variable nodes of degree i is (see Exercise 15.12)

vi vi

CjzzVJlJ l; u (x) dx '
N = N

The total number of edges emanating from all nodes is

E = N c i = N
ujli 1

j 2 2 1; v(x> dx l; V (X > dx *

Similarly, the number of check nodes of degree i is

and the total number of edges is

Equating (15.39) and (15.40) we find

(15.38)

(15.39)

(15.40)

Under the assumption that the corresponding check equations are all linearly independent,
the rate of the code is

Example 15.10 Suppose 73 = 0.5 and 74 = 0.5 and N = IOOO. Then

~ (x) = 0 . 5 ~ ~ + O h 3

and there are
0.513

0.513 + 0.514
N = 571

(rounding) variable nodes of degree 3 and

0.514
0.513 + 0.514

N = 429

variable nodes of degree 4, for a total of

E = 571.3 +429.4 = 3426

edges in the graph.

664 Low-Density Parity-Check Codes

x5 0.24123
X6 0.75877 0.78555 0.7661 1 0.43810 0.22919
x7 0.21445 0.23389 0.56190 0.77081
X8
Y"

15.10.2 Some Good Codes

Assuming that the message passing decoder can be analyzed using a density evolution similar
to that of the regular code, a threshold or can be established such that the mean message
p['] + 00 if the channel deviation u > ur. This leads to a design optimization problem:
choose variable and check node distributions u(x) and x (x) in such a way as to mmimize
the corresponding a, (i.e., minimize the SNR at which the code correctly decodes). Some
results of such an optimization for some values of d, are shown in Table 15.2, along with
the corresponding threshold ut, the corresponding Eb/No, and the gap to channel capacity.
Note that in some cases the codes are within significantly less then half a dl3 away from
capacity (up to the idealizations of the analysis: arbitrarily long block lengths, and cycles
in the graph do not affect the decoding).

0.01568
0.85244 0.63676 0.43011 0.25475
0.13188 0.36324 0.56989 0.73438

o.nio87 n7

@r
Eb/NO (dB)

gap(dB)

.

0.9114 0.9194 0.9304 0.9424 0.9497 0.9540 0.9558 0.9572 0.9580
0.8058 0.7299 0.6266 0.5153 0.4483 0.4090 0.3927 0.3799 0.3727
0.6187 0.5428 0.4395 0.3282 0.2612 0.2219 0.2056 0.1928 0.1856

15.10.3 Density Evolution for Irregular Codes

We now summarize how the density evolution is described for these irregular codes. We
present the highlights of the technique, leaving aside some technicalities which are covered
in [292]. In the current analysis, a more explicit representation of the distribution of the
messages is needed than the consistent Gaussian approximation made in Section 15.8.

The decoder algorithms can be summarized as

(15.41)

(15.42)

15.10 Irregular LDPC Codes 665

Write (15.41) as
[11

-)7m n

2
tanh - = (n

jsNm,n

and take the log of both sides. In doing this, we have to be careful about the signs. Therefore
we will separate out the sign,

Alf-11

(sgn(aE:,), -log tanh -) = (- sgn(A:,-,']), log ~ tanh ?I). (15.43) I '" I jsN,,n

We employ here a somewhat different definition of the sgn function:

l o x > o

0 with probability if x = 0

1 with probability if x = 0 I sgn(x) =

11 x < o

so that sgn(x) = 1 means that n < 0. Then the sum for the signs is performed in Z2 and
the sum for the magnitude is the ordinary sum in R.

Now let y be the function

Y(X> : 1-w +0OI + {O, 11 x [O, 001

so we can express (15.41) as

(15.44)

(15.45)

The equation (15.45) has the feature that the product is converted to a sum; in the anal-
ysis below this is useful because sums of independent random variables have convolved
distributions.

We describe the evolution in terms of distribution functions: Let F denote the space
of right-continuous, nondecreasing functions F, defined on R, such that for F, E 3,
limx.+-oo F, (x) = 0 and limx+.co F, (x) I 1, allowing for the possibility of a point proba-
bility mass at 00:

P(z = 00) = 1 - lim F,(x).

A function F, E F represents the usual cumulative distribution function of the random
variable z :

X+CO

F,(x) = P (z 5 x) .

We define the left limit of F, as
F,-x = lim F, (y) .

Y t x

666 Low-Densitv Paritv-Check Codes

so that 1 - F,- (x) = P(z 2 x). Derivatives (more precisely, Radon-Nikodyn derivatives
[30]) of the distribution functions are probability densities.

Suppose we have a random variable z with distribution F,. We wish to describe the
distribution of the random variable y(z) = (y1 (z) , y2(z)), with y defined in (15.44). Note
that any function G(s, x) defined over (0, 1) x [O , o o) can be written as

G(s, X) = Zs,oGO(x) + Zs=lG'(x),

where is the indicator (or characteristic) function:

1 i f s = a
0 i f s # a .

zs=a =

Using this notation, we define the distribution of y (z) as

r(Fz)(s, = Is=oro(Fz)(x) + Is=l, rl(Fz)(x)

where
rO(F,)(x) = 1 - F,-(-logtanh(x/2)) = P (z 2 -logtanh(x/2))

rl(F,)(x) = FZ(logtanh(x/2)) = P (z I logtanh(x/2)).
and

It can be shown that

(15.46)

lim I'o(F,)(x) - lim rl(F,)(x) = P(z = 0) .
x-+OO X'OO

The function r has an inverse: for a function
0 1 G(s,x) = ZS=oG (x) + Zs=1G (x) ,

define r-' by

r-'(G)(X) = Zx,oG0(- l~g t~h(~ /2)) + Zx<oG1(-1ogtanh(-x/2)) (15.47)

and
ITi(G)(0) = lim Go(x).

X'OO

It can be verified that r-' (r(F)) = F for all F E F.
For notational convenience, r and r-' are also applied to densities, where it is to be

understood that the notation is a representation of the operation applied to the associated
distributions.

Let G and H be two distributions,
0 1 0 1 H = Zs,oH + Zs=lH . G = Z,=oG + Zs=lG

Let €3 denote the operation of convolution on distribution functions. Then we define the
convolution 63 on G and H by

G €3 H = L o ((Go €3 H o) + (G' 63 Hi)) + Zs=i ((Go €3 H1) + (G' €3 H o)) .
Again for notational convenience we allow the convolution operator to act on densities,
where it is to be understood that it applies to the associated distributions. We denote
repeated convolution as @:

G €3 G 63 . . . €3 G = G B P .
v

p factors

15.10 Irregular LDPC Codes 667

Let P['] and Q['] be the densities of the random variables At:m and q b n , respectively.

Let the graph associated with the code have the distribution pair (u, x) ,
The corresponding distribution functions are denoted 1 and 1 Q"].

i22 i22

Recall that the fraction of edges connected to a variable node of degree i is ui and the fraction
of edges connected to a check node is x i . Thus a randomly chosen edge in the graph is
connected to a check node of degree i with probability x i . Therefore, with probability x i ,

the sum in (15.45) has (i - 1) terms, corresponding to the edges connecting check m with its
neighbors except bit n. We now invoke the independence assumption, that these neighboring
nodes are independent. Combining (15.45) with the definition of the r function, we obtain

We use the shorthand notation for this

(15.48)

(This explains the unusual definition
for P[l] is straightforward, since only sums are involved:

x ix i - ' , with the exponent i - 1.) The recursion -

Again we use the shorthand notation

P"] = Po QD u(Q"I).

Combining (15.48) and (15.49) we obtain the overall recursion,

P"] = p0 QD ~(r-l(~(r(P[-ll)))).

The original density Po is Gaussian, just as it was in Section 15.8.

15.1 0.4 Computation and Optimization of Density Evolution

(15.49)

(15.50)

It can be shown that the recursion (15.50) always converges to some fixed distribution,
although it may be the distribution with its probability mass at 00. It can further be shown
that the probability of error is a nonincreasing function of the iteration number 1 .

The convolutions implied in (15.50) can be efficiently computed by quantizing the
distributions and employing an FFT for fast convolution. This corresponds to a quantized
message passing algorithm, which is suboptimal compared to exact message passing. Any
decoding threshold or thus obtained is therefore a lower bound on the actual threshold.

The basic problem is to choose coefficients { q i } and { x i } so that the decoding threshold
a, is as large as possible. The basic outline for the computation is as follows. Starting
with a given degree distribution pair (q (x) , x (x)) , an error probability E and a maximum
number of iterations L is selected. From this, a maximum admissible channel parameter
u is selected, which is the largest channel parameter such that the error probability after L
iterations is is less than E . Then a hill climbing approach is used. A small change to the

668 Low-Density Parity-Check Codes

sparseHno4.m

degree distribution pair is introduced. If the change leads to a target error probability after
L iterations, or if the maximum admissible channel parameter is larger, then the new degree
distribution pair is accepted, otherwise the old degree distribution pair is retained. The hill
climbing process repeats until some termination criterion is satisfied.

Clearly, there is a very large search space. Some acceleration of the search process can
be obtained by limiting the scope of the search. It has been found that very good degree
distribution pairs exist with only a few nonzero terms. In particular, it suffices to allow only
two or three nonzero check node degrees (which may be chosen consecutively) and to limit
the nonzero variable node degrees to 2 , 3 , or d,.

A variation on this density evolution concept has been used to design rate R = 1 / 2 codes
which (theoretically) perform to within 0.0045 dB of the capacity limit [50]. Simulations
of actual codes with block lengths N = lo7 indicate that the actual performance is within
0.04 dB of capacity. So, while the analysis and design are somewhat idealized, the theory
matches the practice rather well.

15.10.5 Using Irregular Codes

The procedure outlined above determines a degree distribution pair (~ (x) , x (x)) . This can
be used to construct an actual code as follows. Choose a code length N (usually quite
large). Determine the number of variable nodes Ni having i edges and the number of check
nodes Mi having i edges. Randomly generate a matrix A having the given column and row
weights. Some iteration of this is probably necessary to avoid cycles of length 4 in the graph
(and possibly other short cycles). Then the decoding algorithms described above apply to
this parity check matrix without any change.

15.1 1 More on LDPC Code Construction

It is straightforward to generate random LDPC codes: simply generate columns of A at ran-
dom having the appropriate weight. However, there are some practicalities to be dealt with.
First, if the columns of A are not linearly independent, some columns can be eliminated,
which serves to increase the rate of the code by decreasing N . Second, it is important to
reduce the number of cycles in the graph associated with the code. Therefore, eliminating
or regenerating columns which would contribute to short cycles is advised. It can be seen
that when two columns of A have an overlap of more than 1 bit (as in the italicized elements
of (15.1)) there is a cycle of length 4 in the iterated graph. For large N , this is a very easy
condition to check for and eliminate in the random generation process. With somewhat
more work, longer cycles can be detected and removed.

Besides such random constructions, there have been more recent constructions which
attempt to introduce additional structure into the parity check matrix and/or the generator
matrix. While space limitations preclude more than a mention of these results, it is important
to be aware that such construction techniques exist. The interested reader is encouraged to
check the references cited below.

15.1 1.1 A Construction Based on Finite Geometries

A finite geometry is a collection of “points,” which are rn-tuples, a E GF(q)‘, and “lines,”
upon which sets of points lie. For constructing LDPC codes, the finite geometry G is
employed, where G is a finite geometry with N points and M lines with the following
properties: (1) Every line consists of wr points; (2) any two points are connected by exactly

15.12 Encoding LDPC Codes 669

one line; (3) every point lies on w, lines; (4) either two lines are parallel (having no point
in common), or they intersect at exactly one point.

For such a geometry G, form a binary incidence matrix HG whose rows and columns
correspond to the lines and points of G, respectively, with hi, j = 1 if and only if the ith line
of G contains the j th point of G. Then each row of HG portrays the points of G (and has
weight w,) and each column portrays the lines of G (and has weight w,).

Based on this idea, parity check matrices for codes are constructed [1941 that offer the
following potential advantages:

1. Several different decoding algorithms exist, from one step majority logic decoders
with low complexity, through the usual sum-product algorithm with higher complex-
ity.

2. The code can be extended by splitting each column of H. If done properly, perfor-
mance within a few dB of capacity can be achieved.

3. Codes derived from finite geometries may be cyclic or nearly cyclic, structure that
enables them to be efficiently encoded.

15.1 1.2 Constructions Based on Other Cornbinatoric Objects

Several LDPC constructions have been reported based on combinatoric objects.

Constructions based on Kirkman triple systems are reported in [177, 1761, which produce

Constructions based on Latin rectangles are reported in [352], with reportedly low encode

(3, k)-regular LDPC codes whose Tanner graph is free of 4-cycles for any k.

and decode complexity.

Designs based on Steiner 2-designs is reported in [351] and [179] and [300]. See also

High rate LDPC codes based on constructions from unital designs are reported in [178].

[353].

Constructions based on disjoint difference sets permutation matrices for use in conjunction
with the magnetic recording channel are reported in [319].

15.12 Encoding LDPC Codes

While LDPC codes have an efficient decoding algorithm, with complexity linear in the code
length, the encoding efficiency is quadratic in the block length, since it requires multipli-
cation by the generator matrix which is not sparse. This complexity is in contrast to the
turbo code case, which has linear encode complexity. However, as we present here [289],
it is possible to encode with a reasonable complexity, provided that some preprocessing is
performed prior to encoding.

Before encoding, we perform the following preprocessing steps. By row and column
permutations, we bring H into the form indicated in Figure 15.16, where the upper right
comer can be identified as a lower triangular matrix. Because it is obtained only by permu-
tations, the H matrix is still sparse. We denote the permutatioddecomposition as

A B T
. = [C D I?]

670 Low-Density Parity-Check Codes

M

1

Figure 15.16: Result of permutation of rows and columns.

and say that H is in approximate lower triangular form. We say that g is the gap of this
representation. T is a (M - g) x (M - g) lower triangular matrix with ones along the
diagonal and hence is invertible. Now multiply H on the left by the matrix

This amounts to doing Gaussian elimination to clear the matrix E , which produces the form

Note that fi is the parity check matrix for an equivalent code.
For a message vector m of length K , we write the codeword as

c = [3
where p1 and p2 represent parity information. The parity check equation fic = 0 gives rise
to two equations,

A m + Bpl + Tp2 = 0 (15.51)

(- E T - ' A + C) m + (-ET- 'B + D)pl = 0. (15.52)

Letting X = (-ET- 'B + D) and assuming for the moment that X is nonsingular, we have
from (15.52)

pi = -x - ' (-ET- 'A + C > m .

The g x (N - M) matrix - X - ' (- E T - l A + C) can be precomputed and saved, so that
pi can be computed with a complexity of O (g (N - M)). The complexity can be further
reduced, as is outlined below.

Once p1 is known, then p2 can be obtained from (15.51) by

p2 = -T- ' (Am + B p) .

Note that since T-' is lower triangular, p2 can be found by backsubstitution.
If it turns out that X is singular, then columns of E? can be permuted to obtain a nonsin-

The process of computing p1 and p2 constitutes the encoding process. The steps for the
computation as well as their computational complexity are outlined here (assuming that the
preprocessing steps have already been accomplished). For the sake of clarity, intermediate
variables are used to show the steps which may not be necessary in a final implementation.

gular x .

15.13 A Variation: Low-Density Generator Matrix Codes 671

Steps to compute p1 = -X-’(-ET-~A + C)m:

Operation Comment Complexity
x1 =Am Multiplication by a sparse matrix 0 (N)
x2 = T-lxi O (N)
~3 = - Ex2 0 (N)
x4 = Cm Multiplication by a sparse matrix 0 (N)
x5 = x3 +a Addition 0 (N)
pi = -X-’x5 Multiplication by dense g x g matrix 0 (g2)

Solve Tx2 = xi by backsubstitution (T is sparse)
Multiplication by a sparse matrix

Steps to computep2 = -T-’(ET-’A + C)m.

Operation Comment Complexity
x1 = A m Multiplication by sparse matrix (already done) 0
x6 = PPl Multiplication by sparse matrix 0 (N)
XI = xi + XI Addition 0 “1
p2 = T-’(x7) Solve Tp2 = x7 by backsubstitution (T is sparse) O (N)

The overall algorithm is O (N + g2). Clearly, the smaller g (the “gap”) can be made, the
lower the complexity of the algorithm. A heuristic greedy search method for performing
the initial permutations is described in [289].

15.1 3 A Variation: Low-Density Generator Matrix Codes

As a variation on the LDPC theme, it is interesting to consider low density generator matrix
(LDGM) codes. These are codes in which the generator matrix G is very sparse. Let

G = [L] be a very sparse generator in systematic form. Then the corresponding parity

check matrix H = [- P Z] is also very sparse, so the code is amenable to decoding using
the sum-product algorithm. The LDGM code is thus straightforward to encode and decode.

However, it is clear that since G is very sparse the code has low-weight codewords,
which results in a significant error floor. For this reason, LGDM codes have not been of
as much interest. It has been shown, however, that a straightforward concatenation of two
LGDM codes (which is still easy to encode) has good performance when used with an
iterative decoder between the concatenated stages [1221.

15.1 4 Serial Concatenated Codes; Repeat-Accumulate Codes

The parallel concatenated codes presented in chapter 14 are not the only types of con-
catenated codes that can take advantage of iterative decoding algorithms. The (serially)
concatenated codes introduced in chapter 10 can also be iteratively decoded. Figure 15.17
shows the encoder and decoder block diagram for an iteratively decoded serial concatenated
coding scheme. The MAP decoder block operates essentially identical to that for the block
turbo code of Section 14.6. Note that the outer MAP decoder does not have the received
data as an input (in contrast to parallel concatenated decoders, for which both decoders use
received data as an input).

This discussion about concatenated codes might seem more germane to the chapter on
turbo codes. But we now present an example of a serially concatenated code whose decoder
is more in line with the flavor of LDPC decoders. This is the set of codes known as repeat-

672 Low-Densitv Paritv-Check Codes

-
message

at outer Interleaver Inner
n Encoder -

Encoder
-

h.1)
repetihon *

Channel Q
I

De-
Interle y e r I

n- I
I

I
I I

OuterMAP
I Decoder
I
I

Figure 15.17: Serially concatenated codes and their iterative decoding.

, , permute accumulator

Figure 15.18: A repeat-accumulate encoder.

accumulate (RA) codes. The RA code encoder consists of three trivial encoding blocks, as
shown in Figure 15.18.

1. The outer code is an (n , 1) repetition code. These are the simplest known error

2. A pseudorandom interleaver n.
3. The inner code is a rate-1 recursive convolutional code with generator G(x) = &.

This acts as an accumulator, because the output is the mod-2 sum (accumulation) of
the inputs.

correction codes, having good distance properties but very low rate.

While this code could be decoded much like turbo codes using iterated BCJR algorithms,
we present an alternative point of view here using Tanner graphs.

Suppose that a systematic RA code is employed, in which the original message bits are
transmitted along with the accumulator output. This linear code would have a parity check
matrix, which, in turn, would have a Tanner graph representation.

Example 15.11 [15, p. 6231 Consider a systematic RA code on K = 2 message bits with a (3, 1)
repetition code. The interleaver is l7 = (1 ,4 ,6 ,2 ,3 ,5) . The operation of the code is as follows. 'ILvo
message bits, m 1 and m2 arrive at the encoder and are replicated three times:

m i , mi, m i , m2, m2, m2.

These bits pass through the interleaver, which produces the output sequence

15.14 Serial Concatenated Codes; Repeat-Accumulate Codes 673

Parity bit nodes

Check nodes

Interleaver

Message bit nodes

Figure 15.19: The Tanner graph for a (3 , l) RA code with two input bits.

Then the accumulator produces the running sum output:

P I = m i , p2 = m2 + p i , p3 = m2 + p2 , p4 = m i + p3, ...
0

The Tanner graph for such a code is shown in Figure 15.19. The variable nodes of the graph
have been split into the (systematic) message bits and the parity bits to help distinguish the
structure of the graph. The Tanner graph can be interpreted as follows. Reading left-to-right,
the first check node constrains the parity bit to be equal to the first bit, m 1. Each succeeding
check node constrains the parity bit to be the sum of the previous parity bit and the next
input, where the input sequence is determined by the interleaver. This does not define a
regular code, since each message bit is connected to YZ check nodes and the parity bits are
connected to one or two check nodes.

Once we observe the structure of the RA code on the Tanner graph, we may observe
that, regardless of the length N of the code, the Tanner graph retains its sparseness. Each
parity bit node is connected to no more than two check nodes and each message bit node is
connected to n check nodes.

To obtain the original, nonsystematic RA code, the systematic RA code can be punctured.
The Tanner graph and decoding does not change, except that the channel observations L,rt
for the corresponding punctured bits would be zero.

15.14.1 Irregular RA Codes

The RA encoder structure presented above can be generalized to an irregular repeat-
accumulate structure [1671. In this code there are K input bits. Instead of repeating all
K bits an equal number of times, we choose fractions f2, f3, . . . , fq such that

a

i=2

Then the first block of f i K bits is repeated two times, the next block of f2 K bits is repeated
three times, and so forth. Furthermore, the parity check nodes are generalized to connect
to a + 1 nodes, of which a are message bit nodes. This structure is illustrated in Figure
15.20. From this general structure, assignment of the code parameters can be optimized
using density evolution, so that the decoding SNR threshold can be minimized.

While an irregular RA code is simply a special case of an irregular LDPC code, it has
an important advantage: it can be very efficiently encoded. The RA codes thus provide an

674 Low-Density Parity-Cheek Codes

a connections

I Pseudorandom Interleaver I
I I

Messa e
t i t

nodes
f2 K nodes

repeat 2
f3 K nodes

repeat 3
fq K nodes

repeat q

Figure 15.20: Tanner graph for an irregular repeat-accumulate code.

instance of a code which has linear encode complexity and linear decode complexity, while
still achieving excellent decoding performance.

Programming Laboratory 13:
Programming an LDPC Decoder

Objective

You are to implement the decoding algorithm for the low-
density parity-check code, as described in Algorithm 15.1,
and test it using (1) a small code, to verify that your algo-
rithm is working correctly and (2) a couple of long codes.

Background

Reading: Sections 15.2, 15.5.
Because the parity check matrix for a long code would

be huge if explicitly represented, it is important to represent
only the nonzero elements of the sparse matrix. To store a
sparse matrix in a file, the following format is used.

N M
maxcolweight maxrowweight
co lwt colwt colwt . . . colwt
rowwt rowwt rowwt . . . rowwt
Ml(1) Ml(2) Ml(3) . . .
M2(1) MZ(2) MZ(3) . . .

N l (1) Nl(2) Nl(3) Nl(4) Nl(5) Nl(6) . . .
N2(1) N 2 (2) N2(3) N2(4) N 2 (5) NZ(6) . . .

In this file representation, N and M are the N
and M parameters for the code, where M = N -
K , maxcolweight and maxrowweight represent
the maximum weight of the columns (typically 3) and

maxrowweight represents the maximum weight of the
rows. The list colwt colwt colwt . . . colwt is
the list the column weights of each of the N columns of
A. The list rowwt rowwt . . . rowwt is the list of
the row weights of each of the M rows of A. Then the list
Ml(1) M l (2) M l (3) . . . is thel is tof thedataM1,
that is, the checks that bit 1 participates in (representing
the first column of A). The other M data describe the other
columnsofA. T h e n N l (1) N l (2) . . . describeN1,
the set of bits that participate in check 1, and so forth. As an
example, the description of the A matrix of (15.1) provided
in the file Asmall. txt.

Since the matrices for real codes are very large, it impor-
tant to use a sparse representation in the internal computer
representation as well. That is, rather than allocate space
for a M x N matrix to represent A, you only need to allocate
space for a wc x N matrix or a M x w,. matrix (depending
on how you do your internal representation).

There are a variety of ways in which you can represent
the sparse data. It takes some work, however, to represent
the data in such a way that you can access data in both row-
oriented and a column-oriented ways, since both directions
are used in the vertical and horizontal steps. We describe
here one method to sparsely represent the data.

Think of the sparse elements in the A matrix “floating”
to the top of the matrix. With this representation, it is, easy
to access down the column to do a vertical step. Here is the
computation of the pseudoposteriors:

/ / Vertical step:
/ / Work across the columns

Lab 13: Programming an LDPC Decoder 675

for(n = 0; n < N; n++) {

prod0 = 1-pn[nl; prodl = pn[nl;
/ / pn represents the channel posterior
/ / compute the pseudoposteriors
/ / Now work down each column
for(1 = 0; 1 < Mnlen[n]; 1++) {

I
alpha = l/(prodO + prodl);
qOp [n] = alpha*prodO; qlp [n] = alpha*prodl;

prod0 *= r0[11 [nl; prodl *= rl[ll I n] ;

However, when doing the horizontal ste , it is necessary
to keep track of which row the com ressed &a comes from.
This is done by counting the numger of nonzero elements
above an element, in an array,called na (“number above” .
The na array is, set to zero initial1 (for every iteration]
As the elements in a column are use2 the row indexing into
the “compressed”matrix ski sdown torow na [column].
The following code shows tfe horizontal step implemented
this way:
I / Make sure naI1 is set to zero before this step
/ / Horizontal step:
for(row = 0; row < M; row++) (

/ / Copy the data on this row into a
/ / temporary array of deltaq values
for(1 = 0; 1 < Nmlen[row]; 1++) (

/ / for each nonzero value on this row
idx = Nrn[row] [l];
deltaqrll = l-2*ql[na[idxll[idxl;
/ / compute delta q

}
/ / Work over nonzero elements of
/ / this row, taking products
for(1 = 0; 1 < Nmlen[row]; 1++) (

prod = 1;
for(k = 0; k < Nmlen[row]; k+t) {

if(k==l) continue; / / skip when k==l
prod *= deltaqrk];

}
/ / assign the product back into
/ / sparse structure
idx = Nrnlrow] 111 ;
rl [na [idx]] [idx] = (1-prod) /2; / / rl value
rO [na [idxl++l [idx] = (l+prod) /2; / / rO value

1
1

Assignment

1) Complete the class galdec by finishing the details on
the decode member function. Test the decode function
using the gal t est program, which uses the 5 x 10 parity
check matrix represented in Asma 11 . t x t . You should ob-
tain numerical results similar to those in Example 15.6.

Algorithm 15.3 LDPC class decla-
ration and definition
File: galdec. h

galdec. cc
ga1test.c~

For debugging purposes, it may be helpful to compare with a
Matlab version of the decoder. Note, however, that this im-
plementation does not treat the sparse matrices efficiently,
and so will have trouble scaling to larger codes.

Algorithm 15.4 Matlab code to test
LDPC decoding
File: ldpc .m

ga1decode.m

2) Using the program ga 1 test 2, produce the probability
of error plot and average number of decoding iterations plot
as in the chapter for a rate 114 and a rate 112 code, defined
inA1-2. txt and Al-4. txt.

Algorithm 15.5 Make performance
plots for LDPC codes
File: galtest2. cc

A1-2. txt
Al-4 . txt

Numerical Considerations

Because the probabilities eventually tend toward either 0
or 1, some of the computations can be somewhat sensitive.
Suppose that the numbers ph and pi are to be normalized
to form probabilities according to

Suppose also that pb > p i . Then the Probabilities can be
computed as

1

This is a stable way of numerically computing the result. If
p i > ph, then the result can similarly be written in terms
of the ratio p h / p ; .

676 Low-Density Parity-Check Codes

15.1 5 Exercises

15.1 Determine a low-density parity check matrix for the (n, 1) repetition code. Show that there are
no cycles of girth 4 in the Tanner graph.

15.2 Let H be a binary matrix whose columns are formed from the (7) rn-tuples of weight 2.
Determine the minimum nonzero weight of a code that has H as its parity check matrix. Show
that there are no cycles of girth 4 in the Tanner graph.

15.3 Let h(x) = 1 + x + x3 + x7. Form a 15 x 15 parity check matrix by the cyclical shifts of the
coefficients of h(x). Show that there are no cycles of length 4 in the Tanner graph. What is the
dimension of the code represented by this matrix?

15.4 For the parity check matrix

1 1 0 1 0 0 0
0 1 1 0 1 0 0

.=[: : ; ; ; : PI
(a) Construct the Tanner graph for the code.
(b) Determine the girth of the minimum-girth cycle.
(c) Determine the number of cycles of length 6.
(d) Determine a generator matrix for this code.
(e) Express the N and M lists describing this parity check matrix.

15.5 Let {q, . . . , cn} be independent bits, ci E (0, 1) and let hi(c) = log -. Let z = Cy=l ci
be the parity check of the ci . Let

P(z = 1)
h(2) = log ___

P(z = 0)

be the likelihood ratio of the parity check.

Show that

This is the tanh rule. Thus

(15.53)

Let
ex + 1
ex - 1 f(x) = log - , x > o .

Show that f(f(x)) = x for x > 0.
Plot f (x) .
Let a, = - nr=l sign(-hj (c)) be the product of the signs of the bit likelihoods. Show
that (15.53) can be written as

(15.54)

15.15 Exercises 677

15.6

15.7

(e) Show that (15.54) can be written as

Hint: tanh(z/2) = -.
(f) Show that if ck is equally likely to be 0 or 1, then h(z) = 0. Explain why this is reasonable.
(g) Explain why h(z) FZ - (- l)z lk~n(c) l , where Ihmin(C)I = mini Ihi(C)I.

Let a m be the mth row of a parity check matrix A and let Zm be the corresponding parity check.
That is, for some received vector e, Zm = eaz . Let am be nonzero in positions i l , i 2 , . . . , i,,
so that

Zm = ei, + ei, + . . + ei, .
Assume that each ej is 1 with probability p c . Let Zm (w) be the sum of the first w terms in Zm

and let p z (w) be the probability that Zm (20) = 1 .

(a) Showthat pz(w+l) = pz(w)(l -pc)+(l - p z (w)) p c , withinitialcondition pz (0) = 0.

(b) Show that pz(w) = - i(1- 2 ~ ~) " .

[217] Hard decision decoding on the BSC. Let A be the m x rz parity-check matrix for a code
and let r be a binary-valued received vector. A simple decoder can be implemented as follows:

Set C = r (initial codeword guess)
[*I Let z = cAT (mod 2) (compute checks)
If z = 0, end. (everything checks - done)
Evaluate the vote vector v = zA (not modulo 2), which counts for each bit the number of
unsatisfied checks to which it belongs. The bits o f t that get the most votes are viewed as the
most likely candidates for being wrong. So flip all bits 6 that have the largest vote.
Go to [*I

(a) Let r = [1, 0, 1, 0, 1 , 0, 0, 1 , 0, 11. Compute s, v, and the updated C using the parity check

(b) Repeat for r = [l, 0, 1, 0, 1, 1, 0, 1,0, 11. Continue operation until correct decoding

(c) Show that v = PA counts the number of unsatisfied checks.
(d) Some analysis of the algorithm. We will develop an expression for the average number

of bits changed in an iteration. Let w r be the row weight of A (assumed fixed) and wc be
the column weight (assumed fixed). Determine the largest possible number of votes w a
check can be involved in.

(e) Let e be the (binary) error vector. Let bit 1 of e participate in check Zm (that is, A,i = 1).
Show that when el = 0, the probability that bit 2 receives a vote of w is a = P(votel =
w(el = 0) = [pz(wr - l)]", where pz(w) is the function defined in Exercise 15.6.

(f) Show that when el = 1, the probability that this bit receives the largest possible number
of votes w is the probability b = P(votel = wlel = 1) = [l - p z (w r - l)]".

(g) Show that P (q = Olvotel = w) IX a(1 - p c) and P(el = llvotel = w) 0: bpc, where
pc is the crossover probability for the channel.

(h) Hence show that the expected change in the weight of the error vector when a bit is changed
after one round of decoding is (a(1 - p c) - bpc)/(a(l - P C) + ~ P C) .

matrix in (15.1). Is the decoding complete at this point?

occurs.

678 Low-Density Parity-Check Codes

15.8 [113] Consider a sequence of m independent bits in which the j th bit is 1 with probability p j .
Show that the probability that an even number of the bits in the sequence are 1 is (1 + ny=l (1 -
2pj))/2. (For an expression when all the probabilities are the same, see Exercise 3.3.)

15.9 The original Gallager decoder: Let Pil be the probability that in the ith parity check the Zth bit
of the check is equal to 1 , i = 1 , 2 , . . . , m, 1 = 1 , 2 , . . . , W r . Show that

P(cn = Olr, { zm = 0, m E M n }) - 1 - P(Cn = llr) wc 1 + nyLF'(1 - 2Pjl)

P(cn = Ilr, {zm = 0, m E Mnl) i=l 1 - fly~''(1 - 2 p i l)
n -

P(cn = llr)
Use Exercise 15.8.

Let po = pc be the probability that a bit is received in error.
15.10 Suppose that each bit is checked by wc = 3 checks, and that Wr bits are involved in each check.

Suppose that rn is received incorrectly (which occurs with probability PO) . Show that a
parity check on this bit is unsatisfied with probability (1 + (1 - 2 p 0) ~ ' - ~) / 2 .
Show that the probability that a bit in the first tier is received in error and then corrected
is p o ((1 + (1 - ~ p O) ~ r - 1) / 2) 2 .
Show that the probability that a bit in the first tier is received correctly and then changed
because of unsatisfiedparity checks is (1 - po)((l - (1 - 2 p 0) " ' - ~) / 2) ~ .
Show that the probability of error p i of a digit in the first tier after applying the decoding
process is

I' [1 + (1 -22po)"'-1 I ' + (l - P o) [1 - (1 - 2po)wr-l
P1 = PO - PO

and that after i steps the probability of error of processing a digit in the ith tier is

L L

15.1 1 A bound on the girth of a graph. The girth of a graph is the length of the smallest cycle. In this
exercise, you will develop a bound on the girth. Suppose a regular LDPC code of length n has m
parity checks, with column weight wc and row weight wr . Let 21 be the girth of the associated
Tanner graph.

(a) Argue that for any node, the neighborhood of edges on the graph of depth Z - 1 forms
a tree (i.e., the set of all edges up to 1 - 1 edges away), with nodes of odd depth having
"out-degree'' wr and nodes of even depth having "out-degree'' wc.

(b) Argue that the number of nodes at even depths of the tree should be at most equal to n ,
and that the number of nodes at odd depths is equal to m.

(c) Determine the number of nodes at depth 0 (the root), at depth 2, at depth 4, at depth 6,
and so forth. Conclude that the total number of nodes at even depth is

[(wC - l) (wr - 1)1"/~' - 1
(wc - l) (wr - 1) - 1

1 + wc(wr - 1) '

This number must be less than or equal to n. This yields an upper bound on 1.

15.12 (Irregular codes) Show that (15.38) is true.

15.13 Show that xjrz u , / j = so u (x) d x .
15.14 Show that the decoder algorithm of Algorithm 15.2 can be written as in (15.42) and (15.41).
15.15 Draw the Tanner graph for a (4, 1) Repeat Accumulate code with three input bits with an

1

interleaver ll = (6, 12, 8, 2,3,4, 10, 1,9, 5 , 11,7).

15.16 References 679

15.1 6 References

Many references appear throughout this chapter; see especially Section 15.1. Tanner graphs
and codes built using graphs are discussed in [330]. On the analysis of LDPC codes, the
paper [290] is highly recommended, which uses density evolution. Density evolution is
also discussed in [51] (our discussion comes from there) and from [15]. See also [74]. The
EXIT chart for turbo codes was presented in [334,335].

The discussion of irregular LDPC codes comes from [292]. See also [212].
One of the potential drawbacks to LDPC codes is the large number of decoding iterations

that may be required, resulting in increased latency and decoding hardware complexity. An
approach to reduce the number of iterations is presented in [47,62], in which the messages
around a cycle in the Tanner graph establish an eigenvalue problem or a least-squared
problem.

Our discussion of encoding comes from [289]. Another class of approaches is based on
iterative use of the decoding algorithm in the encoding process. This could allow for the
same hardware to be used for both encoding and decoding. These approaches are described
in [135]. Using the sum-product decoder on general matrices is explored in [245]. An
excellent resource on material related to turbo codes, LDPC codes, and iterative decoding
in general is the February 2001 issue of the IEEE Transactions on Information Theory,
which contains many articles in addition to those articles cited here. Interesting results on
the geometry of the iterative decoding process are in [156].

Repeat accumulate codes are presented in [167]. Our presentation has benefited from
the discussion in [151.

Chapter 16

Decoding Algorithms on Graphs
16.1 Introduction

In this chapter, the seemingly distinct algorithms applied to turbo codes and to low-density
parity-check codes are shown to be instances of a more general algorithm for message
passing on graphs. In fact, this algorithm also circumscribes the Viterbi algorithm and the
fast Hadamard transform and the fast Fourier transform, which have been employed in this
book, as well as many other useful algorithms such as the Kalman filter and state space
models, fast matrix multiplication, directed acyclic graphs, and hidden Markov modeling,
which are beyond the purview of these pages.

Somewhat amazingly, the computational efficiency ascribed to all of these algorithms can
be attributed to the following observation about the distributive law ab f a c = a (b + c): The
first computation requires two multiplications and one addition, while the second requires
only one addition and one multiplication. Application of this distributive property arises in
many contexts, where we want to “marginalize” out some variables.

Example 16.1 [2] Suppose that f (x , y , w) and g (x , z) are real-valued functions, where x , y , z and
w are variables taking values in a finite set A with q elements. Suppose we are to compute

a (x , w> = c f k Y , w > g (x , z> and B(Y> = c f (x , Y , w > g (x , z) .

That is, 01(x, w) is obtained by marginalizing out the variables y and z , while #?(y) is obtained by
marginalizing out the variables x , z and w . The marginalization for 01 (x , w) requires summation over
q2 different values for each of the q2 values of (x , w), for a total complexity of 2q4 (one addition
and one multiplication for each). The function B (y) is obtained by marginalizing over the variables
x , w, and z , at a complexity of 2q3 per each of the q values of y , for a complexity of 2q4. The overall
complexity to compute both the 01 and #? marginalizations is 4q4.

Contrastingly, by means of the distributive law we can write

y , z c A x , z , w ~ A

Now define the functions a1 (x , w) and a 2 (x) by

All the values of a1 (x , w) can be computed in q3 additions, and all the values of 012 (x) can be computed
in q 2 additions. Then the values a (x , w) = a l (x , w) a z (x) can be computed in q2 multiplications,
resulting in a total complexity of q3 + 2q2. Employing the distributive law again, we obtain

16.2 Operations in Semirings 681

By reusing a2(x), only another 2q3 operations are necessary to compute B(y). The total complexity
to compute both a (x , w) and B (y) is 3q3 + 2q2 operations, compared to the 4q4 operations for the
direct method. 0

16.2 Operations in Semirings

While marginalization seems like a rather specialized operation, the development below
demonstrates that it arises in a variety of settings. In order for the algorithm to have broad
applicability, we express it in the framework of a commutative semiring.

Definition 16.1 A commutative semiring (K , +, -) is a set K together with two binary
operations + and . which satisfy the following three axioms:

SR1 The operation + is associative and commutative and there is an additive identity called
“0” such that k + 0 = k for all k E K . (No additive inverse is necessary, so this does
not form a group; this algebraic structure is called a commutative monoid.)

SR2 The operation ‘‘.” is associative and commutative. There is a multiplicative identity
called “1” such that 1 . k = k for all k E K .

SR3 The distributive law holds: (a . b) + (a . c) = a . (b + c) .

Often the semiring (K , +, -) is denoted simply by K .
There are a variety of sets/operations which forminteresting and useful semirings. Some

of these are summarized in Table 16.1.

Table 16.1 : Some Commutative Semirings [2]

Set K “(+, 0)’’ “(-, 1)” Name
1 A (+, 0) (-, 1) (conventional + and . operations)
2
3
4
5
6
7
8
9
10

(conventional + and . operations)
(conventional + and - operations)

sum-product
min-product
max-product

min-sum
max-sum
Boolean

Whatever semiring we are working in, we generically employ the + or the Z (summa-
tion) operator to indicate the “+” operation and juxtaposition, ., or l7 to indicate the ‘‘a”

operator.

16.3 Functions on Local Domains

Let xi , x2, . . . , x,, be a set of variables such that xi takes on values in a set Ai, and let
[Ail = qi. For S = [il, i2,. . . ir} asubsetof [1 ,2 , . . . , n} , wedenotetheCartesianproduct
Ail x Ajz x . . . x Air by As and denote the variable list { x i , , x i2 , . , . , x i r } by x s . The set

682 Decoding Algorithms on Graphs

A1 x A2 x . . . An is denoted simply by A. The entire set of variables (x i , x2, . . . , Xn) is
denoted x.

Let S = {Sl, S2, . . . , SM} be M subsets of (1, . . . , n}. For each i = 1 ,2 , . . . , M ,
suppose there is a function ai: Asi -+ K , where K is a commutative semiring. The
function ai is called a local kernel function. When Si = { i l , i 2 , . . . ir}, then ai is a function
of the variables xi,, X i 2 , . . . , xi,. The set

Asi = Ail x Ai, x * . . x Ai,

is called the conjigurution space of ai; each element of Asi is a particular configuration
of the variables, assigning a value to each variable xi from the set Ai. The set Li =
{xi, , xi,, . . . , xi, } = xsi is called the local domain of the local kernel function. The gZobal
kemelfunction B : A + K is defined by

(16.1)

(where the ll symbol denotes the ‘‘.” operation in the semiring K) .
The algorithm to be developed computes marginalfunctions of global kernel functions,

which we define as follows. Let S c { 1,2, . . . , n) be a set of variable indices and let Sc
denote the complement of the set S relative to the universal set {1,2, . . . , n}. Then the
S-marginalization is the function Bs : A s + K defined by

(16.2)
XSCEASC

(where X denotes “+” in the semiring K) . In other words, all the variables not in the set
xs are “summed out.” We also sometimes use the notation P L (X L) , where L is the local
domain corresponding to the set S. In addition to the set complement notation xsc E Asc,
we also use the “summary” notation - (xs} to indicate “every variable not in xs,” where
the set A s is implicit: c means thesameas .

-+SI xsc EASC

Note: In many instances a normalization of the marginal functions is computed. In this
case, (16.2) would be more properly written as

The algorithm to be developed is sometimes called the marginalize a product offinctions
(MPF) algorithm. It is also called (because semiring 4 in Table 16.1 is a “generic” ring)
the sum-product algorithm. Other equivalent or nearly equivalent algorithms are called
“message-passing” or “belief propagation” [258]. We now provide examples showing how
this framework can be applied to a variety of problems.

Example 16.2 We express the problem of Example 16.1 using these concepts. Let L 1 = {XI, x2, x4}
be a local domain and L2 = {XI, x 3 } be another local domain, where each xi takes value in a set A
having q elements. Let

16.3 Functions on Local Domains 683

Example 16.3 [2] This example demonstrates how marginalization can be used to express a useful
problem, that of computing the Hadamard transform. (The efficient algorithm to be developed gives
rise to the fast Hadamard transform.) Let X I , x2, x3, y1, y2, y3 be six variables each taking values in
the set A = [O , 1). Let f(y1, y2, y3) be a real-valued function of its arguments. Define the following
sets, domains, and kernels:

i Local Domain Lj Local Kernel aj
1 IYl .Y2,Y31 f(Y1, Y29 Y3)
2 b l 3 Y11 (- 1) X l Y l

3 b 2 7 Y21 (-1)X2Y2

5 {Xl,X2,X31 1
4 Ix3, Y31 (- 1)X3Y3

We observe that the local kernel function associated with L5 is the trivial, identity, kernel function.
Introduction of trivial local kernels is often a useful trick to mapping problems into the “marginalize
a product of functions” framework.

The global kernel function is

B(xl,x2, ~ 3 , ~ 1 , ~ 2 , ~ 3) = f(y1, ~ 2 , Y ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Now let L = {xi, x2, x3}. The marginalization of B with respect to this local domain is

B~(x1 , X 2 , X 3) = c f(y1, y2, ~ ~ ~ ~ - ~ ~ x ’ y ’ ~ x 2 y 2 f x 3 y 3

Yl >Y23Y3EI0>11

= c f(y1, y2, y3)(-1)x’Y1fx2Y2fx3Y3.
’”{XI . X 2 , X 3)

This is a Hadamard transform of the function f(y1, y2, y3).

Example 16.4 [195] In this example, we show how the power-of-two discrete Fourier transform
(DFT) can be expressed in this formalism. Let (WO, w l , . . . , WN-1) be a complex-valued N-tuple,
where N is a power of 2. The DFT is

N-1
wk = c wne-J2nnklN, k = 0, 1 , . . . , N - 1.

n=O

684 Decoding Algorithms on Graphs

Let us represent n and k as a binary representation using binary-valued variables xi to represent n and
binary-valued variables yi to represent k . For the sake of a specific example, suppose that N = 8.
Then we write

(16.4)
where 52 = ej2=IN. We thus identify the following local domain and local kernel functions:

i Local Domain Li Local Kernel a;

5 1x1 I YO} (j)--XlYO
6 b o y YO1 Q-XOYO

Then for L = {yl, y2, y3}, the marginalization is

BL(Y19 Y29 Y3) =

Example 16.5 [2] Maximum likelihood decoding. We now consider application of these principles
to error correction, demonstrating the idea with the (7,4,3) Hamming code having parity check matrix

1 1 0 0 1 1 0 1

0 0 1 0 1 1 1
1 0 1 0 1 1 . (16.5)

The codewords are transmitted through a memoryless channel, so that for the received vector (y1, y2,
. . . , y7) the likelihood of a particular codeword (XI, n2, . . . , n7) is

7

p(yl,y27 . . . ~ Y ~ I X I , X ~ , . . . , ~ 7) = np(yiIxi) . (16.6)

The maximum likelihood decoder seeks the codeword which maximizes (16.6). Codewords x must
satisfy the parity check equation Hx = 0. To describe the parity check conditions, we use the “Iverson
convention” [126, p. 141: If P is a Boolean proposition, then we take [PI to be the (0, 1)-valued
function indicating the truth of P :

i=l

1 if P is true
0 if P is false.

[PI =

We also have
0 if P is true
00 if P is false.

- log[P] =

16.3 Functions on Local Domains 685

Then the parity check equations give rise to the functions

The domains and kernels for this problem are as follows:

is a codeword

The value of xi for which & (x i) is the smallest is the value of the ith component of a maximum-
likelihood codeword, that is, a codeword for which log p (y 1 , . . . , ~71x1, . . . , x7) is largest.

As we will see, cycles in the factor graph preclude exact calculation of this marginalization.
Otherwise, this would generalize to be a computationally efficient means of finding the maximum
likelihood codeword for an arbitrary linear block code. 0

Example 16.6 11951 MAP decoding. We consider again a coding problem. Let (xi, . . . , x,) be
selected according to a uniform probability from a code C of length n and transmitted over a memo-
ryless channel, whose output is the vector y = (y1, y2, . . . , yn). The posterior distribution p(x\y) is
proportional to the function p(y lx)p(x). We write

B(x) 0: P(YlX)P(X),

representing a global kernel function.

we have
Since the prior distribution of the transmitted codeword is assumed to be uniform over the code,

P(X) = XC(X)/lCI,

where xc (x) is 1 if x E C, and 0 otherwise. Then we have

n

686 Decoding Algorithms on Graphs

1
/

=-Xl(xl + x 4 + x 5 + x 7) X 2 (x 2 + X 4 + X 6 + X 7) X 3 (x 3 + X 5 + x 6 + x 7) n P (Y j l x i) .
ICI i=l

The domains and kernels for this are very similar to those for the maximum likelihood case, except
that we use semiring of conventional addition and multiplication.

i Local Domain Li Local Kernel a i

1 IXl1 P(YlIb1)
2 b 2 1 P(Y21X2)

Now the marginalization is computed by

Bi(Xi) = c B(x1,. . . 1 x7).

-(xi)

This represents a marginalization of the posterior density, which computes a quantity proportional to
P(xilY1,. . . ~ 7) . 0

16.4 Factor Graphs and Marginalization

Factor graphs are a way of representing the computations in the marginalize a product of
functions operation which reveal how to take advantage of the distributive law to reduce the
computational complexity.

Definition 16.2 Factor graphs are bipartite graphs that represent the factorization of the
global kernel function (16.1), having a variable node (or vertex) for each (single) variable
xi and a factor node for each local kernel function aj , and an edge connecting a variable
node xi to a factor node a, if and only if xi is an argument to the function czj .

Example 16.7 Figure 16.l(a) shows the factor graph for the functions of Example 16.2. The function
nodes are indicated with filled blocks and the variable nodes are circles.

B(xl,x2,x3, x43x5) = al(xl)a2(x2)~3!3(xl,x2,x3)~4(x3,x4)"5(x3,x5) (16.7)

be the global kernel function. The factor graph corresponding to this factorization is shown in Figure
16.1 (b). 0

16.4 Factor Graphs and Marginalization 687

(a)Factorgraphforasim-
ple function. (16.7).

(b) Factor graph for the product in

Figure 16.1: Factor graph for some examples.

Figure 16.2: Factor graph for a DFT.

Example 16.9 The factor graph for the DFT factorization (16.4) is shown in Figure 16.2. The
functions are

Cl(X0, Y2) = (-l)xoy2 c2(xo, y1) = j - x o y 1 c3 = O-xoYo

4 x 2 , yo) = (-l)x*yo. b l h , Y1) = (- l) x ' y l b2(x1, yo) = j - x ' y o

0

16.4.1 Marginalizing on a Single Variable

Let us now consider the marginalization of the global kernel function of (16.7) to produce
a function of a single variable. Letting S = { 1) we have

BS(X1) = c B(X1, x2, x3, x4, x5>
x2 J 3 J 4 , xs

= c a1(x1)a2(X2)a3(xl7 x2, x3)a4(x3, x4)a5(x3, x5)

= c al(xl)a2(x2)a3(xl, x2, x3)a4(x3, x4)a5(x3, x5).

X 2 J 3 J 4 J S

-(XI 1

Applying the distributive law, we can write this as

x2 x3
(16.8)

688 Decoding Algorithms on Graphs

ff2
Ic I

(a) An expression tree representation. (b) Factor graph of figure 16.l(b) drawn
as a tree with x1 as a root node.

Figure 16.3: Graphical representations of marginalization.

This requires fewer computations than the direct method, but raises the question of how this
distributive structure can be discovered in a general problem. Using the summary notation,
we can rewrite (16.8) as

Our next step is to portray the computations in (16.9) as an expression tree, which is a
graphical representation of how the computations are organized. Figure 16.3(a) shows an
expression tree representing the computations in (16.9). In the expression tree, leaf nodes
are either variables or functions. As in the factor graph, edges still indicate functional
dependency. However, the summaries in (16.9) are also portrayed. (The dashed box around
a summary notation indicates that there are no other variables to sum out). Now consider
the factor graph of Figure 16.l(b) redrawn with the X I node as the root node, as shown
in Figure 16.3(b). The structural similarity of the graph is evident. The transformations
to go between the expression tree representation and the factor graph representation are
summarized in Figure 16.4.

Observe that in going from the a 4 function node to the x3 variable node, all variables
except x3 in the a 4 branch of the tree are summed out. Similarly, in going from the a5 node
to the x3 node of the tree, all variables below the x3 node in the e5 branch of the tree are
summed out. At the x3 branch, the product of the information coming from the branches
below is passed to the next higher level of the tree. In going from the a2 branch to the x2

branch, all other variables except x2 in the branch are summed out (there are none). At the
a3 node, the information from the branches below is multiplied together. In going from the
a3 node to the xi node, all variables except x1 are summed out.

We can think of the passing of information among the levels of parenthesization in the

16.4 Factor Graphs and Marginalization 689

Factor Expression
graph tree

Factor Expression
graph tree

(a) Conversion at a function node. (b) Conversion at a variable node.

Figure 16.4: Conversion from factor graph to expression tree.

equation (16.9) (and the levels of the tree) as message-passing. A message is simply a
representation of a function or a variable. For functions over discrete variables, the message
is simply a list of the function values evaluated at all the outcomes. For example, suppose
that x1 takes the values 0, 1, . . . , q - 1. Then the “message” associated with the function
al(x1) is the vector (or list) of function evaluations (a! l (O), a l (l) , . . . , al(q - 1)).

We denote the message from a function node a! to a variable node x as The
message from a variable node x to a function node a! is denoted as pX+.a. Consider again
the summation in (16.9). In light of the expression tree/factor graph representation, we can
designate the various parts of the summation as follows:

B S (X l > =

a l (X l > v c (a3(X11x2,x3) v a2(x2) (c a4(x31x4)) (c a5(x?,x5>)).
- 1 ~ 3) - b 3 1 Pal + X I (XI) -{XI Pa2+x2(XZ) ~ ,, ~ , - Paq-fx3(X3) Pa5 +x3 (X3)

(XZ) ,
ILx3+a3 (X3)

L

/ I C f + X l (XI)
L J

PXI +(XI)

For example,

ll.(y5+x3(x3) = c a5(x3, x5)
- b 3 1

is the message from function node a5 to variable node x3, as a function of x3. For fi-
nite domains this can be represented as a vector. For example, if x3 takes on the values
0, 1, . . . , q - 1, then the message is the vector

690 Decoding Algorithms on Graphs

The point of this example is this:

The computational organization which puts the distributive law into effect when
marginalizing to compute /3i (xi) for a single variable node xi is found by draw-
ing the factor graph as a tree with xi as the root node, then starting at the leaf
nodes of the tree, pass “messages” toward the root node.

In the procedure described below, it is also helpful to think of the marginalized function
/ 3 (j } (x i) as an implicit node in the factor graph.

Let us now state explicitly how the messages are formed. We first consider a message
from a variable node to an adjacent function node, pX j (y (x) . Let e denote the edge con-
necting the x node and the a node. The message is formed by computing the product of all
messages on edges incident to x except the edge e . Let Nb(x) denote the set of nodes which
are neighbors (adjacent) to x. Note that a E Nb(x). The set Nb(x) \a consists of all nodes
that are adjacent to x except a. Then the message is computed by:

Message from variable node to function node:

(16.10)

The message from a function node to a variable node (x) is the product of the local
kernel function a! with all messages received at a from nodes other than the x node, sum-
marized (marginalized) for the variable x. As before, let Nb(a) be the set of neighbors of
the a node (i.e., nodes adjacent to it) and let Nb(a) \ x be this set excluding the x node.
Then the message is computed by:

Message from a function node to a variable node:

The notation a(x, Nb(a!)) indicates that (11 is a function of the variable x and the other
variable nodes adjacent to a.

The algorithm based on these two steps is referred to as the sum-product algorithm
(bearing in mind that both “sum” and “product” depend upon the semiring invoked for
the problem) or the message passing algorithm. Following the usual convention, empty
products are equal to 1. Summaries C+, over variables which are not in the summand
simply return the summand.

(x) and the message
from a function node to a variable node (x) are functions of the variable x. That is,
messages in either direction along the edge {x, a} are functions of x. This happens because
at the function node the variables not associated with the edge {x, a } are marginalized out,
while at the variable node all messages are functions of that variable. The two message
rules (16.10) and (16.11) can be summarized as follows [195]:

The Message Passing Rule: The message from a node v on an edge e is the
product of the local kernel function at v (or the unit function if v is a variable
node) with all messages received at v on edges other than e , summarized for the
variable associated with e.

Both the message from a variable node to a function node kx

16.4 Factor Graphs and Marginalization 691

To restate: when a node v has messages from all of its neighbors except one, w, then v
computes its message and sends it to w, using (16.10) if v is a variable node or (16.1 1) if u
is a function node.

We may observe that the message passing rules have the important special cases shown
in Table 16.2.

Table 16.2: Some Special Cases of Message Passing
1 Rule 1 By (16. lo), the message sent from a variable node with only one neighbor

is equal to 1 (because there is an empty product). This is called the trivial
message.
By (16.10), a variable node with exactly two neighbors simply passes the
message from one of its neighbors on to its other neighbor.
By (1 6.1 l) , the message sent from a function node with only one neighbor
is the function’s value itself.

Rule 2

Rule 3

It is helpful to think of the factor graph as having an additional set of nodes - im-
plicit nodes - representing the actual marginal functions pj (x j) . These nodes don’t send
messages, but they receive the final message sent from a variable node x j .

16.4.2 Marginalizing on All Individual Variables

In some problems, it is desired to compute all the marginal functions #?{jl(xi) at all the
variable nodes. One way to accomplish this, of course, is to consider each variable node
in turn as the root node of the factor graph, and to pass messages from the leaf nodes in
the tree to the respective root nodes. However, this may unnecessarily duplicate many of
the computations. Instead, it is more efficient take no particular vertex as the root. Each
vertex v in turn regards a neighbor vertex w as a parent vertex in the tree, processing and
passing messages along from all its other vertices as they are received, which are regarded
as children in the tree. Once a vertex u has received messages from all of its adjacent nodes
except one, it sends its message to that node. The idea is summarized in Figure 16.5. The
message passing is not deadlocked (unable to get started), since leaf nodes only have one
neighbor, so they are immediately able to pass their messages to their neighbors. If the graph
is actually a tree, as are all the examples we have seen so far, then processing moves from the
leaf nodes to the root. In general, the actual sequence of messages passed among the nodes
may vary. It may be helpful to think of each node as an independent processor, passing
messages to a neighbor once all the messages from other neighbors have been received. In
fact, this viewpoint implemented in hardware can give rise to efficient parallel architectures.

Example 16.10 The apparent inscrutability of messages sloshing around a factor graph can be alle-
viated somewhat by considering a sequence of messages for a particular example. We return to the
factor graph of Figure 16.1(b). Marginalizing on all the variables can be accomplished with six steps
of message passing. At each step, each node that has messages from all its neighbors except one passes
its message to that neighbor. Figure 16.6, which shows the factor graph of Figure 16.l(b) redrawn,
summarizes the steps of the algorithm and includes the “implicit” j3{i) nodes for the marginalized
functions. The numbers in the circles indicate the step in which the message is passed along the edge.

692 Decoding Algorithms on Graphs

Figure 16.5: Message passing in the sum-product algorithm.

Figure 16.6: Steps of processing in the sum-product algorithm.

Step 1

empty product

W X g ' f f g (x 5) = 1

16.4 Factor Graphs and Marginalization 693

Step 2

Step 3

Step 4

Step 5

Step 6 The actual marginal values are computed by thinking of the functions p{i1 (xi) as nodes in
the graph, adjacent only to the nodes for the xi. Then the marginal functions are computed as the

694 Decoding Algorithms on Graphs

X I x2 x 3

Figure 16.7: The factor (Tanner) graph for a Hamming code.

16.5 Applications to Coding

Let us now consider application of message passing to some coding problems.

16.5.1 Block Codes

Figure 16.7 shows the factor graph for the Hamming code of Example 16.6. This is essen-
tially the Tanner graph, with the local functions representing parity checks indicated by
and the local functions representing the channel inputs indicated by a, associated with the
functions p (y i \xi). For brevity, we refer to these local functions here as the y i functions.
Let us consider a few of the explicit messages passed on th s graph and make connections
to the LDPC decoder. The messages from the yi nodes to the xi nodes are, by rule 1, the
likelihoods,

. c ~ ~ ~ + ~ ~ (xi) = p(y i Ixi) i = 1,2, . . . ,7 .

By rule 2, the messages / A ~ ~ ~ ~ ~ (xi), i = 1,2, 3 simply pass these likelihoods along. More
interesting are the messages passed from node x7, which is involved in multiple parity
checks. For example,

PX7’XI (x7) = P y 7 + x , / A x 2 ~ x 7 P x 3 ’ x 7 = P(Y7IX7)P.LX2-tX7/A.X3’X,.

16.5 Applications to Coding 695

This should be compared with (15.12). Structurally they are the same: the message from
variable node n to check node m corresponds exactly to the qmn (x,) of the LDPC decoder.

Now consider messages from check nodes to variable nodes. For example,

P X l + X l (X l) = c x 1 (X l ~ X 4 ~ ~ 5 ~ X 7) P X q ' ~ I P X 5 - t x I c L x S ' x , .

x4 ,XS 3x6 9 X7

This should be compared with (15.15). The messages from check node m to variable node
n correspond to rmn (x,) of the LDPC decoder.

Finally, consider the marginal functions obtained from the message from the node xi to
j3i (xz). For example,

cLx7--'87(X7) = P(Y7 l~7)cL~I~x ,cLL.x2 'x7cLx3 'x7 .

This should be compared with (15.9). The pseudoposterior functions q,(x,) are the marginal
functions computed by the message passing algorithm.

The files indicated provide a Matlab implementation of a fairly general message passing
algorithm. It can be verified that the results of these computations are the same as in Example
15.6.

In the general case, the factor graph (i.e., the Tanner graph) has cycles in it. While the
message passing paradigm is exact for factor graphs without cycles, the presence of cycles
in the graph leads to a bias, which means that the results computed are not exact.

16.5.2 Modifications to Message Passing for Binary Variables

For binary codes, the message passing rules (16.10) and (16.1 1) can frequently be simpli-
fied. In this case, all the variables are Bernoulli variables, so that the messages represent
probabilities such as P(xj = 0) and P(xj = 1). Furthermore, the functions we consider
are only check functions.

Consider the portion of the graph shown in Figure 16.8(a), with a variable node of degree
3, with incoming message vectors pl = (PO, p1) and p2 = (q0,qi) . According to (16.10),
the normalized message vector pxi+ol, which we denote here as var(p0, p i , qo,q1) (that is,
the message from a variable node), is

Now consider the parity check node with function x (x, y , z) = [x + y + z = 01, where the
message from x is represented by the probability vector px = (P O , p i) and the message
from y is represented by the probability vector py = (qo,q1). The normalized message
vector from x to z, which we denote as chk(p0, p1, qo, 41) is

Since the messages are probabilities, they can be more efficiently parameterized by a
single value, rather than the vector (PO, p1). There are three different parameterizations
which are convenient to use. We describe them and characterize the messages (16.12) and
(16.13) in these parameterizations [195].

696 Decoding Algorithms on Graphs

(a) Variable node with degree 3. (b) Parity check node with degree 3.

Figure 16.8: Graph portions to illustrate simplifications.

Likelihood ratio Let h(p0, p1) = p1/po.

(16.14)

chk(A1, A2) = px+z = logcosh (” 2 ”) - logcosh (A2) (16.15)

= -2 tanh-’ (tanh(A1/2) tanh(A2/2))

This corresponds to the tanh rule.

Likelihood difference 8(po , p1) = po - pi

81 + 82
var(81, 82) = cLxj+a = ___

1 + 6182
CW81, 82) = FX’Z = 8182. (16.16)

In the log likelihood ratio case, there is a convenient approximation. Since for /x I >> 1,

log(cosh(x)) % 1x1 - log(2)

the formula (1 6.15) can be written

chk(A1,h .) % I(A1 - W / 2 1 - I(A1 +Ad/21 = -sign(Ai)sign(Az)min(lAiI, IA2l).

This corresponds to doing operations in the min-sum semiring.

16.5.3 Trellis Processing and the Forward/Backward Algorithm

As we have seen many times, it is frequently convenient to use a trellis description of a
code. We describe here how such trellises can be given a factor graph description. Figure
16.9(a) shows a (time-varying, for interest’s sake) trellis, where the state at time t is denoted
by st and the next state st+1 is determined by st and an input x t . The transition from st

to st+l produces the output vt. The states are typically considered hidden. A factor graph
corresponding to this trellis is shown in Figure 16.9(b). The state variables, being not

16.5 Applications to Coding 697

(a) Trellis.

State variables

I I
(outputs observed through a memoryless channel)

_ _ _ . _ _ _ _ _ _ _ _ _ _ 1

(b) Corresponding factor graph.

Figure 16.9: A trellis and a factor graph representation of it.

directly observable, are indicated with double circles. If the outputs vi are observed through
a memoryless channel with outputs yi, then an additional set of function nodes is included
in the factor graph, as shown.

The local functions Ti (si , x i , vi , si+l) describe the state transitions. Associated with
each function I;: (x i , Xi, vi , si+l) is a set Ti describing the behavior, which consists of allowed
tuples of the form (si, xi, v i , si+l). For example, the table here shows To and Ti for the
trellis of Figure 16.9(a), where the states at each time instant are numbered from top to
bottom.

698 Decoding Algorithms on Graphs

Figure 16.10: Message designation for forwardhackward algorithm.

Then the local kernel function is

Ti(si,xi,vi,si+l)=[(si,xi,vi,si+l) E El.
For comparison with the forwardhackward (BCJR) algorithm, we use the following

designation for messages, as shown in Figure 16.10.
Message Designation
~ ~ j i s i + l (si+l) a(si+l)

PUi+E (Vi) y(vi)
psi+] i z (si+l) B(si+l)

PT;+n; (Xi) 6 (xi 1
Let us now consider the message passing algorithm on the factor graph starting at the

left end. To begin with, the so and xo nodes send the trivial message 1. The vo node passes
along the message p (y o I vo). At this point, the function node To has messages from all but
one of its edges and can send out a message.

Then by the message passing rules,

a(si+l> = C ~ (s i , x i , ~ i , si+l>a(si>y(vi)- (16.17)

The sum receives contributions from those edges e = (si, xi, vi , si+l) such that Ti (e) = 1.
For each such edge e , we let a(e) = a(si) (the initial state of the edge) and y (e) = y (v i) .
Let Ei (s) denote the set of edges incident on a state s in the ith section of the trellis. Then
the sum in (16.17) can be written as

.‘(si+ll

16.6 Summary of Decoding Algorithms on Graphs 699

This is equivalent to (14.12) in the BCJR algorithm.

the message passing rules indicate
Suppose the trellis proceeds to a state SN. Starting at the right and working backward,

B(si) = C G(si9 xi, vit si+l>B(si+l>y(vi) .
m{si I

This can be written in the form

ecEj(s j)

which is equivalent to (14.14) in the BCJR algorithm. Having computed the a! and B at a
node Tj, we can compute the message

S(xi) = C ~ (s i , xi, v i , si+l>a(si)B(si+l>y(xi) ,
-(xi I

which is equivalent to (14.9).

for other variables as well, such as the posterior probability for a state si or an output ui .

plication, the algorithm obtained would be the Viterbi algorithm.

Using the message passing rules, it is straightforward to derive posterior probabilities

If we were to employ the min-sum ring, instead of the conventional addition and multi-

16.5.4 Turbo Codes

Figure 16.1 1 shows the factor graph corresponding to aparticular turbo code; see Figure 14.2
for the encoding framework. The form of the graph makes the decoding algorithm clear:
the forwardbackward message passing algorithm is used on the first encoder. The resulting
messages are interleaved and passed in to the other decoder, where the forwardhackward
message passing is again performed. The graph typically has loops in it, through the
interleaver, so the decoding algorithm is not exact.

16.6 Summary of Decoding Algorithms on Graphs

A general, unstructured, parity check matrix describes a Tanner graph, which implies a
message-passing decoder. However, unless the check matrix is very sparse there are cycles
on the graph which bias the results. Hence, this decoder is appropriate for LDPC codes.

The parity check matrix corresponding to convolutional codes has a Toeplitz structure.
With the introduction of state variables, the factor graph is again amenable to message
passing decoding. This decoder is appropriate for turbo codes.

However, there are still many codes that do not fall into either of these categories. Some
important work in this direction, however, appears in [236]. The process of encoding c(z) =
rn(z)g(z) is represented by a filterbank using the Cook-Toom fast convolution algorithm,
which, by some reorganization, is represented as a critically sampled filter bank. Working
backward from the filter bank, a parity-checking graph is obtained, which is decomposed
into stages suitable for iterative decoding. Iterative message passing decoding is feasible,
resulting in a soft-inputhoft-output Reed-Solomon decoder.

700 Decoding Algorithms on Graphs

Figure 16.1 1 : The factor graph for a turbo code.

16.7 Transformations of Factor Graphs

The factor graphs presented so far are adequate for decoding purposes. However, there are
modifications that can be made to factor graphs that can be used to extend their applicability,
for example, by eliminating cycles in the graph or dealing with nodes representing multiple
variables. These give the factor graph technique the ability to represent algorithms such as
the fast Hadamard transform or the DFT. Two transformations in particular are introduced,
namely, clustering and stretching. These transformations are presented in [1951, which this
discussion closely follows.

16.7.1 Clustering

Clustering is the combining together of two or more nodes into a single node. Either variable
nodes or function nodes may be clustered together. To cluster the nodes u and w, delete u
and 20 and any incident edges from the factor graph, introduce a new node representing the
clustered pair (v, w), and connect this new node to all the nodes that were neighbors of v
or w in the original graph.

Variable nodes. If v and w are variable nodes with domains A , and A,, respectively,
the new variable node (u , w) has domain A,, x A,, so the size of the message is [A, , ((A , 1.
This multiplication of the domain sizes can result in a significant increase in computational

16.7 Transformations of Factor Graphs 701

(a) Fragment of original
factor graph.

(b) Clustering the y and z
variable nodes. nodes.

(c) Clustering the function

Figure 16.12: Demonstration of clustering transformations [1951.

complexity. Any function f in the original factor graph that was a function of v or w is
replaced with a function f ’ that has (v , w) as an argument.

Example 16.11 [195] Figure 16.12(a) shows a fragment of a factor graph with a cycle. The result of
clustering the y and z variable nodes is shown in Figure 16.12(b). Here, for example, the relabeled

0 function ah(x, y , z) is defined as ah@, y , z) = q (x , y) .

Function nodes. When v and w are local kernel function nodes, the pair (u , w) indicates
the product of the functions, whose domain is the union of the domains of the original
functions. The global kernel function for this clustered graph is identical to the global
kernel function of the original graph.

Example 16.12 Figure 16.12(c) shows the clustering of three function nodes, resulting in a function
node

“ 2 3 5 (X , Y , Z) = a 2 (x , y) a 3 (x , Z) a g (Y , Z) .

0

As these examples show, clustering variables can be used to eliminate cycles in a graph.
If the sum-product algorithm is used on the graph in Figure 16.12(c), then the algorithm
would be exact, while if used on the graph of Figure 16.12(a) it would not be exact due
to the cycles. However, the computational complexity in the exact case is higher, because
there is a larger domain on the merged variable nodes.

16.7.2 Stretching Variable Nodes

The influence of a variable node on the functions adjacent to it can be represented by
“stretching” that variable node to the other variable nodes incident to those functions. Let x
be a variable node of a graph and let Nb2(x) be the set of nodes which can be reached from

702 Decoding Algorithms on Graphs

ff3

(a) Factor graph. (b) Stretching x node. (c) Eliminating redun-
dant x .

Figure 16.13: Stretching transformations.

x by a path of length two. Then Nb2(x) is the set of variable nodes that are also arguments
to the functions that x is. Stretching is accomplished by replacing each node y E Nbz(x)
with the node (x, y). Functions incident on these modified nodes are simply modified to
reflect the change in arguments.

Once a variable x has been stretched to all variable nodes in Nb(x), its influence on
its adjacent functions is represented by the modified nodes. Thus, the original x node is
redundant and can, if desired, be removed from the graph. This is another way of eliminating
cycles from factor graphs.

Example 16.13 Figure 16.13(a) shows a segment of afactor graph. In Figure 16.13(b), the x variable
node has been stretched into the y and z variable nodes. In Figure 16.13(c), the variable x is redundant

0

Stretching can be carried out further than to Nb2(x). If B is the set of nodes to which
x has been stretched, then x can be further stretched to any node in Nb2 (B) . Thus, the set
of edges to which x is stretched forms a connected subgraph of the factor graph. In the
message-passing algorithm, since x appears in all the variable nodes of the factor graph, it
is not summarized out. This provides a modeling ability essentially equivalent to that of the
junction graphs presented in [2] .

When multiple variables are stretched and a variable already exists in the node into
which it is stretched, it is only necessary to retain one instance of the variable.

As seen in the last example, stretching can be used as a means of eliminating cycles. If
a variable node XI is involved in a cycle, then it is first stretched to all the variables in the
cycle. Let (a, XI) denote the last edge in the cycle and let ((XI, x,), a) be the penultimate
edge in the cycle after x1 is stretched. See Figure 16.14. Since a obtains the variable x1
from the node (XI, x,), the edge (a, XI) is redundant and may now be eliminated.

16.7.3 Exact Computation of Graphs with Cycles

By the methods outlined above, cycles in graphs can be eliminated and exact computation
can result. A more-or-less constructive way to eliminate cycles is to identify spanning trees
in the graph, then use the spanning tree to direct how the variables should be stretched. A
spanning tree T for a connected graph G is a connected cycle-free subgraph of G having
the same vertex set as G . Algorithms for finding a spanning tree of a graph are well known

and is eliminated, breaking the cycle.

16.7 Transformations of Factor Graphs 703

This edge is now redundant
and may be removed from the graph

\. .

\
\ / \ ,

. . . .

(a) A cycle in the factor
graph. remove the last edge.

(b) Stretch the variable, then

Figure 16.14: Eliminating an edge in a cycle.

(see, e g , [305]). The spanning tree is not generally unique. To systematically eliminate
cycles in a graph G , identify a spanning tree T , noting the edges in the graph G which are
not in the spanning tree T . For each such removed edge, stretch the incident variable around
a cycle in the graph, so that the removed edge is the last edge in the cycle. Then the edge
may be removed as described above.

Example 16.14 To clarify this technique, consider the problem of computing the DFT introduced
in Example 16.4, whose factor graph is shown in Figure 16.2. This graph has cycles, so to obtain
exact computation a spanning tree must be identified. A particular spanning tree is shown in Figure
16.15(a), where the dashed lines indicate the edges not included in the spanning tree. Three edges
were removed, so we must consider three cycles.

First select the edge (w. XO) which was not used in the spanning tree. Stretch the variable xo,
which is incident to that edge, around the cycle

no -+ c2 -+ y1 -+ bl -+ x l -+ b2 -+ yo + a -+ x2 -+ w -+ xo,

as shown in Figure 16.15(b). Then the edge (w, XO) is redundant and may be removed.

(single) variable node x i around the cycle
Now select the edge (w , (XO , x l)) , which was not used in the spanning tree. Stretch the original

(xo , XI) -+ b2 -+ (XO, yo) -+ a -+ (XO, x 2) -+ w -+ (X O , XI),

as shown in Figure 16.15(c). The edge (w, (no, XI)) may be removed.
Now select the edge (c3, (XO, XI, yo)). Stretch the original variable yo around the cycle

(no, x i , yo) --+ b2 -+ (no, x i) -+ bi -+ (XO, y1) -+ ~2 -+ xo -+ c3 -+ (XO, X I , YO),

as shown in Figure 16.15(d).

clustered into two function nodes, as shown in Figure 16.15(e). The functions are
Then a judicious clustering of functions is selected all of the bi and all of the ci functions are

704 Decoding Algorithms on Graphs

Finally, the factor graph is extracted; the terminal node is to be a function of (yo, y1, y2), so a

The messages in the transform are passed from left to right.
special node is created for them, as shown in Figure 16.15(f).

Since there are generally different spanning trees, different algorithms can be organized. In the
DFT case, these might correspond, for example, to decimation-in-time, decimation-in-frequency, or
others.

0

16.7 Transformations of Factor Graphs 705

/
/

"t- -a b b l I I

(a) A spanning tree. (b) Stretching xo.

(c) Stretching XI. (d) Stretching yo.

(e) Clustering function.

(f) Factor graph for the DFT.

Figure 16.15: Transformations on the DFT factor graph.

706 Decoding Algorithms on Graphs

16.8 Exercises

16.1 Semirings: Show that min(a f b, a + c) = a + min(b, c).

16.2 Show that rings 5-8 of Table 16.1 are all isomorphic by identifying the isomorphisms among

16.3 The basic sum-product algorithm: Let f(X, Y) have the following table:
them.

~F
Let p x = P (X = 1) and p y = P (Y = 1).

(a) Determine pf = P(f(X, Y) = 1) in terms of p x and p y

(b) Let l x = log P(f(X,Y)=l)
P(f(X, Y) = O) .

and 1, = log w. Determine I f = log

16.4 Consider the following computation problem:

B(xl,x2, . . . , x 9) = ~ 1 (~ 1 ~ ~ 3) ~ 2 (x l ~ ~ 4 ~ ~ 5) ~ 3 (~ 1 ~ ~ 6 ~ ~ 7) ~ 4 (~ 4 ~ ~ 8 , x 9)

and
Bl(X1) = c B (x 1 3 x 2 3 . . . 1 x9).

-XI

Assume that each xi comes from an alphabet A with q elements in it.

(a) Determine the number of computations required to compute

(b) Draw a tree representation for the computation of B1 (xi).
(c) Determine the messages on each edge of the tree to compute

(d) Suppose that in addition to Bl(xl) , it is desired to compute

(xi) if the distributive law
is not used.

(xi). What is the compu-
tational complexity in this case?

B7(x7) = C B (X l 4 2 , . . 4 9)
-XI

Determine the messages necessary for this and the additional computational complexity
for this computation.

16.5 When normalized computations are employed, we have the marginal functions

B{i](xi) = N n pELy-+xj(xi) O: n pELy-txj(xi),

Y d W x i) \ { B { i l l ~ ~ W x i) \ { B ~ i l l

that is, the product of all messages directed toward x i . Here N is a normalizing operator. Show
that the marginal function can be computed as a function proportional to the product of any
two messages that were passed in opposite directions over any single edge incident on xi. As a
specific example of this, the following are equivalent ways of computing 88) (x3) for the factor
graph of Figure 16.1(b):

B { 3) @ 3) = ~ a g + x g (X 3) P x 3 - + a 3 (X 3) = Pa4+x3(X3)CLx3+a4(X3)

= Pa5-+x3 (X 3) P x 3 + a 5 b 3) .

16.6 Show that (16.3) can be written as (16.4).

16.8 Exercises 707

16.7 Probabilistic functions. Let P(x1, x2, x3, x4) be a joint probability mass function (p m .

(a) Show the factor graph representing P(x1, x2, x3, x4).

(b) The pmf can always be factored as

P(Xl7 x2, X 3 > X4) = P(Xl)P(X2 1x1)P(X3 1x1 9 X2)P(X4 1x1 I X23 X3).

Show the factor graph for this factorization.
(c) If X I , x2, x3 , x4 form a Markov chain, this factorization can be simplified to

P(X1, x2, x3, x4) = P~xl~P(x2lxl~P~x3lx2~P~x4lx3~.

Show the factor graph for this factorization.

channel via p(yj]xi). Then
(d) Now suppose that the xi are not directly observable, but are observed through a memoryless

4

P (x l , . . . , x 4 , ~ 1 , ~ 4) = ~ ~ (x i I x i - 1) ~ (y j t x i) .
i=l

Show the factor graph corresponding to this factorization.

16.8 For the Tanner graph in Figure 16.7, let pxI +x5 (x5) be the message from parity check node xi
to bit node x5 and let wx4+xI (x4) be the message from bit node x4 to parity check xi.

(a) Write the message passing updates for bxl +x5 (x5) and wx4+.x1.

(b) Write these messages as vectors, such as p x l + x 5 = px1-x5(0)]. Show that the
PXI +X? (1)

message passing algorithm can be expressed as a linear relationshp

p x l + x g = L I p x 4 + x ~ .

Determine the matrix L 1 .

(c) Similarly determine the matrix L2 in the message passing rule

llXS’X3 = L2/1X,+X5.

clXS-+,x3 = LPX,+XI.

(d) Determine a matrix L such that

16.9 [2] Let Mi be a (qj - 1) x qj matrix, for i = 1,2, . . . , n. Let the elements of the matrix Mj be
denoted as Mj [xj-l, xi]. We can express the computation of the product M = Mi M2 . . . Mn
as a factor graph. When n = 2, M[xo, x21 = Ex, Mi[xo, xi lM2[q7 ~ 2 1 .

(a) Show that when M = M1M2 . . . Mn,

XI X2 Xn-1

(b) Determine n + 1 local domains and local kernels to describe this problem. Hint: At the

16.10 Derive the rules for binary message passing for both the var and chk rules in (16.12), (16.13),
and

local domain n + 1, the local domain is {xo, xn}.

(16.14), (16.15), and (16.16). Hint: For the log likelihood formulation, tanh(x/2) =
1-x - -2tanh-l x.

1% Ifx -
16.11 Draw the factor graph corresponding to the Hadamard transform of Example 16.3. By clustering,

eliminate loops in the graph. Write down the message passing equations for this graph and verify
that it computes the Hadamard transform.

708 Decoding Algorithms on Graphs

16.9 References

Our description of the sum-product algorithm closely follows [1951, while the description
of semirings comes from [2]. A closer look at the latter, providing constructive ways of
identifying simplifying rules, is in [257]. The graphical model idea is well explored in
the February 2001 issue of IEEE Transactions on Information Theory. The connection
between turbo decoding and this family of algorithms seems to have been observed first
in [232]. There are actually several different kinds of graphical models employed - in-
cluding junction trees, Bayesian networks, Markov random fields - which are all more
or less isomorphic [195] and to which the algorithms described here can be applied. A
generalization of these graphical models is in [235]. Monographs treating graphical models
are [374] and [107]. Factor graphs are also treated in the tutorial [209], where the normal
factor graph or Forney factor graph (FFG) is introduced [95]. With the material of this
chapter as background, the FFG is a straightforward and useful extension which provides
for block-diagram-like system modeling.

For iteratively decoded codes, the sum-product algorithm is inexact due to cycles. Some
results on graphs with cycles are examined in [233, 381, 367, 108, 3681. A means of
approximately treating the cycles and accelerating the convergence of LDPC decoding is
treated in [47].

Part V

Space-Time Coding

Chapter 17

Fading Channels and Space-Time
Codes
17.1 Introduction

For most of this book the codes have been designed for transmission through either an AWGN
channel or a BSC. One exception is the convolutive channel, for which turbo equalization
was introduced in Section 14.7. In this chapter, we introduce a coding technique appropriate
for Rayleigh flat fading channels. Fading is a multiplicative change in the amplitude of the
received signal. As will be shown in Section 17.2, fading is mitigated by means of diversity,
that is, multiple, independent transmissions of the signal. Space-time coding provides a way
of achieving diversity for multiple transmit antenna systems with low-complexity detection
algorithms.

A very important “meta-lesson” from this chapter is that the coding employed in com-
municating over a channel should match the particular requirements of the channel. In this
case, space-time codes are a response to the question: Since diversity is important to com-
municating over a fading channel, how can coding be used to obtain diversity for portable
receivers?

A discussion of the fading channel and its statistical model are presented in Section
17.2. In section 17.3, the importance of diversity in combating fading is presented. Section
17.4 presents space-time codes, which are able to provide diversity with only a single
receive antenna and moderate decode complexity. Trellis codes used as space-time codes
are presented in Section 17.5.

17.2 Fading Channels

In the channels most frequently used in this book, communication has been from the trans-
mitter directly to the receiver, with only additive noise and attenuation distorting the received
signal. In many communication problems, however, the transmitted signal may be subject
to multiple reflections. Furthermore, the reflectors and transmitter may be moving with
respect to each other, as suggested by Figure 17.1. For example, in an urban environment, a
signal transmitted from a cell phone base station may reflect off of buildings, cars, or even
trees, so that the signal received at a cell phone may consist only of the superposition of
reflected signals. In fact, such impediments are very typical of most wireless channels. The
received signal may thus be represented in the (complex baseband) form

(17.1)
n

n

17.2 Fading Channels 711

receiver

Figure 17.1 : Multiple reflections from transmitter to receiver.

where s (t) is the transmitted signal, an(t) is the attenuation on the nth path (which may
be time-varying), t n (t) is the delay on the nth path, and e-jzrfcrn@) represents the phase
change in the carrier with frequency fc due to the delay, with phase &(t) = 2 r t t n (t) fc.
a n (t) , 6% (t) , and t n (t) can be considered as random processes. The noise n (t) is a complex,
stationary, zero-mean Gaussian random process with independent real and imaginary parts
and E[n(t)n*(s)] = NoS(t - s). In the limit, if the number of reflectors can be regarded
as existing over a continuum (e.g., for signals reflecting off the ionosphere), the received
signal can be modeled as

r (t) = a,(t)e-jeS(')s(t - t , (t))ds + n(t) . s
Frequently, the delays are similar enough relative to the symbol period that for all practical
purposes the delayed signals s (t - t n (t)) are the same, so sn(t - t n (t)) = s (t - t (t)) for
all n. However, even in this case the changes in phase due to delay can be significant. Since
fc is usually rather large (in the megahertz or gigahertz range), small changes in delay can
result in large changes in phase.

Example 17.1 A signal transmitted at fc = 900 Mhz is reflected from two surfaces in such a way
that at some particular instant of time, one signal to receiver travels 0.16 m farther than the other
signal. The time difference is therefore

0.16
t = - = 5.33 x 10-10 s

C

and the phase difference is

0 = 2nt fc = 3.0159 radians = 172.8'.

The change in phase in the carrier results in a factor of ej2n3.0159 x -1 between the two signals -
the two received signals will almost cancel out! 0

Fading in this case is thus due primarily to changes in the phase &(t). The randomly
varying phase & (t) associated with the factor ane-jQfl results in signals that at times add

712 Fading Channels and Space-Time Codes

constructively and at times add destructively. When the signals add destructively, then
fading occurs.

If all of the delays are approximately equal, say, to a delay t, then

r(t> = Ca, (t)e - j ' f i (')s (t - t) + n(t> = g(t)s (t - t) + n(t) , (17.2)
n

n

is a time-varying complex amplitude factor. The channel transfer function is then T (t , f) =
a(t)e-@@), with magnitude response / T (t , f) l = Ig(t) l = a(t) . Since all frequency com-
ponents are subjected to the same gain a(t) , the channel is said to induce flat fading. The
channel model for which the space-time codes of this chapter are applicable is flat fading.

The effect of fading on the received signal can be severe. For example, suppose that
90% of the time the signals add constructively, resulting in an SNR at the receiver so that the
probability of error is essentially 0, but that 10% of the time the channel introduces a deep
fade, so that the probability of error is essentially 0.5. The probability of error averaged
over time is then 0.05, much too high for most practical purposes, even though the receiver
works perfectly most of the time!

As we shall see, the way to combat fading is through diversity, sending multiple copies of
the signal in the anticipation that not all of the signals will fade simultaneously. Consider, for
example, the plot in Figure 17.2, which shows a simulation of i g (t) I (in dB) for a particular
channel for two different realizations of the channel. From the plot, it is clear that both
of the signals are not necessarily highly attenuated at the same time. If these represented
two different paths from transmitter to receiver, there is hope that at least one of the paths
would present a reliable channel. Looked at from another point of view, if at one instant
of time one channel is bad, at another instant of time, that channel might be good. These
observations lead to various forms of diversity.

In time diversity, the transmitter sends the same signal at different times, with sufficient
delay between symbols that the transmissions experience independent fading. Time diversity
may be accomplished using error control coding in conjunction with interleaving.

A second means of diversity is frequency diversity, in which the signal is transmitted
using carriers sufficiently separated that the channel over which the signals travel experience
independent fading. This can be accomplished using spread spectrum techniques or multiple
carriers.

A third means of diversity is spatial diversity, in which the signal is transmitted from
or received by multiple antennas, whose spatial separation is such that the paths from
transmitter antennas to receiver antennas experience independent fading. Spatial diversity
has the advantage of good throughput (not requiring multiple transmission for time diversity)
and good bandwidth (not requiring broad bandwidth for frequency diversity), at the expense
of some additional hardware. Space-time codes are essentially a means of achieving spatial
diversity.

17.2.1 Rayleigh Fading

Since the amplitude factor g (t) is the summed effect of many reflectors, it may be regarded
(by the central limit theorem) as a complex Gaussian random variable. That is, g (t) =
g r (t) + j g Q (t) has gI (t) and gQ (t) as independent, identically distributed randomvariables.

17.2 Fading Channels 713

10 I I

0

m

s -10
U

+ v

CT) -

-20

-30 ' I
0 50 100 150 200

time VT

Figure 17.2: Simulation of a fading channel.

If there is no strong direct path signal from transmitter to receiver, then these random
variables are modeled as zero-mean random variables, so gr (t) - N(0, .f') and g Q (t) -
N(0, o;), where cr; is the fading variance. It can be shown that the magnitude a = Ig(t) I
is Rayleigh distributed (see Exercise 2), so

(17.3)

A flat fading channel with magnitude distributed as (17.3) is said to be a Rayleigh fading
channel.

In the channel model (17.2), it is frequently assumed that t is known (or can be es-
timated), so that it can be removed from consideration. On this basis, we write (17.2)
as

r (t) = g(t) s (t) + n(t) .

Let this r (t) represent a BPSK-modulated signal transmitted with energy per bit Eb. Suppose
furthermore that g(t) = a (t) e - j @ @) is such that the magnitude a(t) is essentially constant
over at least a few symbols, and that random phase @ (t) varies slowly enough that it can
be estimated with negligible error. This is the quasistatic model. Then conventional BPSK
detection can be used. This results in a probability of error (see (1.23)) for a particular value
of a as

Pz(a) = P(bit errorla) = Q ({T)
The probability of bit error is then obtained by averaging out the dependence on a:

4 = LW P2(a)fa(a) do!.

(17.4)

714 Fading Channels and Space-Time Codes

Substituting (17.3) and (17.4) into this integral and integrating by parts (twice) yields

(17.5)

where
- Eb 2

NO
In Figure 17.3, the line corresponding tom = 1 illustrates the performance of the narrowband
fading channel, plotted as a function of r b (in dB). Clearly, there is significant degradation
compared to BPSK over a channel impaired only by AWGN.

Y b = - E [a 1.

Figure 17.3: Diversity performance of quasi-static, flat-fading channel with BPSK modu-
lation. Solid is exact; dashed is approximation.

17.3 Diversity Transmission and Reception: The MIMO Channel

To provide some background for diversity receivers, let us now consider the somewhat
more general problem of transmission through a general linear multiple-input/multiple-
output (MIMO) channel. For insight, we first present the continuous-time channel model,
then a discrete-time equivalent appropriate for detection (e.g., after filtering and sampling).

Suppose that the signal

k = - a

is transmitted from the ith antenna in a system of n antennas, where aik is the (complex)
signal amplitude drawn from a signal constellation for the kth symbol period, and q(t) is the
transmitted pulse shape, normalized to unit energy. (See Figure 17.4.) This signal passes

17.3 Diversity Transmission and Reception: The MJMO Channel 715

Figure 17.4: Multiple transmit and receive antennas across a fading channel.

through a channel with impulse response h j j (t) and is received by the j th receiver antenna
out of m antennas, producing

co
r j (t> = s i (t) * h " j j (t) + n j (t) = c U j k [v (t - k T) * h " j i (t)] +n j (t) .

k = - w

Each h j j (t) may be the response due to scattering and multipath reflections, just as for a
single fading channel. The total signal received at the j th receiver due to all transmitted
signals is

c o n

k=-m i=l

(assuming that the noise nj (t) is acquired at the receiver, not through the separate channels).
Stacking up the vectors as

we can write
00

r(t> = C ~ (t - kT)ak + n(t>,
k=-m

where H(t) is the m x n matrix of impulse responses with
00

hji (t) = q(t) * i j j (t) = g7(t)hjj(t - t) d t . s_,

(17.6)

If the vector noise process n(t) is white and Gaussian, with independent components,
then the log likelihood function can be maximized by finding the sequence of vector signals

716 Fading Channels and Space-Time Codes

a E S” minimizing

0a 00

Ilr(t) - H(t - kT)ak \ I 2 dt
k=-m

1
0a

llr(t)1I2 - 2 c Re H H (t - kT)r(t)dt
k=-W

where 1 1 ~ 1 1 ~ = xHx and where denotes the transpose-conjugate and * denotes complex
conjugation. In this general case, the minimization can be accomplished by a rnaximum-
likelihood vector sequence estimator, that is, a Viterbi algorithm. Let us denote

0a

rk = \ HH(t - kT)r(t)dt (17.7)
J -Oa

as the outputs of a matrix matchedjlter, matched to the transmitted signal and channel.
Substituting (17.6) into (17.7) we can write

00

where

Sk = [* HH(t - k T) H (t) dt
J-00

and
00

nk = \ H H (t - kT)n(t)dt.
J-0a

17.3.1 The Narrowband MIMO Channel

The formulation of the previous section is rather more general than is necessary for our
future development. Consider now the narrowband MIMO channel, in which the frequency
response is essentially constant for the signals that are transmitted over the channel. In this
case, the transmitted waveform p(t) (transmitted by all antennas) is received as

H(t) = p(t)H.

The matched filter H H (- t) can be decomposed into multiplication by HH followed by
conventional matched filtering with p(-t).

Note that the narrowband case can occur in the case of a flat fading channel, where the
channel coefficients h j i are randomly time-varying, due, for example, to multiple interfering
signals obtained by scattering.

As a specific and pertinent example, suppose that s (t) = xk akp(t - k T) is transmitted
(ie., there is only a single transmit antenna) over a channel, and two receive antennas are
used, with

T l (t) = h l d t) +n1(t) r2(t) = h2s(t) + n2(t) ,

17.3 Diversity Transmission and Reception: The MIMO Channel 717

where h~ and h2 are complex and constant over at least one symbol interval. Thus, H =

[t:]. The receiver first computes

HHr(t) = h;hls(t) + h.&s(t) + (h fn l (t) + nzn2(t))

= (lh1I2 + Ih2I2>s(t) + (h;nl(t> +n;n2(0),

then passes this signal through the matched filter p(-t), as shown in Figure 17.5, to produce
the signal

rk = (Ihl l 2 + lh2I2)ak + nk,

where nk is a complex Gaussian random variable with E[nk] = 0 and E[nkn;l = (Ihl l2 +
lh2I2)N0. Thus the maximum likelihood receiver employs the decision rule

irk = a r g e l r k - (lh112 + lhz12)a12.

This detector is called a maximal ratio combiner, since it can be shown that it maximizes
the signal to noise ratio.

Figure 17.5: Two receive antennas and a maximal ratio combiner receiver.

17.3.2 Diversity Performance with Maximal-Ratio Combining

Let us now consider the performance of the single-transmitter, m-receiver system using
maximal ratio combining. Suppose that the signal a E S is sent. The matched filter output
is

rk = llh1I2ak + nk,

where nk = hHn is a complex Gaussian random variable with
No Cy=l Ihj 1 2 . Let us define an effective signal to noise ratio as

where y j = Ihj I2Eb/No is the effective SNR for the j th channel. We assume a calibration
so that the average S N R is E[yj] = &/No for j = 1,2, . . . , m.

Transmitting from a single antenna then recombining the multiple received signals
through a maximal ratio combiner results in a single-input, single-output channel. For

718 Fading Channels and SDace-Time Codes

BPSK transmission (assuming that the channel varies sufficiently slowly that h can be ade-
quately estimated) the probability of error as a function of the effective signal to noise ratio
is

P 2 (~ e f f) = Q(J2Y,ff>.
As for the case of a single fading channel, the overall probability of error is obtained
by averaging over channel coefficients. Assume, as for the single fading case, that each
coefficient hi is a complex Gaussian random variable, so yi is a x 2 distribution with 2
degrees of freedom. If each hi varies independently (which can be assumed if the receive
antennas are at least a half wavelength apart) then Yeff is a x 2 distribution with 2rn degrees
of freedom. The pdf of such a distribution can be shown to be (see, e.g., [255])

The overall probability of error is

p2 = lm fY,ff(t)PZ(t) d t .

The result of this integral (integrating by parts twice) is

in-1
r n - l + k

k=O

where

is the probability of error we foundin (17.5) for single-channel diversity. Figure 17.3 shows
the result for various values of rn. It is clear that diversity provides significant performance
improvement.

At high SNR, the quantity p can be approximated by

1
p % -.

4 ~ e f f

For rn > 1, the probability of error can be approximated by observing that (1 - P) ~ % 1, so

Using the rn = 1 approximation, we find

p2 23 (&)" (2rnrn- 1).

(17.8)

(17.9)

While the probability of error in an AWGN channel decreases exponentially with the signal
to noise ratio, in a fading channel the probability of error only decreases reciprocally with
the signal to noise ratio, with an exponent equal to the diversity rn. We say that this scheme
has diversity order m.

17.4 Space-Time Block Codes 719

17.4 Space-Time Block Codes

We have seen that performance in a fading channel can be improved by receiver diversity.
However, in many systems the receiver is required to be small and portable - such as a
cell phone or personal digital assistant - and it may not be practical to deploy multiple
receive antennas. The transmitter at a base station, however, may easily accommodate
multiple antennas. It is of interest, therefore, to develop means of diversity which employ
multiple transmit antennas instead of multiple receive antennas. This is what space-time
codes provide.

17.4.1 The Alamouti Code

To introduce space-time codes, we present the Alamouti code, an early space-time code and
still one of the most commonly used. Consider the transmit diversity scheme of Figure

Time 1 : a0
Time2: -uT

Transmit

Information Signal
Constellation

(e.g., QAM, 8PSK, etc.)

- I \
\ Space-Time

Encoder
space --+ time

Maximum Likelihood
Detector

Transmit
antenna 2

Figure 17.6: A two-transmit antenna diversity scheme: the Alamouti code.

17.6. Each antenna sends sequences of data from a signal constellation S. In the Alamouti
code, a frame of data lasts for two symbol periods. In the first symbol time, antenna 1
sends the symbol a0 E S while antenna 2 sends the symbol a1 E S. In the second symbol
time, antenna 1 sends the symbol -a; while antenna 2 sends the symbol a:. It is assumed
that the fading introduced by the channel varies sufficiently slowly that it is constant over
two symbol times (e g , the quasistatic assumption applies for the entire duration of the
codeword). The channel from antenna 1 to the receiver is modeled as ho = ctoe- jh and the
channel from antenna 2 to the receiver is modeled as h 1 = a1 e-j'#'l. The received signal

720 Fading Channels and Space-Time Codes

for the first signal (i.e., the sampled matched filter output) is

ro = hoao + hlai + no

and for the second signal is
rl = -hoaT + hlai + n1.

The receiver now employs a combining scheme, computing

h) = h;;ro + h1rT

r"1 = hire - hor?.

Substituting (17.10) and (17.11) into (17.12), we have

yo = (lho12 + 1h1 12)ao + hcno + bin;
71 = (]hot2 + lh1I2)ai - hcni + hino.

(1 7.10)

(17.1 1)

(17.12)

The key observation is that FO depends only on ao, so that detection can take place with
respect to this single quantity. Similarly, T i depends only on al, again implying a single
detection problem.

The receiver now employs the maximum likelihood decision rule on each signal sepa-
rately

Overall the scheme is capable of sending two symbols over two symbol periods, so this
represents a rate 1 code. However, it also provides a diversity of 2. Assuming that the total
transmitter power with two antennas in this coded scheme is equal to the total transmitted
power of a conventional receiver diversity method, the transmit power must be split into
two for each antenna. This power split results in a 3 dB performance reduction compared
to m = 2 using two receive antennas, but otherwise equivalent performance.

Suppose that, unlike this Alamouti scheme, the combining scheme produced values
which are a mixture of the transmitted signals. For example, suppose

t o = aao + bal+ i i o
Fl = cao + dal + i i 1

for some coefficients a , b, c , d. We could write this as

Then the maximum likelihood decision rule must maximize jointly:

The search is over the vector of length 2, so that if the constellation has M points in it, then
the search complexity is O (M 2) . In the case of rn-fold diversity the complexity rises as
O(A4"). This increase of complexity is avoided in the Alamouti code case because of the
orthogonality of the encoding matrix.

It is important for computational simplicity that a symbol appears in only one combined
received waveform. The remainder of the development of space-time block codes in this

17.4 Space-Time Block Codes 721

chapter is restricted to considerations of how to achieve this kind of separation, using
orthogonal designs.

The Alamouti code has been adopted by the IEEE 802.11a and BEE 802.16a wireless
standards.

17.4.2 A More General Formulation

Let us now establish a more general framework for space-time codes, in which the Alamouti
scheme is a special case. In the interest of generality, we allow for both transmit and receive
diversity, with n transmit antennas and m receive antennas. The code frames exist for 1
symbol periods. (Thus, for the Alamouti scheme, n = 2, m = 1, and I = 2.) At time t , the
symbols cj (t) , i = 1,2, . . . , n are transmitted simultaneously from the n transmit antennas.
The signal r j (t) at antenna j is

n

r j (t) = C h j , i c j (t) +nj (t> , j = 1 ,2 , . . .,m,
i=l

where the C j (t) is the coded symbol transmitted by antenna i at time t. The codeword for
this frame is thus the sequence

c C I (~) , ~2 (1) , . . ., cn(l), C I (~) , ~2 (2) , . . . , cn(2), . . CI(O, ~ ~ (0 9 . . - 7 cn(0 (17.13)

of length nl.

17.4.3 Performance Calculation

Before considering how to design the codewords, let us first establish the diversity order for
the coding scheme. Consider the probability that a maximum-likelihood decoder decides
in favor of a signal

e = ei(l>, e2(l>, . . . , en(1), e1(2), e2(2>, . . . , en(2), . . . , ei(0, e 2 (0 , . . . , e n (0

over the signal c of (17.13) which was transmitted, for a given channel state. We denote
this probability as

P(c + e)hj, i , j = 1 , 2 , . . . , m , i = 1 , 2 , . . . , n).

Over the AWGN channel, this probability can be bounded (using a boundon the Q function)

P(c + elhj,j, j = 1,2, . . . , m, i = 1 , 2 , . . . , n) 5 exp(-d2(c, e)&/4No),
by

where
rn 1 I n 12

LethT = [hj,l, hj,2, . . . , hj,n]'andcT = [c i (t) , c2 (t) , . . . , c,(t)lT andsimilarlyet. Then

rn r l 1
d2(c, e) = hT I z(ct - ef)(cf - ef)H I h;.

Let

722 Fading Channels and Space-Time Codes

Then
m

d2(c, e) = x h T A (c , e)h?,
j = 1

so that
m

P(c -+ elhj,i, j = 1 , 2 , . . . , m, i = 1 , 2 , . . . , n) 5 nexp(-hTA(c, e)h5 E,/4No).
j=1

The matrix A(c, e) can be written as

A(C, e) = ~ (c , e)BH(c, el,

where

(17.14)

et(1) - c ~ (l) et(2) - ct(2) el(0 - ct(U
e2(l> - ~ (1) e2(2) - c2(2) . . . e2(0 - c2(0 r ; en(1) -cn(l) en(2)-cn(2) . . * en(0 - - c n (O

In other words, A(c, e) has B(c, e) as a square root. It is known (see [153]) that any matrix
having a square root is nonnegative definite; among other implications of this, all of its
eigenvalues are nonnegative.

B(c, e) =

The symmetric matrix A(c, e) can be written as (see, e.g., [246])

VA(C, e)VH = D,

where V is a unitary matrix formed from the eigenvectors of A(c, e) and D is diagonal with
real nonnegative diagonal elements Ai . Let Pi = Vh;. Then

m

P(c -+ elhj,i, j = 1 ,2 , . . . ,m, i = 1 ,2 , . . . , n) 5 nexp(-PrDPjE,14No)
j=1

m n

= n exp(- C hi IBi, j I ~ ~ E J ~ N O) .

j=l i= l

Assuming the elements of hi are zero mean Gaussian and normalized to have variance 0.5
per dimension, then the I are Rayleigh distributed with density

P(IB~,~I> = 2IBi,jIexp(-ISLj1’).

The average performance is obtained by integrating

P(c -+ el i / n exp(- 2 hi ISi,j 12~,/4No) n 2 l B i , j I exp(-~Bi, j

After some effort, this can be shown to be

m

tB1,11. . . d l p n , m l .

j = 1 i=l i J

17.4 Space-Time Block Codes 723

Let r be the rank of A(c, e), so there are n - r eigenvalues of A(c, e) equal to 0. Then
(17.15) can be further approximated as

Comparing with (17.9), we see that the probability of error decreases reciprocally with
the signal-to-noise ratio to the rmth power. We have thus proved the following theorem:

Theorem 17.1 The order of the diversity for this coding is rm.

From this theorem we obtain the rank criterion: To obtain the maximum diversity mn, the
matrix B(c, e) must of full rank for any pair of codewords c and e.

The factor (n:==, Aj)-” in (17.15) is interpreted as the coding advantage. In combina-
tion with the diversity from the other factor, we obtain the following two design criteria for
Rayleigh space-time codes [332].

In order to achieve maximum diversity, B(c, e) of (17.14) must be full rank for any
pair of codewords c and e. The smallest r over any pair of codewords leads to a
diversity of rm .

The coding benefit is maximized by maximizing the sum of the determinants of all
r x r principle cofactors of A(c, e) = B(c, e)B(c, e) H , since this sum is equal to the
product of the determinants of the cofactors.

Real Orthogonal Designs

Let us now turn attention to the problem of designing the transmitted codewords. Recall
that to minimize decoder complexity, it is desirable to be able to decompose the decision
problem so that optimal decisions can be made on the basis of a single symbol at a time, as
was possible for the Alamouti code. This can be achieved using orthogonal designs. For
the moment, we consider only real orthogonal designs which are associated with real signal
constellations.

Definition 17.1 A real orthogonal design of size n is an n x n matrix 0 = O(x 1, x2, . . . , x,)
with elements drawn from f x l , k x 2 , . . . , fx, such that

n

OTO = I A I K .
i = l

That is, 0 is proportional to an orthogonal matrix. 0
By means of column permutations and sign changes, it is possible to arrange 0 so that

the first row has all positive signs. Examples of orthogonal designs are

724 Fading Channels and Space-Time Codes

In fact, it is known that these are the only orthogonal designs [117]. Each row of an
orthogonal design 0 is a permutation with sign changes of the {XI, x2, . . . , Xn}. Let us
denote the (i, j)th element of 0 as ojj = x C i (j) & (j) , where E j (j) is a permutation function
for the ith row and & (j) is the sign of the (i, j) entry. Observe that permutations in the
orthogonal matrices above are symmetric so that ~ j (j) = ~ i l (j) . By the orthogonality of
0.

or

(17.16)

Encoding and Decoding Based on Orthogonal Designs

At the encoder, the symbols a1 , u2, . . . , an are selected from the (for the moment real) signal
constellation S and used to fill out the n x n orthogonal design 0 (a l , a2, . . . , an). At time
slot t = 1,2, . , . , n, the elements of the tth row of the orthogonal matrix are simultaneously
transmitted using n transmit antennas. The frame length of the code is 1 = n. At time t , the
j th antenna receives

n

rj (t> = C h j,ici (t) + n j (t)
i=l
n

i=l

Now let 1 = ct (i), or i = 6;' (1). The received signal can be written as

n

rj (t) = x ~ j , , ~ i (~ ~ ~ ~ (c ~ l (z)) a ~ +nj(t>.
1=1

LethT J . t = [hj,€F~(l)Sf(~;l(l)), . . . , h j , c F ~ (n) S t (c ; l (n))] and aT = [a l , . . . ,a,]. Then

T r j (t) = hj,ta + n j (t) .

Stacking the received signals in time, the j th receive antenna receives

rj = (1 7.17)

17.4 Space-Time Block Codes 725

The maximum likelihood receiver computes

in
2 J(a> = C llrj - Hj,effall

j=l

over all vectors a and selects the codeword with the minimizing value. However, rather than
having to search jointly over all JSln vectors a, each component can be selected indepen-
dently, as we now show. We can write

Using (17.16), we see that each Hj,eff is an orthogonal matrix O (h j , l , hj,2, . . . , hj ,n) , so
that

m m

j=1 j=l

for some scalar K . Let
rn

j=1

Then minimizing J(a) is equivalent to minimizing

J’(a) = -2Re[aHv] + IJa1I2K.

Now let Si = -2 Re alvi + K lai 1 2 . Minimizing J’(a) is equivalent to minimizing cy=l Si,
which amounts to minimizing each Si separately. Since each Si depends only on ai, we
have

& = argminKlaI2 - 2 R e ~ * ~ i .

Thus using orthogonal designs allows for using only scalar detectors instead of vector
detectors.

Let us now examine the diversity order of these space-time block codes.

Theorem 17.2 [331] The diversity order for coding with real orthogonal designs is nm.

Proof The matrix B(c, e) of Theorem 17.1 is formed by

B(c, e) = O(c) - O(e) = O(c - e).

Since det(OT(c - e)O(c - e)) = [X i Ici - eil2In is not equal to 0 for any c and e # c,
O(C - e) must be full rank. By the rank criterion, then, the maximum diversity of nm
obtains. 0

This encoding and decoding scheme provides a way of sending n message symbols over
n symbol times, for a rate R = 1 coding scheme. However, as mentioned above, it applies
only to n = 2,4, or 8.

726 Fading Channels and Space-Time Codes

Generalized Real Orthogonal Designs

In the interest of obtaining more possible designs, we now turn to a generalized real orthog-
onal design 6.

Definition 17.2 [33 11 A generalized orthogonal design of size n is a p x n matrix 6 with
entries 0, &XI, 6 x 2 , . . . , f x k such that G T G = KZ, where K is some constant. The rate
of G is R = k / p .

Example 17.2 The following are examples of generalized orthogonal designs.

8 3 = -x2 X l -x4
-x3 x 4 X l

-x4 -x3 x2 x3 x 2 1 % =

81 =

x 2 x 3 x 4 x 5
X l X4 -X3 X6

-x4 X l x 2 X I

X3 -X2 X l X8
-X6 -X I -Xg X l

X5 -Xg X I -X2
Xg X5 -X6 -X3

- X I X6 X5 -X4

x 2 x 3 x 4 X5 X6
X l X4 -X3 X6 -X5

-X4 X I X2 X I X8
X3 -X2 X l Xg - X I

-X6 -X7 -Xg X l X2

X5 -Xg X I -X2 X l

X8 X5 -X6 -X3 X4
- X I X6 X5 -X4 -X3

I

The encoding for a generalized orthogonal design is as follows. A set of k symbols
a1 , a2, . . . , Uk arrives at the encoder. The encoder builds the design matrix 6 by setting
xi = ai. Then for t = 1,2, . . . , p , the n antennas simultaneously transmit the n symbols
from the tth row of 6. In p symbol times, then, k message symbols are sent, resulting in a
rate R = k / p code.

In the interest of maximizing rate, minimizing encoder and decoder latency, and mini-
mizing complexity, it is of interest to determine designs having the smallest p possible. A
design having rate at least R with the smallest possible value of p is said to be delay-optimal.
(The designs of Example 17.2 yield delay-optimal, rate 1 codes.)

A technique for constructing generalized orthogonal designs is provided in [33 11.

17.4 Space-Time Block Codes 727

17.4.4 Complex Orthogonal Designs

We now extend the concepts of real orthogonal designs to complex orthogonal designs.

Definition 17.3 A complex orthogonal design of size n is a matrix U formed from the
elements f x l , hx2, . . . , f x , , their conjugates &xr, fx;, . . . , &x,*, or multiplies of these
by j = a, such that UHU = + ... + 1x,I2)Z. That is, U is proportional to a
unitary matrix. 0

Without loss of generality, the first row can be formed of the elements x i , x2, . . . , xn.
The same method of encoding is used for complex orthogonal designs as for real or-

thogonal designs: n antennas send the rows for each of n time intervals.

Example 17.3 The matrix
time space -+

u2 = i [::; :i]
is a complex orthogonal design. As suggested by the arrows, if the columns are distributed in space
(across two antennas) and the rows are distributed in time (over different symbol times) this can be
used as a space-time code. In fact, this is the Alamouti code. 0

Unfortunately, as discussed in Exercise 6, complex orthogonal designs of size n exist only
for n = 2 or n = 4. The Alamouti code is thus, in some sense, almost unique.

Definition 17.4 [331] A generalized complex orthogonal design is a p x n matrix U
whose entries are formed from 0, f n l , hxr, . . . , k x k , &x{ or their product with j = a

A generalized orthogonal design can be used to create a rate R = k / p space-time code

We turn therefore to generalized complex orthogonal designs.

suchthatUHU = (1x1I2 +.- .(xkl2)Z. 0

using n antennas, just as for orthogonal designs above.

Example 17.4 The following are examples of generalized complex orthogonal designs.

X l x2 x3
-x2 Xl -x4 : 1
-x3 x4 Xl -x2 I -x4 -x3 x2

These provide R = 1/2 coding using 3 and 4 antennas, respectively.
A rate R = 3/4 code using an orthogonal design is provided by [338] is

Xl -x;

x2 x; -xi . " I , u4= [x3 0 x; -x2
0 -x3 x2 Xl

Higher rate codes are also known using linear processing orthogonal designs, which form
matrices not by individual elements, but by linear combinations of elements. These produce
what are known as generalized complex linear processing orthogonal designs.

728 Fading Channels and Space-Time Codes

Example 17.5 Examples of linear processing designs producing R = 314 codes are

for n = 3 and n = 4 antennas, respectively. 0

Future Work

Several specific examples of designs leading to low-complexity decoders have been pre-
sented in the examples above. However, additional work in high-rate code designs is still a
topic of ongoing research.

17.5 Space-Time Trellis Codes

Trellis codes can also be used to provide diversity. We present here several examples from
the literature.

Example 17.6 Consider the coding scheme presented in Figure 17.7. This is an example of delay
diversity, which is a hybrid of spatial diversity and time diversity. The signal transmitted from two
antennas at time t consists of the current symbol at and the previous symbol at- 1. The received signal
is rt = hoar + hiat-1 + nr. If the channel parameters {ho , h i] is known, then an equalizer can be
used to detect the transmitted sequence.

transmit 1 v-
transmit 2

Delay

- - - - - - - -/-/->y+ L"'
. . .

/
c .

Figure 17.7: A delay diversity scheme.

Because the encoder has a memory element in it, this can also be regarded as a simple trellis
code, so that decoding can be accomplished using the Viterbi algorithm. If this encoder is used in
conjunction with an 8-PSK signal constellation then there are 8 states. The trellis and the output
sequence are shown in Figure 17.8. The outputs listed beside the states are the pair (ak-l? ak) for
each input. (A similar four-state trellis is obtained for a 4-PSK using delay diversity.)

For a sequence of symbols a1 , a2, . . . , an, a delay diversity coder may also be written as a space-
time block code, with codeword

The two zeros in the first and last columns ensure that the trellis begins and ends in the 0 state. By
viewing this as a space-time block code, the rank-criterion may be employed. The matrix B(a, e) =

17.5 Space-Time Wellis Codes 729

A(a) - A(e) is, by the linearity of the coding mechanism, equal to A(a’), where a’ = a - e. The
columns containing the first and last elements of a’ are linearly independent, so B has full rank: This
code provides a diversity of m = 2 at 2 bits/second/Hz.

4 0 0

6

00,O 1,02,03,O4,05,06,07

10,11,12,13,14,15,16,11

20,21,22,23,%,25,26,27

30.3 1,32,33,34,35,36,37

40,4 1,42,43,44,45,46,47

50.5 1,52,53,54,55,56,51

60,6 1,62,63,64,65,66,61

70,11,12,73,74,15,76,11

Figure 17.8: 8-PSK constellation and the trellis for a delay-diversity encoder.

Example 17.7 In the trellis of Figure 17.8, replace the output mappings with the sequences

state 0: 00, 01,02, 03,04, 05,06,07
state 1: 50,51,52, 53,54,55,56, 57
state 2: 20,21,22, 23,24, 25,26, 27
state 3: 70,71,72,73,74, 75,76, 77
state 4: 40,41,42,43,44,45,46,47’
state5 10, 11, 12, 13, 14, 15, 16, 17
state 6: 60,61,62, 63,64,65,66,67
state 7: 30,31,32,33,34, 35,36, 37

This corresponds to a delay diversity code, with the additional modification that the delayed symbol
is multiplied by -1 if it is odd { 1,3,5,7}. It has been observed [249] that this simple modification

0 provides 2.5 dB of gain compared to simple delay diversity.

Example 17.8 Figure 17.9 shows space-time codes for4-PSK(transmitting 2 bitslsecondlHz) using 8,
16, and 32 states. Each of these codes provides a diversity of 2. Figure 17.1 l(a) shows the probability
of error performance (obtained via simulation) for these codes when used with two transmit antennas
and two receive antennas. Figure 17.11(b) shows the performance with two transmit antennas and
one receive antenna. 0

Example 17.9 Figure 17.10 shows space-time codes for 8-PSK (transmitting 3 bits/second/Hz) using
16 and 32 states (with the code in Example 17.7 being an 8-state code). Each of these codes provides
a diversity of 2. Figure 17.12(a) shows the probability of error performance (obtained via simulation)
for these codes when used with two transmit antennas and two receive antennas. Figure 17.12(b) show
the performance with two transmit antennas and one receive antenna.

17.5.1 Concatenation

Concatenation is also frequently employed in space-time coded systems. In this case, the
outer code is frequently a TCM system whose symbols are transmitted via an inner space-
time coded system.

730 Fading Channels and Space-Time Codes

00,01,02,03

10,11,12,13

20,21,22,23

30,31,32,33

22,23,20,21

32,33,30,31

02,03,00,01

12,13,10,11

00,01,02,03

12,13,10,11

20,21,22,23

32,33,30,31

20,2 1,22,23

32,33,30,31

00,01,02,03

12,13,10,11

02,03,00,01

10, 1 1 ,12,13

22,23,20,21

30,31,32,33

22,23,20,21

30,3 1,32,33

02,03,00,01

10,11,12,13

00,01,02,03

11,12,13,10

22,23,20,21

33,30,31,32

20,2 1,22,23

33,30,31,32

02,03,00,01

13,10,11,12

33,30,31,32

00,01,02,03

11,12,13,10

22,23,20,21

13,10,11,12

20,2 1,22,23

31,32,33,30

02,03,00,01

22,23,20,21

33,30,31,32

00,01,02,03

13,10,11,12

02,03,00,01

13,10,11,12

20,21,22,23

31,32,33,30

1 1,12,13,10

22,23,20,21

33,30,3 1,32

00,01,02,03

31,32,33,30

02,03,00,01

13,10,11,12

20,21,22,23

Figure 17.9: Space-time codes with diversity 2 for 4-PSK having 8,16, and 32 states [332].

17.5 Space-Time Trellis Codes 731

00,01,02,03,04,05,06,01

51,52,53,54,55,56,57,50

22,23,24,25,26,21,20,21

73,74,15,76,11,70,11,72

#,45,46,47,40,41,42,43

15,16,11,10,11,12,13,14

66,61,60,61,62,63,64,65

37,30,31,32,33,34,35,36

15,16,11,10,11,12,13,14

66,61,60,6 1,62,63,64,65

31,30,3 1,32,33,34,35,36

00,01,02,03,04,05,06,07

51,52,53,54,55,56,51,50

22,23,24,25,26,27,20,21

13,14,75,16,71,10,11,72

#,45,46,47,40,41,42,43

00,01,02,03,04,05,06,01

5 1,52,53,54,55,56,51,50

22,23,24,25,26,21,20,21

73,14,15,16,17,70,7 1 ,I2

44,45,46,41,40,4 1,42,43

15,16,11,10,11,12,13,14

66,67,60,6 1,62,63,64,65

31,30,3 1,32,33,34,35,36

37,30,3 1,32,33,34,35,36

00,01,02,03,~,0S,06,07

5 1,52,53,54,55,56,51,50

22,23,24,25,26,27,20,21

13,74,15,16,11,10,11,12

44,45,46,41,40,4 1,42,43

15,16,17,10,11,12,13,14

66,61,60,61,62,63,64,65

22,23,24,25,26,21,20,21

73,14,15,16,11,10,11,12

44,45,46,41,40,41,42,43

15,16,17,10,11,12,13,14

66,61,60,61,62,63,64,65

37,30,31,32,33,34,35,36

00,01,02,03,O4,05,06,01

5 1,52,53,54,55,56,51,50

5 1,52,53,54,55,56,51,50

22,23,24,25,26,21,20,21

73,14,15,16,11,10,71 ,I2

44,45,46,47,40,41,42,43

15,16,11,10,11,12,13,14

66,61,60,61,62,63,64,65

31,30,31,32,33,34,35,36

00,01,02,03,O4,05,06,01

Figure 17.10: Space-time codes with diversity 2 for 8-PSK having 16 and 32 states [332].

732 Fading Channels and Space-Time Codes

1 on

- 0

‘0 1 0 ’

Q

a 2

-
L
w

E m
LL

t \\ 1 \ Y
10-2: 6 7 8 9 10

SNR (dB)

1 oo

1

t
10.: I 0 11 12 13 14 15 16 17 11,

SNR (dB)

(a) 2 receive and 2 transmit antennas. (b) 1 receive and 2 transmit antennas.

Figure 17.1 1: Performance of codes with 4-PSK that achieve diversity 2 [332].

I on

L
12 14 16 18 20

lo-2
SNR (dB)

(b) 1 receive and 2 transmit antennas.

Figure 17.12: Performance of codes with 8-PSK that achieve diversity 2 [332].

17.6 How Many Antennas?

We cannot cannot continue to add antennas without reaching a point of diminishing returns.
One argument for the number of antennas is based on channel capacity. It has been proved
[101, 3331 that the capacity of a multiantenna system with a single receive antenna is a
random variable of the form log,(1 + (xZn/2n)SNR), where xin is a x2 random variable
with 2n degrees of freedom (e.g.. formed by summing the squares of 2n independent zero-

17.7 Estimating Channel Information 733

mean, unit-variance Gaussian random variables). By the law of large numbers, as n + 00,

%x2,, 1 2 + 2 (E [X 2] 1 + E [X 2]) = 1 where X - N(0, 1).

In practice, the limit begins to be apparent for n ? 4, suggesting that more than four
transmit antennas will provide little additional improvement over four antennas. It can also
be argued that with two receive antennas, n = 6 transmit antennas provides almost all the
benefit possible.

However, there are systems for which it is of interest to employ both interference suppres-
sion and diversity. In these cases, having additional antennas is of benefit. A “conservation
theorem” [15, p. 5461 says that

diversity order + number of interferers = number of receive antennas.

As the number of interferers to be suppressed increases, having additional antennas is of
value.

17.7 Estimating Channel Information

All of the decoders described in this chapter assume that the channel parameters in the form
of the hi,i is known at the receiver. Estimating these is viewed for our purposes as signal
processing beyond the scope of this book, so we say only a few words regarding the problem.

It is possible to send a “pilot” signal which is known by the receiver, and from this
pilot to estimate the channel parameters if the channel is sufficiently static. However, a
pilot signal consumes bandwidth and transmitter power and reduces the overall throughput.
Another approach is to use differential space-time codes [154, 1501, where information is
coded in the change of symbols, but at the expense of a 3 dB penalty.

Another approach is to blindly estimate the channel parameters, without using the trans-
mitted symbols. This is developed in [326].

17.8 Exercises

17.1 Consider a transmission scheme in which n transmit antennas are used. The vector a =
[a l , a2, . . . , anlT is transmitted to a single receiver through a channel with coefficients h:
so that r = hHa + n, where h = [h i , h2, . . . , hnlT and where n is zero-mean AWGN with
variance cr2. Diversity can be obtained by sending the same symbol a from each antenna, so that
a = aw, for some “steering vector” w. The received signal is thus r = hHwu + n. Show that
the weight vector w of length llwll = 1 which maximizes the S N R at the receiver is w = h/llhll
and determine the maximum SNR.

17.2 Show that if G = X + j Y , where X - N(0,a;) and Y - N(O,o;), then 2 = IGI =

d m has density
-2 /2o j z > o

otherwise.

17.3 ShowthatifG =X+jY,whereX-N(O,~;)andY -N(O,a;),thenA = IGI2 = X 2 + Y 2
has density

734 Fading Channels and SDace-Time Codes

A is said to be a chi-squared (x 2) random variable with two degrees of freedom.
17.4 Show that (17.5) is correct.
17.5 Using the 4 x 4 orthogonal design 04 , show that the matrix H j , , f f of (17.17) is proportional to

an orthogonal matrix.
17.6 Let U be a complex orthogonal design of size n. Show that by replacing each complex variable

xi = + jx? in the matrix with the 2 x 2 matrix [xi' '! xi 1, that a 2n x 2n real matrix 0 is

formed that is a real orthogonal design of size 2n.
Conclude that complex orthogonal designs of size n exist only if n = 2 or n = 4.

17.7 Show that a modified delay diversity scheme which uses codewords formed by

an a1 a2 an-1 * * . an-1 an 1 A = [a1 a2 ...

which is a tail-biting code, does not satisfy the rank criterion and hence does not achieve full
diversity.

17.8 [15] For the set of space-time codes

(a) Find the diversity order of each code, assuming that the transmitted symbols are selected
independently and uniformly from a 4-QAM alphabet and that the receiver has a single
antenna.

(b) Determine which of these codes allows for scalar detection at the receiver.
(c) For those codes having full diversity, determine the coding gain.

17.9 References

Propagation modeling, leading to the Rayleigh channel model, is described in [1631; see
also [322], [15] and [275]. The Jakes model which produced Figure 17.2 is described in
[163]. Our discussion of MIMO channels, and the discussion of diversity following from it,
was drawn from [151. Additional coding-related discussions relating to multiple-receiver
diversity appear in [71, 325, 307, 361, 3761.

The Alamouti scheme is described in [3]. The generalization to orthogonal designs is
described in [33 11. The rank criterion is presented following [332]. This paper also presents
a thorough discussion of space-time trellis codes and hybrid codes capable of dealing with
either slow or fast fading channels.

The paper [332] presents many designs of space-time trellis codes, as does [249]. Com-
bined interference suppression and space-time coding is also discussed in the latter.

Appendix A

Log Likelihood Algebra
In this appendix we present an algebra for the log likelihood of binary variables, leading to
a rule for combining log likelihoods called the tanh rule [134, 1311. This algebra pertains
to many aspects of soft decision decoding in the book, aspects which may be covered with
varying order of presentation. Rather than duplicate this material in each pertinent context,
it has been placed here.

Let 2 be a binary-valued random variable taking on values in the set { 1, - l}. We may
think of X as being a mapping from a variable x taking on values in {0, l}, with 2 = 1 - 2x.
(Note that this is a different convention than used throughout most of the book.) The log
likelihood ratio of 2 is

P (2 = 1)
P (2 = -1).

h(2) = log

The logarithm is the natural logarithm. From the log likelihood ratio, the probability can be
easily recovered as

Figure A.l shows h(x) as a function of P (x = 1). The sign of h (i) is the hard decision of
the value of 2. We can take Ih(2)l as a measure of the reliability. Values of 2 for which
there is certainty, P (2 = 1) = 1 or P (2 = 1) = 0, have lh(2)l = 00.

Figure A. 1 : Log likelihood ratio.

Suppose now that we regard the 2 as elements in G F (2) , with the identity being 1 and
let @ denote the addition operation on these elements:

1 @ 1 = 1 1 @ - 1 = - 1 - l @ l = - 1 - 1 @ - 1 = 1 .

736 Log Likelihood Algebra

Lemma A.1 If21 and 2 2 are statistically independent, then

The proof is Exercise 1 . Using the relations

+' = 2 t a d - l x ex - 1
tanh(x/2) = - and log -

ex + 1 I - x

we have the following result, which can be verified by straightforward expansion:

Lemma A.2

1 + tanh(h(21/2)) tanh(h(2~/2))
1 - tanh(h(21/2)) tanh(h(22l2))

= log

= 2 tanh-' (tanh(h(21/2)) tanh(h(22/2))) .
This can be re-expressed in a form which is interestingly symmetric:

tanh -A(21 @ 22) = tanh(h(21/2)) tanh(h(izl2)). c)
Equation (A. 1) is referred to as the tanh rule.

21 and 22 are statistically independent):
The log likelihood ratio of the sum has the following important approximation (when

(A.2) A(& @ 22) = sign(h(21)) sign(h(22)) min(Wi>I , IJ422)l).

We now define a special algebra for log likelihood ratios. We define the operator W by

(A.3)

(A.4)

These conditions have the following interpretations: The reliability of 2@ (some other
element with infinite reliability) is the same reliability as 2. The reliability of 2@ (some
other element which is totally unreliable) is the negative of the reliability of I. The reliability
of I@ (some other element of completely ambiguous reliability), h = 0, is completely
ambiguous.

The H operator has an identity and is commutative and associative, but no inverse exists :
two unreliable elements cannot add up to the reliable element co.

We use to denote the G F (2) series such as

with
h(2) W 00 = A(?) h(2) R -GC = -h(i) A(2) W 0 = 0.

i=p

'The operator thus defines operations for a commutative monoid.

A.l Exercises 737

and to denote a H-series:

By extending (A.3) by induction,

If Z1,22, . . . , Z J are independent binary-valued random variables, applying Lemma A.2
inductively we obtain

and
J J

tanh (i z A (Z j)) = n tanh(h(Zj)/2).
j= l j=1

The reliability can be approximated, as in (A.2), by

J / J

The reliability of the sum H is therefore determined by the smallest reliability of the terms
in the sum.

A.l Exercises

A. 1 Show that Lemma A. 1 is true.

A.2 In some cases, it is convenient to deal with (0, 1}-valued random variables. Let x i and x2 be
{O, 1)-valued variables. Define

P (x = 1)
h (x) = log -

P (x = 0)‘

Addition operations, denoted here as +, are now over GF(2) , with identity 0.

Analogous to Lemmas A. 1 and A.2, show that

eh(xl) + &(x2)

1 + eh(xl)+h(xZ)
h(x1 + x 2) = log

738 Log Likelihood Algebra

and
1 + tanh(-h(xi)/2) tanh(-h(x2)/2)

*(XI + x2) = -log
1 - tanh(-h(xi)/2) tanh(-h(x2)/2)

= -2 tanh-' (tanh(-~(xi)/2) tanh(-~(x2)/2))

tanh(-h(xl + x2)/2) = tanh(-h(xi)/2) tanh(-h(x2)/2).
so that

A.3 Show that the following tunh rule is true: For independent (0, 1)-valued random variables

or

A.4 In conjunction with the tanh rule of (A.6), we define the function

ex + 1
ex - 1

f(x) = log - = - log(tanh(x/2)).

(a) Show that f(f(x)) = 1. That is, f (x) is its own inverse.

(b) Show that the tanh rule (A. 1) can be expressed as

References
[I1 D. Agarwal and A. Vardy, “The Turbo Decoding Algorithm and its Phase Trajectories,” IEEE Trans. Information Theory,

vol. 47, no. 2, pp. 699-722, Feb. 2001.

[2J S. M. Aji and R. J. McEliece, “The Generalized Distributive Law,” IEEE Trans. Info. Theory, vol. 46, no. 2, pp. 325-343,
Mar. 2000.

[31 S. Alamouti, “A Simple Transmit Diversity Technique for Wireless Communications:’ IEEE J. on SelectedAreas in Comm.,
vol. 16, no. 8, pp. 1451-1458, Oct. 1998.

[41 J. Anderson and M. Hladik, ‘Tailbiting MAP Decoders:’ IEEE Journal on Selected Areas in Communications, vol. 16,
no. 2, pp. 297-302, Feb. 1998.

[5J J. B. Anderson and A. Svensson. CodedModulation Systems. New York Klnwer AcademicPlenm, 2003.
“31 K. Andrews, C. Heegard, and D. Kozen, “A Theory of Interleavers,” Cornell University Department of Computer Science,”

TR97-1634, June 1997.

[71 -, “Interleaver Design Methods for Turbo Codes,” in Proc. 1998 Intl. Symposium on Info. Theory, 1998, p. 420.
[81 S. Ar, R. Lipton, R. Rubinfeld, and M. Sudan, “Reconsmcting Algebraic Functions from Mixed Data,” in Proceedings of

the 33rd Annual IEEE Symposium on Foundations of Computer Science, 1992, pp. 503-512.

[9J D. Augot and L. Pecquet, “A Hensel Lifting to Replace Factorization In List-Decoding of Algebraic-Geometric and Reed-
Solomon Codes,” IEEE Trans. Information Theory, vol. 46, pp. 2605-2614, Nov. 2000.

[I01 L. R. Babl, C. D. Cullum, W. D. Frazer, and F. Jeliek, “An efficient algorithm for computing free distance:’ ZEEE Trans.
Info. Theory, pp. 437439, May 1972.

[l 11 L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate:’ IEEE
Trans. Info. Theory, vol. 20, pp. 284-287, Mar. 1974.

[121 A. Barbnlescu and S . Pietrobon, “Interleaver Design for Turbo Codes,” Electron. Lett., vol. 30, no. 25, p. 2107, 1994.
[I31 -, “Terminating the Trellis of Turbo-Codes in the Same State,” Electron. Lett., vol. 31, no. 1, pp. 22-23.1995.
[I41 1. R. Barry, “The BCJR Algorithm for Optimial Equalization,” http://users.ece.gatech.edu/

-barry/6603/handouts/Notes on the BCJR Algorithm.
[15] J. R. Barry, E. A. Lee, and D. G. Messenchmitt, Digital Communication, 3rd ed. Boston: IUuwer Academic, 2004.

[t61 G. Battail and 1. Fang, “D’ecodage pond&& optimal des codes linCaires en blocs,” A n d e s des Tkltcommunications, vol. 41,
pp. 580604, Nov. 1986.

[I71 R. E. Bellman and S. E. Dreyfus, AppliedDynamic Programming. Princeton, NJ: Princeton University Press, 1962.
[I81 S. Benedetto, R. Garello, M. Mondin, and M. Tron, “Rotational Invariance of Trellis Codes Part n: Group Codes and

Decoders,” IEEE Trans. Information Theory, vol. 42, pp. 766-778, May 1996.

[191 S . Benedetto and G. Montorsi, “Average Performance of Parallel Concatenated Block Codes,” Electron. Lett., vol. 3 1, no. 3,
pp. 156-158,1995.

[20] -, “Design of Parallel Concatenated Convolutional Codes,’’ IEEE Trans. Comm., vol. 44, no. 5, pp. 591400, 1996.
[21] -, “Unveiling Turbo Codes: Some Results on Parallel Concatenated Coding Schemes,” IEEE Trans. Info. Theory,

vol. 42, no. 2, pp. 409428. Mar. 1996.

[22] E. Berlekamp, “Nonbinaty BCH decoding,” in Proc. Int’l. Symp. on Info. Th., San Remo, Italy, 1967.

[23] -, “Bounded Distance +I Soft-Decision Reed-Solomon Decoding,” IEEE Trans. Info. Theory, vol. 42, no. 3, pp.
704-720, May 1996.

[24] E. R. Berlekamp, R. J. McEliece, and H. C. van Tilborg, “On the Inherent Intractability of Certain Coding F’mblems,” IEEE
Trans. Info. Theory, vol. 24, no. 3, pp. 384-386, May 1978.

[25] E. Berlekamp, Algebraic Coding Theory. New York McGraw-Hill, 1968.

[26] C. Berrou, Codes, Graphs, and Systems. Boston: Kluwer Academic, 2002, ch. The Mutations of Convolutional Coding
(Around the Trellis), p. 4.

[27] C. Berrou and A. Gaviuex, “Near Optimum Error Correcting Coding and Decoding: Turbo Codes,” IEEE Trans. Comm.,
vol. 44, no. 10, pp. 1261-1271, Oct. 1996.

[28] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit!3ror-Correcthg Coding and Decoding: Turbo Codes,”
in Proc. 1993 IEEE International Conference on Communications, Geneva, Switzerland, 1993, pp. 1064-1070.

[29] E. Biglien, D. Divsalar, P. J. McLane, and M. K. Simon, Introduction to Trellis-CodedModulation. with Applications. New
York Macmillan, 1991.

[30] P. Billingsley, Probability andMeasure. New York: Wdey, 1986.

1311 G. Bikhoff and S. MacLane, A Survey uf Modern Algebra, 3rd ed. New York Macmillan, 1965.
[32] U. Black, The VSeries Recommendations, Protocols for Data Communications. New York McGraw-Hill, 1991.

[33] R. E. Blahut, Theory and Practice of Error Control Codes. Reading, MA: Addison-Wesley, 1983.
[34] -, Fast Algorithms for Digital Signal Processing. Reading, MA: Addison-Wesley, 1985.

740 References

I. Blake and K. Kith, “On the Complete Weight Enumerator of Reed-Solomon Codes,” SZAM J. Disc. Math, vol. 4, no. 2,
pp. 164-171, May 1991.
R. Bose and D. Ray-Chaudhuri, “On a Class of Error-Correcting Binary Codes,” In$ and Control, vol. 3, pp. 68-79, 1960.
A. E. Brouwer, “Bounds on the minimum distance of q-ary linear codes,” http: / /
www.win.tue.nl/~aeb/voorlincod.htm1,2004.
H. Burton, “Inversionless decoding of BCH codes,”ZEEE Trans. Information Theory, vol. 17, pp. 464-466, 1971.
H. Burton and E. Weldon, “Cylic Product Codes,”ZEEE Trans. Information Theory, vol. 11, pp. 433440, July 1965.
J. B. Cain, G. C. Clark, and J. M. Geist, “Punctured Convolutional Codes of Rate (n - l) /n and Simplified Maximum
Likelihood Decoding,” ZEEE Trans. Znfo. Theory, vol. 25, no. 1, pp. 97-100, Jan. 1979.
A. R. Calderbank and N. J. A. Sloane, “An Eight-Dimensional Trellis Code,” IEEE Trans. Znfo. Theory, vol. 74, no. 5 , pp.
757-759, May 1986.
-. “New Trellis Codes Based on Lattices and Cosets,” ZEEE Trans. Info. Theory, vol. 33, no. 2, pp. 177-195, March
1987.
M. Cedervall and R. Johannesson, “A Fast Algorithm for Computing Distance Spectrum of Convolutional Codes,” ZEEE
Trans. Information Theory, vol. 35, pp. 1146-1159, 1989.
W. Chambers, “Solution of Welch-Berlekamp Key Equation by Euclidean Algorithm,” Electron. Left., vol. 29, no. 11, p.
1031,1993.
W. Chambers, R. Peile, K. Tsie, and N. &in, “Algorithm for Solving the Welch-Berlekamp Key-Equation with a Simplified
Proof,” Electron. Lett., vol. 29, no. 18, pp. 162g1621, 1993.
D. Chase, “A Class of Algorithms for Decoding Block Codes With Channel Measurement Information,” ZEEE Trans. Znfo.
Theory, vol. 18, no. 1, pp. 168-182, Jan. 1972.
0. Chauhan, T. Moon, and J. Gunther, “Accelerating the Convergence of Message Passing on Loopy Graphs Using Eigen-
messages,” in Proc. 37th Annual Asilomar Conference on Signals, Systems, and Computers, 2003, pp. 79-83.
P. Chevillat and J. D.J. Costello, “A Multiple Stack Algorithm for Erasurefree Decoding Of Convolutional Codes,” ZEEE
Trans. Comm., vol. 25, pp. 1460-1470, Dec. 1977.
R. Chien, “Cyclic Decoding Procedures for Bose-Chaudhuri-Hocquenghem Codes,” ZEEE Trans. Information Theory,
vol. 10, pp. 357-363, 1964.
S.-Y. Chung, G. D. Fomey, Jr., T. J. Richardson, and R. Urbanke, “On the Design of Low-Density Parity-Check Codes
within 0.0045 dB of the Shannon Limit,” ZEEE Commun. Letters, vol. 5 , no. 2, pp. 58-60, Feb. 2001.
S.-Y. Chung, T. J. Richardson, and Riidiger, “Analysis of Sum-Product Decoding of Low-Density Parity-Check Codes
Using Gaussian Approximation,” ZEEE Trans. Information Theory, vol. 47, no. 2, pp. 657670, Feb. 2001.
T. K. Citron, “Algorithms and architectures for error correcting codes,” Ph.D. dissertation, Stanford, Aug. 1986.
J. H. Conway and N. J. A. Sloane, “Fast Quantizing and Decoding Algorithms for Lattice Quantizers and Codes,” IEEE
Trans. Znjo. Theory, vol. 28, no. 2, pp. 227-232, March 1982.
-, “Voronoi Regions of Lattices, Second Moments of Polytopes, and Quantization,” ZEEE Trans. Znfo. Theory, vol. 28,
no. 2, pp. 211-226, March 1982.
-, “On the Voronoi Regions of Certain Lattices,” SIAM J. Alg. and Discrete Methods, vol. 5 , no. 3, pp. 294305,
September 1984.

-, Sphere Packings, Latfices, and Groups, 2nd ed. New York Springer-Verlag. 1993.
-, “A Fast Encoding Method for Lattice Codes and Quantizers,” ZEEE Trans. Info. Theory, vol. 29, no. 6, pp. 82g824,
November 1983.

-, “Soft Decoding Techniques for Codes and Lattices, Including the Golay Code and the Leech Lattice,” ZEEE Trans.
Znfo. Theory, vol. 32, no. 1, pp. 41-50, January 1986.

T. M. Cover and J. A. Thomas, Elements ojlnformation Theory. New York Wiley, 1991.
D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, anddlgorithms. New York Springer-Verlag. 1992.
-, Using Algebraic Geometry. New York Springer-Verlag, 1998.
J. Crockett, T. K. Moon, 0. Chauhan, and J. Gunther, “Decoding LDPC using multiple-cycle eigenmessages,” in Asilomar
Con$ on Signals, Systems, and Comp., Monterey, CA, Nov. 2004.
D. Dabiri and I. F. Blake, “Fast Parallel Algorithms for Decoding Reed-Solomon Codes based on Remainder Polynomials,”
ZEEE Trans. Info. Theory, vol. 41, no. 4, pp. 873-885, July 1995.
F. Daneshgaran, M. Laddomada, and M. Mondin, “Interleaver Design for Serially Concatenated Convolutional Codes:
Theory and Applications,” ZEEE Trans. Information Theory, vol. 50, no. 6, pp. 1177-1 188, June 2004.

D. G. Daut, J. W. Modestino, and L. D. Wismer, “New Short Constraint Length Convolutional Code Constructions for
Selected Rational Rates,”ZEEE Trans. Znfo. Theory, vol. 28, no. 5 , pp. 794800, Sept. 1982.
M. C. Davey and D. J. MacKay, “Low Density Parity Check Codes Over GF(q),” ZEEE Com. Letters, vol. 2, no. 6, 1998.
J. R. Deller, J. G. Proakis, and J. H. L. Hansen, Discrete-Time Processing of Speech Signals. New York Macmillan, 1993.
P. Delsarte, “An Algebraic Approach to Coding Theory,” Phillips, Research Reports Supplements 10, 1973.

D. Divsalar and R. McEliece, “Effective Free Distance of Turbo Codes,” Electron. Lett., vol. 32, no. 5 , pp. 4 4 5 4 6 , Feb.
1996.
D. Divsalar and F. Pollara, “Turbo Codes for Deep-Space Communications,” Jet Propulsion Laboratory,” JPL TDA Progress
Report42-122, pp. 42-120, Feb. 1995.

References 741 .-

[711 D. Divsalar and M. Simon, “The Design of Coded MPSK for Fading Channel: Performance Criteria,” ZEEE Trans. Comm.,
vol. 36, pp. 1013-1021, Sept. 1988.

[721 S . Dolinar and D. Divsalar, “Weight Distributions for Turbo Codes Using Random and Nonrandom Permutations,” Jet
Propulsion Laboratory,” JPL TDA Progress Report 42-121, pp. 42-120, Aug. 1995.

[731 B. Dorsch, “A Decoding Algorithm for Binary Block Codes and J-ary Output Channels,” IEEE Trans. Information Theory,
vol. 20, pp. 391-394, May 1974.

[741 H. El Gamal and J. A. Roger Hammons, “Analyzing the Turbo Decoder Using the Gaussian Approximation,” ZEEE Trans.
Znformution Theory, vol. 47, no. 2, pp. 671-686, Feb. 2001.

I751 M. Elia, “Algebraic Decoding of the (23,12,7) Golay Code,” ZEEE Trans. Znfo. Theory, vol. 33, no. 1, pp. 150-151, Jan.
1987.

[761 P. Elias, “Coding for Noisy Channels,”ZRE Conv. Rept. Pt. 4, pp. 37-47, 1955.
[771 -, “List Decoding For Noisy Channels,” Res. Lab. Electron., MIT, Cambridge, MA, Tech. Rep. 335, 1957.
[781 M. Eyuboglu and G. D. Forney, Jr., “Trellis Precoding: Combined Coding, Precoding and Shaping for Intersymbol Inter-

ference Channels,”lEEE Trans. Information Theory, vol. 36, pp. 301-314, Mar. 1992.
[791 D. Falconer, “A Hybrid Sequential and Algebraic Decoding Scheme,” Ph.D. dissertation, MIT, Cambridge, MA, 1967.
[SO] R. M. Fano, “A heuristic discussion of probabilistic decoding,” IEEE Trans. Znfo. Theory, vol. 9, pp. 64-73, Apr 1963.
[81] G.-L. Feng, “A Fast Special Factorization Algorithm in the Sudan Decoding Procedure for Reed-Solomon Codes,”in Pmc.

31st Allerton Con$ Communications, Control, and Computing, 2000, pp. 593-602.
[821 G:L. Feng and K. K. Tzeng, “A Generalized Euclidean Algorithm for Multisequence Shift-Register Synthesis,’’ IEEE

Trans. Info. Theory, vol. 35, no. 3, pp. 584-594, May 1989.
[831 -, “A Generalization of the Berlekamp-Massey Algorithm for Multisequence Shift-Register Synthesis With Applications

To Decoding Cyclic Codes,” ZEEE Trans. Info. Theory, vol. 37, no. 5, pp. 1274-1287, Sept. 1991.
[841 M. Ferrari and S . BeKmi, “Importance Sampling Simulation of Concatenated Block Codes,” Pmc. of the ZEE, vol. 147, pp.

245-251, Oct. 2000.
[851 P. Fire, A Class of Multiple-Error-Correcting Binary Codes For Non-Zndependent Ermrs, Sylvania Report No. RSL-E-2,

Sylvania Electronic Defense Laboratory, Reconnaissance Systems Division, Mountain View, CA, Mar. 1959.

[861 G. D. Fomey, Jr., “On Decoding BCH Codes,” IEEE Trans. Znfo. Theory, vol. 11, no. 4, pp. 549-557, Oct 1965.
[871 -, Concatenated Codes. Cambridge, MA: MIT Press, 1966.

[881 -, “Generalized Minimum Distance Decoding,” ZEEE Trans. Info. Theory, vol. 12, no. 2, pp. 125-131, Apr. 1966.
[89] -, ‘The Viterbi Algorithm,” Pmc. IEEE, pp. 268-278, Mar. 1973.
[901 -, “Convolutional Codes IE Sequential Decoding,” Inform. Control, vol. 25, pp. 267-297, July 1974.
[911 -, “Coset Codes - Part I Introduction and Geometrical Classification,” IEEE Trans. Znfo. Theory, vol. 34, no. 5. pp.

1123-1151, September 1988.

[921 -, “Coset Codes - Part II: Binary Lattices and Related Codes,” ZEEE Trans. Znfo. Theory, vol. 34, no. 5, pp, 1152-1 187,
September 1988.

[931 -, “Geometrically Uniform Codes,” IEEE Trans. Information Theory, vol. 37, pp. 1241-1260, 1991.
[941 -, “Trellis Shaping,” ZEEE Trans. Info. Theory, vol. 38, no. 2, pp. 281-300, Mar. 1992.
[951 -, “Codes on Graphs: Normal Realizations,” IEEE Trans. Info. Theory, vol. 47, no. 2, pp. 520-548, Feb. 2001.
[961 -, “Maximum-likelihood Sequence Estimation of Digital Sequences in the Presence of Intersymbol Interference,” ZEEE

Trans. Info. Theory, vol. IT-18, no. 3, pp. 363-378, May 1972.
1971 -, “Convolutional Codes I: Algebraic Structure,” ZEEE Trans. Znfo. Theory, vol. 16, no. 6, pp. 72g738, Nov. 1970.
[981 G. D. Forney, Jr., L. Brown, M. V. Eyuboglu, and I. John L. Moran, “The V.34 High-speed Modem Standard,” ZEEE

Communications Magazine, vol. 34, pp. 28-33, Dec. 1996.

[99] G. D. Fomey, Jr. and M. Eyuboglu, “Combined Equalization and Coding Using Precoding,” ZEEE Commun. Mag., vol. 29,
no. 12, pp. 25-34, Dec. 1991.

[loo] G . D. Forney, Jr., R. G. Gallager, G. R. Lang, F. M. Longstaff, and S . U. Qureshi, “Efficient Modulation for Band-Limited
Channels,”ZEEE J. on SelectedAreas in Comm., vol. 2, no. 5, pp. 632-647, September 1984.

[loll G. Foschini and M. Cans, “On Limits of Wireless Commnnications in a Fading Environment,” Wireless Personal Comm.,
vol. 6, no. 3, pp. 311-355, Mar. 1998.

[lo21 M. P. Fossorier, F. Burkert, S . Lin, and J. Hagenauer, “On the Equivalence Between SOVA and Max-Log-MAPDecodings,”
ZEEE Comm. Letters, vol. 2, no. 5, pp. 137-139, May 1998.

[lo31 M. P. Fossorier and S . Lm, “Chase-Type and GMD-Qpe Coset Decoding,”ZEEE Trans. Comm., vol. 48, pp. 345-350, Mar.
2000.

[lo41 M. Fossorier and S . Lin, “Soft-Decision Decoding of Linear Block Codes Based on Ordered Statistics,” IEEE Trans.
Information Theory, vol. 41, pp. 1379-1396, Sept. 1995.

[lo51 -, “Differential Trellis Decoding of Convolutional Codes,” IEEE Trans. Znformation Theory, vol. 46, pp. 1046-1053,
May 2000.

[lo61 J. B. Fraleigh, A First Course in Abstract Algebra. Reading, MA: Addison-Wesley, 1982.
[lo71 B. Frey, Graphical Models for Machine Learning and Digital Communication. Cambridge, M A MIT Press, 1998.
[lo81 B. J. Frey and D. J. MacKay, “A Revolution: Belief Propagation in Graphs With Cycles,” in Advances in Neural Znformution

Processing Systems. MIT Press, 1998.
[lo91 B. Friedland, Control System Design; An Zntroduction to State-Space Design. New York McGraw-Hill, 1986.

742 References

G. Szego, Orthogonal Polynomials, 3rd ed. Providence, RI: American Mathematical Society, 1967.
R. G. Gallager, Information Theory and Reliable Communication. New York Wiley, 1968.
-, “Low-Density Parity-Check Codes,” IRE Trans. on Info. Theory, vol. IT-8, pp. 21-28, Jan. 1962
-, Low-Density Parity-Check Codes. Cambridge, MA: M.I.T. Press, 1963.
S. Gao and M. A. Shokrollahi, “Computing Roots of Polynomials over Function Fields of Curves,” in Coding Theory and
Cryptography, D. Joyner, Ed. Springer-Verlag, 1999, pp. 214228.
J. Geist, “An Empirical Comparison of TWO Sequential Decoding Algorithms,” IEEE Trans. Comm. Tech., vol. 19, pp.
415-419, Aug. 1971.
-, “Search Propekes for Some Sequential Decoding Algorithms,” IEEE Trans. Information Theory, vol. 19, pp. 519-
526, July 1973.
A. Geramita and J. Sebeny, Orthogonal Designs, Quadratic Forms and Hadamard Matrices, ser. Lecture Notes in Pure
and Applied Mathematics, v. 43. New York and Basel: Marcel Dekker, 1979.
R. Gold, “Maximal Recursive Sequences with 3-Valued Recursive Cross-Correlation Functions,” IEEE Trans. Info. Theory,
pp. 154-156,1968,
-, “Optimal Binary Sequences for Spread Spectrum Multiplexing:’ IEEE Trans. Info. Theory, pp. 619621, October
1967.
S. W. Golomb, Shifr Register Sequences. San Francisco: Holden-Day, 1967.
G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Baltimore, MD: Johns Hopkins University Press, 1996.
M. Gonziilez-Lopez, L. Castedo, and J. Garcia-Frias, “BICM for MIMO Systems Using Low-Density Generator Matrix
(LDGM) Codes,” in Proc. International Conference on Acoustics, Speech, and Signal Processing. IEEE, May 2004.
V. Goppa, “Codes on Algebraic Curves,”Soviet Math. Dokl., vol. 24, pp. 170-172, 1981.
-, Geometry and Codes. Dordrecht: Kluwer Academic, 1988.
D. Gorenstein and N. Zierler, “A Class of Enor Correcting Codes in pm Symbols:’ J. Sociery of Indust. Appl. Math., vol. 9,
pp. 207-214, June 1961.
R. Graham, D. Knuth, and 0. Patashnik, Concrete Mathematics. Reading, M A Addison-Wesley, 1989.
J. Gunther, M. Ankapura, and T. Moon, “Blind Turbo Equalization Using a Generalized LDPC Decoder,” in Proc. IIth
Digital Signal Processing Workshop, Taos Ski Valley, NM, Aug. 2004, pp. 206-210.
V. Guruswami and M. Sudan, “Improved Decoding of Reed-Solomon Codes and Algebraic Geometry Codes,” IEEE Trans.
Info. Theory, vol. 45, no. 6, pp. 1757-1767, Sept. 1999.
D. Haccoun and M. Fergnson, “Generalized Stack Algorithms for Decoding Convolntional Codes,” IEEE Trans. Information
Theory, vol. 21, pp. 638-651, Apr. 1975.
J. Hagenauer, “Rate Compatible Punctured Convolntional Codes and Their Applications,” IEEE Trans. Comm., vol. 36, pp.
389400, Apr. 1988.
-, “Source-Controlled Channel Decoding,” IEEE Trans. Comm., vol. 43, no. 9, pp. 2449-2457, Sept. 1995.
J. Hagenauer and P. Hoeher, “A Viterbi Algorithm with Soft-Decision Outputs and Its Applications,” in Pmc. Globecom,
Dallas, TX, Nov. 1989, pp. 1680-1686.

J. Hagenauer, E. Offer, and L. Papke, Reed Solomon Codes and Their Applications. New York IEEE Press, 1994, ch.
Matching Viterbi Decoders and Reed-Solomon Decoders in a Concatenated System.
-, “Iterative Decoding of Binary Block and Convolutional Codes,” IEEE Trans. Info. Theory, vol. 42, no. 2, pp. 429445,
Mar. 1996.
D. Haley, A. Grant, and J. Buetefuer, “Iterative encoding of low-density parity-check codes,” in Global Communication
Conference (GLOBECOM). IEEE, Nov. 2002, pp. 1289-1293.
R. W. Hamming, Coding and Information Theory, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1986.
R. Hamming, “Error detecting and error correcting codes,”Bell Syst. Tech. Journal, vol. 29, pp. 41-56, 1950.
A. R. Hammonds, Jr., P. V. Kummar, A. Calderbank, N. Sloane, and P. Sol&, “The Z4-Linearity of Kerdock, Preparata,
Goethals, and Related Codes,” IEEE Trans. Info. Theory, vol. 40, no. 2, pp. 301-319, Mar. 1994.
Y. Han, C. Hartmann, and C. Chen, “Efficient Priority-First Search Maximum-Likelihood Soft-Decision Decoding of Linear
Block Codes,” IEEE Trans. Information Theory, vol. 39, pp. 15141523, Sept. 1993.
Y. Han, C. Hartmann, and K. Mehrota, “Decoding Linear Block Codes Using a Priority-First Search Performance Analysis
and Suboptimal Version,” IEEE Trans. Information Theory, vol. 44, pp. 1233-1246, May 1998.
L. Hanzo, T. Liew, and B. Yeap, Turbo Coding, Turbo Equalization and Space-Time Coding for Transmission Over Fading
Channels. West Sussex, England: Wiley, 2002.
H. Harashima and H. Miyakawa, “Matched-transmission Technique for Channels with Intersymbol Interference,” IEEE
Trans. Comm., vol. 20, pp. 774-780, Aug. 1972.
C. Hartmann and K. Tzeng, “Generalizations of the BCH Bound,” Inform. Conk, vol. 20, no. 5 , pp. 489498, June 1972.
C. Hartmann, K. Tzeng, and R. Chen, “Some Results on the Minimum Distance of Cyclic Codes,” IEEE Trans. Information
Theory, vol. 18, no. 3, pp. 402409, May 1972.
H. Hasse, “Theorie der h oen Differentiale in einem algebraishen Funcktionenk oper mit volkommenem Kostantenk oerp
bei Charakteristic,” J. Reine. Ang. Math., pp. 50-54, 175.
C. Heegard and S . B. Wicker, Turbo Coding. Boston: Klnwer Academic, 1999.
J. Heller, “Short Constraint Length Convolutional Codes,” Jet Propulsion Labs,” Space Programs Summary 37-54, v. IJI,
pp. 171-177,1968,

References 743

J. Heller and I. M. Jacobs, “Viterbi Decoding for Satellite and Space Conunwications,” ZEEE Trans. Com. Tech., vol. 19,
no. 5, pp. 835-848, Oct. 1971.
F. Hemmati and D. Costello, “Truncation Error Probability in Viterbi Decoding,” IEEE Trans. Comm., vol. 25, no. 5, pp.
530-532, May 1977.
B. Hochwald and W. Sweldons, “Differential Unitary Space-Time Modulation,” Bell Labs,” Lucent Technology Technical
Report, 1999.
A. Hocquengbem, “Codes Correcteurs D’erreurs,” Chiffres, vol. 2, pp, 147-156, 1959.
J. K. Holmes and C. C. Chen, “Acquisition time performance of PN spread-spectrum systems,” IEEE Transactions on
Communications, vol. COM-25, no. 8, pp. 778-783, August 1977.
R. A. Horn and C. A. Johnson, Matrix Analysis. Cambridge: Cambridge University Press, 1985.
B. Hughes, “Differential Space-Time Modulation,” in Proc. IEEE Wireless Commun. Networking Con$, New Orleans, LA,
Sept. 1999.
T. W. Hungerford, Algebra. New York Springer-Verlag, 1974.
S . Ideda, T. Tanaka, and S . Amari, “Infomation Geometry of Turbo and Low-Density Parity-Check Codes,” IEEE Trans.
Info. Theory, vol. 50, no. 6, pp. 1097-1 114, June 2004.
K. A. S. Immink, “Runlength-Limited Sequences,” Proceedings of the ZEEE, vol. 78, pp. 1745-1759,1990.

-, Coding Techniques for Digital Recorders. Englewood Cliffs, NJ Prentice-Hall, 1991.
K. Immink, Reed Solomon Codes and Their Applications. New York IEEE Press, 1994, ch. RS Code and the Compact
Disc.
International Telegraph and Telephone Consultive Committee (CCllT), “Recommendation v.29: 9600 bits per second
modem standardized for use on point-to-point 4-wire leased telephone-type circuits,” in Data Communication over the
Telephone Network “Blue Book”. Geneva: International Telecommunications Union, 1988, vol. VEI, pp. 215-227.
I. Jacobs and E. Berlekamp, “A Lower Bound to the Distribution of Computation for Sequential Decoding,” IEEE Trans.
Information Theory, vol. 13, pp. 167-174, Apr. 1967.
N. Jacobson, Basic Algebra I . New York Freeman, 1985.
W. Jakes, Micmwave Mobile Communication. New York, NY: IEEE Press, 1993.
F. Jelinek, “An Upper Bound on Moments of Sequential Decoding Effort,” IEEE Trans. Information Theory, vol. 15, pp.
140-149, Jan. 1969.
-, “Fast Sequential Decoding Algorithm Using a Stack,” IBM J. Res. Develop., pp. 675-685, Nov. 1969.
F. Jelinek and J. Cocke, “Bootstrap Hybrid Decoding for Symmetric Binary Input Channels,” Inform. Control., vol. 18, pp.
261-281, Apr. 1971.
H. Jin, A. Khandekar, and R. McEliece, “Irregular Repeat-Accumulate Codes,” inProceedings2ndZntenurtionalSymposium
on Turbo Codes andRelated Topics, Brest, France, Sept. 2000, pp. 1-8.
0. Joerssen and H. Meyr, “Terminating the Trellis of Turbo-Codes,”Electron. Lett., vol. 30, no. 16, pp. 1285-1286, 1994.
R. Johannesson, “Robustly Optimal Rate One-Half Binary Convolutional Codes,” IEEE Trans. Information Theory, vol. 21,
pp. 464-468, July 1975.
- ,“Some Long Rate One-HalfBinary ConvolutionalCodes withan OptimumDistance Profile,” IEEE Trans. Information
Theory, vol. 22, pp. 629-631, Sept. 1976.
-, “Some Rate 1/3 and 1/4 Binary Convolutional Codes with an Optimum Distance Profile,” IEEE Trans. Information
Theory, vol. 23, pp. 281-283, Mar. 1977.
R. Johannesson and E. Paaske, “Further Results on Binary Convolutional Codes with an Optimum Distance Profile,” IEEE
Trans. Information Theory, vol. 24, pp. 264-268, Mar. 1978.
R. Johannesson and P. Stahl, “New Rate 1/2, 113, and 1/4 Binary Convolutional Encoders With Optimum Distance Profile,”
IEEE Trans. Information Theory, vol. 45, pp. 1653-1658, July 1999.
R. Johannesson and K. Zigangirov, Fundamentals of Convolutional Coding. Piscataway, NJ: IEEE Press, 1999.
R. Johannesson and Z.-X. Wan, “ALinear Algebra Approach to Minimal Convolutional Encoders,” IEEE Trans. Information
Theory, vol. 39, no. 4, pp. 1219-1233, July 1993.
S . Johnson and S . Weller, “Construction of Low-Density Parity-Check Codes from Kirkman Triple Systems,” in Global
Communications Conference (GLOBECOM), Nov 25-29,2001. pp. 970-974.
-, “Regular Low-Density Parity-Check Codes from Combinatorial Designs,” in Information Theory Workshop, 2001,
pp. 90-92.
-, “Higher-Rate LDPC Codes from Unital Designs,” in Global Telecommunications Conference (GLOBECOM). IEEE,
2003, pp. 2036-2040.
-, “Resolvable 2-designs for Regular Low-Density Parity Check Codes,” IEEE Trans. Comm., vol. 51, no. 9, pp.
1413-1419, Sept. 2003.
P. Jung and M. Nasshan, “Dependence of the Error Performance of Turbo-Codes on the Interleaver Structure in Short Frame
Transmission Systems,” Electmn. Left., vol. 30, no. 4, pp. 287-288, Feb. 1994.
T. Kailath, Linear Systems. Englewood Cliffs, NJ: Prentice-Hall, 1980.
T. Kaneko, T. Nishijima, and S. Hirasawa, “An Improvement of Soft-Decision Maximum-Likelihood Decoding Algorithm
Using Hard-Decision Bounded-Distance Decoding,” ZEEE Trans. Information Theory, vol. 43, pp. 1314-1319, July 1997.
T. Kaneko, T. Nishijima, H. Inazumi, and S. Hirasawa, “An Efficient Maximum Likelihood Decoding of Linear Block
Codes with Algebraic Decoder,” IEEE Trans. Information Theory, vol. 40, pp. 320-327, Mar. 1994.

744 References

T. Kasami, “A Decoding Method for Multiple-Error-Correcting Cyclic Codes by Using Threshold Logics,” in C o f Rec.
Inj Process. SOC. of Japan (in Japanese), Tokyo, Nov. 1961.
-, “A Decoding Procedure for Multiple-Error-Correction Cyclic Codes,” IEEE Trans. Information Theory, vol. 10, pp.
13&139, Apr. 1964.
T. Kasami, S. Lin, and W. Peterson, “Some Results on the Weight Distributions of BCH Codes,” ZEEE Tram. Znformation
Theory, vol. 12, no. 2, p. 274, Apr. 1966.
D. E. Knuth, The Art of Computer Programming. Reading, MA: Addison-Wesley, 1997, vol. 1.

R. Koetter, “On Algebraic Decoding ofAlgebraic-Geometric andcyclic Codes,” Ph.D. dissertation, University ofLinkoping,
1996.
R. Koetter and A.Vardy, “The Structure of Tail-Biting Trellises: M h a l i t y and Basic Principles,” ZEEE Trans. Information
Theory, vol. 49, no. 9, pp. 2081-2105, Sept. 2003.
R. Koetter, A. C. Singer, and M. Tiichler, “Turbo Equalization,” IEEE Signal Processing Magazine, vol. 21, no. 1, pp.
67-80, Jan. 2004.
R. Koetter and A. Vardy, “Algebraic Soft-Decision Decoding of Reed-Solomon Codes,” ZEEE Trans. Info. Theory, vol. 49,
no. 11, pp. 2809-2825, Nov. 2003.
V. Kolesnik, “Probability decoding of majority codes,” Probl. Peredachi Inform., vol. 7, pp. 3-12, July 1971.
R. Kotter, “Fast Generalized Minimum Distance Decoding of Algebraic-Geometry and Reed-Solomon Codes,” IEEE Trans.
Info. Theory, vol. 42, no. 3, pp. 721-737, May 1996.
Y. Kou, S. Lin, and M. P. Fossorier, “Low-Density Parity-Check Codes Based on Finite Geometries: A Rediscovery and
New Results,” ZEEE Trans. Info. Theory, vol. 47, no. 7, pp. 2711-2736, Nov. 2001.
E R. Kscbischang, B. J. Frey, and H.-A. Loeliger, “Factor Graphs and the Sum-Product Algorithm,” ZEEE Trans. Info.
Theory, vol. 47, no. 2, pp. 498-519, Feb. 2001.
R. Laroia, N. Farvardin, and S. A. Tretter, “On Optimal Shaping of Multidimensional Constellations,” ZEEE Trans. Znfo.
Theory, vol. 40, no. 4, pp. 1044-1056, July 1994.
K. Larsen, “Short Convolutional Codes with Maximal Free Distance for Rates 1/2, 1/3 and 114,’’ IEEE Trans. Info. Theory,
vol. 19, pp. 371-372, May 1973.
L. Lee, Convolutional Coding: Fundamentals and Applications. Boston, MA: Artech House, 1997.
N. Levanon, Radar Principles. New York: Wiley Interscience, 1988.

R. Lid1 and H. Niederreiter, Finite Fields. Reading, MA: Addison-Wesley, 1983.
-, lntroduction to Finite Fields and their Applications. Cambridge: Cambridge University Press, 1986.
S. Lin and E. Weldon, “Further Results on Cyclic Product Codes,” ZEEE Trans. Information Theory, vol. 6, no. 4, pp.
452459, July 1970.
S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications. Englewood Cliffs, NJ: Prentice-Hall,
1983.
-, Error Control Coding: Fundamentals and Applications, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 2004.
S. Lin, T. Kasami, T. Fujiwara, and M. Forrorier, Trellises and Trellis-based Decoding Algorithms for Linear Block Codes.
Boston: Kluwer Academic Publishers, 1998.

D. Lind and B. Marcus, Symbolic Dynamics and Coding. Cambridge, England: Cambridge University Press, 1995.
J. Lodge, P. Hoeher, and J. Hagenauer, “The Decoding of Multidimensional Codes Using Separable MAP ‘Filters’,’’ in
Proc. 16th Biennial Symp. on Comm., Queen’s University, Kingston, Ont. Canada, May 1992, pp. 343-346.
J. Lodge, R. Young, P. Hoeher, and J. Hagenauer, “Separable MAP ‘Filters’ for the Decoding of Product and Concatenated
Codes,” in Proc. IEEEInt. Con$ on Comm., Geneva, Switzerland, May 1993, pp, 1740-1745.
H.-A. Loeliger, “An Introduction to Factor Graphs,” IEEE Signal Processing Mag., vol. 21, no. 1, pp. 28-41, Jan. 2004.
T. D. Lookabaugh and R. M. Gray, “High-Resolution Quantization Theory and the Vector Quantizer Advantage,” ZEEE
Trans. Info. Theory, vol. 35, no. 5, pp. 1020-1033, September 1989.
D. Lu and K. Yao, “Improved Importance Sampling Technique for Efficient Simulation of Digital Communication Systems,”
IEEE Journal on SelectedAreas in Communications, vol. 6, no. 1, pp. 67-15, Jan. 1988.
M. G. Luby, M. Miteznmacher, M. A. Shokrollahi, and D. A. Spielman, “Improved Low-Density Parity-Check Codes Using
Irregular Graphs,“ ZEEE Trans. Znformation Theory, vol. 47, no. 2, pp. 585-598, Feb. 2001.
H. Ma and J. Wolf, “On Tailbiting Codes,’’ IEEE Trans. Comm., vol. 34, pp. 104111, Feb. 1986.
X. Ma and X.-M. Wang, “On the Minimal Interpolation Problem and Decoding RS Codes,” ZEEE Trans. Znfo. Theory,
vol. 46, no. 4, pp. 1573-1580, July 2000.
D.J.MacKay,http://www.inference.phy.cam.ac.uk/mackay/CodesFiles.html.
-, “Near Shannon Limit Performance of Low Density Parity Check Codes,” Electron. Lett., vol. 33, no. 6, pp. 457458,
Mar 1997.
-, “Good Error-Correcting Codes Based on Very Sparse Matrices,” IEEE Trans. Znfo. Theory, vol. 45, no. 2, pp. 399-43 1,
March 1999.
D. J. MacKay and R. M. Neal, “Good Codes Based on Very Sparse Matrices,” in Cryptography and Coding 5th IMA
Conference, ser. Lecture Notes in Computer Science, C. Boyd, Ed. Springer, 1995, vol. 1025, pp. 100-1 11.
F. MacWilliams, “A Theorem on the Distribution of Weights in a Systematic Code,” Bell Syst. Tech. Journal, vol. 42, pp.
79-94, 1963.

F. MacWilliams and N. Sloane, The Theory ofError-Correcting Codes. Amsterdam: North-Holland, 1977.

References 745

S . J. Mason,
1953.

“Feedback TheorySome Properties of Signal Flow Graphs,” Proceedings IRE, pp. 1144-1156, September

J. L. Massey, “Shift-Register Synthesis
1969.

and BCH Decoding,” IEEE Trans. Info. Theory, vol. IT-15, no. 122-127,

-, “Variable-Length Codes and the Fano Metric,” IEEE Trans. Info. Theory, vol. IT-18, no. 1, pp. 196-198, Jan. 1972.
J. Massey, ThresholdDecoding. Cambridge, MA: MIT Press, 1963.
-, “Coding and Modulation in Digital Communications,” in Proc. Int. Zurich Seminar on Dig. Comm., Zurich, Switzer-
land, 1974, pp. E2(l)-E2(4).
J. Massey and M. Sain, “Inverses of Linear Sequential Cicuits,” IEEE Trans. Comp., vol. 17, pp. 330-337, Apr. 1968.
R. J. McEliece, E. R. Rodemich, H. Rumsey, Jr., and L. R. Welch, “New Upper Bounds on the Rate of a Code via the
Delsarte-MacWilliams Inequalities,” IEEE Trans. Info. Theory, vol. 23, no. 2, pp. 157-166, Mar. 1977.

R. McEliece, The Theory of Information and Coding, ser. Encyclopedia of Mathematics and its Applications. Reading,
MA: Addison-Wesley, 1977.
-, “A Public-Key Cryptosystem Based On Algebraic Coding Theory,” JPL, DSN Progress Report 42-44, Janwy and
Febmary 1978.
-. “The Guruswami-Sudan Algorithm for Decoding Reed-Solomon Codes,” JPL, IPN Progress Report42-153, May 15,
2003 2003, avai lableatht tp: / / iprn. jp l .nasa .gov/progress_repor t /42-153/ .

R. McEliece and L. Swanson, Reed-Solomon Codes and Their Applications. New York IEEE Press, 1994, ch. Reed-
Solomon Codes and the Exploration of the Solar System, pp. 2540.
R. J. McEliece, D. J. MacKay, and J.-F. Cheng, ‘Turbo Decoding as an Instance of Pearl’s Belief Propagation Algorithm,”
IEEE J. on SelectedAreas in Comm, vol. 16, no. 2, pp. 140-152, Feb. 1998.
R. J. McEliece, E. R. Rodemich, and Cheng, “TheTurbo Decision Algorithm,” inProc. 33rdAnnualAllerton Conference
on Communication, Control, and Computing, 1995, pp. 366-379.
R. J. McEliece and J. B. Shearer, “A Property of Enclid’s Algorithm and an Application to Pad& Approximation:’ SIAM J.
Appl. Math, vol. 34, no. 4, pp. 611-615, June 1978.
R. J. McEliece and M. Yildrim, “Belief Propagation on Partially Ordered Sets:’ in Mathematical Systems Theory in
Biology, Communications, Computation, and Finance, D. Gilliam and J. Rosenthal, Eds. IMA, 2003, available at
http://www.systems.caltech.edu/EE/Faculty/rjm/.
G. V. Meerbegen, M. Moonen, and H. D. Man, “Critically Subsampled Filterbanks Implementing Reed-Solomon Codes:’
in Proc. International Conference on Acoustics, Speech, and Signal Processing. Montreal, Canada: IEEE, May 2004, pp.
II-989-992.
J. Meggitt, “Error Correcting Codes and their Implementations:’IRE Trans. Info. Theory, vol. 7, pp. 232-244, Oct. 1961.
A. Michelson and A. Levesque, Error Control Techniques for Digital Communication. New York Wiley, 1985.
W. Mills, “Continued Fractions and Linear Recurrences,” Mathematics of Computation, vol. 29, no. 129, pp. 173-180, Jan.
1975.
M. Mitchell, “Coding and Decoding Operation Research,” G.E. Advanced Electronics Final Report on Contract AF 19
(604)-6183, Air Force Cambridge ResearchLabs, Cambridge, MA, Tech. Rep., 1961.
-, “Error-Trap Decoding of Cyclic Codes,” G.E. Report No. 62MCD3, GeneralElectric Military Communications Dept.,
Oklahoma City, OK, Tech. Rep., Dec. 1962.
T. K. Moon, “Wavelets and Orthogonal (Lattice) Spaces,” International Symposium on Information Theory, p. 250, 1995.
T. K. Moon and S . Budge, “Bit-Level Erasure Decoding of Reed-Solomon Codes Over GF(2“):’ in Proc. Asilomar
Conference on Signals and Systems, 2004, pp. 1783-1787.
T. K. Moon and J. Gunther, “On the Equivalence of ’ h o Welch-Berlekamp Key Equations and their Error Evaluators:’
IEEE Trans. Information Theory, vol. 51, no. 1, pp. 399401, 2004.
T. Moon, “On General Linear Block Code Decoding Using the Sum-Product Iterative Decoder,” IEEE Comm. Lett., 2004,
(accepted for publication).
T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms for Signal Processing. Upper Saddle River, N J
Rentice-Hall, 2000.
M. Morii and M. Kasahara, “Generalized Key-Equation of Remainder Decoding Algorithm for Reed-Solomon Codes,’’
ZEEETrans. Info. Theory, vol. 38, no. 6, pp. 1801-1807, Nov. 1992.
D. Muller, “Application of Boolean Switching Algebra to Switching Cicuit Design:’ IEEE Trans. on Computers, vol. 3,
pp. 6-12, Sept. 1954.
A. Naguib, N. Seshadri, and A. Calderbank, “Increasing Data Rate over Wireless Channels:’ IEEE Signal Processing
Magazine, pp. 76-92, May 2000.
I. Niven, H. S. Zuckerman, and H. L. Montgomery, An Introduction to the Theory of Numbers, 5th ed. New York Wdey,
1991.
J. Odenwalder, “Optimal Decoding of Convolutional Codes,” Ph.D. dissertation, Department of Systems Sciences, School
of Engineering and Applied Sciences, University of California, Los Angeles, 1970.
V. Olshevesky and A. Shokrollahi, “A Displacement Structure Approach to Efficient Decoding of Reed-Solomon and
Algebraic-Geometric Codes,” in Pmc. 3lstACM Symp. Theory of Computing, Atlanta, GA, May 1999.
A. V. Oppenheim and R. W. Schafer, Discrete-Tim Signal Processing. Englewood Cliffs, N J Rentice-Hall, 1989.
E. Paaske, “Short Binary Convolutional Codes with Maximal Free Distance For Rate 2 3 and 3/4,” IEEE Trans. Information
Theory, vol. 20, pp. 683-689, Sept. 1974.

746 References

A. Papoulis, Probability, Random Variables, and Stochastic Processes, 2nd ed. New York McGraw Hill, 1984.
N. Patterson, “The Algebraic Decoding of Goppa Codes,”ZEEE Trans. Info. Theory, vol. 21, no. 2, pp. 203-207, Mar. 1975.
P. Pazkad and V. Anantharam, “A New Look at the Generalized Distributive Law,” IEEE Trans. Info. Theory, vol. 50, no. 6,
pp. 1132-1155, June 2004.
J. Pearl, Probabilistic Reasoning in Intelligent Systems. San Mateo, C A Morgan Kaufmann, 1988.
L. Perez, J. Seghers, and D. Costello, “A Distance Spectnun Interpretation of Turbo Codes,” IEEE Trans. Information
Theory, vol. 42, pp. 1698-1709, Nov. 1996.
W. W. Peterson, Error-correcting Codes. Cambridge, MA and New York MIT Press and Wiley, 1961.
W. Peterson, “Encoding and Error-Correction Procedures for the Bose-Chaudhuri Codes,” IEEE Trans. Information Theory,
vol. 6, pp. 459-470, 1960.
W. Peterson and E. Weldon, Ermr Correction Codes. Cambridge, M A ha Press, 1972.
S. Pietrobon, G. Ungerbock, L. Perez, and D. Costello, “Rotationally Invariant Nonlinear Trellis Codes for Two-Dimensional
Modulation,” ZEEE Trans. Information Theory, vol. 40, no. 6, pp. 1773-1791, 1994.
S. S. Pietrobon and D. J. Costello, “Trellis Coding with Multidimensional QAM Signal Sets,” IEEE Trans. Info. Theory,
vol. 29, no. 2, pp. 325-336, Mar, 1993.
S. S. Pietrobon, R. H. Deng, A. Lafanech&e, G. Ungerboeck, and D. J. Costello, “Trellis-Coded Multidimensional Phase
Modulation,” IEEE Trans. Znfo. Theory, vol. 36, no. 1, pp. 63-89, Jan. 1990.
M. Plotkin, “Binary Codes With Specified Minimum Distances,” IEEE Trans. Information Theory, vol. 6, pp. 445-450,
1960.
H. V. Poor, An Introduction to Signal Detection and Estimation. New York Springer-Verlag, 1988.
J. Porath and T. Aulin, “Algorithm Construction of Trellis Codes,” IEEE Trans. Comm., vol. 41, no. 5 , pp. 649-654, 1993.
A. B. Poritz, “Hidden Markov Models: A Guided Tour,” in Proceedings of ICASSP, 1988.
G. Pottie and D. Taylor, “A Comparison of Reduced Complexity Decoding Algorithms for Trellis Codes,” IEEE Journal
on SelectedAreas in Communications, vol. 7, no. 9, pp. 1369-1380, 1989.
E. Prange, “Cyclic Error-Correcting Codes in Two Symbols,” Air Force Cambridge Research Center, Cambridge, MA,
Tech. Rep. TN-57-103, Sept. 1957.
-, “Some Cyclic Error-Correcting Codes with Simple Decoding Algorithms,” Air Force Cambridge Research Center,
Cambridge, MA, Tech. Rep. TN-58-156, Apr. 1958.
-, “The Use of Coset Equivalence in the Analysis and Decoding of Group Codes,” Air Force Cambridge Research
Center, Cambridge, MA, Tech. Rep. TN-59-164.1959.
0. Pretzel, Codes and Algebraic Curves. Oxford Clarendon Press, 1998.
J. G. Proakis, Digital Communications, 3rd ed. New York McGraw-Hill, 1995.
J. G. Proakis and M. Salehi, Communication Systems Engineering. Upper Saddle River, NJ: Preutice-Hall, 1994.
M. Piischel and J. Moura, “The Algebraic Approach to the Discrete Cosine and Sine Transforms and Their Fast Algorithms,”
SZAM J. ofcomputing, vol. 32, no. 5, pp. 1280-1316,2003.
R. Pyndiah, A. Glavieux, A. Picart, and S. Jacq, “Near Optimum Decoding of Product Codes,” in IEEE Global Telecom-
municafions Conference. San Francisco: IEEE, Nov. 1994, pp. 339-343.
R. M. Pyndiah, “Near-Optimum Decoding of Product Codes: Block Turbo Codes,” IEEE Trans. Comm., vol. 46, no. 8, pp,
1003-1010, Aug. 1998.
L. R. Rabmer, “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition,” Proc. IEEE,
vol. 77, no. 2, pp. 257-286, February 1989.
T. V. Ramabadran and S. S. Gaitonde, “A Tutorial On CRC Computations,” ZEEE Micro, pp. 62-75, Aug. 1988.
J. Ramsey, “Realization of Optimum Interleavers,”IEEE Trans. Information Theory, vol. 16, pp. 338-345, May 1970.
I. Reed, T.-K. Truong, X. Chen, and X. Yin, “Algebraic Decoding of the (41,21,9) Quadratic Residue Code,” IEEE Trans.
Information Theory, vol. 38, no. 3, pp. 974-986, May 1992.
I. Reed, “A Class of Multiple-Error-Correcting Codes and a Decoding Scheme,” IEEE Trans. Information Theory, vol. 4,
pp. 38-49, Sept. 1954.
I. Reed, R. Scholtz, T. Truong, and L. Welch, “The Fast Decoding of Reed-Solomon Codes Using Fermat Theoretic
Transforms and Continued Fractions,” ZEEE Trans. Info. Theory, vol. 24, no. 1, pp. 10S106, Jan. 1978.
I. Reed and G. Solomon, “Polynomial Codes over Certain Finite Fields,” J. SOC. Indust. Appl. Math, vol. 8 , pp. 300-304,
1960.
I. Reed, X. Yin, and T.-K. Truong, “Algebraic Decoding of (32,16,8) Quadratic Residue Code,” IEEE Trans. Information
Theory, vol. 36, no. 4, pp. 876-880, July 1990.

T. J. Richardson and R. Urbanke, Iterative Coding Systems. (available online), March 30,2003.
T. J. Richardson and R. L. Urbanke, “Efficient encoding of low-density parity-check codes,” IEEE Trans. Information
Theory, vol. 47, no. 2, pp. 638456, Feb. 2001.
T. J. Richardson and R. Urhanke, “The Capacity of Low-Density Parity-Check Codes Under Message-Passing Decoding,”
IEEE Trans. Info. Theory. vol. 47, no. 2, pp. 599-618, Feb. 2001.
T. J. Richardson, “ErrorFloors OfLDPCCodes,” www. ldpc-codes. com/papers/ErrorFloors .pdf.
T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of Capacity-Approaching Irregular Low-Density Parity-
Check Codes,” IEEE Trans. Information Theory, vol. 47, no. 2, pp. 619-637, Feb. 2001.

References 747

R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures and Public-Key Cryptosystems,” Comm.
ofthe ACM, vol. 21, no. 2, pp. 120-126, 1978.
P. Robertson, “Illuminating the Structure of Parallel Concatenated Recursive (TURBO) Codes,” in Pmc. GUIBECOM,
vol. 3, San Francisco, CA, Nov. 1994, pp. 1298-1303.
P. Robertson, E. Villebrun, and P. Hoher, “A Comparison of Optimal and Sub-optimal MAP Decoding Algorithms Operating
in the Log Domain,” in Proc. of the Int’l Conj on Comm. (ZCC}, Seattle, WA, June 1995, pp, 1009-1013.

C. Roos, “A New Lower Bound for the Minimum Distance of a Cyclic Code,” ZEEE Trans. Information Theory, vol. 29,
no. 3, pp. 330-332, May 1983.

R. M. Roth and G. Ruckenstein, “Efficient Decoding of Reed-Solomon Codes Beyond Half the Minimum Distance,” IEEE
Trans. Info. Theory, vol. 46, no. 1, pp. 246256, Jan. 2000.
L. Rudolph, “Easily Implemented Error-Correction Encoding-Decoding,” G.E. Report 62MCD2, General Electric Corpo-
ration, Oklahoma City, OK, Tech. Rep., Dec. 1962.

-, “A Class of Majority Logic Decodable Codes:’ ZEEE Trans. Information Theory, vol. 13, pp. 305-307, Apr. 1967.
S. Sankaranarayanan, A. Cvetkovit, and B. Vasit, “Unequal Error Protection for Joint Source-Channel Coding Schemes,”
in Proceedings of the Znternational Telemetering Conference (ZTC}, 2003, p. 1272.
D. V. Sarwate and M. B. F‘ursley, “Crosscorrelation Properties of Pseudorandom and Related Sequences,” Proc. ZEEE,
vol. 68, no. 5 , pp. 593-619, May 1980.

J. Savage, “Sequential Decoding -The Computational Problem,” BellSyst. Tech. Journal, vol. 45, pp. 149-175, Jan. 1966.
C. Schlegel, Trellis Coding. New York IEEE Press, 1997.

M. Schroeder, Number Theory in Science and Communication, 2nd ed. New York Springer-Verlag. 1986.
R. Sedgewick, Algorithms. Reading, MA: Addison-Wesley, 1983.
J. Seghers, “On the Free Distance of TURBO Codes and Related Product Codes,” Swiss Federal Institute of Technology,
Zurich, Switzerland, Final Report, Diploma Project SS 1995 6613, Aug. 1995.
N. Seshadri and C.-E. W. Snndberg, “Multi-level Trellis Coded Modulation for the Rayleigh Fading Channel,” ZEEE Trans.
Comm., vol. 41, pp. 1300-1310, Sept. 1993.
K. Shanmugan and P. Balaban, “A Modified Monte Car10 Simulation Technique for Evaluation of Error Rate in Digital
Communication Systems,” IEEE Trans. Comm., vol. 28, no. 11, pp. 1916-1924, Nov. 1980.

C. Shannon, “A Mathematical Theory of Communication,” Bell Syst. Tech. Journal, vol. 27, pp. 623-656, 1948, (see also
Collected Papers of Claude Shannon, IEEE Press, 1993).

M. Shao and C. L. Nikias, “An MLMMSE Estimation Approach to Blind Equalization,” in Proc. ICASSP, vol. 4. IEEE,
1994, pp. 569-572.
R. Y. Shao, S. Lin, and M. P. Fossorier, “Two simple stopping criteria for turbo decoding,” ZEEE Trans. Comm., vol. 47,
no. 8,pp. 1117-1120,Aug. 1999.

R. Shao, M. Fossorier, and S. Lm, ‘“ho Simple Stopping Criteria for Iterative Decoding,” in Proc. IEEESymp. Info. Theory,
Cambridge, MA, Aug. 1998, p. 279.

A. Shibutani, H. Suda, and F. Adachi, “Reducing Average Number of Turbo Decoding Iterations,” Electron. Len., vol. 35,
no. 9, pp. 70-71, Apr. 1999.

R. Singleton, “Maximum Distance q-ary Codes,” ZEEE Trans. Znformation Theory, vol. 10, pp. 116-118, 1964.
B. Sklar, “A Primer on Turbo Code Concepts,” ZEEE Comm. Magazine, pp. 94-101, Dec. 1997.
P. Smith, M. Shafi, and H. Gao, “Quick Simulation: A Review of Importance Sampling Techniques in Communications
Systems,” ZEEE Journal on SelectedAreas in Communications, vol. 15, no. 4, pp. 597-613, May 1997.
J. Snyders, “Reduced Lists of Error Patterns for Maximum Likelihood Soft Decoding,” IEEE Trans. Information Theory,
vol. 37, pp. 1194-1200, July 1991.

J. Snyders and Y. Be’ery, “Maximum Likelihood Soft Decoding of Binary Block Codes and Decoders for the Golay Codes,”
IEEE Trans. Znformation Theory, vol. 35, pp. 963-975, Sept. 1989.

H. Song and B. V. Kumar, “Low-Density Parity-Check Codes For Partial Response Channels,” ZEEE Signal Processing
Magazine, vol. 21, no. 1, pp. 56-66, Jan. 2004.

P. Staahl, J. B. Anderson, and R. Johannesson, “Optimal and Near-Optimal Encoders for Short and Moderate-Length
Tail-Biting Trellises,” IEEE Trans. Information Theory, vol. 45, no. 7, pp. 2562-2571, Nov. 1999.
H. Stichtenoth, Algebraic Function Fields and Codes. Berlin: Springer-Verlag. 1993.
G. Stiiber, Principles ofMobile Communication, 2nd ed. Boston: Kluwer Academic Press, 2001.
M. Sudan, “Decoding of Reed-Solomon Codes Beyond the Error-Correction Bound,” J. Complexity, vol. 13, pp. 180-193,
1997.

Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, “A Method for Solving Key Equation for Goppa Codes,” In$
and Control, vol. 27, pp. 87-99, 1975.
C.-E. W. Sundberg and N. Seshadri, “Coded Modulation for Fading Channels: An Overview,” European Trans. Telecommun.
andRelazed Technol., pp. 309-324, May 1993, special issue on Application of Coded Modulation Techniques.

A. Swindlehurst and G. Leus, “Blind and Semi-Blind Equalization for Generalized Space-Time Blockcodes,” IEEE Trans.
Signal Processing, vol. 50, no. 10, pp. 2489-2498, Oct. 2002.
D. Taipale and M. Pursley, “An Improvement to Generalized-Minimum-Distance Decoding,” ZEEE Trans. Information
Theory, vol. 37, pp. 167-172, Jan. 1991.

748 References

0. Takeshita and J. D.J. Costello, “New Classes of Algebraic Interleavers for Turbo-Codes,” in Int. Con$ on Info. Theory
(Abstracts), Cambridge, MA, Aug. 1998.
-, “New Deterministic Interleaver Designs for Turbo Codes,”IEEE Trans. Information Theory, vol. 46, pp. 1988-2006,
Sept. 2000.
R. Tanner, “A Recursive Approach To Low Complexity Codes,” IEEE Trans. Info. Theory, vol. 27, no. 5, pp. 533-547,
Sept. 1981.
V. Tarokh, H. Jararkhami, and A. Calderbank, “Space-Time Block Codes from Orihogonal Designs,” IEEE Trans. Info.
Theory, vol. 45, no. 5 , pp. 1456-1467, July 1999.
V. Tarokh, N. Seshadri, and A. Calderbank, “Space-Time Codes for High Data Rate Wireless Communication: Performance
Criterion and Code Construction,” IEEE Trans. Info. Theory, vol. 44, no. 2, pp. 744765, Mar. 1998.
E. Telatar, “Capacity of Multi-Antenna Gaussian Channels,” AT&T Bell Labs Internal Tech. Memo, June 1995.

S. ten Brink, “Iterative Decoding Trajectories of Parallel Concatenated Codes,” in Third IEEE ITG Con$ on Source and
Channel Coding, Munich, Germany, Jan. 2000.
-, “Rate One-Half Code for Approaching the Shannon Limit by 0.1 dB,” Electron. Lett., vol. 36, pp. 1293-1294, July
2000.
-, “Convergence Behavior of Iteratively Decoded Parallel Concatenated Codes,” IEEE Trans. Comm., vol. 49, no. 10,
pp. 1727-1737, Oct. 2001.

A. Tietiivhen, “On the nonexistence of perfect codes over finite fields,” SIAM J. Appl. Math., vol. 24, pp. 88-96, 1973.
0. Tirkkonen and A. Hottinen, “Square-Matrix Embeddable Space-Time Block Codes for Communication: Performance
Criterion and Code Construction,” IEEE Trans. Information Theory, vol. 44, no. 2, pp. 7 6 7 6 5 , Mar. 2002.

M. Tomlinson, “New Automatic Equalizer Employing Modulo Arithmetic,” Electron. Lett., vol. 7, pp. 138-139, Mar. 1971.
M. Trott, S . Benedetto, R. Garello, and M. Moudin, “Rotational Invariance of Trellis Codes Part I Encoders and Precoders,”
IEEE Trans. Informution Theory, vol. 42, pp. 751-765, May 1996.
M. Tsfasman and S . Vladut, Algebraic-Geometric Codes. Dordrecht, The Netherlands: Kluwer Academic Publishers,
1991.
M. Tsfasman, S. Vluuf, and T. Zink, “On Goppa Codes Which Are Better than the Varshamov-Gilbert Bound,” Math.
Nachr., vol. 109, pp. 21-28, 1982.

M. Tiichler, R. Koetter, and A. C. Singer, “Turbo Equalization: Principles and New Results,” IEEE Trans. Comm., vol. 50,
no. 5, pp. 754-767, May 2002.
G. Ungerbock and I. Csajka, “On Improving Data-Link Performance by Increasing Channel Alphabet and Introducing
Sequence Coding,” in IEEE Int. Symp. on Inform. Theory, Ronneby, Sweden, June 1976, p. 53.
G. Ungerboeck, “Channel Coding with MultileveYPhase Signals,” IEEE Trans. Info. Theory, vol. 28, no. 1, pp. 55-67, Jan.
1982.

-, “Trellis-Coded Modulation with Redundant Signal Sets. Part I: Introduction,” IEEE Comm. Mag., vol. 25, no. 2, pp.
5-1 1, Feb. 1987.

-, “Trellis-Coded Modulation with Redundant Signal Sets. Part II: State of the Art,” IEEE Comm. Mag., vol. 25, no. 2,
pp. 12-21, Feb. 1987.
A. Valembois and M. Fossorier, “An Improved Method to Compute Lists of Binary Vectors that Optimize a Given Weight
Function with Application to Soft Decision Decoding,” IEEE Comm. Lett., vol. 5 , pp. 456-458, Nov. 2001.

G. van der Geer and H. van Lint, Intmduction to Coding Theory anddlgebraic Geometry. Basel: Birkhauser, 1988.
J. van Lint, Intmduction to Coding Theory, 2nd ed. Berlin: Springer-Verlag, 1992.
B. Vasic, “Structured Iteratively Decodable Codes based on Steiner Systems and their Application in Magnetic Recording:’
in Global Telecommunications Conference (GLUBECOM). San Antonio, T X EEE, Nov. 2001, pp. 2954-2960.
B. Vasic, E. Kurtas, and A. Kuznetsov, “LDF’C Codes Based on Mutually OrthogonalLatin Rectangles and Their Application
In Perpendicular Magnetic Recording,”IEEE Trans. Magnetics, vol. 38, no. 5 , pp. 2346-2348, Sept. 2002.

B. Vasic and 0. Milenkovic, “Combinatorial Constructions of Low-Density Parity-Check Codes for Iterative Decoding:’
IEEE Trans. Informution Theory, vol. 50, no. 6, pp. 1156-1176, June 2004.
S. Verdu, “OptimUm multi-user signal detection,” Ph.D. dissertation. University of Illinois, 1984.
A. J. Viterbi, “Approaching the Shannon Limit: Theorist’s Dream and Practitioner’s Challenge:’ in Pmc. of the Int. Con$
on Millimeter Wave and Far lnfared Science and Tech., 1996, pp. 1-1 1.
-. “An Intuitive Justification and Simplified Implementation of the MAP decoder for Convolutional Codes,” IEEE J.
Special Areas in Comm., pp. 260-264, Feb. 1997.

A. J. Viterbi and J. Omura, Principles ofDigital Communication and Coding. New York McGraw-Hill, 1979.
A. J. Viterbi, “Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm,” IEEE Trans.
Information Theory, vol. 13, pp. 260-269, Apr. 1967.
-, “Convolutional Codes and Their Performance in Communication Systems:’ IEEE Trans. Com. Techn., vol. 19, no. 5,
pp. 75-772, Oct. 1971.

J. von zur Gathen and J. Gerhard, Moo!ern Computer Algebra. Cambridge: Cambridge University Press, 1999.
L.-F. Wei, “Coded M-DPSK with Built-in Time Diversity for Fading Channels,” IEEE Trans. Znformation Theory, vol. 39,
pp. 1820-1839, Nov. 1993.

-, ‘‘Trellis-Coded Modulation with Multidimensional Constellations,” IEEE Trans. Info. Theory, vol. 33, no. 4, pp.
483-501, July 1987.

References 749

L. Wei, “Rotationally Invariant Convolutional Channel Coding with Expanded Signal Space I: 180 Degrees,” IEEE Journal
on SelectedAreas in Communications, vol. 2, pp. 659472, 1984.
-, “Rotationally Invariant Convolutional Channel Coding with Expanded Signal Space II: Nonlinear Codes,” IEEE
Journal on Selected Areas in Communications, vol. 2, pp. 672-686, 1984.
-, “Trellis-Coded Modulation with Multidimensional Constellations,” IEEE Trans. Information Theory, vol. 33, pp.
483-501, 1987.
-, “Rotationally Invariant Trellis-Coded Modulation with Multidimensional M-PSK,” ZEEE Journal on Selected Areas
in Communications, vol. 7, no. 9, pp. 1281-1295, 1989.
Y. Weiss, “Correctness of Local Probability Propagation in Graphical Models with Loops,” Neural Computation, vol. 12,

Y. Weiss and W. T. Freeman, “Correctness of Belief Propagation in Gaussian Graphical Models of Arbitmy Topology,”
Neural Computation, vol. 13, pp. 2173-2200,2001.
L. R. Welch and E. R. Berlekamp, “Error Correction for Algebraic Block Codes,” U.S. Patent Number 4.633,470, Dec. 30,
1986.
N. Wiberg, “Codes and Decoding on General Graphs,” Ph.D. dissertation, Linkoping University, 1996.
N. Wiberg, H.-A. Loeliger, and R. Kotter, “Codes and Iterative Decoding on General Graphs,” Euro. Trans. Telecommun.,
vol. 6, pp. 513-525,1995.
S . Wicker and V. Bhargava, Reed Solomon Codes and Their Applications. New York IEEE Press, 1994.
S. B. Wicker, Error Control System for Digital Communications andStorage. Englewood Cliffs, NJ: Prentice-Hall, 1995.
S. B. Wicker and S . Kim, Fundamentals of Codes, Graphs, and Iterative Decoding. Boston: Kluwer Academic, 2003.
R. J. Wilson, Introduction to Graph Theory. Essex, England: Longman Scientific, 1985.
S. Wilson and Y. Lenng, “Trellis Coded Phase Modulation on Rayleigh Fading Channels,” in Pmc. IEEE ZCC, June 1997.
J. K. Wolf, “Efficient Maximum Likelihood Decoding of Linear Block Codes Using a Trellis,” IEEE Trans. Znfo. Theory,
vol. 24, no. 1, pp. 7680, Jan. 1978.
J. Wozencraft and B. Reiffen, Sequential Decoding. Cambridge, MA: M U Press, 1961.
X.-W. Wu and P. Siegel, “Efficient Root-Finding Algorithm with Application to List Decoding of Algebraic-Geometric
Codes,” IEEE Trans. Information Theory, vol. 47, pp. 2579-2587, Sept. 2001.
Y. Wu, B. D. Woerner, and W. J. Ebel, “A simple stopping criterion for turbo decoding,” ZEEE Comm. Lett., vol. 4, no. 8,
pp. 258-260, Aug. 2000.
J. Yeddida, W. Freeman, and Y. Weiss, “Generalized Belief Propagation,” in Advances in Neural Znformation Processing
Systems, T. k e n , T. Dietterich, and V. Tresp, Eds., 2000, vol. 13, pp. 689695, tR-2000-26.
R. W. Yeung, A First Course in Information i’beory. New York Kluwer Academic, 2002.
E. Zehavi and J. Wolf, “On the Performance Evaluation of Trellis Codes,” ZEEE Trans. Informution Theory, vol. 32, pp.
196202, Mar. 1987.
F. Zhai and I. J. Fair, “New Error Detection Techniques and Stopping Criteria for Turbo Decoding,” in IEEE Canadian
Conference on Electronics and Computer Engineering (CCECE), 2000, pp. 58-60.
W. Zhang, “Finite-State Machines in Communications,” Ph.D. dissertation, University of South Australia, 1995.
R. E. Ziemer and R. L. Peterson, Digital Communications and Spread Spectrum System. New York Macmillan, 1985.
N. Zierler, “Linear Recnrring Sequences,” J. SOC. Zndust. Appl. Math., vol. 7, pp. 3143,1959.
K. S . Zigangirov, “Some Sequential Decoding Procedures,” Prob. Pederachi Inform., vol. 2, pp. 13-25,1966.

pp. 141,2000.

750 Index

Index

Symbols
(n , k, d) code, 84
K k (x ; n , q) (Krawtchouk polyno-

0 notation, 408
Rg[.l, 124
Rn = GF(Z)[x]/(x" - l), 118
Rn,q = P q [~] / (x " - l), 118
C and R, 194
F (field), 73

a (for extension field), 198
at (forward probability, MAP algo-

f l1 (backward probability, MAP al-

B, 736
x (character), 415
x 2 distribution, 718,734
x p (Legendre symbol), 372
=, 184

properties, 185
yt (transition probability), 591

A, 15
p Moebius function, 222
@(direct sum), 392
Q (Kronecker product), 370
I, 79
a5 function (Euler a5,. 185.229

mial), 415

F q , 74

rithm), 59 1

gorithm), 591

, , , _ I - (summary notation), 682
B, 737
B, 737
x (Cartesian product), 64,682
o notation, 408
x" - 1 factorization, 215
(a, b) (greatest common divisor),

(n, k) , 83

[n, kl, 83
[ulu+ vl construction, 112,404

k', 175
1, 69, 175
IGI, 63
802 wireless standard, 634,721

176

(2). 58

Reed-Muller code, 39 1

A
A1-2. txt, 675
A1-4. txt, 675
Abelian, 63
add-compare-select, 481
add-compare-select (ACS), 481
adjacent, 457
AEP, 46
Agall .m, 637
Agall. txt, 637
Alamouti code, 719
a @CJR algorithm), 59 1
aq , 407
altemant code, 277

annihilator, 157, 160
Aq (n , d),407
arithmetic coding, 6
arithmetic-geometric inequality,

334
Asmall. txt, 675
associative, 62
asymptotic coding gain, 103

convolutional code, 504
TCM code, 541

asymptotic equipartition property,
46

asymptotic rate, 407
augmented block code, 106
automorphism, 81
AWGNC (additive white Gaussian

noise channel), 44

B

593
backward pass BCJR algorithm,

Barker code, 170
base field, 196
basic transfer function matrix, 463
basis of vector space, 77
BAWGNC (binary AWGNC), 44
Bayes' rule, 17
BCH bound, 237,238
BCH code, 235

decoder programming, 283
design, 235
design distance, 237
narrow sense, 235
primitive, 235
weight distribution, 239

BCHdec. cc, 283
BCHdec. h, 283
bchdesigner, 241
bchweight .m, 240
BCJR algorithm, 469,588

BCJR. cc, 629
BCJR.h,629
belief propagation, 682
Bellman, 474
Berlekamp-Massey algorithm, 253

Bernoulli random process, 24
best known code, 107
j3 (BCJR algorithm), 591
Bhattacharya bound, 502
bijective, 70
binary detection, 18
binary erasnre channel, 532
binary operation, 62
binary phase-shift keying (BPSK),

10
binary symmetric channel (BSC),

23
BinConv. h, 526
BinConvdecOl .h,528

matrix formulation, 597

programming, 281

BinConvdecBPSK. cc, 528
BinConvdecBPSK. h, 528
BinConvFIR. cc,526
BinConvFIR.h, 526
BinConvIIR.cc,526
BinConvIIR. h, 526
BinLFSR. cc, 162
BinLFSR.h, 162
binomial theorem, 201
BinPolyDiv. cc, 162
BinPolyDiv. h, 162
bipartite graph, 456,457,638, 686
bit error rate, 98, 49 1
block code, 83

definition, 83
trellis representation, 38,
523

block tnrbo coding, 623
Bluestein chirp algorithm, 290
Boolean functions, 375
bound

comparison of, 407
Elias, 420
Gilbea-Varshamov, 409
Griesmer, 41 1
Hamming, 89,406
linear programming, 414
McEliece-Rodemich-

Rumsey-Welch, 418
Plotkin, 111,410
Singleton, 88,406
Varshamov-Gilbea, 11 1

bounded distance decoding, 30,93,

BPSK (binary phase-shift keying),

bpskprob.m, 21
bpskprobplot .m, 21
branch metric, 473
BSC (binary symmetric channel),

23
bsc . c, 285
bucket, 5 15
burst error, 425

101,322,450

10

detection,cyclic codes, 149

C
canonical homomolphism, 73
capacity, 9

Cartesian product, 64,682
catastrophic code, 461,462,530
Cauchy-Schwartz inequality, 41 1
causal codeword, 354
cawgnc .m, 51
cawgnc2 .m, 45
Cayley-Hamilton theorem, 169
cbawgnc .m, 51
cbawgnc2 .m,45
CD, 41
central limit theorem, 712

BSC, 59

Index 751

channel capacity, 42
BSC, 43
of MIMO channel, 732

channel coding theorem, 9,45
LDPC codes and, 634
turbo codes and, 582

channel reliability, 19,605
character (of a group), 415
characteristic polynomial, 169
Chase decoding algorithms, 445
Chauhan, Ojas, 533
checksum, 56
Chernoff bound, 502,532
chernoff l .m,502
x p (x) . 372
chi-squared random variable, 734
Chien search, 248
C h i e n s e a r c h . cc , 283
C h i e n s e a r c h . h, 283
Chinese remainder theorem, 188
chirp algorithm, 290
x 2 distribution, 718,734
Christoffel-Darboux formula, 419
circuits, see realizations
clustering in factor graphs, 700
code

Alamouti, 719
altemant, 277
BCH, 235
best known, 107
convolutional, 452
CRC, 147
dual, 86
Fire, 433
generalized RS, 277
Golay, 398
Goppa, 278
Hadamard, 374
Hamming, 34,53
Justeson, 290
LDPC, 635
maximal-length, 97
MDS, 245
parity check, 107
quadratic residue, 396
Reed-Muller, 376
Reed-Solomon, 242
repeat accumulate (RA).

671,672
repetition, 28
self-dual, 109,399
simplex, 97,374
space-time block, 719
space-time trellis, 728
TCM, 535
turbo, 584

coding gain, 36
asymptotic, 103

column distance function, 521
column space, 77
commutative, 63
compact disc, 427
companion matrix, 169
compare-select-add, 481
complete decoder, 93
comptut . pd f ,x
computekm.m, 333
computeLbar .m, 357
cornputelm. cc.337
computeLrn.m,337,357

computetm.m, 357
concatenated codes, 432
concentration principle, 637
concodequan t .m,486
conditional entropy, 41
congruence, 184
conjugacy class, 210
conjugate elements, 209
conjugate of field element, 210
connection polynomial, 130
consistent random variables, 620,

constellation expansion factor, 541
constituent encoder, 584
constraint length, 465
continued fraction, 228
Convdec. cc , 528
Convdec . h, 528
convolutional code, 452

656

equivalent, 46 1
feedforwardfeedback en-

coder, 454
Markov property, 590
tables of codes, 506

Cook-Toom algorithm, 699
correction distance

correlation, 162
correlation discrepancy, 450
coset, 67

of standard may, 92
coset leader weight distribution,

CRC (cyclic redundancy check)

byte oriented algorithm, 150

stopping criteria, 606

of GS decoder, 333

101

code, 147

cross entropy, 41

crtgamma.m, 189
cr tgammapoly .m, 189
cryptography, 7

McEliece public key, 280
RSA public key, 186

burst detection, 149
definition, 113
encoding, 133

cyclic code, 38

cyclic group, 66
cyclic redundancy check (CRC),

cyclic shift, 113
cyclomin, 217
cyclotomic coset, 217

147

D
D-transform, 127,452
dB scale, 21
DBV-RS2,634
decibel, 21
decoder failure, 30,93,249

LDPC decoder, 648
decoding depth, 482
d e n s e v l .m, 658
d e n s e v t e s t .m, 658
density evolution, 655

derivative
irregular codes, 664

formal, 263,289
Hasse, 329,330

derivative, formal, 219

design distance, 237
design rate, 636
detected bit error rate, 99
detection

binary, 18
dfree, 495
difference sets, 669
differential encoder, 558
differential Viterbi algorithm, 481
digraph, 457
Dijkstra’s algorithm, 472
dimension

of linear code, 83
of vector space, 17

direct product, 64
direct sum, 392

matrix, 393
directed graph, 457
discrete Fourier transform (DlT),

192,269,271,683
factor graph, 687,703

displacement, 368
distance distribution, 414
distance spectrum, 547,614
distributive law, 74,76, 115

diversity, 710,712
generalized, 680

delay, 728
frequency, 7 12
spatial, 712
time, 712

diversity order, 718
space-time code, 723

divides, 69, 175
divisible, 175
division algorithm, 175

polynomial, 114
d o e x i t c h a r t .m, 660
d o t r a j ec t0 ry .m. 660
double error pattern, 168
double-adjacent-error pattern, 167
D(PIlQ),42
dual code, 86

dual space, 79
cyclic generator, 167

E
Eb. 10
Ec, 26
edge, 457
eigenmessage, 679
eight-to-fourteen code, 428
Eisenstein integer, 566
elementary symmetric functions,

250
Elias bound, 420
encryption

RSA, 187
entropy, 4,40

differential, 43
function, q-ary, 407
function, binary, 4,420

equivalence relation, 68
equivalent

block codes, 85
convolutional code, 461

erase.mag.268
erasure decoding, 104

binary, 105
Reed-Solomon codes, 267

752 Index

Welch-Berlekamp decod-
ing, 321

error detection, 90
error floor, 584, 653,654, 671
error locator polynomial, 247,248
error rate, 98
error trapping decoder, 435
Euclidean algorithm, 177,368

continued fractions and, 228
extended, 181
LFSR and, 182
matrix formulation, 226,

Pad6 approximations and,

properties, 227
Reed-Solomon decoding,

to find error locator, 266

227

228

266

Euclidean distance, 12
Euclidean domain, 180
Euclideanfunction, 180
Euler q5 function, 185,229
Euler integration formula, 367
Euler’s theorem, 186
evaluation homomotphism, 190,

191
exact sequence, 312
EXIT chart, 619

exit1 .m, 660
exit 2 . m, 660
exit3 .m, 660
expurgated block code, 106
extended code, 106

Reed-Solomon, 276
extension field, 196
extrinsic information, 603
extrinsic probability, 582,600

LDPC decoder, 643

LDPC code, 660

F
factor graph

definition, 686
Fomey, 708
normal, 708

factor group, 71
factorization step, GS decoder, 324,

330
factorization theorem, 332
fadepbplot .m,714
fadeplot .m,712
fading channel, 710

flat, 712
quasistatic, 713
Rayleigh, 712, 713

family (set), 457
Fano algorithm, 511,517
Fanometric,511,513
fanoalg.m,517
fanomet .m,515
fast Hadamard transform, 382
feedback encoder, 454
feedforward encoder, 454
Feng-Tzeng algorithm, 338
f engt zeng . m, 341
Fermat’s little theorem, 186
fht . cc, 383
f ht . m, 383
field, 73, 193

finite, 193
filter bank, 699
finddfree, 506
finite field, 193
linite geometry, 668
finite impulse response, 129
Fire code, 433
flow graph simplification, 494
formal derivative, 232,263,289
formal series, 494
Fomey factor graph, 708
Fomey’s algorithm, 262
forward pass

BCJR algorithm, 593
forward-backward algorithm, 593

factor graph representation,
696

free distance, 495
free Euclidean distance, 541
free module, 303
frequency domain decoding, 275
frequency domain vector, 272
freshman exponentiation, 201
fromcrt .m, 189
fromcrtpolym., 189
fundamental parallelotope, 564
fundamental theorem of algebra,

fundamental volume, 564
fyxO.m.695

196

G
galdec. cc, 675
galdec. h, 675
galdecode. m, 648,675
Gallager codes, 634
Galois biography, 197
Galois Field

example, 196
Galois field Fourier transform, 269
galtest. cc, 675
galtest2. cc, 675
y (BCJR algorithm), 593

Gaussian integers, 232
gauss j2 ,86
gauss j 2 .m, 635
GCD (greatest common divisor),

176
gcd. c, 181
gcdpoly . cc, 224
gdl . m, 695
generalized minimum distance,

generalized Reed-Solomon code,

generating function, 218
generator

matrix, 84
matrix, lattice, 563
of cyclic group, 66
of principal ideal, 119

gap, x

368,441

277

polynomial, 121
genrm. cc, 376
genstdarray.c, 91
getinf .m,660
get inf s . m, 660
GF(16) table, 198
G Q) , 197
GF2. h, 224

GFFT, 269
GFNUM2m. cc, 224
GFNUM2m. h, 224
Gilbert-Varshamov bound, 11 1,

409
girth

of a graph, 457,678
GMD (generalized minimum dis-

Golay code, 398
tance) decoding, 368

algebraic decoder, 400
arithmetic decoder, 401

go1ayrith.q 402
golaysimp .m, 401
good codes, 637
Goppa code, 278
Grobner basis, 368
Gram matrix, 564
graph

algorithms, 680
bipartite, 456,457, 638
definitions, 456
simple, 457
Tanner, 638
tree, 457
trellis, 456

order, 13
Gray code, 23

greatest common divisor, 176
Green machine, 383
Griesmer bound, 41 1
ground field, 201
group

cyclic, 66
definition, 62

Guruswami-Sudan algorithm, 322

H
H (X) (entropy), 5,40
Hz(x) , 4
h2.m,45
Hadamard

code, 374
matrix, 369
transform, 95,369,683
transform, decoding, 379
transform, fast, 382

Hadamard code, 374
hadex. m, 382
hamcode74pe .m, 36
Hamming bound, 89,406

asymptotic, 422
Hamming code, 34,53,97

decoder, 141
dual, 97
encoder circuit, 135
extended, 377
message passing decoder,

654,694
Tanner graph, 39,694

Hamming distance, 24
Hamming sphere, 29,89,406
Hamming weight, 83
Hammsphere, 89
hard-decision decoding

Hartman-Tzeng bound, 239,368
Hasse

derivative, 329,330
theorem, 328

convolution code, 484

Index 753

hill climbing, 667
historical milestones, 40
homomorphism, 72
horizontal step, 644
Homer’s rule, 283
Huffman code, 6

I
I(X, Y) , 42
i.i.d., 24,46
ideal of ring

definition, 118
principal, 119

identity, 62
IEEE wireless standard, 721
impomnce sampling, 60
increased distance factor, 541
induced operation, 69
inequality

arithmetic-geometric, 334
Cauchy-Schwartz, 411
information, 59

information inequality, 59
information theory, 40
information theory inequality, 42
injective, 70
inner product, 11,78
input redundancy weight enumerat-

ing function (IRWEF), 6 15
interference suppression, 734
interleaver, 425

block, 426
convolutional, 427
cross, 427
turbo code, 584,614

interpolating polynomial, 191
interpolation, 190

interpolation theorem, 331
intersection of kernels, 342
invariant factor decomposition, 464
inverse, 62
invmodp . m, 341
irreducible, 159
irreducible polynomial, 196,207

IRWEF, 615
ISBN, 3
isomorphism, 70

ring, 118

step, GS decoder, 324, 330

number of, 218

J
Jacobian logarithm, 609
Jacobsthal matrix, 373
Jakes method, 712
jakes . rn, 712
Justeson codes, 290

K
Kalman filter, 610
kernel, 304,310,312

function, local, 682
of homomorphism, 73

global, 682

Welch Berlekamp, 297

kernel function

key equation, 263,266,268

Kirkman triple, 669
Klein 4-group, 64, 80
Kotter algorithm, 342

kot t er . cc, 346
kotterl . cc, 350
Krawtchoukpolynomial, 415,416

krawtchouk.m.415
Kronecker

properties, 423

construction of Reed-
Muller, 391

product, 370
properties, 370

Kronecker product theorem, 370
Kullhack-Leibler distance, 41, 606,

62 1

L
Lagrange interpolation, 192,303
Lagrange’s theorem, 68
latency, 426
latin rectangle, 669
latta2 .m, 568
lattice, 72, 563

code, 567
lattstuff.m,563
lattz2m,568
Lament series, 452
Lbarex .m, 357
LCM (least common multiple), 235
LDGM codes, 671
LDPC code, 634

arbitrary alphabet, 647
comhinatoric constructions,

concentration principle, 637
decode threshold, 658
definition, 635
density evolution, 655
difference set, 669
eigenmessage, 679
EXIT chart, 660
fast encoding, 669
finite geometry, 668
irregular, 660
iterative hard decoder, 677
Kirkman triple, 669
latin rectangle, 669
Steiner designs, 669
sum product decoding, 648,

use of BCJR with, 646

669

678

ldpc . m, 648,675
1dpclogdec.m. 652
ldpcsim.mat, 660
leading coefficient, 327
leading monomial, 327
leading term, 119
least common multiple, 226, 229
least-squares, 90
left inverse, 165
Legendre symbol, 372,403
Lempel-Ziv coding, 6
lengthened block code, 106
lexicographic order, 326
LFSR, 154, 170,234,290

likelihood
for extension field, 199

function, 16
ratio, 19

limsup, 407
linear code

definition, 83

dimension, 83
generator matrix, 84
rate, 83

linear combination, 76
linear feedback shift register, see

LFSR
linear function, 232
linear programming, 413

hound, 414
linearly dependent, 77
list decoder, 31,293,322
local kernel function, 682
log likelihood

algebra, 735
arithmetic, 611
ratio, 19

loghist .m,660
low density generator matrix codes,

671
low density parity check, see LDPC
lpboundex .m, 418

M
M algorithm, 521
MacWilliams identity, 95,109
magma, x
majority logic decoding, 384
rnakeB . m,-549
MakeLFSR, 162
makgenfrornA.m,635
MAP

algorithm, 588
decoding, factor graph rep-

detection, 17

(MPF), 682

resentation, 685

marginalize product of functions

marginalizing, 680
Markov property

Markov source, 588
Mason’s rule, 494,498
masseymodM.m,258
matched filter, 15

Mattson-Solomon polynomial, 289
max-log-MAP algorithm, 608
maximal ratio combiner, 7 17
maximal-length

convolutional codes, 590

matrix, 716

sequence, 155,159
shift register, 234

maximal-length code, 97,167
maximum a posteriori detection, 17
maximum distance separable

maximum likelihood
(MDS), 88

decoder, 30,322
decoder, factor graph repre-

sentation. 684
detection, 18
sequence estimator, 469

maximum-likelihood sequence esti-
mator

vector, 716
McEliece public key, 280
MDS code, 88,245,246,287

extended RS, 276
generalized Reed-Solomon,

weight distribution, 246
277

Meggitt decoder, 139

754 Index

memoryless channel, 25
Mersenne prime, 234
message passing, 649,689
message passing rule, 690
message-passing, 682
metric quantization, 484
milestones, historical, 40
MIMO channel, 714

m i n d i s t .m, 34
minimal basic convolutional en-

coder, 465
minimal basic encoder, 465
minimal polynomial, 209, 212
minimum distance, 29
ML detection, see maximum likeli-

MLFSR code, 97
ModAr . cc, 223
ModAr . h, 223
ModArnew. cc , 223
module

definition, 302
free, 303

Moebius function, 222
moment generating function, 532
monic, 119
monoid, 681,736
monomial ordering, 325
multiplicative order, 21 1
multiplicity matrix, 359
multiplicity of zero, 328
mutual information, 42,619

narrowband, 716

hood detection

N
narrow sense BCH, 235
narrowband MIMO channel, 716
natural homomorphism, 73
n c h o o s e k t e s t .m, 36
Newton identities, 250,285
nilpotent, 165
node error, 491
normal factor graph, 708
normalization

alpha and beta, 595
probability, 592

nullspace, 79,87
Nyquist sampling theorem, 50

0
one-to-one, 70
onto, 70
ord, 328
order

multiplicative, 211
of a field element, 201
of a finite group, 63
of a group element, 67
of zero, 328

ordered statistic decoding, 447
orthogonal, 1 1,79

on a bit, 385
orthogonal complement, 79
orthogonal design

complex, 727
generalized complex, 721
generalized real, 726
real, 723

orthogonal matrix, 563
orthogonal polynomial, 419

orthonormal, 11
output transition matrix, 549

P
P (E) , 98
Pad6 approximation, 228,234
Paley construction, 371
parallel concatenated code, 582,

584
parity, 85

parity check
overall, 106

code, 107
equations, 87
matrix, 34,86
polynomial, 123
probability, 678
symbols, 85

partial syndrome, 523
partition, 68
partition chain, 567
Path

algorithm, shortest, 472
enumerator, 493
in graph, 457
merging, 474
metric, 473
survivor, 474

pb, 98
Pb(E), 98
Pd(E), 99

peak-to-average power ratio, 562
perfect code, 89,93
permutation, 64
permuter, 584
perp, 79
Peterson's algorithm, 25 1
q5 function, 185,229
p h i f u n .m, 51
ph i log .m,51
pi2ml.362
p i v o t t a b l e a u . m , 413
p l o t b d s .m, 407
p l o t capcmp . m, 45
p lo t cbawn2 .m, 51
p l o t c o n p r o b .m, 504
Plotkin bound, 1 1 1,410

polyadd.m, 116
polyaddm.m, 116
polydiv.m, 116
po lymul t .m, 116
polymu1tm.m. 116

pdb 3 99

asymptotic, 421

polynomial
irreducible, 196
Krawtchouk, 415
minimal, 212
orthogonal, 423
primitive, 208

polynomial division
circuits, 129

polynomial encoder, 463
polynomial multiplication

circuits, 128
polynomial ring, 115
po lynomia lT . cc , 223
po lynomia lT . h, 223
polysub.m, 116
polysubm.m, 116

power sum symmetric functions,

p r imf ind , 209
p r imf i n d , 209
primitive BCH code, 235
primitive element, 202, 396
primitivepolynomial, 155,160,208

table of, 209
p r i m i t i v e . t x t , 155
principal character, 415
principal ideal, 119
probability of hit error, 98
probability of decoder error, 98
probability of decoder failure, 99
probability of undetected codeword

error, 98
product code, 430
p r o g d e t .m, 100
progdetH15.m, 100
pseudonoise, 154
pseudorandom sequence, 8
P s i . m, 658
psifunc.m.656
Psi inv.m,658
Pu(E), 98

puncture

250

Pub. 99

block code, 106
convolutional code, 507
matrix, 508
Reed-Solomon, 276

Q
Q function, 20

bounds, 57,503,504
QAM (quadrature-amplitude mod-

QAM constellation

qf . c, 20
qf .m,20
quadratic residue, 371

quadrature-amplitude modulation

quantization of metric, 484
quotient ring, 116

ulation), 535

energy requirements, 536

code, 396

(QAM), 535

R
R-linear combination, 302
random code, 637
random error correcting

capability, 30,93
codes, 425

rank criterion, 723
rank of polynomial, 327
rate, 28

asymptotic, 407
of convolutional code, 452
of linear code, 83

rate compatible punctured codes,
510,533

rate-distortion theory, 7.51
rational encoder, 463
rational interpolation, 302
Rayleigh density, 713, 733
Rayleigh fading, 712

channel, 713
real orthogonal design, 723
realizations

controller form, 132.453

Index 755

division, 130
firstelement first, 132
multiplication

first-element first, 129
last-element first, 128

multiplication and division
first-element first, 132

observability form, 132,454
polynomial multiplication,
128

reciprocal polynomial, 166,231
recursive systematic convolutional

(RSC), 582,584
reducefree .m,413
reducible solution, 304
redundancy, 89
Reed-Muller code, 376
Reed-Solomon code, 242

burst correction, 43 1
decoder workload, 293
generalized, 277
Guruswami-Sudan Decoder,

pipelined decoder algo-

programming, 284
soft output decoder, 358
soft-input soft-output de-

weight distribution, 246

322

rithm, 310

coder, 699

reedsolwt .m,246
reflexive property, 68
register exchange, 482
relative distance, 406
relative enrropy, 41, 606
relatively prime, 176
reliability, 440,735

matrix, 359
reliability class, 442
remainder decoding, 293
repcodeprob.m, 32
repcodes .m, 33
repeat-accumulate (RA) code, 586,

repetition code, 28,676
residue class, 71
restorefree.m,413
restriction to G F (q) , 277
reversible code, 166,289
right inverse

67 1

in a ring, 165
of a matrix, 462

characteristic, 115
delinition, 114
polynomial, 115
quotient, 116

rmdecex .m,381
rmdecex2 .m,387
Roos hound, 239,368
root of unity, 215
rotational invariance, 556,562

TCM codes, 556
Roth-Ruckenstein algorithm, 350
rothruck. cc, 354
rothruck. h, 354
row space, 77
RSAencryption, 186,187
RSdec. cc, 284
RSdec. h, 284

ring

rsdecode. cc. 285
RSenc. cc, 284
RSenc. h, 284
rsencode. cc, 285
runlength-limited codes, 8

s
scaling, 592
self-dual code, 86,399,403,404
semiring, 681
separation theorem, 7,51
sequential decoding, 5 1 1
serially concatenated code, 586,

67 1
set partitioning, 545
Shannon sampling theorem, 50
shape gain, 568
shortened block code, 106
signal constellation, 10,535
signal energy, 13
signal shape, 562
signal space, 10
signal-to-noise ratio (SNR), 21
simplex code, 97, 109, 374,423
simplex1 .m,413
Singleton hound, 88,406
SISO decoding

Reed Solomon, 699
turbo code, 587

S N R (signal to noise ratio), 21
soft-decision decoding, 439

BCJR algorithm, 588
convolution code, 484
LDPC, 640
performance, 103
soft input, 32
soft output Viterbi algo-

rithm, 610
turbo code, 582,587

soft-input, hard-output (SMO), 439

sort

source code, 6
source coding theorem, 6
sourcelchannel coding, 7
SOVA, 469,610
space-time code

Snr 65

soft-input, soft-output (SISO), 439

for soft detection, 441

block, 719
trellis, 728

spanning set, 77
spanning tree, 702
sparse matrix, 635
sparseHno4 .m, 668
spectral efficiency, 536

spectral thinning, 6 14
spectrum, 272
sphere packing, 562
splitting field, 204
spread-spec-, 8
squaring construction, 392
stackalgorithm, 511,515

stack bucket, 515
stackalg . m, 515
standard

TCM advantage, 562

802.11.721
ISBN, 3
V.32, V.33,557

V.34, 561, 571
standard array, 91
Steiner designs, 669
Stirling formula, 408,570

stretching, 701
subcode, 143
subfield, 206

subgroup, 65

sublattice, 566
subspace of vector space, 78
Sugiyama algorithm, 182,266
sum-product algorithm, 690

LDPC codes, 648
summary notation, 682
support set, 242
surjective, 70
survivor path, 474
Sylvester consbuction, 371
symmetric p u p , 65
symmetric property, 68
synchronization

derivation, 421

subcode, 277,288

proper, 65

of convolutional decoders,
486

syndrome, 90
BCH, RS, 247
decoding, 94
polynomial, 123

convolutional code, 453,

definition, 85
encoding, cyclic codes, 124

systematic

469

T
T algorithm, 522

tail biting code, 522
t anhde , 676,696,707,735,736

tail biting, 734

0-1 valued variables, 737,
738

Tanner graph, 38,638
TCM

multidimensional, 561
Ungerboeck framework,
544

tcmrot2. cc, 557
tcmtl.cc.549
TCP/IP protocol, 426
testBCH. cc, 283
testbcjr .cc,629
testBinLFSR.cc, 162
testBinPolyDiv. cc, 162
testBM. cc,282
testChien.cc,283
testconvdec.~~, 529
testconvent, 526
testcrp.m, 189
testcrt .m, 189
testfht.cc,383
testft.m,341
test gcdpoly . cc, 224
testgd12.m,695
testgfnum. cc, 224
testGolay.cc,401
testGSl . cc, 346
testGS2. cc, 354
testGS3. cc, 347

756 Index

testGS5.cc,350
testmodarl . cc, 223
testmodarnew. cc, 223
testpolyl . cc, 223
testpxy.cc,325
testQR.cc,397
testrepcode. cc, 33
testRS.cc,284
teststack .m,515
testturbodec2 .cc,629
threshtab .m, 658
tier of parity checks, 640
time domain vector, 272
tocrt .m, 189
tocrtpoly.m, 189
Toeplitz matrix, 122,251
total order, 325
totient function, 185
trace (of a field element), 232
traceback, 483
uansfer function

bound, 552
matrix, 453
of graph, 493

transitive property, 68
trellis, 456

for block code, 38,523
time-varvinz. 696

_ 1

trellis coded modulation, 535, see
TCM

triangle inequality

truncation error, 482
turbo code, 582

Hamming distance and, 57

block coding, 623
decoding, 601
error floor, 612
EXIT chart, 619
extrinsic information, 603

hard decision aided termina-

interleaver, 584
likelihood ratio decoding,

parallel concatenated code,

primitive polynomials and,

sign change ratio, 607
stopping criteria, 605, 606
terminal state, 602

tion, 608

602

582

632

turbo equalization, 626
typical set, 46

U
UDP protocol, 104,105,426
undetected bit error rate, 99
unequal error protection, 489, 522
Ungerboeck coding framework,

unimodnlar matrix, 464,563
union hound, 22

544

block code performance

convolutional code perfor-

TCMperformance, 546,547

and, 103

mance, 499

unit of a ring, 115
up to isomorphism, 80
UPC, 3
utiltkm.cc,440
ut i It km . h, 440

V
V.32 standard, 557
V.33 standard, 557
V.34 standard, 561,571
valuation, 180
Vandermonde matrix, 237

variable-rate error control, 509
vector space definition, 15
vertex, 457
vertical step, 641
Viterbi algorithm, 469,47 1

hard decisions, 588
soft metric, 485
soft ontpnt, 610

voln . m, 563
Vq (n. t) . 57, 89

W
waterfall region, 584
weight, 635
weight distribution, 95

BCH code, 239
RS code, 245

weight enumerator, 95
weight profile, 446
weighted code, 3, 56
weighted degree, 325,327

order, 326
Welch-Berlekamp algorithm, 293,

303
well defined, 70
Wilson’s theorem, 225
Wolf trellis, 38, 523
writesparse.m,637

Y
y-root, 350

z
Zech logarithm, 204
zero

multiplicity of, 329
zero divisor, 165, 193
zero state forcing sequence, 588
ZJ algorithm, 511,515

	Error Correction Coding Mathematical Methods and Algorithms
	Contents
	Preface
	List of Program Files
	List of Laboratory Exercises
	List of Algorithms
	List of Figures
	List of Tables
	List of Boxes
	Part I Introduction and Foundations
	1 A Context for Error Correction Coding
	1.1 Purpose of This Book
	1.2 Introduction: Where Are Codes?
	1.3 The Communications System
	1.4 Basic Digital Communications
	1.4.1 Binary Phase-Shift Keying
	1.4.2 More General Digital Modulation

	1.5 Signal Detection
	1.5.1 The Gaussian Channel
	1.5.2 MAP and ML Detection
	1.5.3 Special Case: Binary Detection
	1.5.4 Probability of Error for Binary Detection
	1.5.5 Bounds on Performance: The Union Bound
	1.5.6 The Binary Symmetric Channel
	1.5.7 The BSC and the Gaussian Channel Model

	1.6 Memoryless Channels
	1.7 Simulation and Energy Considerations for Coded Signals
	1.8 Some Important Definitions
	1.8.1 Detection of Repetition Codes Over a BSC
	1.8.2 Soft-Decision Decoding of Repetition Codes Over the AWGN
	1.8.3 Simulation of Results
	1.8.4 Summary

	1.9 Hamming Codes
	1.9.1 Hard-Input Decoding Hamming Codes
	1.9.2 Other Representations of the Hamming Code
	An Algebraic Representation
	A Polynomial Representation
	A Trellis Representation
	The Tanner Graph Representation

	1.10 The Basic Questions
	1.11 Historical Milestones of Coding Theory
	1.12 A Bit of Information Theory
	1.12.1 Definitions for Discrete Random Variables
	Entropy and Conditional Entropy
	Relative Entropy, Mutual Information, and Channel Capacity

	1.12.2 Definitions for Continuous Random Variables
	1.12.3 The Channel Coding Theorem
	1.12.4 “Proof” of the Channel Coding Theorem
	1.12.5 Capacity for the Continuous-Time AWGN Channel
	1.12.6 Transmission at Capacity with Errors
	1.12.7 The Implication of the Channel Coding Theorem

	Lab 1 Simulating a Communications Channel
	Objective
	Background
	Use of Coding in Conjunction with the BSC
	Assignment
	Programming Part
	Resources and Implementation Suggestions

	1.13 Exercises
	1.14 References

	Part II Block Codes
	2 Groups and Vector Spaces
	2.1 Introduction
	2.2 Groups
	2.2.1 Subgroups
	2.2.2 Cyclic Groups and the Order of an Element
	2.2.3 Cosets
	2.2.4 Lagrange’s Theorem
	2.2.5 Induced Operations; Isomorphism
	2.2.6 Homomorphism

	2.3 Fields: A Prelude
	2.4 Review of Linear Algebra
	2.5 Exercises
	2.6 References

	3 Linear Block Codes
	3.1 Basic Definitions
	3.2 The Generator Matrix Description of Linear Block Codes
	3.2.1 Rudimentary Implementation

	3.3 The Parity Check Matrix and Dual Codes
	3.3.1 Some Simple Bounds on Block Codes

	3.4 Error Detection and Correction over Hard-Input Channels
	3.4.1 Error Detection
	3.4.2 Error Correction: The Standard Array

	3.5 Weight Distributions of Codes and Their Duals
	3.6 Hamming Codes and Their Duals
	3.7 Performance of Linear Codes
	3.7.1 Error detection performance
	3.7.2 Error Correction Performance
	3.7.3 Performance for Soft-Decision Decoding

	3.8 Erasure Decoding
	3.8.1 Binary Erasure Decoding

	3.9 Modifications to Linear Codes
	3.10 Best Known Linear Block Codes
	3.11 Exercises
	3.12 References

	4 Cyclic Codes, Rings, and Polynomials
	4.1 Introduction
	4.2 Basic Definitions
	4.3 Rings
	4.3.1 Rings of Polynomials

	4.4 Quotient Rings
	4.5 Ideals in Rings
	4.6 Algebraic Description of Cyclic Codes
	4.7 Nonsystematic Encoding and Parity Check
	4.8 Systematic Encoding
	4.9 Some Hardware Background
	4.9.1 Computational Building Blocks
	4.9.2 Sequences and Power series
	4.9.3 Polynomial Multiplication
	Last-Element-First Processing
	First-Element-First Processing

	4.9.4 Polynomial division
	Last-Element-First Processing

	4.9.5 Simultaneous Polynomial Division and Multiplication
	First-Element-First Processing

	4.10 Cyclic Encoding
	4.11 Syndrome Decoding
	4.12 Shortened Cyclic Codes
	Method 1: Simulating the Extra Clock Shifts
	Method 2: Changing the Error Pattern Detection Circuit

	4.13 Binary CRC Codes
	4.13.1 Byte-Oriented Encoding and Decoding Algorithms
	4.13.2 CRC Protecting Data Files or Data Packets

	Appendix 4.A Linear Feedback Shift Registers
	Appendix 4.A.1 Basic Concepts
	Appendix 4.A.2 Connection With Polynomial Division
	Appendix 4.A.3 Some Algebraic Properties of Shift Sequences

	Lab 2 Polynomial Division and Linear Feedback Shift Registers
	Objective
	Preliminary Exercises
	Programming Part: BinLFSR
	Resources and Implementation Suggestions
	Programming Part: BinPolyDiv
	Follow-On Ideas and Problems

	Lab 3 CRC Encoding and Decoding
	Objective
	Preliminary
	Programming Part
	Resources and Implementation Suggestions

	4.14 Exercises
	4.15 References

	5 Rudiments of Number Theory and Algebra
	5.1 Motivation
	5.2 Number Theoretic Preliminaries
	5.2.1 Divisibility
	5.2.2 The Euclidean Algorithm and Euclidean Domains
	5.2.3 The Sugiyama Algorithm
	5.2.4 Congruence
	5.2.5 The ø Function
	5.2.6 Some Cryptographic Payoff
	Fermat's Little Theorem
	RSA Encryption

	5.3 The Chinese Remainder Theorem
	5.3.1 The CRT and Interpolation
	The Evaluation Homomorphism
	The Interpolation Problem

	5.4 Fields
	5.4.1 An Examination of R and C
	5.4.2 Galois Field Construction: An Example
	5.4.3 Connection with Linear Feedback Shift Registers

	5.5 Galois Fields: Mathematical Facts
	5.6 Implementing Galois Field Arithmetic
	5.6.1 Zech Logarithms
	5.6.2 Hardware Implementations

	5.7 Subfields of Galois Fields
	5.8 Irreducible and Primitive polynomials
	5.9 Conjugate Elements and Minimal Polynomials
	5.9.1 Minimal Polynomials

	5.10 Factoring xn – 1
	5.11 Cyclotomic Cosets
	Appendix 5.A How Many Irreducible Polynomials Are There?
	Appendix 5.A.1 Solving for Im Explicitly: The Moebius Function

	 Lab 4 Programming the Euclidean Algorithm
	Objective
	Preliminary Exercises
	Background
	Programming Part

	Lab 5 Programming Galois Field Arithmetic
	Objective
	Preliminary Exercises
	Programming Part

	5.12 Exercises
	5.13 References

	6 BCH and Reed-Solomon Codes: Designer Cyclic Codes
	6.1 BCH Codes
	6.1.1 Designing BCH Codes
	6.1.2 The BCH Bound
	6.1.3 Weight Distributions for Some Binary BCH Codes
	6.1.4 Asymptotic Results for BCH Codes

	6.2 Reed-Solomon Codes
	6.2.1 Reed-Solomon Construction 1
	6.2.2 Reed-Solomon Construction 2
	6.2.3 Encoding Reed-Solomon Codes
	6.2.4 MDS Codes and Weight Distributions for RS Codes

	6.3 Decoding BCH and RS Codes: The General Outline
	6.3.1 Computation of the Syndrome
	6.3.2 The Error Locator Polynomial
	6.3.3 Chien Search

	6.4 Finding the Error Locator Polynomial
	6.4.1 Simplifications for Binary Codes and Peterson’s Algorithm
	6.4.2 Berlekamp-Massey Algorithm
	6.4.3 Characterization of LFSR Length in Massey’s Algorithm
	6.4.4 Simplifications for Binary Codes

	6.5 Non-Binary BCH and RS Decoding
	6.5.1 Forney’s Algorithm

	6.6 Euclidean Algorithm for the Error Locator Polynomial
	6.7 Erasure Decoding for Nonbinary BCH or RS codes
	6.8 Galois Field Fourier Transform Methods
	6.8.1 Equivalence of the Two Reed-Solomon Code Constructions
	6.8.2 Frequency-Domain Decoding

	6.9 Variations and Extensions of Reed-Solomon Codes
	6.9.1 Simple Modifications
	6.9.2 Generalized Reed-Solomon Codes and Alternant Codes
	6.9.3 Goppa Codes
	6.9.4 Decoding Alternant Codes
	6.9.5 The McEliece Public Key Cryptosystem

	Lab 6 Programming the Berlekamp-Massey Algorithm
	Background
	Assignment
	Preliminary Exercises
	Programming Part
	Resources and Implementation Suggestions

	Lab 7 Programming the BCH Decoder
	Objective
	Preliminary Exercises
	Programming Part
	Resources and Implementation Suggestions
	Follow-On Ideas and Problems

	Lab 8 Reed-Solomon Encoding and Decoding
	Objective
	Background
	Programming Part

	Appendix 6.A Proof of Newton’s Identities
	6.10 Exercises
	6.11 References

	7 Alternate Decoding Algorithms for Reed-Solomon Codes
	7.1 Introduction: Workload for Reed-Solomon Decoding
	7.2 Derivations of Welch-Berlekamp Key Equation
	7.2.1 The Welch-Berlekamp Derivation of the WB Key Equation
	7.2.2 Derivation From the Conventional Key Equation

	7.3 Finding the Error Values
	7.4 Methods of Solving the WB Key Equation
	7.4.1 Background: Modules
	7.4.2 The Welch-Berlekamp Algorithm
	7.4.3 Modular Solution of the WB Key Equation

	7.5 Erasure Decoding with the Welch-Berlekamp Key Equation
	7.6 The Guruswami-Sudan Decoding Algorithm and Soft RS Decoding
	7.6.1 Bounded Distance, ML, and List Decoding
	7.6.2 Error Correction by Interpolation
	7.6.3 Polynomials in Two Variables
	Degree and Monomial Order
	Zeros and Multiple Zeros

	7.6.4 The GS Decoder: The Main Theorems
	The Interpolation Theorem
	The Factorization Theorem
	The Correction Distance
	The Number of Polynomials in the Decoding List

	7.6.5 Algorithms for Computing the Interpolation Step
	Finding Linearly Dependent Columns: The Feng-Tzeng Algorithm
	Finding the Intersection of Kernels: The Kötter Algorithm

	7.6.6 A Special Case: m = 1 and L = 1
	7.6.7 The Roth-Ruckenstein Algorithm
	What to Do with Lists of Factors?

	7.6.8 Soft-Decision Decoding of Reed-Solomon Codes
	Notation
	A Factorization Theorem
	Mapping from Reliability to Multiplicity
	The Geometry of the Decoding Regions
	Computing the Reliability Matrix

	7.7 Exercises
	7.8 References

	8 Other Important Block Codes
	8.1 Introduction
	8.2 Hadamard Matrices, Codes, and Transforms
	8.2.1 Introduction to Hadamard Matrices
	8.2.2 The Paley Construction of Hadamard Matrices
	8.2.3 Hadamard Codes

	8.3 Reed-Muller Codes
	8.3.1 Boolean Functions
	8.3.2 Definition of the Reed-Muller Codes
	8.3.3 Encoding and Decoding Algorithms for First-Order RM Codes
	Encoding RM (1, m) Codes
	Decoding RM (1, m) Codes
	Expediting Decoding Using the Fast Hadamard Transform

	8.3.4 The Reed Decoding Algorithm for RM (r, m) Codes, r ≧ 1
	Details for an RM (2, 4) Code
	A Geometric Viewpoint

	8.3.5 Other Constructions of Reed-Muller Codes

	8.4 Building Long Codes from Short Codes: The Squaring Construction
	8.5 Quadratic Residue Codes
	8.6 Golay Codes
	8.6.1 Decoding the Golay Code
	Algebraic Decoding of the g23 Golay Code
	Arithmetic Decoding of the g24 Code

	8.7 Exercises
	8.8 References

	9 Bounds on Codes
	9.1 The Gilbert-Varshamov Bound
	9.2 The Plotkin Bound
	9.3 The Griesmer Bound
	9.4 The Linear Programming and Related Bounds
	9.4.1 Krawtchouk Polynomials
	9.4.2 Character
	9.4.3 Krawtchouk Polynomials and Characters

	9.5 The McEliece-Rodemich-Rumsey-Welch Bound
	9.6 Exercises
	9.7 References

	10 Bursty Channels, Interleavers, and Concatenation
	10.1 Introduction to Bursty Channels
	10.2 Interleavers
	10.3 An Application of Interleaved RS Codes: Compact Discs
	10.4 Product Codes
	10.5 Reed-Solomon Codes
	10.6 Concatenated Codes
	10.7 Fire Codes
	10.7.1 Fire Code Definition
	10.7.2 Decoding Fire Codes: Error Trapping Decoding

	10.8 Exercises
	10.9 References

	11 Soft-Decision Decoding Algorithms
	11.1 Introduction and General Notation
	11.2 Generalized Minimum Distance Decoding
	11.2.1 Distance Measures and Properties

	11.3 The Chase Decoding Algorithms
	11.4 Halting the Search: An Optimality Condition
	11.5 Ordered Statistic Decoding
	11.6 Exercises
	11.7 References

	Part III Codes on Graphs
	12 Convolutional Codes
	12.1 Introduction and Basic Notation
	12.1.1 The State

	12.2 Definition of Codes and Equivalent Codes
	12.2.1 Catastrophic Encoders
	12.2.2 Polynomial and Rational Encoders
	12.2.3 Constraint Length and Minimal Encoders
	12.2.4 Systematic Encoders

	12.3 Decoding Convolutional Codes
	12.3.1 Introduction and Notation
	12.3.2 The Viterbi Algorithm
	12.3.3 Some Implementation Issues
	The Basic Operation: Add-Compare-Select
	Decoding Streams of Data: Windows on the Trellis
	Output Decisions
	Hard and Soft Decoding; Quantization
	Synchronization Issues

	12.4 Some Performance Results
	12.5 Error Analysis for Convolutional Codes
	12.5.1 Enumerating Paths Through the Trellis
	Enumerating on More Complicated Graphs: Mason’s Rule

	12.5.2 Characterizing the Node Error Probability Pe and the Bit Error Rate Pb
	12.5.3 A Bound on Pd for Discrete Channels
	Performance Bound on the BSC

	12.5.4 A Bound on Pd for BPSK Signaling Over the AWGN Channel
	12.5.5 Asymptotic Coding Gain

	12.6 Tables of Good Codes
	12.7 Puncturing
	12.7.1 Puncturing to Achieve Variable Rate

	12.8 Suboptimal Decoding Algorithms for Convolutional Codes
	12.8.1 Tree Representations
	12.8.2 The Fano Metric
	12.8.3 The Stack Algorithm
	12.8.4 The Fano Algorithm
	12.8.5 Other Issues for Sequential Decoding
	12.8.6 A Variation on the Viterbi Algorithm: The M Algorithm

	12.9 Convolutional Codes as Block Codes
	12.10 Trellis Representations of Block and Cyclic Codes
	12.10.1 Block Codes
	12.10.2 Cyclic Codes
	12.10.3 Trellis Decoding of Block Codes

	Lab 9 Programming Convolutional Encoders
	Objective
	Background
	Programming Part

	Lab 10 Convolutional Decoders: The Viterbi Algorithm
	Objective
	Background
	Programming Part

	12.11 Exercises
	12.12 References

	13 Trellis Coded Modulation
	13.1 Adding Redundancy by Adding Signals
	13.2 Background on Signal Constellations
	13.3 TCM Example
	13.3.1 The General Ungerboeck Coding Framework
	13.3.2 The Set Partitioning Idea

	13.4 Some Error Analysis for TCM Codes
	13.4.1 General Considerations
	13.4.2 A Description of the Error Events
	13.4.3 Known Good TCM Codes

	13.5 Decoding TCM Codes
	13.6 Rotational Invariance
	Differential Encoding
	Constellation Labels and Partitions

	13.7 Multidimensional TCM
	13.7.1 Some Advantages of Multidimensional TCM
	13.7.2 Lattices and Sublattices
	Basic Definitions
	Common Lattices
	Sublattices and Cosets
	The Lattice Code Idea
	Sources of Coding Gain in Lattice Codes
	Some Good Lattice Codes

	13.8 The V.34 Modem Standard
	Lab 11 Trellis-Coded Modulation Encoding and Decoding
	Objective
	Background
	Programming Part

	13.9 Exercises
	13.10 References

	Part IV Iteratively Decoded Codes
	14 Turbo Codes
	14.1 Introduction
	14.2 Encoding Parallel Concatenated Codes
	14.3 Turbo Decoding Algorithms
	14.3.1 The MAP Decoding Algorithm
	14.3.2 Notation
	14.3.3 Posterior Probability
	14.3.4 Computing αt and βt
	14.3.5 Computing γr
	14.3.6 Normalization
	14.3.7 Summary of the BCJR Algorithm
	14.3.8 A Matrix/Vector Formulation
	14.3.9 Comparison of the Viterbi and BCJR Algorithms
	14.3.10 The BCJR Algorithm for Systematic Codes
	14.3.11 Turbo Decoding Using the BCJR Algorithm
	The Terminal State of the Encoders

	14.3.12 Likelihood Ratio Decoding
	Log Prior Ratio λp, t
	Log Posterior λs, t

	14.3.13 Statement of the Turbo Decoding Algorithm
	14.3.14 Turbo Decoding Stopping Criteria
	The Cross Entropy Stopping Criterion
	The Sign Change Ratio (SCR) Criterion
	The Hard Decision Aided (HDA) Criterion

	14.3.15 Modifications of the MAP Algorithm
	The Max-Log-MAP Algorithm

	14.3.16 Corrections to the Max-Log-MAP Algorithm
	14.3.17 The Soft Output Viterbi Algorithm

	14.4 On the Error Floor and Weight Distributions
	14.4.1 The Error Floor
	14.4.2 Spectral Thinning and Random Interleavers
	14.4.3 On Interleavers

	14.5 EXIT Chart Analysis
	14.5.1 The EXIT Chart

	14.6 Block Turbo Coding
	14.7 Turbo Equalization
	14.7.1 Introduction to Turbo Equalization
	14.7.2 The Framework for Turbo Equalization

	Lab 12 Turbo Code Decoding
	Objective
	Background
	Programming Part

	14.8 Exercises
	14.9 References

	15 Low-Density Parity-Check Codes
	15.1 Introduction
	15.2 LDPC Codes: Construction and Notation
	15.3 Tanner Graphs
	15.4 Transmission Through a Gaussian Channel
	15.5 Decoding LDPC Codes
	15.5.1 The Vertical Step: Updating qmn (x)
	15.5.2 Horizontal Step: Updating rmn (x)
	15.5.3 Terminating and Initializing the Decoding Algorithm
	15.5.4 Summary of the Algorithm
	15.5.5 Message Passing Viewpoint
	15.5.6 Likelihood Ratio Decoder Formulation

	15.6 Why Low-Density Parity-Check Codes?
	15.7 The Iterative Decoder on General Block Codes
	15.8 Density Evolution
	15.9 EXIT Charts for LDPC Codes
	15.10 Irregular LDPC Codes
	15.10.1 Degree Distribution Pairs
	15.10.2 Some Good Codes
	15.10.3 Density Evolution for Irregular Codes
	15.10.4 Computation and Optimization of Density Evolution
	15.10.5 Using Irregular Codes

	15.11 More on LDPC Code Construction
	15.11.1 A Construction Based on Finite Geometries
	15.11.2 Constructions Based on Other Combinatoric Objects

	15.12 Encoding LDPC Codes
	15.13 A Variation: Low-Density Generator Matrix Codes
	15.14 Serial Concatenated Codes; Repeat-Accumulate Codes
	15.14.1 Irregular RA Codes

	Lab 13 Programming an LDPC Decoder
	Objective
	Background
	Assignment
	Numerical Considerations

	15.15 Exercises
	15.16 References

	16 Decoding Algorithms on Graphs
	16.1 Introduction
	16.2 Operations in Semirings
	16.3 Functions on Local Domains
	16.4 Factor Graphs and Marginalization
	16.4.1 Marginalizing on a Single Variable
	16.4.2 Marginalizing on All Individual Variables

	16.5 Applications to Coding
	16.5.1 Block Codes
	16.5.2 Modifications to Message Passing for Binary Variables
	16.5.3 Trellis Processing and the Forward/Backward Algorithm
	16.5.4 Turbo Codes

	16.6 Summary of Decoding Algorithms on Graphs
	16.7 Transformations of Factor Graphs
	16.7.1 Clustering
	16.7.2 Stretching Variable Nodes
	16.7.3 Exact Computation of Graphs with Cycles

	16.8 Exercises
	16.9 References

	Part V Space-Time Coding
	17 Fading Channels and Space-Time Codes
	17.1 Introduction
	17.2 Fading Channels
	17.2.1 Rayleigh Fading

	17.3 Diversity Transmission and Reception: The MIMO Channel
	17.3.1 The Narrowband MIMO Channel
	17.3.2 Diversity Performance with Maximal-Ratio Combining

	17.4 Space-Time Block Codes
	17.4.1 The Alamouti Code
	17.4.2 A More General Formulation
	17.4.3 Performance Calculation
	Real Orthogonal Designs
	Encoding and Decoding Based on Orthogonal Designs
	Generalized Real Orthogonal Designs

	17.4.4 Complex Orthogonal Designs
	Future Work

	17.5 Space-Time Trellis Codes
	17.5.1 Concatenation

	17.6 How Many Antennas?
	17.7 Estimating Channel Information
	17.8 Exercises
	17.9 References

	A Log Likelihood Algebra
	A.l Exercises

	References
	Index

